

LỜI TỰA

Đây là cuốn sách hướng dẫn thực hành trên máy vi tính để phân tích các kết quả thực nghiệm trong nông nghiệp bằng IRRISTAT 4.0 trong Window. Với cách chỉ dẫn ngắn gọn dùng nhiều hình ảnh minh hoạ các bước cụ thể nên rất tiện cho người sử dụng. Đặc biệt là với những người không am hiểu nhiều về máy tính cũng như kiến thức về thống kê cũng có thể sử dụng được. Sách rất cần thiết cho sinh viên và các nghiên cứu viên nông nghiệp trong nghiên cứu, thiết kế thí nghiệm và xử lý các kết quả thí nghiệm của họ.

Nội dung cơ bản gồm 5 Chương

Chương 1: Giới thiệu khái quát những nội dung và chức năng cơ bản của IRRISTAT 4.0 trong Window.

Chương 2: Giới thiệu cách quản lý số liệu trong IRRISTAT 4.0.

Chương 3: Thiết kế thí nghiệm

Chương 4: Phân tích phương sai các kết quả thí nghiệm

Chương 5: Phân tích tương quan và hồi quy

Chương 1và 2 được dịch từ Tutorial Manual của "IRRISTAT 4.0 for Windows" do Biometric Unit của Internationnal Rice Research Institute biên soạn.

Các chương 3, 4, 5 tác giả đưa các ví dụ cụ thể và hướng dẫn cách thực hiện trên máy tính cho mỗi trường hợp thiết kế và phân tích kết quả chạy được. Đây là các ví dụ mẫu cho người học làm theo trên IRRISTAT 4.0 cũng như 5.0

Trong khuôn khổ và điều kiện còn nhiều hạn chế, không tránh khỏi những thiếu sót trong biên soạn. Rất mong nhận được nhiều ý kiến đóng góp quý báu của bạn đọc.

Tác giả

LỜI GIỚI THIỆU

IRRISTAT là bộ chương trình xử lý số liệu thống kê của Viện nghiên cứu lúa Quốc tế. Đây là bộ chương trình quen thuộc với các cán bộ ngành trồng trọt, phục vụ thiết thực cho việc bố trí thí nghiệm và xử lý kết quả nghiên cứu về lúa và các cây trồng khác. Nội dung và cách dùng IRRISTAT ver. 92-1 đã được giới thiều trong tập sách tin học cho Cao học các ngành sinh học của trường Đại học Nông nghiệp IRRISTAT lúc đó gồm các phần:

1.Bố trí thí nghiệm trên đồng ruộng với 4 kiểu chính: hoàn toàn ngẫu nhiên (RCD), khối ngẫu nhiên (RCB), chia ô (Split-plot), chia băng (Strip-plot). Mỗi kiểu có thể có 1, 2 hoặc nhiều nhân tố (ngoài khối coi là một nhân tố dặc biệt, thực chất là một hạn chế do điều kiện không thể lựa chọn nhiều ô thí nghiệm đồng nhất). Phần ngày giúp cho việc thết kế các thí nghiệm như chia khối, chọn kích thước ô, sắp xếp ngẫu nhiên các ô theo yêu cầu của kiểu thí nghiệm.

2.Phân tích phương sai 4 kiểu thí nghiệm trên, ngoài ra còn có 2 phần Pooled ANOVA và Combined ANOVA để liên kết các kết quả thí nghiệm trên nhiều vùng, qua nhiều năm hoặc cân đo nhiều đợt. Sau khi phân tích phương sai có thể so sánh các trung bình qua 2 phương pháp chính là LSD và Duncan, có thể đi sâu hơn để đánh giá một số kết quả thông qua phương pháp lập các tương phản. Phần này viết tỉ mỉ sát với nội dung Statistical Procedures for Agricultural Research của Kwanchai A.Gomez & Arturo A.Gomez của viện nghiên cứu lúa quốc tế.

3.Tương quan, hồi quy tuyến tính và đa thức. Phần này có phân tích hồi quy đơn, hồi quy bội tuyến tính, hồi quy đa thức, sau khi tính các hệ số hồi quy có bảng phân tích phương sai và phân tích phần dư.

4.Một số tiện ích để quản lý số liệu như sao chép tệp, biến đối số liệu. Nhìn chung đây là bộ số liệu cỡ trung bình, thiết thực cho phân tích số liệu trong các thí nghiệm về cây trồng. Tuy nhiên, chương trình còn nhiều nhược điểm như chạy rất chậm, có quá nhiều câu hỏi mà người dùng nếu không được hưỡng dẫn đầy đủ hoặc không có tài liệu chi tiết thì không dùng được, phần trợ giúp hầu như không có, vẽ thô sơ và xấu, nội dung hẹp (chỉ bao gồm những vấn đề cơ sở của môn thống kê sinh học) chưa đáp ứng được các yêu cầu mới trong nghiên cứu nông nghiệp.

Bộ chương trình IRRISTAT ver 4.0 là một bước nhảy vọt vì chuyển hoàn toàn sang chạy dưới Windows với nhiều nội dung mới. Có thể giới thiệu những nét mới chính như sau:

1. Toàn bộ chương trình hoạt động dưới dạng các Menu theo đúng khuynh hướng chung của các chương trình chạy dưới Windows.

2. Các dữ liệu được truy nhập dễ dàng và thuận tiện hơn trước nhiều.

3. Bộ chương trình giữ lại phần phân tích phương sai như cũ nhưng tổng quát hơn phân chia thành trường hợp cân đối và phần hồi quy tổng quát với hình vẽ đẹp như ở các bộ chương trình thống kê khác, ngoài ra đã bổ sung nhiều phần mới như phân tích ảnh hưởng của giống và môi trường, phân tích tính ổn định, một số vấn đề định lượng trong phân tích ổ gen và phân chia nhóm theo một số mô hình.

Toàn bộ các phần mới này rất cần thiết cho việc nhiên cứu sâu hơn về giống và ảnh hưởng của môi trường. Phần chia nhóm theo một số mô hình mang tính phác hoạ, tim cách ứng dụng một số mô hình thống kê nhiều chiều để xem xét sự gần gũi của mốt số giống hay của một số môi trường.

Tuy có rất nhiều ưu điểm nhưng đây mới chỉ là bước đầu chuyển sang chạy dưới Windows nên còn một số thiếu sót, không thuận tiện và tổng quát như các bộ SAS, SPSS. Về nội dung tuy đã bổ sung thêm nhiều phần nhưng vẫn chỉ tập trung xung quanh việc đánh giá giống và môi trường. Phần trợ giúp nghèo nàn không thoả mãn được cho người dùng khi gặp khó khăn.

Trên đây là một số nhận xét chung về bộ chương trình IRRISTAT để bạn đọc có một số ý niệm tuy sơ lược nhưng khái quát về IRRISTAT.

Sách này không nhằm giới thiệu tổng quát về IRRISTAT mà tập trung vào 2 phần: (1) Giới thiệu cách dùng IRRISTAT ver 4.0 và (2) Dùng IRRISTAT để thiết kế và phân tích một số mẫu phân tích phương sai và hồi quy hay gặp trong nghiên cứu cây trồng.

Phần giới thiệu được soạn tỉ mỉ theo tài liệu hướng dẫn cách dùng IRRISTAT ver 4.0 do bộ phận Biometric của Viện lúa Quốc tế biên soạn. Qua việc giới thiệu các loại cửa sổ (cửa sổ chính, cửa sổ quản lý dữ liệu, cửa sổ văn bản, cửa sổ đồ hoạ) chúng ta có thể hình dung ra cách làm việc với IRRISTAT. Trong mỗi cửa sổ có các công việc (menu) và trên màn hình sẽ xuất hiện nhiều loại công cụ như các nút điều khiển, nút tuỳ chọn, các hộp danh sách, hộp kiểm soát, hộp soạn thảo... Việc sử dụng các menu, các nút các hộp đã được giới thiệu kỹ lưỡng với các hình minh hoạ rất cụ thể.

Trong phần II tác giả đã chọn một số mẫu thiết kế thí nghiệm thường gặp trong nghiên cứu cây trồng có kèm theo ví dụ và kết quả xử lý trên IRRISTAT ver 4.0.

Đối với thí nghiệm một nhân tố có 4 kiểu thiết kế:

1. Thí nghiệm một nhân tố thiết kế kiểu hoàn toàn ngẫu nhiên (CRD).

2. Thí nghiệm một nhân tố thiết kế kiểu khối ngẫu nhiên đầy đủ (RCB).

3. Thí nghiệm một nhân tố bố trí kiểu Ô vuông La tinh (LS).

4. Thí nghiệm một nhân tố bố trí kiểu lưới ô vuông (Lattice design).

Trừ kiểu lưới ô vuông được giới thiệu kỹ hơn còn 3 kiểu đầu thì chỉ để cập sơ qua vì đã có nhiều tài liệu hướng dẫn và đã được dạy trong giáo trình phương pháp thí nghiệm.

Đối với thí nghiệm 2 nhân tố có 4 kiểu thiết kế:

1. Thí nghiệm 2 nhân tố kiểu hoàn toàn ngẫu nhiên (CRD)

2. Thí nghiệm 2 nhân tố kiểu khối ngẫu nhiên đầy đủ (RCB).

3. Thí nghiệm 2 nhân tố kiểu chia ô lớn ô nhỏ (Split-plot).

4. Thí nghiệm 2 nhân tố kiểu chia băng (Strip-plot).

Cả 4 kiểu này đều được giới thiệu kỹ vì các tài liệu khác hoặc không viết kỹ hoặc không nêu rõ lý do phải thiết kế như vậy kèm theo việc phân tích ưu khuyết của từng kiểu.

Đối với thí nghiệm 3 nhân tố tác giả giới thiệu 2 kiểu quen thuộc là RCB và chia ô lớn vừa ô nhỏ (Split-split-plot).

Ngoài các kiểu thiết kế thí nghiệm nói trên tác giả đã chọn 2 vấn đề đang được nhiều người quan tâm là phân tích số liệu khi thiết kế trên nhiều địa điểm và khi thiết kế qua nhiều năm.

Phân tích hồi quy gồm:

- Hồi quy tuyến tính đơn. Phần này độc giả đã quen và có thể nhanh chóng hiểu được các kết quả phân tích.

- Hồi quy bội tuyến tính. Phần này được giới thiệu kỹ hơn vì phức tạp và có nhiều chi tiết cần phải nói rõ để không phạm phải sai lầm khi sử dụng các kết quả phân tích.

Hiện nay sinh viên các nghành kỹ thuật nông nghiệp khối cây trồng đều được học tin học, xác suất thống kê, phương pháp thí nghiệm với khối lượng giờ và kiến thức trình bày không nhỏ nhưng thiếu một tài liệu hướng dẫn tỉ mỉ việc dùng một bộ chương trình thống kê để xử lý số liệu. Tôi hy vọng cuốn sách này sẽ đáp ứng được yêu cầu của đông đảo bạn đọc.

Nhà giáo Ưu tú

Nguyễn Đình Hiền

Chương 1 GIỚI THIỆU CƠ BẢN VỀ IRRISTAT 4.0

IRRITAT là chương trình phần mềm máy tính được viết tại IRRI (Viện ghiên cứu lúa quốc tế tại Philippine) qua nhiều phiên bản khác nhau, các phiên bản trước đây thường chạy trong môi trường DOS, sử dụng kém thuận tiện, phiên bản 4.0 này chạy được trong môi trường Window nên sử dụng thuận tiện hơn. IRRISTAT có chức năng chính để thiết kế thí nghiệm, quản lý và phân tích thống kê cơ bản, phân tích phương sai và hồi qui các số liệu thực nghiệm thu được trong nghiên cứu khoa học. Chương trình có thể chạy trong bất kỳ hệ thống hoạt động nào của Window 32 bít. Khi cài đăt chương trình vào máy, hãy chạy file SETUP. EXE. trên đĩa cài đặt. Khi khởi động chương trình, chạy file IRRISTAT. EXE. hoặc kích chuột vào biểu tượng đã được cài đặt, xem biểu tượng trên hình 1.1. Hiện nay phần mềm này đã có phiên bản 5.0 xong về cơ bản không khác nhiều. Vậy cho mục đích của sách người đọc có thể sử dụng cả hai phiên bản như nhau trên cơ sở giới thiệu của sách này.

Hình 1.1. Biểu tượng Shortcut của IRRISTAT trên màn hình.

IRRISTAT được biên soạn chủ yếu để thiết kế thí nghiệm, phân tích các số liệu thu được từ một thí nghiệm được thiết kế và thực hiện đúng phương pháp, nhưng có nhiều nội dung có thể sử dụng để phân tích số liệu từ các nguồn nghiên cứu khác.

Các mô hình phân tích chính và chức năng khác nhau bao gồm:

- 1. Quản lý số liệu bằng spreadsheet
- 2. Trang ghi kết quả
- 3. Phân tích phương sai

- 4. Phân tích hồi qui
- 5. Phân tích ảnh hưởng của giống và môi trường
- 6. Phân tích di truyền số lượng
- 7. Phân tích theo nhóm
- 8. Vẽ đồ thị
- 9. Ngẫu nhiên hóa sơ đồ thí nghiệm, phương sai của trung bình nhiều nhân tố và đa thức trực giao.

1.1. Các cửa sổ Window

1.1.1. Các menu chính của Window (Main Window)

Cửa sổ chính của Window sẽ cung cấp cho người sử dụng các menu và các thanh công cụ như hình 1.2.

Hình 1.2. Các menu chính của Window

1.1.2. Cửa sổ quản lý số liệu (Data Editor)

Để mở được cửa sổ data editor, chọn Window trên cửa sổ chính xong kích đúp chuột vào data editor, data editor sẽ được mở như hình 1.3.

Hình 1.3. Cửa sổ quản lý số liệu (data editor)

Data editor trình bày số liệu dưới dạng hàng và cột. Mỗi hàng là một trường hợp và mỗi cột là một biến. Có thể ghi số liệu mới vào hàng, cột hoặc có thể nhập số liệu từ file của trang văn bản hoặc file excel và dbase. Một lúc có thể mở đồng thời một hoặc nhiều file số liệu. Số file được mở nhiều hay ít tuỳ thuộc khả năng nhớ của máy tính.

🧕 🚺 IRR	ISTAT D	Data Edi [.]	tor - [D	:\Progra	am Files	s\IR [<u> </u>
🐹 File	Edit V	'iew Opt	ions To	ols Win	idow He	lp	_ & ×
) 😅 日	D 🖬 🧉	5 × 🗈	2				
	1	2	3				
	REP	GIONG	NSUAT				
1	1.00000	1.00000	4.50000				
2	1.00000	2.00000	4.30000				1
3	1.00000	3.00000	4.90000				1
4	1.00000	4.00000	4.80000				1
5	1.00000	5.00000	5.40000				
6	2.00000	1.00000	4.20000				1
7	2.00000	2.00000	4.60000				1
8	2.00000	3.00000	5.00000				
9	2.00000	4.00000	4.90000				1 🔜
10	2.0000	5.00000	5.70000	-			
Row: 1	.4 CIReco	rds: 20 '	Variab Da	ata			11.

Ví dụ bảng số liệu trong data editor như sau (Hình 1.4):

Hình 1.4. Bảng số liệu được lưu trữ trong Data editor

1.1.3. Text Editor (Thường là cửa sổ quản lý file kết quả)

Để có text editor, cũng chọn từ menu Window trong cửa sổ chính xong chọn text editor sẽ có text editor mở như hình 1.5.

Hình 1.5. Cửa Text editor

Ví dụ kết quả tính toán ghi trong text editor như 1.6:

🗴 TextEditor - [D:\PROGRAM FILES\IRRISTAT\TEST.OUT]	_ & ×
🔀 File Edit Format Window Help	_ & ×
BALANCED ANOVA FOR VARIATE NSUAT FILE CRD 25/10/** 13:31	-
Phan lich ket qua thi petriem dues this le kieu PCB	
VARIATE V003 NSUAT	
LN SOURCE OF VARIATION DE SUMS OF MEAN ERATIO PROBER	
1 REP 2 .585333 .292667 2.29 0.162 3	
2 GIONG 4 4.74667 1.18667 9.30 0.005 3	
* RESIDUAL 8 1.02133 .12/66/	
* TOTAL (CORRECTED) 14 6.35333 .453810	
- TABLE OF MEANS FOR FACTORIAL EFFECTS FILE CRD 25/10/** 13:31	
Phan tick ket qua thinghiem duor thiet ket u BCB	
MEANS FOR EFFECT REP	
REP NOS NSUAT	
1 5 4.78000	
2 5 4.88000	-
Line 6 Co	

Hình 1.6. Kết quả phân tích lưu lại trong Text editor

1.1.4. Cửa sổ để vẽ đồ thị (Graph Window)

Mở cửa sổ này từ trong menu Analysis của cửa sổ chính Window như hình 1.7 dưới dây

Hình 1.7. Cửa sổ để vẽ đồ thị (Graph Window) Ví dụ một đồ thị được vẽ trong Graph Window như hình 1.8 sau đây:

IRRI	STAT	Grap	h	
File	Edit	Data	Configure	e Help
			IRRISTAT : So	catterplot of GIONG
6.4 J				
6.2 -				-
6.0 -				_
5.8 -				
5.6 -				
5.4 -				
5.2				
<u></u>				•
4.8 -				
4.6 -		_	-	
4.4 -		-	_	
4.2 -		-	-	
4.0 -		_		
3.8 🕂				· · · · · · · ·
0.0	0.5	1.0	1.5 2.0 2.4	5 3.0 3.5 4.0 4.5 5.0 5.5 GIONG

Hình 1.8. Đồ thị được vẽ trong Graph Window

1.2. Các menu (menus)

Mỗi cửa của Window trong IRRISTAT có các menu riêng và có các lựa chọn thích hợp với chức năng riêng của chúng.

1.2.1. Các menu chính của Window

- Menu File (hình 1.9): được dùng để mở file, cũng có thể dùng data editor hoặc text editor để mở file (tuỳ thuộc vào kiểu file), cũng có thể dùng để save the log file, save-as the log file hoặc có thể in the log file từ menu này.

Hình 1.9. Menu File trên Main Window

- Menu Edit (hình 1.10): được sử dụng để cut, copy, past hoặc để xoá Log window

🧕 IR	RISTAT fo	r Windov	vs			
File	Edit Data	Analysis	Utilities	Window	Help	
😅 ।	Cut	3				
Welco: Devel	Paste	Win ics	dows. unit			
Inter	Clear All	Text reh	Institut	e		
M.C.P Metro	Font	Mak	ati City			
This permi	software is ssion from 4	not to be the Biometr	released t ics unit,	without IRRI		
Line 1	1 Col					

Hình 1.10. Menu Edit trên Main Window

- Menu Analysis (hình 1.11): được sử dụng để chạy các phân tích thống kê, bao gồm các thống kê mô tả, phân tích phương sai, phân tích hồi qui, phân tích tương tác gen và môi trường của các thí nghiệm giống cây trồng, phân tích di truyền số lượng, phân tích phân biệt các nơi nghiên cứu, phân tích mẫu phân lớp và vẽ đồ thị.

🗕 IRRISTAT for	[.] Windov	vs			
File Edit Data	Analysis	Utilities	Window	Help	
Welcome to IRRIST Developed by the P International Rice M.C.P.O. Box 3127, Metro Manila, Phi This software is p permission from th	Summa Anova Regress Genoty Quantit Single S Pattern Graphic	ry sion pe x Enviro ative Trait Site Analys Analysis . s	onment : Loci iis	•	
Line 11 Col. Statisti	ical Analys	is modules			1

Hình 1.11. Menu Analysis trên Main Window

- Menu Utinities (hình 1.12): được sử dụng để xây dựng thiết kế thí nghiệm, tạo các thí nghiệm tổng quát có trung bình bình phương và các hệ số tương phản đa thức trực giao.

IRRISTAT for Window	vs			
File Edit Data Analysis	Utilities	Window	Help	
Welcome to IRRISTAT for Win Developed by the Biometrics	Randor Genera Orthogo	nization a I Factorial onal Polyn	nd Layout EMS omial	·
International Rice Research M.C.P.O. Box 3127, 1271 Mak Metro Manila, Philippines	Institut: ati City	e		
This software is not to be permission from the Biometr	released w ics unit,	vithout IRRI		
Line 11 Col Statistical Utility	modules			

Hình 1.12. Menu Utinities trên Main Window

- Menu Window (hình 1.13): được sử dụng để thay đổi các cửa Window khác nhau trong IRRISTAT hoặc sắp xếp lại các trình bày của Window.

Hình 1.13. Menu Window trên Main Window

1.2.2. Cửa Data Editor

- Trong Data Editor có thể sử dụng menu File (hình 1.14) để xây dựng, cất giữ, mở lại file và in file số liệu, để nhập số liệu từ Excel Workbook, từ Text file và Dbase file, và đưa số liệu từ file có đuôi SYS sang Excel hoặc Text file.

🧕 IRRISTAT I	Data Edito	r			
File Edit View	 Options 	Tools	Window	Help	
New	Ctrl+N				
Open	Ctrl+O				
Reopen	•				
Save	Ctrl+S				
Save As	Ctrl+A				
Close	Ctrl+E				
Import data Export data	+				
Print	Ctrl+P				
Exit	Alt+X				
		File	Operation	IS	

Hình 1.14. Chức năng của menu file trong Data Editor

Sử dụng menu Edit để cut, copy, và dán các giá trị trong datasheet (hình 1.15). Mở new trong menu file của Data Editor để có hình 1.15.

💆 IRRI	ISTAT C)ata Edi	tor				
🎉 File	Edit V	'iew Op	tions	Tools	Window	Help	_ & ×
	Cut Copy Paste	Ctrl+X Ctrl+C Ctrl+V	F				
	•						
Down 1	C. Doco	rder 11	Ioriah		220		
ROM: 1	. CIRECO	ius: I	variado	nenoina	me-		1.

Hình 1.15. Chức năng của menu Edit trong Data Editor

- Sử dụng menu Options để sửa chữa các đề mục, chuyển đổi số liệu, xếp hạng, tạo các mục, thêm, bớt, nhập số liệu, xoá biến và đặt độ chính xác riêng cho số liệu (hình 1.16).

🧕 IRR	ISTAT	Data	Editor				
🎉 File	Edit	View	Options	Tools	Window	Help	_ & ×
🛛 😅 🖬	D 🖆	😂 🕺	Edit De	escriptio	n		
	1	2	Recode	e			
	VAR02	2 VAR	Rank				
1			Standa	rdize			
			Transp	ose			
			Genera	ate level	s		
			Insert	record(s)		
			Delete	record(s)		
			Insert	Numeric	variable(s	s)	
			Insert	String va	ariable(s)		
			Delete	variable	e(s)		
			Duplica	ate varia	able		
			Clear v	ariable			
			Set dat	ta to dou	uble precis	ion	
Row:	1 C(Re	cords:	1 Variab	I-NoNa	me-		

Hình 1.16. Menu Options trong Data Editor

- Sử dụng menu Tools để sắp xếp trật tự số liệu, chuyển đổi dãy số liệu song song hoặc ngược lại (hình 1.17).

🧕 IRR	ISTAT D	Data Edi	tor					
🎉 File	Edit V	′iew Op	tions	Tools	Window	Help	_ & ×	
🏿 🛩 🔛	D 🖆 🔮	5 👗 🖻	Control	Serial To Parallel				
	1	2		Para	llel to Ser	ial [
	VAR02	VAR01		SOFL				
1	•	•						
								
	1			1				
Row:	1 CcReco	rds: 1 V	/ariab	I-NoNai	ne-			

Hình 1.17. Menu Tools trong Data Editor

Sử dụng menu Window để sắp xếp lại một hoặc nhiều cửa Window khác (hình 1.18)

🧕 🗵 IRR	ISTAT D	Data Edi	tor				
🎉 File	Edit V	/iew Op	tions	Tools	Window	Help	_ & ×
🖻 😅 🔛	D 🖬 🔮	3) X Co	6		Cascade	е	1
	1	2			Tile Ho	rizontally	
	VAR02	VAR01				rtically Discops	
1	•	•			Minimiz	ze All	
					Maximi	ze All	
					∠ 1		
					* 1		
							-
	-						
Row:	1 CcReco	rds: 1 \	/ariabl	-NoNar	ne-		1.

Hình 1.18. Chức năng của menu Window trong Data Editor

1.2.3. Các menu của Text Editor

- Sử dụng menu File để tạo file mới, mở file, in và cất giữ text file, để tóm tắt các kết quả thống kê và ra lệnh (hình 1.19).

🧕 🚺 Te	xtEdi	tor			
File	Edit	Format	Window	Help	
Ne	w	Ctrl+N	a 🔁		
Op	en	Ctrl+O			
Clo	ose	Ctrl+X			
Re	open		•		
Sav	ve	Ctrl+S			
Sav	ve As				
Pri	nt	Ctrl+P			
Exi	it				
		File rela	ited com	mands	///

Hình 1.19. Chức năng của menu file trong Text Editor

- Sử dụng menu Edit để sửa chữa file văn bản (hình 1.20)

🧕 Text	Editor	·-[D:\[DOCUME	~1\D□×
🎉 File	Edit	Format	Window	Help _ & ×
🖙 🖃	Unc	lo	Ctrl+Z	1
RANDOMIZ	Cut		Ctrl+X	
<u> </u>	Cop	y .	Ctrl+C	
FILENAME	Pas	te	Ctrl+V	STAT\IRRISTA!
EXPERIME	Sea	rch	Ctrl+F	VANDOMIZED DI
TREATMEN	Sea	rch Agair	n F3	
**** FA	CTOR (S) ****		_
REP (R) = 4	levels 1		
REP ((1) - R (2) = R	1 2		
REP (2) = R 3) = R	3		
REP (4) = R	4		_1
GTONG	(G) =	5 levels		
Line 1	Co			

Hình 1.20. Chức năng của menu Edit trong cửa Data Editor

- Sử dụng menu Format để thay đổi đặc điểm font của file văn bản (hình 1.21).

Hình 1.21. Chức năng của menu Format trong Text Editor

- Sử dụng menu Window trong Text Editor để sắp xếp lại cách trình bày của cửa Window (hình 1.22).

🗕 TextEditor - [D:\D	OCUME~1\DUNG1\LOCALS~1\Temp\RNDLYT.O	
🐹 File Edit Format	Window Help	_ & ×
RANDOMIZATION AND LAYOU FILENAME = "D:\PROGRAM TITLE = "Thiet ke thin EXPERIMENTAL DESIGN = 0 REPLICATIONS = 4 TREATMENTS = 4 x 5	Cascade Tile Horizontally Tile Vertically Arrange Icons Minimize All Maximize All	
REP (R) = 4 levels REP (1) = R1 REP (2) = R2 REP (3) = R3 REP (4) = R4 GIONG (G) = 5 levels GIONG (1) = G1	✓ ID:\DUCUME~I\DUNGI\LUCALS~I\Temp\RNDLYT.UUT	_

Hình 1.22. Chức năng của menu Window trong Text Editor

1.3. Cách sử dụng các hợp phần khác trong IRRISTAT

1.3.1. Các nút điều khiển (Command Buttons)

Command buttons là sự điều khiển bằng hình mà nó chỉ hành động cần được thực hiện. Nguời sử dụng có thể chọn nút bấm bằng cách kích chuột khi con trỏ ở trên nút. Ví dụ như trên hình 1.23 có hai nút đã được chọn.

IRRISTAT: Balanced Analysis of Variance	<u>?</u> ×
Analysis of Variance Options Effect	
Heading: Phan tich phuong sai	✓ OK ✓ Cancel ? Help Eave
Line 1 Col 21	Data Selection
Compute and Test residuals ▼ Non-Parametric ANOVA Analyze Box-Cox Transformation ▼ Sort Character Factors Wide Output for Means ■ Compute Type III SS	

Hình 1.23. Hai nút điều khiển được chọn

1.3.2. Các hộp soạn thảo (Text Boxes)

Text boxes được sử dụng để vào thông tin, sửa chữa. Ví dụ hình 1.24 là một text box mô tả đơn vị đo của biến năng suất, hình 25 để ghi chủ đề phân tích hồi qui.

Variable Name	
NSUAT	🗸 ок
Description:	
Do bang kg tren ha	X Cancel

Hình 1.24. Text box mô tả đơn vị đo của biến năng suất

IRRISTAT: Correlation and Multiple Regression
Regression and Correlation Regression Model Options Predictions Hypotheses Re-
Heading:
Phan tich hoi qui giua nang suat lua va dinh d
Cancel
Line 2 Col 29 Data Selection
Correlation Compute and Test Residuals
Parameter Covariance Maximum Steps
Partial Correlation for Stepwise :
Outlier Detection Limit : 0.25 Stopwice Test Level : 0.05
Influence Detection Limit : 0.25

Hình 1.25. Text box để ghi chủ đề của phân tích hồi qui

1.3.3. Hộp danh sách (List Boxes)

List boxes được sử dụng để đưa ra lựa chọn cho người sử dụng quyết định lựa chọn nào. Trong IRRISTAT có hai loại danh sách: nguồn và mục tiêu. Danh sách mục tiêu chứa các mục cần cho phân tích. Danh sách mục tiêu được lấy ra từ danh sách nguồn.

Ví dụ trên hình 1.26 biến "NSUAT" đang được chọn là một trong những biến nguồn (đậm màu).

IRRISTAT: I	Balanced Analysis	of Variance	<u>?</u> ×					
Analysis of Varianc	Analysis of Variance Options Effect							
😂 Open	Command File : TE.gfc	Data File : CRD.SYS	🗸 ок					
Data Filo Variables	: Analysis Variatos : Factors:	Coverietes :	🗙 Cancel					
REP GIONG			? <u>H</u> elp					
Neeri			🖺 Save					
	Add Remove Add	Remove Add Remove						
	-const-	n						
	Add Remove	Product Cross						

Hình 1.26. Biến nguồn đang được chọn

Biến "GIONG" đang được chọn trên hình 1.27 là biến mục tiêu. Để có biến mục tiêu, chọn biến nguồn xong kích chuột vào add ở phía dưới của hộp mục tiêu sẽ được, khi muốn loại bỏ danh sách biến mục tiêu thì chọn biến đó xong kích chuột vào Remove.

IRRISTAT:	Balanced Analysis	s of Variance	? ×
Analysis of Variand	e <u>O</u> ptions <u>E</u> ffect		
😂 Open	Command File : TE.gfc	Data File : CRD.SYS	• ок
Data File Variable: REP GIONG NSUAT	s: Analysis Variates : Factors: NSUAT	G Covariates :	★ Cancel
	Add Remove Add ANOVA Model Specificatio -CONST- Add Remove	Remove Add Remove n : Product Cross	Bave Save

Hình 1.27. Biến mục tiêu "GIONG" đang được chọn.

1.3.4. Hộp kiểm soát (Check boxes)

Check boxes dùng để điều khiển các lựa chọn riêng mà nó hoặc hiện hoặc ẩn. Khi lựa chọn biến thì dấu check mark xuất hiện. Khi lựa chọn ẩn thì dấu check mark

biến mất. Người sử dụng có thể thay đổi trạng thái của check boxes bằng cách kích chuột vào hộp hoặc ấn nút Select (Spacebar) khi dấu check box đã được đặt vào. Hình 1.28 là một ví dụ về hộp check box có sáu lựa chọn được đánh dấu.

IRRISTAT: S	ummary Stat	istics
👄 Open 🛛 File	name: D:\PROGRAM	I FILES\IRRISTAT
Variables in data file REP GIONG	Add Remove	ables for analysis:
Statistics Min Max Bange Mean	□ Sum	
▲ [

Hình 1.28. Các check boxes được lựa chọn

1.3.5. Nút tuỳ chọn (Option Buttons)

Một Option button thể hiện một lựa chọn đơn lẻ trong bộ các lựa chọn loại trừ có giới hạn. Khi một Option button được lựa chọn, điểm vòng tròn được điền dấu chấm, khi không có lựa chọn thì vòng tròn trống. Hình 1.29 là một ví dụ.

IRRISTAT: Correlation and Multiple Regression	
Regression and Correlation Regression Model Options Predictions Hypo	theses Re- 💶 🕨
Regression Models	
New	
Remove	🗙 Cancel
Insert Summary	<u>? H</u> elp
Analysis Variates : Response Variate : Residual Variate :	🖹 Save
Add Remove Fitted Variate :	
Add Add Enclosed Selection Selection Backward Selection	
Title : Print Model Details: Constrainsts 0	

Hình 1.29. Nút tuỳ chọn "Forward Selection" được chọn

1.3.6. Hộp tăng giảm (Spin Boxes)

Spin box chỉ chấp nhận một bộ số có giới hạn các giá trị được đưa vào thứ tự. Người sử dụng có thể đánh một giá trị mới vào text box, kích chuột vào mũi tên lên để tăng giá trị, hoặc vào mũi tên xuống để giảm gía trị. Ví dụ về hộp tăng giảm như hình 1.30 có ba hộp tăng giảm, một hộp cho Replication, hộp thứ hai cho Number of levels và hộp thứ ba ở dòng cuối cùng.

IRRISTAT: Randomization and Layout	
Design Specifications	
Copen File name: D:\PROGRAM FILES\IRRISTAT\IRRISTAT.RND	🗸 ок
Data File name D:\PROGRAM FILES\IRRISTAT\IRRISTAT.SYS	😮 Cancel 📗
Design title:	
Thiet ke thi nghiem kieu CRD	? Help
Design type: COMPLETELY RANDOMIZED DESIGN Replications: 3 + Define factor Factor name: Factor ID: Number of levels: 2 + Plot dimensions for layout per replication S + < no. of plots along length of the field.	

Hình 1.30. Minh hoạ hộp tăng giảm

1.3.7. Danh sách tuỳ chọn (Drop-down List)

Drop-down list là một danh sách có thể thay đổi trạng thái giữa đóng và mở. Một trong số lựa chọn của danh sách có thể được bôi đen và được chuyển vào text line bằng cách kích đúp chuột, hình 1.31 là một ví dụ.

IRRISTAT: Correlation and Multiple Regression	
Regression and Correlation Regression Model Options Predictions Hypo	otheses Re-
Regression Models	
Y = *CONST* + X1 + X2 New	
Remove	X Cancel
Insert Summary	<u>? H</u> elp
Analysis Variates : Response Variate : Residual Variate : Add Remove X1 Independent Variates: X2 Add CONSTANT- X1 Remove X2 Title : Print Model Details Constraints 0	Save Save
nVars : 5 InRecs : 3 Working directory :	

Hình 1.31. Minh hoạ danh sách tuỳ chọn

Chương 2. MỘT SỐ CÁCH QUẢN LÝ SỐ LIỆU CƠ BẢN

Mục tiêu của phần này giúp cho người học biết cách quản lý các số liệu nghiên cứu thu được trong IRRISTAT và một số phép biến đổi đơn giản. Cụ thể các nội dung cần nắm bắt như sau:

- Biết cách vào số liệu trực tiếp từ Data Editor
- Nhập số liệu từ text file, excel file, và dbase file
- Tạo biến mới bằng cách sử dụng các phép tính số học, các hàm số và các tính toán khác.
- Tạo biến mới bằng các biến đã có hoặc các giá trị thiếu
- Đưa số liệu từ file có đuôi SYS sang excel hoặc text file

2.1. Bộ số liệu mẫu

Bộ số liệu mẫu trong IRRISTAT thường được biểu hiện dưới dạng bảng như sau (hình 2.1). Số liệu được thể hiện dưới dạng hàng và cột, cột là thứ tự các biến và hàng là các cá thể ghi được. File số liệu thường được save dưới dạng đuôi SYS.

🧕 🚺 IRR	ISTAT D	Data Edi	tor - [D	:\Progra	am Files	IRRIS	ТАТ	
🎉 File	Edit V	liew Opt	tions To	ols Win	dow He	lp		_ & ×
🛛 🛥 🔛	D 🖬 🔮	5 👗 🗈	Ê					
	1	2	З	4	5			
	NLAI	GIONG	NSUAT	SOBONG	TLUONG			
1	1.00000	1.00000	30.0000	250.0000	23.0000			
2	1.00000	2.00000	48.0000	231.0000	23.0000			
3	1.00000	3.00000	52.0000	230.0000	24.0000			
4	1.00000	4.00000	45.0000	199.0000	25.0000			
5	1.00000	5.00000	52.0000	242.0000	21.0000			
6	1.00000	6.00000	62.0000	231.0000	23.0000			
7	1.00000	7.00000	58.0000	256.0000	21.0000			
8	1.00000	8.00000	63.0000	213.0000	24.0000			
9	1.00000	9.00000	70.0000	215.0000	27.0000			
10	2.00000	1.00000	23.0000	254.0000	26.0000			
11	2.00000	2.00000	46.0000	200.0000	24.0000			-
Row:	1 CcReco	rds: 36	Variab D:	\ Program	1 Files\IR	RISTAT\S	SoGiona.s	vs 🛛

Hình 2.1. Bộ số liệu mẫu trong IRRISTAT

2.2. Tạo file số liệu

Để phân tích được số liệu trong IRRISTAT, trước hết cần đưa số liệu vào file có đuôi SYS bằng Data Editor. Để có số liệu trong file đuôi SYS, có thể lấy từ file có sẵn trong Excel, Dbase hoặc vào số liệu trực tiếp cho Data Editor. Data Editor cũng giống như một Workshet, vào biến trên các cột và vào số liệu của các cá thể trên các hàng.

Để mở được Data Editor, từ cửa sổ chính Window chọn Data Editor. Khi vào Data Editor, các menu có thể làm việc ngay là File, Window, Help (hiện đậm, rõ), còn

các menu khác như Edit, Options, Tools (hiện mờ) chưa có khả năng làm việc nhưng chúng sẽ làm việc ngay sau khi mở file (hình 2.2).

Hình 2.2. Cửa sổ Data Editor mở với menu File

Có thể lấy số liệu qua menu File bằng 4 cách khác nhau sau đây:

- A. New: Vào số liệu trực tiếp bằng Data Editor
- B. Open: Mở file có sẵn với đuôi SYS
- C. Reopen: Mở những file vừa mới được làm gần nhất
- D. Import: Nhập file từ Excel, text hoặc Dbase file

2.2.1. Nhập số liệu qua Data Editor

Để mở New, chọn File ----> New từ cửa sổ Data Editor sẽ được một workshet như hình 2.3.

🧕 IRR	ISTAT	Data	Edit	tor							
🎉 File	Edit	View	Opt	ions	То	ols	Win	dow	He	lp	_ & ×
🛛 🛩 🖬	D 📫	& 🍪	Ē	B							
	1										
	VAR01										
1	•										
D		·	-								
Row: 3	1 CcRec	cords:	1 V	'ariab	l Da	ata					

Hình 2.3. Một workshet mới được mở trong Data Editor

Trên màn hình thể hiện một ô đậm nghĩa là một biến và một quan sát. Thêm hàng hoặc cột nữa bằng cách dịch chuyên các mũi tên trên bàn phím xuống hoặc sang ngang cho đến khi có đủ số hàng, số cột như mong muốn. Khi hàng hoặc cột mới xuất hiện, IRRISTAT luôn thể hiện các ô bằng các dấu chấm, đó là các cell trống sẵn sàng cho nhập số liệu (hình 2.4).

🧕 IRR	🚺 IRRISTAT Data Editor									
🎉 File	Edit V	/iew Op	tions To	ols Win	idow He	elp	_ 8 ×			
	1	2	3	4						
	VAR01	VAR02	VAR03	VAR04						
1		•	•	•						
2	•	•	•	•						
3		•	•	•						
4	•	•	•	•						
5	•	•	•	•						
6	•	•	•	•						
7	•	•	•	•						
8		•	•	•						
9	•	•	•	•						
10	1									
Row: 1	.4 C/Reco	rds: 14	Variab Da	ata						

Hình 2.4. Workshet mới sẵn sàng cho nhập số liệu

IRRISTAT tạo ra các tên biến giả trên mỗi cột, ví dụ như VAR01, VAR02, VAR03. Đổi tên biến bằng cách kích chuột phải vào tên biến muốn đổi, cửa sổ nhỏ xuất hiện có 2 hộp nhỏ, xoá tên biến giả (VAR01 chẳng hạn) trong hộp đầu tiên để đặt biến mới theo ý muốn, nếu cần thiết thì kích chuột vào hộp nhỏ thứ hai để mô tả cho tên biến mới được đặt trong hộp nhỏ bên trên, sẽ có như hình 2.5.

Variable Name	
GIONG\$	🗸 ОК
Description:	
Cac giong moi nhap	X Cancel

Hình 2.5. Đặt và mô tả tên biến

Khi ấn định tên biến cho mỗi cột, không được ghi tên biến dài hơn 8 ký tự (không kể dấu \$). Dấu \$ được đưa vào sau tên biến khi muốn biến đó nhận ký tự là chữ.

Sau khi đặt tên biến xong ta có bảng mới còn trống cho nhập số liệu (ví dụ hình 2.6).

🧕 IRR	ISTAT D	Data Edi	tor						
🐹 File	Edit V	liew Opt	tions To	ols Win	dow He	lp	_ & ×		
	1	2	3	4	5				
	NLAI	GIONG\$	NSUAT	SOBONG	TLUONG				
1	•	•	•	•	•				
2	•	•		•	•				
3		•	•	•	•				
4		•	•	•	•				
5	•	•		•					
6		•		•	•				
7		•		•	•				
8		•	•	•	•				
9		•	•	•	•				
10					-		•		
Row:	1 C(Reco	rds: 14	Variab Da	ata			11.		

Hình 2.6. Bảng số liệu được thiết kế xong

Khi nhập số liệu vào các ô trống, có thể dùng các phím Tab hoặc mũi tên để chuyển con trỏ qua hàng hoặc cột. Các giá trị của biến trong mỗi ô không được dài quá 12 ký tự.

Các giá trị hoặc biến trong mỗi ô có thể copy được bằng cách chọn Edit xong chọn Copy hoặc cũng có thể copy bằng các biểu sẵn có như của Window trên màn hình. Khi vào số liệu xong, có thể chọn Options để sửa chữa tên biến hoặc mô tả thêm về biến xong vào menu file để vào save as xong đặt tên file hoặc dùng biểu tượng save trên màn hình và chú ý file được save phải có đuôi SYS (máy sẽ tự động gắn đuôi SYS). File cần được save trong IRRISTAT để thuận tiện cho sau này mở ra phân tích. Khi file đã được save, vị trí và tên của file sẽ được chỉ định ở góc phải, bên dưới của màn hình Data Editor.

Sau khi save file xong, có thể mở lại để sửa chữa số liệu khi vào bị nhầm. Khi sửa chữa, chỉ cần chọn ô bị sai xong đánh đè lên. Lúc này sẽ có bộ số liệu như hình 1 sẵn sàng cho phân tích.

2.2.2. Vào số liệu bằng cách mở file có sẵn (Open)

Để mở file cho việc sửa đổi số liệu, thêm biến,...và làm một số phép tính toán khác trên file có đuôi SYS hãy chọn File -----> Open. Khi hộp thoại mở, hãy chọn file cần mở xong kích Open. Data Editor sẽ cho thấy số liệu, số biến và vị trí của file được mở như hình 2.1.

Để mở 2 file đuôi SYS cùng một lúc, hãy mở lần lượt từng file một xong chọn Window, vào Tile Horizontally sẽ được 2 file xếp liên tiếp nhau như hình 2.7, nếu chọn Tile Vertically sẽ được 2 file xếp song song theo chiều thẳng đứng như hình 2.8

🧕 IRR	🕺 IRRISTAT Data Editor									
File E	dit Vie	w Optio	ns Too	ols Wind	low Hel	р				
	1	2	3					-		
	REP	GIONG	NSUAT	Γ						
1	1.00000	1.0000	4.500	00						
2	1.00000	2.0000	4.300	OC						
3	1.0000	6 0000		ad 	DDTOT					
		D:/P	rogram	Hiles \1	RRIST	I \SoGi	ong.sys			
			1	2	3	4	5			
			NLAI	GIONG	NSUAT	SOBONG	TLUONG			
		1	1.00000	1.00000	30.0000	250.0000	23.0000			
		2	1.00000	2.00000	48.0000	231.0000	23.0000			
	Ī	3	1.00000	3.00000	52.0000	230.0000	24.0000	-		
Row:	1 CcRecc	ords: 36	Variab	D:\Progra	am Files\]	RRISTAT	\SoGiona	.svs //		

Hình 2.7. Tile Horizontally

🧕 IRR	ISTAT D	ata Edit	or					_ 🗆	×
File E	dit View	Option	s To	pols	Windo	w Help			
🚺 D:\Program File 💶 🗆 🚺 D:\PROGRAM F 💶 🗆 🗙									×
	1	2	3			1	2	3	
	NLAI	GIONG	NSU			REP	GIONG	NSL	
1	1.00000	1.00000	30.0		1	1.00000	1.00000	4.50	
2	1.00000	2.00000	48.0		2	1.00000	2.00000	4.30	
3	1.00000	3.00000	52.0		3	1.00000	3.00000	4.90	
4	1.00000	4.00000	45.0		4	1.00000	4.00000	4.80	
5	1.00000	5.00000	52.0		5	1.00000	5.00000	5.4(
6	1.00000	6.00000	62.0		6	2.00000	1.00000	4.20	
7	1.00000	7.00000	58.0	–	7	2.00000	2.00000	4.60	Ţ
	· · · · · · · · · · · · ·								
Row: 1	CCRecor	ds: 36 \	/ariat	Da	ata				1.

Hình 2.8. Tile Vertically

2.2.3. Mở lại (Re-Open).

Mở file số liệu bằng cách mở lại những file mới được mở gần nhất có đuôi SYS, hãy chọn File -----> Chọn Re-Open, chọn file cần mở và kích chuột vào, cách làm cụ thể như hình 2.9.

🧕 IRRISTAT I	Data Edito	r _ 🗆 X
File Edit View	 Options 	Tools Window Help
New	Ctrl+N	2
Open	Ctrl+O	
Reopen	•	1 D:\Program Files\IRRISTAT\SoGiong.sys
Save	Ctrl+S	2 D:\PROGRAM FILES\IRRISTAT\CRD.SYS
Save As	Ctrl+A	3 D:\Program Files\IRRISTAT\hoiqui1.sys
Close	Ctrl+E	
Import data Export data	+ +	
Print	Ctrl+P	
Exit	Alt+X	
		No Open Data File

Hình 2.9. Mở file mới đóng gần nhất

2.2.4. Nhập số liệu vào IRRISTAT từ file khác (Import).

Đặc điểm của IRRISTAT là chỉ đọc được sheet đầu tiên trong workbook được mở. Tên biến cần để ở hàng đầu tiên bên trên, chỉ được 8 ký tự (không kể dấu \$), tên biến định tính cần có dấu \$ ở cuối.

Để nhập số liệu từ Excel, hãy chọn File ----> Import data ----> Excel workbook như hình 2.10.

🗕 🚺 IR	RIST/	AT Da	ta Edi	ito	r					
File	Edit	View	Optio	ns	Tools	Window	Help			
Nev	w	C	trl+N		5					
Ope	en	C	trl+O							
Rec	pen			•						
Sav	e	C	trl+S							
Sav	e As	. C	Ctrl+A							
Clos	se	C	trl+E							
Imp	oort da	ta		•	Excel	Workbook				
Imp Exp	oort da oort dai	ta ta		Þ	Excel Text F	Workbook File				
Imp Exp Prir	oort da oort dat nt	ta ta	tri+P	•	Excel Text F DBase	Workbook File e files				
Imp Exp Prir Exit	port da port dai nt t	ta ta C	trl+P	• •	Excel Text F DBase	Workbook File a files				
Imp Exp Prir Exit	port da port dat ht t	ta ta A	trl+P		Excel Text F DBase	Workbook File 9 files				
Imp Exp Prir Exit	port da port dai nt t	ta ta C	trl+P		Excel Text F DBase	Workbook File ≥ files				

Hình 2.10. Nhập số liệu vào IRRISTAT từ Excel

Khi hộp thoại mở, hãy đưa tên file Excel cần mở sau đó kích đúp chuột vào file excel có đuôi XLS đã được chọn hoặc có thể làm lệnh copy từ excel xong mở file trong IRRISTAT và dùng lệnh Paste.

2.2.5. Tạo biến mới từ biến đã có

Ví dụ muốn tạo biến mới NSLT từ file có sẵn là file SoGiong. Sys theo công thức sau:

NSLT (ta/ha) = Sobong * Tluong * Sohat / 10.

Các biến có sẵn là Sobong, Tluong, Sohat. Cách làm như sau:

Chọn File ----> Open từ Data Editor hoặc mở lại file. Khi file được mở, vào Options ----> Recode như hình 2.11.

🧕 IRR	ISTAT D)a ta	Editor - [D:\Program Files\I	RRISTAT\S
🐹 File	Edit V	'iew	Options Tools Window Help	_ <u>_</u> _ <u>_</u> _
🛛 😅	D 🖆 🧉	3 ×	Edit Description	
	1	2	Recode	
	NLAI	GIO	Rank	DHAT
1	1.00000	1.00	Standardize	3.000(
2	1.00000	2.00	Transpose	3.0000
3	1.00000	3.00	Generate levels	2.0000
4	1.00000	4.00	Insert record(s)	4.000(
5	1.00000	5.00	Delete record(s)	1.0000
6	1.00000	6.00		5.000(
7	1.00000	7.00	Insert String variable(s)	2.000
8	1.00000	8.00	Delete variable(s)	1.0000
9	1.00000	9.00	Duplicate variable	5.000(
10	2.00000	1.00	Clear variable	0.000(
11	2.00000	2.00	Cat data ta daubla presision	7.0000
12	2.00000	3.00		5.0000
13	2.00000	4.00	0000 51.0000 245.0000 23.0000 13	7.000
			26 Variab Du) Dragman Files) IDDIG	
ROW:	L CORECO	rus:	SO Variabild; \Programmes \IRRIS	

Hình 2.11.

Khi hộp thoại Recode mở, kích chuột vào New phía dưới hộp New Variables sẽ thấy một hộp nhỏ Variable Name xuất hiện, đánh chữ NSLT vào, xong OK. Khi này chữ NSLT sẽ xuất hiện trong hộp New Variable, kích chuột vào chữ này nó sẽ xuất hiện tiếp dưới hộp Commands xong dùng Numeric Keypad đánh toàn bộ công thức như trên hình 2.12

IRRISTAT: V	ariable Trans	formation and	Derivation	
Data File Variables : NLAI GIONG NSUAT SOBONG TLUONG SOHAT	New Variables : NSLT	Functions -STRING- copy delete insert str\$ length ord	7 8 9 4 5 6 1 2 3 0 . := + - (VOK X Cancel ? Help
Paste to Command	New Remove Paste to Command	Paste to Command		
				Line 1 Col 31
Messages:			* *	

Hình 2.12. Ghi công thức để tính thêm biến mới

Sau khi có hình 2.2, nhấn chuột vào Run để chạy chương trình và ta sẽ thu được kết quả như hình 2.13, trên hình này thấy xuất hiện thêm biến mới (NSLT). Save file số liệu mới được tính với đuôi SYS cho xử lý tiếp.

🗕 🔊 IRR	ISTAT D	Data Edi [.]	tor - [D	:\Progra	am Files	\IRRIS	ТА		\times
🚺 File	Edit V	liew Opt	tions To	ols Win	dow He	lp		_ 8	×
	1	2	3	4	5	6	7		
	NLAI	GIONG	NSUAT	SOBONG	TLUONG	SOHAT	NSLT		
1	1.00000	1.00000	30.0000	250.0000	23.0000	123.0000	70725.0	0000	
2	1.00000	2.00000	48.0000	231.0000	23.0000	123.0000	65349.9	0000	
3	1.00000	3.00000	52.0000	230.0000	24.0000	132.0000	72864.0	0000	
4	1.00000	4.00000	45.0000	199.0000	25.0000	124.0000	61690.0	0000	
5	1.00000	5.00000	52.0000	242.0000	21.0000	131.0000	66574.2	0000	
6	1.00000	6.00000	62.0000	231.0000	23.0000	145.0000	77038.5	0000	
7	1.00000	7.00000	58.0000	256.0000	21.0000	132.0000	70963.2	0000	
8	1.00000	8.00000	63.0000	213.0000	24.0000	151.0000	77191.2	0000	
9	1.00000	9.00000	70.0000	215.0000	27.0000	136.0000	78948.0	0000	
10	2.0000	1.0000	23.0000	254.0000	26.0000	200.000	132080.	որոր	-
Row:	1 CcReco	rds: 36 '	Variab D:	\ Program	n Files \ IRI	RISTAT\S	SoGiona.	svs	11.

Hình 2.13. Kết quả tính biến mới (NSLT)

Chương 3 THIẾT KẾ THÍ NGHIỆM

Mục đích: Giúp học sinh biết cách thiết kế một sơ đồ thí nghiệm bằng phần mềm IRRISTAT 4.0 với các cách thiết kế khác nhau để từ sơ đồ thiết kế trên máy tính người thiết kế sẽ có một bản thiết kế hoàn toàn khách quan, đảm bảo tính nguyên tắc và chính xác của thiết kế thí nghiệm, đồng thời giúp cho người làm thực nghiệm có thể triển khai được thí nghiệm trên thực tế một cách dễ dàng, chuẩn xác.

Trong phần học lý thuyết, người học đã được giới thiệu cách thiết kế thí nghiệm trong hai nhóm : thí nghiệm một nhân tố và thí nghiệm hai nhân tố, tuy nhiên trường hợp hai nhân tố chỉ dừng lại ở hai trường hợp. Trong phạm vi sách này sẽ giới thiệu 3 trường hợp của thiết kế thí nghiệm một nhân tố và 3 trường hợp của thiết kế thí nghiệm hai nhân tố.

3.1. Thiết kế thí nghiệm một nhân tố

3.1.1. Thí nghiệm một nhân tố thiết kế kiểu hoàn toàn ngẫu nhiên (CRD)

Ví dụ thiết kế một thí nghiệm so sánh khả năng nảy mầm của 5 giống đậu tương thứ tự từ 1 đến 5 (5 công thức, t = 5), với 4 lần nhắc lại (r = 4), được thiết kế theo kiểu hoàn toàn ngẫu nhiên trong nhà thí nghiệm. Cách tiến hành như sau:

- Mở IRRISTAT bằng cách kích đúp chuột vào biểu tượng của IRRISTAT trên màn hình ta được của sổ "IRRISTAT for Windows" xuất hiện như hình sau (hình 3.1)

Hình 3.1.

 Chọn Utilities, kích chuột vào Randomization and Layout ta được ảnh sau (hình 3.2)

Open a	randomization	and lay.	? 🗙	
Look in: 🕅 🧰) Program Files		➡	
ABC ACD Sy Adobe Commo ComPlu	/stems on Files us Applications	CONEXANT Drag'n Drop C Google InstallShield Intel		
<			>	
File name:	IRRISTAT		Open	
Files of type:	Rnd files (*.rnd)	-	Cancel	
	Open as read-only			

Hình 3.2.

Từ ảnh hình 3.2, kích đúp chuột vào hộp Open sẽ có cửa sổ nhỏ xuất hiện với chữ Confirm xuất hiện trên góc trái để hỏi có quyết định mở một file lệnh mới không, ta kích chuột vào hộp Yes để khẳng định sẽ được ảnh sau (hình 3.3)

IRRISTAT: Randomization and Layout				
Design Specifications				
Copen File name: D:\PROGRAM FILES\IRRISTAT\IRRISTAT.RND				
Data File name: D: PROGRAM FILES VRRISTATVRRISTAT.SYS	🕐 Cancel			
Design title:	? Help			
Design type: RANDOMIZED COMPLETE BLOCK Replications: 2 Define factor Factor plot assignment Factor plot assignment Factor ID: Factors: >> <				

Hình 3.3.

Từ hình 3.3, vào hộp Desgin title để đạt tên cho thiết kế thí nghiệm (đánh bất kỳ tên nào theo ý muốn). Xong chọn COMPLETELY RANDOMIZED DESIGN trong hộp Design type bằng cách nhấn chuột vào mũi tên của hộp để chọn, đặt số 4 trong hộp Replications, vào hộp Factor name viết chữ GIONG, hộp Factor ID viết chữ G, hộp Number of levels đặt số 5 (vì có 5 giống) xong kích chuột vào mũi tên kép sang phải ở hộp Factors. Trong hộp nhỏ đầu dòng cuối cùng đặt số 5. Cuối cùng được ảnh sau (hình 3.4).

IRRISTAT: Randomization and Layout	
Design Specifications	
Open File name: D:\PROGRAM FILES\IRRISTAT\IRRISTAT.RND	🖌 ок
Data File name: D: \PROGRAM FILES \\RRISTAT\CRD.SYS	😮 Cancel
Design title:	
Thiet ke thi nghiem kieu CRD	
Design type: COMPLETELY RANDOMIZED DESIGN Replications: 4	

Hình 3.4.

Từ hình 3.4 nhấn chuột vào OK sẽ được kết quả như sau

RANDOMIZATION AND LAYOUT

FILENAME = "D:\PROGRAM FILES\IRRISTAT\IRRISTAT.RND" TITLE = "Thiet ke thi nghiem kieu CRD" EXPERIMENTAL DESIGN = COMPLETELY RANDOMIZED DESIGN REPLICATIONS = 4TREATMENTS = 4×5 **** FACTOR(S) **** REP (R) = 4 levels REP(1) = R1REP(2) = R2REP(3) = R3REP(4) = R4GIONG (G) = 5 levels GIONG (1) = G1GIONG (2) = G2GIONG (3) = G3GIONG (4) = G4GIONG (5) = G5

Experimental layout for file: "D:\PROGRAM FILES\IRRISTAT\IRRISTAT.RND" (COMPLETELY RANDOMIZED DESIGN) (Note: layout is not drawn to scale) +----+---+---+---+---+ | 1 | 2 | 3 | 4 | 5 | +----+----+----+----+

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......27

| 6| 7| 8| 9| 10| +----+ | 11| 12| 13| 14| 15| +----+ | 16| 17| 18| 19| 20| +----+

PLOT NO. | TREATMENT ID

1 | R1 G5 2 | R4 G3 3 | R1 G4 4 | R1 G1 5 | R2 G2 6 | R4 G2 7 | R3 G1 8 | R4 G4 9 | R3 G5 10 | R1 G3 11 | R2 G3 12 | R2 G1 13 | R4 G1 14 | R4 G5 15 | R3 G4 16 | R2 G4 17 | R3 G2 18 | R1 G2 19 | R2 G5 20 | R3 G3

Từ kết quả ngẫu nhiên hoá bằng máy tính trên đây, ta có thể cụ thể hoá thành sơ đồ bố trí thí nghiệm trên thực tế như sau:

Nhắc lại 1	G5	G4	G1	G3	G2
Nhắc lại 2	G2	G3	G1	G4	G5
Nhắc lại 3	G1	G5	G4	G2	G3
Nhắc lại 4	G3	G2	G4	G1	G5

3.1.2. Thí nghiệm một nhân tố sắp xếp kiểu khối ngẫu nhiên đầy đủ (RCB/RCBD)

Mục đích: Người học cần nắm được phương pháp xây dựng một sơ đồ thí nghiệm bằng cách ngẫu nhiên hoá các các công thức vào các vị trí theo cách thiết kế đã được chọn.

Ví dụ xây dựng sơ đồ thí nghiệm cho một thí nghiệm sau:

Nghiên cứu ảnh hưởng của phân bón đến năng suất lúa trong thí nghiệm thiết kế kiểu khối ngẫu nhiên đầy đủ (RCB) với 7 công thức thí nghiệm trong 3 lần nhắc lại. Các công thức có tên theo trật tự: F1; F2; F3; F4; F5; F6; F7

Ngẫu nhiên hoá và tạo sơ đồ thí nghiệm bằng IRRISTAT

Mở IRRISTAT xong chọn Utilities, chọn tiếp Randomization and Layout từ cửa sổ chính của Window như hình 3.5.

Hình 3.5.

Kích đúp chuột vào Randomization and Layout để mở sẽ có hộp thoại xuất hiện. Đánh chữ DESIGN vào hộp File name như hình 3.6 xong kích chuột vào hộp Open để mở file mới sẽ được hình 3.7

Open a ra	ndomization and layout file.	? ×
Look in: 🔁	RRISTAT 💽 🔶 🖆	•••
⊫HELP ■IRRISTA	T.RND	
File name:	DESIGN	Open
Files of type:	Rnd files (*.rnd)	Cancel

Hình 3.6.

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......29

Hình 3.7.

Hộp nhỏ xuất hiên như hình 3.7 thì kích tiếp vào hộp Yes sẽ được cửa Randomization and Layout mở (hình 3.8).

IRRISTAT: Randomization and Layout					
Design Specifications					
Open File name: D:\PROGRAM FILES\IRRISTAT\DESIGN.RND					
Data File name	😮 Cancel				
Design title:					
ANH HUONG CUA PHAN BON DEN NANG SUAT LUA	? Help				
Design type: RANDOMIZED COMPLETE BLOCK Replications:					
Define factor Factor plot assignment					
Factor name: Factors: >> << PHAN BON, F, 7					
Plot dimensions for layout per replication					
7 no. of plots along length of the field.					

Hình 3.8.

Tiếp tục ghi dòng chữ ANH HUONG CUA PHAN BON DEN NANG SUAT LUA vào hộp Design Title, nhấn chuột vào hộp Design type để chọn kiểu thiết kế RANDOMIZED COMPLETE BLOCK, ghi chữ PHAN BON vào hộp Factor name, chữ P vào hộp Factor ID. Tăng số 2 trong hộp Number of levels lên đến số 7 xong nhấn chuột vào mũi tên kép trong hộp Factor plot assignment. Vào hộp Replications để tăng số 2 trong đó lên số ba. Tăng số trong hộp cuối cùng: Plot dimensions for layout fer replication lên đến 7 như hình 3.8. Sau đó nhấn chuột vào OK sẽ được kết quả ghi trong text editor như sau

Kết quả thiết kế

```
REPLICATIONS = 3
TREATMENTS = 7
  **** FACTOR(S) ****
  PHANBON (P) = 7 levels
    PHANBON (1) = P1
    PHANBON (2) = P2
    PHANBON (3) = P3
    PHANBON (4) = P4
    PHANBON (5) = P5
    PHANBON (6) = P6
    PHANBON (7) = P7
 _____
 Experimental layout for file: "D:\PROGRAM FILES\IRRISTAT\DESIGN.RND"
(RANDOMIZED COMPLETE BLOCK)
 The following field layout applies to all replications:
 (Note: layout is not drawn to scale)
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 +----+

      REPLICATION NO. 1
      REPLICATION NO. 2
      REPLICATION NO. 3

      PLOT NO. | TREATMENT ID
      -----
      -----

      1 | P7
      PLOT NO. | TREATMENT ID
      PLOT NO. | TREATMENT ID

      2 | P4
      1 | P2
      1 | P3

      3 | P2
      2 | P3
      2 | P7

      4 | P3
      3 | P1
      3 | P6

      5 | P6
      4 | P6
      4 | P5

      6 | P5
      5 | P7
      5 | P1

      7 | P1
      6 | P5
      6 | P5

      7 | P4
      7 | P4

REPLICATION NO. 1
```

	, , , , ,		
Từ kết quả ngẫu nhiên hoá theo (các lần nhắc lại trên	đây bằng máy tính, ta cụ th	hể

Từ kết quả ngâu nhiên hoá theo các lân nhặc lại trên đây băng máy tính, ta cụ thê hoá vị trí các công thức của các lần nhắc lại trên một sơ đồ để bố trí trong thực địa như sau:

Nhắc lại 1	P7	P4	P2	P3	P6	P5	P1
Nhắc lại 2	P2	P3	P1	P6	P7	P5	P4
Nhắc lại 3	P3	P7	P6	P5	P1	P2	P4

3.1.3. Thiết kế kiểu ô vuông Latin

Tự lấy ví dụ và chọn sơ đồ thiết kế ô vuông Latin mẫu dưới đây sau đó thực hiện các bước ngẫu nhiên hoá theo hàng, cột để được sơ đồ thiết kế. Một số sơ đồ ô vuông latin mẫu:
3	Х	3								4	Х	4										
		-	-	A	B	С	D		A	B	С	D		A	B	С	D		A	В	С	D
A	B	С		B	A	D	С		В	С	D	A		B	D	A	С		В	A	D	С
B	С	A		С	D	В	A		С	D	A	B		С	A	D	B		С	D	A	B
С	A	В		D	С	A	B		D	A	B	С		D	С	B	A		D	С	В	Α
	5	Х	5						6	Х	6							7	Х	7		
Α	В	С	D	E	-		Α	В	С	D	E	F				Α	В	С	D	E	F	G
B	A	E	С	D			В	F	D	С	A	E				В	С	D	E	F	G	A
С	D	A	E	B			С	D	E	F	B	A				С	D	E	F	G	Α	B
D	E	B	A	С			D	Α	F	E	С	B				D	E	F	G	A	B	С
E	С	D	B	A			E	С	A	B	F	D				E	F	G	A	В	С	D
							F	E	B	A	D	С				F	G	A	B	С	D	E
																G	A	B	С	D	E	F
		8	Х	8													9	Х	9			
A	В	С	D	E	F	G	Η							A	В	С	D	E	F	G	H	Ι
B	С	D	E	F	G	Η	A							B	С	D	E	F	G	Η	Ι	A
С	D	E	F	G	Η	A	B							С	D	E	F	G	Η	Ι	A	B
D	E	F	G	Η	A	B	С							D	E	F	G	Η	Ι	A	B	С
\boldsymbol{E}	F	G	Η	A	B	С	D							E	F	G	Η	Ι	A	В	С	D
F	G	Η	A	B	С	D	E							F	G	Η	Ι	A	B	С	D	E
\boldsymbol{G}	Η	A	B	С	D	E	F							\boldsymbol{G}	Η	Ι	A	B	С	D	E	F
H	A	B	С	D	E	F	G							H	Ι	A	B	С	D	E	F	G
														Ι	A	B	C	D	E	F	G	Η
			10	X	10	~				-		<u> </u>				11	x1	1				
A	B	C	D	E	F	G	H	Ι	J			A	B	C	D	E	F	G	H	I	J	K
B	C	D	E	F	G	H	I	J	A			B	C	D	E	F	G	H	1	J	K	A
C	D	E	F	G	H	I	J	A	B			C	D	E	F	G	H	I	J	K	A	B
D	E	F	G	H	1	J	A	B	C			D	E	F	G	H	1	J	K	A	B	C
E	F	G	H	I	J	A	B	C	D			E	F	G	H	1	J	K	A	B	C	D
F	G	H	1	J	A	B	C	D	E			F	G	H	1	J	K	A	B	C	D	E
G	H	1	J	A	B	C	D	E	F C			G	H	1	J	K	A	B	C	D	E	F
H	1	J	A	B	C		E	F C	G			H	1	J	K	A	B	C		E	r C	G
1	J	A	B	C		E	ľ C	G	H			1	J	K	A	B	C		E	r C	G	H
J	A	В	C	D	E	ľ	G	Η	1			J	K	A	B	C		E	ľ C	G	H	1
												K	A	В	U	\mathcal{D}	Ľ	ľ	G	Η	1	J

3.1.4. Thiết kế kiểu lưới ô vuông (Lattice) – Lattice cân đối (Lattice Design – Balanced Lattice).

Kiểu thiết kế này rất hiệu quả khi số công thức (t) lớn, thường từ 16 công thức trở lên. Trong thiết kế này, yêu cầu số khối (k) trong mỗi lần nhắc lại (r) bằng căn bậc hai của số công thức và số nhắc lại bằng với số khối cộng thêm 1.

Sơ đồ cho thiết kế này, tuỳ theo số công thức cần cho nghiên cứu mà lựa chọn một trong số các sơ đồ mẫu ở phần phụ lục tuỳ theo số công thức cần có trong thí nghiệm

.3.2. Thiết kế thí nghiệm hai nhân tố

3.2.1. Sắp xếp kiểu khối ngẫu nhiên đầy đủ với sự tổ hợp các mức các nhân tố Ví dụ: Thiết kế sơ đồ thí nghiệm nghiên cứu ảnh hưởng của các mức bón đạm và lân khác nhau tới năng suất lúa với 4 mức đạm N1, N2, N3, N4 và ba mức lân P1, P2, P3 tạo thành các tổ hợp công thức trong thiết kế khối ngẫu nhiên đầy đủ (RCB) có 4 lần nhắc lại.

Cách tiến hành

Làm các bước tương tự như ví dụ ở mục 1.1.1 để có ảnh như hình 3.9

TRRISTAT: Randomization and Layout	
Design Specifications	
Copen File name: D:\PROGRAM FILES\IRRISTAT\HAINTO.RND	🗸 ок 🔤
	Cancel
Design title:	
	и негр
Design type: RANDOMIZED COMPLETE BLOCK Replications: ²	

Hình 3.9

Từ hình 3.9, đánh dòng chữ bất kỳ vào hộp Design title, "ví dụ: thi nghiem hai nhan to thiet ke kieu RCB". Vào hộp Design Type để chọn kiểu thiết kế, trong bài này chọn RANDOMIZED COMPLETE BLOCK, vào tiếp hộp Replications để tăng số hai trong đó lên số 4. Xong vào tiếp hộp Factor name để đặt tên cho nhân tố được nghiên cứu, trước hết đặt tên cho nhân tố thứ nhất: hãy ghi chữ đạm vào hộp Factor name xong ghi chữ N vào hộp Factor ID xong tăng số 2 trong hộp Number of levels lên số 4 xong nhấn chuột vào mũi tên kép sang phải ở hộp Factor plot assignment để chuyển thông tin từ hộp Define factor sang hộp Factor plot assignment. Sau đó tiếp tục làm như vậy cho nhân tố thứ hai (lân). Khi này đưa con trở vào hộp cuối cùng để tăng số 1 trong hộp cuối cùng lên 12 sẽ được ảnh như hình 3.10. Từ hình 3.10 kích chuột vào OK để chay ra kết quả.

IRRISTAT: Randomization and Layout	
Design Specifications	
Copen File name: D:\PROGRAM FILES\IRRISTAT\HAINTO.RND	🗸 ок
Data File name D:\PROGRAM FILES\IRRISTAT\HAINTO.SYS	😮 Cancel 📗
Design title:	
Thi nghiem hai nhan to thiet ke kieu RCB	? Help
Design type: RANDOMIZED COMPLETE BLOCK Replications: ⁴ Define factor Factor name: Factor iD: Number of levels: 2 Plot dimensions for layout per replication 12 no. of plots along length of the field.	

Hình 3.10

FILENAI TITLE = EXPERIN REPLICA TREATMI **** I LAN LAN LAN LAN LAN DAM DAM DAM DAM DAM DAM	$ME = "I \\ = "Thi \\ MENTAL \\ ATIONS \\ ENTS = \\ FACTOR \\ (P) = 3 \\ (1) = \\ (2) = \\ (3) = \\ (1) = \\ (2) = \\ (3) = \\ (4) = \\ (4) = \\ \end{bmatrix}$):\PROU nghieu DESIG = 4 3 x 4 (S) ** } leve P1 P2 P3 4 leve N1 N2 N3 N4	GRAM F n hai n N = RA N Is Is	ILES\II nhan to NDOMIZI	RRISTA o thie ED COM	T\HAIN t ke } PLETE	NTO) cieu BL(, RND 1 RCI DCK	" B"						
Experir (RANDOR The fo: (Note: + 1	mental MIZED (llowing layout + 2	layou COMPLE g field is no 3	t for : IE BLOO d layor ot drav +	file: ' CK) ut app: wn to s +	"D:\PR lies t scale) + 6	 OGRAM 0 all + 1 7	==== FII reŗ -+	LES\ Dlic	===== IRRIS atior +	TA1	 10	-=== [NT -+- 	 11	==== D " +	= + 12

REPLICATION NO. 1	REPLICATION NO. 2
PLOT NO. TREATMENT ID	PLOT NO. TREATMENT ID
1 P3 N4	1 P2 N1
2 P3 N3	2 P3 N2
3 P2 N4	3 P2 N4
4 P2 N2	4 P2 N2
5 P3 N2	5 P1 N1
6 P1 N3	6 P1 N4

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......34

7 P2 N1	7 P1 N2
8 P1 N2	8 P3 N4
9 P1 N4	9 P2 N3
10 P2 N3	10 P1 N3
11 P1 N1	11 P3 N1
12 P3 N1	12 P3 N3
REPLICATION NO. 3	REPLICATION NO. 4
PLOT NO. TREATMENT ID	PLOT NO. TREATMENT ID
1 P3 N3	1 P2 N4
2 P2 N2	2 P1 N2
3 P2 N4	3 P3 N2
4 P1 N3	4 P3 N3
5 P3 N1	5 P1 N1
6 P1 N1	6 P3 N1
7 P1 N2	7 P2 N3
8 P1 N4	8 P1 N4
9 P3 N4	9 P2 N2
10 P3 N2	10 P1 N3
11 P2 N1	11 P3 N4
12 P2 N3	12 P2 N1

Sơ đồ cụ thể cho thiết kế này trên cơ sở kết quả ngẫu nhiên hoá của máy tính được mô tả như sau:

Nhắc lại 1	P3	P3	P2	P2	P3	P1	P2	P1	P1	P2	P1	P3
	N4	N3	N4	N2	N2	N3	N1	N2	N4	N3	N1	N1
Nhắc lại 2	P 1	P3	P2	P2	P 1	P 1	P 1	P3	P2	P1	P3	P3
	N2	N2	N4	N2	N1	N4	N2	N4	N3	N3	N1	N3
Nhắc lại 3	P3	P2	P2	P 1	P3	P 1	P 1	P 1	P3	P3	P2	P2
	N3	N2	N4	N3	N1	N1	N2	N4	N4	N2	N1	N3
Nhắc lại 4	P2	P1	P3	P3	P1	P3	P2	P1	P2	P1	P3	P2
	N4	N2	N2	N3	N1	N1	N3	N4	N2	N3	N4	N1

3.2.2. Thiết kế thí nghiệm kiểu Split-plot

Ví dụ: Thiết kế sơ đồ thí nghiệm cho thí nghiệm nghiên cứu ảnh hưởng của các mức bón lân khác nhau (4 mức P1, P2, P3, P4) tới năng suất một số giống lạc (ba giống V1, V2, V3) tại xã Tân Minh, Đà Bắc, Hoà Bình trong thiết kế kiểu Splitplot. Trong ví dụ này chọn lân là ô chính, giống là ô phụ.

Cách tiến hành: Thực hiện các bước tương tự ví dụ trong mục 3.1.1 để có hình 3.11

IRRISTAT: Randomization and Layout	
[Design Specifications]	
Open File name: D:\PROGRAM FILES\IRRISTAT\SPLITPLOT.RND	🗸 ок 🔤
	🐉 Cancel 📗
Design title:	<u> </u>
	Y Help
Design type: RANDOMIZED COMPLETE BLOCK Replications: Define factor Factor plot assignment Factor ID: Factors: >> <	

Hình 3.11

Từ hình 3.11 làm các bước tương tự như đã làm cho thiết kế thí nghiệm hai nhân tố tổ hợp trong kiểu thiết kế RCB để có ảnh như hình 3.12. Chú ý trường hợp này có khác là phải xác định rõ đâu là ô chính, đâu là ô phụ và thực hiện cho từng nhân tố một như trong hình đã ghi: Main là cho ô chính được thực hiện trước xong đến Sub là cho ô phụ làm sau và ở hộp cuối cùng của hình 3.11, nửa trên là cho số mảnh của ô chính trong một lần nhắc lại còn nửa dưới là cho số mảnh của ô phụ

TRRISTAT: Randomization and Layout	
Design Specifications	
Copen File name: D:\program Files\irristat\splitplot.rnd	🖌 ок
Data File name D:PROGRAM FILES\RRISTAT\SPLITPLOT.SYS	😮 Cancel 📗
Design title:	
Thiet ke thi nghiem kieu Split-plot	? Help
Design type. SPLIT-PLOT	
Factor name	
Factor ID: Sub: >> << GIONG, V, 3	
Number of levels: 2	
Plot dimensions for layout per replication	
4 no. of mainplots along length of each rep. 3 no. of plots along length of each mainplot.	

Hình 3.12

Khi có hình 3.12 chỉ cần kích chuột vào OK là có kết quả như dưới đây.

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......36

LAN $(1) = P1$
LAN $(2) = P2$
LAN (3) = P3
LAN $(4) = P4$
**** SUBPLOT ****
GIONG (V) = 3 levels
GIONG (1) = V1
GIONG $(2) = V2$
GIONG (3) = V3
Experimental layout for file: "D:\PROGRAM FILES\IRRISTAT\SPLITPLOT.RND"
(SPLIT-PLOT)
The following field layout applies to all replications:
(Note: layout is not drawn to scale)

+		+		+		+	+	 +	 	+		+		+		+		+		+		+
	1		2	1	3		4	5	6		7		8		9		10		11		12	
+				L		L		 	 													_

REPLICATIO	N NO. 1	REPLICATION	1 NO. 2
PLOT NO.	I TREATMENT ID	PLOT NO.	TREATMENT ID
1	P1 V1	1	P2 V3
2	P1 V3	2	P2 V2
3	P1 V2	3	P2 V1
4	P3 V1	4	P1 V2
5	P3 V3	5	P1 V3
6	P3 V2	6	P1 V1
7	P4 V2	7	P4 V2
8	P4 V3	8	P4 V1
9	P4 V1	9	P4 V3
10	P2 V2	10	P3 V2
11	P2 V3	11	P3 V1
12	P2 V1	12	P3 V3
REPLICATIO	N NO. 3	REPLICATION	1 NO. 4
PLOT NO.	TREATMENT ID	PLOT NO.	TREATMENT ID
1	P3 V2	1	P1 V1
2	P3 V1	2	P1 V3
3	P3 V3	3	P1 V2
4	P1 V3	4	P3 V3
5	P1 V2	5	P3 V2
6	P1 V1	6	P3 V1
7	P2 V3	7	P4 V2
8	P2 V2	8	P4 V3
9	P2 V1	9	P4 V1
10	P4 V1	10	P2 V3
11		11	$D^2 V^1$
1 I	P4 V3	± ±	12 11

Cụ thể hoá sơ đồ thiết kế thí nghiệm kiểu Split-plot cho bố trí trong thực địa của trường hợp kết quả ngẫu nhiên hoá bằng máy trên đây được mô tả như sau:

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......37

		P1			P3			P4			P2	
Nhắc lại 1	V 1	V3	V 2	V 1	V3	V2	V 2	V 3	V 1	V 2	V 3	V1
		P2			P1			P4			P3	
Nhắc lại 2	V3	V2	V 1	V 2	V3	V 1	V 2	V 1	V3	V 2	V 1	V3
		P3			P1			P2			P4	
Nhắc lại 3	V2	P3 V1	V3	V3	P1 V2	V1	V3	P2 V2	V1	V1	P4 V3	V2
Nhắc lại 3	V2	P3 V1 P1	V3	V3	P1 V2 P3	V 1	V3	P2 V2 P4	V1	V1	P4 V3 P2	V2

Ghi chú: Ô lớn được vẽ đậm cho các mức bón của lân (P1, P2, P3, P4) Ô nhỏ vẽ đường mảnh và không kéo dài hết ô cho các giống (V1, V2, V3)

3.2.3. Thiết kế thí nghiệm kiểu Strip Plot

Ví dụ có một thí nghiệm nghiên cứu ảnh hưởng của 3 mức bón đạm và 4 mức lân khác nhau đến năng suất lúa trong thiết kế kiểu Strip Plot với 3 lần nhắc lại. Các bước thiết kế trên IRRISTAT như sau:

Trên cửa sổ chính của IRRISTAT chon Utinities, chọn tiếp Randomization and Layout, sau chọn Factorial Design như trên ảnh sau (hình 3.13)

Open a	randomization	and lay.	🕐 🔀
Look in: 间	Program Files	- 🗧 🖬	▼ Ⅲ ▼
ACD Sy Adobe Ahead Apoint Apoint	/stems 2K		av2006 uPro mmon Files mPlus Appl NEXANT
<			>
File name:	duc.md		Open
Files of type:	Rnd files (*.rnd)	-	Cancel
	🥅 Open as read-only		

Hình 3.14

Đặt tên cho file làm việc trong ô File name, xong kích chuột vao open cho cửa sổ sau (IRRISTAT: Randomization and Layout) xuất hiện như hình 3.15 dưới đây

IRRISTAT: Randomization and Layout	
Design Specifications	
C:\PROGRAM FILES\STRIP.RND	🖌 ок
Data File name: C:\PROGRAM FILES\STRIP.SYS	😮 Cancel
Design title: Thiet ke thi nghiem kieu Strip Plot	? Help
Design type: STRIP-PLOT Replications: 3 Define factor Factor plot assignment Factor name: Horz: >> <<	
Plot dimensions for layout per replication 3 * < no. of plots of horz-factor along length of each rep. 4 * < no. of plots of vert-factor along length of each rep.	

Hình 3.15.

Từ cửa sổ trên, viết dòng chữ cho thiết kế trong hộp Design title (viết tùy ý không quy định), chọn kiểu thiết kế trong hộp Design type bằng kích chuột vào mũi tên đen để chọn, sau đó xác định số nhắc lại trong hộp Replications theo ý muốn, ghi tên nhân tố theo chiều đứng vào ô Factor name trong hộp Define factor, ghi kí hiệu của nhân tố dải đứng trong hộp Factor ID và số mức của nhân tố dải đứng trong hộp Number of levels xong kích chuột vào mũi tên kép ở hàng Horz:

trong hộp Factor plot assignment để chuyển thông tin từ hộp Define Factor sang dòng Horz. Tiếp tục làm như vậy cho nhân tố dải ngang.

Bước tiếp theo là xác định số ô phù hợp với số mức của mỗi nhân tố trong hộp plot dimensions for layout per replication như ảnh trên.

Cuối cùng, kích chuột vào OK để chạy mô hình thiết kế được kết quả như dưới đây:

RANDOMIZATI	ION AND LAY	TUC															
FILENAME = FILENAME = TITLE = "TH EXPERIMENTA REPLICATION TREATMENTS **** HORIZ DAM (1) DAM (2) DAM (2) LAN (2) LAN (1) LAN (2) LAN (3) LAN (4)	"C:\PROGRAI hiet ke thi AL DESIGN = VS = 3 = 3 x 4 ZONTAL **** = 3 levels = N1 = N2 = N3 ICAL **** = 4 levels = P1 = P2 = P3 = P4	M FIL nghi STRI	ES\S em k P-PL	TRIPP: ieu S OT	LOT tri	.RNI)" Lot"										
Experimenta (STRIP-PLO) The followi (Note: layo	al layout for) ing field loout is not o	or fi ayout drawn	le: app to	"C:\P lies scale	=== ROG to)	RAM all	FIL rep	ES\ lic	STRI atio	PPI ns:	 101		:== ID"			==	
++	2 3	+- 4		+ 6	-+- 	7	-+ 	8	+ 	 9	+ 	10	·+- 	11	-+- 	12	+
REPLICATION PLOT NO. 1 2 3 4 5 6 7 8 9 10 11 12	N NO. 1 TREATMEN N2 P2 N2 P3 N2 P1 N2 P3 N3 P2 N3 P3 N3 P1 N3 P1 N3 N1 P2 N1 P2 N1 P1 N1	Γ ID															
REPLICATION PLOT NO. 1 2 3 4 5 6 7 8 9 10 11	N NO. 2 TREATMEN N1 P1 N1 P2 N1 P3 N1 N2 P1 N2 P2 N2 P3 N2 N2 N3 P1 N3 P2 N3 P3	F ID															

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT......40

	12		NЗ		
REPL:	ICATI	ON	NO.	3	
PLOT	NO.		TRI	EATMENT	ID
	1		N1	P1	
	2		N1	Р3	
	3		N1	P2	
	4		N1		
	5		NЗ	P1	
	6		NЗ	Р3	
	7		NЗ	P2	
	8		NЗ		
	9		N2	P1	
	10		N2	P3	
	11		N2	P2	
	12	- i	N2		

Từ kết quả, dùng Table để vẽ sơ đồ thiết kế thí nghiệm và ghi các nhân tố từ kết quả thiết kế vào như sau

Churong 4 PHÂN TÍCH PHƯƠNG SAI (ANOVA)

4.1. Thí nghiệm một nhân tố

4.1.1. Thí nghiệm một nhân tố bố trí kiểu hoàn toàn ngẫu nhiên (Completely **Randomized Design: CRD**)

Kiểu thiết kế này được sử dụng khi các đơn vị thí nghiệm được lựa chọn là hoàn toàn đồng nhất. Chủ vếu áp dụng cho các loại thí nghiêm được tiến hành trong phòng thí nghiệm, chậu vại hoặc ô xi măng.

Bảng phân tích phương sai có cấu tạo như bảng 2.1:

Source of	Dgree of	Sum of square	Mean square	F
variation	freedom			
Treatment	t-1			
Error	t(r-1)			
(residual)				
Total	tr-1			

Bång 4.1. Bång phân tích phương sai

Trong đó: t là số công thức trong thí nghiệm

r là số lần nhắc lai

Ví dụ: Có một thí nghiệm so sánh 9 giống lúa lai được ký hiệu thứ tự từ G1, G2, G3, G4, G5, G6, G7, G8, và G9, G1 là giống đối chứng. Thí nghiêm có 4 lần nhắc lai được bố trí kiểu hoàn toàn ngẫu nhiên (CRD) trong các ô xi măng. Kết quả thu năng suất được ghi lai như bảng 4.2.

Bång 4.2. Nă	ng suất 9 dòng	lúa trên cá	c lần	nhắc lại	

Giống	Năi	ng suất trên các	lần nhắc lại (ta/	ha)
Clong	1	2	3	4
G1	35	30	27	32
G2	48	46	44	42
G 3	52	49	55	51
G 4	45	48	50	53
G5	52	58	56	52
G6	56	63	56	61
G7	58	55	63	55
G 8	55	56	59	57
G 9	64	72	72	71

Phân tích ANOVA bằng IRRISTAT được thực hiện theo trình tự sau:

• Vào số liệu

Từ cửa sổ chính của IRRISTAT, chọn Window → Data Editor → File → New. Khi bảng số liệu mẫu của Data Editor xuất hiện, tạo các biến theo yêu cầu sau đó vào số liệu từ bảng 4.1 sẽ được kết quả như hình 4.1 và save file với đuôi SYS.

🗕 🚺 IRR	ISTAT D	Data Edit	or - [D:`	Pro	gram F	iles \	IR 🗖	
🎉 File	Edit V	/iew Opti	ons Too	ols V	Vindow	Help		_ <u>_</u> _
😅 🖬	🗅 📫 🔮	😼 👗 🖻 I	2					
	1	2	З					
	NLAI	GIONG\$	NSUAT					
1	1.00000	v1	35.0000					
2	1.00000	v 2	48.0000					
З	1.00000	v 3	52.0000					
4	1.00000	v 4	45.0000					
5	1.00000	v 5	52.0000					
6	1.00000	v 6	56.0000					
7	1.00000	∨7	58.0000					
8	1.00000	v 8	55.0000					
9	1.00000	v 9	64.0000					
10	2.00000	v1	30.0000					
11	2.00000	v 2	46.0000					
12	2.00000	v 3	49.0000					
13	2.00000	v 4	48.0000					
14	2.00000	v 5	58.0000					-
Row:	1 CcReco	rds: 36 V	'ariab Dat	a				

Hình 4.1. Vào số liệu trong IRRISTAT

• Tiến hành phân tích

Từ cửa sổ chính Window, chọn Analysis → Anova → Balanced Analysis như hình 4.2

<u></u>	RRIST	AT for	Window	/S			
File	Edit	Data	Analysis	Utilities	Window	He	p
2		🔏 🖻	Summa	r y			
<u> </u>			Anova				Balanced Analysis
			Regress	sion			Unbalanced Analysis
			Genoty	be x Enviro	nment	T	
1			Quantit	ative Trait	Loci		
			Single S	ite Analys	is		
			Pattern	Analysis.			
			Graphic	s			
1	1 Col 1	Palance					

Line 1 Col 1 Balance Analysis

Hình 4.2. Kích chuột vào Balanced Analysis để mở hộp Open như hình 4.3

Open		<u>?</u> ×
Look in: 🔁 If	RRISTAT 💽 🔶 🖽 🖛	
➡HELP ■CRD1.gfc ■CRD.gfc ■TEST.gfc		
File name:	Oper	n
Files of type:	ANOVA Command Files (.gfc)	el

Hình 4.3

Khi hộp Open mở như hình 4.3, đặt tên file vào hộp nhỏ File name xong kích chuột vào Open sẽ có hộp thoại xuất hiện hỏi: Create new Command File thì kích tiếp chuột vào Yes sẽ được hình 4.4. Tên mới đặt trong File name là file để ghi kết quả sau khi phân tích được gắn đuôi gfc và để ở trong text editor.

Open		? ×
Look in: 🔎 II	RRISTAT 💽 🖛 🖽 🖛	
HELP CRD DESIGN hoiqui hoiqui SoGiong Sogiong		
File name:	CRD2	Open
Files of type:	IRRISTAT Data Files (.sys,.isd)	Cancel

Hình 4.4

Từ hình 4.4, kích đúp chuột vào file số liệu cần phân tích trong IRRISTAT sẽ được hình 4.5 như sau:

IRRISTAT: Balanced Analysis of Variance	<u>?</u> ×
Command File : Data File : CRD2.gfc SOGIONG1.SYS	Сок
Data File Variables: Analysis Variates : Factors: Covariates : NLAI GIONG\$ NSUAT NSUAT Image: Covariates :	Cancel
Add Remove Add Remove Add Remove ANOVA Model Specification : -CONST-	Bave Save
Add Remove Product Cross	IDDICTAT

Hình 4.5

Từ hình 4.5, chọn NSUAT trong hộp Data File Variables xong kích vào Add dưới hộp Analyis Variates để đưa biến này vào và đó là biến phân tích (nếu chọn nhầm thì kích chuột vào Remove để đưa ra). Chọn NLAI và GIONG\$ đưa sang hộp Factors, chọn tiếp GIONG\$ từ hộp Factors đưa xuống hộp ANOVA Model Specification (dưới chữ -CONST-) sẽ được như hình 4.6.

Vars :3 Obs :36 Working Directory :D:\PROGRAM FILES\IRRISTAT

Hình 4.6.

Từ hình 4.6, chọn Options để cho hộp Heading mở xong đánh dòng chữ ví dụ: Phân tích ANOVA kết quả thí nghiệm bố trí kiểu CRD như hình 4.7.

IRRISTAT: Balanced Analysis of Variance	? ×
Analysis of Variance Options Effect	
Heading:	🗸 ок
Phan tich ket qua thi nghiem bo tri keu CRD	Cancel
	? Help
	🖳 🖹 Save
	Data Selection
Line 1 Col 44	
<u>C</u> ompute and Test residuals <u>N</u> on-Parametric ANOVA	
Analyze Box-Cox Transformation Sort Character Factors Wide Output for Means Compute Type III SS	F
Ners 2 Obs. 26 Working Directory, (D) DD OCD A	
JVALS JOUS	MILLI SUBRISTAL

Hình 4.7.

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......45

Trên hình 4.7, bấm chuột vào OK để chay ra kết quả như sau:

• Kết quả phân tích ANOVA

(1) BA	LANCED A	ANOVA	FOR	VARIATE	NSU	AT FII	LE SOG	GIONG	1/11,	/** 12:	30 F	1
		Phan	tich	ANOVA ket	qua	thi ng	ghiem	thiet	ke kie	eu CRD	Ľ	Ţ
VARIAT	E V003 1	ISUAT	Tinh	bang ta/h	a							
LN S	OURCE OF	F VARI	ATIO	N	DI	F SUMS	S OF ARES	MEAN SQUA	H RES	F RATIO	PROB	ER LN
1 GION * RESI	G DUAL				8 27	3681.2 268.00	22)0	460.15 9.9259	3 4	46.36	0.000	2
* TOTA:	L (CORRE	ECTED)			35	3949.2	22	112.83	5			

(2) TABLE OF MEANS FOR FACTORIAL EFFECTS FILE SOGIONG 1/11/** 12:30

									PAGE	2	2
P	han	tich	ANOVA	ket	qua	thi	nghiem	thie	t ke	kieu	CRD

MEANS FOR EFFI	ECT GIONG		
-			
GIONG	NOS	NSUAT	
1	4	31.0000	
2	4	45.0000	
3	4	51.7500	
4	4	49.0000	
5	4	54.5000	
6	4	59.0000	
7	4	57.7500	
8	4	56.7500	
9	4	69.7500	
SE(N= 4)		1.57527	
5%LSD 27DF		4.57085	

(3) ANALYSIS OF VARIANCE SUMMARY TABLE FILE SOGIONG 1/11/** 12:30

PAGE 3

Phan tich ANOVA ket qua thi nghiem thiet ke kieu CRD

F-PROBABLIITY VALUES FOR EACH EFFECT IN THE MODEL. SECTION - 1

VARIATE	GRAND MEAN	STANDARD	DEVIATION	C OF V GIONG
	(N= 36)			SD/MEAN
	NO.	BASED ON	BASED ON	%
	OBS.	TOTAL SS	RESID SS	
NSUAT	36 52.722	10.622	3.1505	6.0 0.0000

• Đánh giá kết quả

Trong kết quả tính được có 3 phần:

Phần (1). là bảng phân tích phương sai, dòng 5, 6, 7 là kết quả phân tích phương sai. Dòng 4 là tiêu đề của các dòng 5, 6, 7.

SOURCE OF VARIATION: là nguồn biến động

DF: là độ tự do ứng với mỗi nguồn biến động

SUMS OF SQUARES: là tổng các độ lệch bình phương của các nguồn biến động MEAN SQUARES: là trung bình bình phương (phương sai) ứng với mỗi nguồn F RATIO: Tỷ số F được tính từ trung bình bình phương của GIONG chia cho trung bình bình phương của RESIDUAL

PROB: Là xác suất chấp nhận Ho (Ho thường nói: các công thức (GIONG) khác nhau không dẫn đến kết quả khác nhau). Người ta thường chấp nhận Ho khi xác suất này lớn hơn 0.05 điều đó có nghiã các công thức thí nghiệm bố trí khác nhau đã không cho kết quả khác nhau (nói chính xác hơn là khác nhau chưa có ý nghĩa) và như vậy thì thí nghiệm vô nghĩa. Nhưng như vậy không có nghĩa là bác bỏ tất cả mà trong đó có thể vẫn có công thức có ý nghĩa nên khi bác bỏ vẫn có thể xem xét cụ thể sự khác biệt của các công thức ở phần (2). Trường hợp ngược lại, khi xác suất này nhỏ hơn hoặc bằng 0.05 (thực tế thường được chấp nhận trong nông nghiệp như vây). Lúc này kết luận là các công thức thí nghiệm khác nhau đã dẫn đến kết quả khác nhau một cách có ý nghĩa với mức xác suất nhỏ hơn hoặc bàng 0.05 hoặc có thể nói cụ thể hơn là bằng bao nhiêu đó (kết quả cụ thể).

Phần (2). là bảng kết quả tính trung bình của các công thức thí nghiệm (GIONG). Dòng cuối cùng của phần này là giá trị sai khác nhỏ nhất có ý nghĩa ở mức xác suất nhỏ 5%. Căn cứ vào giá trị này và hiệu số của mỗi trung bình các công thức mà so sánh và kết luận cho sự hơn kém của các công thức với nhau.

Phần (3). Thực chất là kết quả tổng hợp của hai phần trên nhưng có thêm một mục rất quan trọng là dòng cuối cùng của cột gần cuối cùng, đây chính là sai số của thí nghiệm, nó cho biết thí nghiệm tiến hành đạt độ chính xác là bao nhiêu phần trăm.

Đánh giá cụ thể trong thí nghiệm này: Do xác suất chấp nhận Ho rất nhỏ nên chứng tỏ các giống khác nhau đã cho kết quả năng suất khác nhau có ý nghĩa ở mức rất cao. Sai số thí nghiệm bằng 6% nên kết luận là thí nghiệm đạt yêu cầu về độ chính xác.

Căn cứ vào phần (2) có thể nói tất cả các giống thí nghiệm đều cho năng suất cao hơn giống đối chứng một cách có ý nghĩa cao. Cao nhất là giống số 9, tiếp đến là các giống 5, 6, 7, 8, tiếp đến là các giống 2, 3, 4.

Để dễ dàng hơn cho người đọc kết quả, có thể dùng phương pháp sắp xếp hình học kiểu a, b,c,... để biểu diễn kết quả so sánh một cach tỷ mỉ hơn và rõ ràng hơn (sẽ được trình bày trong phần sau).

4.1.2. Phân tích phương sai (ANOVA) kết quả thí nghiệm một nhân tố bố trí kiểu khối ngẫu nhiên đầy đủ (Randomized Complete Block Design: RCB)

Kiểu thiết kế này thường được áp dụng rộng rãi trong bố trí thí nghiệm ngoài thực địa khi các đơn vị thí nghiệm chỉ đồng nhất theo nhóm. Lúc đó coi nhóm đồng nhất là một khối (nhắc lại) và bố trí ngẫu nhiên các công thức của mỗi lần nhắc lại trong mỗi khối.

Source of	Degree of	Sum of	Mean square	F
variation	freedom	square		
Reps.	r – 1			
Treatment	t – 1			
Error	(r-1)(t-			
	1)			
Total	tr – 1			

Bảng phân tích phương sai tổng quát cho trường hợp này như bảng 4.3 Bảng 4.3. Bảng phân tích phương sai

Ví dụ: Năng suất của 6 mật độ gieo vãi lúa nước trong thí nghiệm bố trí kiểu khối ngẫu nhiên đầy đủ (RCB) với 4 lần nhắc lại, kết quả được ghi lại như bảng 4.4

Mật độ (kg/ha)		Năng su	ất (kg/ha)	
	Nlai1	Nlai2	Nlai3	Nlai4
25	5113	5398	5307	4678
50	5346	5952	4719	4264
75	5272	5713	5483	4749
100	5164	4831	4986	4410
125	4804	4848	4432	4748
150	5254	4542	4919	4098

Bảng 4.4. Năng suất lúa của các mật độ gieo hạt khác nhau trên các lần nhắc lại

Quá trình phân tích

• Vào số liệu trong Data Editor trực tiếp hoặc vào qua Excel, kết quả ghi trong Data Editor như hình 4.8.

🧕 🚺 IRR	ISTAT D	Data Edi	tor - [D:`	\Progra	m Files`	\IR 📘	
🎉 File	Edit V	/iew Opt	tions Too	ols Wind	low Hel	р	_ & ×
🏽 🛥 📗	D 🖆 🧉	5 👗 🗈	e				
	1	2	3				
	NLAI	MATDO	NSUAT				
1	1.00000	25.0000	5113.0000				-
2	1.00000	50.0000	5346.0000				
3	1.00000	75.0000	5272.0000				
4	1.00000	100.0000	5164.0000				
5	1.00000	125.0000	4804.0000				
6	1.00000	150.0000	5254.0000				
7	2.00000	25.0000	5398.0000				
8	2.00000	50.0000	5952.0000				
9	2.00000	75.0000	5713.0000				
10	2.0000	100.000	4831.0000			<u> </u>	
Row: 1	.9 CReco	rds: 24	Variab D:\	Program	Files\IRR	\ISTAT∖n	nado.: 🦽

Hình 4.8.

Sau khi vào số liệu xong, save file với đuôi SYS sau đó tiếp tục làm các bước phân tích để có các hình giống như hình 4.2, 4.3, 4.4, 4.5 ở bài tập phân tích ANOVA kiểu thiết kế CRD và có hình 4.9 như sau:

IRRISTAT:	Balanced Analysis	s of Variance	? ×
🕞 Open	Command File : RCB1.gfc	Data File : MADO.SYS	🗸 ок
Data File Variable NLAI MATDO NSUAT	Add Remove Add	Covariates :	X Cancel
	Add Remove	Product Cross	

Wars : 3 Obs : 24 Working Directory : D:\PROGRAM FILES\IRRISTAT Hình 4.9.

Từ hình 4.9, chọn biến NSUAT từ hộp Data File Variables đưa sang hộp Analysis Variates, hai biến còn lại đưa sang hộp Factor. Sau đó chọn cả hai biến trong hộp Factor đưa xuống hộp ANOVA Model Specification để được hình 4.10.

Từ hình 4.10, chọn menu Option xong đánh vào họp Heading dong chữ "Phân tích ANOVA kết quả thí nghiệm so sánh mật độ giống gieo bố trí kiểu RCB" xong bấm chuột vào OK để chạy cho kết quả

IRRISTAT: Analysis of Varian	Balanced Ana	lysis of Variance	? ×
👄 Open	Command File : RCB1.gfc	Data File : MADO.SYS	• ок
Data File Variable NLAI MATDO NSUAT	s: Analysis Variates : F NSUAT	Actors: Covariates : NLAI MATDO	Cancel
	Add Remove ANOVA Model Spec -CONST- NLAI MATDO	Add Remove Add Remove	En Save
	Add Rer	nove Product Cross	

Hình 4.10.

• Kết quả phân tích ANOVA

			NSUA	T FILE	MAI	00 2/1:	L/**	10:35
giong gieo bo	tri kieu RCI	Phan tich 3	ANOV	'A ket q	ua t	thi nghier	n so	sanh mat do
VARIATE V003	NSUAT							
LN SOURCE C	F VARIATION		DF	SUMS O SQUARE	F S	MEAN SQUARES	F	RATIO PROB ER LN
1 NLAI 2 MATDO * RESIDUAL			3. 5. 15.	194436E 119833E 165838E	+07 +07 +07	648120. 239666. 110558.		5.86 0.007 3 2.17 0.112 3
* TOTAL (CORR	ECTED)		23 .	480107E	+07	208742.		
aiona aieo bo	tri kieu RCI	Phan tich	ANOV	'A ket q	ua t	thi nghier	n so	sanh mat do
<u>j</u>	CII KIEU NO	5						
MEANS FOR EFF	ECT NLAI							
MEANS FOR EFF 	NOS 6 6 6 6 6 6	NSUAT 5158.83 5214.00 4974.33 4491.1	3) 3 7					
MEANS FOR EFF 	NOS 6 6 6 6	NSUAT 5158.83 5214.00 4974.33 4491.1 135.744 409.180	3) 3 7 4)					

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT......50

MATI	1 00	NOS	NSUAT
25		4	5124.00
50		4	5070.25
75		4	5304.25
100		4	4847.75
125		4	4708.00
150		4	4703.25
SE(N=	4)		166.252
5%LSD	15DF		501.141

(3). ANALYSIS OF VARIANCE SUMMARY TABLE FILE MADO 2/11/** 10:35

Phan tich ANOVA ket qua thi nghiem so sanh mat do giong gieo bo tri kieu RCB

F-PROBABLIITY VALUES FOR EACH EFFECT IN THE MODEL. SECTION - 1

VARIATE	GRAND	MEAN	STANDAR	RD	DEVIATI	EON	C OF V	NLAI	MATDO	
	(N=	24)					SD/MEAN			
	NO.		BASED	ON	BASED	ON	00			
	OBS.		TOTAL	SS	RESID	SS				
NSUAT	24 4	959.6	456.	.88	332.	.50	6.7	7 0.0075	0.1124	

Trong kết quả phân tích này cũng có ba phần kết quả tương tự như kết quả của phần phân tích ANOVA cho thí nghiệm bố trí kiểu hoàn toàn ngẫu nhiên (kiểu CRD).

Cách nhận xét kết quả tương tự như phân tích nhận xét của trường hợp bố trí kiểu CRD. Người học tự tìm ra điểm khác nhau về kết quả so với trường hợp bố trí kiểu CRD. Cũng có thể dùng số liệu của trường hợp thí nghiệm bố trí kiểu CRD để chay theo cách bố trí RCB để thấy được vai trò của việc phân khối (tác dụng của cách bố trí thí nghiệm theo kiểu RCB).

4.1.3. Phân tích ANOVA kết quả thí nghiệm bố trí kiểu Ô vuông Latin (Latin Square Design: LS).

Trường hợp này thường được áp dụng trong những điều kiện khi các đơn vị thí nghiệm không đồng nhất nhưng người nghiên cứu có thể xác định được hai hướng không đồng nhất chính vuông góc với nhau. Việc bố trí thí nghiệm được tiến hành theo các sơ đồ ô vuông Latin mẫu (như cho trong phần thiết kế kiểu ô vuông la tin đã được giới thiệu ở phần trên) sau khi được ngẫu nhiên hoá hai lần, một lần ngẫu nhiên hoá số hàng và một lần ngẫu nhiên hoá số cột của ô vuông la tin mẫu.

Phân tích ANOVA cho trường hợp này, ta có bảng phân tích phương sai tổng quát với bốn nguồn biến động thành phần (biến động theo hàng, theo cột, theo công thức và biến động ngẫu nhiên) được thể hiện như bảng 4.5

Bảng 4.5. Bảng ANOVA cho trường hợp LS

Source of	Degree of	Sum of	Mean square	F
variation	freedom	square		
Row				
Colum				
Treatment				
Error				
Total				

Ví dụ có một thí nghiệm so sánh năng suất của ba giống lạc (A,B,D) so với giống đối chứng (C) trong thí nghiệm bố trí kiểu ô vuông Latin, năng suất thu được thường để dưới dạng bảng như bảng 4.6.

Hàng	Năng suất (kg/ha)					
	Cột 1	Cột 2	Cột 3	Cột 4		
1	1740(B)	1311(D)	1530(C)	1445(A)		
2	1565(C)	1205(A)	1350(D)	1370(B)		
3	1750(A)	825(C)	1625(B)	1200(D)		
4	1570(D)	1280(B)	1690(A)	915(C)		

Bảng 4.6. Năng suất của bốn giống lạc qua các khối (cột)

Các bước tiến hành cho phân tích phương sai

• Vào số liệu trong IRRISTAT

Save file với đuôi SYS để có kết quả như hình 4.11

🗕 🗴 IRR	ISTAT Dat	a Editor -	[D:\Pro	gram Files	\IRRIS	TAT\	
🎉 File	Edit Viev	v Options	Tools N	Window Hel	р		_ & ×
🛛 🛩 🖬	D 🖆 🖨	X 🖻 🛍					
	1	2	3	4			
	HANG	COT	GIONG\$	NSUAT			
1	1.00000	1.00000	в	1740.00000			
2	2.00000	1.00000	С	1565.00000			
З	3.00000	1.00000	Α	1750.00000			
4	4.00000	1.00000	D	1570.00000			
5	1.00000	2.00000	D	1311.00000			
6	2.00000	2.00000	Α	1205.00000			
7	3.00000	2.00000	С	825.00000			
8	4.00000	2.00000	в	1280.00000			
9	1.00000	3.00000	С	1530.00000			
10	2.00000	3.00000	D	1350.00000			_
Row:	1 CcRecords	: 16 Variab	D:\Proa	ram Files\IRF	RISTAT/la	atin.svs 👘	11.

Hình 4.11.

• Các bước phân tích

Thực hiện các bước tương tự như trường hợp CRD cho đến khi có hình 4.12. Nhưng có điểm khác với trường hợp phân tích của CRD là: sau khi chọn menu Analysis trên cửa sổ chính của Window thì chọn tiếp Single Site Analysis.

IRRISTAT: SI	ngle Site Analy	sis for Balanced Da	a ta
Single Site Analysis	SSA Model Options		
🕒 Open	Command File : _ATIN1.PBT	Data File : LATIN.SYS	🖌 ок
Data File Variables : HANG COT GIONG\$ NSUAT	Analysis Variates:	Analysis Variates w/ ANOVA:	X Cancel 7 Help Rave
	Add Remove Site Names: Tre Add Remove /	atment Names: Add Remove	
		Copen	

Hình 4.12.

Trên hình 4.12, chọn biến NSUAT từ hộp Data File Variables đưa vào hộp Analysis Variates, khi đưa vào biến này sẽ tự động vào hộp Analysis Variates w/ ANOVA, lúc này ta có hình 4.13.

IRRISTAT: S	ingle Site An	alysis for Balanced Da	ata
Single Site Analysis	SSA Model Option	ns	
👄 Open	Command File : [LATIN1.PBT	Data File : LATIN.SYS	• ок
Data File Variables :	Analysis Variates:	Analysis Variates w/ ANOVA:	X Cancel
	NSUAT	NSUAT	📪 Help
NSUAT		Remove	🖺 Save
	Add Remove		
	Site Names:	Treatment Names:	
	Add Remove	Add Remove	
	Save Means To:		
	1	👄 Open	

Hình 4.13.

Từ hình 4.13, kích chuột vào menu SSA Model, sẽ có hình 4.14

IRRISTAT: S	ingle Site An	alysis for Bala	nced Da	ta
Single Site Analysis	SSA Model Option	is]		
Data File Variables : HANG GIONG\$ NSUAT	Type of Design: Factor: Add Remove Factor: Add Remove Residual Add Remove	Factor: Add Remove Factor: Add Remove Fitted : Add Remove	-	✓ OK X Cancel ? Help Bave
nvars : 4 InRecs	: : 10Working dir	ectory :		
TTN 1 4 1 4				

Hình 4.14.

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT......53

Từ hình 4.14, kích chuột vào mũi tên của hộp Type of Design để chọn dòng Latin Square. Lúc này ta sẽ có hình 4.15.

IRRISTAT: Single Site Analysis for Balanced Data	
Single Site Analysis SSA Model Options	
Data File Variables : Type of Design: HANG COT GIONG\$ Treatment: Add Remove Add Remove	OK Cancel Help
InVars : 4 InRecs : 1 Working directory :	

Hình 4.15.

Sau đó từ hình 4.15, đưa biến GIONG \$ vào hộp Treatment, đưa HANG vào hộp Row, đưa COT vào hộp Column để có hình 4.16.

TODICTAT. C	ingle Site Analysis for Palance	d Data
Single Site Analysis	SSA Model Options	u Dala
Data File Variables : HANG COT GIONG\$ NSUAT	Type of Design: Latin Square Treatment: GIONG\$ Add Remove Row: HANG COT Add Remove	VOK Cancel PHelp
pVars : 4 pRecs	Add Remove Add Remove Residual: Fitted: Add Remove Add Add Remove Add	

Hình 4.16.

Tiếp tục chọn Options, hộp Heading mở và đánh vào hộp Heading dòng chữ "Phân tích kết quả thí nghiệm thiết kế kiểu ô vuông Latin" chẳng hạn như hình 4.17. Sau đó kích chuột vào OK để chạy mô hình.

Hình 4.17.

Kết quả chạy mô hình phân tích năng suất lạc

ANOVA FOR SINGLE VARIATES - LATIN SQUARE FILE LATIN 2/11/** 14: 6

Phan tich ket qua thi nghiem thiet ke kieu O vuong Latin

1

(1).VARIATE V004 NSUAT

SOURCE	D.F.	S.S.	M.S.	E	·	FPROB
ROW	3	63597.7	21199.2			
COLUMN	3	702945.	234315.			
TREATMENT	3	256475.	85491.7	5.	. 43	0.039
ERROR M.S.	6	94400.3	15733.4			
TOTAL	15	U.111742E+0	/			
GIONG\$ B	,	GIONG\$ 1 HAS H	REDIDUAL -1.7	SEs: -	-130.125	1
GIONG\$ C	,	GIONG\$ 1 HAS H	REDIDUAL 1.6	SEs:	123.875	
GIONG\$ A	,	GIONG\$ 1 HAS H	REDIDUAL 0.2	SEs:	17.625	
GIONG\$ D	,	GIONG\$ 1 HAS H	REDIDUAL -0.1	SEs:	-11.375	
GIONG\$ B	/	GIONG\$ 2 HAS H	REDIDUAL 0.7	SEs:	53.625	
GIONG\$ C	/	GIONG\$ 2 HAS H	REDIDUAL -1.2	SEs:	-92.625	
GIONG\$ A	/	GIONG\$ 2 HAS H	REDIDUAL -0.6	SEs:	-48.875	
GIONGS D	/	GIONGS 2 HAS E	REDIDUAL 1.1	SES:	8/.875	
GIONGS B	· ·	GIONGS 3 HAS H	REDIDUAL 0.2	SES:	18.8/5	
CIONGS C	'	GIUNGS 3 HAS E	REDIDUAL 0.8	SES:	62.373 51 275	
CIONCS D	'	CIONCS 3 HAS I	REDIDUAL 0.7	SES.	JI.J/J 132 625	
GIONGS B	'	GIONGS 4 HAS I	REDIDUAL -1.7	SEc.	57 625	
GIONG\$ C	· ·	GIONG\$ 4 HAS I	REDIDUAL -1 2	SEs.	-93 625	
GTONG\$ A		GTONG\$ 4 HAS I	REDIDUAL -0.3	SEs:	-20.125	
GIONG\$ D	,	GIONG\$ 4 HAS H	REDIDUAL 0.7	SEs:	56.125	1
BOX PLOT OF S	FUDENTIZ	ED RESIDUALS H	FROM LPLT= -1.	727	TO ULPT	= 1.
NO. <lplt< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lplt<>						
0	I		+	I-		
MEDIAN= 0.23	/6E+00 A	NDERSON-DARLIN	NG STATISTIC=	0.520		
					_	

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......55

LATIN1	- SECTION 1
ENTRY B C A	NSUAT 1504. 1209. 1522.
D	1358.
(2) OVERALL.	1398.
(3). OVERALL: MEANS STD ERR 5% LSD C.V. RES DF % EFFCY	1398. 62.72 216.9 9. 6. 90.

Từ kết quả chạy được, ta quan tâm phân tích trên ba phần:

(1). Là bảng phân tích phương sai: trong trường hợp này, xác suất chấp nhận Ho ở cột cuối của bảng phân tích phương sai bằng 0,039 nhỏ hơn 0,05 như vậy ta bác bỏ Ho và kết luận rằng các công thức (giống) khác nhau đã dẫn tới kết quả thí nghiệm (năng suất) khác nhau một cách có ý nghĩa thống kê với độ tin cậy 95% (2). Là năng suất trung bình của các công thức (giống)

(3). Là Kết quả tổng hợp gồm có trung bình toàn thí nghiệm, giá trị sai khác nhỏ nhất có ý nghĩa ở mức xác suất nhỏ 5% và sai số thí nghiệm C.V %

Dùng kết quả năng suất trung bình ở phần (2) để so sánh hiệu số của từng cặp trung bình với nhau so với giá trị sai khác nhỏ nhất (5% LSD) ở phần (3) để kết luận đôi trung bình được so sánh có khác nhau thực sự hay không. Ví dụ so trung bình giống A với trung bình giống B ta được hiệu của chúng bằng 18 nhỏ hơn 216.9 như vậy năng suất của hai giống này không khác nhau hay nói một cách chính xác hơn là khác nhau chưa có ý nghĩa. Nhưng nếu so sánh năng suất của giống A với giống đối chứng C, ta được hiệu của chúng bằng 313 lớn hơn 216.9 có nghĩa là năng suất của hai giống này khác nhau một cách có ý nghĩa thống kê với mức tin cậy 95%.

Còn sai số thí nghiệm trong trường hợp này là C.V % bằng 9 như vậy có thể chấp nhận được thí nghiệm là chính xác (đối với thí nghiệm so sánh giống một số tác giả đề nghị cần đạt độ chính xác cao hơn: C.V % nên bằng 5) vậy tuỳ từng trường hợp cụ thể người nghiên cứu sẽ có kết luận cuối cùng.

Cách biểu diễn kết quả cụ thể trong báo cáo sẽ được trình bày trong phần sau

4.1.4. Phân tích phương sai kết quả thí nghiệm bố trí kiểu Lattice cân đối

Trong phân tích này cần xác định các thành phần biến động của phân tích phương sai bao gồm: nhắc lai, công thức chưa điều chỉnh, khối được điều chỉnh, sai số trong khối, công thức được điều chỉnh, và sai số hiệu quả. Ta có bảng phân tích phương sai như sau, bảng 4.7

Source of	Degree of freedom	Sum of	Mean	F
variation		square	square	
Reps.	$K = t^{1/2}$			
Trea. (unadj)	$K^{2} - 1$			
Block (adj)	$K^{2} - 1$			
Intrablock error	$(k-1)(K^2 - 1)$			
Trea.(adj)	K^{2} -1			
Effective error	$(k-1)(K^2 - 1)$			
Total	$K^{2}(k+1) - 1$			

Bảng 4.7. ANOVA cho thiết kế thí nghiệm kiểu Lattice cân đối

Ví dụ: có một thí nghiệm so sánh hiệu quả của 16 công thức bón phân khác nhau trong thiết kế Lattice cân đối. Như vậy thí nghiệm phải có 5 lần nhắc lại (r = 5), số khối không đầy đủ là k bằng 4. Kết quả thí nghiệm thu được được trình bày đúng theo sơ đồ thiết kế như bảng 4.8 dưới đây:

Bảng 4.8. Số dảnh trên m² của 16 công thức bón phân, thiết kế kiểu Lattice cân đối 4 x 4

Khối		Nla	ai 1		T.khố	Khối		Nla	ai 2		T.khối
số					i	số					
1	(1)	(2)	(3)	(4)	616	5	(1)	(5)	(9)	(13)	639
	147	152	167	150			140	165	182	152	
2	(5)	(6)	(7)	(8)	616	6	(10)	(2)	(14)	(6)	586
	127	155	162	172			97	155	192	142	
3	(9)	(10)	(11)	(12)	616	7	(7)	(15)	(3)	(11)	721
	147	100	192	177			155	182	192	192	
4	(13)	(14)	(15)	(16)	747	8	(16)	(8)	(12)	(4)	783
	155	195	192	205			182	207	232	162	
Tổng N	Ilại 1	1	1	1	2595	Tổng N	lại 2		1	1	2729
Khối		Nla	ai 3		T.khố	Khối		Nla	ai 4		T.khối
số					i	số					
9	(1)	(6)	(11)	(16)	646	13	(1)	(14)	(7)	(12)	802
	155	162	177	152			220	202	175	205	
10	(5)	(2)	(15)	(12)	654	14	(13)	(2)	(11)	(8)	724
	182	130	177	165			205	152	180	187	
11	(9)	(14)	(3)	(8)	626	15	(5)	(10)	(3)	(16)	675
	137	185	152	152			165	150	200	160	
12	(13)	(10)	(7)	(4)	681	16	(9)	(6)	(15)	(4)	689
	185	122	182	192			155	177	185	172	
Tổng N	Ilại 3				2607	Tổng N	lại 4				2890

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT.......57

Khối		Nla	ai 5		T.khố
số					i
17	(1)	(10)	(15)	(8)	583
	147	112	177	147	
18	(9)	(2)	(7)	(16)	742
	180	205	190	167	
19	(13)	(6)	(3)	(12)	773
	172	212	197	192	
20	(5)	(14)	(11)	(4)	827
	177	220	205	225	
Tổng N	Ilại 5				2925

Để tiến hành phân tích phương sai, thực hiện các bước sau:

• Vào số liệu trên trong IRRISTAT, kết quả ghi lại trong File có đuôi sys được thể hiện như hình 4.18 dưới đây

🚺 IRRIST	TAT Data E	ditor - [D:	\Program	Files\IRRIS	TAT\lattic	:e.sys]					Ľ		\times
🧕 File	Edit View	N Options	5 Tools	Window	Help							- 8	×
😂 目	D 🖬 🧉	3 X Pa	6										
	1	2	3	4									^
	NLAI	KHOI	CTHUC	SODANH									
1	1.00000	1.00000	1.00000	147.000									
2	1.00000	2.00000	5.00000	127.0000									
3	1.00000	3.00000	9.00000	147.0000									
4	1.00000	4.00000	13.0000	155.0000									
5	1.00000	1.00000	2.00000	152.0000									
6	1.00000	2.00000	6.00000	155.0000									
7	1.00000	3.00000	10.0000	100.0000									
8	1.00000	4.00000	14.0000	195.0000									
9	1.00000	1.00000	3.00000	167.0000									
10	1.00000	2.00000	7.00000	162.0000									
11	1.00000	3.00000	11.0000	192.0000									
12	1.00000	4.00000	15.0000	192.0000									
13	1.00000	1.00000	4.00000	150.0000									
14	1.00000	2.00000	8.00000	172.0000									
15	1.00000	3.00000	12.0000	177.0000									
16	1.00000	4.00000	16.0000	205.0000									
17	2.00000	5.00000	1.00000	140,0000									
18	2.00000	6.00000	10.0000	97.0000									
19	2.00000	7.00000	7.00000	155.0000									
20	2.00000	8.00000	16.0000	182.0000									
21	2.00000	5.00000	5.00000	165.0000									
22	2.00000	6.00000	2.00000	155.0000									
23	2.00000	7.00000	15.0000	182.0000									
24	2.00000	8.00000	8.00000	207.0000									~
Row: 1	Col: Recor	ds: 80 Va	riables: Da	ita									

Hình 4.18

• Các bước phân tích trên IRRISTAT

Làm tương tự trường hợp thiết kế kiểu ô vuông latin cho đến khi có hình 4.19 sau:

IRRISTAT: Single	Site Analysis for	Balanced Data	
Single Site Analysis	SSA Model Optior	ns	
👄 Open	Command File : LATICEKQ.PBT	Data File : LATTICE.SYS	• ок
Data File Variables NLAI KHOI CTHUC	Analysis Variates:	Analysis Variates w/ ANOVA:	X Cancel
SODANH	Add Remove	Remove	📑 Save
	Site Names:	Treatment Names:	
	Add Remove	Add Remove	
	Save Means To:		
		🕞 Open	
nVars:4 nRecs	: 80 Working dired	ctory :	

Hình 4.19

Từ hình 4.19, chọn SODANH từ hộp Data File Variable đưa vào hộp Analysis Variate và nó sẽ tự động vào hộp Analysis Variate w/ANOVA, ta có hình 4.20 sau

IRRISTAT: Single	Site Analysis for	Balanced Data	
Single Site Analysis	SSA Model Option	s	
👄 Open	Command File : LATICEKQ.PBT	Data File : LATTICE.SYS	🗸 ок
Data File Variables : NLAI	Analysis Variates:	Analysis Variates w/ ANOVA:	X Cancel
KHOI CTHUC	SODANH	Add	Y Help
SUDANH		Remove	🖹 Save
	Add Remove		
	Site Names:	Treatment Names:	
	Add Remove	Add Remove	
	Save Means To:		
		🕞 Open	
nVars:4 nRecs:	80 Working direc	torv :	

Hình 4.20

Từ hình 4.20, kích chuột vào menu SSA Model, tiếp tục chọn Lattice Blocks trong hộp Type of Design, đưa NLAI vào hộp Replicate, KHOI vào hộp Block, CTHUC vào hộp Treatment để có hình 4.21 sau đây

IRRISTAT: Single	Site Analysis for	Balanced Data						
Single Site Analysis	Single Site Analysis SSA Model Options							
Data File Variables	: Type of Design:			• ок				
	Lattice Blocks		-	X Cancel				
CTHUC SODANH	Replicate: NLAI	Block: KHOI		? Help				
	Add Remove	Add Remove						
	Treatment: CTHUC	Factor:		🖺 Save				
	Add Remove	Add Remove						
	Residual :	Fitted :						
	Add Remove	Add Remove						
nvars:4 InRecs	: 80 Workina direa	ctory:						

Hình 4.21

Từ hình 4.21, chọn option để hộp Heading mở, đánh dòng chữ "Thiet ke Lattice can doi" vào hộp Heading, trong hộp Sorting Variate và hộp Variate for Percentage Checks đều chọn SODANH để có hình 4.22 sau

IRRISTAT: Single Site Analysis for Balanced Data	
Single Site Analysis SSA Model Options	
Heading:	
Thiet ke Lattice can doi	
	Y Cancel
	7 Help
~	
	📴 Save
Treatment Levels · Group 1 Checks:	
Sorting Variate :	
2 SODANH V	Data Selection
3	
4 Add Domouro Variate for Percentage Checks	
Group 2 Treatment SODANH -	
8	
9	_
10 Outlier Detection Limit : 000.0	
Add Remove	
nVars : 4 InRecs : 80 Working directory :	

Hình 4.22 Từ hình 4.22, kích chuột vào hộp OK để chạy chương trình cho kết quả dưới đây:

• Kết quả chạy mô hình phân tích

ANOVA FOR SINGLE VARIATES	- LATTICE B	LOCK FILE LATTICE	7/ 1/** 9:39	1
	Thiet ke La	ttice can doi	FAGE	Ŧ
VARIATE V004 SODANH				
SOURCE	D.F.	S.S.	M.S.	
REPS	4	5946.05	1486.51	

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT......60

TREATMENTS (UNADJ)	15	26994.4	1799.62
BLOCKS ADJ FOR TRTS	15	11381.8	758.789
INTRA-BLOCK ERROR	45	14533.3	322.962
TOTAL VARIANCE COMPONENT FOR B	79 LOCKS	58855.6	136.2
TREATMENTS (ADJ)	15	20988.0	1399.20
RANDOMIZED BLOCK ERROR	60	25915.2	431.919
EFFECTIVE PLOT ERROR	45	16620.2	369.337
F FOR TREATMENTS (ADJ) / IN F FOR TREATMENTS (UNADJ) / EFFICIENCY	TRA-BLO RANDOMI	DCK ERROR IZED BLOCK ERROR	4.33 FPROB= 0.000 4.17 FPROB= 0.000 116.9%

(Có phần mô tả tất cả dư thừa của tất cả các công thức qua các lần nhắc lại vào vị trí này nhưng ta không quan tâm nên đã bỏ đi)

L.S.D. (5%)	24.4	8 COEFFICIENT	OF VARIATION	11.18	
MEANS FOR EA	CH VARIETY	- LATTICE BLOCK	FILE LATTICE	7/ 1/** 9:39	2
		Thiet ke Lattice	can doi	PAGE	Z
LATICEKQ	- SECTION 1				
ENTRY 14 12 11 15 3	SODANH 197.2 190.5 188.2 185.7 183.9				
8 4 6 13 7	176.9 175.7 173.8 169.5 168.4				
16 1 9 5 2	167.8 165.8 163.0 162.9 161.0				
10	118.8				
MEANS	171.8				
OVERALL: MEANS STD ERR 5% LSD C.V. RES DF % EFFCY	171.8 8.595 24.48 11. 45. 117.				

• Phân tích kết quả

Trong bảng phân tích phương sai, IRRISTAT tính tất cả các nguồn biến động cần thiết như bảng ANOVA tổng quát đã nêu trên, độ tự do, tổng bình phương và phương sai cho các nguồn như sau:

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT......61

- Dòng số 7 là của nhắc lại
- Dòng 8 là của công thức chưa điều chỉnh
- Dòng 9 là của các khối được điều chỉnh theo công thức
- Dòng 10 là của sai số trong khối
- Dòng 11 là của tổng toàn bộ
- Dòng 12 là hợp phần phương sai cho các khối
- Dòng 13 là cho công thức đã được điều chỉnh
- Dòng 14 là cho sai số của khối ngẫu nhiên
- Dòng 15 là cho sai số hiệu quả của ô thí nghiệm
- Dòng 16 là trị số F thực nghiệm và xác suất chấp nhận H₀ cho công thức đã được điều chỉnh so với sai số trong khối
- Dòng 17 cũng tương tự dòng 16 nhưng cho công thức chưa được điều chỉnh so với sai số khối ngẫu nhiên
- Dòng 18 là hiệu quả của cách dùng Lattice đã làm tăng độ chính xác của thí nghiệm lên 17%
- Dòng 19 là gí trị LSD_{0.05} và sai số thí nghiệm
- Các kết quả phía dưới tiếp theo được biểu thị giống như cho các ví dụ đã nêu trên với các cách thiết kế khác nhau.

Các quan tâm chính cho phân tích tiếp theo của ví dụ này là thuộc các dòng 16, 17, 18 và 19 cho thấy trong cả hai trường hợp khi kết quả được điều chỉnh hay không điều chỉnh so với sai số trong khối và khối ngẫu nhiên đều cho kết luận các công thức khác nhau đã dẫn đến kết quả khác nhau (vì xác suất chấp nhận H_0 cho cả hai trường hợp đều rất nhỏ). Hiệu quả của áp dụng thiết kế kiểu Lattice cân đối đã làm tăng độ chính xác của thí nghiệm lên 17%. Giá trị LSD_{0.05} là 24.48. Sai số thí nghiệm đạt 11,18%. Nếu so trung bình của công thức 14 với 12 sẽ có hiệu sai bằng xấp xỉ 7 nhỏ hơn giá trị LSD_{0.05} chứng tỏ chúng khác nhau không đáng tin cậy, nếu so công thức 14 với 10 sẽ có kết luận ngược lại vì hiệu của chúng lớn hơn giá trị LSD_{0.05} nghĩa là chúng khác nhau đáng tin cậy ở mức độ tin 95%. Ta cũng có thể so sánh tất cả các đôi trung bình với nhau và biểu diễn kết quả dưới dạng các chỉ số a, b, c,....

4.2. Thí nghiệm hai nhân tố

4.2.1. Phân tích kết quả thí nghiệm hai nhân tố thiết kế kiểu hoàn toàn ngẫu nhiên (CRD)

Trong trường hợp này, các mức của các nhân tố được phối hợp thành các tổ hợp công thức khác nhau và mỗi tổ hợp được coi như các công thức đơn lẻ của thí nghiệm một nhân tố cho việc bố trí thí nghiệm theo kiểu hoàn toàn ngẫu nhiên.

Ví dụ: Có một thí nghiệm nghiên cứu ảnh hưởng của việc bón phối hợp a mức đạm (a_o, a_1) và b mức lân (b_o, b_1, b_2) khác nhau tới năng suất lúa (tạ/ha), thí nghiệm được bố trí kiểu hoàn toàn ngẫu nhiên với bốn lần nhắc lại trong các ô xi măng. Năng suất thí nghiệm được ghi lại như bảng 4.9 sau đây:

Đam (A)	Lân (B)		Năng suât (tạ/ha)					
Dậm (TI)	Lan (D)	Nlại 1	Nlại 2	Nlại 3	Nlại 4			
	b _o	24	26	23	27			
a _o	b ₁	28	30	30	27			
	b ₂	28	31	32	28			
	b _o	31	34	34	31			
a_1	b_1	47	45	47	46			
	b ₂	59	51	65	60			

Bảng 4.9. Năng suất lúa của các tổ hợp công thức trên các lần nhắc lại

Trong phân tích phương sai cho trường hợp này, ta cần phân tích để thấy được vai trò ảnh hưởng của đạm, lân và sự phối hợp của đạm và lân khác nhau đến năng suất lúa. Bảng phân tích phương sai được hình thành như bảng 4.10 sau:

Bång 4.10. Bång phân tích phương sai

	- 8 r			
Source of	Degree of	Sum of	Mean square	F
variation	freedom	square		
Factor A	a-1			
Factor B	b-1			
A x B	(a-1)(b-1)			
Error	(r-1)ab			
Total	rab-1			

Các bước tiến hành cho phân tích phương sai

• Vào số liệu trong IRRISTAT

Save file với đuôi SYS để có kết quả như hình 4.23 sau:

	FAT Data E	ditor - [D	Program	Files\IRRIS	TAT\Fsail	Into 📃		×
🌠 File	Edit Viev	w Option:	s Tools	Window	Help		- 8	×
🛩 🖪	D 🖆 🧉	s 🔊	e					
	1	2	з	4				^
	NLAI	DAM\$	LAN\$	NSUAT				
1	1.00000	ao	bo	24.0000				
2	1.00000	ao	Ь1	24.0000				
3	1.00000	ao	b2	28.0000				
4	1.00000	a1	bo	31.0000				
5	1.00000	a1	Ь1	47.0000				
6	1.00000	a1	b2	59.0000				
7	2.00000	ao	bo	26.0000				
8	2.00000	ao	Ь1	30.0000				_
<	2 00000	20	h7	31 0000			>	~
Row: 1	Col: Recor	ds: 24 Va	riables: Da	ata				
Hình 4.2.	3							

• Các bước phân tích

Làm liên tục bốn bước đầu để có các hình tương tự như các hình 4.2, 4.3, 4.4, 4.5 trong trường hợp phân tích ANOVA của thiết kế kiểu CRD để có hình 4.24 sau đây.

Command File : Data File : 🗸 OK
Data File Variables: Analysis Variates : Factors: Covariates :
LAN\$
Add Remove Add Remove Add Remove
ANOVA Model Specification :
-CONST-
Add Remove Product Cross
Vars :4 Obs :24 Working Directory :D:\PROGRAM FILES\IRRISTAT

Hình 4.24.

Từ hình 4.24, chọn biến NSUAT đưa vào hộp Analysis Variates, ba biến còn lại đưa vào hộp Factor. Tiếp tục đưa biến DAM\$, LAN\$ và DAM\$ x LAN\$ từ hộp Facor vào hộp ANOVA Model Specification để được hình 4.25

IRRISTAT: Balan	ced Analysis of Variance	? 🔀
<u>A</u> nalysis of Variance	e Options Effect	
😂 Open	Command File : Data File : HAINTCRD.gfc FSAIHNTO.SYS	• ок
Data File Variables:	Analysis Variates : Factors: Covariates :	🗙 Cancel
NLAI DAM\$ LAN\$	NSUAT NLAI DAM\$ LAN\$? <u>H</u> elp
NSUAT		📴 Save
	Add Remove Add Remove Add Remove Add Remove Add	
	-CONST- DAM\$ LAN\$ DAM\$*LAN\$	
	Add Remove Product Cross	

Vars :4 Obs :24 Working Directory :D:\PROGRAM FILES\IRRISTAT

Hình 4.25.

Từ hình 4.25, vào menu Options để hộp Heading mở và đánh dòng chữ "ANOVA cho thi nghiem hai nhan to thiet ke kieu hoan toan ngau nhien" xong kích chuột vào hộp OK để chạy ra kết quả như dưới đây.

BALANCED	ANOVA	FOR	VARIATE	NSU	AT I	FILE FSA	AIHNTO		6/ 1,	/** 23	3: 9	
											PAGE	1
			ANOVA	cho	thi	nghiem	thiet	ke	kieu	hoan	toan	ngau
nhien												
VARIATE V	004 NSU	JAT										

LN SOURCE OF V.	ARIATION	D	F SUMS OF	MEAN	F RATIO PROB
N			SQUARES	SQUARES	
1 DAM\$		1	2016.67	2016.67	226.88 0.000
2 LAN\$		2	962.333	481.167	54.13 0.000
3 DAM\$*LAN\$		2	462.333	231.167	26.01 0.000
* RESIDUAL		18	159.999	8.88885	
- * TOTAL (CORRECT)	ED)	23	3601.33	156.580	
TABLE OF MEANS F	OR FACTOR	RIAL EFFECTS	FILE FSAIHN	NTO 6/ 1/	/** 23: 9
		ANOVA cho th	i nghiem thi	iet ke kieu	PAGE 2 hoan toan ngau
MEANS FOR EFFECT	DAM\$				
DAM\$	NOS	NSUAT			
ao al	12 12	27.5000 45.8333			
SE(N= 12) 5%LSD 18DF		0.860661 2.55715			
	τλΝά				
LAN\$	NOS	NSUAT			
bo b1	8	28.7500			
b2	8	44.2500			
SE(N= 8)		1.05409			
MEANS FOR EFFECT	DAM\$*LAN	IŞ			
DAM\$	LAN\$	NOS	NSUAT		
ao bo ao b1		4 4	25.0000		
ao b2		4	29.7500		
al bo		4	32.5000		
al bl		4	46.2500		
SE(N= 4)		4	1.49071		
5%LSD 18DF			4.42911		

ANALYSIS OF VA	RIANCE	SUMMARY	TABLE	FILE FSAIR	INTO	6/ 1/*	* 23:	9	2
nhien		ANOV	/A cho	thi nghiem	thiet k	e kieu	hoan	PAGE toan	3 ngau
F-PROBABLIITY	VALUES	FOR EAG	CH EFFE	CT IN THE M	IODEL. S	ECTION	- 1		
VARIATE DAM\$ LAN\$	GRAND	MEAN SI IS*LANI	TANDARD	DEVIATIO	N C OF	V			
	(N=	24)			- SD/ME	AN		I	
	NO.	E	BASED O	N BASED C	N %			I	I.
	OBS.]	TOTAL S	S RESID S	S	l.		1	I.
NSUAT	24 36	.667	12.51	3 2.981	. 4	8.1 0.0	0000	0.00	00

• Phân tích kết quả

Nhìn vào bảng phân tích phương sai ta thấy cũng tương tự trường hợp thí nghiệm một nhân tố được bố trí kiểu hoàn toàn ngẫu nhiên, trong bảng không có thành phần biến động bình phương của nhắc lại vì trường hợp này cũng coi các đơn vị thí nghiệm là hoàn toàn đồng nhất.

Vì là thí nghiệm hai nhân tố nên trong bảng ANOVA có ba nguồn biến động cơ bản do nhân tố nghiên cứu gây nên: biến động do đạm, biến động do lân và biến động do tương tác của đạm và lân. Kết quả cho thấy đạm khác nhau, lân bón khác nhau và sự phối hợp đạm với lân khác nhau đều dẫn tới năng suất khác nhau có ý nghĩa thống kê cao (xác suất chấp nhận H_0 rất bé = 0,000).

Phần tiếp theo của bảng là năng suất trung bình theo các mức của nhân tố A và giá trị $LSD_{0.05}$ tương ứng của chúng, từ đây dễ dàng so sánh chênh lệch năng suất giữa hai mức của A với $LSD_{0.05}$ để kết luận. Cụ thể cho ví dụ này, chênh lệch năng suất giữa hai mức của nhân tố A là rất lớn so với $LSD_{0.05}$ nên có thể đi đến kết luận là các mức của nhân tố A khác nhau đã dẫn đến năng suất khác nhau một cách có ý nghĩa. Tương tự như vậy là mức lân bón khác nhau cũng cho năng suất khác nhau rất có ý nghĩa thống kê, cụ thể hơn là mức lân b₂ cho năng suất cao nhất sau đó đến mức b₁ và thấp nhất là b₀.

Bảng tiếp theo là năng suất dưới sự tác động kết hợp các mức của nhân tố A và B, bằng cách so sánh tương tự ta thấy sự kết hợp của mức a_1b_2 đã cho năng suất cao nhất, sau đó đến a_1b_1 và thấp nhất là năng suất của sự kết hợp hai mức a_0b_0 .

Nhìn vào dòng cuối cùng, cột C of V thấy CV% bằng 8,1%, với thí nghiệm trong ô xi măng thì độ chính xác như vậy là không cao, theo lý thiuyết chung phải là 5% mới tốt.

4.2.2. Phân tích phương sai kết quả thí nghiệm hai nhân tố thiết kế kiểu khối ngẫu nhiên đầy đủ (RCB).

Phân tích phương sai cho trường hợp này được xây dựng để xác định hiệu quả của mỗi nhân tố A, B và tương tác của chúng tới kết quả thí nghiệm đồng thời cần xác định biến động của khối để loại trừ nó ra khỏi sai số thí nghiệm. Giả

thiết trong thí nghiệm nhân tố A có a mức, nhân tố B có b mức với r lần nhắc lại, bảng phân tích phương sai được cấu tạo như bảng 4.11 sau:

Source of variationDegree of freedomSum of squareMean squareFReps.r-1r-1	uuy uu				
variationfreedomsquareReps.r-1	Source of	Degree of	Sum of	Mean square	F
Reps. r-1	variation	freedom	square		
1	Reps.	r-1			
Factor A a-1	Factor A	a-1			
Factor B b-1	Factor B	b-1			
A x B (a-1)(b-1)	A x B	(a-1)(b-1)			
Error $(r-1)(ab-1)$	Error	(r-1)(ab-1)			
Total rab-1	Total	rab-1			

Bảng 4.11. ANOVA cho thí nghiệm hai nhân tố thiết kế kiểu khối ngẫu nhiên đầy đủ

Ví dụ: Dùng file số liệu có sẵn trong IRRISTAT của ví dụ trên (thí nghiệm hai nhân tố thiết kế kiểu hoàn toàn ngẫu nhiên) để tiến hành phân tích ANOVA cho trường hợp này. Cách tiến hành cụ thể như sau:

 Thực hiện các bước phân tích tương tự như trường hợp phân tích ANOVA cho kiểu thiết kế CRD đến bước có hình như hình 4.24 trong ví dụ trên đây. Tiếp tục đưa biến NSUAT vào hộp Analysis Variate, ba biến còn lại đưa vào hộp Factor. Sau đó đưa biến NLAI, DAM\$, LAN\$ từ hộp Factor và DAM\$ x LAN\$ xuống hộp ANOVA Model Specification để có hình 4.26 như sau:

IRRISTAT: Balan	ced Analysis of Variance	? 🔀
Analysis of Varianc	e Options Effect	
😂 Open	Command File : Data File : HAINTRCB.gfc FSAIHNTO.SYS	• ок
Data File Variables	: Analysis Variates : Factors: Covariates :	X Cancel
NLAI DAM\$ LAN\$	NSUAT NLAI DAM\$ LAN\$? Help
NSUAT		Ba Save
	Add Remove Add Remove Add Remove	
	-CONST- NLAI DAM\$ LAN\$ DAM\$*LAN\$	
Ware 14 Obe 1		et a t

Hình 4.26

Từ hình 4.26, kích chuột vào menu Options để hộp Heading mở xong đánh dòng chữ "ANOVA cho thi nghiem hai nhan to thiet ke kieu khoi ngau hien day du" vao hộp này sau đó kích chuột vào hộp OK để chạy phân tích cho kết quả như dưới đây.

BALANCED ANOVA FOR VARIATE NSUAT FILE FSAIHNTO 6/ 1/** 22:35 PAGE 1 ANOVA cho thi nghiem hai nhan to thiet ke kieu khoi ngau nhien day du VARIATE V004 NSUAT
LN SOURCE OF VARIA	ATION	DF SUMS OF	MEAN	F RATIO PROB
LN		SQUARES	SQUARES	
= 1 NI.AT		3 30,0000	10.0000	1.15 0.360
5 2 DAME		1 2016 67	2016 67	222 60 0 000
5		1 2010.07	2010.07	232.69 0.000
3 LAN\$ 5		2 962.333	481.167	55.52 0.000
4 DAM\$*LAN\$ 5		2 462.333	231.167	26.67 0.000
* RESIDUAL		15 129.999	8.66662	
 * TOTAL (CORRECTED)		23 3601.33	156.580	
TABLE OF MEANS FOR H	FACTORIAL EFFECT	S FILE FSAIH	NTO 6/ 1	/** 22:35
khoi ngay phion day o	ANOVA cho	thi nghiem ha	i nhan to t	hiet ke kieu
MEANS FOR FEFECT NI				
NLAI NOS	S NSUAT			
2. 6	5 36.1667			
3	38.5000			
4 6	36.5000			
SE(N=6)	1.20185			
	5.02279			
MEANS FOR EFFECT DAN	1\$			
DAM\$ NOS	S NSUAT			
ao 12 a1 12	2 27.5000 2 45.8333			
SE(N= 12)	0.849834			
5%LSD 15DF	2.56170			
 MEANS FOR EFFECT LAN	1\$			
LAN\$ NOS	S NSUAT			
bo	28.7500			
b1 8	37.0000			
b2 8	44.2500			
SE(N= 8)	1.04083			
IJDE				

MEANS FOR EFFECT DAM\$*LAN\$

E)AM\$	LAN\$	NOS	NSUAT		
ao	bo		4	25.0000		
ao	b1		4	27.7500		
ao	b2		4	29.7500		
al	bo		4	32.5000		
al	b1		4	46.2500		
al	b2		4	58.7500		
SE(N= 5%LSD	4) 15DF			1.47196 4.43700		
ANALYS	SIS OF VAR	ANCE SUMMARY	TABLE	FILE FSAIHNTO	6/ 1/** 22:35	

----- PAGE ANOVA cho thi nghiem hai nhan to thiet ke kieu khoi ngau nhien day du 3

F-PROBABLIITY VALUES FOR EACH EFFECT IN THE MODEL. SECTION - $1 \$

VARIAT	E	GRAN	D MEAN	STANDARD	DEVIATION	C OF V	NLAI		
DAMŞ	LAN γ	(N=	24)			SD/MEAN		1	I.
\$									
		NO.		BASED ON	I BASED ON	00		1	
1									
		OBS.		TOTAL SS	RESID SS		1		
1									
NSUAT	Г	24	36.667	12.513	2.9439	8.0	0.3605	0.0000	
0.0000	0.000	0							

Phân tích kết quả

Bảng phân tích phương sai cho trường hợp này khác hăn với trường hợp trên đây (kiểu sắp xếp CRD cho thí nghiệm hai nhân tố) là thành phần biến động của nhắc lại đã được đề cập để tách nguồn biến động này ra khỏi sai số thí nghiệm lam cho thí nghiêm đạt độ chính xác cao hơn. Nhưng trong ví dụ này, nhắc lại (khối) khác nhau đã không dẫn đến kết quả khác nhau rõ (xác suất nhận H_0 của nhắc lại rất lớn: 0.36) chứng tỏ các đơn vị thí nghiệm tương đối đồng nhất.

Trong ví dụ này, hiệu quả tác động của các mức bón đạm khác nhau, các mức lân bón khác nhau và hiệu quả tương tác phối hợp của chúng khác nhau đều dẫn tới năng suất khác nhau có ý nghĩa (tất cả các xác suất nhận H_0 đều rất gần giá trị 0.

Ta không cần quan tâm năng suất trung bình của các lần nhắc lại.

Nhìn tiếp vào phần kết quả với tiêu đề "MEANS FOR EFFECT DAM\$" cho thấy hiệu sai giữa năng suất trung bình của hai mức a_0 và a_1 lớn hơn nhiều so với giá trị LSD_{0.05} của chúng (2.5617) nên có thể nói các mức bón đạm khác nhau đã dẫn đén năng suất khác nhau một cách có ý nghĩa.

Tương tự cách nhìn nhận, đánh giá như vậy đối với phần kết quả mang dòng chữ "MEANS FOR EFFECT LAN\$" cũng cho thấy các mức bón lân khác

nhau đã dẫn đến năng suất khác nhau có ý nghĩa thống kê. Năng suất cao nhất là mức lân b_2 , tiếp đến là mức b_1 và thấp nhất là thuộc mức b_0 .

Đối với kết qủa tương tác của bón lân và đạm biểu hiện ở phần mang tên "MEANS FOR EFFECT DAM*LAN" năng suất cao nhất thuộc tổ hợp bón ở mức a_1b_2 , sau đó đến tổ hợp a_1b_1 .

Độ chính xác của thí ghiệm được biểu hiện tại dòng cuối cùng, cột mang tên "C OF V SD/MEAN %" của kết quả phân tích: CV% =8.0 %. Một thí nghiệm ngoài đồng như vậy là đảm bảo độ chính xác.

4.2.3. Phân tích kết quả thí nghiệm thiết kế kiểu Split-plot

Với kiểu thiết kế này, khi phân tích phương sai cần biết được hiệu quả của các nhân tố riêng rẽ cũng như hiệu quả phối hợp của hai nhân tố tới kết quả nghiên cứu. Đồng thời cũng cần tính được độ chính xác (sai số thí nghiệm) tương ứng với mỗi nhân tố: nhân tố ô lớn và nhân tố ô nhỏ (hoặc tương tác của hai nhân tố).

Giả thiết một thí nghiệm được thiết kế kiểu Split-Plot với a mức của nhân tố A (nhân tố ô lớn) và b mức của nhân tố B (nhân tố ô nhỏ) trong r lần nhắc lại. Cần tiến hành phân tích phương sai theo bảng phân tích phương sai tổng quát (bảng 4.12) sau đây:

Source of variation	Degree of	Sum of	Mean	F
	freedom	square	square	
Reps.	r – 1			
Main plot factor (A)	a – 1			
Error (a)	(r-1)(a-1)			
Sub plot factor (B)	b – 1			
A x B	(a-1)(b-1)			
Error (b)	a(r-1)(b-1)			
Total	rab - 1			

Bång 4.12. ANOVA của thí nghiệm thiết kế kiểu Split-Plot

Ví dụ: Nghiên cứu ảnh hưởng của p mức bón lân khác nhau (p_1, p_2, p_3, p_4) tới năng suất của g giống lạc (G_1, G_2, G_3) tại xã Tân minh, Đà bắc, Hoà bình. Thí nghiệm được bố trí kiểu Split-plot với 3 lần nhắc lại. Kết quả thu năng suất (tạ/ha) được ghi lại như bảng 4.13 sau đây:

Bảng 4.13. Năng suất các giống lạc với các mức bón lân khác nhau qua ba lần nhắc

Lân (D)	Giống (G)	Năng suất (tạ/ha)					
Lan (1)	$\operatorname{Orong}(\mathbf{O})$ –	Nlại 1	Nlại 2	Nlại 3			
	G ₁	14	15	15			
\mathbf{P}_1	G_2	17	16	16			
	G ₃	16	16	16			
	G_1	19	19	19			
P_2	G_2	21	20	21			

	G_3	21	22	21
	G_1	22	21	20
\mathbf{P}_3	G_2	24	23	24
	G_3	24	24	25
	G_1	22	22	22
\mathbf{P}_4	G_2	27	26	24
	G_3	27	27	27

Nguồn: Phạm Tiến Dũng, Đỗ Minh Phận, 2002

Tiến hành phân tích phương sai kết quả thí nghiệm này theo trình tự:

 Vào số liệu trong IRRISTAT và save file với đuôi SYS như hình 4.27 dưới đây

	TAT Data Editor - [D	:\Program	Files\IRRISTAT\Spl	itPlo.sys]						E	
🕺 File	Edit View Option	ıs Tools	Window Help								_ @ ×
😅 🖬	D 🖬 🚳 🐰 🤋	(13)									
	1 2	3	4			1	1	1	1		^
	NLAI LAN\$	GIONG\$	NSUAT								
1	1.0000(P1	G1	14.0000								
2	1.0000CP1	G2	17.0000								
3	1.0000CP1	G3	16.0000								
4	1.0000CP2	G1	19.0000								
5	1.0000CP2	G2	21.0000								
6	1.0000CP2	G3	21.0000								
7	1.0000CP3	G1	22.0000								
8	1.0000CP3	G2	24.0000								
9	1.0000CP3	G3	24.0000								
10	1.0000CP4	G1	22.0000								
11	1.0000CP4	G2	27.0000								
12	1.0000CP4	G3	27.0000								
13	2.0000CP1	G1	15.0000								
14	2.0000CP1	G2	16.0000								
15	2.0000CP1	G3	16.0000								
16	2.0000CP2	G1	19.0000								
17	2.0000CP2	G2	20.0000								
18	2.0000CP2	G3	22.0000								
19	2.0000CP3	G1	21.0000								
20	2.0000CP3	G2	23.0000								
21	2.0000CP3	G3	24.0000								
22	2.0000CP4	G1	22.0000								
23	2.0000CP4	G2	26.0000								
24	2.0000CP4	G3	27.0000								
	Colu Decondou - 26 M	aniablasi Da									

Hình 4.27

• Phân tích theo IRRISTAT

Làm tương tự trường hợp 4.2.1 trên đây cho đến hình 4.24 để có hình 4.28 sau đây:

IRRISTAT: Balanc	ed Analysis of Varianc	e	? 🔀
Analysis of Variance	Options <u>E</u> ffect		
👄 Open	Command File : SPLITKQ.gfc	Data File : SPLITPLO.SYS	• ок
Data File Variables: NLAI LAN\$ GIONG\$ NSUAT	Analysis Variates : Factors:	Covariates :	Cancel
	ANOVA Model Specification	Product Cross	
Vals :4 UDS :3	• INVOLKING DIFECTORY :	D: \PROGRAM FILES \IRKI	SIAI

Từ hình 4.28, đưa biến NSUAT từ hộp Data File Variables vào hộp Analysis Variates, ba biến còn lại đưa vào hộp Factors xong từ hộp Factors đưa các biến này và tương tác của chúng vào hộp ANOVA Model Specification để có hình 4.29 dưới đây

IRRISTAT: Balanc	ced Analysis of Variance	?×
Analysis of Variance	e Options Effect	
😂 Open	Command File : Data File : SPLITKQ.gfc SPLITPLO.SYS	ок
Data File Variables:	: Analysis Variates : Factors: Covariates :	Cancel
NLAI LAN\$ GIONG\$	NSUAT NLAI LAN\$ GIONG\$	Help
INSUAT		Save
	Add Remove Add Remove Add Remove	
	ANOVA Model Specification :	
	-CONST- NLAI	
	LAN\$	
	GIONG\$	
	LAN\$*GIONG\$	
	Add Remove Product Cross	
,		
Vars:4 Obs:3	36 Working Directory :D:\PROGRAM FILES\IRRISTAT	

Hình 4.29

Từ hình 4.29, chọn menu Option để hộp Heading mở và đánh vào dòng chữ "Thiet ke kieu Split-plot" vào hộp Heading xong kích chuột vào hộp Effect để xác định lại sai số ô lớn như hình 4.30

IRRISTAT: Balanced Analysis of Variance	? 🗙
Analysis of Variance Options Effect	
Source -CONST-	🗸 ок
	X Cancel
NLAI*LAN\$ GIONG\$ LAN\$*GIONG\$? Help
	🖹 Save
Name : Pooled Effect	Partition
E <u>r</u> ror : Specify E <u>r</u> ror Print Means	<u>R</u> emove
Save Means To File : Number of levels :	
Coe <u>f</u> fients:	
	<- Update
	~

Hình 4.30

Từ hình 4.30, chọn LAN\$ xong kích chuột vào Specify Eror để xuất hiện hộp List Effect, chọn tiếp NLAI*LAN\$ xong OK. Sau đó chọn NLAI*LAN\$ ở hộp Source, ở hộp Name cũng xuất hiện NLAI*LAN\$, thay dòng chữ này bằng Error(a) để có hình 4.31

IRRISTAT: Balanced Analysis of Variance	? 🗙
Analysis of Variance Options Effect	
Source -CONST- NLAI LAN\$ Error(a) GIONG\$ LAN\$*GIONG\$	✓ OK X Cancel ? Help Save
Name : Error(a) Pooled Effect Error : RESIDUALS Specify Error Save Means To File : Number of levels : Coefficients:	Partition Remove
	~

Hình 4.31

Từ hình 4.31, kích chuột vào OK để chạy mô hình phân tích và cho kết quả dưới đây

BALANCED ANOVA FOR VARIATE	NSUAT	FILE SPLITPI	LO 7/	1/** 22:42
Thiet	ke kiew	u Split-plot		PAGE I
VARIATE V004 NSUAT				
LN SOURCE OF VARIATION	DI	F SUMS OF	MEAN	F RATIO PROB
ER		SQUARES	SQUARE	IS
LN				
=				
1 NLAI 6	2	.722223	.361111	0.68 0.523
2 LAN\$	3	432.083	144.028	576.11 0.000
3 Error(a)	6	1.50000	.250000	0.47 0.819
4 GIONG\$	2	60.7222	30.3611	57.53 0.000
5 LAN\$*GIONG\$	6	11.5000	1.91667	3.63 0.018
6 * RESIDUAL	16	8.44454	.527784	
 * TOTAL (CORRECTED)	35	514.972	14.7135	
TABLE OF MEANS FOR FACTORIAL E	FFECTS	FILE SPLITPI	20 7/	1/** 22:42
Thiet	ke kiew	u Split-plot		PAGE 2
MEANS FOR EFFECT NLAI				
NLAI NOS NS	UAT			
1 12 21 2 12 20	.1667 .9167			

3		12	20.8333
SE(N=	12)		0.209719
5%LSD	16DF		0.628740

MEANS FOR EFFECT LAN\$

Lž	AN\$	NOS	NSUAT		
P1		9	15.6667		
P2		9	20.3333		
P3		9	23.0000		
P4		9	24.8889		
SE(N=	9)		0.166667		
5%LSD	6DF		0.576527		

MEANS FOR EFFECT Error(a)

NI	LAI	LANŞ	NOS	NSUAT	
1	P1		3	15.6667	
1	P2		3	20.3333	
1	P3		3	23.3333	
1	P4		3	25.3333	
2	P1		3	15.6667	
2	P2		3	20.3333	
2	P3		3	22.6667	
2	P4		3	25.0000	
3	P1		3	15.6667	
3	P2		3	20.3333	
3	P3		3	23.0000	
3	P4		3	24.3333	
SE(N=	3)			0.419438	
5%LSD	16DF			1.25748	

MEANS FOR EFFECT GIONG\$

GIONG\$	NOS	NSUAT		
G1	12	19.1667		
G2	12	21.5833		
G3	12	22.1667		
SE(N= 12)		0.209719		
5%LSD 16DF		0.628740		

MEANS FOR EFFECT LAN\$*GIONG\$

	танс	CIONCÓ	NOC	NCUAT	
	LANŞ	GIONGS	NOS	NSUAI	
P1		G1	3	14.6667	
P1		G2	3	16.3333	
P1		G3	3	16.0000	
P2		G1	3	19.0000	

P2		G2	3	20.6667
P2		G3	3	21.3333
Р3		G1	3	21.0000
Р3		G2	3	23.6667
Р3		G3	3	24.3333
P4		G1	3	22.0000
P4		G2	3	25.6667
P4		G3	3	27.0000
SE(N=	3)		(0.419438
5%LSD	16DF			1.25748

```
ANALYSIS OF VARIANCE SUMMARY TABLE FILE SPLITPLO 7/ 1/** 22:42

Thiet ke kieu Split-plot
```

3

F-PROBABLIITY VALUES FOR EACH EFFECT IN THE MODEL. SECTION - $1 \$

VARIATE	Frror	GRAND	MEAN	STANDARD	DEVIATION	C OF V	NLAI		
	1 11 1 01	. (u) 01		10000101					
		(N=	36)			SD/MEAN			
1	NG\$								
		NO.		BASED ON	BASED ON	00			
1	1								
		OBS.		TOTAL SS	RESID SS		1	1	
1	1								
NSUAT		36 2	0.972	3.8358	0.72649	3.5	5 0.5228	0.0000	
0.8188	0.0000	0.0	182						

• Phân tích kết quả

Trong bảng phân tích phương sai cho thấy có năm nguồn biến động của năng suất là nhắc lại, biến động do bón lân khác nhau, do sai số của ô lớn, do giống khác nhau, và do tương tác giữa lân với giống. Kết quả cho thấy nhắc lai khác nhau không dẫn đến năng suất khác nhau vì xác suất nhận H₀ rất lớn (0.523). Hiệu quả của bón lân khác nhau, giống khác nhau, tương tác giữa lân và giống khác nhau đều cho kết quả khác nhau có ý nghĩa thống kê cao (tất cả xác suất nhận H₀ của chúng đều nhỏ hơn 0.05).

Để lựa chọn mức lân bón thích hợp, trong phần kết quả mang tiêu đề "MEANS FOR EFFECT LAN\$" cho thấy các hiệu sai về năng suất trung bình tương ứng các mức lân bón khác nhau đều lớn hơn giá trị LSD_{0.05} của chúng nên kết luận được đưa ra là bón mức lân P4 cho năng suất cao nhất sau đến mức P3,.... Ta cũng bỏ qua không phân tích phần "MEANS FOR EFFECT ERROR(a).

Đánh giá hiệu quả của giống, nhìn trong phần "MEANS FOR EFFECT GIONG\$" cho thấy hiệu sai về năng suất trưng bình của G3 so với G2 không lớn hơn giá trị $LSD_{0.05}$ của chúng nên năng suất của hai giống này khác nhau không có ý nghĩa thống kê, trong khi đó năng suất của G1 thấp hơn hẳn hai giống kia, hiệu sai năng suất của chúng lớn hơn 0.62874.

Bằng cách phân tích tương tự, ta có thể kết luận tổ hợp P4G3 cho năng suất cao nhất, sau đó đến P4G2, P3G3, P3G2,.... để có thể giúp người đọc phân biệt sự khác biệt về năng suất giữa các mức tác động khác nhau, có thể dùng phương

pháp biểu diễn thông qua phương pháp hình học và dùng các chỉ số đánh giá a, b, c,...

Trong ví dụ này, sai số thí nghiệm CV% bằng 3,5% như vậy thí nghiệm đạt độ chính xác rất cao.

4.2.4. Phân tích kết quả thí nghiệm thiết kế kiểu Strip-plot (chia băng)

Với thiết kế kiểu chia băng, ngoài việc phân tích hiệu quả của từng yếu tố nghiên cứu người ta đặc biệt quan tâm đến hiệu quả tương tác của chúng qua ô giao điểm của ha loại dải ngang và dải đứng, rất cần được tính trong mô hình. Với thiết kế này có 3 loại kích thước ô và có 3 loại sai số thí nghiệm tương ứng. Ví dụ: kết qảu của thí nghiệm theo dõi năng suất của 6 giống lúa gieo vãi (v1, v2, v3, v4, v5, v6) trên 3 nền đạm (N1, N2, N3) trong thiết kế kiểu chia băng với 3 lần nhắc lại, số liệu thí nghiệm được để dưới dạng sau: Bảng 4 14.

Đạm (kg/ha)		Năng suất (kg/h	a)
Nl	ai I	Nlai II	Nlai III
		v1	
0(N1)	2373	3958	4384
60(N2)	4076	6431	4889
120(N3)	7254	6808	8582
· · · · ·		v2	
N1	4007	5795	5001
N2	5630	7334	7177
N3	7053	8284	6297
		v3	
N1	2620	4508	5621
N2	4676	6672	7019
N3	7666	7328	8611
		v4	
N1	2726	5630	3821
N2	4838	7007	4816
N3	6881	7735	6667
		v5	
N1	4447	3276	4582
N2	5549	5340	6011
N3	6880	5080	6076
		v6	
N1	2572	3724	3326
N2	3896	2822	4425
N3	1556	2706	3214

Nguồn: Gomez, 1984.

Các bước phân tích phương sai như sau: - Bảng ANOVA được hình thành có dạng sau, bảng 4.15 Bảng 4.15 Bảng đề cương phân tích phương sai thí nghiệm bố trí kiểu chia băng

Source of variation	Degree of freedom	Sum of	Mean	F
		square	square	
Reps.	r-1=2			
Horizontal factor(A),	a – 1=5			
Variety				
Error (a)	(r-1)(a-1)=10			
Vertical factor(B),	b-1=2			
Ntrogen				
Error(b)	(r-1)(b-1)=4			
AxB	(a-1)(b-1)=10			
Error(c)	(r-1)(a-1)(b-1)=20			
Total	rab-1=53			

Trên cơ sở bảng phân tích phương sai được hình thành cho thấy rõ trong thí nghiệm thiết kế kiểu này có 3 nguồn biến động cơ bản là biến động theo hàng ứng với nhân tố dải ngang, một biến động theo cột ứng với nhân tố dải đứng và một nguồn biến động thứ ba tương ứng với giao điểm (tương tác) giữa ô dải ngang và ô dải đứng. Do vậy khi chạy ANOVA trong IRRISTAT phải đưa cả ba nguồn biến động vào mô hình phân tích.

- Lập file số liệu cho phân tích ANOVA theo cách sau: mở IRRISTAT, chọn Window sau đó chọn Data Editor, cửa sổ Data Editor mở, chọn File xong chọn New. Trang làm việc của Data Editor mở ra, tạo các biến và nhập số liệu vào bảng tính theo như hình 4.32
- Khi nhập số liệu xong, vào biểu tượng Save để lưu file lại trong IRRISTAT và đặt tên cho file số liệu sau đó thoát ra khỏi Data Editor
- Tiến hành phân tích, làm tương tự như trường hợp phân tích ANOVA của thí nghiệm thiết kế kiểu Split-Plot cho đến khi có ảnh sau (hình 4.33)
- Từ hình 4.33 chọn Option cho hộp Heading mơ xong đánh dòng chữ ANOVA cho thiết kế kiểu Strip Plot sau đó chọn Effect, sau đó chọn NLAI*GIONG\$ và chuyển thành Error(a), tiếp tục chọn NLAI*DAM\$ và chuyển thành Error(b) như hình 4.34 Sauđó kích chuột vào OK để chạy ANOVA có kết quả sau:

<u>F</u> ile Ec File Ec	lit <u>O</u> ptions ' D 📫 🎒	Tools Window 🔏 🗈 💼	<u>H</u> elp		
	1	2	3	4	
	NLAI	GIONG\$	DAM\$	NSUAT	
1	1.00000	∨1	ni	2373.00000	
2	1.00000	v1	n2	4076.00000	
3	1.00000	v1	n3	7254.00000	
4	1.00000	v2	n1	4007.00000	
5	1.00000	v2	n2	5630.00000	
6	1.00000	v2	n3	7053.00000	
7	1.00000	v3	n1	2620.00000	
8	1.00000	v3	n2	4676.00000	
9	1.00000	v3	n3	7666.00000	
10	1.00000	V4	n1	2726.00000	
11	1.00000	V4	n2	4838.00000	
12	1.00000	V4	n3	6881.00000	
13	1.00000	√5	n1	4447.00000	
14	1.00000	√5	n2	5549.00000	

Hình 4.32

IRRISTAT:	Balanced Analysis of Variance 🔀
Analysis of Variance	Options Effect
🕞 Open 🛛	Command File : Data File : OK STRIPKQ.gfc STRIP.SYS
Data File Variables; NLAI GIONG\$ DAM\$ NSUAT	Analysis Variates : Factors: Covariates : NSUAT NLAI GIONG\$ DAM\$ Analysis Variates : Save
	Add Remove Add Remove Add Remove ANDVA Model Specification : CONST
	Add Remove Product Cross

IRRISTAT: Balanced Analysis of Varia	nce 🔀
Analysis of Variance Options Effect	
Source -CONST- NLAI GIONG\$ Error(a) DAM\$ Error(b) GIONG\$*DAM\$	Cancel
No. of levels 9	
Print Means Save Means To File Open	
Error RESIDUALS Specify Error	
Pooled Effect Ferform Bartlett's Test	
Coefficients:	
	<- Update
Vare 14 IObe 154 Working Directory COVIDDISTATE (5.0.2)	0050701) DA CI

Hình 4.34

ANOVA choThiet ke thi nghiem kieu Strip plot

VARIATE V004 NSUAT

LN SOURCE OF VARIATION	DF	SUMS OF SQUARES	MEAN F SQUARES	RATIO	PROB	ER LN
1 NLAI 2 GIONG\$ 3 Error(a) 4 DAM\$ 5 Error(b) 6 GIONG\$*DAM\$ * RESIDUAL	2 5 10 2 4 10 20	.922096E+07 .571002E+08 .149226E+08 .506761E+08 .297491E+07 .238780E+08 .823290E+07	.461048E+07 .114200E+08 .149226E+07 .253380E+08 743727. .238780E+07 411645.	11.20 27.74 3.63 61.55 1.81 5.80	0.001 0.000 0.007 0.000 0.166 0.000	7 7 7 7 7 7 7
* TOTAL (CORRECTED)	53	.167006E+09	.315105E+07			
TABLE OF MEANS FOR FACTORIAL EFFEC	IS Thie	FILE STRIP t ke thi ngł	19/ 9/ 8 5 niem kieu Str	:38 :H ip plot	PAGE L	2
MEANS FOR EFFECT NLAI						

NL2	AI	NOS	NSUAT
1		18	4705.56
2		18	5579.89
3		18	5584.39
SE(N= 5%LSD	18) 20DF		151.226 446.110

MEANS FOR EFFECT GIONG\$

GIO	NG\$ NOS	1	NSUAT
v1	9		5417.22
v2	9		6286.44
v3	9		6080.11
v4	9		5569.00
v5	9		5249.00
v6	9		3137.89
SE(N=	9)		213.865
5%LSD	20DF		630.895

MEANS FOR EFFECT Error(a)

NL	AI GIONG\$	NOS	NSUAT
1	v1	3	4567.67
1	v2	3	5563.33
1	v3	3	4987.33
1	v4	3	4815.00
1	v5	3	5625.33
1	v6	3	2674.67
2	v1	3	5732.33
2	v2	3	7137.67
2	v3	3	6169.33
2	v4	3	6790.67
2	v5	3	4565.33
2	v6	3	3084.00
3	v1	3	5951.67
3	v2	3	6158.33
3	v3	3	7083.67
3	v4	3	5101.33
3	v5	3	5556.33
3	v6	3	3655.00
SE(N=	3)		370.425
5%LSD	20DF		1092.74

MEANS FOR EFFECT DAM\$

D	AM\$	NOS	NSUAT	
n1		18	4020.61	
n2		18	5478.22	
n3		18	6371.00	
SE(N=	18)		151.226	
5%LSD	20DF		446.110	

MEANS FOR EFFECT Error(b)

	NLAI	DAM\$	NOS	NSUAT
1	n1		6	3124.17
1	n2		6	4777.50
1	n3		6	6215.00
2	n1		6	4481.83
2	n2		6	5934.33
2	n3		6	6323.50
3	n1		6	4455.83
3	n2		6	5722.83
3	n3		6	6574.50

SE (N=	6)	261.930
5%LSD	20DF	772.686

GIONGŞ		DAM\$	NOS	NSUAT					
1	n1		3	3571.67					
1	n2		3	5132.00					
1	n3		3	7548.00					
2	n1		3	4934.33					
2	n2		3	6713.67					
2	n3		3	7211.33					
3	n1		3	4249.67					
3	n2		3	6122.33					
3	n3		3	7868.33					
4	n1		3	4059.00					
4	n2		3	5553.67					
4	n3		3	7094.33					
5	nl		3	4101.67					
D -	n2		3	5633.33					
5	n3		3	6012.00					
) ~	ni		3	3207.33					
6	nz		3	3/14.33					
E(N= 3 ≥ISD 201) DF			370.425					
E(N= 3 %LSD 20)) df 	IANCE SUMMA	ARY TABLE F	370.425 1092.74 	19/9/	 8 5:38			
E(N= 3 %LSD 201 NALYSIS 0) DF OF VAR: 	IANCE SUMMZ	NOVA choThi	370.425 1092.74 ILE STRIP et ke thi n IN THE MOI	19/ 9/ nghiem ki DEL. SECT	8 5:38 eu Strig ION - 1	:PAGE p plot	3	
E(N= 3 %LSD 201 NALYSIS (F-PROBAB: VARIATE) DF OF VAR: 	IANCE SUMMA J VALUES FOR GRAND MEAN	ARY TABLE F NOVA choThi EACH EFFECT STANDARD	370.425 1092.74 ILE STRIP et ke thi n IN THE MON DEVIATION	19/ 9/ nghiem ki DEL. SECT C OF V	8 5:38 	:PAGE	3	
E(N= 3 %LSD 201 NALYSIS (F-PROBAB: VARIATE IONG\$ []) DF OF VAR: LIITY \ (Error({	IANCE SUMMA VALUES FOR GRAND MEAN a) DAM\$	ARY TABLE F NOVA choThi EACH EFFECT STANDARD Error(b) G	370.425 1092.74 ILE STRIP et ke thi r IN THE MOI DEVIATION IONG\$*D	19/ 9/ nghiem ki DEL. SECT C OF V	8 5:38 eu Strig ION - 1 NLAI	:PAGE	3	
E(N= 3 %LSD 201 NALYSIS () DF OF VAR. LIITY ¹ Error(a	IANCE SUMMA VALUES FOR GRAND MEAN a) DAM\$ (N= 54)	ARY TABLE F ANOVA choThi EACH EFFECT STANDARD Error(b) G	370.425 1092.74 ILE STRIP et ke thi n IN THE MOI DEVIATION IONG\$*D	19/ 9/ nghiem ki DEL. SECT C OF V SD/MEAN	8 5:38 eu Strip ION - 1 NLAI 	:PAGE o plot	3	
E(N= 3 %LSD 201 NALYSIS (F-PROBAB: VARIATE IONG\$ []) DF OF VAR LIITY ¹ Error(a AM\$	IANCE SUMMA VALUES FOR GRAND MEAN a) DAM\$ (N= 54) 	ARY TABLE F NOVA choThi EACH EFFECT STANDARD Error(b) G	370.425 1092.74 ILE STRIP et ke thi n IN THE MOI DEVIATION IONG\$*D	19/ 9/ nghiem ki DEL. SECT C OF V SD/MEAN	8 5:38 eu Strig ION - 1 NLAI 	:PAGE o plot	3	
E(N= 3 %LSD 201 NALYSIS (F-PROBAB: VARIATE IONG\$ []) DF DF VAR: LIITY (Error(AM\$ N(IANCE SUMMA VALUES FOR GRAND MEAN a) DAM\$ (N= 54) 0.	ARY TABLE F NOVA choThi EACH EFFECT STANDARD Error(b) G BASED ON	370.425 1092.74 ILE STRIP The ke thi n IN THE MOI DEVIATION IONG\$*D BASED ON	19/ 9/ nghiem ki DEL. SECT C OF V SD/MEAN %	8 5:38 eu Strip ION - 1 NLAI 	:PAGE p plot	3	
E(N= 3 %LSD 201 NALYSIS (F-PROBAB: VARIATE IONG\$ [] }) DF OF VAR LIITY (Error(a AM\$ N(IANCE SUMMA VALUES FOR GRAND MEAN a) DAM\$ (N= 54) J. J.	ARY TABLE F NOVA choThi EACH EFFECT STANDARD Error(b) G BASED ON	370.425 1092.74 ILE STRIP The ke thi n IN THE MOI DEVIATION IONG\$*D BASED ON	19/ 9/ nghiem ki DEL. SECT C OF V SD/MEAN %	8 5:38 eu Strip ION - 1 NLAI 	:PAGE p plot	3 I I	
E(N= 3 %LSD 201) DF OF VAR LIITY ' Error(a AM\$ N(OI	IANCE SUMMA VALUES FOR GRAND MEAN a) DAM\$ (N= 54) J. BS.	ARY TABLE F NOVA choThi EACH EFFECT STANDARD Error(b) G BASED ON TOTAL SS	370.425 1092.74 ILE STRIP IN THE MOI DEVIATION IONG\$*D BASED ON RESID SS	19/ 9/ nghiem ki DEL. SECT C OF V SD/MEAN %	8 5:38 eu Strig ION - 1 NLAI 	:PAGE p plot 	3	
E (N= 3 %LSD 201 NALYSIS (F-PROBAB: VARIATE IONG\$ 1 2 2 1 1) DF DF VAR: LIITY V Error(a AM\$ NG	IANCE SUMMA VALUES FOR GRAND MEAN a) DAM\$ (N= 54) J. BS. BS.	ARY TABLE F NOVA choThi EACH EFFECT STANDARD Error(b) G BASED ON TOTAL SS	370.425 1092.74 ILE STRIP et ke thi n IN THE MON DEVIATION IONG\$*D BASED ON RESID SS	19/ 9/ nghiem ki DEL. SECT C OF V SD/MEAN %	8 5:38 eu Strip ION - 1 NLAI 	:PAGE p plot	3	

MEANS FOR EFFECT GIONG\$*DAM\$

Đánh giá kết quả

Ta cũng đánh giá kết quả tương tự trường hợp trên và thấy hiệu quả của tất cả các thàng phần đều có ý nghĩa ở mức cao, đặc biệt hiệu quả của tương tác có mức ý nghĩa rất cao, điều này nói lên vai trò của kiểu thiết kế là có sự quan tâm đến tương tác của hai yếu tố cần đạt độ chính xác cao hơn. Sai số của tương tác đạt 12,1%

4.3. Phân tích phương sai kết quả thí nghiệm ba nhân tố 4.3.1. Thí nghiệm 3 nhân tố bố trí kiểu RCB

Ví dụ: Nghiên cứu ảnh hưởng của 4 mức bón đạm và 3 mức lân khác nhau đến năng suất hai giống lúa với 3 lần nhắc lại trong thiết kế kiểu RCB, kết quả được ghi lại như bảng sau Bảng 4.16

			Năng sua	suất (kg/ha)				
		v1			v 2			
Mức lân	Rep1	Rep2	Rep3	Rep1	Rep2	Rep3		
			N1 (0 F	KgN/ha)				
P1	3320	3864	4507	6101	5122	4815		
P2	3766	4311	4875	5096	4873	4166		
P3	4660	5915	5400	6573	5495	4225		
			N2 (50]	KgN/ha)				
P1	3188	4752	4756	5595	6780	5390		
P2	3625	4809	5295	6357	5925	5163		
P3	5232	5170	6046	7016	7442	4478		
			N3 (80]	KgN/ha)				
P1	5468	5788	4422	5442	5988	6509		
P2	5759	6130	5308	6398	6533	6569		
P3	6215	7106	6318	6953	6914	7991		
			N4 (110	KgN/ha)				
P1	4246	4842	4863	6209	6768	5779		
P2	5255	5742	5345	6992	7856	6164		
P3	6829	5869	6011	7565	7626	7362		

Ta gọi Đạm là nhân tố A, Lân là nhân tố B và Giống là nhân tố C Bảng phân tích phương sai được hình thành như sau Bảng 4.17

Source of variation	Degree of freedom	Sum of	Mean	F
		square	square	
Reps.	r-1=2			
Factor(A), Nitrogen	a – 1=3			
Factor(B), Phosphorus	b-1=2			
Factor(C), Variety	c - 1 = 1			
AxB	(a-1)(b-1) = 6			
A x C	(a-1)(c-1) = 3			
B x C	(b-1)(c-1) = 2			
A x B x C	(a-1)(b-1)(c-1) = 6			
Error	(r-1)(abc-1) = 46			

Nhập số liệu vào IRRISTAT dưới dạng sau, hình 4.35

		አ 🖻 🛍								
	1	2	3	4	5					
	NLAI	GIONG\$	DAM\$	LAN\$	NSUAT					
	1.00000	v1	n1	p1	3320.00000					
	1.00000	v1	n1	p2	3766.00000					
	1.00000	v1	n1	p3	4660.00000					
	1.00000	v1	n2	p1	3188.00000					
	1.00000	v1	n2	p2	3625.00000					
	1.00000	v1	n2	p3	5232.00000					
	1.00000	v1	n3	p1	5468.00000					
	1.00000	v1	n3	p2	5759.00000					
	1.00000	v1	n3	p3	6215.00000					
2	1.00000	v1	n4	p1	4246.00000					
ł.	1.00000	v1	n4	p2	5255.00000					
8	1.00000	v1	n4	p3	6829.00000					
8	1.00000	v2	n1	p1	6101.00000					
	1.00000	v2	n1	p2	5096.00000					
	1.00000	v2	ni	р3	6573.00000					-
<u></u>	1.00000	v2	n2	p1	5595.00000					
	1.00000	v2	n2	p2	6357.00000					
	1.00000	v2	n2	р3	7016.00000					
	1.00000	v2	n3	p1	5442.00000					
2	1.00000	v2	n3	p2	6398.00000					
	1.00000	v2	n3	p3	6953.00000					
_	1.00000	v2	n4	p1	6209.00000					-
-	1.00000	v2	n4	p2	6992.00000					-
_	1.00000	v2	n4	р3	7565.00000					-
	2.00000	v1	n1	p1	3864.00000	_			-	

Hình 4.35

Tiến hành phân tích phương sai, làm như trường hợp thí nghiệm hai nhân tố đến hình sau (hình 4.36)

IRRISTAT	: Balanced Ar	nalysis of Varia	ance 🔀
Analysis of Variance			
😂 Open	Command File : 3NTOKQ.gfc	_Data File : 3NTORCB.SYS	ОК
Data File Variables: NLAI GIONG\$ DAM\$ LAN\$	Analysis Variates : Factors:	Covariates :	<u>?</u> <u>H</u> elp
NSUAT	Add Remove Add ANOVA Model Specification -CONST-	Remove Add Remove	
1	AddRemove	Product Cross	

Hình 4.36

Từ hình 4.36, đưa các biến và nhân tố vào các vị trí trên hình để được hình 4.37 sau đó chọn Options và đánh dòng chữ: "ANOVA 3 nhân tố bố trí kiểu RCB" vào hộp Heading xong kích chuột vào OK để chạy mô hình và cho kết quả sau đây:

IRRISTAT	: Balanced Analysis of Varianc	e 🔀
Analysis of Variance	e Options Effect	
🕞 Open	Command File : Data File : J3NTOKQ.gfc J3NTORCB.SYS	ок
Data File Variables: NLAI GIONG\$ DAM\$ LAN\$ NSULAT	: Analysis Variates : Factors: Covariates : NLAI SIDAT DAM\$ LAN\$	Cancel ? <u>H</u> elp ≌Save
NSUAT	Add Remove Add Remove Add Remove ANOVA Model Specification : •CONST- NLAI GIONG\$ DAM\$ LAN\$ GIONG\$*DAM\$ GIONG\$*LAN\$ GIONG\$*LAN\$ GIONG\$*DAM\$*LAN\$	
	Add Remove Product Cross	

Hình 4.37

Kết quả chạy mô hình ANOVA của thí nghiệm 3 nhân tố bố trí kiểu RCB

BALANCED ANOVA FOR VARI	ATE NSUAT	FILE 3NTORCB	27/ 9/ 8 16:58
	ANOVA cho th	i nghiem 3 nhan	to bo tri kieu RCB
VARIATE V005 NSUAT			

LN SOURCE OF V	ARIATION	D:	F SUMS OF SQUARES	MEAN E SQUARES	RATIO	PROB	ER LN
1 NLAI 2 GIONG\$ 3 DAM\$ 4 LAN\$ 5 GIONG\$*DAM\$ 6 GIONG\$*LAN\$ 7 DAM\$*LAN\$ 8 GIONG\$*DAM\$*LAI * RESIDUAL * TOTAL (CORRECT)	N\$ ED)	2 1 3 2 3 2 6 6 6 46	.224887E+07 .192438E+08 .239070E+08 .147089E+08 .212759E+07 .122539E+07 .168014E+07 920542. .206314E+08	.112444E+07 .192438E+08 .796900E+07 .735443E+07 709196. 612694. 280023. 153424. 448508.	2.51 42.91 17.77 16.40 1.58 1.37 0.62 0.34	0.091 0.000 0.000 0.205 0.265 0.712 0.911	9 9 9 9 9 9 9 9
TABLE OF MEANS FOR	OR FACTORIA ANG NLAI	L EFFECTS OVA cho th	FILE 3NTORCI	B 27/9/8 han to bo tri	16:58 :1 kieu 1	PAGE RCB	2
NLAI 1 2 3 SE(N= 24) 5%LSD 46DF	NOS 24 24 24 24	NSUAT 5577.50 5900.83 5489.88 136.704 389.121					
MEANS FOR EFFECT	GIONG\$						
GIONG\$ v1 v2	NOS 36 36	NSUAT 5139.08 6173.06					
SE(N= 36) 5%LSD 46DF		111.618 317.716					

MEANS FOR EFFECT DAM\$

D	AM\$	NOS	NSUAT
n1		18	4838.00
n2		18	5389.94
n3		18	6211.72
n4		18	6184.61
SE(N=	18)		157.852
5%LSD	46DF		449.318

MEANS FOR EFFECT LAN\$

LAN\$	NOS	NSUAT	
p1	24	5188.08	
p2	24	5513.00	
p3	24	6267.12	
SE(N= 24) 5%LSD 46D	F	136.704 389.121	

MEANS FOR EFFECT GIONG\$*DAM\$

GIC	NGŞ	DAMŞ	NOS	NSUAT	
v1	n1		9	4513.11	
v1	n2		9	4763.67	
v1	n3		9	5834.89	
v1	n4		9	5444.67	
v2	n1		9	5162.89	
v2	n2		9	6016.22	
v2	n3		9	6588.56	
v2	n 4		9	6924.56	
SE(N=	9)			223.236	
5%LSD	46DF			635.432	
					_

MEANS FOR EFFECT GIONG\$*LAN\$

GIO	NG\$ LAN\$	NOS	NSUAT
v1	pl	12	4501.33
v1	p2	12	5018.33
v1	p3	12	5897.58
v2	pl	12	5874.83
v2	p2	12	6007.67
v2	p3	12	6636.67
SE(N=	12)		193.328
5%LSD	46DF		550.300

MEANS FOR EFFECT DAM\$*LAN\$

n1 n1 n2 n2 n2 n3 n3	DAM\$ F F F F F F F F F	LAN\$ 1 2 3 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	NOS 6 6 6 6 6 6 6	NSUAT 4621.50 4514.50 5378.00 5076.83 5195.67 5897.33 5602.83 6116.17
n4 n4	4 P P)2)3	6	6225.67 6877.00
SE(N= 5%LSI	= 6) D 46DF			273.407 778.242

MEANS FOR EFFECT GIONG\$*DAM\$*LAN\$

GION	G\$	DAM\$	LAN\$	NOS	NSUAT		
v1	nl	pl		3	3897.00		
v1	n1	p2		3	4317.33		
v1	n1	р3		3	5325.00		
v1	n2	pl		3	4232.00		
v1	n2	p2		3	4576.33		
v1	n2	р3		3	5482.67		
v1	n3	p1		3	5226.00		
v1	n3	p2		3	5732.33		
v1	n3	р3		3	6546.33		
v1	n4	p1		3	4650.33		
v1	n4	p2		3	5447.33		
v1	n4	р3		3	6236.33		
v2	n1	p1		3	5346.00		
v2	n1	p2		3	4711.67		
v2	nl	p3		3	5431.00		
v2	n2	p1		3	5921.67		
v2	n2	p2		3	5815.00		
v2	n2	р3		3	6312.00		
v2	n3	p1		3	5979.67		
v2	n3	p2		3	6500.00		
v2	n3	p3		3	7286.00		
v2	n4	p1		3	6252.00		
v2	n4	p2		3	7004.00		
v2	n4	p3		3	7517.67		
SE(N=	3)				386.656		
2%T2D 4	46DF				1100.60		
ANALYSI:	S OF VAR	IANCE SUMMAR	Y TABLE F	ILE 3NTORCB	27/ 9/ 8 16 	:58 :PAGE kieu RCB	3
F-PROB	ABLIITY	VALUES FOR E	ACH EFFECT	IN THE MOD	EL. SECTION - 3	1	
VARIATI GIONG\$	E (DAM\$	GRAND MEAN	STANDARD GIONG\$*D G	DEVIATION SIONG\$*L DAM	C OF V NLAI \$*LAN GIONG\$*D		1
LANC	LANC	(N- 72)	AMC*TANC		SD/MEAN	1	1
1 WINY	I PALY Q N(). 	BASED ON	BASED ON	8	1	
1	1					1	
		35.	TOTAL SS	RESID SS	1	1	1
1	1			10010 00	1	1	1
·							
NSUA	 T	72 5656.1	1105.0	669.71	11.8 0.090	7 0.0000	0.0000

0.0000 0.2055 0.2646 0.7116 0.9107

Phân tích kết quả thí nghiệm này cần đánh giá được mỗi nhân tố khác nhau có ảnh hưởng đến kết quả khác nhau thế nào, tương tác của từng đôi nhân tố khác nhau ảnh hưởng đến kết quả thế nào và tương tác bậc 3 giữa ba nhân tố với nhau ảnh hưởng đến kết qảu như thế nào. Như vậy phải có 7 lần đánh giá 7 giả thuyết Ho dựa trên bảng phân tích phương sai và 7 bảng các giá trị trung bình

4.3.2. Phân tích kết quả thí nghiệm 3 nhân tố thiết kế kiểu chia ô lớn, ô vừa, ô nhỏ (Split-Split-Plot)

Cách thiết kế tương tự kiểu Split-plot nhưng thêm một cỡ ô nữa cho nhân tố thứ ba. Trong mô hình phân tích có thêm một thành phần biến động và sai số tương ứng nữa cho nhân tố thứ ba, tương tác bậc hai của hai nhân tố đầu với nó và còn thêm một tương tác bậc ba của ba nhân tố.

Ví dụ: Năng suất của 3 giống lúa được trồng trong 3 điều kiện quản lý và 5 mức bón đạm với thiết kế kiểu Split-split-plot cho đạm là ô chính, mức quản lý là ô phụ và giống là ô phụ bậc hai và 3 lần nhắc lại, có số liệu ghi ở bảng sau: Bảng 4.18

Mức				Năn	g suất, kg	g/ha			
quản		V1			V2	-		V3	
lý	Rep.I	Rep.	Rep.	Rep.I	Rep.	Rep.	Rep.I	Rep.	Rep.
	1	II	III	1	II	III	1	II	Î
				N1 (0 k	(gN/ha				
M 1	3320	3864	4507	6101	5122	4815	5355	5536	5244
M2	3766	4311	4875	5096	4873	4166	7442	6462	5584
M3	4660	5915	5400	6573	5495	4225	7018	8020	7642
				N2 (50]	kgN/ha)				
M 1	3188	4752	4756	5595	6780	5390	6706	6546	7092
M2	3625	4809	5295	6357	5925	5163	8592	7646	7212
M3	5232	5170	6046	7016	7442	4478	8480	9942	8714
				N3 (80]	kgN/ha)				
M 1	5468	5788	4422	5442	5988	6509	8452	6698	8650
M2	5759	6130	5308	6398	6533	6569	8662	8526	8514
M3	6215	7106	6318	6953	6914	7991	9112	9140	9320
				N4 (110	kgN/ha)				
M 1	4246	4842	4863	6209	6768	5779	8042	7414	6902
M2	5255	5742	5345	6992	7856	6164	9080	9016	7778
M3	6829	5869	6011	7565	7626	7362	9660	8966	9128
				N5 (140	kgN/ha)				
M 1	3132	4375	4678	6860	6894	6573	9314	8508	8032
M2	5389	4315	5896	6857	6974	7422	9224	9680	9294
M3	5217	5389	7309	7254	7812	8950	10360	9896	9712
Bång A	ANOVA	được hì	ình thànl	n như sau	1:				
Bång 4	.19								
Source	of variati	on	Deg	gree of fre	eedom	Su	m of	Mean	F
						squ	lare	square	
Main p	lot analys	sis							
Reps.			r - 1	1=2					
Main p	lot factor	(A).	a -	1=4					
Error (a	a)		(r-1	(a - 1) = 8	3				
Sub pl	ot analy	sis	X						
Sub pl	ot factor (B)	h -	1=2					
A*B	(_)	(a-1	(b-1)=8					
Error(b)		a(r-	(b-1)=2	20				
Sub-sul	, b plot and	alvsis	**(1	/() -	-				
Sub-si	ih plot f	actor (C) c-1:	=2					
AxC			(a-	1)(c-1)=	=8				
BxC			(h-	1)(c-1)=	=4				
AxBxC	1		(a-1)(b-1)(c-1)=16				
Error (c)		Ab	(r-1)(c-1):	=60				
Total	- /		Rat	c - 1 = 13	34				

Lập file số liệu để phân tích phương sai trong IRRISTAT dưới dạng như hình 4.38 sau đây

Base (Fig.) Signal 2 3 QLV\$ GION m1 v1 m2 v1 m3 v1 m1 v1 m2 v1 m3 v1 m1 v1 m3 v1 m1 v1 m2 v1 m3 v1 m1 v1 m1 v1 m3 v1 m3 v1 m3 v1 m3 v1 m3 v2	4 1.00000 1.00000 2.00000 2.00000 2.00000 3.00000 3.00000 3.00000 1.00000	S NSLAT 3320.00000 3766.000000 3766.000000 3664.00000 3864.00000 3684.00000 5915.00000 4607.00000 4607.00000 4607.00000 5404.00000 5404.00000					
3 QLV# GDON m1 v1 m3 v1 m1 v1 m1 v1 m1 v1 m1 v1 m2 v1 m3 v1 m1 v2 m1 v2	4 MLAT 1.00000 1.00000 2.00000 2.00000 2.00000 3.00000 3.00000 3.00000 1.00000 1.00000	5 NSUAT 3320.00000 3766.00000 364.00000 3864.00000 4650.00000 4640.00000 4511.00000 5915.00000 4507.00000 4507.00000 5400.00000 5400.00000					
QLV\$ GION m1 v1 m2 v1 m3 v1 mi v1 m2 v1 m3 v1 m4 v1 m3 v1 m1 v1 m2 v1 m3 v1 m1 v1 m3 v1 m1 v2 m2 v2	¥G\$ NLAT 1.00000 1.00000 1.00000 2.00000 2.00000 2.00000 3.00000 3.00000 3.00000 3.00000 1.00000	NSUAT 3320.00000 3766.00000 4660.00000 3864.00000 3864.00000 4631.00000 4931.00000 4937.00000 4675.00000 5440.00000					
mi vi m2 vi m3 vi mi vi m3 vi m3 vi m4 vi m5 vi m3 vi mi vi m3 vi m4 vi m5 vi m3 vi m4 vi m5 vi m4 v2	1.00000 1.00000 2.00000 2.00000 2.00000 3.00000 3.00000 3.00000 1.00000	3320.00000 3766.00000 4660.00000 3844.00000 4331.00000 5915.00000 4875.00000 4475.00000 5400.00000					
m2 v1 m3 v1 m1 v1 m2 v1 m3 v1 m1 v1 m2 v1 m3 v1 m3 v1 m3 v1 m3 v1 m1 v2 m2 v2	1.00000 1.00000 2.00000 2.00000 3.00000 3.00000 3.00000 3.00000	3766.00000 4660.00000 3864.00000 4311.00000 5915.00000 4507.00000 4875.00000 5400.00000					
m3 v1 m1 v1 m2 v1 m3 v1 m1 v1 m2 v1 m3 v1 m3 v1 m3 v1 m3 v1 m1 v2 m2 v2	1.00000 2.00000 2.00000 3.00000 3.00000 3.00000 1.00000	4660.00000 3864.00000 4311.00000 5915.00000 4807.00000 4875.00000 5400.00000					
m1 v1 m2 v1 m3 v1 m1 v1 m2 v1 m3 v1 m4 v1 m3 v1 m3 v1 m3 v2 m2 v2	2.00000 2.00000 3.00000 3.00000 3.00000 1.00000	3864.00000 4311.00000 5915.00000 4507.00000 4875.00000 5400.00000					
m2 v1 m3 v1 m1 v1 m2 v1 m3 v1 m1 v2 m2 v2	2.00000 2.00000 3.00000 3.00000 3.00000 1.00000	4311.00000 5915.00000 4507.00000 4875.00000 5400.00000					
m3 v1 m1 v1 m2 v1 m3 v1 m1 v2 m2 v2	2.00000 3.00000 3.00000 3.00000 1.00000	\$915.00000 4507.00000 4875.00000 \$400.00000					
m1 v1 m2 v1 m3 v1 m1 v2 m2 v2	3.00000 3.00000 3.00000 1.00000	4507.00000 4875.00000 5400.00000					
m2 v1 m3 v1 m1 v2 m2 v2	3.00000 3.00000 1.00000	4875.00000					
m3 v1 m1 v2 m2 v2	3.00000	5400.00000					
m1 v2 m2 v2	1.00000						
m2 v2		6101.00000					
	1.00000	5096.00000					
m3 v2	1.00000	6573.00000					
m1 v2	2.00000	5122.00000					
m2 v2	2.00000	4873.00000					
m3 v2	2.00000	5495.00000					
m1 v2	3.00000	4815.00000					
m2 v2	3.00000	4166.00000					
m3 v2	3.00000	4225.00000					
m1 v3	1.00000	5355.00000					
m2 v3	1.00000	7442.00000					
m3 v3	1.00000	7018.00000					
m1 v3	2.00000	5536.00000					
m2 v3	2.00000	6462.00000					
m3 v3	2.00000	8020.00000					
m1 v3	3.00000	5244.00000					
m1 m2 m3 m1	v3 v3 v3 v3 5 Variables:	v3 2.00000 v3 2.00000 v3 2.00000 v3 3.00000 5 Variables: 5 Data	v3 2.00000 5536.00000 v3 2.00000 6462.00000 v3 2.00000 8020.00000 v3 3.00000 5244.00000 S Variables: S Data 5	v3 2.0000 \$58.0000 v3 2.0000 6462.0000 v3 2.0000 8020.0000 v3 3.0000 5244.0000 V3 Sola 3.0000	v3 2.0000 \$\$356.0000 v3 2.0000 6462.0000 v3 2.0000 \$\$20000 v3 3.00000 \$\$244.0000 v3 3.00000 \$\$244.0000	v3 2.0000 \$\$58.0000 v3 2.0000 \$\$662.0000 v3 2.0000 \$\$20000 v3 3.0000 \$\$244.0000 v3 3.0000 \$\$244.0000	v3 2.0000 \$555.0000 v3 2.0000 \$626.0000 v3 2.0000 \$620.0000 v3 3.0000 \$244.0000 v3 3.0000 \$244.0000

Hình 4.38

Các bước phân tích ANOVA trong IRRISTAT làm tương tự như trường hợp Split-plot nhưng khác cơ bản ở ảnh sau (hình 4.39)

IRRISTAT: Balanced Analysis of Varia	nce 🔀
Analysis of Variance Options Effect	
Source DAM\$ Error(a) QLY\$ DAM\$*QLY\$ Error(b) GIONG\$ DAM\$*GIONG\$ QLY\$*GIONG\$	✓ OK X Cancel Percent Cancel Percent Cancel Percent Partition Remove
Name Error(b) No. of levels 45	
Print Means Save Means To File Open Error RESIDUALS Specify Error	
Pooled Effect 🔽 Perform Bartlett's Test	
Coefficients:	<- <u>U</u> pdate
Vars :5 Obs :135 Working Directory :C:¥IRRISTATR(5.0.2)	0050701) DA GI

Hình 4.39 Chạy mô hình được kết quả như sau:

	BALANCED ANOVA FOR VARIATE NS	SUAT FILE 3SPLIT	22/ 9/ 8 22:10	
VARIATE V005 NSUAT	ANOVA c	cho Thi Nghiem keu :	:PAGE Split split plot	1
LN SOURCE OF VARIATION DE SUMS OF MEAN E RATIO PROBER	VARIATE V005 NSUAT			
SQUARES SQUARES LN	LN SOURCE OF VARIATION	DF SUMS OF SQUARES	MEAN F RATIO PROB SQUARES	ER LN

1 NL 2 DA 3 Er 4 QL 5 DA 6 Er 7 GI 8 DA 9 QL 10 DA * RE	AI M\$ ror(a) Y\$ ror(b) CONG\$ M\$*GIONG\$ Y\$*GIONG\$ M\$*QLY\$*C SSIDUAL	3 3 SIONG\$	2 4 8 20 2 8 4 16 60	731994. .616408E+08 .445135E+07 .429361E+08 .110297E+07 .523634E+07 .206013E+09 .141445E+08 .385177E+07 .369923E+07 .297325E+08	365997. .154102E+08 556419. .214680E+08 137872. 261817. .103007E+09 .176806E+07 962942. 231202. 495542.	0.74 0.486 31.10 0.000 1.12 0.361 43.32 0.000 0.28 0.970 0.53 0.943 207.87 0.000 3.57 0.002 1.94 0.114 0.47 0.954	11 11 11 11 11 11 11 11 11
* TC	DTAL (CORF	RECTED)	134	.373541E+09	.278762E+07		
TABL	E OF MEAN	IS FOR FACTO	DRIAL EFFECTS	FILE 3SPLIT	22/ 9/ 8	22:10 :PAGE	2
			ANOVA cho Th	i Nghiem keu	Split split	plot	
MEAN	IS FOR EFF	ECT NLAI					
	NLAI	NOS	NSUAT				
1		45	6534.84				
2		45	6652.78				
3		40	6475.62				
SE (N	I= 45)		104.938				
5%LS	SD 60DF		296.829				
MEAN	IS FOR EFF	FECT DAM\$					
	DAM\$	NOS	NSUAT				
n1		27	5384.70				
n2		27	6220.33				
n3		27	6995.74				
n4 n5		27	7233.93				
110		2,	,200.00				
SE (N	J= 27)		135.475				
5%LS	SD 60DF		383.205				
MEAN	IS FOR EFF	FECT Error(a	a) 				
	DAMA	NT 7 T	NOC	NOTIO			
n1	DAMŞ 1	NLAI	NOS	NSUAT 5481-22			
n1	2	-	9	5510.89			
n1	3	3	9	5162.00			
n2	1	L	9	6087.89			
n2	2	2	9	6556.89			
nZ n3	1	5	9	6016.22 6940 11			
n3	2	-	9	6980.33			
n3	3	3	9	7066.78			
n4	1	L	9	7097.56			
n4	2	2	9	7122.11			
n4 n5	3	5	9	6592.44 7067 44			
n5	2	-	9	7093.67			
n5	3	3	9	7540.67			
SE(N	I= 9)			234.649			
J275							

MEANS FOR EFFECT QLY\$

Q	LY\$	NOS	NSUAT
m1		45	5900.38
m2		45	6486.16
m3		45	7276.71
SE(N=	45)		104.938
5%LSD	60DF		296.829

MEANS FOR EFFECT DAM\$*QLY\$

	DAMS	OT VS	NOS	NCUAT	
1	D/1119 1	QUIY	1005	1072 70	
nı	ml		9	48/3./8	
n1	m2		9	5175.00	
n1	m3		9	6105.33	
n2	m1		9	5645.00	
n2	m2		9	6069.33	
n2	m3		9	6946.67	
n3	m1		9	6379.67	
n3	m2		9	6933.22	
n3	m3		9	7674.33	
n4	m1		9	6118.33	
n4	m2		9	7025.33	
n4	m3		9	7668.44	
n5	m1		9	6485.11	
n5	m2		9	7227.89	
n5	m3		9	7988.78	
CE (N ()			224 640	
5만 (IN= 9)			234.049	
5%L	SD 60DF			663.730	

MEANS FOR EFFECT Error(b)

	DAM\$	QLY\$	NLAI	NOS	NSUAT	
n1	m1	1		3	4925.33	
n1	m1	2		3	4840.67	
n1	m1	3		3	4855.33	
n1	m2	1		3	5434.67	
n1	m2	2		3	5215.33	
n1	m2	3		3	4875.00	
n1	m3	1		3	6083.67	
n1	m3	2		3	6476.67	
n1	m3	3		3	5755.67	
n2	m1	1		3	5163.00	
n2	m1	2		3	6026.00	
n2	m1	3		3	5746.00	
n2	m2	1		3	6191.33	
n2	m2	2		3	6126.67	
n2	m2	3		3	5890.00	
n2	m3	1		3	6909.33	
n2	m3	2		3	7518.00	
n2	m3	3		3	6412.67	
n3	m1	1		3	6454.00	
n3	m1	2		3	6158.00	
n3	m1	3		3	6527.00	
n3	m2	1		3	6939.67	
n3	m2	2		3	7063.00	
n3	m2	3		3	6797.00	
n3	m3	1		3	7426.67	
n3	m3	2		3	7720.00	
n3	m3	3		3	7876.33	
n4	m1	1		3	6165.67	
n4	m1	2		3	6341.33	
n4	m1	3		3	5848.00	
n4	m2	1		3	7109.00	
n4	m2	2		3	7538.00	
n4	m2	3		3	6429.00	
n4	m3	1		3	8018.00	
n4	m3	2		3	7487.00	
n4	m3	3		3	7500.33	
n5	m1	1		3	6435.33	
n5	m1	2		3	6592.33	
n5	m1	3		3	6427.67	
n5	m2	1		3	7156.67	
-		_				

n5		m2	2	3	6989.67
n5		m2	3	3	7537.33
n5		m3	1	3	7610.33
n5		m3	2	3	7699.00
n5		m3	3	3	8657.00
SE(N=	3)				406.424
5%LSD	60DF				1149.61

MEANS FOR EFFECT GIONG\$

GIO	1G\$	NOS	NSUAT
v1		45	5126.82
v2		45	6396.13
v3		45	8140.29
SE(N=	45)		104.938
5%LSD	60DF		296.829

MEANS FOR EFFECT DAM\$*GIONG\$

	DAM\$	GIONG\$	NOS	NSUAT
n1		v1	9	4513.11
n1		v2	9	5162.89
n1		v3	9	6478.11
n2		v1	9	4763.67
n2		v2	9	6016.22
n2		v3	9	7881.11
n3		v1	9	5834.89
n3		v2	9	6588.56
n3		v3	9	8563.78
n4		v1	9	5444.67
n4		v2	9	6924.56
n4		v3	9	8442.89
n5		v1	9	5077.78
n5		v2	9	7288.44
n5		v3	9	9335.56
SE (N	I= 9)			234.649
5%LS	D 60DF			663.730

MEANS FOR EFFECT QLY\$*GIONG\$

QI	Y\$ GIONG\$	NOS	NSUAT
m1	v1	15	4413.40
m1	v2	15	6055.00
m1	v3	15	7232.73
m2	v1	15	5054.67
m2	v2	15	6223.00
m2	v3	15	8180.80
m3	v1	15	5912.40
m3	v2	15	6910.40
m3	v3	15	9007.33
SE(N=	15)		181.758
5%LSD	60DF		514.123

MEANS FOR EFFECT DAM\$*QLY\$*GIONG\$

	DAM\$	QLY\$ GIONG\$	NOS	NSUAT	
n1	m1	v1	3	3897.00	
n1	m1	v2	3	5346.00	
n1	m1	v 3	3	5378.33	
n1	m2	v1	3	4317.33	
n1	m2	v2	3	4711.67	
n1	m2	v3	3	6496.00	
n1	m3	v1	3	5325.00	
n1	m3	v2	3	5431.00	
n1	m3	v3	3	7560.00	

~ 2	m 1	1		2	1000 0	0			
nz	mı	VI		3	4232.0	-			
n2	ml	v2		3	5921.6	/			
n2	ml	v3		3	6781.3	3			
n2	m2	v1		3	4576.3	3			
n2	m2	v2		3	5815.0	0			
n2	m2	v3		3	7816.6	7			
n2	m3	v1		3	5482.6	7			
n2	m3	v2		3	6312.0	0			
n2	m3	v3		3	9045.3	3			
n3	m1	171		3	5226 0	n			
52		v 1 772		2	5070 6	0 7			
		~ 2		5	J979.0	י ר			
n3	mi	V3		3	1933.3	3			
n3	m2	VL		3	5/32.3.	3			
n3	m2	v2		3	6500.0	0			
n3	m2	v3		3	8567.3	3			
n3	m3	v1		3	6546.3	3			
n3	m3	v2		3	7286.0	0			
n3	m3	v3		3	9190.6	7			
n4	m1	v1		3	4650.3	3			
n4	m1	1/2		3	6252 0	n N			
n4	m1	770		3	7/52 6	- 7			
		v 3 1		с С	1402.0	, 2			
114 m 4	111Z	V 1		2	J44/.J	- -			
114	m∠	v2		3	/004.0	U			
n4	m2	v3		3	8624.6	1			
n4	m3	v1		3	6236.3	3			
n4	m3	v2		3	7517.6	7			
n4	m3	v3		3	9251.3	3			
n5	ml	v1		3	4061.6	7			
n5	ml	v2		3	6775.6	7			
n5	m1	v3		3	8618.0	0			
n5	m2	v1		3	5200 0	- N			
n5	m2	172		3	7084 3	2			
115		2		5	7004.3))			
115	mz	V.5		3	9399.3	2 -			
n5	m3	VL		3	59/1.6	/			
n5	m3	v2		3	8005.33	3			
n5	m3	v3		3	9989.3	3			
SE(N= 3)				406.42	4			
5%LSD 60	DF				1149.6	1			
ANALYSIS	OF VARIANCE	SUMMAI	RY TABLE F	ILE 3SPLIT	22/ 9/ 8	22:10	:PAGE	3	
F-PROBAB VARIATE DAM\$:	GRAND GRAND Error(a) QLY	FOR H MEAN \$	EACH EFFECT STANDARD DAM\$*QLY E	IN THE MODE DEVIATION rror(b) GION	C OF V N: IG\$ DAM\$	N - 1 LAI *GIO			
1 8 1	(1)- 1	55)	NCS		D/MEAN		1	1	
i Y I	NO		BASED ON	BASED ON	۶ I		1	1	1
	1 UU .		NU ULICAC	DAGED ON	·0		1	1	
1 1	ODG			DEGID GG					
	OBS.		TOTAL SS	RESID SS			1		
NSUAT	135 65	54.4	1669.6	703.95	10.7 0	.4862	0.0000	0.3612	
0.0000 0		(0020					
F-PROBAB	LIITY VALUES	FOR I	SACH EFFECT	IN THE MODE	L. SECTIO	N - 2			
VARIATE	GRAND 1 (N= 1) NO	чЕАN 35)	STANDARD BASED ON	DEVIATION S BASED ON	COFVQ D/MEANN %I	LY\$*GI(G\$	DAMŞ*QLY \$*GIONG\$: 5 -	
	OPC.		TOTAL CC	DECID CC	• I				
NOTION TO	UB5.	- 4 - 4	IUIAL SS	VEDID 22	10 7 0	1100	0.0500	1	
NSUAT	135 65.	54.4	T00A.0	103.95	IU./ 0	.1138	0.9536		

Đánh giá kết quả

Phân tích từng cấp nhân tố một như ví dụ trên cho từng nhân tố, phân tích tương tác của từng đôi nhân tố, sau đó phân tích tương tác bậc ba của cả ba nhân tố. Trong ví dụ này có hai loại tương tác không có ý nghĩa là DAM*QLY, QLY*GIONG và tương tác bậc ba DAM*QLY*GIONG nên khi so sánh cần quan tâm mức ý nghĩa cao hay thấp nếu không có ý nghĩa ở mức cao thì không cần quan tâm so sánh các trung bình của chúng

4.4. Phân tích phương sai kết quả thí nghiệm bố trí nhiều nơi

Số liệu từ một thí nghiệm nghiên cứu 6 mức bón đạm tại 3 nơi khác nhau cùng trong thiết kế kiểu khối ngẫu nhiên đầy đủ (RCB) với 3 lần nhắc lại, kết quả được ghi lại như sau:

Ntrt	Site	Rep	Y	lield	Ntrt	Site	Rep	Ŋ	lield
	1	1	1	1.979	2	1	1	1	7.153
	1	1	2	1.511	2	1	1	2	6.504
	1	1	3	3.664	2	ļ	1	3	6.326
	1	2	1	3.617	2	1	2	1	5.916
	1	2	2	3.58	2	1	2	2	6.982
	1	2	3	3.939	Z	ł	2	3	7.145
	1	3	1	4.32	2	1	3	1	6.336
	1	3	2	4.068	2	ļ	3	2	5.456
	1	3	3	3.856	2	ļ	3	3	5.663
	2	1	1	4.572	4	5	1	1	7.223
	2	1	2	4.34	5	5	1	2	7.107
	2	1	3	4.132	4	5	1	3	6.051
	2	2	1	6.065	4	5	2	1	7.191
	2	2	2	5.463	5	5	2	2	6.109
	2	2	3	5.435	4	5	2	3	7.967
	2	3	1	5.862	4	5	3	1	5.571
	2	3	2	4.626	5	5	3	2	5.854
	2	3	3	4.913	4	5	3	3	5.533
	3	1	1	5.63	6	5	1	1	7.234
	3	1	2	6.78	6	5	1	2	6.829
	3	1	3	4.933	e	5	1	3	5.874
	3	2	1	6.092	6	5	2	1	5.805
	3	2	2	6.571	6	5	2	2	6.89
	3	2	3	6.084	6	5	2	3	7.113
	3	3	1	5.136	6	5	3	1	6.765
	3	3	2	5.836	6	5	3	2	5.263
	3	3	3	4.898	(5	3	3	3.91

Ntrt: Đạm; Rep: Nhắc lại; Site: Nơi Yield: Năng suất □ Bảng đề cương phân tích phương sai đựợc hình thành như sau;

Source of variation	Degree of freedom
Site	s-1=2
Reps. Within Site	s(r-1)=6
Treatment	t-1=5
Site x Treaatment	(s-1)(t-1)=10
Error	s(r-1)(t-1)=30
Total	srt-1=53

S: nơi; r: nhắc lai; t: công thức

□ Các bước phân tích

Chạy ANOVA cân đối như các trường hợp 2 yếu tố cho đến bước sau như trong ảnh:

IRRISTAT	: Balanced A	nalysis of Varia	ance 🔀
Analysis of Varianc	e Options <u>E</u> ffect		
😂 Open	Command File : QUANOIKQ.GFC	Data File : QUANOI.SYS	V OK
Data File Variables NTRT SITE REP YIELD	Analysis Variates : Factors YIELD RE	P Covariates :	<u> </u>
	Add Remove Add ANOVA Model Specification -CONST- SITE SITE*REP NTRT NTRT*SITE	Remove Add Remove	
	Add Remove	Product Cross	
Vars:4 Oł	os :54 Working Dire	ctory :C:¥IRRISTATR(5.0.)	20050701) DA GI

Từ ảnh trên, chọn Effects, chọn Site trong hộp Source xong kích vào Specify error để cho cửa List Effects xuất hiện, chọn Site * Rep trong hộp này xong kích OK để xác định sai số của Site.

Tiếp tục xác định sai số cho Ntrt (công thức) theo cách trên bằng NTRT * SITE ở hộpList Effects.

Kích chuột vào OK để chạy mô hình, có kết quả sau:

BALANCED ANOVA FOR	VARIATE YIELD	FILE QUANOI	11/ 9/ 8	14:43	-
VARIATE V004 YIELD				:PAGE	1
LN SOURCE OF VARIA	TION D	F SUMS OF SQUARES	MEAN SQUARES	F RATIO PROB	ER LN
1 SITE	2	5.87069	2.93534	4.67 0.060	2
2 SITE*REP 3 NTPT	6	3.77451	.629085	1.46 0.224	5
4 NTRT*SITE	10	11.2305	1.12305	2.61 0.020	5
* RESIDUAL	30	12.8985	.429949		
* TOTAL (CORRECTED)	53	96.6809	1.82417		
TABLE OF MEANS FOR F	ACTORIAL EFFECTS	FILE QUANOI	11/ 9/ 8	14:43	
MEANS FOR EFFECT SIT	3			:PAGE	2
SITE NOS	VIELD				
1 18	5.43567				
2 18	5.99800				
3 18	5.21478				
SE(N= 18) 5%LSD 6DF	0.186947 0.646680				
MEANS FOR EFFECT SIT	E*REP				
SITE REP	NOS	YIELD			
1 1	6	5.63183			
1 2	6	5.51183			
2 1	6	5.78100			
2 2	6	5.93250			
2 3	6	6.28050			
3 I 3 2	6	5.18383			
3 3	6	4.79550			
SE(N= 6) 5%LSD 30DF		0.267691 0.773113			
MEANS FOR EFFECT NTR	г				
NTRT NOS	YIELD				
1 9 2 a	3.39267				
∠ 9 3 9	5.77333				
4 9	6.38678				
5 9	6.51178				
ю 9	6.18/00				
SE(N= 9) 5%LSD 30DF	0.218568 0.631244				
MEANS FOR EFFECT NTR	I*SITE				
NTRT SITE	NOS	YIELD			
1 1	3	2.38467			
1 2	3	3.71200			
1 3	3	4.08133		· · · · · · · · · · · · · · · · · · ·	

	2	1	3	4.34800				
	2	2	3	5.65433				
	2	3	3	5.13367				
	3	1	3	5.78100				
	3	2	3	6.24900				
	3	3	3	5.29000				
	4	1	3	6.66100				
	4	2	3	6.68100				
	4	3	3	5.81833				
	5	1	3	6.79367				
	5	2	3	7.08900				
	5	3	3	5.65267				
	6	1	3	6.64567				
	6	2	3	6.60267				
	6	3	3	5.31267				
	SF (N- 3)			0 378572				
	5%LSD 30DF			1.09335				
	ANALYSIS OF	VARIANCE SUMMA	RY TABLE F	ILE QUANOI	11/ 9/ 8 14:43		2	
						:PAGE	3	
	F-PROBABLI	ITY VALUES FOR	EACH EFFECT	IN THE MOD	DEL. SECTION - 1			
	VARIATE	GRAND MEAN	STANDARD	DEVIATION	C OF V SITE	SITE*RE	P NTRT	
	NIKI DII	(N= 54)			SD/MEAN	1	I.	E
		NO.	BASED ON	BASED ON	8			
		OBS.	TOTAL SS	RESID SS				
0	YIELD	54 5.5495	1.3506	0.65571	11.8 0.0600	0.2238	0.0000	

Nhìn vào dòng 7 và 10 của phần kết quả ta có thể kết luận: nơi khác nhau không cho kết quả khác nhau và dùng các kết quả phân tích phía dưới để phân tích thông thường như trường hợp thí nghiệm một yếu tố. Nếu người nghiên cứu quan tâm chặt chẽ hơn thì cũng có thể kết luận nơi khác nhau cho kết quả khác nhau (vì xác suất nhận Ho chưa diển hình của dòng 7), nếu vậy cần phân tích riêng cho mỗi nơi. Trong trường hợp này, người nghiên cứu nên làm lại thí nghiệm để có đánh giá chính xác hơn.

4.5. Phân tích phương sai kết quả thí nghiệm bố trí nhiều năm

□ Kết quả thí nghiệm thu được như bảng sau:

Bảng. Năng suất của 7 giống lúa thí nghiệm trong thiết kế RCB với 3 lần nhắc lại trong cùng thời vụ của 2 năm liên tiếp.

Giống		Năı	n 1		Năm 2			
số	Nlai 1	Nlai 2	Nlai 3	T.số	Nlai 1	Nlai 2	Nlai 3	T.số
1	3036	4177	3884	11097	1981	3198	3726	8905

2	1369	1554	1899	4822	3751	2391	3714	9856
3	5311	5091	4839	15241	3868	3134	3487	10489
4	2559	3980	3853	10392	2729	2786	2598	8113
5	1291	1705	2130	5126	3222	3554	2452	9228
6	3452	3548	4640	11640	4250	4134	3339	11723
7	1812	2914	958	5684	3336	4073	2885	10294
T.theo				64002				68608
Năm								

Nguồn: Gomez, 1984 Ký hiệu: số năm: y; Nhắc lại: r; Công thức: t Bảng đề cương phân tích phương sai được hình thành như sau:

Source of variation	Degree of freedom
Year(Y)	y - 1 = 1
Rep. Within year	y(r-1) = 4
Treatment(T)	t - 1 = 6
ТхҮ	(y-1)(t-1) = 6
Pooled Error	y(r-1)(t-1) = 24
Total	yrt-1 = 41

$\hfill\square$ Vào số liệu trong IRRISTAT dưới dạng

sau:

👩 IRRISTA	T Data Edito	r - [C:\Progra	am Files\IRRI	STAT\Tutorial	\Nhieunam.sy	/s]	
🎉 <u>F</u> ile Edi	t <u>O</u> ptions To	ols Window	<u>H</u> elp				_ 8 >
🛛 🚅 🛥 🗌	🖆 🎒 🐰	🖻 🛍					
	1	2	3	4			
	NAM	GIONG	NLAI	NSUAT			
1	1.00000	1.00000	1.00000	3036.00000			
2	1.00000	2.00000	1.00000	1369.00000			
3	1.00000	3.00000	1.00000	5311.00000			
4	1.00000	4.00000	1.00000	2559.00000			
5	1.00000	5.00000	1.00000	1291.00000			
6	1.00000	6.00000	1.00000	3452.00000			
7	1.00000	7.00000	1.00000	1812.00000			
8	1.00000	1.00000	2.00000	4177.00000			
9	1.00000	2.00000	2.00000	1554.00000			
10	1.00000	3.00000	2.00000	5091.00000			
11	1.00000	4.00000	2.00000	3980.00000			
12	1.00000	5.00000	2.00000	1705.00000			
13	1.00000	6.00000	2.00000	3548.00000			
14	1.00000	7.00000	2.00000	2914.00000			

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT...... 97 □ Các bước phân tích phương sai trong IRRISTAT.

Làm tương tự như phân tích ANOVA qua nhiều nơi nhưng thay nơi bằng năm thể hiện như bảng dưới dây

IBRISTAT: Balanc	ed Analysis of Variance		<u>?×</u>
Analysis of Variance	Options Effect		
🕞 Open	Command File : INHIEUNAM.GFC	Data File : NHIEUNAM.SYS	✓ OK
Data File V ariables: NAM GIONG NLAI NSUAT	Analysis Variates : Factors: NSUAT RIONG SIGNO	Coverietes :	<u>? H</u> elp
	Add Remove Add ANOVA Model Specification : -CONST- NAM NLAPNAM GIONG GIONG NAM	Remove Add Berrovs	
-	Add Hemove	Product Closs	

Tiếp tục làm các bướcc tiếp theo như đối với phân tích qua nhiều nơi và có kết quả sau:

BALANCED ANOVA FOR VARIATE NSU	JAT	FILE QUANAM	13/ 9/ 8	8:41	PACE	1
Phan Tich	1 ANC)VA qua nam H	RCB	•	FAGE	Ŧ
VARIATE V004 NSUAT						
LN SOURCE OF VARIATION	DE	SUMS OF SQUARES	MEAN I SQUARES	F RATIO	PROB	ER LN
1 NAM 2 NAM*NLAI 3 GIONG 4 NAM*GIONG * RESIDUAL	1 4 6 6 24	505124. .148246E+07 .191589E+08 .154960E+08 .879934E+07	505124. 370616. .319315E+07 .258267E+07 366639.	1.36 1.01 8.71 7.04	0.309 0.422 0.000 0.000	2 6 6
* TOTAL (CORRECTED)	41	.454418E+08	.110834E+07			
TABLE OF MEANS FOR FACTORIAL EFFEC	TS.	FILE QUANAM	13/ 9/ 8	8:41	PAGE	2
Phan Tick MEANS FOR EFFECT NAM	1 ANC	JVA qua nam H				

	NAM	NOS	NSUAT
1		21	3047.71
2		21	3267.05
SE (N=	= 21)		132.847
5%LSI	0 4DF		520.732

MEANS FOR EFFECT NAM*NLAI

N	IAM	NLAI	NOS	NSUAT
1		1	7	2690.00
1		2	7	3281.29
1		3	7	3171.86
2		1	7	3305.29
2		2	7	3324.29
2		3	7	3171.57
SE(N=	7)			228.860
5%LSD	24DF			667.979

MEANS FOR EFFECT GIONG

GIO	NG	NOS	NSUAT
1		6	3333.67
2		6	2446.33
3		6	4288.33
4		6	3084.17
5		6	2392.33
6		6	3893.83
7		6	2663.00
SE (N-	6)		247 107
581 (N-	2405		721 500
J.º TOD	2405		121.300

MEANS FOR EFFECT NAM*GIONG

NAM	4 GIO	NG NOS	NSUAT		
L	1	3	3699.00		
L	2	3	1607.33		
L	3	3	5080.33		
L	4	3	3464.00		
L	5	3	1708.67		
L	6	3	3880.00		
L	7	3	1894.67		
2	1	3	2968.33		
2	2	3	3285.33		
2	3	3	3496.33		
	4	3	2704.33		
2	5	3	3076.00		
2	6	3	3907.67		
2	7	3	3431.33		
E (N=	3)		349.590		
%LSD 2	24DF		1020.35		
NALYSIS	S OF VARIAN	CE SUMMARY TABLE	FILE QUANAM 1	.3/ 9/ 8 8:41	
		Phan Tich A	NOVA qua nam RC		- :PAGE 3
F-PROBA	ABLIITY VAL	UES FOR EACH EFFEC	T IN THE MODEL.	SECTION - 1	

VARIATE	GRAND	MEAN	STANDAF	RD	DEVIATION	C OF V	NAM	NAM*NLA]	I GIONG	
	(N=	42)				SD/MEAN	I.	I.	T	G
	NO.		BASED	ON	BASED ON	00	L	I.	T	I.

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT......

99

	OBS.		TOTAL SS	RESID SS				
NSUAT	42	3157.4	1052.8	605.51	19.2 0.3086	0.4224	0.0000	
0.0002								

Cách phân tích kết quả tương tự như phân tích kết quả của phân tích phương sai qua các nơi, khi đó coi năm như nơi trong phân tích phương sai qua nơi và cách nhận xét cũng tương tự.

Chương 5. PHÂN TÍCH HỒI QUI

5.1. Hồi quy tuyến tính đơn

□ Có cặp số liệu sau

Bảng: Kết quả theo dõi số dảnh (x) và năng suất lúa (y)

N. suất	Số dảnh
(kg/ha)	(dånh/m2)
4862	160
5244	175
5128	192
5052	195
5298	238
5410	240
5234	252
5608	282

□ Mô hình tuyến tính là:

$$Y = ax + b$$

□ Vào số liệu trong IRRISTAT dưới dạng sau:

👩 IRRISTA	AT Data Edito	r - [C:\Progra	m Files\IRRI	STAT\Tutorial	HQUIDON.S	YS]	_ _ _ _ _ _
🧱 <u>F</u> ile Ed	it <u>O</u> ptions To	ols Window	<u>H</u> elp				_ 8 ×
🛎 🖬 🗅) 🖆 🗁 🐰	, 🗈 🛍					
	1	2					<u> </u>
	NSUAT(Y)	SDANH(X)					
1	4862.00000	160.00000					
2	5244.00000	175.00000					
3	5128.00000	192.00000					
4	5052.00000	195.00000					
5	5298.00000	238.00000					
6	5410.00000	240.00000					
7	5234.00000	252.00000					
8	5608.00000	282.00000					

□ Các bước phân tích: Chọn Analysis → Regression.
 Làm tương tự như các phân tích phương sai cho đến khi có ảnh sau:

_					
IB	RISTAT: Correlat	ion and Muliple Regr	ession		
B	egression and Correl	ation Regression Mode	Dptions Predictions	Hypotheses	Re-pararr 4
	👄 Open	Command File : HQUIDON.REG	Data File : HQUIDON.SYS		🗸 ОК
	lata File Variables : NSUAT(Y) SDANH(X)	Analysis Variates : CONSTANT- NSUAT(Y) SDANH(X)	Weighting Variates :		Cancel
		Add Remove	Add Remove		

Chọn cả x và Y đưa sang hộp Analysis Variates, sau đó chọn Regression Model để có ảnh sau

	View Insert French Table Window Hale DISTAT: Completion and Multiple Researching	
	Regression and Correlation Regression Model Options Predictions Hypotheses Re-pager 4	
l	Regression Models:	1
ł	New	
	Remove	
	Insert Summary 7 Help	
	Analysis Variates : Response Variate : Residual Variate : E Save	
	Add Remove Fitted Variate : Independent Veriets	
	Add Selection	
	Remove C Forward Selection	
	Title : Constrainsts 0 🛣	
ł		ľ
		1

Chọn New để có ảnh sau

IRRISTAT: Correlation and	nd Muliple Regres	aion		
Regression and Correlation	Regression Model	Options Predicti	ans Hypotheses	Reparar + +
Regression Hodels WARNING: Specific & Resp.	me Variale.		New I Remove Inset Summary	Cancel Brite
Analysis Vielakes : NSUAT(Y) SDWNH(K) Add Remove Tide :	Add Remove Add Remove Independent Ve CONSTANT Print Model Details	Fitted Varia	iate : ste : T Model Selection Selection	C Seve
🥴 💁 🗺 🐼 🔰 🗷	Micros			

Đưa Y vào hộp Response Variate; x vào hộp Independent Variate và chọn Add to the Model trong hộp Selection để có ảnh sau:

Analysis Variates : Response Variate : Residual Variate : NSUAT(Y) : .	Concel
ndyss Valate : Add Barrows Fitted Variate :	🗶 Concel
Add Remarks Fitted Variate :	🏆 Help
Add Remove Fitted Variate :	
Add Berrow Fitted Variate :	Es Save
CONSTANT: Selector	
Add SDANHOI Of 6dd to the Model Remove C Forward Selection	
te : Eonstainsts 0	
He : Index : 1 Index : 1	

Kích chuột vào OK để chạy mô hình, có kết quả như sau:
🥳 TextEditor - (C:V	PROGRAM FILESARP	RISTATATUTORIAL MIQDON. OUT]	
🚰 Elle Edit Formal	t Window <u>Help</u>		
🍅 🔲 D 💣	A X B B		
REGRESSION OF	M5UAT(Y) (1)	ON 2 VARIATES FILE HQUIDON 3/10/** 1	10:50
		P 404.	
TEPM B	O CONFFICIENT	STD. ERROR F-VALUE FREY TOLERANCE	
CONSTANT	3 4242.127	250.649 286.440 0.000 0.32298-01	
SDANH (X)	2 4.888386	1.13757 16.036 0.007 1.000	
SOURCE	35	DF NS F FROF	
DESTRUCTION	459434.X 07377 04	A 250232.1 15.035 0.0074	
TOTAL	357630.0	7	
R-SQUARED -	- 72.8%, (ADJUSTED	FOR D.F. = 68.2%)	

Từ kết quả trên cho thấy hồi quy lập được có độ tin cậy cao với phương trình tuyến tính bậc nhất được xác định như sau:

Y = 4.555X + 4241.12

5.2. Hồi quy bôi tuyến tính

Hồi quy bội tuyến tính được biểu diễn dưới dạng phương trình tổng quát sau: $Y = a_1X_1 + a_2X_2 + \ldots + a_nX_n + B_i$

Trong đó: X₁, X₂, ... X_n là các biến độc lập

a₁, a₂, ... là các hệ số của các biến độc lập

B là hằng số và Y là biến phụ thuộc

Ví dụ ta có tập hợp số liệu theo dõi năng suất và phân tích hàm lượng N, P, K trong hạt từ 45 mảnh ruộng như sau:

PLOT	Y14 G	N%	P%	K%
1	1678	0.9849	0.0901	0.3987
2	4265	1.1714	0.0926	0.3814
3	2431	1.0756	0.0886	0.4134
4	2431	1.0435	0.0807	0.4027
5	4461	1.2101	0.0852	0.3851
6	3110	1.2084	0.0845	0.3746
7	4469	1.1643	0.0972	0.3794

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT...... 104

8	4194	1 2369	0.085	0 4373
9	3379	1.0247	0.2901	0.3108
10	7132	1.4624	0.2467	0.2545
11	4359	0.9954	0.2872	0.3095
12	3646	1.0404	0.2487	0.3137
13	6917	1.5309	0.2868	0.3071
14	6692	1.5001	0.2776	0.2506
15	7028	1.6112	0.2852	0.3091
16	7196	1.6009	0.3104	0.3168
17	4220	0.9392	0.2558	0.3039
18	7250	1.6738	0.1985	0.2474
19	4915	0.9525	0.2712	0.3116
20	4185	0.8468	0.2474	0.3051
21	7463	1.602	0.3213	0.3144
22	7367	1.6678	0.1793	0.2295
23	7860	1.5521	0.3058	0.3296
24	7624	1.5707	0.2969	0.3078
25	2830	0.8732	0.2582	0.3204
26	3705	1.0743	0.2396	0.239
27	3280	1.0124	0.2665	0.3016
28	2906	0.9288	0.2705	0.3078
29	4041	1.0279	0.2492	0.2925
30	3295	1.1412	0.243	0.2475
31	4147	1.1594	0.2867	0.2924
32	4102	1.0733	0.2624	0.2736
33	3509	0.8955	0.2395	0.3815
34	5087	1.2949	0.2548	0.2978
35	4353	1.0541	0.2604	0.3597
36	3915	0.9689	0.2469	0.3806
37	5122	1.4547	0.3239	0.3195
38	4660	1.2749	0.2454	0.2556
39	5150	1.3373	0.3057	0.3158
40	5730	1.2832	0.3059	0.3104
41	3744	0.9977	0.2103	0.2943
42	5363	1.7496	0.1617	0.2353
43	4628	1.0091	0.2208	0.2993
44	4212	0.8938	0.2008	0.2919
45	5063	1.6833	0.2609	0.2983

□ Vào số liệu bảng trên trong IRRSTAT dưới dạng sau:

<u>F</u> ile E	dit <u>O</u> ptions 1	Fools Window	<u>H</u> elp			_ 8
i 🗐 🗲) 🖆 🎒 .	X 🖻 🛍				
	1	2	3	4	5	
	PLOT	GY14	N%	P%	K%	
1	1.00000	1678.00000	0.98490	0.09010	0.39870	
2	2.00000	4265.00000	1.17140	0.09260	0.38140	
3	3.00000	2431.00000	1.07560	0.08860	0.41340	
4	4.00000	2431.00000	1.04350	0.08070	0.40270	
5	5.00000	4461.00000	1.21010	0.08520	0.38510	
6	6.00000	3110.00000	1.20840	0.08450	0.37460	
7	7.00000	4469.00000	1.16430	0.09720	0.37940	
8	8.00000	4194.00000	1.23690	0.08500	0.43730	
9	9.00000	3379.00000	1.02470	0.29010	0.31080	
10	10.00000	7132.00000	1.46240	0.24670	0.25450	
11	11.00000	4359.00000	0.99540	0.28720	0.30950	
12	12.00000	3646.00000	1.04040	0.24870	0.31370	
13	13.00000	6917.00000	1.53090	0.28680	0.30710	
14	14.00000	6692.00000	1.50010	0.27760	0.25060	

□ Tạo thêm 2 biến mới để ghi giá trị dư thừa và giá trị phù hợp sau khi tính hồi qui để có ảnh sau:

🗕 IRRISTA	T Data Edito	r - [C:\Progra	m Files\IRRIS	GTAT\Tutoria	I\REG1.sys]			
🎉 <u>F</u> ile Edi	it <u>O</u> ptions To	ools Window	<u>H</u> elp					_ 8 ×
🛛 🚅 🔁 🗋	i 🖆 🎒 🐰	, 🖻 🛍						
	1	2	3	4	5	6	7	
	PLOT	GY14	N%	P%	K%	DUTHUA	PHUHOP	
1	1.00000	1678.00000	0.98490	0.09010	0.39870	•	•	
2	2.00000	4265.00000	1.17140	0.09260	0.38140	•		
3	3.00000	2431.00000	1.07560	0.08860	0.41340	•	•	
4	4.00000	2431.00000	1.04350	0.08070	0.40270	•	•	
5	5.00000	4461.00000	1.21010	0.08520	0.38510	•	•	
6	6.00000	3110.00000	1.20840	0.08450	0.37460	•	•	
7	7.00000	4469.00000	1.16430	0.09720	0.37940	•	•	
8	8.00000	4194.00000	1.23690	0.08500	0.43730	•	•	
9	9.00000	3379.00000	1.02470	0.29010	0.31080	•	•	
10	10.00000	7132.00000	1.46240	0.24670	0.25450	•	•	
11	11.00000	4359.00000	0.99540	0.28720	0.30950	•	•	
12	12.00000	3646.00000	1.04040	0.24870	0.31370	•	•	
13	13.00000	6917.00000	1.53090	0.28680	0.30710	•	•	
14	14.00000	6692.00000	1.50010	0.27760	0.25060	•	•	-
Deve 1 Cal	7 0 1	45 52 2.11	7	D 51 U	DDICTATIT .			

Tạo xong, save file lại để chạy hồi qui.

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT...... 106

□ Chọn Analysis → Regression, viết lệnh cho Comand File xong Open để mở File số liệu như ảnh dưới:

IBBISTAT: Consist	ion and Muliple Rege	nazion	
Regression and Core	lation Regression Mode	il Options Predictions Hypo	theses Re-paran 4
😂 Open	Command File : REG4.REG	Data File : REG1.SYS	🖌 🗸 🔍
Data File Variabiles : PLOT GY14 N% P% K% DUTHUA PHUHOP	Analysis Variates :	Weighting Valiates : List of Valiat	Concel ? Help Cancel Save
	Include Constant I	Heritive	
where the party state and			I saw I I

Từ ảnh trên, đưa các biến GY14,N%, P%, K% vào hộp Analysis Variates Xong chọn Regression Model, chọn New và chuyển các biến từ Analysis Variates vào các hộp Response Variate và Independent Variates, chọn Add to the Model trong hộp Selection để có ảnh sau:

IRRISTAT: Correlation a	nd Muliple Regres	zion		
Regression and Correlation	Regression Model	Options Predictions	Hypotheses	Repararr • •
Regression Models:				🖌 ок
GY14 = "CONST" + N% + P	2; + K2;		New	
		F	temove	💢 Cancel
				7 Help
		Ince	rt Summary	. Teth
Analysis V ariates :	Response Variate :	Residual Variate		Pa 1
	GY14	DUTHUA	-	Save
	Add Remove	Fitted Variate		
	Independent Ve	riate PHUHOP	Ŧ	
Add	-CONSTANT-	Selection	-	
Berno	P%	C Forward Selection	ei on	
	- K%	Backward Seler	ction	
Tola :	Print Model Details:	Index :		
1692 :				
J				
				_

Chọn Option, Correctation, Compute and Test Residuals như ảnh dưới xong kích chuột vào OK để chạy mô hình.

IBBISTAT: Correlation an	d Muliple Regre	aailon 👘			
Regression and Correlation	Regression Model	Options	Predictions	Hypotheses	Re-paran + +
Heading					🗸 OK
				-	
					X Cancel
					? Help
					E2 Save
8					
Line 1 Col 1					Data Selection
Matrix Printing					
Covenance Consistion	Compute	and Test Fi	esiduals		
Parameter Covariance	Massime and Star		In the second se		
Partial Correlation	for Stepwise :	20	[이 포]		
Desiling Destaurtions London	0.25	and an Transit i		0.05	
Outline Deblection Limit :	ster	iver rest i	evel: 1.	X 0/0	
Influence Detection Limit :	0.25				
which will be an an an arrive the second					

Kết quả chạy mô hình:

CORRELATION	MATR	X AND	STANDAR	D ERRORS	FILE	HQUYBOI	14/	9/	8 11:	27	1
SECTION	1 COI	R AND	RESID.	SES						.FAGE	Ť

Trường Đại học Nông nghiệp Hà Nội – Giáo trình Thiết kế thí nghiệm và xử lý kết quả bằng IRRISTAT...... 108

	Y14G	N%		P	18	K	%		
Y14G	0.1	584525E+04							
N%	0.8	156641E+00 0	.2676436	5E+00					
P%	0.4	406525E+00 0	.1723501	E+00	0.74907	46E-01			
K%	-0.4	226677E+00 -0	.3386678	3E+00	-0.53442	21E+00	0.50547	69E-01	
REGRESSION	OF	Y14G (2) ON 4	VARI	ATES FI	LE HQUY	BOI 14	/ 9/ 8 1	L1:27
								:PAGE	<u>ک</u> د
TERM	NO	COEFFICIENT	STD. E	ERROR	F-VALU	JE PRBF	TOLERAI	NCE	
CONSTANT	8	-2284.148	1484.	.60	2.36	0.12	8 0.657	1E-02	
N%	3	4515.239	483.3	325	87.27	4 0.00	0 0.885	2	
P%	4	6554.451	1922.	42	11.62	25 0.00	2 0.714	3	
K%	5	38.24514	2982.	.48	0.00	0.98	7 0.651	7	
SOURCE		SS	ਸਹ	MS		म	PRBF		
						-			
REGRESS	TON	0.8374954E+08	3 (.2791	651E+08	42,833	0.0000		
RESTDUA	L	0.2672206E+08	41	65175	7.7				
TOTAL	_	0.1104716E+09	44						
R-SQUAR	ED - 7	5.8%, (ADJUST	ED FOR I).F	74.0%)				
DECODD 42	UNC TN	ETTENTIAT V V		- 50	62	DEC_	1222	FTT-	6605
RECORD 42	UNC DE	CIDUMIAL 2 6	RES OBS-	- 50	62	RES	1075	FIT-	7020
RECORD 45	NAS RE	SIDUAL- 2.0 .	565 065-	- 50	05.	RES	1975.	£11-	1030.
BOY DIOT OF	CTUDE		ATC FROM	<i>и</i> тотт	2 570	. то	III DT- 1	522	
NO <lplt< td=""><td>SIUDE</td><td>NIIZED RESIDO</td><td>ALS FROM</td><td></td><td>2.570</td><td>10</td><td>011-1</td><td>NO NIE</td><td>эт.т</td></lplt<>	SIUDE	NIIZED RESIDO	ALS FROM		2.570	10	011-1	NO NIE	эт.т
NO. (DI DI			т		±		т	0	111
0			-1		т		±	0	
MEDIAN= 0.	2026E+	00 ANDERSON-DA	ARLING S	STATIS	TIC= 0.	516			

Kết quả cho ta phương trình tuyến tính với ba biến độc lập như sau:

Y = -2284,148 + 4515,239 N% + 6554,451 P% + 38,245 K%

Với độ tin cậy của phương trình hồi quy đạt ở mức cao với xác suất nhận H_o rất nhỏ (0,000). Chứng tỏ phương trình rất có ý nghĩa cho việc suy đoán từ các yếu tố N, P, K ra năng suất Y