PGS. TS. THÁI DOÃN TīNH

CO CHẾ va PHẢN ỨNG

 आORA HOE MưT COTẬP 2

PGS. TS. THÁI DOÃN TĨNH

CƠ CHẾ VÀ PHẢN ỨNG HOÁ HỌC HỮU CƠ

TÂP 2
(Trọn bộ 3 tộp) In lằn thứ nhất

NHÀ XUẤT BẢN KHOA HỌC VÀ KỸ THUẬT HÀ NộI
127.0.0.1 downloaded 73193.pdf at Wed Mar 28 14:56:14 ICT 2012

LỜI NÓI ĐẦU

Cuốn sách "CƠ CHẾ VÀ PHẢN ỨNG HOȦ HOCC HŨU CO",

 này được biên soc̣n trên cơ sở cuốn "Co sở lý thuyết hoá hũu cơ" (Nhà xuất bản Khoa học và Kỹ thuật Hà Nội, năm 1999 và tái bản năm 2001) nhằm bổ sung thêm nhũng kiến thức cơ bản và hiện đại về liên kêt hoá học, các hiệu ứng cấu trúc, hoá học lập thể, nhất là các cơ chếphản û́ng cụ thể trong các loại phản ûng co bản của hoá học hữu cơ như phản ứng thế gốc, electrophin và nucleophin; phản ứng cộng gốc, electrophin và nucleophin; phản ưng tách; phản ứng chuyển vịi; phản û́ng nhiệt và quang hoá; phản ûng oxy hoá khử.Cuốn sách dùng cho sinh viên dạai học, cao học và nghiên cứu sinh đang nghiên cứu về hoá học hưu cơ và có thể làm tài liệu tham khảo cho các cán bộ giảng dạy và nghiên cứu về hoá học hūu $c o$.

Cuốn sách gồm 15 chương được chia ra làm ba tập.
Chắc rằng cuốn sách còn có nhüng chổ chưa đáp ưng được yêu cầu của độc giả, chüng tôi mong nhận được ý kiến nhận xét để cuốn sách được hoàn thiện hơn.

Tác giả

CÁC CHỮ VIẾT TÁT VÀ THUẬT NGỮ

1-Chữ viết tắt:

THF	Tetrahydrofuran
DMF	Dimetylfomamit
HMPA	Hexametylphotphoric triamit
DBN	1,5-Diazabixyclo[3.4.0] nonen-5
DBU	1,8-Diazabixyclo[5.4.0]undexen-7
DDQ	2,3-Diclo-5,6-dixyano-1,4-benzoquinon
DMAP	4-Dimetylaminopyridin
9-BBN	9-Borabixyclo[3.3.1]nonan
LDA	Liti diisopropylamit
DABCO	1,4-Diazabixyclo[2.2.2]octan
DAST	Dietylaminosunfua triflorua
DCC	Dixyclohexylcacbodiimit
DHU	Dixyclohexylure
NBS	N-bromsuxinimit
TEBA	Trietylbenzylamoni clorua
DIBAIH	Diisobutyl alumi hydrua

2- Các thuật ngữ từ tiếng La Tinh được giữ nguyên góc.
3- Các thuật ngữ dịch từ tiếng nước ngoài dược ghi thêm tiếng Anh.

Chương 5

PHẢN ƯNG THẾ NUCLEOPHIN S_{N} CỦA HYĐROCACBON ALIPHATIC

5.1. KHÁI NIẸM CHUNG

Phản ứng thế nucleophin S_{N} xảy ra bằng sự tấn công của tác nhân nucleophin (Nu) vào trung tâm thiếu electron và sự phân cắt anionit của nhóm đi ra (Z) cùng cặp electron liên kết (Z:):

Tác nhân Nu là anion như $\mathrm{C}^{-}, \mathrm{H}^{-}, \mathrm{O}^{-}, \mathrm{S}^{-}, \mathrm{N}^{-} \ldots$ hoặc những phân tử trung hòa như $\mathrm{HOH}, \mathrm{RNH}_{2}, \mathrm{PH}_{3} \ldots$

Nhóm đi ra Z là những nguyền tố hay nhóm nguyên tố có độ âm điện cao đi ra ở dạng anion Z^{-}như $\mathrm{Hal}, \mathrm{OH}, \mathrm{OR}, \mathrm{OSO}_{2} \mathrm{R} \ldots$ hoạ̣c những nhóm mang diện tích dương di ra ở dạng phán tử trung hoà như $\mathrm{N}^{+} \mathrm{R}_{2}, \mathrm{~S}^{+} \mathrm{R}_{2} \ldots$

Trung tâm phản ứng là nguyên tử cacbon ở trạng thái lai hoá $s p^{3}, s p^{2}$ hay $s p$ và những nguyên tố khác như $\mathrm{O}, \mathrm{N}, \mathrm{S} .$. .

Trong tất cả các trường hợp Nu đều có cặp electron không liên kết, có nghīa là Nu là những bazơ Lewis. Nếu Nu đồng thời là dung mời, phản ứng gọi là dung môi phân.

Mặt khác, người ta cũng có thể nói phản ứng thế ở cacbon ankyl là phản ứng ankyl hoá củ̉a nucleophin, thế ở cacbon axyl là phản ứng axyl hoá của nucleophin...

Phản ứng điển hình là phản ưng S_{N} dể xảy ra ở cacbon lai hoá $s p^{3}$ có mật độ electron nhỏ nhất, hạt nhân không bị chắn và tác nhân đễ tiếp cận.

Về mạat cơ chế phản ứng, có thể phân loại phản ứng S_{N} như sau:
1- Phản ứng S_{N} có sự phân cắt liên kết $\mathrm{C}-\mathrm{Z}$ trước hay nhóm đi ra trước, tấn công nucleophin sau:

Phản ứng trên thuộc loại phản ứng $S_{\mathrm{N}} l$.

2- Phản ứng S_{N} có sự phân cắt nhớm đi ra và tấn công nucleophin đồng thời:

Phản ứng đi qua trạng thái chuyển lưỡng phân tử nên là $S_{\mathrm{N}} 2$.
3- Phản ứng xảy ra theo hai giai đoạn tách - cợng qua hợp chất trung gian chứa nối đôi:

4- Phản ứng có sự tấn công Nu trước và phân cắt nhóm đi ra sau. Phản ứng thường xảy ra ở nhừng hợp chắt chứa nhớm $\mathrm{CO}, \mathrm{CN} . .$. nên thường dưa vào phản ứng cộng nucleophin ở nhóm $\mathrm{CO}, \mathrm{CN} \ldots$ (chương 10).

Trước hết cần chú ý rằng, các nhóm thế cho electron làm dê dàng cho sự phân cắt anionit, các nhóm thế hút electron làm dē dàng cho sự tấn công nucleophin, nên trong cấu trự ban đầu, nếu phản ứng xảy ra dể dàng thì sự tấn công lại khó:

Trong phản ứng S_{N}, tác nhân Nu mang tính chất của một bazơ, nhóm di ra cũng ở dạng một bazơ (hoạ̣c một nucleophin tương ứng), cho nên phản ứng xảy ra với tốc dộ cao nếu cấu trúc obitan của nhóm đi ra và tác nhân nucleophin Nu có cùng tính chất.

5.2. PHẢN ÚNG THÉ NUCLEOPHIN CỦA HYĐROCACBON NO

Phương trình chung là:

$$
\mathrm{R}-\mathrm{Z}+\mathrm{Nu}^{-} \longrightarrow \mathrm{R}-\mathrm{Nu}+\mathrm{Z}^{-}
$$

Có các loại sau:
1-Chất đầu trung hoà +Nu trung hoà:

$$
\begin{gathered}
\mathrm{R}-\mathrm{Z}+\mathrm{Nu} \longrightarrow \mathrm{RNu}^{+}+\mathrm{Z}^{-} \\
\mathrm{R}-\mathrm{I}+\mathrm{R}_{3}{ }_{3} \mathrm{P} \xrightarrow{\text { axeton }} \mathrm{RR}^{\prime} \mathrm{P}^{+} \mathrm{I}^{-}
\end{gathered}
$$

2-Chất dầu trung hoà +Nu anion:

$$
\begin{gathered}
\mathrm{R}-\mathrm{Z}+\mathrm{Nu}^{-} \longrightarrow \mathrm{R}-\mathrm{Nu}+\mathrm{Z}^{-} \\
\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CN}+\mathrm{NaI} \longrightarrow \mathrm{CH}_{3} \mathrm{CHICH}_{2} \mathrm{CN}+\mathrm{NaBr}(96 \%)
\end{gathered}
$$

3-Chất dầu cation +Nu trung hoà:

$$
\begin{aligned}
\mathrm{R}-\mathrm{Z}^{+}+\mathrm{Nu} & \rightarrow \mathrm{RNu} \\
& +\mathrm{Z}: \\
\mathrm{R}-\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{~S} & \rightarrow \mathrm{R}-\mathrm{S}^{+} \mathrm{H}_{2}+\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}
\end{aligned}
$$

4- Chất đầu cation +Nu anion:

$$
\begin{gathered}
\mathrm{R}-\mathrm{Z}^{+}+\mathrm{Nu}^{-} \rightarrow \mathrm{R}-\mathrm{Nu}+\mathrm{Z}: \\
\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{+}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{I}^{-} \rightarrow \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{I}+\mathrm{CH}_{3} \mathrm{SC}_{6} \mathrm{H}_{5}
\end{gathered}
$$

Các phản ứng trễ đểu tuân theo những cợ chế chung với hai cơ chế giới hạn, đồng thời cūng có những cơ chế trung gian của hai cơ chế đó, ở đây chỉ đi sâu vào hai cơ chéf giới hạn $S_{\mathrm{N}} I$ và $S_{\mathrm{N}} 2$, đồng thời những thay đởi về cơ chế khi có nhớm kề và chuyển vị.

5.2.1. Co chế $S_{N} I$

5.2.1.1. Co chế

Phản ứng có hai giai đoạn:

$$
\begin{aligned}
& \mathrm{R}-\mathrm{Z} \stackrel{k_{1}}{k_{-1}} \mathrm{R}^{+}+\mathrm{Z} \\
& \mathrm{R}^{+}+\mathrm{Nu}^{-} \xrightarrow{k_{2}} \mathrm{R}-\mathrm{Nu}
\end{aligned}
$$

Tớc độ phản ứng là:

$$
-\mathrm{d}[\mathrm{RZ}] / \mathrm{d} t=\frac{k_{1} \cdot k_{2}[\mathrm{RZ}]\left[\mathrm{Nu}^{-}\right]}{k_{2}\left[\mathrm{Nu}^{-}\right]+k_{-1}\left[\mathrm{Z}^{-}\right]}
$$

Nếu $k_{2}[\mathrm{Nu}]>k_{-1}\left[\mathrm{Z}^{-}\right]$thì phương trình tốc độ có dạng: $\mathrm{d}[\mathrm{RZ}] / \mathrm{d} t=k_{1}[\mathrm{RZ}]$.
Khi có nucleophin mạnh, $k_{2}>k_{-1}$, tốc dộ phụ thuợc vào giai đoạn xác định tốc dộ phân ly ra ion và phản úng không phụ thuợc vào [Nu].

Giai doạn tương tác cacbocation với Nu xảy ra nhanh. Giản đồ phản ứng như ở hình 5.1.

Hình 5.1. Giản đồ thế năng của $S_{\mathrm{N}} I$
Trên giản dồ cho thấy, giai đoạn quyết dịnh tớc độ là giai đoạn ion hoá. Khi tảng nồng độ của ion đồng dạng, tớc độ phản ứng giảm gọi là hiệu ứng ion chung. Khi thêm muói
không có ion đồng dạng thì tốc độ phàn ứng tăng do tăng lực ion của dung dịch, gọi là hiệu ứng muới bậc nhất. Hiệu ứng ion chung chứng tỏ cơ chế phản ứng là $S_{N} I$, có tạo ra ion tự do: cation và anion. Trong những trường hợp mà giai đoạn xác định tớc dộ là sự phân cắt dị thể liên kết $\mathrm{C}-\mathrm{Z}$, phức hoạt hoá có dạng [R...Z]. Liên kết $\left[\mathrm{C}^{\delta+} \ldots \mathrm{Z}^{\delta-}\right]$ bị phân cất một phân, có điện tích dương ở $\mathrm{C}^{\delta^{+}}$và $\mathrm{Z}^{\delta-}$.

Sự phân cất này đòi hôi năng lượng lớn, nhưng được bù trừ bằng năng lượng solvat hoá vì dung mơi solvat ion lớn hơn chất ban đấu, song năng lượng phân ly vẫn còn lớn nên giai doạn này vẫn là thu nhiệt. Theo tiên đề Hammond, trạng thái chuyển này gần với cấu trúc ion hay cạ̣p ion hơn, nghĩa là liên kết $\mathrm{C}-\mathrm{Z}$ hẩu như bị phân cắt. Như vậy, những nhân tó ảnh hưởng tới cấu trúc ion trung gian cũng ảnh hưởng tới trạng thái chuyền.

Giai đoạn thứ hai là tương tác ion cacboni với Nu^{-}phụ thuộc vào tương tác tĩnh điện là tương tác khớng chế điện tích:

$$
\Delta E=\left(q_{\mathrm{C}^{+}} \cdot q_{\mathrm{Nu}^{\prime}}\right) / l_{\mathrm{C}^{+}-\mathrm{Nu}^{-}}
$$

nghĩa là tương tác này được đánh giá bằng lực Coulomb.
Giai đoạn đầu là sự ion hoá chậm chất ban đâu và là giai đoạn quyết định tốc độ. Giai đoạn thứ hai xảy ra nhanh giữa chất trung gian và nucleophin. Sự ion hoá luôn luôn được hỗ trợ bởi dung môi nên năng lượng cần thiết cho sự phân cắt liên kết $\mathrm{C}-\mathrm{Z}$ lớn được bù trừ bằng solvat hoá của R^{+}và Z^{-}. Chẳng hạn, ion hoá tert-butyl clorua thảnh cation tert-butyl và Cl^{-} trong pha khí không có dung môi cẩn $150 \mathrm{kcal} / \mathrm{mol}(630 \mathrm{~kJ} / \mathrm{mol})$, khi không có dung môi thì đ̛̉ điếu kiện thường không xảy ra trừ ơ nhiệt độ cao, trong nước, sự ion hoá chỉ $20 \mathrm{kcal} / \mathrm{mol}$ $(84 \mathrm{~kJ} / \mathrm{mol})$. Sự khác nhau đó là năng lượng solvat hoá. Trong trường hợp dung môi có tham gia vào quá trình đi ra của nhóm đi ra từ phía diện, ở đây không có tham gia phía sau của dung môi, cơ chế gọi là S_{N} l giới hạn. Cũng có dữ liệu động học và chứng minh khác, Z di ra từ RZ với hai phân tử dung mơi proton tạo lien kết hyơro với Z :

Co chế S_{N} l là bạc nhất theo định luật tớc dợ: $v=k[\mathrm{RZ}]$
Trong giai đoạn chạ̣m này chỉ có chất ban đầu tham gia, tớc độ chỉ phụ thuộc vào nồng độ chất ban đầu, mặc dù dung môi cấn cho sự ion hoá nhưng không có trong phương trình tốc độ và hàm lượng quá dư. Tuy nhiên nhiều trường hợp cho thấy phản ứng đơn thuần là $S_{\mathrm{N}} 1$ nhưng cŭng có trường hợp khác có động học phức tạp, trong trường hợp này có thể dựa vào tính thuận nghịch của giai đoạn $1 . \mathrm{Z}^{-}$hình thành ở giai doạn này cạnh tranh với Nu^{-} cho cation và tốc đờ có thể thay đổi như sau:

$$
\begin{aligned}
& \mathrm{R}-\mathrm{Z} \stackrel{k_{1}}{\stackrel{k_{1}}{k_{-1}}} \mathrm{R}^{+}+\mathrm{Z}^{-} \\
& \mathrm{R}^{+}+\mathrm{Nu} \xrightarrow{-k_{2}} \mathrm{R}-\mathrm{Nu}
\end{aligned}
$$

$$
\begin{equation*}
v=\frac{k_{1} \cdot k_{2}[\mathrm{RX}]\left[\mathrm{Nu}^{-}\right]}{k_{-1}[\mathrm{Z}]+k_{2}\left[\mathrm{Nu}^{-}\right]} \tag{2}
\end{equation*}
$$

ở đâu phản ứng, nồng đọ Z^{-}rát nhò, $k_{-1}[\mathrm{Z}]$ có thể bỏ qua so với $k_{2}[\mathrm{Nu}]$ nên theo phương trình (1). Cơ chế $S_{\mathrm{N}} I$ nói chung là bạc nhất ở giai đọan đâu, nhiểu nghiên cứu cho tháy đi lệch ra quy tắc đó. Trong phản ứng dung môi phân $S_{\mathrm{N}} 1,[\mathrm{Z}]$ theo phương trình (2) và thây tớc độ giảm. Như trường hợp diaryl metyl halogenua, không phải tert-butyl halogenua, theo phương trình (1). Giài thích sự khác nhau đó là cation tert-butyl kém chọn lọc hơn, điarylmetyl tương dới bền hơn. Tuy nhiên ion halogenua là nucleophin mạnh hơn nước, có nhiều nước hơn như là dung môi, cation điarylmetyl chọn lọc hơn tổ hợp với phan tử dung môi trước khi kết hợp với halogen, còn cation tert-butyl kém chọn lọc hơn không thể chờ dợi ion halogenua tương đói hiếm hơn mà tổ hợp với dung moi.

Nếu Z hình thành trong phản ứng làm giàm tớc đọ, có thể tìm thá́y bằng thêm ion Z từ ngoài và sẽ thấy giàm tớc đọ. Sự chạ̀m đó khi thê Z gọi là hiệu úng ion chung hay hiẹuu ứng định luật khới lượng. Khi thêm ion Z làm giàm tớc độ đới với diarylmetyl, không giảm đới với tert-butyl.

Mặt khác co hiệu ưng muoôi tăng lượng ion trong dung dịch làm tăng tớc dọ $S_{\mathrm{N}} I$. Nhưng với phản ứng loại hai, chất ban đấu và tác nhân là trung tính và Z là điện tích âm, lực ion tăng thì tớc đọ̣ phản ứng tăng. Thực té, thêm ion ngoài làm tăng tớc đọ nhiếu phản ứng S_{N} còn sự giàm tớc dọ gày ra bởi ion chung.

Cacbocation trong $S_{N} l$ khó có thể phát hiện vì dời sơng ngắn, nhưng trong trường hợp $3,4^{\prime}$-dimetoxydiphenylmetyl axetat (2) và vài chát khác trong dung mơi phân cực có thế kích thích quang phân và dưới điểu kiẹ̣n đó phở UV có thể phát hiện chất trung gian cation chứng minh cho S_{N} l:

(2)

Dưới điểu kiện $S_{\mathrm{N}} 1$, cation không hay rắt chạ̣m tạo thành ở vị trí đâu cấu như hệ [2.2.1] norbornyl (1-cloapocamphan) (3) khi dun sôi trong $\mathrm{KOH} 30 \%$, hay trong dung dịch nước etanol nitrat bạc 80% trong 21 giờ vẫn không xảy ra phản ứng do không thể tạo cacbocation phả̉ng. Tuy nhiên, phản ứng $S_{\mathrm{N}} I$ có thể xảy ra trong các hẹ̣ vòng rợng hơn tạo cation (4) bền trong dung dịch $\mathrm{SbF}_{5}-\mathrm{SO}_{2} \mathrm{ClF}$ ơ $-50^{\circ} \mathrm{C}$. Một so vòng nhỏ [3.3.1] như (5) hay cubyl (6) tạo cacbocation tuy không phả̉ng nhưng có năng lượng thấp, cation 1 -norbornyl có thể phàn ứng theo $S_{\mathrm{N}} l$.

(4)

(5)

(6)

Một só phản ứng thé nucleophin có xảy ra ở norbornyl đầu câu như là phản ứng tạo cacbocation bình thường (tuy không phải là tất cả), nếu nhớm đi ra không có chức năng như là mọt nucleophin như phản ứng ṣau (7) với nucleophin là $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$:

5.2.1.2. Có chế cạap ion của $S_{N} I$

Trong phản ứng $S_{\mathrm{N}} I$ có sự hình thành cacbocation, nếu cacbocation này tự do, cấu trúc phả̉ng và sự tấn công của Nu ở hai phía của mặt phẳng giớng nhau thì thu được sản phảm raxemic hoá hoàn toàn. Song có nhiều phản ứng cho sản phẩm raxemic hoá, nhiều phản ứng khảc lại không, có phản ứng nghịch đảo khoảng $5 \div 10 \%$ nghịch đảo cấu hình và cũng có trường hợp hoàn toàn bảo toàn cấu hình.

Những kết quả đó dựa trên sự hình thành cacbocation không phải hoàn toàn tự do mà ở dạng cặp ion như sau:
trong đó, cạ̣p ion liên kết có nghỉa là hai ion ở gấn nhau, có thể gọi là cặp ion chặt, cạ̃p ion phân chia là hai ion bị phân cách bởi mợt lớp dung mời solvat ở trạng thái lỏng lẻo hơn và ion tự do ở trạng thái solvat của dung mơi. Các cạ̣p ion liên kết hay chặt có thẻ tở hợp với nhau cho trở lại chất ban đâu, có xác suất tạo liên kết giữa R^{+}và Z^{-}và giữ được tính bất đôi xứng. Nu^{-}chỉ solvat được ở phía ngược với Z^{-}, cho nên dān đến nghịch đảo cấu hình.

Như biểu diển theo sơ đồ sau, phản ứng với dung môi SH bỏ qua phản ứng chuyển vị và tách:

Trong sơ đồ này, RS và SR biểu thị enantiome, δ biếu thị một phần, có những khả năng sau:

1- tấn công trực tiếp SH vào RX cho SR (hoàn toàn nghịch đảo) là quá trình $S_{\mathrm{N}} 2$;
2- cạ̣p ion chặt $\mathrm{R}^{+} \mathrm{X}^{-}$hình thành, dung môi tấn cơng vào trạng thái này có thể dẩn đễn nghịch đảo hoàn toàn nếu hướng A không có chổ hoạ̃c là tổ hợp của nghịch đảo và raxemic hoá khi có cạnh tranh giữa hai hướng A và B ;

3- nếu cặp ion phân chia dung môi hình thành, SH có thế tấn cỡng vào dây, hoá học lập thể xác dịnh nhu là có raxemic hoá ít nhiều;

4- nếu R^{+}tự do hình thành và phả̉ng, SH tấn công có raxemic hoá hoàn toàn.
Quan niệm về cặp ion được chứng minh qua những thực tế sau đay:
1- Thuỷ phân 2-octyl brosylat đánh đáu ở oxy sunfon với ${ }^{18} \mathrm{O}$. Brosylat chưa phản ứng tìm thấy ở các trạng thái khác nhau của thuỷ phân co ${ }^{18} \mathrm{O}$ mặ dù không hoàn toàn:

trong cạ̣p ion chạ̣t ba oxy tương dương nhau:

Kết quả tương tự thu được đơi với este sunfonat, có khả năng ion hoá một phân tử cho R^{+}và ArSO_{3}^{-}và tấn công tiếp theo bà̀ng $\mathrm{ArSO}_{3}{ }^{-}$vào cacbocation khác hay phân tử $\mathrm{ROSO}_{2} \mathrm{Ar}$ theo quá trình $S_{\mathrm{N}} 2$. Thực nghiệm cho thấy, co sự trao đởi ngoại phân tử (3 tới 20%) nhưng không tìm được hàm lượng tranh giành đó trong thực nghiệm ban đấu. Cũng như khi thuỷ phân este $\mathrm{R}-{ }^{18} \mathrm{O}-\mathrm{COR}^{\prime}$ với nhớm di ra $\mathrm{R}^{\prime} \mathrm{COO}^{-}$, thêm RCOO^{-}bên ngoài vào không cho kết quả về sự trao đổi. Có để nghị rằng, cơ chế về sự trao đởi đổng bợ, không cho cặp ion trung gian.

2- Hiệu ứng muối điển hình: Thêm LiClO_{4} hay LiBr vào axeton phân một vài tosylat làm tăng tớc độ giai đoạn ban đầu rồi giảm theo tốc đọ̣ tuyến tính bình thường (gây ra bởi hiệu ứng muới thường). ClO_{4}^{-}(hay Br^{-}) bắt lấy cạ̣p ion phân chia dung môi cho $\mathrm{R}^{+} \| \mathrm{ClO}_{4}^{-}$, thường không bển ở điểu kiện đơ, dẫn tới sản phẩm. Hàm lượng cạ̣p ion phân chia dung môi quay trở về chất ban đâu bị giảm và tớc độ chung của phản ứng tảng. Hiệu ứng này quan sát bằng phở hấp thụ picosecond.

3- Khả năng raxemic hoá hay nghịch dảo của sản phẩm RS. Sự hình thành cặp ion tiếp theo sau khi quay trở về cơ thể ành hưởng tới hoá học lập thể của chất ban đầu RX. Đã tìm thấy sự quay trở về làm raxemic hoá RX quang hoạt ban đâu, như khi dung môi phân axeton
nước của $\alpha-p$-anisyletyl $-p$-nitrobenzoat, trong trường hợp khác tìm tháy bảo toàn hoàn toàn hay một phần khi dung môi phân axeton nước của p-clobenhydryl- p-nitrobenzoat. Sự raxemic hóa gay ra theo cách:

$$
R X \rightleftharpoons R^{+} \mathrm{X}^{-} \rightleftharpoons \mathrm{X}^{-} \mathrm{R}^{+} \rightleftharpoons \mathrm{XR}
$$

Trong một sớ trường hợp sự quay trở về có sự raxemic hoá và có khi nhanh hơn là dung môi phân, như p-clobenhydryl clorua quang hoạt raxemic hoá 30 lân nhanh hơn dung môi phân trong axit axetic.

Tính toán cơ học lượng tử đới với tert-butyl clorua cho thấy khoảng cách $\mathrm{C}-\mathrm{Cl}$ là 2,9 \AA Ảa ion chặt, là $5,5 \AA$ của cặp ion phân chia dung moí (so với liên kết $\mathrm{C}-\mathrm{Cl}$ là $1,8 \AA$).

Trong một só trường hợp, phàn ứng $S_{\mathrm{N}} /$ tìm thấy bào toàn một phần (20 đến 50%) do cạ̣p ion, chẳng hạn, phenol phân α-phenyletyl clorua (8), trong đó ete tìm thấy cáu hình bảo toàn do cơ chế 4 trung tâm:

Kết luận tìm tháy sự bảo toàn một phần trong hệ clorua hay nhóm trung tính đi ra khác, còn với nhóm mang điẹn tích dương trong đó ít nhiểu tạo liên kết hyđro với dung môi thì không có bảo toàn cấu hình. Sự bảo toàn mợt phần gây ra bởi cặp ion bị chắn ở phía sau bởi chất thêm vào như axetonitrin, axeton, anilin...

Sự khác nhau giữa $S_{\mathrm{N}} l$ và $S_{\mathrm{N}} 2$ là các giai đoạn quyế định. Trong cơ chế $S_{\mathrm{N}} I$, nhóm X đi ra trước khi Nu tấn công, trong $S_{\mathrm{N}} 2$ là đồng bọ và cũng có thể có khả năng thứ ba là Nu tấn công trước và phan cắt X sau. Điểu này không thể cơ ở cacbon no vì có nhiểu hơn 8 electron ở bên ngoài. Tuy nhiên cơ chế này cūng tìm tháy ở chất ban đầu khác như trong các hợp chất cacbonyl CO.

5.2.1.3. Hiệu ứng nhơm kề

Nhóm kề có thể tham gia bầng liên kết $\mathrm{C}=\mathrm{C}, \mathrm{C}-\mathrm{C}$ và $\mathrm{C}-\mathrm{H}$ tạo nên những chất trung gian gọi là cacbocation không cô điển (hay cacbocation cầu).

Trong cation cở điển, diện tích dương định chở ở nguyên tử cacbon hay được giải toả bởi liên kết đôi hay ba ở vị trí allyl, còn trong cation không cổ điển diện tích dương được giải toả bởi liên két đơi hay ba không ở vị trí allyl hay bởi liên kết đơn. Chẳng hạn như cation norbornenyl (9), 7-norbornyl (10) và cation xyclopropylmetyl (11). Cation (9) gọi là cation homoallylic vì có một nguyên tử cacbon giữa cacbon mang diện tích dương và lien kết đời.

Các cation này hình thành bằng nhiều cách, thường bằng sự đi ra của nhóm đi ra:

Trường hợp tạo cation từ (12) gọi là cách σ đi tới cation không có điển vì có sự tham gia của liên kết σ_{1} còn từ (13) gọi là cách π. Những cấu trúc trên của cation không cổ điển không phải là cấu trúc cợng hưởng, mà là cấu trúc thật và ở trong cân bằng nhanh.

Sự hình thành cation không cở diển có sự tham gia của liên kết π hay σ như là chất trung gian trong nhiều phản ứng.

1- Nhóm kề $C=C$: Sự tham gia của nhơm kề $\mathrm{C}=\mathrm{C}$ dược xác nhận trên NMR của tính ổn định tương đối của cation norbornađienyl (16) cho thấy, hai liên kết đôi ở vị trí 2 và 3 và giữa vị trí 5 và 6 không tương đương nhau, nghĩa là có tương tác của một liên kết đôi với diện tích dương ở C_{7}.

(14)

(15)

(16)

Cũng như khi axeton phân dẫn xuất tosylat của (14) (với $\mathrm{X}=\mathrm{OTs}$) nhanh hơn dā̄n xuất (15) đến 10^{11} lẩn và bảo toàn cấu hình. Ở (16) liên kết đới có tính hình học thích hợp cho sự tấn công sau của nhóm đi ra thể hiện được hiệu ứng anchime.

Cũng như axeton phân hợp chất β-(syn-7-norbornyl)etyl brosylat (17) ở $25^{\circ} \mathrm{C}$, axeton phân nhanh hơn hợp chất no tương ứng (18) đến 140.000 lần.

Cũng cần thấy rằng, hiệu ứng nhóm kề có thể mất đi hay triệt tiêu nếu có nucleophin bên ngoài có tác dụng mạnh hơn nhóm kề trong sự tấn công vào trung tâm cacbon hay là nhóm
đi ra đủ mạnh. Ở đây có liên quan tới nhu câu electron tăng, Gasiman cho rằng, nhóm đi ra tham gia có thể bị triệt tiêu nếu tính ởn định của cacbocation tăng. Chả̉ng hạn, khi có nhóm p-anisyl ở vị trí 7 của (14) và (15) có ành hường mạnh đến nhóm đi ra với tớc đọ khác nhau.

(17)

(18)

Khi axeton phân (19) ở $85^{\circ} \mathrm{C}$ nhanh hơn (20) chỉ có 2,5 lấn. Cả hai (19) và đờng phân (21) đểu cho cùng một hôn hợp sàn phẩm nhưng khơng có tính chọn lọc lập thể như ở (14).

(19)

(20)

(21)

$$
\mathrm{Ar}^{\prime}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}
$$

$$
\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}
$$

Sự khác nhau giữa (19) và (14) là ở (19) có điện tích dương ở vị trí 7 trong trạng thái chuyển được ổn định lớn bằng nhơm p-anisyl. Tính ổn định của cation bà̀ng nhóm p-anisyl lớn hơn nhớm kề $\mathrm{C}=\mathrm{C}$ nên không có sự tham gia của $\mathrm{C}=\mathrm{C}$. Nếu dùng phenyl thay cho p-anisyl thì không đủ để ngăn cản hoàn toàn sự tham gia của $\mathrm{C}=\mathrm{C}$ mà chỉ giàm đi. Điều đó cho phếp đưa ra két luận rầng nhớm kể thể hiện hiệu úng anchime khi có dủ nhu câu electron cho nó.

Sự tham gia của nhóm kể phụ thuộc vào mạt độ electron. Với nhóm hút electron mạnh như CF_{3} dính với liên kế đôi như ở (22) sự thuỷ phân chậm hơn một giá trị 10^{6}.

Mos $=\mathrm{CH}_{3} \mathrm{O}_{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{2}-$
(22)

Tốc độ tương đối

$$
\begin{array}{ll}
\hline \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} & 1,4 \cdot 10^{12} \\
\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CF}_{3} & 1,5 \cdot 10^{6} \\
\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CF}_{3} & 1
\end{array}
$$

Nếu có hai nhơm CF_{3} giảm mật độ electron, giá trị thuỷ phân chạ̣m hơn 17 lần đới với hợp chất no tương ứng, hâu nhưu làm má̛t đi hiệu ứng nhơm kề của $\mathrm{C}=\mathrm{C}$.

2- Nhóm kề xyclopropyl: Tính chất của vòng xyclopropan giơng nối đối nên có thế tham gia như nhơm kế:

$\mathrm{Ar}=p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$
(23)

(24)

(25)

Thuỷ phân endo-anti-trixyclo-[3.2.1.0 ${ }^{2.4}$]ctan- 8 -yl p-nitrobenzoat (23) nhanh hơn p-nitrobenzoat của $(15-\mathrm{OH})$ đến 10^{14} lân chứng tò vòng xyclopropan có hiệu ứng mạnh hơn nôi đôi nhưng hợp chất (25) chỉ nhanh hơn (15-OBs) có 5 lần, còn (24) thì chậm hơn ($15-\mathrm{OBs}$) 3 lần. Điểu đó cho thấy vòng xyclypropan tham gia hiệu ứng anchime do tương tác của obitan p của cation với liên kết vòng, tương tác này mạnh nêu obitan p và vòng song song với nhau.

3- Nhóm kể vòng thơm: Các vòng thơm ở vị trí β có chức năng là nhóm kề. Khi dung môi phân L-threo-3-phenyl-2-butyl tosylat (26) trong axit axetic thu dược sản phẩm axetat với 96% threo và 4% erythro. Cả hai dông phân (+) và (-) threo (27), (28) có lượng nhu nhau nhưng trong axit fomic thì dồng phân erythro thấp hơn. Phản ứng bảo tờn cấu hình vì phenyl hoạt động như nhớm kể. Nếu nhóm aryl β thúc dảy sự ra đi của nhơm di ra, tớc đọ phản ưng tăng, nhựng nói chung không cao.

Khi nghiên cứu tốc độ dung môi phân của hệ 2-aryletyl, phàn ứng có thể xảy ra theo hai cách:

Cách a nhóm phenyl như nhóm kề thúc đả̉y nhớm đi ra tới ion cẩu gọi là ion phenoni rồi quay trở về bằng dung môi SOH nên có sự bảo toàn cấu hình (hay chuyển vị nếu bị tấn công từ phía khác). Còn cách khác b là sự tấn công của SOH theo $S_{\mathrm{N}} 2$ vào nhóm đi ra và phản ứng ở đây là thế với nghịch đảo cấu hình và không có chuyển vị.

Nhóm đi ra định chô ở cacbon bậc nhất và hai nên hai cách đều độc lập nhau, nhưng khi có cacbon bậc ba, trong trưòng hợp $S_{\mathrm{N}} I$ tạo cation mạch hở $\mathrm{ArCH}_{2} \mathrm{CR}_{2}{ }^{+}$là chất trung gian thì theo cách khác với k_{c} mà không theo $k_{a}, k_{\mathrm{b}} \ldots$. Cách k_{a} và k_{b} phụ thuợc vào dung mói và nhóm kề aryl. Như khi Cl là nhơm kề, tỷ lệ $k_{\mathrm{a}} / k_{\mathrm{b}}$ cao nhất đói với dung mối có tính nucleophin kém và cạnh tranh rất kém với nhóm aryl. Đơi với dung môi thường, tỷ lệ $k_{\mathrm{a}} / k_{\mathrm{b}}$ tăng theo thứ tự: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCOOH}<\mathrm{CF}_{3} \mathrm{COOH}$. Đã tìm tháy độ phần trām bảo toàn cấu hình khi dung môi phân 1-phenyl-2-propyl tosylat ở $80^{\circ} \mathrm{C}$ trong $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ là $7 \%, \mathrm{CH}_{3} \mathrm{COOH} 35 \%, \mathrm{HCOOH} 85 \%$, có nghīa là k_{b} quyết định trong $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (phenyl tham
gia nhỏ), k_{a} quyết dịnh trong HCOOH . Axit trifloaxetic có tính nucleophin rất kém nên theo k_{a} và cho 100% bảo toàn cấu hình. Tớc dọ dung môi phân của $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}$ ở $75^{\circ} \mathrm{C}$ trong $\mathrm{CF}_{3} \mathrm{COOH}$ xảy ra 3040 lần nhanh hơn $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OTs}$.

Khả năng tham gia của nhóm kề nhân phenyl phụ thuộc vào cấu trúc nhoóm kể, nhóm thế hút electron giảm hiệu ứng kè̀, cho electron tăng hiệu ứng kế như nhơm p-nitrophenyl trong một số dung môi như $\mathrm{CH}_{3} \mathrm{COOH}$ thực tế khong tham gia nhóm kè̀, p-metoxyphenyl hiệu ứng kè mạnh. Khi axeton phân $\mathrm{ZC}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}$ ở $90^{\circ} \mathrm{C}$ cho kết quả phụ thuộc nhóm thê.

Bảng 5.1. Tỷ lệ $k_{\mathrm{a}} / k_{\mathrm{b}} \mathrm{khi}$ axeton phån $\mathrm{ZC}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OT}_{5}$

Z	$k_{\mathrm{a}} / k_{\mathrm{b}}$
$\mathrm{CH}_{3} \mathrm{O}$	30
CH_{3}	11
H	1,3
Cl	0,3

Bảng 5.2. Sản phẩm \% hình thành theo k_{a} khi dùng môi phân $p-\mathrm{ZC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OTs}$

Z	Dung mo̊i	\% sản phẩm theo k_{a}
H	$\mathrm{CH}_{3} \mathrm{COOH}$	$35 \div 38$
H	HCOOH	$72 \div 79$
$\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{COOH}$	$91 \div 93$
$\mathrm{CH}_{3} \mathrm{O}$	HCOOH	99

Ion phenoni được nghiên cứu bằng phở ${ }^{1} \mathrm{HNMR}$ và ${ }^{13} \mathrm{CNMR}$ cho thấy có cấu trúc của vòng ba cạnh xyclopropan bình thường, chỉ có cợng hưởng ở trong vòng 6 cạnh và không có đặc tính thơm như là chất trung gian trong phản ứng thế nhân thơm:

4- Nhóm kề là liên kết đơn cacbon-cacbon

Liên kết đơn cacbon-cacbon có vai trò nhớm kề trong những hệ, thường là hệ vòng:
a-Hê 2 -norbornyl. Khi dung môi phân trong axit axetic của exo-2-norbornyl brosylat quang hoạt (29), Winsstein tìm thấy hỗn hợp raxemic của hai exo axetat mà không cho sản phấm endo:

Đồng phân exo dung môi phan 350 lần nhanh hơn đồng phân enđo, và thường tìm tháy trong hệ [2.2.1]. Như vậy, dung môi phân một đồng phân exo cho hōn hợp raxemic đồng phan exo và tỷ lệ tớc độ exo / endo cao, cho thấy liên kết 1,6 tham gia vào sự đi ra của nhóm đi ra và tạo cation không cở điển. Điều này cũng hợp lý cho đồng phân enđo (30) không có
tham gia của 1,6 vì không có vị trí thích hợp cho tấn công sau nên tớc dộ dung môi phân tương tự như tốc độ bình thường. Tó́c độ nhanh hơn của (29) do có hiệu ứng anchime. Hoá học lập thể cũng giải thích được bằng chất trung gian (31) có hai vị trí 1 và 2 tương đương nhau và tấn công nucleophin dể như nhau và chỉ vể phía exo :

(31)

Axeton phân đông phân enđo (30) cũng cho ưu tiên exo axetat (32), (33) như trên nhưng trong trường hợp này Winstein cho rằng, đầu tiên hình thành cation cổ diển (34) rồi chuyển thành cation (31) bền hơn. Dung môi phân (30) không cho sản phám raxemic mà chứa một lượng sản phẩm (33) nhiều hơn (32), tương ứng với nghịch đảo từ 3 đến 13% (phụ thuợc vào dung môi) do (34) hình thành chuyển thành sản phẩm (32) trước khi hình thành tổ hợp (31).

Từ kết quả đó, Brown cho rằng, dung môi phân (29) không có sự tham gia của liên kểt 1,6 mà cho cation cở điển (34) với cân bà̀ng nhanh với cation (35):

Theo Brown, trong khi chuyển từ (34) tới (35) vẩn có tồn tại (3I) nén cation (31) chỉ là trạng thái chuyền không phải chất trung gian. Về hoá học lập thể, Brown giải thích bằng sự tấn công exo, còn từ phía endo có khó khản không gian, là tính chất chung của hệ 2-norbornyl không chỉ khi có tạo cation hay không tạo cation. Sự tấn công ưu tiên exo ở hệ norbornyl cũng có trong nhiều phản ứng. Sự raxemic hoá có khi (34) và (35) tồn tại với lượng bằng nhau và cùng tương đương nhau vể tấn công exo cho (32) và (33). Brown giải thích tỷ lệ tốc độ exolendo cao là do, nếu tốc dọ exo bình thường thì tốc độ endo thấp bất thường, nếu tốc độ enđơo bình thường thì tốc độ exo cao bất thường vì khó khãn lập thể để phân cắt nhóm đi ra theo hướng đó. Song hiện nay da số nhà hoá học chấp nhận có sự tham gia của liên kết 1,6 và (31) là chất trung gian.

Cấu trúc của cation 2-norbornyl đã được nghiên cứu bà̀ng phổ ${ }^{13} \mathrm{CNMR}$ ở nhiệt độ thấp, phổ electron tia X cho thấy có sự tồn tại của cation không cổ diển. Như nghiên cứu hệ
nortrixyclan (36) cho thấy cấu trúc không cở diển (37) hay (38) có tính dối xứng hơn đểu có diện tích dương tập trung ở C_{1} và C_{2}, rất nhỏ ở C_{6} cho thấy cation 2 -norbornyl bền hơn cation không có câuu là $6 \div 10 \mathrm{kcal} / \mathrm{mol}$ hay $25 \div 40 \mathrm{~kJ} / \mathrm{mol}$ mà tính toán cho thấy cation không cổ điển có năng lượng cực tiểu hơn.

Nortrixyclan
(36)

(38)

(39)

Nghiên cứu cũng cho thấy, cation bạ̣c ba 2 -metyl và 2 -etylnorbornyl kém giải toả, còn 2-phenylnorbornyl (39) thực tế là cở diển, cũng nhu cation 2 -metoxy và 2 -clonorbornyl, có nhớm metoxy và clo cūng làm ởn định diẹn tích dương, ${ }^{13} \mathrm{CNMR}$ tìm thấy các nhóm hút electron trên vòng benzen của 2-phenylnorbornyl làm cho ion kém cổ diển hơn, các nhóm cho electron làm tăng bàn chất cổ diển của cation.

b-Hệ xyclopropylmetyl

Khi dung môi phân hệ xyclopropylmetyl không chỉ thu đươc sản phẩm của xyclopropylmetyl không chuyển vị mà còn cà sản phả̉m xyclobutyl và hợp chất homoallylic với tớc dộ cao bất thường:

và nếu dự, môi phân chất ban dầu là hệ xyclobutyl cūng cho sản phảm tương tự.
Người ta cho rằng liên kết $\mathrm{C}-\mathrm{C}$ có tham gia vào quá trình hình thành chất trung gian chung như là ion không cơ điển (11) từ ba chất khác nhau sau:

Khi dung môi phân hệ xyclopropylmetyl dơn giản, tớc dộ cao do có sự tham gia của cả hai liên két σ của vòng. Ion ban đầu hình thành là cation xyclopropylmetyl không chuyển vị là iou ốn định đới xứng có hai liên kết $\sigma 2,3$ và 2,4 dểu làm ổn định điện tích dương. Nhóm xyclopropyl làm ổn định điện tích dương tốt hơn nhóm phenyl và biểu diển bằng cấu trúc (40):

Cation (40) là ion đới xứng và khi vị trí 3 hay 4 có nhóm thế metyl làm tăng tốc độ dung môi phân của xyclopropylcacbinyl-3,5-đinitrobenzoat với 10 lần nhanh hơn cho một nhóm metyl. Nếu chỉ liên kết σ làm ởn định cation thì nhơm metyl ở vị trí 3 cũng làm tãng tớc độ, nhóm metyl thứ hai ở vị trí 3 còn tảng nhiều hơn nhưng nhóm metyl thứ hai ở vị trí 4 có ảnh hưởng nhỏ.

Tính hình học bền nhất của cation xyclopropylmetyl là sự tham gia của obitan trống với các liên kết σ (xem phần cacbocation) mà khi không có tính hình học này thì phản ứng chậm.

Cation hình thành có khả năng chuyển vị thành cation xyclopropylmetyl khác có tính đạc thù lập thể qua chất trung gian: cation trung gian xyclobutyl không phả̉ng hay trạng thái chuyển. Các sản phẩm xyclobutyl và homoallylic hình thành từ cation xyclopropylmetyl cũng đặc thù lập thể.

Các sản phẩm hình thành tảng lên do sự tấn công trực tiếp của nucleophin với ion (40) hay với cation xyclobutyl trung gian.

Tốc độ dung môi phân chất ban đầu xyclobutyl bạc hai gây ra bởi sự phân cắt trực tiếp liên kết dể tạo thành ion trung gian (40), nên thực tế thu được cùng một hôn hợp sản phẩm khi dung môi phân chất ban đầu là xyclobutyl và xyclopropylmetyl, nhưng chưa chứng minh được sự tạo thành cation xyclobutyl là chất trung gian trong hệ xyclobutyl bậc hai, trừ cation bậc ba là chất trung gian khi dung môi phân.

Cation xyclopropylmetyl không thế được nghiên cứu trong dung dịch supeaxit ở nhiệt độ thấp bằng ${ }^{13} \mathrm{CNMR}$ cho thấy có sự tồn tại cation xyclopropylmetyl trong cân bằng với ion bixyclobutoni ở trên. Sự tính toán obitan phân tử cūng tìm thấy hai tiểu phân này có nãng lượng cực tiểu và cả hai cùng có năng lượng gần như nhau.
c- Nhóm kề metyl
Nhiều chứng minh xác nhận hiệu ứng anchime của liên kết $\mathrm{C}-\mathrm{C}$ trong các hợp chất mạch hở, chẳng hạn như neopentyl tosylat:

Hệ neopentyl chịu chuyển vị hoàn toàn, liên quan tới hai vấn đề: sự đi ra của nhóm đi ra để tạo thành liên kết $\mathrm{CH}_{3}-\mathrm{C}$ là đồng bộ hay không và ion cầu (41) là chất trung gian hay trạng thái chuyển. Bằng hiệu ứng đồng vị cho thấy nhóm metyl tham gia trong hệ neopentyl nhưng không làm tăng lớn tớc độ và ion (41) là chất trung gian vì đã tìm thấy có $10 \div 15 \%$ xyclopropan trong phản ứng.

Khi nghiên cứu ion 2,3,3-trimetyl-2-butyl trong dung dịch supeaxit ở nhiệt độ thấp bằng ${ }^{1} \mathrm{HNMR}$ và ${ }^{13} \mathrm{CNMR}$, phổ Raman tìm thấy cạ̣p ion chuyển hoá nhanh, còn ion cầu là trạng thái chuyển không phải chất trung gian, song theo phổ tia X quang electron (ESCA) tìm thấy 2-butyl cation có cầu metyl (42):

d-Nhóm kề hyatro

Vấn đề nhơm kề hyđro, cũng như nhóm metyl trên, là hyđro có tham gia vào sự đi ra của nhóm đi ra và ion cầu là chất trung gian hay trạng thái chuyển:

(43)

Trên cơ sở dung môi phan sec-butyl tosylat đeutri hoá (44) trong axit trifloaxetic thu dược hồn hợp đương lượng (45), (46) sau:

Nếu hyđro là nhóm kề không tham gia thì chỉ thu được sản phẩm (45), nếu hyđro có dời chuyển chỉ ở cation mạch hở thì có cân bằng của bốn cation:

nên khồng chỉ có sản phẩm (45) và (46) mà cả (47) và (48):

(47)

(48)

(49)

Kết quả có thể dể so sánh với cation cầu (49) với sự tấn công của dung mơi vào vị trí 2 và 3. Sự nô lực tởng hợp ra ion cấu (43) trên ổn định trong dung dịch supeaxit ở nhiệt đọ thấp chưa đạt được.

5.2.1.4. Nhūng nhân tó ảnh huởng tớ phản úrng $S_{N} I$

I- Cấu trúc chất ban đầu
a-Hiệu úng electron
Tớ: độ phản ứng phụ thuộc vào đọ bền của cacbocation. Cacbocation càng bền, tốc độ phản ứng càng cao. Những nhóm thế có hiệu ứng $+I,+C$ ở vị trí α đói với trung tâm phản ưng làm ổn định cacbocation, làm tăng tốc độ phản ứng:

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{Br} \\
& \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CBr}>\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHBr}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{Br}
\end{aligned}
$$

Khi nghiên cứu dãy phản ứng $p-\mathrm{ZC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{X}$ có hiệu ứng lạ̣p thể nhỏ của Z cho thấy ảnh hưởng của hiệu ứng electron của Z. Khi Z là nhóm thế hút electron làm giảm tốc độ phản ứng, nhóm thế cho electron làm tăng phản ứng, các nhóm cho electron làm giảm năng lượng của trạng thái chuyển (cūng như cacbocation) bởi có sự giải toả diện tích dương như trường hợp sau:

còn nhóm hút electron làm tãng điẹn tích dương, làm mất ôn định cacbocation.
Phương trình Hammett với σ^{+}thay cho σ phù hợp với tớc độ trong nhiều phản ứng, giá trị ρ thường bằng -4 , có nghĩa là điện tích dương được tạo thành trong trạng thái chuyển.

Các dẩn xuất allyl hay benzyl phản ứng theo $S_{\mathrm{N}} /$ nhanh hơn ngay cả dân xuất bậc ba, được giải thích bằng tạo cacbocation bền khi dược ổn định bằng liên kết đôi với sự giải toả cợng hưởng như sau:

Các dẩn xuát xyclopropyl bền với sự tấn công của nucleophin, chẳng hạn xyclopropyltosylat dung môi phan 10^{6} lân nhanh hơn xyclobutyltosylat trong axit axetic ở $60^{\circ} \mathrm{C}$. Phản ưng xảy ra theo cơ chế mở vòng (trừ một vài trường hợp), đặc biẹt khi có nhóm thé ankoxy hay aryl ở vị trí α :

Song có nhiểu chứng minh phản ưng này đồng bộ với nhóm đi ra (như xyclobutyl ở trên) và không có sự tham gia của liên kết 2,3 trong vòng xyclopropan thì tớc đọ̣ luôn luôn chạm có thể giảm một bạc khoảng 10^{12} và phản ứng mở vòng lien quan tới hoá học lạ̣p thể và sức căng l.

Hoạt tính của các dān xuất đầu cả̀u theo $S_{\mathrm{N}} l$ chỉ xảy ra vợi các vòng lớn, chả̉ng hạn với các chất sau:

(50)

(51)
với (50) rát chậm có tớc độ tương ứng là $k=4,10^{-17} . \mathrm{s}^{-1}$ và (51) rất nhanh có $3.10^{6} . \mathrm{s}^{-1}$ khác nhau 22 bậ. Sự tính toán cơ học phan tử tìm thấy $S_{\mathrm{N}} l$ ở cacbon đâu cầu xác dịnh bầng sự thay dổi sức căng giưa chất ban dầu và chất trung gian cacbocation.
b- Ảnh hương của nhóm đi ra Z
Nhóm đi ra thành tiểu phân bền hơn là những nhóm đi ra có tính bazoo yếu nhất. Chẳng hạn, iơua là nhóm đi ra tớt nhất, còn florua là kém nhất nên ZH luôn luôn là bazơ yếu hơn Z^{-}. Sự thế nucleophin của chất ban đầu RXH^{+}luôn luôn dễ hơn RX , chẳng hạn ROH^{+}dễ hơn ROH . Phản ứng mà nhóm di ra cần phải proton hoá gọi là $S_{\mathrm{N}} l \mathrm{CA}$ (cA có nghĩa là dạng axit liên hợp - conjugate acid) cũng nhưở $S_{\mathrm{N}} 2$ có $S_{\mathrm{N}} 2 \mathrm{cA}$. Trong một sớ trường hợp nhóm đi ra tốt như HO, NH_{2} không cần axit liên hợp dưới điều kiện axit cần cho proton hoá nhóm đi ra. Các hợp chất vòng dē phân cắt do sức căng vòng, như epoxi, aziridin, episunfua, như vòng ba cạnh của oxy, nitơ và lưu huỳnh có thể phân cắt dể hơn và nhát là khi dā proton hoá thì càng dễ:

Phản ứng $S_{\mathrm{N}} I$ khong cần có tác nhân electrophin mạnh nhưng lại cẩn nhóm đi ra mạnh.

Các nhóm đi ra tớt thường dùng là tosylat, brosylat, nosylat, mesylat:

Một số nhóm khác dễ đi ra thường dùng làm tác nhân ankyl hoá như ion oxoni $\mathrm{ROR}_{2}{ }^{+}$, ankyl clorat ROClO_{3}, amoniankansunfonat (besylat) $\mathrm{ROSO}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}$, ankyl flosunfonat $\mathrm{ROSO}_{2} \mathrm{~F}$, triflat, nonaflat, tresylat (tresylat kém hoạt tính hơn triflat đến 400 lần nhưng nhanh hơn tosylat đến 100 lần):

$$
\mathrm{R}-\mathrm{OSO}_{2} \mathrm{CF}_{3} \quad \mathrm{R}-\mathrm{OSO}_{2} \mathrm{C}_{4} \mathrm{~F}_{9} \quad \mathrm{R}-\mathrm{OSO}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}
$$

ROTf
Triflometansunfonat
Nonaflobutansunfonat Nonaflat
2,2,2-Trifloetansunfonat Tresylat

Những nhóm khó đi ra như $\mathrm{NH}_{2}, \mathrm{NHR}, \mathrm{NR}_{2}$ có thể chuyển thành ditosylat RNTs N_{2} là nhóm đi ra tớt hoạac chuyến thành hợp chất pyriđinium bằng tác dụng RNH_{2} với ion pyrilium Ą nhóm dể đi ra (phương pháp Katritzky):

Nhóm NR_{2}, dẽ̃ di ra trong phản ứng Mannich, nhóm N_{2} trong $\mathrm{RN}_{2}{ }^{+}$là nhóm dễ đi ra nhất mà theo $S_{\mathrm{N}} I$ hay $S_{\mathrm{N}} 2$ còn nhiều chứng minh khác nhau.

Cũng có những phản ứng $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$ có giai đoạn đầu là tách proton bằng bazơ còn giai đoạn sau là $S_{\mathrm{N}} 1$ thường (hay $S_{\mathrm{N}} 2$ thường) như trong các phản ứng cho chất trung gian cacben (có khi gọi là $S_{\mathrm{N}} 1 c b$ hay $S_{\mathrm{N}} 2 c b$):

Tớc độ phản ứng $S_{\mathrm{N}} l$ phụ thuộc vào bản chất nhóm đi ra Z , nếu nhóm đi ra Z thành dạng Z^{-}càng ổn định thì tớc độ phản ứng càng lớn. Các nhóm thế hút electron trong nhóm đi ra làm ổn định điện tích âm ở anion, làm tăng phản ứng. Chẳng hạn, tốc độ thuỷ phân của:

$$
\begin{aligned}
& \frac{\mathrm{C}_{6} \mathrm{H}_{5}}{m-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}-\mathrm{OCOC}_{6} \mathrm{H}_{4}-\mathrm{Y} \text { trong } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text { ở } 50^{\circ} \mathrm{C} \text { cho thấy: }} \\
& \begin{array}{rrcccc}
\mathrm{Y} & = & p-\mathrm{CH}_{3} \mathrm{O} & \mathrm{H} & m-\mathrm{CH}_{3} \mathrm{O} & p-\mathrm{Br} \\
k \cdot 10^{4} \cdot \mathrm{~s}^{-1}: & = & 0,086 & 0,211 & 0,240 & 0,914
\end{array}
\end{aligned}
$$

Sự tảng tính ởn định của nhớm đi ra có thể đạt được bằng cách dùng xúc tác. Chẳng hạn, phản ứng của dẫn xuất halogen $R X$ tăng khi có xúc tác Ag^{+}có khả nāng tạo phức với halogen:

Ancol không tham gia trực tiếp vào phản ứng đơn phân tử vì nhớm đi ra kém ổn định và nảng lượng phân ly của C -O lớn, song khi proton hoá có thẻ thực hiện được phản ứng vì nhóm đi ra là phân tử trung hoà và lièn kết phân cực hơn:

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH} \stackrel{\mathrm{H}^{+}}{\rightleftharpoons}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+} \mathrm{OH}_{2} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

Tương tự với ete:

$$
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\mathrm{H}^{+}}{\rightleftharpoons} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}_{\mathrm{H}}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}
$$

Ảnh hưởng của nhóm đi ra trong phản ứng $S_{\mathrm{N}} I$ liên quan dến năng lượng ion hoá:

$$
E_{\mathrm{i}}=E_{\mathrm{R}-\mathrm{Z}}+I_{\mathrm{R}}-A_{\mathrm{Z}}
$$

E_{i} của RZ thay đởi như năng lượng ion hoá của HZ vì thé tính axit của HZ càng mạnh, RZ càng dể ion hoá và phàn ứng $S_{\mathrm{N}} I$ càng nhanh.

Khả nảng phàn ứng: $\mathrm{ROH}<\mathrm{CH}_{3} \mathrm{COOR}<\mathrm{CF}_{3} \mathrm{COOR}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{R}$
Tính axit: $\quad \mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CF}_{3} \mathrm{COOH}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$
Trong dāy halogen: $\mathrm{C}-\mathrm{F}<\mathrm{C}-\mathrm{Cl}<\mathrm{C}-\mathrm{Br}<\mathrm{C}-\mathrm{I}$

$$
\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}
$$

$$
\begin{array}{lrccc}
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{X} & \mathrm{X} & = & \mathrm{Cl} & \mathrm{Br} \\
& k \cdot 10^{5}, \mathrm{~s}^{-1} & = & 0,854 & 37,2
\end{array}
$$

Vai trò đạ̣c biệt quan trọng làm ổn định nhơm di ra là tính solvat hoá sē đề cập ở sau.
Khả năng di ra của Z chịu ảnh hưởng của nhóm kề, gọi là hiệu ứng anchime, làm tảng tớc dộ phân ly của nhóm đi ra. Các nguyên tử có cạ̣p electron n ở cách nhóm đi ra 2 cacbon có khả nãng làm ổn định ion tạo thành bằng cách tạo nên hợp chất vòng, cực đại ở vòng 5, 6 cạnh. Giai doạn xác định của phản ứng này là sự tạo thành cation vòng. Sự tấn công của giai doạn sau của Nu cùng một phía với nhóm đi ra ở giai đoạn 1 nên sản phảm và chất ban đầu có cùng cấu hình:

Tác dụng anchime làm ổn dịnh cation lớn nên ngay ở dā̃n xuất bạc nhất cūng có những hiệu ứng này:

Cacbocation tạo thành càng kém ổn định thì tác dụng anchime đóng góp vào sự ởn định đó càng lớn, do đó tác dụng anchime trong dā̃n xuất bậc nhất lớn hơn trong dẫn xuất bậc hai, còn tác dụng anchime trong dẫn xuất bậc ba không thực hiện được do khó khăn lập thẻ. Tuy vậy cũng có trường hợp, bậc ba cūng có hiệu ứng anchime như đã̉n xuất sau: phản ưng (53) nhanh hơn phản ứng (52) đến 70 lân:

Tính ốn định của cation bạc ba tång, vai trò anchime giảm:
a) $\quad \mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ -
b) $\quad \mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$
$\begin{array}{rll}\mathrm{X} & =\mathrm{F} & \mathrm{OCH}_{3} \\ k_{\mathrm{b}} / k_{\mathrm{a}} & =384 & 43\end{array}$
$\begin{array}{ll}\mathrm{H} & \mathrm{CH}_{3} \\ 39 & 25\end{array}$

Hiệu ứng anchime cũng xuất hiện ở các nhân aryl làm ổn định cation bà̀ng cách tạo nên ion ởn định không cở điển, làm thay đởi hướng của phản ứng ở giai đoạn sau:

Ở đay obitan trơng không liên kết tạo thành khi phân cắt liên kết $\mathrm{C}-\mathrm{Z}$ có điện tích dương, có thể tương tác với obitan bị chiếm của các nguyên tử khác tạo nên cacbocation
không cở điển nhiểu trung tâm, trong dơ điện tích dương được giải toả. Sự giải toà này thuận lợi về năng lượng. Chảng hạn có sự tạo thành cation khơng cổ điển khi phản ứng $S_{\mathrm{N}} I$:

Điển hình là phàn ứng thuỷ phân neopentyltosylat thu được 2-metyl-2-butanol mà không phải ancol neopentylic:

ở đây không tạo ra ion neopentyl, sự chuyển vị không xảy ra sau khi ion hoá mà đông thời với ion hoá vì năng lượng hoạt hoá cho sự ion hoá kèm theo chuyển vị thấp hơn sự tạo thành cation đấu với sự chuyển vị tiếp theo sau đó. Sự giảm năng luợng là do sự phân bố diện tích dương giữa hai cacbon.

Phản ứng có sự d̛̛i chuyển đồng bọ với ion hoá và tớc đọ̣ giàm là do tác dụng anchime.

c- Ảnh hương của tác nhân nucleophin

Trong phàn ứng thé $S_{\mathrm{N}} l$, tớc độ không phụ thuộc vào nống độ và bản chát Nu vì không nằm trong phương trình tớc đọ, nhưng sản phả̉m hình thành lại phụ thuộc vào tương tác của cacbocation với Nu. Theo nguyên tắc, cacbocation có thể tương tác với bất kỳ Nu nào có trong dung dịch phản ứng tuy có sự chọn lọc và cạnh tranh. Chẳng hạn khi thuỷ phân tertbutyl bromua theo $S_{\mathrm{N}} I$ bằng $\mathrm{H}_{2} \mathrm{O}$ và HO^{-}thì tốc độ không đổi, khi dung môi phân bầng metanol cho ete nhưng tớc đọ không dơi, nếu thêm Br^{-}cho thêm sản phẩm bromua nhưng tốc đọ không đổi.

Tương tác cùa C^{+}với Nu là tương tác axit - baza, do đó tương tác phụ thuộc vào tính bazơ của Nu. Tớc độ quá trình tăng với tính bazơ của Nu, tăng với mạt độ electron định chồ trên Nu , nghĩa là có điện tích âm cực đại của Nu , đởng thời cũng phụ thuộc vào nống độ của

Nu có trong dung dịch. Tương tác của Nu với trung tâm phản ứng là thành phần tĩnh diện theo phương trình:

$$
\Delta E=\left(q_{\mathrm{C}^{+} \cdot} q_{\mathrm{Nu}}\right) / l_{\mathrm{C}-\mathrm{Nu}}
$$

do đó tớc độ quá trình tăng khi tăng tính bazơ của Nu .
Nếu điện tích âm ở Nu phân bố ở vài nguyên tử, như ion $\mathrm{CN}^{-}, \mathrm{NO}_{2}{ }^{-} \ldots$

phản ứng ưu tiên ở nguyên tử có độ âm điện cao hơn vì có tính bazơ cao hơn.
Trong trường hợp có nhiều Nu trong phản ứng, lượng sản phẩm tương đối phụ thuộc vào tỷ lệ tớc đọ giai doạn tương tác của Nu với cacbocation, nghĩa là phụ thuộc vào nâng lượng tương đối của trạng thái chuyển $\mathrm{R}^{\delta+} \ldots \mathrm{Nu}^{\delta-}$ trên tọa độ phản ứng. Trạng thái chuyển sẽ chuyển về phía sản phẩm trên trục tọa độ phản ứng, nghĩa là tãng bạc liên kết giữa cacbocation và Nu , nếu tính ốn định của cacbocation tăng (tiên đề Hammond), nghĩa là giảm tính phát nhiệt của phản ứng giữa cacbocation và Nu. Điểu này gay ra tính chọn lựa của cacbocation khi tương tác với Nu . Nếu cacbocation kém ổn định hơn (nghĩa là có nāng lượng cao hơn thì khả nāng phản ứng cao hơn) tương tác với Nu mạnh hay yếu hầu như tương dương nhau, cation ổn định hơn tương tác với Nu mạnh lớn hơn với Nu yếu. Chảng hạn, so sánh các phản ứng sau:

$$
\begin{array}{rlrr}
\mathrm{R} & =\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+} & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}^{+} & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}^{+} \\
k_{\mathrm{N}} / k_{\mathrm{HOH}} & =34,9 & 1,2.10^{2} & 2,8.10^{5}
\end{array}
$$

Tính ổn định của cacbocation tăng làm tăng tớc độ phản ứng $S_{\mathrm{N}} 1$, dồng thời làm tẵng tính chọn lọc của phản ứng. Hai quá trình này có sự phụ thuộc tuyến tính.

d - Ảnh hưởng lập thể

Trong cacbocation, nguyên tử trung tâm là lai hoá $s p^{2}$, còn ở chất ban đầu là $s p^{3}$, nếu tãng thể tích. của nhớm thể ở nguyên tử trung tâm, tăng lực đẩy lập thể và tãng năng lượng của hệ, trong đó trạng thái đầu tãng lớn hơn là cacbocation cho nên trạng thái chuyển đi gần về phía cacbocation hơn. Như vậy, tảng thể tích nhóm thé làm mất ổn dịnh chất ban đầu nhiều hơn trạng thái chuyển, do đó tóc đọ phản ứng tăng.

Chả̉ng hạn, phản ứng thuỷ phân este p-nitrobenzoat: $\mathrm{R}-\mathrm{OCOC}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}$

Tớc độ tảng khi tăng thể tích nhơm thé ơ phản ứng $S_{N} l$ ở hợp chất mạch thẳng nhỏ,
nhưng biểu hiện rất lỡn ở trong hợp chất đa vòng cứng. Chẳng hạn, tớc độ axeton phân ở $25^{\circ} \mathrm{C}$ của este (55) chỉ gấp 4 lần của (54), còn của (57) gấp 1790 lần tốc độ của (56), từ (58) tới (59) gấp 225000 lân:

Tương tác lập thể của các gớc có nhóm thế đính với nhóm đi ra ở trạng thái chuyển nhỏ hơn ở chá̛t ban đầu. Khi tăng thể tích của nhớm đi ra và thể tích của gốc hyđrocacbon đính với nhóm đi ra càng lớn, phản ứng càng được xúc tiến mạnh. Chả̉ng hạn, so sánh hai phản ứng:

$$
\begin{aligned}
& \mathrm{CH}_{3}-\mathrm{X}+\mathrm{Cl}^{-} \rightarrow \mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{X}^{-} \\
& \mathrm{X}=\mathrm{Br}, \mathrm{O}-\mathrm{Ts}: k_{\mathrm{OTs}} / k_{\mathrm{Br}}=0,42 \\
& \left(\mathrm{CH}_{3}\right) \mathrm{CX}+\mathrm{Cl}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{X}^{-} \\
& \mathrm{X}=\mathrm{Br}, \mathrm{O}-\mathrm{Ts}: k_{\mathrm{OTs}} / k_{\mathrm{Br}}=1000
\end{aligned}
$$

chứng tỏ rà̀ng sự tăng khả năng phản ứng của tosylat khi chuyển từ gớc bạ̣c 1 tới gớc bậc ba là do ành hưởng lập thể quyết định.

Nếu trong phản ứng $S_{\mathrm{N}} l$, sự tạo thành cacbocation phẳng khó khản thì tốc độ phản ưng giảm, sự phân ly chậm. Trong các hợp chất vòng, cấu hình phẳng của C^{+}làm tăng sức căng lập thể nên cation mất ốn địnn, giảm tớc độ $S_{\mathrm{N}} I$. Khả năng phản ứng của hệ đa vòng có nhóm đi ra ở đầu cầu giảm theo mức độ tảng tính cứng của vòng:

còn hợp chất sau thì hoàn toàn trơ với nucleophin:

Như vậy, khi tăng nhóm thể ở trung tâm phản ứng, phản ứng xảy ra dẽ dàng bởi hai nhân tố electron và lập thể, cho nên tại sao phản ứng chỉ đặc trưng cho dã̃n xuất bậc ba.

Thường gạap những trường hợp sau:
I- Độ phân nhánh ở cacbon α và β
Trong phản ứng $S_{\mathrm{N}} I$, độ nhánh α tảng, tốc độ phản ứng tăng dược giải thích bằng tính ổn dịnh cation bậc $3>2>1$. Thực tế, tốc độ phản ứng không phụ thuộc vào tính ốn định cation mà vào sự khác nhau về năng lượng tự do giữa chất ban đầu và trạng thái chuyễn. Dùng tiên đề Hammond, trạng thái chuyển giớng cation nên nhân tố nào, như độ phân nhánh α, làm giảm năng lương tự do của ion cūng làm giảm năng lượng trạng thái chuyển. Đới với ankyl halogenua quan trọng với $S_{\mathrm{N}} I$ chỉ có dẫn xuất bạ̣c ba, với chấ bậc hai có thể trong dung môi phân cực cao.

Bảng 5.3. Tớc độ tương dới dung môi phân RBr

Chất ban đấu	Trong etanol 60% ơ $55^{\circ} \mathrm{C}$	Trong nước ở $50^{\circ} \mathrm{C}$
$\mathrm{CH}_{3} \mathrm{Br}$	2,08	1,05
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	1,00	1,00
iso $-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	1,78	11,6
tert $\cdot \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$	$2,41.10^{4}$	$1,2.10^{6}$

Từ bảng 5.3 , isopropyl phản ứng gấp hai lẩn etylbromua, còn bậc ba đến 10^{4} lần và tóc độ $S_{\mathrm{N}} l$ tăng khi tāng độ phân cực của đung mồi. Như vậy, tốc độ phản ứng $S_{\mathrm{N}} l$ liên quan tới sức căng B treng sự hình thành cacbocation.

Bảng 5.4. Tóc dộ tương đới của $S_{\mathrm{N}} /$ của ROTs trong etanol $25^{\circ} \mathrm{C}$

Nhóm	Tock dọ tương dơi	Nhom	Tóc do tuơng dofi
$\mathrm{C}_{2} \mathrm{H}_{5}$	0,26	iso $\mathrm{C}_{3} \mathrm{H}_{7}$	0,69
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$	8,6	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	100
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}$	10^{5}	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}$	10^{10}

Độ phân nhánh ở cacbon β ảnh hưởng nhỏ hơn với $S_{\mathrm{N}} l$ trừ độ phân nhánh β có phản ứng chuyển vị nhanh, do đơ isobutyl hay neopentyl là bậc nhất thì đáng lẽ rất chậm theo $S_{\mathrm{N}} J$ nhưng không chậm nhiều so với hợp chất tương ứng.

Dẩn xuất bậc ba xảy ra nhanh theo $S_{\mathrm{N}} l$ nhưng ít giá trị tổng hợp vì có thể có phản ứng tách kèm theo nếu có H_{β}. Một só́ dẫn xuất bậc ba theo cơ chế SET như p- $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}$ cho hiệu suất tốt khi tác dụng với nucleophin.

2- Dọ chua no ớ cacbon α
Hợp chất vinyl, axetylenyl và aryl rất khó thế nucleophin theo $S_{\mathrm{N}} I$ hay cả $S_{\mathrm{N}} 2$. Điều nảy liên quan tới bản chất s của liên kết $\mathrm{C}-\mathrm{Z}$ và khoảng cách liên kết, không do tính axit của liên kết $\mathrm{C}-\mathrm{H}$ vì ở đây nhớm đi ra cùng với cạ̣p electron liên kết.

3- Dộ không no ở cacbon β

Tốc độ $S_{\mathrm{N}} l$ tăng khi có liên kết đối ở vị trí β như loại allylic và benzylic đã nói trên do ổn dịnh cation bà̀ng cợng hưởng.

Nói chung, tốc độ $S_{N} l$ của hợp chất allylic tãng với bất kỳ nhóm thế nào ở vị trí I hay 3 làm ổn dịnh cacbocation bằng cộng hưởng hay siêu liên hợp.

4- Hơp chất thế α

Hợp chât thế α loại $\mathrm{ZCH}_{2} \mathrm{X}$ với $\mathrm{Z}=\mathrm{RO}, \mathrm{RS}, \mathrm{R}_{2} \mathrm{~N}$ cho phản ứng $\mathrm{S}_{\mathrm{N}} 1$ rất nhanh vì ôn định cợng hưởng cacbocation, thường bằng cạ̣p electron không liên kết. Hiệu ứng này quan trọng hơn hiệu ứng I làm giàm tốc đọ.

Khi $\mathrm{Z}=\mathrm{RCO}, \mathrm{HCO}, \mathrm{ROCO}, \mathrm{NH}_{2} \mathrm{CO}, \mathrm{CN}, \mathrm{CF}_{3}$, tốc độ $S_{\mathrm{N}} I$ giảm so với $\mathrm{CH}_{3} \mathrm{X}$ do hiệ̣u ưng hút electron làm mất ốn định cacbocation. Phản ứng ở loại hợp chất này có thể xảy ra nhưng tốc độ $S_{\mathrm{N}} 1$ rá́t chậm, chảng hạn dung môi phân hai hợp chất (60) có nhóm CO chậm hơn chất (61) đến $10^{7,3}$:

tuy nhiên có hiệu ứng cộng hưởng bù cho hiệu ứng hút càm ứng của CO nhưng nhỏ hay có thể bó qua:

Khi $\mathrm{Z}=\mathrm{SOR}$ hay $\mathrm{SO}_{2} \mathrm{R}$ tức là loại α-halogen sunfoxit hay sunfon thì phàn ứng $S_{\mathrm{N}} I$ xảy ra rất chậm do hiệu ứng hût electron.

5-Hợp chất thế β

Loại $\mathrm{ZCH}_{2} \mathrm{CH}_{2} \mathrm{X}$ với bất kỳ nhớm nào kể trên đều làm chậm phản ứng $S_{\mathrm{N}} l$, chậm hơn hợp chất không thế vì không có hiệu ứng cọ̣ng hưởng tuy hiệu ứng cảm ứng nhỏ.

Về mặt hoá học lập thể, hợp chất ban đầu lả không trùng ảnh vật (chiral), nghīa là có trung tâm bất dối xứng, sẽ tạo thành hợp chất trung gian cacbocation achiral có tính đối xứng. Tính hình học của cacbocation này có nảng lượng cực tiểu nếu có sự phân bố phẳng các liên kết đối với nguyên tử cacbon lai hoá $s p^{2}$:

127.0.0.1 downloaded 73193.pdf at Wed Mar 28 14:56:14 ICT 2012

Cation này có mặt phẳng đối xứng nên là achiral. Tốc độ tương tác của cation này với nucleophin không phụ thuộc vào phía nào của mặt phả̉ng xảy ra sự tấn công của Nu. Như vậy hợp chất ban đầu là hoạt động quang học thì sản phẩm thu được của $S_{\mathrm{N}} /$ là sản phả̉m raxemic hoá.

Chẳng hạn từ (+)-3-metyl-3-octanol phản ứng với HBr tạo thành (\pm)-3-brom-3metyloctan:

Tuy vậy, cūng có những phản ứng còn thu được một lượng sản phẩm quay cấu hình so với chắt ban đấu. Chẳng hạn khi thuỷ phân 1-phenyletylclorua thu được hai sản phả̉m với tỷ lệ 51 : 49\%:

Trong phản ứng này, Nu tấn công vào hai phía của mặt phẳng cacbocation khác nhau, có thể giải thích bằng sự chắn của nhóm đi ra (Cl^{-}) ở phía nhóm đi ra, làm giảm khả nāng tấn công vào phía đó của nucleophin hoặc có thể do trạng thái cạ̃p ion như trên.

6-Sư chuyển vị cacbocation

Do độ bền của cacbocation nên trong các phản ứng thế $S_{\mathrm{N}} l$ có sự chuyển vị cacbocation từ bậc thấp sang bậc cao và sản phẩm thu được cũng phụ thuộc vào sự chuyến vị này, chẳng hạn:

Do có chuyển vị cacbocation:

do chuyển vị:

Thường có hai trường hợp chuyển vị:
$\mathrm{R}_{3} \mathrm{CC}^{+} \mathrm{HR}{ }^{\prime} \rightarrow \mathrm{R}_{2} \mathrm{C}^{+} \mathrm{CHRR}^{\prime}$ chuyền vị góc ankyl
$\mathrm{R}_{2} \mathrm{CHC}^{+} \mathrm{HR} \rightarrow \mathrm{R}_{2} \mathrm{C}^{+} \mathrm{CH}_{2} \mathrm{R}^{\prime}$ chuyển vị hydrua

Còn trong trường hợp cacbocation có sự giài toà bằng hiệu ứng liên hợp thu được sản phẩm khác nhau do có sự chuyển vị gọi là chuyển vị allyl:

$$
\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHOHCH}=\mathrm{CH}_{2}
$$

do có chuyển vị:

$$
\left[\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}^{+} \mathrm{CH}=\mathrm{CH}_{2}\right]
$$

Sự chuyển vị này xảy ra của nhóm chuyển vị cùng với cặp electron liên kết nằm song song với obitan trớng cùa nhóm bên cạnh (xem phản ứng thế $S_{\mathrm{N}} I$ của hệ allyl).

7- Ảnh hưởng của dung môi

Trong phàn ưng $S_{\mathrm{N}} l: \mathrm{R}-\mathrm{Z} \rightarrow\left[\left[\mathrm{R}^{\delta+} \ldots . \mathrm{Z}^{\delta-}\right]\right] \rightarrow \mathrm{R}^{+}+\mathrm{Z}^{-}$, trạng thái chuyển phann cực hơn chất ban dâu nên khi tăng dộ phân cực của dung môi, sự solvat hoá trang thái chuyển lớn hơn chất ban đầu, năng lượng trạng thái chuyển giàm mạnh hơn chất ban đầu, nên tâng sự phân ly khi tăng dộ phan cực dung môi, tăng tớc dọ phản ứng.

Tớc đọ của tert-butyliodua thay đởi theo hẹ sơ ε của dung môi:

Dung moi	$:$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
ε	$:$	2,28	4,33	9,18	35	25,2
$k .10^{6}, \mathrm{~s}^{-1}\left(28^{\circ} \mathrm{C}\right)$	$:$	0,275	0,42	0,80	3,0	3,69

vì phức hoạt hoá là một luỡng cực, cho nên có sụ phụ thuộc tuyến tính của $\lg k$ vào tỷ lệ $(\varepsilon-1) / 2(\varepsilon+1)$. Tương quan này phù hợp tớt với dung môi aproton, còn dung mói proton thì xúc tiến phản ứng mạnh hơn vì có thể có solvat diển hình hay dặc biệt do tạo dược liên kết hydro với nhóm đi ra.

Nếu chất ban đầu mang diện tích dương, điện tích dương ở trạng thái chuyển dàn đều hơn chất ban đầu nên dung môi phân cực làm chạ̣m phàn ứng.

Néu chất ban dâu trung hoà, phản ứng thường xảy ra trong dung môi proton như $\mathrm{H}_{2} \mathrm{O}$, ROH , axit cacboxylic và dung mói aproton phan cục cao như dimetylfomamit (DMF), axetonitrrin, axeton, sunfua dioxit, hexametylphotphoramit (HMPA).

Ảnh hưởng của dung môi được đánh giá định lượng (đởi với phản ứng $S_{\mathrm{N}} I$ mà dung môi dảy nhóm đi ra) bằng phương trình tuyến tính năng lượng tự do của Wienstein Grunwald:

$$
\lg \left(k / k_{0}\right)=l . N=m . Y
$$

với N và Y là giả trị đặc trưng cho tính nucleophin và lực ion hoá của dung môi, l và m là đọ́ nhạy của chất ban đẩu với hai tính chất đó của dung môi. Giá trị N có thể xâc định bằng cách chọn chất chuẩn với $l=1$ và dung môi chuẩn với $N=0$, thường dùng chất ban dấu là p-metyltoluensunfonat (tosylat) và dung môi chuấn là etanol - nước 80%.

Đới với phản ứng $S_{\mathrm{N}} l$, thường xem ảnh hưởng solvat hoá điển hình, phở biến là dùng phương trình $\lg \left(k / k_{0}\right)=m . Y$ với Y là khả năng ion hoá của dung môi chỉ phụ thuộc vào môi trường, $Y=0$ với dung dịch etanol - nước $80 \%, m$ dặc trưng cho dộ nhạy của chất ban đâu, với chất chuẩn $=1$ đối với tert-butyl clorua, k_{0} là tớc độ của dung môi chuẩn etanol - nước 80% ở $25^{\circ} \mathrm{C}$. Giá trị Y tăng, tốc độ phản ứng tăng. Giá trị m tăng khi tăng sự phân chia điện tích trong trạng thái chuyển.

Chẳng hạn vài giá trị của Y :

	ε	Y		ε	Y
Nước	78,5	3,49	Metanol 100%	32,6	$-1,09$
Etanol 100%	24,3	$-2,03$	Metanol 50%	-	1,97
Etanol 80%	-	0,00	Axit axetic	6,19	$-1,68$
Etanol 70%	-	0,50	Axit fomic	39	4,5

Sự phụ thuộc tuyến tính giữa độ thẩm diện môi ε và lực ion hoá Y không quan sát được khi dung môi tạo được liên kết hyđ̛o bến với anion.

Độ nhạy m của lực ion hoá của dung môi thay đổi theo sự thay dổi tính phân cực của hệ khi chuyển từ trạng thâi ban đầu tới trạng thái chuyển nên có thể dùng giá trị m để xét mức độ phân chia điện tích của trạng thái chuyển. Giá trị m càng lớn thì độ phân chia điện tích của trạng thái chuyển càng lớn.

Giá trị Y có thể dùng cho hṑn hợp dung môi hay cặp dung môi nhưng so sánh quá rộng không cho định lượng tốt, giá trị Y cho kết quả tốt về khả nảng solvat hoá.
Y do được chỉ bằng khả nảng ion hoá của dung môi và không có bất kỳ một sự tấn công sâu nào của dung môi để giúp cho nhóm đi ra đi ra ở dạng anion. Thực tế có nhiề! chứng minh cho thấy có sự tham gia của nucleophin, nhất là chất bậc ba. Về đo khả nảng ion hoá tớt hơn nên dùng 2 -ađamantan thay cho tert-butyl clorua và đã đưa ra giá trị $Y_{\text {OTs }}$ từ 2 -adamantan tosylat dựa trên 1-và 2-ađamantan tosylat áp dụng chỉ cho tosylat (có sự tham gia của nucleophin và khả nảng ion hoá) và tìm thấy khả năng ion hoá phụ thuộc vào nhóm di ra.

Sau này dựa vào vị trí pic chuyển dịch điện tích trong phổ UV của phức như giữa ion iodua và 1 -metyl hay 1 -etyl-4-cacbometyloxypyriđinium (62) có sự phụ thuộc vào tính phân cực của dung môi.

(63)

Đo các pic này, Kosower tính năng lượng trạng thái chuyển gọi là giá tị Z (đo tương tự như giá trị Y). Mặt khác đo pic UV của pyriđin-N-phenolbetain (63) trong dung môi khác nhau. Giá trị tính phân cực của dung môi trên thang này gọi là $E_{\mathrm{T}}(30)$, có tương quan với Z theo phương trình sau: $Z=1,41 E_{\mathrm{T}}(30)+6,92$.

Nói chung các giá trị Z và $E_{\mathrm{T}}(30)$ tuân theo thứ tự nhưở Y. Ngoài ra có thang π^{*}, thang $\pi^{*}{ }_{\text {AZO }}$.

Bảng 5.5. Các giá trị Y, Y_{OT}, Z và $E_{\mathrm{T}}(30)$ của một số dung môi

Dung moi	Y	$\mathrm{Y}_{\text {OTS }}$	2	$E_{T}(30)$
$\mathrm{CF}_{3} \mathrm{COOH}$		4,57		
$\mathrm{H}_{2} \mathrm{O}$	3,5	4,1	94,6	
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}$		3,82		65,3
HCOOH	2,1	3,04		
$\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(1: 1)$	1,7	1,29	90	55,6
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	1,0	1,77		59,8
HCONH_{2}	0,6		83,3	56,6
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} 80 \%$	0,0	0,0	84.8	55,7
$\mathrm{CH}_{3} \mathrm{OH}$	-1.1	$-0,92$	83,6	55,4
$\mathrm{CH}_{3} \mathrm{COOH}$	-1.6	-0,9	79,2	51,7
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	-2,0	-1,96	79,6	51,9
Eioxan 90\%	-2,0	-2,41	76,7	46,7
iso $-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	-2,7	-2,83	76,3	48,4
Axeton 95\%	-2,8	-2,95	72,9	48,3
terr- $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	-3,3	-3,74	71,3	43,9
$\mathrm{CH}_{3} \mathrm{CN}$		-3,21	71,3	45,6
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$			71,1	45, 1
$\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}$		-4,14	68,5	43,8
Axeton			65,7	42,2
HMPA				40,9
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$				40.7
Pyridin			64,0	40,5
CHCl_{3}			63,2	39,1
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$				37,5

Bảng 5.5 (tiếp theo)

Dung moi	Y	$\mathrm{V}_{\text {O1s }}$	2	$E_{T}(30)$
THF				37,4
©ioxan				36,0
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$				34,5
$\mathrm{C}_{6} \mathrm{H}_{6}$			54	34,3
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$				33,9
CCH_{4}				32,4
n-Octan				31.1
n-Hexan				31,0
Xyclohexan				30.9

5.2.2. PHÅN UNG THÊ $S_{N} 2$

5.2.2.1. Co ché $S_{\mathrm{N}} 2$

Cơ chể $S_{\mathrm{N}} 2$ là cơ chế đồng bợ, trực tiếp không có hợp chất trung gian mà tạo thành trạng thái chuyển lưởng phân tử xác định tốc độ của phản ứng;

Tốc dộ phản ứng là: $\quad-\mathrm{d}[\mathrm{RZ}] / \mathrm{d} t=k[\mathrm{RZ}]\left[\mathrm{Nu}^{-}\right]$
Phản ứng đặc trưng bằng phản ứng bạ̣c hai, song nếu tác nhân Nu vừa là dung môi thì cơ chế là lưỡng phân tử, nhưng thực nghiệm xác định động học theo bậc nhất $v=k[\mathrm{RZ}]$, mà ở dây động học gọi là giả bậc nhất (pseudo first order).

Phản ứng xảy ra qua trạng thái chuyển lưỡng phân tử, ở đó cacbon phối trí 5 , liên kết $\mathrm{C}-\mathrm{Z}$ bị phân cắt một phần ở giai đoạn xác định tớc độ nên cũng có hiệu ứng đông vị, tuy nhỏ, do đó trạng thái chuyển chỉ phân cắt một phần C...Z và tạo một phẩn liên kết C...Nu. Phản ứng một giai đoạn, không có chất trung gian.

Hinh 5.4. Giản đồ năng lượng của phản ứng $S_{N} 2$

Bảng 5.6. Một số chuyển hoá bằng phản ứng $S_{\mathrm{N}} 2$

Nu	Chắt ban đấu		Sản phẩm	Nhóm đi ra
I^{-}	$+\mathrm{CH}_{3} \mathrm{Cl}$	\longrightarrow	$\mathrm{CH}_{3} \mathrm{I}$	$+\mathrm{Cl}^{-}$
$\mathrm{N}=\mathrm{C}^{-}$	$+\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{SO}_{2}$	\longrightarrow	$\mathrm{CH}_{3} \mathrm{OH}$	$+\mathrm{CH}_{3} \mathrm{OSO}_{2} \mathrm{O}^{-}$
HO^{-}		\longrightarrow	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}$	
$\mathrm{N}^{+}=\mathrm{N}^{+}=\mathrm{N}^{-}$	$+\mathrm{CH}_{3} \mathrm{Cl}$	\longrightarrow	$\mathrm{CH}_{3}-\mathrm{N}=\mathrm{N}^{+}=\mathrm{N}^{-}$	$+\mathrm{Cl}^{-}$
$\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)_{3} \mathrm{P}$	$+\mathrm{CH}_{3} \mathrm{I}$	\longrightarrow	$\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{I}^{-}$	
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$	\rightarrow	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOCH}_{3}$	$+\mathrm{I}^{-}$
$\mathrm{H}_{2} \mathrm{P}^{-}$	$+\mathrm{CH}_{3} \mathrm{Br}$	\longrightarrow	$\mathrm{H}_{2} \mathrm{P}-\mathrm{CH}_{3}$	$+\mathrm{Br}^{-}$
$\mathrm{HC} \equiv \mathrm{C}^{-}$	$+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$	\longrightarrow	$\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3}$	$+\mathrm{Br}^{-}$
I^{-}		\longrightarrow	$\mathrm{CH}_{3} \mathrm{I}$	$+\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Mô hình obitan phân tử như sau:

Năng lượng cần thiết cho sự phân cắt $\mathrm{C}-\mathrm{Z}$ được đáp ứng bằng sự hình thành đồng thời liên kết $\mathrm{C}-\mathrm{Nu}$. Vị trí ở dỉnh đường cong năng lượng hoạt hoá trên giản dồ là trạng thái chuyển do nhóm đi vào và đi ra, đồng thời vì cacbon trung tâm không thê có hơn 8 electron và cacbon từ $s p^{3}$ chuyển sang $s p^{2}$ có obitan p vuông góc có một thuỳ xen phủ với nhóm di ra, một thuỳ xen phủ với tác nhân Nu. Cả hai nucleophin và tác nhân cùng xen phủ với một obitan nên chỉ có thể tấn công sau mà không có tấn công diện. Ba nhóm còn lại ở trung tâm gần như đồng phẳng hay hoàn toàn đồng phẳng nếu nhóm đi vào và đi ra giớng nhau.

Trạng thái cacbon ở chất đầu là $s p^{3}, \mathrm{Nu}^{-}$tấn công sau của nhóm đi ra để có lực đẩy tĩnh điện và khuếch tán của tiểu phân. Sự tiếp cận của Nu làm thay đởi tính hình học và trạng thái lai hoá của C gần tới trạng thái $s p^{2}$. Trạng thái chuyển có dạng hình tháp tam giác kép.

Cấu tạo trạng thái chuyển đơi xứng khi nhóm đi ra và Nu có cấu tạo giống nhau, còn có thể có trạng thái chuyển sớm hơnn, trong đó bậc liên kết $\mathrm{C}-\mathrm{Z}$ lớn hơn bậc $\mathrm{C}-\mathrm{Nu}$ hoạ̣ muợn hơn, trong dó bậc liên kết $\mathrm{C}-\mathrm{Z}$ nhỏ hơn bậc liên kết $\mathrm{C}-\mathrm{Nu}$.

Trong quá trình có sự chuyển cấu hình của cacbon và cuới cùng là cấu hình $s p^{3}$ trong sản phẩm.

Trạng thái chuyển, obitan giả p đ̛̉ C trung tâm tương tác đồng thời với obitan bị chiếm của Nu và Z :

Theo quan diểm MO, phản ứng $S_{\mathrm{N}} 2$ xảy ra do tương tác của obtian bị chiếm của Nu với obitan phản liên kết của chất ban đầu như ở hình trèn:

$$
\Delta E=\frac{q_{\mathrm{C}}-q_{\mathrm{Nu}}}{l_{\mathrm{C}-\mathrm{Nu}}}+2 \frac{\left(c_{\mathrm{C}}-c_{\mathrm{Nu}} \cdot \Delta \beta\right)^{2}}{E_{\mathrm{Nu}}-E_{\mathrm{C}}}
$$

với q_{C} và q_{Nu} là diện tích ở C trung tàm và ở $\mathrm{Nu} ; l_{\mathrm{C}-\mathrm{Nu}}$ là khoảng cách giữa C và $\mathrm{Nu} ; c_{\mathrm{C}}$ và $c_{\text {Nu }}$ là hệ số obitan của obitan phản liên kết σ^{*} và obitan bị chiếm của Nu; $\Delta \beta$ là sự thay đổi tích phân cồng hưởng; $E_{\text {Niu }}-E_{\mathrm{C}}$ là sự khác nhau về nảng lượng của obitan không liên kết của Nu và obitan phản liên kêt của $\mathrm{C}-\mathrm{Z}$.

Như vậy, khác với $S_{\mathrm{N}} 1$, phản ứng $S_{\mathrm{N}} 2$ phụ thuộc vào hai thành phẩn tương tác Coulomb và tương tác obitan.

Trong pha khí hay dung môi phân cực aproton, sự solvat anion nhỏ, diện tích ở Nu định chổ, phản ứng chủ yếu là khống chế diện tích.

Trong dung môi proton, diện tích ở trung tâm phản ứng cüng nhỏ, tương tác Coulomb giàm, nên vai trò chính là thành phần obitan. Phản ứng uru tiên khi Nu có obitan không liên kết có năng lượng cao (HOMO), nghĩa là Nu có khả năng phân cực hoá cao, solvat hoá nhỏ.

Như vậy trung tâm phản ứng là trung tâm mềm nén dể phản ứng vởi Nu mềm, khác với $S_{\mathrm{N}} /$ là cacbocation là axit cứng dẻ̉ phản ứng với Nu cứng.

Dựa vào những quan sát trèn, có thể thấy được bản chất sụ̣ thay dối của phản ứng $S_{\mathrm{N}} 2$.
Vể mật hoá học lập thể, phản ứng $S_{\mathrm{N}} 2$ là quay cấu hình vì sự tấn công diện của obitan n của Nu vào σ^{*} thì tương tác bà̉ng 0 vì có nút trên σ^{*} nên buọ̉c phải tấn công ngược phía với nhóm đi ra. Tương tác này dẩn tới sự giảm năng lượng, làm thuận lợi cho sự quay cẩu hình:

Sự tấn công này còn gọi là tấn công trans hay anti để hình thành trạng thái chuyển bền và cuối cùng để hình thành sản phẩm bền quay cấu hình.

Nếu sự tấn công sau không có thể thì phản ứng không thể xảy ra theo cơ chế $S_{\mathrm{N}} 2$ như trong các hợp chất đa vòng có nhóm di ra ở đâu cầu.

Năng lượng hoạt hoá của $S_{\mathrm{N}} 2$ thắp hơn $S_{\mathrm{N}} l$, còn entropi hoạt hoá lại âm hơn vì trạng thái chuyển có tính trật tự cao hơn chất ban đầu.

Trong phản ứng $S_{\mathrm{N}} 2$, hợp chất ban đầu có tính hoạt động quang học sẽ đi qua phức hoạt hoá có trung tâm chiral hay bất đối xứng khi thuỷ phân sẽ cho sản phẩm hoạt động quang học. Cấu hình của sản phẩm ngược với cấu hình chất ban đầu, nghīa là có sự quay cấu hình, gọi là sự nghịch dảo Walden. Chả̉ng hạn khi tác dụng NaI với (S)-2-clobutan sẽ thu được (R)-2-iotbutan:

Có thể so sánh với $S_{\mathrm{N}} /$ về hoá học lập thé:

Vì phản ứng $S_{\mathrm{N}^{2}} 2$ xảy ra ở cùng vị trí của nhóm đi ra và quay cấu hình nên được dùng nhiều dể xác định cấu trúc trong tổng hợp, đổng thời để chuyển hoá các nhóm chức khác nhau.

Walden đã thực hiện nhiều thực nghiệm, chẳng hạn axit $(+)$-malic thành (+)-closuxinic và (-)-closuxinic:

hay ngược lại chuyển (+)-closuxinic thành axit ($(+)$ - và ($(-)$-malic:

Phillip cũng thực hiện một chu trình chuyển hoá sau:

Trong chu trình trên, phản ứng $\mathrm{A}, \mathrm{C}, \mathrm{D}$ là bảo toàn cấu hình vì không có phân cắt liên kết $\mathrm{C}-\mathrm{O}$, phản ứng B là nghịch đảo cấu hình.

Sự nghịch dảo Walden cūng chứng minh bằng phản ứng $S_{N} 2$ không xảy ra cùa nhóm đi ra đ̛̉ dầu cầu như trong hệ [2.2.2] hay hệ 3.3.1]:

Phản úng chứng minh bà̀ng hợp chất quang hoạt với chất hoạt dộng phóng xạ như phản ứng:

$$
\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{CHICH}_{3}+{ }^{*} \mathrm{I}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}^{*} \mathrm{ICH}_{3}+\mathrm{I}^{-}
$$

the dược hốn hợp raxemic, nếu từ (R) sẽ cho đổng phân (S) và khi hàm lượng (S) tăng lại cạnh tranh với I^{-}cho (R). So sánh tởc dộ nghịch dảo và dọ phóng xa của "I" đã tim thấy kết quả với sai số thực nghiệm:

$$
\begin{array}{ll}
\text { Tốc đọ nghịch đảo: } & 2,88 \pm 0,03 \cdot 10^{-3} \\
\text { Tóc dộ trao dôi : } & 3,00 \pm 0,25 \cdot 10^{-3}
\end{array}
$$

Và nếu đo tốc đọ raxemic hoá thì sẽ bẳng hai lẩn tốc dộ nghịch dảo vì mổi lẩn nghịch đảo cho hai phân tử raxemic. Điều đó cho thấy mổi một lần trao đổi là một lần nghịch đảo.

Eschenmoser cho thấy trạng thái chuyển phải là thẩng hàng khi nghiên cứu phản ứng của α-tosyl- $($-toluensunfonat (64) với bazo mạnh cho o-(1-tosyletyl)benzensunfonat (66) do bazo lấy proton α cho ion (65):

và anion (65) có thể tấn công nucleophin vào nhóm metylen như là quá trình $S_{\mathrm{N}} 2$ nọi phân lử (67):

(67)
song trong trường hợp này diện tích âm ở cacboon tấn công vào nhóm metyl của phân tử khác dễ hơn là trong cùng phàn tử, nghia là phản ứng là ngoại phân tử khong phải là nội phân tử do entropi thuận lại hơn. Kểt luận trên dược giải thích là sự cấn công nội phân tử không xảy ra vì không thé̉ có trạng thái chuyển hoàn toàn thả̉ng hàng dược.

Bảng 5.7. Một số phản ứng theo cơ chế $S_{\mathrm{N}} 2(\mathrm{R}=$ ankyl bậc nhất hay hai)

1	$\mathrm{RX}+\mathrm{HO}^{-} \rightarrow \mathrm{ROH}$	ancol
2	$\mathrm{RX}+\mathrm{RO}^{-} \longrightarrow \mathrm{ROR}$	ete
3	$\mathrm{ROSO}_{2} \mathrm{OR}^{\prime}+\mathrm{R}^{\prime \prime} \mathrm{O}^{-} \rightarrow \mathrm{ROR}^{\prime \prime}$	ete
4	$\mathrm{RX}+\mathrm{SH}^{-} \rightarrow \mathrm{RSH}$	thioancol
5	$\mathrm{RX}+\mathrm{R}^{\prime} \mathrm{S}^{-} \rightarrow \mathrm{RSR}{ }^{\prime}$	thioete
6	$\mathrm{RX}+\mathrm{S}^{2-} \longrightarrow \mathrm{RSSR}$	
7	$\mathrm{RX}+\mathrm{SO}_{3}{ }^{2-} \rightarrow \mathrm{RSO}_{2} \mathrm{O}^{-}$	ankyl sunfat
8	$\mathrm{RX}+\mathrm{SCN}^{-} \rightarrow \mathrm{RSCN}$	ankylthioxyanua
9	$2 \mathrm{ROH} \rightarrow \mathrm{ROR}$	ete
10	$\mathrm{R}_{2} \mathrm{O}^{+}+\mathrm{R}^{\prime} \mathrm{OH} \longrightarrow \mathrm{ROR}^{\prime}$	ete
11		epoxy
12		diol
13	$\mathrm{RX}+\mathrm{R}_{2}^{\prime} \mathrm{NH} \longrightarrow \mathrm{RR}_{2} \mathrm{~N}$	triankylamin
14	$R X+\mathrm{R}_{3}^{\prime} \mathrm{N} \rightarrow \mathrm{RR}_{3} \mathrm{~N}^{+} \mathrm{X}^{-}$	
15	$\mathrm{RX}+\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4} \longrightarrow \mathrm{~N}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NR}^{+} \mathrm{X}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{RNH}_{2}$	amin
16		β-hydroxylamin
17	$\mathrm{RX}+\mathrm{R}^{\prime} \mathrm{CONH}^{-} \rightarrow$ RNHCOR	amit
18	$\mathrm{RX}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{RNO}_{2}+\mathrm{RONO}$	nitro, nitrozo
19	$\mathrm{RX}+\mathrm{N}_{3} \rightarrow \mathrm{RN}_{3}$	azit
20	$\mathrm{RX}+\mathrm{NCO}^{-} \rightarrow \mathrm{RNCO}$	isoxyanat
21	$\mathrm{RX}+\mathrm{NCS}^{-} \rightarrow \mathrm{RNCS}$	isothioxyanat
22	$R X+\mathrm{R}^{-} \rightarrow R X^{\prime}$	trao dói halogen
23	$\mathrm{ROSO}_{2} \mathrm{OR}^{\prime}+\mathrm{X}^{-} \rightarrow \mathrm{RX}$	ankyl halogenua
24	$\mathrm{RX}+\mathrm{PCl}_{5} \longrightarrow \mathrm{RCl}$	ankyl clorua
25	$\mathrm{ROR}^{\prime}+2 \mathrm{HI} \longrightarrow \mathrm{RI}+\mathrm{R}^{\prime} \mathrm{I}$	ankyl iodua
26		β-halogenancol
27	$\mathrm{R}-\mathrm{O}-\mathrm{COR}^{\prime}+\mathrm{LiI} \longrightarrow \mathrm{RI}+\mathrm{RCOO}^{-}$	alkyl iodua
28	$\mathrm{RX}+\mathrm{CN}^{-} \rightarrow \mathrm{RCN}$	nitrin

Bảng 5.7 (tiêp theo)

29	$\mathrm{RX}+\mathrm{R}^{\prime} \mathrm{CH} \equiv \mathrm{C}^{-} \longrightarrow \mathrm{RC} \equiv \mathrm{CR}^{\prime}$	anky!
30	$\mathrm{RX}+\mathrm{LiAlH}_{4} \rightarrow \mathrm{RH}$	ankan
31	$\mathrm{ROSO}_{2} \mathrm{R}^{\prime}+\mathrm{LiAlH}_{4} \rightarrow \mathrm{RH}$	ankan
32		ancol
33	RX + R'CuLi \longrightarrow RR'	ankan
34		ancol
35	$\mathrm{X}+\mathrm{HC}^{-}\left(\mathrm{CO}_{2} \mathrm{R}^{\prime}\right)_{2} \rightarrow \mathrm{RCH}\left(\mathrm{CO}_{2} \mathrm{R}^{\prime}\right)_{2}$	ankyl hoá
36	$\mathrm{RX}+\mathrm{R}^{\prime} \mathrm{CH}^{-}-\mathrm{COR}^{\prime \prime} \rightarrow \mathrm{RCR}^{\prime} \mathrm{H}-\mathrm{COR}^{\prime \prime}$	ankyl hoá
37	$\mathrm{RX}+\mathrm{RCH}^{-}-\mathrm{COO}^{-} \rightarrow \mathrm{RR}^{\prime} \mathrm{CHCOO}^{-}$	ankyl hoá
38		ankyl hoá

5.2.2.2. Hiệu ûng nhơm kề trong $S_{\mathrm{N}} 2$

Trong một số phản ứng khi ở calcbon có nhóm kề làm tãng khả năng phản ứng và bảo toàn cấu hình của cacbon trumg tâm chiral:

Giai doạn đầu, nhóm kề đóng vai trò của nucleophin có tác dụng đẩy nhóm đi ra và liên kết với phân tử. Giai doạn thứ hai là tấn công của Nu ngoài. Cơ ché này tìm thấy phản ứng là bậc nhất vì Nu không nằm trong giai đọan xác định tốc độ. Sự tấn công của Z nhanh hơn Nu bởi vì nhóm Z dễ gạap vị trí kề để tương tâc hơn, tác nhấn Nu còn phải va chạm với chất ban dầu còn Z đã có vị trí thích hợp. Phản ứng của Nu với chất ban đàu tāng lớn về entropi hoạt hoá $\Delta S^{\#}$ vì các tác nhân ở gần hơn trong trạng thái chuyển hơn, phản ứng của Z mấ đi $\Delta S^{\#}$ thấp hơn.

Thực tế không dē xác định khi nào phản ứng tảng do hiệu ứng anchime của nhóm kể, thường tiến hành phản ứng với chất có và không có nhóm kể như $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ và $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$, nhưng còn phải tính đến ảnh hưởng của lập thể và dung môi. Vấn đề quan trọng
của cơ chế này là chứng minh sự bào toàn cấu hình của chất ban đầu. Điều này dựa trên phản ứng cạ̣p threo d, l của 3 -brom-2-butanol tác dụng với HBr cho dl -2,3-đibrombutan, còn cặp erythro cho đồng phân meso:

Sự tạo thành enantiome là do tạo được chât trung gian chung (68) khi tấn cong của nhóm kề :

(68)
là ion bromoni đối xứng nên nucleophin tấn công ở hai cacbon như nhau.
Cũng có trường hợp Nu tấn công không phải vào vị trí nhóm đi ra mà vào vị trí của nhóm kế ban đầu như trường hợp sau:

Cón nhiều trường hợp chất trung gian bển hay tìm khả nãng dể tự trở nên bền như trường hợp tạo được các sản phảm vòng và phản ứng như là $S_{\mathrm{N}} 2$ bình thường như trường hợp hình thành epoxit hay lacton:

Một chứng minh rõ cho khả nãng tham gia của nhóm kề là axeton phân 4-metoxy-1pentylbrosylat (68) và 5 -metyl-2-pentylbrosylat (69) cho hỗn hợp sản phẩm với sự tham gia của nhóm kề có chất trung gian (70) chung cho cả hai sản phẩm:

Phản ứng của $S_{N} 2$ cūng chịu tác dụng của hiệu ứng anchime. Hiệu ứng của nhóm chức khác có trong chất ban đầu có thể là tác nhân nucleophin thế nội phân tử gây ra sự chuyển hoá vòng bền hoạ̣c tạo vòng trung gian khỏng bển chuyển hoá tiếp thành sản phẩm.

Trường hợp tác dụng của hiệu ứng anchime trong các phản ứng sau thu được sản phẩm bảo toàn cấu hình do có hai lần thế $\mathrm{S}_{\mathrm{N}} 2$ quay cấu hình:

 Cl^{-}

Cơ chể nhóm kề dựa trền cơ sở tạo hợp chất vòng khi kích thước vòng phù hợp đúng cho nhớm kề tham gia tấn công, chẳng hạn $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{OB}$ nhóm kề tham gia quan trọng khi $n=4$ hay 5 (tương ứng với vòng 5 hay 6 cạnh trung gian) nhưng không có khi $n=2,3$ hay 6 . Nói chung, tốc độ nhanh nhất khi vòng có 3,5 hay 6 cạnh. Vòng bốn cạnh có nhóm kề thatm gia khi có gổc ankyl ở vị trí α hay β đối với nhóm kề.

Các nhóm kề quan trọng là COO^{-}, (nhưng không phải COOH), $\mathrm{COOR}, \mathrm{COAr}, \mathrm{OCOR}$, $\mathrm{OR}, \mathrm{OH}, \mathrm{O}^{-}, \mathrm{NH}_{2}, \mathrm{NHR}, \mathrm{NR}_{3}, \mathrm{NHCOR}, \mathrm{SH}, \mathrm{SR}, \mathrm{S}^{-}, \mathrm{I}, \mathrm{Cl}, \mathrm{Br}$. Nhóm kế là halogen giàm
hiệu dụng theo $\mathrm{I}>\mathrm{Br}>\mathrm{Cl} ; \mathrm{Cl}$ là nhớm kể yếu, chỉ hoạt dộng khi không có sự can thiệp của dung môi hay khi có nhu cầu electron từ nó, như 5 -clo-2-hexyl tosylat dung mời phân trong axit axetic thì Cl tham gia nhóm kề rất nhó nhưng trong axit trifloaxetic thì trở thành vai trò chính, còn F chưa có chứng minh có sự tham gia nhóm kè.

Sự tham gia của nhóm kề cũng chịu ành hưởng của nhơm đi ra, chẳng hạn $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{O}$ là nhóm nosylat là nhóm đi ra tớt hơn tosylat thì nhơm kề ít tham gia hơn, chảng hạn nhóm OH trong trans-hydroxyxyclopentyl arensunfonat:

Nhóm kề OH chỉ tham gia khi nhóm đi ra là tosylat mà không phải nosylat vì nhơm nosylat đi ra quá nhanh để nhóm kề có thể tham gia.

5.2.2.3. Nhū̃ng nhàn tố ảnh huởng của phản ứng $S_{N} 2$

1- Cấu trúc chất ban đấu

- Độ phan nhánh ở cacbon α và β :

Khi tăng thể tích nhoóm thế ở trung tâm phản ứng, tương tác đả̉y lập thể ở trạng thái chuyển tăng, lớn hơn chất ban đầu, do đó tớc dộ phản ứng giảm:

$\mathrm{R}=$	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
$\lg k=$	0,30	1,87	3,61	4,96	7,07

Khó khản lập thể tăng từ dẩn xuất bậc 1 đến bậc 3 , do đó dã̃n xuất bậc 3 không tham gia phản ưng $S_{\mathrm{N}} 2$, trừ một vài trường hợp dẫn xuất bậc 3 không có khả năng tạo cacbocation và dùng Nu mạnh thì dả̉n xuất bậc ba này cũng có thẻ̉ xảy ra theo $S_{\mathrm{N}} 2$:
$\left(p-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}\right){ }_{3} \mathrm{C}-\mathrm{Cl}$

Lý do giảm tốc độ là do tính lập thể, trạng thái chuyển bị choán nhiểu không gian khi nhóm thế thể tích lớn hơn sẽ không cho tác nhân tiếp cận tới trung tâm cacbon.

Bảng 5.8. Tốc độ tương đới của $S_{\mathrm{N}} 2$ của hợp chất ankyl

R	Tóc đọ tuơng doi	R	Tóc dơ tưong dói
Metyl	30	Isobutyl	0,03
Etyl	1	Neopentyl	10^{-5}
Propyl	0,4	Allyl	40
Butyl	0,4	Benzyl	120
Isopropyl,	0,025		

Các nhóm thé ở cacbon α và β đểu làm giảm tốc đọ $S_{\mathrm{N}} 2$.

Khi tăng thể tích nhóm thế ở C_{α}, khả năng phản ứng $S_{\mathrm{N}} 2$ giảm, chẳng hạn hệ neopentyl có khả năng phản ứng rất thấp.

Hình 5.5. Ảnh hưởng không gian của $S_{\mathrm{N}} 2$
Những nhân tố electron của nhóm thế làm ởn định trạng thái chuyển đều làm tăng tốc độ phản ứng.

- Độ không no ở cacbon α và β :

Phản ứng $\mathrm{S}_{\mathrm{N}} 2$ ở cacbon α không no cũng xảy ra rất chậm hay không có phản ứng.
Các hợp chất allyl, benzyl thế theo $S_{\mathrm{N}} 2$ rất dễ do tạo trạng thái chguyển bền bằng tương tác giữa obitan π và giả p trong trạng thái chuyển.

Hình 5.6. Trạng thái chuyển $S_{\mathrm{N}} 2$ của allyl và benzyl
Chẳng hạn, trong hệ benzyl, hợp chất (71) phản ứng chậm hơn hợp chất $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{2} \mathrm{~S}^{+} \mathrm{C}_{2} \mathrm{H}_{5}$ đến 8000 lần do hợp chất (71) không có tính hình học cho sự liên hợp trong trạng thái chuyển:

(71)

Liên kết ba ở vị trí β (hệ propargyl) cho cùng hiệu ứng như liên kết đôi. Các nhóm ankyl, halogen, xyan và số nhóm khác ở vị trí 3 đều làm tăng tốc độ $S_{\mathrm{N}} 2$ nhưng nhóm ankyl và halogen ở vị trí 1 làm giảm tốc độ do khó khăn lập thể.

- Độ thế α :

Các nhóm thế ở cacbon α loại $\mathrm{ZCH}_{2} \mathrm{X}$, tốc độ $S_{\mathrm{N}} 2$ tăng lớn đối với một số nucleophin, như ion halogenua hay giống halogenua, nhưng giảm hay không phản ứng với nucleophin khác. Chẳng hạn, α-cloaxetophenon $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{Cl}$ phản ứng với KI ở $75^{\circ} \mathrm{C}$ nhanh hơn 1-clobutan đến 32.000 lần nhưng α-bromaxetophenon phản ứng với trietylamin chỉ bằng

0,14 lần của iotmetan. Lý do ở dây chưa thạt rõ nhưng các nucleophin này hình thành trạng thái chuyển nén (tight) hơn, là có một liên kết hình thành và phân cắt trước đã xúc tiến phản ứng.

Phản ứng $S_{\mathrm{N}} 2$ không tìm thấy sự tương quan với phương trình Hammett vì trong cơ chế này, vai trò của liên kết phân cắt và tạo thành đều quan trọng trong trạng thái chuyển ở giai đoạn quyết định tớc độ phản ứng. Các nhóm thế có hiệu ứng ở cả hai quá trình nhưng thường ngược nhau. Các clorua và bromua benzyl không thé đều theo $S_{N} 2$.

Khi nghièn cứu hệ bixyclo[2.2.2]octylmetyl tosylat thé ở vị trí 4 , Holtz và Stock tìm thây:

ở đây chỉ cố hiệu ứng cảm ứng, không có cợng hưởng và lập thể, các nhóm thế hút electron làm tăng tớc độ $S_{\mathrm{N}} 2$ do đã làm ồn định trạng thái chuyển bằng giảm một ît mật độ electron.

- Các hợp chất vòng:

Các hợp chất vòng như xyclopropyl phản ứng theo $S_{\mathrm{N}} 2$ theo cơ chế mở vòng còn các dả̉n xuất đầu cấu không cho phàn ứng $S_{N} 2$.

- Hiệu ứng nhóm thế:

Hiệu ứng electron của nhóm thế phụ thuộc vào điện tích ở trạng thái chuyển. Trường hợp trạng thái chuyển có cấu trúc đới xứng, liên kết tạo thành và phân cắt như nhau (tổng bạc liên kết bằng đơn vị) thì hiẹ̣u ứng electron của nhóm thế thực tế khong ảnh hưởng tới tốc độ. Phản ứng này gọi là phản ứng đồng bộ nghiêm ngặt, còn đại đa số không chặt chẽ như vây.

Nểu xét sự phân cắt xảy ra trước sự tạo thành liên kết mới, tổng bậc liên kết nhỏ hơn đơn vị, mạt độ electron ở trung tâm trong trạng thái chuyển thấp hơn trong chất ban đâu, gọi là trạng thái chuyển "xởi" (hay nới, loose). Điện tích dương tăng lên từ chất ban đầu đến trạng thái chuyển, do đó các nhóm thế cho electron xúc tiến phản ứng:

$$
\begin{array}{ccc}
\mathrm{R}^{\delta^{+}} \mathrm{Z}^{\delta-}+\mathrm{Nu} \rightarrow \mathrm{Z} \ldots \mathrm{R}^{\delta^{\prime} \cdot \ldots \mathrm{Nu}} & \mathrm{Z} \ldots \mathrm{R}^{\delta^{\prime}+} \ldots \mathrm{Nu} & \mathrm{Z} \ldots \mathrm{R}^{\delta^{\prime}+\ldots \mathrm{Nu}} \\
\delta^{\prime}=\delta & \delta^{\prime}>\delta & \delta^{\prime}<\delta
\end{array}
$$

Nếu sự tạo thành liên kết xảy ra trước sự phân cắt, mật độ electron ở trung tâm trong trạng thái chuyển lớn hơn trong chất ban đầu, trạng thái này có tính chất giống anion, gọi là trạng thái "nén" (hay ép, tight), do đó các nhơm thế hứt electron làm tāng tốc độ phản ứng.

Thực nghiệm cho thấy rà̀ng, đa só phản ứng $S_{\mathrm{N}} 2$ thường được xúc tiến bằng nhóm thế hút electron, như vậy là sự tạo thành liên kết mới xảy ra trước sự phân cất liên kết cū.

Trong phản ứng $S_{\mathrm{N}} 2$, không dùng được quy tắc BFP và tiên đê Hammond mà dùng mó hình phức tạp hơn. Thường dùng tính "xởi" hay "nén" của trạng thái chuyển. Hai trạng thái này liên quan tới hiệu ứng electron của nhóm thế và giá trị ρ.

- Sự thế D:

Hiệu ứng đồng vị bậc hai ở cacbon α và β ành hưởng đến tớc độ quá trình. Đo được
hiệu ứng đồng vị α bậc hai dùng để phân biẹt cơ chế $S_{\mathrm{N}} 1$ và $S_{\mathrm{N}} 2$, trong dó giá trị âm $S_{\mathrm{N}} 2$ là từ 0,95 đến 1,06 cho thế $\alpha \mathrm{D}$ còn $S_{\mathrm{N}} 1$ thì cao hơn.

2- Anh hương của nhóm đi ra

Tương tự như $S_{\mathrm{N}} 1$, khi tăng thể tích nhóm đi ra, trạng thái chuyển bị mất ổn định hơn là chất ban đấu, do đó tớc độ phản ứng giảm. Khác với $S_{\mathrm{N}} 1$, phản ứng $S_{\mathrm{N}} 2$ đòi hỏi nucleophin mạnh hơn nên thường tiến hành dưới điều kiện bazơ hay trung tính. Trong trường hợp cấn xúc tác thì cūng có phản ứng gọi là $S_{\mathrm{N}} 2 \mathrm{cA}$. Vai trò quan trọng là những yếu tố làm Ổn định anion hình thành Z^{-}. Các nhớm đi ra chứa nhóm thế hứt electron làm tăng phản ứng $S_{\mathrm{N}} 2$ vì ổn định anion hay điện tích âm tạo thành trong trạng thái chuyển.

$$
\begin{array}{rl}
\mathrm{CH}_{3} \mathrm{OSO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{X}-p+\mathrm{H}_{2} \mathrm{O} \rightarrow & \mathrm{CH}_{3} \mathrm{OH}+p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{3 \mathrm{H}} \\
\mathrm{X} & = \\
\mathrm{NO}_{2} & \mathrm{Br}
\end{array} \mathrm{H}
$$

Các dān xuất halogen phản ứng khác nhau phụ thuộc vào năng lượng phân ly các liên kết $\mathrm{C}-\mathrm{X}: \mathrm{F} \ll \mathrm{Cl}<\mathrm{Br}<\mathrm{I}$:

$$
\begin{array}{rccc}
\mathrm{CH}_{3}-\mathrm{X}+\mathrm{HO}^{-} & \rightarrow & \mathrm{CH}_{3} \mathrm{OH}+\mathrm{X}^{-} \\
\mathrm{X}= & \mathrm{Br} & \mathrm{I} & \mathrm{Cl} \\
k .10^{3} . l / \mathrm{mol} . \mathrm{s}= & 59,5 & 4700 & 1,4
\end{array}
$$

Trong phản ứng $S_{\mathrm{N}} 2$, liên kết C - X trong trạng thái chuyển bị kéo dãn nhỏ hơn so với $S_{\mathrm{N}} /$ nên hiệu ứng đồng vị nhỏ hơn:

$$
\begin{array}{ll}
\mathrm{CH}_{3}-\mathrm{X}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) & k_{\mathrm{F}} / k_{\mathrm{Br}}=1,4 \cdot 10^{-4} \\
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{X}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) & k_{\mathrm{F}} / k_{\mathrm{Br}}=2 \cdot 10^{-6}
\end{array}
$$

có nghīa là sự thay đổi nhóm đi ra trong phản ứng $S_{\mathrm{N}} 2$ có độ nhạy rất nhỏ, nhỏ hơn $S_{\mathrm{N}} 1$.
3- Ánh hưởng của tác nhân nucleophin
Trong phản ứng $S_{\mathrm{N}} 2$ trong dung dịch có bốn quy tấc về ảnh hưởng của nucleophin tới tớc độ phản ứng:
a- Nucleophin có điện tích âm có tính nucleophin cao hơn axit liên hợp của nó như HO^{-}mạnh hơn $\mathrm{H}_{2} \mathrm{O} \ldots$
b- So sánh nucleophin có nguyên tố tấn công trong môt chu kỳ của hệ thống tuần hoàn, tính nucleophin tương đương với tính bazơ tuy rằng tính bazơ là khống chế nhiệt động học, còn tính nucleophin là khóng chế động học. Tính nucleophin thay đổi trong dāy:

$$
\begin{aligned}
& \mathrm{NH}_{2}^{-}>\mathrm{RO}^{-}>\mathrm{HO}^{-}>\mathrm{R}_{2} \mathrm{NH}>\mathrm{ArO}^{-}>\mathrm{NH}_{3}>\text { pyridin }>\mathrm{F}^{-}>\mathrm{H}_{2} \mathrm{O}>\mathrm{ClO}_{4}^{-} \\
& \mathrm{R}_{3} \mathrm{C}^{-}>\mathrm{R}_{2} \mathrm{~N}^{-}>\mathrm{RO}^{-}>\mathrm{F}^{-}
\end{aligned}
$$

c- Trong nhóm nguyên tớ, tính nucleophin tăng từ trên xuống, tính bazơ giảm. Tính nucleophin của $\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{F}^{-}$(tuy nhiên phụ thuộc dung môi). Bất kỳ một nucleophin sunfua nào cũng mạnh hơn oxy tương tự.

Lý do để phân biệt tính bazơ và tính nucleophin là điện tích âm solvat mạnh bởi các dung môi phân cực proton vì điện tích âm ở Cl^{-}tập trung hơn so với I^{-}, hình thành nên một lớp vỏ dung môi chặt hơn tạo nên một hàng rào giữa nó và chất ban đầu, mà điều quan trọng đối với dung môi phân cực proton là tạo dược liên kết hyđ̛o với các ion nhỏ. Từ đó cho thấy nhiều nucleophin chứa diẹ̀n tích âm nhỏ phản ứng trong dung môi aproton nhanh hơn trong dung môi proton.

Trong pha khí, không có dung môi, tính nucleophin thay dổi: $\mathrm{HO}^{-}>\mathrm{F}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}$, $\mathrm{CH}_{2} \mathrm{~S}^{-}, \mathrm{Cl}^{-}>\mathrm{CN}^{-}>\mathrm{Br}^{-}$.

Đối với các nucleophin không mang điện tích, tính nucleophin giảm từ trên xuống trong nhóm. Các nucleophin này không solvat hoá lớn và không thay dổi tính nucleophin lớn. Để giải thích trường hợp này, ta dùng quy tắc axit - bazơ cứng và mểm. Như proton là axit cứng, nhưng chất ban đầu ankyl là mếm, nên ankyl thích hợp cho nucleophin mềm hơn là proton. Những nucleophin lớn và phân cực hoá lớn (mểm) có hoạt tính tốt với cacbon ankyl hơn là proton.
d- Các nucleophin tự do luôn có tớc độ lớn hơn, như tốc độ tấn công của $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOC}\right)_{3} \mathrm{CC}_{4} \mathrm{H}_{4}{ }^{-} \mathrm{Na}^{+}$trong benzen tăng khi thêm chất mới như 1,2-dimetoxyetan, để solvat đạc biệt ion Na^{+}dể cho anion tự do nên tốc độ phản ưng tăng.

Về mặt lập thể, thể tích của Nu tāng làm mất ổn định trạng thái chuyển, do dó giảm khả năng phản ứng:

Khi đưa nhóm thế vào vị trí α của pyridin, làm tăng mật độ electron ờ trung tâm phản ứng của Nu , đồng thời tāng khó khān lập thể cho sự ương tác Nu với trung tâm phản ứng chất ban dầu nên làm giâm phản ứng, nhưng yếu tố sau thực tế có giá trị lớn hơn. Khi tãng thể tích của gốc trong dẫn xuất ban đầu lại tăng khó khān lập thể của phản ứng, nên phản ứng giảm khi tăng khó khăn lập thể từ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHI}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}>\mathrm{CH}_{3} \mathrm{I}$. Nếu đưa hai nhóm thế vào vị trí α thì Nu không còn có khà nảng tham gia phàn ứng.

Về mặt electron, khi chuyển từ chất ban dầu sang trạng thái chuyển, nếu là Nu^{-}thì diện tịch âm của Nu trong phức giảm, nếu Nu là phân tử trung hoà thì Nu trong phức xuất hiện diện tích dương:

$$
\begin{aligned}
& \mathrm{R}-\mathrm{Z}+\mathrm{Nu}^{-} \rightarrow\left[\mathrm{Nu}^{\delta-} \ldots \mathrm{R} \ldots . \mathrm{Z}^{\delta-}\right] \rightarrow \mathrm{R}-\mathrm{Nu}+\mathrm{Z}^{-} \\
& \mathrm{R}-\mathrm{Z}+\mathrm{Nu} \rightarrow\left[\mathrm{Nu}^{\delta+} \ldots \mathrm{R} \ldots . . \mathrm{Z}^{\delta-}\right] \rightarrow \mathrm{R}-\mathrm{Nu}^{+}+\mathrm{Z}^{-}
\end{aligned}
$$

Đưa nhóm thế hút electron vào Nu làm ổn định hơn trạng thái chuyển, do đó tốc độ giảm, đưa nhóm thế cho electron thì ngược lại. Như vậy, phản ứng $S_{\mathrm{N}} 2$ cần phải đạ̣c trưng bằng giá trị ρ âm:

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+\mathrm{ArO}^{-} & \rho=-0,99 \\
\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{I}+\mathrm{N} & \rho=-2,94
\end{array}
$$

Các Nu có nhóm thế hút electron có tính bazo giảm, đồng thời cung làm giảm khả năng phản ứng, chẳng hạn:

$$
\begin{array}{ccccc}
\mathrm{Nu}= & \mathrm{NO}_{3}{ }^{-} & \mathrm{CH}_{3} \mathrm{COO}^{-} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-} \\
k_{\mathrm{td}} & =1 & 20 & 400 & 1000
\end{array}
$$

Khi đưa nhóm thế cho electron, tính bazơ của Nu tång làm tảng khả năng phản ứng, song mối tượng quan này không có tính chất chung cho mọi Nu và chỉ so sánh dược khi các Nu cùng có điện tích âm ở cùng một nguyên tố. Khi dưa nhóm thế cho electron vào Nu, một mặt làm tāng diện tích âm ở Nu làm tāng tương tác Coulomb, mạ̃t khác cūng làm tāng tương tác obitan vì ($E_{\mathrm{Nu}}-E_{\mathrm{C}^{*}}$) giảm, năng lượng tương tác chung của $N u$ với trung tãm phản úng tāng làm tāng tốc độ phản ứng.

Khi so sánh khả năng phản ứng của các halogen, khà nāng phản ứng thay dồi theo thứ tự: $\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{F}^{-}$, nghìa là không tương quan với tính bazơ mà có thể giải thích bằng tînh nucleophin. Trong trường hợp này, tương tác Coulomb giảm từ F dến I vì thể tích tảng từ F dến I . Mặt khác, theo MO , tương tác obitan tãng vì nảng lượng obitan không liên kết tāng từ F dến I , nẻn tương tăc obitan nucleophin với obitan phản liên kết của trung tâm phản ứng lạj tãng tùr F đến I :

Nu Chát ban đầu
Trong phản ứng $S_{\mathrm{N}} l$, tốc độ không phụ thuộc vào nồng độ và bản chất của Nu nhưng ở nồng độ rất cao của Nu , phản ứng $S_{N} /$ có chể chuyển qua $S_{N} 2$ và ở đây phản ứng lại phụ thuộc vào nống dộ và bản chất của Nu, nghĩa là phụ thuộc vào tính nuclcophin của Nu .

Trong phản ứng $S_{N} 2$, tác nhân Nu tấn công vào trung tâm phản ứng bằng khả nāng dưa cặp electron tham gia vào lièn két với cacbon hay nguyên tử khác có ảnh hương tới tốc dộ phàn ưng (khác với tính bazơ là ảnh hưởng tới cân bằng). Khả năng đó gọi là tính nucleophin.

Tính nucleophin thường thay dổi từ phản ứng này tớl phản ứng khác nên khong có thang tuyệt dối. Có nhiều nhán tố ảnh hưởng tới tính nucleohpin nhưng chủ yếu gồm các nhân tố sau:
a- Näng lượng solvat cỉa Nu cao làm giảm nảng lượng trạng thái cơ bủn so với trạng thái chuyển có điện tích giải toả hơn.
b- Lực liên kết của Nu với obitan $2 p$ của C bằng liên kết bển hơn thì trạng thái chuyển bền hơn (có nång lượng thấp) nên tảng tốc độ phản ứng thế.
c- Thể tích Nu lớn làm giảm tốc dộ vì trạng thái chuyển là hình tháp tam giăc kép.
d- Nguyên tử tấn công vào trung tâm phản ứng cưa Nu có dộ âm diện lớn giữ chặt electron hơn nén cẩn phải có nāng lượng lớn hơn dể đạ! trạng thái chuyển.
e- Đọ̉ phân cực hoá lớn làm dể dàng biến dạng đám mây electron ngoài nên tương tác ốn định trong trạng thái chuyển hơn.

Bẳng thực nghiệm, tính nuclcophin đượe xác dịnh theo phương trình của Swain và Scott:

$$
\lg \left(k / k_{0}\right)=n s
$$

với n - hằng số nucleophin; s - độ nhạy chỉ phụ thuộc chất ban đầu và điểu kiẹ̀n phán ứng, dặc trưng cho độ nhạy của quá trình khi thay dổi nucleophin, k - hằng số tốc độ Nu nghiẻn cứu với $\mathrm{CH}_{3} \mathrm{I}, k_{0}$ - hằng số tốc độ của $\mathrm{CH}_{3} \mathrm{I}$ (với Nu là $\mathrm{H}_{2} \mathrm{O}$), hiện nay dùng $\mathrm{CH}_{3} \mathrm{O}^{-}$trong $\mathrm{CH}_{3} \mathrm{OH} \dot{\circ}{ }^{2} 25^{\circ} \mathrm{C}$.

Bảng 5.9. Giá trị $/ 2$ của một số nucleophin

Nucleophin	n	Nucleophin	n	Nucleophin	n
$\mathrm{H}_{2} \mathrm{O}$	1	SCN^{-}	4,4	$\mathrm{~F}^{-}$	2,0
$\mathrm{NO}_{3}{ }^{-}$	1,03	$\mathrm{~N}_{3}{ }^{-}$	4,0	$\mathrm{~N}_{3}{ }^{-}$	4,0
Cl^{-}	2,7	HO^{-}	4,2	CN^{-}	5,1
Br^{-}	3,5	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	2,7	SH^{-}	5,1
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$	3,5	I^{-}	5,0	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4,5

Từ phương trình trên, xác định $n=\lg \left(k / k_{0}\right)$ nhưng hằng sö n dùng hạn ché vì thay đối phư thuộc vào các quá trình khác nhau và các dung môi khác nhau. Sự liên quan giữa tính nucleophin và tính bazơ phụ thuộc dung môi.

Tính nucleophin thay dổi song song với tính baza:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{NO}_{3}^{-} \\
& \mathrm{HO}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{CCl}_{3} \mathrm{COO}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3}^{-}
\end{aligned}
$$

Tính song song này chí có dối với những Nu có trung tâm phản ứng ờ trên cùng một nguyên tử, chẳng hạn cùng là O, conn néu cấu trúc của các Nu khác nhau nhiểu, tính bazo không phải là nhân tố dộc nhắt xác định tốc dộ phản ứng và tính nucleophin thay đổi rất mạnh trong các dung mój khác nhau. Chā̉ng hạn trong dung môi proton, tính bazơ thay dối theo this tu :

$$
\mathrm{HO}^{-}>\mathrm{CN}^{-}>\mathrm{HS}^{-}>\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}
$$

con tính nucleophin thay đổi theo thứ tự sau:

$$
\mathrm{HS}^{-}>\mathrm{CN}^{-}>\mathrm{I}^{-}>\mathrm{HO}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{I}^{-}
$$

Trong dung môi aproton, tính bazo và tính nculeophin trùng nhau, còn trong dung môi proton thì hầu như ngược nhau. Điểu này có liên quan tới khả năng đesolvat hoá của Nu khi tiếp cận tới trung tâm phản ứng (nghia là sự thay đổi solvat hoá của tác nhân) và phụ thuộc vào độ phân cực hoá của tác nhân. Trong dung môi proton, anion thường dược ổn định bằng liên kết hyđro, song sự̂̉n định này quan trọng dối với các anion kích thước nhỏ do điện tích âm của anion nhỏ dược phân bố trên thể tích nhỏ, nên cần dung môi solvat dể điện tích âm dược phan bố trên thể tích lớn hơn làm giảm nãng lượng ion, còn các anion lớn có điện tích âm phân bố trên thể tích lớn nên không cần ổn dịnh bẳng dung mói.

Hinh 5.8. Sự phân bố diện tích âm trên anion thể tích nhỏ (a) và ở màng solvat cûa anion thể tích lớn (b)

Các anion thể tích nhỏ dược solvat bà̀ng dung môi tạo nĉn tiểu phân có diện tích âm phân bố trên một thể tích lớn của màng solvat. Khi tham gia phản ứng nucleophin, anion này cẩn một nāng lượng dể giải phóng các phân tử dung môi lớn hơn các anion kích thuớc lớn. Như vậy, trong dung mối proton, tính nucleophin của các anion kích thước nhỏ giảm hơn là anion thể tích lớn.

Tính nucleophin thường giảm theo đường chéo trong hẹ́ thống tuần hoàn, túc là theo độ âm điện:

$$
\begin{aligned}
& \mathrm{HO}^{-}>\mathrm{F}^{-} ;\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{P}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~S} \\
& \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Se}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}
\end{aligned}
$$

cūng có ngoại lệ: $\quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{P}>\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{As}>\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
Tính nucleophin thay dồi bất thường khi trong tác nhân nucleophin có nguyên tử chứa cặp electron tự do ở vị trí α đối với nguyên tử tấn công của Nu . Chẳng hạn, tính nucleophin cua: $\quad \mathrm{HOO}^{-}>\mathrm{HO}^{-} ; \mathrm{H}_{2} \mathrm{NNH}^{-}>\mathrm{NH}_{2}^{-}$

Sự tảng tính nuclcophin này gọi là hiệu ứng α.
Có thể giải thích hiện tượng này bằng cạ̣p electron n trong Nu làm mất ổn dịnh Nu ở trạng thái cơ bản do lực đẩy của n, nhưng khi liếp cận tới trung tâm phản ứng thì sự mất ổn định này bị giảm, hoạ̀c do sự chuyển electron từ dị tố tới trung tâm làm ổn định trạng thái chuyển.

Theo thuyết MO, khi ở vị trí α của tác nhân Nu có cạ̣p electron n, như $\mathrm{HOO}^{-}, \mathrm{ROO}^{-}$, $\mathrm{H}_{2} \mathrm{NNH}^{-}$, khả năng phản ứng cao hơn giá trị tính từ tính bazơ và độ phàn cực hóa. Thuyét MO kích thích cho rà̀ng, sự tương tác của obitan không liên kết của trung tâm phản ứng của Nu với cặp electron tự do n của nguyên tử α bèn cạnh làm thay dổi năng lượng obitan. Sự tương tác này tạo nên hai obitan bị chiếm có năng lượng khác nhau. Tương tác obitan bây giờ không phải giữa obitan σ^{*} với obitan không liên kết của Nu mà với obitan MO mới, trong đó sự khác nhau giữa obitan σ^{*} với obitan bị chiếm năng lượng cao nhỏ hơn, do đó tăng tương tác obitan làm tốc độ tăng.

4- Ảhh hương cỉa dung môi trong $S_{N} 2$

Ảnh hưởng của dung môi tới khả nãng phản ứng thể hiện ở hằng số điện môi, trong đó các dung môi phân cực solvat hoá tốt những trạng thái chuyển có điện tích định chồ khi so sánh giữa chắt ban đầu và trạng thái chuyển. Có thể phân chia phản ứng $S_{\mathrm{N}} 2$ theo các loại sau:

$$
\text { a- } \begin{aligned}
& \mathrm{R}-\mathrm{Z}+\mathrm{Nu} \rightarrow\left[\mathrm{Nu}^{\delta+} \ldots \mathrm{R} \ldots \mathrm{Z}^{\delta-}\right] \rightarrow \mathrm{R}-\mathrm{Nu}^{+}+\mathrm{X}^{-} \\
& \mathrm{R}-\mathrm{Br}+\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3} \rightarrow \mathrm{RN}^{+}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{Br}^{-}
\end{aligned}
$$

Dung mo̊i:	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$
$\varepsilon \quad:$	2,2	5,6	35	49
k. $10^{5} .1 / \mathrm{mol} . \mathrm{s}:$	40,8	91	1380	12000

Trạng thái chuyển phân cực hơn, ốc dộ tăng khi tăng tính phân cực của dung môi, nghĩa là tính phân cực của hệ tăng nên làm tãng khả nảng solvat hoá của dung môi. Dung môi phân cực thuận lợi cho trạng thái chuyển hơn.
b-

$$
\begin{aligned}
& \mathrm{Nu}^{-}+\mathrm{R}-\mathrm{Z} \rightarrow\left[\mathrm{Nu}^{\delta-} \ldots \mathrm{R} \ldots \mathrm{Z}^{\delta-}\right] \rightarrow \mathrm{R}-\mathrm{Nu}+\mathrm{Z}^{-} \\
& \mathrm{R}-\mathrm{Br}+\mathrm{HO}^{-} \rightarrow \mathrm{ROH}+\mathrm{Br}^{-}
\end{aligned}
$$

Trạng thái chuyển giải toả điện tích âm hơn, hệ có sự giảm tính phân cực làm yếu khả nāng solvat hoá, nên tốc dộ giảm khi tăng tính phân cực của dung môi:

Trạng thái chuyển có sự giải toả diện tích dương hơn, dung môi solvat chất ban đầu tốt hơn trạng thái chuyển nên tốc độ giảm khi tăng tính phân cực của dung môi.

$$
\begin{aligned}
& \mathrm{d}-\quad \mathrm{Nu}^{-}+\mathrm{RZ}^{+} \rightarrow\left[\mathrm{Nu}^{\delta-} \ldots \mathrm{R} \ldots \mathrm{Z}^{\delta+}\right] \rightarrow \mathrm{R}-\mathrm{Nu}+\mathrm{Z}: \\
& \mathrm{RN}^{+}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{I}^{-} \rightarrow \mathrm{RN}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CH}_{3} \mathrm{I} \\
& \\
& \left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}^{+}+\mathrm{HO}^{-} \rightarrow\left[\mathrm{HO}^{\delta-} \ldots \mathrm{CH}_{3} \ldots \mathrm{~S}^{+}\left(\mathrm{CH}_{3}\right)_{2}\right] \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}
\end{aligned} \text { \% hàm lượng } \mathrm{H}_{2} \mathrm{O} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \begin{array}{cccc}
0 & 20 & 40 & 100 \\
k_{\mathrm{ta}}: 20000 & 480 & 40 & 1
\end{array}
$$

trung hoà điện tịch khác dấu nên giảm tốc độ khi tāng tính phân cực của dung môi.
Khi xét ảnh hưởng của dung môi, thường so sánh khà nāng solvat hoá của dung môi với chất ban đầu và trạng thái chuyển, chẳng hạn trong phản ứng:

$$
\mathrm{Nu}^{-}+\mathrm{RZ} \rightarrow\left[\mathrm{Nu}^{\delta-} \ldots \mathrm{R} \ldots \mathrm{Z}^{\delta-}\right] \rightarrow \mathrm{RNu}+\mathrm{Z}^{-}
$$

Trong chất đầu, điện tích âm định chồ ở Nu^{-}nên được ổn định lớn bằng dung môi hơn là trạng thái chuyển có điện tích âm phân bố trên hai nguyên tử được dung môi solvat ít hơn. Khi tãng độ phân cực của dung môi, khả năng solvat hoá chất ban đầu tâng lớn hơn là trạng thái chuyển, nghīa là tāng thêm sự khác nhau vể nảng lượng hoạt hoá. Trong phản ứng trẻn, tãng độ phân cực của dung môi là tăng năng lượng hoạt hoá và giảm tổc dộ phản ứng.

Ảnh hưởng của dung mói rất phức tạp, song cần chú ý rằng, vai trò quan trọng của dung môi là solvat hoá điển hình (hay đặc biệt) và solvat khuếch tán mà solvat đạ̣c biệt dùng dể so sánh các phản ứng lưỡng phân tử giữa dung môi aproton lưỡng phân cực và dung môi proton. Sự solvat hoá điển hình quan trọng là sự tạo thành liên kết hyđ̛o của dung môi với tiểu phân phản ứng.

Hinh 5.9. Ảnh hưởng của dung môi trong phản úng $S_{N} 2$

Trong các dung môi aproton thường không có solvat hoá diển hình bà̀ng liên kết hydro với tiểu phân nên thường làm tāng tớc đọ phản ứng hơn là dung môi proton. Chẳng hạn, tốc độ tương đối của phản ứng của $\mathrm{CH}_{3} \mathrm{I}+\mathrm{Cl}^{-}$trong các dung môi khác nhau:

| $k_{10}=$ | $\mathrm{CH}_{3} \mathrm{OH}$ | HCONH_{2} | $\mathrm{HCONHCH}_{3}$ | $\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}$ |
| :---: | :---: | :---: | :---: | :---: | $\mathrm{CH}_{3} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$

Sự thay đổi tốc độ đi từ dung môi proton tới dung môi aproton cũng liên quan tới kích thước của anion tấn cóng. Ion nhỏ solvat tốt hơn trong dung môi proton vì lièn kết hydro có tầm quan trọng trong dó, ion lớn solvat tốt hơn trong dung môi aproton (dung môi proton có cấu trúc phát triển cao hơn do lièn kết hydro, dung môi aproton có cấu trúc lỏng lẻo hơn nên dể cho ion lớn). Tốc đọ̀ tấn công của anion nhỏ tãng lớn hơn do thay dổi từ proton tới aproton.

Đối với nhiều phản ứng, tốc độ $S_{\mathrm{N}} /$ đi lên, $S_{\mathrm{N}} 2$ đi xuống trong dung mối tāng tính phân cực, điều đó có thể là cùng một phàn ứng nhưng trong dung môi này là $S_{\mathrm{N}} /$, trong dung môi khác là $S_{\mathrm{N}} 2$.

Bảng 5.10. Tốc độ ion hoá tương đối của p-metoxyneophyltoluensunfonat trong các dung mồi khác nhau

Dung mói	Tóc đọ tưong dói	Dung mói	Tôc đọ tưong đói
HCOOH	153	$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	0,020
$\mathrm{H}_{2} \mathrm{O}$	39	Pyridin	0,013
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O} 80 \%$	1,85	Axeton	0,0051
$\mathrm{CH}_{3} \mathrm{COOH}$	1,00	$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$	$6.7 .10^{-4}$
$\mathrm{CH}_{3} \mathrm{OH}$	0,947	Tetrahydrofuran	$5,0.10^{-4}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	0.370	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	$3,0.10^{-5}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$	0,108	CHCl_{3})	
Axit octanoic	0,043	Benzen $\}$	rắt nhỏ
$\mathrm{CH}_{3} \mathrm{CN}$	0,036	Ankan	
$\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}$	0,029		

Sự tảng tốc độ khi dùng các dung môi amit là do không có solvat diển hình bằng liên kết hyđro với anion clo so với dung môi metanol. Do dó, có thể nói, sự giảm solvat điển hình của nucleophinn là nguyên nhân chính để xúc tiến phản ứng lưởng phân từ giữa anionphån tử trong dung môi lưỡng cực. Loại phàn ứng phân tử - phân tử cũng dược xúc tiến bằng dung môi lưỡng cực aproton do solvat khuểch tán trạng thái chuyển bằng dung môi.

Những nucleophin có tính bazơ nhỏ có khả năng phản ứng nhỏ trong dung môi proton là do solvat điển hình mạnh, nhưng khi chuyển qua dung môi aproton lưỡng cực không có solvat điển hình nên tãng khả nāng phản ứng, đạ̣c biệt là nucleophin nhỏ. Do đó, tỉnh nucleophin khác nhau trong các dung môi khác nhau. Chā̉ng hạn, tính nucleophin của các halogen trong các dung mói proton là $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}<\mathrm{I}^{-}$, còn trong dung mời aproton thì ngược lại.

Sự thay đối khả nāng phản ứng của Nu cũng có thể vì Nu có thể tồn tại ở dạng jon hay cặp ion. Sự liên kết của Nu trong cặp ion làm giảm khả nāng phản ứng. Cũng như từ phương trình của Edward đọ̣ phạn cực hoá và solvat hoá của Nu thay dới theo hướng ngược nhau: thê tích anion càng lớn, tính phân cực hoá càng lớn, tính solvat càng nhỏ.

Sự khác nhau của Nu là khả năng solvà hoá của Nu , đóng góp lớn vào năng lượng hoạt hoá chung của phản ứng nucleophin.

Các dung môi đầu thuận lợi cho $S_{\mathrm{N}} /$ nhưng có dung môi có khả năng ion hoá cao hơn vì có tính nucleophin rất nhỏ tốt cho S_{N} I như $1,1,1$-trifloetanol $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, 1,1,1,3,3,3-$ hexaflo-2-propanol $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}$.

Tính phân cực dung môi ành hưởng dến tốc dộ $S_{\mathrm{N}} I$ và $S_{\mathrm{N}} 2$. Lực ion của dung môi có hiệu ứng nhỏ. Nói chung, khi thèm muối ngoài vào làm cho tốc dộ $S_{\mathrm{N}} I$ và $S_{\mathrm{N}} 2$ tăng cùng một cách trong dung môi phân cực tuy không có dịnh lượng, các muối khác nhau có hiệu ứng khảc nhau. Trừ ngoại lệ, tốc dộ $S_{\mathrm{N}} l$ thường tãng khi thêm muối (hiệu ứng muối), thẻm ion của nhóm đi ra làm giảm tốc dọ̀ (hiệu ứng ion chung). Khi thêm muối, tốc độ $S_{\mathrm{N}} /$ xúc tiến lớn khi có ion do có khả nāng đấy nhóm đi ra như ion $\mathrm{Ag}^{+}, \mathrm{Hg}^{+}, \mathrm{Hg}_{2}{ }^{2+}$ và H^{+}đẩy F (do liên kết hyđ̛ơ). Các halogenua bậc nhất theo $S_{N} l$ khi có ion kim loại do dó tìm thấy halogenua ankyl phản ứng với AgNO_{2} hay AgNO_{3} theo $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$ phụ thuộc diều kiện phản ứng.

5. Xúc tác chuyển pha và siêu àm

Trong phản ứng thế nucleophin, chất ban đầu thường khōng tan trong nước và dung mói phân cực khác, còn nucleophin là anion nên thường tan trong nước nhưng không tan trong chất ban dầu hay dung môi hựu co khác, do đó nồng độ ở trong cùng một pha thấp không đủ cho tốc dộ của phản ứng. Để giải quyết khó khān đó, thường dùng dung mōi hoà tan dược cả hai tiểu phân như dùng dung mòi aproton phân cực hoặc dùng xuíc tác chuyến pha.

Theo phương pháp này, xúc tác chuyển nucleophin từ pha nước di vào pha hữu cơ. Chẳng hạn, khi đun nóng và khuấy đơn giản hổn hợp hai pha của 1 -clooctan với dung dịch NaCN trong vài ngày không thu được 1 -xyanooctan, nhưng nếu thêm một lượng nhó muôi amoni bậc bớn thì sản phẩm hình thành sau 2 giờ. Có hai loại xúc tác chuyển pha, mặc dầu hoạt dộ của hai loại khác nhau nhưng đọ hiệu dụng như nhau. Cả hai đều chuyĉ̉n anion vào pha hữu cơ và cho phép một phần tương đối tự do phản ứng với chất ban đầu.

a-Muöi amoni hay photphoni bạc bôn

Như trong trường hợp phản ứng trên của NaCN , nếu phản ứng không có xúc tác thì không xáy ra vì ion CN^{-}không thể đi vào bể mặt phân chia giữa hai pha và nồng dộ rất thẩp. Ion Na^{+}bị solvat bởi nước và nàng lượng solvat này không có trong pha hữu cơ. Ion CN^{-} không thể đi vào mà không có ion Na^{+}vì nếu không thì tính trung hoà diện của mổi pha bị phả huỷ. Ngược với ion Na^{+}, ion muối amoni $\left(\mathrm{R}_{4} \mathrm{~N}^{+}\right)$hay photphoni $\left(\mathrm{R}_{4} \mathrm{P}^{+}\right)$bậc bốn có gốc

R đủ lớn nèn kém dược solvat bởi nước mà lại thích hợp cho dung môi hữu cơ. Nếu một lượng nhỏ muối đó dược thêm vào, sẽ có ba cân bằng:

Ion Na^{+}giữ trong pha nước không thể vượt qua. Ion Q^{+}có thể di vào bề mạt phân chia hai pha kéo theo cả ion CN^{-}, ở thời diểm ban đấu của phản ứng, anion chính là có CN^{-}, di vào pha hữu cơ (cân bằng 1) để phản ứng với RCl cho RCN và ion Cl^{-}. Ion Cl^{-}có thể di vào pha nước (cân bẳng 2). Ở trong pha nước có cân bằng 3 cho phép tái sinh ra $\mathrm{Q}^{+} \mathrm{CN}^{-}$. Tảt cả các cân bằng này bình thường xảy ra nhanh hơn phản ứng 4 là giai doạn quyết định tốc độ.

Trong một số trường hợp, ion Q^{+}có tính tan thấp trong nước nhưng hầu như tất cả ở trong pha hữu cợ. Trong một vài trường hợp, sự trao đởi ion (cân bằng 3) xảy ra trên bề mạat hai pha và cơ chế này gọi là cơ chế trên bề mặt hai pha, hay trên bề mặt phân chia hai pha, chẳng hạn như ion HO^{-}lấy proton từ chất ban đâu hữu cơ. Trong cơ chể này, ion HO^{-}ở trong pha nước và chát ban đầu trong pha hữu cơ, sự đeproton hoá xảy ra trên bề mặt hai pha.

b- Ete crown là các cryptand

Một số cryptand có ái lực với một số cation, chẩng hạn KCN chuyển thành muối mới với dixyclohexano-18-crown-6, tuy anion là như nhau nhưng cation là một tiểu phân có thể tích lớn hơn, diện tích dương dược phân bớ trên một thể tích lớn hơn:

Cation lớn này kém tan trong nước hơn K^{+}nhưng lại có ái lực lớn với dung môi hữu cơ. Nói chung, KCN không tan trong dung môi vô cơ, các muối cryptat tan nhiểu hơn. Trong trường hợp này, ta thêm muối vào dung môi hữu cơ, các cryptand này làm tăng tốc độ phản ứng dối với nucleophin là $\mathrm{F}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{CN}^{-}$.

Cả hai loại xúc tác trên là nhà̀m đưa anion vào pha hữu cơ nhưng còn có một nhân tố quan trọng khác. Các muối natri và kali của nhiểu anion, nếu tan trong dung môi hữu cơ thì phản ứng cūng rất chậm (trừ trong dung mổi aproton phản cực), vì trong dung môi này anion ở dạng cặp ion với Na^{+}và K^{+}mà không được tự do tấn công vào chất ban dầu. Trái lại, các ion bậc bốn hay ion cryptat dương kém khà nảng tạo cặp ion hơn nhiểu nên có khả nāng tự do tấn công vào chất ban đẩu cao hơn, có khi người ta coi như là anion "trần".

Một ky thuật khác làm tảng tớc độ phản ứng là dùng siêu âm. Kỹ thuạt của phương
pháp này là cho hổn hợp chất phản ưng chịu tác dụng của sóng âm thanh năng lượng cao, thường là 20 kHz hay cao hơn. Khi có sóng này di qua hỗn hợp có sự hình thành các bọt nhỏ (cavitation). Sự phá vỡ các bọt này gây ra những sóng va chạm mạnh làm tảng mạnh nhiệt độ và áp suất ở vùng đó nèn làm tăng tớc độ phản ứng.

Phương pháp này không những tăng hiệu suất phản ứng mà còn thực hiện phản ưng ở nhiệt độ thấp, loại trừ dược sản phảm phụ. Phương pháp dùng tốt nhất cho những phản ứng mà chất trung gian là các góc tự do.

5.2.3. Tác nhân lưỡng chức

Một vài tác nhân Nu có hai trung tâm nucleophin, nghīa là có hai hay nhiểu nguyên từ có cạ̉p electron không liên kết và có nhiểu công thức cộng hưởng từ các cặp electron ấy. Các tác nhân này gọi là nucleophin lưỡng chức hay da trung tâm. Trong trường hợp này, có thể có chọn lọc vị trí cho nhiều sản phẩm khác nhau. Chả̉ng hạn:

Thường có những nucleophin sau:
1-Ion nitrit cho este nitrit RONO và nitro RNO_{2}.
2-Ion CN^{-}cho nitrin RCN và isonitrin RNC.
3- Ion phenoxit (tương tự enol) cho sản phẩn C-ankyl và O -ankyl hoá:

4 -Ion loại $-\mathrm{CO}^{-} \mathrm{CR}-\mathrm{CO}-$ là những ion có cấu trúc cộng hường:

nên có thể tấn công vào cacbon no hay oxy:

Nếu ion không đối xứng cho ba sản phẩm C-ankyl hoá và hai sản phẩm O -ankyl hoá. 5- Ion thuộc loại hợp chất $\mathrm{CH}_{2} \mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CO}$ tách hai proton cho dicacbanion:

Cūng có hai khả năng tấn công ở hai cacbon trong dó ưu tiên vào cacbon bazơ hơn. Họ̣p chắt trên có hyđro ở cacbon giữa hai nhóm CO axit hơn, còn anion có nhóm CH kém bazơ hơn CH_{2} tấn còng vào chất ban dầu. Trong trưòng hợp này có thể thự hiện theo ý muốn thế ở một cacbon hay hai cacbon. Nếu muốn phân cắt proton ở vị trí đã cho thì dùng nucleophin có nhóm có tính axit mạnh hơn trong phân tử mà có thể phân cắt cả hai proton, nếu cẩn tấn công vào một vị trí dùng ion có tính axit yếu hơn. Chả̉ng hạn, etylaxetoaxetat có thể ankyl hoá ở metyl hay metylen:
6. Cacbanion từ hợp chất nitro $\mathrm{R}_{2} \mathrm{C}^{-}-\mathrm{NO}_{2}$ cho este nitronic không bền phân huỷ cho andehit hay xeton:

Ngoài ra còn nhiều tác nhân lưỡng chức khác.
Các phản ứng của tác nhân lưỡng chức phụ thuộc vào chất ban đâu và điều kiện phản ứng, nhưng thông thường là các trung tâm âm diện hơn sẽ ưu tiên cho tấn cơng. Khi sản phả̉m là khớng chế nhiệt dộng học thì sân phẩm chính là một trong các nguyên tử có tính bazơ cao hơn bị tấn cồng $\mathrm{C}>\mathrm{N}>\mathrm{O}>\mathrm{S} \ldots$...) còn khi sản phả̉m khống chế dộng học thì phương pháp dơn giản hơn.

Để tổng quát hoá, có thể dựa vào tính phân cực hoá của nucleophin (tính cứng và mềm) và hiệu ứng dung môi.
a- Theo quy tác axit hay bazơ cứng và mềm, axit cứng thích bazơ cứng hơn, axit mềm thích bazơ mềm hơn. Trong cơ chế $S_{N} I$, nucleophin tấn công vào cacbocation là axit cứng, trong $S_{\mathrm{N}} 2$ nucleophin tấn công vào cacbon là axit mềm. Nguyên tữ âm điện hơn của tác nhân lưỡng chức là bazơ cứng hơn nguyên tử kém âm điện hơn.

Khà nång phàn ứng của những nucleophin này dựa theo quy lắ 2 Kornblum:

- Ở phản ứng S_{N} l, cacbocation ưu tiên phàn ứng với trung tâm nucleophin có mật độ electron lớn hơn (nghīa là với nguyên tử có độ âm điện lớn hơn).
- ở phản ứng $S_{N^{2}}$, trung tâm phản úng tác dụng với trung tâm nucleophin có tính nucleophin lớn hơn (nghīa là có đọ̣ phân cực hoá lớn hơn).

Như vạy có thể nói trong phàn ứng $S_{\mathrm{N}} I$, cacbocation phàn ứng với Nu có mạt dộ electron lớn nhất, trong $S_{\mathrm{N}} 2$ với Nu có mạt độ electron nhỏ nhất và khi thay đổi cơ ché́ có thể thay dới khả năng phàn ưng của hai trung tâm trong nucleophin.

Có thể giài thích bằng cơ chế, chẳng hạn ở phản ưng trên xảy ra theo cơ ché $\mathrm{S}_{\mathrm{N}} 2$, sản phẩm cuối cùng khác nhau do hình thành những trạng thái chuyển tiếp khác nhau.

Trong ba trạng thái chuyển $S_{\mathrm{N}} 2$ có thể có ở trên, trạng thái chuyển giống $S_{\mathrm{N}} l$ có nguyển tử C trung tâm có mật độ electron nhỏ nhất, tức diện tích dương lớn nhất, do dó tác nhân tấn công cần có mật dộ electron lớn nhất, tức là O trong phản ứng trên khi dûng AgNO_{2}. Theo thuyết MO , khi tảng diện tích dương ở C trung tâm chất ban dầu, phảa ứng là khống chế điện tích và tớc độ tương đới trong quá trình phụ thuộc vào tổng điện tích trén các nguyên tử (C và O) bởi vì điện tích âm ở O lớn hơn nên phản ứng là tạo liên kết $\mathrm{C}-\mathrm{O}$.

Trong cơ ché đồng bộ, phản ứng do tấn cóng của trung tâm có mạt dộ electron nhỏ nhất, tức là N ở phản ưng trên, có nghĩa là theo thuyết MO , điện tích ở trung tâm càng nhỏ thì vai trò tương tác obitan càng lớn, do đó nucleophin tương tác với nguyên tử có hệ số obitan phân tử ở nguyên tử có độ âm diện nhỏ. Chả̉ng hạn phản ứng:

Theo quy tắc trên, phản ứng $S_{\mathrm{N}} I$ cho sàn phẩm O -ankyl hoá là chủ yếu do tương tác của C và O ở dạng enolat có diện tích âm lớn nhât, nghĩa là theo khóng chế điện tích, còn phản ưng $S_{\mathrm{N}} 2$ cho sản phẩm C -ankyl hoá là chính do tương tác của C có diện tích dương nhỏ với nguyên từ có hệ số cực đại của obitan bị chiếm có nảng lượng cao, nghīa là theo khống chế obitan.

Thực tế, phản ứng này phụ thuộc vào dung mơi, trong dung môi proton, nguyên tử O bị solvat hoá mạnh hơn trong khi C chưa bị solvat hoá nên sản phả̉m C -ankyl hoá tăng trong dung môi proton.

Cūng như trong phản ứng với ion $\mathrm{NO}_{2}{ }^{-}$, tỷ lệ sân phẩm nitrit và nitro thay đới phụ thuộc vào bản chất dung môi; với dung môi có khả nāng solvat kém thì ưu tiên cho sản phẩm nitrit, đồng thời cũng phụ thuộc vào cấu trúc chất ban đầu: với chất ban đâu có nhóm
hút electron tàng khả nāng tạo sản phẩm nitro. Chẳng hạn, trong p-nitrobenzyl bromua với nitrit bạc cho 84% hợp chất nitro và 16% hợp chất nitrit, còn p-metoxybenzyl bromua cho 38% hợp chất nitro và 61% hợp chất nitrit.
b- Tất cả các nucleophin mang điện tích dương có tổ hợp ion dương. Nếu có ion Ag^{+} (hay những ion khác có khả năng giúp đỡ cho nhóm đi ra) dẻ̉ hơn ion Na^{+}hay K^{+}làm cho trạng thái chuyển giống $S_{\mathrm{N}} 1$. Do đó hay dùng ion Ag^{+}dể kích thích sự tấn công vào nguyên lử âm điện hơn. Chảng hạn, ankyl halogenua tác dụng với NaCN cho RCN nhưng dùng AgCN thì cho RNC .
c- Trong nhiều trường hợp, dung môi ảnh hưởng đến vị trí tấn công. Nói chung, các nucleophin tự to thích tấn cỏng vào nguyên tử âm điện hơn, các ion bị bao vây bởi các phân tử dung môi hay ở tổ hợp ion thích tấn công vào nguyền tử kém âm điện hơn.

Trong dung môi proton, nguyèn tử âm điện hơn bị solvat bởi liên kết hyđ̛ơ hơn là kém âm điện hơn. Trong dung môi phân cực aproton, nguyên tử nào đó của nucleophin cūng bị solvat lớn, nhưng dung môi này rất hiệu dụng solvat cation nên đầu âm diện hơn sẽ tự do hơn bởi sự ngăn chặn của dung môi và cation, nên thay đổi từ dung môi proton tới dung môi phân cực aproton thường tăng khả năng tấn công vào nguyên tữ âm điện hơn. Chẳng hạn, sự tấn công của natri naphtyloxit vào benzyl bromua trong dimetylfomamit cho 89% O-ankyl hoá, con trong 2,2,2-trifloetanol cho 85% C-ankyl hoá. Sự thay dổi cation tir̀ Li^{+}tới Na^{+}hay K^{+}(trong dung môi không phân cực) cũng thích hợp cho O -ankyl hoá hơn C -ankyl hoá (do K^{+}dể cho nucleophin (ự do nhiều hơn Li^{+}), cūng tương tự như khi dùng ete crown solvat tốt cation. Ankyl hoá ở pha khí có nucleophin hoàn toàn tự do thì chỉ cho sản phẩm O-ankyl hoá, không có C-ankyl hoá.

Ngoài ra cũng có nguyèn nhán lập thể.

5.2.4. Chất ban đầu lưỡng chức

Nhiều chất ban đầu có nhiều vị trí hay trung tâm cho tác nhân nucleophin tấn công hay có hai nhóm đi ra, chẳng hạn như 1,3 -điclobutan, thường gọi là chất ban đầu lưỡng chức hay đa chức hoặc đa trung tâm. Các chức có thể giống nhau hay khác nhau ở các vị trí khác nhau (thường không đối xứng), trong trường hợp này có sự chọn lộ nhóm chức, đồng thời có sự chọn lựa vị trí.

Loại allyl thuộc loại này đả nói ở trên. Các loại khác thường gạap là các hợp chất epoxy cung như loai aziridin và episunfua.

Chà̉ng hạn hợp chất epoxit:

Phản ứng của epoxit xảy ra dưới diểu kiện trung tính hay bazo và thường theo $S_{\mathrm{N}} 2$. Hợ chất bậc nhất chịu sự tấn cong theo $S_{\mathrm{N}} 2$ dể hơn là bặc hai, các epoxit khóng döit xứng trong môi trường trung tính hay bazơ chịu sự tấn cong vào cacbon it thế hơn và đạc thì lập thể với sự nghịch đảo cấu hình ở cacbon đó. Trong điểu kiện axit, nhớm epoxit được proton hoá có khả nāng theo $S_{N} I$ hay $S_{N} 2$, phản ứng $S_{N} /$ thì cacbon bậc ba thich hợp hơn cho sự tấn công, nghìa là tấn công vào cacbon thé nhiều nhất. Khi epoxit proton hoá phàn ứng theo $S_{\mathrm{N}} 2$, nucleophin thường tấn cong vào vị trí thế cao hơn. Như vạy thay đổi môi trương axit hay bazo, thay đồi hướng mở vòng epoxy từ bazơ tới axit hay ngược lại.

Khi mở vòng của ancol 2,3 - epoxy khi có $\mathrm{T}\left(\mathrm{O}-\mathrm{O}, \stackrel{\mathrm{S}}{\mathrm{o}}-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}$ làm tảng tốc dọ̀ ở cá hai co chế và có tính chọn lựa vị trí, trong đó tấn công ở C_{3} dē hơn vào C_{2}.

Khi nhóm epoxy ngưng tụ với vòng xyclohexan thì phản ứng mở vòng $S_{\mathrm{N}} 2$ theo hướng mở vòng diaxial dể hơn diequatorial.

Các sunfat vòng tổng hợp từ diol phản ứng tương tự vòng epoxy nhưng tốc dộ nhanh hơn nhiều:

5.2.5. Quan hẹ̀ giữa $S_{N} I$ và $S_{N}{ }^{2}$

Hai cơ chể trên là hai giới hạn vể cơ chế, sự thay dổi giữa hai cơ chế phụ thuọc vào thể tích nhóm thế trong chất ban đẩu, hiẹ̉u ứng electron của nhóm thế, nhất là ảnh hường cưa tác nhân nucleophin và dung môi. Sơ dồ phức tạp là sự tương quan chuyến hoá giữa hai cơ chế, nhất là khi tốc dộ của $S_{\mathrm{N}} /$ và $S_{\mathrm{N}} 2$ trùng nhau.

Vể mặt hoả học lập thể, cơ chế $S_{N} /$ thường cho sản phảm raxemic hoá, $S_{\mathrm{N}} 2$ có sự quay cău hình do cấu trức của chât trung gian cacbocation và trang thái chuyển phói trí 5 , song trong thực tế, tînh hoá học lập thể không thu dược nghiêm ngặt như vậy.

Phản ứng $S_{\mathrm{N}} /$ và $S_{\mathrm{N}} 2$ chi là hai giới hạn, nói một cách nghiêm ngạt thì không có sự khác nhau giữa hai cơ ché đó và phản ứng có thể xày ra qua những cơ ché trung gian của hai ca ché dó.

Theo lngold và Hugges, hai cơ chë này là canh tranh song song với nhau hoặ là hôn hơp hai co ché hoạc là hai cơ chế chuyển hoá cho nhau qua những dạng trung gian ban đâu của hai cơ chế $S_{N} /$ và $S_{N^{2}} 2$.

Chảng hạn khi thủy phân 1-phenyletylclorua ở $70^{\circ} \mathrm{C}$ khi có $\mathrm{CH}_{3} \mathrm{ONa}$, bạc dộng học theo natri metylat là $3,5 \mathrm{M}$, phản ứng có 61% theo $S_{\mathrm{N}} 2,39 \%$ theo $S_{\mathrm{N}} /$. Phán ứng là hồn họ̣p của haí quá trình. Ingold và Ifugges cho rà̀ng, cacbocation tạo thành bị chắn theo $S_{N} /$.

Bảng 5.11. Khả nảng phản ứng $S_{\mathrm{N}} /$ và $S_{\mathrm{N}} 2$ (theo chiểu giảm khả nâng phản ứng từ trên xuống),

$$
\mathrm{Z}=\mathrm{RCO}, \mathrm{HCO}, \mathrm{ROCVO}, \mathrm{NHCO}, \mathrm{CN} \ldots
$$

$S_{N}{ }^{1}$	$\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{Ar}_{3} \mathrm{CX}$	$\mathrm{Ar}_{3} \mathrm{CX}$
$\mathrm{Ar}_{2} \mathrm{CHX}$	$\mathrm{Ar}_{2} \mathrm{CHX}$
RCOCH ${ }_{2} \mathrm{X}, \mathrm{RSCH}_{2} \mathrm{X}, \mathrm{R}_{2} \mathrm{NCH}_{2} \mathrm{X}$	$\mathrm{ArCH}_{2} \mathrm{X}$
$\mathrm{R}_{3} \mathrm{CX}$	$\mathrm{ZCH}_{2} \mathrm{X}$
$\mathrm{ArCH}_{2} \mathrm{X}$	$-\mathrm{C}=\mathrm{CCH}_{2} \mathrm{X}$
$-\mathrm{C}=\mathrm{CCH}_{2} \mathrm{X}$	$\mathrm{RCH}_{2} \mathrm{X}, \mathrm{RCHDX}, \mathrm{RCHDCH} H_{2} \mathrm{X}$
$\mathrm{R}_{2} \mathrm{CHX}$	$\mathrm{R}_{2} \mathrm{CHX}$
$\mathrm{RCH}_{2} \mathrm{X}, \mathrm{R}_{2} \mathrm{CCH}_{2} \mathrm{X}$	$\mathrm{R}_{3} \mathrm{CX}$
RCHDX	$\mathrm{ZCH}_{2} \mathrm{CH}_{2} \mathrm{X}$
$\mathrm{RCHDCH}_{2} \mathrm{X}$	$\mathrm{R}_{3} \mathrm{CCH}_{2} \mathrm{X}$
$-{ }_{-}^{-}={ }_{-}^{\prime} \mathrm{C} \times$	$-\mathrm{C}=\mathrm{CX}$
ZCH2X	ArX
$2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}$	Bixyclo-X-dẩu cầu
ArX	
[2.2.1]-Bixycio - \times (đẩu cấu)	

Cũng như thuỷ phân trong axeton nước 60% thu được sản phẩm ancol l-phenyletylic với 5% sản phẩm quay câu hình và 95% sản phấm raxemic hoả. Phản ứng hầu như theo $100 \% S_{\mathrm{N}} 1$, dề nghị rằng, ion cacboni tạo thành bị chắn từ phía diện của Cl^{-}đi ra, làm cho tốc dộ tấn công vể phía sau lớn hơn tấn công diện. Nếu chu kỳ tồn tại của cacbocation tăng lên, thời gian tấn công của Nu lớn, thì mức dọ̣ raxemic hoá tảng lên. Ion cacboni kém bền, thời gian giữa sự tạo thành và tấn cỏng của Nu nhỏ, tỷ lệ quay cấu hình tãng.

Quan điểm về sự cạnh tranh giữa hai cơ chế, đa số các nhà hoá học cho rà̀ng $S_{N} /$ và $S_{\mathrm{N}} 2$ là giới hạn, giữa chúng có trường hợp trung gian. Trong $S_{\mathrm{N}} l$, tương tác hoai trị của Nu và chất ban đầu không có trong trạng thái chuyển và không tham gia vào sự phân cắt liên kết giữa trung tâm và nhóm di ra, còn ở $S_{\mathrm{N}} 2$ thì sự tạo thành liên két với Nu ngoài phải từ rắ xa, giữa hai trữ̀ng hợp đó có mức độ tương tác hoá trị trung gian ở mức dọ̉ khác nhau giữa chât ban đầu và Nu.

Theo Dering và Sykes, sự ion hoá $\mathrm{R}-\mathrm{Z}$ tạo thành cacboni phẳng, ion này xuất hiện sau trạng thái chuyẻn sê không phẳng mà nà̀m trung gian giữa tứ diện và phả̉ng. Ion cacboni càng bền, nàng lượng trạng thái chuyển dể hình thành ion càng thấp, cacbon trong trạng tháa càng tứ diện.

Trạng thái chuyển xảy ra sớm hơn sẽ tứ diện hơn là trạng thái chuyển xảy ra muộn hơn. Sự hình thành obitan p trong trạng thái chuyển sớm sẽ nhỏ hơn trong trạng thái muộn:

trạng thái chuyển muộn

trang thái chuyển đơng bọ

Tương tác hoá trị với nucleophin đòi hỏi sự xen phủ obitan tự do của nucleophin với phần obitan sau của obitan p tạo thành. Trong trạng thái chuyển sớm, tương tác này cực tiểu vì kích thước phần sau nhỏ và bị che khuất bởi tính hình học tứ diện. Như vậy trạng thái chuyển sớm chưa bao gồm tương tác hoá trị với Nu xác định tốc dộ, chất trung gian cũng chưa có tương tác hoá trị nên có thể quan niệm như cạ̣p ion. Song không có thể biểu diễn cấu trúc của cạ̣p ion này mà có thể thấy sự cấu trúc lại electron với tương tác hoá trị nhỏ giữa các tác nhân trong liên kết phân cắt, thừa nhận sự phân cực hoá tương hổ giữa ion cacboni và ion ngược dấu, cūng như lực hứt Coulomb.

Chất trung gian tạo thành xác định tốc độ, nhanh chuyến thành chất trung gian có tương tác với dung môi hay nucleophin trong dung dịch, do đó giai đoạn xác định tốc độ là đơn phân tử, có động học bậc nhất.

Trong trạng thái muộn hơn, tương tác hoá trị quan trọng hơn vì đọ̀ obitan phần sau lớn và góc ở cacbon dān rộng hơn. Trạnc thái chuyển muộn hơn đưa tới chất trung gian bao gồm cả nucleophin mà ciñợ có thể xem niư là trạng thái chuyển phối trí 5 ở trên. Sự tạo thành và chuyển hoá tiếp trạng thái trung gian này phụ thuộc vào bản chất của $\mathrm{R}-\mathrm{Z}$ và Nu .

Theo Dering Sykes, trạng thái chuyển phới trí 5 cho sản phẩm quay cấu hình nhưng cŭng có thể cho sản phẩm quay một phần cho đến raxemic hoá hoàn toàn:

Nếu trạng thái chuyển loại ngay nhóm đi ra sẽ cho sản phẩm quay cấu hình, nếu thế bả̉ng một Nu khác để tạo thành hợp chất trung gian khác phối trí 5 có tính đới xứng thì hợp chất này see có sản phả̉m raxemic hoá.

Tính chất hoá học lập thể cūng phụ thuợc vào hai quá trình cạnh tranh này. Theo Streiwieser, cách phân tích này giải thích được hiện tượng raxemic hoá khòng hoàn toàn cūng như quan niệm bị chắn của cacbocation.

Khi nghiên cứu chi tiết động học của phản ứng ion, chủ yếu bằng hiệu ứng muối trong phản ứng dung môi phân, Wenstein cho rằng ngoài ion cacboni và ion ngược dấu của nhóm đi ra đã phân ly, còn có hai dạng chất trung gian ở dạng cặp ion khác nhau phù hợp với tà
liệu động học. hiệu ứng muối và hoá học lập thể của phản ứng. Quá trình phân ly ra ion có thể tồn tại ở các dạng sau:

Cơ chế này gọi là cơ chế cặp ion, khác với hai cơ chế trên là hai cơ ché cổ diển. Sự tấn cong của Nu hay dung mỏi có thể xảy ra ở các dạng ion trên. Khi tấn công vào cạap ion chật hay là chất ban dầu, tác nhân chí có thể tấn công sau, nên cho sản phấm quay cấu hình. Chảng hạn: $\mathrm{S}-\mathrm{O}^{-} \ldots \mathrm{R}^{+} \mathrm{Z} \rightarrow \mathrm{S}-\mathrm{O}-\mathrm{R}+\mathrm{Z}^{-}$.

Khi tăn công vào cạp ion phân chia solvat hoá, nếu phá huỷ màng solvat ở phía diện sẽ bảo toàn cấu hình, nếu phía sau sẻ quay cấu hình hoạc néu jon cacboni solvat đối Xúng sẻ dẩn tới raxemic hoá. Phán ứng xảy ra do sự cạnh tranh cúa các quai trình này với tớc dộ khác nhau, cūng phụ thuộc vào bản chất Nu. Nếu tác nhàn là dung mói tham gia, phản ứng có thé bảo toàn cấu hình, chắng hạn:

$$
\mathrm{R}^{i} \| \mathrm{Z}^{\cdot}+\mathrm{SOH} \rightarrow \mathrm{R}^{+} \cdot \stackrel{\mathrm{S}}{\mathrm{~S}} \cdot \mathrm{H} \cdots \mathrm{Z}^{-} \rightarrow \mathrm{ROS}+\mathrm{HZ}
$$

nếu là N_{3}^{-}khòng có khả nāng tạo cấu giữa cation và anion thì tấn công sau, nén quay cấu hình:

Sự phí huỷ màng solvat phía diện trong cập ion solvat dơn giản hơn, nên thường bảo coàn cău hình.

Khi tân công vào ion tư do, sản phầm raxemic hoá:

Cơ chế này cũng đã dược xác nhận bằng thực nghiệm. Chẳng hạn khi nghiển cứu phản ưng thuỷ phân 1 -phenyletylclorua, trong cân bà̀ng ion:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClCH}_{3} \xrightarrow{\text { nước-etanol } 60 \%} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHHCH}_{3} \quad(33 \%$ quay cấu hình)
Giai đoạn xác dịnh tốc độ là sự tạo thành cặp ion solvat và phần lớn sản phấm do sự tấn công vào cạp ion này.

Ngıời ta đã xác định rằng, trong 100 phân tử tạo thành cặp ion chặt, có 80 phân tử quay trở về chất ban đả̉u với bảo ioàn cấu hình, 13 phân tử trở thành dạng cặp ion solvat. 7 phân tử tạo cập ion chặt với quay cấu hình (trong 7 phân tử có 1 chuyển sang dạng cập ion solvat còn 6 trở về chất ban dầu với bảo toàn cấu hình của cặp ion dó).

Quan niệm vể cơ chế cặp iôn dược nghiên cứu dể mô tả tỷ lệ sàn phẩm trong phản ứng thế nucleophin mà khòng chỉ trong khuôn khố cùa $S_{\mathrm{N}} /$ và $S_{\mathrm{N}} 2$ trén.

Về mặt hoá học lập thể, phản ứng quay cấu hình tờn phần hay một phẩn hoặc raxemic hoá hoàn toàn hay một phẩn chủ yếu phụ thuộc vào cấu trức trạng thải chuyển, sự tấn công của Nu và ảnh hường của dung môi. Người ta xác định cáu trúc sản phẩm để suy ra hướng và cơ chế phän ứng. Chẳng hạn như phản ứng sau:

$(+)$-2-Octyl axetat có cùng cấu hình với 2 -octanol vì trung tâm phản ứng không thay dổi, còn từ 2 -octanol đến (-)-2-octyl axetat qua tosylat là qualy cấu hình hoàn toàn, trong dó giai doạn tạo tosylat không làm thay đổi trung tâm phản ứng nèn sự quay cấu hình chỉ xảy ra ở giai đợn thế nucleophin. Hướng hoá học lập thể có thể xác định bầng cách so sánh dấu và giá trị quay tương đöi.

5.3. COCHẾ $S_{N} i$

Trong một số trường hợp, phản ứng bảo toàn cấu hình mà không có sự tham gia của nhóm kể ohut trên mà do sự tấn công diện nội phân tử, gọi là phản ứng thế $S_{\mathrm{N}} i$, trong dó một phần của nhóm đi ra tấn còng vào chất ban dầu tách khỏi phần còn lại của chất đi ra trong quá trình. Giai doạn dầu cūng giống như ờ $S_{N} /$ phân ly cho cạ̣p ion chặt, còn giai doạn thứ hai là phấn của nhớm di ra tấn công cấn thiết từ phía diện nên kết quả là bảo toàn cấu hình.

Phản ứng dặc trưng là phản ưng của:

$$
\mathrm{ROH}+\mathrm{SOCl}_{2} \rightarrow \mathrm{R}-\mathrm{SO}_{2} \mathrm{Cl}+\mathrm{HCl}
$$

tạo thành ankyl closunfit (có thể tách ra dược) sau đó chuyển hoá nội phân tử cho ankyl clorua:

hay cơ chế có thể ở dạng cạ̣p ion với sự tấn công diện của halogen:

$$
\mathrm{R}-\mathrm{OSOCl} \rightarrow\left[\mathrm{R}^{+} \begin{array}{r}
\delta-\mathrm{SO}_{2} \\
\\
\\
\delta-\mathrm{Cl}
\end{array}\right] \rightarrow \mathrm{R}-\mathrm{Cl}+\mathrm{SO}_{2}
$$

Chứng minh cho phản ứng này là khi thèm pyridin vào hỗn hợp ancol và thionyl clorua thì thu dược ankyl hatogenua nghịch đảo cấu hình. Kết quả của sự nghịch dảo là pyriđin tác dụng với thionyl clorua cho $\mathrm{ROSON}^{+} \mathrm{C}_{5} \mathrm{H}_{5}$ và Cl^{-}tự do sē tấn công từ phía sau cho sản phẩm nghịch dảo. Phản ứng giữa ancol và thionyl clorua là bạ̣c hai, nhưng nếu phân huỷ đơn giản KOSOCl khi đun nóng thì là bậc nhất. Phản ứng của ancol với POCl_{3}, chẳng hạn từ 1 -phenyletanol trong pyriđin chuyền thành $85 \% 1$-phenyletylclorua quay cấu hình do tấn công sau của Cl^{-}tự do.

Phản ứng $S_{N^{i}}$ tương dối hiếm. Phản ứng quan trọng loại này là khị tác dụng ancol với $\mathrm{SOCl}_{2}, \mathrm{PX}_{3}, \mathrm{POX}_{3}$ cho sản phẩm baio toàn cấu hình do sụ̣ tấn công diện của X , phản ứng phân tích ROCOCl cho RCl và CO_{2} cũng thuộc loại này.

Phản ứng của 2-octyl closunfit khi không có dung môi tạo thành $78 \% 2$-octylclorua quay cấu hình do sự tấn công sau của Cl^{-}, nểu trong dung môi đioxan tạo thành 84% 2-octyl clortua bảo toàn cấu hình do tấn công diện của Cl^{-}:

5.4. CO CHẾ S_{N} CỦA Hệ ALLYL

Các hợp chăt allylic tham gia phản ứng thế nucleophin đạc biệt mạh và thường kèm theo chuyển vị allylic. Khi chất ban đẩu allylic tác dụng với tác nhân nucleophin dưới điểu kiện $S_{\mathrm{N}} /$ sẽ thu dược hai sản phẩm: một sản phẩm bình thường theo $S_{\mathrm{N}} /$ và sản phẩm chuyển vị gọi là $S_{\mathrm{N}} l$.

Hai sản phẩm hình thành từ một loại cation allyl lai hoá cộng hương:

nên ở C_{1} và C_{3} đều mang diện tích dương và cả hai đểu bị tấn công của Nu. Cation allyl trong trường hợp đối xứng khi $\mathrm{R}=\mathrm{H}$ không phát hiện dược trừ khi dùng đồng vị đánh dâu. Co chế này gọi là $S_{\mathrm{N}} /$ '.

Với phản ứng $S_{\mathrm{N}} /$ khác, có chứng minh rõ rằng phản ứng $S_{\mathrm{N}} I$ có thể là cạ̣p ion. Nếu chất trung gian bị tấn còng bời nucleophin là cacbocation hoàn toàn tự do như hợp chất sau:

(72)
cho cùng một sản phầm khi tác dụng với ion hydroxit vì cùng cho một cacbocation. Song néu tác dụng với dung dịch NaOH 0.8 N ơ $25^{\circ} \mathrm{C}$ thi (72) cho $60 \% \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$ và $40 \% \mathrm{CH}_{3} \mathrm{CHOHClI}=\mathrm{CH}_{2}$, còn (73) cho 38 và 63% tương ứng. Hiẹn tượng này gọi là sự mở rộng sản phảm. Trong trường hợp này, sự mở rộng sản phẩm nằm trong hướng của chăt ban đầu. Khi tăng tính phàn cực cưa dung môi, sản phẳm mở rộng giảm và có khi không có. Điều dó cho tháy dung môi phân cực cao dâ hoàn toàn ốn định cacbocation tự do. Nhiều chứng minh xác nhận cho cạp ion trong nhiều phản ứng này. $\mathrm{Khi} \mathrm{CH}_{2}=\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}$ tác dụng với axit axetic tim tháy cả hai axetat nhưng cũng tìm tháy cả $\mathrm{ClCH}_{2} \mathrm{ClI}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ yà sự dồng phân hoá xáy ra nhanh hơn sự hình thành axetat. Điều đó không phải do Cl^{-}hoàn toàn tự do tăng lên quay trở vể cacbon mà tốc dộ hình thành clorua không hiệu dưng với Cl^{-}thêm vào. 'Tắt cả sự kiện chỉ rà̀ng, giai đoạn đả̉u trong phản ứng này là sự hình thành cập ion chặt không đós xứng, chắng hạn, (72) và (73) cho hai cạ̣p ion chặt khác nhau. Truờng hợp anion làm phản curc cation allyl lam cho cacbocation gàn đó electrophin hơn nên có khả mãng tấn cong cùa nulcophin hon.

Phain ứng thé nucleophin ở cacbon allyl cũng có plain ang theo $S_{N} 2$, song cüng có chuyền vị allyl như trường họ̣p sau khi nucleophin tấn cong vào vị tri γ :

Cor chê nay la chuyền vị bậc hai và thường xay ra khi phản ứng thé $S_{\text {N }} 2$ bình
 $\mathrm{C}=\mathrm{C}-\mathrm{CH}_{2} \mathrm{X}$, hợp chăt có dạng $\mathrm{C}=\mathrm{C}-\mathrm{CR}_{2} \mathrm{X}$ cho chuyển vị $\mathrm{S}_{\mathrm{N}} 2^{2}$ tốt theo phàn ưng lương phân tứ, tăng kich thước cưa nucleophin cūng tảng hàm lượng $S_{\mathrm{N}} 2^{\prime}$, giảm S_{N}. Trong một số trường hợ nhóm di ra cūng có tác dụng tới sự chuyển vị như $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{X}$ tác dụng
 $S_{\mathrm{N}^{2}}{ }^{\prime}$ khi $\mathrm{X}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}{ }^{+} \mathrm{Br}^{-}$.

Co ché $S_{X 2} 2^{\text {tim }}$ tháy ở tren là do sư chuyển dọng của cạp clectron, Bordwell quan
 $S_{X} 2$ ' thậ còn chưa thật rò̀, có chứng minh dồng ý và phản dối dể nghị này.

Hoá học lập thé̉ củat $S_{\mathrm{N}}{ }^{2}$ dã tim tháy cả hai phản úng syn và ani phụ thtộc vào bản chấ X và Nu , song cơ chế swh ưu tiên hơn trong nhiểu trường hợp:

Kíi trong phàn tử có một nucleofuge ở vị trí allyl có khả nāng cho phản ứng $S_{N^{i}}$, diều đó có thế do nucleophin tấn cong vào vị trí γ thay cho vị trí α. Phản ứng gọi là $S_{N^{i}}{ }^{\prime}$ như phản ứng 2 -buten-1-ol và 3 -buten- 2 -ol:

Cà hai cho 100 ć chuyển vị allyl khi tác dụng với thionyl clorua trong ete. Sự chuyền vị allyl bình thường ($S_{N} l^{\prime}$ và $S_{N} 2^{\prime}$) Khōng tìm thấy 100% chuyến vị trong cả hai trường họ̣p.

Có trường họ̣p tìm thấy chỉ một phàn nhò đi ra mà không phải tât cả, nhưng cũng có thể là phản ứng của nhóm đi ra đơn giän như Cl đi ra hình thành cạp ion không quay trở vể vị trí cũ mà đi vào vị trí allyl:

Nhiều $S_{\nwarrow} i$ ' theo dạng này.
Chuyển vị allyl cũng có trong hệ propargyl cho sản phẩn là allen nhưng cũng cho sản phẩm nổ ba và néu Nu là OH tim thấy tautome hoá cho andehit hay xeton α, β-khỏng no.

Khi $\mathrm{X}=\mathrm{OH}$ sự chuyến hoá ancol axetylenic tới andehit hay xeton khong no gọi là chuyển vị Meyer-Schuster:

5.5. PHÁN ÚNG THÊ S_{N} CỦA HYĐROCACBON KHONG NO

Phản ứng thế nucleophin ở cacbon không no nói chung rất khó khản do mặt dọ̣
electron ở cacbon nối đôi lớn, gây khó khản cho sự tấn công cùa tác nhân Nu. Song phản úng cūng có thể xảy ra khi dùng tác nhàn nucleophin mạnh và chất ban dầu có nhóm thế hút electron ($\mathrm{CO}, \mathrm{COOC}_{2} \mathrm{H}_{5}, \mathrm{CN} \ldots$) ờ gần trung tâm phán úng. Chẳng hạn 1,1-diclo-2.2-

Phán ứng có sơ dồ chung:

Phàn ứng có thế xảy ra theo cơ chế $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$ nhưng đặc trưng là $S_{\mathrm{N}} 2$.

5.5.1. Phan ưng $S_{\mathrm{N}} I$

Phản ứng $S_{\mathrm{N}} /$ xảy ra qua trạng thái trung gian cation vinyl răt không bển và có năng lượng cao:

Trong cation này, obitan trống nằm thẳng góc với obitan π nên không có tương tác được với obitan này và diện tích dương hẩu như định chố. Cation này nếu tạo thành cần được ổn định bằng hai cách:

1- Dùng các nhóm thế α ốn dịnh cation vinylic, chẳng hạn như α-aryl vinyt halogenua $\mathrm{ArCBr}=\mathrm{CR}^{\prime}{ }_{2}$ dā tim thấy theo $S_{\wedge} /$ hoạc các nhóm khác như xyclopropyl, vinyl, ankynyl và liên kết đòi liền $\mathrm{R}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CR}$ ' X .

2- Dùng hợp chất có nhóm đi ra thật tốt như $\mathrm{OSO}_{2} \mathrm{CF}_{3}$ (triflat).
Hoá học lập thể của $S_{N} l$ ở hợp chất vinyl ban đầu tạo thành ngả̉u nhièn như cis hay trans dều cho hổn hợp l:1 sản phả̉m cis và trans, chứng tỏ rằng cation vinyl là thằng hàng cũng thấy hoạt tính của hệ xycloankenyl giảm với sự giảm kích thuớc vòng. Phỉn ứng $S_{\mathrm{N}} /$ ở cacbon khòng no có tốc độ nói chung thấp hơn hợp chất no.

Song cūng quan sát thăy mộl vài phản úng xảy ra theo $S_{N} /$ như thuý phân α-bromstyren trong etanol 80% tạo ra axetophenon theo $S_{N} l$ do cation hình thành có tinh ồn định cao:

($\dot{\alpha}$ đày khi ion hoá α-bromstyren phăng, xảy ra sự quay vòng benzen 90°).
Cation ở trên ốn dịnh là do diện tích dương ở C_{sp} giải toả được với nhóm thế và nhân benzen bàng turong tác $p-\pi$ theo so dồ:

Sơ dồ trèn đã được xác nhạn bàng thực nghiệm, khi có nhóm thế cho electron như $\mathrm{R}=\mathrm{NH}_{2}, \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CONH}$, làm tăng tốc độ tương ứng dến $10^{\mathrm{x}}, 10^{4}, 10^{3}$ lần so với α-bromstyren không thề, còn các nhóm hut electron làm chạ́m phản ứng. Nếu dùng etanol $50^{\circ} \mathrm{f}$. tốc dộ phän ửng tāng, sự dị ly dể dàng hơn do tảng solvat trạng thái chuyển. Tốc dộ cŭng tăng khi dùng xúc tác $\Delta \mathrm{g}^{+}$.

5.5.2. Phản úng $S_{N} 2$

Phản úng $S_{\text {, }} 2$ dạ̣c trưng cho phản ứng nucleophin ở cacbon không no với đại đa số phản ứng thế halogen vinyl là bậc hai. Độ linh đọng của nhóm thế tăng lên khi có nhóm thế hút electron uhư $\mathrm{COOC}_{2} \mathrm{H}_{5}, \mathrm{CN}, \mathrm{CO} \ldots$

Có thể có các loại cơ chể sau:
1- Cơ ché thế trực tiếp trong hệ chưa no theo sơ dồ:

Cơ chế một giai doạn này khó xảy ra, ngay khi có nhóm thế hút electron và chưa có dữ kiện thực nghiệm.

2- Cơ chế cộng anion và proton tạo hợp chất trung gian rồi tách:

Cơ chë́ này chưa có dữ kiện thực nghiệm.
3- Cơ chế cợng - tách qua anion trung gian:

Cơ chế này đã được nghiên cứu nhiều và đã có nhiều kết quả thực nghiệm xác nhận. Phản úng này mang tính chất lứ diện nhưng phản ựng kém hơn hợp chât cacbonyl vì diện tích âm ở trên cacbon kém âm đjện hơn oxy, lưu huỳnh, nitơ.

Chất trung gian là anion trung gian có thể tách nhóm đi ra cho sán phẩm thé hay kểt hợp với tiểu phân diện lích dương cho sản phả̉m cộng, nên ở đay có sự cạnh tranh haí phàn ứng này.

Phản ứng thuỷ phân cloranyl bà̀ng kiểm xảy ra quua sản phẩm cộng tách:

Cloranyl không tan trong nuớc nhưng tan dàn theo tiến trình phan fíng, trong dó sự tạo thành cacbanion ón dịnh dã tìm thấy bā̀ng pic hấp thụ ơ UV trong vùng 250 nm ($\lg \varepsilon=3,45$) và 389 nm ($\lg \varepsilon=3,61$) dạc trưng cho hệ liên hợp.

Trong dó chăt trung gian tứ diện có giải toả cộng huởng, nén có thể tách rat. Như trường hợp $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3} \mathrm{O}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{RS}^{-}$có chất trung gian tốn tại dược lâu nẻn có thé̛ phát hiện bằng UV.

Phản ựng cộng tâch dược chứng minh bà̀ng phản ứng của 1,1 - dicloeten (74) vớ RS $^{-}$:

xúc tác $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ không cho sản phảm 1,1 -dithiophenoxy (76) nhưng cho sản phám täch cho ankyn fồi cho sản phẩm (78) chuyển vị, tâch sản phẩm trung gian (75) và (77) chứng minh cho phàn ứng cọng tách. Trong dó giai doạn đẩu là cộng nucleophin cûa ArSH cho (75), giai doạn thứ hai la tách $E 2$ cho anken (77). Phàn ứng tách và cộng lần thứ hai cho sản phẩm (78). Trong phán úng trên, tốc dộ phản úng tāng khi nhóm đi ra thay dổi từ Br tới Cl tớ F (gọi là hệ̣u ưng nguyên tố). Lièn kết cacbon-halogen không bị phân cắt ở giai đoạn xác định tốc dọ̀ vì flo là nhóm di ra kém nhất trong các halogen, vì bản chât hút electron manh cua flo làm cho các liên kêt $\mathrm{C}-\mathrm{F}$ dương hơn thuận lợ chỏ nucleophin tấn công, làm tāng tốc dộ.

Khi nghièn cứu kȳ phản ứng của hợp chất loại β-halogenvinylsunfon $\mathrm{ArSO}_{2} \mathrm{CH}=\mathrm{CHI}$ bằng tác nhân ArS^{-}hay N_{3}^{-}cho thây phản ứng cơ dạ̣c thù lập thể, nhóm thể hút electron làm tàng phản ưng, nhóm thé cho electron làm giảm phàn ứng. Tốc dộ không phụ thuộc vào bản chât halogen, chứng tỏ không có hiệu ứng nguyên tồ. Khi dùng $p-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{CD}=\mathrm{CH} \nsim$. phản ưng có hiệu ứng dồng vị bằng 0 .

Cơ chế cọng tách là quá trình bảo toàn cấu hình. Chẳng hạn, phản ứng của este của axit cis-và trans- β-clocrotonic với ion thiolat trong ancol là phản tŕng dạ̣c thù lập thể:

Phản ứng là bậc hai (bậc 1 cho mỗi tác nhân). Phản ứng là bảo toàn cấu hình nên khōng thể xảy ra theo cơ chế (1), không có deutri hoá trong deutri etanol chứng tỏ không theo cơ chế (2) và chỉ có thể theo cơ chế (3) là cộng-tách qua anion trung gian:

Phản ung này xảy ra nói chung với loại hợp chấi $\mathrm{ZCII}=\mathrm{CHX}$ khi Z là nhóm hút electron nhut $\mathrm{HCO}, \mathrm{RCO}, \mathrm{COOR}, \mathrm{ArSO}_{2}, \mathrm{CN}, \mathrm{F} \ldots$ ơ vị trí β làm ón dịnh cacbanion.

4- Cơ ché tích - cộng qua hợp chất trung gian nối ba:

Cơ chế này xảy ra với những hợp chất kém hay không hoạt dộng. Phản ứng này có tính đạc thù lập thể, dồng phàn cis hay trans dều cho cùng mợt sản phẩm khóng phụ thuộc vào cấu trúc hợp chất ban dầu, bởi vì giai đoạn sau là phàn ứng cộng trans vào lién kết ba.

Mộ phản t̛́ng theo cơ chế này là phản ứng của 1,2 -dicloctan tác dụng với Ars ${ }^{-}$và $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$

Phàn ứng xảy ra như sau:
1- Phản ứng không xảy ra nếu không có etoxit và tốc dộ phụ thuộc vào ion này, mà không phụ thuộc vào nổng dộ ion ArS^{+};

2- Ở diều kiện phản úng. cloaxetylen cho sản phầm (79) và (80):
3- Hợp chất (79) phản ưng với ArS^{-}chi khi có ion etoxit cho (80).
Cơ chế tách - cộng cũng xảy ra với hệ vòng 5 hay 6 cạnh có sức cāng lớn của lièn két ba.
Phàn ứng diển hình là phản ứng của cis- và trans-1-brom-2-pentaclophenyletylen tác dụng với kali etylat dều thu dược cis-1-etoxy-2-pentaclophenyletylen:

Trong phản ứng này, có thể tạo thành một lượng nhó trans do dồng phân hoá cistrans.

Chú ý là hai cơ chế cộng-tách và tách-cộng đều bảo toàn cấu hình và trong mồi trường hợp cọng và tách đểu là anti.

Ngoài ra, cơ chế tách cộng cũng có ờ một số hợp chất no khi tác dụng với coxit:
$\mathrm{ArSO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{SO}_{2} \mathrm{Ar} \xrightarrow{\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}^{-}} \mathrm{ArSO}_{2} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}^{-}} \mathrm{ArSO}_{2} \mathrm{CHI}_{2} \mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}$
Bazo Mannich loại $\mathrm{RCOCH}_{2} \mathrm{CH}_{2} \mathrm{NR}_{2}$ chịu thế nucleophin theo cơ chế tách-cộng do nucleophin thay thế NR_{2}.

5.6. CO CHẾ SET

Phản ứng thế nucleophin có thể xảy ra qua chất trung gian gốc hay ion gốc. Giai doạn đầu của phản ứng là chuyển một electron từ tác nhán nutcleophin sang chát ban đầu tạo anion - göc:

1-

$$
\mathrm{R}-\mathrm{X}^{-}+\mathrm{Nu}^{-} \longrightarrow \mathrm{R}-\mathrm{X}^{*}+\mathrm{Nu}{ }^{*}
$$

nèn cơ chế này gọ là cơ chế SET (Single Electron Transfer), sau đó ion gổc bị phân cắt:
$2-$

$$
\mathrm{R}-\mathrm{X}^{\bullet} \longrightarrow \mathrm{R}^{\bullet}+\mathrm{X}^{-}
$$

Gốc tạo thành có thể tương tác với $\mathrm{Nu*}$ sinh ra ở giai doạn 1 hay với nucleophin ban đầu cho sản phầm.

3-
hay

$$
\mathrm{R}^{*}+\mathrm{Nu} \rightarrow \mathrm{R}-\mathrm{Nu}
$$

4.

$$
\mathrm{R}-\mathrm{Nu}^{\bullet}+\mathrm{R}-\mathrm{X} \longrightarrow \mathrm{R}-\mathrm{Nu}+\mathrm{R}-\mathrm{X}^{\bullet}
$$

Trong giai doạn 4 , anion gốc hình thành tương tự như ở giai doạn 1 nên phàn úng có tính chất chuồi.

Trong co chế SET cūng tìm thấy sự raxemic hoá. Nếu gốc tự do thì cho RNu hoàn toàn raxemic hoá nhưng cūng có đề nghị rằng, cơ chế SET là quá trình nghịch đảo cấu hình.

Để nghị rằng, ở giai doạn $1, \mathrm{Nu}^{-}$tiếp cận tới trung tâm phản ứng từ phía sau nhưng không như cơ chế $S_{\mathrm{N}} 2$ thường mà gốc R^{\bullet} hình thành ở dạng tố hợp với dung môi với $\mathrm{Nu}{ }^{\circ}$ ở phía sau ngược phía với X^{-}, do đó đưa tới giai đoạn 1,2 và 3 là nghịch đảo.

$$
\mathrm{Nu}^{-}+\mathrm{R}-\mathrm{X} \rightarrow \underset{\text { tổ hợp dung môi }}{\rightarrow} \underset{\left.\mathrm{Nu}^{*} \mathrm{R}-\mathrm{X}^{*}\right]}{[\text { cập dung môi }} \underset{\left[\mathrm{Nu}^{*} \mathrm{R}^{*} \mathrm{X}^{-}\right]}{ } \rightarrow \mathrm{Nu}-\mathrm{R}+\mathrm{X}^{-}
$$

Phản ứng theo cơ ché SET tìm thấy ưu tiên nghịch đảo cấu hình nhưng không đạt 100%.
Một phản ứng khác theo cơ chế SET đā xác định gốc hay ion gốc bā̀ng ESR hay CIDNP, tìm thấy phản ứng xảy ra ở dầu cầu 1 -norbornyl và sự hình thành sản phấm phụ vòng khi chất ban đầu có liền kết đòi ở vị trí 5 và 6 :

Cơ chế này thường xảy ra khi $\mathrm{X}=\mathrm{I}, \mathrm{NO}_{2}$. Trong cơ chế này, sự tấn công ban đầu bằng sự cho electron dể hơn là tần công nucleophin.

5.7. CO CHẾ NHIÊU TRUNG TÂM

Phản ưng dung môi phân xảy ra theo cơ chế nhiều trung tâm khi có sự tham gia của dung mòi làm tác nhân nucleophin. Phản ứng thường xảy ra khi dung môi vừa có trung tâm nucleophin, vừa có trung tâm electrophin nên thường có trạng thái chuyển:

Chẳng hạn với dung môi là $\mathrm{CH}_{3} \mathrm{OH}$, trạng thái chuyển có mợt phân tử metanol với trung tâm phàn ứng với tư cách là nucleophin và một phân tử tạo liên kểt hyđro với nhớm di ra Z:

Phương trình tốc dộ chung có dạng:

$$
v=k[\mathrm{RZ}]\left[\mathrm{CH}_{3} \mathrm{OH}\right]^{2}
$$

nếu thèm $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ thì có phương trình:

$$
v=k^{\prime}\{\mathrm{RZ}]\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]
$$

Chẳng hạn với $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CCl}$:

$$
v=k^{\prime}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CCl}\right]\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right] \quad k^{\prime}>k
$$

nhưng chỉ tạo thành dả̉n xuất metoxy (có nghĩa là phenol không có trong phương trình hợp thức của phản ưng). Trong trường hợp này, metanol là bazơ mạnh hơn tương tác với trung tâm phản ứng, phenol có tính axit hơn tách ion Cl . Như vậy, phản ưng đồng thời có hai tương tác: mộ là hút tách nhóm đi ra, một nữa là dẩy nhớm đi ra khi tương tác với trung tàm phản ứng. Do đó cơ chế này gọi là cơ chế push-pull (tức là cơ chế hút-đẩy).

Trạng thái chuyển có thể có dạng:

Trong đó trung tâm nucleophin của dung môi tương tác với diẹn tích dương của cacbon và nhóm di ra solvat hoá cūng bằng dung mòi. Tương tác có thể chuyển từ thuần tuý tĩnh diện qua phân cực dể tạo thành liên kết cộng hoá trị. Sự phân cắt $\mathrm{C}-\mathrm{Z}$ và tạo thành $\mathrm{C}-\mathrm{Nu}$ có thể đồng bộ $S_{\mathrm{N}} 2$ hay phân cắt trước, tương tác sau $S_{\mathrm{N}} I$. Thường phẩn lớn các phản ứng loại này là nầm trung gian giữa hai cơ chế giới hạn trên. Sụ̣ khác nhau cơ bản giữa cơ chế cổ diển với cơ chế phản ứng dung môi phân là có sự tham gia của dung môi. Do đó, còn gọi là cơ chế nhiều trung tâm hay cơ chế dung mời phân.

Cơ chế chung có thể như sau:

Sự solvat khỏng tuân theo quy tẩc bảo toàn số liên kết nên trong trạng thái chuyển có thể tham gia một hay vài phàn tì̛.

Sự thiết lập cơ chế dung môi phân rất khớ khăn vì không thể dựa vào kết luận về dộ phân tử của quá trình từ phương trình động học; thường dung môi quá dư và phản ứng được mò tả bằng phương trình giả đơn phân tử không phụ thuộc vào độ phân tử thật của quá trình.

Sự tương tác nucleophin của dung môi phụ thuộc vào cấu trưc chất ban đầu giữa bậc một và hai hay ba. Khi so sánh tốc dộ dung mổi phân hệ bậc hai hay ba, chả̉ng hạn dung mói phân isopropylbromua và tert-butyl bromua trong etanol 80% làm tăng tốc độ dung môi phân đến $10^{3,5}$ lần. Sự thay dổi này khi chuyển từ bạc hai tới bạc ba liên quan tới sự tăng tính ổn định của cation tạo thành do hiệu ứng cho electron của nhóm metyl, dồng thời cung làm giảm fương tác nucleophin mà thực tế dần xuất bậc ba không thực hiện được do khó khăn lập thể, còn tương tác này mạnh ở dần xuất bậc hai nên tởc độ chỉ tāng $10^{3,5}$ lấn. Nếu so với phản ứng dung môi phân của hẹ̀ 2-bromadamantan tới 2-brom-2-metyladamantan thì tốc độ tãng đến $10^{7.5}$ lần, trong trường hợp này, tương tác nucleophin của dung môi không xuất hiẹ̉n ở hệ bậc hai, tỳ lệ tốc dộ chỉ xác dịnh bằng lính ổn định tương đối của trạng thái chuyển gẩn với cấu trúc cacbocation.

Phản ứng dung môi phân của hệ bậc một có sự tham gia nucleophin lớn của dung môi và có thế xem phản ứng như là $S_{N} 2$ có trạng thái chuyển xởi (loose). Chắng hạn etanoli phân $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHDOT}$ hoạt dộng quang học cho sản phẩm quay cấu hình hoàn toùn.

Đặc tính của cơ chể nhiều trung tâm cũng biểu hiẹ́n ở chất ban dầu có sả̃n trung tâm electrophin hay nucleophin có thề xảy ra qua trạng thái chuyển vòng:

hay

Phản ứng loại này xảy ra nhanh và dể. Chẩng hạn, phán ứng dung môi phân co-metoxyankyl-p-brombenzensunfonat $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ trong các dung môi khác nhau qua ion oxoni vòng xảy ra với tốc đọ̉ phụ thuộc vào n. Tớc dộ cao nhăt khi $n=4$ và $n=5$, chứng to có sự tham gia của nhóm $\mathrm{CH}_{3} \mathrm{O}$, con không có thể tạo thành vòng khi $n=2,3,6$.

Báng 5.12. Tồc độ tương dối của dung môi phân $\mathrm{CH}_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$

n	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \dot{\mathrm{\sigma} 75^{\circ} \mathrm{C}}$	$\mathrm{CH}_{3} \mathrm{COOH} \dot{\sigma} 25^{\circ} \mathrm{C}$	$\mathrm{HCOOH} \dot{\sigma} 75^{\circ} \mathrm{C}$
1	100	100	100
2	0,13	0,28	0,1
3	0,67	0,53	0,35
4	20,4	657,0	461,0
5	2,8	123,0	32,7
6	1,10	1,16	1,13

Phản ứng tạo dược trạng thái chuyển vòng do có hiệu ứng của nhóm kể với sự tham gia của nhóm $\mathrm{CH}_{3} \mathrm{O}$:

$$
\mathrm{R}=-\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-p
$$

Sự thừa nhận cơ chế nhiều trung tâm hay dung môi phân cho phép giải thích tương tác anchime trong phản ứng nucleophin.

Nếu MO không lièn kết trống tạo thành khi phân cắt liên kết $\mathrm{C}-\mathrm{Z}$ có điện tích dương, có thể tương tác với obitan của nguyên tử khác trong phan tử tạo nên cacbocation nhiều trung tâm, gọi là cacbocation không cổ điển có sự giải toả diện tích giữa các trung tâm. Sự giải toả này thuận lợi về năng lượng và hình thành những sản phẩm khác nhau.

Phản ứng của trung tâm có nhóm aryl ở vị trí α có tốc dộ lớn hơn khi không có nhóm aryl, chả̉ng hạn thuỷ phân trong axit fomic 99% của:

$$
\begin{array}{ll}
\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CCH}_{2} \mathrm{Cl} & k, s^{-1}=2,3.10^{-3} \\
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Cl} & k, s^{-1}=4.10^{-8}
\end{array}
$$

do dần xuất thế aryl có khả nãng tạo ion cầu không cổ điển:

Cũng như khi nghiên cứu hoá học lập thể của phản ứng dung môi phân của tosylat 2-phenyl-2-butanol trong axit axetic cho thấy:

Từ L-threo-p-toluensunfonat tạo thành 96% sàn phẩm axetat raxemic hoá:

Trong khi dó L-erythro-p-toluensunfonat cho sản phẩm axetat hoạt dộng quang học:

Do khi tạo thành cacbocation có hiệu ứng anchime, dung mói chỉ có thể tấn công về cùng phía với nhóm đi ra nên phản ứng xảy ra với bảo toàn cấu hình. Nếu trong trường hợp có nhóm thế aryl ở vị trí α, phản ứng xảy ra quay cấu hình nên không có tương tác anchime và bảo toàn cấu hình khi phản ứng có tương tác anchime.

Về mạ̀t tốc độ, nếu phản ựng có tương tác nucleophin của dung môi có hà̀ng số tốc dộ là $k_{\mathrm{sol} 1}$, phản ứng có tương tác anchime là $F \cdot k_{\text {an }}$ (F là hệ số) thì tốc độ chung là:

$$
k=k_{\mathrm{sol}}+F \cdot k_{\mathrm{an}}
$$

Hai quá trình cạnh tranh nhau, nếu tính nucleophin của dung môi càng nhỏ thì tác dụng anchime xuất hiện càng lớn.

Như vậý, phản ứng dung môi phân dả̉n xuất bậc mợt và hai xảy ra bằng hai tương tác nucleophin của dung môi và tương tác anchime, còn bậc ba không có tương tác nucleophin của dung môi.

Nếu nhóm aryl có nhóm thế, nhóm thế cho electron làm tăng tương tác anchime, giảm tương tác nuleophin của dung môi. Nểu nhóm thế là hút electron, tương tác anchime trở nên không thuận lợi, tảng tương tác nucleophin của dung môi, do đó tãng tính quay cấu hình.

Sự hình thành cacbocation nhiều trung tâm có thể do tương tác của obitan trống với obitan p, π, n hay σ ở cạnh cation mạch hở với sự tham gia của nhóm bên cạnh σ hay với sự tham gia của electron p và π :

Hiệu ứng này cũng xuất hiện ở cacbon xa hơn, chẳng hạn dung môi phân 4-clobutanol nhanh hơn 3 -clopropanol hay 2 -cloetanol nhiều và tạo sản phả̉m vòng:

Hoạc dung mòi phân dẫn xuất halogen có nhóm nucleophin trong phân từ cho sản phẩm vòng hoá:

Hiệu ứng cũng biểu hiện trong các vòng no, không chỉ có liên quan tới nhóm ké mà còn phụ thuộc vào vị trí đồng phân, chẳng hạn đồng phân trans-2-axetoxyxyclohexyl-ptoluensunfonat dung môi phân nhanh hơn đổng phân cis- dén 670 lần. Đồng phân cis- cho sản phả̉m quay cáu hình còn trans- cho sản phẩm báo toàn cấu hình, do dồng phàn trans có nhóm axetoxy tham gia vào quá trình ion hoá làm dể dàng cho sự ion hoá của nhóm tosylat và để tạo vòng ion axetoxoni là chất trung gian achiral không quang hoạt nên cho sản phẩm raxemic hoá, còn đồng phân cis thì ngược lại.

Tương tác qua nhân này cũng giải thích dược tốc độ thế của các dàn xuất thế của các ete vòng:

0.014

0.14

$4.85 .10^{+}$

Hiệu ứng qua nhân với sự tham gia của obitan π như dung môi phân 1 -bromnorbornen:

Song nếu dung mói phân 7-tosylnorbornen thì lại thấy ảnh hưởng của vị trí đống phân, trong đó, dổng phàn syn- phản ứng chậm hơn đồng phân ami đến 10^{7} lẩn và đồng phân $a m i$ cho sản phẩm bảo toàn cấu hình.

Đổng phân anti- có liên kết dôi thuận lợi cho quá trình tạo ion giải toả được diện tích dương làm tăng tốc độ ion hoá, còn dồng phân syn tạo được dạng allyl cho sản phả̉m chuyển vị của ion này.

Sự tham gia của liên kết π vào quá trình ion hoá đôi khi cũng cho sản phẩm bằng sự hình thành lién kết C-C mới, chẩng hạn như đung mổi phân hợp chất sau:

Sự tạo thành ion cổ diển cung xảy ra với sự tham gia của obitan σ :

I-brostatnorbornen

1

Phản ứng trên cho sản phẩm raxemic hoá.

5.8. CAC PHẢN UNG THÉ NUCLEOPHIN

1- Phản líng thuý phân ankyl halogenua

Các ankyl halogenua thuỷ phân cho ancol:

$$
\begin{aligned}
& \mathrm{RX}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ROH}_{2}^{+}+\mathrm{X}^{-} \xrightarrow{-\mathrm{H}^{+}} \mathrm{ROH}+\mathrm{HX} \\
& \mathrm{RX}+\mathrm{HO}^{-} \rightarrow \mathrm{ROH}+\mathrm{X}^{-}
\end{aligned}
$$

Các dẩn xuất hoạt động như loại allyl hay benzyl có thể thuỷ phân trong nước, còn các dần xuất thường cũng có thể thuỷ phân trong nước nếu dung môi là HMPA hay N-metyl-2pyrolidon. Các dẩn xuất bậc ba thường có phản ứng tách ưu tiên hơn. Thực tế, phản ứng này ít dùng vì chính các ankyl halogenua dược tổng hợp từ ancol.

Các dẵn xuất RX bạ̣c 1 xảy ra theo cơ chế $S_{\mathrm{N}} 2$, bậc 3 theo $S_{\mathrm{N}} 1$, còn bậc 2 theo cả hai cơ chế $S_{N} 1$ và $S_{N} 2$.

Các dần xuất vinyl không phản ứng nhưng có thể thuỷ phân thành xeton ở nhiệt dộ phòng với irifloaxetat thuỳ ngân hay axetat thuỷ ngân trong trifloaxetic hoạc trong axit axetic chứa eterat $-\mathrm{BF}_{3}$:

Các dẩn xuất gem-dihalogen thuỷ phân cho anđehit hay xeton khi có xúc tác axit hay baza: phản ứng có thể đi qua gem-điol rồi loại nước. Đối với anđchit, khơng đự̛̣c dùng kiểm mạh vì có phản ứng ngưng tụ andol hay Cannizzaro:

Các 1,1,1-trihalogen ankyl dể thuỷ phán trong nước cho axit, néu trong ancol thì trực tiếp thu dược este cacboxylic. Các 1,1,1-triflorua không cho phản ứng này trừ một số trường hợp riêng. Các aryl 1,1,1-trihalogenmetan chuyển thành aryl clorua với SO_{3} :

$$
\mathrm{ArCCl}_{3}+\mathrm{SO}_{3} \rightarrow \underset{\substack{\| \\ \mathrm{O}}}{\mathrm{Ar}-\mathrm{Cl}+\left(\mathrm{ClSO}_{2}\right)_{2} \mathrm{O}}
$$

Các 1,1-dicloanken củng thuỷ phân cho axit khi tác dụng với axit $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Clorofom thuỳ phân bàng bazơ dễ hơn diclometan và tetraclorua cacbon cho axit fomic và CO . Phản ứng với giai đoạn đầu là loại proton cho CCl_{3}^{-}rổi tách Cl^{-}cho điclocacben và thuý phân tiếp cho CO và axit fomic:

Phán ứng theo cơ chế $S_{\mathrm{N}} / \mathrm{cB}$.

2- Phän iong tao thàhh hitrin

Phản ứng giữa RX và ion xyanua là phương pháp phổ biến dể tổng hợp nitrin và axit tưong ứng theo nguyèn tắc và cơ ché chung của RX :

$$
\mathrm{RX}+\mathrm{CN}^{-} \rightarrow \mathrm{RCN}
$$

Các dẩn xuất halogenua bậc nhất, allỵl và benzyl cho hiệu suất tốt, dẩn xuất bậc hai dạt trung bình, còn dã̉n xuất bậc ba cho hiệu suất thấp và có phàn ứng tách kèm theo ờ cùng diều kiẹ̉n phản ưng. Dung môi tốt nhất Jà đimetylsunfoxit và dùng xúc tác chuyển pha hay sièu âm.

Ion xyanua là túc nhân lưỡng chức và ion isoxyanua cho sản phẩm phụ. Nếu muốn tông hợp isoxyanua tà sản phấm chính thì dùng xyanua đống hay bạc.

Bromua vinyl chuyển thành xyanua vinyl bằng CuCN hay KCN trong ete crown và
xúc tác Pd , dùng KCN và xúc tác Ni hay dùng $\mathrm{K}_{2} \mathrm{Ni}_{2}(\mathrm{CN})_{6}$.
Halogenua bậc ba chuyển thành xyanua bậc ba khi dùng trimetylsilyl xyanuà và xúc tác SnCl_{2} :
$\mathrm{R}_{3} \mathrm{CCl}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCN} \rightarrow \mathrm{R}_{3} \mathrm{CN}$
Nucleophin xyanua cũng tác dụng với các nhóm chức khác cho nitrin như ancol bậc nhất, hai hay ba với NaCN hay $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCN}$ khi có xúc tác NaI trong $\mathrm{DFM}-\mathrm{CH}_{3} \mathrm{CN}$.

3- Phan íng trao dôं halogen

Phản ứng trao đổi halogen, còn gọi là phản ứng Finkelstein, là một quá trình cân bằng nhựng thường có thể chuyển dịch cân bà̉ng:

$$
\mathrm{RX}+\mathrm{X}^{+} \rightleftharpoons \mathrm{RX}^{\prime}+\mathrm{X}^{-}
$$

Dẳn xuất iodua tống hợp từ dản xuất clorua hay bromua với NaI tan trong axeton. Khi ankyl clorua hay bromua tác dụng với dung dịch iơua natri trong axeton, cân bà̀ng chuyển dịch bằng kết tủa clorua hay bromua natri. Phản ứng theo cơ chế $S_{\mathrm{N}} 2$, phản ứng nhạy với halogenua bậc nhất hơn bậc hai và ba nên dùng iơua natri làm thuốc thử cho cloruáa và bromua bậc nhất. Clorua bạc ba chuyển thành iodua khi dùng dư Nal trong CS_{2} với xúc tác ZnCl_{2}.

Vinyl bromua chuyển thành vinyl iođua bảo toàn câu hình khi tác dụng với KI và xúc tác niken bromua-kẽm hay KI và CuI trong HMPA dun nóng.

Dẩn xuất florua tống hợp từ ankyl halogenua khác với tác nhân flo hoá bất kỳ như $\mathrm{AgF}, \mathrm{KF}, \mathrm{HgF}_{2}, \mathrm{HF}_{2}, \mathrm{BrF}_{3}$, hay HF với SbF_{3}, còn HF khan chỉ dùng với dần xuất benzyl hay allyj. Cân bà̀ng ở dây chuyển dịch bằng RF hình thành bển không phản ứng trở lại chất ban dầu. Có thể dùng xúc tác chuyển pha.

Ankyl clorua bậc nhất chuyển thành bromua bằng tác dụng với etyl bromua, N -metyl-2-pyrolidon và NaBr , với LiBr cần xúc tác chuyển pha, hay với $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{4} \mathrm{~N}^{+} \mathrm{Br}$, còn dān xuất ankyl clorua bạc hai hay ba thì dùng dư HBr và xúc tác FeBr_{3}.

Ngược lại dẵn xuất clorua hay bromua có thể tổng hợp từ dẩn xuất iodua tác dụng với HCl hay HBr khi có HNO_{3} dể nhóm di ra I^{-}bị oxy hoá bởi HNO_{3} thành I_{2}.

+ - Phan áng Williamson

Phản ứng Williamson phát minh nảm 1850 là phương pháp tốt nhất dể tống hợp các ete khōng dối xứng:

$$
\mathrm{R}-\mathrm{X}+\mathrm{R}^{\prime} \mathrm{O}^{-} \rightarrow \mathrm{R}-\mathrm{R}^{\prime}+\mathrm{X}^{-}
$$

Phản ưng Williamson chủ yểu theo cơ chế $S_{\mathrm{N}} 2$, có một số trường hợp theo cơ chế SET, nhất là với ankyl iơua.

Phản ứng cũng dùng ArX và có phản ứng phụ là C -ankyl. Phản ứng bình thường là tác dụng halogenua với ankoxit hay phenoxit hay cūng có thể với ancol hay phenol khi có KOH rắn trong $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ hay HgO và HBF_{4} trong $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Phản ứng không dùng cho ancol bậc
ba, còn ancol bậc hai cho hiệu suất thấp. Ete có nhóm bậc ba tổng hợp từ ankyl halogenua với ankoxi bậc ba. Đi-tert-butyl ete diều chế bằng tác dụng trực tiếp ancol bậc ba với cation tert-butyl. Các halogenua hoạt động như $\mathrm{Ar}_{3} \mathrm{CX}$ tác dụng với ancol khi có $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ hay $\mathrm{Ag}_{2} \mathrm{O}$. Các phản ứng này theo S_{N}. Aryl ankyl ete điều chế bả̉ng ankyl halogenua với aryl axetat khi có $\mathrm{K}_{2} \mathrm{CO}_{3}$ và ete crown.
gem-Đihalogenua với ancol cho điaxetal và với 1,1,1-trihalogenua cho orthoeste, nhất là khi dùng xúc tác chuyển pha hay xúc tác mixen.

Tác dụng quan trọng của phản ứng là phản ứng muôi của ancol với clometyl metyl ete nhằm bảo vệ nhóm hyđroxyl trong phản ứng hữu cơ:

$$
\mathrm{RO}^{-}+\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl} \longrightarrow \mathrm{ROCH}_{2} \mathrm{OCH}_{3}
$$

Tác nhân bảo vệ thường dùng là MOM (đimetylete) cũng như vài hợp chất gọi là ete nhóm MOM do axetal bền với môi trường kiềm nhưng dề phàn cát trong axit. Tác nhân khác cūng dùng gọi là MEM do có nhóm 2-metox yetoxymetyl nhur phản ứng:

$$
\mathrm{ROH}+\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Cl} \rightarrow \mathrm{ROCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}
$$

Cả hai nhóm MOM và MEM có thể bị phân cắt với điankyl và điarylboran như $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{BBr}$. Phenaxyl bromta $\mathrm{ArCOCH}_{2} \mathrm{Br}$ cũng dùng dể bảo vệ nhóm hydroxy. Ete thu được dể thuỷ phân với kēm và axit axetic.

Phương pháp thường dùng tổng hợp metyl ankyl ete là tác dụng ankoxit hay aroxit với đimetylsunfat và nhôm trong xyclohexan.

5- Phän img hinh thành epoxit

Epoxit thường tạo thành từ epiclohydrin theo $S_{\mathrm{N}} 2$ nhưng là nội phân tử:

Bazo tách lấy proton từ nhóm OH để chuyển thành nhóm ankoxy tấn công nội phân tự theo $S_{N} 2$:

Nhiểu epoxit tổng hợp theo cách này, kể cả tổng hợp các ete vòng lớn 5 và 6 cạnh.
6- Phàn íng dehydrat hoá ancol
Đehydrat ancol khi có xúc tác axit cho ete:

$$
2 \mathrm{ROH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{ROR}+\mathrm{H}_{2} \mathrm{O}
$$

Tác nhân đi ra từ $\mathrm{R}^{+} \mathrm{OH}_{2}$ hay $\mathrm{ROSO}_{2} \mathrm{OH}$ và tác nhân nucleophin là phân tự ROH khác. Phản ứng theo cơ chě $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$ tương tự nhu phàn ứng Williamson. Thường ancol bậc 1 theo $S_{\mathrm{N}} 2$. còn ancol bậc 2 và bậc 3 theo $S_{\mathrm{N}} /$. Phản ứng phụ luôn kèm theo là phản ứng tách, nhất là ancol bậc ba thì trờ thành ưu tiên. Ancol diarylcacbinol khi đun nóng với TsOH rán cho ete với hiệu suất tốt:

$$
\mathrm{Ar}_{2} \mathrm{CHOH} \longrightarrow\left(\mathrm{Ar}_{2} \mathrm{CH}\right)_{2} \mathrm{O}
$$

Thường dùng tồng hợp ete đôi xứng, đôi với ete không đối xứng, něu một ancol là bạ̉c ba thì ancol bậc ba là nucleophin kém hơn nên cho cacbocation, nếu không có bậc ba thì sẽ cho hổn hợp ba cte. Phenol và ancol bậc nhất cho ete khi dun nóng với DCC. 1,2-Điol cho cpoxy khi tác dụng với dimetylfomamit đimetylaxetal $\left[\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right]$, dietylazodicacboxylat $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOCN}=\mathrm{NCOOC}_{2} \mathrm{H}_{5}\right.$ và $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P} \ldots$

Các điol khác cho ete vòng, chủ yếu vòng 5 cạnh, thường có xúc tác $\mathrm{AlPO}_{4}-\mathrm{Al}_{2} \mathrm{O}_{3}$. BuSnCl_{3}. 1.6-Hexandiol chủ yếu cho 2 -etyltetrahydrofuran. Phản ứng có tầm quan trọng trong tổng hợp dẩn xuất furan từ andozo:

 tác axit Nafion-H.

7- Phản iong tái ete hoá

Phản ứng trao dổi nhóm ankoxy trong ete nói chung hiếm, thường xảy ra với R hoạt dộng như điphenylmetyl với axit p-toluensunfonic làm xúc tác:

$$
\mathrm{ROR}^{\prime}+\mathrm{R}^{\prime \prime} \mathrm{OH} \rightarrow \mathrm{ROR}^{\prime \prime}+\mathrm{R}^{\prime} \mathrm{OH}
$$

Cũng như khi tác dụng ankyl aryl ete với ion ankoxit:

$$
\mathrm{ArOR}+\mathrm{R}^{\prime} \mathrm{O}^{-} \rightarrow \mathrm{ROR}^{\prime}+\mathrm{ArO}^{-}
$$

đạc biệt các axetal và orthoeste trao đổi ankoxy rất nhanh:

vì nhóm đi ra từ axetal cho cacbocation ổn định, tuy nhièn phản ứng là cán bằng nên cần chưng cất ancol sơi thấp ra khỏi phản ứng.

Các enol ete tác dụng với ancol khác cho enol ete khác khi có xúc tác axetat thuỷ ngân:

$$
\mathrm{ROCH}=\mathrm{CH}_{2}+\mathrm{R}^{\prime} \mathrm{OH} \xrightarrow{\mathrm{Hg}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}} \mathrm{R}^{\prime} \mathrm{OCH}=\mathrm{CH}_{2}+\mathrm{ROH}
$$

8- Phản tung thuỷ phân axetal và enol ete

Các hợp chất enol ete, axetal và orthoeste dễ thủy phân trong môi trường axit cho andehit hay xeton:

Các hợp chǻt này chuyển thành axit liên hợp trtớc khi thuý phân bẳng axit mạnh dể dàng phân cắt ete nhưng cūng dể thuỷ phân trong axit loãng do tạo thành ion $\mathrm{RO}-\mathrm{C}^{+}$- ổn định bằng cộng hưởng.

Phản ứng theo cơ chè $S_{\mathrm{N}} 1$:

là cơ ché ngược với cơ chế tồng hợp axetal từ andehit và ancol (cơ ché Al). Cơ chế này xác minh bà̀ng các dữ kiện:

1- cẩn xúc tác axit diển hình $\mathrm{H}_{3} \mathrm{O}^{+}$nhanh hơn $\mathrm{D}_{3} \mathrm{O}^{+}$;
2- ROH quang hoạt không raxemic hoá;
3- nếu là tert-butyl ancol không có phân cắt liên kểt R - O bả̉ng dồng vị;
4- chất trung gian A có thể tách ra trong uhiều trường hợp;
5- tốc đọ thuỷ phân tāng: $\mathrm{CH}_{2}\left(\mathrm{OR}^{\prime}\right)_{2}<\mathrm{RCH}\left(\mathrm{OR}^{\prime}\right)_{2}<\mathrm{R}_{2} \mathrm{C}\left(\mathrm{OR}^{\prime}\right)_{2}<\mathrm{RC}\left(\mathrm{OR}^{\prime}\right)_{3}$ chứng tỏ hình thành cacbocation trung gian A quyết định tốc độ.

Ngoài ra cũng tìm thấy cơ chế khác, trong đó giai đoạn hai và ba là đống bợ, nghīa là cơ chể $S_{\mathrm{N}} 2$ hay $S_{\wedge} 2 \mathrm{cA}$ như khi thuỷ phân 1,1-đietoxyctan bằng phương pháp đồng vị:

Trong trường hợp thuỷ phân $2-(p$-nitrophenoxy $)$ tetrahydropyran dìng axit chung tìm thấy giai doạn chất ban đầu proton hoá là giai doạn chậm quyết dịnh tốc dộ. Các phản ứng xúc tác axit chung có giai doạn proton hóa là chậm gọi là phản ứng $A-S_{\mathrm{E}} 2$. Phản ứng thuỷ phan orthoeste cūng theo cơ chế xúc tác axit chung.

Các axetal, xetal và orthoeste dẻ̉ thuỷ phân trong axit, bền trong môi trường bazo. Nói chung, những hợp chất có hai nhóm $\mathrm{OR}, \mathrm{OCOR}, \mathrm{NR}_{2}, \mathrm{NHCOR}, \mathrm{SR}$ ở một cacbon đều dể thuỷ phân cho andehit hay xeton trong môi trương axit. Ngoài ra có thể dùng tác nhân khác như $\mathrm{CF}_{3} \mathrm{COOH}$ trong $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{HgCl}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{HCl}$, tert $-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Br}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right)-\mathrm{HCl}-$ dioxan, CuSO_{4} trên silicagel...

Enol ete dễ thuỷ phân trong môi trường axit có giai doạn quyết dịnh tốc dộ là proton hoá chất ban đầu nhưng proton hoá ở C , không phải O :

Cơ chế phản ứng có thể là cơ chế $A-S_{\mathrm{E}} 2$ vì chất ban dầu bị proton hoá ở giai đoạn chậm quyết định tốc độ và có bằng chứng cho cơ chế này là:

1- Dùng O^{18} cho thây liên kết vinyl-oxy bị phân cát chứ không phải liên kết RO;
$2-$ Có hiệu ứng đồng vị, 3- xúc tác axit chung.
Các enamin cūng thuý phân theo cơ chế tương tự. Các dithioaxetan $\mathrm{R}_{2} \mathrm{C}=\mathrm{C}(\mathrm{SR})_{2}$ cūng thuỷ phân tương tự nhưng giai doạn dẩu proton hớ là cân bẳng.

Furan là trường hợp dặc biệt của loại enol ete thuý phân bằng axit cho 1,4-đion:

9- Phain íng thuy phàn epoxit

Phản ứng thuỷ phân epoxit là phương pháp điều chế vic-điol:

Phản ứng được xúc tác bàng axit hay bazar. Xúc tác axit proton boá oxy theo cơ chế $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$ và vị trí thích hợp cho tấn công là cacbon thế cao nhất. Trong điều kiện trung tính hay bazơ, cơ chế là $S_{\mathrm{N}} 2$ tấn công vào cacbon ít thế hơn.

Tác nhân axit hay dùng là axit pecloric hạn chế dược phản ứng phụ. Dung mòi khi thuỷ phân bazo là dimetylfomamit.

10-Phain íng ancol phân epoxit
Tương tự như phản ứng thuỷ phân, các epoxit tác dụng với ancol khi có xúc tác axit, bazo hay nhôm hydroxit cho β-hyđroxy ete:

Phản ứng theo cơ chế $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$. Dung môi thường dùng là dietylen glycol, cellosolve...

Aziridin cūng cho phản úng tương tư cho β-amino ete:

Các 2,3-epoxy ancol có thể đồng phân hoá trong dung dịch bazơ:

Phản ứng gọi là chuyển vị Payne. Phản ứng cũng có thể trở lại chất ban đầu, nên nói chung cho hồn hợp epoxy ancol.

M- Phản áng clia ankyl halogenua với muôi axit cacboxylic
Este cacboxylic cung thu dược khi tác dụng RX với anion cacboxylat:

$$
\mathrm{RX}+\mathrm{R}^{\prime} \mathrm{COO}^{-} \xrightarrow{H M P A} \mathrm{ROCOR}^{\prime}+\mathrm{X}^{-}
$$

Phản ứng xảy ra nhanh với dẫn xuất bậc nhất, bậc hai của bromua và iođua ở nhiệt độ phòng trong dung môi phân cực aproton, đạc biẹ̉t IIMPA cho hiệu suất este cao. Phương pháp khác là dùng xúc tác chuyển pha với halogenua bậc nhắt, bậc hai, benzyl, allyl và phenaxyl.

Cơ ché của phản ứng là $S_{\mathrm{N}} 2$. Với halogenua bậc nhất mạch dài thì dùng halogenua và muổi axit rấn trên chất mang nhôm và bức xạ sóng ngắn.

Ngoài hai phương pháp xúc tác chuyển pha và dung môi phân cực aproton, phản ứng chỉ dùng với dần xuất có R hoạt động như allyl, benzyl nhưng theo cơ chế $S_{\mathrm{N}} /$.

Lacton cũng thu được khi dùng halogenua axit tác dụng với bazơ, thường cho γ và δ lacton nhưng cūng có thể thu được lacton 11 tới 17 cạnh.

Vinyl halogenua chuyển thành este vinylic khi tác dụng với axetat natri khi có clorua paladi (II).

Axit cacboxylic cũng có thể là nucleophin khi có F^{-}. Đihalogenua chuyển thành este
bằng phương pháp này khi nhóm COOH dược bảo vệ bẳng phản ứng với $\mathrm{ArCOCH}_{2} \mathrm{Br}$ và este thu được dể phân tích bàng kẽm và axit axetic.

Anion RCOO^{-}có thể thay thế các nhóm đi ra khác như ankyl closunfit ROSOCl, dẩn xuất sunfonic, ditosylamin NTs_{2}, triankylphotphat, axit sunfuric và axit vó cơ khác dê cho este. Chẳng hạ triankylphotphit $\mathrm{P}(\mathrm{OR})_{3}$ và axetal của diankylfomamit:

$$
(\mathrm{RO})_{2} \mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{R}^{\prime} \mathrm{COOH} \rightarrow \mathrm{R}^{\prime} \mathrm{COOR}+\mathrm{ROH}+\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}
$$

Phản ứng theo $S_{\mathrm{N}} 2$ và nghịch dảo R. Đimetylsunfat hay trimetylphotphat dùng metyl hoá axit có khó khăn lập thể.

12- Phản íng tao thành peroxit hay hydroperoxit

Hydroperoxit điều chế khi tác dụng RX, este sunfuric hay sunfonic hay ancol với hydroperoxit trong bazơ với tác nhân thực là HOO^{-}:

$$
\mathrm{RX}+\mathrm{HOO}^{-} \rightarrow \mathrm{ROOH}+\mathrm{X}^{-}
$$

Peroxit thu được khi tác dụng natri peroxit với $\mathrm{RX}: \mathrm{RX}+\mathrm{Na}_{2} \mathrm{O}_{2} \rightarrow$ ROOR hoạac tác dụng RX hay tosylat với $\mathrm{K}_{2} \mathrm{O}$ khi có ete crown hoặ ankyl triflat với peroxit germani và thiểc.

Một phương pháp khác là tác dụng RX với $\mathrm{H}_{2} \mathrm{O}_{2}$ hay peroxit khi có trifloaxetat bạc.
Tương tự như phản ứng trên, ankyl halogenua tác dụng với amin bậc hai và $\mathrm{K}_{2} \mathrm{CO}_{3}$ ở điểu kiện chuyển pha thu được cacbamat:

$$
\mathrm{RX}+\mathrm{R}_{2}^{\prime} \mathrm{NH}+\mathrm{K}_{2} \mathrm{CO}_{3} \xrightarrow{\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{NH}^{+} \mathrm{HSO}_{4}^{-}} \mathrm{RO}-\mathrm{CO}-\mathrm{NR}_{2}
$$

13- Phản úng tạo thành isoxyama

Phản ứng của amin bậc nhất với clorofom trong kiềm cho isonitrin:

$$
\mathrm{CHCl}_{3}+\mathrm{RNH}_{2} \xrightarrow{\mathrm{HO}} \mathrm{R}-\stackrel{\oplus}{\mathrm{N}}=\stackrel{\ominus}{\mathrm{C}}
$$

Phản ứng theo cơ chế $S_{\mathrm{N}} / \mathrm{cb}$ với chất trung gian là diclocacben:

Hiệu suất phản ứng khōng cao. Với amin bậc hai cho sản phẩm cộng không tách HCl nhưng dể thùy phãn cho fomamit N-thê:

Một phương pháp khác là phản ứng epoxy với trimetylsilyl xyanua khi có iođua kẽm:

Sàn phấm dể thuỷ phân cho hyđroxylamin.
1+- Phản ứng tạo thành xyanamit tir̀ amin bậc ba
Phàn ứng của amin bạ̣c ba với xyanobromua gọi là phản ứng von Braun:

$$
\mathrm{R}_{3} \mathrm{~N}+\mathrm{BrCN} \rightarrow \mathrm{R}_{2} \mathrm{NCN}+\mathrm{RBr}
$$

Phản ưng có sự phân cắt một gốc R để tạo thành halogenua hoạt dộng như benzyl, allyl hay nhóm ankyl nhỏ nhất phân cắt nhanh. Một hay hai nhóm ở amin có thể là aryl nhưng khồng bị phân căt. Các amin vòng cũng bị phân cất trong phản ứng này còn amin bậc ba cho kết quà kém.

Cơ chế của phản ứng là các phản ứng thể nucleophin liên tiếp: với nucleophin đầu là amin bậc ba và sau là ion Br^{-}:
$1-$

$2-$

Chất trung gian là N -xyanoaminbromua có thể tách ra được và cấu trúc xác dịnh bà̀ng phân tích hay phổ. Tác nhân BrCN ở đây qua hai lần chuyển đổi trong một phàn ứng để hình thành sản phẩm (č́ khi gọi là tác nhân phản tấn công - counterattack reagent).

15- Phản úng tạo thành ankyl halogenua tì ancol
Ancol chuyển thành ankyl halogenua với tác nhân chung HX và halogenua axit vô co nhu $\mathrm{SOCl}_{2}, \mathrm{PCl}_{5}, \mathrm{PCl}_{3} . \mathrm{POCl}_{3}$:

$$
\begin{aligned}
\mathrm{ROH}+\mathrm{HX} & \rightarrow \mathrm{RX}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{ROH}+\mathrm{SOCl}_{2} & \rightarrow \mathrm{RCl}+\mathrm{HCl}+\mathrm{SO}_{2}
\end{aligned}
$$

Thường dùng HBr và HI , thường là tạo ion halogenua in situ. HI có phản úng khử của nố đôi của chất ban đấu không no và ankyl iodua cho ankan. Ancol bạc ba cho dẩn xuất clorua với HCl nhưng ancol bậc hai và bậc nhất chạ̣m, cần xúc tác clorua kēm. Ancol bạ̣c nhất cho clorua hiệu suất tốt với HCl trong HMPA. Phản ứng với clorua axit vò cơ $\mathrm{PCl}_{5} \ldots$ it chuyển vị hơn HCl .

Phản ưng của HX với ancol theo cơ chế S_{N} / cA hay $S_{N} 2 \mathrm{cA}$ với nhóm di ra không phải OH mà là OH_{2} hoạ̣c với tác nhân khác như chuyển ancol thành ROSOCl với nhóm đi ra là OSOCl, trong trường hợp này là cơ ché S_{N} i.

Các bromua và iodua, đặc biêt PBr_{3} cūng dùng thường là in situ nhưng ít hơn HI và HBr . Các ancol bậc hai thường có chuyển vị như 3-pentanol với $\mathrm{PBr}_{3}, \mathrm{POBr}_{3}$ hay PBr_{5} cho 2 - và 3 -brompentan, dể tránh được chuyển vị thì chuyển ancol thành sunfonat hay dùng xúc tác chuyển pha. HF khơng dùng cho dā̃n xuất florua nhưng dùng dietylaminosunfua triflorua $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NSF}_{3}$ (DAST) chuyển ancol bạc nhất, hai và ba, allyl và benzyl thành florua hiệu suất cao, để tránh chuyển vị của phản ứng ancol bậc một, hai, ba dùng $(\mathrm{RO})_{3} \mathrm{PRX}, \mathrm{R}_{3} \mathrm{PX}_{2}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SBr}_{2}$, hốn hợp $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ và CCl_{4} :

$$
\mathrm{ROHI}+\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}+\mathrm{CCl}_{4} \rightarrow \mathrm{RCl}+\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}+\mathrm{HCCl}_{3}
$$

Phản ứng của ancol allyl và benzyl cho halogenua tương ứng không có chuyển vị thì dùng N -clo hay N -bromosuxinimit và metyl sunfua dạt hiệu suất 87% là đạ̣c thù lập thể nhu (Z) $-\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{2} \mathrm{OH}$ cho $(Z) \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{2} \mathrm{Cl}$. Các ancol allyl hay benzyl chuyển thành bromua hay iodua với $\mathrm{NaX}-\mathrm{BF}_{3}$ eterat và iodua khi dùng AlI_{3}.

16- Phản áng phân cắt ete cho ankyl halogenua

Ete bị phân cắt khi tác dụng với HI hay $\mathrm{HBr}, \mathrm{HCl}$ ít dùng:

$$
\mathrm{ROR}^{\prime}+\mathrm{HI} \longrightarrow \mathrm{RI}+\mathrm{R}^{\prime} \mathrm{OH}
$$

HBr chậm hơn HI nhựng dùng nhiểu hơn vì ít phản ứng phụ. Điankyl ete bị phân cắt theo $S_{N} 1$ hay $S_{N} 2$ khóng có quy tăc chung thường phân cát cả hai phía cho hai $R X$ và hai ROH , riêng metyl ankyl ete luôn cho $\mathrm{CH}_{3} \mathrm{X}$ và ancol, nếu du HX chuyển ancol thành RX nên nói chung cho 2 RX , còn ankyl aryl ete luôn phân cất ankyl-oxy cho RX và phenol. Trong phản ứng này, nhóm đi ra không phải RO^{-}mà là $\mathrm{RO}^{+} \mathrm{H}$.

Ete vòng (thường dẩn xuất tetrahyđ̛ofuran) cûng bị phân cắt. Ete cũng bị phân cắt khi có axit Lewis như $\mathrm{BF}_{3}, \mathrm{BCl}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{BBr}_{1} \mathrm{BBr}_{3}, \mathrm{AlCl}_{3}$, nhưng trong trường hợp này nhóm di ra là RO ở dạng phức với axit Lewis:

Tác nhân $\mathrm{NaI}-\mathrm{BF}_{3}$ eterat phân cắt chọn lọc ete theo thứ tự: ete benzylic > ankyl metyl cte $>$ arylmetyl ete.

Các muối oxoni phân cắt cho RX :

$$
\mathrm{R}_{3} \mathrm{O}^{+} \mathrm{X}^{-} \rightarrow \mathrm{RX}+\mathrm{R}_{2} \mathrm{O} \text { (} \mathrm{X} \text { có thể là bốn halogen } \text {) }
$$

17. Phàn ấng Wurtz

Phàn ứng của RX với Na cho sản phẩm đơii xứng là phản ứng ghép đôi của RX , gọi là phản ứng Wurtz:

$$
2 \mathrm{RX}+2 \mathrm{Na} \rightarrow \mathrm{RR}+2 \mathrm{NaX}
$$

Phản úng phụ kèm theo là tách và chuyển vị. Phản ứng Wurtz từ hồn hợp hai $R X$ ít dùng vì cho hổn hợp sản phẩm, nhưng giữa ankyl và aryl với natri cho sản phẩm ankyl hoá nhân thơm, gọi là phản úng Wurtz-Fittig, còn phản ứng ghép hai aryl halogenua không thực hiện được. Các kim loại khác cũng dùng là kẽm, bạc, sắt, đồng hoạt hoá, pyrophoric chì.

Cơ chế của phản ứng gồm hai giai đoạn cơ bản: trao dổi halogen-kim loại cho hợp chất $\mathrm{cơo}$ kim ($\mathrm{RX}+\mathrm{Me} \rightarrow \mathrm{RMe}$) và hợp chất cơ kim phàn ứng với phân tử RX thứ hai $(\mathrm{RX}+\mathrm{RMe} \rightarrow \mathrm{RR})$.

Phản ứng Wurtz cũng dùng cho phản ứng dóng vòng như từ 1,3-đibrompropan chuyển hoá thành xyclopropan khi có kẽm và NaI, cũng dùng tổng hợp các vòng có sức căng lớn như bixyclobutan và tetraxyclo[3.3.1.1. 3.7.0 $0^{1,3}$]decan:

Các halogenua vinylic cũng ghép dôi cho 1,3-butadien khi có bột đồng hoạt hoá. tương tự như phản ứng Ullmann có tính đạ̣c thù lập thể và bảo toàn cẩu hình ở cả haj cacbon, thường dùng $\mathrm{CuCl}, \mathrm{Zn}-\mathrm{NiCl}_{2}$, butyl liti trong ete có MnCl_{2} :

18- Phản táng cưa RX với tác whân coo kim
Phản ứng cho sản phẩm ghép dôi chéo của tác nhân điliti điankyl đồng (gọi là lác nhân Gilman) với ankyl clorua, bromua hay iodua trong ete hay THF:

$$
\mathrm{RX}+\mathrm{R}^{\prime}{ }_{2} \mathrm{CuLi} \rightarrow \mathrm{R}-\mathrm{R}^{\prime}
$$

Phạm vi ứng dụng của phàn ưng rất rộng với R là ankyl, allyl, benzyl, aryl, vinyl hay allenic và có thể chứa nhóm $\mathrm{CO}, \mathrm{COOH}, \mathrm{COOR}, \mathrm{CONR}_{2}$. Phản ứng của vinyl là đặc thù lập thể và bảo toàn cấu hình, khi có hai nhóm vinyl cho hiệu suất cao và đặc thù lập thé̉ khi dùng ZnBr_{2} và phức $\mathrm{Pd}(\mathrm{I})$. Nhiều gem-dihalogen không phản ứng, nhưng bai halogen ở cacbon α cùa vòng thơm hay xyclopropan thì bị thế cà hai halogen $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCl}_{2} \rightarrow\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, còn 1,2-đihalogen cho sản phảm tách.
R^{\prime} trong $\mathrm{R}_{2} \mathrm{CuLi}^{\mathrm{Co}}$ co thể là ankyl bậc nhất, allyl hay aryl. Phản ứng không dùng khi R và R^{\prime} là bậc hai hay ba.

Các hợp chả́t allen tác dụng với $\mathrm{R}^{\prime}(\mathrm{CN}) \mathrm{CuLi}$ cho phàn ứng thế bình thường với bảo toàn cáu hình hay theo $S_{N} 2^{\prime}$ cho ankyn và nếu allen chiral thì cŭng cho ankyn chiral.

Các $\mathrm{R}^{\prime}{ }_{2} \mathrm{CuLi}$ khōng phản ứng với xeton theo phương pháp ankyl hoá xeton nhưng có thể trao dổi kim loại - halogen của xeton cho xeton ankyl hoá:

Nếu từ α, α^{\prime}-đibromxeton tác dung với $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi}$ trong ete ở $-78^{\prime \prime} \mathrm{C}$ cho xyclopropanon rồi nhúng vào metanol cho monometyl hoá mà không cho đimetyl hoá:

Phản ưng di qua vòng loot xyclopropan rồi tấn công nucleophin cho ion enolat và proton hoá lừ metanol cho san phảm. Nếu dùng $\mathrm{CH}_{3} \mathrm{I}$ thay cho $\mathrm{CH}_{3} \mathrm{OH}$ thì thu dược α, α^{\prime}-dimetylxeton do tấn cong $S_{\mathrm{N}} 2$ cùa ion enolat vào metyl iođua nhưng chỉ có ankyl halogenua hoạt dộng cao như metyl hay benzyl mới có tấn công $S_{N} 2$. Phản ứng cūng có thể dưa nhóm bậc ba thế, chảng hạn. 2,6-đibromxyclohexanon tác dụng với liti tert-butoxy(fertbutyl) dò̀ng cho 65% 2-tert-butylxyclohexanon. Các allyl halogenua tác dụng với $\mathrm{R}_{2} \mathrm{CuZnCl}$ cho phản ứng ghép chuyển vị hoàn toàn theo $S_{\mathrm{N}} 2$ ' và phản ứng chọn lọc lập thể dia néu aflỵ halogenua có nhóm ankoxy ở vị trí δ.

Tác nhân Grignard chi ghép với halogenua ankyl hoạt dộng như allyl (nói chung không có chuyển vị̂) hay benzyl, còn dần xuất khác rất chậm, nhưng muốn có hiệu suất tốt cần xúc tác như thém muôi Cu (I) hay Ni (II).

Tác nhản cơ natri hay liti hoạt động hơn cơ magie nên ghép ưự̛̛ với dần xuất kẽm hoạt động hơn. Hợp chất cơ nhôm có thể ghép với đẫn xuất bạ̣c ba (cho sản phẩm chứa cacbon bậc bốn) và benzylic ở $-78^{\circ} \mathrm{C}$, cũng có thể áp dụng cho allyl, vài dã̀n xuất halogenua bậc nhất và hai.

Nói chung cơ chế phản ứng rất phụ thuộc vào kim loại, gốc R, xúc tác và diều kiện phản ưng nhưng nói chung có phản ứng thế $S_{\mathrm{N}} /$ và $S_{\mathrm{N}} 2$ và cơ chế gốc tự do, một số theo cơ chế SET.

Phản ứng theo cơ chế $S_{\mathrm{N}} 2$ có $\mathrm{sự}$ quay cấu hình của R , chả̉ng hạn tác dụng tác nhân atlyl liti hay benzyl liti với halogenua bậc hai hoạc như 2 -brombutan với $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right){ }_{2} \mathrm{CuLi}$ cho nghịch đáo cấu hình, còn với 2 -iotbutan trong cùng điểu kiện lại cho raxemic hoá.

Cơ chế gốc tự do với hai gốc R^{\prime} và $\mathrm{R}^{\prime \prime}$ trong tổ hợp dung môi:

$$
\mathrm{RX}+\mathrm{R}^{\prime} \mathrm{Me} \rightarrow \underset{\text { (ó hep durg mól }}{\left[\begin{array}{c}
\mathrm{R}^{\bullet}+\mathrm{R}^{\bullet \bullet} \\
+\mathrm{MX}
\end{array}\right] \rightarrow \mathrm{R}^{\prime}} \text { (}
$$

nèn cho sản phấm RR' là chính, nếu là gốc tự do hoàn tờn thì cho $50 \% \mathrm{RR}$ ', $25 \% \mathrm{RR}$ và $25 \% \mathrm{RR}$ '. Trong trường hợp chất ban đầu là aryl hay vinyl thì quá trình S_{N} không chỉ theo một cơ chế, mà có thể có phản úng trao dởi: $\mathrm{ArX}+\mathrm{RM} \rightarrow \mathrm{RX}+\mathrm{ArM}$ và phản ứng nucleophin tiếp theo. Nhiểu chứng minh khác về phản ứng ghép dôi của tác nhàn cơ kim với nhóm ankyl đơn giản như quan sát của CIDNF của phản ứng ankyl halogenua với cơ liti đā tìm thấy gốc tự do bằng ESR, sự hình thành 2,3-dimetyl-2,3-điphenylbutan khi có cumen và cũng tìm thấy gờ tự do trong phản ứng của tác nhân Grignard, cơ natri, cơ liti đồng.

Phản ứng ghép ankyl cũng xảy ra bảng con dường diện hoá, dạ̃c biệt tổng hợp gemđihalogen từ ankyl halogenua với RCCl_{3} bằng diện hoá:

$$
\mathrm{RCCl}_{3}+\mathrm{R}^{\prime} \mathrm{X}+2 \mathrm{e}^{-} \rightarrow \mathrm{RCCl}_{2} \mathrm{R}^{\prime}+\mathrm{Cl}^{-}+\mathrm{X}^{-}
$$

19- Phản áng tạo thành hợp chât nitro tit $R X$
Nitrit natri tác dụng với ankyl bromua hay iodua bạ́c nhất hay hai tạo thành hợp chất nitro:

$$
\mathrm{RX}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{RNO}_{2}
$$

Nhưng thường dùng nitrit bạc dể tạo thành hợp chất nitro chỉ với bromua và iơua bậc nhất. Este nitrit luôn là sản phẩm phụ của các phản ứng trên nhưng có thể trở thành sản phấm chính theo cơ ché́ S_{N} / khi tác dụng halogenua bậc hai và ba với nitrit bạc.
20. Phản úng tao thành isoxyanat và isothoxyanat

$$
\begin{aligned}
& \mathrm{RX}+\mathrm{NCO}^{-} \rightarrow \mathrm{RNCO} \\
& \mathrm{RX}+\mathrm{NCS}^{-} \rightarrow \mathrm{RNCS}
\end{aligned}
$$

Các ankyl halogenua bậc nhất chuyển thành isoxyanat khi tác dụng với natri nitroxyanamit $\mathrm{NaNCNNO}_{2}$ và axit m-cloperbenzoic, đun nóng sản phẩm tạo thành $\mathrm{RN}\left(\mathrm{NO}_{2}\right) \mathrm{CN}$ ban đầu. Khi dùng ion NCO^{-}có etanol có thể trực tiếp hình thành cacbamat qua chất trung gian isoxyanat tác dụng với ancol.

Chú y là khi dùng ion thioxyanat có thể S -ankyl hoá hay N -ankyl hoá nhưng thường uu tiên là N -ankyl hoá.

21-Phán úng tạo thành azit

Ankyl halogenua tác dụng với ion azit tạo thành ankyl azit:

$$
\mathrm{RX}+\mathrm{N}_{3}^{-} \rightarrow \mathrm{RN}_{3}
$$

Phản ứng thường dùng xúc tác chuyển pha hay siêu àm. Các nhóm chức khác cũng cho phản ứng này như $\mathrm{OH}, \mathrm{COX}, \mathrm{OCH}_{3}, \mathrm{OCOCH}_{3}, \mathrm{OTs}$. Epoxit tác dụng với NaN_{3} hay HN_{3} trong DMF cho ancol β-azit dễ chuyển hoá thành aziridin:

$$
\mathrm{RCOX}+\mathrm{N}_{3}{ }^{-} \rightarrow \mathrm{RCON}_{3}
$$

Một vài hyđ̛o như hyđro benzylic cūng có khả năng thay thế bẳng $\mathrm{N}_{3}{ }^{-}$khi tác dụng với HN_{3} trong CHCl_{3} khi có DDQ (2,3-điclo-5,6-đixyano-1,4-benzoquinon).

Ankyl azit bạ̣c ba tổng hợp từ ankyl clorua bạ̣c ba với NaN_{3} và ZnCl_{2} trong CS_{2}, còn axyl azit thì dùng phản ứng Curtius.

22- Phản ầng cỉa epory với co kim

Phản ứng của tác nhân Grignard với vòng epoxit xảy ra nhanh, cho sản phẩm tảng hơn hai cacbon, tác nhân Grignard bậc ba xảy ra chậm và phản ứng là $S_{\mathrm{N}} 2$ tấn công vào cacbon ít thế hơn:

Litiankyl dồng cũng cho phản ứng này nhưng không phản ứng với este, xeton hay nhóm cacbonyl nên có thể dùng phản ứng chọn lộ vị trí của este hay xeton có nhóm epoxy.

Các gem-điankyl epoxit tác dụng với Grignard thì gốc ankyl mới tấn công vào cùng cacbon có nhóm OH , trong một số trường hợp có đồng phân hoá thành anđehit hay xeton trước khi tác dụng với Grignard:

Các vinyl epoxit tác dụng với Grignard cho sản phẩm thế bình thuờng và sản phẩm chuyển vị allyl, thường $S_{\mathrm{N}^{2}}$ ưu tiên hơn:

Nếu dùng $\mathrm{R}_{2} \mathrm{CuLi}$ với chất ban đầu không vòng thì ưu tiền sản phẩn chuyển vị allỵl. Với các epoxit vinylic vòng nối đơi ở dạng enolat, khi tác dụng với RMgX hay RLi cho sản phẩm thế bình thường, còn với $\mathrm{R}_{2} \mathrm{CuLi}$ cho sàn phẩm chuyển vị $S_{\mathrm{N}} 2^{\prime}$ là chính:

Vòng epoxy tác dụng với đimetylsilan và CO với xúc tác đicoban octacacbonyl cho phàn ứng cộng 1,3 rồi thuỷ phân cho 1,3 -điol:

23- Phản íng của RX với hợp chất hydro linh dọng
Các hợp chát loại $\mathrm{ZCH}_{2} Z^{\prime}$ với Z và Z ' là nhóm hút electron dề tạo thành cacbanion là nucleophin tấn công vào RX cho sản phẩm ankyl hoá:

Z và Z' là $\mathrm{COOR}, \mathrm{CHO}, \mathrm{COR}^{\prime}, \mathrm{CONR}^{\prime}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{SO}_{2} \mathrm{R}, \mathrm{SOR}^{\prime}, \mathrm{SO}_{2} \mathrm{NR}^{\prime}{ }_{2} \ldots$
Nguyên tử cacbon có hyđ̛o linh động, dể tạo cacbanion khi có bazơ hay ở dạng enolat. Trong một số trường hợp có thể ankyl hoá lần hai khi còn có hydro linh động.

Phản ứng dùng cho dẵn xuất bậc nhất và hai, allyl và benzyl, còn bậc ba cho hiệu suất thấp (có phản ứng tách).

Phản ứng quan trọng trong loại này là tổng hợp este malonic với Z và Z là $\mathrm{COOC}_{2} \mathrm{H}_{5}$:

Và tổng hợp este axetoaxctatic với $\mathrm{Z}=\mathrm{COOC}_{2} \mathrm{H}_{5}$ và $\mathrm{Z}^{\prime}=\mathrm{COCH}_{3}$.

Tương tự với β-xeto sunfoxit và sunfon:

Ngoài ra còn có tổng hợp este xyanoaxetic với $\mathrm{Z}=\mathrm{COOC}_{2} \mathrm{H}_{5}$ và $\mathrm{Z}^{\prime}=\mathrm{CN}$. Phương pháp Sorensen tổng hợp aminoaxit từ este N -axetylaminomalonic este $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOC}\right)_{2} \mathrm{CHNHCOCH}_{3}$, sau khi thuý phân cho α-aminoaxit.

Đới với tác nhân có hyđro có tính axit khác nhau thì ưu tiển thế ở cacbon có hyđro axit hơn.

Phản ưng không hạn chế ở loại $\mathrm{ZCH}_{2} \mathrm{Z}$ ' mà các hydro axit khác Cl 1 như hydro metyl của α-aminopyridin, hydro metyl của ynamin $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CNR}_{2}$, hydro metylen của xyclopentadien, hydro có cacbon liên kết ba và hydro của HCN .

Các tác nhân tác dụng với chất ban đầu đihalogen có phản ứng vòng hoá cho vòng 3 đến 7 cạnh và tốt nhất là vòng 5 cạnh:

Và cūng có vòng hoá nội phân tữ:

Cơ chế của các phản ứng này chủ yếu là $S_{\mathrm{N}} 2$ với sự nghịch dảo cấu hình của RX quang hoạt, các nhóm ankyl bạ̣ ba theo cơ chế $S_{\mathrm{N}} /$ nếu $\mathrm{ZCH}_{2} \mathrm{Z}$ ' (không phải enolat) tác dụng với cacbocation bậc ba tạo thành in situ từ ancol hay ankyl halogenua và AlCl_{3} hay BF_{3} hoạac ankyl peclorat bậc ba.

Một số trường hợp theo cơ chế SET, nhắt là khi chắt ban đầu hay tác nhân có nhóm nitro hay xyan như từ α-nitro este, xeton, nitrin và α, α-đinitro có nhóm nitro bị thay thé, thường hợp chất nitro bậc ba đạng $\mathrm{R}_{3} \mathrm{CNO}_{2}$ hay $\mathrm{ArR}_{2} \mathrm{CNO}_{2}$ bởi muối của nitroankan:

Nếu là α-nitro sunfon thì nhóm sunfon để bị thay thế hơn nhóm nitro như nhóm $\mathrm{SO}_{2} \mathrm{R}$ của sunfon allyl bị thế bởi CHZZ ' khi có xúc tác $\mathrm{Mo}(\mathrm{CO})_{6}$:

$$
\mathrm{X}_{2} \mathrm{C}=\mathrm{CCH}_{2}-\mathrm{SO}_{2} \mathrm{R}+\mathrm{CHZZ} \rightarrow \mathrm{X}_{2} \mathrm{C}=\mathrm{CCH}_{2}-\mathrm{CHZZ}
$$

Các phức π-allyl paladi cũng tác dụng với anion củ̉a ZCHZ' khi có triphenylphotphin

Các phức này tạo thành in sittit và nếu dùng phức Pd có phối tử quang hoạt thì có chọn lọc lập thể đối quang. Phức π-ally! molypden cũng phản ứng tương tự.
24. Phan tung ankyl hoá 1,3-dithian

1,3-Đithian có hydro linh dộng dẽ tách proton cho anion khi tác dụng với butyl litti trong THF sē bị ankyl hoá:

vì 1,3-dithian diếu chế từ andehit hay axetal với 1,3-propandithiol rồi thuỷ phân cho xeton nên phản ứng dùng để chuyền andehit thành xeton:

Có thể dùng 1,3 -đithian không thể để có thể dưa vào một hay hai nhóm ankyl và R ' là ankyl bậc nhất hay bậc hai hoạạc benzyl, còn dản xuất iơua cho kêt quả tốt nhất.

1,3-Đithian cũng phản ứng với epoxit và hợp chất đithian có thể chuyển thành ankan khi dùng niken Raney:

Cacbanion của 1,3-đithian được ổn định bằng hai nhóm ete, nhưng trường hợp của benzyl hay allyl thioete hay thioete dạng RSCH_{3} thì cŭng có khả năng tạo cacbanion và ankyl hoá ở cacbon bên cạnh S. Phương pháp này dùng để dồng đẩng hoá dẩn xuất halogen bằng hai giai đoạn sau, chả̉ng hạn thioanizol tác dụng với butyl liti cho cacbanion tiếp tục thực hiện các phản ứng sau:

Các vinyl sunfua có hyđ̛̃o α cũng dẻ ankyl hoá bằng ankyl halogenua hay epoxit cho hợp chất bis-(metylthio) dề thuỷ phân bẳng HgCl_{2} trong $\mathrm{CH}_{3} \mathrm{CN}$, thường dùng để chuyển andehit thành anđehit α, β-không no:

Phản ứng ankyl hoá cūng xảy ra ở hyđ̛o α của dị tố khác, chā̉ng hạn như nitơ của amin bậc ba, còn amin bậc hai khó khăn vì tính axit của hydro cao hơn hydro của CH . Ankyl hoá amin bạ̀c nhất hay hai thực hiện dược khi đã bảo vệ nhóm amin chuyển thành amit, cacbamit, fomamiđin và photphoamit, chả̉ng hạn dùng fomamiđin co R ' quang hoạt thu dược amin quang hoạt với dư lớn một enantiome:

Các ete allyl với ankyl liti ở nhiệt độ thấp $-70^{\circ} \mathrm{C}$ cũng cho phản ứng ankyl hoá hyđ̛o allyl cho hai sản phẩm:

Các allyl và vinyl amin bậc ba khi tác dụng bazơ mạnh cho cacbanion rồi ankyl hoá tương tự:

sản phẩm ankyl hoá thu được ở C_{3} mà nếu ankyl hoá trực tiểp enamin cho sản phẩm ankyl hoá ở C_{2}.

25- Phản tóng ankyl hoá dihydro-1,3-oxazin

Phương pháp tổng hợp anđehit và xeton của Meyer từ sản phẩm thương mại dihydro-1,3-oxazin:

với $\mathrm{A}=\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{COOC}_{2} \mathrm{H}_{5}$. Oxazin là tác nhân lưỡng chức nhưng ankyl hoá chọn lọc vị trí ở cacbon bằng ankyl bromua hay iơua với $R=$ ankyl bậc nhất và hai, allyl hay benzyl hoạc CN , sau khi ankyl hoá, khử và thuỷ phân cho anđehit tâng hơn hai cacbon so với chất ban đầu. Tác nhàn cacbanion cūng phản ứng được với epoxit cho γ-hyđroxy andehit sau khi khử và thuỳ phân. Thiazol và thiazolin cüng cho phản ứng ankyl hoá ở vị trí 1 và 3 .

Từ đihyđro-1,3-oxazin tổng hợp xeton thì cho tác dụng với $\mathrm{CH}_{3} \mathrm{I}$ thành muối iminium rồi tác dụng với RMgX :

Các 2-oxazolin cũng ankyl hoá dể chuyển trực tiếp thành este:

26- Phản úng ankyl hoá bằng triankylboran

Triankyl boran phản ứng nhanh với các α-halogen xeton, α-halogen este, α-halogen nitrin, dẩn xuắt của α-halogen sunfonyl như sunfon, este sunfonic, sunfonamit khi có bazo cho dần xuất ankyl hoá tương ứng:

$$
\mathrm{BrCH}_{2}-\underset{\|}{\mathrm{O}}-\mathrm{R}^{\prime}+\mathrm{R}_{3} \mathrm{~B} \xrightarrow[\text { THF, } 0^{\prime} \mathrm{C}]{\substack{2,6 \text {-di-fert-butyl } \\ \text { - phenoxit }}} \mathrm{RCH}_{2}-\underset{\|}{\mathrm{C}}-\mathrm{R}^{\prime}
$$

Bazơ thường dùng là butyl liti nhưng tốt hơn là dùng 2,6-di-tert-butylphenoxit ở $0^{\circ} \mathrm{C}$ trong THF.

Các α, α-đihalogen este và α, α-dihalogen nitrin cüng tham gia phản úng này, có thê thay một hay cả hai halogen. Khi điankyl hoá dihalogen nitrin thì R là bậc nhất hay hai, còn đihalogen este chỉ giới hạn ở ankyl bậc nhất. Các este γ-halogen- α, β-không no tác dụng với ankyl boran cho sản phẩm ankyl hoá ở vị trí γ nhưng có dời chuyến nối đói:

$$
\mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CHCOOC}_{2} \mathrm{H}_{5}+\mathrm{R}_{3} \mathrm{~B} \xrightarrow[\mathrm{THF}, 0^{\circ} \mathrm{C}]{\text { bazo }} \mathrm{RCH}=\mathrm{CHCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}
$$

Cơ chế của phản ứng α-halogen xeton với $R_{3} B$ có giai doạn đầu là tách proton bà̀ng bazơ cho enolat để tố hợp với boran (phản ứng axit bazơ) và dời chuyển gốc R thay chổ cho halogen đi ra và dời chuyển tiếp nhóm boran từ cacbon tới oxy cho enol borinat rồi thuỷ phân. Cáu hình R dược bảo toàn.

Các nhóm di ra khác như diazo xeton, diazo este, điazo nitrin, diazo andehit cũng theo cơ chế phản ứng tương tự nhưng không cần bazơ.

Phản ứng đặc biệt chú ý cho loại điazo andehit nhưng không tìm thây ở α-halogen andehit.

27-Phản tong ankyl hoá băng cacbon ankynyl

Ankyn tác dụng với bazơ mạhh như NaNH_{2} cho anion axetylua phản ứng với RX theo $S_{\mathrm{N}} 2$:

$$
\mathrm{RX}+\mathrm{R}^{\prime} \mathrm{C} \equiv \mathrm{C}^{-} \longrightarrow \mathrm{RC} \equiv \mathrm{CR}^{\prime}
$$

Phản ứng chỉ dùng với ankyl halogenua không nhánh ở vị trí β còn allyl halogenua phản ứng khi có CuI. Có thể dùng magie axetylua nhưng chỉ phản ứng với dản xuất halogen hoạt động như allyl, benzyl, propargyl, không tác dụng với dả̉n xuất bậc nhát.

Trong khi ankyl hoá, nếu dùng 2 mol bazơ thì có thể ankyl hoá ở cacbon α của nỡi ba:

$$
\mathrm{RCH}_{2} \mathrm{C} \equiv \mathrm{CH}+2 \mathrm{RLi} \rightarrow \mathrm{RHC}^{-} \mathrm{C} \equiv \mathrm{C}^{-} \xrightarrow{2 \mathrm{R}^{\prime} \mathrm{Br}} \mathrm{RR}^{\prime} \mathrm{CHC} \equiv \mathrm{CR}^{\prime}
$$

28- Phản áng chuyén hoá ankyl hulogenna thành andehit hay xeton
Ankyl halogenua chuyển hoá trực tiếp thành anđehit tāng mộ: cacbon khi tác dụng với tetracacbonyl sắt (Il) (tác nhân Collman, diểu chể từ pentacacbonyl với hồn hống natri trong THF) có triphenylphotphin cho sản phẩm thế rồi tác dụng với axit axetic cho anđehit:

$$
\mathrm{RX}+\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4} \xrightarrow{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}} \mathrm{RCOFe}(\mathrm{CO})_{3} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}^{-} \xrightarrow{\mathrm{CH}_{3} \mathrm{COOH}} \mathrm{RCHO}
$$

Ankyl bromua bậc nhất cho hiệu suất tốt, bậc hai kém hơn và không dùng cho bromua benzylic. RX tác dụng với $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ cho ion $\mathrm{RFe}(\mathrm{CO})_{4}^{-}$(81) có thể tách ra dược rồi tác dụng $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ cho $\mathrm{RCOFe}(\mathrm{CO})_{3} \mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}{ }^{-}(82) \text { : }}^{\text {(}}$

$$
\begin{equation*}
\mathrm{RX}+\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4} \rightarrow \mathrm{RFe}(\mathrm{CO})_{4}^{-} \xrightarrow{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}} \mathrm{RCOFe}(\mathrm{CO})_{3} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}^{-} \rightarrow \mathrm{RCHO} \tag{81}
\end{equation*}
$$

Phản ưng trên cūng dùng tổng hợp xeton theo các cách sau:
1-Từ (82) tác dụng với axit axetic dồng thời có ankyl halogenua thứ hai cho xeton:

$$
(82)+\mathrm{R}^{\prime} \mathrm{X} \rightarrow \mathrm{RCOR}^{\prime}
$$

2-Từ (81) tác dụng $\mathrm{R}^{\prime} \mathrm{X}$ cho xeton (không có triaryl photphin):

$$
(81)+\mathrm{R}^{\prime} \mathrm{X} \rightarrow \text { RCOR' }
$$

3- Tác dụng $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ với RX có CO theo phàn ứng sau:

$$
\mathrm{RX}+\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4} \xrightarrow{\mathrm{CO}} \mathrm{RCOFe}(\mathrm{CO})_{4}-{ }^{-\mathrm{R}^{\prime} \mathrm{X}} \mathrm{RCOR}^{\prime}
$$

4- Tác dụng $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ với RCOX cho $\mathrm{RCOFe}(\mathrm{CO})_{4}{ }^{-}$rời với $\mathrm{R}^{\prime} \mathrm{X}$ cho xeton, với epoxit cho xeton α, β-khóng no.

5-1,4-Đihalogenua với $\mathrm{K}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ cho xeton vòng 5 cạhh.
6- Ankyl halogenua và tosylat phàn ứng với $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ khi có etylen cho ankyletylxeton. Phản ứng không dùng anken cao trừ khi liên kết đói và nhóm tosylat có trong cùng phán tử dể dóng vòng 5,6 cạnh,

Phương pháp $1,2,3$ dùng cho bromua iơua tosylat bậc nhất, có thể dùng tosylat bậc hai ở giai đoạn đấu, còn giai doạn hai cẩn dẩn xuất hoạt dộng hơn như iơua và tosylat hay halogenua benzylic. Phương pháp 5 áp dụng cho chất đầu bậc nhất và hai.
29. Phản úng chuyển hoá ankyl halogenuı thành axit cacboxylic và dần xuât

Ankyl halogenua tác dụng với CO hay cacbonyl kim loại cho axit và dẵn xuất tăng một cacbon khi có xúc tác $\mathrm{SbCl}_{5}-\mathrm{SO}_{2}$ ở $-70^{\circ} \mathrm{C}$:

$$
\mathrm{RX}+\mathrm{CO}+\mathrm{R}^{\prime} \mathrm{OH} \xrightarrow{\mathrm{SbCl}_{5}-\mathrm{SO}_{2}} \mathrm{RCOOR}^{\prime}
$$

Ankyl halogenua tác dụng với $\mathrm{SbCl}_{5}-\mathrm{SO}_{2}$ ở $^{7} 0^{\circ} \mathrm{C}$ sẽ phân ly cho cacbocation để phản ứng với CO và nếu có ancol sẽ cho este:

Phản ứng có thể dùng axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ dạ̃c bão hoà CO . Phản ứng dùng halogenua bậc ba, nếu dùng bậc hai có thể có chuyển vị cacbocation.

Ankan có hyđro bậc ba cūng có phản ứng này:

$$
\left.\left.\mathrm{RCH}\left(\mathrm{CH}_{3}\right)_{2} \xrightarrow[2-\mathrm{H}_{2} \mathrm{O}]{\mathrm{O}-\mathrm{SF}-\mathrm{SbF}_{5}-\mathrm{CO}} \mathrm{RC(CH}\right)_{3}\right)_{2} \mathrm{COOII}
$$

Sản phẩm fà axit hay este phụ thuọ́c vào hồn hợp phản úng được thuỷ phån bằng nước hay ancol. Ancol bậc ba phàn ứng với $\mathrm{H}_{2} \mathrm{SO}_{4}$ và CO (thường tạo thành từ ItCOOH và $\mathrm{H}_{2} \mathrm{SO}_{4}$ (rong dung dịch) cho axit axetic ba lần thế gọi là phản ứng Koch-Haaf. Nếu ancol bậc nhầ hay hai là chất ban dầu thì cacbocation hình thành ban đầu sẽ chuyển vị thành bậc ba trước khi tác dụng với CO . Kết quả tốt hơn khi dùng axit triflometan sunfonic thay cho $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Este cüng tạo thành khi tác dung RX với niken cacbonyl khi có ancol và bazo lien họp:

$$
\mathrm{RX}+\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{\mathrm{R}^{\prime} \mathrm{OH}, \mathrm{RO}^{\circ}} \mathrm{RCOOR}
$$

R^{\prime} là bậc nhât thì R chi là vinylic hay aryi và bảo toàn cáu hinh cùa R vinylic, tuy nhien ơ day khong tạo cacbocation. Khi R' là bạc ba thî R có thể là bạc nhất, vinyl hay aryl. Ankyl iodua cho kết quả tốt hơn tromua. Nếu ḉ amin thì tạn thanh amit và có thể tách ra.

Có thé di.ng phin ứng 28 dề tống hợp axit và este theo so dô sau:

(81) hay (82)

30. Phän üng ankyl hóa bä̀ng heop chât diazo

Hợp chất điazo, thường dùng diazometan, tác dụng với ancol cho metyl ete:

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{~N}_{2}+\mathrm{ROH} \xrightarrow{\mathrm{HBF}_{3}} \mathrm{CH}_{3} \mathrm{OR} \\
& \mathrm{R}_{2} \mathrm{CN}_{2}+\mathrm{ArOH} \rightarrow \mathrm{R}_{2} \mathrm{CHOAr}
\end{aligned}
$$

Phản ứng tãng khi tāng tính axit của ancol, ancol thường khơng phản ứng khi không có xúc tác như BF_{3} hay silicagel, phenol phản ứng tốt không cần xúc tác.

Cơ chế là $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$:

Các oxim hay xeton enol hoá cho phàn ứng O-ankyl hoá cho O-ankyl oxim và enol ete. Các diazoankan chuyển thành ete trong ancol khi có nhiệt hay quang hoá, là phản ứng cuia cactben và cacbenoit.

Điazoankan tác dụng với ancol khi có tert $-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}^{-}$cho axetan:

$$
\mathrm{R}_{2} \mathrm{CN}_{2}+2 \mathrm{R}^{\prime} \mathrm{OH} \rightarrow \mathrm{R}_{2} \mathrm{C}\left(\mathrm{OR}^{\prime}\right)_{2}
$$

Amin cung bị ankyì hoá bà̀ng họ̣ chấ diazo tương tự như ancol:

$$
\mathrm{R}_{2} \mathrm{CN}_{2}+\mathrm{R}_{2} \mathrm{NH}^{\mathrm{BF}_{3}} \mathrm{CHR}_{2} \mathrm{NR}_{2}
$$

Tính axit cùa amin không lớn nên cần phài có xúc tác. Thuờng dùng diazometan để metyl hoá amin. Xúc tác thường dùng là BF_{3} hay xyanua đồng. Amoniac cūng cho phản ứng này nhưng cho hỗn hợp amin bậc một, hai và ba. Amin bậc nhất cho hổn hợp amin bạc hai và ba, do amin bậc hai cho ankyl hoá tiếp. Amin thơm bậc nhất cho phản ưng tương tự nhưng diarylamin cho két quả kém.

3I-Phản tung thuy phàn diazoxeton

Điazoxeton khi tác dụng với axit cho phản ứng thuỷ phân tới ancol:

Phản ứng có sự cộng hợp proton tới điazoxeton cho muôi α-xetơiazoni rồi thuỷ phân theo co chế $S_{\mathrm{N}} /$ hay $S_{\mathrm{N}} 2$. Các α-hydroxyxeton thường dược tồng hợp theo phutơng pháp này. Tuy nhiên ion diazoni dược ốn dịnh bẳng nhóm cacbonyl làm giảm khả nảng di ra của N_{2} nên tìm thấy kết quả tốt ở hợp chất α-cacbonyl kém bền hơn.

32- Phán íng tao thành thiol

Hợp chất lưu huỳnh, thường là $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NaSH}$, là tác nhân nucleophin tốt, thường tót hơn hợp chät oxy:

$$
\begin{aligned}
& \mathrm{RX}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{RSH}_{2} \rightarrow \mathrm{RSH}+\mathrm{H}^{+} \\
& \mathrm{RX}+\mathrm{HS}^{-} \rightarrow \mathrm{RSH}
\end{aligned}
$$

Phản ưng thường dùng cho dẫn xuấi bậc nhât, bậc hai cho hiệu suất thấp hơn, còn bậc ba có phản ứng tách kèm theo.

Phương pháp khác tổng hợp thiol là dùng thioure cho muói thioureni rồi thuỷ phan bàng kiềm:

hay có thể thuý phân muối Bunte ($\mathrm{R}-\mathrm{S}_{-} \mathrm{SO}_{3}{ }^{-}$) cũng cho thiol:

$$
\begin{aligned}
\mathrm{RX} & +\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{R}-\mathrm{S}_{-} \mathrm{SO}_{3}^{-}+\mathrm{X}^{-} \\
\mathrm{RSSO}_{3}^{-} & +\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{RSH}
\end{aligned}
$$

Có thể dùng ancol tác dụng với $\mathrm{H}_{2} \mathrm{~S}$ khi có xúc tăc $\mathrm{Al}_{2} \mathrm{O}_{3}$ nhưng chí giới hạn ở ancol bậc nhất, còn nểu dùng tác nhân Lawesson, muối flopyridini và natri N, N-dimetylthiocacbamat thì có thể dùng cho ancol bậc hai, bậc nhăt, allyl và benzyl.

Nếu chất ban đầu là epoxit cho β-hydroxythiol:

33- Phản úng tạo thành thioete

Tương tự như phản ưng trên, khi tác dụng RX với tác nhân RS^{-}sẽ thu dược thioete:

$$
R X+R^{\prime} S^{-} \rightarrow R S R '
$$

R' là ankyl (trừ bậc ba) hay aryl. Nếu là thiol thay cho ion RS^{-}thì tiến hành trong benzen có DBU (1,8-điazobixyclo[5.4.1]undexen-7). Neopentyl bromua tác dụng với $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}$trong amoniac lỏng cho $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{SC}_{6} \mathrm{H}_{5}$ ở $-33^{\circ} \mathrm{C}$ khi có ánh sáng cho hiệu suât tốt nhưng theo cơ chế $\mathrm{S}_{\mathrm{R}_{\mathrm{N}}:}$.

Vinyl sunfua tổng hợp dược khi dun nóng vinyl bromua với phức niken và với $\mathrm{R}_{3} \mathrm{SnC}_{6} \mathrm{H}_{5}$ khi có $\operatorname{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}$.

Thioete dơi xứng tổng họ̣p khi tác dụng RX với sunfua natri:

$$
2 \mathrm{RX}+\mathrm{Na}_{2} \mathrm{~S} \longrightarrow \mathrm{RSR}
$$

Thioete RSR' tổng hợp tù ancol ROH với $\mathrm{R}^{\prime} \mathrm{Cl}$ khi có tetrametylthioure $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}(=\mathrm{S}) \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ rồi phản ựng tiếp với NaH . Ancol bậc nhất hay hai chuyển thành ankyl aryl sunfua với hiệu suất cao khi tác dụng với $\left.\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)\right)_{3} \mathrm{P}$ và N (arylthio) suxinimit trong benzen. Thioete bậc ba theo phản ứng sau:

$$
\mathrm{R}_{3} \mathrm{COH}+\mathrm{R}_{3}^{\prime} \mathrm{CSH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{R}_{3} \mathrm{CSCR}_{3}^{\prime}
$$

Nếu dùng dẩn xuất đihalogen như 1,4-hay 1,5-dihalogen cho phản ứng vòng hoá:

còn gem-đihalogen cho thioaxetan $\mathrm{RCH}\left(\mathrm{SR}^{\prime}\right)_{2}$ và axetan cung có thể chuyển thành monothioaxetan $\mathrm{RCH}\left(\mathrm{OR}^{\prime}\right)\left(\mathrm{SR}^{\prime}\right)$ hay thioaxetan.

Hợp chất epoxy tác dụng với photphin sunfua, như $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PS}^{-}$, cho episunfua:

Chú ý rằng, ion thiolat là nucleophin mạnh nên dùng làm tác nhân demetyl hóa một số hợp chất như muới amoni bậc bốn, este, amin hay ete như arylmetyl ete khi dun nóng với $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}^{-}$trong dung môi aproton phân cực DMF:

$$
\mathrm{ArOR}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}^{-} \rightarrow \mathrm{ArO}^{-}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SR}
$$

hay khi dun nóng hồi lưu muối tetraankylamoni với $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}$trong butanon:

$$
\mathrm{R}_{3} \mathrm{~N}^{+} \mathrm{CH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-} \rightarrow \mathrm{R}_{3} \mathrm{~N}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SCH}_{3}
$$

Thioeste tạo thành từ ancol với thiol axit khi có iođua kēm:

Ankyl halogenua tác dụng với thioete cho muói:

$$
\mathrm{RI}+\mathrm{R}_{2}^{\prime} \mathrm{S} \longrightarrow \mathrm{R}_{2}^{\prime} \mathrm{SR}^{+} \mathrm{I}^{-}
$$

34- Phản áng ankyl hoá amin

Dần xuất halogen tác dụng với amoniac hay amin bậc nhật cho amin bậc một hay hai, ba:

$$
\begin{aligned}
& \mathrm{RX}+\mathrm{NH}_{3} \rightarrow \mathrm{RNH}_{3}{ }^{+} \mathrm{X} \rightarrow \mathrm{RNH}_{2}+\mathrm{HX} \\
& \mathrm{RX}+\mathrm{R}^{\prime} \mathrm{NH}_{2} \rightarrow \mathrm{RR}^{\prime} \mathrm{NH}_{2}{ }^{+} \mathrm{X}^{-} \rightarrow \mathrm{RNHR}^{\prime}+\mathrm{HX}
\end{aligned}
$$

Phản ứng thường cho một hổn hợp amin vì bazơ mạnh hơn amoniac dể tấn công vào RX hơn nhưng phàn ứng dùng nhiều trong tởng hợp amin bậc ba và muối amoni:

$$
\begin{aligned}
& 3 \mathrm{RX}+\mathrm{NH}_{3} \rightarrow \mathrm{R}_{3} \mathrm{~N} \xrightarrow{\mathrm{RX}} \mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{X}^{-} \\
& 2 \mathrm{RX}+\mathrm{R}^{\prime} \mathrm{NH}_{2} \rightarrow \mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{N} \xrightarrow{\mathrm{RX}} \mathrm{R}_{3} \mathrm{R}^{\prime} \mathrm{N}_{+} \mathrm{X}^{-} \\
& R X+R^{\prime} R^{\prime \prime} N H \rightarrow R R^{\prime} R^{\prime \prime} N \xrightarrow{R X} R_{2} R^{\prime} R^{\prime \prime} N^{+} X^{-} \\
& R X+R{ }^{\prime} R^{\prime \prime} R^{\prime \prime} N \rightarrow R R{ }^{\prime} R^{\prime}{ }^{\prime} R^{\prime \prime}{ }^{\prime} N^{+} X^{-}
\end{aligned}
$$

Trong mỗi giai doạn, sản phẩm trung gian là amin proton hoá rổi dể mất di proton dể thành amin bậc cao hơn trong cân bằng:

$$
\mathrm{RX}+\mathrm{R}_{2} \mathrm{NH} \rightarrow \mathrm{R}_{3} \mathrm{~N}^{+} \mathrm{H}+\mathrm{R}_{2} \mathrm{NH} \Rightarrow \mathrm{R}_{3} \mathrm{~N}+\mathrm{R}_{2} \mathrm{NH}_{2}^{+}
$$

Khi tởng hợp muối amoni bậc bốn trực tiếp từ amin có thể thêm bazơ mạnh nhưng không phải là nucleophin để tách proton từ muối cho amin tự do: $\mathrm{RR}^{\prime} \mathrm{NH}_{2}{ }^{+} \rightarrow \mathrm{RR}^{\prime} \mathrm{NH}_{2}$ tấn công vào RX .

Nếu amoniac là nucleophin, ba hay bốn nhóm ankyl trong sản phẩm là đồng nhất, nếu là amin bậc nhất, hai hay ba thì khác nhau ở cùng một nitơ.

Phản ứng chuyển hoá amin bậc ba thành muối amoni bạ̣c bốn gọi là phản ứng Menshutkin. Đôi khi dùng phản ứng trên để tổng hợp amin bậc nhất khi dùng dư amoniac, như etylbromua trong dung dịch amoniac bão hòa trong etanol với tỷ lệ mol 16 : I thì thu được amin bậc nhất là $34,2 \%$ (ở tỷ lệ $1: 1$ chỉ $11,3 \%$).

Arylamin bậc nhất dễ ankyl hoá còn điaryl hay triaryl là nucleophin rất kém.
Nếu chất ban đấu RX là bạ̣c ba thì ưu tiên là phản ứng tách nhưng từ dần xuất bậc ba $\mathrm{R}_{3} \mathrm{CCl}$ chuyển thành amin bậc nhất $\mathrm{R}_{3} \mathrm{CNH}_{2}$ khi tác dụng với NCl_{3} và AlCl_{3} tương tự như amin hoá ankan bằng NCl_{3} và AlCl_{3} (phản ứng 40).

Nếu chất ban đầu là amin thế halogen cho phàn ứng vòng hoá, như 2 -cloetylamin cho aziridin, 2-clo-1-aminobutan cho pyrolidin:

còn azetidin thu được bà̀ng cách khác:

Các photphin $\mathrm{R}_{3} \mathrm{P}$ hay muối $\mathrm{R}_{4} \mathrm{P}^{+} \mathrm{X}^{-}$cũng thu dược từ triphenylphotphin với muôi ankylamino dị vòng trong dung môi aproton:

35- Phản ting thé hydroxyl bä̀ng amin

Nhóm hyđroxyl của xyanohydrin chuyển thành amin khi tác dụng với amoniac:

Nếu dùng amin bậc nhất hay hai thu dược xyanoamin tương ứng. Các α-hydroxyl xeton cũng cho phản ứng tương tự.

Phản ứng chuyển ancol thành amin: $\mathrm{ROH} \rightarrow \mathrm{RNH}_{2}$ thực hiện dược khi tác dụng ancol bậc nhất hay hai với axit hydrazoic, diisopropyl azodicacboxylat (iso- $\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{OOCN}=\mathrm{NCOO}-\mathrm{C}_{3} \mathrm{H}_{7}$-iso) với dư $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ trong ' THF rồi thûy phân trong môi trường axit gọi là phản ứng Mitsunobu. Bằng phương pháp này chuyển hoá ancol thành amin bạ́c ba $\mathrm{R}_{2} \mathrm{NR}$ ' từ amin bậc hai và (tert$\left.\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}\right)_{3} \mathrm{Al}$ khi có Ni Raney, amin allylic từ ancol allylic với amin bạ̣c nhất hay hai khi có phức platin hay palađi.

Các β-amino ancol tác dụng với trịhenyl photphin dibromua khi có trietylamin cho sản phầm vòng hoá:

Phản ứng chuyển hoá xày ra ở cacbon có nhóm OH theo cơ chế $S_{\mathrm{N}} 2$ với nhóm đi ra là OP($\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$.

Ancol có thể gián tiếp chuyển thành amin theo phương pháp này, bằng cách chuyển ancol thành ankoxyphotphoni peclorat rồi monoankyl hoá trong DMF với amin bậc nhất hay hai:

$$
\mathrm{ROH} \frac{\left.\mathrm{I-Cl}-\mathrm{PH}_{1} \mathrm{NCH}_{3}\right)_{3} \mathrm{l}_{3}}{2-\mathrm{NH}_{4} \mathrm{ClO}_{4}} \mathrm{ROP}\left[\stackrel{\oplus}{\mathrm{~N}}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3} \mathrm{ClO}_{4} \cdot \frac{\mathrm{DMF}}{\mathrm{R}^{\prime} \mathrm{R}^{\prime} \mathrm{N}} \mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{N}+\mathrm{OP}\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}
$$

Tương tự có ưng dụng dùng dung dịch muới natri của N-metylanilin trong HMPA hay muối liti diphenylphotphit $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PLi}$ để phân cắt nhóm metyl của metyl phenyl ete (và nhóm benzyl của benzyl ete):

$$
\mathrm{ArOCH} 33+\mathrm{C}_{6} \mathrm{~N}_{5} \mathrm{~N}^{-} \mathrm{CH}_{3} \rightarrow \mathrm{ArO}^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{\left(\mathrm{CH}_{3}\right)_{2}}
$$

36- Phän lóng amin hoá epoxit
Phản ứng của epoxit với amoniac thuờng dùng dể tổng hợ β-hydroxyamin:

Amoniac cho amin bậc nhất nhưng cũng cho amin bạc hai và ba. Dung môi thường dùng là etanolamin. Amin bậc nhất và hai cũng cho amin bậc hai và ba tương ứng:

Episunfua cüng cho β-aminothiol, aziriđin cho 1,2 -điamin cũng theo phương pháp này.
37- Phản áng N-ankyl hoá amit là imit
Amit là bazơ yếu nhưng có thể chuyển thành bazơ liên hợp là mợt nucleophin tham gia phản ứng thế:

$$
\mathrm{RX}+\Theta_{\mathrm{NHCOR}} \rightarrow \mathrm{RNHCOR}
$$

Amit không thể chuyển thành N-amit thế, còn amit thế chuyển thành amit N, N - hai lấn thế. Có thể dùng chất ban đầu là este của axit sunfuric hay sunfonic, còn dẫn xuát bậc ba cho phản ứng tách. Hai amit và sunfonamit có thể ankyl hoá tồ ở điều kiện chuyển pha.

Trên cơ sở phản ứng này, ta gạap phản ứng Gabriel khi tác dụng RX với phtalimit kali dùng điểu chế amin bậc nhất:

Phản ứng thường chậm hơn phàn ứng với amin trên, nhưng có thể tăng tốc độ bằng tiếl hành trong dung môi aproton phân cực như DMF hay ete crown. Phản ứng thuỷ phân phtalimit thường dùng xúc tác axit hay bazơ, thường dùng axit hơn, nhưng vằn chậm nên phương pháp chuyển hoá tốt hơn là phương pháp của Ing-Manske bằng cách cho tác dụng với hydrazin để thực hiện phản ứng trao dởi:

Cũng có thể dùng phương pháp khác như $\mathrm{Na}_{2} \mathrm{~S}$ trong THF hay axeton, NaBH_{4} - 2 propanol và axit axetic, dung dịch metylamin 40% và n-pentylamin.

Muối của điphenylphotphinamit $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PONH}_{2}$ ankyl hoá bằng ankyl halogenua bậc mợt hay hai hoặc với ancol khi có $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$ chuyển ancol thành $\mathrm{ROSO}_{2} \mathrm{CH}_{3}$. Thuỷ phân $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PONHR}$ bàng HCl cho amin.

Muối của sunfonamit ($\mathrm{ArSO}_{2} \mathrm{NH}^{-}$) cũng ankyl hoá bằng RX cho N -ankyl sunfonamit ($\mathrm{ArSO}_{2} \mathrm{NHR}$) hay N - điankyl ($\mathrm{ArSO}_{2} \mathrm{NRR}^{\prime}$) rồi thuỷ phân cho amin tương ứng.

Phản ứng N -ankyl hơa nội phân tử thường dùng tổng hợp các lactam vòng có sức cāng lớn:

38- Phản láng hinh thành azit

Ankyl halogentà tác dụng với ion azit tạo thành ankyl azit tương ứng:

$$
\mathrm{RX}+\mathrm{N}_{3}^{-} \rightarrow \mathrm{RN}_{3}
$$

Phản ứng thường dùng xúc tác chuyển pha hay siêu âm. Các nhóm chức khác như OH , $\mathrm{OTs}, \mathrm{OMs}, \mathrm{OOCCH}_{3}$ cũng là những nhơm đi ra trong các phản ứng tương tự. Epoxit phản ứng với NaN_{3}, với HN_{3} trong DMF , với $\mathrm{HN}_{3}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{Al}$ cho β-azit ancol dể chuyển hoá thành aziridin:

Phản ứng chuyển hoá trên là giai đoạn chính trong tổng hợp aziriđiđn quang hoạt từ 1,2-điol quang hoạt. Hydro cũng là nhóm đi ra trong một số trường hợp như hydro benzylic có thể thay thế N_{3} khi tác dụng với HN_{3} trong CHCl_{3} khi có DDQ (2,3-điclo-5,6-đixyano-1,4-benzoquinon).

Ankyl azit bậc ba cũng thu dược khi khuấy ankyl halogenua bậc ba với NaN_{3} và ZnCl_{2} trong CS_{2} hay ancol bạc ba với NaN_{3} và $\mathrm{CF}_{3} \mathrm{COOH}$ hay với HN_{3} và TiCl_{4} hay BF_{3}.

39- Phản ừng ghép civa allyl và propargyl
Hợp chất 1.5 -đien thường tồng hợp bằng phương pháp ghép đôi dẫn xuất allyl khi có xúc tác niken cacbonyl:

Các halogenua allyl, tosylat và axetat cho 1,5 -đien đối xứng với niken cacbonyl ở nhiệt độ phòng trong dung môi THF hay DMF. Các hợp chất allyl không đôi xứng sẽ ghép đôi ở dầu ít thế hơn. Hoạt tính thay dổi theo $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$.

Các dẩn xuất điallyl có khả nāng đơng vòng nội phân tử với hiệu suất cao ($60 \div 80 \%$) ở độ pha loãng cao, thường dùng dể tổng hợp các vòng lớn (11 đến 20 cạnh), chả̉ng hạn:

Cơ chế của phản ứng cūng giống như allyl halogenua với $\mathrm{Ni}(\mathrm{CO})_{4}$, đi qua phức π-allyl (83) rồi mất CO cho π-allyl niken bromua (84) phản úng tiểp, cũng với CO cho sản phẩm:

Phức (84) có thẻ̉ tách ra khỏi dung địch và kết tinh ở trạng thái rắn. Nếu tác dụng trụ̣c tiếp ankyl halogenua với (84) trong dung môi phân cực sē ghép bất đối xứng và trong trường hợp này đấu allyl kém thế hơn sẽ ghép ưu tiên:

Cơ chế thực ra khóng đơn thuấn là thế nucleophin vì aryl và vinyl halogenua cho phản ưng tốt hơn bromua bậc nhất dơn giản nên có chúng minh rằng phản ứng có thể là gốc tự do. Các nhóm hyđroxyl hay cacboxyl trong gốc ankyl khơng ành hưởng tới phản ứng. Khi cho (84) phản ứng với allyl halogenua cho ba sản phẩm do trao đổi halogen-kim loại, chẳng hạn như allyl bromua với (84) cho hỗn hợp của 1,5 -hexađien, 2 -metyl-1,5-hexađien và 2,3 -dimetyl-1.5-hexađien theo xác suaft thống kè.

Có thể ghép bất đới xứng cùa halogenua bậc nhất và hai với allyltributylstanan:

$$
\mathrm{RX}+\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \rightarrow \mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CH}
$$

Muốn ghép hai nhóm allyl khác nhau, tác dụng allyl bromua với tác nhân allyl Grignard trong THF chứa HMPA hay tác nhân allyl thiéc. Loại ghép hâu như không có chuyển vị allyl là khi dùng allyl halogenua với phức at liti allyl bo $\left(\mathrm{RCH}=\mathrm{CHCH}_{2} \mathrm{~B}^{-} \mathrm{R}^{\prime}{ }_{3} \mathrm{Li}^{+}\right)$.

Phương pháp ghép hai nhóm allyl khác nhau là dùng allyl halogenua với cacbanion của thioete β, γ-không no:

Sản phẩm có chứa $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$ có thể loại đi bằng Li trong etylamin.
Uu việt cửa phương pháp này, khác với các phương pháp trên là ghép vào vị trí ban đầu và giữ được cấu hình của hai nối đòi và cũng không có chuyển vị allyl.

Phương pháp propargyl hoá ankyl halogenua không có chuyển vị allyl là tác dụng halogenua với liti-1-trimetylsilylpropyn được bảo vệ bằng nhóm $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ (85):

Tác nhân (85) là lưỡng chức nhưng tấn công vào vị trí l (cho allen) có khó khān lập thể của $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ và nhóm $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ đươoc tách ra bằng Ag^{+}và tiếp theo bằng CN^{-}.

Tác nhân (85) có thể tổng hợp bằng tác dụng propyl liti với $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$ cho $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}$ rồi tách proton bàng $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$.

Halogenua propargyl có thể bị ankyl hoá với chuyển vị allyl hoàn toàn cho allen khi tác dụng với tác nhan Ủrignard và muối kim loại hay điankyl cuprat $\mathrm{R}_{2} \mathrm{Cu}$:

40- Phản áng amin hoá ankan

Ankan, arylankan và xycloankan có thể bị amin hoá chỉ ở vị trí bậc ba khi tác dụng với tricloamin và AlCl_{3} ở $0 \div 10^{\circ} \mathrm{C}$:

$$
\mathrm{R}_{3} \mathrm{CH}+\mathrm{NCl}_{3} \xrightarrow[0 \div 10^{\circ} \mathrm{C}]{\mathrm{AlCl}_{3}} \mathrm{R}_{3} \mathrm{CNH}_{2}
$$

Chả̉ng hạn như từ $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ cho $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}$, metylxyclopentan cho 1-amino-1-metylxyclopentan, adamantan cho 1-aminoadamantan.

Cơ chế phản ứng là $S_{\mathrm{N}} /$ với H^{-}là nhóm đi ra:

$$
\begin{aligned}
& \mathrm{NCl}_{3}+\mathrm{AlCl}_{3} \longrightarrow\left(\mathrm{Cl}_{2} \mathrm{~N}-\mathrm{AlCl}_{3}\right)^{-} \mathrm{Cl}^{+} \\
& \mathrm{R}_{3} \mathrm{CH} \xrightarrow{\mathrm{Cl}^{+}} \mathrm{R}_{3} \mathrm{C}^{+} \xrightarrow{\mathrm{NCl}_{3}^{+}} \mathrm{R}_{3} \mathrm{CNCl}_{2} \xrightarrow[2 \mathrm{H}^{+}]{-2 \mathrm{Cl}^{-}} \mathrm{R}_{3} \mathrm{CNH}_{2}
\end{aligned}
$$

41. Phản áng hình thành hợp chất nitro

Ankyl bromua và iodua tác dụng với nitrit natri cho hợp chắt nitro:

$$
\mathrm{RX}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{RNO}_{2}
$$

Phản ưng bị hạn chế ở dẩn xuất bromua và iođua bậc nhất và có sản phẩm phụ là este nitrit. Sản phẩm phụ này trở thành chính khi dùng dẩn xuất bậc hai và ba theo cơ chế $S_{\mathrm{N}} I$.

42- Phản úng tái amin hoá

$$
\mathrm{RNH}_{2}+\mathrm{R}^{\prime} \mathrm{NH}^{-} \rightarrow \mathrm{RR}{ }^{\prime} \mathrm{NH}+\mathrm{NH}_{2}^{-}
$$

Trong phản ứng này nucleophin là bazơ liên hợp của amin bậc nhất và NH_{2} là nhóm đi ra. Phương pháp chủ yếu dùng tổng hợp amin bậc hai. Amin bậc nhất có thể chuyển thành amin bậc hai khi đun nóng hồi lưu trong xylen có Ni Raney:

$$
2 \mathrm{RNH}_{2} \rightarrow \mathrm{R}_{2} \mathrm{NH}+\mathrm{NH}_{3}
$$

Muối amoni bậc bốn cūng bị đeankyl hoá bằng etanolamin:

$$
\mathrm{R}_{4} \mathrm{~N}^{+}+\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{R}_{3} \mathrm{~N}+\mathrm{RN}^{+} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}
$$

Nếu có gốc metyl thì gốc metyl ưu tièn tách ra hơn các nhóm ankyl khác.

43-Phản tông chuyển hoá RX thành RNH_{2} bẳng hexametylentetramin

Amin bậc nhất tác dụng với hexametylentetramin tạo thành muối và phân cắt trong HCl - etanol:

$$
\mathrm{RX}+\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4} \rightarrow \mathrm{~N}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}^{+} \mathrm{RX}^{-} \xrightarrow{\mathrm{HCl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \mathrm{RNH}_{2}
$$

Phản úng gọi là phản ứng Delépine, dùng cho các halogenua benzyl, allyl, α-halogen xeton và iodua bậc nhất.

44- Phản ứng chuyển hoú RX thành amin bạc hai bằng xyanamit

$$
2 \mathrm{RX}+{ }^{2-} \mathrm{N}-\mathrm{CN} \longrightarrow \mathrm{R}_{2} \mathrm{~N}-\mathrm{CN} \xrightarrow[2-\mathrm{HO}^{-}]{1-\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{R}_{2} \mathrm{NH}
$$

Phản ứng tạo thành amin bậc hai khi tác dụng ankyl halogenua với muói natri hay canxi của xyanamit $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CN}$ cho xyanamit hai lần thế dẽ̉ thuỷ phân và decacboxyl hoá. Phản ưng cho hiệu suất tốt khi dùng điều kiẹ̉n chuyển pha. R là bậc nhất, bậc hai, allyl hay benzyl. Dẫn xuất $1, \omega$-đihalogen cho amin vòng bậc hai.

45- Phản úng khư dẫn xuất halogen

$$
\mathrm{RX}+\mathrm{LiAlH}_{4} \rightarrow \mathrm{RH}
$$

Trong phản ứng này, LiAlH_{4} là tảc nhân khử và cūng là tác nhân nucleophin H^{-}nén theo cơ chế $S_{N} 2 . \mathrm{LiAlH}_{4}$ hầu như khử được tất cà các dẩn xuất halogen, kể cả loại halogenua vinyl, đầu cầu và xyclopropyl. Liti nhờm đeuterua dùng dể dưa đeutri vào hợp chất hữu cơ. Tác nhân khử mạnh nhất theo $S_{N} 2$ là liti trietylbohydrua $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{BH}$, khử nhanh các halogenua bậc nhất, hai, allyl, benzyl và neopentyl nhưng không khử được halogenua bậc ba và aryl. Tác nhân khử mạnh là $\mathrm{LiAlH}\left(\mathrm{OCH}_{3}\right)_{3}$ và CuI khử halogenua bậc nhất, hai, ba, allyl, vinyl, aryl và neopentyl.

Tác nhân khử trung bình là NaBH_{4} trong dung môi aproton như $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$, DMF hay sunfolan khử halogenua bậc nhắt, hai và ba ở nhiệt dộ phòng, không khử các nhóm chức khác như $\mathrm{COOH}, \mathrm{COOR}, \mathrm{CN}$ (các nhóm chức này bị khử bởi LiAlH_{4}).

Tác nhân kēm (với axit hay bazơ), SnCl_{2}, ion crom (II), tris(trimetylsilyl)silan. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{SiH}$ (có AlCl_{3}) khử halogenua bậc nhất, hai, ba. Tác nhân natri arsenua (với bazơo), dietyl photphonat-($\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$, photpho tris(dimetylamit) $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]_{3} \mathrm{P}$ và cacbonyl kim loại hay hyđrua cơ thiếc $\mathrm{R}_{\mathrm{n}} \mathrm{SnH}_{4-\mathrm{n}}\left(\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{3} \mathrm{SnH}\right.$ dùng dể khử mọ̣ halogen cùa gem-dihalogen hay 1,1,1-trihalogen. Hydrua thiếc $\left(\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{SnH}$ khỉ ankyl halogenua trong nước (khác với $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{3} \mathrm{SnH}$). Tác nhân khử tất cả các halogen trong polyhalogen là liti hay natri và tert-butanol trong THF.

Halogenua propargyl khử có chuyển vị thành allen:

Lựa chọn tác nhân khử phụ thuộc vào bản chất của nhóm chức, môi tác nhân đều có tính chọn lọc, gọi là chọn lọc hoá học, khử nhóm chức này mà không ảnh hưởng dến nhóm chức khác. Chả̉ng hạn, (iso- $\mathrm{C}_{3} \mathrm{H}_{7}$) ${ }_{3} \mathrm{NLi}, \mathrm{CH}_{3} \mathrm{SNa}, \mathrm{TiCl}_{3}$ trong nước... khử α-halogen mà không khử cacbonyl, $\mathrm{NaBH}_{3} \mathrm{CN}-\mathrm{SnCl}_{2}$ khử halogenua bậc ba, benzyl, allyl mà không khử halogenua bậc hai và aryl. Nhiĉ̀u tác nhân khừ khử clorua, bromua và iodua nhưng hydrua cơ thiếc khử cà florua.

Cơ chế khử bà̉ng liti nhôm hyđrua và nhiểu hyđ̛ua kim loại khác thường là phản ứng nucleophin dơn giản do tấn cóng hydrua theo $S_{\mathrm{N}} 2$ hơn $S_{\mathrm{N}} 1$, halogenua bậc nhất dể hơn bậc hai và ba và có sự nghịch đảo Walden. Sự chuyển vị tìm thấy khi khử bixyclo tosylat bà̀ng LiAlH_{4} theo $S_{\mathrm{N}}!$. Cūng có chứng minh phản ứng khử halogenua vinyl, xyclopropyl và dầu cầu bẳng LiAlH_{4} theo cơ chế SET .

Phản ứng khử halogenua bằng NaBH_{4} trong diglym $80 \%, \mathrm{BH}_{3}$ trong nitrometan theo cơ chế $S_{N} / . \mathrm{NaBH}_{4}$ trong sunfolan khử halogenua bậc ba có hyđro β theo cơ chế tách-cộng.

Các tác nhân khử khác không phải luôn theo cơ chế nucleophin, chẳng hạn các hydrua cơ thiẻ̉c, $\mathrm{Fe}(\mathrm{CO})_{5}$ và $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}_{3} \mathrm{SiH}_{3}-\mathrm{BaBH}_{4}\right.$ thường theo cơ chể gốc tự do. Các ankyl halogenua, kể cả florua và polyhalogen khử bằng Mg qua hợp chất trung gian:

$$
\mathrm{RX}+\mathrm{Mg} \rightarrow \mathrm{RMgX} \xrightarrow{\mathrm{H}^{+}} \mathrm{RH}
$$

46- Phán úng khủ tosylat

Các tosylat và hợp chất tương tự bị khử bằng $\mathrm{LiAlH}_{4}, \mathrm{NaBH}_{4}$ trong dung môi aproton phân cực, $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BH}$, (iso- $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{AlH}$ (DBALH), $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{3} \mathrm{SnH}-\mathrm{NaI}$:

$$
\mathrm{RCH}_{2} \mathrm{Ts}+\mathrm{LiAlH}_{4} \rightarrow \mathrm{RCH}_{3}
$$

Tác nhân khử ankyl tosylat trong ete etylic nhanh hơn iơta và bromua, còn trong diglym thì ngưọc lại.

47- Phin iong khic epoxy
Epoxy bị khử bằng LiAlH_{4} theo cơ chế $S_{\mathrm{N}} 2$ và nghịch đảo cấu hình:

Theo cơ ché $S_{\mathrm{N}} 2$, sự phân cắt liên kết ưu tiên tạo thành ancol bậc ba hay bậc hai.
Caic vòng epoxy tạo thành ancol axial. Một số hợp chất mở vòng theo hướng khác khi khử bằng $\mathrm{NaBH}_{3} \mathrm{CN}-\mathrm{BF}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}-\mathrm{Zn}$, clorua dixyclopentađienyltitan và 1,4 -xyclohexadien hity BH_{3} trong THF. Phản ứng mở vòng có chọn lọc hoá học và vị trí, như trong allyl epoxy và eq̣oxy xeton và este, khi dùng $\mathrm{NaHTe}, \mathrm{Sml}_{2}$, natri bis(2 -metoxyetoxy) nhóm hydrua (nhôm đó). Các epoxy có khó khăn lập thể bị khử bàng liti trietylbohyđrua không có chuyển vị.

48- Phän ing thé nhóm ankoxy băng hydro

$$
\begin{aligned}
& -\stackrel{\mathrm{C}(\mathrm{OR})_{2}}{-\mathrm{LiAHH}_{4} \cdot \mathrm{AlC}_{3}}-\stackrel{1}{\mathrm{C}} \mathrm{COR}+\mathrm{ROH} \\
& -\mathrm{C}(\mathrm{OR})_{3} \\
& \xrightarrow{\mathrm{LiAH}_{4}}-\mathrm{CH}(\mathrm{OR})_{2}+\mathrm{ROH}
\end{aligned}
$$

Các ete thường khó bị phân cắt bằng tác nhân khử trừ một vài ete bị khử nhanh như allyl aryl, vinyl aryl, benzyl ete. Các axetan và xetan nói chung bền với LiAlH_{4} và hydrua tương tự, nhưng nếu tổ hạ̛p LiAlH_{4} vó́ AlCl_{3} thì khử dược axetan và xetan mà chỉ mất đi mọ́t nhóm ankoxy, nhu là thế nhóm ankoxy bằng hydro.

Tác nhân thực trong trường hợp này là clo nhôm hyđrua $\mathrm{AiH}_{2} \mathrm{Cl}$ và diclo nhôm hyđrua AlHCl_{2} hình thành từ hai tác nhân trên.

Sự chuyển hoá này có thể dùng tác nhân khác như đIBALH, Nafion-H (nhựa sunfonic supeaxit peflo hoá - superacid perflorinated resinsunfonic acide), monocloboran eterat $\mathrm{BH}_{2} \mathrm{Cl}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$.

Các ortho este dể bị khử bằng LiAlH_{4} cho axetan, thường dùng điều chể anđehit bằng thuý phàn axetan.

49- Phản túng khâ lién két $C-N$
Amin bậc nhất bị khử thành RH bằng axit hydroxylamin-O-sunfonic và dung dịch $\mathrm{NaOH}:$

$$
\mathrm{RNH}_{2}+\mathrm{H}_{2} \mathrm{NSO}_{2} \mathrm{OH} \xrightarrow[0^{\circ} \mathrm{C}]{\mathrm{HO}^{-}} \mathrm{RH}+\mathrm{N}_{2}+\mathrm{SO}_{4}^{2-}
$$

Phản ứng đi qua chất trung gian $\mathrm{R}-\mathrm{N}=\mathrm{N}-\mathrm{H}$ rồi phân huỷ cho cacbocation.

Phan ứng có thé dùng difloamin $H_{N F}$. Mộ hướng giañ tiếp là chuyển amin thành sunfonamit $\mathrm{RNHSO}_{2} \mathrm{R}^{\prime}$ rổi tác dụng với $\mathrm{H}_{2} \mathrm{NOSO}_{2} \mathrm{OH}$ hoạc khir N, N-ditosylat bà̀ng $\mathrm{NaBH}_{\downarrow}$ trong HMPA.

Enamin bị phân cat thành olefin khi có alan AlH $_{3}$, 9 - BBN hay botan metyl sunfua BMS:

Trong trường hợp düng BMS cho sản phẩm bảo toàn cấu hình (dồng phân (E) cho sản phám (E), còn dùng 9-BBN cho đồng phân khác).

Điazo xeton bị khư cho metyl xeton bung HI:

$$
\mathrm{RCOCHN}_{2}+\mathrm{HI} \longrightarrow \mathrm{RCOCH}_{3}
$$

Muói amoni bạc bốn, cūng nhur photphoni, bị klử băng LiAlH ${ }_{4}$:

$$
\mathrm{R}_{4} \mathrm{~N}^{+}+\mathrm{LiNH}_{+} \rightarrow \mathrm{R}_{3} \mathrm{~N}+\mathrm{RH}
$$

Có thể dùng liti trietylbohydrua (ưu tiên phân cat nhóm metyl) hay natri trong amoniac lỏng. Khi khử muối amoni bậc bốn bẳng hỗn hống natri trong nức gọi là phản ứng khư Emde nhung khong dùng dể phân cát muôi amoni có bốn nhóm ankyl no.

Hợp chất nitro RNO_{2} kht̛ tới RH bà̀ng natri metylmercaptit $\mathrm{CH}_{3} \mathrm{SNa}$ trong dung môi aproton hay bằng $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{3} \mathrm{SanH}_{\mathrm{n}}$ nhumg theo cơ chế gôc tư do. Hẹp chat nitro bậc ba khừ thành RH bằg NaHPe, isoxyanua RNC khư thath RNH_{2} bằn ($\left.\mathrm{C}_{4} \mathrm{II}_{8}\right)_{3} \mathrm{SnH}_{\mathrm{H}}$. Li hay Na trong amoniac long hay K va ele crown trong toluen.
$\alpha-$ Nitroxeton khự thành xeton kha dùng $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SiH}$ trong IMPA- $\mathrm{H}_{2} \mathrm{O}$.
50. Phain iong thiẹ phan axit samfonic và dän wait

Clorua sunfonyl, cũng như este hay amit của axit sunfonic thuỷ phân cho axit tưong úng có thè trong nước hay trong ancol có axit hay bazo:

$$
\begin{gathered}
\mathrm{RSO}_{2} \mathrm{Cl} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{RSO}_{2} \mathrm{OH} \\
\mathrm{RSO}_{2} \mathrm{OR}^{\prime} \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{H}^{+}} \mathrm{RSO}_{2} \mathrm{OH} \\
\mathrm{RSO}_{2} \mathrm{NR}^{\prime} \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{H}^{+}} \mathrm{RSO}_{2} \mathrm{OH}
\end{gathered}
$$

Este thuỷ phân nhanh trong nước hay kiềm loãng, tương tự este có phân căt $\mathrm{R}^{\prime}-\mathrm{O}$ trừ

Phản úng turong tụ tạo thành este khi tác dụng halogenua vớa ancol khi có bazo. dùng dể tơng hơp tosylat, brosylat và este sunfonic tưong tự. Sunfonamit phản ứng hạn ché với hợ chất hai lần thé:

$$
\begin{gathered}
\mathrm{RSO}_{2} \mathrm{Cl}+\mathrm{R}^{\prime} \mathrm{OH} \xrightarrow{\text { bazo }} \mathrm{RSO}_{2} \mathrm{OR}^{\prime} \\
\mathrm{RSO}_{2} \mathrm{NR}_{2}^{\prime \prime}+\mathrm{R}^{\prime} \mathrm{OH} \rightarrow \mathrm{RSO}_{2} \mathrm{OR}^{\prime}+\mathrm{NHR}_{2}^{\prime \prime}
\end{gathered}
$$

5/- Phain iong hinh thanh swofonamit

Sunfonamis tạo thành khi tác dụng sunfonyl clorua với amoniac hay amin:

$$
\mathrm{RSO}_{2} \mathrm{Cl}+\mathrm{NH}_{3} \rightarrow \mathrm{RSO}_{2} \mathrm{NH}_{2}
$$

Amin bạc nhất cho N -ankyl sunfonamit, amin bậc hai cho N, N-diankyl sunfonamit, phản ứng là phép thử Hinsberg phàn biệt amin bậc nhất, hai và ba;song phản ứng bị giới hạn vì N'aky! sunfonamit có 6 cacbon hay lớn hơn cũng khó tan trong kiềm và khó khống chë diều kiện dế cho amin bậc ba thu lại khong thay dồi.

Amin bậc nhait và hai thường dược bủo vệ bằng phenaxyl sunfonyl clorua $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{SO}_{2} \mathrm{Cl}$ cho sunfonamit $\mathrm{RNH}_{1} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{COC}_{6} \mathrm{H}_{5}$ dể hồi phục lậ bằng Zn trong axit axetic.

52- Phan tong tông hogp sunfon

Arylsunfonyl clorua tác dụng với RMgX cho sunfon:

$$
\mathrm{ArSO}_{2} \mathrm{Cl} \lambda \mathrm{Ar}^{\prime} \mathrm{MgX} \rightarrow \mathrm{ArSO}_{2} \mathrm{Ar}^{\prime}
$$

Phỉn ứng là tấn công của cacbon vào S theo $S_{\mathrm{N}} 2$, có thể dùng cơ liti. Vinyl và allyl sunfon tuo thành từ sunfonyl clorua với vinyl hay allyl stannat và xúc tác phức paladi. Ankynyl sunfon tạo thành từ sunfonyl clorua với trimetylsilylankyn và ACl_{3} :

$$
\mathrm{ArSO}_{2} \mathrm{Cl}+\mathrm{RC} \equiv \mathrm{CSi}_{(}\left(\mathrm{CH}_{3}\right)_{3} \rightarrow \mathrm{ArSO}_{2} \mathrm{C} \equiv \mathrm{CR}
$$

Phàn ưng thê nucleophin ch̉a $\mathrm{RSO}_{2} \mathrm{X}$ cũng giông của RCOX. Nhiều phản úng giông nhau tuy sunfonyl kén phan ứng hơn halogenua axit và co chế cũng không boàn toàn dồng nhát vì chât trung gian tứ diện khaic nhau. Chât trung gian tứ diện của S có 5 nhơm dính với nguyên tử trung tâm có 10 electron vẫn dà dược phép nèn cơ ché giống S_{N} 2 với trạng thái chuyển hình tháp kép (trigonal bipyramidal):

Đã có nhiều thực nghiệm cho các kết luận sau:
1- Đạ̣c tính lập thể của $S_{\mathrm{N}} 2$ ờ S khó hơn ở C no nhiểu vì hợp chât quang hợt tuy dể tông hợp nhưng tính quang hoạt của $\mathrm{RSO}_{2} \mathrm{X}$ nếu có ${ }^{16} \mathrm{O}$ và ${ }^{18} \mathrm{O}$, ở phàn túng của sunfonat este tác dụng với tác nhân Grignard thu được sunfon quay cấu hình, tuy chưa phì hợ với chắt trung gian trên nhưng cūng phù̀ hợp với cơ chế $S_{\mathrm{N}^{2}} 2$ là tấn công sau.

2- Khi thuỷ phân aryl arensunfonat khi dùng ${ }^{18} \mathrm{O}$ cho thấy cơ chế có chát trung gian trên, tốc độ ît thay đổi với nhóm đi ra khác nhau, giá trị ρ rất lớn chứng tỏ trạng thái chuyển mang điện tích âm lớn.

Khi chất ban dầu có hydro α cũng xảy ra cơ chế tách-cộng E/cb tương tự nhử̛̉ cacbon nhu từ metansunfonyl clorua và anilin đi qua chất trung gian sunfen:

Trong phản ứng nucleophin của este $\mathrm{RSO}_{2} \mathrm{OR}^{\prime}$ với $\mathrm{R}^{\prime}=$ ankyl, sự phân cắt $\mathrm{R}{ }^{\prime}-\mathrm{O}$ nhiều hơn $\mathrm{S}-\mathrm{O}$ vì $\mathrm{OSO}_{2} \mathrm{R}$ là nhóm di ra tốt, nhưng nếu R^{\prime} - aryl thì liên kết $\mathrm{S}-\mathrm{O}$ phân cát nhiểu hơn vì khuynh hướng thể nucleophin ở hợp chất thơm kém hơn.

Tính nucleophin của nguyên tử lưu huỳnh trong sunfonyl thay dổi theo:

$$
\mathrm{HO}^{-}>\mathrm{RNH}_{2}>\mathrm{N}_{3}^{-}, \mathrm{F}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}>\mathrm{I}^{-}
$$

tương tự nhtr ở cacbonyl. Ca hai hợp chất sunfonyl và cacbonyl dược xem là axit tương đối cứng, còn ở cacbon no là mèm.

Chương

PHẢN ÚNG THẾ NUCLEOPHIN S_{N} CỦA HYĐROCACBON THOM

Phản ứng thế nuleophin ở cacbon cửa nhân thơm kém quan trọng hơn nhưng có tầm quan trọng trong công nghiệp. Chẳng hạn điều chế phenol từ clobenzen trong kiềm ở $370^{\circ} \mathrm{C}$, anilin từ clobenzen trong dung dịch amoniac ở $210^{\prime \prime} \mathrm{C}$. Phán ứng thế S_{N} ở nhân thơm cung tương tự như ở cacbon không no, nhưng phân tử benzen có bộ khung cacbon cùng với đám mày electron π nén cacbon bị chẳn nhiều hơn so với hợp chất cacbon no, vì thế Nu khó tiếp cận tới, song phản ứng nucleophin vẩn có thể xảy ra trong các trường hợp sau:

1- Chi xày ra trong những diểu kiện mạnh hơn và chỉ xày ra khi trong nhân thơm có những nhóm thě hút electron ở vị trí ortho và para đói với nhóm đi ra;

2- Khi có xúc tác bazơ mạnh với chất trung gian aryn;
3-Phản ứng kích thich bà̀ng sự cho electron;
4 - Phản ứng $S_{\mathrm{N}} /$ cho chắt có nhóm đi ra dể.
Nói chung, phản ứng thế nucleophin vào aren cung có bốn cơ chế tương tự như ở cacbon aliphatic.

6.1. COCHÉ $S_{\mathrm{N}} 1$

Phản ứng xảy ra qua cation phenyl:

$$
\mathrm{Ar}-\mathrm{Z} \rightarrow \mathrm{Ar}^{+}+\mathrm{Z}^{-}
$$

Cation aryl kém ổn định vì tính âm điện cao của cacbon lai hoá $s p^{2}$, vì điện tích dương ở trên obitan lai hoá $\sigma s p^{2}$ nằm trên mặt phẳng của vòng benzen thẳng góc với hệ π nên khờng có tương tảc với hệ π, điện tích dương khơng được giải toả với nhân.

Các nhóm thé có hiệu ưng $+C$ cūng không tham gia được vào sự ổn định cation, chỉ có các obitan σ ở vị trí ortho có khả năng siêu liên hợp với obitan trống vì cùng nằm trên một mặt phẩng, còn các liên kết σ ở vị trí meta và para cũng có hiệu ứng rất nhỏ, đã đượe xác nhận bằng hiệu ứng đồng vị. Vì có điện tích dương ở cacbon của nhân nên đám mày electron π cūng bị phân cực hoá một phần, nên các nguyên tử cacbon có mang một phần điện tích dương, trong đó ở ortho $>$ meta $>$ para.

Cation aryl

Phản ứng diển hình của sụ̣ hình thành cation phenyl là sự nghiên cuŕu động học của phản ưng thế cation điazoni khi không có ánh sáng, kiểm và chất khử, cho tháy sụ tạo thành chất trung gian cation pheny):

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{BF}_{4}^{-} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5}^{+}+\mathrm{N}_{2}+\mathrm{BF}_{4}^{-} \xrightarrow{\mathrm{I}^{-} \text {hay } \mathrm{HI}^{\prime}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}
$$

Thực tế sự tạo thành cation phenyl rất khó do liên kết $\mathrm{C}-\mathrm{X}$ bển, nhu cầu lập thể cùa cation phenyl thấp hơn cation ankyl nhiều, do đó về hình thức phản ứng thế nhóm điazoni và phản úng của dẩn xuất halogen xúc tác bằng dồng là theo $S_{\mathrm{N}} l$. Phản ứng có đọng học bạ̣c nhất, không nhạy khi thêm muôi, tính chọn lọc lập thể thấp của cation điazoni với nucleophin có trong dung dịch phản ứng và ảnh hường của nhóm thế. Tính ốn dịnh của cation aryl được giải thích bắng sự chuyển sang trạng thái triplet để tạo thành góc khi có nhóm thế thích hợp ởn định bằng liên hợp với nhóm thế:

Các dần xuất halogenua và sunfonat hoạt động cho phản úng $S_{\aleph} I$ rất hiếm, thường chỉ quan sát thấy ở aryltriflat có nhóm thế ortho lớn nhu tert-butyl hay SiR_{3}.

Muói điazoni xảy ra theo cơ chế $S_{N} l$:

Phàn ứng xác định cho cơ chế $S_{\mathrm{N}} /$ với chất trung gian là cation phenyl vói các bằng chứng sau:

1- Phản ứng là bạ̣c nhất của muối diazoni và không phụ thuộc vào nồng dộ của Nu^{-};
2- Khi thêm vào muối halogenua nồng dộ cao, sàn phẩm thu dược là aryl halogenua nhưng tốc độ không phụ thuộc vào nồng độ của muới thêm vào;
3- Hiệu ứng của nhóm thé trong vòng có ảnh hưởng dến sự phân cắt dơn phân tử quyết định tốc độ;
4- Khi chát ban đầu deutri hoá ở vị trí ortho, phàn ứng có hiệu ứng đồng vị là 1,22 . chứng tỏ cation phenyl hình thành chì ổn định bằng siêu liên hợp mà bị mất đi khi
hydro thay thế bắng deutri:

5- Sự tạo thành hợp chất trung gian này đã được chứng minh bà̀ng sự chuyển vị của nitơ dồng vị: $\quad \mathrm{Ar}^{-15} \mathrm{~N}^{+} \equiv \mathrm{N} \longrightarrow \mathrm{Ar}-\mathrm{N}^{+} \equiv \mathrm{N}^{15}$
vì giai doạn đầu là thuận nghịch, trong nguyên liệu ban đầu của phản ứng cūng tìm thấy hai đồng phân chi do phân cắt nitơ ra khòi vòng và quay trở lại liên kết với vòng.
Mật khác có chứng minh rằng, khi dun nóng muối điazoni dánh đấu $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{+} \equiv{ }^{15} \mathrm{~N}$ ở áp suất khác nhau thì ở áp suất 300 atm tìm thấy có $3 \% \mathrm{~N}_{2}$ dánh dấu, chứng tỏ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{+}$có trao đởi ở N_{2} khí quyển.

Trên cơ sở động học và chứng minh khác cho rằng, giai doạn i là gồm hai giai doạn:

$$
\begin{equation*}
\mathrm{ArN}_{2}^{+} \rightleftharpoons\left[\mathrm{Ar}^{+} \mathrm{N}_{2}\right] \Longrightarrow \mathrm{Ar}^{+}+\mathrm{N}_{2} \tag{1}
\end{equation*}
$$

di quaa cặp ion - phân tử chặt (1) mà có thể bắt được bằng cacbon monooxit.
Cüng đã có chứng minh cho phàn ứng thuỷ phàn hay thé của hợp chất điazoni theo cơ chế dặc biệt của $S_{N} l$, trong đó khòng có sự phân ly liên kết $\mathrm{Ar}-\mathrm{N}_{2}{ }^{+}$tạo thành cation phenyl trung gian mà qua hợp chất trung gian. Chả̉ng hạn, phản ứng của p-tolyldiazoni trong nước:

Trong phản ứng này, các nhóm thế ở vị trí para làm ổn định chăt ban dầu hơn chất trung gian (hay cation aryl) nên các nhóm thế $+C$ làm giảm tốc độ phản ứng:

$$
\begin{array}{lcccccc}
\\
\left.\mathrm{X}=\begin{array}{ccccc}
\mathrm{OH} & \mathrm{OCH}_{3} & \mathrm{CH}_{3} & \mathrm{H} & \mathrm{COOH} \\
\mathrm{Cl} & \mathrm{NO}_{2} \\
\mathrm{H}_{\mathrm{H}}= & 0,0013 & 0,00015 & 0,12 & 1
\end{array}\right) 0,12 & 0,0019 & 0,0042
\end{array}
$$

Các nhóm thể ở vị trí meta làm tăng phàn ứng nếu là cho electron và giảm phàn ứng néu là hút electron mà đã có dữ liệu thực nghiệm.

$$
\begin{array}{cccccccc}
\mathrm{X}= & \mathrm{OH} & \mathrm{OCH}_{3} & \mathrm{CH}_{3} & \mathrm{H} & \mathrm{COOH} & \mathrm{Cl} & \mathrm{NO}_{2} \\
k_{\mathrm{td}}= & 12 & 4,6 & 4,6 & 1 & 0,55 & 0,042 & 0,00093
\end{array}
$$

Nhóm di ra trong phàn ứng thé nucleophin là có thể: bốn halogen, $\mathrm{SC}_{6} \mathrm{H}_{5}{ }^{+} \mathrm{N}\left(\mathrm{CH}_{7}\right)_{3}$ và $\mathrm{OPO}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}$ nhưng chi có nhóm di ra quan trọng nhất theo $S_{\mathrm{N}} /$ là nhóm diazoni $\mathrm{N}_{2}{ }^{+}$.

6.2. CO CHÉ TÁCH CÔNG HAY CO CHÉ ARYN

Gun.1. Cor ché

Phản ưng xảy rat với những hợp chất có nhớm di ra rất kém hoạt dộng, cân dùng tác nhân Nu mặh như $\mathrm{NH}_{2}{ }^{-}$trong NH_{3} lông. Phản ứng xảy ra với uhững hợp chát thơm không có nhóm thế hút electron và thường có sự chuyển vị:

Đặc tính nhóm đi vào không chỉ chiếm chồ trống bởi nhớm đi ra mà đã dược chứng minh bầng phän ứng cùa $1 \cdot{ }^{14} \mathrm{C}$-clobenzen với amidua kali:

Phản ưng fuôn thu dược một lượng bà̀ng nhau cuia anilin ở vị trí 1 và 2 .
Phàn ứng này được giải thích bằng cợ chế gồm hai quá trình tách và cọ̉ng:

Chât trung gian (2) đói xứng gọi là dehyđrobenzen hay benzyn, có thẻ̉ bị tán công bởi NH_{3} ở hai vị trí khác nhau nên giải thích dược tại sao có một nừa anilin sinh ta từ clobenzen đảnh dấu trên lại có đánh dấu ở vị trí 2 . Thực tế, vị trí 1 và 2 không đánh dấu bà̀ng nhau vì thé mà có hiệu ứng dồng vị nhó.

Co chế dược chứng minh thém bằng một số dữ kiện sau:
l-Nếu aryl halogenua có hai vị trí ortho, phản ứng không có gì đặc biệt.
2- Phản ứng thế nucleophin thơm xảy ra ở vị trí khác với phản ứng thế thường mà trước kia gọi là phản ứng thé "cine" (thế ở vị trí kề của nhóm đi ra) (cine substitution) như khi chuyển hoá o-bromanizol thành m-aminoanizol chỉ thu được sản phẩm thế meta:

Phản ứng này đâ được giải thích bằng sự hình thành cation aryl (3) không đối xứng vì thế không thu dược tỷ lệ $1: 1$ của sản phẩm như trường hợp clobenzen. Trong chất trung gian không đối xứng này, nhóm metoxy hướng nhóm đi vào vào vị trí meta mà không phà ortho.

3- Khi phản ứng của ArX với KNH_{2} trong NH_{3} lỏng, hoạt tính của halogen thay đổi: $\mathrm{Br}>\mathrm{I}>\mathrm{Cl}>\mathrm{F}$ mà không có trong $S_{\mathrm{N}} A r$. Trong chuyển hoá từ chất ban đầu tới chất trung gian (2), có thể mất proton hay mất halogen ở giai doạn quyết định tốc dộ. Thực tế, thứ tự nhón đi ra không bình thường ($\mathrm{Br}>\mathrm{I}>\mathrm{Cl}$) là do thay dổi trong giai doạn quyét dịnh tốc dộ. Khi nhoom đi ra là Br hay I , proton sẽ tách ra ở giai doạn quyết dịnh tốc dộ nên thứ ự tốc độ của giai doạn này là $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$. Khi Cl và F là nhóm đi ra. sự phân cắt liên kết $\mathrm{C}-\mathrm{X}$ ờ giai đoạn này quyêt định tốc độ và thứ tự tồc độ là $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$. Diều này dược chúng minh bằng phản ứng của m-dihalogen benzen, trong dó hydro ở giữa hai halogen rất axit nên đi ra và halogen sẽ di ra từ anion tìm thăy ưu tiên theo thứ ự $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$.

Phản ứng không xảy ra theo cợ chế nucleophin bình thường mà qua hợp chất trung gian đehyđrobenzen hay benzyn hoặc aryn nên còn gọi là cơ chế aryn:

Quá trình tạo thành benzyn đã được xác nhận bằng phản ứng trao đổi đồng vị:

Sự trao dổi đồng vị xảy ra ở vị trí ortho đối với nhóm đi ra halogen, song nếu X là F thì $k_{1} \gg k_{2}$, còn $\mathrm{X}=\mathrm{Br}$ thì $k_{2} \gg k_{1}$, phù hợp với độ linh động của nhóm di ra trong phản ứng tách.

Đehyđrobenzen hay benzyn là hợp chất trung gian có khả năng phản ứng rất cao với Nu , nếu không có Nu thì thường đime hoá.

Sự tạo thành liên kết ba trong vòng benzen làm tāng sức cāng của vòng rất lớn, bao gồm hai lièn kết π : một được xen phủ cùa hai obitan p thẫng góc với vòng như là liên kết π bình thường, một lièn kết π khác nằm trong mặt phẳng vòng như là loại liên kết ba yếu với sự xen phủ yếu hơn cho nên benzyn có cấu trúc của góc kép hơn:

cấu trúc bernzyn

liên kết ba thường

lién két ha yếu

Cạp electron này không có đóng góp vào tính thơm của nhân benzen, nghīa là hệ thơm vần chỉ là lục tử và cạ̉p electron π chỉ định chổ trên obitan π giữa hai cacbon. Benzyn không có liên kết ba quy ước mà ở hai dạng cộng hưởng (4) và (5) đóng góp vào cấu trúc lai hoá:

theo phổ IR thì dạng (4) dóng góp lớn hơn là dạng (5). Không chỉ có vòng benzen mà các hệ vòng thơm khác, thậm chí cả hẹ̀ vòng khōng thơn cūng cớ thể phản ứng qua chấi trung gian loại aryn nhưng các vòng không thơm có liên kết ba quy ước.

Phản úng tách dể tạo thành benzyn xảy ra theo cơ chế tách Elcb nên cần phải đáp ứng nhân tó cấu trúc của nhóm đi ra khó và Nu phải đủ mạnh.

Benzyn hay aryn rất hoạt động, không bao giờ có thể tách ra được nhưng có thể tách ra trong argon ở 8 K , có thể quan sát bā̀ng phổ IR và cũng tìm thấy trong phản ứng Diels Alder.

6.2.2. Các nhân tố ảnh hưởng

Trong phản ứng theo cơ chể aryn, có hai nhân tố ảnh hưởng tới vị trí đi ra của nhóm đi ra dể hình thành aryn, nếu có nhóm thế ở ortho và para thì chỉ có mọ̀t hướng di ra:

còn ở vị trí meta sè có hai hướng pnai chọn:

Trong mồi trường hợp, hyđ̛o axit hơn sẽ đi ra, song tính axit lại liên quan tới hiệu ứng I của 7 ., nhưng có thể cho rằng các nhóm thế hút electron là thích hợp cho hydro ortho di ra còn nhóm cho electron thích họ̣ cho sự đi ra của hyđro para. Sự tấn công của nucleophin vào aryn phụ thuộc vào độ bền của cacbanion hình thành, nhưng tính ổn định này lại phụ thuộc vào hiệu ứng $/$ của Z. Với nhoóm $-I$, cacbanion bền hơn khi điện tích âm được giải tọa với nhóm thể. Quy tẳc này dược phản ánh trẻn các phản ứng của điclobenzen với kiềmamiđua kim loại:

Trong mổi trường hợp đều tìm thấy sản phẩm chính.
Chả̉ng hạn, một số phản ứng theo cơ chế aryn:

Các bazơ thường dùng cho cơ chế aryn là các bazơ mạnh như $\mathrm{NH}_{2}{ }^{--}>\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}^{-}>$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{-}$.

6.3. CO CHẾ GỐC $S_{\mathrm{RN}} I$

Khi tác dụng 5 -iot-1,2,4-trimetylbenzen (6) với KNH_{2} trong NH_{3} thu được hai sản phẩm (7) và (8) với tỷ lệ 0,63: 1 :

Tù đó cho thấy, khi chất ban đảu khòng hoạt động, bazơ mạnh sẽ có sự cạnh tranh của phản ứng thế "cine" (thé kề) với phản ứng thế benzyn. Nếu chất (6) là 6-iot thì đáng lẽ cũng thu dược tỷ lệ sản phẩm như trên vì cùng một chất trung gian nhưng ở dây lại thu được tỳ lệ $5,9: 1$. Nểu dùng dẩn xuất là clo hay brom thì thu được tỷ lệ $1,46: 1$, nghĩa là theo cơ chế benzyn.

Để giải thích hiện tượng đối với dẩn xuất iot, bên cạnh cơ chế benzyn còn đê nghị cơ chế gốc với các quá trình sau:

$$
\begin{aligned}
& \text { ArI } \xrightarrow[\text { electron }]{\text { chấ cho }} \mathrm{ArI}^{\bar{*}} \rightarrow \mathrm{Ar}^{*}+\mathrm{I}^{-} \\
& \mathrm{Ar}^{*}+\mathrm{NH}_{2}^{-} \rightarrow \mathrm{ArNH}_{2}^{\bar{*}} \xrightarrow{+\mathrm{ArI}} \mathrm{ArNH}_{2}+\mathrm{ArI}^{\bar{*}}
\end{aligned}
$$

gọi là cơ chế S_{RN} / mà đã có nhiều ví dụ khác. Trong cơ chế, cuối phản ứng lại hình thành anion gốc $\mathrm{Ar}^{\bar{\circ}}$ nẻn phản ứng có tính chất chuōi. Chất cho electron kích thích phản ứng, ià electron solvat từ KNH_{2} trong NH_{3} và có chứng minh nếu thêm kim loại kali là chất cho electron tốt trong amoniac thì hoàn toàn tránh được phản ứng thế "cine". Còn nĉ́u thêm vào phàn ứng chất bắt lấy gốc tự do sẽ loại bỏ dược phản ứng gốc tự do thu dược tỷ lệ (7) : (8) dẳn tới $1,46: 1$. Như vậy phản ứng $S_{R N} l$ trèn dược kích thích bẳng electron solvat và bị kìm hãm bởi chất bắt gốc (chất dể phản ứng với gốc).

Phàn ứng này có thể kích thích bằng electron solvat hay có thẻ̉ kích thích bà̀ng quang hoá, điện hoá hay thạ̀m chí nhiệt.

Phản ưng $S_{\mathrm{RN}} l$ không thích hợp cho các nhóm hoạt dộng hay bazơ mạnh, không thích hợp với các nhóm ankyl, ankoxy, aryl, COO^{-}mà thích hợp cho các nhóm $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}, \mathrm{O}^{-}, \mathrm{NO}_{2}$.

6.4. CO CHÉ CÔNG TÁCH-CO CHẾ $S_{\mathrm{N}} A r$

6.4.1. Cơ ché

Cơ chế cộng - tách của phản ưng thế nucleophin vào nhân thơm là cơ chế hai giai doạn, bất đầu bằng cách cợng Nu tạo hợp chất trung gian (9) rồi tách nhóm đi ra Z dể tạo
thành sản phẩn cuối cùng nén theo cơ chẻ̛ $S_{\mathrm{N}} 2$ hay $S_{\mathrm{N}} A r$:

Cơ chế này có giai doạn đẩu quyết dịnh tộc độ nhưng khơng phải luôn luôn như vậy. Cơ chế này giống cơ chế tứ diện đã thấy trong các chương trước như cơ chế S_{E}. đều có liên kết với chất ban đầu tạo chất trung gian rồi nhóm di ra di ra sau.

Khi nghiên cứu phản ứng của 4 -nitroflobenzen với ion azit trong dimetylfomamit tạo thành p-azitnitrobenzen:

Phản ứng dược mô tả bằng phượng trình dộng học bậc hai và phụ thuộc vào bản chất và nổng độ của Nu. Phản ứng đi qua những hợp chắt trung gian:

Sự chuyển từ chất ban dầu (10) thành trạng thái chuyển (11) đã kèm theo sự thay dổi trạng thái lai hoá từ $s p^{2}$ sang $s p^{3}$, sau dó chuyển thành hợp chất trung gian (9) gọi là phức Meisenheimer. Phức Meisenheimer có bản chất của phức σ nhưng mang diện tích àm nén được ổn định bà̀ng nhóm thế hút electron.

Việc tách ra được chất trung gian vào năm 1902 khi thực hiện phản ứng giữa etyl picrat và ion metoxit:

Phức này là muối bến, gọi là muối Meisenheimer hay muôi Meisenheimer - Jackson. Cä́u trúc chăt trung gian này đã được xác định bằng NMR và tỉnh thê hoc tia X.

Tài liệu thự nghiệm đã chứng minh sự tổn tại của phức này bằng tách ra phức ở dạng tinh thể khi tác dụng metylat natri với 4-xyan-2,6-dintroanizol:

Phản ứng có thể mó tá đơn giản bằng hai giai doạn sau:

Dưng trạng thái dừng. có thể biểu thị tốc độ bẳng:

$$
v=k_{1} k_{2}[\mathrm{Ar} \mathrm{Z}][\mathrm{Nu}] /\left(k_{-1}+k_{2}\right)
$$

- Nếu $k_{-1} \ll k_{2}$ sē có phương trình:

$$
v=k_{\ell}[A r Z][\mathrm{Nu}]
$$

Phản úng có gidi doạn quyết dịnh tốc độ là giai doạn và trạng thái chuyển dạng (11) nhưng trên giản đổ nāng lượng (a) ở hình 6.1, ở giai đoạn này không xảy ra sự phân cãt liên kế nhóm đi ra.

Để chứng minh cho cơ chế này, người ta nghiên cứu hiệu ứng của các nhơm di ra cuia phản ứng. Trong cơ chế $S_{\times} \cdot A r$, liên kết $A r-Z$ khỏng bị phân cắt ở giai đoạn xác dịnh tốc đọ và có thể tiên đoán dược nhóm đi ra không có hiệu úng lớn đến tốc độ phản ứng.

Trong trường hợp này, nhoom đi ra Z làm ốn dịnh anion hình thành bẳng hiệu ứng I hay F.

Như vậy khi Z là halogen, F có hiệu ứng càm ứng lớn hơn nên tốc dộ thế các halogen theo thứ tự: $\mathrm{F} \gg \mathrm{Cl}>\mathrm{Br}>\mathrm{I}$. Chẳng hạn trong phản ứng:

Khi $\mathrm{Z}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{SOC}_{6} \mathrm{H}_{5}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ hay p-nitrophenoxy, tốc dộ chí khác nhau môt cấp số nhân bàng 5. Điều dó không cho thảy liên kết Ar-Z bị phân cắt ờ giai đọan xác định
 của 7 . làm giàm mạt dọ electron ơ phía mà Nu tân cong thì nucleophin se tân cong nhanh
 tê F là nhóm đi ra tôt nhât trong các halogen của phán tíng thế nucleophin thơm và cüng chúng minh sự khác nhau giữa $S_{N} /$ và $S_{N} 2$, ờ S_{N} flo là nhóm di ra kém nhât trong các halogen. Đây là mọ̀t trương họ̣p cửa hiệu ưng nguyên tố.

Néu $k_{-1} \gg k_{2}$ sẽ có phương trình:

$$
v=K \cdot k_{2}[\mathrm{Ar} Z][\mathrm{Nu}]
$$

với $K=k_{1} / k_{1}$. Nếu K lớn, phức trung gian có nồng độ lớn thì phương trình tờc độ không thich họ̣ d̛ trang thái di̛ng, nều K nhò, nồng độ chất trung gian nhò thì giai doạn quyết dịnh tốc dộ lì giai doạn (2), trạng thái chuyển tiếp là dạng (4) như trên giản dồ nāng lượng (b). Trương hợp này có sự phụ thuộc vào nhóm di ra phức tạp hơn, giai doun xác dịnh tốc dộ có sự phàn cát liên kết $C-Z$ và dộ bển của liên kết $C-Z$ càng lớn thì k_{2} càng nhỏ, nên nếu Z là các halogen thì thứ tư phản ứng cúa các halogen giồng như trong trương hợp mạch hở, nghia là ờ đáy $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}<\mathrm{l}$, song do có ảnh hưởng của bản chất hatogen tới K nên sự thay dối tố dọ có ành hượng nhó hơn:

Trong phản ứng có xúc tác bazơ của ArZ với nucleophin amin. Phản ứng có xúc tác bazơ chi khi nhóm di ra kém nhu OR (khòng phảa Cl hay Br) và chi khi nucleophin có thể tich lớn nhu amin. Bazơ khong có xúc tác ơ giai doan I nhưng néu amin là nucleophin. bazo có thé xúc tác giai doan 2 :

Xúc tác bazo tiom thấy trong trường hợp này khi amin dà bị phan cắt một nưa nhưng Z thì không, có nghia k_{-}la lớn và giai doan 2 là quyět định tơc dộ phản ứng. Dữ kiện này cho thây phản ứng $S_{\mathrm{N}} A r$ có hai giai doạn. Trong trường hợp khi bazo là xúc tác, xúc tác chỉ có nổng độ rất nhỏ còn biểu đổ tở đọ̀ lièn quan đới nổng độ bazo cho thấy một số gia nhỏ của bazor, làm tāng nhanh tổc dộ đến một nồng dộ xác dịnh của bazo sau dó hiệu ứng không lớn. Điều đó cho thấy, dựa trên hiệu ứng phần cũng phát hiẹ̉n được cơ chẽ $S_{\mathrm{N}} A r$. Ơ nông dộ thấp. mōi só gia của bazơ do tāng tớc dộ ở giai doạn 2 , làm tảng phần chất trung gian đi tới sản phẩm đê hơn trờ vé chất ban đẩu. Ớ nổng dộ bazơ cao, quá trình gần như hoàn toàn, có một
ít quay trở vể chất ban đẩu và tốc độ trở thành phụ thuộc giai đoạn 1. Bày giờ, bazơ xúc tác cho giai đoạn 2. Đối với dung môi proton, cả hai giả thiết đểu có. Đó là giai đoan 2 gồm hai giai đoạn: một là sự deproton hoá của phức là giai đoạn quyêt định tốc độ bởi Z di ra nhanh và hai là bazơ xúc tác phản úng do làm tăng tốc độ giai đoạn deproton hoá:

Phù hợp với giả thiết khác, giai doạn mất Z bẳng BH^{+}là quyết định tớc độ.

Hình 6.1. Giản dơ nảng lượng của phản ứng $S_{\mathrm{N}} 2$ thơm
Cả hai cơ chể dều dựa trên những chứng minh dộng học đã có trong dung môi aproton như benzen. Cể hai đê nghị tựa vào cơ chê $S_{\mathrm{N}} 2$ thường nhưng một cơ chế cho là tiểu phân tấn cong là hai pia \hat{a}_{1} iti antion (gọi là cơ chế dime), còn cơ chế khác là trạng thái chuyển vòng. Cơ chể $S_{\mathrm{N}} A r$ cũng dựa trên hiẹ̀u ứng dồng vị từ ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ và ${ }^{1.5} \mathrm{~N} /{ }^{14} \mathrm{~N}$:

Giaj doạn 1 của cơ chẽ $S_{\mathrm{N}} A$ r cũng dược nghiên cứu phán ứng giữa picryl clorua và jon HO^{-}và dùng phương pháp phố dã cho biét rằng, hai chảt trung gian, một là phức π và một là cạp ion-göc.

Hiện nay đang tranh luận rộng rāi quan niệm cho rằng. qua trình cưa phain ứng thế nucleophin trong nhân thơm xáy ra gua trạng thái trung gian anion-gôc theo sơ tô chung sau:

Cơ chế $S_{\mathrm{N}} 2$ một giai doạn phổ biến ở cacbon no nhưng thực tế cũng tìm tháy ở hợp chất thơm. Phan ưng $S_{\mathrm{N}} 2$ già thiết ở hợp chất thơm dôi khi gọi là cơ chế một giai doan dé phân biệt với $S_{\mathrm{N}} A r$ và đôi khi cũng gạap cơ chế như là cộng tách.

6.4.2. Những nhân tớ ảnh hưởng

1. Chát ban dcüu

Trạng tháa chuyển (2) và (4) cūng như chất trung gian (3) (trên hình 6.1) đểu có điệl tích âm lớn nên phãn ứng được xúc tiến bằng nhơm thế hut electron trong nhàn thơm, nghia là phản ứng có gá trị p dương lớn. Các nhóm thế -C à vị trí ortho và para cùa chát trung gian biểu hiện mạnh bằng sự liên hợp phân cực trực tiếp với nguyén tư mang diện tich âm:

và trong phương trình tương quan dòng hàng sô σ^{-}phù hợp hon là hằng số σ dơi với nhóm hút electron:

Cüng cần chú ý rằng, néu phức trung gan là dồng bộ thì ảnh hường của nhóm thế dến tóc dọ̀ tưong dối không lớn, giống như các phỉn ưng thé $S_{N} 2$ mach hở.

Nói chung, chất ban đảu tham gia $S_{\times 2} 2$ chi có nhóm thế hút electron làm ốn định trạng thái chuyển và hoạt tính cùa các nhóm thế ngược với phản ứng thé electrophin thơm. Các nitơ dị vòng là nhóm hoạt hoá mạnh, cũng dùng chất bun đâu như 2 - và 4 -c!opyriđin N-oxit dị vòng phản ứng nhanh với nucleophin ờ vị trí 2 và 4 . Nhóm hoạt dộng nhắt là $\mathrm{N}_{2}{ }^{+}$nhưng dế đi ral, polyclobenzen cūng là chắt thé nucleophin tốt như 2,4 - và $2,4,6$-trinitroclobenzen (pycryl clorua). Benzen không có nhóm thẽ hút electron không tham gia phản ứng $S_{\mathrm{N}} 2$ vì hai electron thèm vào trong phức anion (9) ở trên obitan phản liên kết. Phản ứng $S_{N} 2$ cũng được xúc tiến khi có phơi trí với kim loại chuyển tiếp.

Änh hưởng của một số nhóm thế trong phàn ứng sau:

Ở phàn ứng sau:

$7=$	NH_{2}	Br	Cl	I	COO^{-}	1 I	
$k_{\mathrm{ud}}=$	1	$6.31 .10^{4}$	$4,50.10^{4}$	$4,36.10^{+}$	$2,02.10^{+}$	$8,06.10^{3}$	
$Z=$		F	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	CH_{3}	OCH_{3}	$\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	OH
$k_{\mathrm{td}}=$		$2,1.10^{3}$	$1,37.10^{3}$	$1,17.10^{3}$	145	9,77	4,70

2- Anh huting cïa hhóm di ra
Những nhóm dị ra ở phản túng thế hợp chất no như halogen sunfat, sunfonat, $\mathrm{NR}_{3}{ }^{+}$ cung là nhóm di ra của $S_{\mathrm{N}} \mathrm{Ar}$, nhưng nói chung nhóm $\mathrm{NO}_{2}, \mathrm{OR}, \mathrm{OAr}, \mathrm{SO}_{2} \mathrm{R}$ không phải là nhóm di ra tốt của S_{N} nhưng lại đi ra tót khi dính với nhàn thơm, dạ̣ biệt NO_{2} fà nhóm đi ra tốt. Khä nãng di rat theo thú tur: $\mathrm{F}>\mathrm{NO}_{2}, \mathrm{OT}_{\mathrm{S}}, \mathrm{SOC}_{6} \mathrm{H}_{5}>\mathrm{Cl}, \mathrm{Br}, \mathrm{I}>\mathrm{N}_{3}>\mathrm{NR}_{3}{ }^{+}>\mathrm{OAr}, \mathrm{OR}$, $\mathrm{SR}, \mathrm{NH}_{2}$. nhưng cûng phụ thuộc vào nucleophin. Chẳng hạn, diển hình là $\mathrm{C}_{6} \mathrm{Cl}_{5} \mathrm{OCH}_{3}$ tác dung với $\mathrm{NH}_{2}{ }^{--}$cho $\mathrm{C}_{6} \mathrm{Cl}_{5} \mathrm{NH}_{2}$, nghia là một nhóm OCH_{3} ưu tiên thay thế hơn nām nguyên tử clo. Nhóm OII dể di ra khi chuyến thanh este vô cơ. Trong các halogen, flo là nhón di ra tốt hơn các halogen khác, còn thứ tự khả năng phản ứng $\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ không phải luôn luôn dạt dược.

Thứ tự nhóm di ra là sự khác nhau giữa $S_{\mathrm{N}} /$ và $S_{\mathrm{N}} 2$. Trong co chế $S_{\mathrm{N}} A r$, thutờng giai doạn dâu quyêt dịnh tóc dộ và giai doạn nay dượ kich thích bởi nhóm có hiệu ứng -I nén giaia thích dược tại sao nhóm flo vẩn là nhón di ra tót trong co chér này. Flo là nhóm di ra kém nhât cùa halogen khi giai doạn 2 quyết dịnh tốc dọ̀ phản ứng $S_{\mathrm{N}} 2$ hay khi theo cơ ché aryn.

Ảnh hưởng cùa nhóm di ra 7 . phức tạp như dã nói trên dốs với dần xuăt halogen, song nói chung, phán ứng $S_{N^{2}} 2$ thoom chi xày ra khi có nhóm đi ra tốt do ành hương của nhóm thế.

Bốn halogen cũng như $\mathrm{SC}_{6} \mathrm{H}_{5}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{OPO}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}$ là nhóm di ra tốt cho cơ ché $S_{\mathrm{R}, ~} /$. Co ché $S_{\gamma_{-}} /$chí có nhóm $\mathrm{N}_{2}{ }^{+}$di ra là quan trọng.

3. Anh haing cuia nucleophin

Phàn ứng phụ thuộc vào tính bazơ cuả nucleophin, lính bazơ tāng thì tốc dộ phán ứng̣ tāng và cũng phụ thuộc vào dộ phàn cực hoá:

$\mathrm{Nu}=\mathrm{CH}_{3} \mathrm{O}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
Cl
$\mathrm{k}, \mathrm{l} / \mathrm{mol} . \mathrm{s}=1,8.10^{-4}$
$1,7.10^{-4}$
10^{-6}
6.10^{-8}
$1,7.10^{-14}$

Song khá nāng phản ứng của Nu cüng phụ thuọc vào nhón di ra và bán chát dung moí.
Néu nhóm di ra là nhóm mềm thi tương tác với nucleophin mêm sẽ ưu tièn hơn. Chăng hạn phản ứng:

với $\mathrm{Nu}^{-}-\mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}$thi tỷ lệ thay dổi từ 59 dến 16800 chuyển tù $\mathrm{X}=\mathrm{F}$ dến $\mathrm{X}=\mathrm{I}$,
 dể dàng hơn.

Nói chung, tinh nucleophin cho $S_{\mathrm{N}} \mathrm{Ar}$ theo thứ tự: $\mathrm{NH}_{2}{ }^{-}>\mathrm{PH}_{3} \mathrm{C}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{-}>\mathrm{ArS}^{-}$ $>\mathrm{RO}^{-}, \mathrm{R}_{2} \mathrm{NH}>\mathrm{ArO}^{-}>\mathrm{HO}^{-}>\mathrm{ArNH}_{2}>\mathrm{NH}_{3}>\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{H}_{2} \mathrm{O}>\mathrm{ROH}$.

Khả nāng phản ứng tương dôi của Nu cũng phụ thuọ̣c vào dung môi. Trong dung mói proton, khả năng phản ứng của Nu có kích thước khòng lớn sẽ giảm mạnh do khá nảng solvat hoá, nèn:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{SCN}^{-}>\mathrm{I}^{--}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{F}^{-}
$$

còn trong dung môi aproton khả nāng phản ứng tãng khi tāng tính bazơ:

$$
\mathrm{SCN}^{-} \approx \mathrm{Cl}>\mathrm{Br}^{-}, \mathrm{I}^{-}>\mathrm{F}^{-}>\mathrm{SCN}^{-}
$$

Nêu nucleophin có hai trung tâm nucleophin như NO_{2} phản ứng phụ thuộc vào không
chë diẹn tích và khờng chě́ obitian. Chāng hạn phản ứng:

Khống chể diện tich lớn khi diẹ̀n tích âm ở trung tàm phản ứng lớn như khổng chể diẹn tích ó mạch hở là nguyen tư dm điẹn hơn của nucleophin, do dó trong phản ứng trên, nêu $X=F$ thì săn phẩm chính là dần xuất nitrozo mà khi thuy phân cho phenở, nếu X là I thì sain phấm chính là nitro còn Z là brom hay clo sẽ cho hai sản phấm.

t- Anh haing cita diong moi

Tớc dọ phàn ứng nucleophin trong nhân thơm tang mạh khi chuyển dung môi proton tivi aproton. Nher trong phan ưng:

töc dọ tāng 10^{3} dén $10^{\text {ºn }}$ hîn khi chuyến từ nước tới dung môi aproton. Trong trương hợp nucleophin là anion, dung môi aproton solvat trang thái ban dầu bang liên kết hydro manh hon trạng thái chuyến, nhât là nucleophin có kích thước lớn nên làm tảng tốc dộ, còn dung môi aproton phân cực mạnh solvat trạng thái chuyến manh hơn là dung môi proton. Sự solvat trong trường hợp này chủ yêu dượ xác dịnh bằng tương tác khuéch tán. Lit̛ nà cang lớn nču dộ phân cực hoá cưa điểu phân càng lớn. Điện tich trong trang thái chuyển được giải toa lớn, sự phàn cực hoá cia nó cao hơn sự phân cực hoá của trạng thái ban dâu, nên sự solval bàng lực khuếch tán cùa trạng thái chuyển cao hơn, do dó tốc dộ phain ứng tãng.

Trong da số trường hợp, phân úng thế nucleophin thơm liên quan tới khả nang solvat hoá tāng của trạng thái chuyển. Các tác nhân nucleophin trung hoà cung dược xúc tiến trong dung mòi aproton là do nhữg nguyèn nhan trén.

Sự phu thuọ́c tóc dọ vào dung mơi như các phàn ứng sau:

$\mathrm{X}=$
F
Cl
Br

Đimerylsunfoxit
27400
Đimetylfomamit $\quad 7400$
Nitrometan
1150
Benzen
3.8

0,11
0,25
0,04
Etanol
237
0,55
0,07
0,21

6.5. CÁC PHAN UNG S_{Y} CỦA AREN

I-Phàn íng thự phân muôi diazoni

Khi đun sôi dung dịch muôi điazoni có dư axit nitrơ thu dược phenol:

$$
\mathrm{ArN}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ArOH}
$$

Nước thường là dung môi để tổng hợp muới diazoni nhưng bển ở nhiêt độ thẩp (0 đến $5^{\circ} \mathrm{C}$), nhưng muón thay thế nhóm diazoni bằng OH cần đ̛̣un sôi dung dịch có dư axit nitrơ. Một số muối cần xử lý mạnh hơn như dun sôi với axit sunfuric hay trifloaxetat kali. Phản ứng thực hiện dược trong dung dịch với bát kỳ muối nào nhưng hyđ̛o sunfat thích hợp hơn clorua và nitrat vì trong trường hợp này có cạnh tranh với nucleophin Cl^{-}hay $\mathrm{NO}_{3}{ }^{-}$. Phương pháp tốt nhât và nhanh, cho hiệu suất cao là thuỷ phân có thêm $\mathrm{Cu}_{2} \mathrm{O}$ cho dung dịch loãng muối điazoni tan trong dung dịch chứa dư lớn $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$. Trong các phản ứng này, chất trung gian là gốc aryl. Cơ chế này cũng xảy ra trong phàn úng thuý phân diazoni trong dung dịch nước kiềm yếu. Sự phân huỷ muối arendiazoni tetrafloborat trong $\mathrm{F}_{3} \mathrm{CSO}_{2} \mathrm{OH}$ trực tiếp cho aryl triflat với hiệu suất cao.

Nhóm $\mathrm{N}_{2}{ }^{+}$là nhớm dẻ̉ di ra theo cơ chế $S_{\mathrm{N}} l$ thích hợp trong dung mói có tính nucleophin thấp, còn dung môi có tính nucleophin cao thich hợp theo cơ chè gốc.

2-Phuin óng thé muối diazoni
Nhơm điazoni đễ thế bằng tác nhân nucleophin $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{CN}^{-}, \mathrm{RS}^{-} \ldots$

$$
\begin{aligned}
& \mathrm{ArN}_{2}{ }^{+}+\mathrm{HS}^{-} \longrightarrow \mathrm{ArSH} \\
& +\mathrm{S}^{2-} \longrightarrow \mathrm{ArSAr} \\
& +\mathrm{RS}^{-} \rightarrow \mathrm{ArSR} \\
& +\mathrm{SCN}^{-} \rightarrow \mathrm{ArNCS}+\mathrm{ArSCN}
\end{aligned}
$$

Các phản úng này thích hợp dẻ̉ dưa nhóm chứa lưu huỳnh vào nhãn thơm. Với Ar'S ${ }^{-}$ qua chấ trung gian là $\mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{S}-\mathrm{Ar}^{\prime}$, thiophenol cũng thu dược tương tự nhưng thường dùng $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\mathrm{CSS}^{-}$hay S^{2-}.

Khi tác dụng với natri azit, muối diazoni cho ankyl azit:

$$
\mathrm{RN}_{2}{ }^{+}+\mathrm{N}_{3}{ }^{-} \rightarrow \mathrm{RN}_{3}^{-}
$$

Phản ưng tốt nhất là thay thế nhóm diazoni bàng ion iot, vớt ion clo, brom hay flo cho hiệu suắt kém hơn:

$$
\mathrm{ArN}_{2}^{+}+\mathrm{I}^{-} \longrightarrow \mathrm{ArI}
$$

Với $I^{\prime \prime}$, tác nhân tấn cong không phài chỉ có I^{-}mà tác nhân chính là I_{3}^{*} do tương tác của I^{-}với 1_{2} (do I^{-}bị oxy hoá bởi ion diazoni hay axit nietrơ hoạac một tác nhân oxy hoá khác) mà thực tế đã tìm thấy muối $\mathrm{ArN}_{2}{ }^{+} \mathrm{I}_{3}{ }^{-}$khi để yên tách ra ArI . Tự đó cho thấy các ion halogen khác cho kết quà kém không chi vì có tính nucleophin kém mà còn là tác nhân khử kém (so với iot). Cũng dã có chứng minh cho phản ứng tà cơ chế gốc tự do.

3- Philn img Schicmann

Khi dun nóng muối điazoni trifloborat sẽ tạo thành ArF gọi là phản ứng Schiemann:

$$
\mathrm{ArN}_{2}^{+}+\mathrm{BF}_{4}^{-} \xrightarrow{\Delta} \mathrm{ArF}+\mathrm{N}_{2}+\mathrm{BF}_{3}
$$

Muối trifloborat thu dựç khi diazo hớa bằng axit nitrơ và HCl khi có NaBF_{4} hay HBF_{4} hay $\mathrm{NH}_{4} \mathrm{BF}_{4}$, thtoờng là amin bậc nhất với tert-butyl nitrat và BF_{3}-eterat. Phản ưng cûng xảy ra với $\mathrm{ArN}_{2}{ }^{+} \mathrm{PF}_{6}, \mathrm{ArN}_{2}{ }^{+} \mathrm{SbF}_{6}, \mathrm{ArN}_{2}{ }^{+} \mathrm{AsF}_{6}$ cho hiệu suất tốt. Aryl florua tổng hợp từ aryltriazin $\mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{NR}_{2}$ vói $70 \% \mathrm{HF}$ trong pyridin.

Cơ chế là $S_{N} /$ với cation phenyll là chất trung gian. Cation trung gian tạo thành trong phản ứng Shiemann ở chỏ̉ hợp chất chứa nhóm định hướng meta cho sản phảm thế meta, nhóm dịnh hương ortho và para cho sản phẩm thế ortho và para như cation aryl trong bất kỳ phán ứng thé electrophin nào. Sự định hướng chứng minh rằng phản ứng Schiemannn có chát trung gian mang diện tích dương. Ngượ lại, nếu là phản ưng gốc tự do sẽ cho phản ứng aryl hoá hợp chất thom cho hổn hợp biaryl và trong gớc aryl thì khóng phan biệt nhóm cho hay hút electron mà tìn thấy hổn hợp các đông phàn. Thự nghiệm đã chứng minh cho phản ứng Schiemann khi có nhóm định hướng là tạo thành chất trung gian mang diện tích dương. Tiểu phân tấn công không phảj F^{-}mà là BF_{4}^{-}.

t- Phún iong thay phán ArX

Các aryl halogenua chuyển thành phenol khị có diều kiện mạnh:

$$
\mathrm{ArPr}+\mathrm{HO}^{\circ} \rightarrow \mathrm{ArOH}
$$

Các nhón di ra như nitro, azin, $\mathrm{NR}_{3}{ }^{+}$... cùng có khả nāng thế OH . Phán ứng tién hành ở nhiệt độ cao và quan sát dượ phain ưng thế kẻ (thế cinco chứng tỏ theo cơ ché benzyn.

Phenol cung thu dược từ aryl halogenua không hoạt hoá khi tác dụng với boran và kim loại như liti và oxi hoá tiếp bằng $\mathrm{H}_{2} \mathrm{O}_{2}$.

Nhóm amin của naphtylamin bị thay thế bà̀ng nhóm hydroxyl khi tác dụng với dung dịch matri bisunfit:

Phản ứng này gọi là phän ứng Bucherer. Phản úng ngượ lại lả chuyến nhóm hydroxyl thành amin, cũng gọi là phàn ứng Bucherer, khi tác dụng naphtol với amoniac có thêm natri bisunfit:

Nếu dùng amin bạ́c nhất thay cho amoniac thì thu dược naphtylamin N-thé. Naphtylamin có thể chuyển thành amin bậc hai bằng phản ứng tái amin hoá:

$$
\mathrm{ArNH}_{2}+\mathrm{RNH}_{2} \xrightarrow{\mathrm{NaSHO}_{3}} \mathrm{ArNHR}
$$

Cơ chế của phàn ứng Bucherer là cơ chế cộng tách:

Giai đoạn đầu là cộng NaHSO_{3} vào một trong hai nối dôi của vòng dể tạo thành enol (hay enamin) rồi tautome hoá cho dạng xeto (hay imin). Quá trình chuyển hoá tư dạng xeto (14) tới imin (15) thay ngược lậ) qua phản ứng cộng và đách. Chứng minh cho cơ ché này là đả tách ra được chắt trung gian (14) và từ phân úng của β-naphtol tác dụng với amoniac và $\mathrm{HSO}_{3}{ }^{-}$có tốc độ chi phụ thuộc vào chất ban đầu và $\mathrm{HSO}_{3}{ }^{-}$và chỉ rầng amoniac không nàm trong giai doạn quyết định tốc dộ. Nếu chất ban đẩu là β-naphtol thì chắt trung gian là hợ chấ 2 -xeto- 4 -sunfonic axit do lưu huỳnh tấn cỏng vào meta của OH hay NH_{2}.

Nhóm hydroxy trên vòng benzen có thể thay thế bằng nhóm amino nếu dẩu tièn chuyển thành aryl dietyl photphat, tác dụng chất này với KNH_{2} và K trong amoniac lỏng cho amin thơm tương úng. Cơ chế của giai đợn 2 của phản ứng này là $S_{\mathrm{RN}} /$:

$$
\mathrm{ArOH} \xrightarrow\left[\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{HOCl}\right]{\mathrm{NaOH}} \underset{\substack{1!}}{\mathrm{ArOP}}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2} \xrightarrow{\mathrm{KNH}_{2}} \mathrm{ArNH}_{2}\right.
$$

6- Phản tông kièm chạy cuia muôi sumfonic

Muổi chỉa axit sunfonic có thể chuyển thành phenol khi đun nóng chảy với kiêm:

$$
\mathrm{ArSO}_{3}{ }^{-} \frac{\mathrm{NaOH}_{3}}{300 \div 320^{\prime \prime} \mathrm{C}} \mathrm{ArO}
$$

Phản ứng cho hiệu suất thấp, trừ khi chât ban dầu có chứa nhơm khác bị tấn công bời kiềm ở nhiệt dộ nóng cháy. Có thẻ̉ dûng điểu kiện nhe hơn néu chát ban dîu có nhóm hoạt hoả nhưng nhóm bị động hoá lại cản trở phản ưng. Cơ ché đã tìm thấy là cơ ché benzyn nhưng khóng tìm thây phản ứng thè kể (thế cine).

Tương tự, khi nung chảy $\mathrm{ArSO}_{3}{ }^{-}$với NaCN cho ArCN nhưng hiệu suât lhấp:

$$
\mathrm{ArSO}_{3}^{-} \xrightarrow{\mathrm{NaCN}} \mathrm{ArCN}
$$

7- Phän íng thé cuia ArXbäng $O R$ hay ArO

Halogen của RX có thể bị thể bẳng ankoxy hay aryloxy cho ete:

$$
\mathrm{RX}+\mathrm{RO}^{-} \rightarrow \mathrm{ROR}
$$

Phản ưng tương tự như HO^{-}, đòi hỏi chất ban dî̀u có nhóm thé hoạt hoá, trường hợp khóng có nhóm thế hoạt hoá thì sản phẩm phụ ưu tién hơn. Metyl aryl ete thu được khi tác dụng ArCl không có nhóm hoạt dộng với $\mathrm{CH}_{3} \mathrm{O}^{-}$trong HMPA , phản ứng cho hiệu suất tốt và nhanh hơn với HO^{-}. Dung môi tốt hơn là amoniac lỏng, chả̉ng hạn, o- và p-flonitrobenzen phàn ứng trong NH_{3} ơ $-70^{\circ} \mathrm{C}$ nhanh hơn trong $\mathrm{CH}_{3} \mathrm{OH}$ dến 10^{6} lần. Phản ứng cūng xảy ra với nhóm di ra như nitro, $\mathrm{NR}_{3}{ }^{+}$, OR khác. $\mathrm{HO}^{-} \ldots$

Muối của axit RCOO^{-}củng tà nucleophin tốt, chảng hạn, arylbenzoat tha dược hiệu suất tồ khi tic dụng aryl benzoat với benzoat dồng trong điglym hay xylen ở $140 \div 160^{\circ} \mathrm{C}$.

Với các chất ban đâu không hoạt hoá chuyển tới este cacboxylic dưới diểu kiện oxy hoá cho hiệu suât trung bình. Co chế chuỗi này là cơ chẽ $\mathrm{S}_{\mathrm{ON}} 2$:

Đối với nucleophin aroxit, phản ứng dược kích thích bẳng muôi đồng với chất ban đầu không cẩn hoạt hoá để thu được diaryl ete, gọi là tống hợp cte Ullmann, tìm thầy khi tổng hợp biaryl. Vi aryloxy dồng ArCOCu cūng phàn ưng với aryl halogenua cho aryi ete cho hiẹu suấ cao nên có thể cho ArCOCu là chất trung gian trong phản ứng này. Chấ ban dâu khòng hoạt hoá phán ứng với phenoxit cho diaryl ete bàng quang hoá trong NH_{3} lỏng $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ theo cơ chế $S_{\mathrm{R}, ~} /$. Điaryl cte cung tổng hợp bằng aryl halogenua hoạt hoá taic dung vói triaryl photphat (ArO$)_{3} \mathrm{PO}$.

S. Phän tug the RXbäng SH hay $S R$

Các tác nhàn nucleophin lưu huỳnh tác dụng với RX tương tự như HO^{-}và RO^{-}cho aryl thiol va thiocte:

$$
\begin{aligned}
& \mathrm{ArBr}+\mathrm{HS}^{-} \longrightarrow \mathrm{ArSH} \\
& \mathrm{ArBr}+\mathrm{RS}^{-} \longrightarrow \mathrm{ArSAr}
\end{aligned}
$$

Phản ứng cho hiệu suất tốt với dần xuất halogen hoạt hoá, với chât ban đầu không hoat hoá cần dùng dung mòi aproton phân cực như DMF, $\left(\mathrm{Cl}_{3}\right)_{2} \mathrm{SO}$, tetraglym, HMPA, 1-metyl-2-pyrolidon với cơ ché hoàn toàn thể nucleophin. Điaryl ete dùng ArS với xúc tác $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{9} \mathrm{Pd}$, dój khi dùng xúc tác dồng hoạ̣c trong amoniac lỏng có bức xạ nhưng theo cor ché $S_{R N} /$.

Các nucleophin sunfua khác cūng phản ứng tương tự:

$$
\begin{aligned}
& \mathrm{ArX}+\mathrm{S}_{2}^{2-} \rightarrow \mathrm{Ar}-\mathrm{S}-\mathrm{S}-\mathrm{Ar} \\
& \mathrm{ArX}+\mathrm{SO}_{3}{ }^{2-} \rightarrow \mathrm{Ar}-\mathrm{SO}_{3}^{-} \\
& \mathrm{ArX}+\mathrm{SCN}^{-} \longrightarrow \mathrm{ArSCN} \\
& \mathrm{ArX}+\mathrm{RSO}_{3}^{-} \longrightarrow \mathrm{Ar}^{-} \mathrm{SO}_{2}-\mathrm{R}
\end{aligned}
$$

9. Phản àng amin hoá $R X$

Các aryl hoạt hoá tác dụng với amoniac hay amin bậc nhất hay hai cho arylamin và dẩn xuăt:

$$
\begin{aligned}
& \mathrm{ArBr}+\mathrm{NH}_{3} \rightarrow \mathrm{ArNH}_{2} \\
& \mathrm{ArBr}+\mathrm{RNH}_{2} \rightarrow \mathrm{ArNHR} \\
& \mathrm{ArBr}+\mathrm{R}_{2} \mathrm{NH} \rightarrow \mathrm{ArNR}_{2}
\end{aligned}
$$

Amin bạ̣c nhất và hai cho hiệu suăt tốt, nhất là khi dùng piperiđin, cŭng dùng picryl clorua 2,4,6-trinitro clobenzen, 2,4-dinitroflobenzen. Các nhóm di ra khác nhut nitro, N_{3}, $\mathrm{OSO}_{2} \mathrm{R}, \mathrm{OR}, \mathrm{SR}, \mathrm{N}=\mathrm{NAr}, \mathrm{NR}_{3}{ }^{+}$cũng cho phản ứng này khi Ar có nhóm hút electron. Các aryl halogenua hoạt hoá có thể chuyển thành hợp chất đimetylamin $\operatorname{ArN(CH})_{2}$ khi tác dụng với HMPA.

Phản ứng cùa amoniac hay amin xảy ra theo cơ chế $S_{\mathrm{N}} A r$, chắc chán nhất là khi có xúc tác muới đổng hay niken, kể cả với chất ban đảu không hoạt hoá. Xúc tác dồng (oxit hay iodua đồng) cho phép thực hiện tổng hợp Gabriel cho hợp chất thơm khi tác dụng aryl ciorua hay iođua với kali phtalimit có $\mathrm{Cu}_{2} \mathrm{O}$ hay CuI cho N -arylphatalimit rồi thuỷ phân cho aryl amin bạc nhât:

Các aryl halogenua không hoạt hoá chuyển thành amin khi tác dụng với NaNH_{2}, $\mathrm{NaNHR}, \mathrm{NaNR}_{2}$ theo cơ chế benzyn, nhưng cũng tìm thấy sự thế kề (thế cine).

Khi có mạch nhánh chứa nitơ, phản ứng có thể đóng vòng:

tới vòng lớn 8 và 12 cạnh. Triarylamin tổng hợp tương tự tî̀ ArI và $\mathrm{Ar}^{\prime}{ }_{2} \mathrm{NLi}$, ngay cả với ArI khòng hoạt hoá. Phản ứng của aryl bromua với axetanlilit khi có $\mathrm{K}_{2} \mathrm{CO}_{3}$ và Cul cho N -axetylđiarylamin, rồi thuỷ phan cho điankylamin gọi là phản ứng Goldberg:

$$
\mathrm{ArBr}^{+} \mathrm{Ar}^{\prime} \mathrm{NHOCOCH}_{3} \longrightarrow \mathrm{ArAr}^{\prime} \mathrm{NOCOCH}_{3}
$$

Phản ứng với amoniac hay amin có xúc tác muối đồng hay niken là cơ ché $S_{\mathrm{N}} A r$. Có thể dùng xúc tác chuyển pha dể tổng hợp arylamin.

Aryl bromua hay iodua dun hời lưu với phtalimit kali và $\mathrm{Cu}_{2} \mathrm{O}$ hay CuI trong dimetylaxetamit cho N -aryl phtalimit rồi thuŷ phân cho arylamin bạ́c nhât.

Trong một số trường hợp cūng tìm thấy cơ chế $S_{\mathrm{RN}} l$.
Khi chất ban đầu là hợp chất dị vòng thơm chứa nitơ tìm thấy cơ chế S_{N}, nhưng có khác là có quá trình đóng và mở vòng nên theo cơ chế khác mà gọi là cơ chế S_{N} (ANRORC).

10- Phản táng trao dổi halogen
Halogen dính trong vòng có thể trao đó̉i bằng halogen khác néu vòng có hoạt hoá:

$$
\mathrm{ArX}+\mathrm{X}^{\prime-} \rightarrow \mathrm{ArX}+\mathrm{X}^{-}
$$

Phản ứng này là cân bằng nhưng có thể chuyển dịch cân bả̉ng theo hướng mong muôn bà̀ng cách dùng dư ion halogenua. Nhóm nitro cũng thay thế dược clo khi tác dụng với $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{PCl}_{5}, \mathrm{SOCl}_{2}, \mathrm{HCl}, \mathrm{Cl}_{2}$ hay CCl_{4}. Một số phản ưng thực hiện ở nhiệt dộ cao thì cơ ché không phải luôn luôn là thế nucleophin. Hợp chất nitro thơm hoạt hoá cūng chuyển thành florua khi tác dụng với F^{*}.

Phản ưng trao đồi halogen chủ yếu dùng dể dưa flo vào nhân thơm, chả̉ng hạn aryl clorua tác dụng với KF trong $\mathrm{DMF},\left(\mathrm{CH}_{3}\right)_{2}$ SO hay dimetyl sunfon cho ArF.

Phản ứng trao đổi halogen khi dùng halogenua đồng cho khả nảng phản ứng $\mathrm{I}>\mathrm{Br}>$ $\mathrm{Cl} \gg \mathrm{F}$ nhưng không phải cơ chế $S_{\mathrm{N}} \mathrm{A}$. (I không dùng cho phương pháp này). Aryliođua tổng hợp từ arylbromua khi dùng Cu trên chất mang $\mathrm{Al}_{2} \mathrm{O}_{3}$ hay charcoal hoạc tạc dụng vói dư KI trèn xúc tác niken.

Nhóm hyđ̛oxy phenol cũng chuyển thành aryl clorua khi tác dụng với ${ }^{\mathrm{PCl}} \mathrm{C}_{5}$ hay POCl_{3} nhưng chỉ khi có nhóm hoạt hoá, nếu không có nhóm hoạt hoá thì cho photphat ($\mathrm{ArOH}+$ $\left.\mathrm{POCl}_{3} \rightarrow(\mathrm{ArO})_{3} \mathrm{PO}\right)$ nhưng tác dụng với $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PCl}_{4}$ cho ArCl , tương tự phenol tác dụng vớ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PBr}_{2}$ cho ArBr và với $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PCl}_{4}$ cho ArCl .

M- Phain tong khit phenol và este, ete
Phenol bị khử khi chưng cất trén kẽm bột hay với HI và photpho đỏ nhưng cho hiệu suă thấp:

$$
\mathrm{ArOH} \xrightarrow{\mathrm{Zn}} \mathrm{ArH}
$$

Thường dùng hyđro hoá xúc tác nhưng có sản phẩm phụ là xyclohexanon.
Phương pháp tốt nhất là chuyển phenol thành este hay ete rồi khử:

$$
\mathrm{ArOSO}_{2} \mathrm{CF}_{3} \frac{\mathrm{HCOOH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}}{\mathrm{Pd}\left(\mathrm{OCOCH}_{3}\right)_{2} .\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}, \mathrm{DMF}} \mathrm{ArH}
$$

$$
\mathrm{ArOTs}+\mathrm{H}_{2} \mathrm{NNH}_{2} \xrightarrow{\mathrm{Pd}} \mathrm{ArH}
$$

Các halogenua cũng bị khử $\mathrm{ArX} \rightarrow \mathrm{ArH}$ phụ thuộc nhiĉ́u vào diếu kiện và tác nhân có thể là nucleophin, electrophin hay gốc tự do. Nhóm nitro cũng bị khử thường bằng natri bohydrua theo cơ chế cộng tách.

12- Phan íng Rosenmund - von Braun
Phản ửng giữa aryl halogenua và xyanua đồng cho aryl xyanua gọi là phản ứng Rosenmund-von Braun:

$$
\mathrm{ArBr}+\mathrm{CuCN} \text { khan } \xrightarrow{300^{\circ} \mathrm{C}} \mathrm{ArCN}
$$

Phản úng thu đự̛̣ theo hoạt tính của halogen là $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$, chứng tỏ không xày ra theo cơ ché $S_{\mathrm{N}} A r$.

Các NaCN và KCN khōng phản ứng với aryl halogenua, kể cả loại hoạt hoá. Xyanta kiềm chuyển hoá aryl halogenua tới nitrin trong dung môi phân cực aproton khi có xúc tác muối Pd (II) hay đồng hoặc phức niken. Phức niken cũng xúc tác cho phản ưng aryltrilfat và KCN cho arỵnitrin. Ete thơm ArOR và hạ̛p chất nitro ArNO_{2} chuyển thành nitrin bà̀ng quang hoá học.
13. Phản íng của RX với hựp chất co kim

Aryl halogenua ghép với liti điankyl đồng cho ankylbenzen:

$$
\mathrm{ArI}+\mathrm{R}_{2} \mathrm{CuLi} \longrightarrow \mathrm{ArR}
$$

Các este và ete cung cho phản ứng này.
Phán úng đã nói ở chương phản ứng S_{N}. Aryl iođua không hoạt hoá ghép với tác nhân liti diankyl đổng. Aryl halogenua khi hoạt hoá nói chung cũng không ghép với tác nhân Grignard, trì̀ có vài trường hợp có xúc tác kim loại chuyển tiếp. Phản ứng của tác nhân Grignard xảy ra khi nhóm di ra là OR và là nhóm hoạt hoá nhân benzen. Chẳng hạn như nhóm oxazolin dược hoạt hoá bằng nhóm o-metoxy và o-flo tác dụng dược với Grignard và cơ liti cho sân phấm ghép sau khi thuỳ phàn:

Aryl halogenua không hoạt hoá tác dụng với ankyl liti trong THF với cơ thiếc và Pd xúc tác cho ankyl aren hiệu suất trung bình. Các aryl triflat cho ArR khi phản ứng với $\mathrm{R}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}, \mathrm{RZnX}, \mathrm{R}_{3} \mathrm{Al}, \mathrm{R}_{3} \mathrm{SnR}^{\prime}$ với Pd xúc tác.

Aryl halogenua tác dụng với axetylenua dồng cho aryl axetylen (phản úng ghép Stephens - Castro):

$$
\mathrm{ArI}+\mathrm{RC} \equiv \mathrm{CCu} \longrightarrow \mathrm{ArC} \equiv \mathrm{CR}
$$

Aryl iơua khơng hoạt hoá chuyển thành ArCH_{3} khi tác dụng với muöi tris(dietylamino)sunfoni điflotrimetylsilicat và xúc tác palađđi. Một số lớn phản ứng dùng xúc tác phức palađi, các aryl bromua và iođua ghép với tác nhân aryl Grignard, arylboronic axit $\mathrm{ArB}(\mathrm{OH})_{2}$, arỵl thiếc ArSnR_{3} và với aryl thuỷ ngản cho biaryl không đối xứng.

Tác nhân Grignard ghép với aryl halogenua khi có xúc tác palađi xảy ra theo cơ chê benzyn. Các binaphtyl không đôi xứng tổng hợp bẳng con đường quang hoá khi tác dụng naphtyl iơua với naphtyloxit theo cơ chế $S_{\mathrm{R} N} l$.

If-Phán tíng Ullmann

Phàn ưng ghép aryl halogenua khi có Cu gọi là phàn ứng Ullmann:

$$
2 \mathrm{ArI} \xrightarrow{\mathrm{Cu}} \mathrm{Ar}-\mathrm{Ar}
$$

Phản ứng dùng rộng rãi để tổng hợp các biaryl đới xứng và khỏng đối xứng. Nểu đùng hai aryl halogenua khác nhau, đáng lẽ thu dược ba nhưng thực tế chỉ thu được một sản phẩm. Chả̉ng hạn, picryl clorua với iotbenzen chỉ thu dược 2,4,6-trinitrobiphenyl. Nhóm di ra tốt nhất là I, đôi khi dùng bromua, clorua và thioxyanat.

Hiệu ứng của nhóm thé trong vòng có ành hưởng đến phản ứng như nhóm nitro hoạt hoá mạhh vị trí ortho mà không phải meta và para. R và OR hoạt hoá tất cả các vị trí. Những nhóm $\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{NHR}, \mathrm{NHCOR}$ kìm hãm phản ứng trong phản ứng $S_{\mathrm{N}} 2$ thom nhưng nhóm COOH (nhưng không phải nhóm COOR) $\mathrm{SO}_{2} \mathrm{NH}_{2}$ và một số nhóm tương tự hoàn toàn không cho phän ứng. Các nhóm này ức chế phản ứng ghép mà cho sản phẩm phụ.

Cơ chế chưa biết thạt chắc chắn nhưng nói chung có hai giai đoạn, tương tự như phản ứng Würtz, có thể biểu diển dạng sơ đồ sau:
$1-\quad \mathrm{ArI}+\mathrm{Cu} \longrightarrow \mathrm{ArCu}$
$2-\quad \mathrm{ArCu}+\mathrm{ArI} \rightarrow \mathrm{ArAr}$

Hợp chất cơ dổng có thể tách ra và nếu từ hợp chất cơ dổng phản ứng với Ar'I lìm thầ ArAr .

Phản ứng cūng có trường hợp dóng vòng:

Phương pháp Ullmann quan trọng khi dùng xúc tác phức niken trong các quá trình nội phản tử. Các aryl halogenua chuyển thành Ar-Ar’ khi tác dụng với Ni hoạt hoá, phức Zn và Ni, dung dịch fomiat natri kiềm và xúc tác chuyển pha.

15- Phan tong aryl hoa heop chát có hydro linh dộng
Các hựp chất có hyơro linh động loai $Z-\mathrm{CH}_{2} Z^{\prime}$ (với Z và Z 'à nhóm hút electron đã xác định như ở phản ứng thế nucleophin) tác dụng với ArX cho sản phẩm ankyl hoá:

Các aryl halogenua hoạt hoá cho hiệu suắt tốt, nếu dùng aryl không hoạt động thì cần phài dùng bazơ mạhh như $\mathrm{NH}_{2}{ }^{-}$hay liti diisopropylamit (LDA). Các hợp chất dạng $\mathrm{ZCH}_{2} \mathrm{Z}$ và xeton hay este cacboxylic dược aryl hoá theo phương pháp này. Các hợp chất không hoạt dộng tham gia phản ưng theo cơ chế benzyn, như tổng hợp este malonic cho hợp chất thơm. Bazơ ở đay là dể tách proton từ $\mathrm{ZCH}_{2} \mathrm{Z}$ ' và xúc tác cơ ché benzyn.

Phản ứng cúa aryl không hoạt hoá cūng dùng xúc tác halogenua dồng (phản ưng Hurtley) và phức palađi.

Phản ứng cũng có phản ứng đóng vòng:

Hợp chât dạng $\mathrm{CH}_{3} \mathrm{Z}$ có thẻ̉ aryl hoá trong amoniac lỏng có Na hay K :

Sỉn phẩm thu được tương tự (tuy tỷ lệ khác nhau) khi không dùng Na hay K mà dung dịch được bức xạ bầng ánh sáng UV gẩn.

Có thể thay halogen trong chất ban đầu bằng các nhóm di ra $\mathrm{NR}_{3}{ }^{+}$, SAr dược nhựng theo cơ chế $S_{\mathrm{N}} /$ và thường dùng muối sắt (II) dể kích thích.

Jon enolat của xeton phản ứng với ArI trong tối và trong trường hợp này người ta có thẻ them chât kích thích:

Do đó cơ chế phản ứng này là cơ chế SET.
Axit malonic và β-xeton este aryl hoá với hiệu suất cao khi tác dụng với aryl chì tricacboxylat:

$$
\mathrm{RCOCHR}^{\prime} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{ArPb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \rightarrow \mathrm{RCOCArR}^{\prime} \mathrm{COOC}_{2} \mathrm{H}_{5}
$$ hay vói triphenylbitmut cacbonat $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{BiCO}_{3}$.

Khi dùng axetat mangan (III) có thể chuyển hồn hợp ArH và $\mathrm{ZCH}_{2} Z$ ' thành $A r C H Z Z$ '.
16- Phản íng chuyén hoá ArXihành este
Aryl bromua và iodua tác dụng với monooxit cacbon, ROH và bazo khi có xúc tác phức paladi cho este cacboxylic:

$$
\mathrm{ArX}+\mathrm{CO}+\mathrm{ROH} \xrightarrow[\text { phức } \mathrm{Pd}]{\text { bazo }} \mathrm{ArCOOR}
$$

Nếu dùng $\mathrm{H}_{2} \mathrm{O}, \mathrm{RNH}_{2}$ hay kim loại kiềm hoạ̀ canxi cacboxylat thay cho ROH se cho axit cacboxylic, amit hay anhydrit hồn tạp tương ưng. Có thể dùng niken cacbonyl $\mathrm{Ni}\left(\mathrm{CO}_{+}\right.$ và dicoban octacacbonyl $\mathrm{CO}_{2}(\mathrm{CO})_{8}$ thay cho CO . Aryl clorua chuyển thành axit cacboxylic bằng điện hoá. Aryl iơua chuyển thành andehit bằng tác dụng với $\left.\mathrm{CO},\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)\right)_{3} \mathrm{SnH}$ và $\mathrm{NCC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}=\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CN}(\mathrm{AlBN})$.

Tetraaxetat chì dùng để chuyển phenol có nhóm thế hydrazin ở vị trí ortho thành este cacboxylic:

Xeton thơm không dối xứng tổng hợp từ aryl iơua và aryl thuỷ ngân halogenua với niken cacbonyl:

$$
\mathrm{ArI}+\mathrm{Ar}^{\prime} \mathrm{HgCl}+\mathrm{Ni}(\mathrm{CO})_{4} \longrightarrow \mathrm{ArCOAr}
$$

17- Phản líng ankyl hoá Ziegler

Các hợp chất dị vòng bị ankyl hoá bằng ankyl liti gọi là phàn ứng ankyl hoá Ziegler:

Nếu dùng aryl liti cho phản ưng aryl hoá.
Phản ứng xảy ra theo cơ chể cộng - tách mà sản phẩm cộng có thể tách ra dược và khi đun nóng sún phấm cộng này sẽ tách ra Lill thu được sản phấm ankyl hoá. Sản phẩm thu dược là thế ở vị trí 2 như phản ứng $S_{\mathrm{N}} A r$ nhưng có khác là ở đây cạ́p electron không liên kết của N tổ hợp với liti hay cặp electron thêm vào trong vòng trở thành cạ̣p electron không liên kết mới của N .

Phản ứng cŭng áp dụng cho các hợp chất thơm không dị vòng như benzen, naphtalen, phenantren cūng ankyl hoá bà̀ng cơ liti, cơ magic cũng ankyl hoá dươ naphtaten. Trong trương hợp này cũng xảy ra theo cơ ché cọng tách.

Hợp chất nitro thơm durợc metyl hoá bằng metylua dimetyloxosunfoni hay cacbanion metylsunfinyl (do bazơ tác dụng với dimetylsunfoxit):

Tác nhân này cũng metyl hoá đượ mợt số dị vòng như quinolin và một số hợp chất thơn ngưng tụ như antraxen, phenantren, nhưng thường dùng metyl hoá những hợp chât không dùng dược phản ứng Friedel Crafts. Hợp chất nitro cūng ankyl hoá bẳng tác nhân ankyl hoá khác vào vị trí ortho và para nhu ankyl liti khi có chất oxy hoá như Br_{2} hay DDQ . Trinitrobenzen ankyl hoá bằng silan $\mathrm{RSi}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{COOCH}_{3}, \mathrm{COCH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$, $\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$) khi có KF và ete crown.

Phản ứng ankyl hoá hợp chất nitro bà̀ng nucleophin cacbanion có clo ở cacbon cacbanion:

với Z là nhóm hút electron $\mathrm{SO}_{2} \mathrm{R}, \mathrm{SO}_{2} \mathrm{OR}, \mathrm{COOR}$ hay CN làm ổn dịnh diện tích âm.
Tác nhân nucleophin tấn công vào vị trí otrho và para hoạt động hơn dôi với nhóm nitro. Ion H^{-}là nhóm đi ra không bình thường, nhưng clo bên cạnh làm cho hydro bị hay thế nên gọi clo là nhóm đi ra "lây" hay thay thế (vicarious) nèn phản ứng này gọi là phản ứng thế nucleophin "lây" (hay thay thế của hydro, vicarious nucleophilic substitution of
hyđrogen). Các nhóm khác như $\mathrm{OCH}_{3}, \mathrm{SC}_{6} \mathrm{H}_{5}$ cũng có tham gia nhưng clo là tốt nhất.
Phản ứng cūng xảy ra với đi- hay tri-nitrobenzen hay nitronaphtalen hay nitro dị vòng.
Cũng dùng tác nhân $\mathrm{ZC}^{-} \mathrm{RCl}$ như $\mathrm{Br}_{3} \mathrm{C}^{-}$hay $\mathrm{Cl}_{3} \mathrm{C}^{-}$cho sản phầm $\mathrm{ArCHX} X_{2}$ rổi thuy phân cho andehit. Đay là con dường gián tiếp để fomyl hoá hợp chất thơm có một hay nhiều nhóm nitro mà không dùng phản ứng fomyl hoá thơng thường.

18- Phản íng amin hoá hơp chát di vòng nito

Pyridin và hợp chất dị vòng chứa nitơ khác bị amin hoá bằng amiđua kim loại kiềm gọi là phán túng Chichibabin:

Tác nhàn tấn công vào vị trí 2 , khi hai vị trí ở ortho bị thế mới tấn công vào vị trí 4 . Có thể dùng amidua thế RNH^{-}và $\mathrm{R}_{2} \mathrm{~N}^{-}$. Cơ chế là $S_{\wedge} A r$.

Khi amin hoá quinolin đã xác định được chất trung gian cộng mà đã xác định bảng phổ NMR có ciiu trúc satu:

Cŭng rhư từ 3-etylpyriđin cho 2-amino-3-etylpyridin và một sö́ dị vòng khác không quan sát thấy sự hình thành benzyn. Hợp chất nitro không cho phản ứng này nhưng có thể thu được sản phẩm amin hoá khi dùng quy tắc "thế lày" (vicarious) bằng nhóm 4-aminohay 4 -ankylamino-1,2,4-triazol làm nucleophin với nhóm đi ra "lây" là vòng triazol theo coo chế như phản ứng 18 .

19- Phản ấng amin hoá bä̀ng hydroxylamin

Các hợp chất thơm hoạt dộng có thể amin hoá trực tiếp bằng hyđroxylamin khi có bazo mạnh:

Điều kiện phản ứng nhẹ nhàng và hiệu suất cao. Phản ứng đi qua chất trung gian với nucleophin là ${ }^{-} \mathrm{NHOH}$:

20. Phan íng chuyein vị von Richter

Hợp chât nitro thơm tác dụng với ion xyanua xày ra phản ứng thay thé nhóm nitro và nhóm axit đi vào ở vị trí ortho của nhóm nitro với phản ứng thế kể (thế cine), khóng vào vị trí meta hay para:

Phản ưng này gọi là chuyển vị von Richter có phạm vi rất rộng. Cũng như các phàn ứng thể nulcophin khác, nhóm thế hút electron ở vị trí ortho và para cho phản túng xảy ra tót hơn, nhưng thường cho hiệu suất thấp, thường dưới 20% và không bao giờ quá 50%.

Quá trình không có sự hình thành chất trung gian nitrin $\operatorname{ArCN}, \mathrm{N}_{2}$ là sản phả̉m chính mà khơng phải $\mathrm{NO}_{2}{ }^{-}$và liên kết nitơ-nitơ hình thành trong quá trình phản ứng, nên Rosenblum đưa ra cơ chế như sau:

Chất trung gian (17) là hợp chất bển có thể tổng hợp độc lập dược, là chất trung gian trong diều kiện chuyển vị von Richter. Nếu Z trong (16) là Cl hay Br , tác dung với xyanua trong $\mathrm{H}_{2}{ }^{1 \times} \mathrm{O}$ thì mộ nửa oxy đánh dáu có trong sản phẩm thu dượ và tìm thấy một nửa oxy của nhóm cacbonyl đi vào từ nhóm nitro, con một nửa di vào từ dung môi. Điểu dó đã xác nhạa n cho cơ chế trên.

21-Phản ing chuyên vi Sommelet-Hanser

Muối benzylamoni bậc bốn tác dụng với amidua kim loại kiềm thu dược sần phấm benzylamin bậc ba:

Sản phầm như là kết quả của phản ứng chuyển vị gọi là chuyển vị Sommlet-Hauser. Phản ứng cho hiệu suất cao và có thể có các nhóm thế khác trong vòng. Muôi amoni thường dùng khi có ba nhóm metyl dính với nitơ, nhưng cüng có thể dùng các nhóm thế khác nhưng nếu có hyđ̛or β thì có phàn ứng tách Hofmann cạnh tranh. Mặt khác cũng có phản úng chuyển vị Stevens cạnh tranh, mạ̣c dù phản ứng chuyển vị Stevens thích hợp ở nhiệt dộ cao, còn chuyến vị Sommelet-Hauser thích hợp hơn ở nhiệt độ thấp.

Cơ chề xáy ra như sau:

(20)

Trong muối benzylamoni (18) ban đîu, hydro benzyl có tính axit cao có khả nảng mất proton đé hình thành ylit (19) và một lượng nhó (20) do chuyển vị ở dạng cân bằng, nhưng cân băng này thích hợp cho (20) tấn cong vào nhân benzen. Như vạy cơ chể ở dây giông cơ chế chuyền vị sigma[2,3].

Cūng có dể nghị một cơ chể khảc là nhóm metyl phân cất ra khôi nitơ dể tân công trục tiếp vào vòng benzen, nhưng thực tế khòng tim tháy sản phảm theo cơ chế này mà chi thu được sản phấm chuyển vị như phản ứng của (21) ở dưới khōng cho (22) mà chi thu dược (23):

Sản phấm trên là chuyển vị vào vị trí ortho nhưng trong mộ sờ trường họ̣p thu dược một lượng nhỏ sản phấm chuyển vị para.

Các sunfua ylit có uhóm benzyl cuang có phản ứng chuyển vị tương tự.

22- Phän áng chuvên vị Bamberger

Aryl hydroxylamin tác dụng với axit chuyển vị thành aminophenol.

Phản ứng chuyển vị cùa aryl hyđroxylamin này gọi là phản ựng chuyến vị Bamberger do sự tấn công của nucleophin mà không phài electrophin. Phản ứng là chuyển vị giữa các phân tử theo cơ chế sau:

Cơ chế được chứng minh bằng sự kiện là có tìm thấy sản phẩm khác khi có cạnh tranh của nucleophin khác như thu đự̛̣ p-etoxyanilin khi có etanol và khi vị trí para dà bị chiĉ́m cũng tách ra dược sản phẩm tương tự như sản phẩm (25). Trong trường hợp 2,6 -đimetylphenylhydroxylamin, tim thấy chất trung gian là ion nitreni (24) có thê do dược thời gian tồn tại trong dung dịch. Phản ứng của ion nitreni (24) với ntớc tìm thấy bằng khống chế khuếch tán.

2.3- Phản àng chuyên vị Smiles

Phản ứng chuyển vị Smiles là phản ứng thế nucleophin nội phàn tử:

Phản ứng điển hình là phản ứng sau:

Nhóm $\mathrm{SO}_{2} \mathrm{Ar}$ là nhóm di ra, ArO^{-}hà nucleophin và nhóm nitro là nhóm thế hoạt hoá vị trí ortho. Vị trí thé thường gần với nhóm hoạt hoí bởi nhóm nitro ở vị trí ortho hay para. X thường là $\mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}, \mathrm{COO}$ và Y thường tà bazo liên hợp của $\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{NHR}$ hay SH . Phản ứng có thể $\mathrm{Y}=\mathrm{CH}_{2}{ }^{-}$với phenyl liti là bazoo.

Tốc dộ phản ựng tãng lên khi có nhớm thé ở vị trí 6 của vòng bị tấn công do lập thè̉. Chảng hạn nhóm metyl, clo hay brom ở vị tí 6 của (26) làm cho tốc độ nhanh hơn các nhóm đó ở vị trí 4 đến 10^{5} lần, tuy hiệu ứng cảm ứng ở các vị trí này urong tự nhau.

Tốc độ tāng còn vì cấu dạng của phân từ nhận ở vị trí 6 nhóm có thể tích lớn cũng là cấu dạng thích hợ hơn cho chuyển vị do entropi hoạt hoá kém hơn.

Phản ứng chuyẻ̉n vị Smiles thường chi xáy ra trong các hợp chất có hai vòng.

PHẢN ÚNG THẾ ELECTROPHIN $S_{\text {E }}$ CỦA HYĐROCACBON ALIPHATIC

Phản ứng thế electrophin S_{E} xảy ra do sự tấn công của tiểu phân thiếu electron vào trung tâm phản ứng giàu electron của chất ban đầu:

Sơ đồ chung nhtr sau:

$$
\mathrm{R}-\mathrm{Z}+\mathrm{E}^{+} \rightarrow \mathrm{R}-\mathrm{E}+\mathrm{Z}^{+}
$$

Chất ban đầu phải có trung tâm có mật độ electron lớn như hợp chất alịphatic chưa no hoạac hợp chất no được hoạt hoá bằng những nhóm thế cho electron.

Tác nhân electrophin là những tác nhân có obitan trổng như các ion dương hoạc những hợp chất có obitan chura chất đầy.

Cũng như phản ứng S_{N}, phản ứng S_{E} cung có hai cơ chế là $S_{\mathrm{E}} I$ và $S_{\mathrm{E}} 2$, trong $S_{\mathrm{E}} I$ hợ chất trung gian là cacbanion, trong $S_{\mathrm{E}} 2$ hợp chất trung gian ở trạng thái chuyển mang diện tích dương. Khả nảng phản ứng phụ thuộc vào độ bền của cacbanion hay trạng thái chuyển đi qua những trạng thái trung gian khác nhau.

Trong trạng thái chuyển theo S_{E}, còn có những trạng thái chuyển nhiều trung tâm là những trạng thái chuyển vòng khi tác nhân có hai hay nhiểu trung tâm: electrophin và nucleophin và hợp chất ban đầu có hai trung tâm: trung tâm nucleophin của chất ban đầu và electrophin của nhóm di ra Z :

Những phản ứng này thường gọi là phản ứng $S_{\mathrm{E}^{i}}$. Cơ chế này xảy ra khi có xúc tác cung như khi có solvat của dung môi.

Quan trọng và phố biến là phản ứng S_{E} của ankan có trung tâm hoạt hoá.

7.1. CO CHẾ

Phản ứng thế electrophin liên quan tới sự đi ra của nhóm đi ra có tính axit mà trong ankan thì proton hầu như không có hoạt tính nhưng phản ứng thế electrophin có thể chọn vị trí axit hơn, chẳng hạn ở vị trí α của nhóm cacbonyl hay vị trí ankynyl, còn các ion kim loại dể mang điện tích dương nên các hợp chất cơ kim thích hợp cho loại phản ứng này.

Những hợp chât có liển kết phân cực dể dàng chịu sự tẩn công của tíc nhân clectrophin, điển hình là các hợp chất cơ kim, xay ra theo phản ứng thé S_{E}. Chẳng hạn nhur một só phản ứng sau:

$$
\begin{aligned}
\mathrm{CH}_{3}-\mathrm{MgBr}+\mathrm{Br}-\mathrm{Br} & \rightarrow \mathrm{CH}_{3}-\mathrm{Br}+\mathrm{MgBr} \\
\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{Hg}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{HgCl} & \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{HgCl} \\
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Li}+\mathrm{HOH} & \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{LiOH}
\end{aligned}
$$

Phản ưng thế electrophin có thể chia ra làm bốn lọai cơ chế: $S_{\mathrm{E}} l, S_{\mathrm{E}} 2$ (tấn công sau), $S_{\mathrm{E}} 2$ (tấn công diện) và S_{E} i. Trong các cơ chế đó chỉ có $S_{\mathrm{E}} /$ là dơn p̣hân tử côn lại là lưỡng phân từ.

7.1.1. Co ché $S_{\mathrm{E}} I$

Co chế $S_{\mathrm{E}} /$ cūng tương tự như $S_{\mathrm{N}} /$, gồm hai giaj doạn - giai đoạn ion hoá chạm và giai đoạ tổ hợp nhanh:

$$
\begin{aligned}
& \mathrm{R}-\mathrm{Z} \xrightarrow{\text { chàm }} \mathrm{R}^{\ominus}+\mathrm{Z}^{+} \\
& \mathrm{R}^{\ominus}+\mathrm{E}^{+} \rightarrow \mathrm{R}-\mathrm{E}
\end{aligned}
$$

Phàn ứng phụ thuộc vào dộ bền của cacbanion. Cacbanion bền khi có nhóm thế hưt electron hoặc dược giải tở. Cacbanion tạo thành có cấu hình phả̉ng hay gẩn phẳng hoặc hình tháp với sự nghịch đảo cấu hìmh:

caiu hinh cacbanion

sur nghich dion cachanion

cachanion phàng

Châng hạn như phản ứng tạo thành cacbanion:

Cacbanion này dược ổn định do giải toả được điện tích âm với nhóm thế ($\mathrm{C} \equiv \mathrm{N}, \mathrm{C}_{6} \mathrm{H}_{5}$) làm cho cacbanion có cấu hình phả̉ng hay gần như phả̉ng. Tính ổn định có thể thåy trên các cong thức cộng hưởng:

Từ cacbanion phẳng có thể cho các sản phẩm bảo toàn cấu hình, quay cấu hình hay raxemic hoá phụ thuộc chủ yếu vào dung mói.

Cơ chề $S_{\mathrm{E}} /$ durợc nghiên cứu qua sự tautome hoá xuic tác bazơ. Trong phản ứng:

tốc độ trao đổi đồng vị đeutri có cùng tốc dộ với raxemic hoá và ở đây có hiệu ứng dồng vị.
Vân đề cacbanion có liên quan tới hoá học lập thể của phản ứng $S_{\mathrm{E}} 1$. Chẳng hạn, ở phản ưng $S_{\mathrm{N}} /$ không xảy ra ở các dầu cầu trong hệ vòng kép, nhưng lại có chổ cho phản ứng $S_{\mathrm{E}} /$, tuy rằng cacbanion không phẳng thì không ổn định bằng cộng hương.

Cacbanion nếu có cáu trúc phẳng thì có hiện tự̛̣ng raxemic hoá, nếu cấu trúc hình tháp và giữ dược cấu trúc cacbanion thì có bảo toàn cấu hình. nhưng nếu không giữ dược cău trự nghia là có sự nghịch dảo cấu hình thì cho raxemic hoá. Chảng hạn, cacbanion ankyl là đối tượng dược dùng để nghiên cứu hoá học lập thể dễ hơn cachanion khác, ở đây luôn tìm thäy sự raxemic hoá, diểu đó có thể do câu trúc cacbanion phẳng hay hình thăp chuyḉn hoá. Mạat khác raxemic hoá còn do sự tôn tại tự do của cacbanion hay solvat dối xứng.

Nếu cacbanion phẳng không cho raxemic hoá, Cram dā tìm thảy sự bảo toàn hay nghịch dán ở phán úng phân cắ ankoxit:

La phản ưng $S_{\mathrm{E}} /$ bậc nhát do cacbanion cấu trúc phẳng do cọng hưởng, khi thay dôi dung mo̊ tìm thăy sự thay dổi từ 99% bảo toàn cấu hình dến 60% nghịch đảo cấu hình và raxemic hóa hoàn wàn. Điêu ư dó dược giâi thích bởi cacbanion khóng hoàn toàn tự do mà bị solvat hoá. Trong dung môi khòng phân cực không solvat hoad như benzen hay đioxan, ion ankoxit tôn tạ ở dạng cạp ion solvat bởi BII:

trong khi phân cắ, proton của dung môi chuyển dộng tới solvat cacbanion hình thành mơii. Sự solvat là bất đối xứng vì phân tử dung môi luôn ở phía điện của cacbanion. Khì cacbanion thực tế dã lièn kết với proton nên cho kết quả là bảo toàn cáu hình ban dáu. Trong dung môi proton nhur dietylenglycol, metanol, nhóm di ra solvat cacbanion, dung môi chi có thé solvat từ phía ngược lại, nghĩa là có sự tấn công sau do phía diện bị chán bởi nhóm đi ra nên thu dược sản phẩm quay cáu hình với $k=0,7$.

Sự hình thành liên kết $\mathrm{C}-\mathrm{H}$ cho kết quả của sự nghịch đảo cấu hình.
Sự raxemic hoá thu dược trong dung mooi aproton phân cực như đimetylsunfoxit. Dung môi này có khả nảng solvat hoá cacbanion, cacbanion tồn tại lâu hơn, đủ thời gian cho tác nhân E^{+}tấn công vào solvat đối xứng, mật khác, dung môi solvat cacbanion làm cách xa được cation, do đó trong trường hợp này sản phẩm thu được là raxemic hoá:

Với dung môi ion hoá thấp có tạo dược liên kết hyđro, như ancol tert-butylic cho sản phẩm ưu tiên bảo toàn cấu hình. Ở đây cacbanion tổ hợp chặt với cacbanion và solvat hoá ở phía diện vì tạo được liên kết hydro. Trạng thái này thuận lợi cho sự tách hyđro ra khỏi phân tử dung môi liên kết hydro nên dẩn tới sản phẩm bảo toàn cẩu hình. Phản ứng này có tốc dộ lớn so với trường hợp dung môi dimetylsunfoxit bằng 10/1:

Bảng 7.1. Ảnh hưởng của dung môi đến tớc dộ phản ứng

Dung môi	Bazo	$k_{1 \mathrm{~d}}$	Cấu hinh
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COK}$	10	bảo toàn
DMSO $+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COK}_{2}$	1	raxemic hoá
Eietylenglycol	$\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$	0,7	nghịh đảo

Đã tìm thấy cacbanion tạo thành bởi trao đổi hyđro có xúc tác bazơ:

$$
\mathrm{R}-\mathrm{H}+\mathrm{B}-\mathrm{D} \stackrel{\mathrm{~B}^{-}}{\rightleftharpoons} \mathrm{R}-\mathrm{D}+\mathrm{B}-\mathrm{H} \quad \text { vó́i } \mathrm{B}^{-}=\text {bazơ; } \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{CN}) \mathrm{C}_{2} \mathrm{H}_{5}
$$

Trong trường hợp này đā có những thông báo vể do tỷ lệ k_{uv} là hằng số tốc dộ trao dổi đồng vị và k_{r} là hằng số tốc độ raxemic hoá. Nếu tỷ lệ $k_{\mathrm{Jv}} / k_{\mathrm{r}}$ lớn hơn 1 thì có sự bảo toàn câu hình, cho thấy nhiều sự trao đổi đồng vị không gây ra sự thay đồi cấu hình. Tỷ lệ $k_{\mathrm{Jv}} / k_{\mathrm{r}}$
xấp xí bằng 1 thì cô sự raxemic hoá, còn tỷ lệ là $1 / 2$ tương ứng vớí sự nghịch dảo cấu hình. Tất cả ba loại ânh hưởng lập thể này đểu tìm thấy sự phụ thuộc vào R , bazơ và dung môi.

Sự phân cắt ankoxit là phản ứng bảo toàn cấu hình trong dung môi có hằng số điện môi thấp, raxemic hoá trong dung môi aproton phân cực và nghịch đạ̉o trong dung môi proton.

Trong phản ứng trao đổi proton tìm thấy loại thứ tư. Trong dung môi aproton, bazơ aproton như amin bậc ba tỷ lệ $k_{j v} / k_{\mathrm{r}}$ tìm được thấp hơn 0,5 , chỉ rằng cón sự raxemic hoá xáy ra nhanh hơn sự trao đổi dổng vị (gọi quá trình này là dồng raxemic hoá hay isoraxemic (isoracemization). Ở diểu kiện này, axit liên hợp của amin kết hợp chạ̣t với cacbanion như cặp ion. Cặp ion này phân ly dủ xa để cacbanion quay hướng khác và bắt lấy proton:

Sự nghịch đảo (hay raxemic hoá do lặp lại một lần nghịch đảo nưa) không tìm thấy trao dổi. Sự nghịch đảo không có trao đổi gọi là dồng nghịch đảo (hay isoinversion).

Quá trình nghịch đảo khóng có trao đổi đồng vị (đồng nghịch dảo - isoinversion) còn do tiểu phân điện tích dương di chuyển dọc theo phân từ từ một vị trí nucleophin này tới vị trí nucleophin khảc. Chả̉ng hạn, trong phản ứng trao đổi của 3-cacboxamit-9-metylfluoren (1) với tripropylamin trong butanol cho thầy, amin nhận láy proton từ vị trí 9 của (1) và dưa proton tới oxy của $\mathrm{C}=\mathrm{O}$ dọc theo phân tử và trở về 9 ở phía ngược lại của anion:

Quá trình đi tùr $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ với sự nghịch dảo mà không có trao dổi. Quá trình này gọi là cơ chế di chuyến theo mạch (conducted tour mechanism). Nếu di từ dồng phân của (1) là 2-cacboxamit thì cũng không có sự dồng raxemic hoá (không có sự isoraxemic hoá hay isoracemization). Trong hai trường hợp này, diện tích âm ở trên nguyên
tử O trong anion (3) thấp hơn vì dạng cộng hưởng đế cho O hoàn toàn mang diện tích âm, còn dạng cộng hường (6) và (7) lại phá huý cấu trúc một vòng (7) hay hai vòng benzen (6):

(6)

(7)

Quá trình isoraxemic hoá xảy ra theo cơ chế di chuyển theo mạch phụ thuộc vào cấu trúc chất ban đầu và bazơ.

Cacbanion vinylic có thể bảo toàn cáu hình theo S_{E} / Chẳng hạn, trans-2-brom-2buten chuyển thành $64 \div 74 \%$ axit angelic chỉ có 4% axit dồng phân cis - axit tiglic:

Trong một số trường hợp, cacbanion có diẹ̃n tích âm ổn dịnh bà̀ng xen phủ với obitan $-d$ cūng cho sản phẩm bảo toàn cấu hình.

Nói chung, cacbanion có cấu trúc hình tháp tạo thành khi dị ly $\mathrm{R}-\mathrm{Z}$, trong trường hợp chung, hoá học lập thể của trung tâm phản ứng dược bảo toàn. So với $S_{N} /$, giai đoạn thứ hai ở đây là sự tấn cong "ủa E^{+}và R^{-}va có thể xảy ra ba trường hợp phụ thuộc vào tương quan `ới tốc dộ nghịch đảo.

- Phản ứng xảy ra ra nhanh hơn sự nghịch đảo hình tháp kép cacbanion, sản phầm dược bảo toàn cáu hình;
- Phàn ứng chạ̀n hơn sự nghịch đảo, sản p̣̂ẩm là quay cấu hình;
- Phản ứng xảy ra cùng tốc độ nghịch đảo thì thu dược sản phẩm raxemic hoá hoàn toàn hay một phẩn.

Phản ứng $S_{\mathrm{E}} /$ cấn được xúc tiến bằng nhóm thế có khà năng ổn dịnh cacbanion bàng cộng hưởng hay liên hợp, dại đa số phản ựng $S_{\mathrm{E}} /$ xảy ra từ hợp chảt ban đầu chứa điện tích âm và chất đi ra trở thành phân tử trung hoà:

$\mathrm{RCOCH}_{2} \mathrm{COO}^{-} \rightarrow \mathrm{RCOCH}_{2}^{-}+\mathrm{CO}_{2}$

7.1.2. Co chế $S_{\mathrm{F}} 2$ và $S_{\mathrm{E}} i$

Cơ ché $S_{\mathrm{E}} 2$ xảy ra qua mọ̣ giai đoạn có dạng:

$$
\mathrm{E}^{+}+\mathrm{R}^{\prime}-\mathrm{Z} \longrightarrow[\mathrm{E} \ldots \mathrm{R} \ldots \mathrm{Z}]^{+} \rightarrow \mathrm{E}-\mathrm{R}+\mathrm{Z}^{+}
$$

Cũng có thế xáy ra qua ba loại trạng thái chuyển:

Trong trường hợp $S_{\mathrm{E}} 2$, tác nhân electrophin có obitan trống tấn công vào obitan bị chiĉ́m cao của chất ban đầu, nghĩa là chất ban đầu bắt buộc phải có obitan chất dầy dể kết hợp với obitan trống. Điều dó làm cho sự tấn công diện thuận lợi hơn ở liên kết $\mathrm{C}-\mathrm{Z}$, do dó bảo toàn cấu hình mà không nghịch đảo cấu hình như $S_{\mathrm{N}} 2$.

Trong trạng thái chuyển $S_{\mathrm{E}} 2$, nguyên tử cacbon trung tâm phản ứng bảo toàn cấu hình tứ diện $s p^{3}$:

Một obitan $s p^{3}$ chi phí cho sự tạo thành liên kết ba trung tam hai electron với nhóm di ra và nhóm tham gia phản ứng.

Các nhóm thế có khả nāng liên hợp không có tác dụng ốn định trạng thái chuyển như $S_{\mathrm{N}} 2$ (có sự chuyến từ $s p^{3}$ sang $s p^{2}$), song các nhóm thế có hiệu ứng $-I$ làm tăng phản ứng, các nhóm thế $+l$ làm chậm phản ựng, chẳng hạn:

	$\mathrm{CH}_{3} \mathrm{HgX}+\mathrm{Hg}^{*} \mathrm{X}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Hg}^{*} \mathrm{C}+\mathrm{HgX} \mathrm{H}_{2}$			
$\mathrm{X}=$	Br	1	OCOCH_{3}	NO_{2}
$k_{\mathrm{td}}=$	1	7,9	1000	240000

Như vậy, electrophin có obitan trổng di vào trung tâm chất ban đẩu theo hướng có thể, có thể hình dung hai khả nång:

łà electrophin tấn công diện gọi là $S_{\mathrm{E}} 2$ (diện) và tấn công sau gọi là $S_{\mathrm{E}} 2$ (sau). Không thể từ chất ban đầu để có thẻ̉ phàn biệt hai khả năng này mà dựa vào hoá học lập thể của sản phẩm là báo toàn cấu hình hay nghịch đảo.

Khi electrophin tấn công vào phía diện, cũng có khả năng thứ ba là electrophin có thể đi tới nhóm di ra hình thành một liển kết nào đó cùng một thời gian hình thành liên kết $\mathrm{C}-\mathrm{E}$:

Cơ chế này gọi là $S_{\mathrm{E}} i$ cho kết quả là bảo toàn cấu hình. Phản ứng là bậc hai như là sự tương tác nọ̣i mà tấn công sau là không thể.

Sự phân biệt ba cơ chế này không phải dể vì ba cơ chế đều là bậc hai và có hai là bảo toàn cấu hình. Dựa vào hoá học lập thể, phân biệt được $S_{\mathrm{E}} 2$ (sau) và $S_{\mathrm{E}} 2$ (diện) hay $S_{\mathrm{E}} i$. Đa số nghiên cứu đều chứng minh phản ứng là tấn công diện và bảo toàn cấu hình, nghial là phản ứng theo $S_{\mathrm{E}} 2$ (diện) và $S_{\mathrm{E}} i$:

Chẩng hạn, cho cis-(8) tác dụng với clorua thuỷ ngân đánh dâu cho 100% sản phẩm cis-(9). Liên kết giữa thuỷ ngân và vòng bị phân cát (giữa $\mathrm{C}-\mathrm{Hg}$), mổi sân phẩm chứa khoảng $1 / 2$ thuỷ ngân đánh dấu:

Một chứng minh khác là phản ứng tấn công diện có thể xảy ra ở cacbon đẩu cẩu là phản ứng bậc hai (khác với $S_{\mathrm{N}} 2$), hoặc với chất ban đầu là neopentyl thì phản ứng $S_{\mathrm{N}} 2$ xày ra rất chậm, nhựng lại chịu tấn công của electrophin theo tấn công diện, tuy có chậm hơn etyl. Cūng như đã tổng hợp được hợp chít di-sec-butyl thuỷ ngân có chứa một nhóm sec-butyl quang hoạt và một raxemic khác khi tác dụng bromua sec-butyl thuỷ ngân quang hoạt với sec-butyl magie bromua raxentic.

Phân tích phảṇ ứng nà̀y về hoá học lập thể cho thấy liên kết giữa thuỷ ngân và mỗi cacbon đều có co họ̣i phân c t 50% :

Nếu nghịch đảo:

Nếu bảo toàn:

Nếu raxemic hoá:

Hoạt tính ban dẩu là hoạt tính của sec-butyl thuỷ ngân bromua quang hoạt khi dùng dẳn xuất điankyl.

Kết quả thực tế là dưới điều kiện khác nhau, sàn phẩm có một nửa hoạt tính ban đầu chứng minh cho bảo toàn cấu hình.

Chăng hạn, phàn ứng sau theo cơ chể $S_{\mathrm{E}} 2$ cūng bảo toàn cấu hình:

Song sự nghịch đảo cấu hình cũng đã tìm tháy trong một vài tường hợp chứng minh cho cơ chế $S_{\mathrm{E}} 2$ (sau), chẩng hạn như sec-butyl trineopentyl thiếc quang hoạt với brom cho sec-butyl bromua nghịch dảo cấu hình:

$$
\sec -\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{SnR}_{3}+\mathrm{Br}_{2} \longrightarrow \sec -\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Br} ; \mathrm{R}=\text { neopentyl }
$$

Một số hợp chất cơ kim khác cũng tìm thấy sự nghịch đảo cấu hình, một số khác thì không, nhựng trong bợp chất cơ thuỷ ngân thì không tìm thấy sự nghịch đảo cấu hình.

Quá trình nghiên cứu phản ứng tấn công sau có khó khān vì khó điều chế dược hợp chất có liên kết cacbon-kim loại bền cấu hìmh, khó phân giải và dể raxemic hoá. Quá trình điẻ̉u chế dã̉n xuất cơ kim có cacbon bất đói với kim loại rất khó, chỉ có một vài dần xuất co Mg thực hiện được. do đó nghiên cứu lập thể của phản ứng thế ở liên kết cacbon-magie thường không xác dịnh, tuy nhiên cūng tìm thấy phản ứng của hai đồng phân của dẩn xuất Grignard của 2 -norbornyl tác dụng với HgBr_{2} cho 2 -norbornyl thuỷ ngân bromua bảo toàn cấu hình. Sự nghịch dảo chí có khi có khó khăn lập thể cho sự tấn công diện và khi electrophin không tác dụng được với nhóm di ra.

Trong thực tế, một sớ trường hợp cơ chế $S_{\mathrm{E}} 2$ (sau) dã xác định được (do tìm dược nghịch đảo cấu hình) nhưng khó phàn biệt được $S_{\mathrm{E}} 2$ (diện) và $S_{\mathrm{E}} i$ để có một kết luận nhât quán, tuy cüng dả có phương pháp dùng hiệu ứng muối đến tôc độ phản ứng. trong dó $S_{\mathrm{E}} i$ ít chịu ánh hưởng của hiệu ứng muối hơn là $S_{\mathrm{E}} 2$. Chả̉ng hạn, theo Abraham trong phản ứng:

$$
\mathrm{R}_{4} \mathrm{Sn}+\mathrm{HgX}_{2} \longrightarrow \mathrm{RHgX}+\mathrm{R}_{3} \mathrm{SnX}
$$

($\mathrm{X}=\mathrm{Cl}$, hay I) có chổ cho $S_{\mathrm{E}} 2$ mà không phải $S_{\mathrm{E}} i$.
Khi thay dối dung môi, trong phản ứng:

$$
\begin{gathered}
\text { sec }-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Sn}_{2} \mathrm{R}^{\prime}+\mathrm{Br}_{2} \longrightarrow \sec -\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Br} \\
\mathrm{R}=\mathrm{R}^{\prime}=\text { iso-propyl, và } \mathrm{R}=\text { iso-propyl, } \mathrm{R}^{\prime}=\text { neopentyl }
\end{gathered}
$$

cũng tìm thây, trong dung môi phân cực ưu tiên cho nghịch dảo, trong dung mồi không phân cực cho báo toàn cấu hình.

Trên cơ sở nghiên cứu hoạt tính, mọ̀t dạng khác của cơ chế $S_{\mathrm{E}} i$ có thể xảy ra khi nhóm Z di tới tạo liên kểt với X trước khi tách ra:

Quá trình này gọi là $S_{\mathrm{E}} \mathrm{C}$, như đā tìm thấy một số phản ứng như $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Sn}+\mathrm{I}_{2}$ theo co chẻ̉ $S_{\mathrm{E}} 2$ cho chắt trung gian chuyển dịch diện tích với sự hình thành phức cho-nhạan electron (EDA).

7.1.3. Phản ứng thế electrophin trong hẹ̀ allyl

Phản ứng thế electrophin trong hệ allyl cũng có chuyển vị allyl:

Quá trình này tương tự như chuyển vị allylic nucleophin ở chương chuyển vị. Có hai cách chính: đầu tiên, quá trình xảy ra tương tự $S_{\mathrm{E}} I$, trong đó nhóm đi ra đi ra đầu tiên cho cacbanion allyl ổn địhh bằng cộng hutởng, sau đó là tấn công electrophin:

$$
-\stackrel{1}{\mathrm{C}}=\stackrel{1}{\mathrm{C}}-\stackrel{1}{\mathrm{C}}-\mathrm{Z} \rightarrow\left[-\stackrel{1}{\mathrm{C}}=\stackrel{1}{\mathrm{C}}-\stackrel{1}{\mathrm{C}} \rightarrow \stackrel{\mathrm{O}^{\prime}}{\mathrm{C}}-\stackrel{1}{\mathrm{C}}=\stackrel{1}{\mathrm{C}}\right] \stackrel{\mathrm{E}^{+}}{\rightarrow} \mathrm{E}-\stackrel{\mathrm{C}}{\mathrm{C}}-\stackrel{1}{\mathrm{C}}=\stackrel{1}{\mathrm{C}}
$$

Cách khác là E^{+}tân công trước cho cacbocation rồi Z di ra:

Nhiều chuyển vị alllyl có hydro tham gia làm nhơm đi ra nhưng cūng quan sát thấy các nhóm di ra là kim loại. Sleezer, Winstein và Young tìm thấy khi bromua crotyl thuỷ ngân tác dụng với HCl nhanh hơn n-butyl thuỷ ngân bromua đến 10^{7} lần và sản phẩm là 90% 1-buten. Phản ứng này là theo cơ chế $S_{\mathrm{E}^{\prime}}{ }^{\prime}$:

Tương tự, bromua crotyl thuỷ ngan với axit axetic-axit pecloric theo co chế $S_{\mathrm{E}} 2^{\prime}$:

Tính hình học của chuyển vị allyl electrophin không dược nghiền cứu nhiểu như chuyển vị allyl nucleophin, nhưng nhiểu phản ứng cho thấy phản ứng chuyển vị có tính chọn
lọc lập thé anti, tuy cūng có chọn lọc syn. Trường hợp dùng electrophin H^{+}và nhóm di ra lì $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{\text {3 }}$, guan sát thấy có chọn lọc lập thể anti và syn phụ thuọ́c vào chất ban dâu là cis hay trans.

Cơ chế thế electrophin của hydrocacbon aliphatic thực ra còn ít dược nghiên cứu, không như phản ứng thể nucleophin, cho nên trong nhiều phản ứng chưa cho phép khẳng định chính xác cơ chế.

Ngoài các cơ chế trên, cūng có nhû̃ng phàn ứng xảy ra theo có chế khác như cơ chế cộng-tách khi axyl boá hydrocacbon olefin có xúc tác axit Lewis (phản ứng 7, trang 168) hay theo cơ chế vòng như khi decacboxyl hoá axit aliphatic (phản ứng 22, trang 179).

7.2. CȦC NHÂN TỐ ẢNH HUỞNG

1- Hiệu íng chàt ban dáut

Trong phản ứng $S_{\mathrm{E}} /$, các nhóm thế cho electron làm giảm tốc đọ phản ứng và nhóm thế hút electron làm tảng phản ưng. Kết quả này rút ra từ phản ứng có giai doạn quyết định tốc dộ tưong tự như sự phân cắt proton từ axit.

Trong phän ứng $S_{\mathrm{E}} 2$ (sau) Jensen và Davis tìm thấy rằng, hoạt tính của các nhóm ankyl bình thường như phản ứng $S_{N} 2\left(\mathrm{CH}_{3}>\mathrm{C}_{2} \mathrm{H}_{5}>\mathrm{C}_{3} \mathrm{H}_{7}>\right.$ iso $-\mathrm{C}_{3} \mathrm{H}_{7}>$ neopentyl $)$ và cả hai đều tấn công sau và chịu ảnh hưởng lập thể. Thực tế, hoạt tính này chứng minh cho cơ chế $S_{\mathrm{E}} 2$ (satu) trong trường hợp không có ảnh hưởng của hoá học lập thể. Đối với $S_{\mathrm{E}} 2$ thì bảo toàn cấu hình mà qua nhiĉ̀u nghiên cứu cho thấy phụ thuộc vào loại phàn ứng. Như phàn ứng $\mathrm{RHgBr}+\mathrm{Br}_{2} \rightarrow \mathrm{RBr}$, xúc tác Br^{-}cho kết quả trong bảng 7.2.

Bảng 7.2. Tốc độ tương đối của phản ứng RHgBr với Br_{2}

R	Tơc đọ̉ tuong dôi	R	Tóc đọ tương dói
CH_{3}	1	$\mathrm{C}_{2} \mathrm{H}_{5}$	10,8
$\mathrm{C}_{2} \mathrm{H}_{5}$	10,8	iso $-\mathrm{C}_{4} \mathrm{H}_{5}$	1,24
iso $\cdot \mathrm{C}_{3} \mathrm{H}_{7}$	780	neopentyl	0,173
tert $\mathrm{C}_{4} \mathrm{H}_{9}$	3370		

Cho thấy, sự phân nhánh α làm tăng tớc dộ phản ứng, phân nhánh β làm giảm tốc dọ̣ phản ứng. Sayer và Jensen cho rằng sự giàm tốc dộ là do khó khăn lập thể, mặc dù sự tấn công ở đây là tấn công diện và tăng tớc dộ là do hiệu ứng cho electron của nhóm ankyl làm ổn dịnh trạng thái chuyển thiếu electron. Sự khó khān lập thể cūng tìm thấy khi có phan nhánh α và cho rà̀ng nếu không có thì tốc đọ phản ưng lớn hơn. Tác nhân electrophin Br lớn có ảnh hưởng lớn hơn, cũng như hiệu ứng lập thể nhỏ của electrophin nhỏ. Tốc độ của phản úng thế là bậc hai của hợp chất cơ thiếc tìm thấy tãng khi tính hút electron tãng trong nhóm thế. Điểu đó gán cho phản ứng $S_{\mathrm{E}} 2$ là cạ̣p ion tương tự như cơ chể cạ̣p ion của Sneen trong thế nucleophin.

2- Hiệu áng chia nhóm di ra

Cả hai cơ chế $S_{\mathrm{E}} I$ và cợ chế bậc hai, liên kết $\mathrm{C}-\mathrm{Z}$ phân cực càng lớn thì nhóm đi ra electrofuge càng dể, các nhóm đi ra kim loại trong đó kim loại có hoá trị lớn hơn 1, bản chất của các nhóm khác nôi với kim loại cūng ảnh hưởng đến phàn ứng. Chả̉ng hạn đãy phản ứng cơ thuỷ ngân RHgW vì dộ âm diện cùa W giảm, tính phân cực của liên kết $\mathrm{C}-\mathrm{Hg}$ giảm và ion HgW^{+}kém bển hơn, khả nāng electrofuge của HgW giàm với sự tãng độ âm điện của W. Từ dó, nhóm HgR^{\prime} (từ RHgR ') đi ra tốt hơn HgCl (từ RHgCl). Thứ tự đi ra: Hg -fert $-\mathrm{C}_{4} \mathrm{H}_{y}>$ Hg -iso- $\mathrm{C}_{3} \mathrm{H}_{7}>\mathrm{HgC}_{2} \mathrm{H}_{5}>\mathrm{HgCH}_{3}$ khi axeton phân $\mathrm{R}_{2} \mathrm{Hg}$, có nghĩa là dộ phản nhánh cao cùa nhóm ankyl đã làm ổn định tốt hơn diện tích dương. Nhu vậy, nhóm di ra là kim loại là thích hợp cho $S_{\mathrm{E}} l$, trong khi đó nhóm đi ra là cacbon tìm thấy cơ ché bạ́c hai.

Tuy vậy cũng có những kết quả ngược lại, nhóm di ra cacbon thường là $S_{\mathrm{E}} /$ và nhóm đi ra kim loại là cơ chế bậc hai nhưng cơ chế không dể chứng minh và nhiều điểu còn chua ró.

3- Hiẹ̆u íng dithg mói

Hiệu ứng dung môi trong cơ chế $S_{\mathrm{E}} l$ cho thãy dung mói có ảnh hưởng dến cơ chế, tăng tính phân cực củai dung môi làm tăng khả năng cho cơ chế ion hoá như trong cợ chế S_{E} l so với cơ chế bậc hai khơng ion hoá, còn giữa $S_{\mathrm{E}} 2$ (sau hay diện) và S_{E} i thì tớc dộ $S_{\mathrm{E}} 2$ tãng khi tăng tính phân cực của dung môi, còn $S_{\mathrm{E}} i$ thì ít ảnh hưởng.

7.3. CÁC PHÄN ÚNG S_{E} CỦA HYDROCACBON ALIPHATIC

I- Phán íng trao dỏi dông vi hydro

$$
\mathrm{R}-\mathrm{H}+\mathrm{D}^{+} \rightleftharpoons \mathrm{R}-\mathrm{D}+\mathrm{H}^{+}
$$

Phản ứng trao đổi đổng vị thực hiện khi có axit hay bazơ. Phản ứng trao dổi dùng dể nghiên cứu cơ chế cũng như tính axit tương đối, nhưng cũng dùng để tổng hợp các hợp chất perdeutri hay pertriti.

Trong diểu kiẹ̉n axit như $\mathrm{H}_{2} \mathrm{SO}_{4}$ chî có thể trao dổi dẻ̉ dàng với axit như axetylenic, allylic... Hydro bậc nhất, hai hay ba cua ankan có thể trao đổi khi tác dụng với supeaxit. Thứ tự hoạt tính là hy dro bậc $3>2>1$. Khi có lièn kết $\mathrm{C}-\mathrm{C}$ cũng có phân cắt $\mathrm{C}-\mathrm{C}$.

Cơ chế trao đổi như dối với metan, do sự tấn cong của H^{+}vào liền kết $\mathrm{C}-\mathrm{H}$ cho ion metanium nảm hoá trị mà mát đi H_{2} cho cacbocation ba hoá trị:

Ion metanium $\mathrm{CH}_{3}{ }^{+}$có lièn kết ba trung tâm hai electron không aược coi như là trạng tháj trung gian nhưng đã phát hiện ra bằng quang phố khối và bằng IR ở trạng thái khí.

Hai electron trong liên kết ba trung tâm hai electron có thể chuyển dộng theo ba hướng phù hợp với tính đối xứng bậc ba về cấu trưc. Các electron có thể chuyển động tới kểt
hợp với hai hydro cho $\mathrm{CH}_{3}{ }^{+}$tự do (phản ứng thuận trên), kết hợp CH_{3} với một trong hai hydro và hydro khác tách ra dạng H^{+}(phản ưng ngược trèn). Thực tế cation metyl không bền ở điều kiẹ̀n phản ứng đó nên có thể trở vẻ̉ CH_{4} hay cộng hợp với CH_{4} cho sản phẩm cộng cao hơn, thường là cation tert-butyl bền trong mói trường supeaxit.

Trong môi trường bazơ, phàn ứng trao đới là $S_{\mathrm{E}} I$:

$$
\begin{aligned}
\mathrm{R}-\mathrm{H}+\mathrm{B}^{-} & \rightarrow \mathrm{R}^{-}+\mathrm{BH} \\
\mathrm{R}^{-}+\mathrm{BD} & \rightarrow \mathrm{R}-\mathrm{D}+\mathrm{B}^{-}
\end{aligned}
$$

Sự trao đởi thực hiện với proton tương dới axit, như hyđro α của cacbonyl nhưng với proton axit yếu chỉ trao đởi khi có bazơ dủ mạnh.

Các ankan và xycloankan khối lượng cao hay thấp đểu dể deutrì hoá hoàn toàn cho perdeutri khi tâc dụng với D_{2} khí và xúc tác $\mathrm{Rh}, \mathrm{Pt}, \mathrm{Pd}$.

Các xycloanken dẻ perdeutri hoá khi tác dụng với $\mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ loãng trong ống pyrex ở $165 \div 280^{\circ} \mathrm{C}$.

2- Phản áng chuyển vị nối đôi

Liên kết đôi của hợp chất không no trong môi trường bazơ mạnh sẽ chuyển vị:

Liên kết đối của nhiểu hợp chắt khōng no thay dổi khi tác dạng với bazo. Trong nhiểu trường hợp tìm được hồn hợp càn bà̀ng trong đó hợp chắt bền nhiệt động học ưu tiên hơn. Thường một liên kết đôi mới dễ hình thành khi ở dạng liên hợp với liên kết đôi khác hay với nhân thợn. Trong sụ̣ chuyển hoá này cũng áp dụng quy tắc Zaitsev, nghīa là liên kết đôi di tới cacbon ít hyđro nhất. Do đó olefin cuôi mạch di tới olefin giữa mạch, olefin không liên hợp di tới olefin liên hợp, olefin vòng 6 cạnh exoxyclic di tới endoxyclic.

Cơ chế của phản ứng là bazơ tấy hydro cho cacbanion ốn dịnh cộng hưởng rổ tổ hợp tiép với proton cho olefin bền hơn:

Cơ chế dùng như chuyển vị alllylic trong thế nucleophin. Phố UV dã tìm tháy cacbanion giống nhau của allylbenzen và 1 -propylbenzen trong dung dịch chứa $\mathrm{NH}_{2}{ }^{-}$. Axit BH^{+}proton hoá vị trí cho sàn phẩm bền hơn, tỷ lệ hai sàn phẩm có thể thay đởi với đạ̣c tính của BH^{+}.

Trong một và trường hợp tìm thấy sự chuyển nối đôi bằng xúc tác bazơ có tính chăt nội phân tử. Tính chất nội phân tử này có thể quy cho cơ chế di chuyển trong mạch, trong đó bazơ hướng dẩn proton từ vị trí cacbanion này tới vị trí khác;

Liên kết ba cũng dời chuyển tương tự khi có bazơ nhựng đi qua chất trung gian allen:

$$
\mathrm{R}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \rightleftharpoons \mathrm{R}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2} \rightleftharpoons \mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}
$$

Nói chung, các bazơ mạnh như NaNH_{2} chuyển ankyn trong mạch tới ankyn đẩu mạch (tốt nhắt dùng kali 3-aminopropylamit) vì cân bằng chuyến vế phía tạo ion axctylenic, với bazơ yéu hơn như NaOH thì các ankyn trong mạch thích hợp hơn vì có dộ bền nhiẹ̀t dộng học cao hơn. Trong mộl số trường hợp phán ứng dừng lại ở hợp chât allen và phương pháp trở thành phương pháp tống hợp allen.

Sự chuyển vị liên kết đôi ciung xảy ra khi có xúc tác axit. Có thể dùng proton và axit Lewis. Cơ ché khi có proton cưa axit là ngượ với cơ chế trước, dầu tiên nhận proton tạo cation (trước là mất proton):

Nếu chất ban đấu có khả nãng định chô liên kểt đôi thi có thể tạo nên hổn hạ̣p các dồng phân, như 1-dexen đồng phân hoá thành cis và trums-2-dexen mà còn cả cis hay trans-3-, 4-. 5-dexen và ngay cà anken có nhánh do chuyển vị cacbocation. Tuy nhiên có một olefin bền hơn ưu tiên nhưng tính bến cưa nhiều olefin gần giống nhau.

Liên kết ba chuyển vị khi có axit mạnh hơn $\mathrm{HF}^{-}-\mathrm{PF}_{3}$, nếu cợ chế giống anken thì chât trung gian là vinyl cacbocation.

Ngoài ra, sự chuyển vị nối đôi có thể bẳng quang hoá, hay chayển vị sigma và xúc tác của các ion kim loại. Khi có xúc tác ion kim loại, có hai khả nāng về cơ chế.

Cơ chế có đụng dến hyđ̛o bên ngoài gọi là cơ chế cộng tăch của hyđ̛̃ua kim loại:

và cơ chế không đụng đến hyđro ngoài gọi là cơ chế phức π-allyl:

Sự khác nhau giữa hai cơ chế là dịch chuyển 1,2 ở cơ chế đẩu và dịch chuyển 1,3 của cơ chế hai, chẳng hạn dởng phân hoả 3 -etyl-1-penten khi có $\mathrm{Fe}(\mathrm{CO})_{12}$ xúc tác là cơ chế phức π-allyl, 1 -buten khi có rhơi (I) là cơ chế hyđ̛̣ua kim loại. Chuyến vị ankynon $\mathrm{RCOC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{R}$ thành $\mathrm{RCOCH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCHR}^{\prime}$ khi có phức paladi hay axetat paladi.

Phương pháp xúc tác kim loại dùng để tổng hợp các enol đơn giản do dồng phân hoá ancol allylic:

Enol này tương đơi bển, chuyền vị chậm thành anđehit hay xeton với thời gian bán huỷ từ $40 \div 50$ phút dến vài ngày.

Phương pháp electrophin chuyển vị nối đôi thường dùng dể thu dược olefin bển nhiệt đọng học hơn, trừ vài trường hợp bất thường dã biêt, còn trường hợp ngược lại thường dùng các phương pháp khác như chuyền olefin tới boran, chuyển vị boran rồi oxy hoá thuỷ phân cho ancol và loại nước ancol cho olefin ở nôi đôi đàu mạch:

Sự dời chuyển này luôn thu dược olefin cuôi mạch, ngược với các phương pháp khác.
Sự đồng phàn hoá olefin bằng quang hoá cūng hướng tới đồng phân kém bển nhiệt dông học hơn.

Nểu trong mạch có nhóm OH thì có thể mất proton cho sản phẩm xeton:

$$
\mathrm{R}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3} \xrightarrow{\text { axit photphoric }} \mathrm{R}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}
$$

Các α-hydroxy của liên kềt ba cho xeton α, β - không no.

3- Phản áng tantome hoá xeton-enol

Cân bà̀ng tautome xeto-enol của andehit và xeton:

Cân bằng dược xúc tiến bằng axit hay bazơ:
Xúc tác axit:

Xúc tãc bazơ:

Cả hai quá trình đều có giai đợn phân cát liên kết $\mathrm{C}-\mathrm{H}$ quyết định tốc độ nên có hiệu ứng đồng vị (thường bằng 5). Sự chuyển hoá andehit hay xeton tới tautome enol nói chung không phài là phương pháp tổng hợp mà chỉ là một khía cạnh của tổng hợp. Nếu có tỷ lệ đương lượng mol của bazơ và anđehit hay xeton thì enolat hình thành và có thể tách ra. Quá trình là quá trình thuận nghịch nên chất ban đầu có trung tâm bất dôi xứng ở vị trí α, như hợp chất (10), khi tác dụng với bazơ hay axit sẽ thu được sản phầm raxemic hoá:

(10)
hoạc nếu có trung tâm bất đổi khác trong phân tử thì có thể chuyển hoá epime không bền thành bền hơn như cis-decalon thành trans-decalon:

Cūng có phản ứng trao dổi đồng vị qua dạng tautome, nhựng trong quá trình xúc tác axit thì sự trao dổi hay cân bằng thực hiện được khi hợp chất cacbonyl chuyển hoàn toàn thành enol hay ngược lại, còn xúc tác bazơ thì chi có ở giai đợn dầu (chuyển tớt ion enolat).

Để chuyển hōn hợp raxemic thành enantiome, cho tác dụng hồn hợp raxemic với một bazơ quang hoạt vì bazơ quang hoat chỉ tác dụng với một enantiome trong hồn hợp raxemic nhanh hơn enantiome kia, chả̉ng hạn chuyến hoá sau:

Xeton raxemic (11) chuyển thành hổn hợp quang hoạt (hiệu suất 46%) khi tác dụng với bazơ (12) quang hoạt. Bazơ (13) chì phản ứng với một enantiome (11) nhanh hơn enantiome khác (phân giải động học) cho enolat (13) giữ dược phơi trí với amin dể tái proton hoá cho (14) quang hoạt mà không cộng proton của chất cho proton.

4- Phản íng halogen hoá andehit và xeton
Anđehit và xeton bị halogen hoá ở hydro α bằng clo, brom và iot:

Phản ứng không dùng flo vì quá hoạt động, nhưng các hợp chất hoạt động như β-xeto este hay β-đixeton có thề flo hoá bằng $\mathrm{XeF}_{2}, \mathrm{~N}$-flo- N -ankylsunfonamit, N -flosunfonamit, axetyl hypoclorit.

Anđehit và xeton không tự halogen hoá mà halogen hoá ở dạng enol, nên phản ứng thường cần xúc tác axit hay bazơ:

Xúc tác axit:

3-

Giai doạn đấu xảy ra rất nhanh, giai doạn thứ hai là cọ̉ng electrophin vào nối đôi.
Đặc tính cơ chế như sau:
1- tốc độ bậc nhất đói với chất ban dầu;
2- brom không xuất hiện trong phương trình tốc dộ;
3- tốc độ clo hoá, brom và iot hoá là như nhau ở cùng diểu kiện;
4- phản t̂́ng có hiẹ̉u ứng đồng vị;
5- tốc độ của giai đoạn 2 và giai đoạn 3 dược do độc lập nhau (bởi bắt đầu từ enol) và tìm dược rất nhanh.

Xúc tác bazơ:

Khó phân biệt hai giai đợn. Nếu chất ban đầu có ba hyđ̛o α ở cùng một phía của $\mathrm{C}=\mathrm{O}$ thì khōng có thể dừng lại sau khi đã thế một hyđ̛o do hiệu ứng / hút electron của brom tāng tính axit của hydro còn lại nghĩa là nhóm CHX axit hơn CH_{3}, nên xeton đã halogen hoá chuyển tới enol nhanh hơn chất ban dầu.

Đôi với xeton không đối xứng, vị trí ưu tiên halogen hoá là nhóm CH , rối dến CH_{2} và sau đến CH_{3}, song thường cho hổn hợp. Đôi với anđehit, đôi khi hydro anđehit cũng bị thay thế. Khi dùng xúc tác bazơ, một vị trí α bị hoàn toàn halogen hoá trước khi tấn cóng vào vị trí khác, và phàn ứng không có thể dừng lại khi hyđro chưa bị thế hết. Nên khi nhóm ankyl là CH_{3} thì có phản ứng halofom.

Khi dùng xúc tác axit, có thể dừng lại sau khi thế một halogen, tuy nhiên có thể thể tiếp nếu dùng dư halogen. Trong clo hoá, thế tiếp theo ở cùng cacbon dã thế trước còn brom hoá thì thu dược α, α^{\prime}-đibrom. Thực tế cả hai halogen đều cho α, α-đihalogen nhưng trong dẩn xuất đibrom trong điều kiện phản ứng dó thì đồng phân hoá cho α, α '-đibrom. Aryl metyl xeton có thể cho dibrom $\left(\mathrm{ArCOCH}_{3} \rightarrow \mathrm{ArCOCHBr}_{2}\right)$ hiệu suất cao với benzyltrimetylamoni tribromua.

Sự chọn lọc vị trí trong halogen hoá xeton không dôi xứng khi tác dụng với enol borinat của xeton với N -bromsuxininit (NBS):

Cũng như brom hoá của enolat liti ở nhiẹt dộ thấp, α-halogen andehit điều chế bằng silyl enol ete $\mathrm{R}_{2} \mathrm{C}=\mathrm{CHOSi}\left(\mathrm{CH}_{3}\right)_{3}$ với Br_{2} hay Cl_{2}, với $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ hay iot với axetat bạc.

Xeton α, β-không no chuyển thành xeton α-balogen- α, β-không no khi tác dụng với phenylselen bromua hay clorua và thành xeton α-halogen- α, β-không no bằng phản ứng hai pha với HOCl .

Trong trường hợp dùng axetandehit và metylankylxeton trong môi trường bazơ gọi là phản ứng halofom.

Axetanđehit và metylankylxeton bị phân cắt bằng halogen và bazơ:

Phản ứng thực tế gồm hai phản ứng: halogen hoá trong điều kiện bazơ cho trihalogen ở nhóm metyl và phân cắt dả̉n xuất trihalogen:

Các metylcacbinol bậc nhất và hai cũng cho phản ứng này do bị oxi hoá tới hợp chất cacbonyl ở điều kiện phản ứng này. Phản ứng không áp dụng cho F_{2} nhưng xeton dạng $\mathrm{CF}_{3} \mathrm{COR}\left(\mathrm{R}=\right.$ ankyl, aryl) cũng phân tích cho florofom và RCOO^{-}. Hà̀ng số tớc dộ phân cất $\mathrm{X}_{3} \mathrm{CCOC}_{6} \mathrm{H}_{5}$ với $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ tương ứng bằng $1: 5,3 \cdot 10^{19}: 2,2 \cdot 10^{13}$, nghĩa là nhóm CF_{3} phân cắt chậm nhất.

5- Phän úng halogen hoá axit cacboxylic và halogenua axit

Các α-hyđ̛̃o của axit bị thế bằng halogen khi tác dụng với halogenua photpho:

Phản ứng gọi là phản ứng Hell-Volhard-Zelinski, không áp dụng cho iot và flo.
Phản ứng cũng áp dụng cho halogenua axit. Các axit thường kém hoạt dộng trừ khi axit có hàm lượng enol tương đối cao như axit malonic.

Nếu phân tử có hai hyơro α thì có thể một hay cả hai bị thay thế. Phản ứng thường dùng cho clorua axit hình thành từ axit cacboxylic và xúc tác. Khi dùng muói halogenua thì halogen trong muới không tham gia thế α như dùng Cl_{2} và PBr_{3} chỉ cho dã̉n xuất clo hoá không có brom hoá, còn axyl halogenua có thể thế hyđro α bầng xúc tác. Các anhyđrit axit, và nhiều hợp chất dể enol hoá như este malonic, hợp chát nitro aliphatic... cūng có phản ứng này. Cơ chế phàn ứng đều đi qua dạng enol:

Ngoài ra có thể dùng phương pháp khảc như α-halogen hoá axit và dã̃n xuất bả̀ng CuCl_{2} trong dung môi trơ phân cực. Axyl halogenua α brom hoá hay α clo hoá bầng N -brom hay N -closuxinimit. Axyl clorua có thể iot hoá bằng I_{2} khi có vết HI , còn axit cacboxylic bằng $\mathrm{I}_{2}-\mathrm{Cu}$ (II) trong axit axetic. Axit cacboxylic, este và amit có thể α flo hoá bằng F_{2} pha loãng trong N_{2} ơ $-78^{\circ} \mathrm{C}$.

6- Phảl lóng ankyl hoá ankan
Ankan được ankyl hoá bằng cacbocation bền:

$$
\mathrm{R}-\mathrm{H}+\mathrm{R}^{\bullet+} \longrightarrow \mathrm{R}-\mathrm{R}^{\prime}+\mathrm{H}^{+}
$$

Phản ứng không áp dụng cho tổng hợp và thường cho hỗn hợp sản phẩm. Chẳng hạn khi tác dụng propan với iso-propyl floantimonat $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{+} \mathrm{SbF}_{6}{ }^{-}\right)$cho 26% 2,3-dimetylbutan, 28% 2-metylpentan, 14%-metylpentan và $32 \% n$-hexan. Hổn hợp nhiều chất vì có phản ứng trao đổi hyđ̛o gitũa phân tử $\left(\mathrm{RH}+\mathrm{R}^{\prime+} \rightarrow \mathrm{R}^{+}+\mathrm{R}^{\prime} \mathrm{H}\right)$ nhanh hơn ankyl hoá và sản phấm ankyl hoá hình thành giữa ankan và cation mới trao đổi, mặt khác còn có chuyển vị. Sản phẩm có từ tất cả hydrocacbon và cacbocation có trong hệ. Cation bậc hai ankyl hoá nhanh hơn ankyl bậc ba nhiếu như tert-butyl không ankyl hoá metan hay etan. Ankyl bậc nhât khỏng bền thường ankyl hoá dưới dạng phức của $\mathrm{CH}_{3} \mathrm{~F}$ hay $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$ và SbF_{6}.

Cơ chế ankyl hoá có thể từ trao đổi hyđro trong supeaxit:

$$
\mathrm{R}-\mathrm{H}+\mathrm{R}^{+} \rightarrow\left[\mathrm{R}-\mathrm{B}^{\prime}{ }^{\prime}\right]^{+} \xrightarrow{\cdot \mathrm{H}^{+}} \mathrm{R}-\mathrm{R}^{\prime}
$$

Cũng tìm thấy phản ứng cộng mạch nội phân tử của cacbon mang điện tích dương trong cation, chẵng hạn như phản ứng sau:

Trong phản ứng này, cation (16) hình thành từ hợp chất tritixen (15) có cacbon mang diện tích dương phản ứng với nhóm CH_{3} bên cạnh cho (17).

7. Phản áng axyl hoá cacbon mach hở

Axyl halogenua cộng hợp vào olefin khi có xúc tác axit Lewis:

Phản ứng như là phản ứng Friedel-Crafts vào cacbon loại aliphatic. Phản úng có thể xảy ra bẳng tấn cong của cation axyl vào liên kết đôi cho cacbocation rồi cation này mât proton hay tổ hợ với ion clo:

Nếu mất proton sẽ cho olefin và cơ chế là cơ chế tứ diện, nếu tổ hợp với ion clo cho sản phấm cộng β-halogen xeton như phản ứng cộng vào nối đôi. Nếu sản phẩm cộng này trong diều kiện phàn ứng có thể mất HCl cho olefin thì đó là cơ chế cộng tách. Trong trường hợp olefin không dôi xứng thì hướng cộng vẩn tuân theo quy tắc Markovnikov, cộng vào cacbon có nhiều hydro hơn.

Các đien liên hợp cũng axyl hoá khi tác dụng axyl hay ankyl coban tricacbonyl rồi phân tích bằng bazơ tiếp theo cho dẵn xuất cacbonyl π-allyl:

Phản ưng rất tổng quát. Với dien không đối xứng nhóm axyl thế nhanh như ở cacbon nối đôi cis, rồi dến cacbon olefin cuói mạch sau dó kém hơn ở olefin trans. Các bazơ thường dùng bazơ mạnh ngay cả amin thể tích lớn như dixyclohexyletylamin.

Nếu dùng ankyl coban tetracacbonyl $\mathrm{RCo}(\mathrm{CO})_{4}$ cūng cho kết quả ươong tự. Axyl hoá ete vinylic với axyl clorua thơm và xúc tác paladi ($\mathrm{ROCH}=\mathrm{CH}_{2} \rightarrow \mathrm{ROCH}=\mathrm{CHCOAr}$). Fomyl hoá olefin bằng fomamit N -hai lần thế và POCl_{3} (xem phản ứng Vilsmeier). Các axetan và xetan cũng fomyl hoá theo Vilsmeier và sau khi thuỷ phân cho xeton andehit hay diandehit:

8- Phản áng enamin Stork

Enamin tác dụng với dẩn xuất halogen cho sản phảm cộng rồi thuỷ phân cho xeton:

Giai doạn đầu như phản ứng axyl hoá olefin ở trèn, rồi thuỷ phân cho xeton. Enamin tạo thành từ xeton và kết quả là ankyl hoá xeton ở vị trí α. Phản úng gụi là tổng hợp enamin Stork. Phương pháp này dẩn dến tổng hợp monoankyl cùa xeton. Phản ứng ankyl hoá vào vị trí ít thế hơn của xeton ban đầu. Amin thường dùng nhảt là amin vòng, piperiđin, morpholin và pyrolidin.

Phương pháp áp dụng cho các ankyl halogenua linh dộng nhu allyl, benzyl, propargylic và các α-halogen ete và este nhưng với halogen bậc nhất và hai dùng rất không thích hợp. Halogenua bậc ba không cho phản ứng này và nói chung là những halogenua trong dó phản ứng thế nucleophin và tách ưu tiên. Phản ứng dùng cho aryl halogenua hoạt hoá như 2,4-đinitroclobenzen cho tới epoxit và tới olefín hoạt hoá nhu acrylonitrin:

Halogenua bạ̣c nhất và hai không cho kết quà tớt vì phản ứng N -ankyl hoá ưu tièn hơn, đạc biệt là các enamin từ anđehit. Phương pháp tốt để ankyl hoá halogenua bậc nhất và hai là ankyl hoá muối của enamin khi đun nóng imin với bromua etylmagie trong THF:

Phương pháp cũng dùng dể mono α ankyl hoá xeton α, β-không no. Khi nitơ trong chắt ban đầu chứa góc R quang hoạt, cả hai phương pháp Stork và muối enamin dều dùng để tổng hợp chọn lọc lập thể enantione.

9- Phản íng công mach cua cacben

Cacben là tiểu phân hoạt tính rất cao có khả nảng cộng mạch vào liên kết C-H của ankan và aren:

$$
\mathrm{RH}+: \mathrm{CH}_{2} \longrightarrow \mathrm{RCH}_{3}
$$

Tuy nhiên phản ưng ít được dùng trong tổng hợp vì không có tính chọn lọc lập thể và sự chuyển vị của cacben dể hơn cợng mạch, nhưng tìm thấy khả nảng cộng mạch nội phân tử dễ hơn ngoại phân tử:

Phản ứng trên dược thực hiện bằng hai câch sau:

1- Cơ chể cûa phản ứng ở đây là tạo trạng thái chuyển vòng ba trung tâm:

Phản ứng này dược nghiên cứu từ iso-buten $-1-{ }^{14} \mathrm{C}$ và cacben cho sản phẩm 2-metyl-1buten chỉ đánh dâu ở vị trí l và bảo toàn cấu hình. Quy tăc này nằm ngoài cơ chế tạo gốc, cacbocation hay cacbanion tư do làm chất trung gian. Cacben tham gia theo cơ chế này ở trạng thái singlet nên tham gia vào quá trình cộng mạch trực tiếp một giai doạn.

Nếu tạo được gốc (18) hay ion làm chất trung gian, sự cộng hưởng dàm bảo cho cacben tấn công vào vị trí 1 thì phản ứng như sau:

2. Quá trình gốc tự do là cacben trực tiếp nhận lấy proton từ chất ban dầu tạo nên cặp gốc tự do:

$$
\begin{aligned}
& \mathrm{RH}+\mathrm{CH}_{2} \rightarrow \mathrm{R}^{*}+\mathrm{CH}_{3} \\
& \mathrm{R}^{*}+\mathrm{CH}_{3}{ }^{\circ} \rightarrow \mathrm{R}-\mathrm{CH}_{3}
\end{aligned}
$$

Chứng minh cho quá trình này là khi tác dụng propan với cacben CH_{2} (do quang phân điazometan và xeten) còn thu dược propen và etan ngoài butan và iso-butan. Quá trình này gây ra bằng phản ứng chuyển khōng cân đới (disproportionation) hay đime hoá:

$$
\begin{aligned}
2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} & \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \text { (chuyển không cân đói) } \\
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{2} & \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+}+\mathrm{CH}_{3} \\
2 \mathrm{CH}_{3}^{-} & \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}
\end{aligned}
$$

Cơ chế này cũng được xác nhận bằng hiệu ứng đồng vị.
Phản ứng giữa cacben và phân tử có nâng lượng dư nên ban đầu phản ứng giữa chất ban dầu và cacben theo cơ chể 1 (quá trình cợng mạch trực tiếp) và do näng lượng dư gây ra sự hình thành sản phả̉m do sự phân cắt ra gốc đự do, như vậy cũng có nghīa là gốc tự do hình thành sau phàn ứng cộng mạch thực.

Đā xác nhận ràng, cacben singlet tham gia phản ứng cợng mạch trực tiếp qua một giai doạn, còn cacben triplet bằng quá trình gốc tự do. Các tín hiệu của CIDNP cho thây sản phẩm etylbenzen hình thành từ toluen và triplet CH_{2} nhưng không phải từ singlet ở cùng phản ứng.

Các cacbenoit $\mathrm{R}_{2} \mathrm{CMCl}$, có thể cộng mạch vào $\mathrm{C}-\mathrm{H}$ theo cơ chế khác nhau nhưng thường theo cơ chế 2.

Phản ứng của andehit và cacben cho metylxeton: $\mathrm{RCHO}+\mathrm{CH}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{RCOCH}_{3}$ cung xảy ra tương tự nhưng không có chấ trung gian cacben tự do.

10- Phản íng ghép cria muói diazoni

Muối điazoni có thể ghép với hợp chất có hyđro linh động trong môi trường bazơ, thường trong dung dịch natri axetat:

Các hợp chất có hyđro lịnh động có dạng $\mathrm{Z}-\mathrm{CH}_{2}-\mathrm{Z}$ ' với Z và Z ' là COOR ', CHO , COR', CONHR, $\mathrm{COO}^{-}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{SOR}^{\prime}, \mathrm{SO}_{2} \mathrm{R}^{\prime}, \mathrm{SO}_{3} \mathrm{R}^{\prime}, \mathrm{SO}_{2} \mathrm{NR}^{\prime}{ }_{2}$, nhu β-xetoeste, β-xeto amit, este malonic. Cơ chế thuộc dạng $S_{\mathrm{E}} l$:

Hợp chất azo loại béo có cacbon đính với nitơ chứa hyđ̛o kho̊ng bển nên đồng phân hoá thành hyđrazon cho sản phẩm cưa phản ứng.

Nểu chất ban dầu thuộc lọai Z-CHR-Z' không còn hyđro để tautome hoá, nếu Z. là gôc axyl hay cacboxyl thì các nhóm này sẽ tách ra cho sản phả̉m cũng là hyđrazon không phài azo:

Phản ứng chung này gọi là phản ứng Japp-Klingemann dùng đẻ̉ chuyển hoá xeton hay axit cacboxylic thành hydrazon:

Khi trong chất ban đấu cūng có nhóm axyl và cacboxyl thì khả năng di ra theo thứ ự là: $\mathrm{CH}_{3} \mathrm{CO}>\mathrm{COOH}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$, nếu không có nhóm cacboxyl hay axyl thì hợp chấ azo aliphatic thu dược bễn.

M- Phdhíng nitrozo hoá hop chät có hydro linh dọng
Axit nitrơ hay ankyl nitrit có thể nitrozo hoá các hợp chất có hyđ̛o linn động:

Cacbon nối với nhóm Z có thể bị nitrozo hoá bằng axit nitrơ hay ankyl nitrit. Sản phẩm ban đầu là C-nitrozo và chỉ bển khi không có hydro dể tautome hoá còn khi có hyđro thì sản phấm bển hơn là oxim.

Cơ chế tương tự như phản ứng ở trên $\left(\mathrm{R}-\mathrm{H} \rightarrow \mathrm{R}^{-}+\mathrm{NO}^{+} \rightarrow \mathrm{R}-\mathrm{N}=\mathrm{O}\right)$. Tiểu phân tấn công là NO^{+}hay tương tự và chất ban dầu là xeton thì phản ứng qua dạng enol:

Phản ứng trên khi $\mathrm{X}=\mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{SCN}^{-}$thì có bậc nhất cho axeton và H^{+}, bặc không cho HNO_{2} và X^{-}. Tuy nhiên tốc độ giống như tốc độ enol hoá của xeton. Tiểu phân NOX tạo thành từ $\mathrm{HONO}+\mathrm{X}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HOX}+\mathrm{H}_{2} \mathrm{O}$. Trong trường hợp $\mathrm{CF}_{3} \mathrm{COCH}_{2} \mathrm{COOCF}_{3}$ và malonitrin thì nitrozo hoá qua dạng enolat dễ hơn enol.

Tương ự như phản ứng Japp - Klingemann trên, khi có nhóm axyl hay cacboxyl như trong trường hợp của $\mathrm{R}_{2} \mathrm{CHZ}$ thì các nhóm này bị phân căt.

Các imin có thể diểu chế bằng tác dụng hợp chất hydro linh động với hợp chất nitrozo:

12- Phản ấng hình thành hạ̛p chất diazo

Các hợp chất có hyđro linh dộng loại $\mathrm{ZCH}_{2} \mathrm{Z}$ ' tác dụng với tosyl azit trong môi trường bazo thu được hợp chất điazo:

Các azit thường dùng là p-dodexylbenzensunfonyl azit, metansunfonyl azit, p-axetamitbenzensunfonyl azit và tăng hiệu suất khi dùng xúc tác chuyển pha. Phản ứng cũng gọi là phản ứng chuyển đổi điazo và có thể áp dụng cho những vị trí hoạt động khác như vị trí 5 của xyclopentađien.

Cơ chế như sau:

Xeton muốn chuyển thành điazo cần chuyển thành α-fomyl xeton rổi tác dụng với tosyl azit:

13-Phản áng amin hoá các hydro linh dọng

Khi tác dụng anken có hydro allyl với dung dịch hợp chắt imit selen $\mathrm{R}-\mathrm{N}=\mathrm{Se}=\mathrm{N}-\mathrm{R}$ có phản ứng amin hoá ở vị tri allyl:

Phản ứng tương tự như oxi hoá allyl của anken bằng SeO_{2}. Cũng dùng tác nhân $\mathrm{Ts} \mathrm{N}=\mathrm{S}=\mathrm{NTs}$. Đối với loại $\mathrm{Z}-\mathrm{CH}_{2}-\mathrm{Z}$ ' có hyđ̛o linh dộng thì amin hoá bằng O -(2,4 -dinitrophenyl)hydroxylamin:

Quá trình amin hoá gián tiếp axyl clorua sẽ thu dược aminoaxit có tính chọn lọc vị trí. Giai đoan chính là cộng vào liên kểt $\mathrm{N}=\mathrm{N}$ của azodicacboxylat:

14-Phain tithy cọng mach cua nitren

Cacbonyll nitren là tiểu phân rất hoạt động có khả năng cộng mạch vào lién kết $\mathrm{C}-\mathrm{H}$ của ankan:

Néu Z là R' hay Ar cho sản phẩm amit, nếu $Z=O R$ cho sản phẩm cacbamat.
Hoạt tính của Cl bậc ba > bậc hai > bậc nhất. Nitren tham gia chi ở dạng singlet không phải triplet. Cơ chế như cơ chế cộng mạch một giai đoạn của cacben và sự bảo toàn cấu hình tìm thấy ở cacbon bất đối.

Các xyanonitren NCN, và arylnitren NAr có thể cộng mạch vào lièn kết $\mathrm{C}-\mathrm{H}$ nhưng ankyl nitren thường hay chuyển vị trước khi tham gia phản ứng với ankan. Phản ứng không dùng trong tổng hợp vì có nhiều sản phẩm phụ mà chính là phản ứng vòng hoá. Chả̉ng hạn, phản ứng vòng hoá của 2-(2-metylbutyl)phenyl azit cho $60 \% 2$-etyl-2-metylindolin:

15. Phản láng diazo hoá

Amin thơm bậc nhất tác dụng với axit nitrơ cho muối điazoni:

Phản ứng cuñg xảy ra ở amin béo nhưng muối diazoni béo rất không bền ngay ở trong dung dịch. Muới điazoni thơm bền hơn do có cộng hưởng giữa nitơ và vòng thơm:

Công thức cộng hưởng (1) dóng góp vào lai hoá cộng hưởng lớn hơn khi do khoảng cách các liên kết. Chẳng hạn, clorua benzenđiazoni có liên kết $\mathrm{C}-\mathrm{N}$ là $1,42 \AA$ và $\mathrm{N}-\mathrm{N}$ là $1,08 \AA$. Giá trị này hướng tới liên kết dơn và liên kết ba nhiều hơn là hai liên kết đôi. Muối điazoni thơm chí bền ở nhiệ đọ thấp, thường $5^{\circ} \mathrm{C}$, trừ vài muối như muối diazoni từ axit sunfanilic bền ỏ $10 \div 15^{\circ} \mathrm{C}$. Muổi điazoni thường điếu chế trong dung dịch nước, khòng tach ra được trừ khi có thể điều chẻ̉ muối điazoni rắn. Tính ổn định muối tãng lên khi tạo phức với ete crown.

Những hợp chất có nhóm amin béo bên cạnh nhóm $\mathrm{COOR}, \mathrm{CN}, \mathrm{CHO}, \mathrm{COR} .$. và có H_{α} thì không cho hợp chất diazoni mà cho hợp chất diazo:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOC}-\mathrm{CH}_{2}-\mathrm{NH}_{2}+\mathrm{HONO} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOC}-\mathrm{CH}=\stackrel{\oplus}{\mathrm{N}}=\stackrel{\ominus}{\mathrm{N}}
$$

Các amin dị vòng cũng dề cho hợp chắt điazo hơn diazoni. Các hợp chất điazo thrờng tởng hợp bằng chất ban đầu với amyl nitrit khi có lự̛̣ng nhỏ axit.

Cơ chế phản ứng trong diều kiện axit loãng thì tác nhân cộng electrophin là $\mathrm{N}_{2} \mathrm{O}_{3}$ tác dụng nhu NO^{+}:

1. $\quad 2 \mathrm{HONO} \stackrel{\text { cham }}{\longrightarrow} \mathrm{N}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$

2. $\mathrm{Ar}-\overline{\mathrm{N}}_{4} \mathrm{~N} \stackrel{\mathrm{O}}{\stackrel{\text { tautome }}{=}}$

5- $\quad \mathrm{Ar}-\overline{\mathrm{N}}=\overline{\mathrm{N}}-\mathrm{OH} \xrightarrow{\mathrm{H}^{+}} \quad \mathrm{Ar}-\stackrel{\oplus}{\xlongequal{=} \overline{\mathrm{N}}}+\mathrm{H}_{2} \mathrm{O}$
Ở nồng độ axit cao thì tác nhân là NO^{+}:

và chuyển hóa tiếp như trên.
Các tác nhân khác nh r $\mathrm{NOCl}, \mathrm{H}_{2} \mathrm{NO}_{2}{ }^{+}$cũng tham gia tương tự. Các nucleophin như $\mathrm{Cl}^{-}, \mathrm{SCN}^{-}$, thicure, xúc tác $\mathfrak{~}$ hản ứng chuyển HONO tới electrophin tốt hơn như:

$$
\mathrm{HNO}_{2}+\mathrm{Cl}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{NOCl}+\mathrm{H}_{2} \mathrm{O}
$$

16- Phản áng chuyè̉n hoá hydrazin thành azit
Hydrazin một lần thế tác dụng với axit nitrơ cho azit:

$$
\mathrm{RNHNH}_{2}+\mathrm{HONO} \longrightarrow \mathrm{R}-\mathrm{N}=\mathrm{N}=\stackrel{\ominus}{\mathrm{N}}
$$

Phản ứng tương tự như phản ứng điazo hoả trên. Có thể dùng tác nhân khác như $\mathrm{N}_{2} \mathrm{O}_{4}$, nitrosyl tetrafloborat NOBF_{4}.

17- Phản áng nitrozo hoá amin
Amin bậc hai tác dụng với axit nitrơ tạo thành nitrozamin:

$$
\mathrm{R}_{2} \mathrm{NH}+\mathrm{HONO} \longrightarrow \mathrm{R}_{2} \mathrm{~N}-\mathrm{NO}
$$

Phản úng xây ra với điankyl, điaryl hay ankylarylamin và ngay cả với amit-N- một lần thế:

$$
\text { RCONHR }+\mathrm{HONO} \rightarrow \mathrm{RCON}(\mathrm{NO}) \mathrm{R}^{\prime}
$$

Amin bậc ba cũng cho N-nitrozo nhưng trong trường hợp này một nhóm bị phân cắt nên cuối cùng cho dẩn xuất nitrozo của amin bậc hai.

Cơ chế tương tự như cơ chế diazo hoá trẻn nhưng sản phẩm N -nitrozo hình thành không chuyển hoá tiếp vì không có hydro:

Amin thơm bậc một và hai tác dụng với axit nitrơ cho sản phẩm N -nitrozo dể hơn là C-nitrozo. Tuy nhiên, amin bậc hai có thể C-nitrozo hoó bằng dồng phân hoá sản phẩm N-nitrozo thành C-nitrozo hoá hay tác dụng với mol thứ hai cho sản phấm N. C-nitrozo.

Cơ chế của amin bạc ba có thể là:

Amin bậc ba chuyển thành nitrozamin với axit nitrơ trong anhyđrit axetic và wói $\mathrm{N}_{2} \mathrm{O}_{4}$.
Amin thơm bậc ba thì sản phẩm C-nitrozo hoá trực tiếp vào nhân.
Quinuclidin có nitơ ở đẩu cầu không có hyđ̛o nên cũng không phản ứng.
Amin và amit có thế nitro hoó bằng axit nitric, $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{MnO}_{2}{ }^{+}$và amin thơm có thể chuyển tới triazen với muối điazoni. Amin béo bậc nhất cũng chuyển thành triazen nĉ́u muôi điazoni có nhóm thế hút electron.
18. Phản íng chuyển hoá amin thàmh hơp chât azo

Họ̣p chất nitrozo tổ hợp với arylamin bậc nhất trong axit axetic băng cho hợp chả́t azo đối xứng và khóng đởi xứng:

$$
\mathrm{Ar}-\mathrm{NH}_{2}+\mathrm{Ar}-\mathrm{NO} \xrightarrow{\mathrm{CH}_{3} \mathrm{COOH}} \mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{Ar}^{\prime}
$$

Phản ưng trên gọi là phản ứng Mills. Hai nhân aryl có thể có nhóm thế.
Hợp chất azo không đối xứng cūng điều chế bầng phản ứng giữa hợp chất nitro ArNO_{2} và N -axyl amin thơm $\mathrm{Ar}^{\prime} \mathrm{NHOOCCH}_{3}$, thường dùng xúc tác chuyển pha cho hiệu suắt cao.

19- Phản ting chuyển hoá hẹ̛p chât nitrozo thành azoxy

Tương tự như phản ứng chuyển hoá amin thành hợp chất azo, hợp chất nitrozo có thé ngưng tụ với hydroxylamin cho hợp chất azoxy:

$$
\mathrm{RNO}+\mathrm{R}^{\prime} \mathrm{NHOH} \longrightarrow \mathrm{R}-\stackrel{\mathrm{O}_{\mathrm{O}}^{\ominus}}{\stackrel{\oplus}{\mathrm{N}}=\mathrm{N}-\mathrm{R}^{\prime}}
$$

Vị trí của oxy trong sản phẩm cuối cùng phụ thuộ̣ vào bản chất của gốc R, không
phải từ gốc R của chất ban đầu. Cả hai gốc R và R ' có thể là ankyl hay aryl, nhưng khi có hai nhóm aryl khác nhau cho hổn hợp hợp chất azoxy (ArNONAr, ArNONAr' và Ar'NONAr`) và sản phẩm không dối xứng hình thành với lượng nhỏ hơn. Điều dó gây ra bởi cân bằng giữa chất ban đầu ($\mathrm{ArNO}+\mathrm{Ar}$ ' $\mathrm{NHOH} \rightarrow \mathrm{Ar}$ ' $\mathrm{NO}+\mathrm{ArNHOH}$) để đi tới phản ứng với hai sản phẩm dối xứng và không đối xứng.

Cơ chế của phản ứng nghiên cứu khi có bazơ thì hai tác nhân chuyển thành anion gốc rồi tổ hợp:

Các anion gốc này dã được phát hiện bẳng ESR và dựa trên kết quả là khi dùng ${ }^{1 \times} \mathrm{O}$ và ${ }^{15} \mathrm{~N}$ dã tìm thấy hai nitơ và hai oxy dều tương dương nhau.

Hợp chất azoxy không đối xứng có thể tổng hợp từ hợp chất nitrozo với N, N-dibromamin.

Hợp chất azo và azoxy đối xứng và không đối xứng tạo thành khi tác dụng hợp chất nitro thơm với tác nhân aryliminodimagie $\operatorname{ArN}(\mathrm{MgBr})_{2}$.

20- Phản ấng halogen hoá amin

Amin bậc nhất tác dụng với natri hypoclonit hay hypobromit cho N -halogen hay N, N dihalogen amin:

$$
\mathrm{RNH}_{2}+\mathrm{NaOCl} \longrightarrow \mathrm{RNHCl}
$$

Amin bậc hai cūng có chể chuyển thành N-halogenamin bậc hai. Các amit không thế và N -thế và sunfonamit cũng cho phản ứng này. Sản phẩm N -halogen của amit khóng thế thường có chuyển vị, còn N -halogen -N -ankyl amit bền hơn. Các tác nhân khác như tert- $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{OCl}$, NaBrO 2 , benzyltrimetylamoni tribromua $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Br}_{3}{ }^{-}$và N -closuxinimit cunng dùng.

Cơ chế phàn ứng tương tự như cơ chế điazo hoá, với tác nhân electrophin là Cl^{+}.
N -Flo hoá cūng dùng trực tiếp amin hay amit với F_{2}. Flo hoá N -ankyl- N -flo amit có sự phân cắt cho N, N-difloamin:

$$
\mathrm{RNFCOR}, \xrightarrow{\mathrm{~F}_{2}} \mathrm{RNF}_{2}
$$

21-Phản íng cuia amin l'ới cacbon monoxit

$$
\mathrm{RNH}_{2}+\mathrm{CO} \xrightarrow{\mathrm{xuc} \mathrm{acc}} \mathrm{RNH}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{H} \text { hay } \mathrm{RNH}-\int_{\mathrm{O}}^{-\mathrm{NHR}} \text { hay } \mathrm{RNCO}
$$

Sản phẩm của lơai phàn ứng này phụ thuộc nhiều vào xúc tác:
1- Amin bậc nhất và hai phản ưng với CO khi có xúc tác: $\mathrm{Cu}(\mathrm{CN})_{2},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}-\mathrm{H}_{2} \mathrm{Se}$,
phức rơi hay ruteni cho fomamit N -thế và N, N-hai lẩn thế tương ứng.
2- Ure thế dới xứng tạo thành khi tác dụng amin bậc nhắt (hay amoniac) với CO khi có selen hay lưu huỳnh. R có thể là ankyl hay aryl.

3- Khi có PdCl_{2} xúc tác, amin bậc nhất cho iso-xyanat. Isoxyanat cũng tạo thành từ azit với $\mathrm{CO}\left(\mathrm{RN}_{3}+\mathrm{CO} \rightarrow \mathrm{RNCO}\right.$ hay với hợp chất nitrozo hay nitro và xúc tác phức rodi.

4- Cacbamat tạo thành RNHCOOR' từ amin bậc nhất hay hai với $\mathrm{CO}, \mathrm{O}_{2}$ và $\mathrm{R}{ }^{\prime} \mathrm{OH}$ khi có xúc tác hoạc khi dùng hợp chất nitrozo với $\mathrm{CO}, \mathrm{R}{ }^{\prime} \mathrm{OH}, \mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ và $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$.

Amin allylic $\mathrm{R}_{2} \mathrm{C}=\mathrm{CHRCHRNR}{ }_{2}$ với CO và xúc tác palađi photphin thì CO cộng mạch cho amit α, β-không no $\mathrm{R}_{2} \mathrm{C}=\mathrm{CHRCHRCONR}{ }_{2}$.

22- Phän áng decacboryl hoá axit béo

Nhiều axit có thể decacboxyl hoả ở dạng axit tự do hay dạng muối:

$$
\mathrm{RCOOH} \rightarrow \mathrm{RH}+\mathrm{CO}_{2}
$$

Các axit béo thường dẽ̉ decacboxyl hoá khi có thêm nhóm chức hay nói dôi và ba ở vị trí α hay β. Phản ứng decacboxyl hoá có thể xem như là phản ứng nghịch của phản ứng cọng cacbanion tới CO_{2} nhưng cacbanion tự do không tìm thấy. Khi có ion cacboxylat, cơ chế decacboxyl hoá là $S_{\mathrm{E}} /$ hay $S_{\mathrm{E}} 2$.

Trong cơ chế $S_{\mathrm{E}} /$, phản ứng xày ra dễ khi có nhóm thế hút electron làn ổn dịnh cacbanion. Như vậy phản ứng phân cát cacbon ở dạng phân cắt anionit. Phản ứng cūng dược xúc tiến khi có ion kim loại hay cte crown. Phản ứng với ion kim loại thường tiến hành trong phakhi.

Nhiểu axit có thể trực tiếp decacboxyl hoá hay đi qua trạng thái chuyển tiếp vòng 6 trung tâm như trường hợp các axit malonic, α-xyanoaxit, α-xetoaxit, α-nitroaxit và axit α, β-không no:

Dạng enol tautome hoá cho sản phẩm. Cơ chế này cũng biểu hiện ở các β-xeto axit.
Một số axit α, β-không no decacboxyl hoá theo cơ chế này do dông phân hoá thành axit β, γ - không no trước khi decacboxyl hoá. Nhưng axit (19) và một số β-xetoaxit vòng bển với đecacboxyl hoá, những axit này không tạo được trạng thái chuyển vòng 6 cạnh bền và nếu tạo thành chất trung gian enol thì vi phạm quy tắc Bredt:

Một số axit không tạo dược trạng thái chuyển vòng 6 cạnh tham gia phản ứng theo $S_{\mathrm{E}} 2$ hay $S_{E} l$. Đối với cơ ché vòng. tốc dộ thay đổi rất nhỏ khi thay dổi dung môi tì không phan cực tới phàn cực và không chịu ảnh hưởng xúc tác. Tốc dộ decacboxyl hoá axit α, β-không no tāng lên $10^{5} \div 10^{6}$ lần khi đưa vào nhóm $\beta-\mathrm{CH}_{3} \mathrm{O}$ chứng minh rà̀ng trạng thái chuyển vòng có tính phân cực.

Một số axit decacboxyl hoá như:

Axit glyxedic decacboxyl hoá cho andehit theo co chế sau:

Các β-xeto axit dê đecacboxyl hoá nẻn một số axit được điều chế từ β-xeto este và bản thản este dể decacboxyl hoá do thuỷ phân trừ khi tách axit ra. Phản ứng decacboxyl β-xetoeste này là phân cắt về phía nhóm cacboxyl của nhóm metylen thế trong diều kiện axit, trung tính hay bazo yéu cho xeton:

nhưng trong điều kiện bazơ mạnh tim thấy sự phân cát ở phia khác của nhóm $\mathrm{R}_{2} \mathrm{C}$:

sản phấm là este cacboxylic và muối axit.
B-Xeto este decacboxyl hoá không qua dạng axit tự do khi tác dụng với anhydrit boric $\mathrm{B}_{2} \mathrm{O}_{3}$ ở $150^{\circ} \mathrm{C}$ chuyển phẳn R^{\prime} cùa este thành anken, nếu không có H_{β} thì tới ete ROR'. Các axit bình thường khōng có nhóm hoạt hoá decacboxyl hoá bà̀ng cách chuyển tới este của N -hydroxypyriđin-2-thion và tác dụng với $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{SnH}$.

Các β-xetoeste, axit malonic, α-xyanoeste có thể đecacboxyl hoá bằng đun nóng chât ban dầu trong dimetyl sunfoxit có $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{PO}_{4}$ hay muơi khác. Phản úng không tạo thành chất trung gian axit tự do và phần ankyl chuyển thành ancol. a-Aminoaxit decacboxyl hoá khi đun nóng với xúc tác 2-xyclohexenon. Một vài hợp chất cơ kim cũng decacboxyl hoá: $\mathrm{RCOOM} \rightarrow \mathrm{RM}+\mathrm{CO}_{2}$.

2.3- Phán tomg phàn tich cár ankoxit

Các ankoxit của ancol bậc ba có thẻ̉ bị phân tích như là phản ứng nghịch của phàn ứng cộng nucleophin và xeton:

Phàn ứng khóng đạt được khi gốc ankyl dơn giản không nhánh, chẩng hạn nhut trietylcacbinol. Phàn ưng tốt với các ankoxit phân nhánh như ankoxit của diso-propylneopentylcacbinol, tri-tert-butylcacbinol và các allylic, benzylic và aryl cũng phân cát, chẩng hạn triphenylcacbinol cho benzen và benzophenon.

Phản ứng được nghiên cứu trong pha khí là sự phân cắt đơn giản cho cacbanion và xeton trực tiếp một giai doạn:

Một số chât phân cắt trong dung dịch có một lượng dime RR nên theo cơ chế gồc cūng như khi phân cắt quang hoá.

24-Phän íng phan cät β-xetoeste và β-dixeton
Các β-xetocste bị phần cát trong môi trường kiềm:

Phän ưng llương trong mòi trương keẻm dặc và lién kết bị phân cắt là giữa xeto và CR_{2} :

và sin phaím là một este và muói của axit. Phản ưng thường bị hạn chế bởi phán ứng phụ decacboxyl hoá trong diểu kiẹn bazo. Các β-dixeton cùng bị phân cắt tương tự cho xeton và muối của axit. Nều dùng $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$thay cho HO^{-}thì thu dượ etyl este của axit cacboxylic. nhưng càn chí ý trong trường họp của β-xetoeste có phản úng ngurợ của ngưng tụ Claisen.

Cac x-xyanoxcton vòng cùng bị phan càt nội phân tư bâng bazơ thương dùng dể diều ché các lacton vong lớn:

25-Phin ang Haller-Bater

Phän ứng phân cát xeton với amidua natri gọi là phain ứng Haller-Bauer:

Phán tung áp dung cho các xeton không enol hoá dượ nhut loai ArCOCR 3 cho sân phán $\mathrm{R}_{3} \mathrm{CCON} \mathrm{I}_{2}$ khó điểu ché dượ bàng phurong pháp khác.

Trong phản ưng tìm thấy sự bào toàn cấu hình cua R hoạt dộng quang hoạt. Nhóm NH_{2} mất proton trưoc khi R cat ra:

Nói chung, caic xeton thrờng khó phân cắt hơn các trihalogen xeton, β-dixeton vì khơng tạo dược cacbanion bèn. Tuy nhiên các xeton khòng enol hoá cũng có khá năng phàn cát khi tác dụng vá̛i hồn hợ tert-butoxit- $\mathrm{H}_{2} \mathrm{O}$ với tỵ̉ lệ $10: 3$ trong dung môi aproton như ete. dimetylsunfoxit, 1,2-dimetoxyetan... hay với tert-butoxit kali rán khong có dung môi:

Trong turơng hơp nay, cac diaryl xeton khong thé ưu tièn phan cat dê thanh cacbanion bền hơn, trừ nhóm arỵl thé ơ vị trí ortho. dẻ̉ phân cắt hơn vì hiẹ̉u ứng lạ̀p thé̉. Một số xeton vòng khong enol hoí cūng bị phân cắt bẳng bazoo.

26- Phan ing Dakin West

Aminoaxit tác dụng với anhydrit trong pyridin:

Trong phän ứng, nhóm cacboxyl bị thay thế bà̀ng nhóm axyl và nhóm NH_{2} bị axyl hoá.
Các aminoaxit N -thế $\mathrm{RCH}\left(\mathrm{NHR}^{\prime}\right) \mathrm{COOH}$ cho sin phà̀n tương ưng N -ankyl hoá. Cor chế có sự hình thành oxazolin.
27. Phän tigg tuo thàh he̛p chät co kim

Ankyl halogenua tác dụng trự tiếp với vài kim loại cho hợp chất cơ kim:

$$
\mathrm{RX}+\mathrm{M} \rightarrow \mathrm{RM}
$$

Kim loạ thường düng nhất là Mg và hoạt tímh của halogenua $\mathrm{I}>\mathrm{Br}$. Phản ứng áp dụng cho ankyll halogenua bậc nhất, hai và ba cũng như aryi halogenuat. Allyl Girignado cũng tổng hợp nhur trên trong TEFF trù khi có dư halogenuat cho phan frng Wurtz. Vinỵl hay aỵt halogenua tac dụng với Mg trong dung mói có diém sói cao, allyl hatogenua phain ưng không cân chât hoat hớ. Đihalogenua phản ứng với Mg khi có hai halogen khac mhat hay it nhatt ó cach xa nhau ba cacbon, nếu gióng nhau cho hợp chát dimagic, con 1,2 -dihalogen cho phan ứng tách. Ankylflorua magie diêu chě khi dun hôi lutu ankyl florua với Mg khi có xúc tác thich hơp nhtu I_{2} hay $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ trong ThF trong vai ngay.

Dân xuất halogenua có nhóm chức như $\mathrm{OH}, \mathrm{COOH} . \mathrm{NH}_{2}$ cân phai chuyền thành muôi (như $\mathrm{O}^{-}, \mathrm{COO}^{-}, \mathrm{NH}^{-}$), còn nhóm chức $\mathrm{C}=\mathrm{O}, \mathrm{C} \equiv \mathrm{N}, \mathrm{COOR}$ có phản ứng vớj tíc nhain Grignard khóng cho phản úng hình thành tác nhân Grignard.

Cơ chế hình thành tác nhân Grignard có thế là cơ ché góc theo phorong pháp nghiên cứu CIDNP hay hoá học lập thế nghiên cứu tốc dộ và săn phám. Phương pháp khác là nghiẻn cứu hoạt tính cuia $\mathrm{CH}_{3} \mathrm{Br}$ trẻn bế mạ̀t tinh thề Mg cho thấy khòng có cơ chế cọng mạch mọt giai doan.

Co chë SEFl hình thành như sau:

$$
\begin{aligned}
\mathrm{R}-\mathrm{X}+\mathrm{Mg} & \rightarrow \mathrm{R}-\mathrm{X}^{*}+\mathrm{Mg}^{*} \\
\mathrm{R}-\mathrm{X}^{*} & \rightarrow \mathrm{R}+\mathrm{X}^{-} \\
\mathrm{X}^{\prime \prime}+\mathrm{Mg} & \rightarrow \mathrm{XMg} \\
\mathrm{R}^{*}+\mathrm{XMg}^{*} & \rightarrow \mathrm{RMgX}
\end{aligned}
$$

Trong cơ chế này, hình thành tiểu phàn ion gớc nằm trẻn bề mặt Mg , song cüng có dề nghị rà̀ng gồc R^{\prime} khuếch tán vào dung dịch rồi quay trở vê tương tác với XMg trén bé mậ Mg , và cūng có đề nghị rằng ờ giai đợn thứ ư, R^{+}bị khử bởi Mg^{+}cho cacbanion R^{-}rồi tố
hợp với XMg^{+}cho $\mathrm{RMgX} .$.
Tác nhân Grignard có phản ứng mạnh với nước và oxy nên cần thực hiện trong môi trường nitơ khan, không tách ra mà dùng ngay dung dịch cho các phản úng tiếp theo. Thường dùng dung môi ete nhưng cũng có thể dùng benzen và toluen, nhưng nếls có amin bạc ba thì tạo phức với cơ kim. Dẩn xuất ankyl và aryl halogenua thường dùng tổng hợp cơ liti nhưng cūng dùng các kim loạj khác như $\mathrm{Na}, \mathrm{Be}, \mathrm{Zn}, \mathrm{Hg}, \mathrm{As}, \mathrm{Sb}$ và Sn . Có thể tạo dược tác nhân Grignard dạng bột nếu dùng tác nhan tạo chelat như tris-(3,6-đioxaheptyl)amin $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{3}$. Một số kim loại phản ứng chậm với halogenua thì dùng hổn hống kim loại với natri hay kali, như tống hợp tetraetyl chì bằng hổn hống $\mathrm{Pb}-\mathrm{Na}$.

28- Phin ing ctia RX vớl hơp chấ cơ kim
Nếu cho $R X$ tác dụng với $R^{\prime} M$ có phản ứng trao dổi:

$$
R X+R^{\prime} M \longrightarrow R M+R^{\prime} X
$$

Nhưng thường giới hạn khi M là liti và RX là bromua hay iơua. R ' thường là ankyl như butyl. R là thơm. Ankyl halogenua nói chung không dủ hoạt dộng, allyl và benzyl thường cho phản úng Wurtz, vinyl halogenua cho phản ứng bảo toàn cấu hình.

Phản ứng dùng tồng hợp α-halogen cơ liti và α-halogen cơ magie:

$$
\mathrm{CCl}_{4}+\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Li} \xrightarrow[-100^{\circ} \mathrm{C}]{\mathrm{THF}} \mathrm{Cl}_{3} \mathrm{C}-\mathrm{Li}
$$

Một vài hợp chất tổng hợp bằng trao dổi hydro-kim loại:

$$
\mathrm{Br}_{3} \mathrm{CH}+i 5 \mathrm{SO}-\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{MgCl} \xrightarrow[-80^{\circ} \mathrm{C}]{\text { THF-DMFA }} \mathrm{Br}_{3} \mathrm{C}-\mathrm{MgCl}+\mathrm{C}_{3} \mathrm{H}_{6}
$$

Các α-halogen cơ kim bền chỉ ở nhiệl đọ̣ thắp $\left(-100^{\circ} \mathrm{C}\right)$ và chi tồn tại trong THF hay hôn hợp THF với dung môi khác như HMPA, ở nhiệt dộ thường mất MX (tách α) cho cacben hay cacbenoit, chí có α-halogen- α-magie sunfon $\mathrm{ArSO}_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{MgBr}$ bền ở nhiệt độ phòng.

Khi nghiên cứu phản ứng của ankyl liti với ankyl và aryl iơua dả dưa ra cơ chế gốc sau:

$$
R X+R^{\prime} M \rightleftharpoons\left[\begin{array}{c}
R^{*}, X, M, R^{\cdot \bullet} \\
\text { long dung môi }
\end{array}\right] \rightleftharpoons R^{\prime} X
$$

Bà̀ng CIDNP đã quan sát đượ sản phẩm ghép và chuyển khỏng cân đối của R^{\prime} và $\mathrm{R}^{\prime *}$. Cũng tìm thấy phức at $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} I^{-} \mathrm{Li}^{+}$như là chất trung gian của $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Li}$ và cūng có chứng minh khác là các gốc không phài có trong mọi lúc của phản úng.

Có quá trình hoàn toàn khác là ankyl halogenua có thể chuyển thành hợp chất cơ kim khi tác dụng với ion co kim như:

$$
\mathrm{RX}+\mathrm{R}_{3}^{\prime} \mathrm{SnLi} \rightarrow \mathrm{RSnR}_{3}^{\prime}+\mathrm{LiX}
$$

Ngoài ra, cùng với cơ ché này còn có cơ ché chuyển electron và cơ chế $S_{\mathrm{N}} 2$ cạnh tranh ở cùng điều kiẹ̃n.

29- Phản tóng cha halogen tới co kim

Các halogen phản ứng với hợp chất cơ kim cho ankyl halogenua:

$$
\mathrm{RMgX}+\mathrm{I}_{2} \rightarrow \mathrm{RI}+\mathrm{MgXI}
$$

Phản ứng dùng điều chế dần xuất iot từ dả̉n xuất clo hay brom, không dùng diều chế RCl vì RMgBr và RMgI tác dụng với Cl_{2} cho sản phẩm chính là RBr và RI . Ankyl, aryl và vinyl Grignard tác dụng với FClO_{3} cho dẩn xuất flo.

Phản ứng dùng điều chế đẫn xuất vinyl halogenua đạ̣c thù lập thể như gián tiếp thực hiện phản ứng cộng trái Markovnikov của HI vào nối ba cuối mạch như theo phản ứng sau:

Về cơ chế, phản ứng chuyển hóa hợp chất cơ kim thành ankyl halogenua nếu cho sản phẩm nghịch đảo cấu hình thì theo cơ chế $S_{\mathrm{E}} 2$ (sau), nếu bảo toàn cấu hình là cơ chế $S_{\mathrm{E}} 2$ (diện) hay S_{E} i, còn những trường hợp khác mất đi cấu hình là cơ chế gốc tự do.

30- Phản ling của hơp chát co kim với oxy, lua huỳnh
Oxy tác dụng với tác nhán Grignard tạo thành hydroperoxit hay ancol:

Phản ứng dùng để chuyển hoá ankyl halogenua thành ancol không có phản ứng phụ. Aryl Grignard cho phản ứng chạ̀m hơn và chỉ cho phenol không có hyđroperoxit. Phương pháp tốt nhất để chuyển hoá aryl Grignard thành phenol khi dùng trimetylborat và oxy hoá tiếp bằng $\mathrm{H}_{2} \mathrm{O}_{2}$:

$$
\mathrm{ArMgX} \xrightarrow{\mathrm{~B}\left(\mathrm{OCH}_{3}\right)_{3}} \mathrm{ArB}\left(\mathrm{OCH}_{3}\right)_{2} \xrightarrow[\mathrm{H}_{2} \mathrm{O}_{2}]{\mathrm{H}^{+}} \mathrm{ArOH}
$$

Nhiều hợp chất cơ kim khác cũng phản ứng với oxy như arylliti cho phenol với oxy.
Cũng có công bố cho phản ứng trên là thuộc cơ chế gốc tự do.
Thiol và sunfua cũng tạo thành khi tác nhấn Grignard tác dụng với lưu huỳnh:

3/-Phain íng cia Grignard vóri peroxit

Phương pháp thích hợp dể tổng hợp ete tert-butyl là tác dụng Grignard với tert-butyi axyl peroxit:

Có thể dùng R là ankyl hay aryl. Phản ứng quan trọng trong tổng hợp xyclopropanol mà khòng tiển hành dược theo S_{N} bằng cách từ xyclopropyl clorua chuyển thành ete tertbutyl của xyclopropanol rồi thuý phân cho xyclopropanol.

Tác nhân vinyl liti tác dụng với silyl peroxit cho silyl ete hiệu suất cao mà bảo toàn cẩu hình, nói chung là phương pháp dể chuyền hoá đặc thù lập thể:

Ankynyl este tổng hợp từ ankylua liti với phenyliodin (III) đicacboxylat:

$$
\left.\mathrm{RC} \equiv \mathrm{CLi}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}_{\left(\mathrm{O}_{2} \mathrm{CR}\right.}\right)_{2} \rightarrow \mathrm{RC} \equiv \mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{R}
$$

32- Phản íng chuyên hoá hợp chát co kim thành amin

Đay là phương pháp chung chuyển hoá ankyl hay aryl liti thành amin bậc nhăt:

$$
\mathrm{RLi} \xrightarrow[\mathrm{CH}_{3} \mathrm{Li}]{\mathrm{CH}_{3} \mathrm{ONH}_{2}} \mathrm{RNH}_{2}
$$

Phản úng của RLi với metoxyamin và $\mathrm{CH}_{3} \mathrm{Li}$ trong ete ó $-78^{\circ} \mathrm{C}$. Tác nhản Grignard cho hiệu suất thấp. Phản ứng xảy ra băng sự thế trực tiếp OCH_{3} băng R qua chát trung gian $\mathrm{Cl}_{3} \mathrm{ON}^{-} \mathrm{R}\left(\mathrm{CH}_{3} \mathrm{ON}^{-} \mathrm{R} \mathrm{Li}^{+}+\mathrm{RLi} \rightarrow \mathrm{CH}_{3} \mathrm{OL} \mathrm{i}+\mathrm{RN}^{-} \mathrm{R}^{\prime} \mathrm{Li}^{+}\right)$. Néu dùng metoxyamin $\mathrm{N}-$ the cho amin bậc hai. Có phương pháp khác là dùng azit, thường dùng tosyl azit cho sản phẳm ban đẩu là RN_{3} rồi khử cho amin.

Hợp chât cơ boran tác dụng với NH_{3} và NaOCl cho amin bậc nhất với tác nhân thực lat $\mathrm{NH}_{2} \mathrm{Cl}$:

$$
\mathrm{R}_{3} \mathrm{~B} \xrightarrow{\mathrm{NH}_{3}-\mathrm{NaOCl}} 2 \mathrm{RNH}_{2}+\mathrm{RB}(\mathrm{OH})_{2}
$$

Có thê dung cloramin, hydroxylamin-O-sunfonic axit trong diglym và trimetylsilyl azit.

Amin bạc hai diều chế bằng tác dụng ankyl hay arylđicloborat hay diankylcloborat với azit ankyl hay aryl:

$$
\begin{gathered}
\mathrm{RBCl}_{2}+\mathrm{R}^{\prime} \mathrm{N}_{3} \rightarrow \mathrm{RR}^{\prime} \mathrm{NBCl}_{2} \xrightarrow[\mathrm{HO}^{-}]{\mathrm{H}_{2} \mathrm{O}} \text { RNHR' } \\
\mathrm{R}_{2} \mathrm{BCl}+\mathrm{R}^{\prime} \mathrm{N}_{3} \xrightarrow[2-\mathrm{H}_{2} \mathrm{O}]{\text { 1-ete }} \mathrm{RNHR}^{\prime}
\end{gathered}
$$

Nếu dìng RBCl_{2} guang hoạt sẽ cho amin bậc hai tinh khiết quang hoạt 100%. Tác dụng $\mathrm{R}_{3} \mathrm{~B}$ với N -cloamin $\mathrm{R} \times \mathrm{NHCl}$ cho $\mathrm{RR}{ }^{\prime} \mathrm{NH}$. Aryl triaxetat chì $\mathrm{ArPb}\left(\mathrm{OCOCH}_{3}\right)_{3}$ với $\mathrm{Ar}^{*} \mathrm{NH}_{2}$ và $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}_{2}\right.$ cho ArNHAr". Phương pháp gián tiếp chuyến hoá andehit thành amit N -hai lần thế dựa trên cơ sở chuyền hoá O -(trimetylsilyl) andehit xyanohydrin thành amin:

Amin bậc hai chuyền thành amin bậc ba khi tác dụng với điankyl liti dồng:

$$
\mathrm{R}_{2} \mathrm{CuLi}+\mathrm{R}_{2}^{\prime}{ }_{2} \mathrm{NH} \longrightarrow \mathrm{RNR}_{2}
$$

Cūng có thể dùng phàn ứng này để chuyển amin bậc nhất thành bạ̣c hai nhưng hiệu suát thấp hơn.

Nitơ phân tử tác dụng với ArLi khi có xúc tác của hợp chất kim loại chuyển tiếp như titan, molipden, vanadi... cho amin thơm bạc nhât:

$$
\mathrm{ArLi}+\mathrm{N}_{2} \xrightarrow[2-\mathrm{H}_{2} \mathrm{O}]{\mathrm{l}-\mathrm{M}_{\mathrm{n}}} \mathrm{ArNH}_{2}+\mathrm{NH}_{3}
$$

Halogenua co thuỷ ngan phản ứng vói dicoban octacacbonyl trong Thf hay niken cacbonyl trong DMF tạo thành xeton dối xúng:

Trong phản ứng này. R có thể là ankyl hay aryl, cacbon cacbonyl đóng vai trò cúa một tác nhàn electrophin, khi R là ankyl thì có chuyển vị khi có $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ còn $\mathrm{Ni}(\mathrm{CO})_{4}$ thì không.

Đivinyl xeton tạo thành từ halogenua vinyl thuỷ ngân với CO và xúc tác rodi. Điaryl xeton tạo thành khi dùng aryl thuỷ ngan halogenua với Ar'I hay nói chung dùng tetraanky) thiếc ‘ới Ar’X ($\mathrm{R}=$ aryl. vinyl, benzyl) với CO và xúc tác phức Pd . Có thể dùng tác nhân Grignard, ankyl halogenua với $\mathrm{Fe}(\mathrm{CO})_{5}$, hợp chất cơ nhỏm với aryl halogenua với CO và Pd . Aryltrimetylsilan với aryl halogenua khi có AlCl_{3} đểu cho xeton tương ứng.

Anđehit cūng dùng phương pháp này từ tác nhân Grignard với axit fomic, trong dó một mol dàu chuyển HCOOH thành HCOO^{-}và mol thứ hai cho RCHO hoạc dàng arylliti và lác nhân Grignard với $\mathrm{Fe}(\mathrm{CO})_{5}$ cho ArCHO , con ankyl liti với CO cho xeton dôi xúng.

Các este α, β - không no tổng hợp từ clorua vinyl thuỷ ngân với CO và xúc tác Pd trong dung môi etanol:

Còn muón tổng hợp este no thì dùng aryltali bis(trifloaxetat) với CO trong ancol và PdCl_{2} :

$$
\mathrm{ArTl}\left(\mathrm{OOCF}_{3}\right)_{2}+\mathrm{ROH}+\mathrm{CO} \xrightarrow{\mathrm{PdCl}_{2}} \mathrm{ArCOOR}
$$

Amit tổng hợp từ triankyl hay triarylboran với CO và imin với một lượng nhỏ cacbonyl coban:

34- Phän íng trao đổi kim loại

Nhiều hợp chất cơ kim được tổng hợp bằng cách thay thế kim loại trong hợp chât cơ kim bā̀ng tác dụng với một kim loạa khác:

$$
\mathrm{RM}^{\prime}+\mathrm{M}^{\prime} \rightleftharpoons \mathrm{RM}^{\prime}+\mathrm{M}
$$

Phản úng đạt được khi M^{\prime} trong dãy điện động cao hơn M . Thường dùng RM không hoạt động còn M^{\prime} hoạt động hơn M . RM thường dùng $\mathrm{R}_{2} \mathrm{Hg}$ vì Hg nằm ở cuổi dãy điện động để tởng hợp các ankyl của $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Be}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Ga}, \mathrm{Zn}, \mathrm{Te}, \mathrm{Sn} \ldots$

Nhiểu hợp chất cơ kim tổng hợp bằng trao đổi kim loại của hợp chất cơ kim với muối của kim loại khác:

$$
\mathrm{RM}+\mathrm{M}^{\prime} \mathrm{X} \rightleftharpoons \mathrm{RM}^{\prime}+\mathrm{MX}
$$

Phản ứng này, ngược với phản ứng trên, M’ nằm thấp hơn M trong dãy diện động. Thường dùng hợp chất cơ kim là cơ liti và tác nhân Grignard để tổng hợp các ankyl cùa Be , $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}, \mathrm{Al}, \mathrm{Pb}, \mathrm{Co}, \mathrm{Pt}, \mathrm{Au}$ với halogenua tương ứng. Phản ứng cũng dùng tống hợp các ankyl của kim loại không chuyển tiếp và một vài kim loại chuyển tiếp. Các ankyl kim loại kiềm thổ và phi kim như $\mathrm{Si}, \mathrm{B}, \mathrm{Ge}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$ cūng dùng phương pháp này.

Ngoại trừ ankyl kim loại kiềm và Grignard, phản ứng giữa RM và M'X là phương pháp chung dể tổng hợp các hợp chất cơ kim.

Liti ankyl đồng tổng hợp từ hai mol RLi với một mol hatogenua đồng ở nhiệt độ thấp hay hoà tan ankyl dồng trong dung dịch ankyl liti:

$$
2 \mathrm{RLi}+\mathrm{CuX} \rightarrow \mathrm{R}_{2} \mathrm{CuLi}+\mathrm{LiX}
$$

Đối với các kim loại có hoá trị lớn hơn một, cần phải ngưng phản ứng trước khi các halogen bị thế:

$$
\mathrm{RMgX}+\mathrm{SiCl}_{4} \longrightarrow \mathrm{RSiCl}_{3}
$$

nhưng có nhiều trường hợp không có thể như: $\mathrm{RMgX}+\mathrm{BF}_{3}$ chỉ cho BR_{3}.

Các metalloxen cũng tổng hợp bằng phương pháp này như metalloxen của $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}$, $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$:

Phản ứng trao đổi kim loại cũng xảy ra giữa hai hợp chất cơ kim:

$$
\mathrm{RM}+\mathrm{R}^{\prime} \mathrm{M}^{\prime} \rightleftharpoons \mathrm{RM}^{\prime}+\mathrm{R}^{\prime} \mathrm{M}
$$

Phương pháp này ít dùng hơn hai phương pháp trèn vì phản ứng là cân bà̀ng và chỉ dùng khi cân bà̀ng được xác dịnh theo hướng dị̣h trước. Thường dùng tổng hợp allyl liti hay vinyl liti từ cơ thiếc, chẳng hạn vinyl liti từ phenyl liti và tetravinyl thiếc hay tổng hợp α-điankylamin cơ litj từ cơ thiếc ở $0^{\circ} \mathrm{C}$:

$$
\mathrm{RR}^{\prime} \mathrm{NCH}_{2} \mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li} \rightarrow \mathrm{RR}^{\prime} \mathrm{NCH}_{2} \mathrm{Li}+\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{Sn}
$$

Các 1,3-đilitixyclopropan và 1,1-đilitimetylenxyclohexan tổng hợp dược từ co thuy ngân. Nói chung, cân bằng theo hướng là các kim loại dương điện hơn liên kết với ankyl hay aryl có khả nảng tạo dược cacbanion bển hơn. Phản ứng được bảo toàn cấu hình và cơ chế giống $S_{\mathrm{E}}{ }^{i}$.

35-Phản áng thế kim loụi bằng hydro

Hợp chẩt cơ kim phản ứng với axit là thế kim loại bằng hydro:

$$
\mathrm{RM}+\mathrm{HA} \longrightarrow \mathrm{RH}+\mathrm{AM}
$$

Phản ứng thường dùng cho đằn xuất aryl, dể đưa đeutri hay triti thay cho kim loại.
Thường dùng hợp chất Grignard với axit đủ mạnh và trong quá trình chuyển $\mathrm{RX} \rightarrow$ $\mathrm{RMgX} \rightarrow \mathrm{RH}$.

Các hợp chất cơ natri, kali, liti... có thế diện động cao dể thuỷ phân bà̀ng nước, các hợp chất kém hoạt động hơn dùng axit mạnh hơn. Hợp chất $\mathrm{R}_{2} \mathrm{Zn}$ nổ khi tác dụng với nước, $\mathrm{R}_{2} \mathrm{Cd}$ chậm, còn $\mathrm{R}_{2} \mathrm{Hg}$ thì không, chi phân cắt khi có HCl . Hợp chất BR_{3} trợ với nước nhưng có thể chuyển thành RH khi tác dụng với axit cacboxylic. GaR_{3} phân cất một nhóm R ở nhiệt độ phòng, nhưng AlR_{3} phản ứng mạnh với nước.

Các hợp chất của kim loại kém hoạt động da hoá trị thường có thể phân cắt một nhóm R :

$$
\mathrm{R}_{2} \mathrm{Hg}+\mathrm{HCl} \longrightarrow \mathrm{RH}+\mathrm{RHgCl}
$$

Các hợp chất cơ kim kém hoạt đọng hay á kim, như silicon, antimon, bitmut trơ với nước. Hợp chất cơ thuỷ ngân chuyển thành RH bằng tâc nhân khử như $\mathrm{H}_{2}, \mathrm{NaBH}_{4}$, trong đó khử bà̀ng NaBH_{4} theo cơ chế gớc tụ do.

36- Phản ưng oxy hoá triankyl boran thành borat
Triankylboran tác dụng với $\mathrm{H}_{2} \mathrm{O}_{2}$ trong kiềm tạo thành este của axit boric:

$$
\mathrm{R}_{3} \mathrm{~B} \xrightarrow[\mathrm{NaOH}]{\mathrm{H}_{2} \mathrm{O}_{2}}(\mathrm{RO})_{3} \mathrm{~B} \rightarrow 3 \mathrm{ROH}+\mathrm{B}(\mathrm{OH})_{3}
$$

Phản ứng này không ảnh hưởng tới nới đơi hay ba, tới andehit, xeton, halogenua hay nitrin. Cơ chế cửa phản ứng như sau:

Nhóm R chuyển vị cùng với cạ̣p electron liên kết tới oxy và bảo toàn cẩu hình của gốc R. Hai nhóm R có thể chuyển vị tiếp tới oxy tương tự.

Boran có thể oxy hoá bà̀ng oxy, NaBO_{3}, percacbonat natri $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}_{2}$ trimetyloxit, anhydrit...

Phản ứng trên thường dùng dể chuyển hoá olefin thành ancol.
37. Phản ứng phân cắl ankan

Liên kết $\mathrm{C}-\mathrm{C}$ bị phân cắt khi có axit supeaxit như neopentan phân cắt cho metan và cation tert-butyl sau:

$$
\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C} \xrightarrow{\mathrm{FSO}_{3} \mathrm{H}-\mathrm{SbF}_{5}} \mathrm{CH}_{4}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}
$$

Phản ứng luôn có phản ứng phân cắt hyđro cạnh tranh như neopentan trên có thể cho H_{2} và cation tert-pentyl (chuyển vị từ cation neopentyl). Nói chung, hoạt tính theo thứ tự: $\mathrm{C}-\mathrm{H}$ bậc ba $>\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{H}$ bậc hai > C-H bậc nhất. Sự phân cắt lập thể thuận lợi khi có khó khăn lập thể như loại hợp chất tri+telt-butylmetan. Nói chung cơ chế của phản ứng này là do sự tấn công của electrophin H^{+}vào liển kết $\mathrm{C}-\mathrm{C}$ cho cation năm hoá trị (xem phản ứng 1).

Sự phân cắt liên kết $\mathrm{C}-\mathrm{C}$ có thể bằng phương pháp khử: $\mathrm{R}-\mathrm{R}^{\prime}+\mathrm{H}_{2} \rightarrow \mathrm{RH}+\mathrm{R}$ ' \ddagger và một vài liên kểt $\mathrm{C}-\mathrm{C}$ bị phân cắt bằng kim loại kiềm.

38- Phản íng loại nhóm xyan (dexyan hoá)

Nhóm xyan trong các ankylnitrin bị thế bằng hyđro khi tác dụng với kim loại kiềm trong amoniac lỏng:

$$
\mathrm{RCN} \xrightarrow{\mathrm{Na}-\mathrm{NH}_{3}} \mathrm{RH}
$$

Có thể dùng tris-(axetylaxetonat) Fe (III) $\left(\mathrm{Fe}(\mathrm{acac})_{3}\right)$ hay titanoxen nhưng hiệu suất thắp.

Phản ứng dùng $\mathrm{Na}-\mathrm{NH}_{3}$ cho hiệu suất cao khi R là trityl, benzyl, phenyl, ankyl bạc ba nhưng R bậc hai hay bậc một cho hiệu suất thấp, còn với $\mathrm{Na}-\mathrm{Fe}(\mathrm{acac})_{3}$ cho hiệu suất cao.

Natri trong amoniac lỏng là nguồn electron solvat dưa phản ứng đi qua cơ chế gốc tự do R° rồi khử thành cacbanion R^{-}kết hợp với proton cho RH .

Phương pháp khác nhạy với nitrin với R bậc một và hai là dùng kali kim loại với ete crown dixyclohexano- 18 -crown- 6 trong toluen. Các α-aminonitrin $\mathrm{RCH}(\mathrm{CN}) \mathrm{NR}^{\prime}{ }_{2}$ và α-amit nitrin $\mathrm{RCH}(\mathrm{CN}) \mathrm{NHCOR}^{\prime}$ tác dụng với NaBH_{4} cho hiệu suắt cao.

Chương

PHẢN ÚNG THẾ ELECTROPHIN S_{E} CỦ̉A HỢP CHẤT THƠM

Các vòng thơm có tỷ trọng electron cao nên dể bị tấn công bởi các tiểu phân mang điện tích dương hay dầu dương của mọ̣t lưỡng cực. Trong phản ứng này nhóm đi ra là một axit yếu hơn nên thường gạ̣p proton là nhóm đi ra trong phản ứng thế electrophin vào nhân thơm. Trong hệ cacbon aliphatic, phản ứng nucleophin S_{N} là đạc trưng hơn, trong hệ thơm thì phản ứng thế electrophin S_{E} lại đặc trưng hơn.

8.1. CO CHẾ THẾ $S_{\text {E }}$

Phản ứng thế electrophin là sự tấn còng của electrophin cation hay dầu dương của lưỡng cực vào trung tâm giàu electron của nhân thợm. Quá trình có thể di qua chất trung gian là ion areni, tương tự như cơ chế tứ diện nhưng mang diện tích dương hay tạo anion hoạac di qua trạng thái ion gốc.

8.1.1. Co chế ion areni hay phức o

Cơ chế ion areni hay phức o là cơ chế hai giai đoạn, giai đoạn đầu là tấn công của ion dương hay đầu dương của lưỡng cực vào nhân thơm lục tử để tạo cacbocation giải toả cộng hưởng, song có thể đi qua nhiều trạng thái trung gian với sự phụ thuộc nãng lượng vào tốc độ phân ứng như sau:

Và được biểu diển bằng giản đồ nãng lượng với phức σ là chất trung gian:

Hinh 8.1. Giản dồ nảng lượng của S_{E} thợn
nhưng thường bỏ qua phức π. Đại da số phản ứng tạo thành phức σ là cation không có hiệu ưng dờng vị và đậc trưng bà̀ng dộ nhạy electron của các nhớm thế.

Dùng quy tắc trạng thái dừng tốc độ phản ưng có dạng:

$$
v=\frac{k_{1} \cdot k_{2}[\mathrm{ArH}]\left[\mathrm{E}^{+}\right]\left[\mathrm{B}^{-}\right]}{k_{1}+k_{2}[\mathrm{~B}]}
$$

nêu $k_{2[\mathrm{~B} \mid} \gg k_{-1}$, phương trình có dạng $v=k_{1}[\mathrm{ArH}]\left[\mathrm{E}^{+}\right]$

1 - Phúc π

Khi tác nhân electrophin tác dụng với nhân benzen trước hết tạo được phức π như là một tiểu phân trung gian khering bền. Trong phức π, hệ electron của nhân thơm vẩn bảo toàn, được hinh thành giữa mơt ti ̉̉u phân nghèo electron như là tiểu phân nhận electron và mọ́t tiểu phân giàu :lectron như ià chất cho clectron hoạc do tương tác của obitan trống của tiểu phân electrophin với obitan π của nhân benzen:

Tốc dộ tạo thành và phân huỷ phức π xảy ra rất nhanh, ảnh hưởng của hiệu ứng electron cừa nhóm thế đến phức π không lớn vì sự chuyển dịch diện tích trong phức π rất nhỏ. Sự tạo thành phức π thực tế không ảnh hưởng đến tốc độ phản ứng cũng như bản chất của sàn phẩm hình thành. Sự tồn tại của phức π dược xác nhận bẳng phổ UV hoạc bằng sự tāng tính tan, áp suất hơi, nhiệt độ đông đặc nhưng không làm thay đổi thực tế các phổ cũng như tính dẫn điện. Chả̉ng hạn phức π tạo thành khi hydrocacbon thơm tác dụng với HCl nhưng khi dùng HCl với axit Lewis thì tạo ion areni. Hai loại dung dịch này có tính chất khác nhau. Dung dịch của ion areni có màu, dẫn diện tớt, còn phức π không màu, không dẩn
điện. Cūng như khi đùng DCl với benzen cho phức π không có trao đổi deutri (vì không tạo lièn kẻ́t cộng hoá trị) nhưng với DCl có AlCl_{3} cho ion areni có trao đổi deutri.

2. Phá̛c σ

Phức σ hay ion areni hay còn gọi là chất trung gian Wheland, là hợp chất trung gian mang điện tích dương tập trung trong nhân thơm và giải toả giữa vài nguyên tử.

Phức σ có một số cấu trúc cộng hưởng gần giống loại supeallyl có diện tích dương phân bố trên ba của nām obitan p :

Hệ này trở thành không thơm, có hai vị trí ortho và một vị trí para mang diện tích dương, còn hai vị trí meta tương dương nhau mang điện tích dương về hình thức, song có bản chất dương do hai vị trí bên cạnh mang diện tich dương.

Nếu trong trường hợp tác nhân tấn công không phải ion mà là một lưỡng cực, sản phẩm có điện tích âm ờ vế phần lưỡng cực bằng cạ̣p electron của mình và tự phân cắt ra trong quá trình:

Phản ứng thể S_{E} vào hợp chất thơm đi qua phức π rồi phức σ có tính ổn dịnh tương dối khác nhau. Để so sánh tính ổn định của hai phức này và phức nào gần với cấu trúc trạng thái chuyển, người ta so sánh hằng số cân bằng tương đối hình thành phức khi brom hớ hợp chất thom.

	K_{18}	$K_{t d}{ }^{\pi}$	$K_{t d}{ }^{\sigma}$
Benzen	1,0	1,0	1,0
Toluen	605	1,5	790
1,2-Eimetylbenzen	5300	1,8	7900
1,3-Eimetylbenzen	$5,5.10^{5}$	2,0	$1,0.10^{5}$
1,4-Dimetylbenzen	2500	1,6	2300
1,3,5-Trimetybenzen	$1,9.10^{8}$	2,6	$6,3.10^{8}$
1,2,4-Trimetylbenzen	$1,5.10^{6}$	2,2	$2.0 .10^{5}$
1,2,3-Trimetybenzen	$1,7,10^{6}$	2,4	$2,0.10^{6}$

Kết quả trên cho thấy, tính ổn định của các phức π thay dổi rất nhỏ khi dưa các nhóm thế vào nhân bezen và tính ổn địh của dần xuất đi- và tri-metyl gần như nhau, còn phức σ càng được ổn định khi có nhiều nhóm thể mà ngay cả ở vị trí meta của phức σ cũng được ổn định bẳng siêu liên hợp.

Sự hình thành phức σ có sự thay đổi trạng thái lai hoá từ $\mathrm{C}_{\mathrm{sp}^{3}}$ sang $\mathrm{C}_{\mathrm{sp}}{ }^{2}$ nên đã phá huỷ tính thơm của nhàn benzen, do dó giai doạn này thu nhiệt nên theo tiên để Hammond, trạng thái chuyển cẩn phải chuyển về phía phức σ, nghĩa là cấu trúc trạng thái chuyển gần giống với cấu trúc phức σ, nếu xác định dược cấu trúc phức σ có thể suy ra cáu trúc trạng thái chuyển.

Như vậy, quá trình xảy ra qua phức π và σ thì có thể giai đoạn nào là nhanh và giai đọan nào chậm quyết định tốc dộ, nếu sự hình thành phức π nhanh thì giai đoạn chuyển phức π thành σ là quyết định tôc độ, hoặc hình thành phức π quyết dịnh tốc dộ thì chuyển từ phức π tới σ là nhanh.

Để xác định điều này, người ta so sánh tính bển của phức với tốc độ tương đối của phản ứng, chẳng hạn xác định tịnh bển của ion areni bẳng tính bazơ tương đối của chất ban đầu, tính ổn định cúa phức π bằng hằng só cân bẳng giữa chất thơm và HCl và xác định tố độ phản ứng như bảng 8.1.

Bảng 8.1. Tính ốn định tương đối của phức π, phức σ và tốc dộ clo hoá, nitro hoá

Nhóm thë	Tính ồn đinh của phức σ	Tinh ốn đinh của phức π	Tóc đọ clo hoá	Tóc đọ nitro hoá
Khong (Benzen)	0.09	0,61	0,0005	0.51
Metyl	0,63	0,92	0.157	0,85
$\mathrm{p}-\left(\mathrm{CH}_{3}\right)_{2}$	1,0	1,00	1,00	1,00
$\mathrm{O}-\left(\mathrm{CH}_{3}\right)_{2}$	1.1	1,13	12.1	0,89
$m-\left(\mathrm{CH}_{3}\right)_{2}$	26	1,26	200	0,84
1,2,4-($\left.\mathrm{CH}_{3}\right)_{3}$	63	1,36	340	
1,2,3-($\left.\mathrm{CH}_{3}\right)_{3}$	69	1,46	400	
1,2,3,4-($\left.\mathrm{CH}_{3}\right)_{4}$	400	1,63	2000	
1,2,3,5-($\left.\mathrm{CH}_{3}\right)_{4}$	16,000	1,67	240.000	
$\left(\mathrm{CH}_{3}\right)_{5}$	29.000	360.000		

Từ kết quả trên cho thấy, nểu do dược tốc dộ tương đối của phản ứng với một electrophin dā cho với dãy hợp chât như trong bảng 8.1 , nếu tốc đọ tương đối giống tính bền của ion areni thì có thể cho rẳng ion areni hình thành ở giai đoạn chậm, nếu giống tính ốn định của phức π thì phức π hình thành ở giai doạn chậm. Nhiều trường hợp tìm thấy tốc dộ tương dới giống với tính ổn dịnh ion areni mà không gióng phức π. Nhu khi brom hoá bẳng Br_{2} trong axit axetic ở nhiệt dọ̣ phòng hay axyl hoá bằng $\mathrm{CH}_{3} \mathrm{CO}^{+} . \mathrm{SbF}_{6}$ không hình thành phức π, nếu có hình thành thì không ở giai doạn quyết định tốc độ, mặt khác, khi nitro hoá bằng tác nhân electrophin mạnh $\mathrm{NO}_{2}{ }^{+}$(ở dạng $\mathrm{NO}_{2}{ }^{+} \mathrm{BF}_{3}{ }^{-}$), tốc độ tương đối giống với tính ốn định của phức π hơn là tính ổn định của ion areni, cūng như brom hoá bằng Br_{2} và FeCl_{3} trong nitrometan. Trong các trường hợp này phức π tạo thành ở giai đoạn quyết định tốc dộ
phản ứng. Nếu tính đến sự chọn lọc vị trí có thể có nhiều phức tạo thành trước ion areni nèn thường gọi là phức tổng quát viể ở dạng (1):

3. Sur tách ion areni

Phức σ tạo thành có thể dược tách ra như là hợp chất trung gian trong những trường hợp có bazơ mạnh hay phức phan tích khó khản như:

Cūng như trong những truờng hợp phức σ dủ bển có thể tách ra thành dạng tinh thể như:

hoạc mesitylen tác dụng với etyl florua xúc tác BF_{3} ở $-80^{\circ} \mathrm{C}$ cho ion areni tách ra có nhiệt độ nóng chảy $-15^{\circ} \mathrm{C}$, sau đó đun nóng ion areni cho sản phá่m thế:

dược nghiên cứu bằng phổ ion benzenoni và fentametylbenzenoni, cho thấy cacbon ở vị trí 1,3 và 5 mang diẹn tích dương khoảng $+1 / 3$, tìm thấy dộ chuyển dịch hoá học lớn trong NMR của cacbon 2 và 4 khỏng chứa điện tích. Phở ${ }^{13} \mathrm{CNMR}$ cho thấy dộ chuyến dịch hoá học của ion benzenoni ở $\mathrm{C}_{3}=178,1, \mathrm{C}_{1}$ và $\mathrm{C}_{5}=186,6, \mathrm{C}_{4}=136,9$ và $\mathrm{C}_{6}=52,2$.

Trong một số trường hợp có thể dùng những phản ứng hoá học dể nắm bắt lấy phức chẳng hạn:

+- Str chuyển hoá cỉa phíc σ

Trong phức σ, electrophin liên két ở vị trí xác định của nhân benzen, ở đó cacbon có mậ độ electron lớn hơn và sự tạo thành phức σ có thể thuận nghịch. Sụ̣ chuyển hoá phức σ cūng có thế là thuận nghịch phụ thuộc vào sự dễ dàng tách electrophin hay tách proton. Phức σ cũng có thể cộng hợp với nucleophin để tạo thành sản phẩm cộng đien:

Hinh 8.2. Giản đồ nång lự̛̣ng chuyển hoá phức σ thành sản phẩm
Đa số phản ứng xảy ra quá trình tách proton vì có sự thơm hoá nhân benzen, dòi hói nảng lượng thấp hơn là cợng nucleophin, song cūng có phản ứng mà sản phẩm hình thành là sản phấm cộng nucleophin khi tác nhân nucleophin là tác nhấn mạnh và hiệu ứng nhiệt của phản ứng tái thơm hớ không lớn. Chằng hạn nitro hoá antraxen trong ancol:

Phản ứng xảy ra sự tạo thành sản phẩm cộng vì khuynh hướng tái tạ̣o hệ thơm antraxen không lớn do nhiệt giải phóng ra nhó.

Khi nghiẻn cứu hầu hết các phản ứng thé electrophin vào nhân thơm, cho thấy có tính tương quan giữa tốc dộ thế và tính ổn dịnh của phức σ, hay nói cách khác tính bển của phức σ quyết định tốc dộ của phản ứng S_{E}.

Sự hình thành phức σ phụ thuợc vào bàn chất nhóm thế, có thể có bốn trường hợp sau:
1- Trường hợp $k_{2}[\mathrm{~B}] \gg k_{1}, k_{-1}$, phản ứng là bậc hai, cũng có nghīa là tính chọn lọc của tác nhân thấp, trạng thái chuyển trên đường cong động học hình thành sớm, gần giống với chất ban dẩu hơn là phức σ. Điện tích dương trong vòng nhỏ và ượng tác với nhóm thế làm ổn định phức σ yếu. Thường giá trị ρ nhỏ và nhân tố tớc độ phần thấp. Đường cong dộng học như hình ở 8.3a.

Nhưng nếu tác nhân họạ động yếu hơn, nghīa là có tính chọn lọc cao hơn, ảnh hưởng của nhớm thế mạnh hơn, trạng thái chuyển hình thành chậm hơn và gần vể phía phức σ hơñ, như ở hình 8.3 b , thường ở phản ứng có giá trị ρ lớn.

Hinh 8.3. Ảnh hưởng của tác nhân đển tốc độ phản ứng
Hai trường hợp trên cũng có bản chất của sự hình thành phức σ quyết dịnh tốc dộ phản úng. Đại đa số phản ứng xảy ra theo cơ chế này.

2- Giai đoạn hình thành tác nhân E^{+}là giai đoạn chậm hơn giai doạn hình thành phức σ thì tốc độ phụ thuộc vào giai doạn này và không phụ thuộc vào bản chất chấ ban đầu. Phản ứng không có hiệu ứng đổng vị. Chẳng hạn trong một vài trường hợp của phản ứng nitro hoá, sự tạo thành ion nitroni là giai doạn xác định tốc độ phản ứng khi dùng hợp chất thơm có khả năng phân cực cao, giai đoạn tấn công của E^{+}xảy ra nhanh hơn là sự tạo thành ion nitroni. Đường cong dộng học như ở hình 8.4a.

Hinh 8.4. Ảnh hưởng của tác nhân đển tốc độ phản ứng

3- Giai đoạn quyết định tốc độ phản ứng là sự phân cắt proton từ phức σ và thơm hoá lại như ở hình 8.4 b , nghĩa là giai đoạn tách proton là giai đoạn chậm. Phàn ứng này có hiệu ứng đồng vị bậc nhất ở ngay vị trí thế. Chắng hạn phản ứng:

ở dây các nhóm thế làm ổn định phức o làm chậm giai doạn tách proton H^{+}do khó khăn không gian. Sự tách H^{+}ở dây là do $\mathrm{C}_{\text {, p}}$ ³ từ phức σ chuyển thành trạng thái $\mathrm{C}_{\mathrm{sp}}{ }^{2}$, Br không phẳng phải trở vể phẳng nẻn gàai doạn này xảy ra chậm. Phản ứng có $k_{\mathrm{H}} / k_{\mathrm{D}}=3.2$ và phụ thuộc vào nống độ Br_{2}.

Cũng như phản ứng sau có giai đoạn tách proton chậm với $k_{\mathrm{H}} / k_{\mathrm{D}}=4$:

Khi nghiên cứu cỡ chế của phản ứng liên quan tới ảnh hưởng của nhóm thế và cáu trúc chất ban đầu, đã có nhiều tài liệu thực nghiệm, trong đó quan trọng là xác định vị trí của trạng thái chuyển.

Bằng phương pháp MO và HMO , tính nảng lượng của hợp chất phàn ứng và chất trung gian, thường tính giá trị gọi là nảng lượng định chổ, là sự khác nhau giữa nãng lượng trạng thái cơ bản của phàn tử thơm và nãng lự̛̣ng phức σ trung gian. Đơn giản là tính sự khác nhau giữa nāng lượng tính cho hệ π ban đầu và chất trung gian. Chẳng hạn:

Cũng như tính năng lượng tương đối của các phức σ ở các vị trí khác nhau, so với chất ban đû̉u. Chẳng hạn như antraxen đã so sánh nảng lượng của ba phức σ so với chất ban đầu dã Xác nhận bà̉ng thực nghiệm:

5- Hic̣ul long döng vi

Nếu proton đi ra trước khi electrophin đi vào (co chế $S_{\mathrm{E}} l$) và di vào và đi ra dống bộ thì tìm thấy hiệu ứng đồng vị chăt ban đầu, nghìa là chất ban đâu đeutri hoá thế chậm hơn không đeutri hoá vì trong mồi trường hợp này liên kết $\mathrm{C}-\mathrm{H}$ bị phân cắt ở giai doạn quyêt định tốc dộ. Trong cơ chế ion areni. liên kết C-H khơng bị phân cắt ở giai đoạn quyč́t định tốc độ nên không tìm thấy hiệu ứng đồng vị. Nhiểu nghiên cứu cho thấy trong nhiều trường hợp, dặc biệt khi nitro hoá không có hiệu ứng dồng vị. Kết quả không phù hợp theo cơ chế $S_{\mathrm{E}} /$ hay đổng bộ.

Tuy nhiên trong nhiếu trường hợp tìm thã́y hiệu ứng đổng vị. Nói chung giá trị thường thấp hơn cơ chế $S_{\mathrm{E}} /$ hay dồng bộ, thường có từ 1 tới 3 thay cho từ 6 tới 7 . Trường hợp hydro là nhóm đi ra, cơ chế ion areni tổng quát là:

Hiệu ứng dồng vị nhỏ tìm thấy từ tính thuận nghịch của giai đoạn 1 bởi hiệu ứng phần (partitioning effect). Tốc độ mà ArHE ${ }^{+}$chuyển thành ArH thực tế giống nhu ArDE: chuyển thành ArD vì liên kết $\mathrm{C}-\mathrm{H}$ khòng bị phân cắt, còn ArHE^{+}chuyển tới ArE nhanh hơn ArDE^{+} chuyển tới ArE vì hên kết Ar-H bị phân cắt ở giai doạn này.

Nếu $k_{2} \gg k_{-1}$, không có vấn đề gì vì phần lớn chất trung gian chuyển thành sản phẩm, tốc dộ chỉ xác định ở giai đoạn chậm ($k_{1}[\mathrm{ArH}]\left[\mathrm{E}^{+}\right]$) và khỏng có hiệu ứng dồng vị.

Nếu $k_{2}<k_{-1}$ hay $k_{2} \approx k_{-1}$, sự chuyển trở lại chất ban dầu là quan trọng. Nếu k_{2} ạ̛ ArDE^{+}nhó hơn k_{2} ờ ArHE^{+}còn k_{-1} như nhau thì tỷ lạ của ArDE^{+}chuyển trở lại chât ban đầu lớn hơn. Như vậy, k_{2} / k_{-1} là nhân tố phần (partition factor) ở ArDE^{+}nhỏ hơn ở ArHE^{+}, do đó phản úng của ArD chậm hơn ArH và quan sát thấy hiệu ứng dồng vị̣.

Trong một số tình huống tìm thấy tỷ lẹ̉ k_{2} / k_{-1} là do khó khãn lập thể. Chẳng hạn phản ứng ghép ion điazoni của (2) không cho hiệu ứng dồng vị, còn ghép cùa (4) cho tỷ lệ $k_{\mathrm{H}} / k_{\mathrm{D}}$, là 6,55 :

Vì lý do lập thể, sản phẩm (5) tách proton khó khản hơn (3) nên k_{2} lớn hơn. Vì phản ứng không cần bazơ để tách ArN_{2}^{+}, nhân tố k_{2} / k_{-1} đủ khác nhau giữa (3) và (5) nên (4) biểu lộ hiệu ứng đồng vị lớn, còn (2) không có bazơ xúc tác cũng ảnh hưởng tới nhân tố phần vì sự tảng nổng độ bazơ làm tãng tốc dộ chuyển chất trung gian tới sản phả̉m, không ảnh hưởng tới tốc dộ chuyển tới chất ban đâu. Trong một vài trường hợp, hiệu ứng đồng vị giảm hay mất đi bởi nồng dộ bazơ đủ cao.

Cơ chế ion areni cũng dược chứng minh bằng thực nghiệm về hiệu ứng dồng vị của loại phản ứng sau:

$$
\mathrm{ArMR}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{ArH}+\mathrm{R}_{3} \mathrm{MOH}_{2}^{+}
$$

với $\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Pb}$, và $\mathrm{R}=$ metyl hay etyl. Trong phản ứng này proton là electrophin. Nếu là cơ chế ion areni, nếu dùng $\mathrm{D}_{2} \mathrm{O}^{+}$sẽ có hiệu ứng đồng vị vì liên kết $\mathrm{D}-\mathrm{O}$ bị phân cắt ở giai doạn chậm. Hiệu ứng đồng vị tìm thấy là từ 1,55 dến 3,05 phù hợp với cơ chế ion areni.

Bảng 8.2. Hiệu ứng đồng vị của một số phân ứng

Nitro hoá		Halogen hoá	
Benzen $\left(\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$	1,2	Benzen ($\mathrm{OHBr}, \mathrm{HClO}_{4}$)	1
Toluen $\left(\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$	1,2	Anizol (Br_{2})	1,05
Axyl hoá		Sunfo hoá:	
Benzen ($\mathrm{CH}_{3} \mathrm{CO} . \mathrm{SbF}_{6}, \mathrm{CH}_{3} \mathrm{NO}_{2}$	2,25	Benzen ($\mathrm{ClSO}_{3} \mathrm{H}_{1} \mathrm{CH}_{3} \mathrm{NO}_{2}$	3,0
Benzen $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, \mathrm{SbF}_{6}, \mathrm{CH}_{3} \mathrm{NO}_{2}\right.$	1,58	Nitrobenzen $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{3}{ }^{-}\right)$	1.7
Nitrozo hoa			
Benzen ($\mathrm{HNO}_{3}, \mathrm{DSO}_{4}$)	8,5		

8.1.2. Co chế $S_{\mathrm{E}} I$

Cơ chế $S_{\mathrm{E}} I$ (thế electrophin đơn phân tử) hiểm hơn, chỉ tìm thấy trong một số trường hợp khi nguyên tử cacbon là nhóm di ra và khi có bazơ mạnh. Cơ chế cũng có hai giai doạn với chất trung gian là cacbanion:

Ngoài ra, người ta cho rằng cơ chế S_{E} xảy ra bằng cách chuyển một electron tạo thành ion-gớc và gốc kết hợp với nhau thành phức σ rôi phản ứng tiếp như trên:

8.2. PHẢN ÚNG THẾ S_{E} CỦA DẤN XUÂT BENZEN

8.2.1. Ảnh hưởng của cấu trúc chất ban đẩu đển khả nång phản ứng

Trong trạng thái chuyển hình thành điện tích dương nên các nhơm thế có ảnh hưởng đến khả nāng phản ứng của nhân thợm.

1- Cấu trúc chất ban dầu

Về khả năng phản ứng, mật độ electron nói chung trong nhân benzen càng lớn thì tác nhân của E^{+}càng dể tấn công. Do đó các nhóm thế có hiệu ứng $+l$ và $+C$ làm tăng khả năng phản ứng, các nhóm thé́ $-I,-C$ làm giảm khả năng phản ứng.

Mặı khác vì phức có điện tích dương nên các nhóm thế làm ổn định phức $\sigma(+I,+C)$ làm tảng phản ứng, các nhóm thế làm mất ổn định phức σ thì ngược lại. Các nhóm thế có hiệu ứng $-I$ lớn hơnn $+C$ cüng làm giảm khả năng phản ứng ($\mathrm{F}, \mathrm{Cl}, \mathrm{Br} . .$.).

Để giải thích hiện tượng này, thường hay dùng quan niệm về cấu trúc cộng hưởng hay liên hợp. Các nhóm thế có thể hoạt hoá hay bị động hoá chọn lọc trong nhân benzen phụ thuộc vào hiệu ứng electron của nhóm thế làm ổn định trạng thái chuyển phức σ.

Các nhóm ankyl có hiệu ứng $+I$ làm tăng mật độ electron của nhân, làm ổn định phức σ ở o - và p-bà̀ng hiệu ứng siêu liên hợp. Các nhón thế chứa cạ̣p electron n hay liên kết π cũng làm ổn định trạng thái chuyển ở o - và p-. Các nhóm thế này xúc tiến phản ứng nhanh hơn benzen và phức σ có năng lượng ổn định hơn phức σ của benzen.

ổn diṇh củ̉a nhóm ankyl ở o - và p bäng liên hợ hay cộng hựng

ơn dịnh của anhóm ankyl ơo o-và p bằng cạp electron "

ốn dịnh cùa nhóm ankyl ở θ - và p bằng liên kết n

Các nhóm thế hút electron làm khó khăn cho phản ứng S_{E}. khó nhắt là ờ vị trí 0 - và p-, thường gạ̉p những nhóm chưa no thiếu electron như $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N} \ldots$.. hoạc những nguyén tố âm điện mạnh không có cạ̣p electron n. Những nhóm thế này làm cho phản ứng chậm hơnn benzen và phức σ có nảng lượng cao hơn phức σ của benzen:

Đối với nhóm thế bị động hoá nhân như các halogen làm giảm khả năng phản ưng bằng hiệu ứng -1 , song khi tạo thành phức σ, các halogen lại xuất hiện hiệu ứng liên hợp của cạ̣p electron n trên obitan $3 p$ với obitan $2 p$ của cacbon nhân thơm:

ồn dịnh bả̉ng liên hợp hay cộng huòng

khong có tưong tác liên hơp hay cộng hương

Tương tác này bù trừ cho hiệl! ứng $-l$, nhưng vì hiệu ứng này không hiệu dụng như tường hợp liên hợp của obitan $2 p$ nêa hiệu ứng $-I$ vần quyết định hơn.

Các nhóm thế nứt electron như $\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CHCl}_{2}, \mathrm{CH}_{2} \mathrm{CCl}_{3} \ldots$ làm giảm khả năng phản ứng bằng $-I$ nhưng có hiệu ứng siêu liên hợp ở phức σ ở vị trí o - và p-.

Vì trạng thái chuyển có điẹn tích dương nên có thể cho rằng thông số ρ âm, ở trạng thái chuyển có điện tích định chổ nhỏ thì giá trị ρ nhỏ, chiểu cao nãng lượng hoạt hoá nhỏ, phản ứng có tốc đọ́ lớn. Chả̉ng hạn, phản ứng brom hoá dẫn xuất $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Z}$ với Z khác nhau:

$$
\begin{array}{ccccccccccc}
Z= & \mathrm{H} & \mathrm{~F} & \mathrm{Cl} & \mathrm{NO}_{2} & \mathrm{OCH}_{3} & \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} & \mathrm{CH}_{2} \mathrm{Cl} & \mathrm{CH}_{3} & \left(\mathrm{CH}_{3}\right)_{3} & \mathrm{COOCH}_{3} \\
k_{16}= & 1 & 1,2 & 0,11 & 1,8.10^{-6} & 1,2.10^{9} & 5.9 .10^{18} & 0,76 & 3,4.10^{2} & 1,1.10^{2} & 5,9.10^{-4}
\end{array}
$$

Bảng 8.3. Thông số p của một số phản ứng

Brom hoá $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	$-1,31$	Clo hoá $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right)$	$-13,0$
Clo hoá $\left(\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{O}\right)$	$-8,8$	Axetyl hoá $\left(\mathrm{CH}_{3} \mathrm{COCl}\right)$	$-8,8$
Nitro hoá $\left(\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$	$-4,4$	Ankyl hoá $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}, \mathrm{GaBr}_{3}\right)$	$-2,4$
Clo hoá $\left(\mathrm{HOCl}, \mathrm{H}^{+}\right)$	$-8,1$		

2- Hiệu í̛ng cỉa hhóm di ra

Phẩn lớn các phản ứng thé electrophin vào nhân thơm được ngniên cứu có nhóm đi ra là H^{+}, còn có một số phân ứng có nhóm đi ra khác hyđro, đi ra ở dạng cation (có tính electrofuge).

Thứ tự khả nãng của nhóm đi ra là:
1-nhóm di ra không nhờ có tác nhân ngoài:

$$
\mathrm{NO}_{2}<\text { iso }-\mathrm{C}_{3} \mathrm{H}_{7}<\mathrm{SO}_{3}<\text { terr }-\mathrm{C}_{4} \mathrm{H}_{9}<\mathrm{ArN}_{2}^{+}<\mathrm{ArCHOH}^{+}<\mathrm{NO}^{+}<\mathrm{CO}_{2}
$$

2- nhóm đi ra nhờ có nucleophin ngoài:

$$
\mathrm{CH}_{3}^{+}<\mathrm{Cl}^{+}<\mathrm{Br}^{+}<\mathrm{D}^{+} \sim \mathrm{RCO}^{+}<\mathrm{H}^{+} \sim \mathrm{I}^{+}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si} .
$$

Từ dó có thể tìm thấy khả năng X hay E phân cắt ở ion areni và tìm thấy phản ứng có khả thi hay không.

Tuy nhiên, các nhóm thé electrophin có khả nāng có thể tấn công vào vị trí ipso ành hưởng đến tốc độ. Nhân tố tốc dộ phần của electrophin tấn công vào vị trí đã có nhóm thế bởi tác nhân electrophin khác hyđro gọi là nhân tố tốc độ phần ipso $\left(f_{i}^{x}\right)$. Nhân tố này dối với nitro hoá p-halogen anizol là 0,$18 ; 0,08$ và 0,06 cho dẩn xuất p-iot, p-brom và p-clo tương ứng. Điều đó có nghĩa là electrophin tấn công vào vị trí 4 của 4 -iotanizol là 0,18 lần nhanh hơn vào vị trí của benzen. Chú ý là có chậm hơn nhiểu khi tấn công vào vị trí 4 của bản thân anizol cho nèn khi có nhóm iot làm chậm lớn phản ứng thế vào vị trí này, dối với p-crezol cũng tìm thấy tấn công ipso ở vị trí nhóm metyl 6,8 lần chậm hơn vào vị trí đó của phenol. Cả hai trường hợp này iot và metyl đều làm bị đợng hoá vị trí ipso (xem thêm ở phẩn sau).

3- Anh hưởng cuia tác nhân electrophin

Trong phản ứng S_{E}, chất ban đầu dóng vai trò là một bazơ, nghīa là tính bazơ hay khả nãng cho electron của chất ban đầu quan trọng như dã nói trên nhưng tác nhân electrophin E^{+}còn quan trọng hơn.

Tác nhân E^{+}là axit Lewis, nghīa là thiếu electron, có ảnh hưởng tới tốc dộ phản úng cūng như tỷ lệ đồng phân.

Nếu tác nhân E^{+}là axit yểu, nghĩa là sự thiếu hụt electron ở nguyên tử cacbon càng nhỏ thì sự khác nhau về tốc độ cưa tác nhân với benzen và đẩn xuất thế càng lớn.

Nếu tác nhân E^{+}là axit mạnh, nghĩa là sự thiếu electron định chổ và mạnh thì sự khác nhau càng nhỏ. Tác nhân này bản thân đã có năng lượng cao cần thiết cho phản ứng không hay ít đòi hòi sự chuyển electron từ nhóm thể tới trung tâm phản ứng.

Ví dụ cio hoá toluen nhanh gắp 350 lần so với benzen, axetylnitrat nitro hoá chỉ gấp 30 lần, ankyl hoá khi có xúc tác AlCl_{3} chỉ 1,9 lần. Cũng như khi dùng Br_{2} (axit Lewis yếu) phản ứng với toluen nhanh gấp 600 lần hơn benzen, còn cation Br^{+}từ HOBr chỉ gấp 30 lần.

Ảnh hưởng của nhóm thể khi có E^{+}mạnh xuất hiện kém mạnh hơn, nghĩa là nhóm thể ảnh hưởng đển tốc dộ nhỏ hơn hay nói cách khác, hoạt tính tác nhân càng cao thì bản chất chất ban dầu có giá trị càng nhỏ.

Tác nhân E^{+}cūng biểu hiện ở giản đồ năng lượng, tác nhân càng hoạt dộng thì trạng thái chuyển xuất hiện càng sợm và ở trạng thái chuyển giống với chất ban dầu hơn là phức σ, điện tích dương ở trong vùng nhỏ và tuơng tác với nhóm thế yếu, tác nhân kém hoạt dộng hơn thì trạng thái chuyển xuất hiện muộn hơn, liên kết mới với electrophin tạo thành hoàn
toàn hơn và vòng có điện tích dương lớn, tương ứng với ành hưởng mạnh của nhớm thế, như vậy, tác nhân có sự chọn lựa chất ban đầu.

Tác nhân E^{+}cūng ành hưởng tới sản phẩm thế ở các vị trí khác nhau trong phân tử chất ban đầu.

Tác nhân E^{+}giàu năng lượng sẽ tạo thành lượng ortho và para lớn hơn khi có nhóm thế ưu tiên định hướng meta và lượng lớn meta khi có nhóm thế ưu tiên ortho-para.

Tác nhân E^{+}nghèo năng lượng hơn thì tỷ lệ sản phẩm phụ thuộc vào bản chất của nhóm thé theo quy tắc chung.

Khi xét ành hưởng của nhóm thế có thể di từ phương trình Hammett:

$$
\lg \frac{k}{k_{0}}=\rho . \sigma
$$

Trong phàn ứng thế, k_{0} dược chia cho $6, k$ thế meta được chia cho 2 , và khi so sánh chi ở một vị trí, k / k_{0} là tốc độ phần, chẳng hạn nhóm metyl ở vị trí para thì tớc dộ phần là $f_{\mathrm{p}} \mathrm{CH}_{3}$.

Nếu thay hà̀ng số Brown σ^{+}hay σ^{-}cho σ trong Hammett dều tương quan cho nhóm thế hút và cho electron. Nhóm có giá trị âm của σ^{+}hay σ^{-}hoạt hoá nhân, nhóm có giá trị dương bị dộng hoá nhân. Giá trị ρ tương ứng với sự ổn định hay mất ổn định của nhóm thế X và hoạt tính của electrophin. Giá trị ρ thay đởi chỉ với tác nhân electrophin và điều kiẹ̀n phản ứng. Giá trị p âm lớn chứng tô electrophin có hoạt tính thấp. Chú ý là phương trình này không áp dụng cho vị trí ortho.

Dựa trên phươno trình Hammett, Brown dưa ra tính chọn Iựa (selectivity relationship) theo nguyên tắc là hoạt tính của một tiểu phân thay dổi ngược với tính chọn lựa.

Khả năng phản ứng ở các vị trí khác nhau này gọi là sự chọn lựa của tác nhân. Có thể hình thành quy tác: Khả năl g phản ứng của tác nhân càng cao, tính chọn lựa của nó càng nhỏ và ngược lại. Chẩng hạ t, tỷ lệ tốc độ phản ứng và tỷ lệ sản phả̉m như ở bảng 8.5 dựa vào hai chỉ só:

1- tính chọn lựa khi tấn công vào toluen so với benzen;
2- tính chọn lựa giữa vị trí meta và para.
Bảng 8.5. Tớc độ tương đới và phân bố sản phả̉m thé S_{E} của toluen và benzen

Phản ưng	Tóc đọ tựng đớ	Phân bơ sản phẩm	
	$k_{\text {toluen }} / k_{\text {benzen }}$	$\%$ meta	$\%$ para
Brom hoá	605	0,3	66,8
Clo hoá	350	0,5	39,7
Nitro hoá	23	2,8	33,9
Thuỷ ngân hoá	7,9	9,5	60,5
Benzoyl hoá	110	1,5	89,3
Isopropyl hoá	1,8	25,9	46,2

Vị trí ortho có ảnh hưởng không gian nên mức độ chọn lựa của tác nhân được đánh giá bằng tỷ lệ thế ở vị trí para và meta.

Kết quả cho thấy, một electrophin chọn lựa lớn đỗi với chất này thì cūng chọn lựa lớn với chất khác. Electrophin lớn hơn chất khác có chọn lọc cao hơn, chẳng hạn cation tertbutyl bền hơn isopropyl thì chọn lọc cao hơn isopropyl, Br_{2} chọn lọc cao hơn Br^{+}. Song cũng có trường hợp di lệch ra mói tương quan này. Tính chọn lựa không những phụ thuộc vào bản chất electrophin mà còn phụ thuộc nhiệt dộ, thường tính chọn lựa giàm khi tãng nhiệt độ.

Brown dưa ra nhân tố chọn lựa S_{i} theo phương trình:

$$
S_{\mathrm{i}}=\lg \left(f_{\mathrm{p}} / f_{\mathrm{m}}\right)=\lg (2 . \% \text { para } / \% \text { meta })
$$

Tổ hợp phương trình Hammett-Brown với sự tuyến tính giữa S_{f} và $\lg f_{\mathrm{p}}$ và giữa S_{f} và $\lg f_{\mathrm{m}}$ có thể dưa ra phương trình sau:

$$
\begin{aligned}
& \lg f_{\mathrm{p}}=\frac{\sigma_{\mathrm{p}}^{+}}{\sigma_{\mathrm{p}}^{+}+\sigma_{\mathrm{m}}^{+}} S_{\mathrm{f}} \\
& \lg f_{\mathrm{m}}=\frac{\sigma_{\mathrm{m}}^{+}}{\sigma_{\mathrm{p}}^{+}+\sigma_{\mathrm{m}}^{+}} S_{\mathrm{f}}
\end{aligned}
$$

và S_{i} có quan hệ với ρ :

$$
S_{\mathrm{f}}=\rho\left(\sigma_{\mathrm{p}}^{+}-\sigma_{\mathrm{m}}^{+}\right)
$$

Cãn cứ cùa phương trình này dựa trên thực nghiệm phản ứng thế của toluen như các giá trị trong bảng 8.6.

Bảng 8.6. Giá trị $f_{\mathrm{m}}, f_{\mathrm{p}}, S_{\mathrm{f}}$ và ρ trong phản ứng thế toluen

Phàn ứng		f_{m}	f_{p}	$S_{\text {f }}$	ρ
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	$\xrightarrow[\text { Benzen. } 25^{\circ} \mathrm{C}]{\mathrm{GaBr}_{2}}$	1,36	6,02	0,587	-2,66
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HNO}_{3}$	$\xrightarrow[45^{\circ} \mathrm{C}]{\mathrm{CH}_{3} \mathrm{COOH} 90 \%}$	2,5	58	1,366	-6,04
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{Br}_{2}$	$\xrightarrow{\mathrm{CH}_{3} \mathrm{COOH} 85 \%}$	5,5	24.20	2,644	-11,40

Đối với các nhóm thế khác phân cực không nhiểu thì giống metyl. Đối với nhơm thế phân cực nhiều cuñg đôi khi phù hợp đôi khi không vì electrophin ở trong trạng thái chuyển có sự đồ hòi khác nhau về electron cùa electrophin dối với nhóm thế.

Chẳng hạn khi nitro hoá p-xylen, 1,2,4-trimetylbenzen và 1,2,3,5-tetrametylbenzen có tốc đọ̀ tương đối là $1: 3,7: 6,4$, trong khi đó tớc dộ nitro hoá toluen gáp 295 lằn nitro hoá benzen, chứng tỏ khi có thêm nhóm hoạt hoá cũng không tăng mạnh tốc dộ do có tương tác nào đó giữa electrophin và chất ban đầu. Khi nitro hoá p-xylen và $1,2,4$-trimetylbenzen có
tốc độ gân bằng nhau nhưng khác nhau về chọn vị trí như:

Phản ứng ở vị trí 5 gấp 10 lần vị trí 6 tuy cŭng một khó khãn lập thể như nhau, điều đó do sự hình thành phức chặt ở giai đoạn quyết định tốc dộ, song tấn công vị trí không nà̀m trong giai đoạn xác định tốc độ nên tŷ lệ $5 / 6$ không liên quan tới tớc dộ.

Tốc độ phần cho thông báo về khả năng phản ứng và cũng cho biét khả nāng chọn lựa của electrophin đối với chất ban đầu khác nhau.

Một vài phản ứng có tính chọn lựa cao đối với chất ban dầu, nghĩa là có sự khác nhau lớn về tốc độ phản ứng phụ thuọ̣c vào nhóm thế. Nói chung, tính chọn lựa thấp đối với chất ban đâu là chứng minh cho khả nảng phản ứng cao của electrophin và ngược lại.

Khi tính chọn lựa với chất ban đầu cao, nhân tổ tốc độ phần đối với hợp chất thơm thê sẽ khác đơn vị nhiều. Tốc độ phần cūng biểu thị tính chọn lựa vị trí tấn công trong mỗi hợp chất thơm cụ thể. Tính chọn lựa này cũng thay dởi trong những phản ứng khác nhau và cho khả năng đi sâu vào chi tiết của cơ chê.

Nói chung có sự tương quan giữa chọn lựa chất ban đầu và chọn lựa vị trí.
Electrophin có tính chọn lựa cao với chất ban đầu thường cho tỷ lệ sản phẩm ortholpara không cao và lượng meta nhỏ. Electrophin không chọn lựa, có khả nāng phản ưng cao, có khuynh hướng xuất hiện tính chọn lựa thấp với chất ban dầu cūng nhtr chọn lựa vị trí.

Nhân tố chọn lựa không dùng rộng rãi do có khó khān về thực nghiẹ̀m.
Sự tương ứng giữa khả nāng phản ứng và tính chọn lựa ở S_{E} phức tạp hơn. Theo tiên dè Hammond, khi aren và tác nhân có khả năng phản ứng cao, trạng thái chuyển ở gần chất ban đầu hơn, nghĩa là gần phức π hơn phức σ, tính chọn lựa lớn. Hệ càng có khả năng phản ứng cao, trạng thái chyển phân bố càng sớm trên trục tọa dộ, tính chọn lựa càng nhỏ. Song tính chất trên thay đổi khi giai đoạn quyết định là sự tách proton, trạng thái chuyển ở sau phức σ, hẹ trở thành chọn lựa hơn với sự tăng khả năng phản ứng của hệ.

Cũng như để giài thích sự thay dổi ρ khi thay đổi cấu trúc tác nhân, ở đây cũng có thể đừng quy tắc BEP và tiên đề Hammond. Chẳng hặı clo hoá bằng Cl^{+}, sự phân cắt $\mathrm{Cl}-\mathrm{Cl}$ giảm, phản ứng kém thu nhiệt, theo Hammond, trạng thái chuyển xuất hiện sớm hơn trên trục tọa dộ phản ứng.

Cũng như có những trường hợp không có sự tương quan giữa chọn lựa chất ban đẩu và chọn lựa vị trí. Chả̉ng hạn khi nitro hoá toluen bà̀ng $\mathrm{NO}_{2}{ }^{+} \mathrm{BF}_{4}{ }^{-}$trong sunfoien cho $64,4 \%$ ortho, $2,8 \%$ meta, $31,5 \%$ para, nghĩa là có tính chọn lựa cao nhưng $k_{\mathrm{t} 1}$ là 1,67 , chọn lựa chất
ban đầu thấp chứng tỏ nhóm CH_{3} không xúc tiến vị trí meta mà xúc tiến ngược lại. Trường hợp bất thường này cũng có trong một số phản úng khác. Tính không tương đồng này là tính chọn lựa vị trí và chất ban dầu xảy ra ở các giai doạn khác nhau.

Từ phản ứng trên cho tháy rà̀ng, khi dừng những tác nhân hoạt động mạhh, giai đoạn quyết định tốc độ là giai đoạn tạo thành phức π, tính chọn lựa ban đầu được xác định bà̉ng tính ổn dịnh của phức π, trong đó nhóm thế ít ành hưởng. Phức π chuyển thành phức σ ở giai doạn nhanh, trong đó có sự chọn lựa vị trí.

Bảng 8.7. Tînh chất phản ứng của một số tác nhân electrophin E^{+}

Electrophin	Phản ưng hinh thành electrophin
$\mathrm{NO}_{2}{ }^{+}$ Br_{2} hay $\mathrm{Br}_{2}-\mathrm{MX}_{n}$ $\mathrm{BrO}^{+} \mathrm{H}_{2}$ Cl_{2} hay $\mathrm{Cl}_{2}-\mathrm{MX}_{n}$ $\mathrm{ClO}^{+} \mathrm{H}$ SO_{3} $\mathrm{RSO}_{2}{ }^{+}$	Electrophin có khả năng thế các nhản thơm hoạt hoá và bị động hoá của nhóm thé $\begin{aligned} & 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \neq \mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \mathrm{Br}_{2}+\mathrm{MX}_{\mathrm{n}} \neq \mathrm{Br}_{2} \ldots \mathrm{MX}_{2} \\ & \mathrm{BrOH}^{+} \mathrm{H}_{3} \mathrm{O}^{+} \neq \mathrm{BrO}^{+} \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Cl}_{2}+\mathrm{MX}_{\mathrm{n}}=\mathrm{Cl}_{2} \ldots \mathrm{MX}_{n} \\ & \mathrm{ClOH}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{ClO}^{+} \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \\ & \mathrm{RSO}_{2} \mathrm{Cl}+\mathrm{AlCl}_{3} \rightleftharpoons \mathrm{RSO}_{2}^{+}+\mathrm{AlCl}_{4}^{-} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{R}_{3} \mathrm{C}^{+} \\ & \\ & \mathrm{RCH}_{2} \mathrm{X}-\mathrm{MXX} \\ & \mathrm{RC}=\mathrm{O}^{+} \\ & \mathrm{RCOX}-\mathrm{MX}_{n} \\ & \mathrm{H}^{+} \\ & \mathrm{R}_{2} \mathrm{C}=\mathrm{O}^{+} \mathrm{H} \\ & \mathrm{R}_{2} \mathrm{C}=\mathrm{O}^{+}-\mathrm{MX}_{n} \\ & \hline \end{aligned}$	Electrophin có khả nãng thé nhân thom hoạt hoá của nhóm thé
$\begin{aligned} & \mathrm{HC}=\mathrm{N}^{+} \mathrm{H} \\ & \mathrm{~N}=\mathrm{O}^{+} \\ & \mathrm{Ar}-\mathrm{N}^{+} \equiv \mathrm{N} \end{aligned}$	Electrophin chỉ thé nhân thom hoat hoá mạnh của nhóm thé $\begin{aligned} & \mathrm{HC} \equiv \mathrm{~N}+\mathrm{HX} \neq \mathrm{HC}=\mathrm{N}^{+} \mathrm{H}+\mathrm{X}^{-} \\ & \mathrm{HNO}_{2}+\mathrm{H}^{+} \rightleftharpoons \mathrm{N}=\mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{ArNH}_{2}+\mathrm{HNO}_{2}+\mathrm{H}^{+} \rightleftharpoons \mathrm{ArN} \equiv \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$

Tương tự như ankyl hoá benzen và toluen bằng benzylhalogenua, khi thay dổi halogen thì có sự thay đổi về chọn lựa chất ban đầu, còn sự chọn lựa vị trí không đổi:

AlX_{3}	Cl	Cl	Cl	Br	Br
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{X}$	F	Cl	Br	Cl	Br
$k_{\text {toluen } /} k_{\text {benzen }}$	3,3	5,5	7,6	6,2	8,9
\% ortho	41,2	42,2	39,9	41,0	39,4
\% meta	5,8	6,2	5,8	6,0	5,3
\% para	53,0	52,4	54,3	53,0	55,0

Kết quả trên cho thấy, sự thay đổi halogen ảnh hưởng đến tốc dộ vì giai đoạn quyết dịnh tốc độ là sự tạo thành phức π từ cạap $\mathrm{R}^{+} \mathrm{AlX}_{4}{ }^{-}$và chất ban đâu, nèn tính chọn lựa chất ban đầu thay đổi, còn các đồng phân tạo thành được xác định bà̀ng sự khác nhau về nảng lượng của trạng thái chuyển ở giai đoạn nhanh tiếp theo khơng ảnh hưởng đến tốc độ chung.

Cơ chế của phản ứng trên là:

Ngoài những nguyên nhân trên, những hiẹ̀n tượng bất thường trong sự chọn iựa chất ban đầu và chọn lựa vị trí khi phản úng được khống chế trong vùng khuéch tán có giai đoạn quyết định tốc đợ là phức σ, trong trường hợp này, thường xáy ra khi có E^{+}hoạt động mạnh với phức σ tạo thành ban đầu không có chọn lựa với bất kỳ sự định hướng nào, nhung sau đó chuyến vị thành phức bển hơn dể tách proton tạo thành sản phẩm cuối cùng. Chẳng hạn, khi nitro hoá toluen, quan sát thấy cơ chế sau:

Những trường hợp di lệch ra mối tương quan cūng là do tạo phức giữa chất ban dầu vói electrophin hay có đề nghị rẳng, có sự tạo thành cặp ion chặt như là cặp gốc như $\mathrm{NO}_{2}{ }^{\circ}$. ArH* hình thành do sự chuyển electron (SET). Cạap gốc này có tính chọn lựa mà gốc tự do không có. Cặp gớc lại chuyến hoá thành ion areni.

4- Ánh hương cria dung môi và xúc tác
Dung môi ảnh hưởng dến tốc độ phản ứng cũng như hàm lượng đồng phân. Chẳng hạn khi clo hoá toluen trong các dung môi được trình bày ở bảng 8.8 .
Kết quả trên cho thấy, sự thay dổi tớc dộ thế clo khi thay axiı axetic với $\varepsilon=6,15$ bằng nitrometan với $\varepsilon=37,5$, dồng thời làm giảm entropi từ $-30,4$ đến -50 d.v.e và năng lượng giảm từ 13,5 đến $5,6 \mathrm{kcal} / \mathrm{mol}$ có liên quan tới độ phân cực của dung môi, cũng làm thay đởi
tỷ lệ dồng phân, trong dó giảm dồng phân ortho khi chuyển tới dung môi phân cực hơn, chứng tò dung môi dã tham gia vào quá trình làm cho trạng thái chuyển có khó khăn không gian lớn ở vị trí ortho hơn para nên hàm lượng đồng phân ortho giảm:

Bảng 8.8. Phản ứng thế S_{E} của toluen trong một số dung môi khác nhau

Biéu kiện	$k_{\text {toluen }} / k_{\text {benzen }}$	\% ortho	\% meta	\% para
$\mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{COOH}_{2} 25^{\circ} \mathrm{C}$	344	59,8	0,5	30,7
$\mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{NO}_{2}, 25^{\circ} \mathrm{C}$	2425	33,6		66,4
$\mathrm{ClOH}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$	60	74,6	2,2	23,2
$\mathrm{Cl}_{2}, \mathrm{FeCl}_{3}, \mathrm{CH}_{3} \mathrm{NO}_{2}$	14,5	67,8	2,3	29,9
$\mathrm{Cl}_{2}, \mathrm{FeCl}_{3}$, toluen du	14,8	63,0	2,2	34,8
$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}, \mathrm{CH}_{3} \mathrm{NO}_{2}$	18,3	63,2	2,0	34,8

Ảnh hưởng của dung môi biểu hiện mạnh trong những phản ứng có hiệu ứng đồng vị, tức giai doạn quyết định tốc độ phản ứng là giai đoạn phân huỷ phức σ.

Khi dùng xúc tác như trên, dung môi có ảnh hưởng tới tốc độ tuy không nhiểu nhưng không có ảnh hưởng tới hàm lượng các đồng phân, chứng tỏ trong các phản ứng này, giai doạn quyết định tốc độ là giai doạn hình thành phức π chứ khòng phải phức σ.

Phản ứng thế electrophin vào nhân thơm thường dùng xúc tác Friedel Crafts có khả nảng tạo phức cho-nhận:

$$
\mathrm{R}^{\mathrm{\delta}^{+}}-\mathrm{X} \ldots . \mathrm{Al}^{\delta_{-}} \mathrm{Cl}_{3} \text { hay } \mathrm{R}^{\delta+}-\mathrm{X} \ldots \mathrm{AlCl}_{3} \ldots \mathrm{Al}^{\delta_{-}} \mathrm{Cl}_{3}
$$

Lực nhận của xúc tác giàm theo thứ tự:
$\mathrm{Al}_{2} \mathrm{Br}_{6}>\mathrm{Al}_{2} \mathrm{Cl}_{6}>\mathrm{Fe}_{2} \mathrm{Cl}_{6}>\mathrm{SbCl}_{5}>\mathrm{SnCl}_{4}>\mathrm{BF}_{3}>\mathrm{TiCl}_{4}>\mathrm{ZnCl}_{2}$
$\mathrm{HF}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{P}_{2} \mathrm{O}_{5}>\mathrm{H}_{3} \mathrm{PO}_{4}$
Phản ứng thế electrophin cuñg chịu ảnh hưởng của nhiệt độ, thường khi tăng nhiệt độ sẽ làm tãng tốc dộ và tăng hiệu suất đổng phân meta và ortho.

Phản ứng đạ̣c trưng của phản ứng thế electrophin là phản ứng halogen hoá, nitro hoá, sunfo hoá, ankyl hoá, axyl hoá và điazo hoá xem ở các phản ứng sau.

8.2.2. Sự dịnh hướng của benzen một lẩn thế

Nhóm thế trong nhân bezen gây ra sự phân bố mật độ electron ̛̉̉ các vị trí còn lại của nhân: ortho, meta và para, nên khả năng thế của tác nhân electrophin tiếp theo vào các vị trí đó cūng khác nhau và gọi là sự dịnh hướng của nhóm thế. Hàm lượng tương đối của sản
phẩm thế ortho, meta và para hay khả nảng định hướng của nhóm thế dực xác định bằng trạng thái ổn dịnh của phức ở các vị trí khác nhau. Phức σ càng ổn định, tốc độ thế ở đó càng lớn và sản phẩm đó chiếm ưu tiên. Một số nhóm thế làm tãng tốc độ thế gọi là nhóm hoạt hoá nhân, thường là dịnh hướng ortho và para, một số nhóm làm chậm phản ứng gọi là bị động hoá nhân thường định hướng vào meta. Một nhóm đều định huớng vào một hướng ưu tiên hơn nhưng không có tuyệt dối, chẳng hạn nitro hoá nitrobenzen cho 93% m-đinitrobenzen, 6% ortho và 1% para.

Hiệu ứng dịnh hướng và hoạt tính được giải thích trèn cơ sở hiệu ứng cảm ứng I và cộng hưởng (hay liên hợp) làm ổn định ion areni trung gian. Các sản phẩm của phản ứng này thường là khống chế động học, không phải nhiệt động học. Một số phản ứng lại không thuận nghịch và mợt sơ khác dừng phản ứng trước khi dạt cân bằng. Trong phản ứng ba trạng thái trung gịan hình thành không phụ thuộc vào tính ổn dịnh nhiệt dọ̀ng học của sản phẩm, nhưng vào năng lượng hoạt hoá cần thiết cho mồi dạng trung gian. Trong giản đồ nảng lượng tự do của phản ứng, trạng thái chuyển chuyển tới ion areni hơn là trở vể chất ban đầu, nên theo tiên đề Hammond thì tính hình học của trạng thái chuyển giống với ion areni và một nhóm thể nào làm tăng tính ổn định của chát trung gian cũng làm giảm nảng lượng hoạ hoá, có thể dùng tính ổn định cùa ba chẩt trung gian để xác định đạng nào ưu tiên để hình thành sản phà̉m.

Nói chung có các trường hợp sau:
1- Nhóm thế có hiệu ứng cho electron ($+I$) làm ổn định tất cả ba vị trí thế, hoạt hoá cà ba vị trí nhưng mạnh hơn ở ortho và para do diện tich dương ở cacbon có nhóm thế giải toả dược với nhóm thế. Nhóm ankyl hoạt hoá nhân bằng $+I$, dịnh hướng vào ortho và para bằng + $/$ và H, trong dó không biết dược sự dóng góp của các dạng cộng hưởng là bao nhiêu, nhưng trong các ion areni dịnh hướng ortho và para có một dạng (A và B) là cacbocation bậc ba còn các dạng của meta là bậc hai. Nhóm COO^{-}cũng hoạt hoá nhân và dịnh hướng ortho và para vì nhóm COO^{-}cho electron, không có tương tác cộng hưởng giữa nhóm thế và vòng:

Chẳng hạn thế vào toluen chì có phức σ ở o - và p - giải toả được diện tích dương nên hai phức này bền hơn.

Hinh 8.5. Giản dồ thế S_{E} của toluen

2- Nhón thế có hiệu ứng $-I$ đếu làm bị động hoá nhân và định hướng vào vị trí meta. Chẳng hạn khi thế vào dả̉n xuất có nhóm $\mathrm{N}^{+} \mathrm{R}_{3}$ không có hiệu ứng C, phức σ ở vị trí o - và p có cacbon ở gần với N^{+}tạo nến sự đẩy tĩnh điện trong phức làm tăng nội năng của phức σ nên phức σ meta bền hơn:

Thường có các nhóm $\mathrm{N}^{+} \mathrm{R}_{3}, \mathrm{SR}_{2}{ }^{+}, \mathrm{PR}_{3}{ }^{+}$. Trường hợp $\mathrm{NH}_{3}{ }^{+}$là bất thường, có thể hướng vào vị trí para nhiều hơn hay ít hơn hướng vào meta, còn ${ }^{+} \mathrm{NH}_{2} \mathrm{CH}_{3},{ }^{+} \mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}$ và $\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$ cho hướng meta nhiều hơn, tỷ lệ sản phấm para giảm khi tảng nhóm metyl.

Nhóm thế có hiệu ứng -l làm bị động hoá nhân nhưng dịnh hướng ortho và para như $\mathrm{CHCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}$, bị động hoá nhân bà̀ng hiệu ứng $-I$ nhưng định hướng bằng hiệu ứng siêu liên hợp H.

3- Nhóm thế có hiệu ứng $-I$ và $-C$ làm bị dộng hoá nhân và định hướng vào meta. Trong trường hợp này, các phức σ ở các vị trí đểu có nảng lượng cao hơn phức σ của benzen, nhưng phức σ ở mefa ổn dịnh hơn hai phức kia. Các nhóm này không có nguyên tố dính với cacbon vòng có cặp electron n nhưng chứa liên kết đôi cacbon - dị tố như $\mathrm{C}=\mathrm{O}, \mathrm{CN}, \mathrm{CHO}$, $\mathrm{COR}, \mathrm{COOH}, \mathrm{CONH}_{2}, \mathrm{NO}_{2} \ldots$

para

Hinh 8.6. Giản đồ thế S_{E} của nitrobenzen
4- Nhóm thế có hiẹ̀u ứng $+C$ mạnh nhưng $-I$ yếu như $\mathrm{OH}, \mathrm{OR}, \mathrm{NH}_{2}, \mathrm{NHR}, \mathrm{NR}_{2}$ đếu hoạt hoá nhân và dịnh hướng vào ortho và para. Phức σ ở đây giải toả dược điện tích dương của nhân bằng obitan n hay π. Chẳng hạn sự định hướng của nhóm thể OCH_{3} trong anizol
trong đó phức σ ở o - và p - giải toả dược điện tích dương bằng obitan n của O quyết định hướng thế, song phức σ ở meta không có tương tác này nhưng lại có tương tác I nèn phức σ ở meta kém ổn định hơn phức σ của benzen:

Tớc dộ phản ưng
Hinh 8.6. Giàn đô thé S_{E} của anizol

5- Nhóm thế có hiệu ứng $-I$ mạnh và $+C$ nhưr Cl, Br, làm bị động hoá nhân nhưng định hướng vào ortho và para, trong trường hợp này, các halogen có hiệu ưng $-I$ mạnh hơn $+C$ nhiều ở trạng thái tīnh bởi vì hiệu ứng $+C$ giữa obitan $3 p$ với $2 p$ yếu hơn giữa $2 p$ và $2 p$, song ở phức σ hiệu ứng $+C$ ở phức orho và para là có khả nảng giải toả dược diện tích dương của nhân. Hiệu ứng này có tính chất dọng trong sự dịnh hướng nhưng vẩn chưa vượt trội hiệu ứng -I nên vẩn bị động hoá nhân và các phức σ đều có năng lượng lớn hơn phức σ của benzen. Chẳng hạn thế ortho và para:

Hinh 8.7. Giản dờ thé S_{E} của clobenzen

Tóm lại có thẻ tống quát như sau:

Hoạt hoá nhân Định hướng ortho-para:	$\mathrm{OH}, \mathrm{OR}, \mathrm{NH}_{2}, \mathrm{NR}_{3}, \mathrm{Ar}, \mathrm{NHCOR}$
Bị dộng hoá nhân: Đinn hương meta	$\mathrm{CN}, \mathrm{COOH}, \mathrm{COOR}, \mathrm{CHO}, \mathrm{COR}, \mathrm{NO}_{2}, \mathrm{~N}^{+} \mathrm{R}_{3}, \mathrm{SO}_{3} \mathrm{H}, \mathrm{SO}_{3} \mathrm{R}$
Bị dộng hoá nhân: Định hướng ortho-para	Halogen, CHCl_{2}

8.2.3. Tốc dộ phần

Đẻ̉ định lượng khả nāng phàn ứng thế H của benzen và dẫn xuất một lần thế, người ta dùng nhân tố tốc độ phà̀n f, đạ̀c trưng cho tốc độ thể ờ mổi vị trí ortho f_{o}, meta f_{m} và pura f_{p}. so với tốc đọ̣ thế vào benzen.

Chả̉ng hạn trong phản ứng axetyl hoá toluen, tốc độ phần ở các vị trí: $f_{\mathrm{n}}=4,5, f_{\mathrm{m}}=$ $4,8, f_{\mathrm{p}}=749$ có nghĩa là toluen bị axetyl hoá ở vị trí ortho 4,5 lần nhanh hơn thế ở benzen, hay 0,78 lẩn nhanh hơn tốc đọ thế chung vào benzen. Tớc độ phần lớn hơn 1 của một nhóm chỉ ràng nhóm đó dã hoạt hoá vị trí đó. Nhân tớ tớc đọ phẩn khác nhau ở các phản ứng khảc nhau và khác nhau ở điều kiện khác nhau của một phàn ứng.

Tớc độ thế có thể xác định theo phương trình Hammet:

$$
\begin{aligned}
& \lg k_{0}=\rho \sigma_{\mathrm{p}}^{+}-\lg k_{\mathrm{b}} \rightarrow \lg \left(k_{\mathrm{o}} / k_{\mathrm{b}}\right)=\rho \sigma_{\mathrm{b}}^{+}=\lg f_{\mathrm{o}} \\
& \lg k_{\mathrm{m}}=\rho \sigma_{\mathrm{m}}-\lg k_{\mathrm{b}} \rightarrow \lg \left(k_{\mathrm{m}} / k_{\mathrm{b}}\right)=\rho \sigma_{\mathrm{m}}=\lg f_{\mathrm{m}} \\
& \lg k_{\mathrm{p}}=\rho \sigma_{\mathrm{p}}^{+}-\lg k_{\mathrm{b}} \rightarrow \lg \left(k_{\mathrm{p}} / k_{\mathrm{b}}\right)=\rho \sigma_{\mathrm{p}}^{+}=\lg f_{\mathrm{p}}
\end{aligned}
$$

Dùng phương trình Hammett với hằng so σ^{+}có thể tính được tớc đọ̣ phấn ở meta và para, không dùng cho vị trí ortho vì chưa tính dến hiệu ứng không gian trong phương trình Hammett.

Vì giá trị k chứa nhân tố thớng kê nên có thể xác dịnh tớc độ phần theo phần trăm sản phẩm ờ mối vị trí ortho, meta và para.

$$
\text { Tốc dộ tương đới } k_{\mathrm{ta}}=\frac{2 f_{\mathrm{n}}+2 f_{\mathrm{m}}+f_{\mathrm{p}}}{1 \times 6}=\frac{k_{\mathrm{Arz}}}{k_{\mathrm{A} \mathrm{H}}}
$$

Thành phẩn phần trả̉m sản phẩm như sau:

$$
\begin{aligned}
& \% \text { sản phẩm ortho }=\frac{2 f_{\mathrm{o}} \times 100}{2 f_{\mathrm{o}}+2 f_{\mathrm{m}}+f_{\mathrm{p}}}=\frac{2 f_{\mathrm{v}} \times 100}{6 k_{\mathrm{td}}}=\frac{f_{\mathrm{v}} \times 100}{3 k_{\mathrm{td}}} \\
& \text { \% sản phẩm meta }=\frac{2 f_{\mathrm{m}} \times 100}{2 f_{\mathrm{w}}+2 f_{\mathrm{m}}+f_{\mathrm{p}}}=\frac{2 f_{\mathrm{m}} \times 100}{6 k_{\mathrm{ld}}}=\frac{f_{\mathrm{m}} \times 100}{3 k_{\mathrm{td}}} \\
& \% \text { sản phẩm para }=\frac{f_{\mathrm{p}} \times 100}{2 f_{\mathrm{o}}+2 f_{\mathrm{m}}+f_{\mathrm{p}}}=\frac{f_{\mathrm{p}} \times 100}{6 k_{\mathrm{td}}}=\frac{f_{\mathrm{p}} \times 100}{6 k_{\mathrm{ld}}}
\end{aligned}
$$

và các tốc dộ phấn là:

$$
\begin{aligned}
& f_{6}=\left(\% \text { ortho } \times 3 k_{\mathrm{td}}\right) / 100 \\
& f_{\mathrm{m}}=\left(\% \text { meta } \times 3 k_{\mathrm{td}}\right) / 100 \\
& f_{\mathrm{p}}=\left(\% \text { para } \times 6 k_{\mathrm{td}}\right) / 100
\end{aligned}
$$

Phương trình chung là: $f_{z}=\left(6 k_{\mathrm{ArZ}} \times \%\right.$ sản phẩm của $\left.Z\right) /\left(y \cdot k_{\mathrm{ArH}} \times 100\right)$ với $z=$ vị trí ortho, meta hoạac para, $y=$ số vị trí của z.

Có thể tính tốc độ phần theo phương trình:

$$
f_{\mathrm{i}}=\alpha \cdot \beta\left(N_{\mathrm{i}}-N_{\mathrm{ArH}}\right)
$$

với f_{i} - tốc độ phần ở vị trí i, N_{i} - chỉ số phản ứng tượng ứng, N_{ArH} - chỉ số phản ứng của nguyên tử hydro trong benzen.

Chẳng hạn khi nitro hoá trong anhydrit axctic và clo hoá trong axit axetic các hyđrocacbon aren theo phương trình trên cho thấy có sự tuyến tính phụ thuộc $\lg f_{\mathrm{i}}-\mathrm{N}_{\mathrm{i}}$.

Bảng 8.4. Tỷ lệ sản phẩm đồng phân khi nitro hoá benzen thé

$\mathrm{Nhom} \mathrm{thé}^{+}$	$\%$ ortho	$\%$ meta	$\%$ para
$\mathrm{NH}_{3}{ }^{+}$	$3-5$	$35 \div 50$	$50 \div 60$
$\mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	0	89	11
$\mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	0	85	15
$\mathrm{~S}^{+}\left(\mathrm{CH}_{3}\right)_{2}$	4	90	6
NO_{2}	$5 \div 8$	$91 \div 93$	$0 \div 2$
$\mathrm{COOH}^{\mathrm{CN}}$	$15 \div 20$	$75 \div 85$	1
$\mathrm{COOC}_{2} \mathrm{H}_{5}$	$15 \div 17$	$81 \div 83$	2
COCH_{3}	$24 \div 28$	$66 \div 7$	$1 \div 6$
F	26	72	$0 \div 2$
Cl	$9 \div 13$	$0 \div 1$	$86 \div 91$
Br^{2}	$30 \div 35$	1	$64 \div 70$
I	$36 \div 43$	1	$54 \div 62$
CCl_{3}	$38 \div 45$	$1 \div 2$	$54 \div 60$
CF_{3}	7	64	29
CH_{3}	6	91	3
$\mathrm{CH}_{2} \mathrm{CH}_{3}$	$56 \div 63$	$2 \div 4$	$34 \div 41$
$0 \mathrm{CH}_{3}$	$46 \div 50$	$2 \div 4$	$46 \div 51$
$\mathrm{CH}_{2} \mathrm{NO}_{2}$	$30 \div 40$	$0 \div 2$	$60 \div 70$
$\mathrm{CH}_{2} \mathrm{OCH}$	22	55	23
OH_{3}	51	7	42
$\mathrm{CH}_{2} \mathrm{Cl}$	40	0	60
$\mathrm{CH}_{2} \mathrm{~F}$	32	15,5	52,5
	28	18	54

Khi biết tốc độ phần, có thể tiên đoán tỷ lệ đồng phân ở phản ứng có hai hay nhiều nhóm thế trong vòng vì có thể cho rằng hiệu ứng của nhóm thế là cộng tính.

Chẳng hạn tính tốc độ phần lý thuyểt khi thế vào m-xylen có hai nhóm metyl có cùng hiệu ứng như nhóm metyl trong toluen:

Từ đó có thể tính tỷ lệ tốc độ lý thuyết chung cho phản ứng axetyl hoá m-xylen và sự phân bố đồng phàn nếu phản ứng là khống chế dộng học. Trong phàn ứng trên, tốc độ chung là 347 và sự phân bố đồng phân tính dược và thực nghiệm như sau:

Sự phân bớ \% đồng phân khi axetyl hoá m-xylen		
Vị trí	Tính	Thực nghiệm
2	0,30	0
4	99,36	97,5
5	0,34	2,5

Trong trường hợp này và hầu như nhiều trường hợp khác có sự phù hợp tốt nhưng một số trường hợp hiệu ứng không phải chỉ có cộng tính. Chẳng hạn, khi axetyl hoá $1,2,3-$ trimetylbenzen tìm tháy dược 35% thể ở vị trí 5 và 65% thế ở vị trí 4 , còn tính toán thu dược 79% ở vị trí 5 và 21% ở vị trí 4 . Sự sai lệch nhau đó có thể do hiệu ứng lập thể, sự tấn công ipso hay tương tác cộng hưởng giữa các nhóm thế như trong trường hợp của p-clonitrobenzen có sự sai lệch do cộng hưởng giữa các nhóm thế:

Các kết quả tìm thấy về hoạt tính chủ yếu cho nhóm di ra là hyđro, cung dùng cho các nhóm đi ra khác hyđro, chủ yếu so sánh giữa các nhóm đi ra ở cùng một chất ban đẩu. Thang hoạt tính định lượng của các chất thơm (benzen thế, hẹ̉ thơm ngưng tụ, dị vòng thơm) dã dưa ra dựa vào quan niệm cứng-mểm. Theo thuyết obitan phân tử, dựa vào độ cứng hoạt hoá (activation hardness) dã tính được cho mỗi vị trí trong vòng thơm. Độ cứng hoạt tính nhỏ hơn thì tấn công vào vị trí đó nhanh hơn, từ đó quá trình tiên đoán cho sự định hướng giống nhau cho các nhóm di vào.

8.2.4. Tỷ lệ dồng phân ortho-para

Khi trong vòng có nhóm thế dịnh hướng ortho-para, cūng khó tiên đoán có bao nhièu dồng phân ortho và para vì tỷ lệ này rất phụ thuộc vào điều kiện phản ứng. Chả̉ng hạn clo hoá toluen cho tỷ lệ ortho/para thay đối từ 62/38 đến 34/66.

Trên cơ sở hoàn toàn thống kê, sẽ có 67% ortho và 23% para vì có hai vị trí ortho và một para. Nhưng từ sự phân bố electron ở ion phenoni khi proton hoá benzen cho thây trên mô hình sau:

và nếu chấp nhận mô hình này cho ion arenoni trong phản ứng thế thơm thì nhóm thế para có hiệu ứng ổn định của cacbon bên cạnh lớn hơn nhóm thế ortho. Nếu không có hiệu ứng khác, phải có hơn 33% para và ortho ít hơn 67%. Trong sự trao dổi hyđro, khi không có hiệu ưng khác, đã tìm thấy cho một số nhơm thế có tỷ lệ trung bình của logarit tốc độ phần cho các vị trí tới 0,865 , không xa lắm với giá trị dự đoán từ mạt độ điện tích ở cấu trúc trên.

Áp dụng sơ đổ đó cho nhóm thế dịnh hướng meta làm mất ổn định điện tích dương, tỷ lệ ortholpara phài lớn hơn 67/33.

Nhân tố quan trọng khác là hoá học lập thể.
Về ảnh hưởng 'thông gian của nhóm thế, các nhóm thế có thể tích lớn làm khó khān cho sự tạo thành phức σ và cho solvat hoá ổn định trạng thái chuyển tạo thành. Tác dụng chắn thể hiẹ̀n mạnh ở vị trí ortho do phức ortho có sức căng lập thể lớn hơn;

Chẳng hạn khi nitro hoá các ankylbenzen bằng axetylnitrat trong anhyđrit axetic ở $0^{\circ} \mathrm{C}$ cho hiệu suất sản phẩm ở các vị trí:

Hợp chât	\% ortho	\% meta	\% para
Toluen	58,5	4,4	37,1
Etylbenzen	45,0	6,5	48,5
Isopropylbenzen	30,0	7,7	62,3
tert-Butylbenzen	15,8	11,5	72,7

Ảnh hưởng nhiều là ở vị trí ortho, còn para hầu như không có anh hưởng lập thể của nhóm thế. Do đó người ta thường chú ý tới tỷ lệ sản phẩm ortho/para. Tỷ lệ này phụ thuộc vào hiệu ứng lập thể và hiệu ứng electron.

Kết quả trên cho thấy, khi tăng thể tích nhóm thế, hàm lượng \% dồng phân ortho giảm, thể tích nhóm thế càng lớn, tỷ lệ đồng phân ortho càng giảm. Nguyên nhân là sự tảng thể tích nhóm thế làm xuất hiện tương tác lập thể của nhóm thế trong phức σ, làm tăng nãng lượng của phức σ. Vai trò của ảnh hưởng lập thể càng lớn, trạng thái chuyển càng gần với phức σ.

Lượng đồng phân ortho càng giàm khi tãng thể tích của electrophin. Chả̉ng hạn, khi ankyl hoá dả̉n xuất của benzen thu được một lượng ortho lớn, còn khi axetyl hoá thì không tạo thành đồng phân ortho vì phức axetyl hoá có thể tích lớn không thể tấn công vào vị trí ortho. Cüng như khi ankyl hoá, tỷ lệ ortho thu dược lớn hơn khi dùng dân xuất ankyl clorua bậc nhất:

Về hiệu ứng electron, khi đưa nhóm thế cho electron vào tác nhân cūng đưa trạng thái chuyển gẩn tới phức σ, tương tác lập thể ở vị trí ortho giữa nhóm thế và tác nhân càng lớn, càng giảm xác suất ortho.

Khi nitro hoá phenyl halogenua, tỷ lệ ortho/ para phụ thụôc vào hai nhân tố. Một mặt thể tích halogen tăng từ F đến I , cần làm giảm tỷ lệ ortho / para, mặt khác hiệu ứng cảm ứng của halogen ở vị trí ortho làm mất ổn định hơn ở vị trí para, tỷ lệ para/ ortho tăng khi tãng hiệu úng I, nghīa là lăng từ I dển F. Hai tương tác này ngược nhau. Thực nghiệm chứng minh rằng, nhân tớ thứ hai là nhân tớ quyết định hơn.

Trong trường hợp nhóm thế có hiệu ứng -C như $\mathrm{NO}_{2}, \mathrm{CN}$, đồng phân ortho tạo thành không lớn. Nhưng khi nitro hoá thì lượng ortho lại lớn hơn dổng phân para. Điều này có liên quan tới tương tác lưỡng cực-lưỡng cực trong trạng thái chuyển, phức σ ortho có tương tác giữa hai nhóm nitro làm giảm năng lượng của phức so với phức para, làm tảng sản phẩm ortho:

Song hiện nay người ta cho ràng, sản phảm thế ortho có thể tạo thành do sự tấn cơng ipso của $\mathrm{NO}_{2}{ }^{+}$vào cacbon vòng rồi chuyển vị thành phức σ ortho:

Khi có nhóm thế có cặp electron n, còn có hiệu ứng khác làm tăng đồng phân para so với dồng phân ortho. Hãy so sánh chất trung gian ở phẩn trên, nhóm thế có cặp electron n có hai dạng cộng hưởng ortho-quinonoit và para-quinonoit thì cấu trúc para-quinonoit ôn định hơn ortho-quinonoit, tương tự para-quinon bến hơn ortho-quinon. Do đó para-quinonoit bền hơn ortho-quinonoit đóng góp lớn hơn vào sự lai hoá tăng tính ổn định chất trung gian para so với chất trung gian ortho.

Để có được sự chọn lọc vị trí para, người ta có thể khoá chát ban đầu trong một cái lồng mà chỉ còn vị trí para hướng ra ngoài. Chẳng hạn khi clo hoá anizol khi có xyclođextrin thì thu được tỷ lệ paral ortho là 21,6 , còn không có xyclođextrin chỉ có 1,48 hoặc có thể tìm thấy khi có xúc tác enzym.

8.3. PHẢN UNG CỦA NHÂN BENZEN CÓ HAI HAY NHIÊU NHÓM THÉ

Khi trong nhân benzen đã có hai hay nhiều nhóm thế, lần thế tiếp theo phụ thuộc cả vào các nhóm thế và dựa vào sự dịnh hướng của các loại nhóm thế trên để dự đoán đúng vị trí thế cho nhóm thế tiếp theo.

Trong trường hợp có hai nhóm thế, nếu hai nhóm thế dịnh hướng vào cùng một vị trí thì dể dự doán chính xác hơn, chẳng hạn, phản ứng thế của 1,3-đimetylbenzen thì thế vào vị trí ortho của nhóm này cûng là para của nhóm kia, hay thế vào p-clobenzoic axit vào vị trí ortho đối với clo và meta đối với nhóm COOH :

Song trong trường hợp hai nhóm thể dịnh hướng ở vị trí khác nhau thì khó dự doán hơn. Chẳng hạn, thế vào hợp chất sau:

Hai nhóm có khả năng định hướng xáp xỉ nhau có sự cạnh tranh vị trí, nên có thể có 4 sản phẩm khó để dự đoán tỷ lệ trừ khi có yểu tớ khó khãn lập thể như giảm khả nãng thế ortho đới với nhóm amit hơn, đạ̣c biệt khi thể tích nhóm thế càng lớn.

Khi các nhóm thế trong vòng định hướng ngược nhau thì có vài quy tắc.
I- Nếu hai nhóm thế đều hoạt hoá nhân, nhóm thế hoạt hoá mạnh nhất khống chế sự định hướng:

Khả nảng định hướng theo thứ tự: $\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{NR}_{2}, \mathrm{O}^{-}>\mathrm{RO}, \mathrm{OCOR}, \mathrm{NHCOR}>\mathrm{R}, \mathrm{Ar}$, $>$ halogen > nhóm định hướng meta.

2- Nếu một nhóm hoạt hoá nhân, một nhóm bị động hoá nhân thì nhóm hoạt hoá nhân quyết định sự định hướng thế cho tác nhân thứ ba:

3- Nếu có hai nhóm thế ở vị trí meta với nhau, hướng thế thứ ba khòng tấn công vào vị trí ở giữa hai nhóm thế vì hiệu ứng lạ̣p thể, không phụ thuộc vào sự định hướng của cả hai nhóm thế. Nếu thể tích hai nhóm thế cūng như tác nhân electrophin tãng thì hiệu ứng lập thể càng tăng.

4- Khi nhóm thế định hướng meta ở vị trí meta đối với nhóm thế định hướng ortho thì nhóm thế tiếp theo di vào vị trí ortho dối với nhóm dịnh hướng meta dẻ hơn vào vị trí para. Chẳng hạn như trường hợp sau:

Sản phẩm chính là sản phẩm (1), sản phả̉m (2) chỉ mộ́l lượng nhỏ vì quy tắc 3 trèn. còn sản phảm(3)không hình thành do hiệu ứng ortho. Hiện tượng này đã tìm thấy một số trường hợp. Ở dây có thể giải thích theo các quy tắc trền, chất ban dảu có 4 vị trí thế electrophin, vị trí 5 vi phạm quy tắc 1 , vị trí 2 vi phạm quy tắc 3 , vị trí 4 vi phạm quy tắc 4 , nên chỉ còn lại vị trí 6 .

Khi nitro hoá p-bromtoluen cho sản phẩm 2,3-dinitro-4-bromtoluen. Trong trường hợp này, nhóm nitro đầu đi vào vị trí ortho đơi với nhóm metyl, nhóm thứ hai hướng vào vị trí ortho dể hơn là para mặc dù là ở giữa hai nhóm thế ở vị trí meta mà không giảj thích tốt bằng hiệu ứng ortho, do dó có khả nảng có sự tương tác nội phân tử từ các nhóm định hướng meta.

8.4. PHẢN ỨNG THẾ S_{E} CỦA HỢP CHẤT THƠM VÒNG NGUNG TỤ

Phàn ứng dặc trưng của các hợp chất đa vòng ngưng tụ cũng là phản ưng thế electrophin vào nhân benzen, song nói chung xày ra dẻ̉ dàng hơn benzen, tương tự nhu benzen có nhóm thế cho electron. Cấu trúc và mạt dộ electron trong hợp chất da vòng ngưng cụ không đồng đều do đó phản ứng xảy ra ở các vị trí rất khác nhau.

Về cơ chế, phản ứng cũng xảy ra qua hợp chất trung gian phức σ quyế dịnh tốc độ phản ứng. Vị trí tấn công của tác nhân electrophin cūng là vị trí có mật độ electron lớn hơn và hướng thế cũng phụ thuộc vào độ bển của phức σ.

Để xác định vị trí thế của hợp chất đa vòng, thường đùng phương pháp so sánh nāng lượng định chổ của tất cả các vị trí có thể có của hợp chất bằng phương pháp HMO, so sánh với thực nghiệm về tốc độ của phản ứng trao đổi hyđro, song phương pháp thường dùng nhất là so sánh độ bền của các phức σ khác nhau có thể hình thành khi thế electrophin bà̀ng phương pháp MO.

Trong phản ứng thế S_{E} của hợp chất đa vòng, các trạng thái chuyển đi gần tới phức σ. Phương pháp cơ học lượng tử dã tính toán sự khác nhau về năng lượng của phân tử chất ban đầu và phức σ tạo thành gọi là nảng lượng giải toả $\left(\Delta E_{\mathrm{gt}}\right)$. Sự khác nhau vể nāng lượng này với tốc độ tương đối của phản ứng có mối tương quan theo phương trình:

$$
\lg k_{\mathrm{td}}=\alpha \Delta E_{\mathrm{gt}}
$$

nghīa là giữa tốc độ và $\Delta E_{\mathrm{g} 1}$ có hệ số tỷ lệ α, hệ số này phụ thuộc vào vị trí của trạng thái chuyển trên trục tọ độ.

Phức hoạt hoá hay trạng thái chuyển càng gần với phức σ, giá trị α càng lớn. Chả̉ng hạn như phản ứng clo hoá có giá trị $\alpha=0,480$ lớn hơn phản ứng nitro hoá (0,24). Từ giá trị này, nếu áp dụng tiên dề Hammond, phân tử clo kém hoạt dộng hơn nên phản ứng tạo phức σ là thu nhiệt, trạng thái chuyển ở xa trục tọa dọ hơn nghĩa là gần với phức σ. Phức hoạt hoá và phức σ càng di gần nhau, độ nhạy của phản úng với nhóm thế tảng, giá trị ρ tảng và giá $\operatorname{trị} \alpha$ và ρ thay dởi theo cùng một hướng.

Chả̉ng hạn, phản ứng thế halogen hoá naphtalen xảy ra không cấn xúc tác và phản ứng xảy ra ở vị trí $1(\alpha)$ và $2(\beta)$, trong đó vị trí I ưu tiên hơn.

Tính chất này dược giải thích bằng cách so sánh độ bền của các phức σ ở vị trí 1 và 2 :

Xét các phức trên, các phức mang diện tích dương dược giải toả trong ion areni lớn hơn so với phản ứng của benzen nên phản ứng thế ở cả hai vị trí đểu dề hơn benzen, còn định hướng thì ưu tiên vào vị trí 1 . Sự tấn công vào vị trí 1 và 2 đều có vòng benzen chứa điện tích và vòng benzen giữ được cấu trúc thợ, song phức ờ vị trí 1 có hai công thức cộng hưởng giữ nguyên vòng benzen, còn ở vị trí 2 chỉ có một công thức giữ được cấu trúc thơm. Phức σ của vị trí 1 bền hơn ở vị trí 2 , khả năng thế vào vị trí 1 nhanh hơn, sản phẩm 1 ưu tiên hơn. Song chú ý rằng, đồng phân hình thành ở vị trí β bền nhiệt động học hơn có thể là sản phẩm chính nếu phản ứng thuận nghịch và đạt dược cân bằng.

Theo thuyết MO , naphtalen có các MO , trong dó các HOMO ở gần nút có biên dộ hàm số sóng nhỏ hơn ở vị trí xa hơn, do dó vị trí 1 có biên đọ hàm số sóng lớn hơn vị trí 2 nèn hoạt dộng hơn.

Néu naphtalen có nhơm thể thì sự định hướng của nhóm thế cũng tuân theo quy tác phức σ bền và tổ hợp các quy tắc trên. Tính bền tương dối của phức lớn hơn khi phức vẩn giữ được vòng benzen có tính thơm và điện tích dương ở trong vòng benzen bị tấn conng. Điện tích dương dược giải toả khi trong vòng dó có nhóm thế cho electron hay ở vòng kia có nhóm thế hút electron.

Chẳng hạn khi thế vào 2 -metyl naphtalen:

Vòng A được hoạt hoá bởi nhóm metyl còn B thì không (đúng ra là khi có nhóm thế trong hệ vòng ngưng tụ thì đều ảnh hưởng tất cả các vòng, nhưng nơi chung là ảnh hưởng ở vòng có nhơm thế lớn nhất). Đới với nhóm metyl hoạt hoá chủ yếu vòng A nên ưu tiên thế vào vòng A. Nhóm metyl hoạt hoá ở vị trí 2 và 3 vì là ortho, không hoạt hoá vị trí 4 vì là meta. Nểu tấn công vào vị trí 3 cho công thức 1 trên, trong đó không có công thức cợng hưởng nãng lượng thấp để cho vòng benzen B là lục tử. Ngược lại, tấn công vào vị trí 1 , tạo được ion areni bền hơn với hai dạng cộng hưởng giữ dược vòng B là benzenoit. Do dó phản ứng thế ưu tiên với C_{1}.

Nếu có nhóm thế hút electron thì sản phả̉m ưu tiên với vòng không có nhóm thế. Song cūng có những trường hợp dự đoán rất khó, chả̉ng hạn khi clo hoá hay nitro hoá hợp chất sau cho sản phẩm chính ở vị trí 4 , nhưng khi brom hoá thì sàn phả̉m chính ở vị trí 6 :

Trong trường hợp antraxen, bằng cách so sánh độ bền của ba phức σ, trong đó phức thé ớ vị trí 9 hay 10 bển hơn:

nghīa là thế ưu tiên ở vòng giữa. Nếu so sánh với nãng lượng ổn định của antraxen với naphtalen cho thấy vòng giữa của antraxen chỉ có tính ổn dịnh nhỏ. Ở day cation có thể tách H^{+}cho sản phẩm thế hay cộng với nucleophin cho sản phẩm cộng.

8.5. PHẢN ƯNG THẾ ELECTROPHIN Ở HỢP CHẤT DỊ VÒNG THOM

Phản ứng thế hyđ̛o ở các hợp chất dị vòng cũng xảy ra theo cơ chế S_{E}. Các dị vòng 5 cạnh có các vị trí không tương dương nhau nén phản ứng cũng tuân theo quy tác chung trên. Pyrol, thiophen và fusan đều có khả nảng phản ứng electrophin rất cao, tương tự như phenol hay anilin, đạ̣c biệt là pyrol. Phản ưng không cẩn xúc tác mạnh và phản ứng xảy ra ở vị trí 2 hay α ưu tiên hơn vị trí 3 hay β.

Sự định hướng này có thể giải thích bằng tốc độ phản ứng trao đổi triti với axit trifloaxetic và ià̀ng cách so sánh độ bền của phức σ :

Trong các cấu trúc trên, cấu trúc có điện tích dương ở dị tố ổn định hơn do tât cả các nguyên tử đều có cấu trúc bát tử, nhưng cấu truic ở vị trí 2 có sự giải toả mạnh hơn. Như vậy, phản ứng ưu tiên ờ vị trí 2 .

Đới với benzopyrol hay inđol thì phản ứng thế ưu tiên ở vòng pyrol, phản ứng nhanh hơn benzen và thế ở vị trí 3 :

Pyriđin là dị vòng 6 cạnh có khả nång thế electrophin tương tự như nitrobenzen do độ âm điện cao của N lai hoá $s p^{2}$ làm cho electron π kém linh động khi bị tấn công, trong dó ưu tiên ở vị trí 3. Khả nảng này cưng được giải thích bằng cách so sánh các phức σ :

Sự tấn công vào vị trí 2 hay 4 cho hai cấu trúc cộng hưởng, còn vào vị trí 3 cho ba cấu trúc cộng hưởng. Các phức ở vị trí 2 hay 4 dều cho cấu trúc có điện tích dương ở N , đạac biệt kém bền do N ở đây chỉ có 6 electron. Phản ứng xảy ra chậm vì mỗi ion đều lằm bị động hoá nhân bởi hiệu ứng cảm ứng của N , nhưng ở vị trí 2 hay 4 chạm hơn.

Các dị vòng ngưng tụ như benzopyriđin (quinolin) cho thấy khả năng phản ứng ở hai vòng rất khác nhau. So với naphtalen, khi thế một cacbon bằng N , vị trí I và 2 hoạt động trở thành bị động, khả năng thế S_{E} tập trung ở vòng benzen di qua 4 phức σ :

Khả nāng phản ứng thế xảy ra ở vị trí 5 và 8 , trong đó phức σ ở 5 kém bền hơn, do có diện tích dương ở N nên phản ứng ưu tiên ở vị trí 8 . Song nếu nhóm thế có điện tích dương lớn như nhóm nitro và N bị proton hoá thành $\mathrm{N}^{+} \mathrm{H}$ thì phản ứng ưu tiên ở vị trí 5 hơn.

Đới với isoquinolin, phản ứng thế ưu tiên ở vị trí 5 và 8 , nhưng phức σ ở vị trí 8 có điện tích dương ở N nên kém bền hơn. Thực tế, khi nitro hoá isoquinolin, sản phẩm chính là dẩn xuất 5-nitro, còn 8 -nitro chỉ là sản phả̉m phụ:

8.6. CÁC PHẢN ƯNG THÉ HYĐRO CỦA NHÂN THƠM

I- Phản ứng trao dổi hydro

Hợp chất thờm có thể trao đổi hyđro bằng các đồng vị khi có axit:

$$
\mathrm{ArH}+\mathrm{D}^{+} \rightleftharpoons \mathrm{ArD}+\mathrm{H}^{+}
$$

Phản ứng thường dùng đê nghiên cứu cơ chế phản ứng và để đeutri hoá hay triti hoá chọn lọc các hợp chất thơm. Axit mạnh trao đởi nhanh với hợp chất thơm và sự trao đổi chỉ có khi nghiên cứu cơ chế thế hợp chất thợn khi có xúc tác axit. Có nhiều chứng minh có sự trao đổi hydro trong cơ chế ion areni và hiệu ứng định hướng ở trên cho thấy xúc tác axit chung và proton chuyển đổi ở giai đoạn chậm. Nhiều ví dụ cho thấy về dung dịch bền của ion areni hình thành khi tấn công của proton vào nhân thợm. Sự trao đổi đơn giản bằng đeutri khi tác dụng hợp chất thợm với $\mathrm{D}_{2} \mathrm{O}$ và BF_{3}. Đối với các dẫn xuất của benzen, sự trao đỏ̉i cũng tuân theo quy tắc thế chung ở trên, chả̉ng hạn phenol tác dụng với $\mathrm{D}_{2} \mathrm{O}$ cũng cho phản ứng trao dổi chậm khi dun nóng chỉ với hyđro ở vị trí ortho và para. Phản ứng trao đổi triti với hợp chất sau ở vị trí 2 , mặc dù vị trí này có khó khăn không gian bởi cấu trúc cầu mà có thể xem như tương tự 1,3-dimetylnaphtalen:

Sự trao dổi hyđ̛o cũng xảy ra với bazơ mạnh như $\mathrm{NH}_{2}{ }^{-}$. Trong trường hợp này, giai đoạn chậm là sự trao dởi hydro:

$$
\mathrm{ArH}+\mathrm{B} \longrightarrow \mathrm{Ar}^{-}+\mathrm{BH}^{+}
$$

theo cơ chế $S_{\mathrm{E}} I$ mà khóng theo cơ chế ion areni.
Các vòng thợm củng deutri hoá bằng $\mathrm{D}_{2} \mathrm{O}$ khi có xúc tác clorua rođi (III) hay platin hoạ̣c $\mathrm{C}_{6} \mathrm{D}_{6}$ với xúc tác ankyl điclorua. Triti hoá bằng $\mathrm{T}_{2} \mathrm{O}$ và xúc tác ankyl nhôm điclorua.

2- Phán úng halogen hoá

Halogen phản ứng với hợp chất thơm cho dẳn xuất halogen khi có xúc tác Fe hay FeX_{3} :

$$
\mathrm{ArH}+\mathrm{X}_{2} \xrightarrow{\mathrm{Fe}} \mathrm{ArX}+\mathrm{HX}
$$

Tác nhan thường dùng là clo và brom, tác dụng trực tiếp với hợp chất thơm khi có xúc tác clorua sắt, axit Lewis hay iot. Xúc tác axetat tali (III) cho phản ứng có tính chọn lọc vị trí para cao đối với nhóm định hướng ortho-para. Các chất hoạt động, kể cả amin, phenol, naphtalen, polyankylbenzen như mesitylen và isoduren không cần xúc tác, amin và phenol phản ứng nhanh ngay trong dung dịch loãng ở nhiệt độ phòng. Phản ứng của amin không dừng được phản ứng trước khi tất cả các vị trí ortho và para có thể thế, vì các halogenamin có tînh bazơ yếu hơn amin ban đầu nên kém bị proton hoá bởi HX tách ra, nên thường amin bậc nhất muốn có một lần thế phải chuyến thành anilit tương ứng. Phenol có thể dừng sau một lần thế.

Clo hoạt động hơn brom. Phenol brom hoá độc nhất ở vị trí ortho (cho 2,6-đibromphenol) khi tác dụng brom ở $-70^{\circ} \mathrm{C}$ khi có tert-butylamin hay trietylenđiamin cho kết tủa với HBr tách ra. Clo hoá ưu tiên ortho của phenol khi dùng xyclohexađien clo hoá còn clo hoá ở para của phenol, ete phenol và amin khi dùng N -cloamin hay N -clođimetylsunfoni clorua $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}^{+} \mathrm{Cl} \cdot \mathrm{Cl}^{-}$. Một số phenol ankyl hoá bị brom hoá ở meta trong dung dịch supeaxit $\mathrm{SbF}_{5} \mathrm{HF}$ do chuyển nhớm OH thành $\mathrm{H}_{2} \mathrm{O}^{+}$dịnh hướng meta. Kết hợp brom hoá và Sandmeyer của amin thơm bậc nhất với CuBr_{2} và tert-butylnitrơ cho dẩn xuất tribrom:

Tác nhân khác là $\mathrm{HOCl}, \mathrm{HOBr}, \mathrm{N}$-clo và N -brom amit (N -bromsuxinimit, tetraankyl amoni polyhalogenua) khi có axit xúc tác. Tác nhân brom hoá tớt các hợp chất bị động hoá mạnh là axit đibromxyanuric trong $\mathrm{H}_{2} \mathrm{SO}_{4}$. Hai tác nhân mạnh đạ̣c biệt là $\mathrm{S}_{2} \mathrm{Cl}_{2}$ và AlCl_{3} trong $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (tác nhân BMC), $\mathrm{Cl}_{2} \mathrm{O}$ trong $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Khi không có xúc tác, Br_{2} hay Cl_{2}, là tác nhấn tấn công làm phân cực nhân thơm:

Bazơ liên hợp trung gian 4-brom-2,5-xyclohexađienon trên đã phát hiện bằng phở khi brom hoá phenol trong dung dịch và dùng ion đồng dạng.

Khi có xúc tác axit Lewis, tiếu phân tấn công là Cl^{+}hay Br^{+}do: $\mathrm{FeCl}_{3}+\mathrm{Br}_{2} \rightarrow$ $\mathrm{FeCl}_{2} \mathrm{Br}^{-}+\mathrm{Br}^{+}$hay có thể Cl_{2} hay Br_{2} phân cực bởi xúc tác. Tác nhân khấc như HOCl trong nước cho electrophin là $\mathrm{Cl}_{2} \mathrm{O}, \mathrm{Cl}_{2}$ hay $\mathrm{H}_{2} \mathrm{OCl}^{+}$, trong axit axetic là $\mathrm{CH}_{3} \mathrm{COCl}$.

Bản than FeCl_{3} cūng như $\mathrm{CuCl}_{2}, \mathrm{SbCl}_{5} \ldots$ cho aryl clorua hiệu suất trung bình.
Khi clo hay brom hoá ở nhiệt độ cao (300 tới $400^{\circ} \mathrm{C}$), các nhóm định hướng orthopara hướng tới meta và ngược lại. Cơ chế chưa thạt rō nhưng có thể là $S_{\mathrm{E}} l$ như brom hoá 1,3,5-tribrombenzen khi co tert-butoxit kali.

Iot là tác nhân kém hoạt động hơn, trừ các chất ban đâu hoạt động, các tác nhân oxy hoá chuyển I_{2} thành tác nhân hoạt động hơn như $\mathrm{HNO}_{3}, \mathrm{HIO}_{3}, \mathrm{SO}_{3}$, axit peaxit, $\mathrm{H}_{2} \mathrm{O}_{2}$, ICl là tác nhân tấn công mạnh hơn I_{2}, còn tác nhân khác như IF , benzyltrimetylamoni dicloiođat và tổ hợp ICN và axit Lewis đùng cho các chất ban đầu hoạt động. Phản ứng iot hoá bằng $\mathrm{I}_{2} \mathrm{khi}$ có muới đồng, $\mathrm{SbCl}_{5}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Ag}, \mathrm{HgO}-\mathrm{BF}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{AgNO}_{3}, \mathrm{Ag}_{2} \mathrm{SO}_{4}$ và axetat tali (I).

Tác nhân thực của iot không rõ như clo hay brom, bản thân iot không hoạt động trừ chất hoạt động như phenol thì I_{2} là tiểu phân tấn công, còn dùng $\mathrm{CH}_{3} \mathrm{COOI}$ khi có peroxyaxetic làm tác nhân oxy hoá, $\mathrm{I}_{3}{ }^{+}$khi có HIO_{3} hay SO_{3} làm tác nhân oxy hoá thì tác nhấn tấn công là I^{+}.

Flo rất hoạt động, không dùng trực tiếp ngay ở nhiệt dộ phòng, có thể thực hiện ở nhiệt độ thấp từ -70 đến $-20^{\circ} \mathrm{C}$ phụ thuộc vào chất ban đầu nhưng khơng có ý nghīa tổng hợp, nên flo hoá bằng $\mathrm{AgF}_{2}, \mathrm{CsSO}_{4} \mathrm{~F}_{2}, \mathrm{CH}_{3} \mathrm{COOF}, \mathrm{XeF}_{2},\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{NF}, \mathrm{CF}_{3} \mathrm{OF}$,

Độ hiệu dụng thế theo thứ tự: $\mathrm{Cl}_{2}>\mathrm{BrCl}>\mathrm{Br}_{2}>\mathrm{ICl}>\mathrm{I}_{2}$.
3-Phản úng nitro hoá
Nhiều hợp chất thơm hoạt tính cao hay thấp đều tác dụng dược với axit nitric cho hợp chất nitro:

$$
\mathrm{ArH}+\mathrm{HNO}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{ArNO}_{2}
$$

Nhiều chất hoạt động mạnh hay yếu cũng bị nitro hoá bằng axit nitric nhưng thường dùng hổn hợp axit sunfuric và axit nitric, nhưng với chất hoạt động chỉ cần axit nitric khồng hay trong nước, axit axetic, anhyđrit axetic. Thực tế điều kiện nhẹ là cần cho các amin, phenol, pyrol vì hôn hợp axit sunfuric và nitric có tính oxy hoá. Nếu điều kiện khan dùng $\mathrm{N}_{2} \mathrm{O}_{5}$ trong CCl_{4}, khi có $\mathrm{P}_{2} \mathrm{O}_{5}$ trong môi trường kiềm dùng este của axit nitric như etyl nitrat, có axit Lewis xúc tác. Các amin trong điểu kiện axit mạnh định hướng meta, diều kiện axit nhẹ amin tự do nitro hoá định hướng ortho - para.

Nhóm nitro bị đợng hoá nhân nển dể dừng sau một lần mononitro hoá, nhưng cūng có thể gắn thêm nhóm thứ hai. m-Đinitro trong điều kiện mạnh hơn, thường dừng $\mathrm{NO}_{2}{ }^{+} \mathrm{BF}_{4}{ }^{-}$ trong $\mathrm{FSO}_{3} \mathrm{H}$ ờ $150^{\circ} \mathrm{C}$.

Nhiều tác nhân cho tiểu phân tấn công là $\mathrm{NO}_{2}{ }^{+}$theo các cách sau:
1- Bản thân HNO_{3} ion hoá khoảng $5 \% \mathrm{NO}_{2}{ }^{+}$cũng dủ nitro hoá:

$$
2 \mathrm{HNO}_{3} \Rightarrow \mathrm{NO}_{2}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

2. $\mathrm{C} 6 \mathrm{H}_{2} \mathrm{SO}_{4}$ là phản ứng axit-bazơ:

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}
$$

3- $\mathrm{N}_{2} \mathrm{O}_{5}$ trong CCl_{4} phan ly tức thời cho $\mathrm{NO}_{2}{ }^{+}$nhựng củng có tài liệu cho $\mathrm{N}_{2} \mathrm{O}_{5}$ là nucleophin:

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightleftharpoons \mathrm{NO}_{2}^{+}+\mathrm{NO}_{3}^{-}
$$

4- Muối nitroni este và axyl halogenua phân ly cho $\mathrm{NO}_{2}{ }^{+}$, nitroxyclohexadienon cho $\mathrm{NO}_{2}{ }^{+}$và phenol.
$\mathrm{NO}_{2}{ }^{+}$là tiểu phân tấn công trong nitro hoá được chứng minh bằng:
a) Axit nitric có pic trong phớ Raman. Khi phân ly trong axit sunfuric đặc thì pic này mất đi, xuất hiện 2 pic mới $1400 \mathrm{~cm}^{-1}$ là $\mathrm{NO}_{2}{ }^{+}$và $1050 \mathrm{~cm}^{-1}$ là $\mathrm{HSO}_{4}{ }^{-}$;
b) Thêm axit nitric vào axit sunfuric, điểm đông đặc giảm 4 lần, thêm một phân tử axit nitric sinh ra bớn tiểu phân;
c) Nghiên cứu tia X cho thấy muới nitroni có ion nitroni tấn công vòng tạo nitrat thơm;
d) Tốc đọ́ tỷ lệ với nồng độ $\mathrm{NO}_{2}{ }^{+}$không phụ thuộc vào tiểu phân khác.

Khi tác nhân cho hàm lượng nhỏ ion nitroni, phản ứng chậm và chỉ phản ứng với chất hoạt động. Trong axit đạ̣c hay dung dịch nước, đọng học là bậc hai, bạ̣c nhất cho chất ban đầu và bậc nhất cho axit nitric (nếu chỉ dû̀ng axit nitric tinh khiết thì phản ứng giả bậc nhất); trong dung môi như nitro metan, axit axetic, CCl_{4} dộng học là bậc nhất với axit nitric và bậc 0 với chất ban đầu vì giai đoạn quyết định tớc độ là hình thành $\mathrm{NO}_{2}{ }^{+}$.

Cơ chế là tạo thành ion areni, nhưng cüng có tài liệu cho rằng trong một vài trường hợp ion areni không trực tiếp hình thành mà chất trung gian là cặp gớc:

4- Phản láng nitrozo hoá

Axit nitrơ chỉ nitrozo hoá các hợp chất hoạt hoá như amin, phenol:

Phản ứng thường giới hạn ở phenol và amin bậc ba vì amin bạc nhất dể cho điazo hoá và amin bạ́c hai có khuynh hướng cho N-nitrozo dể hơn C-nitrozo. Hợp chất N-nitrozo thu được ban đâu có thể chuyển vị cho C-nitrozo hay tác dụng với mộ mol thứ hai cho hợp chất N, C-dinitrozo. Anizol nitrozo hoá trong dung moi $\mathrm{CF}_{3} \mathrm{COOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Tác nhân là NO^{+}nhưng cũng có tài liệu cho là $\mathrm{NOCl}, \mathrm{NOBr}, \mathrm{N}_{2} \mathrm{O}_{3} \ldots$ khi tác dụng nitrit natri với HCl hay HBr . NO^{+}là electrophin yếu chỉ phản ứng với chất hoạt động, phản ứng chậm hơn $\mathrm{NO}_{2}{ }^{+}$đến 10^{14} lần, tính ổn định cao của NO^{+}nên dể bị phấn cắt từ ion areni nẻn k_{-1} cạnh tranh với k_{2} và tìm thấy hiệu ứng đồng vị. Với phenol có tài liệu cho là nitrozo hoá đầu tiên nhóm OH sau đó nitrit este chuyển vị tới sản phảm C-nitrozo. Amin bậc ba có nhóm thế ortho không tác dụng với axit nitrơ do nhóm thé 5 - ortho làm mất tinh đồng phẳng của điankylamino giàm hoạt tính vòng.

5-Phản ứng ghép điazoni

Ion điazoni ghép với các chất hoạt động như amin và phenol:

$$
\mathrm{ArH}+\mathrm{Ar}^{\prime} \mathrm{N}_{2}{ }^{+} \longrightarrow \mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{Ar}{ }^{\prime}
$$

Vị trí ghép là para đới với nhóm thế hoạt hoá vì thé tích ion lớn, trừ khi para bị thế thì ghép vào ortho. Phản ứng phụ thuộc $\mathrm{p} H$. Amin trong môi trường trung tính hay axit nhẹ vì amin ở trạng thái không ion hoá. Phenol ghép trong môi trường kiềm ở dạng phenolat hoạt động hơn phenol. Cả phenol và amin không phản ứng trong môi trường kiềm vì muới diazoni chuyển thành hyđroxit điazo $\mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{OH}$.

Amin bậc nhất và hai có sự cạnh tranh phản ứng N -điazo hoá song hợp chất N -điazo
(aryl triazen) đồng phân hoá thành C-điazo. Amin axyl hoá, ete và este phenolic nói chung không tham gia phản ứng này, nhưng có vài trường hợp phản ứng dược với muối điazoni có nhóm thé́ hút electron. Một sơ trường hợp dùng bazơ pyriđin và xúc tác chuyển pha, cūng có vài muới điazoni béo ghép với hợp chất thơm, còn xyclopropanđiazoni và ion điazoni dấu cầu không bền tách N_{2} cho cacbocation rất không bền;

Có thẻ̉ đưa trực tiếp nhóm điazoni vào phenol khi dùng (aziđoclometylen) dimetylamoni clorua $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}^{+}=\mathrm{C}(\mathrm{Cl}) \mathrm{N}_{3} \mathrm{Cl}^{-}$.

6- Phản úng sunfo hoá

Phản ứng sunfo hoá rất rợng dùng cho tất cả hyđrocacbon thơm kể cả vòng ngưng tụ, aryl halogenua, este axit cacboxylic, amin, amin axyl hoá, axeton, hợp chất nitro và axit sunfonic:

$$
\mathrm{ArH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{ArSO}_{2} \mathrm{OH}
$$

Phản ứng sunfo hoá là cân bằng, có hiệu ứng dồng vị nhỏ, $k_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=2$.
Phenol cũng bị sunfonic hoá nhưng có phản ưng tấn công vào oxy cạnh tranh. Thường dùng axit sunfuric đặc nhưng cūng dùng axit sunfuric khói, $\mathrm{SO}_{3}, \mathrm{ClSO}_{3} \mathrm{H}$, tác dụng với chất hoạt động và bị động. Phản ứng là thuận nghịch nên cẩn chuyển phản ứng đến hoàn toàn. Ở nhiẹt độ thấp, phản ưng nghịch rất thấp và phản ứng thực tế là không cân bằng. SO_{3} phản ứng nhanh hơn axit sunfuric, với benzen hầu như tức thời.
SO_{3} là electrophin có trong axit đặc hay tạo thành giữa hai phân tử $\mathrm{H}_{2} \mathrm{SO}_{4}$:

Sunfon là sản phẩm phụ. Khi sunfo hoá benzen có chứa 4 hay 5 nhóm ankyl hay clo thì có phản ứng chuyển vị.

Cơ chế được nghiên cứu bởi Cerfontain cho thấy electrophin thay đởi với tác nhân mặc dù SO_{3} có trong tất cả cạ́c trường hợp ở dạng tự do hay tổ hợp. Trong dung dịch nước $\mathrm{H}_{2} \mathrm{SO}_{4}$, tác nhân là $\mathrm{H}_{3} \mathrm{SO}_{4}{ }^{+}$(tổ hợp của $\mathrm{H}_{2} \mathrm{SO}_{4}$ và $\mathrm{H}_{3} \mathrm{O}^{+}$), ở nồng dọ 80 tới 85%, và tác nhân là $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ (tở hợp của $\mathrm{H}_{2} \mathrm{SO}_{4}$ và SO_{3}) ở nồng đọ cao hơn. Trong dung dịch loãng hay đạạc, tớc đợ phản ứng tỷ lệ với hoạt tính của $\mathrm{H}_{3} \mathrm{SO}_{4}{ }^{+}$và $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$. Chẳng hạn với toluen hai dung dịch cho khác nhau về tỷ lệ ortho - para. Cơ chế của hai electrophin giống nhau:

Phản ứng theo hướng a là chính, trừ ở nồng độ $\mathrm{H}_{2} \mathrm{SO}_{4}$ rất cao theo hướng b . Với $\mathrm{H}_{3} \mathrm{SO}_{4}{ }^{+}$thì giai đoạn đầu quyết định tớc độ ở tất cả mọi điều kiện, nhưng với $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ thì giai đoạn đầu là giai đoạn chạ̣m chỉ khi nồng đọ $\mathrm{H}_{2} \mathrm{SO}_{4}$ trên $96 \% . \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ hoạt động hơn $\mathrm{H}_{3} \mathrm{SO}_{4}{ }^{+}$.

Trong axit sunfuric khói ($\mathrm{H}_{2} \mathrm{SO}_{4}$ dư SO_{3}), electrophin là $\mathrm{H}_{3} \mathrm{~S}_{2} \mathrm{O}_{7}^{+}\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right.$ proton hoá) ở nồng độ $104 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ và $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{13}\left(\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{3}\right)$ ̛̛̉ nồng độ cao hơn. Nếu SO_{3} tụ̂ do là tác nhân trong dung môi aproton, bản thân SO_{3} thực sự là electrophin. SO_{3} tự do là tác nhân hoạt đợng nhất cho tất cả các tiểu phân, sự tấn công nhanh và thường giai đoạn tiếp theo sau quyết định tớc độ phản ứng.

Nếu dùng tác nhân $\mathrm{ClSO}_{3} \mathrm{H}$ thu được axit closufinic gọi là phản ứng halogensunfo hoá:

$$
\mathrm{ArH}+\mathrm{ClSO}_{3} \mathrm{H} \longrightarrow \mathrm{ArSO}_{2} \mathrm{Cl}
$$

7- Phản úng sunfua hoá

Điphenyl sunfua tạo thành khi tác dụng hợp chất thơm với SCl_{2} với xúc tác Friedel Crafts:

$$
\mathrm{ArH}+\mathrm{SCl}_{2} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArSAr}
$$

Có thế dùng $\mathrm{S}_{2} \mathrm{Cl}_{2}$ cũng cho kết quả như trên. Nếu dùng sunfonyl clorua cho điarylsunfoxit, cũng có thể dùng S , thường trong phản ứng đóng vòng:

Sunfua không đới xứng thì dùng arylsunfenyl clorua với aren khi có vết bột sắt. Amin và phenol có thể ankylthiol hoá (sản phẩm chính ortho) khi tác dụng với điarylsunfua. Amin thơm có clo ở vị trí para tác dụng với $\mathrm{S}_{2} \mathrm{Cl}_{2}$ và NaOH cho thiophenolat (phản ứng Herz):

8-Phản ứng ankyl hoá Friedel Crafts

Phản ứng ankyl hoá gọi là phản ứng Friedel Crafts có phạm vi ưng dụng rất rộng:

$$
\mathrm{ArH}+\mathrm{RCl} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArR}
$$

Tác nhân quan trọng là ankyl halogenua, olefin, ancol và một só tác nhân khác.
Tác nhân tấn công là cacbocation:
Từ ankyl halogenua
$\mathrm{RX}+\mathrm{AlCl} \longrightarrow \mathrm{R}^{+}+\mathrm{AlCl}_{4}^{-}$
Từ ancol và axit Lewis:
$\mathrm{ROH}+\mathrm{AlCl}_{3} \rightarrow \mathrm{ROAlCl}_{2} \longrightarrow \mathrm{R}^{+}+{ }^{-} \mathrm{OAlCl}_{2}$
Tù ancol và axit protonic:
$\mathrm{ROH}+\mathrm{H}^{+} \longrightarrow \mathrm{R}^{+}+\mathrm{H}_{2} \mathrm{O}$
Từ olefin:
$-\mathrm{CH}=\mathrm{CH}-+\mathrm{H}^{+} \rightarrow-\mathrm{CH}_{2}-\mathrm{CH}^{+}-$

Sự hình thành cation đã được xác định bằng IR và NMR khi nghiên cứu cation tertbutyl từ tert-butyl clorua với AlCl_{3} trong HCl lóng khan. Sự hình thành cacbocation phụ thuộc tính bền của cation. Cation bền thì hoạt tính kém, nhu cation của triphenyl clorua hay 1-cloađanmantan chỉ phản ứng với hợp chất rất hoạt động, ion tropyli chỉ ankyl hoá anizol không ankyl hoá benzen.

Nhiều chứng minh cho rà̀ng, phản ứng Friedel Crafts với tác nhân ankyl hoá khồng hoàn toàn tự do mà ở dạng cạ̣p ion với clorua nhôm như là dạng phức, do đó metyl hoá toluen bằng metyl bromua và metyl iơua khác nhau vè tỷ lệ ortho/para/meta, trừ khi cùng một tác nhân tấn công cho cùng tỷ lẹ. Trong một só trường hợp, động học là bậc ba, bậc nhất cho chất ban đầu, tác nhân electrophin và xúc tác. Mặt khác cũng có trường hợp khả năng phản ứng là $S_{\mathrm{N}} 2$ thì không có cacbocation, nhựng nếu hoàn toàn $S_{\mathrm{N}} 2$ thì phải quay cáu hình, nhưng khi nghiên cứu Friedel Crafts thì cho thấy nó raxemic hoàn toàn hay có một vài nghịch đảo. Cũng có ngoại lệ như oxit propylen hoạt động quang học cho 100% nghịch đảo cấu hình. Sự chuyển vị cūng tìm thấy ở cơ chế monocacbocation, sự chuyển vị xảy ra trước khi tấn cồng vào vòng, chả̉ng hạn khi tác dụng $\mathrm{CH}_{3}{ }^{14} \mathrm{CH}_{2} \mathrm{Br}$ với AlBr_{3} khi không có hợp chất thợm cho hổn hợp chất ban đầu và ${ }^{14} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ hay với $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{14} \mathrm{CH}_{2} \mathrm{Br}$ có chuyển vị nhanh đã đo được ở $-70^{\circ} \mathrm{C}$. Sự chuyển vị cüng tìm thấy sau khi hình thành sản phả̉m nếu phản ứng thuận nghịch.

Phản ứng thường cho sản phẩm điankyl và triankyl hoá. Hiệu ứng của nhóm ankyl như etyl, propyl nhanh hơn 1,5 đến 3 lẩn so với benzen, nên thực tế tìm thấy ưu tiên là monoankyl. Dā̄n xuất polyankyl tìm thấy không chỉ do hoạt tính mà còn do ankyl benzen dễ tan trong lớp xúc tác để thực hiện phản ứng.

Các nhóm thế $\mathrm{OH}, \mathrm{OR}, \mathrm{NH}_{2} \ldots$ không làm dế dàng cho phản ứng vì xúc tác có phới trí các nhóm bazơ. Phenol cho phản ứng Friedel Crafts dịnh hướng ortho-para, còn amin cho
 Ankyl hoá ortho hay para của phenol hay amin bạ́c nhát bằng phương pháp gián tiếp.

Các nhóm định hướng meta không hoạt hoá nhân cho ankyl hoá như nitrobenzen không ankyl hoá, chỉ có vài trường hợp ankyl hoá theo Friedel Crafts cho hợp chất có nhóm thế hút electron, điều đó không phải do tác nhân không dủ mạnh mà do chất ban đầu không hoạt động, phản ứng như thoái phân và polyme hoá của electrophin xảy ra trước khi tấn công vào vòng.

Xúc tác thường dùng là clorua nhơm và triflo bo, nhưng nhiều axit Lewis và axit protonic như HF và $\mathrm{H}_{2} \mathrm{SO}_{4}$ cũng dùng. Với halogenua hoạt động thì chỉ cần vết xúc tác hoạt động như ZnCl_{2} là đủ, halogenua kém hoạt động như clometan cấn xúc tác mạnh hơn và cần lượng lớn hơn như AlCl_{3}. Hoạt tính xúc tác thay đói: $\mathrm{AlBr}_{3}>\mathrm{AlCl}_{3}>\mathrm{GaCl}_{3}>\mathrm{FeCl}_{3}>$ $\mathrm{SbCl}_{3}, \mathrm{ZrCl}_{4}, \mathrm{SnCl}_{4}>\mathrm{BCl}_{3}, \mathrm{BF}_{3}, \mathrm{SbCl}_{3}$.

Hạn chế của Friedel Crafts là sự chuyến vị, do đó để điều chế n-ankylbenzen cần đi qua phản ứng axyl hoá.

Phản ứng quan trọng của Friedel Crafst là khả năng đóng vòng của ankylbenzen mạch nhánh có nhóm halogen, OH , nới đôi, chẳng hạn điều chế tetralin:

Cũng như đóng vòng với tác nhấn có hai nhóm chức, dùng dể dóng vòng 6 cạnh, cả 5 và 7 cạnh:

9- Phản úng aryl hoá

Các hợp chất thơm có thể ghép khi có axit Lewis và axit protonic, gọi là phản ứng Scholl:

$$
2 \mathrm{ArH} \xrightarrow[\Delta]{\mathrm{AlCl}_{3}} \mathrm{Ar}-\mathrm{Ar}+\mathrm{H}_{2}
$$

Phản ứng cho hiệu suất thấp nên ît dùng. Ở nhiệt độ cao và xúc tác axit mạnh nên chất đầu có thẻ̉ bị phá huỷ, nhưng cơ thể dùng để tởng hợp các hệ vờng ngưng tụ lớn, chả̉ng hạn tông hợp binaphtyl từ naphtalen;

Phản ứng Scholl cũng dóng vòng nọ̣i phân tử:

Cơ chế phản ứng có thể là proton hoá cho ion areni rồi tấn công vào vòng khác.
10- Phản úng axyl hoá
Phản úng điều chế aryl xeton cũng là phản ứng axyl hoá Friedel Crafts:

$$
\mathrm{ArH}+\mathrm{RCOCl} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArCOR}
$$

Tác nhân axyl hoá thường dùng là các halogenua axit, anhyơrit axit và xeten, thường dùng halogenua axit hơn với hoạt tính $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$, với gơc R là aryl hay ankyl. Phản ứng không có chuyển vị gốc R và có thể dừng sau khi đả thế một nhớm RCO , vì nhóm RCO bị dộng hoá nhân.

Vai trò xúc tác là tạo phức với tác nhân, với 1 mol đâu phới trí với oxy của tác nhân:

Axit dùng xúc tác khi tác nhân là axit cacboxylic. Anhyđrit hôn hợp cacboxylic sunfonic $\mathrm{RCOOSO}_{2} \mathrm{CF}_{3}$ là tác nhân mạnh nhất, axyl hoá benzen khơng cấn xúc tác. Các hợp chất hoạt động như aryl ete, hẹ ngưng tụ, thiophen chỉ cần một lượng rất nhỏ xúc tác. Clorua sát, sất, iot, clorua kêm là xúc tác phố biến nhất. Các nhóm $\mathrm{OH}, \mathrm{NH}_{2}$, dịnh hướng para dễ axyl hoá, với amin và phenol có phản ứng N - và O -axyl hoá cạnh tranh nhau, nhưng O -axyl có thể chuyển vị cho C -axyl theo Fries.

Cơ ché có thể là tấn công của RCO^{+}tự do hay cặp ion theo co ché S_{E} bình thường:

$$
\mathrm{RCOCl}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{RCO}^{+}+\mathrm{AlCl}_{4}^{-}
$$

Với R bậc ba có phản ứng tách CO cho R^{+}nên có sản phẩm phụ ankylaren. Chẳng hạn pivaloyl clorua $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}$ axyl hoá bình thường anizol, nhưng với benzen cho $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}_{6} \mathrm{H}_{5}$. Co chế khác là không ग̣hải cation axyl mà là phức $1: 1$ tấn công:

Sự tấn công của cation tự do khơng thích hợp về lạ̣p thể của R . Ion RCO^{+}được phát hiện bà̀ng IR trong dung dịch phức giữa axyl clorua và clorua nhôm trong dung moi phân cực như nitrobenzen, nhưng không có trong dung môi không phan cực nhur clorofom khong có ion tự do chỉ có phức. Cấn 1 mol xúc tác tạo phức với sản phảm ở cuới phản ứng. Khi phản ứng với $\mathrm{RCO}^{+} \mathrm{SbF}_{6}{ }^{-}$khơng có xúc tác thì cơ chế ion (hay cạ̣p ion) là chắc chắn.

Nêu dùng anhyđrit hỗn tạp RCOOCOR' cho hai sàn phả̉m ArCOR và ArCOR', sản phảm ưu tiên phụ thuộc vào hai nhân tớ: vđ̛i gơo R có nhóm thé hút electron cho sàn phảm chính và xeton hình thành có gớ R lớn hơn là chính.

Nitrin và HCl khi có xúc tác Friedel Crafts cũng axyl hoá aren cho xeton (phản úng Houben-Hoesch):

$$
\mathrm{ArH}+\mathrm{RCN} \frac{\mathrm{HCl}}{\mathrm{ZnCl}_{2}} \mathrm{ArCOR}
$$

Cơ chế phàn ứng khá phức tạp, giai doạn đầu là tán cơng vào chất ban đàu bằng tiểu phân chứa HCl và nitrin cho muới imin (3) hay muới imin (3) có thé do tương tác của hai
tiểu phân (1) và (2). Giai đoạn thứ hai là thuỷ phân muơi imin:

Phản ứng áp dụng cho phenol, phenol ete, và một số hợp chất dị vòng hoạt động như pyrol, nhựng cũng có thể dùng cho amin thợm nếu dùng BCl_{3} xúc tác. Phản ứng axyl hoá trong trường hợp này có tính chọn lọc para cao.

Phản ứng axyl hoá Friedel Crafts cũng có hiệu ứng vòng hoá khi có nhóm axyl clorua, anhyđrit hay axit ở vị trí thích hợp:

Thường cho vòng 6 cạnh, có thể 5 và 7 cạnh nhưng chạam hơn, có thể tổng hợp hợp chất 3 vòng:

Nếu dùng anhydrit sauxinic cho sản phẩm axyl hoá, rồi khử và đóng vòng (phản ứng Haworth):

11- Phản úng fomyl hoá

Phản ứng gắn nhơm CHO vào nhan benzen gọi là fomyl hoá, nếu dùng CHCl_{3} và ion hydroxit gọi là phản ứng Reimer-Tiemann:

Phản ứng chỉ dùng cho loại phenol và hợp chất dị vòng như pyrol và inđol. Phản ứng
tiến hành trong môi trường bazơ và cho sản phảm thé bình thường vào vị trí ortho, nếu hai vị trí ortho bị chiếm thì mới vào para với hiệu suất 50%. Song phản ứng có nhiều bất thường.

Trong phản ứng này tác nhân tấn công là điclocacben tấn công vào nhân benzen theo S_{E} bình thường:

Chảng hạn phản ứng fomyl hoá pyrol:

Sản phẩm (4) là thế bình thường còn sản phẩm (5) là sản phẩm mở rộng vòng.
Và phản ứng của p - xylenol:

cho sản phẩm (6) bình thường và sản phẩm (7) là do tấn công ipso của: CCl_{2} vào CH_{3}. Vị trí này không có hyđ̛ro nên khơng thể mất hyđ̛o bình thường mà có khả năng cợng hợp với proton.

Phản ứng fomyl hoá dùng hexametylentetramin thay cho clorofom, gọi là phản ứng Duff, áp dụng cho phenol và amin thế vào ortho cho sản phẩm $\mathrm{ArCH}_{2} \mathrm{NH}_{2}$. Cơ chế này có giai đoạn đâu là aminankyl hoá cho $\mathrm{ArCH}_{2} \mathrm{NH}_{2}$ rồi loại hyđrohalogenua tiếp cho $\mathrm{ArCH}=\mathrm{NH}$ và thuỷ phân cho anđehit. Khi dùng $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$ vơi $\mathrm{CF}_{3} \mathrm{COOH}$ có thể áp dụng cho ankylbenzen đơn giản hiệu suất cao hơn, có độ chọn lựa vị trí thế para cao hơn. Phản ứng cūng cho imin như là chất trung gian.

Fomyl hoá bàng xyanua kēm, gọi là phản ứng Gatterman, áp dụng cho ankylbenzen, phenol, ete và nhiều hợp chất dị vòng, nhưng không áp dụng cho amin thơm:

$$
\mathrm{ArH}+\mathrm{Zn}(\mathrm{CN})_{2} \xrightarrow{\mathrm{HCl}} \mathrm{ArCH}=\mathrm{NH}_{2}^{+} \mathrm{Cl}^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{ArCHO}
$$

Phản túng chính là chát ban dầu tác dụng với $\mathrm{HCN}, \mathrm{HCl}$ và ZnCl_{2}, nhưng dùng $\mathrm{Zn}(\mathrm{CN})_{2}$ (HCN và ZnCl_{2} in sitı) tiện lợi hơn mà không giảm hiệu suất. Cơ ché́ phản ứng Gatterman không được nghiên cứu nhiều nhựng cho sản phẩm ban đầu chứa nitợ mà bình thường có thể tách ra rồi thuỷ phan cho anđehit. Khi benzen tác dụng với NaCN trong diều kiện supeaxit $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OH}-\mathrm{SbF}_{5}$ cho sản phảm hiệu suất tớt đưa tới kết luận electrophin trong phản úng này là $\mathrm{HC}^{+}={ }^{+} \mathrm{NH}_{2}$.

Phản ứng fomyl hoá bằng fomamit hai lần thế, gọi là phản ứng Vilsmeier hay Vilsmeier - Haack là phản ứng chung hơn cho fomyl hoá:

Song phản ứng chỉ áp dụng cho các hợp chất thơm hoạt hoá như amin và phenol. Hyđrocacbon thơm và dị vòng có thể áp dụng khi trong vòng có những nhóm thé hoạt hoá mạnh nhân benzen như azulen, feroxen, tác nhân dùng nhiều là N -phenyl- N -metylfomamit, các ankyl amit hay điankyl amit cũng dùng. Photgen dùng thay cho POCl_{3}. Cơ chế phản úng như sau:

Tác nhân tấn công là (8) và sản phẩm (9) không bền dể thuý phân cho sản phẩm. Giai doạn hình thành tác nhân E hay tác nhân E tấn công vào chất ban đâu là giai đoạn quyết định tớc độ phụ thuộc vào hoạt tính của chất ban đầu. Nếu dùng $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$ thay cho POCl_{3}, phản ứng có thẻ̉ dùng cho hợp chất kém hoạt dộng hơn như naphtalen hay antraxen.

Ngoài ra có những phương pháp fomyl hoá khác như điclometyl metyl ete, fomyl hoá vòng thơm khi có xúc tác Friedel Crafts cho $\mathrm{ArCHClOCH}_{3}$ là chất trung gian. Có thể dùng orthofomiat:

$$
\mathrm{ArH}+\mathrm{Cl}_{2} \mathrm{CHOCH}_{3} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArCHO}
$$

Ngoài ra fomyl hoá bầng HCOF và BF_{3} mạnh hơn clorua fomyl dùng cho benzen,
 đương lượng parafomanđehit trong dung môi aproton khi $c o ́ \mathrm{SnCl}_{4}$ và amin bạ́c ba hay gián tiếp fornyl hoá bằng 2-etoxy-1,3-dithiolan.

12- Phản ứng cacboxyl hoá

Photgen tác dụng với hợp chất thơm khi có xúc tác Friedel Crafts cho axit cacboxylic:

$$
\mathrm{ArH}+\mathrm{COCl}_{2} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArCOOH}
$$

Quá trình phản ứng tương tự như axyl hoá bằng clorua axit, sản phấm ban đầu tạo thành là ArCOCl thuỷ phân cho axit song cũng có trường hợp ArCOCl tạo thành tấn công vào vòng benzen cho ArCOAr.

Các tác nhân thường dùng là oxalyl clorua, ure hyơroclorua, cloral, cacbamoyl clorua, N, N-dietylcacbamoyl clorua. Với cacbamoyl clorua cho sản phẩm amit nên gọi là tổng hợp amit Gatterman.

Cacbon đioxit có thể cacboxyl hoá ion phenolat, gọi là phản ứng Kolbe-Schmitt:

Natri phenoxit cacboxyl hoá mạnh ở vị trí ortho, cơ chế do hình thành phức giữa tác nhân và CO_{2} làm cho cacbon của CO_{2} trở nên dương hơn tấn công vào nhân benzen:

Kali phenoxit tạo phức yếu hơn và tấn công chủ yếu vào vị trí para. Có thể dùng tetraclorua cacbon thay cho CO_{2} ở điều kiện của phản ứng Reimer Tiemann. Natri và kali có khả năng cacboxyl hoá chọn lọc vị trí para cao khi dùng natri hay kali cacbonat và monooxit cacbon mà khi dùng cacbonat ${ }^{14} \mathrm{C}$ sẽ có ${ }^{14} \mathrm{C}$ ở p-phenolbenzoic axit. CO chuyến thành fomat natri hay kali. CO cacbonyl hoá vòng benzen khi có xúc tác Pd. Phản ứng xúc tác Pd dùng dể trực tiếp tớng hợp axyl florua; $\mathrm{ArH} \rightarrow \mathrm{ArCOF}$.

13- Phản úng amit hoá

Amit thế thu được khi tác dụng isoxyanat với vòng thơm:

$$
\mathrm{ArH}+\mathrm{RNCO} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArCONHR}
$$

R có thể ankyl hay aryl nhưng aryl có thé̉ cho trime hay đime. Isothioxyanat cho thioamit. Phản ứng cho hiệu suất tớt với chất ban đấu loại $\mathrm{ArCH}_{2} \mathrm{CONCS}_{\text {cho }}$ vòng hoá nội phân tử cho vòng 6 cạnh. Cüng dùng etylcacbamat $\mathrm{NH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$ (vớ $\mathrm{P}_{2} \mathrm{O}_{5}$ trong xylen) và biscacbamoyl điselenua $\mathrm{R}_{2} \mathrm{NCOSeSeCONR}_{2}$ (với HgBr_{2} hay SnCl_{2}) để amit hoá vòng thơm:

14. Phản ûng hydroxyankyl hoá

Hợp chá̛t thơm ngưng tụ với anđehit và xeton gọi là phản ứng hyđroxyankyl hoá:

Tác nhân tấn công trong phản ứng này là $\mathrm{R}-\mathrm{C}^{+}(\mathrm{OH}) \mathrm{R}$ ' hình thành từ andehit hay xeton với xúc tác axit trừ khi thay dổi trong môi trường kiềm. Phản ứng dùng diều ché ancol, tuy nhiên nhiều ancol hình thành ban đấu phản ứng tiếp với hợp chất thợn cho biaryl hoá. Như phản ứng tổng hợp DDT:

Và nếu dùng phenol cho sản phẩm gọi là bisphenol. Phản ứng hyđroxyankyl hoá phenol với fomandehit gọi là phản ưng Lederer-Manasse. Phản ứng cẩn phải có điếu kiện khớng chế vì cô thể thế ở para hay hai vị trí ortho và cơ thể tái aryl hoá cho cáu trúc polyme như polyme phenolfomanđehit.

14- Phản úng vòng hoá của anđehit và xeton (phản úng xyclodehydrat hoá andehit và xeton)

Các hợp chất thơm chứa nhóm chức andehit hay xeton ở vị trí thích hợp trong mach nhánh để vòng hoá thành vòng 6 cạnh khi tác dụng với axit.

Phản ứng tương tự như phản ứng 12 trên, nhưng phản ứng loại nước tiếp theo luôn luôn xảy ra để liên kết đôi liên hợp với vòng thơm nên gọi là phản ứng vòng hoá-đehyđrat hoá (xyclodehyđrat hoá).

Phương pháp chung để tổng hợp các vòng cacboxyclic và dị vòng. Thường dùng axit polyphotphoric hay axit khác. Phương pháp đi từ điarylmetan chứa nhóm cacbonyl ở vị trí
ortho có thể vòng hoá cho dẩn xuất của antraxen, gọi là phản ứng Bradsher:

Trong phản ứng này có phản úng đehyđ̛rat hoá 1,4 .
Áp dụng phản ứng vòng hoá - đehydrat hoá đê tổng hợp các hệ dị vòng, gọi là phản ứng Bischler - Napieralski. Phản ứng đi từ amit vòng hoá khi có POCl_{3} :

16- Phản ûng halogenankyl hoá
Một số hợp chất thơm tác dụng với HCHO và HCl cho sản phả̉m chứa nhóm $\mathrm{CH}_{2} \mathrm{Cl}$ gọi là phản ứng cloankyl hoá hợp chất thơm:

$$
\mathrm{ArH}+\mathrm{HCHO}+\mathrm{HCl} \xrightarrow{\mathrm{ZnCl}_{2}} \mathrm{ArCH}_{2} \mathrm{Cl}
$$

Phản ứng có čai đoạn ban đẩu là tác dụng của hợp chất thơm với anđehit cho hyđroxyankyl như phản ứng 13 trên, rồi tác dụng với HCl cho dẵ xuất cloankyl. ZnCl_{2} xúc tiến phản ứng với mục dích tăng tính axit của môi trường, tāng sự chuyển hoá của ion $\mathrm{HOCH}_{2}{ }^{+}$.

Phản ứng cūng dùng các anđehit khác và HBr hay HI . Hợp chất thơm có thẻ dùng là benzen và ankylbenzen, ankoxy và halogenbenzen, amin và phenol nhưng thường bị polyme hoá. Với hợp chất kém hoạt đợng thì dùng clometyl metyl ete $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl},\left(\mathrm{ClCH}_{2}\right)_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{COCl}, 1$-clo-4-(clometoxy)butan. Sản phẩm phụ quan trọng là $\mathrm{Ar}_{2} \mathrm{CH}_{2}$.

17- Phản úng aminankyl hóa
Một sớ hợp chất thơm hoạt động như phenol, amin, pyrol, indol tác dụng với fomanđehit và amin bậc hai cho hợp chắt hyđroxyankylamin:

Cüng dùng một sớ andehit khác. Aminoankyl hoá là trường hợp đạ̣c biệt của phản ứng Mannich khi phenol và amin tác dụng vơi N -hyđroxymetylcloaxetamit, thu được amit metyl
hoá, gọi là phản ứng amitankyl hoá, nhưng thường không bền bị thuỷ phân cho sản phẩm aminankyl:

18- Phản úng thioankyl hoá

Phenol tác dụng với dimetylsunfoxit và DCC (đixyclohexylcacbođiimit) cho sản phẩm thế nhóm metylthiometyl ở vị trí ortho:

Có thể thay DCC bằng pyriđin- $\mathrm{SO}_{3} . \mathrm{SOCl}_{2}$ và anhyđrit axetic. Amin tác dụng với tert$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCl},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ và NaOCH_{3} trong CHCl_{3} cho $o-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SCH}_{3}$.

Sản phả̉m có thể chuyển nhoóm $\mathrm{CH}_{2} \mathrm{SCH}_{3}$ thành CHO nên là phương pháp gián tiếp để tổng hợp các anđ̉ehit thé ortho-amin và ortho-hyđroxy. Các hyđrocacbon thơm có thể thioankyl hoá bằng α-(clometylthio) axetat $\mathrm{ClCH}_{2} \mathrm{SCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$ cho $\mathrm{ArCH}_{2} \mathrm{SCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$, với metylsunfinylmetyl sunfua $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{SOCH}_{3}$ cho $\mathrm{ArCH}_{2} \mathrm{SCH}_{3}$ khi có axit Lewis.

19-Phản úng xyan hoá
Hyđrocacbon thơm, kể cả benzen, phenol, phenol ete có thể xyan hoá bằng tác dụng với tricloaxetonitrin, BrCN , hay fuminat thuý ngan $\mathrm{Hg}(\mathrm{ONC})_{2}$:

$$
\mathrm{ArH}+\mathrm{Cl}_{3} \mathrm{CCN} \xrightarrow{\mathrm{HCl}} \mathrm{Ar} \underset{\mathrm{NH}_{2}^{+} \mathrm{Cl}^{-}}{\mathrm{C}} \mathrm{CCl}_{3} \xrightarrow{\mathrm{NaOH}} \mathrm{ArCN}
$$

Phản ứng có sự tấn công của ion $\mathrm{Cl}_{3} \mathrm{C}-\mathrm{C}^{+}=\mathrm{NH}$ do proton kết hợp vào nitơ nhóm xyan tấn công vào nhân thơm theo S_{E}. Amin thơm bậc hai và phenol cũng xyan hoá bằng $\mathrm{Cl}_{3} \mathrm{CCN}$ và BCl_{3}.

20- Phản úng hyatroxyl hoá
Phản ứng hyđ̛oxyl hoá trực tiếp bằng thế electrophin:

$$
\mathrm{ArH}+\mathrm{F}_{3} \mathrm{C}-\underset{\mathrm{O}}{\mathrm{C}-\mathrm{O}-\mathrm{OH} \xrightarrow{\mathrm{BF}_{3}} \mathrm{ArOH}}
$$

xảy ra cho hiệu suất thấp và thường khi có nhớm OH trong nhân lại có phản ứng chuyển hoá khác. Nhưng các ankyl benzen như mesitylen, đuren có hyđroxyl hoá với hiệu suất tớt bằng triflopeaxetic axit và BF_{3} :

Benzen và benzen thế như toluen, xylen, clobenzen, chuyển thành phenol với peborat natri- $\mathrm{CF}_{3} \mathrm{CSO}_{3} \mathrm{H}$, có thẻ̉ dùng $\mathrm{H}_{2} \mathrm{O}_{2}$ trong $\mathrm{HF}-\mathrm{BF}_{3}$ hay $\mathrm{H}_{2} \mathrm{O}_{2}$ với AlCl_{3}, với hiệu suất 50% co 37% ortho, ngoài ra có quinon và catechol. Amin thơm, N -axyl amin và phenol hydroxyl hoá bằng $\mathrm{H}_{2} \mathrm{O}_{2}$ trong SbF_{3} - HF .

Phương pháp hyđroxyl hoá khác là oxy hoá phenol bà̀ng $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ trong kiềm (phản ứng Elbs).

Amin thơm bạ̣c nhất, hai và ba hyđ̛roxyl hoá ortho gọi là phản ứng oxy hoá BoylandSims do ion $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ tấn công ipso rồi chuyển vị.

Ngoài ra còn có những phản ứng thế hyđro của nhân thơm kèm theo chuyển vị được trình bày trong chương chuyến vị.

21-Phản ứng sunfonyl hoá

Điarylsunfon được tổng hợp bằng hợp chất thơm với arylsunfonyl và xúc tác Friedel Crafts:

$$
\mathrm{ArH}+\mathrm{Ar}^{\prime} \mathrm{SO}_{2} \mathrm{Cl} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArSO}_{2} \mathrm{Ar}^{\prime}
$$

Phản ứng tương tự phản ứng axyl hoá với halogenua axit cacboxylic. Phương pháp tốt hơn là dùng arylsunfonic axit và $\mathrm{P}_{2} \mathrm{O}_{5}$ trong axit polyphotphoric hoạc arylsunfonic triflometansunfonic anhydrit (in situ từ $\mathrm{ArSO}_{2} \mathrm{Br}+\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Ag}$) với xúc tác.

22-Phản ưng chuyển vị Fries
Este phenolic tác dụng khi đun nơng với xúc tác Friedel Crafts có phản ứng chuyển vị nhóm axyl vào nhân benzen, gọi là chuyển vị Fries:

Sản phẩm thu được là o - hay p-axylphenol phụ thuộc vào nhiẹ̉t độ, dung môi, hàm
lượng xúc tác dùng, nhưng trong điểu kiện chọn lọc có một sản phả̉m ưu tiên. Thường ở nhiệt độ thấp, sản phẩm para ưu tiên, ở nhiệt độ cao là ortho. Trong chất ban đầu, R có thế ankyl hay aryl, nhóm thế dịnh hương meta ngăn cản phản ưng. Khi dùng arylbenzoat với $\mathrm{F}_{3} \mathrm{CSO}_{2} \mathrm{OH}$, phản ứng chuyển vị là thuận nghịch và cân bằng.

Cơ chế chưa tháy hoàn toàn rô, có thể hoàn toàn nội hay hoàn toàn ngoại phân tử hay một phần. Quá trình thường được nghiên cứu khi có thêm chất thợm khác, chả̉ng hạn như toluen, nếu toluen bị axyl hoá thì có một phấn ngoại phân tử, nếu khơng bị axyl hoá thì là nội phân tử, nhưng cūng không thật chắc chắn vì toluen có bị tấn công hay vì kém hoạt động hơn chất khác. Đôi khi dùng phương pháp thực nghiệm chéo và cho rằng chất ban đầu và xúc tác tạo nên phức (8) với tỷ lệ xúc tác/ chất ban đầu là $1 / 1$:

Phản ứng chuyển vị Fries cūng xảy ra khi có ánh sáng mà không có xúc tác, gọi là chuyển vị Fries quang hoá, ưu tiên là quá trình gốc tự do nội phân tử theo cơ chế sau:

Sản phẩm thu được là ortho và para nhưng cho hiệu suất thấp so với quá trình xúc tác Lewis, nhất là khi có nhóm định hướng meta. Phenol luôn là sản phẩm phụ do ArO ${ }^{\circ *}$ tách ra khỏi lồng dung môi, nhận lấy hyđ̛o từ phân tử bên cạnh cho phenol. Nếu dùng phenylaxetat ở trạng thái khí không có dung môi để hình thành lồng dung môi nhưng có isobutan làm chất cho hyđro thì phenol là sản phả̉m chính và không cho sản phả̉m o-hay p-hydroxyaxetophenol. Cơ chế này được xác định bằng CIDNP và phổ Raman.

23- Phản ứng chuyển vị ete phenolic

Ete phenolic đun nóng với xúc tác AlCl_{3} cho ankylphenol:

Phản ứng giống như cơ chế phản ứng ankyl hoá hay axyl hoá Friedel Crafts, nhựng thường cho hiệu suất thấp nên ít dùng trong tởng hợp. Trong phản ứng có tìm thấy sự đồng phân hóa gốc R và quá trình có thê nợi hay ngoại phân tử. Thực tế đả tìm tháy điankylphenol
là quá trình ngoại phân tử, còn khi chuyển ete p-tolyl-sec-butyl quang hoạt thành 2-sec-butyl-4-metylphenol là quá trình nội phân tử và bảo toàn cấu hình.

24- Phản úng chuyển vị nhóm nitro
Hợp chất N -nitroamin thơm tác dụng với axit cho sản phẩm o - và p-nitroamin với sản phẩm ortho ưu tiên:

Quá trình là nội phân tử, không quan sát thấy dồng phân meta như khi nitro hoá tự̛̣ tiếp amin thơm có một lượng nhỏ meta, nghĩa là không cơ sự phân tích ra ion $\mathrm{NO}_{2}{ }^{+}$để tấn công vào vòng khác. Phản ứng cũng dược chứng minh bằng phương pháp đánh dấu đồng vị, như khi tác dụng chất ban đầu với $\mathrm{K}^{15} \mathrm{NO}_{2}$ cho sản phẩm không chứa ${ }^{15} \mathrm{~N}$ và phản ứng chuyển vị của hō̄n hợp $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{15} \mathrm{NO}_{2}$ và $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHNO}_{2}$ cho 2-nitro-4-metylanilin không chứa ${ }^{15} \mathrm{~N}$. Mặt khác, sự chuyển vị của (10) khi có $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NCH}_{3} \mathrm{NO}_{2}$ không đánh dấu thu được sản phả̉m đánh dấu (11):

(11)

Phản ứng có thể xảy ra theo hai cơ chế:
1- sự tấn công vòng của oxy nhớm nitro vào vị trí ortho trước khi phân cắt;
2- phân cắt thành gốc và ion gớc trong lờng dung môi:

Cơ chế sau chứng minh bà̀ng hiệu ứng nhơm thế, hiệu ứng đồng vị ${ }^{15} \mathrm{~N}$ và ${ }^{14} \mathrm{C}$ cho tháy không được đồng bộ và thực tế là cả N -metylanilin và axit nitrơ sinh ra khá lớn, hàm lượng gần như bằng sản phẩm o - và p-N-metylanilin. Sản phẩm phụ hình thành khi gốc di ra khỏi lổng dung môi.

25- Phản ứng chuyển vị Fischer - Hepp

Khi tác dụng N -nitrozoamin thợm với HCl sê thu được sản phẩm chuyển vị nhóm nitrozo vào nhân:

Phản ứng gọi là chuyển vị Fischer-Hepp dùng diều chế hợp chất nitrozo khi không thể dùng phản ứng C-nitrozo hoá vào amin thơm bậc hai. Sản phảm thu được ưu tiên là p-nitrozo và dùng axit HCl , với axit khác cho hiệu suất thắp hay không cho kết quả.

Cơ chế chưa thật rō nhưng có chứng minh rằng phản ứng là nội phân tử, vì khi thêm ure vào phản ứng nếu có tách ra ion tự do như NO^{+}hay NOCl trong dung dịch thì ure sê kết hợp với các ion đó trước khi chuyển vị.

26- Phản û̀ng chuyển vị nhóm arylazo
Các aryl triazen tác dụng với axit sẽ chuyển vị cho dān xuất azo:

Thường điazo hoá amin thơm bằng axit nitrơ cho triazen rồi tác dụng với axit cho chuyển vị là sản phẩm điazo thế của amin thơm bạc nhất hay bậc hai. Phản ứng luôn cho đồng phân para trừ khi vị trí này đã bị chiếm.

27- Phản ûng chuyển vị halogen (chuyển vị Orton)

Khi tác dụng hợp chất có halogen đính với nitơ trong mạch nhánh với axit sẽ chuyển vị halogen vào nhân:

Phản ứng chuyển vị gọi là chuyển vị Orton. Sản phả̉m chính là đồng phân para nhưng cũng hình thành sản phâm ortho. Chất ban đâu là N -clo hay N -bromamin, ít dùng dān xuất N -iot. Phản ứng thường xảy ra trong nước hay axit axetic. Amin có thé bị axyl hoá, trừ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NCl}_{2}$ cho 2,4 -đicloanilin. Phản ứng là chuyển vị ngoại phân tử chứng minh bằng halogen hoá chéo và đồng vị. Phản ứng đâu tiên là HCl tác dụng với chất ban đấu cho axyl amin ArNHCOCH ${ }_{3}$ và tách ra Cl_{2}, sau đó Cl_{2} halogen hoá nhân thơm. Thực nghiệm dã chứng
minh bằng tách clo ra khỏi hỗn hợp. Phản ứng chuyển vị Orton cũng xảy ra bằng quang hoá hay đun nơng khi có peroxit benozyl và theo cơ chế gớc tự do.

28- Phản úng chuyển vị gốc ankyl
Khi đun nóng muới arylankylamoni clorua ở nhiệt độ $200 \div 300^{\circ} \mathrm{C}$ sẽ chuyển vị góc ankyl vào nhân, gọi là chuyển vị Hofmann - Martius:

bằng phản ứng tổng hợp chéo, cho thấy phản ứng là ngoại phân tử. Chẳng hạn, metylanilin bromua không chỉ cho sản phả̉m bình thường là o - và p-toluiđin nhưng cūng có anilin, đi- và tri-metylanilin, chứng tỏ quá trình là ngoại phân tử và có sự đồng phân hoá gớc R bạc nhất.

Khi R là bậc nhất, phản ứng đi qua ankyl halogenua ban đầu theo $S_{\mathrm{N}} 2$:

$$
\mathrm{RN}^{+} \mathrm{H}_{2} \mathrm{Ar}+\mathrm{Cl}^{-} \longrightarrow \mathrm{RCl}+\mathrm{ArNH}_{2}
$$

Chứng minh cho quan niệm này là đã tách ra dược ankyl halogenua và $\mathrm{Br}^{-}, \mathrm{Cl}^{-}$và I^{-} cho tỷ lệ sản phẩm orthol para khác nhau, phản ứng tiếp theo là ankyl halogenua phản ứng vào nhân theo ankyl hoá Friedel Crafts cho sàn phẩm chuyển vị. Khi R là bậc hai hay ba thì cacbocation trực tiếp hình thành khong di qua ankyl halogenua.

Phản ứng cũng xảy ra khi đun nóng amin (không phải muới) với muói như CoCl_{2}, $\mathrm{CdCl}_{2}, \mathrm{ZnCl}_{2}$ gọi là chuyển vị Reilly - Hickinbottom. Nhóm R bậc nhất lớn hơn gó́c etyl thì cho cả hai sản phấm chuyển vị và không chuyển vị. Nói chung, phản ứng ít dùng cho amin bạ̣c hai và ba vì thường R bị phân cắt cho olefin trong điều kiện phản ứng.

Các arylamin axetyl hoá cũng chuyển vị gốc axyl vào nhân khi quang hoá như quá trình chuyển vị Fries quang hoá ở trên.

8.7. PHẢN UNG S_{E} CỦA NHÓM ĐI RA KHÁC HYĐRO

Nhơm thế trong S_{E} có thể không chi có hyđro như trên. Phản ứng thế S_{E} xảy ra né́u tác nhân E^{+}thay thế nhóm đi ra không phải hyđ̛oro. Có thể là phản ứng của hyđ̛ro thay thế một nhóm đi ra không phải hyđro:

$$
\mathrm{ArX}+\mathrm{H}^{+} \longrightarrow \mathrm{ArH}
$$

hay mợt E^{+}khác hyđ̛ơ thay thế một nhóm đi ra khác:

$$
\mathrm{ArX}+\mathrm{Y}^{+} \longrightarrow \mathrm{ArY}
$$

và phản ứng do sự dời chuyển nhóm thế khác hyđro ở trong nhân, có thể nội hay ngoại phân tử:

8.7.1. Co chế thế ipso

Trong các phản ứng nói trên, tác nhân electrophin tấn công vào vị trí ortho-, meta hay para đới với nhóm thế đã có trong nhân, nhưng còn có khả nāng khác củng quan trọng là tác nhân electrophin tấn công vào ngay vị trí của nhóm thế, hay nhơm đi ra, gọi là tấn công ipso.

Trạng thái này dược nghiên cứu nhiều ở phản ứng nitro hoá. Khi tác nhân electrophin $\mathrm{NO}_{2}{ }^{+}$tấn công vào vị trí ipso của X để tạo ion areni có thể có năm khả năng có thể có như sơ đồ sau:

Cách a : Ion areni mất NO_{2} dể trở vế chất ban đầu như là không có phản ứng;
Cách b : Ion areni mất X^{+}cho sản phẩm như trường hợp thế đơn giản với nhóm đi ra khác H ;

Cách c: Nhóm electrophin NO_{2} chuyển vị 1,2 rồi tách proton cho sản phẩm thế ortho.
Sản phẩm tìm thấy giống sản phẩm thế trực tiếp vào vị trí ortho nhưng không dễ gì biết được có bao nhiêu sản phẩm ortho tạo ra theo cách này nhưng có nhiều chứng minh là có tỷ lệ đáng kể. Do khả năng này nên nhiều kết luận vế hoạt tính ở vị trí ortho, meta và para còn nghi ngờ vì một sớ sản phẩm khơng phải tấn công trực tiếp vào vị trí ortho mà tấn cong ipso rời chuyển vị.

Cách d : Nhóm thế X chuyển vị 1,2 cũng có sản phẩm như thế ortho, nhưng cách này rất thấp, ît ra chỉ ở electrophin $\mathrm{NO}_{2}{ }^{+}$.

Cách e : Tấn công của nucleophin vào ion areni cho sản phẩm thế xyclohexadien, trong mợt số trường hợp đả tách ra được, như là phản ứng cộng 1,4 vào nhân thơm.

Thường các phản ứng này được phân loại theo nhóm đi ra. Khả năng phản ứng phụ thuộc vào khả năng đi ra của các nhóm thế, thường phụ thuộc vào khả nảng nhận điện tích dương của nhóm đi ra.

Phản ứng thế ngay ở cacbon có nhóm đi ra gọi là phản ứng ipso cūng đi qua phức σ như S_{E} bình thường:

Nhân tớ quyết định là nhóm nào tách ra từ phức σ.
Phản ứng phở biến là phản ứng deankyl hoá, nhất là những nhóm ankyl bậc ba:

Một lượng lớn sản phả̉m đeankyl hoá cūng xảy ra khi clo và brom hoá tert-butylbenzen, bằng cách tách nhóm tert-butyl từ phức σ cũng thu được 3,5-đibrom-tert-butyl khi brom hoá 1,3,5-tri-tert-butylbenzen.

Khi nitro hoá dẩn xuất thế I và Br của anizol cũng thu được sản phẩm thế với nhóm đi ra là I hay Br cho $30 \div 40 \%$ sản phảm p-nitroanizol:

Clo khó thế hơn nên sản phẩm đeclo hoá không xảy ra vì clo tách ra ở dạng Cl^{+}kém thuận lợi hơn.

Nhóm thế ipso dể nhất là nhóm silan trong arylsilan, nhóm silyl này tách ra dể hơn là hyđro:

$$
\mathrm{Ar}-\mathrm{SiR}_{3} \mathrm{E}^{+}+\mathrm{X}^{-} \longrightarrow \mathrm{Ar}-\mathrm{E}+\mathrm{R}_{3} \mathrm{SiX}
$$

Nhóm silyl này định hướng cho tấn công ipso của electrophin, là nhơm dịnh hướng ipso mạnh nhất. Phản ứng này được chứng minh bằng cơ chế giống với phản ứng S_{E} qua phức σ như trên:

8.7.2. Các phản ứng S_{E} của nhóm di ra khác hyđro

1- Phản úng deankyl hoá

Phản ứng này ngược với phản ứng ankyl hoá Friedel Crafts:

$$
\mathrm{ArR}+\mathrm{H}^{+} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArH}
$$

Nhóm ankyl bị phân cắt khỏi nhân thơm bằng proton hay axit Lewis. Nhóm ankyl bậc ba dẻ đi ra hơn, chả̉ng hạn nhóm tert-butyl:

Nhóm ankyl bậc hai phân cắt khó hơn, còn bậc nhất hầu như khong. Phản ứng này thường xảy ra trong phản ứng dùng xúc tác Friedel Crafts (Lewis hay proton với hợp chất thơm chứa gốc ankyl). Khi phân cắt, gốc R trờ thành olefin ở nhiệt độ cao trên $400^{\circ} \mathrm{C}$, ở nhiệt độ thường nhớm R tấn công vào nhân khác. Phản ứng có đổng phân hoá, chuyển từ vị trí này tới vị trí khác trong vòng này tới vòng khác quan trọng hơn là phân cắt. Trong phản ứng này, vị trí meta cho sản phẩm thích hợp hơn cho diankylbenzen, triankylbenzen thì sản phẩm là $1,3,5$ - vì đều là sán phẩm bền nhiệt động học cao nhất. Sự dời chuyển có thể là nội hay giữa phân tử phụ thuộc vào điều kiện và nhóm R. Chẳng hạn etylbenzen tác dụng với HF và BF_{3} cho benzen và đietylbenzen là dời chuyển giữa các phân tử, propylbenzen đánh dấu ở vị trí β có benzen, propylbenzen, đi- và tripropylbenzen nhưng propylbenzen thu lại được một phần đánh dấu ở vị trí α và vị trí γ (dời chuyển nội và ngoại phân tử), o-xylen tác dụng với HBr và AlBr_{3} cho hôn hợp o - và m - nhưng không có p-xylen, còn p-xylen cho p-và m-xylen không có o-xylen, và không thu được trimetylbenzen (chuyển vị nội phân tử đặc biệt). Nhóm metyl chỉ chuyển vị nội phân tử còn nhóm khác có con đường khác.

Cơ chế chuyển vị ngoại phân tử có thể tạo cation tự do nhưng cunng có khi không.
Cơ chế giữa các phân tử không tảch ra cation đề nghị như sau:

Nếu từ chất quang hoạt $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHDCH}_{3}$ dánh dấu trong vòng với ${ }^{14} \mathrm{C}$ và tác dụng với GaBr_{3} trong benzen cho etylbenzen không chứa đeutri hay hai đeutri, nèn tốc độ mát độ bức xạ xấp xỉ bằng tớc độ mất độ quang hoạt.

Cơ chế chuyển vị nọi phân tử chưa thạt rõ nhưng có thể ở vị trí 1,2 :

Sự chứng minh từ ${ }^{14} \mathrm{C}$ đánh dấu tìm thấy vị trí 1,2 trong chuyển vị nội phân tử, không có chuyển vị 1,3 hay 1,4 .

Nhóm phenyl cũng chuyển vị, o-terphenyl tác dụng với $\mathrm{AlCl}_{3}-\mathrm{H}_{2} \mathrm{O}$ cho hồn hợp chứa $7 \% \mathrm{o}-, 70 \% \mathrm{~m}$ - và 25% p-terphenyl. Nhóm ankyl thay thé H mà còn có nhóm khác H nhur nitro...

Không giơng ankyl, phản ứng axyl hoá Friedel Crafts nói chung không thuận nghịch nhưng có khi nhóm axyl là electrofuge dễ đi ra, đặc biệt khi có hai nhóm thế ortho:

2-Phản û́ng decacboxyl hoá

Các axit thơm khi đun nóng với đờng và quinolin sẽ đecacboxyl hoá:

$$
\mathrm{ArCOOH} \underset{\text { quinolin }}{\mathrm{AlCl}_{3}} \mathrm{ArH}+\mathrm{CO}_{2}
$$

Phản ứng xảy ra khi đun nơng mứi của axit hay đun nóng axit với axit mạnh, thường axit sunfuric. Phản ứng đi từ axit chịu ảnh hưởng của nhóm hút electron ở ortho và para và lập thể của nhóm thế ở ortho thường bị giới hạn bởi các nhơm chức có trong hệ benzen.

Phương pháp đecacboxyl hoá axit, theo cơ chế ion areni với H^{+}là electrophin và CO_{2} là nhóm đi ra với thứ tự ái lực electrophin: $\mathrm{COO}^{-}>\mathrm{H}^{+}>\mathrm{COOH}$, nên nhóm COOH tách H^{+} ra trước khi phân cắt là cần thiết:

Khi đecacboxyl hoá ion cacboxylat có thê có sự tấn công khác nhau theo $S_{\mathrm{E}} /$. Cơ ché này cho thấy phản ứng là bậc nhất và cần nhớm hút electron để ổn định cacbanion, kích thích phản ứng:
1.

2-

Cơ chế của phương pháp đồng - quinolin ít được nghiên cứu nhưng đã tìm thấy xúc tác thực là ion đồng Thực tế phản ứng xảy ra nhanh khi đun nóng trong quinolin có oxit đồng thay cho đờng. Cơ chế cho thấy muới đồng của axit thực tế chịu đecacboxyl hoá, đă tìm thấy muối đồng của axit thơm dẻ̉ đecacboxyl hoả khi đun nóng trong quinolin và hợp chất aryl đồng là chất trung gian có thể tách ra được trong mợt số trường hợp. Bạc thay đồng cho hiệu suất cao.

Trong một só trường hợp nhóm cacboxyl có thé thay thé bàng nhóm khác hyđro như $\mathrm{NO}, \mathrm{I}, \mathrm{Br}, \mathrm{Hg}$.

Trong phản ứng đecacbaxyl hớ cựng cơ chuyển vị, chẳng hạn khi đun nơng ion phtalat với một lượng nhỏ xúc tác cađimi, sinh ra ion terephatalat:

Khi đun nóng muối benzoat với muới cađimi sẽ chuyển không cân đới cho benzen và ion terephtalat gọi là phản ứng Henkel cũng là cơ chế $S_{\mathrm{E}} l$.

3-Phản ứng decacbonyl hoá

Anđehit thơm với axit sunfuric sẽ đecacbonyl hoá cho aren:

$$
\mathrm{ArCHO} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{ArH}+\mathrm{CO}
$$

Phản ứng này ngược với phàn ứng Gatterman Koch. Phản ứng theo cơ chế ion areni do tấn công của electrophin H^{+}và nhơm đi ra là HCO^{+}. Tiểu phân này hoạ̣c mất hyơro cho CO hoặc tương tác với hyđro của nước cho axit fomic. Andehit thơm cũng đecacboxyl hoá khi có bazơ xúc tác. Khi có xúc tác bazo, cơ ché giơng $S_{\mathrm{E}} 1$.

4- Phản úng Jacobsen

Phản ứng xảy ra khi đun nóng các polyankyl hay polyhalogenbenzen với axit sunfuric có phản ứng sunfo hoá và chuyển vị kèm theo. Phản ứng gọi là phản ưng Jacobsen:

Phản ứng dùng cho benzen ít nhất bốn lần thế, tở hợp cả ankyl và halogen, như ankyl là metyl hay etyl và halogen là iot, clo, brom. Nếu có nhóm isopropyl hay tert-butyl cho sán phẩm tách cho olefin.

Phản ứng Jacobsen dùng để nghiên cứu chuyển vị các polyankylbenzen. Sản phẩm phụ thường có là pentametylbenzen và $2,4,5$-trimetylbenzensunfonic axit chỉ rằng, phản ứmg có quá trình chuyển vị ngoại phân tử.

Cơ chế phản ứng Jacobsen chưa được thiết lập nhựng có chứng minh rằng sự chuyển vị là ngoại phân tử, nhóm chuyển vị là metyl trong polymetylbenzen mà không phải nhóm sunfonic. Sự sunfo hoá cũ̃g có sau khi chuyển vị. Dùng phương pháp dánh dấu cho thấy nhóm etyl chuyển vị không có chuyển vị ngoại phân tử.

5- Phản úng desunfo hoá

Phản ứng phân cắt nhóm sunfo từ hợp chất thơm là ngược với phản ứng sunfo hoả:

$$
\mathrm{ArSO}_{3} \mathrm{H} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}]{4} \text { loãng } \mathrm{ArH}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

Thường dùng axit sunfuric loãng, tính thuận nghịch giảm khi tăng nồng dộ của axit sunfuric. Phản ứng dùng để khoá vị trí thế meta và thường tách ra sau phản ứng. Nhóm sunfo có thể thay thế bằng nhóm nitro và halogen. Nhóm sunfo có thể tách ra khi có môi trường kiềm và niken Raney.

Các sunfonyl clorua hay bromuta chuyển thành dẩn xuất clo hay brom khi đun nóng với clotris(triphenylphotphin) rođi (I). Cơ chế phản ứng tương tự như đecacbonyl hoá:

$$
\mathrm{ArSO}_{2} \mathrm{Br} \xrightarrow{\mathrm{RhCl}\left[\mathrm{P}_{(}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}} \mathrm{ArBr}
$$

5- Phản û́ng đehalogen hoá

Aryl halogenua loại halogen khi có xúc tác Friedel Crafts:

$$
\mathrm{ArX} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{ArH}
$$

Phản ứng đeclo hoá xảy ra hiếm còn deflo hoá không xảy ra. Phản ứng thường dùng tác nhan khử như Br^{-}hay I^{-}để tổ hợp với Br^{+}hay I^{+}. Trừ phản ứng deiot hoá còn nói chung các phản ứng khác î́t dùng. Cũng tìm thấy sự chuyển vị halogen với cư chế halogen hoá trên.

Sự chuyển vị của polyhalogen khi có xúc tác bazơ mạnh như $1,2,4$-tribrombenzen chuyển thành $1,3,5$-tribrombenzen khi tác dụng với $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHK}$. Phản ứng này đi qua chất
trung gian cacbanion theo $S_{\mathrm{E}} I$ gọi là sự "nhảy múa" halogen (halogen dance).
Các tác nhân khác hay dùng trong loại halogen là $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnH}, \mathrm{HI}, \mathrm{Sn}$ và $\mathrm{HBr}, \mathrm{Zn}$ trong axit hay kiềm, xúc tác hyđro phân, xúc tác chuyển pha... $\mathrm{Zn}-\mathrm{Ag}, \mathrm{Na}-\mathrm{Hg}$ trong NH_{3}. long.

Tác nhân niken Raney trong dung dịch kiêm hiệu dụng cho dā̃n xuất flo cũng như các halogen khác. Các tác nhân này không phải dựa theo cơ chế thế electrophin mà có mợt sớ là nụcleophin hay gốc tự do.

6-Phản ứng thuỷ phân hơp chất cơ kim
Các hợp chất cơ kim thuỷ phân trong môi trường axit:

$$
\mathrm{ArM}+\mathrm{H}^{+} \longrightarrow \mathrm{ArH}+\mathrm{M}^{+}
$$

Các kim loại hoạt động như Mg, Li... chỉ cần nước là đủ. Phản ứng quan trọng là thuỷ phân Grignard với M có thể là kim loại hay phi kim như $\mathrm{SiR}, \mathrm{HgR}, \mathrm{B}(\mathrm{OH})_{2}$.

Các arylmagie hay aryl liti dể điều chế, thường dùng điều chế các muối của axit yếu:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}+\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \longrightarrow \mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-} \mathrm{MgBr}^{+}+\mathrm{C}_{6} \mathrm{H}_{6} .
$$

Khi liên kết giữa kim loại và vòng là cợng hoá trị thì phản ứng theo cơ chế ion - areni, còn liên kết thực tế là ion thì đó chị là phản ứng axit bazơ.

Chưong 9

PHẢN UNG TÁCH E

Phản ứng tách E (elimination) là quá trình đi ra khỏi phân tử chất ban đầu đồng thời hai nguyên tử hay hai nhóm nguyên tử.

Dạng chung như sau: $A-(R)_{n}-B \longrightarrow(R)_{n}+A B$
Trong loại phản ứng này, thường chất ban đầu tách ra hai thành phần nhỏ hơn gọi là hai nhóm đi ra để tạo thành sản phẩm có chứa liên kết π hay σ.

Chất ban đâu \rightarrow sản phẩm + thành phấn $1+$ thành phần 2.
Để phân loại phản ứng E, người ta dùng chữ Hy Lạp để chỉ nguyên tử hay nhóm nguyên tử trong bộ khung cacbon: nhóm đi ra ở C_{1} hay C_{α} được ký hiệu là 1 hay α, nhóm cùng tách ra ở C_{2} hay C_{β} bên cạnh được ký hiệu là β hay $2, \gamma$ hay $3, \delta$ hay $4 \ldots$ cho nên phản ứng tách có thể xảy ra theo các loại được ký hiệu theo vị trí của hai nhóm tách ra như sau:
C_{α} và C_{α} gọi là phản ứng tách α hav (1,1). Phản ứng có hai nhóm đi ra ở cùng một nguyên tử cacbon, thường cho sản phả̉m là cacben và nitren:

C_{α} và C_{β} gọi là phản ứng tách β hay $(1,2)$. Một nhóm đi ra là α và nhóm kia là β, thường cho sản phẩm là anken hay ankyn:

C_{α} và C_{γ} gọi là phản ứng tách γ hay $(1,3) \ldots$ thường cho vòng ba cạnh:

C_{α} và $\mathrm{C}_{\delta}, \mathrm{C}_{\omega} \ldots$ cho những vòng lớn hơn.
Ngoài ra, phản ứng tách ra những phân đoạn của phân tử gọi là phản ứng tách phân mảnh hay loại bỏ mộ thành phần phan tử gọi là tách đoạn mạch.

Về cơ chế có hai loại cơ chế chính là $E 1$ và $E 1 c b$ dơn phân tử và $E 2$ lưỡng phân tử nên có các loại cơ chế:

$$
\alpha-E 1, \alpha-E 2, \alpha-E 1 c b, \beta-E 1, \beta-E 2 \ldots
$$

Trong hai nhóm đi ra, một là nhóm electrophin, thường là proton hay H , còn nhóm kia là nucleophin, thường là halogen. Phản ứng tách xảy ra trong dung dịch theo các cơ chế ở trên, còn phản ứng nhiệt phân trong pha khí có thể theo hai cơ chếlà: phản ứng perixyclic nói ở chương 12 hay cơ chế gốc tự do nói ở chương 11.

Ở đây chủ yếu trình bày về cơ chế trong dung dịch với sự hình thành sản phả̉m là hợp chất không no, thường chứa nới dòi hay nói ba: $\mathrm{C}=\mathrm{C}, \mathrm{C} \equiv \mathrm{C} . \mathrm{C}=\mathrm{N}, \mathrm{C} \equiv \mathrm{N} \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}, \mathrm{N}=\mathrm{N} \ldots$ trong đó quan trọng nhất là phản ứng hình thành anken và ankyn.

9.1. PHẢN ÚNG TÁCH \propto HAY (1,1)

Phản ứng tách α hay $(1,1)$ xảy ra do hai nguyên tử ở trên cùng một cacbon đi ra khỏi phân tử chất ban đầu để tạo thành sản phả̉m thiếu electron:

Phản ứng này gồm quá trình tách cationit và anionit:

$\mathrm{X}=$	Halogen	Me	$\mathrm{N}_{2}{ }^{+}$	$\mathrm{N}_{2}{ }^{+}$	Halogen
$\mathrm{Z}=$	H	Halogen	H	$\mathrm{CO}_{3}{ }^{-}$	Halogen

Phản ứng tách quan trọng hình thành sản phẩm rất hoạt đợng là các cacben ($\mathrm{R}-\mathrm{C}$:) và nitren ($\mathrm{R}-\mathrm{N}$:) , như là tiểu phần trung gian trong nhiều phản ứng.

Thường gạp những phàn ứng sau:

$$
\begin{aligned}
& \mathrm{HO}^{-}+\mathrm{HCCl}_{3} \longrightarrow \mathrm{HCOOH} \\
& \mathrm{HO}^{-}+\mathrm{HCCl}_{3} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}}-\mathrm{CCl}_{3} \xrightarrow{\text { chạm }} \mathrm{Cl}^{-}+: \mathrm{CCl}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CO} \xrightarrow{\mathrm{HO}^{-}} \mathrm{HCOO}^{-}
\end{aligned}
$$

Quá trình chậm tạo ra điclocacben $: \mathrm{CCl}_{2}$ cũng như khi tác dụng amiđua kali với 2,2-diphenylvinyl bromua:

Tương tự như phản ứng Reimer Tiemann:

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HCCl}_{3} \xrightarrow{\mathrm{HO}^{-}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCl}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}
$$

Phản ưng tạo thành allen từ đihalogenxycloankan:

Phản ứng thoái phân Hofmann khi tác dụng N -bromamit với bazơ mạnh để tạo thành nitren:

$$
\mathrm{R}-\mathrm{CO}-\mathrm{NHBr} \xrightarrow{\mathrm{HO}^{-}} \mathrm{R}-\mathrm{CO}-\mathrm{N}: \longrightarrow \mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{O}
$$

9.2. PHẢN UNG TÁCH $\boldsymbol{\beta}$

Phản ứng tách β hay (1,2) bao gồm hai loại tách: trong dung dịch và trong pha khí (tách nhiệt). Phản ứng trong dung dịch có một nhớm đi ra cùng với cặp electron, một nhóm để lại cạ̉p electron, chẳng hạn hyđ̛o. Phản ứng tách nhiệt có hai cơ chế chính là perixyclic và gốc tự do: sản phẩm hình thành chứa nối đôi $\mathrm{C}=\mathrm{C}$ hay $\mathrm{C} \equiv \mathrm{C}$. Cơ chế trong dung dịch có thể xảy ra theo quá trình hai giai đoạn $E 1$ và $E 1 c b$ hay đồng bộ $E 2$.

9.2.1. Cơ chế $E I$

Cơ chế đạ̣c trưng bằng giai đoạn quyết định tốc độ tạo thành cacbocation trung gian được ổn định bằng tách H^{+}ở C_{β} để tạo thành liên kết π ở C_{α} và C_{β}.

Giai đoạn 1:

Giai doạn 2:

Giai đoạn quyết định tớc độ là hình thành cacbocation nên $v=k[\mathrm{RZ}]$ và phản ứng của dả̃n xuất bậc ba xảy ra dē dàng hơn do tạo thành cacbocation bậc ba:

Phản ứng tách thường dùng cho các hợp chất ancol trong môi trường axit mạnh để tổng hợp anken qua cacbocation hơn là các dẵn xuất halogenua hay sunfonat cho hỗn hợp sản phả̉m phức tạp:

Phản ứng tách $E I$ có những đạ̣c tính sau:

+ Phản ứng thường có hà̀ng số phản ứng ρ âm.
$+E I$ cơ hiệu ứng đồng vị động học bậc hai, tương tự $S_{\mathrm{N}} l$.
+ Phản ứng được xúc tiến khi chất ban đầu có nhơm thế $+I,+C$ để ổn định cacbocation.
+ Phản ứng cần có nhóm đi ra dē tức là nhóm đi ra dễ ion hoá.
+ Dung môi cần có lực ion hoá cao.
+ Phản ứng thường ở nhiệt độ cao.
+ Phản ứng cần có kiềm mạnh.
Về mặt động học và lập thể, phản ứng El có những đạ̣c điểm sau:
1-Phản ứng có tốc độ bậc nhất. Dung môi không xuất hiện trong phương trình tốc đọ nhưng nếu có ở giai đoạn quyết định tớc độ thì cũng dẽ kiểm soát bằng cách thêm một lượng nhỏ bazơ liên hợp của dung môi, sẽ thấy lượng chất thêm vào không làm tăng tốc độ của phản ứng.

Tất cả những nhân tớ làm ổn định cacbocation đểu tạo khả năng thiết lập trạng thái chuyển cacbocation để quyết định tớc dộ phản ứng, còn ở giai đoạn sau, sự tấn công của bazơ cũng tạo nên trạng thái chuyển có sự phân cắt một phần liên kết $\mathrm{C}-\mathrm{H}$ và hình thành một phần liên kểt đôi $\mathrm{C}=\mathrm{C}$:

nên những yếu tơ làm ổn định anken cung làm ổn định trạng thâi chuyển có bản chất anken này.

2- Nhóm đi ra ở giai đoạn quyết định tớc độ nên hai phân tử cón nhóm thé khác nhau sẽ có tớc độ khác nhau, nghĩa là các dẫn xuất chỉ khác nhau về nhóm đi ra, chẳng hạn RCl và $\mathrm{RS}^{+}\left(\mathrm{CH}_{3}\right)_{2}$ đều cho sản phẩm như nhau nhưng khác nhau về tớc độ phản ứng do khả năng ion hoá của phân tử khác nhau. Nhóm đi ra thực tế không ảnh hưởng đến giai doạn sau nên với các dã̃n xuất RZ khác nhau về Z đều tạo mợt lượng olefin giớng nhau (chênh lệch nhau khoảng 1%). Khi cacbocation đã hình thành, nếu có cùng dung môi và nhiệt độ thì sản phẩm trong cả hai trường hợp là như nnhau, do đó tỷ lệ tách và thế là giớng nhau. Chẳng hạn khi thuý phân hai chất sau trong dung dịch etanol 80% ở $65^{\circ} \mathrm{C}$:

Hai chất cho cùng một tỷ lệ sản phẩm như nhau nhưng tốc độ khác nhau do khác nhau nhóm đi ra. Nếu phản ứng là bậc hai thì nucleophin không thể tách H_{β} cùng mợt tớc độ vì H_{β} do ảnh hưởng của Cl trung tính và $\mathrm{S}^{+}\left(\mathrm{CH}_{3}\right)_{2}$ mang điện tích dương là khác nhau.

3- Phản ứng tách thường ưu tièn tách hydro trans hơn cis nhưng trong $E 1$, bản chấ lập thể của hyđ̛o không lớn mà tính bền của olefin quyết định hơn, nghīa là phản ứng tuân theo quy tắc Zaitsev.

Bảng 9.1. Sự phụ thuộc hiệu suất olefin vào điều kiện phản ứng

R	Điếu kiện	Hiệu suắt \%			
		$\mathrm{Z}=\mathrm{Cl}$	Br	I	$\mathrm{S}^{+}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	rươu $60 \%, 100^{\circ} \mathrm{C}$	13	14	-	-
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	rựu $80 \%, 25^{\circ} \mathrm{C}$	17	13	14	-
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	rựu $80 \%, 50^{\circ} \mathrm{C}$	40	.	.	40

Trong phản ứng trên, proton không đơn giản tự tách ra mà là do tương tác với bazơ, thường với dung môi, đạ̣c trựng cho sự tách proton là obitan tự do p chứa điện tích dương của cacbon và obitan của liên kết có nhóm đi ra bị phân cắt phải ở cùng một mặt phẳng, gọi là lập thể electron, ở vị trí đó có sự xen phủ cực đại giữa obitan trống và obitan của cặp electron liên kết $\mathrm{C}-\mathrm{H}$:

Thường phản ứng tạo thành trans-olefin dẽ̃ hơn cis, do phức cis hình thành có sức căng phụ trong phức hoạt hoá vì tương tác đẩy của các nhóm thế, nghĩa là năng lượng phức hoạt hoá của cis cao hơn trans:

4- Cacbocation là chất trung gian nên có sự chuyển vị của cacbocation như ở $S_{\mathrm{N}} \dot{I}$, biếu hiện trong những phản ứng xúc tác axit. Chả̉ng hạn, phản ứng tách của 3-metyl-2-butanol khồng phải cho 2 mà 3 sản phẩm:

bởi vì có quá trình chuyển vị hyđ̛̃ua từ cation bậc hai tới bậc ba:

cation 2-metyl-2-butyl
Theo cơ chế chung sau:

Cūng như ở $\mathrm{S}_{\mathrm{N}} 1$, trong phản ứng $E 1$, giai đoạn chính là tách Z^{-}để tạo C^{+}, sau đó tách H^{+}bằng bazơ nên phản ứng thay đổi phụ thuộc vào sự tồn tại của cacbocation.

Nếu thời gian tồn tại của cacbocation rất nhỏ thì trước khi tách proton không thể xảy ra sự chuyển vị, vì thế obitan $s p^{3}$ của proton có thể chuyển sang obitan p của liên kết π bằng con đường gần nhất:

Hoá học lập thể trong trường hợp này tương ứng với $E 2$ là hợp chất ban đầu cần tuân theo quy lắc bốn trung tâm. Tỷ lệ trans-cis của olefin tạo thành phụ thuộc vào cấu dạng của chất ban đầu.

Nếu thời gian tốn tại của cacbocation lớn, cacbocation có thể chuyển thành cấu dạng bền hơn, thuận lợi về năng lượng hơn với các nhóm thế ở cách xa nhau hơn. Trong trường hợp này, sản phả̉m chính ưu tiên là trans olefin.

Thực ra tỷ lệ cis-trans olefin trong EI thay đởi trong giới hạn rộng, có khả nãng cho sản phẩm trung gian bất kỳ giữa hai giới hạn trên.

Chả̉ng hạn, khi dung môi phân cis và trans-2-metylxyclohexyltoluensunfonat trong metanol, phản ứng trong hai trường hợp này đều cho hai sản phẩm tách đồng phân (1-metylxyclohexen và 3 -metylxyclohexen) và 3 sản phẩm thế (cis và trans-metyl-xyclohexylmetyl ete do quá trình thế nucleophin và 1-metylxyciohexyl-1-metyl ete do chuyển vị.
Chât ban đåu

9.2.2. Cơ chế E1cb

Phản ứng tách theo cơ chế $E / c b$ cuñg là phản ứng tách β, bao gồm hai giai doạn, trong đó giai đoạn đầu là H tách ra trước bằng bazơ để tạo cacbanion trung gian và giai doạn sau là ổn định cacbanion bằng tách X để tạo olefin.

Giai doạn 1

Giai doạn 2

Tên $E 1 c b$ đi từ sự kiện, đó là bazơ liên hợp của chất ban đâu tạo thành do một nhóm đi ra (tương tự $S_{\mathrm{N}} 1 c b$).

Phản ứng đi qua chất trung gian cacbanion nên cũng gọi là cơ chế tách cacbanion và phản ứng phụ thuộc vào độ bền của cacbanion. Phản ứng đời hỏi chất ban đầu phải có nhóm thé ớn định cacbanion bằng nhóm thế $-I$ và $-C$.

Đối với các ankyl halogenua, các sunfonat đơn giản, phản ứng không xảy ra theo $E I c b$. Phản ứng $E I c b$ xảy ra khi ở C_{β} có những nhóm thế hút electron như nhóm cacbonyl,
nitro, xyan, sunfonyl... có khả nãng giải toả điện tích âm ở cacbon. Phản ứng cũng dược xúc tiến khi có nhóm thế $-I$ và $-C$ ở C_{α} và cũng là phản ứng đơn phân tử và thường cạnh tranh với $E 2$ nhưng vì cacbanion ít bển nên ít gặp hơn.

Phản ứng tách $E 1 c b$ thường có ρ dương ($\rho=4,5$) và hợp lý hơn là dùng hằng só σ^{-}.

$$
\begin{array}{r}
\mathrm{B}^{-}+\mathrm{R}_{2} \mathrm{CH}-\mathrm{CZR}_{2} \stackrel{k_{1}}{k_{-1}} \mathrm{BH}+\mathrm{R}_{2} \mathrm{C}-\mathrm{CZR}_{2} \\
\mathrm{R}_{2} \mathrm{C}^{\ominus} \mathrm{CZR}_{2} \xrightarrow{k_{2}} \mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}+\mathrm{Z}^{-} \\
v=\frac{k_{1} k_{2}\left[\mathrm{R}_{2} \mathrm{CHCZR} \mathrm{R}_{2}\right]\left[\mathrm{B}^{-}\right]}{k_{-1}[\mathrm{BH}]+k_{2}}
\end{array}
$$

Có ba trường hợp sau:
1- Giai doạn đẩu là giai đoạn xác định tốc đợ, tách proton là giai đoạn chậm thì $k_{2}>k_{-1}[\mathrm{BH}]$ và $v=k_{1}\left[\mathrm{R}_{2} \mathrm{CHCZR}_{2}\right]\left[\mathrm{B}^{-}\right]$nên đường cong thế năng có dạng ở hình 9.1.

Hinh 9.1. Giản đồ nãng lượng của E1cb

Trong phản ứng này, giai doạn 1 thực té là khong cân bằng nên cơ chế này gọi là cơ ché Elcb không cân bằng $(E I c b)_{\text {keb }}(E l c b)_{1}$ hay $(E l c b)_{\text {irr }}$.

Phương trình động học phụ thuộc vào nơng độ bazơ, phản ưng là bạc hai tương tự E2 nên khó phân biệt được giữa $E 2$ và $E 1 c b$.

Trong trường hợp này, sự tách proton là giai đoạn xác dịnh tớc độ và sự chuyển cacbanion thành sản phẩm xảy ra nhanh hơn sự cợng proton để hình thành chất ban đầu nêa không có sự trao đổi đồng vị đeutri. Bản chất của nhóm đi ra ít nhạy với tốc độ phản ứng vì liên kết $\mathrm{C}-\mathrm{Z}$ trong trạng thái chuyển xác định tớc độ chưa bị mất đi, vai trò của nhóm đi ra làm ổn định cacbanion hình thành chỉ bằng hiệu ứng cảm ứng. Khác với $E 2$, trạng thái chuyển của $E 1 c b$ không có phân cắt liên kết nhóm di ra vẫn ở trong trạng thải trung gian
nên vẫn gây tác dụng electron cho trạng thái chuyển, chẳng hạn như Z là halogen thì có tác dụng của hiệu ứng $-I$ và do đó giảm tù F đên I.

2- Giai đoạn đâuu nhanh cân bằng và giai đoạn hai chậm quyết định tớc độ phản ứng tức là $k_{2} \ll k_{-1}[\mathrm{BH}]$. Giai đoạn dấu nhanh nhưng cân bằng thường gọi là $(E 1 c b)_{c b}$ hay $(E 1 c b)_{r}$, nhưng nếu tiến hành trong dung dịch rượu hay nước, bazơ liên hợp của dung môi đóng vai trò của bazơ nên cơ thể coi $[\mathrm{BH}]=$ const và phương trình có dạng giớng trường hợp trên:

$$
v=k^{\prime}\left[\mathrm{R}_{2} \mathrm{CHCR}_{2}\right]\left[\mathrm{B}^{-} \dagger\right.
$$

Đường cong thế năng có dạng như ở hình 9.2.

Hình 9.2. Giản đồ thé năng của Elcb giai doạn 1 cân bằng
So với $E 2$ thì $E 2$ tỷ lệ với $\left[\mathrm{B}^{-}\right]$, còn $E 1 c b$ với giai đoạn hai quyết định tớc độ phụ thuộc vào $\left[\mathrm{B}^{-}\right] /[\mathrm{BH})$.

Nếu tiến hành trong dung dịch đệm với pH bằng nhau, tốc độ $E 2$ không thay đới khi thay đởi tỷ lệ đó, còn Elcb lại thay đđ̛̃i. Trong dung dịch đẹm, phản ứng Elcb có sự thay đổi giai đoạn quyết định tớc độ phản ứng, khác với $E 2$ vì $E 2$ chỉ có ntợt giai đoạn.

Trong cơ chế này có sự trao đới đeutri trong chất ban đấu khi tiến hành phản ưng trong nước nặng hay rượu đeutri hoá. Sự trao đởi đeutri xảy ra vì có sự phân caćt proton ở vị trí β đói với nhóm đi ra, trong khi đó $E 2$ không có tính chất này.

Trong trường hợp này có sự trao đởi proton giữa chất ban đầu và bazơ, nếu có deutri trong bazơ thì chất ban đâu sẽ chứa đeutri. Điểu này có thê tìm thấy khi tác dụng $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CHCl}$ với NaOD cho $\mathrm{ClC} \equiv \mathrm{CCl}$. Khi phản ứng dừng lại trước khi hoàn thành, deutri có trong olefin.

Kết quả cũng thu được với pentahalogenetan. Các chất này tương đói axit. Cả hai trường hợp đều có nhóm hút electron của halogen làm tāng tính axit của hydro, nhưng trong trường hợp tricloetylen hyđro tăng tính axit vì ở trên cacbon $s p^{2}$ hơn trên cacbon $s p^{3}$. Do đó thường phản ứng $E I c b$ thích hợp cho điếu chế các hợp chất có nới ba hơn là nới đôi. Một só́ chất như $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ tạo cacbanion ổn định bằng cộng hường nhựng không có trao đổi đeutri do đó cơ chế này rất hiếm, ở mức độ nào đó dùng tách các nhớm đi ra như $\mathrm{Br}, \mathrm{Cl}, \mathrm{OTs}$ và tạo liên kết đôi $\mathrm{C}=\mathrm{C}$.

Chẩng hạn phản ứng:

$$
p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{+} \mathrm{R}_{3}+\mathrm{B}^{-} \longrightarrow p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{BH}+\mathrm{NR}_{3}
$$

trong $\mathrm{D}_{2} \mathrm{O}$ thay cho $\mathrm{H}_{2} \mathrm{O}$ có hiệu ứng đồng vị 7,7 , phản ứng trong $\mathrm{D}_{2} \mathrm{O}$ xảy ra nhanh hơn trong $\mathrm{H}_{2} \mathrm{O}$, chứng tỏ cho cơ ché́ EIcb vì sự chuyển proton không ở giai đoạn quyết định tốc độ. Hiệu ứng dồng vị gây ra bởi chất trung gian cacbanion có diện tích phần và chất trung gian này có thể trở vể chất ban đầu hay chuyển thành sàn phẩm bằng cách lấy proton từ dung môi. Trong $\mathrm{D}_{2} \mathrm{O}$, quá trình này chậm hơn trong $\mathrm{H}_{2} \mathrm{O}$ vì liên kết $\mathrm{O}-\mathrm{D}$ trong $\mathrm{D}_{2} \mathrm{O}$ khó phân cắt hơn $\mathrm{O}-\mathrm{H}$ trong $\mathrm{H}_{2} \mathrm{O}$, làm giảm tớc độ nên chất trung gian dễ quay trở về chất ban đầu. Khi tớc độ chuyển trở lại chất ban đâu giảm thì tớc độ chuyển thành sản phẩm tãng.

Bằng tính chất trao đổi đồng vị, đã tìm thấy một số phản ứng có tạo thành cacbanion. Chả̉ng hạn, dùng chất ban đẩu phản ứng trong nước nặng như phản ứng của Hinse:

Sự trao đổi đeutri trong chất ban đâu chứng minh cho sự tồn tại của cacbanion. Cũng như so sánh phản ứng của 1,1-điclo-2,2-trifloetan:

Chứng tỏ có sự hình thành cacbanion từ chất ban đâu đã đeutri hoá trong môi trường $\mathrm{HO}^{-} / \mathrm{H}_{2} \mathrm{O}$ mà không phải bằng $\mathrm{DO}^{-} / \mathrm{D}_{2} \mathrm{O}$. Phản ứng là tách β và theo cơ chế Elcb.

Phản ứng loại HBr của 2-phenyletylbromua trong kiềm rượu:

Song nếu tiến hành trong dung môi $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$ sẽ có sự trao đổi đồng vị:

Nơi chung, hiệu ứng đồng vị của phản ứng EIcb tương dới nhỏ, chẳng hạn phản úng:

Trong quá trình dùng phản ứng trao đởi đồng vị vì để phân biệt $E 2$ và $E 1 c b$, cấn chú ý tới hướng trao đổi đồng vị vì phản ứng trao đổi ở vị trí khác, chẳng hạn vị trí α không tham gia vào phản ứng tách như phản ứng sau tuy có trao đồi đồng vị nhưng tách theo $E 2$:

Cũng như phản ứng $E 1$, phản ứng tách $E 1 c b$ có tính đặc thù lập thể rất nhỏ vì cacbanion tạo thành đều như nhau đói với các đồng phân lập thể. Thực tế, phản ứng tách anti và syn theo cơ chế Elcb đều có cùng một giá trị ρ :

Như vậy, phản ứng có trạng thái chuyển cacbanion xảy ra khi cacbanion được ổn định, nguyên tử hyđro ở β dể bị cắt ra khi ở vị trí β có nhóm thế aryl (ổn dịnh bằng liên hợp), ở vị trí α có nhóm thế $-I$, nhóm đi ra ở vị trí α khó đi ra và dùng kiềm mạnh hơn.

3- Phản ứng có giai đoạn đầu nhanh khơng cân bằng và giai đoạn chuyến cacbanion thành sản phả̉m chậm. Phản ứng này chỉ tìm thấy khi cacbanion rất bễn và thực tế ở đây giai đoạn 1 là không cân bằng. Cơ chế này thường gọi là cơ chế $(E 1)_{\text {anion }}$ khác với hai cơ chế kia và cũng khác với $E 2$ tớc độ phản ứng là bạc nhất.

Cơ chế Elcb tìm thấy ở những chất ban đầu có hyđro có tính axit và nhóm đi ra kém. Các hợp chất loại $\mathrm{ZCH}_{2} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{5}$ với Z là nhóm hút electron như $\mathrm{NO}_{2}, \mathrm{~S}^{+}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CN}$, $\mathrm{ArSO}_{2}, \mathrm{COOR}$... thuộc lọai $E 1 c b$ này vì $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$ là nhóm di ra kém. Phản ứng của $\mathrm{CH}_{3} \mathrm{SOCD}_{2} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{5}$ và $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}^{+} \mathrm{CD}_{2} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{5}$ với NaOD trong $\mathrm{D}_{2} \mathrm{O}$ có hiẹu ứng đồng vị 0,7 . Giá trị $k_{\mathrm{H}} / k_{\mathrm{D}}$ nhỏ hơn 1 được gán cho dung mồ và hiệu ứng đồng vị bậc hai.

Phản ứng $E 1 c b$ xảy ra khi proton dược hoạt hoá bằng nhơm thế hút electron nhưng không phải tất cả vì với nhóm thế đi ra đễ khi có nhóm thế hút electron có thể theo $E 2$.

Trong ba cơ chê, khó khăn nhất là phân biệt E2 với $(E 1 c b)_{\text {kcb }}$ hay $(E I c b)_{1}$. Thường dùng phương pháp nghiên cứu hiệu ứng của sự thay đởi nhớm đi ra của một chất phản ứng. Chẳng hạn trong ba axenaphtylen (1) tìm thấy:

1- ba tớc dộ tương tự nhau, nhóm lớn nhất chỉ gấp bơn lần nhóm nhỏ;
2- trong hợp chất $\mathrm{c}(\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{F})$ thu được sản phẩm chứa Cl không chứa F , nghĩa là nhóm kém nucleofuge đi ra còn Cl giữ lại.
Kết quả 1 đi ra ngoài các cơ chế, trừ $(E 1 c b)_{\text {kcb }}$ vì các cơ chế khác đều có hiệu ứng đáng kể của nhóm đi ra. Cơ chế $E 2$ cũng có ảnh hưởng lớn của nhóm đi ra nhưng trong $E 2$ bản chất cacbanion không lớn nên $E 2$ cũng không giải thích được kết quả 2 , trong đó $\alpha-\mathrm{Cl}$ làm ổn định cacbanion phảng hơn $\alpha-\mathrm{F}$ khi mất proton. Khi X^{-}đi ra ở giai đoạn hai (ở đây có phần giống phản ứng thế nucleophin thơm), sự đi ra này không xác định được khi có nucleofuge tớt mà hydro β tách ra.

Sự tồn tại của $(E l c b)_{\text {kcb }}$ được chứng minh bằng sự thay đổi giai đoạn xác định tớc đọ trong phản ứng tách của ion N -(2-xyanoetyl)pyridin (2) khi tác dụng với bazơ khi X thay dôi:

(2)
cho thấy cơ chế E2 một giai đoạn không thể xảy ra được.

Trong phản ứng $(E 1)_{\text {anion }}$ có trường hợp tạo nên trạng thái không bền rồi chuyển vị, chả̉ng hạn khi tác dụng 2 -metoxy-2-phenyl nitroxyclopentan (3) với metoxit cho phản ứng tách sau:

Cơ chế trong trường hợp này đựa trên hiệu ứng đồng vị và động học, xác định phổ của chất trung gian (4).

Nhiều phản ứng tách từ liên kết dạng $\mathrm{C}=\mathrm{O}$ hay $\mathrm{C}=\mathrm{N}$ do giai đoạn đẩu mất nhóm mang điẹn tích dương (thường proton) từ oxy hay nitơ cũng xem như quá trình $E 1 c b$, để phân biệt với các trường hợp khác nguời ta gọi là cơ chế cacbanion cạ̣p ion $(E 1 c b)_{\mathrm{ci}}$ hay $(E 1 c b)_{\mathrm{ip}}$.

Bảng 9.3. Động học của phản ứng tách β bà̀ng bazơ

$\mathrm{B}^{+}(\mathrm{D}) \mathrm{H}-\mathrm{C}_{\beta-\mathrm{C}}-\mathrm{Z} \rightarrow \mathrm{BH}+\lambda \mathrm{C}=\mathrm{C}$							
Coc che	Bậc đọng học	Trao đठ̉i H_{β} nhanh hơn tách	Xúc tác bazo chung hay điến hình	k_{H} / k_{0}	Nhóm hút electron ${ }_{\partial} \mathrm{C}_{\beta}$	Nhóm cho electron ${ }_{\sigma} \mathrm{C}_{\alpha}$	Hiệd ưng đờng vị nhóm đi ra
$(E 1)_{\text {anion }}$	1	dúng	chung	1,0	giảm tóc do	tăng tóc đọ	Ión
$(E 1 c b)_{c b}$	2	đưng	điễn hinh	1,0	tăng nhẹ toc dọ	tañg nhẹ toc đo	100
$(E 1 C b)_{\mathrm{c}}$	2	khong	chung	1,0 $\div 1,2$	tăng nhẹ tớc đọ	tăng nhẹ tớc do	lón
$(E 1 c b)_{\text {kcb }}$	2	khong	chung	$2 \div 8$	giảm tớc đọ	hiệu ứng nhỏ	nhỏ bỏ qua
E2	2	không	chung	$2 \div 8$	tăng toc đọ	tăng nhẹ toc do	nho

9.2.3. Cơ chế E2

9.2.3.1. Co' chế

Phản ứng $E 2$ là quá trình đồng bộ, tác nhân tấn công đồng thời với nhoóm đi ra tạo nên trạng thái chuyển lưỡng phan tử:

Sản phẩm tạo thành chứa liên kết $\mathrm{C}=\mathrm{C}, \mathrm{C} \equiv \mathrm{C}, \mathrm{C}=\mathrm{Z}, \mathrm{C}=\mathrm{Z}$.
Trong $E 2, \mathrm{~B}$ là bazơ, tấn công và H_{β}, cặp electron liên kết $\mathrm{C}-\mathrm{H}$ dao động gần C_{a}, tấn công vào C_{α} làm cho C_{α} có 10 electron chất đày đám mây electron ngoài cùng nên Z bất buộc phải đi ra cùng với cạ̣p electron liên kết để trở thành Z^{-}.

Trạng thái chuyển là lưỡng phân tử:

$$
\left[\mathrm{Nu}^{\delta^{-}}-\mathrm{H}-\mathrm{C}-\mathrm{C}=-\cdots \mathrm{Z}^{\delta}\right]
$$

với phương trình tớc đợ: $v=k\left[\mathrm{~B}^{-}\right][\mathrm{RZ}]$
Trong phản ứng $E 2$, chất cho cạ̣p electron (bazoo) có thể là anion hay phan tử trung hoà và nhóm đi ra cŭng có thể đi ra dưới dạng anion hay phân tử trung hoà.

Phản ứng tách $E 2$ không có sự trao đởi đeutri khi tiến hành phản ứng trong dung môi đeutri hoá, có độ nhạy cao khi thay đởi nhơm thế, có hiệu ứng đồng vị động học.

Chẳng hạn phản ứng:

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{X}^{-}+\mathrm{HO}^{-} \longrightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2} \\
\operatorname{co} k_{\mathrm{H}} / k_{\mathrm{D}}=3,9 ; k_{\mathrm{N}}^{14} / k_{\mathrm{N}}^{15}=1,0173
\end{gathered}
$$

Các bazơ thường dùng là: $\mathrm{HO}^{-}, \mathrm{RO}^{-}, \mathrm{R}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{2} \mathrm{~N}^{-}, \mathrm{R}_{2} \mathrm{~N}^{-} \ldots$
Những bazơ có tính phân cực hoá cao không thích hợ cho phản ứng tách như RS-.
Phàn ứng tạo thành anken:

Ankyn:

Cacbonyl:

Hinh 9.3. Giản đờ năng lượng E2
Bảng 9.4. Mọt sớ phản ứng tách $E 2$
Loại HX tạo anken:
a. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}_{2}$
b- $\square \mathrm{Cl}_{\mathrm{Cl}} \xrightarrow{[\square-]_{3} \mathrm{CO}^{-} \mathrm{K}^{+}} \square=\mathrm{CH}_{2}+\square \mathrm{CH}_{3}$
c-

d. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCHBrCOCH} 3 \quad \xrightarrow{\mathrm{CH}_{3} \mathrm{COONa}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOCH}_{3}$

Loại HX tạo ankin:
a- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCH}_{2} \mathrm{Br} \xrightarrow{\mathrm{NaNH}_{2}, \mathrm{NH}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH} \quad(45+52 \%)$
b- $\mathrm{CH}_{3} \mathrm{CCl}=\mathrm{CHCH}_{2} \mathrm{OH} \xrightarrow{\mathrm{NaNH}_{2}, \mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{Cl}} \mathrm{CH}_{3} \mathrm{C}=\mathrm{CCH}_{2} \mathrm{OH} \quad(75 \div 85 \%)$
Tách từ các sunfonat:
a. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OSO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \xrightarrow{\mathrm{CH}_{3} \mathrm{ONM}}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2} \mathrm{CH}_{2}$
b- $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OSO}_{2} \mathrm{C}_{7} \mathrm{H}_{7} \xrightarrow{\mathrm{KOH}_{1} \mathrm{HOH}} \mathrm{HC=CCH}=\mathrm{CHCH}_{3}$ (91\%)
c. $\square-\mathrm{OSO}_{2} \mathrm{C}_{7} \mathrm{H}_{7} \xrightarrow{\left(\mathrm{CH}_{3}\right\}_{3} \mathrm{CO}^{-} \mathrm{K}^{+}} \square$

Tách từ kiếm amoni bặc bớn:
a- $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CI}_{3}\right)_{3} \mathrm{HO}^{-} \xrightarrow{\Delta}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}=\mathrm{CH}_{2} \quad(81 \%)$
b- $\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CN}^{+}\left(\mathrm{CH}_{3}\right)_{3}$

Như vậy, phản ứng $E 2$ có:
1- phản ứng là bậc hai;
2- phản ứng tách bậc hai có hiệu ứng đồng vị, thường từ 3 đến 8 phụ thuộc vào sự phân cắt liên kết trong giai đoạn quyết định tớc độ phản ứng, nhưng chứng minh cho $E 2$ là nghiên cứu hoá học lập thể, thường cơ ché E2 là đạ̣c thù lập thể.

9.2.3.2. Nhüng nhân tố ảnh hutởng

1- Ảnh huởng của chất ban đấu
Phản ứng $E 2$ là đồng bộ, giai doạn quyết định tớc đọ xảy ra sự phân cắr liên kết $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{Z}$ dồng thời có thể có ba trạng thái phân cắt liên kết khác nhau: (1) phân cá̛t liên kết $\mathrm{C}-\mathrm{Z}$ lớn hơn $\mathrm{C}-\mathrm{H}$, (2) hai phân cát hoàn toàn như nhau và (3) phân cắt liên kết $\mathrm{C}-\mathrm{H}$ lớn hơn $\mathrm{C}-\mathrm{Z}$:

$\Delta n \mathrm{C}-\mathrm{Z}>\Delta n \mathrm{C}-\mathrm{H}$
(I)

$\Delta n \mathrm{C}-\mathrm{Z}=\Delta n \mathrm{C}-\mathrm{H}$
(2)

(3)

Trường hợp (1) có xu hướng giớng El, trường hợp (3) giống Elcb nên những cấu trúc có khả năng làm ổn định cacbocation tương tự $E 1$ thì dưa cấu trúc gấn tới trạng thái chuyển (1), nếu câu trúc làm ổn định cacbanion ở trường hợp (2) thì đưa trạng thái chuyển tới cấu trúc (3).

Phản ứng $E 2$ theo trạng thái chuyển (1) giớng $E 1$ không thực hiện được, vì nếu điện tích dương trong (1) được ớn định bằng ảnh hưởng nhóm thế thì tớt hơn là xảy ra theo cơ chế E1. Cơ chế El là đơn phân từ dễ được xúc tiến phản ứng bằng nhóm thế cho electron, entropi lại thuận lợi hơn $E 2$ dến $9,5 \div 14,3 \mathrm{kcal} / \mathrm{mol}$, còn năng lượng hoạt hoá thuận lợi hơn dến $2,8 \div 5,0 \mathrm{kcal} / \mathrm{mol}$.

Những nhân tố tạo khả năng cho sự hình thành anion đưa trạng thái chuyển tới trạng thái (3). Nếu nhơm khó đi ra hơn, củng như tãng tính bazơ của B thì sẽ làm tảng tính cacbanion của trạng thái chuyển hơn.

Nhóm đi ra khó làm giảm tớc độ quá trình, làm tăng giá trị tuyệt đói của ρ liên quan tới sự tăng điện tích âm định chỗ trong trạng thái chuyển.

Ví dụ: $\mathrm{Ar}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Z}$	$+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$	\longrightarrow	$\mathrm{Ar}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Z}^{-}$
Z	k_{td}	ρ	$k_{\mathrm{H}} / k_{\mathrm{D}}$
I	26600	2,07	-
Br	4100	2,14	7,1
OTs	392	2,27	4,7
Cl	58	2,61	-
$\mathrm{S}^{+}\left(\mathrm{CH}_{3}\right)_{2}$	7,8	2,75	5,3
F	1,0	3,12	-
$\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	$\ll 1,0$	3,77	3,0

Quá trình phân cắt $\mathrm{C}-\mathrm{Z}$ và $\mathrm{C}-\mathrm{H}$ tương hỗ nhau. Nhóm đi ra khó, liên kết $\mathrm{C}-\mathrm{H}$ càng phân cắt nhiều hơn trong trạng thái chuyển vì như vậy mới có khả năng phân cắt $\mathrm{C}-\mathrm{Z}$.

Sự ởn định điện tích âm của trạng thái chuyển cần có nhóm thế ở C_{α} cũng như ở C_{β}, nhưng điện tích âm định chō ở C_{β} nhiểu hơn nên đưa nhớm thế vào C_{β} có ảnh hưởng mạnh hơn, nhất là những nhóm thế có khả nång vừa ổn định điện tích âm, vừa ởn định olefin tạo thành bằng hiệu ứng liên hợp sẽ tăng tớc độ phản ứng.

Trường hợp nhớm ankyl có hiệu ứng $+l$ làm mất ổn định trạng thái chuyển nhưng làm ổn định trạng thái chuyển mang một phần liên kết đôi, cũng như làm ổn định olefin tạo thành. Do đó trạng thái chuyển là (2) thì nhóm ankyl xúc tiến phản ứng và làm ổn định olefin tạo thành. Còn trạng thái chuyển (3) thì hiệu ứng $+l$ làm chậm phản ứng vì tính chất liên kết đôi của liên kết trong (3) nhò.

Trong phản ứng tách của các ankyl halogenua trạng thái chuyển có tính chất liên kết đôi lớn, tính cacbanion nhỏ, nên đưa thêm nhớm ankyl vào C_{α} hay C_{β} đều làm tảng tốc độ phản ứng.

Ví dụ:
$\mathrm{a}-\mathrm{RR}^{\prime} \mathrm{CHCH}_{2} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-} \longrightarrow \mathrm{RR}^{\prime} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}^{-}$
b- $\mathrm{CH}_{3} \mathrm{CRR}{ }^{\prime} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-} \longrightarrow \mathrm{CH}_{2}=\mathrm{CRR}^{\prime}+\mathrm{Br}^{-}$

$\mathrm{R}=$	H				
$\mathrm{R}^{\prime}=$	H	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}
a- k. $10^{5}(1 /$ mol.s $)(E 2)$	1,2	5,2	4,3	3,5	8,6
b- $\mathrm{k} \cdot 10^{5}(1 / \mathrm{mol} . \mathrm{s})(E 2)$	0,025	0,118	0,065	0,080	1,0

Khả năng phản ứng của chất ban đầu cũng phụ thuộc vào bản chất nhóm đi ra. Nhóm đi ra ở dạng anion càng ổn định thì tốc độ $E 2$ tăng, nghĩa là những nhóm thé hút electron trong nhóm đi ra sē làm tăng tớc độ phản ứng, đồng thời nhóm đi ra tốt làm giảm tính cacbanion của trạng thái chuyển. Sự giảm hiệu ứng đồng vị chứng minh sự phân cắt $\mathrm{C}-\mathrm{H}$ tăng đưa tới tảng tính cacbanion của trạng thái chuyển.

Ví dụ:

$$
\begin{aligned}
& \mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Y}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right] \rightarrow \mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}_{2} \\
& \mathrm{Y}=p-\mathrm{OCH}_{3} \quad p-\mathrm{CH}_{3} \quad \mathrm{H} \quad m-\mathrm{OCH}_{3} \quad m-\mathrm{Cl} \quad p-\mathrm{Cl} \\
& \rho_{\mathrm{Y}}=\begin{array}{llllll}
1,24 & 1,24 & 1,08 & 1,06 & 1,04 & 0,94
\end{array} \\
& \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \\
& \rho=1,35
\end{aligned}
$$

Các phản ứng trên chứng tò, nhóm đi ra cần cơ nhơm thế hút electron để tảng tính ởn định của nhóm đi ra, tăng tốc đọ phản ứng.

Tính cacbanion của trạng thái conuyển cũng tháy ở sự thay dổi hiệu ứng đồng vị. Sự giảm hiệu ứng dồng vị động học chứng minh cho sự tăng mức đọ̣ phân cắt liên két.
$\mathrm{C}-\mathrm{H}$ làm tãng trạng thái chuyển cacbanion.
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHD}-\mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X} \longrightarrow$

$$
\begin{array}{rlc}
\mathrm{X} & =\mathrm{OCH}_{3} & \mathrm{H} \\
k_{\mathrm{H}} / k_{\mathrm{D}} & =5,27 & 5,42
\end{array}
$$

2- Ảnh huởng của tác nhân nucleophin

Phản ứng $E 2$ tỷ lệ với nồng độ của bazo trong phương trình tớc độ, mặt khác $E 2$ cũng rất nhạy với tính bazo của Nu . Tính bazơ của Nu lớn, tớc đọ phản ứng tảng.

$$
\begin{array}{ccc}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-} & \longrightarrow & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}^{-} \\
\mathrm{X}=\mathrm{H} & \mathrm{NO}_{2} \\
k_{\mathrm{td}}= & 0,233 & 3,30.10^{-6}
\end{array}
$$

Ở day cūng cấn nói rà̀ng, trong chất ban đâu $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{Z}$, liên kết $\mathrm{C}-\mathrm{Z}$ là bazoo tương đối mềm, còn $\mathrm{C}-\mathrm{H}$ là bazơ tương đới cứng. Nếu muón có phàn ứng tách thì bazo cần phải phản úng với $\mathrm{C}-\mathrm{H}$ là tác nhân bazơ cứng thì bazơ cũng là bazơ cứng, còn nếu dùng bazo mềm thì ưu tiên phản ứng với bazoo mềm $\mathrm{C}-\mathrm{Z}$ đặc trưng cho phản ứng thế. Chẳng hạn, ankylhalogenua bạ̣c nhất với metylat là bazo cứng cho ete, với tert-butylat là bazo cứng hơn ưu tiên cho phản ứng tách. Trong $\mathrm{C}-\mathrm{Z}$, nếu Z là OTs là cứng hơn trong bromua nhiều thì dùng metylat hay tert-butylat chủ yêu cho ete metyl và tert-butylankyl.

Đới với $E 2$ cần bazo cứng hơn là $S_{\mathrm{N}} 2$ nhu:

$$
\text { tert }-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{-}>\text {iso }-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}^{-}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{HO}^{-}
$$

và nhóm $\mathrm{C}-\mathrm{Z}$ cần mếm hơn ($\mathrm{C}-\mathrm{Br}, \mathrm{C}-\mathrm{I}$).

3- Ảnh hương của dung môi

Trạng thái chuyển $E 2$ có sự giải toà điện tích lớn hơn so vơi các chất ban đâu nên sự tăng tính phân cực của dung môi thường làm giảm tớc độ phản ứng. Thường phản ưng tách xảy ra giữa phân tử trung hoà với anion hoạ̣c giữa cation với tác nhan trung hoà, chắ ban đâu có tính định chỡ điện tích cao hơn trạng thái chuyển, còn trường hợp cation với anion nucleophin thì trạng thái chuyển có tính giải toả lớn hơn.

Khi chuyển từ dung mời cho proton tới dung môi phân cực aproton làm tăng tính phản solvat của anion lớn nên tăng tính bazoo hơn.

Chẳng hạn phản ứng $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{+}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{HO}^{-} \longrightarrow$ có tớc độ gấp 1000 lần khi chuyển từ nước tới dung dịch đimetyl sunfoxit.

9.2.3.3. Hoá học lập thể của E2

Tớc độ phản ứng tách xảy ra theo cơ ché $E 2$ rát nhạy với hiệu ứng nhóm thé. Trong
đại đa số trường hợp, tốc độ tảng mạnh khi có nhóm hút electron. Trong trạng thái chuyển thường sự phân cắt liên kết $\mathrm{C}-\mathrm{H}$ lớn hơnn phân cắt $\mathrm{C}-\mathrm{Z}$ điếu dó đưa tới sự định chô điện tích âm trên chất ban đầu trong trạng thái chuyển.

Khi phân cắt $\mathrm{C}-\mathrm{X}$ ở C_{α} xuất hiện obitan p trống, còn khi phân cắt liên kết $\mathrm{C}-\mathrm{H}$ ở C_{β} xuất hiện obitan p chất đầy, nghīa là ở dây có sự chuyến $\mathrm{C}_{\mathrm{sp}}{ }^{3}$ sang $\mathrm{C}_{\mathrm{sp}}{ }^{2}$. Sự xen phủ tạo nên liên kết π. Tính chất kép trong liên kết $\mathrm{C}-\mathrm{C}$ trong trạng thái chuyển dược xác dịnh bằng mức độ phá huỷ liên kết kém phân cắt hơn, nghīa là liên kết $\mathrm{C}-\mathrm{Z}$. Liên kết cacbon trong trạng thái chuyển có bàn chất liên kết dôi đòi hỏi các obitan p phải song song với nhau, do đó liên kết $\mathrm{C}-\mathrm{Z}, \mathrm{C}-\mathrm{H}$ và liên kết $\mathrm{C}=\mathrm{C}$ phân bố trong một mặt phảng hay nói cách khác năm nguyên tớ $\mathrm{B}, \mathrm{Z}, \mathrm{C}, \mathrm{C}, \mathrm{X}$ phải nằm trong một mật phảng. Cấu dạng này gọi là cấu dạng anti- dồng phẳng.

Phá huỷ tính đồng phẳng này đưa tới sự xen phủ yếu của obitan p tạo thành và tãng nảng lượng trạng thái chuyển.

Tính đồng phẳng có thể đạt được bằng hai cách:

- Phản ứng tách theo cách anti từ cấu dạng kìm hām.
- Phản ứng thực hiện bằng cách tách syn từ cấu dạng che khuất.

Tính chất này biểu hiện tính lập thể của phản ứng tách và cũng là sự thay đổi hướng hoá học lập thể của quá trình khi thay đởi các nhân tớ cấu trúc.

Nếu trong trường hợp coi trạng thái chuyển gần với chất ban đầu, sự khác nhau cực tiểu về năng lượng giữa cấu dạng anti và syn là $2,3 \mathrm{kcal} / \mathrm{mol}$ thì tách anti cần phải nhanh hơn tách syn đến $100 \div 200$ lần.

Trong tách anti, các liên kết trong phức chuyển tiếp ở vị trí trans với nhau vì tính hình học này cho phêp cạ̣p electron hình thành ở một nguyên tử cacbon C_{β} tấn công về phía sau của obitan phân tử của liên két $\mathrm{C}-\mathrm{Z}$ ở C_{α}. Điêu kiẹn này gọi là lạ̣p thể electron.

Thực nghiệm xác định từ phản ứng của hợp chất thế đông vị:

cho thấy phản ứng tách của các hợp chất no chủ yếu xày ra theo phản ưng tách trans hay anti.

Quá trình tách trans hay anti có các nhóm thé ơ dạng trans phải song song hay trans dống phẳng nhưở hình sau:

Quá trình này phụ thuộc vào sự định hương của nhơm đi ra trong chất ban đâu, nghĩa là phụ thuộc vào cấu dạng chất ban đảu, không phải vào cấu dạng sản phẩm. Chẳng hạn, phản ứng loại HBr từ hai đồng phân dia của 1 -brom-1,2-diphenylpropan:

chứng tỏ phản ứng tách xảy ra theo cơ chế tách trans hay anti.
Nghiên cứu phản ứng tách HBr từ meso-đibrom-1,2-diphenyletan cho cis-2-bromstylben còn từ đồng phân (+) và (-) cho trans olefin. Tính đặc thù lập thể này đã nghiên cứu từ 1904 cho thấy phản ứng tách là anti. Phản ứng tách anti cũng cho thấy cặp erythro D, L cho cis olefin và cạ̣p threo D, L cho trans olefin.

Phản ứng tách anti cũng có trong trường hợp nhóm đi ra (electrofuge) không phải hyđ̛o. Chẳng hạn phản ứng tách 2,3 -đibrombutan bằng I^{-}, hợp chất meso cho trans olefin, còn cặp D, L cho cis:

Hoá học lập thể được nghiên cứu trên cơ sở các hợp chất vòng.
Phản ứng của hai đồng phañ đia 4 -tert-butylxyclohexyl-p-toluensunfonat với nhóm di ra toluensunfonat ở vị trí a và e :

dờng phân cho phản ímg $E 2$ trong $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa} 0,02 \mathrm{M}$ trong $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ $\dot{\circ} 75^{\circ} \mathrm{C}$

đờng phân cho phàn ứng $E /$ hay thuý phan trong $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa} 0,02 \mathrm{M}$ trong $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad \dot{\alpha} 75^{\circ} \mathrm{C}$

Phản ứng chứng tỏ, phản ứng $E 2$ chỉ xảy ra khi nhóm đi ra và $\mathrm{H}_{\beta} \mathrm{co}$ tính trans đồng phẳng để tách anti.

Như 1,2,3,4,5,6-hexacloxyclohexan có 9 đồng phân lập thể; 7 dạng meso và cạ̣p D, L, trong đó 4 hợp chất meso và cạ̣p D, L có thé tách HCl , chỉ có một cấu dạng (5) không có Cl trans với H nên không cho phản ứng tách:

Đồng phân tách nhanh nhất gấp 3 lẩn đông phan thấp nhất, còn hợp chất (5) thì 7000 lần chạ̀m hơn đồng phân tách chạam nhất. Như vạy tách anti thích hợp hơn tách syn, tuy nhiên (5) cũng có thể tách nhưng rất chậm.

Trong hợp chất vòng, phản ứng tách HX tớt nhất khi ở vị trí trans với nhau. Hai nhóm trans cạnh nhau trong vòng sáu cạnh có thể là điaxial hay diequatorial. Phàn úng xảy ra khi hai nhơm ở vị trí điaxial tuy có cấu dạng năng lượng cao hơn nhưng để có tính anti-đồng phẳng của hai nhớm đi ra. Tuy nhiên, cáu dạng không thuạ̣n lọ̣i có thể đồng phân hoá thành cáu dạng thuận lợi hơn.

Phản ứng tách anti được nghiên cứu rõ trên dẫn xuất mentyl và neomentyl, trong điều kiện etylat natri trong etanol: mentyl clorua chỉ cho một sàn phẩm duy nhất là 2 -menten,còn neomentyl clorua cho hai sản phẩm 2 -menten và 3 -menten.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$

mentyl clorua (chạm)

(9)

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$

Cấu dạng mentylclorua (6), nhơm đi ra là equatorial bền hơn nên chuyển qua cáu dạng (7) để có nhóm đi ra là axial nên tách chạ̣m hơn và cho sản phẩm (8) là anti-Zaitsev. Cấu dạng neomentyl clorua (9) có nhóm đi ra diaxial nên tách cho 75% sản phả̉m (10) và 25% sản phẩm (8) do có hai loại hyđro axial.

Phản ưng tách anti xảy ra trong các vòng xyclohexan chỉ khi hai nhóm đi ra ở vị trí trans, nghīa là hai nhóm là diaxial:

Hai nhóm đi ra đều là e không tách theo $E 2$, mọt nhóm là a và nhóm kia là e, nghīa là có hai cấu dạng cis thì không xảy hoặc xảy ra rất chậm. Chẳng hạn, phản ứng tách anti của 2-phenyl-xyclohexyltosylat nhanh hơn tách syn đến 10.000 lần. Song cần phải chú ý đến sự chuyển hoá của các cấu dạng thường xảy ra trong các phản ứng, như trường hợp mentylclorua ở trên để thực hiện phàn ứng tách anti:

Đới với những cấu dạng cứng, không có khả năng quay liên kết $\mathrm{C}-\mathrm{Z}$ và $\mathrm{C}-\mathrm{H}$ thì phản ứng chi phụ thuộc vào cấu dạng ban dâu:

Epiclohydrin ở trên có OH và Cl đếu là a là có phản úng $E 2$, còn epiclohyđ̛rin ở dưới có OH là e và Cl là a không chuyển chỗ cho nhau dược nên khong thực hiện dược phản ứng E nhưng có phản ứng $S_{\mathrm{N}} 2$ nọi phân tử tạo vòng oxit.

Những vòng không có thế có cấu dạng anti do không có khả năng quay tự do của liên kết $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{Z}$ thì ưu tiên tách syn. Chẳng hạn, dā̃n xuất của xyclopentan tôn tại chủ yéu ở cấu dạng che khuất nên tách syn vì cấu dạng anti chỉ hình thành khi làm biến hình hệ vòng cứng này:

Nểu dẫn xuất này tốn tại ở dạng che khuất anti kể ở gớc 120° thì cũng có thể tách anti nhưng sự xen phủ của obitan p tạo thành không hiệu dụng, làm giảm tính chất liên kết đơi trong trạng thái chuyển nên phản ứng dòi hỏi nảng lượng hoạt hoá cao của trạng thái chuyển.

Các hợp chất vòng cứng ngăn cản sự tạo thành cấu dạng thuận lọ̣i cho tách anti do hiệu ứng không gian lớn thì có thé tách syn, chẳng hạn phản ứng của vòng thế đông vị mà tỳ lệ tách syn-anti được xác định bằng lượng đồng vị có trong sản phẩm:

với norbornyl bromua deutri hoá $(\mathrm{Z}=\mathrm{Br})$ cho 94% sản phẩm tách không chứa đeutri. Két quả này cüng tìm thấy trong các nhóm đi ra khác và loại hợp chất bixyclo[2.2.2].

Trong trường hợp này nhóm X exo không có góc nhị diện 180° với β-endo-hydro vì cấu trúc cứng của phân tử. Góc nhị diện chỉ là 120°. Nhớm đi ra thích hợp cho tách syn. Hợp chất tách endo-syn không thuận lợi về không gian, còn tách anti đòi hỏi chi phí nãng lượng để đưa nhớm thế Z và H vào trong mặt phảng để có trạng thái chuyến tách anti nên các dẩn xuất bixyclo có cấu trúc như bixyclo[2.2.1]heptan có phản ứng tách syn lớn hơn tách anti:

Các phân tử như (11) và (12) ở dưới thì ưu tiên tách syn:

(11)
$>$
tách $s y n$

(12)

Ở đây đồng phân (12) là cis, mởi Cl có hyđro ở vị trí trans với nó nên có chổ cho tách anti nhưng góc nhi diện ở đây chỉ có 120° nên chậm hơn hợp chất không có cầu và phản ứng tách syn ở đây vẵn chạm hơn tách anti, còn đồng phân (11) là trans lại có khả năng tách syn và tách syn ở đay nhanh hơn đồng phân của nơ đến tám lần.

Khi nghiên cứu phản ứng tách của vòng từ bốn đến mười ba cạnh, cho thấy tách syn không chỉ có trong vòng sáu cạnh, Cooke và Coke nghiên cứu phản ứng tách của xycloankyltrimetylamoni của vòng bốn đến mười ba cạnh cho thấy phần trãm tách syn trong các vòng: vòng bớn cạnh 90%, năm cạnh 46%, sáu cạnh 4%, bảy cạnh $31 \div 37 \%$ và tìm thấy nhơm $\mathrm{N}^{+} \mathrm{R}_{3}$ có khuynh hướng tách syn lớn hơn các nhơm như $\mathrm{OTs}, \mathrm{Cl}, \mathrm{Br} .$. Với các vòng trung bình cunng tìm thấy tách syn và đều có thể cho olefin cis và trans, như từ $1,1,4,4-$ tetrametyl-7-xyclodexyltrimetylamoni clorua (13) tìm thấy sản phẩm chính là trans nhưng cũng có sản phả̉m cis:

127.0.0.1 downfloaded 73193.pdf at Wed Mar 28 14:56:14 ICT 2012

Nếu đeutri hoá chất (13) và nghiên cứu hoá học lập thể, khi đeutri hoá ở vị trí trans $\left(\mathrm{H}_{\mathrm{t}}=\mathrm{D}\right)$ thì có hiệu ứng dồng vị tạo thành cả cis và trans olefin, khi đeutri hoá hyđ̛o cis $\left(\mathrm{H}_{\mathrm{c}}=\mathrm{D}\right)$ không có hiệu ứng dồng vị cho bất kỳ olefin nào. Như vạy phản ứng là $E 2$ chỉ H_{t} tách ra nhưng lại thu dược cả cis và trans. Trong trường hợp này, để có thể tách syn, phan tử sẽ xoắn lại để liên kết $\mathrm{C}-\mathrm{H}_{\mathrm{t}} \mathrm{C}-\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$ có đồng phảng syn. Kết quả này gọi là sự lưỡng phân syn-anti mà cũng được chứng minh trong nhiều loại khác. Hiện tượng lưỡng phân synanti cũng tìm thấy trong vòng $8 \div 12$ cạnh, lớn nhất trong vòng 10 cạnh và với nhóm đi ra giảm: $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{OTs}>\mathrm{Br}>\mathrm{Cl}$, nghĩa là song song với tính lập thể. Phản ứng tách syn của nhóm đi ra không mang điện tích thích hợp trong bazơ mạnh và dung môi ion hoá yếu. Phản ứng tách syn và lưỡng phân syn-anti cũng có trong hệ mạch hở như chuyển hoá 3-hexyl-4-dtrimetylamoni thành 3-hexen bà̀ng kali sec-butoxit thì thu được 67% phản ứng theo lưỡng phân syn-anti.

Nói chung tách syn phụ thuộc vào hiệu ứng lập thể. Như từ hai cấu dạng dồng phả̉ng anti và hai đồng phẳng syn:

(14)
anti \rightarrow trans

$a n t i \rightarrow$ cis

(16)
syn \rightarrow trans

syn \rightarrow cis

Phản ứng là $E 2$, bazơ tấn công vào hyđro đánh dấu H^{*} cho tháy, ở (14), proton bị chắn bởi hai gớc R và R ', trong (15) chì có một, trong môi cấu dạng đếu tách anti nhưng sản phấm cis nhiều hơn trans. Khi con đường tách anti bị khó khăn không gian thì tách syn sē cạnh tranh, tách anti trans giảm nhiều hơn tách anti \rightarrow cis. Còn trong tách syn, cấu dạng (16) kém che khuất hơn (17) nên con đường tách syn thích hợp cho đổng phân trans. Do đó sự khác biệt của lưỡng phân syn-anti là đồng phân trans lớn hơn cis, đồng phân trans một - phân hình thành bằng tách syn, nhựng đồng phân cis một phân hình thành bằng tách anti.

Phản ứng tách syn cüng ưu tiên trong hợp chất dạng $\mathrm{RR}^{\prime} \mathrm{CHCHDN}^{+}\left(\mathrm{CH}_{3}\right)_{3}$ với R, R ' có thể tích lớn:

(18)

(19)

Cấu dạng (19) thích hợp cho tách syn it caxng hơn, cấu dạng (18) thích hợp cho tách anti.

Như vậy, trong phản ứng tách $E 2$ luôn có hai hướng tách anti-syn, có thể rút ra những trường hợp co thé tách syn và sự tương quan giữa tách anti-syn:

- Hợp chất có cấu dạng che khuất thuạn lợi hơn, như trong các hợp chất vòng cứng bixyclo, dả̉n xuất xyclopentan, ưu tiên tách syn. Các hợp chá̛t mach hở thường tách anti vì không có cấu dạng cứng.
- Cơ chế tách syn xảy ra dể hơn nếu nhóm đi ra Z là nhóm khó đi ra, như triankylamoni, điankylsunfoni. Các halogenua, tosylat tuu tiên tách theo anti.

Phản ứng tảch syn tăng khi tảng thể tích nhóm đi ra chì khi thể tîch Z đưa tới cấu dạng che khuất của gốc và H_{β} gây ra khó khăn không gian cho sự tấn công H_{β}. Hiệu ứng này biếu hiện yếu trong nhóm thế halogen và tosylat, chẳng hạn, ngay Z là F có thể tích nhỏ cũng ưu tiên tách syn.

- Nhân tớ ảnh hưởng tới tách syn là lực bazo. Lực bazơ yếu thuạn lợi cho tách anti, lực bazơ mạnh ưu tiên cho tách syn. Trong trường hợp chung, bazơ yếu ưu tiên tách anti đưa tới tính chọn lọc cao.
- Phản ứng tách syn thuạn lợi trong dung môi khơng hay ít phân cực như benzen, ancol tert-butylic. Dung môi phan cực như metanol, DMSO thuạn lợi cho tách anti.

Thực tế khi dùng nhóm đi ra khó hơn và bazơ mạnh có thế giảm xác suất tách anti, nhưng quan trọng là trạng thái tồn tại của Nu trong dung dịch: dạng ion tự do hay cạ̣p ion.

Khi Nu tồn tại ở dạng cạ̣p ion thì ưu tiên tách syn của nhóm di ra. Trong trường hợp này có tạo thành trạng thái chuyển vòng, chả̉ng hạn như khi có ancolat:

tert-Butylar kali trong ancol tert-butylic thực tế hoàn toàn tồn tại ở cặp ion, khi them tác nhân phức cho ion kim loại như ete crown phá huỷ cạ̣p ion thì tăng lượng tách anti:

Cūng như trong phản ứng của hệ mạch hở, khi đưa ete crown vào không quan sát thấy sự tách syn:

Như phàn ứng của $1,1,4,4$-tetrametyl-7-xyclodexyl bromua vơi tert- $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{-} \mathrm{K}^{+}$trong dung mơi không phân cực thì tý lẹ̣ tách syn và anti là 55,0 , nhưung trong ete crown như dixyclohexano-18-crown-6 sẽ tách lây K^{+}từ cặp ion $\mathrm{RO}^{\circ} \mathrm{K}^{+}$dé giải phóng ra ion RO^{-}tự do thì tỷ lẹ tách $s y n$ và anti là 0,12 . Sự giảm mạnh tỷ lẹ $s y n / a n t i ~ l a ̀ ~ d o ~ t a ̣ o ~ c a ̣ ̣ p ~ i o n ~ l a ̀ m ~ t a ̆ n g ~$ hướng tách anti:

Bảng 9.5. Hoá học lập thẻ̉ cho E2

Họp chăt	Bazo - Dung moi	Hàm lự̛̣ng tách	
		anti	syn
$\mathrm{CH}_{3} \mathrm{CHDCHBrCH}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	100	0
$\mathrm{CH}_{3} \mathrm{CHDCH}\left(\mathrm{CH}_{3}\right) \mathrm{OSO}_{2} \mathrm{C}_{7} \mathrm{H}_{7}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	98	2
$\mathrm{CH}_{3} \mathrm{CHDCH}\left(\mathrm{CH}_{3}\right) \mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+}$, DMSO	100	0
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHDCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	20	80
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHDCHFCH}_{2} \mathrm{CH}_{3}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	32	68
	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} \mathrm{K}^{+}$, DMSO	26	74
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHDCHClCH}_{2} \mathrm{CH}_{3}$	$\left(\mathrm{CH}_{3}\right)^{3} \mathrm{CO}^{-} \mathrm{K}^{+},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	38	62
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHDCHFCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\left(\mathrm{CH}_{3}\right)^{2} \mathrm{CO}^{-} \mathrm{K}^{+},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	20	80

Hâu như dại đa só phản ứng tách là anti. Sản phẩm tạo thành là cis hay trans. Tỷ lẹ này phụ thuộc vào tỷ lệ tách anti hay syn, phụ thuộc cấu dạng chất ban đấu.

Tỷ lệ cis/trans phụ thuộc nhiếu vào bản chất nhơm đi ra.
Dẩn xuất halogen thường cho trans olefin. Các nhóm thể tích lớn như arylsunfonat ưu tiên cho cis-olefin. Chẳng hạn, nhơm đi ra lớn có thể nhạn cấu dạng thuận lợi hơn:

\longrightarrow trans olefin
(a)

nhớm đi ra và bazơ thể tính lớn nhận cấu dạng (b) hơn, tách anti cho sản phả̉m cis ưu tiên hon trans.

Chú y là đồng phân trans bền hơn cis, nhân tơ khồng gian không thuạn lợi trong cis olefin cüng như trong trạng thái chuyển E2 cho sự tạo thành cis olefin.

Đới với các đồng phân erythro và threo đểu tách anti cũng cho sản phả̉m cis-trans khác nhau phụ thuợc vào cấu dạng của threo và erythro.

Chẳng hạn, dẫn xuất 1,2-đibrom-1,2-điphenyletan, cấu dạng meso-1,2-đibrom-1,2điphenyletan chi cho α-brom-cis-stylben, còn $D, L-1,2$-đibrom-1,2-điphenyletan cho đồng phân trans:

Nói chung phản ứng tách E cho sản phẩm cis-trans phụ thuộc vào cấu dạng như sau:

trans

Phản ứng tách tạo thành ankyn từ anken cũng có phản ứng tách cạnh tranh giữa tách anti và syn:

song đờng phân trans anken có khả năng phản ứng nhanh hơn đồng phân cis.
Bảng 9.6. Tớc đọ tương đơi của phản ứng tách cis và trans-cloolefin trong $\mathrm{CH}_{3} \mathrm{O}^{-} / \mathrm{CH}_{3} \mathrm{OH}$

	Cloolefin	$k_{\text {trans }} / k_{\text {cis }}$
1	$\mathrm{ClCH}=\mathrm{CHCl}$	$10^{3} \div 10^{4}$
2	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCl}$	10^{3}
3	$\mathrm{CH}_{3}-\mathrm{CCl}=\mathrm{CHCl}$	10
4	${ }^{-} \mathrm{OOCCH}=\mathrm{CCICOO}{ }^{-}$	10
5	$\mathrm{CH}_{3} \mathrm{CCl}=\mathrm{CHCOOC} \mathrm{C}_{2} \mathrm{H}_{5}$	2

Trong các phản ứng trên, phản ứng (3) và (5) dạng cis có phản ứng nhanh hơn các trường hợp (2) do H_{β} đã thế bởi nhóm thế khác tạo điều kiện cho sự ởn định cacbanion, phản ưng (4) có khó khăn tỉnh điẹn khi tấn công của bazơ vào dạng trans hơn. Trong hai trường hợp này, phản ứng có hiệu ứng H / D nhỏ và dễ trao đởi đờng vị nên có thể xảy ra theo cơ ché E1cb.

Nếu phản ứng cơ H_{β} dể trao đổi và có thể thê bằng ion kim loại, như trường hợp của β-clostyrol, phản ứng có thể xảy ra theo cơ chế gọi là $E 2 C$ chung như sau:

Đói với các oxim, đông phân trans -(anti)-oxim mới có thẻ tách $\mathrm{H}_{2} \mathrm{O}$ đẻ tạo thành nitrin:

Phản ứng của vinylhalogenua hay gem-đihalogen với bazơ tạo thành ankyn có sự đồng phân hoá ankyn có nới ba trong mạch thành ankyn cơ nơi ba đấu mạch qua hợp chất allen:

nên muớn điều ché ankyn có nơi ba trong mạch, dùng dã̃n xuắt đihalogen với kim loại hoạt đỌng hoặc axit không no thé:

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{CBr}=\mathrm{CBrCH}_{3} & \xrightarrow{\mathrm{Zn}} \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3} \\
\mathrm{CH}_{3} \mathrm{CBr} & =\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COONa}^{\longrightarrow}
\end{aligned}
$$

Phản ứng tách syn điển hình là sự hình thành tiểu phan trung gian aryl trong các phản ứng thé $S_{\mathrm{N}} 2$ của dẫn xuất halogen thơm. Aryn là hợp chất không bền do sự biến dạng góc hoá trị (từ 180 đén 120°):

Phản ứng xảy ra với bazơ tách láy proton sau đó tách lấy halogen để tạo thành nới ba nên vế đợng học có phương trình:

$$
v=\frac{k_{1} k_{2}[\mathrm{RX}]\left[\mathrm{B}^{-}\right]}{k_{-1}[\mathrm{BH}]+k_{2}}
$$

thường quá trình tách X rất nhở nên $k_{-1}[\mathrm{BH}] \gg k_{2}$ nên $v=K_{\mathrm{cb}} k_{2}[\mathrm{RX}]\left[\mathrm{B}^{-}\right] /[\mathrm{BH}]$ chứng tỏ giai đoạn quyết định tớc độ là tách X và thuộc về cơ chế Elcb.

Các phàn ứng tách ở trên cũng áp dụng dể tởng hợp những hợp chất có liên kết $\mathrm{C}=\mathrm{E}$ hay $\mathrm{C} \equiv \mathrm{E}$ (với $\mathrm{E}=\mathrm{N}, \mathrm{O}, \mathrm{S}$). Phản ứng thường xảy ra khi nhóm đi ra có liên kết với dị tó, nghỉa là có liên kết giữa hai dị tớ. Liên kết này tương đới không bển và dế thực hiện được phàn ứng tách:

Chẳng hạn phàn ứng:

9.2.4. Cơ chế $E 2 C$

Một vài ankyl halogenua hay tosylat khi tác dụng với một só bazo yếu như Cl^{-}hay $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}^{-}$trong dung moi phan cực xày ra phàn ứng theo cơ chế tách $E 2 C$ mà trong khi đo phản ứng $E 2$ thường xảy ra với các bazơ mạnh như RO^{-}trong ROH .

Để giải thích phàn ứng này, Parker cho rằng, trong trạng thái chuyển $E 2$ có trạng thái chuyển mà bazơ tấn công vào C_{α} tốt hơn là vào H_{β}. Parker đưa ra cơ chế sau gọi là cơ chế E2C:

Cơ chế $E 2 C$ đạ̣c trưng bằng nucleophin mạnh hay là bazơ yếu và để phân biệt gọi phản ứng $E 2$ bình thường là $E 2 H$ đạ̣c trưng bằng bazơ mạnh. Trạng thái chuyển của $E 2 C$ như hình a). Cơ chê cũng đã có những chứng minh vể hiệu ứng của chất ban đẩu, hiệu ứng đồng vị và hiệu ứng dung môi đến tớc đợ. Song cơ chế E2C đang còn nhiều tranh luận và cũng đã có kết quả thực nghiệm để giải thích cơ chế E2 thường. McLennan đã tìm dược trạng thái chuyển của $E 2$ thường như dạng b) ở trên, mặt khác cūng có đề nghị vể cơ chế cạ̣p ion cho những phản ứng này. Như vậy cơ chế thực còn đang tranh luận nhưng chắc chắn rằng có loại phản ứng tách mà đạ̣c trưng bằng sự tấn công bậc hai của bazơ yếu. Tuy vậy, cơ chế $E 2 C$ cüng rút ra dược những đạ̣c trưng sau:

1- Phản ứng thích hợp cho những hợp chất có nhoom đi ra tớt.
2- Phản ứng thích hợp trong dung moi aproton phân cực.
3- Thứ tự về hoạt tính cũng là bậc $3>$ bậc $2>$ bạc 1 , ngược với phản ứng tách $E 2$ bình thường.

4- Phản ứng tách $E 2 C$ luôn luôn là tách anti (không tìm thấy tách syn) nhưng trong hệ xyclohexyl, phản ứng tách anti điequatorial cûng thích hợp như là tách anti diaxial.

5- Phản ứng thích hợp theo quy tắc Zaitsev.

9.2.5. Hướng tách: Zaitsev - Hofmann

Trường hợp tách HBr từ $\mathrm{CH}_{3} \mathrm{CHBrCH}_{3}$ chỉ cho một sản phẩm, còn như trường hợp khác có nhiểu loại H_{β} khác nhau, sự quay xung quanh liên kết $\mathrm{C}-\mathrm{C}$ không giớng nhau thì thường tạo nên hai olefin: olefin ankyl hoá nhiều nhất là theo quy tắc Zaitsev và olefin ít ankyl hoá hơn là theo quy tắc Hofmann.

Phụ thuộc vào nhiếu nhan tơ mà một trong hai hương đó uu tién. Hướng tách chủ yếu phụ thự̂c vào cấu tạo chất ban đầu và điều kiện phản ứng.

1- Hướng tách chịu ảnh hường của lập thể chất ban đâu như:

cho thấy, khi tảng thể tích nhơm thể ở C_{α}, hàm lượng Hofmann tăng.

cho thấy, khi tảng nhóm thé ở C_{β}, hàm lượng Hofmann tảng.
2- Hương tách chịu ành hưởng của nhơm đi ra:

(1)

$$
\mathrm{Z}=\quad \begin{array}{llll}
\mathrm{Br} & \mathrm{~S}^{+}\left(\mathrm{CH}_{3}\right)_{2} & \mathrm{OSO}_{2} \mathrm{CH}_{3} & \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \tag{2}
\end{array}
$$

Ty lẹ (2)/(1) =
0,45
6,7
7,7
50
Khi tâng thẻ̉ tích nhóm đi ra, tăng hàm lượng Hofmann, nhưng nguyen nhân này không quyết định vì tỷ lệ Hofmann lại giảm từ dảnn xuất F đến I , tuy tảng thể tích nhóm đi ra.

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CHXCH}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \tag{1}
\end{equation*}
$$

$$
\mathrm{X}=\begin{array}{llll}
\mathrm{F} & \mathrm{Cl} & \mathrm{Br} & \mathrm{I} \tag{2}
\end{array}
$$

Tỷlệ(1)/(2) $=\begin{array}{llll}0,43 & 2,0 & 2,5\end{array}$
Trong phản ứng tách, nhóm nucleofuge chứa điện tích như $\mathrm{N}^{+} \mathrm{R}_{3}, \mathrm{~S}^{+} \mathrm{R}_{2}$ tuân theo Hofmann nếu chất ban đầu là axyclic, theo Zaitsev nếu nhóm đi ra đính với vòng sáu cạnh.

Mặt khác cũng phụ thuộc vào tính axit của hyđro do có nhóm đi ra mang diện tích (không phải trung hoà), theo Hughes, Ingold và Bunnet, các nhóm mang diện tích dương là nhóm hút electron:

3- Hướng tách cũng phụ thuộc vào thể tích của bazơ, khi tång thể tích của bazơ hàm lượng tách Hofmann cũng tång tương tự như nhóm đi ra do có trạng thái chuyển theo Hofmann thuạn lợi hơn:

Tính bazơ của tác nhân có tương quan với tỷ lệ sản phảm vì lực bazơ có ảnh hưởng tới nång lượng hoạt hoá của trạng thái chuyển đưa tợi sản phảm.

Theo Bunnet, lực bazơ tăng sẽ chuyển phổ cơ chế từ E2 sang E1cb cuơi phổ. Thực nghiệm tìm thấy có quan hệ tuyến tính về năng lượng tự do giữa tính bazơ và hàm lượng phản trăm sản phẩm tách Hofmann, tuy nhiên với bazơ lớn, như 2,6-đi-tert-butylphenoxit thì không tuân theo quy luật này vì hiệu ứng lập thể trở nên quan trọng hơn.

Để giải thích sự thay đổi hương tách $E 2$, người ta dựa vào cấu trúc trạng thái chuyển tiếp trung gian và lý thuyết về "các trạng thái chuyển biến đới". Phản ứng tách $E 2$ nằm trong giới hạn của hai cơ chế giới hạn $E 1$ và $E 2$ với hai trạng thái chuyển đã nói trên, song còn có các trạng thái chuyển trung gian phụ thuộc vào độ phân cắt liên kết $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{Z}$:
tăng mức dọ phan cất lien két C-H trong trạng thái chuyên

Các trạng thái chuyển của $E 2$ nằm trong giới hạn của $E 1$ và $E 1 c b$. Đơi với $E 2$, nếu $E 2$ xảy ra theo trạng thái chuyển gấn giống $E 1$ thì theo quy tấc định hướng của $E 1$, nếu giống E1cb thì theo quy tấc định hướng E1cb. Hướng tách ưu tiên của $E 2$ phụ thuộc vào bản chất của trạng thái chuyển tiếp. Trong trạng thái chuyển đồng bọ, trong đó có sự phân tích một phần liên kết $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{Z}$, trạng thái chuyển có bản chất liên kết đời của liên kết $\mathrm{C}=\mathrm{C}$ cao hơn dẩn tới tách cho sản phẩm olefin thế nhiếu hơn mà tính ổn định đả được xuất hiện trong trạng thái chuyển tiếp theo Zaitsev.

Trong phản ứng theo cơ chế $E 1$, sự phân cắt liên kết $\mathrm{C}-\mathrm{H}$ xảy ra sau khi liên kết $\mathrm{C}-\mathrm{Z}$ đã phân cắt hoàn toàn, nên hướng tách sẽ phụ thuợc vào cấu trúc ion cacboni và bản chất bazơ tham gia phân cất lấy proton. Sự phân cất proton xảy ra dể ngay với bazơ yếu và dung moi:

Các dữ liệu thực nghiẹm cho thấy, hương tách El phụ thuộc chủ yếu vào đọ bền tương đối của olefin. Hướng tách được xác định bầng năng lượng của trạng thái chuyển của cis và trans-olefin.

Năng lượng hoạt hoá tách hyđro cũng tương ứng với độ bền của sản phẩm, trong đó nảng lượng hoạt hoá tách proton thấp nên trạng thái chuyển gần với cacbocation và do đó, hai trạng thái này có năng lượng gần giống nhau hơn là năng lượng của sản phẩm.

Như vậy, phản ứng tách $E 1$ có tính chọn lọc thấp dẫn tới tạo thành một hỗn hợp tất cả các olefin có thể có, song chủ yếu là sản phả̉m có độ bển nhiệt động học cao hơn, là olefin có nhóm thế nhiều hơn. Thành phẩn chính xác hơn phụ thuộc nhiều nhân tớ, trong đó có nhóm đi ra và nhất là ion cacboni ở trạng thái tự do hay cạ̣p ion khi tương tác với ion ngược dấu.

Hinh 9.4. Giai đoạn xác định thành phả̉n của E1
Hương tách xác dịnh năng lượng tương đơi của trạng thái chuyển a^{\prime} và b^{\prime}, còn sản phẩm cho olefin b bền hơn a. Trạng thái chuyển a^{\prime} và b^{\prime} gần giơng a và b vì có cùng độ bền tương đơi. Vì nảng lượng hoạt hoá của tách proton thấp, trạng thái chuyến gấn giớng với cacbocation trung gian, vì thé trạng thái chuyển a ' và b ' cần phải gần với a và b về năng lượng. Như vậy, phản ứng El có tính chọn lọ̣ thấp của các hṑn hợp đồng phân có thể cớ, song thành phẩn hỗn hợp biểu thị bằng độ bền nhiẹt đọng học của olefin, olefin thế nhiều nhất có lượng lớn hơn, nghĩa là theo Zaitsev.

Thành phấn chính xác phụ thuộc nhiều nhân tơ. Trong mợt vài phản ứng, thành phần sản phẩm còn phụ thuộc vào nhóm di ra, trong thời điển tách proton ion cacboni không phải tự do tương tác với ion ngược dáu. Trong dung mối không phan cực, cạ̣p ion là chất trung gian chính, còn ion ngược dáu có thể tham gia như là chất nhận proton.

Mặt khác, hướng phản ứng còn phụ thuộc vào hiệu ứng lạ̣p thể có thể xảy ra theo hướng Hofmann. Chẳng hạn trong trường hợp 2-clo-2,4,4-trimetylpentan tạo thành một lượng lơnn
olefin kém thế hơn, nghīa là theo hướng Hofmann do phức hoạt hoá theo Hofmann ốn dịnh hơn phức theo Zaitsev:

Ở phản ứng tách E1cb, hướng tách phụ thuộc vào tính axit động học của proton, dược xác định bằng hiệu ứng cảm ứng và cộng hưởng của nhóm thế bên cạnh cũng như ảnh hưởng lạ̣p thể của bazơ khi tiếp cận tới proton: Chả̉ng hạn, nhóm ankyl làm chậm sự phân cắt proton do ảnh hưởng electron và lạ̣p thé̉. Sự phân cắt proton ưu tiên vào vị trí ít khó khăn nhất đưa tới sự tạo thành olefin ít nhơm thế hơn (Hofmann).

Phản ứng tách $E 2$ đồng bọ do sự phân cắt một phẩn các liên kết $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{Z}$, nên trong trạng thái chuyển đã có bản chất của liên kết đôi và đã phản ánh đọ bển của sản phẩm nên phàn ứng tách $E 2$ xảy ra ưu tiên theo trạng thái chuyển có bản chất liên kết đôi cao nên sản phẳm là olefin có nhóm thế nhiều hyđro nhất (theo Zaitsev).

Trạng thấi chuyển đi gần tới giới hạn $E 1$, liên kết nhớm đi ra $\mathrm{C}-\mathrm{Z}$ phân tích lớn hơn, liên kết C-H nhỏ nên sản phấm theo Zaitsev.

Trạng thái chuyển gần tới giới hạn $E 1 c b$, hướng tách được xác định bằng sự dẽ dàng tách proton vì thế sản phẩm ưu tiên là olefin ít nhơm thế nhất (theo Hofmann).

Bảng 9.7. Tỷ lệ sản phẩm trong phản ứng tách $E I$

Chất ban đău $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHXCH}_{3}$	Kiếm, dung moil	Hàm lượng trong hỡn hợp		
		1-hexen	frans-2-hexen	cis-2-hexen
X $=1$	$\mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{CH}_{3} \mathrm{OH}$	19	63	28
Cl	\ldots	33	50	17
F	\ldots	59	21	
$\mathrm{OSO}_{2} \mathrm{C}_{3} \mathrm{H}_{7}$	33	44	23
I	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	78	18	7
Cl	91	5	4
F	\ldots	97	1	1
$\mathrm{OSO}_{2} \mathrm{C}_{3} \mathrm{H}_{7}$	83	4	14

Phản ưng tách theo $E 1$ cũng như $E 2$ theo hướng Zaitsev xảy ra khi có nhóm đi ra như các halogenua, sunfonat và các nhơm dê đi ra khác, đới với những phản ứng $E 2$, có nhóm đi ra khó như các muối amoni bậc bón tạo thành theo hướng tách Hofmann. Trong các phản ứng này, liên kết đôi trong trạng thái chuyển phát triển yéu, nghīa là trạng thái chuyển gẩn giống trạng thái chuyển của cơ chế Elcb, nghĩa là các nhóm đi ra khó đã chuyển trạng thái chuyển sang hướng $E 1 c b$. Điện tích âm ở C_{β} cần phải lớn để phân cắt nhớm đi ra.

- Nếu từ trạng thái chuyển của hai hướng Zaitsev và Hofmann:

cho thấy nhơm ankyl, mợt mặt làm ổn định trạng thái chuyển do tính chất của liên kết đôi, trạng thái (1) thuận lợi hơn, phản ứng tương ứng với Zaitsev, mặt khác, nhóm ankyl có hiẹ̀u ứng $+I$ làm khó khăn cho trạng thái chuyển đã có mợt phần điện tích âm thì hiệu ứng electron làm thuận lợi cho trạng thái (2) hơn. Như vậy, nhân tố quan trọng hơn là sự phụ thuợc vào cấu trúc của trạng thái chuyển. Trạng thải có tính chất lien kết đôi cao và tính cacbanion tương đới nhỏ thì quan trọng là tính ởn định của olefin tạo thành, phản ứng ưu tien Zaitsev.

Thể tích nhớm đi ra cũng như thể tích B^{-}lớn đều làm tảng phản ứng Hofmann do khó khăn lập thế.

Nhơm đi ra dẻ̉ thuận lợi cho Zaitsev. Nhóm đi ra khó cunng như tãng tính bazơ của B trong đa sớ trường hợp làm tăng tính cacbanion, giảm tính liên kết đơi của trạng thái chuyển, sẽ giảm hướng tách Zaitsev.

Nói chung, tỷ lệ tách theo Zaitsev và Hofmann phụ thuộc vào độ cacbanion và độ liên kết đôi trong trạng thái chuyển. Các nhân tố này phải coi là đồng thời. Cần chú ý là độ cacbanion phụ thuợc vào sự khác nhau của sự phan cắt $\mathrm{C}-\mathrm{Z}$ và $\mathrm{C}-\mathrm{H}$, còn độ liên kết đôi phụ thuộc vào mức độ phân cắt của $\mathrm{C}-\mathrm{Z}$ cho nên thường độ liên kết đôi tăng, độ cacbanion tăng, tuy với mức dọ lớn hơn thì lượng Hofmann cũng cần phải tăng. Hướng tách Hofmann và Zaitsev thấy rō trong hai loại phản ứng tách của dẵn xuất halogen và muối hyđ̛oroxit tetraankyl amoni:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CXCH}_{3}$	$\xrightarrow[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}]{\mathrm{C}_{2} \mathrm{OH}^{-}}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3} \\ \text { 2-buten (1) } \end{gathered}$	$+\mathrm{CH}_{3} \mathrm{C}$ 1-b	$\mathrm{H}=\mathrm{CH}$ (2)
$X=\quad \mathrm{I}$	Br	$\mathrm{OSO}_{2} \mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{S}^{+}\left(\mathrm{CH}_{2}\right)_{2}$
Tỷ lệ (1)/(2) = 83/17	81/19	65/35	5/95	26/74

Song tính ổn định cợng hưởng trong trạng thái chuyển có tính chất liên kết đôi quyết định sản phẩm hơn, như phản ứng sau:

Nói chung, dù theo cơ chế nào, nếu chất ban đầu có liên kết đôi $(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{O})$ hay vòng thơm ở trong phân tử mà có thể liên hợp với nơi đơi mới hình thành thì sản phẩm liên hợp luôn là ưu tiên, trừ khi hiệu ứng lập thể không cho phép.

Phản ứng tạo thành liên kết đôi trong những hợp chất vòng cầu tuân theo quy tắc Bredt đã nói trước đây, nghĩa là những sản phẩm sau không hình thành hay không bền:

$\Delta^{1,2}[2.2 .1] b i x y c l o h e p t e n ~$

$\Delta^{1,2}$ [3.3.1]bixyclononen

Bất kỳ theo cơ chế nào, liên kết đôi không thể hình thành ở cacbon đầu cầu, trừ các vòng lớn (quy tắc Bredt). Chả̉ng hạn, chất ban đầu (1) chì cho (2) mà khong cho (3), còn chất ban đả̀u (4) không cho phản ưng tách:

(1)

(2)

(3)

Sự thay đổi có thể hình dung trên giản đồ sau:

Trong trường hợp tạo thành liên kết ba thì phản ứng nhanh khi chất đầu có cấu hình trans như trường hợp:

trans nhanh hơn cis đến 50 lấn, nhưng cis-1,2-đicloetylen tách nhanh hơn trans đến 20 lần:

Các phản ứng trên đảm bảo cho sự tách anti.
Trường hợp đối với dẫn xuất α, β-đihalogen, phụ thuợc vào bản chất nhóm thế mà có hướng tách, chẳng hạn:

Trong phản ứng tách $s y n$, cũng có một so chứng minh về sự định hướng, trong đó tìm thấy sự định hướng Hofmann thích hợp hơn Zaitsev.

Phản ứng $E 2 C$ tìm thấy ưu tiên sự định hướng Zaitsev. Chẳng hạn hợp chất $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHOTsCH}\left(\mathrm{CH}_{3}\right)_{2}$ ở điều kiện của E 2 , tert $-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{-} \mathrm{K}^{+}$trong tert- $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ cho 98% $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$, do liên kết đôi hướng vào phía có nhiều hyđro hơn để cho sản phả̉m có liên kết đôi liên hợp được với nhấn benzen nhưng với bazơ yếu $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$trong axeton cho sản phẩm Zaitsev $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ chì 90%.

9.2.6. Định hướng lập thể của nối đôi

Phản ứng tách của các hợp chất dạng $\mathrm{CH}_{3}-\mathrm{CABX}$ hay $\mathrm{CHAB}-\mathrm{CGGX}$ thì olefin tạo thành không có đồng phân cis-trans, nhưng các hợp chất dạng CHEG-CABX (E và G khác H) (20) và $\mathrm{CH}_{2} \mathrm{E}-\mathrm{CABX}(21)$ sẽ tạo thành đồng phan cis-trans, trong đó có mợt đồng phân uru tiên hơn.

Hợp chất dạng (20) tách theo $E 2$ cho đồng phân do định hướng trans của H và X , nếu hợp chất là erythro cho cis- olefin và hợp chất threo cho tran-s olefin:

Hợp chất (21) có hai cấu dạng có thể cho hai trạng thái chuyển nên cho hai đồng phân mà thường tìm thấy cà hai:

Trong cấu dạng (21.a), nhóm etyl ở giữa Br và CH_{3} còn (21.b) giữa Br và H . Do đó, cấu dạng (21.b) bền hơn và phản ứng tách ưu tiên từ cấu dạng này với 51% so với 18%, sự tách khác nhau càng lớn nếu kích thước A, B và E càng lớn.

Hiệu ứng che khuất không phải chỉ là nhân tớ cho hiệu ứng cis-trans mà còn chịu ảnh hưởng của nhóm đi ra, bazơ, dung môi và chất ban đầu.

Phản ứng tách $E 1$, nếu là cacbocation tự do có sự quay tự do và không quan hệ với tính hình học của chất ban đầu, trạng thái bền nhất khi mà cạ̣p nhớm D-E lớn hơn đới diện với cạ̣p nhóm thế $\mathrm{A}-\mathrm{B}$ nhỏ hơn và olefin thu được tương ứng với dạng này.

Nếu cacbocation không hoàn toàn tự do, sản phẩm loại tách E2 sẽ hình thành, tương tự nhu E1cb.

9.2.7. Quan hệ giữa E1-E2-E1cb

Phản ứng thay đởi phụ thuộc chung vào những ảnh hưởng của chất ban đầu, nhóm đi ra, bazơ và dung môi trong các cơ chế E1, E2, E1cb.

1-Chất ban đầu

Phản ứng tách xảy ra do nhóm đi ra ở C_{α} và tách proton ở C_{β} nên các nhóm thế đính ở C_{α} và C_{β} gây ra những ảnh hưởng sau:
a- Làm hoạt hoá hay bị động hoá liên kết đơi mới hình thành trong trạng thái chuyển giữa C_{α} và C_{β} (cả hai nhóm α và β).
b- Làm ổn định hay mất ởn định điẹn tîch âm mới hình thành có ảnh hưởng đến tính axit của proton (chỉ nhóm β).
c - Làm ởn định hay mất ổn định điện tích dương mới hình thành (chỉ ở nhóm α),
d- Có ảnh hưởng lập thể (cả hai nhoom β và α).
Trong bốn ảnh hưởng đó, ảnh hưởng a và d ở cả ba cơ ché, trong đó hiệu ứng d ảnh hưởng lớn nhất đói với $E 2$, ảnh hưởng b không ảnh hưởng tới cơ chế $E 1$, ảnh hưởng c không ảnh hưởng tới $E 1 c b$, các nhóm như aryl, vinyl đều làm tãng tớc độ ở bất kỳ cơ chế nào, các nhóm hứt electron làm tăng tính axit ở C_{β} ảnh hưởng nhỏ đến vị trí α trừ khi có liên hợp với liên kết đó. Các nhóm $\mathrm{Br}, \mathrm{Cl}, \mathrm{CN}, \mathrm{Ts}, \mathrm{NO}_{2}, \mathrm{CN}$ và SR ở vị trí β làm tăng tớc độ cho $E 2$.

Nhóm α ankyl và α aryl làm ổn định tính chất cacbocation của trạng thái chuyển, chuyển phố cơ chế tới cuói $E 1$, nhoóm thế ankyl β cūng chuyến cơ chế sang $E 1$ vì làm giảm tính axit của hyđro. Các nhóm aryl β lại chuyển cơ ché tới E 1 cb bởi làm ổn định cacbanion. Tất cả các nhóm thế hút electron ở β chuyển cơ chế sang Elcb. Nhóm ankyl α cũng làm tăng khả năng tách với bazơ yếu (phản ứng E2C).

2- Ánh hưởng của bazơ tấn công

Trong cơ chế $E 1$, bazơ thêm vào không ảnh hưởng đến phản ứng. Nếu dung môi là bazơ thì bazơ thêm vào chuyển sang cơ chế $E 2$. Bazơ mạnh và nồng độ cao chuyển mạnh về cuối phở cơ chế E1-E2-E1cb. Bazơ yếu cũng có hiệu dụng trong một số phản ứng ($E 2 C$). Phản ứng $E 2$ bình thường được thực hiện với các bazơ sau: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NR}_{3}, \mathrm{HO}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}$, $\mathrm{ArO}^{-}, \mathrm{NH}_{2}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{LiAlH}_{4}, \mathrm{I}^{-}, \mathrm{CN}^{-}$, và bazo hữu cơ. Các bazơ yếu tham gia phản ứng E 2 C là: $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{F}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{RS}^{-}$. Các bazơ này thường dùng dưới dạng muới $\mathrm{R}_{3} \mathrm{~N}^{+}$.

3- Ảnh hương của nhóm đi ra

Các nhóm đi ra trong phản ứng tách cūng tương tự như phản ứng thế nucleophin. Phản ứng tách $E 2$ thường từ các nhóm: $\mathrm{NR}_{3}{ }^{+}, \mathrm{PR}_{3}{ }^{+}, \mathrm{SR}_{2}{ }^{+}, \mathrm{OHR}^{+}, \mathrm{SO}_{2} \mathrm{R}, \mathrm{OSO}_{2} \mathrm{R}, \mathrm{OCOR}, \mathrm{OOH}$, $\mathrm{OOR}, \mathrm{NO}_{2}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ và CN . Phản ứng El thường có: $\mathrm{NR}_{3}{ }^{+}, \mathrm{SR}_{2}{ }^{+}, \mathrm{OH}_{2}{ }^{+}, \mathrm{OHR}^{+}, \mathrm{OCOR}$, $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ và $\mathrm{N}_{2}{ }^{+}$. Nhưng các nhóm đi ra thường dùng trong tổng hợp hữu cơ là: $\mathrm{OH}_{2}{ }^{+}$, (thường cho $E 1$), và $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ và $\mathrm{NR}_{3}{ }^{+}$(cho $E 2$).

Các nhóm đi ra dể nhất thường chuyển cơ chế vế cuối El vì chúng dể ion hoá mà đã được nghiên cứu bằng giá trị ρ. Các nhóm đi ra khó và mang điện tích dương chuyển cơ chế vế phía $E 1 c b$ vì hiệu ứng cảm ứng hứt electron làm tảng tính axit của hyđ̛or β. Co ché $E 2 C$ thích hợp với nhóm đi ra kho.

4- Ảnh huởng của dung môi

Với bất kỳ phản ứng nào, môi trường phân cực hơn làm tảng tớc độ cho cơ chế có tính chất trung gian là ion. Với các nhóm đi ra trung tính, cơ chế El và Elcb tăng khi có dung môi phân cực cao hơn và lực ion cao hơn. Với một số chất ban đâu, dung môi phân cực aproton kích thích phản ứng tương tác với bazơ yếu (phản ứng $E 2 C$).

5- Ảnh hưởng nhiệt độ

Phản ứng tách thích hợp khi tăng nhiêt độ nhất là với cơ chế bậc 1 và hai do năng lượng hoạt hoá của phản ứng tách cao hơn do thay đổi lớn liên kết.

Nói chung, ba cơ chế này giống nhau nhiều hơn là khác nhau. Trong môi cơ chế, nhóm đi ra cùng với cạ̣p electron, còn nhóm khác đé lại cặp electron mà chỉ khác nhau về thứ tự các giai đoạn. Nếu nhóm đi ra trước proton là thuấn tuý $E 1$, hyđro đi ra trước rồi nhóm đi ra sau là $E 1 c b$, còn hai nhóm đi ra đồng thời là $E 2$ là cơ chế trung gian giữa $E 1$ và $E I c b$, nhựng nhiều cơ chế E2 khônng nằm đúng trung gian mà lệch về một phía nào dó như nucleofuge đi ra trước một ít thì cơ chế vẩn là E2 nhưng có một phần nhỏ bản chất El nên vấn đề là trong trạng thái chuyển liên kết nào $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{X}$ phân cất hơn.

Để nghiên cứu vấn đề này, người ta nghiên cứu hiệu ứng đồng vị. Chả̉ng hạn, hiệu ứng đồng vị của $\mathrm{N}\left(k^{14} \mathrm{~N} / k^{15} \mathrm{~N}\right)$ là 1,017 của $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$, còn trong $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$ là 1,009 , chứng tỏ nhóm phenyl đưa phản ứng về phía Elcb và liên kết $\mathrm{C}-\mathrm{N}$ không phân cắt lớn trong trạng thái chuyển. Hiẹ̣u ứng dồng vị cho thấy, khối lượng nitơ trong hợp chất phenyl ít có tác dụng đến tốc độ phản ứng. Kết quả này cũng tìm thấy ở nhơm $\mathrm{S}^{+} \mathrm{R}_{2}$ khi dùng đồng vị ${ }^{32} \mathrm{~S} /{ }^{34} \mathrm{~S}, \mathrm{Cl}$ với ${ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}$. Ngoài ra cūng dùng dồng vị ở β-hyđro, hiệu ứng đánh dấu ở C_{α} và C_{β}.

Phương pháp khác là dùng hợp chất thế aryl β. Giá trị ρ Hammett dương trong phản ứng chứng tỏ trạng thái chuyển mang điện tích âm, giá trị ρ của hợp chất thế aryl β tăng, phàn ứng chuyển từ phía giớng E1 tới phía giớng $E 1 c b$ trong dãy phổ, như giá trị ρ trong $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{X}$ tảng khi khả nảng nhóm đi ra X giảm, như đã tìm thấy giá trị $\mathrm{\rho}$ của X khi $\mathrm{X}=\mathrm{I}$ là 2,07 ; Br là 2,$14 ; \mathrm{Cl}$ là 2,$61 ; \mathrm{S}^{+}\left(\mathrm{CH}_{3}\right)_{2}$ là 2,$75 ; \mathrm{F}$ là 3,12 . Khả nāng của nhóm đi ra giảm tương quan với bản chất $E I c b$ giảm.

Ngoài ra cūng dùng phương pháp đo thể tích hoạt hoá, thường phản ứng E2 có giá trị âm, E1cb là dương.

9.2.8. Quan hệ S_{N} và E

Phản ứng E và S_{N} thường phản ứng song song với nhau, trong đó $E I$ và $S_{\mathrm{N}} I$ tạo thành
sản phẩm từ cùng một cacbocation mà cạnh tranh nhau ở giai doạn sau nên có liên quan chạt chẽ với nhau, còn phản ứng $E 2$ và $S_{\mathrm{N}} 2$ có hướng tấn công khác nhau, thường không thuận nghịch và đểu là hai phản ứng khống chế đợng học, không quan sát thấy ảnh hưởng của khống chế nhiệt động học đến tỷ lệ sản phẩm thế và tách.

Từ những phản ứng chung nhất là từ dã̃n xuất halogen, người ta có thể tương đối rút ra những nhan tố ành hưởng sau:

1-Chất ban đầu

- Khi gớc hyđ̛ocacbon phân nhánh lớn, nói chung tỷ lẹ $S_{\mathrm{N}} 1 / E 1$ giảm:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CCl}\left(\mathrm{CH}_{3}\right)_{2}$ cho 30% anken, còn $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCl}\left(\mathrm{CH}_{3}\right)_{2}$ cho 62% anken.
- Khí tăng bạ̣c gốc hyđrocacbon, tỷ lệ $S_{\mathrm{N}} 2 / E 2$ giảm:

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{X}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHX}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CX}
$$

$$
k_{\mathrm{pu}}, 10^{5} \quad k, 10^{5}\left(S_{\mathrm{N}} 2\right) \quad k, 10^{5}(E 2) \quad \% \text { olefin }
$$

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	174	172	1,6	0,9
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	60	54,7	5,3	8,9
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	14,3	5,8	8,5	59,8
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	593	32	561	94,6

- Sự thé ở C_{α} thuận lợi cho $E 2$ nhiều hơn $S_{\mathrm{N}} 2$ và dể dàng cho $E 1$, còn $E 1$ tương tự như $S_{\mathrm{N}} I$. Nói chung, với điều kiện của phản ứng bậc 2 , mạch nhánh α tăng phản ứng tách do một mạt về thống kê, mạch nhánh α tảng thì tăng so hyđro cho bazơ tấn công, mặt khác, do khó khăn lập thể làm cho tấn công vào cacbon giảm. Với phản ứng bậc nhất, mạch nhánh α tăng cūng tăng phản ứng tách nhưng không nhiều.
- Sự thế β cūng tãng phản ứng tách với cơ chế bậc hai, $E 2$ tãng so với $S_{\mathrm{N}} 2$ không phải vì phản ứng tách nhanh hơn mà vì cơ chế $S_{\mathrm{N}} 2$ quá chậm. Cơ chế bậc nhất, mạch nhánh β thích hợp cho phản ứng tách hơn thế do lý do lập thể. Một số phản ứng tách $E 2$ chứa nhóm đi ra mang điện tích chạm hơn đo mạch nhánh β. Các nhóm thế hút electron ở vị trí β không chỉ làm tảng tốc độ tách $E 2$ mà chuyển cơ chế về phía $E 1 c b$ nhưng cũng tãng phản úng tách hơn thế.

2- Nhóm đi ra

Hoạt tính nhóm đi ra thực tế không khác nhau ở S_{N} và E. Các nhóm đi ra mang diện tích dương $\mathrm{H}_{2} \mathrm{O}^{+}, \mathrm{N}_{2}{ }^{+}$là nhóm đi ra tốt nhất cho tỷ lệ $S_{\mathrm{N}} 2 / E 2$ giảm. Các nhóm đi ra mang diện tích âm như $\mathrm{RSO}_{3}{ }^{-}$xảy ra theo $E 1$ cũng như $E 2$ nhưng dẽ dàng cho phản ứng S_{N} hơn E. F là nhóm đi ra đặc biệt tốt cho Elcb (loại HF bằng $\mathrm{CH}_{3} \mathrm{O}^{-}$) theo Hofmann. Đối với phản ứng bậc nhất, nhớm đi ra không có cạnh tranh gì giữa thế và tách, nhưng nếu là ở dạng cạ̣p ion thì bản chất của nhóm đi ra có ành hưởng đến sản phẩm. Đối với phản ứng bậc 2 , tỷ lệ
E / S_{N} phụ thuợc không lớn vào nhóm đi ra là halogen, có tăng nhẹ theo thứ tự $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>$ F. Nhóm đi ra là OTs cho phản ứng thế hơn. Chẳng hạn, $n-\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{Br}$ tác dụng với tertbutoxit cho 85% tách, với $n-\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{OTs}$ dưới cùng điếu kiện cho 99% thế. Các nhóm mang điện tích dương taxng phản ứng tách.

Chất ban đầu có nhơm đi ra khó, phản ứng $E 2$ xảy ra qua trạng thái chuyển có bản chất cacbanion lớn và mức độ phân cắt $\mathrm{C}-\mathrm{Z}$ nhỏ. Vì thê, tỷ lệ sản phả̉m tách cao hơn khi có nhóm thế đi ra khó. Chẳng hạn, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ với $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$cho 15% etylen, với $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}^{+}\left(\mathrm{CH}_{3}\right)_{2}$ cho 100% etylen. Do đó, đọ tách tãng khi chuyển từ bromua tới clorua và florua.

Từ trên cho thấy phản ứng $S_{\mathrm{N}} 2$ rất nhạy với hiệu ứng lập thể hơn $E 2$. Sự tảng són nhơm ankyl ở C_{α} hay C_{β} trong chất ban đầu luôn luôn làm chậm phản ứng $S_{\mathrm{N}} 2$ do tảng khó khăn lập thể. Trong khi đó, các nhóm thế này trong đa só trường hợp làm ổn định trạng thái chuyển cho phản ứng tách vì ổn định liên kết đơi hình thành. Ngay trong trường hợp trạng thái chuyển anion mạnh của $E 2$ đưa nhóm ankyl vào có thể làm mất ởn định trạng thái chuyển, làm chậm phản ứng, song điểu này kém quan trọng hơn ở phản ứng thế.

Nếu xét về thuần tuý lập thể thì có thể kết luận rà̀ng, tãng số nhóm thế và thể tích nhóm thế làm tăng phản ứng E vì khơ khăn lập thể giảm từ chá̛t ban đầu tới phức hoạt hoá của $E 2$. Do đó, tāng số nhóm thế làm tăng phản ứng E, đặc biệt là đưa nhóm aryl vào C_{β} có khả năng ổn đị̣nh liên kết đời tạo thành mà còn giải toả điện tích âm trong trạng thái chuyển của phản ứng E.

Về hiệu ứng electron, phản ứng $E 2$ có độ nhạy cao với hiệu ứng electron của nhóm thế vì trạng thái chuyển có điện tích âm lớn. Trong khi đó ảnh hưởng của nhóm thế trong S_{N} nhỏ hơn. Khi đưa nhóm thế hút electron làm tăng phản ứng E.

3-Bản chät nucleophin hay bazo

- Khi tảng tính bazơ của nucleophin, khả năng tách tâng nhiều hơn là phản ứng thế, trong đó ưu tiên $E 2$ hơn $E 1$,
- Khi tăng thể tích nucleophin, làm ảnh hưởng tới $S_{\mathrm{N}} 2$ hơn $E 2$ vì tách proton trong $E 2$ ở ngoại vi phân tử, ít ảnh hưởng lập thể hơn khi tương tác với cacbon trong phản ứng thế.

Trong cơ chế lưỡng phân tử, phản ứng tách $E 2$ phụ thuộc vào tính bazơ của bazơ hay nucleophin, còn phản ứng $S_{\mathrm{N}} 2$ phụ thuộc vào tính nucleophin của nucleophin hay bazơ. Phản ứng $E 2$ nhạy với tính bazơ hơn $S_{\mathrm{N}} 2$, để giải thích sự phụ thuộc này, có thể đưa ra quan niệm về axit - bazơ cứng và mềm. Chẳng hạn như trong phân tử $\mathrm{H}-\mathrm{CR}_{2}-\mathrm{CR}_{2} \mathrm{X}$ thì liên kết $\mathrm{C}_{\beta}-\mathrm{H}$ là cứng, $\mathrm{C}-\mathrm{X}$ là mềm nên kiềm cứng ưu tiên phản ứng với axit cứng $\mathrm{C}-\mathrm{H}$ cho sản phẩm tách, kiểm mểm phản ứng ưư tiên với $\mathrm{C}-\mathrm{X}$ mềm cho sản phẩm thế. Do đó, nếu từ ankylbromua bậc nhất tác dụng với metylat kali là kiềm ít cứng hơn thì cho sản phẩm thế, với
tert-butylat kali là kiếm cứng hơn cho sản phẩm tách, nếu từ ankyltosylat bạ́c nhất là nhóm cứng hơn bromua thì phản ứng với metylat hay tert-butylat đều cho sản phẳm thé.

Muớn ưu tiên cho $E 2$, cấn kiếm cứng hơn, đủ mạnh: $\mathrm{HO}^{-}<\mathrm{CH}_{3} \mathrm{O}^{-}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}<$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{-}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-}$. Với phản ứng $S_{\mathrm{N}} 2$, nhớm $\mathrm{C}-\mathrm{Br}$ hay $\mathrm{C}-\mathrm{I}$ là mềm thì dùng kiềm cứng là không thuận lợi.

Bazơ mạnh khong thích hợp cho $E 2$, ngược với $E 1$, nhưng cũng thích hợp cho tách ngược với thế. Với nồng độ cao của bazơ mạnh trong dung môi không ion, cơ chế lưỡng phân tử thích hợp, $E 2$ ưu tiên hơn $S_{\mathrm{N}} 2$, ở nờng đọ bazơ thấp hay khi không có bazơ, trong dung mồi ion, cơ chế dơn phan tử là thích hợp và $S_{\mathrm{N}} 1$ ưu tiên hơn $E 1$.

4- Ảnh huởng cuia dung môi

Dung môi có ảnh hưởng tới phản ứng S_{N} và E. Khi tăng tính phân cực của dung môi, làm dể dàng cho $E 2$ và $E l c b$, hiệu suất tách $E 1$ kém hơn $S_{\mathrm{N}} l$ vì tỷ lẹ̣ $S_{\mathrm{N}} l / E l$ có ảnh hưởng ở giai đoạn hai. Nói chung, dung môi phân cực solvat hoá trạng thái chuyển của $E 1$ nhỏ hơn ion cacboni ban đâu vì điện tích giải toả lơn hở:

Khi tăng tính phân cực của dung moi làm khó khăn cho $E 2$ và $S_{\mathrm{N}} 2$ vì khả năng solvat hoá trạng thái chuyển kém hơn chắt ban đầu, nhựng ảnh hưởng ở $E 2$ nhiều hơn $S_{\mathrm{N}} 2$ vì sự giải toả điện tích ở trạng thâi chuyển $E 2$ lớn hơn:

do đó thường tiến hành phản ứng tách trong dung moi ít phân cực và bazơ mạnh để tỷ lệ phản ứng tách tăng. Chả̉ng hạn:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{B}^{-} \longrightarrow \text { sản phẩm }
$$

$$
\begin{array}{rll}
\text { Dung moi: } & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad 60 \% E 2 / S_{\mathrm{N}} 2= & 1,17 \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad 80 \% E 2 / S_{\mathrm{N}} 2 & 1,44 \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} 100 \% E 2 / S_{\mathrm{N}} 2 & 2,45
\end{array}
$$

5- Nhiệt dộ

Nói chung nhiẹt đọ tảng làm tăng phản ứng tách. Phản ứng E1 tăng hơn $S_{\mathrm{N}} /$ vì ở giai đoạn phân cắt proton đòi hỏi năng lượng hoạt hoá từ 2 đến $4 \mathrm{kcal} / \mathrm{mol}$, nhưng sự khác nhau không lớn nên sự tạo thành olefin không phải đạ̣c biệt ưu tiên. Phản ứng $E 2$ cūng tãng khi tăng nhiệt độ hơn là $S_{\mathrm{N}} 2$ vì $E 2$ đòi hỏi năng lượng hoạt hoá lớn hơn $S_{\mathrm{N}} 2$, tuy entropi hoạt hoá
của $E 2$ dương hơn $S_{\mathrm{N}} 2$ nhưng không bù được entanpi hoạt hoá. Năng lượng hoạt hoá lớn, tức là phản ứng chậm, tăng nhiệt độ thì tớc độ phản ứng có năng lượng hoạt hoá lớn hơn sẽ tăng nhanh hơn vì $k=B . Z e^{-E / R T}$.

Để điều chế anken, thường dùng phàn ứng E2 vì E1 thường cho sản phẩm đồng phân hoá.

Bảng 9.8. So sánh điếu kiện cho E và S_{N}

Chắt ban đáu	Nhóm đi ra	Nu hay B	Phản ưng chính
$\mathrm{RCH}_{2} \mathrm{Z}$	$\mathrm{X}^{-}, \mathrm{RSO}_{3}{ }^{-}$	$\mathrm{HO}^{-}, \mathrm{RO}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$	$\mathrm{S}_{\mathrm{N}} 2$
$\mathrm{R}=\mathrm{ankyl}$	$\mathrm{X}^{-}, \mathrm{RSO}_{3}{ }^{-}$	$\mathrm{HOH}, \mathrm{ROH}$	phản ưng quá chạ̀m
	$\mathrm{H}_{2} \mathrm{O}^{+}$	X^{-}	$S_{N} 2$
	$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{HO}^{-}, \mathrm{RO}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$	E2
$\mathrm{R}_{2} \mathrm{CHZ}$	$\mathrm{X}, \mathrm{RSO}_{3}^{-}$	$\mathrm{HO}^{-}, \mathrm{RO}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$	$\mathrm{S}_{\mathrm{N}} 2+E 2$
	$\mathrm{X}^{-}, \mathrm{RSO}_{3}{ }^{-}$	$\mathrm{HOH}, \mathrm{ROH}$	$S_{N} 1, S_{N} 2$
	$\mathrm{H}_{2} \mathrm{O}^{+}$	X^{-}	$S_{N} 1, S_{N} 2$
$\mathrm{R}_{3} \mathrm{CZ}$	$\mathrm{X}, \mathrm{RSO}_{3}{ }^{-}$	$\mathrm{HO}^{-}, \mathrm{RO}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$	E2
	$\mathrm{X}, \mathrm{RSO}_{3}{ }^{-}$	HOH, ROH	$\mathrm{S}_{\mathrm{N}} 1$
	$\mathrm{H}_{2} \mathrm{O}^{+}$	X^{-}	$S_{N} 1$
	$\mathrm{NH}_{3}{ }^{+}$	$\mathrm{HO}^{-}, \mathrm{RO}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$	E2

9.2.9. Phản ứng tách liên hợp $\mathbf{1 , 4}$

Các hợp chất thuộc loại sau sẽ tách 1,4 :

$$
\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{X} \rightarrow \mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}
$$

Tuy hiếm hơn là phản ứng cợng liên hợp nhựng cũng đã có mợt sớ công bớ, chẳng hạn như phản ứng sau là tách 1,4 :

CH_{3}

9.2.10. Phản ứng tách các nhóm khác hyđro

Nhưng phản ứng trên là phản ứng tách mà mợt trong hai nhóm đi ra là H , tuy là quan trọng và hay gặp nhất song còn có những phản ưng mà cả hai nhớm đi ra không phải là hydro.

Những nhơm loại này phải là những nhơm đi ra để với bazơ Lewis hay liên kết với cacbon bằng liên kết σ phân cực có khả năng làm giàu electron cho cacbon. Các phản ứng này thường có đạ̣c thù lập thể.

Phản ứng đebrom hoá của 1,2-đibrom cüng là phản ứng tách khi có tác dụng của tác nhân khử như Zn hay I^{-}.

Phản ứng của 1,2-dibrom với kim loại như Zn, Mg xảy ra trong các dung môi như axit axetic với chức nẵng là tách muối ra khỏi bề mặt kim loại:

Song thực tế phản ứng xảy ra qua hai giai đoạn tạo thành cacbanion trung gian do phân cắt brom từ phân tử ban dâu bằng Zn .

Phản ứng cũng xảy ra tương tự với I^{-}với dung dịch KI trong axeton:

Sự tấn công ban đâu bà̀ng I^{-}quyết định tớc đọ và tạo 1,2 -iotbromua trung gian rồi chịu tấn công tiếp vào brom để thành anken nên $v=k\left[I^{-}\right]$[1,2-đibrom]. Phản ứng có thể đi qua chất trung gian cấu bazơ hay chất trung gian cơ kim với liên kết $\mathrm{Zn}-\mathrm{C}$:

Hai phản ứng trên đều là tách anti, được chứng minh bằng phản ứng tách từ sản phẩm cộng ${ }^{82} \mathrm{Br}$ vào bromxyclohexan. Sản phả̉m chính thu được là tách trans còn sản phẩm phụ là tách syn có chứa ${ }^{82} \mathrm{Br}$:

Nếu phản ứng dùng $\mathrm{Zn} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ cho 89% anti và 11% syn, $\mathrm{NaI} / \mathrm{CH}_{3} \mathrm{OH}$ cho 100% anti khong có sản phẩm syn.

Tính hoá học lập thể cũng thể hiện ở cấu dạng của chất ban đẩu meso hay erythro hoặc D, L hay threo:

nếu đi từ dẫn xuất đibromxyclohexan, nếu là đồng phân trans cho tách anti, còn đồng phân cis thì không có phản ứng.:

Phản ứng cūng xảy ra với hệ $\mathrm{M}-\mathrm{C}-\mathrm{C}-\mathrm{Z}$ với M là nguyên tơ hay nhóm mang diện tích dương hơn. Z là nhoóm âm điện hơn, đều tách anti cho olefin.

Phản ứng được nghiên cứu nhiều là phản ứng loại hyđroxyl thuỷ ngan (đehydroxyl mercure) xúc tác axit.

Phản ứng tách của $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{HgI}$ nhanh hơn của $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$ đến 10^{11} lần. Chẳng hạn, trans-2-metoxyhexyl thuỷ ngân cũng tách anti với trạng thái chuyển vòng có năng lượng thấp hơn đổng phân cis là $8 \mathrm{kcal} / \mathrm{mol}$.

Ion vòng cấu trung gian chịu sự cấn công của tiểu phân nucleophin cho olefin.
Các hợp chất $\mathrm{cơo} \mathrm{Sn}, ~ c o ̛ ~ S i ~ đ e ̂ ̀ u ~ c h o ~ p h a ̉ n ~ u ̛ ́ n g ~ t u ̛ o ̛ n g ~ t u ̛ ̣: ~$

$$
\mathrm{M}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{H}^{+}} \mathrm{MOH}+\mathrm{CH}_{2}=\mathrm{CH}_{2}
$$

$\mathrm{M}=$	HgI	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{~Pb}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn} \mathrm{H}$	
$k_{\mathrm{td}}=$	5	3	1	10^{-6}	10^{-2}
E liên kết:	27,	31	64	60	$96 \mathrm{kcal} / \mathrm{mol}$

Các phản ứng này đều dạ̃c thừ lập thể:

Song chưa thiết lập được là phản ứng có đi qua ion cầu như hợp chất cơ thuỷ ngân hay là sự tấn công của dung môi vào thiếc hay silic đồng thời với nhóm đi ra. Trong phân tử tách β cũng có thể tạo thành liên kết $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N}$ như các trường hợp sau:

$$
\begin{array}{ll}
\mathrm{H}-\mathrm{O}-\mathrm{C}-\mathrm{Z} \longrightarrow \mathrm{H}^{+}+\mathrm{C}=\mathrm{O}+\mathrm{Z}^{-} \\
\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{NO}_{2} \longrightarrow \mathrm{H}^{+}+\mathrm{C}=\mathrm{O}+\mathrm{NO}_{2} \\
\mathrm{H}-\mathrm{C}-\mathrm{NR} . \mathrm{Cl} \longrightarrow \mathrm{H}^{+}+\mathrm{C}=\mathrm{NH}+\mathrm{Cl}^{-}
\end{array}
$$

9.2.11. Các phản ứng tách $\boldsymbol{\beta}$

1- Phản úng dehydrohalogen hoá

Phản ứng tách hyđrohalogenua là phản ứng tách chung nhất trong phản ứng tách:

Phản ứng tách HX từ ankyl halogenua với $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ và F với bazơ như KOH trong rượu hay bazơ mạnh như $\mathrm{RO}^{-}, \mathrm{NH}_{2}{ }^{-}$và bazơ yếu như amin. Tác nhan tớt nhất cho phản ứng tách HX là bixyclo amiđin 1,5-diazobixyclo[3.4.0]nonen-5 (DBN) và 1,8-điazobixyclo[5.4.0]undexen (DBU):

DBN

DBU
còn với bazơ không ion như $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]_{3} \mathrm{P}=\mathrm{N}-\mathrm{P}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}=\mathrm{NCH}_{3}$ cho phản ứng nhanh. Trong mợt sớ trường hợp dùng xúc tác chuyển pha với HO^{-}là bazơ. Phản ứng tách có thể đun nóng ankylhalogenua trong HMPA không cần tác nhân nào khác. Một số bazơ yếu trong dung môi aproton phân cực cūng là tác nhân hiẹ̣u dụng, cūng dùng phương pháp tổng hợp với LiCl hay $\mathrm{LiBr}-\mathrm{LiCO}_{3}$ trong DMF.

Cüng như phản ứng thế nucleophin, khả năng phản ứng dā̃n xuất $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$.

Các halogenua bậc ba phản ứng dễ nhất. Các clorua, bromua và iođua tách theo quy tắc Zaitsev trừ vài trường hợp có khó khăn lập thể. Các florua tách theo Hofmann.

Phản ứng dehyđrohalogenua hoá xảy ra trong dung dịch thường theo $E 2$ và mợt só trường hợp E1. Một số phản ứng tách bằng nhiệt phân theo cơ chế Ei và một sớ theo cơ chế gớc tự do. Phản ứng nhiệt phân không dùng xúc tác thì ở $400^{\circ} \mathrm{C}$, nhưng ít dùng trong tởng hợp vì là phản ứng thuận nghịch, còn nếu dùng xúc tác thì cơ chế giống $E 1$ và $E 2$.

Phản ứng tách HX cũng dùng để tổng hợp các ankyn từ các loại hợp chất:

với bazơ mạnh hơn như NaNH_{2} thu được chủ yếu 1-ankyn do tạo được muới của ankyn loại bô cân bằng giữa 1 -ankyn và 2 -ankyn, còn nếu dùng RO^{-}hay HO^{-}thì chủ yếu thu được 2 -ankyn bền nhiệt động học hơn, nếu từ loại $-\mathrm{CRH}-\mathrm{CX}_{2}-\mathrm{CH}_{2}$ - thì ưu tiên ankyn bền hơn.

Có thể dùng cả phản ứng tách và thế khi tác dụng $\mathrm{RCH}=\mathrm{CFCl}$ với muới YM với $\mathrm{M}=$ kim loại, $\mathrm{Y}=$ ankyl, aryl, $\mathrm{N}_{2}, \mathrm{RO}$:

$$
\mathrm{RCH}=\mathrm{CFCl}+\mathrm{YM} \longrightarrow \mathrm{RC} \equiv \mathrm{CY}
$$

Các ankyn, enamin, ete axetylenic thường diểu chế bằng phương pháp này.
Một phản ứng đạ̣c biệt là tách HX từ mợt axit prochiral với amit liti quang hoạt thu được một sản phẩm quang hoạt dư mộ đối quang đến 82% :

2-Phản ung dehydrat hoá ancol

Phản ứng đehyđ̛rat hoá ancol khi có axit $\mathrm{H}_{2} \mathrm{SO}_{4}$ hay $\mathrm{H}_{3} \mathrm{PO}_{4}$ là phương pháp phở biến để tởng hợp anken:

Phản ứng cần phải có xúc tác axit tuân theo cơ chế $E 1$. Quá trình chính là chuyển ROH thành $\mathrm{RO}^{+} \mathrm{H}_{2}$ dẻ̉ phân cắt thành R^{+}và $\mathrm{H}_{2} \mathrm{O}$. Đới với một vài axit, di qua quá trình tạo ete vô cơ rồi phân tích cho R^{+}:

$$
\mathrm{ROH} \longrightarrow \mathrm{ROSO}_{2} \mathrm{OH} \longrightarrow \mathrm{R}^{+}+\mathrm{HSO}_{4}^{-}
$$

Quá trình đehyđrat hoá ancol là quá trình ngược với quá trình hyđrat hoá olefin, phù hợp với quy tắc cân bằng vi mô. Phản ứng này có sản phảm phụ chuyển vị và hình thành ete.

Khi dùng anhyđrit $\mathrm{P}_{2} \mathrm{O}_{5}$, anhyđrit phtalic, HMPA có hình thành este và nhóm di ra là bazơ liên hợp của axit tương ứng thì có thẻ theo cơ chê El hay E2

Phương pháp dùng ancol ở pha hơi trên $\mathrm{Al}_{2} \mathrm{O}_{3}$ là phương pháp tớt tránh được sản phảm phụ và có thể dùng đến 1-đođecanol. Có thể dùng các muới khác, sunfua, zeolit.

Khi tăng đọ nhánh α của ancol, tớc đọ đehyđrat hoá nhanh nên ancol bậc ba dễ loại nước nhất, chỉ cần vết axit. Ancol bạ̣c ba và hai đehyđrat hoáa không có chuyển vị khi đun hồi lưu ancol trong HMPA.

Hâu như với tất cả các tác nhân, phản ứng đehyđrat hoá xảy ra theo quy tắc Zaitsev, trừ khi cho hơi ancol đi qua oxit thori ở $350 \div 450^{\circ} \mathrm{C}$ theo quy tắc Hofmann.

Khi tác dụng ankoxit RO^{-}của ancol với bromofom trong kiềm cũng đehyđrat hoá cho anken gọi là phản ứng đeoxy hoá. Phản ứng đi qua đibromcacben và phân tích cho cacbocation rồi thành anken:

$$
\mathrm{RO}^{-}+{ }^{-} \mathrm{CBr}_{2} \xrightarrow{-\mathrm{Br}^{-}} \mathrm{R}-\mathrm{O}-\mathrm{C}^{-}-\mathrm{Br} \xrightarrow[-\mathrm{CO}]{-\mathrm{Br}^{-}} \mathrm{R}^{+} \rightarrow \text { anken }
$$

Các ankoxit kim loại magie ($\mathrm{ROH}+\mathrm{R}_{\mathbf{2}} \mathrm{Mg} \rightarrow \mathrm{ROMgCH}_{3}$) đehydrat hoá khi đun nóng ơ $195 \div 340^{\circ} \mathrm{C}$ cho anken, CH_{4} và MgO . Phản ứng theo cơ chế tách syn và Ei.

Axit cacboxylic cũng đehyđrat hoá bằng nhiẹt phân cho xeten:

hay dùng tác nhân khác như TsCl_{5}, đixyclohexylcacbođiimit, 1-metyl-2-clo-pyriđin clorua (tác nhân Mukaiyama).

Tương tự tác dụng điaxit như axit malonic với $\mathrm{P}_{2} \mathrm{O}_{5}$ cho cacbon suboxit:

$$
\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{COOH} \rightarrow \mathrm{O}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{O}
$$

Các amit đehyđrat hoá bằng $\mathrm{P}_{2} \mathrm{O}_{5}$, pyriđin, $\mathrm{Al}_{2} \mathrm{O}_{3}$ cho xetimin:

3-Phản ưng dehydroxyanua hoá

Các enamin điều chế bằng phương pháp này từ α-xyan amin bậc ba tác dụng với KOH hay tert- $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}$ trong benzen hay toluen sôi hoạ̣c ete tert-butyl metyl ở nhiệt độ phòng:

4- Phản úng dehydrohalogenua của axyl halogenua và sunfonyl halogenua

Khi tác dụng axyl halogenua với amin bạc ba thu được xeten:

Phản ứng có ứng dụng rợng vì các axyl halogenua co H_{α} dểu cho phản ứng này nhưng nếu thay mợt R bằng H thì không thu dược xeten mà đime xeten.

Các sunfonyl halogenua có H_{α} cũng phản ứng với amin bậc ba qua chất trung gian là sunfen có hoạt tính cao:

Sunfen rất hoạt động cho sản phả̉m đime của RCH nên có thể áp dụng sunfen bà̀ng phương pháp tổng hợp in situ.

5- Phản ứng phân cắt ete cho olefin

Các ete chuyển thành olefin khi tác dụng với bazơ rắt mạnh như ankyl natri, ankyl liti hay amidua natri:

Phản ứng tách tăng khi cón nhơm thế hút electron ở vị trí β như:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}
$$

phản ứng với bất kỳ bazơ nào hay chỉ cần đun nơng cho $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$. Ete tert-butyl phân cắt dễ hơn các ete khác.

Cơ chế phản ứng cŭng là cơ chế chung E1 hay $E 2$, nhựng trong nhiều trường hợp tìm tháy cơ chế phản ứng là Elcb hay ở về phía $E 1 c b$ hơn vì có kiếm mạnh, nhưng cũng còn tìm thấy cơ chế Ei qua chất trung gian vòng 5 cạnh như khi dùng $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}$:

Các epoxit chuyển thành ancol allylic khi tác dụng với tác nhân chung ở trên, thường dùng liti đietylamit, tert-butyletylsilyl iodua:

Khi dùng tác nhân hoạt dộng quang học, co thẻ̉ thu được ancol allylic quang hoạt từ epoxit khong quang hoạt.

Các axetan cũng cho phản ưng loại ancol cho ete khong no (ancol enol) bằng $\mathrm{P}_{2} \mathrm{O}_{5}$ như trén, còn khi düng trimetyl triflat và amin bạ̣ ba hay $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Sil}$ khi có hexametylđisilazan thì phàn ứng xảy ra ở nhiẹt đọ phòng:

Khi nhiẹt phan enol ete cho olefin và andehit:

Tơc đọ phản ứng của $\mathrm{R}-\mathrm{O}-\mathrm{CH}=\mathrm{CH}_{2}$ tăng theo thứ tự:

$$
\mathrm{CH}_{3} \mathrm{CH}_{3}<\text { iso- } \mathrm{C}_{3} \mathrm{H}_{7}<\text { tert }-\mathrm{C}_{4} \mathrm{H}_{9} .
$$

6- Phản û́ng phân tích hydroxit tetraankylamoni

Các hyđroxit tetraankyl amoni bị phân tích nhiẹt cho olefin:

Co chê nơi chung là $E 2$ và tuân theo quy tắc Hofmann đơi với các chất mạch hở (axyclic) và theo Zaitsev đơi với các chất xyclohexyl. Néu trong phan từ có khó khăn khong gian lơn, nhơm OH^{-}khong tiếp cạn được vđ̛i hydro β mà tiếp cận vào hyđro nhơm metyl thì theo co che vòng 5 cạnh Ei:

Để phân biẹt giữa cơ ché $E 2$ thừ̀ng vơi cơ ché vòng 5 cạnh trên, người ta dùng phương pháp đánh dấu. Chả̉ng hạn nêu dùng mươi amoni có đeutri ở vị trí β $\mathrm{R}_{2} \mathrm{CDCH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{HO}^{-}$, nếu là cơ ché $E 2$ thu dược trimetylamin không chứa đeutri, còn theo Ei thì amin chứa deutri. Néu muơi có khó khăn lạp thể cao, như $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}_{2} \mathrm{CDCH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{HO}^{-}\right.$đeutri xuát hiẹn trong amin chứng minh cho cơ che Ei. Vớ các hợp chất đơn giản, cơ ché tách là $E 2$.

Khi nitơ có nhiểu hyđ̛oo β thì theo quy tắc Hofmann, nhơm ankyl hoá ít nhất bị phân cắt, chẳng hạn nhớm etyl có 3 hyđ̛o β phan cắt nhanh hơn ankyl dài hơn có hai hyđro β. Quy tấc Hofmann thay đới khi cơ sự liên hợp, chẳng hạn từ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ chủ yêu cho styren thay cho etylen.

Phản ứng thường đun nóng ở $100 \div 200^{\circ} \mathrm{C}$, trong dung dịch rất đạ́m đặc, ở áp suất tháp có thể giàm nhiẹt đợ.

Phîn ứng có ý nghĩa lớn để xác định cấu trúc của các amin, đặc biệt là các ancaloit:

Các ankyn cũng cơ thể tổng hợp theo phương pháp này từ muới kép 1,2 :

Trường hợp tác dụng của muối như clorua hay bromua tetraankyl amoni, không phải chuyển thành hyđ̛oxit mà tác dụng ngay với một bazơ mạnh, như với $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Li}, \mathrm{KNH}_{2}$ trong NH_{3} lỏng, phản ứng cũng cho sản phẩm tương tự trên nhựng không theo cơ chế của hyơroxit tetraankyl amoni mà theo cơ ché Ei:

Trong cơ chế trên, một hyđro α^{\prime} tách ra tạo thành ylit, nên gọi là cơ chế α ', β và hyđ̛o β tách ra bởi cacbon α^{\prime}. Cơ chế này đă được xác nhận bằng phương pháp đánh dấu đờng vị và tách ra được chất trung gian ylit. Cơ chế này khác với cơ chế tách trên, ở đay là tách syn (cơ chế trên là anti) nên sản phảm có cấu hình ngược lại khi olefin tạo thành là đờng phân cis-trans. Có thể dùng bazo rất mạnh là KOH trong ete monometyl của polyetylen glycol.

Để phân biẹt cơ chế $E 2$ và $E i$, dùng phương pháp đồng vị $\mathrm{R}_{2} \mathrm{CDCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+} \mathrm{HO}^{-}$, néu theo cơ chế $E 2$ thì sản phẩm trimetylamin không chứa deutri, còn theo Ei thì amin chứa deutri, trừ khi hợp chất có khó khăn lập thể như $\left[\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{2} \mathrm{CDCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+} \mathrm{HO}^{-}$thì amin có deutri là theo $E i$.

7- Phản û́ng tách toluen-p-sunfonylhydrazon

Các tosylhyđrazon của andehit hay xeton tác dụng với bazơ mạnh hình thành olefin:

Phản ứng dùng gần 2 mol hợp chất cơ liti (thường $\mathrm{CH}_{3} \mathrm{Li}$) trong ete, hexan, tetrametylenđiamin, gọi là phản ứng Shapiro cho anken với hiệu suất tớt, thường ưu tiên cho anken thế ít hơn, các tosylhyđrazon của andehit khong no cho đien lien hợp.

Co chế:

Phản ứng cắn gần hai mol RLi , hyđro trong olefin láy từ nước không phải H của cacbon bển cạnh mà được chứng minh bằng đổng vị deutri. Phản ứng dùng các bazơ khác như LiAlH_{4} trong glycol, $\mathrm{NaH}, \mathrm{NaNH}_{2}$, nhưng định hướng nới đôi theo hướng khác cho olefin thế cao hơn, gọi là phản ứng Bamford-Stevens.

Phản ứng trên theo hai cơ chế, do sự hình thành cacben và cacbocation từ hợp chất điazoni. Nói chung, cơ chế cacbocation gặp trong dung môi proton, còn cơ chế cacbenoit trong dung môi aproton, do quá trình chuyẻn hoá của cation điazoni:

Thực tế, khi không có dung moi proton, hợp chất điazo (22) tách N_{2} và chuyển H cho olefin. Sự dời chuyển này có thể sau hay dông thời với tách N_{2}. Trong dung môi proton, (22) bị proton hoá cho ion diazoni (23) tách N_{2} cho cacbocation rồ tách cho olefin hoạ́c cho phản ứng khác của cacbocation.

Hợp chất diazo là chất trung gian trong sự hình thành olefin khi tác dụng N -nitrozoamit với rođi (II):

8- Phản ứng tách hợp chất sunfoni, sunfoxit

Các hợp chất sunfoni cũng tách khi có nhiệt tương tự như muới amoni:

Các sunfon và sunfoxit co H_{β} tách khi có ankoxit:

$$
-\underset{\mathrm{H}}{\mathrm{C}} \mathrm{SO}_{2}^{\mathrm{C}}-\mathrm{R} \xrightarrow{\mathrm{C}} \xrightarrow{\mathrm{RO}^{-}}-\stackrel{\mathrm{C}}{\mathrm{C}}=\stackrel{\mathrm{C}}{\mathrm{C}}+\mathrm{RSO}_{2}^{-}+\mathrm{R}^{\prime} \mathrm{OH}
$$

Phản ứng theo cơ chê E1, E2 hay E1cb. Các nhơm đi ra khong mang điện tích định hướng theo Hofmann mà không theo Zaitsev.

Các sunfoxit cuñg tách khi nhiệt phân ở $80^{\circ} \mathrm{C}$ tương tự như amin oxit theo cơ chế Ei. Các selenoxit và sunfinat este cūng tách theo Ei, trong đó selenoxit tách ở nhiệt dộ phòng. Các selenoxit thường được dùng như là chất trung gian đẻ chuyển hoá andehit hay xeton thành dẫn xuất α, β - không no:

Phản ứng selenoxit thường dùng để chuyển hoá epoxit thành ancol allylic:

và để chuyển hoá olefin thành ancol allylic chuyển vị:

9- Phản ứng dehalogen hoá của 1,2-đihalogen

Đehalogen hoá là phản ứng tách hai halogen cho olefin:

Phản ứng xảy ra với nhiều tác nhân nhưng thường dùng kẽm, magie và ion iodua, cũng dùng tác nhân khác như phenylliti, phenylhyđrazin, $\mathrm{CrCl}_{3}, \mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{LiAlH}_{4}$. Phương pháp cho hiệu suất tớt nhưng ít dùng vì chính các vic-đihalogen cũng tổng hợp từ olefin. Nên thường dùng để tổng hợp các loại allen từ hợp chất loại:

$$
\mathrm{X}-\mathrm{C}-\mathrm{CX}_{2}-\mathrm{C}-\mathrm{X} \text { hay } \mathrm{X}-\mathrm{C}-\mathrm{CX}=\mathrm{C}-
$$

Phản ứng thường gặp nhẩt là phản ứng của dẳn xuất 1,2 -đibrom với kēm trong các dung môi như axit axetic với chức năng tách muới halogenua ra khỏi bề mặt phản ứng:

Song cūng có chứng minh rằng, phản ứng không xảy ra theo $E 2$ mà đi qua chất trung gian cacbanion do cắt brom bằng kēm.

Tính lạp thể của phản ứng này được quan sát ở phản ứng của 1,2-dibromua với ion iot của KI trong axeton với $v=\left[I^{-}\right][1,2$-đibrommua] và cơ chế phản ứng tương tự như phản ứng với kẽm ở trên:

Hợp chất nới ba cung tổng hợp từ $\mathrm{X}-\mathrm{C}=\mathrm{C}-\mathrm{X}$ hay $\mathrm{X}_{2} \mathrm{C}-\mathrm{CX}_{2}$ nhưng cần cân nhác khi dùng mà thường dùng như phương pháp hỗ trợ.

Từ $\mathrm{Br}-\mathrm{C}=\mathrm{C}-\mathrm{Br}$ tách $\mathrm{I}, 4$:

$$
\mathrm{BrCH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{Br}+\mathrm{Zn} \longrightarrow \mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}
$$

Phản ứng cũng dùng cho dẳn xuất clo, brom hay iot, không dùng cho flo. Cơ chế có thể là cơ chế cacbanion, cacbocation, gớc hay đồng bộ phụ thuộc vào tác nhân và diều kiện
phản ứng. Khi dùng kẽm thì phản ứng tách là anti đạ̣c thù̀ lạp thẻ.
Đối với clorua axit thê α halogen cũng tách cho xeten khi có kẽm hay triphenylphotphin:

Phản ứng cho hiệu suất tớt khi có gớc ankyl hay aryl nhưng không phải hyđro.
Phản ứng tách của ete thế halogen, gọi là phản ứng Boord khi có kẽm, magie, natri hay tác nhân khác:

Các halogen axetan tách cho ete vinylic: $\mathrm{X}-\mathrm{C}-\mathrm{C}(\mathrm{OR})_{2} \rightarrow-\mathrm{C}=\mathrm{C}-\mathrm{OR}$.
Từ đó có thể thấy các hợp chất loại $\mathrm{X}-\mathrm{C}-\mathrm{C}-\mathrm{Z}$ tách được khi Z là $\mathrm{OCOR}, \mathrm{OTs}, \mathrm{NR}_{2}$, SR hay có cả OH nhưng X chỉ giới hạn ở Br và I .

10-Phản úng deoxy hoá điol
Các vic-điol tác dụng với điliti diankoxit với tungsten halogenua $\mathrm{K}_{2} \mathrm{WCl}_{6}$ khi đun hồi lưu trong THF sẽ tách oxy cho anken:

Phản ứng tách nhanh nhất là điol ba lần thế, nhưng phản ứng không hoàn toàn $s y n$;
Các vic-điol có thể chuyển hoá thành olefin qua dẫn xuất este sunfonat như vicđimesylat hay vic-ditosylat khi có naphtalen-natri hay NaI trong dimetylfomamit, cũng co thể chuyển thành bis-đithiocacbonat (bis-xangtat) thường theo cơ chế gốc tự do:

Các thiocacbonat vòng do tác dụng vic-điol với thiophotgen và 4-dimetylaminopyriđin (DMAP), cũng tách cho anken, gọi là phản ứng Corey-Winter, khi tác dụng với trimetylphotphin hay hợp chất photpho ba hoá trị khác:

Phản ứng là tách syn và sản phẩm được khơng chế lập thể. Các dā̃n xuất vòng 5 cạnh của điol cūng cho phản ứng tách tương tự.

11-Phản úng chuyến hoá epoxit và episunfua thành olefin
Các hợp chất epoxy chuyển thành olefin khi tác dụng với triphenylphotphin hay trietylphotphit:

Giai đoạn đầu của phản ứng là thế nucleophin và tiếp theo là phản ứng tách bớn trung tâm. Phản ứng tách là anti nếu trong chất đầu có A và C ở vị trí cis trong epoxy và olefin là trans:

Trong cơ chế trên, giai đoạn tách là cis để tạo thành $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}$ nên sản phảm cộng nucleophin cần phải quay xung quanh liên kết $\mathrm{C}-\mathrm{C}$ để có cấu hình cis.

Phản ứng cũng dùng diphenylphotphit $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PLi}, \mathrm{Li}$ trong $\mathrm{THF}, \mathrm{TsOH}$ và NaI , trimetylsilyl iođua, đimetyl điazomalonat, PI_{3}.

Các episunfua cuñg chuyển thành olefin tương tự như epoxit, nhưng phản ứng ở đây là tách syn và photphin tấn cong không vào C mà vào S :

$$
{ }^{-} \underset{S}{-} \mathrm{C}^{\prime}+\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3} \rightarrow-\mathrm{C}^{\prime}=\mathrm{C}^{\prime}+\mathrm{S}=\mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}
$$

Phản ưng cững dùng tác nhân $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{SnH}, \mathrm{LiAlH}_{4}$, metyl iơua.
12-Phän úng Ramberg-Backlund
Phản ứng của α-halogen sunfon với bazo thu được anken, gọi là phản ứng Ramberg Backlund:

Phản ứng đầu là tấn công $S_{\mathrm{N}} 2$ tạo chất vòng trung gian rồi tách SO_{2}. Khả nảng phản ưng của $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$, sản phả̉m thu được là một hỗn hợp cis và trans nhưng thường đồng phân cis ưu tiên hơn. Phản ứng hình thành episunfon và tách:

Nêu tiến hành từ brom sunfon khơng no $\mathrm{RCH}_{2} \mathrm{CH}=\mathrm{CHSO}_{2} \mathrm{CH}_{2} \mathrm{Br}$ tác dụng với $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$ thu đượ dien $\mathrm{RCH}=\mathrm{CHCH}=\mathrm{CH}_{2}$.

Quá trình tách SO_{2} của episunfon khơng phải là quá trình đóng bọ mà theo con đường không đồng bộ.
α, α^{\prime}-Điclobenzyl sunfon phàn ứng vơi trietylenđiamin dư trong dimetyl sunfoxit cho 2,3-điarylthiiren-1,1-đioxit (24) mà để phân tích nhiệt cho ankyn.

Các 2,5-đihyđrothiophen-1,1-đioxit (25) và 2,7-đihyđrothiepin-1,1-đioxit tách nhiệt cho phản ứng tách 1,4 và 1,6 :

(25)

(26)

Phản ứng thuọ̣c loại phản ứng đồng bọ theo quy tắc đơi xúng obitan theo quá trình supra (25) và antara (26).

Phản ứng Ramderg-Backlund cũng thuộc loại phản ứng tách doạn mạch (extrusion).
13-Phản úng tách của boran
Triankylboran hình thành từ olefin với BH_{3} tác dụng với olefin khác bằng phản ứng trao đói:

$$
\left.\mathrm{R}_{2} \mathrm{CH}-\mathrm{CH}_{2}\right]_{3} \mathrm{~B}+3 \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}_{2} \longrightarrow 3 \mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}+\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2}\right]_{3} \mathrm{~B}
$$

Quá trình này là thuận nghịch nên cấn dùng dưo olefin, dùng olefin hoạt đợng hơn và có điếm sôi cao hơn để olefin tách ra đi ra bằng chưng cất.

Phản ứng thường dùng để tống hợp olefin có hướng ngược với phương pháp đồng phân hoá bình thường. Chẳng hạn từ olefin (27) tạo triankylboran (28), nếu tác dụng (28) theo hướng tạo olefin bển khác thì có phản ứng tách theo quy tắc Zaitsev cho olefin nơi đôi trong mạch, không cho (30). Muớn chuyển (27) thành (30) thì phải đồng phân hoá (28) thành (29) bà̀ng phản ứng chuyển vị (chương Chuyển vị) rồi từ (29) bằng phản ứng trao đổi với olefin có điểm sôi cao hơn, như 1-octan hay 1-đođexen sẽ tách ra (30):

$\rightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$

Phản ứng cũng dùng với ankyn nhưng phản ứng khong thuạn nghịch:

$$
\left(\mathrm{R}_{2} \mathrm{CHCH}_{2}\right)_{3} \mathrm{~B}+\mathrm{R}^{\prime} \mathrm{C} \equiv \mathrm{CR}^{\prime} \rightarrow 3 \mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}+\left(\mathrm{R}^{\prime} \mathrm{CH}=\mathrm{CR}^{\prime}\right)_{3} \mathrm{~B}
$$

14- Phän ûng chuyển hoá anken thành ankyn

Các anken có nhóm CH_{3} ở nới đôi tác dụng với NaNO_{2} trong axit axetic và nước tạo thành ankyn với hiệu suất từ trung bình đến cao:

R có thể là nhóm chức khác như $\mathrm{OH}, \mathrm{OR}, \mathrm{OCOR}, \mathrm{C}=\mathrm{O} .$. nhưng thành phần $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2}$ - là càn cho phản ứng.

Cơ chế có phần phức tạp, bắt đấu bằng nitro hoá có chuyển vị allyl:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{R} \rightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{NO}_{2}\right) \mathrm{CH}_{2} \mathrm{R}$
và CH_{3} đi ra từ chất ban đầu ở dạng khí CO_{2} mà đã xác định được khí này.
15- Phản úng chuyến hoá aziriđin thành olefin
Aziriđin không thể ở nitơ chuyển thành olefin khi tác dụng với axit nitrơ:

Sản phẩm trung gian là hợp chất nitrozo. Phản ứng là đạ̣c thù lập thẻ̉: cis aziriđin cho cis- olefin và trans aziriđin cho trans-olefin.

Aziriđin N - thé cũng chuyển hoá thành olefin khi tác dụng với iơua sắt hay m-cloperbenzoic axit nhưng đi qua chất trung gian là N -oxit.

16- Phản úng chuyển hoá dihydrazon thành olefin
1,2 -Đihyđrazon tác dụng với $\mathrm{HgO}, \mathrm{AgO}, \mathrm{CuCl}_{2}-\mathrm{O}_{2}$-pyriđin và vài tác nhân khác sẽ mất đi hai mol nitơ cho ankyn:

R và R^{\prime} chỉ là ankyl hay aryl. Phản ứng cũng dùng dể tởng hợp các xycloankyn bảy hay tám cạnh, tớt nhất là xycloankyn vòng lớn.

17-Phản úng chuyển hoá 1,2-dinitro thành olefin
Các hợp chất 1,2-đinitro thế chuyển thành olefin khi tác dụng với hỗn hớng canxi:

Các nhóm chức khác như $\mathrm{CN}, \mathrm{COOR}$ không cho phản ứng này. Có thẻ̉ dùng tác nhân sunfua natri trong DMF, niken borua hay siéu âm, SnCl_{2} và $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{SnH}$. Phản ứng theo cơ chế ion-góc.

18- Phản úng dehydrat hod amit và amit thé
Amit không thế có thể đehyđ̛orat hoá khi có $\mathrm{P}_{2} \mathrm{O}_{5}$ hay các tác nhân khác như POCl_{3}, $\mathrm{PCl}_{3}, \mathrm{PCl}_{5}, \mathrm{CCl}_{4}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{HMPA}, \mathrm{CH}_{3} \mathrm{OOCN}^{-} \mathrm{SO}_{2} \mathrm{~N}^{+}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ (tác nhân Burgess), $\mathrm{SOCl}_{2} \ldots$:

Phản ứng giống như tách β từ dạng enol của amit $(\mathrm{RC}(\mathrm{OH})=\mathrm{NH})$, chẳng hạn với SOCl_{2} thì cơ chế gióng enol, với tác nhân khác tạo este của nhóm OH với tác nhân đehyđ̛at hoá như tạo $\mathrm{RC}(\mathrm{OSOCl})=\mathrm{NH}$ thì tách theo $E 1$ hay $E 2$.

Các N -ankyl amit chuyển thành nitrin khi cơ PCl_{5}. gọi là phản ứng von Braun:

$$
\mathrm{R}^{\prime} \mathrm{CONHR}+\mathrm{PCl}_{5} \longrightarrow \mathrm{R}^{\prime} \mathrm{CN}+\mathrm{RCl}
$$

Các N -ankylfomamit tác dụng với photgen và amin bậc ba cho isoxyanua:

có thể dùng các tác nhân khác như TsCl trong quinolin, POCl_{3} và amin bậc ba, đi-2-pyridinsunfit, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P} \ldots$

Nitrin củng tìm thấy khi tác dụng hợp chất nitro với PCl_{5} và pyridin:

$$
\mathrm{RCH}_{2}-\mathrm{NO}_{2} \xrightarrow[\text { pyridin }]{\mathrm{PCl}_{5}} \mathrm{RCN}
$$

Các ure và thioure N, N-hai lẩn thế loại nước cho cacbodiimit bằng tác nhân loại nước nhu TsCl trong pyriđin, $\mathrm{POCl}_{3}, \mathrm{PCl}_{5}, \mathrm{P}_{2} \mathrm{O}_{5}$ - pyridin:

Các phản ứng trễn cơ khi cho vào phản ứng tách phân mảnh.

9.3. PHẢN UNG TÁCH $\boldsymbol{\gamma}(1,3)$

Loại phản ứng này thường là phản ứng vòng hoá tạo thành vòng nhỏ như sản phẩm thế nợi phân tử:

Quá trình cũng tạo thành cacbanion trung gian rồi vòng hoá theo Elcb.

9.4. PHẢN UNG TÁCH $\delta(1,4)$

Phản ứng tương tự như tách 1,3 tạo thành vòng 4 cạnh:

Thường chất ban đầu có chứa nơi đơ giữa hai nhơm đi ra:

9.5. PHẢN ÚNG TÁCH $\omega(1,6)$

Phản ứng thường có trong trường hợp có hai liên kết đoi:

$$
\mathrm{Me}-\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{Z} \rightarrow \mathrm{Me}^{+}+\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}+\mathrm{Z}^{-}
$$

9.6. PHẢN UNG TÁCH NHIẸT

9.6.1. Cơ chế

Mộ $\mathrm{s} \delta$ chất hữu cơ thực hiện phản ứng tách chỉ bằng đun nóng mà không cần tác nhan khác, thường thực hiện trong pha khí gọi là phản ứng tách nhiệt. Cơ chế của phản úng khác với các cơ ché́ đã nói trước là không có bazo hay dung môi trong phản ứng tách nhiệt phân. Có thể có hai cơ chê:

1. Cơ chế Ei: Có trạng thái chuyển vò̀ng bớn, nåm hay sáu cạnh. Chả̉ng hạn:

Trong cơ chế này, hai nhóm đi ra ở cùng một thời gian mà theo Ingold là cơ ché Ei.
Phản ứng có thể là tách syn đói vói trạng thái chuyển vòng bốn và năm cạnh thì nguyên tử thứ tư và năm có thể đồng phẳng. Tính đờng phẳng này khong có trong trạng thái chuyển vòng sáu cạnh:

Cūng như trong cơ chế $E 2$ khơng nhất thiết là liên kết $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{X}$ phân cắt bằng nhau trong trạng thái chuyển mà thực tế cũng cho mợt dãy phở vế cơ chế phụ thuọ̣c vào khả nảng phân cát nhiều hay ît, trước hay sau của liên kết $\mathrm{C}-\mathrm{X}$ và $\mathrm{C}-\mathrm{H}$.

Cơ ché Ei này có những dạ̣c tính sau:
1- Đợng học phản ứng là bậc nhất, chỉ một phân tử chất ban đấu tham gia vào phản ứng (nếu có phân tử khác tấn cong thì là bậc hai).

2- Chất kích thích tự do không làm chạ́m phản ưng, nên không có cơ chế gớc tự do tham gia.

3- Cơ chế ưu tiên tách syn, ngược với cơ chế anti $E 2$, do có những sự kiện:
a- đồng phân erythro cho trans olefin, đồng phân threo cho đống phân cis.
b- phản ứng chỉ thực hiện dược khi H_{β} ở vị trí cis.
c- nếu là hợp chất vòng thì cis hyđ̛ơ chỉ ở cùng phía và phản ứng tách chỉ xảy ra ở phía đó. Đặc tính này được nghiên cứu ky trên cạ̣p phân tử steroit trong phân tử.
3β-axetoxy-(R)-5 α-metylsunfinylcholestan (31) và chát 3β-axetoxy-((S)-metylsunfinylcholestan (32) mà chỉ khác nhau là cấu hình của oxy và metyl đơi với sunfua. Khi nhiệt phân (31) chỉ tách ở vị trí 4 ($80 \% 4$-en) còn (32) chỉ tách ở vị trí 6 ($65 \% 5$-en và $20 \% 4$-en). Trên mô hình thấy hyđ̛o 1 và 9 ở cùng phía với sunfua thì phải dể hơn hyđro khác, nhưng nguyên tử lưu huỳnh là chiral, ở (31) thì O ở gần hyđro 4 , ơ (32) thì gần hyđro 6 . Phản ứng dạc thù tách syn:

(32)

4- Hiẹu ứng đồng vị ${ }^{14} \mathrm{C}$ trong phản ứng Cope cho thấy cả hai liên kết $\mathrm{C}-\mathrm{H}$ và $\mathrm{C}-\mathrm{N}$ có sự phân cắt mạnh trong trạng thái chuyển.

5- Mọt so phản ứng cho tháy entropi hoạt hoá am chứng tỏ phan tử có tính hình học hạn ché trong trạng thái chuyển hơn là trong chấl ban đâu.

Phản ưng tách nhiẹt lièn quan tới cơ chế là cơ chế phụ thuộc vào nhóm đi ra, như các halogen thì trạng thái chuyển có liên kết $\mathrm{C}-\mathrm{X}$ phân cắt lớn hơn lien kêt $\mathrm{C}-\mathrm{H}$ nên có bản chất cacbocation trong trạng thái chuyển. Điêuu đớ cūng phù hợp với quan niệm rằng trạng thái chuyén vòng 4 cạnh hoàn toàn khơng phân cực là vi phạm quy tắc Woodward Hofmann. Tính chất trạng thái chuyển giơng cacbocation đơi với các halogen là nhóm đi ra cho tớc đọ tương dới theo thứ tự $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$ và hiẹ̣u ựng nhơm thế cũng phù hợp với trạng thái chuyến. Chảng hạn, tỷ lệ nhiệt phân của một vài ankyl bromua ở 320° với etyl bromua là 1 , iso-propyl bromua 280, tert-butyl bromua 78.000 , còn α-phenyletyl bromua cũng giơng tert-butyl bromua và β-phenyletyl bromua chỉ nhanh hơn etyl bromua mọt ít. Sự kiẹn đó chứng tỏ liên kết $\mathrm{C}-\mathrm{Br}$ phân cắt lớn hơn $\mathrm{C}-\mathrm{H}$ trong trạng thâi chuyển nên điện tích dương phàn được ổn định bằng gớc α-etyl và α-phenyl, còn cacbanion phần được ởn định bà̀ng β-phenyl. Hiẹu ưng các nhơm thế này rắt giớng như hiệu ứng trong phản ứng $S_{\mathrm{N}} I$ và rất phù hợp với tính chất giống cacbocation của trạng thái chuyên.

Đơi với este cacboxylic thì tỷ lệ tớc độ rất nhỏ, thường cùng mợt bạ́c nên có thể cho là cơ ché Ei thuấn tuý, ở trạng thái chuyển chỉ có mộ ít đạ̣c tính cacbocation. Sụ kiện khác là sự phân cắt liên kết $\mathrm{C}-\mathrm{O}$ trong este như trong dãy 1 -aryletyl axetat dùng σ^{*} thích hợp hơn σ và tìm thấy đặc tính cacbocation ở vị trí 1 . Bản chất $E I$ tăng trong dãy loại este: axetat, phenylaxetat < benzoat < cacbamat < cacbonat. Sự phân cực của các nhóm khác như xangtat, sunfoxit, phản ứng Cope cüng nghiêng vể cơ chê Ei.

2-Co chếgốc tụ do
Kích thích: $\quad \mathrm{R}_{2} \mathrm{CHCH}_{2} \mathrm{X} \rightarrow \mathrm{R}_{2} \mathrm{CHCH}_{2}{ }^{\circ}+\mathrm{X}^{*}$
Lớn mạch: $\quad \mathrm{R}_{2} \mathrm{CHCH}_{2} \mathrm{X}+\mathrm{X}^{\bullet} \rightarrow \mathrm{R}_{2} \mathrm{C}^{\circ} \mathrm{CH}_{2} \mathrm{X}+\mathrm{HX}$

$$
\mathrm{R}_{2} \mathrm{C}^{\circ} \mathrm{CH}_{2} \mathrm{X} \rightarrow \mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{X}^{*}
$$

Tắt mạch (chuyến khơng cân đói): $2 \mathrm{R}_{2} \mathrm{C}^{\circ} \mathrm{CH}_{2} \mathrm{X} \rightarrow \mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{R}_{2} \mathrm{CXCH}_{2} \mathrm{X}$
Cơ chế gốc tự do tìm thấy khi nhiẹt phân các polyhalogenua và monohalogenua bạ̣ nhất cũng như mọt só este. Cơ chế này hiếm hơn và không có trong dung dịch.

9.6.2. Sự định hướng của phản ứng nhiệt phân

Cũng tương tự như E1-E2-E1cb, phản ứng hạn chế bởi quy tắc Bredt, lien kết đôi ưu tiên khi có hệ liên hợp nếu lập thể cho phép, ngoải ra cơ chế Ei cũng có một sớ tính chất sau:

1- Nếu bỏ qua các điều nơi trên, sự định hướng trong phản ứng có tính chất thớng ke. phụ thuộc vào số hyđ̛o β (theo quy tấc Hofmann). Chả̉ng hạn, iso-butyl axetat cho 55% 1-buten và $38 \div 45 \% 2$-buten với sự phan bo $3 / 2$ bởi so hyđro β.

2- Nguyên tử hyđro là cis. Trong hệ vòng, nếu hyđro là ở phía nào đó thì liên kết đố hình thành theo hướng đó. Đơi với trạng thái chuyển vòng 6 cạnh không cần thiết là nhơm di
ra ở vị trí cis dơi với nhơm khác, nguyen tử hyđ̛o có thế là equatorial khi mà trạng thái chuyển không thể thực hiện được bằng hai nhơm là axial. Nhưng nếu nhóm đi ra là equatorial thi có thể hình thành trạng thái chuyển với hyđro β axial (ở đay là cis) hay equatorial (trans).

Từ (33) có nhớm đi ra là axial, khơng thể hình thành lien kế đoi về phía nhơm cacbetoxy vì khơng có hyđro equatorial ở phía đó nên cho 100% (34). Từ (35), nhóm đi ra là equatorial cho 50% mỗi olefin (36) và (37) mặc đù đé tạo thành l-en, nhóm đi ra có thẻ đi ra vớ hyđro trans:

(35)

3- Trong mợt so trường hợp đạ̣c biệt là hợp chất vòng olefin bến hình thành theo Zaitsev, chẳng hạn mentyl axetat cho 35% Hofmann và 65% Zaitsev mặc dù có cis hyđro ở cả hai phía và có sự phân bơ thớng ke ở đay. Kết quả tương tự khi nhiẹt phân mentyl clorua.

4- Phản ứng cũng chịu ảnh hương của hiệu ứng lập thể. Trong mợt so trường hợp hướng tách xác định bằng tương tác giảm hiệu ứng lập thể trong trạng thái chuyển hay làm giàm thiểu hiệu ứng lập thể của chất ban đấu.

9.6.3. Các phản ứng nhiệt phân

Phản ưng tách nhiẹt theo cơ chế nội phân tử, có sự chuyễn proton qua trạng thái chuyến 5 hay 6 trung tam. Phản ứng là tách cis.

1-Phản ûng nhiẹt phân este

Phản ứng xảy ra giữa hai nhóm đi ra là nhớm este và H_{β} khi dun nóng khong có dung moi dé tạo olefin:

Định luạt đợng học của phàn ứng là $v=k$ [este].
Phản ứng xảy ra qua trạng thái chuyển tiếp vòng nên còn gọi là cơ chế Ei. Phản ứng nhiệt phân este có năng lượng hoạt hoá khoảng $35 \div 50 \mathrm{kcal} / \mathrm{mol}$ không đủ đê phân cắt ion
vì cân đến $85 \mathrm{kcal} / \mathrm{mol}$, và nếu dùng este đeutri hoá H_{β} thì có hiẹu ứng đồng vị $k_{\mathrm{H}} / k_{D}=2 \div 3$ và phản ứng là tách cis nên phản ưng xảy ra qua trạng thái chuyển vòng:

Trạng thái chuyển vòng có sự chuyển electron đồng bọ bởi vì các nhóm thế trong phần rượu của este ít ảnh hưởng đến tớc đọ phản ứng, chả̉ng hạn như 1 -phenyletylaxetat phản ứng hơn 2-phenyletylaxetat chỉ có 7 lần (trái với cơ chế ion), song tính đồng bộ không hoàn toàn mà sự phan tích liên kết $\mathrm{C}-\mathrm{O}$ trong trạng thái chuyển lớn hơn là phan tích liên kết $\mathrm{C}-\mathrm{H}$ như khi thay dổi nhóm thế trong hợp chất sau:

Tớc độ nhiẹt phân tăng một ít khi tăng tính axit của H_{β} tách ra, chẳng hạn tertbutylđicloaxetat ${ }^{\circ} 250^{\circ} \mathrm{C}$ tách nhanh hơn tert-butylaxetat đến 19 lần, song hướng tách không ảnh hưởng đến tỷ lệ đồng phân, nhất là khi có nhóm $\mathrm{C}=\mathrm{O}$ ở bên cạnh H_{β} thì tính axit này cơ tính quyết định, tớc đọ nhiệt phân các este này tăng gấp hàng trẩm lần.

Phản ứng nhiẹt phân este là phản ứng tách syn, chả̉ng hạn axetat erythro-2-đeutri-1,2điphenyletanol cho trans-stylben với đeutri hoàn toàn bảo toàn cấu hình, còn đồng phan threo cung cho trans-olefin nhưng mát đeutri.

Sự định hướng của nhóm cacbonyl este vào hyđ̛̃o hay deutri thuận lợi hơn là nhóm phenyl thể tích lớn ở cách xa nhau.

Sự nhiệt phân đỏi hỏi sự che khuất của nhóm $\mathrm{C}-\mathrm{O}$ và $\mathrm{C}-\mathrm{H}$ vì từ 1-metylxyclohexyl axetat cho 75% endo-olefin (1-metylxyclohexen) và chi 25% exo-olefin (metylenxyclohexen). Vể sản phẩm, phản ứng thường cho olefin ít thế hơn, song tính chọn lọc với các H_{β} thường mang tính ngã̃u nhiên.

cis-1,2-dimetylxylopentylaxetat

trans-1.2-dimetylxylopentylaxetat
Các lacton cũng nhiệt phân cho axit không no qua trạng thái chuyển vòng 6 cạnh theo Ei thích hợp với vòng 5,6 cạnh, nhưng cũng cho vòng lớn hơn. Amit cũng cho phản ứng tương tự nhưng ở nhiệt đọ cao hơn. Allyl axetat cho đien khi đun nóng có mạ̣t hợp chất paladi hay molipden.

Các este vô cơ cūng bị phân cắt thành olefin khi tác dụng với bazơ. Các este của axit sunfuric, sunfurơ và axit khác chịu tách trong dung dịch theo $E 1$ và $E 2$ cũng như tosylat và este của axit sunfonic. Este của 2 -pyriđinsunfonic axit và 8 -quinolinsunfonic axit tách cho olefin với hiệu suất cao khi đư nơng không cấn dung mời. Este của $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{OH}$ và TsOH phân cắt tương tự trong dung môi phan cực như $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ hay HMPA.

2- Phản ứng nhiệt phân thioeste (phản ứng Chugaev)
Metyl xangtat điều chế bằng tác dụng ancol vớ NaOH và CS_{2} cho $\mathrm{RO}-\mathrm{CS}-\mathrm{SNa}$ rồi xử lý tiếp với metyl iođua. Nhiệt phân xangtat cho olefin, COS và thiol, gọi là phản ứng Chugaev.

$$
\begin{aligned}
\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CS}_{2} \xrightarrow{\mathrm{HO}^{-}} \mathrm{RCH}_{2} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CS}-\mathrm{S}^{-} \xrightarrow{\mathrm{R}^{\prime} \mathrm{I}} \mathrm{RCH}_{2} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CS}-\mathrm{SR}^{\prime} \longrightarrow \\
\xrightarrow{100 \div 200^{\circ} \mathrm{C}} \mathrm{R}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{RSH}+\mathrm{COS}
\end{aligned}
$$

Phản ứng cũng xảy ra qua trạng thái chuyển vòng:

$$
k \cdot 10^{4}=14,20\left(200^{\circ} \mathrm{C}\right)
$$

Phản ứng theo cơ chế Ei , trước kia cho rằng nguyên tử sunfua đóng vòng nhưng hiện nay có nhiều chứng minh nghiên cứu hiệu ứng đồng vị ${ }^{13} \mathrm{C}$ và ${ }^{34} \mathrm{~S}$ cho thấy là liên kết $\mathrm{C}=\mathrm{S}$:

Phản ứng tương tự như nhiệt phân este, nhưng phản ứng xảy ra nhanh hơn do có phát
nhiệt hơn khi chuyển nhóm $\mathrm{O}-\mathrm{C}=\mathrm{S}$ thành $\mathrm{O}=\mathrm{C}-\mathrm{S}$ khoảng $20 \mathrm{kcal} / \mathrm{mol}$ nên năng lượng hoạt hoá nhỏ hơn:

$k \cdot 10^{5}=\quad 23,6\left(281^{n} \mathrm{C}\right)$

$2,35\left(281^{\circ} \mathrm{C}\right)$

$78,5\left(281^{\circ} \mathrm{C}\right)$

Phản ứng cūng là tách cis, như khi nhiệt phan neomentylxantogenat và mentylxangtogenat:

đo mentyl có H ở C_{2} và C_{4} ở vị trí cis cho khà năng tách, còn neomentyl không cho 3-menten do khong có H cis ở C_{4}.

3. Phản ứng nhiệt phân anhyarit

Nhiệt phân anhydrit tạo thành xeten cũng theo cơ chế tách cis và qua trạng thái chuyển tiếp vòng:

4- Phản úng decacboxyl hoá β-xetoaxit và axit β-dicacboxylic
Phản ứng xảy ra bằng sự tách proton từ axit đã có liên ké́ đôi $\mathrm{C}=\mathrm{O}$ để chuyển thành CO_{2} tương tự như hình thành liên kết đôi $\mathrm{C}=\mathrm{C}$. Phản ứng đi qua trạng thái chuyển vòng:

Song phản ứng xày ra ở nhiẹt độ thấp hơn $100^{\circ} \mathrm{C}$ vì nhóm cacbonyl rất có ái lực với proton và phản ứng bắt buộc phải đi qua dạng enol của xeton, nêu khong đi qua được dạng enol thì phản ứng khồng xảy ra, chả̉ng hạn như axit camphocacboxylic bền ở nhiệt độ trên $300^{\circ} \mathrm{C}$:

Các axit đicacboxylic như axit malonic cũng như các β-xetoaxit cuñ bị phân tích nhiệt tương tự nhưng ở nhiệt độ cao hơn $\left(140^{\circ} \mathrm{C}\right)$, bởi vì nhơm cacbonyl của axit kém hoạt dộng hơn nhơm cacboxyl của nhóm xetoaxit:

5- Phản ứng decacboxyl hoá β-iminoaxit

Phản ứng nhiẹt phân của axit 2-pyriđinaxetic với chất nhận proton là N :

6- Phản íng decacboxyl hoá axit $\beta, \gamma-v a ̀ \alpha, \beta-k h \delta n g$ no
Các axit β, γ - khồng no có khả năng decacboxyl hoá ở $200^{\circ} \mathrm{C}$ do có liên kết đôi có khả năng nhận proton khi tạo thành trạng thái chuyển vòng:

Và phản ứng cũng cho cis- olefin nếu trong hợp chất trên $\mathrm{R}^{\prime}=\mathrm{H}$ sẻ cho olefin có nới đôi cuối mạch, còn nếu $R=$ ankyl thì từ trạng thái chuyển vòng sẽ cho trans- olefin.

Các axit α, β-không no bền với nhiệt hơn, chẳng hạn:

nên các axit này chỉ bị nhiệt phân khi có sự đông phân hoá axit α, β-thành axit β, γ-không no.

7- Phản ứng nhiệt phân oxit amin (phản ûng Cope)

Phản ựng tách các oxit amin được tác dụng của nhiẹt cũng xảy ra qua trạng thái chuyển tiếp vòng 5 trung tâm và theo cơ ché Ei-cis:

Phản ứng ưu tiên là sản phẩm olefin ankyl hoá ít nhất. Trạng thái chuyến có thẻ̉ phảng, không tìm thấy sự sai lệch ra khỏi mặt phẳng và vì thế nên vòng 6 cạnh chứa nitơ không phản ứng:

Nếu so sánh với xycloetyltrimetylamoni hyđroxit thì phản ứng này chủ yếu cho transolefin:

Phản ứng hoàn toàn đạ̣c thù lạ̣p thể xảy ra theo cơ chế syn và động học bậc nhất.
Trạng thái chuyển có vòng 5 cạnh, H_{β} và N cần phải có cấu dạng cis nghiêm ngặt hơn là tách Hofmann và phản ứng có thể xảy ra ở dạng che khuất như phản ứng sau:

trong đó 1-dimetylamino-1-metylxyclopentan oxit có mợt hyđro che khuất với nhóm amino
cho 97% 1-metylxyclopenten và chỉ 3% metylenxyclopentan. Dān xuất xyclohexan phản ứng khó hơn xyclopentan và ưu tiên cho 97% sản phẳm của nhóm amin với nhóm CH_{3}, còn nếu cần có H trong vòng ở vị trí che khuất thì vòng phải ở cấu dạng thuyền không thuận lợi về năng lượng:

Phản ứng có ứng dụng nhiều trong tổng hợp các olefin nhựng có giới hạn là không có mở vòng 6 cạnh chứa dị tó nitơ mà chỉ mở vòng 5 và 7 cạnh đến 10 cạnh. Tốc độ phản ứng tảng khi tāng thể tích nhóm thế α và β. Phản ứng có thể thực hiện ở nhiệt độ phòng trong $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ hay THF .

Phản ứng loại này cũng thể hiện trong phản ứng tách oxy trong hợp chất peoxit hay 1,2-điol qua hợp chất trung gian khi tác dụng với photphin $\mathrm{R}_{3} \mathrm{P}$ hay photphit (RO$)_{3} \mathrm{P}$:

Song chú ý rằng giai đoạn tấn cờng $\mathrm{R}_{3} \mathrm{P}$ là cợng nucleophin và để tách được cần phải quay xung quanh liên kết $\mathrm{C}-\mathrm{C}$ để có cấu hình cis.

Quá trình tách 1,2-điol thành anken xảy ra qua trạng thái chuyển vòng thiocacbonat tác dụng với photphin:

Phản ứng cūng xảy ra ở hợp chất oxit của lưu huỳnh:

8- Phản úng tách Wittig

Phản ứng tách muối amoni khi có bazơ mạnh như $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Li}$ hay $\mathrm{CH}_{3} \mathrm{Li}$ có thể xảy ra phản ứng tách hydro ở vị trí α^{\prime}. Phản ứng này có thể gọi là phản ứng tách α^{\prime}, β.

Phản ứng xảy ra qua trạng thái muối nội gọi là ylit, ở đây là metylit. Nhóm metylen mang diện tích âm tấn công vào H_{β} dể tạo olefín. Phản ứng là tách syn và tuân theo quy tắc Hofmann. Phản ứng xảy ra trong điều kiện có kiềm mạnh, dung môi aproton và chịu ảnh hưởng không gian lớn của trạng thái chuyển tiếp.

Phản ứng trên cho thấy, anion tách lấy H_{α}, muối amoni ban đầu là muối ngoại trở thành muối nội gọi là ylit (từ "yl" chỉ gốc hydrocacbon và "it" chỉ muói). Cạap electron của ylit của nhóm metylen mang điện tích âm đóng vai trò của một bazơ rất hoạt động, tương tác với hydro của nhóm metylen β ở dạng proton nên cạ̣p electron chuyển về tạo liên kết π đồng thời với nhóm trimetylamin đi ra hình thành olefin. Cơ chế này đã được xác nhận bằng ylit có đeutri ở vị trí β, trong đó olefin không chứa deutri mà deutri ở trong metylamin. Trạng thái chuyển vòng chỉ thực hiện được khi điều kiện không gian cho phép hyđro và anion metylen tiếp cận nhau và vòng tạo thành là vòng 5 cạnh ít sức căng hơn. Mặt khác, hydro và anion metylen phải ở vị trí cis với nhau, nghỉa là phản ưng tách Wittig là tách syn. Thường phản ứng xảy ra lâu, trong vài ngày ở điểu kiện thường nên cần thu được ylit từ hợp chất hoạt tính cao như hợp chất brom hay iotmetyl.

Các hợp chất này tạo ylit hầu như chớp nhoáng:

Phản ứng kết thúc chỉ sau vài giờ.

Nếu hợp chất không có hyđ̛ơ ở vị trí cis thì phản ứng không xảy ra hoặc có chuyển vị Somle.

Phản ứng Wittig không xảy ra trong điểu kiện của phản ưng Hofmann, nghīa là chỉ xảy ra trong dung môi aproton và kiềm mạnh ankyl liti. Khác với phản ứng phân tích Hofmann trong diều kiện thường là hyđ̛o phải ở vị trí trans, nên nếu phản ứng Hofmann trong diều kiện thường không thực hiện được vì khó khăn không gian thì cơ chế ylit có thẻ thực hiện được trong điều kị̂n đó, chả̉ng hạn như trimetyl-(2-tert-butyl-3,3-đimetylbutyl amoni hydroxit.

Phản ứng tách ylit có ưu điểm hơn Hofmann là thực hiện trong điều kiện nhẹ nhàng hơnn.
Bảng 9.9. Phản ứng tách của Hofmann và Wittig

Chất ban đấu	Tác nhân	Nhiệt đọ, ${ }^{\circ} \mathrm{C}$	Thơi gian, h	\% olefin chung	\% trans	\% cis
Xyclooctyl-	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Li}$, ete	30	24	64	19	81
$\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$	Amit kali trong amoniac	-30	24	68	85	25
Xyclooctyl-	$\mathrm{CH}_{3} \mathrm{Li}$, ete	120	24	89	60	40
$\begin{aligned} & \mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{2} \\ & \mathrm{CH}_{2} \mathrm{Br} \end{aligned}$		20	24	74	10	80

Các ylit của S và P cũng có phản ứng tương tự, chả̉ng hạn như dimetylsunfonylit và photphoryl (photphorylen):

Tính bền của ylit của S và P bền hơn N vì có thể mở rợng vòng bát tử.
9- Phản úng nhiệt phân hợp chầt cơ kim
Hợp chất ankyl liti chứa hyđro β sẽ tạo thành hyđrua liti rắn và olefin khi có nhiệt:

Phản ứng cūng áp dụng cho ankyl natri và ankyl kali. Tác nhân Grignard chịu phân tích nhiệt trong dung môi không solvat, chẳng hạn như cumen. Olefin cũng tìm thây từ RLi và RMgX do tác dụng etylen với NiCl_{2} hay tác nhân khác.

Cơ chế của phản ứng cũng là bốn trung tâm Ei .
10-Phản áng đecacbonyl hoá axyl halogenua
Axyl clorua có hyđro α chuyển thành olefin bàng cách tách HCl và CO khi đun nóng
với clotris(triphenylphotphin) rodi hay với platin hay vài xúc tác khác:

$$
\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{RhCl}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{3} \xrightarrow{\Delta} \mathrm{RCH}=\mathrm{CH}_{2}+\mathrm{HCl}+\mathrm{RhClCO}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{3}\right.
$$

Cơ chể chung là chuyển $\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$ thành $\mathrm{RCH}_{2} \mathrm{CH}_{2}-\mathrm{RhCO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{3} \mathrm{Cl}_{2}$ rồi tách syn của H và Rh .

9.7. PHẢN UNG TÁCH PHÂN MẢNH

9.7.1. Cơ chế

Phản ứng tách phân mảnh (fragmentation) cūng là phản ứng ion, tương tự như phản ưng tách 1,2 , nhưng ở đây một nhóm di ra thành dạng anion còn nhóm kia ở vị trí β không phải là proton hay nguyên tử đơn giản mà là một nhóm phức tạp:

$$
a-b-c-d-Z \quad \longrightarrow a-b+c-d+Z^{-}
$$

Nhóm đi ra Z mang điện tích âm, là nucleofuge bình thường như $\mathrm{Cl}, \mathrm{OH}_{2}{ }^{+}$, OTs , $\mathrm{NR}_{3}{ }^{+}$, nhóm $\mathrm{a}-\mathrm{b}$ đi ra mang điện tích dương hơn chất ban đầu, thường là $\mathrm{HO}-\mathrm{C}$ hay $\mathrm{R}_{2} \mathrm{~N}$, bởi vì điện tích dương được ổn định bằng oxy hay nitơ:

Chẳng hạn như các hợp chất:

$\mathrm{HO}-\mathrm{CR}_{2}-\mathrm{CR}_{2}-\mathrm{CR}_{2}-\mathrm{Cl}$	$\mathrm{R}_{3} \mathrm{C}-\mathrm{CO}-\mathrm{O}-\mathrm{OCOR}$
$\mathrm{HO}-\mathrm{CR}=\mathrm{CR}-\mathrm{Br}$	$\mathrm{R}_{2} \mathrm{C}-\mathrm{CR}_{2}-\mathrm{N}=\mathrm{N}-\mathrm{N}^{+} \mathrm{R}_{2}$
$\mathrm{HOOC}-\mathrm{CR}_{2}-\mathrm{NRI}$	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}-\mathrm{O}-\mathrm{S}^{+} \mathrm{R}_{2}$

Cơ chế của phàn ứng có thể tương tự như tách 1,2 , có thể tạo cacbocation, cacbanion trung gian hay đồng bộ đi ra của hai nhóm tách, nghĩa là có thể $E 1$ hay $E 2$.

Nhóm đi ra X là nhóm đi ra với cạ̣p electron (nucleofuge) tương tự như $E 1$ và $S_{N} I$, còn nhóm đi ra để lại cạ̣p electron (electrofuge) là những nhóm được ởn định bằng hiệu ứng l hay C.

Nhóm $\mathrm{c}-\mathrm{d}$ chuyển thành hợp chất, thường không no như loạ olefin, axetylen, azometin, nitrin, cacbonyl, $\mathrm{CO}_{2}, \mathrm{CO}$ và N_{2}. Chẳng hạn phản ứng phân tích β-halogencacboxylic và γ-halogenancol:

$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} \xrightarrow{\mathrm{HO}^{-}} \mathrm{O}^{-}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} \rightarrow \mathrm{O}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{Br}^{-}$
Phản ứng phân tích anion của axit glycolic:

Phản ứng phân tích hợp chất β-dicacbonyl:

Phản ưng phân tích N -nitrozometylamit:

Phản ứng phân tích hợp chất cacbonylazo:

Hoá học lập thể của các phản ứng phân mảnh đồng bộ cũng tuân theo những định luật của $E 2$ tức là bốn trung tâm phải có tính đồng phảng, các liên kết hay obitan phải ở vị trí trans. Chả̉ng hạn, hợp chất cis-3-đimetylaminoxyclohexyltosylat mới cho phản ứng tách phân mảnh đồng bợ, còn đồng phân trans không xảy ra:

Phản ứng cũng có thể xảy ra phân cắt cationit trước như:

$$
\mathrm{HO}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{X} \rightarrow \mathrm{O}^{-}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{\mathrm{X}}{\mathrm{O}} \rightarrow \mathrm{CO}_{2}+\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{X}
$$

hay phân cất anionit trước:

$$
\begin{aligned}
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl} & \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{C}^{+}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{Cl}^{-} \longrightarrow \\
& \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}^{+}=\mathrm{CH}_{2}+\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}
\end{aligned}
$$

Phản ứng xảy ra khi N song song với $\mathrm{C}-\mathrm{Cl}$. Cũng có trường hợp tấn công nucleophin tương tự $E 2$:

9.7.2. Các phản ứng tách phân mảnh

l-Phản û́ng tách của 1,3-diol

Các 1,3-diol có nhơm OH ở cacbon bạc ba hay ở trên cacbon có nhóm thế aryl bị phân tách bởi axit:

Phản ứng này dùng đẻ̉ tổng hợp khi có î́t nhất một nhóm OH trên vòng.
2- Phản úng tách α, β epoxy hydrazon
Các xeton vòng α, β - không no bị phân cắt nhóm epoxy của dẩn xuất tosylhyđrazon bởi bazo cho xeton axetylenic:

Phản ứng có thể áp dụng cho tổng hợp các anđ̉ehit axetylenic $(\mathrm{R}=\mathrm{H})$ khi dùng dân xuất của 2,4-đinitrotosylhydrazon.

Các hyđrazon được tống hợp từ epoxy xeton và các vòng thế N -aminaziriđin chịu phân mảnh khi đun nóng:

3- Phản túng decacboxyl hoá axit β-hydroxy cacboxylic và β-lacton

Nhóm OH và COOH có thể bị tách ra khỏi β-hyđ̛oxy cacboxylic axit khi đun nóng hồi lưu có dư đimetylfomamit đimetyl axetan. Băng phương pháp này có thể tổng hợp olefin có mono-, đi-, tri và tetra- lần thế với hiệu suất tớt. Có nhiều cơ chế cho thấy phản ứng tách là $E 1$ hay $E 2$ với chất trung gian là ${ }^{-} \mathrm{O}_{2} \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{OOC}_{2} \mathrm{H}_{5}$. Phản ứng co thể thực hiện ở điều kiện êm dịu hơn khi có $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{5}$ và đietyl azodicacboxylat $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOC}-\mathrm{N}=\mathrm{COOC}_{2} \mathrm{H}_{5}$ (chỉ vài giây ${ }^{\circ} 0^{\circ} \mathrm{C}$).

Các β-lacten cüng bị đecacboxyl hôa bằng nhiệt cho olefin với hiệu suất cao:

Phản ứng này có tính chọn lọc lạ̣p thể tách syn.
4- Phản úng nhiệt phân β-hydroxy olefin
Nhiệt phân β-hyđroxy olefin cho olefin và anđehit hay xeton:

$$
\mathrm{R}-\stackrel{1}{\mathrm{C}}=\stackrel{1}{\mathrm{C}}-\frac{\mathrm{C}}{\mathrm{C}}-\underset{\mathrm{C}}{\mathrm{C}}-\mathrm{OH} \xrightarrow[\mathrm{H}]{\square} \quad \mathrm{R}-\stackrel{1}{\mathrm{C}}=\stackrel{1}{\mathrm{C}}+\stackrel{1}{\mathrm{C}}=\mathrm{O}
$$

Olefin tạo thành tinh khiết vì không có sản phẩm phụ. Phàn ứng theo cơ chế perixyclic đā quan sát thấy phản ứng là bậc nhất và nếu có đeutri thì đeutri có ở vị trí allyl của olefin mới:

Các hyđroxyaxetylen cungg có phản ứng tương tự cho allen và hợp chất cacbonyl và theo cơ chế tương tự nhưng có tính hình học tuyến tính của liên kết ba.

5- Phản ứng nhiệt phân ete allyl
Ete allyl có ít nhất một H_{α} nhiệt phân cho olefin và anđehit hay xeton:

$$
\mathrm{R}-\stackrel{1}{\mathrm{C}}-\mathrm{O}-\stackrel{\mathrm{C}}{\mathrm{C}}-\stackrel{\mathrm{C}}{\mathrm{C}}=\mathrm{C} \xrightarrow{4} \xrightarrow{40^{\circ} \mathrm{C}} \mathrm{R}-\stackrel{1}{\mathrm{C}}=\mathrm{O} \quad+\stackrel{1}{\mathrm{C}}=\stackrel{1}{\mathrm{C}}-\underset{\mathrm{H}}{\mathrm{C}}-
$$

Phản ứng theo cơ chế vòng tương tự như hyđ̛oxyolefin trên và cūng là phản ứng perixyclic:

6. Phản tóng tách CO và CO_{2} ở hợp chất cầu

Hợp chất bixyclo có nhóm CO ơ đầu cầu khi đun nóng sẽ tách CO cho xyclohexadien:

Phản ưng ngược với phản ứng Diels Alder, được dùng điều chế những vòng benzen thế đạ̣c biệt và xyclohexađien. Hợp chất bixyclo[2.2.1]heptađienon dẻ nhiệt phân tách CO hơn do tạo benzen thơm bền:

Các bixyclolacton cūng có phản ứng loại CO_{2} tương tự:

7- Phản ứng dehydrat hoá andoxim thành nitrin
Anđoxim bị loại nước cho nitrỉn bởi những tác nhan hút nước như anhyđrit axetic:

hay etyl orthofomat và $\mathrm{H}^{+},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}-\mathrm{CCl}_{3}$, triclometyl clofomat $\mathrm{ClCOOCCl}_{3}$, metyl hay etyl xyanfomat $\mathrm{ROCOCN}, \mathrm{SeO}_{2} \ldots$ Phản ứng xảy ra khi H và OH ở vị trí anti. Các dẩn xuất ankyl hay aryl của anđoxim cũng cho nitrin khi tác dụng với bazơ, N,N-điclo của amin bậc nhất cho nitrin bằng nhiệt phân.

Muối hyđrazoni bậc bốn tác dụng với $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\circ}$ cho nitrin:

$$
\underset{\mathrm{N}-\stackrel{\mathrm{N}}{\mathrm{~N} R_{3}}}{\mathrm{R}-\stackrel{\mathrm{H}}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}} \quad \mathrm{R}-\mathrm{C}=\mathrm{N}}
$$

8- Phän ûng chuyên hoá xetoxim thành nitrin

Các xetoxim cũng chuyển thành nitrin khi có axit Lewis:

như các oxim của α-đixeton, α-xetoaxit, α-điankylamin xeton, α-hyđroxy xeton, β-xeto ete. Chả̉ng hạn:

Cád xetoxim khi tác dụng với axit Lewis hay axit proton là phản ứng chuyển vị Beckmaǹn mà sản phả̉m nitrin là phản ứng phụ. Song nếu chất ban dâu có cạ̣p electron khơng liên kết tham gia vào sự đi ra của nhóm đi ra từ cacbon đó có thể phân cắt tạo thành cacbocation bền thì phản ứng trở thành chính:

Cơ chế của phân mảnh và chuyển vị dược nghiên cứu từ dãy oxim tosylat cho thấy, tớc độ phụ thuộc chủ yếu vào độ bền của R^{+}, hai phàn ứng có chung mọ̣t chát trung gian, phản ưng phân mảnh không ở giai đoạn đâu mà sản phả̉m được xác định ở giai đoạn sau:

Các trường hợp khác, cơ ché phản ứng là $E 1$ hay $E 2$.
Phản ứng phân mảnh cùa N -(1-tosyl-1-ankenyl)fomamit với $\mathrm{CH}_{3} \mathrm{ONa}$ đun hồi lưu trong $\mathrm{CH}_{3} \mathrm{OH}$ là giai đoạn chuyến hoá của xeton thành nitrin:

Đây là phương pháp chung để chuyển hoá xeton thành nitrin bằng cách cho xeton tác dụng với $\mathrm{TsCH}_{2} \mathrm{NC}$ thành N -1-tosyl-1-ankenyl)fomamit rời phân mảnh.

9 - Phản ứng tách nirozo thành điazoankan

Các hợp chắt N -nitrozo-N-ankyl tác dụng với kiếm cho điazoankan, thường dùng N -nitrozo-N-metyl-p-toluensunfonamit vơi etylat để điếu chế diazoankan:

cũng dùng một só tác nhan khác, trong dó N -nitrozo-N-metylcacbamat và N -nitrozo- N metylure cho hiệu suắt tớt.

N -nitrozo- N -ankylure

Phản ưng có thể bắt đâuu bằng chuyển vị 1,3 -nitơ tới oxy và tiếp theo là phản ứng tách:

10-Phản û́ng tách phân mảnh γ-hydroxyhalogenua
Các γ-diankylamin halogenua khi đun nơng co $\mathrm{H}_{2} \mathrm{O}$ bị tách phân mảnh thành olefin và muói iminium rối thuỷ phan cho anđehit hay xeton:

Các γ-hydroxyhalogen hay tosylat phan mành bằng bazơ:

Vai trò của HO^{-}chi là tách lấy proton của HO để thành nhơom có tác dụng thúc đẩy nhóm đi ra dể hơn:

Phản ứng thường là $E 1$, cũng có một vài trường hợp là $E 2$. Các đồng phân lập thể của γ-aminohalogen vòng và tosylat với hai nhơm đi ra có cấu dạng đồng phăng anti đếu theo cơ chế $E 2$, còn nếu khơng đàm bào được tính lạ̣p thể đó thì tách theo $E 1$ hay không bị tách phan mảnh.
γ-Điankylamino ancol không bị phân mành vì càn ion hoá HO thành $\mathrm{H}_{2} \mathrm{O}^{+}$hay NR_{2} thành $\mathrm{N}^{+} \mathrm{HR}_{2}$ nên không còn cặp electron cạ̣p đoi cân thiết cho sụ̣ hình thành liên kết đôi với cacbon.

9.8. PHẢN UNG TÁCH ĐOAN MACH

9.8.1. Phản úng và cơ chế

Phản ưng tách doạn mạch (extrusion) là phản ưng trong dó nguyên tử hay nhóm nguyên tử Y nơi vơi hai nguyên tử khác X và Z , Y đi ra khỏi phân tử dể tạo thành sản phẩm do X liên kêt trụ̣c tiép với Z :

$$
\mathrm{X}-\mathrm{Y}-\mathrm{Z} \longrightarrow \mathrm{X}-\mathrm{Z}+\mathrm{Y}
$$

Các phản ứng này thường gặp $\mathrm{Y}=-\mathrm{N}=\mathrm{N}->-\mathrm{COO}->-\mathrm{SO}_{2}->-\mathrm{CO}-$
Các nhóm này thường là dị tơ hay nhóm dị tơ đi ra khỏi phân tử như là $\mathrm{N}, \mathrm{O}, \mathrm{S}$.
Phản ứng xảy ra theo các cơ chế khác nhau và hiện nay chưa giải thích được hoàn toàn.

1- Phản ứng tách tạo thành liên kết σ, thường phan tích nhiẹt dẫn xuát azo theo cơ ché gơc. Chẳng hạn nhiẹt phân hợp chất azo tách N_{2} theo cơ chế goc:

vơi các hợp chất vòng cho gơc kép rôi vòng hoá:

Khi nhiệt phân hợp chất nitrozo hay S theo cơ chế ion và phản ứng đều được bảo toàn cấu hình:

2- Phản ứng tạo thành liên kết π thương đii từ các hợp chất vòng:

9.8.2. Các phản ứng tách đoạn mạch

1- Phản úng tách doạn mach cuia N_{2}
Các hợp chất vòng chứa nhóm azo dể bị nhiẹt phân hay quang phân tách ra N_{2}.
Chẳng hạn 1-pyrozolin (37) chuyến thành xyclopropan và N_{2} khi quang phân hay nhiệt phan:

Đồng phân của nó là 2-pyrazolin (38) bển hơn, cần có thêm xúc tác axit hay bazơ với chức năng chuyển hoá 2 -pyrazolin thành 1-pyrazolin, nếu không có xúc tác thì (38) không phản ứng.

Cơ chế của phản ứng này là cơ chế gớc kép rồi vòng hoấ. Sự tạo thành gốc kép phụ thuộc vào chất ban đâu và điếu kiện phản ứng (ở trạng thái singlet hay triplet):

3-H-Pyrazol (39) bền với nhiệt hơn nên chuyển hoá bằng quang hoá:

Cơ chế trong trường hợp này có thể đi qua hợp chất điazo rồi mất N_{2} cho vinyl cacben:

Nói chung, phản ứng quang hoá cho hiệu suất tốt hơn và ít sản phẩm phụ hơn.
Các triazol như triazolin cūng chuyển hoá thành aziriđin bằng nhiệt hay quang hoá:

2- Phản ứng tách doạn mạch của CO và CO_{2}
Một vài xeton vòng có thể quang hoá tạo thành sản phẩm rút vòng. Chăng hạn xeton tetraxyclic (40) quang hoá cho sản phảm (41):

Phı̛ơng pháp này thường dùng để tổng hợp tetra-tert-butyltetrahedran:

Cơ chế của phản ứng đã được Norrish đưa ra do phân cắt liên kết C-CO tạo gốc tự do rồi mất CO cho gớc kép rồi vòng hoá:

Mợt vài lacton cũng tách CO_{2} khi đun nóng hay chiếu sáng, chẳng hạn nhiệt phân hợp chắt (42) sau:

hay quang phân 1,2-đioxolan-3,5-đion sau cho α-lacton:

Các điaxyl peroxit $\mathrm{RCO}-\mathrm{OO}-\mathrm{COR}$ củng dẽ loại CO_{2} khi quang phân ở trạng thái rắn cho RR, cũng dùng phương pháp điện ly nhưng hiệu suất thấp hơn (xem phản ưng Kolbe).

3- Phán úng tách SO_{2}
Khi quang phân hay nhiệt phân một só sunfon vòng cho sản phẩm rút vòng:

Các vòng 5 cạnh thường rút thành vòng 4 cạnh khi tác dụng với butyl liti rồi phản ứng tiếp với LiAlH_{4} :

Phản ứng này nhạy khi cả hai vị trí α và α^{\prime} của nhóm sunfon đính với gốc ankyl.
4- Phản ưng tổng hơp Story
Khi đun nóng các xycloankyliđen peroxit trong dung môi trơ như dekan sẽ tách CO_{2} cho xycloankan và lacton:
 $\xrightarrow[\text { dung môi }]{170-200^{\circ} \mathrm{C}}$

Sản phẩm xycloankan kém 3 cacbon so với chất ban đầu và lacton kém hai cacbon. Hai sản phẩm cho hiệu suất bằng nhau thường khoảng 15 đến 25%. Phản ứng tuy có hiệu suất thấp nhưng thường dùng để tống hợp các chất vòng lớn mà không có cách nào khác hơn, thường tổng hợp vòng từ 8 đến 33 cạnh.

Phương pháp cūng áp dụng để tởng hợp các xycloankan và lacton bằng đime hoá các xycloankyliden peroxit:

Cả hai dime và trime xycloankyliđen peroxit được tổng hợp từ xycloxeton tương ứng với $\mathrm{H}_{2} \mathrm{O}_{2}$ trong dung dịch axit. Thường trime peroxit sinh ra đâu tiên và chuyển thành hợp chất dime.

5- Phản ứng tách S

Các thioeste mà phần gớc hyđrocacbon có chứa nhóm cacbonyl ở vị trí β khi có photphin bậc ba trong mooi trường bazơ sē chuyển thành β-đixeton:

$$
\mathrm{R}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{S}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{R} \underset{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}-\mathrm{LiClO}_{4}}{\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)^{\mathrm{P}}} \mathrm{O}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\underset{\Pi}{\mathrm{C}} \mathrm{R}
$$

Các thioeste tổng hợp từ thiol axit và α-halogen xeton.
6-Phản úng tách doan mach Twofold
4,4-Điphenyloxathiolan-5-on chuyển thành olefin khi có tris(dietylamino)photphin:

4,4-Điphenyloxathiolan-5-on được tống hợp bằng ngưng tụ axit thiobenzylic $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{SH}) \mathrm{COOH}$ với anđehit hay xeton.

Phản ứng nằm trong mô hình chung của phản ứng tách đoạn mạch Twofold loại hợp chất (43) với nhóm đ̛i ra là $\mathrm{S}, \mathrm{N}=\mathrm{N}$ (X và Y ở dưới) khi quang phân hay nhiệt phân:

(43)

Chả̉ng hạn khi quang phân 1,4 -đion (44) và nhiẹt phân hợp chất azo sunfua (45) với $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}:$

(45)

chumen 10

PHẢN UNG CỘNG ELECTROPHIN A_{E}

Liên kết đôi hay ba có khả năng thực hiện phản ưng cộng bà̀ng bớn cách khác nhau, trong dó một cách là cộng đờng bộ còn ba cách là quá trình hai giai đoạn với giai đoạn đâu là cộng electrophin, nucleophin hay gớc và giai đoạn thứ hai là kết hợp giữa các ion ngược dấu. Trong chương này đề cập đến khả năng cộng của tác nhân electrophin vào hợp chất có liên kết bội gọi là phản ứng cộng electrophin, ký hiệu A_{E}.

10.1. CO CHÊ CHUNG CỘNG A_{E}

Phản ứng cộng electrophin A_{E} xảy ra ở những hợp chất không no chứa liên kết bội với các tác nhân electrophin là phản ứng phân cực, ngược với phản ưng tách E ở trên.

Sơ đồ chung của phản ứng là:

Quá trình phàn ứng gồm hai giai đoạn, trong đó giai đoạn quyết định tớc độ là sự hình thành cacbocation.

Hợp chất ban đầu là những hợp chất chứa liên kết bội, nghĩa là có mật độ electron lớn như các loại sau:

- cacbon - cacbon: $\mathrm{C}=\mathrm{C}, \mathrm{C} \equiv \mathrm{C}$ của hợp chất mạch hở hay vòng;
$\mathrm{C}-\mathrm{C}$ của hợp chát vòng nhỏ.
- cacbon - dị tớ: $\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N}$.
- dị tố - dị tớ: $\mathrm{N}=\mathrm{N}, \mathrm{N}=\mathrm{O}$.

Tác nhân không nhất thiết là ion dương mà có thể là đầu dương của một lưỡng cực mà phần điện tích âm sē tách ra sau giai đoạn đâu. Không phải tất cả các phản ứng cộng A_{E} đều tuân theo quy tắc đơn giản chung đó mà có thể có nhiều cơ chể khác nhau.

Tác nhân electrophin là những tiểu phân có obitan tróng ở dạng cation hay phân tử trung hoà hay dấu dương của một liên kết phân cực của tác nhân:

Tác nhân E^{+}tấn công vào C lai hoâ $s p^{2}, s p$ hay $s p^{3}$ (của hợp chất vòng nhỏ) có mật độ electron lớn nhất. Hướng tấn cơng vào obitan π bị chiếm của liên kết bội nằm thẳng góc với mặt phảng của liên kết bội hay vòng. Liên kết hình thành là do tương tác của obitan trống của cation hay obitan trống tự do của nguyên tử trong tác nhân trung hoà với obitan π, để hình thành liên kết $\mathrm{C}-\mathrm{E}$ và giải phóng obitan p của cacbon thứ hai hình thành cacbocation trung tâm. Phản ứng có thể do tấn công đầu dương của một phân tử phân cực vào liên kết π :

\rightarrow

Phản ứng thường chịu ảnh hưởng của nhóm cho electron nên phản ứng có giá trị ρ âm.
Phản ứng cũng dược quan niệm như là phàn ứng axit-bazơ hay cho - nhận với electrophin là axit hay chất nhận, còn hợp chất không no là bazơ hay chất cho.

Phản ứng cợng electrophin này có thể xảy ra các loại phản ứng sau phụ thuợc vào từng loại phản ứng:
$1-$

Cơ chế này có sự phan ly trước tác nhân electrophin thành cation tấn công vào liên kết đôi để hình thành cacbocation ở giai đoạn quyết định tốc độ của phản ứng nên là $A_{\mathrm{E}} 2$:

$$
v=k[\mathrm{EY}][\mathrm{C}=\mathrm{C}]
$$

Trong cơ chế này, giai đoạn đầu giơng $S_{\mathrm{N}} l$, cation hình thành có thể tồn tại ở dạng cation vòng oni do tương tác của obitan trớng của cation với obitan n của electrophin:

Chất trung gian này hình thành nhu là cơ chế nhóm kề trong phản ứng thế nucleophin và sự tấn cồng của nucleophin ở giai đoạn 2 cũng giống như $S_{\mathrm{N}} 2$ là tấn công sau.

Nghiên cứu vể cấu trúc obitan cho thấy, ion cẩu bền hơn ion dạng hở và sự hình thành ion cẩu là cân bằng.

Như vậy có cơ chế cacbocation tự do và cacbocation cầu nhưng đểu là cơ chế $A_{\mathrm{E}} 2$.
Để phân biệt hai cơ chế này, người ta dùng phương pháp lập thể. Tính lập thể của phản ứng là hai cacbon của liên kết đôi và bốn nguyên tử liên kết trong chất trung gian là phải ở trên một mặt phả̉ng nên có ba khả năng: E và Y di vào cùng mốt phía liên kết đôi, gọi là đồng phẳng syn hay cợng đạ̣c thù lập thể syn (cis), đi vào từ hai phía đói ngược nhau gọi là đống phẳng anti hay cợng đạ̣c thù lập thể anti (trans) và không đặc thù lập thể. Chẳng hạn khi cộng electrophin vào cis-olefin theo cơ chế cộng syn cho sản phẩm cặp erythro:

Cộng syn:

và cộng anti cho cạ̣p threo:
Cọng anti:

Nghiên cứu cho thấy, ion cẩu bền hơn ion dạng hở và sự hình thành ion cầu là cân bằng.
Trong trường hợp ion cầu không đối xứng như dạng:

thì sự tấn công sau của nucleophin phụ thuộc vào điều kiện nhưng thường ưu tiên cợng anti hơn và có sự chọn lọc vị trí.

2-

Cơ chế này cūng hình thành cacbocation quyết định tớc độ phản ứng nhưng tồn tại ở dạng cạ̣p ion, phụ thuộc vào khả năng phản ứng của hai ion có thể hay không thể trở thành ion tự do trước khi kết hợp để hình thành sản phả̉m.

Cơ chế này cũng là lưỡng phân tử $A_{\mathrm{E}} 2$.

$$
v=k[\mathrm{EY}][\mathrm{C}=\mathrm{C}]
$$

Phản ứng ở dạng cacbocation tự do không đạ̣c thù lập thể vì có sự quay tự do của ion, song còn phụ thuộc vào thời gian tồn tại của cation, tính bền của cation và tồn tại ở dạng cặp ion. Nếu tồn tại ở dạng cặp ion thì có cợng hợp syn:

3- Phản ứng cộng có thể xảy ra bằng sự tấn cong ban đầu không vào một cacbon mà đồng thời vào cả hai cacbon:

Phản ứng thường đi qua trạng thái chuyển bớn trung tâm và thường là cộng syn. Cūng có những trường hợp khác tạo trạng thái chuyển vòng năm hay sáu cạnh. Cơ chế này cũng gọi là cộng vòng, đạc trưng là loại phản ứng Diels Alder.

4-

2E-Y

Cơ chế cợng hợp vừa electrophin, vừa nucleophin của hai phân tử từ tác nhân vào chất ban đầu. Phản ứng là bạ̣c ba $A_{\mathrm{E}} 3$ có trong mợt số phản ưng cụ thể:

$$
v=k[\mathrm{C}=\mathrm{C}][\mathrm{EY}]^{2}
$$

Phản ứng có thể là tấn công đồng thời của E và Y nhưng ở hai phía ngược nhau cūng là $A_{\mathrm{E}} 3$ là cợng ba phân tử (termolecular addition) đi vào trạng thái chuyển, ngược với $E 2$, cŭng cần có tính hình học.

Trong trường hợp electrophin là proton, sự hình thành ion cầu là không thế và cơ chế là cợng A_{E} dơn giản:

Phản ứng vẫn là $A_{\mathrm{E}} 2$ và có đạ̣c tính sau:
1- Phản ứng có xưc tác axit chung, không phải là điển hình đưa đến sự chuyển proton từ axit tới liên kết đôi là quyết định tớc độ.

2- Khi cộng proton tạo cation mạch hở, các góc ankyl thế làm ổn định điện tích dương không có hiệu ứng kích thích lớn như trường hợp tạo cation cấu. Sự thế hai hydro ở trên một cacbon gây ra sự tăng lớn tốc độ phản ứng (bạc $1 \rightarrow$ bạc hai \rightarrow bậc ba), nhưng cộng vào cacbon khác thì hiệu ứng rất nhỏ hay không xúc tiến,

3- Cabocation mạch hở có chuyển vị, tương tự như ở $S_{\mathrm{N}} I$.
Nói chung, cơ chế có sự hình thành chất trung gian cacbocation hở, ion cầu đói xứng hay ion cầu lệch, trừ cơ chế $A_{\mathrm{E}} \mathfrak{3}$, là giai đoạn chậm quyết định tớc dộ phản ứng và sự tấn công của nucleophin ở giai đoạn hai là nhanh, tuy nhiên cũng có trường hợp phản ứng xảy ra với giai đoạn thứ hai là chậm quyết định tớc độ phản ứng.

10.2. PHẢN UNG CỘNG A_{E} CỦA ANKEN

10.2.1. Cơ chế

Phản ứng A_{E} vào anken củng xảy ra theo cơ chế chung ở trên qua hai giai đoạn, với giai đoạn hình thành cacbocation quyết định tớc đọ phản ứng:

với $\mathrm{EY}=$ halogen $\left(\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}\right)$; H-halogen $(\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}), \mathrm{H}_{2} \mathrm{O}, \mathrm{HO}$-halogen ($\mathrm{HOCl}, \mathrm{HOBr}$).
Phản ứng được xúc tiến khi có nhóm thế cho electron nên ρ âm.

$$
\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \longrightarrow \mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CHBr}-\mathrm{CH}_{2} \mathrm{Br} \quad \rho=-4,3 .
$$

Ảnh hưởng của nhóm thế chứng tỏ phản ứng xảy ra do tương tác của obitan π có năng lượng tương đói cao (bazơ Lewis) với obitan tự do của electrophin (axit Lewis).

Phản ứng có độ nhạy cao với các nhóm thế cho electron (với ρ âm và σ^{+}) cho phép đề nghị rằng phản ứng được thực hiện qua trạng thái chuyển phân cực cao, có cấu trúc gẩn với cấu trúc cacbocation. Thực tế, phản ứng xảy ra qua phức π của tác nhân với chất ban đầu:

Cacbocation hình thành có thể tương tác với các nucleophin có trong hỗn hợp sản phấm. Chẳng hạn, phản ứng clo hoá anken trong dung dịch rượu nước có mặt KBr :

Cacbocation có thể ởn định bằng cách tách H theo cơ chế E để tạo olefin. Chẳng hạn, clo hoá isobutylen:

Cacbocation co thể chuyển vị, chả̉ng hạn:
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}=\mathrm{CH}_{2}+\mathrm{HCl} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHCl}-\mathrm{CH}_{3}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCl}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
Cacbocation có thể kết hợp với anken để tạo thành polyme theo cơ chế trùng hợp ion nhất là khi có xúc tác thích hợp cho sự trùng hợp, chẳng hạn:

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2} \rightarrow\left(\mathrm{CH}_{3}\right) \mathrm{C}^{+}-\mathrm{CH}_{3} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{C}^{+}\left(\mathrm{CH}_{3}\right)_{2}
$$

Các telome này cũng có phản ứng tách cho các sản phảm khác nhau.
Phản ứng có sự cạnh tranh theo nhiều hướng phụ thuộc vào điều kiện phản ưng khác nhau.

Cơ chế A_{E} vào anken cũng như trường hợp chung của cộng A_{E} ở trên, dều là bạ́c hai có thể đi qua cacboction tự do hay ion cầu và có tính lập thể cợng syn hay anti.

10.2.2. Phức π và σ

Sự kết hợp E^{+}vào nới đôi anken có thể xảy ra tạo thành cacbocation hay phức π chuyển tới cacbocation:

Hình 10.1. Sự hình thành phức π
Phức π tạo thành từ olefin với tính chất của chất cho với obitan s hay p của axit là chất nhận, nên có thể coi như là phức cho - nhận hay phức chuyển dịch điện tích. Sự hình thành phức π do có sự chuyẻ̉n dịch điện tích nên có mômen lưỡng cực, electron π được dao động trong khoảng không gian lớn hơn nên hình thành pic hấp thụ mới ở sóng dài hơn trong UV, tuy yếu, năng lượng tạo phức chỉ vài $\mathrm{kcal} / \mathrm{mol}$. Khoảng cách giữa các nguyên tử lớn hơn liên
kết σ nhưng nhỏ hơn tởng bán kính van der Waals. Nếu axit còn có obitan d thì các obitan này có chất đầy electron do có chuyển dịch điện tích nên có thể chuyển tiếp sang obitan - π^{*} như phức của kim loại chuyển tiếp.

Khi tạo thành phức π, phân tử chất nhạn trở thành phân cực hay có thể ion hoá do tính bazơ của olefin hay khả nãng solvat hoá của moì trường làm thuạn lợi cho sự ion hoá này.

Phức π tạo thành do sự xen phủ của obitan trống tự do $\mathrm{AO}-p$ của E^{+}với obitan π liên kết của olefin, còn cacbocation tạo thành do sự giải phóng obitan AO-p liên kết của cacbon khi E^{+}đã liên kết với cacbon kia (xen phủ của obitan LUAO của E^{+}với HOMO của cacbon).

Liên kết cho nhận trong phức π là liên kết cợng hoá trị bình thường không có sự phân chia điện tích, tương tự như liên kết $\mathrm{C}-\mathrm{N}$ trong $\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$. Địẹn tích trong phức π phân bó giữa E^{+}và hai cacbon của olefin, trong đó E và một cacbon dương hơn, còn trong cacbocation có một cacbon dương hơn các nguyên tử khác. Do đó, đưa nhóm thér $+I$ làm ốn đinh cacbocation.

Cacbocation tạo thành như là sản phẩm trung gian cho phản ứng, có khả nãng tác dụng với anion của nucleophin hay với phân tử nucleophin khác, chả̉ng hạn, dung môi, tác dụng với olefin cho phản ứng trùng hợp, có thể tách proton để tạo thành olefin và có thể chuyển vị thành cation bền hơn.

Quá trình hình thành cacbocation trung gian đã được xác nhận bằng hiệu ứng đồng vị, bằng tính quang hoạt của sản phảm. Chả̉ng hạn, phản ứng sau:

Chất ban đầu hoạt động quang học, sau khi kết hợp proton tạo cation không quang hoạt vì ion có cấu trúc đơi xứng, sản phẩm thu được là sản phảm raxemic hoá.

Cüng như dùng phản ứng từ chất đầu hoạt đợng quang học chuyển thành cacbocation đói xứng khơng quang hoạt, tuy trung tâm bất đới không mất đi, tớc độ tạo cacbocation tương ứng với sự thay đởi tính quang hoạt:

Giai đoạn cộng hợp nucleophin là giai đoạn nhanh, song có tính chọn lọc của cacbocation với nucleophin.

Khi tạo thành phức π, năng lượng E_{π} bẳng năng lượng cợng hoá trị của olefin với E^{+}, còn năng lượng tạo thành cacbocation bằng:

$$
E_{\mathrm{C}-\mathrm{E}}+E_{\mathrm{C}-\mathrm{C}}-E_{\mathrm{C}=\mathrm{C}}
$$

với $E_{\mathrm{C}-\mathrm{E}}$ là năng lượng tạo thành liên kết $\mathrm{C}-\mathrm{E}, E_{\mathrm{C}-\mathrm{C}}$: năng lượng tạo thành liên kết $\mathrm{C}-\mathrm{C}$, còn $E_{\mathrm{C}=\mathrm{C}}$: năng lượng liên kết ban đầu.

Sự khác nhau vể năng lượng giữa phức π và cacbocation là:

$$
E_{\mathrm{C}-\mathrm{E}}-E_{\pi}-E_{\mathrm{C}-\mathrm{C}}-E_{\mathrm{C}=\mathrm{C}}
$$

Liên kết $\mathrm{C}-\mathrm{E}$ và liên kết π trong phức đều là liên kết giữa E và C , song liên kết $\mathrm{C}-\mathrm{E}$ bền hơn liên kết π, do đó, sự thay đởi liên kết C - E làm thuận lợi cho sự tạo thành cacbocation hơn. Thực tế, liên kết $\mathrm{C}-\mathrm{Cl}$ bền hơn liên kết $\mathrm{C}-\mathrm{Br}$, nên khi kết hợp với anken, clo phản ứng đi qua cacbocation nhiều hơn, còn brom đi qua phức π nhiều hơn.

Phản ứng này dể phân biẹt khi xét về hoá học lạp thé.
Khi chuyển từ cacbocation sang phức π đòi hỏi phải chuyến mọt phần electron δq nào đó từ E tới cacbon, tảng tính am điẹn của E làm khó khăn cho sự chuyển này nên tảng tính âm diện của E làm dễ dàng cho sự tạo thành cacbocation:

Sự thay đởi năng lượng này bằng $\left(\alpha_{\mathrm{C}}-\alpha_{\mathrm{E}}\right) \delta q$ với $\alpha_{\mathrm{C}}, \alpha_{\mathrm{E}}$ là tích phân Coulomb của C và E . Do sự chuyển electron này, đồng thời với sự tảng độ bền của $\mathrm{C}-\mathrm{E}$, clo thường cợng qua dang cacbocation hơn là brom.

Khi tác nhân E có cạ̣p electron khong liên kết làm dể dàng cho sự hình thành phức π vì có sự tham gia của cặp electron này với liên kết π, thường gọi là sự phơi trí ngược:

Đối với những tác nhan là phân tử, chẳng hạn như brom, sự tạo thành phức π do cặp electron d của tác nhân với obitan của anken. Thường các phức này có tính đói xứng hơn:

Như vậy, phản ứng cộng A_{E} vào anken có thể xảy ra theo cơ chế qua phức π hay cacbocation, còn gọi là phức σ, phụ thự̂c vào bản chất của tác nhân. Khi cộng hợp với proton, phản ưng luôn theo cơ ché cacbocation:

vì H^{+}không có obitan p, đọ âm điện của C và H rất gần nhau và liên kết $\mathrm{C}-\mathrm{H}$ rất bền.
Khi cộng hợp với I^{+}(của ICl) phản ứng xảy ra qua phức π :

Vì độ bền của liên két C-I thấp, độ âm điện của I không cao và I^{+}có cạ̣p electron n có khả năng phới trí ngược làm thuận lợi cho phức π.

Cũng có tài liệu cho rằng, sự kết hợp của E vào anken trước hết xảy ra sự tạo thành phức π, sau đó, hoặc phức π kết hợp với tác nhân Nu với tớc đọ nhanh hoạ̣c chạ́m hay chuyển thuận nghịch thành cacbocation. Tác nhân E tất nhiên kết hợp vào cacbon có mạt độ electron lớn nhất:

Từ phức π sự phân tích thành cacbocation đi qua trạng thái chuyển xác định tốc độ có dang:

$$
\mathrm{R}-\mathrm{CH}^{\delta t m} \mathrm{CH}_{2} \cdots-\mathrm{X} \cdot \cdots \mathrm{Y}^{\delta-}
$$

Cơ chế của phản ứng trên cũng phụ thuộc vào cấu trúc chất ban đầu, dung môi và xúc tác. Chảng hạn, tớc đọ brom hoá tương đới của 1-penten trong $\mathrm{CFCl}_{2}-\mathrm{CFCl}_{2}$ là 1 thì trong metanol là 10^{6}, trong nước là 10^{11}.

10.2.3. Hoạt tính

Cũng tương tự như phản ứng thé electrophin vào nhân thơm, phản ứng cợng electrophin tăng khi tăng hoạt tính ở liên kết đôi, nghỉa là tăng mạt độ electron ở nới đôi, do đó, các nhóm thế hút electron làm giảm tớc độ phản ứng, các nhóm thế cho electron làm tảng tớc độ phản ứng, chả̉ng hạn, phản ứng A_{E} tăng theo dãy sau:

$$
\mathrm{CCl}_{3} \mathrm{CH}=\mathrm{CH}_{2}<\mathrm{CCl}_{2} \mathrm{CH}=\mathrm{CH}_{2}<\mathrm{ClCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}<\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}
$$

Các phản ứng thế electrophin càng giảm khi càng tăng só nhóm thế hút electron, chẳng hạn như $\mathrm{CF}_{2}=\mathrm{CF}_{2}$ không thể cộng electrophin mà chuyển sang cộng nucleophin.

Bảng 10.1. Hoạt tính tương đới của anken với brom trong axit axetic $\dot{o ̛}^{2} 24^{\circ} \mathrm{C}$

Olefin	Tớc dợ tưong đбi
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2}$	răt nhanh
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}$	18
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	1,6
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	1,0
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CHBr}$	0,11
$\mathrm{CH}_{2}=\mathrm{CHBr}$	0,0011

Bảng 10.2. Hoạt tính tương đới của anken với brom trong metanol

Olefin	Tơc đọ tương đơi
$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	$3,0.10^{1}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$2,9.10^{3}$
cis $-\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$	$1,3.10^{5}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$2,8.10^{7}$

Nói chung, các nhóm ankyl làm tăng tốc đọ của phản ứng cợng electrophin và có sự khác nhau phụ thuộc vào chất trung gian hình thành là ion cầu hay ion mạch hở.

Chả̉ng hạn, khi brom hoá hay một số tác nhân electrophin khác có giai đoạn đâu là giai doạn quyết định tốc độ thì tớc độ tăng tương quan với thế ion hoá của anken và khi đó yếu tớ lập thể không quan trọng. Khi oxy thủy ngân hoá hay hyđrobo hoá các anken, gial đoạn sau quyết định tớc độ và hiệu ứng lập thé ở đây rất quan trọng.

10.2.4. Hướng cộng - Quy tấc Markovnikov - Zaitsev - Wagner

Khi tiến hành phản ứng như halogen hoá, thường gọi là tác nhân đối xứng, vào một anken đới xứng không cẩn xét đến hướng tấn công ở giai đoạn quyết định tớc đọ của phản ứng vì đểu hình thành một sản phẩm, song dối với những tác nhân như HX , gọi là tác nhân bất đối xứng vào anken cūng bất đối xứng thì cẩn phải xét đến hướng tấn công ở giai doạn quyết định tốc độ của phản ứng do hình thành hai sản phẩm khác nhau:

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HX} \rightarrow \underset{\text { (chính) }}{\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{X}-\mathrm{CH}_{3}}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}
$$

Phản ứng xảy ra ưu tiên theo quy tắc gọi là quy tắc Markovnikov: Khi cợng một tác nhân bất đới xứng vào một olefin bấ đới xứng, hyđro hay phàn điện tích dương của tác nhân cộng hợp vào cacbon chứa nới đôi có nhiểu hyđro hơn (hay vào cacbon ít ankyl hoá nhất), phần anion kết hợp vào cacbon kia.

Quy tắc này hình thành đã hơn 100 năm và chi áp dụng khi cacbon nới đôi có só hydro khác nhau.

Khi nghiên cứu những anken có sơ hyđro như nhau, như loại metylankyletylen:

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{HX} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHXCH}_{3}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHXCH}_{2} \mathrm{CH}_{3}
$$

Zaitsev - Wagner đề ra quy tắc: Hyđro (phấn điện tích dương) kết hợp vào cacbon nới đơi đính với nhóm ankyl lớn hơn, phần anion kết hợp vào cacbon đính với nhớm metyl.

Thực tế, hàm lượng của hai phần này chỉ chênh lẹch nhau khoảng $5 \div 10 \%$.
Có thể dùng hiệu ứng electron để giài thích hai quy tắc trền:
do đó, quy tắc Markovnikov có thể giài thích bằng hiệu ứng electron nên có thể phát biểu như sau: Hyđro (phần điện tích dương) cộng hợp vào cacbon nơi đoi có mật độ electron lớn nhất. Hiệu ứng electron khong giải thích được quy tắc Zaitsev-Wagner.

Phản ứng cộng dược quyế định bằng sự hình thành cacbocation và trạng thái chuyển gần về phía cacbocation nên phản ứng phài ưu tiên tạo thành caction bền, do đó có thể phát biểu tởng quát hướng cộng vào nới đơi nhu sau: Phàn ứng cộng electrophin xảy ra theo hướng tạo thành cacbocation bến hơn. Quy tắc này có tính tởng quát hơn và giải thích dược cà quy tắc Zaitsev - Wagner:

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{3}>\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}^{+} \\
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}^{+} \mathrm{CH}_{3}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}^{+} \mathrm{CH}_{2} \mathrm{CH}_{3}
\end{gathered}
$$

nghĩa là cation bèn hơn cho phản ứng nhanh hơn do có năng lượng hoạt hoá thấp hơn. Nếu năng lượng các cacbocation khác nhau càng lớn thì tỷ lệ sản phẩm khác nhau về hướng càng lớn, nếu ít khác nhau thì tỷ lệ ít khác nhau.

Nếu trường hợp phản ứng tạo phức π, sự tấn cong của nucleophin luôn hướng vào cacbon ankyl hoá nhiểu hơn, chẳng hạn phàn ứng:

Tính bền của cacbocation phụ thuộc vào nhơm thế.
Nếu nhóm thé có hiệu úng $+l$ và $+C$, làm tăng mạt độ electron của liên kết đơi, làm tăng khả năng cộng của anken đồng thời tuân theo quy tắc Markovnikov:

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HX} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}^{+}-\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CHX}-\mathrm{CH}_{3}
$$

Còn trong hợp chất sau, sàn phả̉m cũng phụ thuộc vào hiệu ứng $+C$:

$$
\begin{aligned}
& \begin{array}{r}
\mathrm{Br}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}^{\oplus} \rightarrow-H-\mathrm{BrCH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HX} \rightarrow \\
\mathrm{BrCH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3} \\
\mathrm{BrCH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}
\end{array}
\end{aligned}
$$

Nếu nhớm thế ở nới đơi có hiệu ứng hút electron như $\mathrm{CN}, \mathrm{COOH}, \mathrm{CF}_{3}$ làm chạ̣m phản ứng và hướng phản ứng cộng trái quy tắc Markovnikov:

$$
\begin{gathered}
\mathrm{CF}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HCl} \longrightarrow \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3} \\
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{HCl} \longrightarrow \mathrm{ClCH}_{2}-\mathrm{CH}_{2}-\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}
\end{gathered}
$$

Phàn ưng xày ra theo hướng tạo cacbocation bền vì:

$$
\begin{aligned}
& \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+} \text {bền }>\mathrm{CF}_{3} \mathrm{CH}^{+} \mathrm{CH}_{3} \\
& \mathrm{CH}_{2}{ }^{+} \mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}>\mathrm{CH}_{3} \mathrm{CH}^{+} \mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{3}
\end{aligned}
$$

song chú ý rằng trái quy tắc Markovnikov nhưng phù hợp với quy tắc tạo thành cacbocation bền tởng quát ở trên.

Bảng 10.3. Hàm lượng \% sản phẩm theo quy tắc Markovnikov

Anken	$\mathrm{H}-$ Halogen	$\mathrm{Cl}-\mathrm{OH}$	$\mathrm{Br}-\mathrm{OH}$	$\mathrm{Br}-\mathrm{Cl}$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$	100	$9 \uparrow$	79	54
$\mathrm{HOCH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$	100	73	66	36
$\mathrm{ClCH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$	100	30	27	23
$\mathrm{BrCH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$	100	32	20	22
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CHBr}$	67			
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CHCl}$	90			

Trong khuôn khở của quan niệm về cacbocation bền, có thể thấy những trường hợp cộng bất thường.

Trong phản ứng cộng vào hợp chất vòng dị tơ như etylen oxit, phản ứng cộng trái quy tắc Markovnikov:

phản ưng chủ yếu phụ thuộc vào hiệu ứng không gian nên có tính bát thường.

Cūng như trường hợp cộng HBr vào anken có peroxit, phản ứng cho sản phẩm trái Markovnikov nhưng khống phải là cơ chế ion mà là cơ chế góc:

$$
\begin{aligned}
\mathrm{HBr}+\mathrm{ROOR} \longrightarrow \mathrm{ROH}+\mathrm{Br}^{*} \\
\mathrm{RCH}=\mathrm{CH}_{2}+\mathrm{Br}^{*} \longrightarrow \mathrm{RCH}^{*} \mathrm{CH}_{2} \mathrm{Br} \longrightarrow \mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{Br}
\end{aligned}
$$

Quá trình ở đây là tạo thành gớc bến.
Phản ứng của 3 -clo- và 3 -brom-1-propen:

$$
\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HCl} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{CHCl}-\mathrm{CH}_{3}
$$

Phản ứng trên tuy có hiệu ứng $-I$ của $\mathrm{CH}_{2} \mathrm{Cl}$ nhưng chưa đủ mạnh để ành hưởng tới cacbocation mà còn hiệu ứng siêu liên hợp của liên kết $\mathrm{C}-\mathrm{H}$ với cacbocation, ngay 3,3-điclo-1-propen cūng còn ưu tiên hơn theo Markovnikov, chỉ có 3,3,3-triclo-1-propen là cho sản phẩm trái Markovnikov.

Cũng từ tính chất của cacbocation, phản ứng cūng cho sản phẩm chuyển vị:

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}=\mathrm{CH}_{2}+\mathrm{HCl} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHClCH}_{3}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCl}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}
$$

và có thể có sản phấm của phản ứng tách của cacbocation:

Ngoài ra sản phẩm còn phụ thuộc vào hiện tượng đồng phan hoá khi tạo những cacbocation trung gian khác nhau do hiệu ứng của nhơm bên cạnh (nhóm kề), chả̉ng hạn khi cộng ICl vào propen:

Cũng như phàn ứng cộng HOCl vào bromua allyl:

Hiệu ứng này tăng khi chuyển từ dẫn xuất clo tới iot.
Phản ứng cộng electrophin xảy ra với nảng lượng hoạt hoá thấp do trạng thái chuyển nảng lượng thấp theo tiên để Hammond. Quy tắc Markovnikov cũng áp dụng cho hệ đien liên hợp, ankyn và hệ allen.

10.2.5. Hoá học lập thể

Phản ứng cộng electrophin xảy ra ra theo hai hướng lập thể: anti và syn đồng thời cũng phụ thuộc vào cấu trúc chất ban đầu cũng như trạng thái chuyển:

Bảng 10.4. Khả năng phản ứng của anken

Anken	$k_{\text {tgg }}$ - clo hoá	$k_{\text {tgd }}$-brom hoá
Etylen	-	0,01
1-Buten	100	100
cis-2-Buten	63	27
trans-2-Buten	20	17,5
1-Metylpropen	58	57
2-Metyl-2-buten	11000	13700
3,3-Eimetyl-1-buten	1,15	0,32
2,3-Eimetyl-2-buten	430000	150000

Phản ứng xảy ra qua phức σ và cacbocation khác nhau về mạ̣t lập thể.
Nếu phản ứng xảy ra qua phức π thì phản ứng là đạ̣c thù lập thể vì phức π mất khả nãng quay xung quanh liên kết đôi. Chẳng hạn, khi brom hoá styren, phản ứng qua phức π chỉ cho sản phẩm cộng trans:

Nếu phản ứng xảy ra qua cacbocation vì cacbocation có khả năng quay xung quanh liên kết σ nên có thể cho sản phẩm anti và syn, nghĩa là không có đạ̣c thù lập thể. Chẳng hạn từ cation dạng hở hay còn gọi là cổ điển với nucleophin cho cả sản phẩm cis và trans:

Song trong thực tế, đại đa sớ phản ứng cợng là có tính chọn lọc lập thể. Chẩng hạn phản ứng:

Các phản ứng trẻn là cợng trans, có tính chọn lọc lập thể và sản phẩm là khống chế động học. Tính chọn lọc lập thể này không thể giải thích bằng sự tạo thành cacbocation phẩng.

Để giải thích hiện tượng trên, Robertcon và Kimball đưa ra cấu trúc ion cầu, nghĩa là cacbocation tạo thành ở giai đoạn đầu có cấu trúc ion cầu giống như ion oxoni:

đối với brom gọi ià cation bromoni, còn sự tấn công của nucleophin tiếp theo bắt buợc phải tấn công vào phía sau do hiệu ứng không gian của cầu nên phải là cộng anti:

Kết quả phản ứng cho hỗn hợp của hai dối quang (enantiome):

cation bromoni

cạ̣p dói quang

Phản ứng cộng anti thể hiện ở phản ứng brom hoá đồng piân cis- và trans-2-buten, sản phẩm phụ thuộc vào cấu hình chất ban đầu, trans-2-buten cho meso-2,3-dibrombutan, còn cis-2-buten cho sản phẩm raxemic hoá của cạ̣p đối quang.

Cấu trúc cation cầu (cation halogenoni) này được xác định bả̀ng NMR của ion bromoni, trong đó proton của nhóm metylen không tương dương nhau, cung như bằng thực nghiệm của phản ứng adamantylliđenadamantan với brom chỉ cho tạo phức ion cầu bromoni bền mà không thể thực hiện phản ứng nucleophin ở giai đoạn sau vì khó khãn không gian, phản ứng dừng lại ở giai đoạn đầu tạo thành cation bromoni:

Cation oni tạo thành do tương tác của obitan trống của cacbocation với tác nhân electrophin có cập electron n. Khả năng hình thành cation cấu phụ thuộc vào tương tác này, nghĩa là phụ thuộc vào tiểu phân electrophin cộng vào anken để hình thành cacbocation:

Cấu trúc của cation cầu có thể đối xúng hay không đói xứng phụ thuộc vào nhóm thế, do đó điện tích dương ở hai cacbon nới đôi khác nhau.

Điện tích dương tập trung ở cacbon có nhóm thế có khả năng giải toả điện tích dương hơn:

cation bromoni dơi xúng

cation bromoni khong đối xưng

cation mach hở

Nếu anken ban dầu đối xứng thì ion cầu cūng đới xứng, trong trường hợp này nucleophin tấn công vào hai cacbon đều như nhau và cho hai sản phả̉m bằng nhau với xác suất 50% ở mỗi cacbon:

Phản ứng không có tính chọn lọc ở giai doạn hai.
Nếu anken khỏng đối xứng, nghĩa là anken có nhơm thế ở C_{α} và C_{β} gây ra sự giải toả điện tích dương khác nhau thì cation cấu có cá̛u trúc không dơi xứng và điện tích dương tập trung ở cacbon có khả nảng giải toả nhiều hơn và bậc liên kết ở hai cacbon khác nhau:

và ở ion cầu không đối xứng thì sự tấn công của nucleophin cũng là tán công trans, vì nếu tấn công cis thì sản phẩm thu được ở cấu dạng che khuất.

Ngay khi tấn công vào liên kết đôi, cation E^{+}cunng phải chọn vị trí tấn công ít khó khăn không gian hơn, cũng như nucleophin tấn công vào ion cấu cũng phải anti để ít khó khăn không gian. Có thể thấy rõ trễn phản ứng cộng vào hợp chất vòng:

Nói chung, phản ứng cộng vào xyclohexen, phản ứng không chỉ cộng anti mà sản phẩm thu được có đặc thù lập thể diaxial.

Nếu các nhóm thế ở hai cacbon khác nhau nhiểu về khả năng cho electron thì khả năng tạo ion cacbocation dạng hở sẽ thuận lợi hơn là ion cấu, do đó trong trường hợp này phản ứng không có chọn lọc lập thể. Chả̉ng hạn:

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{Br}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHBr}-\mathrm{CHBr}-\mathrm{CH}_{3} \\
\text { cis cho tỷ lệ erythro / threo }=17 / 83 \\
\text { trans cho tỵ lệ threo / erythro }=88 / 12 .
\end{gathered}
$$

Nếu từ $p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}_{2}$ cho hổn hợp đồng phân bằng nhau vì nhóm $\mathrm{CH}_{3} \mathrm{O}$ có $+C$ mạnh hơn làm thuận lợi cho cation dạng hờ.

Như vạy, tính đói xứng của ion cầu phụ thuộc vào bản chất nhơm thế ở nới đơi. Phản ứng A_{E} xảy ra qua ion cở điển hay ion cấu phụ thuộc vào cấu trúc của hydrocacbon và tính đối xứng của ion cầu phụ thuộc vào nhóm thế ở nới đơi. Liên kết C ...E trong ion cầu tạo thành ở nguyên tử cacbon với nguyên tử đó nên phản ứng tuân theo quy tác Markovnikov.

Bảng 10.5. Hoá học lập thể cùa phản ứng halogen hoá

	Anken	Dung mbi	Tỳ lệ anti/ syn
Brom hoá	cis-2-Buten	$\mathrm{CH}_{3} \mathrm{COOH}$	$>100 / 1$
	trans-2-Buten	$\mathrm{CH}_{3} \mathrm{COOH}$	> $100 / 1$
	Xyclohexen	CCl_{4}	rát lơn
	(z)-1-Phenylpropen	CCl_{4}	83/17
	(E)-1-Phenylpropen	CCl_{4}	$88 / 12$
	cis-Stylben	CCl_{4}	> 10711
Clo hoá	cis-2-Buten	khong dung moi	> $100 / 1$
		$\mathrm{CH}_{3} \mathrm{COOH}$	> $100 / 1$
	trans-2-Buten	khong dung moi	> $100 / 1$
		$\mathrm{CH}_{3} \mathrm{COOH}$	> $100 / 1$
	Xyclohexen	khong dung moi	> $100 / 1$
	(E)-1-Phenylpropen	CCl_{4}	$45 / 59$
		$\mathrm{CH}_{3} \mathrm{COOH}$	41/59
	(Z)-1-Phenylpropen	CCl_{4}	$32 / 68$
		$\mathrm{CH}_{3} \mathrm{COOH}$	$22 / 78$
	cis-Stylben	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	$92 / 8$
	trans-Stylben	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	65/35

Cáu trúc ion cở điển và ion câu thay đổi phụ thuộc vào dung môi. Vì ion cở diển có điện tích dương định chổ hơn ion cấu, khi tăng tính phân cực của dung mơi làm ởn định ion cổ diển hơn ion cấu và tính đới xứng của ion sẽ thay đổi dẫn tới làm mât tính đạac thù lập thể của phản ứng cộng.

Chẳng hạn, khi cợng brom vào cis-stylben trong dung mời kém phân cực tạo thành D, L-dibrom, phản ứng có tính đạ̣c thù lập thể trans trong dung moi phan cực sẽ tạo thành meso-dibrom:

Chú ý rằng nếu trong trường hợp cacbocation dạng hở, đồng phân cis có lực dẩy của nhóm thế ở olefin ban đâu lớn hơn trong ion C^{\dagger}. Nhóm thế làm mất ởn dịnh cis-olefin ban đầu lớn hơn ở ion, nảng lượng cis cao hơn trans, do đó, cis-olefin phản ứng nhanh hơn trans.

Trong trường hợp ion cầu, sự khác nhau về năng lượng giữa trạng thái chuyển cistrans lớn hơn là sự khác nhau về năng lượng giữa cis-trans olefin ban dầu, do đó trong trường hợp này, trans có năng lượng trạng thái chuyển nhỏ̉ hơn do tương tác đẩy nhỏ hơn, nên trans phàn ứng nhanh hơn cis:

Sự khác nhau này được xác định khi nghiên cứu sự khác nhau về entanpi tạo thành $\left(\Delta H^{0}\right)$ và entanpi hoạt hoá ($\Delta H^{\#}$) của các olefín lập thể, cho thấy, trong tất cả các trường hợp, entanpi của dồng phân trans nhỏ hơn chứng tỏ trạng thái chuyển là ion câu.

Chả̉ng hạn, nhứng phản ứng sau có entanpi hoạt hoá của trans nhỏ hơn, chứng tỏ phản úng tạo thành qua ion cầu:
$\Delta \Delta H^{0}$
$\Delta H_{c i s}^{0}-\Delta H_{t r a n s}^{0}$
8,2
21,4
43,9
32,6
43,0

Ở đây có mâu thuẫn là hai olefin sau xảy ra phản ứng không đạ̣c thù lập thể, chứng tỏ tạo ion dạng hở do động học quá trình xác định bằng cấu trúc hoạt hoá, còn hoá họ̣c lập thể bà̀ng cấu trúc hợp chất trung gian. Ion cẩu có thể chuyển thành cation dạng hở sẽ mất tính chất đạ̣c thù lập thể của quá trình.

Phản ưng cợng trans chỉ có trong phản ứng qua trạng thái cầu oni khi phức π hình
thành chuyển hoá nhanh sang cation vòng oni không qua cation cố điển tự do, hoặc khi tốc độ chuyến hoá của cation cổ điển sang cation vòng oni lớn hơn tốc độ quay của cation tự do quanh liên kết $\sigma \mathrm{C}-\mathrm{C}$. Phản ứng có tốc độ phụ thuộc vào nhóm thế cho electron làm tảng tốc độ, còn nhóm thé hút electron làm giảm tốc độ phản ứng. Chẳng hạn, tớc độ giảm theo thứ tự sau:

$$
\mathrm{R}_{2} \mathrm{~N}>\mathrm{RO}>\mathrm{C}=\mathrm{C}>\mathrm{C}_{6} \mathrm{H}_{5}>\mathrm{R}>\mathrm{H}>\mathrm{SO}_{2}, \mathrm{CN}>\mathrm{CO}>\mathrm{NO}_{2}
$$

Giai đoạn thứ hai thực tế là phản ứng $S_{\mathrm{N}} 2$ vào vòng oni nèn có sản phẩm thế trans.
Các halogen, đạ̣c biệt là brom và clo cho phản ứng cộng dễ dảng, còn iot không cộng vì I^{-}là nucleophin yếu và sản phẩm tạo thành điiot có khó khăn lập thể nên không thuận lợi trong cân bằng:

Phản ứng thường dùng để tổng hợp các hợp chất tập chức có đặc thù lập thể, nhất là phản ứng cộng anti trong các hợp chất vòng xyclohexen đều cho sản phảm cộng điaxial:

Phản ưng cộng xyclohexen với hợp chất cơ kim cūng cho hợp chât cộng điaxial:

Đơi với các hợp chất vòng, phản ứng cộng electrophin thường là cộng anti, electrophin tấn công từ phía ít khó khản lập thể hơn, nhưng cợng vào norbornen và các vòng cố sức căng lớn thường là cộng syn và như trong phản ứng cộng vào norbornen sau, electrophin luôn tấn công từ phía ít khó khăn không gian hơn nên từ phía exo:

Khi phía exo bị án ngữ bởi các nhóm thế ở vị trí 7 thì tấn công ưu tiên về phía endo như trong 7,7-dimetylnorbornen thì tấn công endo.

Cũng như phản ứng epoxy hoá 4 -metylxyclopenten cho 74% cộng từ phía ít khơ khăn lập thể cợng 24% từ phía có khơ khăn lập thể hơn:

Hiệu ứng electron cũng một phần có vai trò dịnh hướng cộng như khi epoxy hoá hay hyđroxyl hoá dẵn xuất adamantan (1) có nhóm thế hút electron là F thu được 66% sản phả̉m (2) do tấn công syn đối với F và 34% sản phẩm (3) do tấn công anti dối với F cho cả hai tấn công electrophin và nucleophin. Nếu khi có nhóm thế cho electron, sản phẩm thu được ngược lại:

(1)

(2) (66%)

(3) (34%)

Sản phẩm (2) thu được gần gấp đôi sản phẩm (3). Do có F hút electron, liên kết $C_{1}-C_{8}$ và $C_{3}-C_{10}$ giàu electron hơn liên kết $C_{3}-C_{4}$ và $C_{1}-C_{4}$ nên tác nhân tấn công về phía syn của F để có tương tác của obitan σ^{*} của liên kết mới hình thành với obitan $\mathrm{C}_{1}-\mathrm{C}_{8}$ và $\mathrm{C}_{3}-\mathrm{C}_{10}$ giàu electron hơn.

Phản ứng ankyl hoá và axyl hoá khi có axit Lewis cŭng cho sản phẩm cộng anti:

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COCl} \xrightarrow{\mathrm{AlCl}_{3}}\left[\mathrm{CH}_{3}-\mathrm{CO}^{+} \ldots \mathrm{AlCl}_{4}^{-}\right] \xrightarrow{\mathrm{CH}_{2}=\mathrm{CH}_{2}} \mathrm{CH}_{3} \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}^{+} \mathrm{AlCl}_{4}^{-}+\mathrm{AlCl}_{3} \\
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow[0^{\circ} \mathrm{C}]{\mathrm{SnCCl}_{4}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}
\end{aligned}
$$

Cũng như phản ứng của anken với axit nitric cho hỗn hợp sản phẩm:

Ngoài những phản ứng cộng anti phổ biến trong các hợp chất anken, điển hình là phản ứng với halogen hay HX , cũng cần xét đến những khả năng xảy ra theo cơ chế cộng syn là chính.

Khi hình thành ion cổ điển hay ion cå̀u, các ion này có thể ở trạng thâi tự do chỉ có những dung môi có khả năng phân ly lớn, còn trong những trường hợp ngược lại chỉ tạo cạ̣p ion. Sự tảng tính bazơ của cạạp ion ngược dấu làm dễ dàng cho khả nãng đó. Nếu phản ứng của ion ngược dấu thực hiện ở giai đoạn cặp ion, hoá học lập thể sẽ thay dởi.

Nếu cặp ion có cấu trúc ion hở, sự cộng anion xảy ra cùng phía với electrophin, nghīa là phản ứng cợng cis:

Nếu cặp ion là ion câu thì bắt buộc anion phải tấn công đới diện với electrophin, nghĩa là cộng anti như trên:

Như vạy, tăng khả năng tạo ion cầu, tăng khả năng cợng anti, cợng syn chỉ khi ion có cấu trúc ion cổ điển.

Khi so sánh phản ứng clo hoá và brom hoá, phản ứng clo hoá có xác suất qua cặp ion hơn vì có clo có hiệu ứng $-I$ nên mức đọ tạo ion cầu giảm. Ion ngược dấu có tính bazơ càng lớn thì tãng khả năng iạo cặp ion.

Phản ứng của HX như 1,2-đimetylxyclohexen cho sản phẩm ưu tê̂n là trans, trong khi đó với nước cho hỗn hợp anti và syn:

Phản ứng cộng syn thường ưu tièn khi trong chất ban đầu không có nhôm thế làm ổn định ion, tức tăng xác suất cặp ion, như những hợp chất sau có 80% syn:

Xác suất tạo thành ion và cậ̣ ion phụ thuộc vào bản chất nhóm thế trong chết ban đầu, thường nhóm thế ảnh hưởng kém đến tính ổn định của cation, khó tạo ion tự do thì tăng cợng syn.

Trong phản ứng $\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{DCl}\left(\mathrm{CH}_{3} \mathrm{COOD}\right)$:

- Nếu $\mathrm{X}=\mathrm{OCH}_{3}$, phản ứng không đạ̣c thù lập thể, nghĩa là tạo ion tự do.
- Nếu $\mathrm{X}=\mathrm{CH}_{3}, \mathrm{H}, \mathrm{Cl}$, phản ứng xảy ra cợng syn:

Phản ứng xảy ra qua phức π rồi chuyển vị thành cation và chịu sự solvat yếu của dung môi nên tạo được cạ̣p ion ngược dấu chỉ cộng cùng phía với nhóm cợng hợp vào và phản ưng là cộng syn. Phản ứng vẩn là bậc hai và không thay đổi khi tãng nồng dộ ion ngược dấu: $v=k[\mathrm{C}=\mathrm{C}][\mathrm{DCl}]$.

Khả nãng cọ̀ng sỵn cũng phụ̣ thuệc vào dung mồi, chẳng hạn khi halogen hoá trong dung môi bazơ, phản ứng tạo đhành sản phẩm cộng trung gian solvat rồi tác dụng với nucleophin theo phản ứng $S_{\mathrm{N}} 2$, chả̉ng hạ:

Trong cạ̣p ion ít chịu ảnh bưởng vào nồng dộ anion và dộng học là bậc hai.
Về phản ứng $A_{\mathrm{E}} 3$, tác nhân tạo phức π với anken, phức này tương tác với phân tử tác nhân thứ hai. Chả̉ng hạn, phản ứng halogen hoá, khi nồng dộ halogen được tăng lớn và khi dộ bền của cation tạo thành hay cặp ion giảm, ngăn cản cơ chế lưỡng phân tử:

Cūng như khi sự tạo thành ion khó khăn, sự phân cắt liên kết $\mathrm{C}=\mathrm{C}$ để tạo thành liên kết C-halogen chỉ có thể xảy ra khi có tương tác đồng thời với nucleophin, như là cơ chế push-pull, với phân tử halogen hay ion halogen thứ hai. Tớc độ phản ứng là bậc ba:

$$
v=k[\mathrm{C}=\mathrm{C}][\mathrm{Hal}]^{2} \text { hay } v=k[\mathrm{C}=\mathrm{C}][\mathrm{Hal}]\left[\mathrm{Hal}^{-}\right]
$$

Như vậy, tốc độ phản ứng tãng khi tăng nồng độ ion Hal và phản túng khó tạo ion khi chất ban đầu có nhóm thế hút electron, hay nói cách khác khi chất ban đầu có nhớm thế hút electron thì cơ chế bậc ba ưu thế hơn.

Chả̉ng hận, những hợp chât $\mathrm{CHCl}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{ClO}_{4}{ }^{-}$dể xảy ra theo cơ chế bậc ba và phản ứng vần là cộng anti.

Cơ chế $A_{\mathrm{E}} 3$ cūng có vai trò quan trọng trong khi cộng halogenua hyđro với chất ban đẩu không có khả năng ổn định cặp ion đều có sự cạnh tranh của cơ chế bậc ba. Ở đây giai doạn quyết định tốc độ phản ứng là giai đoạn tấn công của anion vào phức π tạo thành:

Trạng thái chuyển ở đây giống trạng thái chuyển $E 2$, trong dó tách anti có năng lượng nhỏ hơn tách syn, nên ở đay cợng anti cũng ưu tiên hơn. Cơ chế cộng syn của halogenua hyđ̛o xảy ra với những hợp chất vòng không có sự quay xung quanh liên kết đơn, chẳng hạn với norbornen.

Tốc dộ phản ứng bậc ba phụ thuộc nhiếu vào trạng thái của halogenua trong dung dịch, chẳng hạn HBr trong axit axetic phân ly nhiều hơn thì tốc độ cộng lớn hơn và phản ứng dể cho $A_{\mathrm{E}} 3$ hơn, còn HCl ở dạng cạ̣p ion.

10.3. PHẢN ÚNG CỘNG A_{E} CỦA XYCLOPROPAN

Ở chương 2 đã biết, xyclopropan có bản chất của liên kết đôi nên tá̛t nhiên xyclopropan cūng chịu phản ứng cộng A_{E} tương tự như nới đôi của anken. Phản ứng chịu sự tấn công của electrophin như của anken và có sự mở vòng ba cạnh:

Cơ chế của phản ứng trên cũng là A_{E} bắt đả̉u bằng tấn công của electrophin, tương tự như các phản ứng electrophin khác. Thường có ba cơ chế sau, chẳng hạn với HX :

Cơchếa:

Cóchếc:

(b)

Cơ chê a là quá trình proton hoá vào góc của xyclopropan đã thấy trong một só phản ưng như cation 2-norbornyl, 7-norbornenyl ở trên. Cơ ché b là sự proton hoá vào cạnh xyclopropan và cơ chế c như là loại phản ứng $S_{\mathrm{E}} 2$ mộ giai đoạn do H^{+}tấn công tạo cation cở diển để rồi phản ứng với nucleophin. Đáng tiếc là những chứng minh cho các cơ chế này đẻ̉ chọn lựa không nhiếu, tuy nhiên mỗi cơ chế đều có liên quan tới tác nhân electrophin. Nhiều bằng chứng cho cơ chế b là cợng hợp tác nhân Br^{+}và Cl^{+}và cơ chế a với tác nhân D^{+}và Hg^{2+}. Mọt số nghiên cứu cho thấy, tiếu phân trung gian (a) xyclopropan proton hoá góc bển hơn tiểu phân trung gian (b) xyclopropan proton hoá cạnh khoảng $1,4 \mathrm{kcal} / \mathrm{mol}$ ($6 \mathrm{~kJ} / \mathrm{mol}$).

Đơi với xyclopropan thế, phản ứng cũng tuân theo quy tắc Markovnikov (trừ vài ngoại lệ) và tính chọn lọc vị trí thấp.

Chẳng hạn, phản ứng:

Trong phản ứng trên, electrophin H^{+}cộng hợp vào cacbon có nhiều hyđ̃o hơn, còn nucleophin cộng hợp vào cacbon sẽ mang điện tích dương ởn định nhất (bạc ba hơn bạ̣c hai) nên tuân theo quy tắc Markovnikov.

Hoá học lập thể của phản ứng được nghiên cứu ở hai vị trí: vị trí cacbon liên kết với electrophin và vị trí liên kết với nucleophin. Các kết quà nghiên cứu cho thấy sự tấn công này là hỗn tạp. Đā tìm thấy nhiều phản ứng có 100% bảo toàn cấu hình, 100% nghịch dảo cấu hình hay hỗn hợp bảo toàn và nghịch đảo. Thường nguyên tử cacbon liên kết với nucleophin là nghịch đảo cấu hình, tuy nhiên cũng có trường hợp bảo toàn cấu hình. Quá trình cũng có cạnh tranh của phản ứng tách, chuyển vị và raxemic hoá, chứng tỏ khả năng tạo cacbon mang điện tích dương ở vị trí đó.

Trong trường hợp có vòng xyclopropan liên hợp với nới đơi, phản ứng cũng cợng mở vòng như là một hệ liên hợp, chẳng hạn:

10.4. PHẢN UNG CỘNG CỦA ANKYN

Phản ứng cộng A_{E} vào ankyn cūng xảy ra tương tự như ở anken theo sơ đồ chung là:

Phàn ứng tạo thành chất trung gian là trans-anken. Phản ứng có thể dừng lại ơ giai đoạn này nếu tiến hành phản ứng ở nhiệt độ thấp:

còn nói chung anken phản ứng nhanh hơn ankyn nên phản ứng tiếp theo cho sản phả̉m cộng no:

Giai doạn sau hoàn toàn giống anken.
Phản ứng A_{E} vào ankyn xày ra khó khăn hơn vào anken bởi vì electron π trong nối ba kém linh động hơn, liên kết chặt chẽ với hạt nhân cacbon hơn do C_{sp} có độ âm điện cao hơn $\mathrm{C}_{\mathrm{sp}}{ }^{2}$ ở anken, ankyn khó bị phân cực hoá hơn nên khó bị tấn công của tác nhân electrophin hơn anken, mặc dù tính không no của ankyn cao hơn anken.

Sự khác nhau về khả năng phản ứng có thể tháy trên phản ứng brom hoá các anken và ankyn sau:

$$
\begin{aligned}
& \mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{COOH} / \mathrm{HC} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}=9000 \\
& \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2} / \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C} \equiv \mathrm{CH}=3000 \\
& \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5} / \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}=2500
\end{aligned}
$$

Chứng tỏ phản ứng cộng vào anken nhanh hơn ankyn rất nhiều.
Phàn ưng cộng electrophin vào ankyn cūng là phản ứng cộng anti, sự tấn công của electrophin là giai đoạn chậm quyết định tớc độ phản ứng, nghĩa là giai đoạn tạo thành cation vinyl:

Phản ứng cợng A_{E} vào ankyn xảy ra với quá trình phát nhiẹt hơn phàn ứng A_{E} vào anken, song nói chung ankyn phản ứng kém hơn anken với tác nhân electrophin. Nguyên nhân là sự hình thành cation vinyl đòi hỏi năng lượng hoạt hoá cao hơn.

Cation vinyl có obitan p nằm thẳng góc với hệ π nên không có tương tác gì̀ Obitan p thuộc về C_{sp} nhiều hơn là $\mathrm{C}_{\mathrm{sp}^{2}}$ mà C_{sp} có độ âm điện cao lại chứa diện tích dương nên không bền.

Nội năng của cation vinyl cao hơn cation ankyl nên quá trình hình thành xảy ra chạm hơn và đòi hỏi năng lượng hoạt hoá cao hơn. Song cũng có quan niệm cho rằng, sở dī phản úng cộng vào ankyn chạm hơn do không có khà năng tạo được ion cấu oni có năng lượng thấp hơn cation cổ diển như trong anken.

Các halogen cộng với ankyn, nhà $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$, theo cơ chế cộng anti tuân theo quy tác Markovnikov qua hai giai doan

$$
\begin{aligned}
& \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Br}_{2}, \mathrm{CCl}_{4}, 20^{\circ} \mathrm{C}} \mathrm{CH}_{3}-\mathrm{CBr}=\mathrm{CBr}-\mathrm{CH}_{3} \quad(66 \%) \\
& \mathrm{CH}_{3}-\mathrm{CBr}=\mathrm{CBr}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Br}_{2} \text { dur, } \mathrm{CCl}_{4}, 20^{\circ} \mathrm{C}} \mathrm{CH}_{3}-\mathrm{CBr}_{2}-\mathrm{CBr}_{2}-\mathrm{CH}_{3}(95 \%)
\end{aligned}
$$

Khi cộng với HlCl và HBr , ankyn phản ưng tương tự anken, tuân theo quy tắc Markovnikov và cũng cộng trans:

$$
\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}+\mathrm{HX} \xrightarrow{\mathrm{HX}} \mathrm{RCH}=\mathrm{CXR} \longrightarrow \mathrm{RCH}_{2}-\mathrm{CX}_{2} \mathrm{R}
$$

Sản phẩm cộng cuối cùng là các gem-đihalogen:

$$
\begin{aligned}
& \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C} \equiv \mathrm{CH}+\mathrm{HBr} \xrightarrow{\mathrm{HBr}} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CBr}^{2} \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CBr}_{2}-\mathrm{CH}_{3}(76 \%) \\
& \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CClCH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CCl}_{2} \mathrm{CH}_{3}
\end{aligned}
$$

Cũng như anken, khi cộng HBr có peroxit thì phản ứng tuân theo quy tắc trái Markovnikov (theo cơ chế gốc):
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}+\mathrm{HBr} \xrightarrow{\text { peroxit }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHBr} \quad(70 \%)$
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}+\mathrm{HBr} \xrightarrow{h \nu .60^{\circ} \mathrm{C}} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CHBr}$ (88%)
Thường vì tính bazơ nối ba nhỏ hơn, khả năng phản ứng kém hơn nên phản ứng của H với ankyn thường cần có tác dụng thêm của nucleophin tạo nên bản chất dồng bộ cho sản phẩm trans:

Nếu tính bazơ của $\mathrm{X}-\mathrm{Z}$ hay Z^{-}yếu thì phản ứng cọng kém tính chọn lọc hơn, chẳng hạn, dùng $\mathrm{CF}_{3} \mathrm{COOH}$ có tính nucleophin rất yếu thì phản ứng có đạ̣c thù lập thể. Khi tác dụng HBr với $\mathrm{CH}_{3} \mathrm{OOCC}_{\mathrm{O}} \mathrm{CCOOCH}_{3}$ có phương trình dộng học $v=k[\mathrm{C} \equiv \mathrm{C}][\mathrm{HBr}]^{2}$

Phản ứng cộng phổ biến hơn là phản ứng hyđ̛at hoá ankyn khi có axit sunfuric hay muối bạc, đồng và thuỷ ngân. Phản ứng này cũng uân theo quy tắc Markovnikov và giai đoạn chuyển proton là giai đoạn chậm quyết định tợc độ phản ứng:

$$
\begin{aligned}
& \mathrm{Ar}-\mathrm{C} \equiv \mathrm{CH}+\mathrm{H}_{3} \mathrm{O}^{+} \xrightarrow{\text { chạm }} \mathrm{Ar}-\mathrm{C}^{+}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { nhanh }} \mathrm{Ar}-\mathrm{C}(\mathrm{OH})=\mathrm{CH}_{2} \\
& \xrightarrow{\text { nhanh }} \mathrm{Ar}-\mathrm{CO}-\mathrm{CH}_{3}
\end{aligned}
$$

Cơ chế ion này có hằng số $\rho=-4.8$ và có hiệu ứng dồng vị $k_{\mathrm{HO}} / k_{\mathrm{DO}}=2 \div 4$. Khi
nghiên cứu động học của phản ứng của ete axetylen hay thioete trong dung dịch nước khi có axit sunfuric cho thấy:

với $v=k[\mathrm{C} \equiv \mathrm{C}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+K^{\prime}[\mathrm{C} \equiv \mathrm{C}]\left[\mathrm{H}^{+}, \mathrm{C} \equiv \mathrm{C}\right]$ và $k_{\mathrm{H}} / k_{\mathrm{D}}=2,16$ chứng tỏ giai đoạn cộng proton là giai đoạn chậm sau đó tấn cơng nucleophin nhanh vào cacbocation.

Phản ứng hyđ̛rat hoá axetylen khi có muới Ag, Cu hay Hg xúc tác, axetylen hay ankyn tác dụng với HgX_{2} tạo phức π ở dạng cân bằng chuyển thành sản phẩm cộng với HOH cho anken rồi chuyển vị:

Phương trình tóc đợ ở nhiệ́ độ $40^{\circ} \mathrm{C}$ là $v=K_{\mathrm{cb}} k_{2}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$, còn ở $90 \div 100^{\circ} \mathrm{C}$ thì $v=k_{1}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$, tức là ở nhiệt độ này k_{2} trở thành giai đoạn nhanh. Hiệu ứng đồng vị $k_{\mathrm{HOH}} / k_{\mathrm{DO}}=7,6$.

Giai đoạn chuyển vị có thể thutc hiện trước khi loại HgX hay sau khi loại HgX . Trong tất cả các trường hự̛̣, phản ứng tăng khi giảm thế ion hoá của kim loại, chứng tỏ có sự tạo thành phức π.

Cũng có quan niệm rằng, phản ứng xảy ra qua trạng thái chuyển vòng:

Một só phản ứng cộng electrophin khác vào ankyn cũng tương tự như trên nhưng có tính chất khác, do khi tạo thành anken khong có nhơm có khả năng chuyển vị như khi hyđrat hoá trên.

Chẳng hạn phản ứng cộng axit vào ankyn khi có xúc tác Hg^{2+} :

Hợp chất trung gian ở đây là este của ancol, tương tự enol nhưng bền hơn, không có
hyđ̛o để chuyển vị hay tautome hoá nên có khả nãng cợng hợp với phân tử axit thứ hai tạo thành gem-đieste.

Cūng như phản ứng của thiol với ankyn khi có xúc tác BF_{3} (không dùng HgX_{2}), phản ứng cũng cho gem-đithioeste:

$$
\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}+\mathrm{R}^{\prime} \mathrm{SH} \xrightarrow{\mathrm{BF}_{3}} \mathrm{RCH}=\mathrm{CR}\left(\mathrm{SR}^{\prime}\right) \xrightarrow[\mathrm{BF}_{3}]{\mathrm{R}^{\prime} \mathrm{SH}} \mathrm{RCH}_{2} \mathrm{CR}\left(\mathrm{SR}^{\prime}\right)_{2}
$$

Ankyn phản ứng với BH_{3} nhanh hơn là anken. Nếu dùng dương lượng mol chất ban dầu thì phản ứng dừng lại ở giai đoạn hình thành vinylboran. Vinylboran được đưn nóng với chất cho proton sẽ có sản phẩm cợng cis với hyơro của liên kết ba:

còn khi có $\mathrm{H}_{2} \mathrm{O}_{2}$ sẽ cho hợp chất oxo:

Cacben cūng cộng hợp electrophin với ankyn cho dẩn xuất xyclopropen có thể cợng hợp cho hợp chất bixyclo:

10.5. PHẢN ÚNG CỘNG A_{E} CỦA DIEN

10.5.1. Phản úng cộng của allen

Allen là loại đien có nối đôi liển, trong đó có hai cacbon chứa hyđ̃o, còn cacbon giữa thì không nên tác nhân electrophin sẽ tấn công vào hai cacbon ngoài nhưng cũng có thể tấn công vào cacbon giữa.

Nếu tấn công vào cacbon đầu mạch, phản ứng tuân theo quy tắc Markovnikov nhưng tạo cacbocation loại vinyl:

Trong cacbocation vinyl này, obitan trống không liên hợp với obitan π trong trạng thái chuyển nên có nãng lượng cao.

Nếu electrophin tấn công vào cacbon giữa tạo cation ổn định bằng cợng hưởng:

Tính hình học của cation này cũng giơng như ở allen ban đâu, cation allyl không có hiệu ứng lớn trong trạng thái chuyển nên không ổn định, vì muớn ổn định thì ba obitan p phải song song với nhau và phải quay xung quanh liên kết $\mathrm{C}-\mathrm{C}$.

Vì thê, phản ứng cộng electrophin vào allen không có nhơm thế xảy ra ưu tiên vào cacbon cuối mạch cho cation vinylic, tuy nhiên vị trí cacbon giữa cũng có xảy ra. Khi có các nhóm thế ankyl hay allyl ở cacbon allen, sự tấn công vào cacbon giữa thuận lợi hơn vì cation được ởn định bằng nhơm ankyl hay aryl.

Chẳng hạn, allen dạng $\mathrm{RCH}=\mathrm{C}=\mathrm{CH}_{2}$, sự tấn công electrophin vẫn thường vào cacbon cuó́i mạch, dạng $\mathrm{RCH}=\mathrm{C}=\mathrm{CHR}$ thì ưu tiên tấn cong vào cacbon giữa mạch. Tetrametylallen cūng ưu tiên tấn công vào cacbon giưa mạch.

10.5.2. Phản ứng cộng của đien liên hợp

Phản ứng của đien liên hợp như 1,3-butadien với tác nhân electrophin như halogen, HX... cũng xảy ra theo cơ chê A_{E} tương tự như anken ở trên song có thể cho hai sản phẩm 1,2 và 1,4 :

Nếu là đien không đói xứng thì cho hai sản phẩm 1,2 .
Sự cạnh tranh giữa hai sản phẩm gây ra bởi cacbocation hình thành ban đà̀u có thể tồn tại ở những dạng cộng hưởng khác nhau,

Nếu electrophin tấn công vào cacbon 1 thì cho cation ở hai dạng cộng hưởng có điện tích dương ở cacbon 2 và 4 :

Nếu tấn công vào cacbon 2 thì cho cation không cộng hương:

Trường hợp cation là Br^{+}cũng tạo được cation cầu có thể ở hai dạng 1,2 và 1,4:

Cation cấu 1,2 cho sản phẩm 1,2 còn sản phấm 1,4 trụ̣c tiếp bởi phản ứng $S_{\mathrm{N}} 2^{\prime}$, còn cation cầu 1,4 nếu có sẽ cho sản phảm anken cis thực tế chỉ quan sát thấy sản phả̉m cộng cho anken trans.

Như vậy cơ chế phản ứng A_{E} của đien liên hợp với những điều kiện như anken ở trên nhưng có những đặc điểm sau đây:

1- Tác nhân E^{+}tác dụng với butađien tạo thành phức π rồi nhanh chuyển thành ion cacboni có giải toả lớn điện tích dương:

Phản ứng tấn công của E^{+}cũng tuân theo quy tắc Markovnikov để tạo cation bền. Phản ứng cộng vào butađien tuy bền hơn anken hay đien riêng rẻ, xảy ra dể hơn anken, do tạo được cation ôn định bằng giải toả điện tích trong hệ allyl:

Cation tạo thành là cation bậc hai ổn định bằng cợng huòng,
2-Sự cạnh tranh giữa hai sản phẩm, sản phẩm ưư tiên phụ thuộc vào điều kiện phản ứng.
O° nhiệt độ $-80^{\circ} \mathrm{C}$, sản phảm tạo thành ưu tiên là 1,2 . Ở nhiệt độ thấp, ion Br^{-}không thể nhanh đi xa khỏi cation cacboni tạo thành mà kết hợp vào C_{2} tạo nên sản phả̉m 3,4-đibrom-1-buten. Sản phẩm này tạo ra dể hơn, nhanh hơn sản phẩm khác, gọi là sản phẩm khống chế động học:

$$
\begin{equation*}
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}^{+} \longrightarrow \mathrm{BrCH}_{2}-\mathrm{CH}^{+} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{Br}^{-}} \mathrm{BrCH}_{2} \mathrm{CHBrCH}=\mathrm{CH}_{2} \tag{1,2}
\end{equation*}
$$

Ở nhiệt độ cao $40^{\circ} \mathrm{C}$, phản ứng ưu tiên là 1,4 . Ở nhiệt độ cao, tốc độ 1,2 tảng lên, song sản phẳm phản ứng này có thể ion hoá để tạo thành cation ổn định hơn. Mặt khác, ở $40^{\circ} \mathrm{C}$ ion Br^{-}có thể c̣̣̣ng hợp vào vị trí ở cuới mạch thuận lợi về nãng lượng:

$$
\left.\begin{array}{rl}
\mathrm{BrCH}_{2} \mathrm{CHBrCH}=\mathrm{CH}_{2} \xrightarrow{40^{\circ} \mathrm{C}} \mathrm{Br}^{-}
\end{array} \mathrm{BrCH}_{2}-\mathrm{CH}^{+}-\mathrm{CH}=\mathrm{CH}_{2} \neq \mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}^{+}\right] \rightarrow
$$

Ở nhiệt độ cao, phản ứng cộng 1,2 tăng, nhưng cüng tāng độ chuyển hoá 1,2 thành 1,4. Sản phâm 1,4 bền hơn nên ở nhiệt độ đó, sản phẳm 1,4 khó bị ion hoá hơn 1,2 ở trên. Sản phảm 1,4 ổn định hơn gọi là sản phẩm khống chế nhiệt động học:

Như vậy, phản ứng cộng A_{E} vào đien liên hợp luôn có sự cạnh tranh giữa hai hướng tạo thành sản phẩm 1,2 và 1,4 , trong đó có một hướng ưu tiên hơn.

Sự hình thành sản phẩm có thể giải thích dựa vào nãng lượng trạng thái chuyển như trên giàn đố ở hình 10.2 .

Hinh 10.2. Giản đồ năng lượng cộng 1,2 và 1,4 của 1,3 -butađien

Hai sản phẩm tồn tại ở cân bẳng với nhau trong phản ứng xuất phát từ hai trạng thái chuyển khác nhau về năng Iượng, sản phả̉m 1,4 bền hơn 1,2 nhưng trạng thái chuyển 1,4 có nảng lượng hoạt hoá cao hơn 1,2 . Sản phẩm tạo thành với tốc độ nhanh hơn là sản phả̉m khớng chế động học, còn sản phẩm tạo thành chậm hơn nhưng bền hơn gọi là sản phả̉m khống chế nhiệt động học. Do đó ở nhiệt độ khác nhau hai sản phẩm đó khác nhau.

Nếu hai hàng rào nảng lượng này được khấc phục với tốc độ như nhau thì sản phảm thu dược là hỗn hợp cân bằng phụ thuộc vào sự khác nhau về năng lượng. Sự khác nhau về năng lượng giữa hai trạng thái chuyển 1,2 và 1,4 xác định hằng só́ cân bằng giữa hai sản phẩm.

Nếu điều kiện khác nhau thì tỷ lệ sản phả̉m khác nhau, nghīa là phụ thuộc vào điều kiện khống chế động học hay nhiệt động học.

Đói với đien thế không đối xứng, hướng tấn công của E^{+}đầu tiên cũng tuân theo quy tắc Markovnikov dẫn tới tạo thành cation ổn định nhất và trong diều kiện khống chế nhiệt động học, sản phẩm 1,4 chiếm ưu thế.

Như vạy, electrophin tấn cong vào C_{1} nhanh hơn vào C_{4} và sản phẩm cộng 1,4 là:

$$
\mathrm{CH}_{3}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br} .
$$

Sản phẳm 1,4 tạo thành chủ yếu là trans-olefin.
Trong trường hợp 1-phenylbutadien, electrophin tấn cờng chủ yêu vào C_{4} và tạo dược hệ liên hợp với nhóm phenyl hơn, tấn công của Nu hướng vào C_{3} hơn là C_{1} vì án ngữ không gian:

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Cl}_{2} & \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}^{+}-\mathrm{CH}_{2} \mathrm{Cl} \longrightarrow \\
& \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHCl}-\mathrm{CH}_{2} \mathrm{Cl}
\end{aligned}
$$

Nói chung theo khớng chế động học, sản phẩm 1,2 ưu tiên hơn như khi tác dụng butadien với Cl_{2} cho 55% sàn phẩm 1,2 , vơi Br_{2} cho $50 \div 54 \%$, trong diều kiện khớng chế nhiẹt động học, sản phả̉m cộng 1,4 luôn ưu tiên hơn.

Nếu không cơ điều kiện khớng ché thì thông thường sản phẩm 1,4 ưu tiên hơn. Tuy nhiên cūng có những trường hợp, ngay trong điểu kiện khớng chế động học, sản phẩm cộng 1,4 cūng chiếm ưu thé́ hơn, chảng hạn phản ứng:

sản phẩm 1,2 chịu chuyển vị dễ dàng, chẳng hạn với những phản ứng cộng với $\mathrm{I}_{2}, \mathrm{IOCN}$, $\mathrm{HBr}, \mathrm{RSH} / \mathrm{H}^{+}$.

Phản ứng cộng electrophin vào đien liên hợp tạo cacbocation loại allyl ở giai doạn đâu nên tác dụng của hiệu ứng nhóm kề để hình thành ion cấu yếu hơn so với monoolefin. Do đô, ion cá́u oni thường không cân đới ngay cả với tác nhan có hiẹu ứng của nhoóm kể mạnh. Chẳng hạn, khi brom hoá trong metanol, axit HOX, axetat thuý ngân cho sản phẩm cộng mà phân tác nhân nucleophin cộng vào vị trí 2 không phải vào vị trí 1 :

với brom trong metanol cũng ưu tien cho 1-brom-2-metoxy-3-buten.
Phản ưng cộng brom vào butađien chi thu được sản phẩm cộng trans-1,4-dibrom-2buten, như vậy nếu từ cis-1,3-butađien khó xảy ra phản ứng cộng A_{E}. Nếu phàn ứng xảy ra
phải qua trạng thái chuyển có năng lượng cao:

Cỏn đơi với các đien vòng liên hợp như 1,3-xyclopentađien hay 1,3-xyclohexađien, phân tử có cấu trức s-cis cố dịnh trong chất ban đầu. Nếu phân tử cộng 1,4 đồng bộ xảy ra, về mặt lập thể electron là cộng anti, song trong thực tế khi tác dụng brom với xyclopentađien thu dược 20% cis-1,4-đibrom-2-xyclopenten, đồng thời với trans-1,4-đibrom-3-xyclopenten và khi tác dụng DBr với 1,3 -xyclohexađien thu dược 20% trans-đeutri-2-brom-3-xyclohexen và 80% cis-1-deutri-4-brom-2-xyclohexen. Như vạy, phản ứng cợng electrophin của đien xảy ra phức tạp mà hiện nay chưa đủ thực nghiệm để giải thích, trừ các hệ đơn giản có tính toán bằng cơ học lượng tử.

Phản ứng cợng electrophin vào hệ trien, enyn, điyn... ít được nghiên cứu hơn. Chẳng hạn đới với enyn thì phản ứng cộng 1,4 cho allen:

10.6. CÁC PHẢN UNG CỘNG $\boldsymbol{A}_{\mathrm{E}}$

1- Phản ûng cộng halogen

Phương trình phản ứng:

Nhiều liên kết đôi dễ halogen hoá như với clo hay brom ngay ở nhiệt độ thường. Cơ chế của phản ứng là cợng electrophin trong dung dịch và cợng anti.

Phản ứng của brom xảy ra rắt nhanh ngay ở nhiệt dộ phòng, dùng làm phương pháp thử tính chưa no của anken ngay khi trong phân tử có chứa nhóm chức khác nhau như anđehit, xeton, amin... thì nới đơi vẩn phản ứng nhanh hơn nhiểu. Tác nhân thích hợp hơn là dùng pyridin bromua pebromua $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \mathrm{Br}_{3}{ }^{-}$.

Clo cũng phản ứng mạnh với nới đơi, mạnh hơn brom nhưng kém chọn lọc hơn brom. Thường tổng hợp dã̃n xuất clo bằng $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{PCl}_{5},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}-\mathrm{MnO}_{2}, \mathrm{MoCl}_{2}, \mathrm{KMnO}_{4}$-clorua oxalyl, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ICl}_{2}$, dùng Cl_{2} với CuCl_{2} khi có axetonitrin, metanol hay triphenylphotphin.
lot phản ứng chạ̀m hơn, thường dả̃n xuất vic-điiot không bển có xu hướng phân tích trở lại iot và olefin.

Flo rất hoạt động, không chỉ cợng vào nới đời mà còn tấn cỡng vào các liên kết khác nên cho hổn hợp. Flo có thể cợng vào vài liên kết đôi trong dung môi trơ ở nhiệt độ thấp $\left(-80^{\circ} \mathrm{C}\right)$, thường pha loãng F_{2} trong Ar hay N_{2}. C6 thế dùng tác nhân khác như $\mathrm{CoF}_{3}, \mathrm{XeF}_{2}$
hay hỗn hợp PbO_{2} và SF_{4}. Để tổng hợp các dẩn xuất đihalogen hōn tạp, như clobrom hoá dùng hỗn hợp Cl_{2} và Br_{2} hay muói tetrabutylamonidiclobromat $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{NBrCl}_{2}$, iotclo hoá dùng CuCl_{2} và $\mathrm{I}_{2}, \mathrm{HI}, \mathrm{CdI}_{2}$, iotflo hoá dùng AgF và I_{2}. Điếu chế brom-, clo- iotflo hoá cho tác dụng chất ban đâuu với dung dịch $\mathrm{Br}_{2}, \mathrm{Cl}_{2}$ hay I_{2} hay N -halogenamit trong polyhyđro florua-pyriđin, cộng I_{2} với clo, brom, flo thì dùng tác nhan bis(pyridin)iot tetrafloborat $\mathrm{I}(\mathrm{Py})_{2} \mathrm{BF}_{4}$ với $\mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$tương ứng. Hoạt tính của $\mathrm{BrCl}>\mathrm{ICl}>\mathrm{Br}_{2}>\mathrm{IBr}>\mathrm{I}_{2}$.

Liên kết ba phản ứng chậm hơn anken, nếu trong phân tử có liên kết đôi và ba thì ưu tiên cộng vào liên kết đôi, nếu cộng hai mol cho hợp chất tetrahalogen như có thẻ̉ cộng phân tử đầu theo cơ chế nucleophin. I_{2} và $\mathrm{Al}_{2} \mathrm{O}_{3}$ cợng vào nới ba cho dẫn xuất điiot hiệu suất tớt. Hệ liên kết đôi liên hợp cho sàn phẩm 1,2 và 1,4 . Allen dể ngừng phản ứng sau một mol cho $\mathrm{X}-\mathrm{C}-\mathrm{CX}=\mathrm{C}$. Cộng vào xeten cho α-halogen axyl halogenua nhưng hiệu suất thấp.

2- Phản ứng cộng $H X$

Các hyđ̛ohalogenua cộng hợp vào liên kết đôi ở nhiệt độ phòng:

Phản ứng cợng của HCl khó khăn hơn nhiều và thường phải đun nóng. Phương pháp thích hợp dế cợng HF là dùng dung dịch polyhyđro florua-pyriđin, thường trong dung môi như THF ở $0^{\circ} \mathrm{C}$ cho ankyl florua với hiệu suất trung bình.

Phản ứng cợng HX vào olefin đơn giản khi không có peroxit tuân theo cơ chế cộng electrophin và tuân theo quy tắc Markovnikov.

Các ankyn cộng hợp 2 mol HX tuân theo quy tắc Markovnikov cho gem-đihalogen khöng cho vic-halogen:

$$
-\mathrm{C} \equiv \mathrm{C}-\xrightarrow{\mathrm{HX}}-\mathrm{CH}=\mathrm{CX}-\xrightarrow{\mathrm{HX}}-\mathrm{CH}_{2}-\mathrm{CX}_{2}-
$$

Các xeten cợng hợp với HX cho axyl halogenua:

3-Phản úng cộng nước của anken

Liên kết dồi cợng hợp với $\mathrm{H}_{2} \mathrm{O}$ khi có xúc tác axit. Xúc tác chung nhất là axit sunfuric, có khi dùng axit nitric và pecloric. Cơ chế phản ứng là cộng electrophin, do tấn công ban đầu của H^{+}và cộng nucleophin $\mathrm{HSO}_{4}{ }^{-}$:

Nhưng trong diều kiện phản ứng thường bazơ $\mathrm{HSO}_{4}{ }^{-}$cộng vào cho sản phẩm cợng $-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{OSO}_{3} \mathrm{H}\right)$ - rồi thuỷ phân cho ancol và cũng có thẻ̉ bazơ tấn công là $\mathrm{H}_{2} \mathrm{O}$: Phản ứng có sản phả̉m chuyển vị cacbocation, chẳng hạn hyđ̛at hoá $\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$ cho $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}$ và các anken bình thường cho sản phẩm tuân theo quy tấc Markovnikov.

Phản ứng cợng dống thời tác nhân oxy hoá $\left(\mathrm{O}_{2}\right)$ và tác nhân khử $\left(\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SH}\right.$ hay 2-propanol) vào olefin khi có xúc tác phức coban không có chuyển vị, nhưng có sản phảm phụ là ankan và xeton.

Phản ứng cợng không có chuyển vị là phương pháp oxy thủy ngân hoá:

Phản ứng hoàn toàn tuân theo Markovnikov và không có chuyển vị. Chất ban đẩu có thể chứa các nhóm chức khác như halogen, hyđroxy, axetoxy, metoxy. Nếu có hai liên kết đôi trong cùng phân tử, cơ thể dùng siêu âm theo oxy thuỷ ngan hoá cợng vào liên kết đôi ít thế hơn. Phản ứng của axetat thuỷ ngân cho sản phẩm cộng rồi tác dụng với NaBH_{4} cho ancol, chẳng hạn:

Phương pháp hyđ̛at hoá giân tiếp và trái Markovnikov là tác dụng anken với hỗn hợp $1: 1 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}{ }^{+} \mathrm{BH}_{4}{ }^{-}$và $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$ rôi tác dụng tiếp với dung dịch $\mathrm{K}_{2} \mathrm{CO}_{3}$ cho ancol.

Nếu chất ban đầu cô cấu trúc $\mathrm{C}=\mathrm{C}-\mathrm{Z}$ (với Z là $\mathrm{CHO}, \mathrm{CO} .$.) luôn cho sản phẩm $\mathrm{HO}-\mathrm{C}-\mathrm{CHZ}$ nhưng phản ứng theo cơ chế nucleophin. Sản phảm $-\mathrm{CH}-\mathrm{C}(\mathrm{OH}) \mathrm{Z}$ tìm thấy khi có $\mathrm{O}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SiH}_{3}$ và xúc tác phức mangan.

Phản ứng hợp nước vào anken loại $\mathrm{RCH}=\mathrm{CZZ}$ ' có sự phân cất sản phả̉m cộng cho andehit và $\mathrm{CH}_{2} \mathrm{ZZ}$ ':

Các đien cũng hyơrrat hoá tương tự.
Các xeten hyđrat hoá cho axit cacboxylic:

Vòng nhỏ xyclopropan cũng mở vòng bằng oxy thuỷ ngân hoá:

4- Phản ứng cộng nuớc của ankyn
Ankyn cộng hợp được với nước khi có xúc tác muới ion thuỷ ngân như axetat, sunfat hay oxit thuỷ ngân và axit sunfuric:

Phản ứng tuân theo quy tắc Markovnikov, axetylen cho anđehit, ankyn cuói mạch cho metylankylxeton, ankyn loại $\mathrm{RC} \equiv \mathrm{CR}$ ' cho hai xeton.

Giai đoạn đâu của phản ứng là tạo phức (1), nước tấn công như $S_{\mathrm{N}} 2$ cho ancol (2) và thuỷ phân cho ancol và tautome hoá:

Các ete, thioete, ynamin của axetylen phản ứng cợng nước cho este, thioete bởi xúc tác axit không cần xúc tác thuỷ ngan:

Phản ứng là cợng electrophin, giai doạn proton hoá đầu quyết định tốc độ. Một só ankyn hydrat hoá thành xeton không có muới thuỷ ngân nhưng có thế dùng axit fomic.

Các allen hydrat hoá cho xeton với xúc tác axit:

5. Phản líng cộng ancol và phenol

Ancol và phenol cộng vào liên kết đơi khi có xúc tác axit hay bazơ:

Phản ứng khi có xúc tác axit là cơ chế electrophin với tác nhân H^{+}tạo cacbocation tổ hợp với nucleophin ancol:

Phản ứng tuân theo quy tấc Markovnikov, ancol bạ̣ nhất cho kết quả tớt hơn ancol bậc hai, ancol bạc ba không hoạt động. Phương pháp tởng hợp ete bạc ba là dùng olefin loại $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$.

Một só olefin loại polyhalogen olefin hay loại $\mathrm{C}=\mathrm{C}-\mathrm{Z}$ bị tấn công nucleophin RO^{-} hay $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$gióng loại Michael.

Các nới ba thuận lợi cho tấn công nucleophin nên thường cợng xúc tác bazơ vào liên kết ba là phương pháp tớt, trong trường hợp này tạo thành enol ete hay axetal:

Phản ứng cộng ancol vào enol cấn phải xúc tác axit vì enol ete dể tấn công bởi electrophin hơn nới ba. Do đó người ta thường dùng enol đẻ̉ khoá mọt ancol, thường dùng đihyđropyran, thực hiện phản ứng, sau đó hồi phục lại ancol bàng axit loãng:

Phản ưng cộng ancol vào enol ete cuñg dùng xúc tác CoCl_{2}. Khi có xúc tác bazơ, tốc độ giảm từ ancol bậc 1 tới bậc ba và phenol cấn điều kiện cao hơn.

Ete có thể dùng phản ứng oxy thuỷ ngân hoá - loại oxy khi dùng ancol làm dung môi như 2-metyl-1-buten trong etanol cho $\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COC}_{2} \mathrm{H}_{5}$. Ancol bạc một cho hiệu suât tốt với axetat thuỷ ngân nhưng ancol bạ̣c hai và ba cần dùng trifloaxetat thuỷ ngan. Tác nhan này không dùng để tổng hợp đi-tert-ankyl ete. Ankyl nói chung cho axetal. Nếu dừng hydroperoxit thay cho ancol thu dược sản phấm là ankyl peroxit (sau khi loại Hg bằng NaBH_{4}), gọi là phản ứng thuý ngân hoá.

Ancol và phenol cüng cợng hợp vào xeten cho este cacboxylic:

6- Phản ưng cộng axit cacboxylic

Axit cacboxyclic cộng vào anken cho este:

Phản ứng thường có xúc tác axit (proton hay axit Lewis) và theo cơ chế cợng A_{E}, tuân theo quy tắc Markovnikov. Phản ứng có tác dụng tởng hợp các este của ancol bạ́c ba từ olefin $\mathrm{R}_{2} \mathrm{C}=\mathrm{CHR}$.

Khi axit cacboxylic có chứa nơi đoi thì thu dược phản ứng cộng vòng hoá cho γ hay δ-lacton phụ thuộc vị trí ban đầu của nới đôi. Este cacboxylic cũng thu dược bằng phản ứng axyloxy thủy ngân hoá - loại thuỷ ngân của olefin.

Ankyn cơ nới ba cợng axit cho enol este hay axylal khi tác dụng với axit:

Muói thuỷ ngân cũng dùng làm xúc tác cho phản ứng trên tạo chất trung gian -$\mathrm{C}=\mathrm{C}-(\mathrm{HgX}) \mathrm{OCOR}-$

Ankyn có nới ba cuới mạch phản ứng với CO_{2}, amin bạ̣c hai $\mathrm{R}_{2} \mathrm{NH}$ và xúc tác phức ruteni cho enol cacbamat $\mathrm{RCH}=\mathrm{CHOC}(=\mathrm{O}) \mathrm{NR}_{2}$. Phản ứng này có thể chuyển hoá nọí phân tử cho lacton khong no.

Các xeten phản ứng với axit cacboxylic cho anhyđ̛̃it mà trong công nghiệp thường dùng axit axetic để tởng hợp anhyđrit axetic:

7- Phản û́ng cộng thiol

Tương tự ancol, thiol cũng cợng hợp vào anken cho thioete:

Phản ứng theo cơ chế electrophin, tuân theo quy tắc Markovnikov. Song phản úng nơi chung chạm, cần xúc tác axit hay axit Lewis, nhưng khơ khớng chế diều kiện nghiêm ngặt nên thường phản ứng cợng theo cơ chế gớc khi có chất kích thích áp dụng nhiều hơn.
$\mathrm{H}_{2} \mathrm{~S}$ cũng cợng hợp vào nới đôi cho sản phấm cộng ban đẫu rồi cộng thêm phân tử anken thứ hai cho sunfua:

Ankyn cộng hợp với thiol cho thioete vinylic hay đithioaxetal nhưng thường dùng phản ứng cộng nucleophin:

Xeten cợng hợp axit cho thiol este:

8- Phàn úng hydrocacboxyl hoá

Phản ứng của olefin khi có xúc tác axit (phản ứng Koch) vớ CO và nước cho axit:

Phương pháp tởng hợp là dun nơng olefin với cacbon monooxit và nước dưới áp suât $500 \div 1000 \mathrm{~atm}$ và $100 \div 350^{\circ} \mathrm{C}$ có xúc tác axit vô cơ. Nêu cho tác dụng olefin với CO trước khi đun nơng rồi tác dụng với nước thì có thể hạ nhiẹt độ 0 đến $50^{\circ} \mathrm{C}$ và 1 đến 100 atm . Có thể dùng axit fomic làm tác nhân thay cho nước và CO thực hiẹn ở nhiẹt đọ phòng và áp suát thường (phản ứng Koch-Haaf).

Phản ưng dùng xúc tác niken cacbonyl ở điếu kiện trung bình ($50^{\circ} \mathrm{C}$ và 50 atm), cũng dùng các mư̛i kim loại và phức như $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PdCl}_{2}$, xúc tác phức paladi quang hoạt cho hiệu suất quang hoạt từ trung bình đến cao.

Phản ứng của anken với CO khi có xúc tác axit theo cơ chế sau:

còn khi có xúc tác niken cacbonyl theo cơ chế sau:
$1-\mathrm{Ni}(\mathrm{CO})_{4} \rightarrow \mathrm{Ni}\left(\mathrm{CO}_{3}+\mathrm{CO}\right.$
2.

3.

4-

Trong cơ chế trên giai doạn 3 là thế electrophin, giai doạn chính của cơ chê là giai đoạn 4 chuyển vị.

Nếu dùng ancol, thiol, amin... thay cho nước trong phản ứng trên thì thu được este, thiol este hay amit... tương ứng.

9- Phản úng cộng HOX
$\mathrm{HOCl}, \mathrm{HOBr}, \mathrm{HOI}$ cợng hợp vào olefin cho halohyđrin:

HOCl và HOBr thường điều chế in situ từ $\mathrm{H}_{2} \mathrm{O}$ và Br_{2} hay Cl_{2} tương ứng, HOI cũng $\mathrm{c} \sigma$ thể dùng I_{2} và nước để cợng vào nối đôi nếu cơ tetrametylen sunfon - CHCl_{3} hay HIO_{3}.

HOF cũng có thể cợng vào olefin nhưng tác nhân này khó điều ché tinh khiết và có hiện tượng nố.

Phương pháp tiện lợi khi dùng HOBr là thêm tác nhân N -bromamit (N -bromsuxinimit hay N -bromaxetanilit) và một lượng nhỏ nước trong dung môi đimetylsunfoxit hay đioxan, với HOCl dùng thèm tert-butyl hyđroperoxit với TiCl_{4} chỉ trong 15 phút và ở $-78^{\circ} \mathrm{C}$.

Clohyđ̛̃in điều chế tiện lợi khi tác dụng olefin với cloramin $\mathrm{T}\left(\mathrm{TsNCl}{ }^{-} \mathrm{Na}^{+}\right.$) trong axeton - nước. HOI khi tác dụng olefin với axit peiodic và NaHSO_{3}.

Cơ chế phản ứng là cợng electrophin với sự tấn công ban đấu là đầu halogen dương của lưỡng cực HOX. Phản ứng cũng tuân theo quy tắc Markovnikov, halogen đi vào cacbon nới đôi nhiều hyđ̛oro hơn và giai đoạn hai là cacbocation hay cation oni phản ứng với HO^{-} hay nước cho sản phẩm. Nếu chất ban đầu phản ứng với clo hay brom trong ancol hay axit làm dung môi thỉ có sản phẩm ete $\mathrm{X}-\mathrm{C}-\mathrm{C}-\mathrm{OR}$ hay este $\mathrm{X}-\mathrm{C}-\mathrm{C}-\mathrm{OCOR}$ (cũng có ý kiến cho rà̀ng phản ứng của Cl_{2} hay Br_{2} với nước có khác với HOCl hay HOBr).

Ankyn cũng cợng hợp HOX cho hợp chất đihalogen cacbonyl $-\mathrm{CX}_{2}-\mathrm{CO}-$.
Một phương pháp điều chê ete bậc ba là tác dụng tert-butyl hypociorua hay bromua hoạc iơua với olefin cho halogen-tert-butyl ete:

Các axit không no chứa liên kết đôi khi có halogen có phản ứng cợng của halogen và OCOR gọi là phản ứng halogenlacton hoá:

Phản úng thường dùng diếu ché iot lacton, còn brom hay clo lacton kém hơn. Các axit γ, δ-không no ưu tiên cho vòng 5 cạnh (γ lacton) và phàn ứng cūng tuân theo quy tắc Markovnikov, các vòng 6 cạnh hay 4 cạnh cūng áp dụng được phương pháp này.
10. Phàn úng cộng NOX

Các nitrosyl halogenua cộng hợp vào olefin:

Sản phâm ban đấu là hợp chắt β-halogen nitrozo nhưng nó chi bền khi N khơng có hydro. Nếu có hyđro sẽ đồng phân hoá cho oxim:

Ngoài sản phẩm nitrozo, sản phẩm này còn bị oxy hoá bởi NCl cho hợp chắt nitro.
Cơ chế của phản ứng chỉ là cộng electrophin đơn giản, tuân theo quy tắc Markovnikov do NO^{+}tán cong vào cacbon có nhiêu hyđro hơn và thường là cộng anti (chì có vài trương hợp là syn).

Nitryl clorua $\mathrm{NO}_{2} \mathrm{Cl}$ cuñg cộng vào nói đơi nhưng theo cơ ché gớc tự do và nhơm nitro tấn cơng vào cacbon ít hydro hơn.

11- Phán úng cọng của IN_{3}
Iot azit cộng hợp vào anken cho β-iot azit:

Phản ứng cợng electrophin qua chất trung gian ion câu iođoni nên có đặc thù lập thé và anti. Phàn ứng xảy ra với nhiếu họ̣p chắt như loại allen và xeton α, β-khong no. Tương tự có thé dùng BrN_{3} và ClN_{3}, tuy nhiên với BrCN_{3} có thé xày ra theo cơ ché electrophin hay goc, cọng ClN_{3} theo cơ ché́ gơc tự do.
IN_{3} cọng vào nói ba cho azit β-iot- α, β-khong no.
Các iot azit dể bị khử bằng LiAlH_{4} cho aziridin và khi tác dụng vơi ankyl hay aryl dicloboran có bazo tạo thành N -ankyl hay N -aryl aziridin:

Trong cả hai quá trình, azit bị khử cho amin tương ứng (bạ̣ nhát hay hai) rồi vòng hoá tiép theo.

12- Phán úng cọng INCO
Iot xyanat cộng hợp vào olefin cho β-iot isoxyanat:

Phản ứng cộng electrophin đặc thù lập thể anti tương tự phản ứng trên. Phản ứng cũng áp dụng cho olefin một, hai và ba lẩn thế, nhưng không phản ứng với hợp chất cacbonyl α, β-không no. Phản ứng cũng định hướng theo Markovnikov vì điện tích dương của iot cộng vào cacbon thé ít hơn.

Ankyn phản ứng với NCO cho isoxyanat β-iot- β, γ-không no nhưng hiệu suất thấp. Allen cộng 1 mol INCO cho isoxyanat β-iot- β, γ-không no. Nếu thuỷ phan isoxyanat cho amin nên cũng là phương pháp gián tiếp để cợng NH_{2} và I vào liên kết đôi.

13- Phản ứng cộng $R X$

Ankyl halogenua cợng hợp vào anken khi có xúc tác Friedel Crafts, thường dùng AlCl_{3} :

Hiệu suất tớt nhất là dẩn xuất bậc ba, cũng dùng bậc hai, còn bạc nhất cho sản phẩm chuyển vị. Metyl và etyl halogenua không có chuyển vị nhưng không phản ứng.

Phản ứng do sự tấn công của cation ankyl hình thành từ ankyl halogenua xúc tác và tuân theo quy tắc Markovnikov vì cation tấn công vào cacbon nhiếu hyđro hơn. Sản phâm phụ là sản phẩm thế do loại hyđ̛o từ cacbocation trung gian:

Đien liên hợp cūng cho phản ứng cợng 1,4. Ankyn phản ứng cho halogenua vinyl.
Các hợp chất polyhalogenua $\mathrm{CCl}_{4}, \mathrm{BrCCl}_{3}$ cho sản phẩm cợng theo cơ chế gốc tự do.

14- Phản ứng công RCOX

Axyl halogenua cộng vào nhiểu olefin khi có xúctác Fiedel Crafts:

Phàn ưng áp dụng cho olefin mạch không nhánh, có nhánh và vòng bay chứa nhôm chức ngoài halogen. Cơ chế cūng tương tự như cộng RX ở trên nhưng có phản ứng thế cạnh tranh mạnh hơn. Khi tăng nhiệt độ hiệu suất giảm nên tớt nhất là thực hiện ở $0^{\circ} \mathrm{C}$. Các đien cho phản ứng này kém mà thường trùng hợp. Các ankyn cho sản phẩm $\mathrm{RCO}-\stackrel{1}{\mathrm{C}}=\mathrm{C}-\mathrm{Cl}$. Nhóm fomyl và halogen cộng vào nới dơi khi tác dụng olefin với fomamit N, N - hai lân thế và POCl_{3} (diếu kiện Vilsmeier).

15. Phản úng axylaxyloxy hoá anken

Nhơm axyl và axyloxy cợng vào liên kết đơi khi có axyl flo borat và anhyđrit axetic:

Phản ứng là cợng electrophin với tác nhân RCO^{+}tấn công vào cacbon nhiểu hydro hơn nên tuân theo quy tắc Markovnikov.

Nhóm axyl và amit cùng cộng lợp tương tự vào olefin nếu dùng nitrin thay cho anhydrit:

Phản ứng của nỡi ba cưng tương tự, cho hợp chất chưa no tương tự trên.

16- Phản úng cộng $H C N$

Olefin bình thường không cộng hợp được với HCN . Olefin bình thường cộng hợp dược với HCN khi có xúc tác đicoban octacacbonyl hay hợp chất kim loại chuyển tiếp khác hay gián tiếp cợng RNC vào olefin. Phương pháp gián tiếp là cộng HCN vào olefin thường dùng RCN với tác nhân Schwartz nhưng cho phàn ứng cộng trái Markovnikov. Các polyhalogen olefin hay olefin có dạng $\mathrm{C}=\mathrm{C}-\mathrm{Z}$ với Z là nhóm hút electron như CHO , cộng dược với HCN khi có xúc tác bazơ nhưng theo cơ chế cợng nucleophin:

Ankyn cộng hợp với HCN khi $\mathrm{co} \mathrm{CuCl}, \mathrm{NH}_{4} \mathrm{Cl}$ hay hợp chất Ni hay Pd. Axetylen cọng hợp 2 mol HCN dùng để tổng hợp axetonitrin trong cơng nghẹ̣. Tác nhân xyanua ankyl nhơm $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{AlCN}$, hỗn hợp HCN và $\mathrm{R}_{3} \mathrm{Al}$ cộng hợp tớt vào xeton hay axyl halogenua α, β-khong no.

17- Phản úng cộng HN_{3}

Olefin bình thường không cộng hợp vào nối đôi với HN_{3} khi không có xúc tác axit Lewis như TiCl_{4}. Axit hydrazoic cọ̣ng hợp vào loại olefin $\mathrm{C}=\mathrm{C}-\mathrm{Z}$ khi Z là nhóm hút electron liên hợp như $\mathrm{C}=\mathrm{C}-\mathrm{CO}, \mathrm{CH}_{2}=\mathrm{CHOR}$:

H_{3} có thể gián tiếp cộng hợp vào olefin thường bằng phản ứng azit thuỷ ngân hoá rồi loại thuỷ ngân:

Phương pháp này cũng áp dụng cho ankyn cuối mạch và xycloanken có sức căng lớn.
18- Phản û́ng cộng với hydrua kim loụi
Một số hyđrua kim loại nhóm 13 và 14 trong bảng hệ thống tuần hoàn như $\mathrm{AlH}_{3}, \mathrm{GaH}_{3}$ và dả̉n xuất ankyl hay aryl như $\mathrm{R}_{2} \mathrm{AlH}, \mathrm{Ar}_{3} \mathrm{SnH}$, cộng hợp vào nối đôi cho hợp chất cơ kim:

Ngoài hyđ̛ua bo, các hyđrua quan trọng khác là hyđrua nhôm, silicon, thiếc và zirconi. Một sớ tác nhân không cẩn xúc tác nhưng một số khác cần xúc tác như phản ứng hyđro zirconi hoá dùng xypZrHCl (xyp = xyclopentađienyl) (tác nhân Schwartz). Cơ chế của hyđrua nhóm 13 là electrophin hay cơ chế vòng bớn trung tâm có bản chất electrophin, còn hyđrua nhóm 14 thường là cơ chế gốc.

Liên kết ba cūng cho phản ứng cộng tương tự:

19- Phản ûng cộng với RH
Ankan cộng với RH vào nối đôi:

Khi có xúc tác axit ở nhiệt độ thấp giữa -30 đển $100^{\circ} \mathrm{C}$ như là phản ứng Friedel Crafts theo cơ chế cacbocation:

Phản ứng cũng có chuyển vị cacbocation và phàn ứng đime hoá hay polyme hoá khác nhau. Nếu olefin có ba hay bớn lấn thế tác dụng vớ $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}, \mathrm{HCl}$ và AlCl_{3}, phản úng proton hoá cho cacbocation bậc ba rởi tác dụng với $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ cho sản phả̉m như là cộng H và CH_{3} vào olefin ban đâu.

Phản ứng khi có nhiệt theo cơ chế gơc tự do và khi có bazo theo cơ chế cọnng nucleophin.
20-Phản û́ng đime hoá
Olefin khi có xúc tác axit sẽ đime hoá:

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}
$$

Phản ứng thường dùng để tổng hợp các olefin vòng:

Đạ̣c biệt là nghiên cứu sinh tớng hợp lanosterol cūng như những hợp chất đa vòng dạ̣c thù lạp thé.

Phản ưng cộng hợp olefin vào olefin cũng thực hiện được khi có xúc tác bazơ, và tớt nhất là xúc tấc phức kim loại chuyển tiếp nhu phức niken và ankyl nhơm (xúc tác Ziegler).

Xúc tác dùng cho phản ưng cọ̣ng 1,4 của đien:

Cũng như đime hoá 1,3 -butadien cho octatrien.
Ankyn dime hoá khi có xúc tác đồng clorua và amoni clorua như từ axetylen cho vinylaxetylen:

$$
\mathrm{HC}=\mathrm{CH}+\mathrm{HO}=\mathrm{CH} \frac{\mathrm{CuCl}}{\mathrm{NH}_{4} \mathrm{Cl}} \quad \mathrm{HO}=\mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}
$$

Và cưng có khả năng dime cho sản phẩm đien khác:

Phản ứng này thường cho một ankyn tác dụng với xúc tác Schwartz cho chất trung gian vinyl zirconi rời cộng hợp chất trung gian khác do ankyn cợng hợp với $\mathrm{CH}_{3} \mathrm{Li}$ hay $\mathrm{CH}_{3} \mathrm{MgBr}$. Hai chất trung gian này trong dung dịch axit cho dien với hiệu suất khá cao.

Phản ứng vòng hoá của diyn khi có phức zirconi:

Sản phả̉m là đien E, E exoxyclic, thường vòng $4,5,6$ cạnh cho hiệu suất cao còn vòng 7 cạnh thấp. Nếu đi từ enyn cūng cho sản phẩm tương tự nhưng chỉ có mọt nới đôi.

21-Phản ứng hydrofomyl hoá

Olefin được hydrofomyl hoá bằng cacbon monooxit và hyđro khi có xúc tác coban cacbonyl hay phức rodi như hyđrocacbonyltris(triphenylphotphin) rodi:

Quá trình gọi là quá trình oxo. Khả nång theo thứ tự: olefin cuới mạch > olefin giữa mạch > olefin có mạch nhánh.

Khi dùng đicoban octacacbonyl làm xúc tác, tiểu phân cợng vào nối đôi là $\mathrm{HCO}(\mathrm{CO})_{3}$ cacbonyl hoá $\mathrm{RCo}\left(\mathrm{CO}_{3}\right)_{3}+\mathrm{CO} \rightarrow \mathrm{RCo}(\mathrm{CO})_{4}$ rồi chuyển vị và khử theo các giai doạn như phản ứng 8 ở trên.

22- Phản tung cộng NOCl và $\mathrm{NO}_{2} \mathrm{Cl}$
Nitrozyl clorua cộng hợp vào olefin cho sàn phả̉m cợng ban đâu là β-clo nitrozo:

Sản phẩm này thường chỉ bền khi không có hyđro β vì có hyđro cho sản phảm tautome hoá oxim:

Phản ứng theo cơ chế cộng electrophin, cộng anti và theo quy tắc Markovnikov do nhóm NO đi vào cacbon nhiểu hyđro hơn.
$\mathrm{NO}_{2} \mathrm{Cl}$ cũng cho phản ứng tương tự cho hợp chất β-halogen nitro nhưng theo cơ chê gốc tự do và NO_{2} đi vào cacbon ít thé hơn.

23- Phản ứng Prins

Olefin cợng hợp với fomanđehit khi có axit gọi là phản ứng Prins cho ba sản phẩm chính:

mà sản phẩm ưu tiên phụ thuộc vào olefin và điều kiện phản ứng. Khi sản phả̉m tạo thành là 1,3 -diol thì phản ứng cộng tốt với liên kết $\mathrm{C}=\mathrm{C}$ cūng như $\mathrm{C}=\mathrm{O}$. Phản ứng có sự tấn công electrophin vào liên kết đôi. Giai đoạn đầu là proton hơa nhóm $\mathrm{C}=\mathrm{O}$ và cacbocation tấn công vào $\mathrm{C}=\mathrm{C}$:

tạo nên cation trung gian có nhóm kề làm ổn dịnh cacbocation nên tạo cation vòng và sản phẩm vòng:

Từ sản phẩm trung gian vòng có thể giải thích tính lập thể của phản ứng là cộng anti, tuân theo quy tắc Markovnikov, các anken thế làm tăng phản ứng.

Các anđehit hay xeton họat động cüng như cloral hay este axetoaxetic cộng hợp với anken cho β-hyđroxy olefin và theo cơ chế perixyclic:

Phản ứng là cân bằng, các anđehit hay xeton không hoạt động cần xúc tác axit Lewis như đimetylamino clorua, nếu dùng xúc tác quang hoạt cũng cho sản phẩm quang hoạt có dư lớn một đối quang.

Anken cộng hợp với anđehit hay xeton cho ancol bị khử khi thêm SnI_{2} hay Zn và $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$ và bằng phương pháp điện hoá hay quang hoá:

10.7. PHẢN UNG CỘNG cis

Phản ứng cợng cis ở dây xảy ra giữa anken và tác nhân có tính electrophin qua trạng thái chuyển vòng nhiều trung tâm (khác với trường hợp trên là sự cạnh tranh với cộng anti và cunng khác với phản ứng perixyclic ở chương 10).

24- Phản úng epoxy hoá

Anken cợng hợp với các peaxit để hình thành hợp chất 1,2-epoxit theo cơ chế cộng cis gọi là phản ứng epoxy hoá (phản ứng Prilezhaev):

Các tác nhan thường dùng là các peaxit như axit peaxetic, pebenzoic, cũng dùng axit triflopeaxetic và axit 3,5-đinitroperoxybenzoic hoạt dộng mạnh.

Anken có thể có nhóm chức ankyl, aryl, hyđroxyl, este và nhóm khấc nhưng không thể có nhớm amin vì có tác dụng với tác nhân. Trong anken, các nhóm thế cho electron làm tãng khả năng phản ứng, đặc biệt là tetraankyl olefin phản ứng rất nhanh. Điếu kiện phản ưng êm dịu và hiệu suất cao.

Cơ chế phản ứng nhur sau:

Phản ưng là bậc một cho môi tác nhân, bậc hai cho phản ứng, giai đoạn ion hoá là giai đoạn quyết định tớc độ phản ứng, không chịu ảnh hưởng của xúc tác axit chung, không có hiệu ứng muối, có hằng só phản ứng âm, thường có $\rho=-0,8$ dến $-1,2$ và entropi hoạt hoá âm, thường $\Delta S^{\#}=-1,8$ đến $-2,5$ d.v.e, chứng tỏ phản ứng xảy ra qua hợp chất trung gian cầu đối xứng. Phản ứng xảy ra nhanh trong dung môi không phân cực, ở đây sự hình thành ion bị ức chế. Tốc độ phản ứng thay đổi theo cấu trúc chất ban đầu và tìm thấy trạng thái chuyển không có bản chất cacbocation.

Mặt khác, nguyên tử oxy peroxit electrophin có tính mềm, đồng thời có tác dụng mạnh của nhóm kề nên không có khả năng tạo cacbocation.

Phản ứng có tính đạ̣c thù lập thể, tương ứng với cấu trúc không gian của cis hay transolefin, cis-olefin cho cis-epoxit, trans-olefin cho trans- epoxit và các nhóm thé cho electron làm ởn định chất trung gian cacbocation giả thiét.

Chất ban đâu có nhóm OH ở vị trí allyl hay homoallyl thì tính đạ̣c thù lập thể giảm hay mất đi, cà hai đờng phân cis- và trans-olefin đều ưu tièn cho sản phẩm mà oxy đi vào ở vị trí syn đơi với nhóm OH . Điểu đó chứng tỏ trạng thái chuyển có tạo thành liên két hyđro giữa nhóm OH và peroxy axit.

Khả năng phản ứng của peaxit cũng tương tự như brom, brom hoá 2-metyl-2-buten trong metanol nhanh hơn etylen 10^{5} làn thì peaxit cũng 10^{4} lấn.

$$
\mathrm{CH}_{2}=\mathrm{CHCOOCH}_{3}+\mathrm{CF}_{3} \mathrm{COOOH} \xrightarrow[\mathrm{NaH}_{2} \mathrm{PO}_{4}]{\mathrm{CHCl}_{3}} \quad \underbrace{\mathrm{CH}_{2}-\mathrm{CHCOOCH}_{3}}_{\substack{\mathrm{O} \\ \text { etylglyxidat } 80 \%}}
$$

Khi có nhơm thế hút electron trong peaxit, khả năng phản úng tãng, chứng tỏ tính chất electrophin của tác nhân:

$\mathrm{CF}_{3} \mathrm{COOOH}>\mathrm{HCOOOH}>\mathrm{CH}_{3} \mathrm{COOOH}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOOH}$

Khi có axit hay bazơ, hợp chất epoxit bị thuý phân chọn lọc lạ̣p thể cho trans-diol:

Các dien liên hợp epoxy hoá (cọng 1,2) chạm hơn olefin tương ưng nhưng xeton α, β - khơng no nói chung không cho epoxit khi tác dụng với peaxit, trong khi đó các este α, β - không no cho este glyxidic. Khi nhóm cacbonyl không có liên hợp với liên két đôi thì phàn ứng Baeyer - Villiger cạnh tranh.

Allen chuyển thành allen oxit hay spiro dioxit khi tác dụng với peaxit:

nhưng các axit này không bền thường chuyển hoá ngay thành sản phảm khác.
Các anken có thể chuyển thành epoxyancol khi có oxy hay ankyl peroxit và xúc tác phức kinı loại chuyển tiếp của $\mathrm{V}, \mathrm{Co}, \mathrm{Ti}, \mathrm{Mo} . .$. nhưng theo cơ chế gốc tự do.

Anken có thể tác dụng với $\mathrm{H}_{2} \mathrm{O}_{2}$ cho peroxit khi có xúc tác axit tungstic hay dẫn xuất, $\mathrm{F}_{2}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{CN}$ và magie monoperoxyphtalat, còn các xeton (ké̉ cả quinon), andehit và sunfon α, β - không no tác dụng với $\mathrm{H}_{2} \mathrm{O}_{2}$ cho epoxit nhưng theo cơ chế cợng nucleophin (co ché loại Michael):

Mợt phương pháp quan trọng trong quá trình epoxy hoá là phương pháp tổng hợp bất đói xứng của Sharpless khi chuyến hoá ancol allylic thành hợp chất epoxy quang hoạt khi tác dụng tert-butyl hyđroperoxit với titan tetraisopropoxit. $\mathrm{Ti}\left[\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{4}\right.$ và đietyl tartrat có hàm lượng $5 \div 10 \%$. Phản ứng của (-) hay (+) đietyl tartrat phản ứng nhanh và đạc thù lập thể, mợt enantiome tạo thành. Phản ứng cũng xảy ra với ancol allylic mà nới đôi có thể là mono-, đi-, tri- hay tetra lần thế. Phương pháp đã có ứng dụng quan trọng trong tởng hợp các đông phân quang học không có trong tự nhiên, chảng hạn như 8 đồng phân L-anđohexozơ tổng hợp từ benzhydroxyloxy-(E-but-2-en-ol, do sự tấn công vào chất ban đầu của hợp chất tạo thành từ titan ankoxit và đietyl tartrat để tạo nên phức bao gồm cả chất ban đầu và tert-butyl hyđ̉roperoxit. Các anken bình thường, trừ nhóm OH allylic, có thế epoxy hoá chọn lọc lập thể bằng natri hypoclorit và phức mangan quang hoạt làm xúc tác.

Các ankyn cũng bị epoxy hoá bằng hyđ̛roperoxit cho oxiran:

nhưng oxiran không bền, thường chuyển hoá thành hợp chất khác trong phản ứng.

25-Phản úng cộng tetraaxetat chi

Tetraaxeat chì cũng cộng hợp electrophin vào anken bằng tác nhân cation axetat như axit Lewis. Nhớm CO bên cạnh có ảnh hưởng mạnh tạo thành trạng thái chuyển vòng 5 cạnh không có sức căng mang điện tích dương. Cation này thuận lợi về năng lượng:

Sản phảm cợng bị thuỷ phân cho cis-điol, còn anion axetat có tính nucleophin cao hơn xảy ra theo cơ chế $S_{\mathrm{N}} 2$ quay cấu hình cho trans-điol. Cũng có thể dùng tali (III) axetat để cho biaxetat glycol hay dùng palađi axetat với tác nhân oxy hoá như benzoquinon hay MnO_{2} và O_{2} để chuyển đien liên hợp thành 1,4-điaxetoxy-2-anken (cợng 1,4).

26- Phản úng cọng ozon

Phan tử O_{3} cũ̃g có bản chất electrophin do môi nguyên tử oxy trong ba nguyên tử oxy đều có ái lực với electron nên cộng vào anken theo phản úng cợng cis:

(Phản ứng xem thêm ở chương $14-$ Oxy hoá anken bằng ozon).

27- Phàn úng hyatroxyl hoá

Ion pemanganat hay tetraoxit osmi cộng hợp hai nhóm HO vào anken cho vic-diol khi có kiềm:

Phản ứng xảy ra nhanh qua trạng thái trung gian nhiếu trung tâm, trong dó trung tâm electrophin là nguyên tử kim loại có khà năng nhận electron:

Phản ứng là cộng syn và tác nhân tấn công từ phía cacbon ít khó khān không gian hơn. Chất trung gian este vòng có thể tách ra được nhưng thường bị phân tích trong dung dịch với natri sunfit trong etanol hay tác nhân khác. Bazơ xúc tác phản ứng bằng tạo phức với este.

Tetraoxit osmi phản ứng chạm hơn nhưng cũng dịnh lượng, do dộc nên ît dùng, chi dùng khi điểu chế một lượng nhỏ chất nên thường dùng $\mathrm{H}_{2} \mathrm{O}_{2}$ với OsO_{4} với một lượng axit. Cũng dùng tert-butyl hyđ̛operoxit trong dung dịch kiềm, N -metylmorpholin- N -oxit và $\mathrm{F}_{2}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}$ với $\mathrm{H}_{2} \mathrm{O}_{2}$.

Chú ý rà̀ng, khi tác dụng anken với $\mathrm{H}_{2} \mathrm{O}_{2}$ và axit fomic sẻ cho vic-điol nhưng là phản ứng cợng anti theo $S_{\mathrm{N}} 2$, gọi là cợng anti:

Phản ứng cộng anti theo phương pháp Prevost là tác dụng anken vơi iot và benzoat bạc với tỷ lẹ̣ $1: 1$, sản phẩm cợng ban đâu là β-halogen benzoat lẫn sản phẩm cộng của $1 O C O C{ }_{6} \mathrm{H}_{5}$ rồi iot bị thế bằng $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}$ như là phản ứng thế nucleophin có nhóm kề nên cợng anti, sau đó thuỷ phân bảo toàn cấu hình:

Song phương pháp của Woodward là tác dụng iot với axetat bạc theo tỷ lệ $1: 1$ trong axit axetic có nước cho sản phẩm ban đầu là β-haloeste, cũng là phản ứng thế nucleophin của iot, song khi có nước sự tham gia của nhơm kề làm giảm sự solvat hoá của chất hình
thành và cơ chế là cơ chế $S_{\mathrm{N}} 2$ bình thường, monoaxetat cộng syn và thuỷ phân cho sản phẩm điol là syn-điol. Phản ứng của Woodward giơng với phản ứng của OsO_{4} hay KMnO_{4} là cợng syn nhưng khác là quá trình cộng syn này từ phía có nhiêu khó khăn không gian hơn.

Phản ưng cợng hai nhóm OH vào điol có thể cho đồng phân chọn lộ đới quang hay chọn lọc lập thé dia:

Phản ứng cọng từ dạng olefin $\mathrm{RCH}=\mathrm{CH}_{2}$ cho chọn lọc lập thé đơi quang, cộng từ $\mathrm{RCH}=\mathrm{CHR}$ ' cho chọn lọc lập thể đia và lập thể đơi quang. Phản ứng này có thể phân biệt khi düng các amin hoạt động quang hoạt như quinin và quiniđin sau:

Các amin này két hợp với OsO_{4} in situ như là phới tử quang hoạt gay ra sự cọng bất đói xứng, đồng thời cũng xúc tiến phản ứng. Hai tác nhan (1) và (2) không phải enantiome nhưng cho cộng chọn lọc đới quang vào olefin theo hướng ngược nhau, chẳng hạn styren ưu tiên cho (R) điol với (1) và (S) điol với (2).

Phản ứng cợng chọn lọc đối quang và đia cũng dùng cho dẩn xuất của OsO_{4} chứa phới tử quang hoạt và OsO_{4} với olefin có nhơm quang hoạt trong phân tử.

28- Phản úng cọng boran

Boran cộng hợp vào nối đôi cho sản phả̉m cợng trong dung môi ete:

$$
3-\mathrm{C}=\underset{\mathrm{C}}{\mathrm{C}}+\mathrm{BH}_{3} \rightarrow(\underset{\mathrm{C}}{\mathrm{C}}-\underset{\mathrm{C}}{\mathrm{C}}-)_{3}^{\mathrm{B}}
$$

Boran khơng thể tởng hợp thành hợp chá̛t bền tinh khiết (đime hoá thành $\mathrm{B}_{2} \mathrm{H}_{6}$) nhưng có sản phả̉n thương mại ở dạng phức với THF, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ hay amin bạ̣c ba. Olefin có thể tác dụng với mợt trong các phức ấy nhưng $\mathrm{THF}-\mathrm{BH}_{3} \not ̛_{0} 0^{\circ} \mathrm{C}$ là thích hợp nhất, còn dùng $\mathrm{R}_{3} \mathrm{~N}-\mathrm{BH}_{3} \dot{\text { ơ }} 100^{\circ} \mathrm{C}$ hay dùng hổn hợp của NaBH_{4} và BF_{3} eterat để tái tạo boran in situ.

Thơng thường quá trình không dừng lại tạo mộ phân tử olefin với BH_{3} cho RBH_{2} mà phản ứng tiếp với olefin cho $\mathrm{R}_{2} \mathrm{BH}$ rồi $\mathrm{R}_{3} \mathrm{~B}$, sản phẩm tách ra được là triankylboran. Phản ưng có thể thực hiện ở các olefin bớn lần thế, kể cả các olefin vòng nhưng nếu olefin có khó khăn lập thể thì có thể dừng ở điankylboran $\mathrm{R}_{2} \mathrm{BH}$ hay monoankyl boran RBH_{2}. Chẳng hạn, tổng hợp từ các đisiamylboran, thexylboran:

(7)

Các monoankylboran RBH_{2} (điều chế từ olefin khó khăn lập thể) và điankylboran $\mathrm{R}_{2} \mathrm{BH}$ cợng hợp vào olefin cho hōn hợp triankylboran $\mathrm{RR}^{\prime}{ }_{2} \mathrm{~B}$ và $\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{B}$ tương ứng. Metylboran có phân tử không lớn, cộng hợp với olefin trong THF có thé̉ dừng cho điankylboran $\mathrm{RCH}_{3} \mathrm{BH}$ và tiếp cho triankylboran $\mathrm{RR}^{\prime} \mathrm{CH}_{3} \mathrm{~B}$. Các monoankylboran khác như iso- $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{BH}_{2}$, tert $-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{BH}_{2}$ sec $-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{BH}_{2}$ tác dụng với olefin trong mạch nhưng không với olefin $\mathrm{RCH}=\mathrm{CH}_{2}$.

Cơ chế của phản ứng có trạng thái chuyển vòng 4 trung tâm:

Các boran cũng là tiểu phân electrophin do nguyên tử B có obitan trống. Boran cộng hợp vào olefin ở cacbon ít khó khăn không gian tạo ion cacboni bền hơn và có lien kết hyđro cùng phía cis với bo. Hydro đóng vai trò là nucleophin cộng vào trung tâm điện tích dương bằng cặp electron liên kết H-B:

Vê sản phảm, phản ứng là cợng trái quy tấc Markovnikov vì cợng H vào cacbon ankyl hoá nhiểu hơn, còn thực tế quan sát được quy tắc Markovnikov với electrophin là bo. Phản ưng là cộng syn nhưng nêu chất ban đâu là ancol allylic hay amin lại cộng anti, và tính chọn lọc lập thé̉ co thể chuyến tơi syn khi dùng catecholboran hay phức rodi. Cơ chê khác nhau có thé̉ làm thay đởi tính chọn lọc vị trí, chẳng hạn styren $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$ cho $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$.

Chảng hạn, phản ứng của styren thế với $\mathrm{D}_{2} \mathrm{BCl}$ quan sát hiệu ứng đồng vị $k_{\mathrm{H}} / k_{\mathrm{D}}=$ $1,2 \div 2,4$ có $\rho=-0,7$ do trạng thái chuyển kém phân cực. Quy tắc Markovnikov quan sát được ở anken có nới đối cuối mạch, còn anken có nới đới trong mạch có cả hai sàn phẩm cộng theo Markovnikov và trái Markovnikov. Phản ứng cho sản phả̉m triankylboran, với các anken thé cao thu dược điankylboran:

Trong tất cả các trường hợp bo đi tới cacbon nhiều hyđ̛oo hơn khi có nhơm thé ankyl và aryl, như phản ứng sau cho 98% sản phẩm cọ̣ng và 2% sản phả̉m phụ:

Phản ứng thực tể là bo dương điện hơn hyđro tấn công vào cacbon nhiều hyđro hơn nên tuân theo quy tắc chung của Markovnikov nhưng cho sản phấm trái Markovnikov. Tính chọn lọc lập thẻ̉ gây ra bởi nhan tớ lạ̣p thể cũng như nhân tó electron. Nghiên cứu về tớc đọ và hương tấn công của hyđ̛obo hoá của các hiẹu ứng trên, các hợp chất thế vòng như styren thế cho thấy sự tấn công của bo có bản chất electrophin. Khi cả hai phía nới đôi là một lần thế hay hai lần thé, đã tìm thấy hàm lượng bằng nhau của mỡi đồng phân. Phản ứng cộng chọn lọ̣ lập thể khi dùng phan tử tấn công lớn hơn, chả̉ng hạn tác dụng iso $-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}=\mathrm{CHCH}$ với boran cho 57% sản phẩm với bo đính với cacbon có nhóm metyl và 43% đồng phân khác, nhưng với chất sau (5) thì cho 95% và 5% sản phả̉m khác:
$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHCH}_{3}\right]_{2} \mathrm{BH}+\underset{\substack{\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{CH} \\\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CHCH}_{3} \\ \mathrm{CH}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}}}{\mathrm{H}} \rightarrow$

Tác nhân có tính chọn lọc lập thể cao thường dùng là 9 -bobixyclo[3.3.1]nonan (9-BBN) điều chế bằng hyơrobo hoá $1,5-x$ ycooctadien:

9-BBN là hợp chất bền trong không khí. 9-BBN và đisiamylboran và hợp chất tương tự có tính chọn lọ̣ rất cao ưu tiên tấn công vào liên kết ít khó khān lập thể, thường chỉ hyđrobo hoá một liên kết đôi và hyđrobo hoá một olefin khi có một olefin khác kém hoạt động, chā̉ng hạn hyđrobo hoá 1-penten có thể dùng hôn hợp 1-penten và 2 -penten, cis-olefin có thể hyđrobo hoá chọn lọc từ hỗn hợp cis và trans- olefin.

Tác nhân hyđrobo hoá họat dộng hơn BH_{3} đối với anken cuối mạch hay dạng $\mathrm{R}_{2} \mathrm{C}=\mathrm{CHR}$, là monocloboran $\mathrm{BH}_{2} \mathrm{Cl}$ có phản ứng phơi trí với đimetyl sunfua cho sản phâm $\mathrm{R}_{2} \mathrm{BCl}$. Chả̉ng hạn dùng $\mathrm{BH}_{3}-\mathrm{THF}$ với 1-hexen cho 94% sản phẩm trái Markovnikov, còn với $\mathrm{BH}_{2} \mathrm{Cl}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ cho $99,2 \%$. Tác dụng đicloboran $\mathrm{BHCl}_{2}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ khi có BF_{3} hay dùng $\mathrm{BCl}_{3}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiH}$ cho ankyldicloboran RBCl_{2}.

Ứng dụng quan trọng nhất của phản ứng hyđrobo hoá là oxy hoá sản phẩm đó bầng $\mathrm{H}_{2} \mathrm{O}_{2}$ trong kiềm chuyển thành ancol. Đây là phương pháp gián tiếp cộng hợp nước vào anken cho ancol trái quy tắc Markovnikov.

Các ankyl boran tác dụng với ancol hay axit cho ankan, còn khi có $\mathrm{H}_{2} \mathrm{O}_{2}$ sē cho ancol qua phản ứng chuyển vị hyđroxit:

Ankyl boran cũng có những phản ứng khác như tác dụng với hợp chất α-halogen cacbonyl cho sản phẩm ankyl hoá (xem chương S_{N}), với CO cho ancol và xeton (chương
chuyển vị), và nhiếu phản ưng khác. Hợp chất olefin có thể có các nhóm chức như OR, OH, $\mathrm{NH}_{2}, \mathrm{SCH}_{3}$, halogen và COOR nhưng không thế có nhóm chức có tính khử boran.

Chả̉ng hạn hyđ̛obo hoá enamin bằng 9-BBN gián tiếp cho anken do khử của anđehit hay xeton :

Đẻ̉ điều chế ancol có độ tinh khiết quang hoạt đạt 98% thường dùng phương pháp tác dụng anken với điisopinocampheylboran hoạt đợng quang học:

Phản ứng cho hiệu suất tớt với các anken không có khó khăn không gian nên tớt hơn là dùng isopinocampheylboran tuy có chậm hơn, cũng dùng limonylboran, 2- và 4-đicaranylboran, myrtanylboran và đilongifolylboran.

Các boran vòng quang hoạt trans-2,5-đimetylborolan sau cûng cợng chọn lọc lập thẻ với olefin (trừ olefin loại $\mathrm{RR}{ }^{\prime} \mathrm{C}=\mathrm{CH}_{2}$) cho boran có độ tinh khiết quang học cao. Khi boran quang hoạt cợng hợp với olefin ba lần thế dạng $R R^{\prime} \mathrm{C}=\mathrm{CHR}^{\prime \prime}$ tạo nên hai trung tâm quang hoạt và với (8) và (9) ở dưới chỉ một đờng phân đia ưu tiên trong bơn đồng phân đia với hiệu suất 90%, gọi là tổng hợp bất đới xứng kép:

(R, R)

(9)

Liên kết đơi trong đien được hyđrobo hoá riêng rẽ, nghĩa là không có cộng 1,4 , thường khơng dể hyđ̛obo hoá một nới đôi trong hẹ liên hợp vì kém hoạt tính hơn là riêng rē. Chẩng hạn thexylboran phản ứng với đien liên hợp hay riêng rẽ là hydrobo hoá vòng với vòng 5, 6 hay 7 canh :

Sự vòng hoá thường thực hiện monoankylboran hay với bản thân BH_{3}. Phản ứng điển hình là chuyển hoá $1,5,9$-xyclodecatrien cho pehyđro- 9 b -boraphenalen:

Liên két ba trong ankyn cũng được monohyđrobo hoá cho vinylboran có thể bị khử bằng axit axetic cho cis-anken hay oxy hoá hoạ̣c thuỷ phân cho andehit hay xeton. Ankyn cuôi mạch cho anđehit ngược với phương pháp cộng thuỷ ngan hay xúc tác axit. Song ankyn cuới mạch chỉ cho anđehit đới với boran co khó khăn về không gian như đisiamylboran, thexylboran, catecholboran hoạc $\mathrm{BHBr}_{2}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$.

Phản ứng giữa ankyn cuơi mạch và BH_{3} cho hợp chất 1,1 -điboran có thể bị oxy hoá bằng $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$ cho ancol bạ̣ nhất hay với axit m-clobenzoic cho axit cacboxylic:

Mạt khác, đimesityl boran hyđrobo hoá chọn lọc nối ba khi có liên kết đôi củng như hyđrobo hoá chọn lọc một liên kết đôi trong đien không liên hợp. Muớn hyđrobo hoá chọn lọc đới quang thì dùng phức rođi quang hoạt.

29- Phản ûng cọng của cacben

Cacben cũng là tiểu phân electrophin cộng hợp vào anken cho hợp chất vòng ba cạnh:

Cacben và cacben thê đều cộng hợp vào liên kết đôi cho dản xuất xyclopropan như là phản ứng cộng 1,2 . Các dã̃n xuất như $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}:, \mathrm{ROCH}:,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}:,: \mathrm{C}(\mathrm{CN})_{2}$, cợng được vào nới đôi nhưng thường dùng bản thân cacben với đihalogencacben, cacbankoxycacben, ankyl cacben RCH : cũng cộng vào olefin nhưng dễ chuyển vị. Thường nhiếu phãn ứng được sử dụng các tiền thân của cacben, thực tế không phải cacben tự do, nên thường người ta gọi những phản ứng chuyển hoá liên kết đơi thành vòng xyclopropan là sự chuyển hoá cacben, thực tế là phản ứng của cacben và cacbennoit.

Cacben rất hoạt động sọng cho nhiều sản phảm phụ như phản ứng cộng mạch của cacben triplet theo cơ chế gốc tự do (xem chương phản ứng gớc tự do) nên đế hạn chế phản ưng này, phương pháp Simmons - Smith và vài phương pháp khác, chẳng hạn như dùng điclocacben tuy chạm hơn cacben nhựng phản ứng xảy ra tớt mà không có phản ứng cộng mach.

Nói chung các halogen cacben hay cacbenoit tạo thành bằng phản ứng tách sau:

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{RLi} \rightarrow: \mathrm{CHCl} \\
& \mathrm{~N}_{2} \mathrm{CHBr}+\mathrm{HO}^{-} \rightarrow: \mathrm{CHBr} \\
& \mathrm{CHCl}_{3}+\mathrm{HO}^{-} \longrightarrow: \mathrm{CHCl}_{2} \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HgCCl} 2 \mathrm{Br}
\end{aligned} \mathrm{CCl}_{2} \mathrm{Cl}
$$

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnCF}_{3}+\mathrm{NaI} \rightarrow: \mathrm{CF}_{2} \\
& \mathrm{CHBr}_{2} \mathrm{~F}+\mathrm{RLi} \longrightarrow: \mathrm{CFBr}^{2} \\
& \mathrm{CFCl}_{3}+\mathrm{TiCl}_{3}+\mathrm{LiAlH}_{4} \longrightarrow: \mathrm{CFCl}
\end{aligned}
$$

Phản ứng giữa CHCl_{3} và HO^{-}cần điều kiện chuyển pha, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCl}_{2}$ với tert- $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}$ cho cacbennoit nhưng khi có ete crown cho $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCl}$, đicloxyclopropan cũng dùng nhưng thường chuyến thành allen khi có magie hay natri.

Các cacben đều là electrophin, ở trạng thái singlet cộng vào liên kết đơi theo cơ chế một giai đoạn qua trạng thái chuyển tiếp vòng:

Phản ứng là cợng syn và đạ̣c thù lập thể.
Các cacben và cacbenoit loại $\mathrm{R}-\mathrm{C}-\mathrm{R}$ ' là đối tượng của hoá học lập thế. Tác nhân này cộng vào olefin đối xứng cho hai đồng phân có thể có nếu bớn nhóm thế ở cacbon dược bảo toàn cấu hình:

Sản phảm nào ưu tiên là phụ thuộc vào R và R '. Nhiều nghiên cứu về cacben một lần thế loại $\mathrm{R}^{\prime}=\mathrm{H}$ và nhiểu nghiên cứu cho thấy nhóm aryl ưu tiên về phía thế nhiều hơn (cọ̀ng $s y n$), nhóm cacbetoxy tìm thấy chọn lọc anti. Khi $\mathrm{R}=$ halogen, halogen cacben tự do không đạ̣c thù lập thể hay rất nhỏ, trong khi đó halogen cacbenoit biểu lộ ưu tièn cợng syn. Vì thế rất khó để có một tổng quát hoá đơn giản.

Cacben cộng hợp vào liên kết đôi của nhân thợm, song sản phẩm thường không bền và chuyển vị mở vòng. Cacben phản ứng với benzen cho xycloheptatrien:

Nhưng không phải tất cả các cacben đều cợng vào benzen. Trong phản ứng trên, norcarađien trong trường hợp này không tách ra được chịu chuyển vị electroxyclic, trừ một số norcarađien thế như sản phẩm cộng của $\mathrm{C}(\mathrm{CN})_{2}$ vào benzen cho sản phẩm tách ra dược. Phản ứng cūng cho sản phẩm phụ là sản phẩm cộng mạch cho một lượng nhỏ toluen. Phản ứng này, ngoài dùng cacben tự do còn dùng cacben do phân huỷ $\mathrm{CH}_{2} \mathrm{~N}_{2}$ trong hợp chất thơm
như dung môi có mặt CuCl hay CuBr , là phương pháp tốt không có sản phẩm phụ cộng mach. CHCl hoạt động cộng vào benzen:

nhưng dihalogen cacben thì không cộng vào benzen hay toluen, trừ vòng có mật dộ electron lớn như̛ dể dàng cộng hợp vào anken vòng:

$$
\mathrm{KOC}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{CHCl}_{3} \rightarrow \mathrm{~K}^{+} \mathrm{CCl}_{3} \rightarrow: \mathrm{CCl}_{2} \longrightarrow
$$

Khả năng mở rộng vòng cūng tìm thấy trong phàn ứng của pyrazol và inđol tác dụng với halogencacben cho pyriđin và quinolin:

Cũng như các hợp chất không thơm mở vòng cho vòng 6 cạnh với động lực mở vòng là sức cảng của vòng:

Tất các các olefin đều chuyển thành dẩn xuất xyclopropan trừ các olefin có khó khăn lập thể. Ngay tetraxyanetylen cho phàn ứng electrophin rất kém cũng cho dần xuất xyclopropan vói cacben.

Các đien liên hợ̛p cho sản phẩm cộng 1,2 với một mol thứ hai cho dẫn xuất bixyclopropyl:

Phản ứng cộng 1,4 xảy ra hiếm nhưng cūng thực hiện được trong một số trường hợp như cộng vào xeten:

$$
\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{~N}_{2} \frac{\mathrm{CH}_{2} \mathrm{Cl}_{2}}{-78^{\circ} \mathrm{C}} \quad \square=\mathrm{O}
$$

Allen phản ứng với cacben cho xyclopropan có liên kết đôi exoxyclic và với phân tử thú hai cho spiropentan:

Nói chung bất kỳ hợp chất vòng có liên kết dôi exoxyclic đều phản ứng với cacben cho hợp chất spiro.

Lièn kết ba phản ứng với cacben cho xyclopropen từ axetylen tạo thành xyclopropen khōng thể tách ra mà chuyển thành allen; nhưng nếu cộng thêm một mol cacben thứ hai cho bixyclobutan:

Để tránh sản phẩm phụ do phản ứng cộng mạch, Simmons-Smith dưa ra phương pháp tổng hợp hợp chất chứa liên kết đơi với $\mathrm{CH}_{2} \mathrm{I}_{2}$ với cặp Zn -Cu cho dẫn xuất xyclopropan với hiệu suất cao. Cạ̣ $\mathrm{Zn}-\mathrm{Cu}$ dược diç̉u chế bằng dun nóng Zn với CuCl trong dòng khí nitoo Phản ứng cũng dùng với Zn không hoạ hóa với siêu ám. Khi dùng TiCl_{4} cùng với Zn và CuCl , có thể thay $\mathrm{CH}_{2} \mathrm{I}_{2}$ bằng $\mathrm{CH}_{2} \mathrm{Br}_{2}$.

Tiểu phân tấn công thực tế trong phản ứng này là chất trung gian cơ kẽm $\left(\mathrm{ICH}_{2}\right)_{2} \mathrm{Zn}-\mathrm{ZnI}_{2}$. Chắ trung glan này đủ bếll trong dung dịch, đã xác dịnh bà̀ng tinh thể học tia X tạo phức với ete.

Phản ứng cộng có đặc thù lập thể syn và cơ chể đồng bộ:

Chẳng hạn với những phản ứng sau:

Theo phương pháp của Simmons - Smith, các đien liẽn hợp cūng cho sản phẩm cộng 1,2 và allen cho metylenxyclopropan hay spiropentan. Một phương pháp khác tương tự Simmons - Smith là tác dụng olefin với $\mathrm{CH}_{2} \mathrm{I}_{2}$ hay dihalogenmetan khác và $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}$ trong ete. Phương pháp này thuận lọ̣ khi đưa nhóm KCH hay ArClI vào phân tử khi dùng CHI_{2} hay ArClH 2 thay cho dihalogenmetan. Có thể dùng $\mathrm{CH}_{2} \mathrm{I}_{2}$ hay $\mathrm{CH}_{3} \mathrm{CHI}_{2}$ cing vói alan $\mathrm{R}_{3} \mathrm{Al}$ dể chuyển CH_{2} hay $\mathrm{CH}_{3} \mathrm{CH}$ tới olefin.

Cacben tự do dùng dược khi có xúc tác phức chuyển tiếp kim loạj - cacben $L_{n} M=C R R$ ' ($\mathrm{L}=$ phối từ, $\mathrm{M}=\mathrm{kim}$ loại) để cộng nhóm CRR ' vào liên kêt đôi, chẳng hạn:

Các hợp chất này, kề cả $\mathrm{CH}_{2} \mathrm{~N}_{2}$, phản ứng với kim loại hay muối kim loại (dổng. palađi và rodi) cho phức cacben dể cộng $C R R$ ' vào olefin. Tống hợp xyclopropan quang hoạt cũng dùng phức quang hoạt.

Phương pháp Simmons-Smith là phương pháp gián tiếp metyl hoá xeton ở vị trí α. Các xeton trước hết chuyến thành enol ete hay enamin hoạc silyl ete, rồi phãn ứng với cacben cho dần xuất norcaran và phân cắt vòng ba cạnh bằng ntớc, tách $\mathrm{ROH}, \mathrm{R}_{2} \mathrm{NH}$ hay $\mathrm{R}_{3} \mathrm{SiH}$ cho metyl xeton:

Phenol metyl hoá cunng áp dụng được phương pháp tương tự trên:

Các nitren dạg $[\mathrm{R}-\mathrm{CO}-\mathrm{N}]$ dē chuyè̉n vị nên khỏng tham gia phàn úng cộng vào anken, song nitren loại $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{SO}_{2}-\mathrm{N}$: - sunfonyl nitren cọng dược vào anken:

30-Cong hai nhom ankyl wio anky
Hai nhóm ankyl có thể cọng hợp vào ankyn cuồi mạh, thương bang ankyl đôngmagie bromua (tác nhân Normant) và ankyl iodua trong ete-HMPA:

Phản ưng cũng là cợng syn. Trước hết là cợng ankyl đồng vào nới ba rồi ghép đôi với ankyl iodua:

Ankyl dồng có thể là ankyl bậc nhất, allyl, benzyl, vinyl và α-ankoxyankyl. Bản thân arylen phản ứng với $\mathrm{R}_{2} \mathrm{CuCl}$ (thay cho tác nhân Normant). Từ chầt trung gian cộng của ankyl dổng, có thể chuyển hoá tiếp với tác nhân khác như với $\mathrm{CO}_{2}, \mathrm{RNCO} \ldots$ khi có HMPA và một lượng xúc tác trietylphotphin:

Tác nhân allyl kèm bromua tác dụng với vinyl liti hay vinyl Grignard cho sản phẩm cộng hai kim loại ở một cacbon (gem-dimetal):

mà có thể tác dụng tiếp với các nucleophin khác nhau.

TÀI LIỆU THAM KHẢO

1-J. McMury; Organic chemistry, Brooks/Cole Publishing Company, 1996.
2- Peter Sykes; A primer to mechanism in organic chemistry, Longman Scientific Technical, 1995.
3- O. Reutow; Theoretical principle of organic chemistry. Mir, 1970.
4- Jerry March; Advanced organic chemistry; John Wiley \& Sons, 1992.
5- F. A. Carey; Organic chemistry, McGraw - Hill, 1996.
6- M. B. Smith; March's advanced organic chemistry; John Willey and Sons, 2001.
7- R. C. Atkins; Organic chemistry; McGraw - Hill, 2002.
8- Hendrickson Cram Hammomd; Organic chemistry, 1970.
9- Г. Бескер; Введение в электронную теорю оранических реакций: Мир, 1974.
10- P. Брестоу: Механизми: органических реакций; М. 1968.
11- Ф. Кери, Р. Сабьб́ p; Углублённый курс органической химый; Химия. $i 981$.
12- И. И. Граинобсры; Органическая химия; М. Вы. школа. 1974.
13- Т. Д. Житкрист, Р. Сторр; Органические реакций и орб́тальыые симметри. Мию. 1976.

14- А. Дисрровскіи, Т. . . Темиикова; Теоретические основы органической химий. Химяия, 1978.
15- А. Тсрией: Современная органической хнмий. Мир, 1981.
16- К. Инодво; Теоретические основы органической химий. Мир, 1975.
17- Р. Пирсои; Правила симметри в органической химий. Мир, 1979.
18- Ж. Машье, Р. Паиико; Курс тсоретических основ органической химий. Химия, 1975.

19- А. Н. Нешеянов: Начала органической химнй. Химия, 1974.
20- A. Stemweser; Introduction to organic chemistry; McGraw- Hill, 1977.
21- R.T. Morrison, R. N. Boyd; Organic chemistry, Boston, 1970.
22- Thái Doân Tîmh; Cơ sở lý thuyết hớ hữu cơ. Nhà xuất bản Khoa học và Kỹ thuạt Hà Nội, 2000.
23- Thái Doc̃n Tĩh; Cơ sở hoá học hữu cơ Tạ̣ I, II, III. Nhà xuất bản Khoa học và Kȳ thuật Hà Nọ̀i, 2001.

MỤC LỤC

Lời nói đầu 3
Các chữ viết tắt và thuật ngũ 4
Chương 5. PHẢN ÚNG THẾ NUCLEOPHIN CÚA HYĐROCACBON ALIPHATIC 5
5.1. Khái niệm chung 5
5.2. Phản ứng thế nucleophin của hydrocacbon no 6
5.3. Cơ chề $S_{\mathrm{N}} i$ 66
5.4. Cơ chế S_{N} của hệ allyl 67
5.5. Phản ứng thê S_{N} của hydrocacbon không no 69
5.6. Cơ chë̉ SET 74
5.7. Cơ chế nhiều trung tâm 75
5.8. Các phản ứng thế nucleophin 81
Chưong 6. PHAN UNG THẾ NUCLEOPHIN CU゙A HYĐROCACBON THOM 117
6.1. Cơ chế $S_{N} 1$ 117
6.2. Cơ chể tách cộng hay cơ chế aryn 120
6.3. Co chế gốc S_{RN} I 124
6.4. Co chế cọng tách - cơ chế $S_{\mathrm{N}} \mathrm{Ar}$ 124
6.5. Các phản ứng S_{N} của aren 133
Chương 7. PHẢN UNG THẾ ELECTROPHIN $S_{\text {E }}$ CÜA HYĐROCACBON ALIPHATIC 149
7.1. Ca chế 149
7.2. Các nhân tố ành hưởng 159
7.3. Các phàn ứng S_{E} của hyđrocacbon aliphatic 160
Chương 8. PHẢN ÚNG THÊ ELECTROPHIN CỦA HOP CHẤT THOM 191
8.1. Cơ chế thế S_{E} 191
8.2. Phản úng thế S_{E} của dần xuất benzen 201
8.3. Phản ứng cù̉a nhân benzen có hai hay nhiều nhóm thế 220
8.4. Phản ưng thể của hợp chát thơm vòng ngưng tụ 222
8.5. Phản ứng thế electrophin ở hợp chất dị vòng 224
8.6. Các phản ứng thế hydro của nhân thơm 226
8.7. Phản ứng S_{E} của nhóm thế khác hydro 246
Chương 9. PHẢN ÚNG TÁCHE 254
9.1. Phản ứng tách α hay $(1,1)$ 255
9.2. Phản ứng tách β 256
9.3. Phản ứng tách γ 315
9.4. Phàn ứng tách δ 315
9.5. Phản ứng tách 0 316
9.6. Phản ứng tách nhiệt 316
9.7. Phản ứng tách phân mảnh 328
9.8. Phản ứng tách doạn mạch 335
Chương 10. PHAN UNG CÔNG ELECTROPIIIN A_{E} 340
10.1. Cơ chế chung cống A_{E} 340
10.2. Phản ứng cợng A_{E} của anken 344
10.3. Phản ứng cộng A_{E} của xyclopropan 364
10.4. Phản úng cộng của ankyn 365
10.5. Phản ứng cộng A_{E} của đien 369
10.6. Các phản ứng cộng A_{E} 374
10.7. Phản ứng cọng cis 389
TÀI LIÊU THAM KHAOO 405

Cơ CHẾ VÀ PHẢN ÚNG HOÁ HỌC HŨ̃ CO

TẬP 2

Tác giả: PGS. TS. THÁI DOÃN TĨNH

Chịu trách nhiẹ̣m xuàt bän:
Bièn tạ̀p và si̛áa bail:

Trinh bà bia:

PGS. TS. TÔ ĐĀNG HÃI
ThS. NGUYỄN HUY TIÉN
NGỌC LINH
XUÀN DŨNG

NHÀ XUẤT bản KHOA HỌC VÀ KY̌ THUẬT

70 Trần Hưng Đạo - Hà Nội

In 400 cuốn, khổ $19 \times 27 \mathrm{~cm}$, tại Xí nghiệp In Thương Mại (Bộ Công Thương) Quyết định xuất bản số: 82-2008/CXB/101.2-02/KIIKT-21/2/2008
In xong và nộp lưu chiểu Quý II nảm 2008.
127.0.0.1 downloaded 73193.pdf at Wed Mar 28 14:56:14 ICT 2012

127.0.0.1 downloaded 73193.pdf at Wed Mar 28 14:56:14 ICT 2012

