

Kiểm thử phần mềm Software

testing

Kiểm thử phần mềm

Software testing

Bộ môn Công nghệ Phần mềm

Khoa công nghệ thông tin,

Đại học Bách khoa Đà Nẵng

Email: ltmhanh@ud.edu.vn

2

Điều kiện tiên quyết

 Cần kinh nghiệm kiểm thử

 Một vài sự hiểu biết về các pha phát triển của

dự án có thể có ích.

 Toán học có thể trợ giúp.

3

Tài liệu tham khảo

1. Paul Jorgensen, Software Testing-A Craftsman's Approach, CRC
Press, 1995.

2. Spyos Xanthakis, Pascal Régnier, Constantin Karapoulios, Le test des
logiciels, Hermes Science, 2000.

3. Hung Q. Nguyen and al., Testing application on the Web, John Wiley &
Sons, 2004.

4. Ilene Burnstein, Practical Software Testing, Springer, 2003.

5. Glenford J. Myers, The art of software testing, Wiley, 2004.

6. Cem Kaner, Jack Falk, Hung Q. Nguyen, Testing Computer Software,
2nd Edition, John Wiley & Sons, 1999.

7. Boris Beizer, Software Testing Techniques, International Thomson
Computer Press, Second Edition, 1990.

8. Neil Bitzenhofer, Software Testing and Verification, Course, MSSE, 2008.

9. Paul Ammann and Jeff Offutt, Introduction to Software Testing,
Cambridge University Press, Cambridge, UK, ISBN 0-52188-038-1,
2008.

10. Mauro Pezzè, Michal Young, Software Testing and Analysis: Process,
Principles, and Techniques, John Wiley & Sons.

4

Mô tả môn học

 Bao gồm cả lý thuyết và thực hành của kiểm thử

phần mềm.

 Sinh viên sẽ tham gia vào các hoạt động kiểm thử::

 Phân tích tài liệu yêu cầu để xác định các điều kiện kiểm

thử.

 Viết kế hoạch kiểm thử

 Thiết kế, tạo và thực thi các test cases sử dụng các cách

tiếp cận kiểm thử khác nhau

 Ghi lại các lỗi (Record defects)

 Viết báo cáo kiểm thử (Write a test report)

5

Nội dung

 Session 1: Introductory lecture

 Introductions and expectations

 Course overview

 Contents

6

Nội dung

 Session 2: Introduction to Software Testing

 Definitions, Principles, Axioms

 Stages of testing

 Perspectives on Software Testing

 A little math

7

Nội dung

 Session 3: Requirements analysis

 Software Development Life Cycle (SDLC)

 Software Development stage

 Requirements

 Testing and requirements

 Learn to think like a tester

 Some examples

 Writing test requirements

8

Nội dung

 Session 4

Exercise 1: Examining requirements

9

Nội dung

 Session 5: Structural Testing

 White box testing / Structural testing

 Graph Theory

 Control flow criteria

 Data flow criteria

 Graph Coverage for Source Code

 Testing State Behavior

 Syntax-based Testing

10

Nội dung

 Session 6: Static Testing

 Reviews and the test process

 Types of review

 Static analysis

11

Nội dung

 Session 7: Functional Testing/Black-box

 Introduction to functional testing

 Functional testing techniques

 Boundary Value testing

 Equivalence Class testing

 Special Value testing

 Decision Tables

12

Nội dung

 Session 8: Test Documentation

 Test Plan

 The need for test plans

 The structure of test plans

 A Test Plan Template

 A Test Plan example

 Testing on a large project

 Test Cases

 Test Case Design

 Test Case Examples

13

Nội dung

 Session 9

Exercise 2: Writing a test plan and test cases

14

Nội dung

 Session 10: Integration & System Testing

 Levels of Testing

 Integration Testing

 System Testing

 Additional System Test Categories

15

Nội dung

 Session 11: Defect Reports/Test Reports

 Handling Defects

 Bug Tracking System

 Test Reports

 Examples

16

Nội dung

 Session 12: Object-oriented Testing

 Why OO Testing?

 Impact of OO on Testing

 OO Testing Phases

 Testing OO Systems

 Specific OO Testing Techniques

17

Nội dung

 Session 13: Test Automation and Tools

 Test Automation

 Test tools

18

Nội dung

 Session 14: Other topics

 Metrics

19

Why test?

 List of 107 software failures that should have

been caught by testing

http://www.cs.tau.ac.il/~nachumd/verify/horro

r.html

 One vital consideration from Myers’ book

“The Art of Software Testing”

 Mars Climate Orbiter

 Mars Polar Lander

20

Software Errors

1. The Mars Climate Orbiter crashed in September 1999 because of a
"silly mistake": wrong units in a program.

2. The 1988 shooting down of the Airbus 320 by the USS Vincennes
was attributed to the cryptic and misleading output displayed by the
tracking software.

3. Death resulted from inadequate testing of the London Ambulance
Service software.

4. Several 1985-7 deaths of cancer patients were due to overdoses of
radiation resulting from a race condition between concurrent tasks in
the Therac-25 software.

5. Errors in medical software have caused deaths. Details in B.W.
Boehm, "Software and its Impact: A Quantitative Assessment,"
Datamation, 19(5), 48-59(1973).

6. An Airbus A320 crashes at an air show.

7. A China Airlines Airbus Industrie A300 crashes on April 26, 1994
killing 264. Recommendations include software modifications.

21

Software Errors

 The Explosion of the Ariane 5
 On June 4, 1996 an unmanned Ariane 5 rocket launched

by the European Space Agency exploded just forty
seconds after its lift-off from Kourou, French Guiana. The
rocket was on its first voyage, after a decade of
development costing $7 billion. The destroyed rocket and
its cargo were valued at $500 million. A board of inquiry
investigated the causes of the explosion and in two weeks
issued a report. It turned out that the cause of the failure
was a software error in the inertial reference system.
Specifically a 64 bit floating point number relating to the
horizontal velocity of the rocket with respect to the platform
was converted to a 16 bit signed integer. The number was
larger than 32,767, the largest integer storeable in a 16 bit
signed integer, and thus the conversion failed.

22

Software Errors

 The Patriot Missile Failure
 On February 25, 1991, during the Gulf War, an American Patriot Missile battery in

Dharan, Saudi Arabia, failed to track and intercept an incoming Iraqi Scud
missile. The Scud struck an American Army barracks, killing 28 soldiers and
injuring around 100 other people. A report of the General Accounting office,
GAO/IMTEC-92-26, entitled Patriot Missile Defense: Software Problem Led to
System Failure at Dhahran, Saudi Arabia reported on the cause of the failure. It
turns out that the cause was an inaccurate calculation of the time since boot due
to computer arithmetic errors. Specifically, the time in tenths of second as
measured by the system's internal clock was multiplied by 1/10 to produce the
time in seconds. This calculation was performed using a 24 bit fixed point
register. In particular, the value 1/10, which has a non-terminating binary
expansion, was chopped at 24 bits after the radix point. The small chopping
error, when multiplied by the large number giving the time in tenths of a second,
led to a significant error. Indeed, the Patriot battery had been up around 100
hours, and an easy calculation shows that the resulting time error due to the
magnified chopping error was about 0.34 seconds. A Scud travels at about 1,676
meters per second, and so travels more than half a kilometer in this time. This
was far enough that the incoming Scud was outside the "range gate" that the
Patriot tracked. Ironically, the fact that the bad time calculation had been
improved in some parts of the code, but not all, contributed to the problem, since
it meant that the inaccuracies did not cancel.

http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm
http://www.fas.org/spp/starwars/gao/im92026.htm

23

Software Errors

 Y2K

 Spent some billions dollars

24

Chapter 1 of the textbook

A Perspective on Testing

 Basic Definitions

 Error – a mistake in design, coding, requirements,

even testing

 Fault – the representation of the error

 Failure – what happens when the fault “executes”

 Incident – the user-visible manifestation of the

failure

25

A Perspective on Testing

 More Definitions
 Testing – the process of finding errors and of validating the

program/system

 Test Case – a test case has
 Inputs

 Steps

 Outputs

 Expected results

 Process
 Test plan,

 Write test cases

 Run the test cases

 Evaluate results

26

A Perspective on Testing

 Test Cases

 Test Cases will be discussed in detail in

Session 7 and throughout the course.

 “Testing entails establishing the environment,

providing the inputs (running the test case),

observing outputs, and comparing to expected

outputs.”

 Test Cases are developed, reviewed, used,

managed, and saved – and hopefully reused!

27

A Perspective on Testing

 Identifying Test Cases

 Functional Testing

 The program is a function that maps input values to

output values

 The only information used is the software specification

 In our Venn diagram, the Functional Test Cases are a

subset of S

 Further elaborated on in Part II

 Math background: Chapter 3

 We will discuss in Session 6

28

A Perspective on Testing

 Identifying Test Cases

 Structural Testing

 Uses the information inside the “black box” – the

actual implementation

 In our Venn diagram, the Structural Test Cases are a

subset of P.

 Further elaborated on in Part III of the text

 Math background: Chapter 4

 We will discuss this in Session 4

 Main method: Test coverage metrics

29

A Perspective on Testing

 Identifying Test Cases

 Comparing the two (Functional vs Structural)

 We will discuss this in Sessions 4 and 6

“If all specified behaviors have not been implemented,

structural test cases will never be able to recognize

this.

Conversely, if the program implements behaviors that

have not been specified, this will never be revealed by

functional test cases.”

30

A Perspective on Testing

 Levels of Testing

 Again, this will be covered in detail in Session 2.

Requirements

Specification

Preliminary

Design

Detailed

Design

Coding

Unit Testing

Integration

Testing

System

Testing

31

Testing a Program

A program that we want to test reads in 3 integer values – these 3
values are interpreted as the lengths of the sides of a triangle.

The program prints a message that states whether the triangle is

Equilateral (all 3 sides equal)

Isosceles (exactly 2 of the 3 sides are equal)

Scalene (all 3 sides are of a different length)

On a sheet of paper, write specific sets of test data that you feel
would adequately test this program.

You don’t have to put your name on the paper.

You have 10 minutes maximum.

© Glenford J. Myers, “The Art of Software Testing”

