The Small World Phenomenon:

An Algorithmic Perspective

Speaker: Bradford Greening, Jr.
Rutgers University - Camden

An Experiment by Milgram (1967)

- Chose a target person
- Asked randomly chosen "starters" to forward a letter to the target
\square Name, address, and some personal information were provided for the target person
\square The participants could only forward a letter to a single person that he/she knew on a first name basis
\square Goal: To advance the letter to the target as quickly as possible

An Experiment by Milgram (1967)

- Outcome revealed two fundamental components of a social network:
\square Very short paths between arbitrary pairs of nodes
\square Individuals operating with purely local information are very adept at finding these paths

What is the "small world" phenomenon?

- Principle that most people in a society are linked by short chains of acquaintances
- Sometimes referred to as the "six degrees of separation" theory

Modeling a social network

- Create a graph:
\square node for every person in the world
\square an edge between two people (nodes) if they know each other on a first name basis
- If almost every pair of nodes have "short" paths between them, we say this is a small world

Modeling a social network

- Watts - Strogatz (1998)
\square Created a model for small-world networks
- Local contacts
- Long-range contacts
\square Effectively incorporated closed triads and short paths into the same model

Modeling a social network

- Imagine everyone lives on an $n \times n$ grid
- "lattice distance" number of lattice steps between two points
- Constants p, q

Modeling a social network

- p: range of local contacts
\square Nodes are connected to all other nodes within distance p.

Modeling a social network

- q: number of long-range contacts
\square add directed edges from node u to q other nodes using independent random trials

Modeling a social network

■ Watts - Strogatz (1998)
\square Found that injecting a small amount of randomness (i.e. even $q=1$) into the world is enough to make it a small world.

Modeling a social network

- Kleinberg (2000)
\square Why should arbitrary pairs of strangers, using only locally available information, be able to find short chains of acquaintances that link them together?
\square Does this occur in all small-world networks, or are there properties that must exist for this to happen?

Modeling a social network

- $\operatorname{Pr}[u$ has v as its long range contact $]: \frac{[d(u, v)]^{-r}}{\sum[d(u, v)]^{-r}}$

small 'r'

large ' r '

The Algorithmic Side

- Input:
\square Grid G = (V,E)
\square arbitrary nodes s, t
- Goal: Transmit a message from s to t in as few steps as possible using only locally available information

The Algorithmic Side

- Assumptions:
\square In any step, the message holder u knows
- The range of local contacts of all nodes
- The location on the lattice of the target t
- The locations and long-range contacts of all nodes that have previously touched the message
$\square u$ does not know
- the long-range contacts of nodes that have not touched the message

$r=2$

The Algorithm

- In each step the current message holder passes the message to the contact that is as close to the target as possible.

Analysis

- Algorithm in phase j :
\square At a given step,

$$
2^{\mathrm{j}}<\mathrm{d}(u, t) \leq 2^{\mathrm{j}+1}
$$

\square Alg. is in phase 0:

- message is no more than 2 lattice steps away from the target t .
$\square j \leq \log _{2} n$.

Analysis

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j ?
- In a given step, with what probability will phase j end in this step?
- What is the probability that node u has a node v in the next phase as its long range contact?

Analysis

Questions:

- How many steps will the algorithm
take?
■ How many steps will we spend in

In a given step. with what probability will phase j end in this

- What is the probability that node u has a node v as its long range contact?
- $\operatorname{Pr}[u$ has v as its long range contact] ?

$$
=\frac{[d(u, v)]^{-2}}{\Gamma\left[d(u . v) T^{-2}\right.}
$$

$\frac{4 \times 2}{2^{2}} \sum_{j=1}^{2 n-2} \frac{4 j}{j^{2}}$

Analysis

Questions:

- How many steps will the algorithm

■ How many steps will we spend in

- In a given step, with what
probability will phase j end in this
- What is the probability that node u has a node v as its long range contact?
- $\operatorname{Pr}[u$ has v as its long range contact $]$?

$$
\begin{gathered}
\sum_{v: v \neq u}[d(u, v)]^{-2} \leq \sum_{j=1}^{2 n-2} \frac{4 j}{j^{2}}=4 \sum_{j=1}^{2 n-2} 1 / j \leq 4[1+\ln (2 n-2)] \leq 4 \ln (6 n) \\
\geq \frac{[d(u, v)]^{-2}}{4 \ln (6 n)}
\end{gathered}
$$

- Thus u has v as its long-range contact with probability

$$
\geq \frac{1}{4 \ln (6 n) \times d(u, v)]^{2}}
$$

Analysis

Questions:

- How many steps will the algorithm
take?
- How many steps will we spend in
- In a given step, with what probability will phase j end in this step?
- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \backslash d(u, v)]^{2}}$

In any given step, $\operatorname{Pr}[$ phase j ends in this step]?
\square Phase j ends in this step if the message enters the set B_{j} of nodes within distance 2^{j} of t . Let v_{f} be the node in B_{j} that is farthest from u.
$\operatorname{Pr}[$ phase j ends in this step $]=\sum_{v \in B_{j}} \operatorname{Pr}\left[\right.$ uis friends with $\left.v \in B_{j}\right]$

$$
\geq\left|B_{j}\right| \times\left(\frac{1}{4 \ln (6 n) \times\left[d\left(u, v_{f}\right)\right]^{2}} \frac{\dot{\zeta}}{\dot{G}}\right.
$$

Analysis

Questions:

- How many steps will the algorithm
take?
- How many steps will we spend in
- In a given step, with what probability will phase j end in this step?
- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \times d(u, v)]^{2}}$
- $\operatorname{Pr}[$ phase j ends in this step $] \geq\left|B_{j}\right| \times\left(\frac{1}{4 \ln (6 n) \times\left[d\left(u, v_{f}\right)\right]^{2}}\right) \frac{\dot{\dot{\zeta}}}{}$
\square What is $\mathrm{d}\left[\left(u, v_{f}\right)\right]$?

Analysis

Questions:

■ How many steps will the algorithm take?

■ How many steps will we spend in

In a given step, with what probability will phase j end in this step?

- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \Varangle[d(u, v)]^{2}}$
- $\quad \operatorname{Pr}[$ phase j ends in this step $] \geq\left|B_{j}\right| \times\left(\frac{1}{4 \ln (6 n) \times 2^{2 j+4}}\right) \frac{1}{j}$
- How many nodes are in B_{j} ?

Analysis

Questions:

- How many steps will the algorithm
take?
- How many steps will we spend in
- In a given step, with what probability will phase j end in this step?
- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \nmid d(u, v)]^{2}}$
In any given step, $\operatorname{Pr}[$ phase j ends in this step $]$?
$\square \operatorname{Pr}\left[u\right.$ has a long-range contact in $\left.\mathrm{B}_{\mathrm{j}}\right]$?
$\geq \#$ of nodes in $B_{j} \rtimes$ probabilityuis friends with farthest $v \in B_{j}$)
$\geq 2^{2 j-1}\left(\frac{1}{4 \ln (6 n) \times 2^{2 j+4}}\right) \frac{2^{2 j-1}}{\dot{j}}=\frac{1}{4 \ln (6 n) \times 2^{2 j+4}}=\frac{1}{128 \ln (6 n)}$

Analysis

Questions:

- How many steps will the algorithm
- How many steps will we spend in phase j ?
- In a given step, with what probability will phase j end in this step?

$$
\geq \frac{1}{128 \ln (6 n)}
$$

- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \times d(u, v)]^{2}}$

How many steps will we spend in phase j ?
\square Let X_{j} be a random variable denoting the number of steps spent in phase j.

- X_{j} is a geometric random variable with a probability of success at least

Analysis

Questions:

- How many steps will the algorithm
- How many steps will we spend in phase j ?
- In a given step, with what probability will phase j end in this step?

$$
\geq \frac{1}{128 \ln (6 n)}
$$

- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \Varangle d(u, v)]^{2}}$

How many steps will we spend in phase j ?
\square Since X_{j} is a geometric random variable, we know that

$$
E\left[X_{j}\right]=\frac{1}{p} \leq \frac{1}{1 / 128 \ln (6 n)}=128 \ln (6 n)
$$

Analysis

Questions:

- How many steps will the algorithm
- How many steps will we spend in phase j ?
- In a given step, with what probability will phase j end in this step?

$$
\geq \frac{1}{128 \ln (6 n)}
$$

- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \nmid d(u, v)]^{2}}$

How many steps will we spend in phase j ?
\square Let X_{j} be a random variable denoting the number of steps spent in phase j.

$$
\begin{aligned}
E\left[X_{j}\right] & =\sum_{i=1}^{\infty} \operatorname{Pr}\left[X_{j} \geq i\right] \\
& \leq \sum_{i=1}^{\infty}\left(1-\frac{1}{128 \ln (6 n)}\right)^{i-1} \cdot \frac{}{\dot{j}} \\
& =128 \ln (6 n)
\end{aligned}
$$

Analysis

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j ?
$\leq 128 \ln (6 n)$
- In a given step, with what probability will phase j end in this step?
$\geq \frac{1}{128 \ln (6 n)}$
- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \backslash d(u, v)]^{2}}$

How many steps does the algorithm take?
\square Let X be a random variable denoting the number of steps taken by the algorithm.
\square By Linearity of Expectation we have

$$
E[X] \leq(1+\log n)(128 \ln (6 n))=O(\log n)^{2}
$$

Analysis

Questions:

- How many steps will the algorithm take?
- How many steps will we spend in phase j ?
$\leq 128 \ln (6 n)$
- In a given step, with what probability will phase j end in this step?
$\geq \frac{1}{128 \ln (6 n)}$
- What is the probability that node u has a node v as its long range contact?
$\geq \frac{1}{4 \ln (6 n) \nmid d(u, v)]^{2}}$
- When $r=2$, expected delivery time is

$O(\log n)^{2}$

$r \neq 2$

Summary of results

- $0 \leq r<2$: The expected delivery time of any decentralized algorithm is $\Omega\left(n^{(2-r) / 3}\right)$.
- $r>2$: The expected delivery time of any decentralized algorithm is $\Omega\left(n^{(r-2)(r-1)}\right)$.

Revisiting Assumptions

- Recall that in each step the message holder u knew
\square the locations and long-range contacts of all nodes that have previously touched the message
- Is knowledge of message's history too much info?
- Upper-bound on delivery time in the good case is proven without using this.
- Lower-bound on delivery times for the bad cases still hold even when this knowledge is used.

The Intuition

- For a changing value of r
$\square r=0$ provides no "geographical" clues that will assist in speeding up the delivery of the message.
$\square 0<r<2$: provides some clues, but not enough to sufficiently assist the message senders
$\square r>2$: as r grows, the network becomes more localized. This becomes a prohibitive factor.
$\square r=2$: provides a good mix of having relevant "geographical" information without too much localization.

References

■ Kleinberg, J. The Small-World Phenomenon: An Algorithmic Perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000

■ Kleinberg, J. Navigation in a Small World. Nature 406(2000), 845.

