The Small World Phenomenon:

An Algorithmic Perspective

Speaker: Bradford Greening, Jr. Rutgers University – Camden

An Experiment by Milgram (1967)

- Chose a target person
- Asked randomly chosen "starters" to forward a letter to the target
 - Name, address, and some personal information were provided for the target person
 - The participants could only forward a letter to a single person that he/she knew on a first name basis
 - Goal: To advance the letter to the target as quickly as possible

An Experiment by Milgram (1967)

Outcome revealed two fundamental components of a social network:

□ Very short paths between arbitrary pairs of nodes

Individuals operating with purely local information are very adept at finding these paths

What is the "small world" phenomenon?

- Principle that most people in a society are linked by short chains of acquaintances
- Sometimes referred to as the "six degrees of separation" theory

4

Create a graph:

- □ node for every person in the world
- an edge between two people (nodes) if they know each other on a first name basis
- If almost every pair of nodes have "short" paths between them, we say this is a small world

- Watts Strogatz (1998)
 - Created a model for small-world networks
 - Local contacts
 - Long-range contacts

Effectively incorporated closed triads and short paths into the same model

- Imagine everyone lives on an n x n grid
- "lattice distance" number of lattice steps between two points
- Constants *p*,*q*

p: range of local contacts

Nodes are connected to all other nodes within distance p.

- q: number of long-range contacts
 - add directed edges from node u to q other nodes using independent random trials

Watts – Strogatz (1998)

□ Found that injecting a small amount of randomness (i.e. even q = 1) into the world is enough to make it a small world.

Kleinberg (2000)

- Why should arbitrary pairs of strangers, using only locally available information, be able to <u>find</u> short chains of acquaintances that link them together?
- Does this occur in all small-world networks, or are there properties that must exist for this to happen?

small 'r'

large 'r'

The Algorithmic Side

- Input:
 Grid G = (V,E)
 arbitrary nodes s, t
- Goal: Transmit a message from s to t in as few steps as possible using only locally available information

The Algorithmic Side

Assumptions:

 \Box In any step, the message holder *u* knows

- The range of <u>local</u> contacts of all nodes
- The location on the lattice of the target t
- The locations and long-range contacts of all nodes that have previously touched the message
- □ *u* does not know
 - the long-range contacts of nodes that have not touched the message

r = 2

The Algorithm

In each step the current message holder passes the message to the contact that is as close to the target as possible.

- Algorithm in phase *j*:
 □ At a given step,
 2^j < d(*u*,*t*) ≤ 2^{j+1}
 - \Box Alg. is in phase 0 :
 - message is no more than 2 lattice steps away from the target t.

 $\Box j \leq \log_2 n.$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase j end in this step?
- What is the probability that node u has a node v in the next phase as its long range contact?

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?
- What is the probability that node u has a node v as its long range contact?

Pr [u has v as its long range contact] ?

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?
- What is the probability that node u has a node v as its long range contact?

Pr[u has v as its long range contact]?

$$\sum_{v:v\neq u} [d(u,v)]^{-2} \le \sum_{j=1}^{2n-2} \frac{4j}{j^2} = 4 \sum_{j=1}^{2n-2} \frac{1}{j} \le 4[1+\ln(2n-2)] \le 4\ln(6n)$$

$$\geq \frac{\left[d(u,v)\right]^{-2}}{4\ln(6n)}$$

Thus u has v as its long-range contact with probability

$$\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?
- What is the probability that node u has a node v as its long range contact?

$$\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$$

- In any given step, Pr[phase j ends in this step]?
 - □ Phase j ends in this step if the message enters the set B_j of nodes within distance 2^j of t. Let v_f be the node in B_j that is farthest from u.

Pr[phase *j* ends in this step] = $\sum_{v \in B_i} \Pr[u \text{ is friends with } v \in B_j]$

$$\geq |B_j| \times \left(\frac{1}{4\ln(6n) \cdot [d(u,v_f)]^2}\right)^{\frac{1}{2}}$$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?
- What is the probability that node u has a node v as its long range contact?
 - $\geq \frac{1}{4\ln(6n) \left| d(u,v) \right|^2}$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?
- What is the probability that node u has a node v as its long range contact?

 $\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$

Pr[phase *j* ends in this step] $\ge |B_j| \times \left(\frac{1}{4\ln(6n) \times 2^{2j+4}}\right)$ How many nodes are in B_i?

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?
- What is the probability that node u has a node v as its long range contact?

 $\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$

In any given step, Pr[phase j ends in this step]?
 □ Pr[*u* has a long-range contact in B_j]?

 \geq # of nodes in $B_i \times ($ probability u is friends with farthest $v \in B_i)$

$$\geq 2^{2^{j-1}} \left(\frac{1}{4\ln(6n) \times 2^{2^{j+4}}} \right) = \frac{2^{2^{j-1}}}{4\ln(6n) \times 2^{2^{j+4}}} = \frac{1}{128\ln(6n)}$$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?

$$\geq \frac{1}{128\ln(6n)}$$

What is the probability that node u has a node v as its long range contact?

$$\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$$

- How many steps will we spend in phase *j*?
 - □ Let X_j be a random variable denoting the number of steps spent in phase *j*.
 - X_j is a geometric random variable with a probability of success at least

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?

$$\geq \frac{1}{128\ln(6n)}$$

What is the probability that node u has a node v as its long range contact?

$$\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$$

- How many steps will we spend in phase *j*?
 - \Box Since X_i is a geometric random variable, we know that

$$E[X_j] = \frac{1}{p} \le \frac{1}{\frac{1}{28\ln(6n)}} = 128\ln(6n)$$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
- In a given step, with what probability will phase *j* end in this step?

$$\geq \frac{1}{128\ln(6n)}$$

What is the probability that node u has a node v as its long range contact?

$$\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$$

- How many steps will we spend in phase *j*?
 - □ Let X_j be a random variable denoting the number of steps spent in phase *j*.

$$E[X_{j}] = \sum_{i=1}^{\infty} \Pr[X_{j} \ge i]$$

$$\leq \sum_{i=1}^{\infty} \left(1 - \frac{1}{128 \ln(6n)} \frac{1}{j}\right)^{i-1}$$

$$= 128 \ln(6n)$$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?

 $\leq 128 \ln(6n)$

In a given step, with what probability will phase *j* end in this step?

What is the probability that node u has a node v as its long range contact?

 $\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$

How many steps does the algorithm take?

Let X be a random variable denoting the number of steps taken by the algorithm.

 \Box By Linearity of Expectation we have

 $E[X] \le (1 + \log n)(128\ln(6n)) = O(\log n)^2$

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j?
 - $\leq 128 \ln(6n)$
- In a given step, with what probability will phase *j* end in this step?

$$\geq \frac{1}{128\ln(6n)}$$

What is the probability that node u has a node v as its long range contact?

 $\geq \frac{1}{4\ln(6n) \cdot [d(u,v)]^2}$

When r = 2, expected delivery time is

O(log n)²

r≠ 2

Summary of results

- $0 \le r < 2$: The expected delivery time of <u>any</u> decentralized algorithm is $\Omega(n^{(2-r)/3})$.
- *r* > 2: The expected delivery time of <u>any</u> decentralized algorithm is $\Omega(n^{(r-2)/(r-1)})$.

Revisiting Assumptions

- Recall that in each step the message holder *u* knew
 - the locations and long-range contacts of all nodes that have previously touched the message
- Is knowledge of message's history too much info?
- Upper-bound on delivery time in the good case is proven without using this.
- Lower-bound on delivery times for the bad cases still hold even when this knowledge is used.

The Intuition

For a changing value of *r*

- r = 0 provides no "geographical" clues that will assist in speeding up the delivery of the message.
- \Box 0 < *r* < 2: provides some clues, but not enough to sufficiently assist the message senders
- \Box r > 2: as *r* grows, the network becomes more localized. This becomes a prohibitive factor.
- r = 2: provides a good mix of having relevant "geographical" information without too much localization.

References

Kleinberg, J. The Small-World Phenomenon: An Algorithmic Perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000

Kleinberg, J. Navigation in a Small World. Nature 406(2000), 845.