Intelligence

* . An Introduction
-

.-
FWILEY -

Computational
Intelligence
An Introduction

Second Edition

Andries P. Engelbrecht
University of Pretoria
South Africa

1807

BWILEY|
2007

John Wiley & Sons, Ltd

Computational Intelligence

Computational
Intelligence

An Introduction

Second HEdition

Andries P. Engelbrecht
University of Pretoria
South Africa

11807
H WILEY [3
12007

0 r

NNNNNNNNNNNN

John Wiley & Sons, Ltd

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (4+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The Publisher is not associated with any product or vendor
mentioned in this book. All trademarks referred to in the text of this publication are the property of their
respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional
services. If professional advice or other expert assistance is required, the services of a competent
professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Engelbrecht, Andries P.

Computational intelligence : an introduction / Andries P. Engelbrecht. — 2nd ed.

p. cm.

Includes bibliographical references.

ISBN 978-0-470-03561-0 (cloth)

1. Computational intelligence. 2. Neural networks (Computer science) 3. Evolutionary programming
(Computer science) I. Title.

Q342.E54 2007

006.3-dc22

2007021101

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-03561-0 (HB)

Typeset by the author

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

To my parents, Jan and Magriet Engelbrecht,

without whose loving support
this would not have happened.

Contents

Page

Figures xxi
Tables xxiii
Algorithms xxvii
Preface XXix
Part I INTRODUCTION 1
1 Introduction to Computational Intelligence 3
1.1 Computational Intelligence Paradigms 4
1.1.1 Artificial Neural Networks 5

1.1.2 Evolutionary Computation 8

1.1.3 Swarm Intelligence oo 9

1.1.4 Artificial Immune Systems 9

1.1.5 Fuzzy Systems 10

1.2 Short History 11
1.3 Assignments 13
Part I ARTIFICIAL NEURAL NETWORKS 15
2 The Artificial Neuron 17
2.1 Calculating the Net Input Signal 17
2.2 Activation Functions oL 18
2.3 Artificial Neuron Geometry 20
2.4 Artificial Neuron Learning L. 21
2.4.1 Augmented Vectors 23

2.4.2 Gradient Descent Learning Rule 24

2.4.3 Widrow-Hoff Learning Rule 25

2.4.4 Generalized Delta Learning Rule 25

2.4.5 Error-Correction Learning Rule 25

2.5 Assignments 25

3 Supervised Learning Neural Networks 27
3.1 Neural Network Types 27
3.1.1 Feedforward Neural Networks 28

3.1.2 Functional Link Neural Networks 29

3.1.3 Product Unit Neural Networks 30

vii

viii CONTENTS
3.1.4 Simple Recurrent Neural Networks 32

3.1.5 Time-Delay Neural Networks 34

3.1.6 Cascade Networks 35

3.2 Supervised Learning Rules 36
3.2.1 The Supervised Learning Problem 36

3.2.2 Gradient Descent Optimization 38

3.2.3 Scaled Conjugate Gradient 45

3.2.4 LeapFrog Optimization 49

3.2.5 Particle Swarm Optimization 49

3.3 Functioning of Hidden Units 49
3.4 Emnsemble Neural Networks 51
3.5 Assignments 54

4 Unsupervised Learning Neural Networks 55
4.1 Background 55
4.2 Hebbian Learning Rule 0L 56
4.3 Principal Component Learning Rule 58
4.4 Learning Vector Quantizer-I 59
4.5 Self-Organizing Feature Maps 62
4.5.1 Stochastic Training Rule 62

452 BatchMap 65

4.5.3 Growing SOM 65

4.5.4 Improving Convergence Speed 67

4.5.5 Clustering and Visualization 69

4.5.6 Using SOM 71

4.6 Assignments 71

5 Radial Basis Function Networks 73
5.1 Learning Vector Quantizer-II 73
5.2 Radial Basis Function Neural Networks 73
5.2.1 Radial Basis Function Network Architecture. 74

5.2.2 Radial Basis Functions 75

5.2.3 Training Algorithms oL 76

5.2.4 Radial Basis Function Network Variations 80

5.3 Assignments L 81

6 Reinforcement Learning 83
6.1 Learning through Awards 83
6.2 Model-Free Reinforcement Learning Model 86
6.2.1 Temporal Difference Learning 86

6.2.2 Q-Learning 86

CONTENTS ix

6.3 Neural Networks and Reinforcement Learning 87
6.3.1 RPROP e 87
6.3.2 Gradient Descent Reinforcement Learning 88
6.3.3 Connectionist Q-Learning 89

6.4 Assignments Lo 91

7 Performance Issues (Supervised Learning) 93

7.1 Performance Measures 93
711 Accuracy 93
7.1.2 Complexity 98
7.1.3 COonvergence oot e 98

7.2 Analysis of Performance 98

7.3 Performance Factors 99
7.3.1 Data Preparation 0oL 99
7.3.2 Weight Initialization 106
7.3.3 Learning Rate and Momentum 107
7.3.4 Optimization Method, 109
7.3.5 Architecture Selection oo 109
7.3.6 Adaptive Activation Functions 115
7.3.7 Active Learning 116

74 Assignmentso 124

Part III EVOLUTIONARY COMPUTATION 125
8 Introduction to Evolutionary Computation 127

8.1 Generic Evolutionary Algorithm 128

8.2 Representation — The Chromosome 129

8.3 Imitial Population L 132

8.4 Fitness Function L oo 133

8.5 Selection 134
8.5.1 Selective Pressure L. 135
8.5.2 Random Selection L. 135
8.5.3 Proportional Selection 135
8.5.4 Tournament Selection 137
8.5.5 Rank-Based Selection 137
8.5.6 Boltzmann Selection Lo 138
85.7 (w1t N)-Selection 139
85.8 Elitism 139
859 Hallof Fame 139

8.6 Reproduction Operators 139

X CONTENTS

8.7 Stopping Conditions 140
8.8 Evolutionary Computation versus Classical Optimization 141
8.9 Assignments 141
9 Genetic Algorithms 143
9.1 Canonical Genetic Algorithm 143
0.2 CroSSOVET . . . v v v v v it e e e e 144
9.2.1 Binary Representations 145
9.2.2 Floating-Point Representation. 146

9.3 Mutation L 153
9.3.1 Binary Representations, 154
9.3.2 Floating-Point Representations 155
9.3.3 Macromutation Operator — Headless Chicken 156

9.4 Control Parameters o 156
9.5 Genetic Algorithm Variants 157
9.5.1 Generation Gap Methods 158
9.5.2 Messy Genetic Algorithms 159
9.5.3 Interactive Evolution 161
9.54 Island Genetic Algorithms 162

9.6 Advanced Topics 164
9.6.1 Niching Genetic Algorithms 165
9.6.2 Constraint Handling 169
9.6.3 Multi-Objective Optimization 170
9.6.4 Dynamic Environments 173

9.7 Applications 174
9.8 Assignments 175
10 Genetic Programming 177
10.1 Tree-Based Representation. 177
10.2 Initial Population L 179
10.3 Fitness Function Lo oo 180
10.4 Crossover Operators v v v v i v i i e e 180
10.5 Mutation Operators i 182
10.6 Building Block Genetic Programming 184
10.7 Applications 184
10.8 Assignments oL 185
11 Evolutionary Programming 187
11.1 Basic Evolutionary Programming 187
11.2 Evolutionary Programming Operators 189

11.2.1 Mutation Operators, 189

CONTENTS xi

11.2.2 Selection Operators 193

11.3 Strategy Parameters oL 195
11.3.1 Static Strategy Parameters 195
11.3.2 Dynamic Strategies. 195
11.3.3 Self-Adaptation 198

11.4 Evolutionary Programming Implementations 200
11.4.1 Classical Evolutionary Programming 200
11.4.2 Fast Evolutionary Programming 201
11.4.3 Exponential Evolutionary Programming 201
11.4.4 Accelerated Evolutionary Programming 201
11.4.5 Momentum Evolutionary Programming 202
11.4.6 Evolutionary Programming with Local Search 203
11.4.7 Evolutionary Programming with Extinction 203
11.4.8 Hybrid with Particle Swarm Optimization 204

11.5 Advanced Topics 206
11.5.1 Constraint Handling Approaches 206
11.5.2 Multi-Objective Optimization and Niching 206
11.5.3 Dynamic Environments 206

11.6 Applications L 207
11.6.1 Finite-State Machines 207
11.6.2 Function Optimization 208
11.6.3 Training Neural Networks 209
11.6.4 Real-World Applications 210

11.7 Assignmentso oL 210
12 Evolution Strategies 213
121 (14 1)-ES . . o o 213
12.2 Generic Evolution Strategy Algorithm 215
12.3 Strategy Parameters and Self-Adaptation 216
12.3.1 Strategy Parameter Types 216
12.3.2 Strategy Parameter Variants 218
12.3.3 Self-Adaptation Strategies 219

12.4 Evolution Strategy Operators 221
12.4.1 Selection Operators 221
12.4.2 Crossover Operators 222
12.4.3 Mutation Operators, 224

12.5 Evolution Strategy Variants 226
12.5.1 Polar Evolution Strategies 226

12.5.2 Evolution Strategies with Directed Variation 227

xii

CONTENTS

12.5.3 Incremental Evolution Strategies 228
12.5.4 Surrogate Evolution Strategy 229

12.6 Advanced Topics 229
12.6.1 Constraint Handling Approaches 229
12.6.2 Multi-Objective Optimization 230
12.6.3 Dynamic and Noisy Environments 233
12.6.4 Niching 233

12.7 Applications of Evolution Strategies 235
12.8 Assignments Lo 235
13 Differential Evolution 237
13.1 Basic Differential Evolution 237
13.1.1 Difference Vectors 238
13.1.2 Mutation L 239
13.1.3 CroSsover v v i 239
13.1.4 Selection 240
13.1.5 General Differential Evolution Algorithm 241
13.1.6 Control Parameters 241
13.1.7 Geometrical Illustration 242

13.2 DE/x/y/z o 242
13.3 Variations to Basic Differential Evolution 245
13.3.1 Hybrid Differential Evolution Strategies 245
13.3.2 Population-Based Differential Evolution 250
13.3.3 Self-Adaptive Differential Evolution 250

13.4 Differential Evolution for Discrete-Valued Problems 252
13.4.1 Angle Modulated Differential Evolution 253
13.4.2 Binary Differential Evolution 254

13.5 Advanced Topics L 255
13.5.1 Constraint Handling Approaches 256
13.5.2 Multi-Objective Optimization 256
13.5.3 Dynamic Environments 257

13.6 Applications 259
13.7 Assignments oL 259
14 Cultural Algorithms 261
14.1 Culture and Artificial Culture 261
14.2 Basic Cultural Algorithm 262
14.3 Belief Space 263
14.3.1 Knowledge Components 264
14.3.2 Acceptance Functions 265

CONTENTS xiii

14.3.3 Adjusting the Belief Space 266
14.3.4 Influence Functions 267

14.4 Fuzzy Cultural Algorithm 268
14.4.1 Fuzzy Acceptance Function 269
14.4.2 Fuzzified Belief Space 269
14.4.3 Fuzzy Influence Function 270

14.5 Advanced Topics 271
14.5.1 Constraint Handling 271
14.5.2 Multi-Objective Optimization 272
14.5.3 Dynamic Environments 273

14.6 Applications 274
14.7 Assignments 274
15 Coevolution 275
15.1 Coevolution Types e 276
15.2 Competitive Coevolution 276
15.2.1 Competitive Fitness 277
15.2.2 Generic Competitive Coevolutionary Algorithm 279
15.2.3 Applications of Competitive Coevolution 280

15.3 Cooperative Coevolution 281
15.4 Assignmentso e 283

Part IV COMPUTATIONAL SWARM INTELLIGENCE 285

16 Particle Swarm Optimization 289
16.1 Basic Particle Swarm Optimization 289
16.1.1 Global Best PSO 290
16.1.2 Local Best PSO. 291
16.1.3 gbest versus lbest PSO o oL 292
16.1.4 Velocity Components 293
16.1.5 Geometric Illustration 294
16.1.6 Algorithm Aspects 296

16.2 Social Network Structures 300
16.3 Basic Variations 303
16.3.1 Velocity Clamping 303
16.3.2 Inertia Weight o 306
16.3.3 Constriction Coefficient 309
16.3.4 Synchronous versus Asynchronous Updates 310
16.3.5 Velocity Models 310

16.4 Basic PSO Parameters 312

xiv CONTENTS
16.5 Single-Solution Particle Swarm Optimization 314
16.5.1 Guaranteed Convergence PSO 316
16.5.2 Social-Based Particle Swarm Optimization. 317
16.5.3 Hybrid Algorithms 321
16.5.4 Sub-Swarm Based PSO 326
16.5.5 Multi-Start PSO Algorithms 333
16.5.6 Repelling Methods, 337
16.5.7 Binary PSO 340

16.6 Advanced Topics L 342
16.6.1 Constraint Handling Approaches 342
16.6.2 Multi-Objective Optimization 343
16.6.3 Dynamic Environments 346
16.6.4 Niching PSO 350

16.7 Applications 354
16.7.1 Neural Networks, 354
16.7.2 Architecture Selection L. 356
16.7.3 Game Learning oL oL 356

16.8 Assignments oL e 357
17 Ant Algorithms 359
17.1 Ant Colony Optimization Meta-Heuristic 360
17.1.1 Foraging Behavior of Ants 360
17.1.2 Stigmergy and Artificial Pheromone 363
17.1.3 Simple Ant Colony Optimization 364
17.1.4 Ant System 368
17.1.5 Ant Colony System, 372
17.1.6 Max-Min Ant System 375
17.0.7 Ant-Q o 378
17.1.8 Fast Ant System Lo 379
17.1.9 Antabu 380

171 10AS-rank o 380
17.1.1TANTS . . e 381
17.1.12Parameter Settings oL 383

17.2 Cemetery Organization and Brood Care 384
17.2.1 Basic Ant Colony Clustering Model 385
17.2.2 Generalized Ant Colony Clustering Model 386
17.2.3 Minimal Model for Ant Clustering 391

17.3 Division of Labor oo 391

17.3.1 Division of Labor in Insect Colonies 392

CONTENTS XV

17.3.2 Task Allocation Based on Response Thresholds 393
17.3.3 Adaptive Task Allocation and Specialization 395

17.4 Advanced Topics 396
17.4.1 Continuous Ant Colony Optimization 396
17.4.2 Multi-Objective Optimization 398
17.4.3 Dynamic Environments 402

17.5 Applications 405
17.5.1 Traveling Salesman Problem 406
17.5.2 Quadratic Assignment Problem 407
17.5.3 Other Applications 411

17.6 Assignmentso 411
Part V. ARTIFICIAL IMMUNE SYSTEMS 413
18 Natural Immune System 415
18.1 Classical View 415
18.2 Antibodies and Antigens 416
18.3 The White Cells 416
18.3.1 The Lymphocytes 417

18.4 Immunity Types L 421
18.5 Learning the Antigen Structure 421
18.6 The Network Theory 422
18.7 The Danger Theory 422
18.8 Assignments Lo 424
19 Artificial Immune Models 425
19.1 Artificial Immune System Algorithm 426
19.2 Classical View Models o 428
19.2.1 Negative Selection 428
19.2.2 Evolutionary Approaches 429

19.3 Clonal Selection Theory Models 431
19.3.1 CLONALG e 431
19.3.2 Dynamic Clonal Selection 433
19.3.3 Multi-Layered AIS o 433

19.4 Network Theory Models 436
19.4.1 Artificial Immune Network 436
19.4.2 Self Stabilizing AIS Lo 438
19.4.3 Enhanced Artificial Immune Network 440
19.4.4 Dynamic Weighted B-Cell AIS 441

19.4.5 Adapted Artificial Immune Network 442

xvi CONTENTS
19.4.6 aiNet 442

19.5 Danger Theory Models 445
19.5.1 Mobile Ad-Hoc Networks 445

19.5.2 An Adaptive Mailbox 446

19.5.3 Intrusion Detection oL 448

19.6 Applications and Other AIS models 448
19.7 Assignments 448
Part VI FUZZY SYSTEMS 451
20 Fuzzy Sets 453
20.1 Formal Definitions 454
20.2 Membership Functions 0oL 454
20.3 Fuzzy Operators it 457
20.4 Fuzzy Set Characteristics 459
20.5 Fuzziness and Probability 0oL 462
20.6 Assignments e 463
21 Fuzzy Logic and Reasoning 465
21.1 Fuzzy Logic e 465
21.1.1 Linguistics Variables and Hedges 466

21.1.2 Fuzzy Rules 467

21.2 Fuzzy Inferencing L 468
21.2.1 Fuzzification 469

21.2.2 Inferencing 470

21.2.3 Defuzzification 471

21.3 Assignments L. 472
22 Fuzzy Controllers 475
22.1 Components of Fuzzy Controllers 475
22.2 Fuzzy Controller Types 477
22.2.1 Table-Based Controller 477

22.2.2 Mamdani Fuzzy Controller 477

22.2.3 Takagi-Sugeno Controller 478

22.3 Assignments 478
23 Rough Sets 481
23.1 Concept of Discernibility 482
23.2 Vagueness in Rough Sets 483
23.3 Uncertainty in Rough Sets 484
23.4 Assignments Lo 485

CONTENTS xvii
References 487
A Optimization Theory 551
A.1 Basic Ingredients of Optimization Problems 551
A.2 Optimization Problem Classifications 552
A3 Optima Types o 553
A.4 Optimization Method Classes 554
A.5 Unconstrained Optimization 555
A.5.1 Problem Definition oL 555

A.5.2 Optimization Algorithms 555

A.5.3 Example Benchmark Problems 559

A.6 Constrained Optimization 560
A.6.1 Problem Definition L. 560

A.6.2 Constraint Handling Methods 561

A.6.3 Example Benchmark Problems 566

A.7 Multi-Solution Problems 567
A.7.1 Problem Definition oo 568

A.7.2 Niching Algorithm Categories 568

A.7.3 Example Benchmark Problems 569

A.8 Multi-Objective Optimization, 570
A.8.1 Multi-objective Problem 0. 570

A.8.2 Weighted Aggregation Methods 571

A.8.3 Pareto-Optimality 572

A.9 Dynamic Optimization Problems 575
A9.1 Definition L 576

A.9.2 Dynamic Environment Types 576

A.9.3 Example Benchmark Problems 578

Index 581

List of Figures

Figure
1.1
1.2
1.3
1.4
2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3
4.4
5.1
6.1
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.1
9.1

Computational Intelligence Paradigms
A Biological Neuron
An Artificial Neuron L oL
An Artificial Neural Network
An Artificial Neurono o
Activation Functions Lo L
Artificial Neuron Boundary
Linear Separable Boolean Perceptrons
XOR Decision Boundaries oo
Gradient Descent Hlustrated
Feedforward Neural Network
Functional Link Neural Network
Elman Simple Recurrent Neural Network
Jordan Simple Recurrent Neural Network
A Single Time-Delay Neuron
Cascade Neural Network
Product Unit Neural Network Search Space for f(z) =23
Feedforward Neural Network Classification Boundary Illustration . . .
Hidden Unit Functioning for Function Approximation
Ensemble Neural Network
Unsupervised Neural Network
Learning Vector Quantizer to Illustrate Clustering
Self-organizing Map L oL
Visualization of SOM Clusters for Iris Classification
Radial Basis Function Neural Network
Reinforcement Learning Problem
Mustration of Overfitting
Effect of Outliers
Sum Squared Error Objective Function
Huber Objective Function
Effect of Learning Rate
Adaptive Sigmoid
Passive vs Active Learning
Hamming Distance for Binary and Gray Coding

Crossover Operators for Binary Representations

Xix

XX LIST OF FIGURES
9.2 Tllustration of Multi-parent Center of Mass Crossover Operators. . . . 151
9.3 Diagonal Crossover 153
9.4 Mutation Operators for Binary Representations 155
9.5 Anlsland GA Model o 163
10.1 Tree-Representation of XOR 178
10.2 Tree-Representation for Mathematical Expressions 179
10.3 Genetic Programming Crossover 181
10.4 Genetic Programming Mutation Operators 183
11.1 Finite-State Machine [278] 208
12.1 Tllustration of Mutation Distributions for ES 219
12.2 Directed Mutation Operator for ES 225
12.3 Biased Mutation for Evolution Strategies 230
13.1 Differential Evolution Mutation and Crossover Illustrated 243
13.2 Angle Modulation Illustrated 254
14.1 Tllustration of Population and Belief Spaces of Cultural Algorithms . . 263
14.2 Tlustration of Belief Cells, 272
16.1 Geometrical Illustration of Velocity and Position Updates 294
16.2 Multi-particle gbest PSO Illustration 295
16.3 Mlustration of lbest PSO 296
16.4 Example Social Network Structures. 302
16.5 Effects of Velocity Clamping 305
16.6 Stochastic Particle Trajectory for w =0.9 and ¢; =2 =2.0 315
17.1 Binary Bridge Experiment oo 361
17.2 Shortest Path Selection by Forager Ants 362
17.3 Graph for Shortest Path Problems 365
17.4 2-opt and 3-opt Local Search Heuristic 408
18.1 Antigen-Antibody-Complex 417
18.2 White Cell Types e 418
18.3 Life Cycle of A Lymphocyte 418
18.4 B-Cell Develops into Plasma Cell, Producing Antibodies 419
18.5 Macrophage and NKTC 420
18.6 Co-Stimulation of T-Cell by an APC 423
19.1 r-Continuous Matching Rule 428
19.2 Adapted Negative Selection 430
20.1 Hlustration of Membership Function for Two-Valued Sets 455
20.2 Illustration of tall Membership Function 455
20.3 Example Membership Functions for Fuzzy Sets 458
20.4 Tlustration of Fuzzy Set Containment 458
20.5 Illustration of Fuzzy Operators 460

LIST OF FIGURES xxi

20.6
21.1
21.2
21.3
214
22.1
23.1
A1l
A2
A3
A4
A5
A6
AT
A8

Membership Functions for Assignments land 2 463
Fuzzy Rule-Based Reasoning System 468
Interpreting a Fuzzy Rule 469
Defuzzification Methods for Centroid Calculation 473
Membership Functions for Assignments 2 and 3 474
A Fuzzy Controller 476
Rough Set Illustration 481
Types of Optima for Unconstrained Problems 553
Problem with Multiple Global Optima, with f(x) = sin®(57z) 554
Constrained Problem Illustration 562
Iustration of the Effect of Penalty Functions 564
Mustration of Dominance 572
Example Pareto-Optimal Fronts. 574
Dynamic Parabola Objective Function 577
Dynamic Objective Function 579

List of Tables

Table
3.1
8.1
10.1
10.2
11.1
11.2
12.1
13.1
15.1
15.2
16.1
17.1
17.2

Page
SUs and PUs Needed for Simple Functions 43
Binary and Gray Coding 132
XOR Truth Table. o 178
Genetic Programming Applications 185
Response of Finite-State Machine 207
Real-World Applications of Evolutionary Programming 210
Applications of Evolution Strategies 235
Applications of Differential Evolution. 259
Algorithms Used to Achieve Adaptation in CCE 280
Applications of Competitive Coevolution 281
Applications of Particle Swarm Optimization 358
General ACO Algorithm Parameters 383
Ant Algorithm Applications 405

xxiii

List of Algorithms

Algorithm Page
3.1 Stochastic Gradient Descent Learning Algorithm 41
3.2 Conjugate Gradient Neural Network Training Algorithm 45
3.3 Fletcher-Reeves Conjugate Gradient Algorithm 46
3.4 Scaled Conjugate Gradient Algorithm 47
3.5 LeapFrog Algorithm 50
4.1 Hebbian Learning Algorithm 57
4.2 Learning Vector Quantizer-I Training Algorithm 61
4.3 Batch Self-Organizing Map 65
4.4 Fast Batch Self-Organizing Map 66
4.5 Growing Self-Organizing Map Algorithm 67
4.6 Shortcut Winner Search 68
5.1 Training an RBFNN with Fixed Centers 77
5.2 Gradient Descent Training of RBFNN 78
5.3 Two-Phase RBFNN Training 79
6.1 RPROP Neural Network Training Algorithm 88
6.2 Connectionist Q-Learning Update Algorithm 90
6.3 Q(\) Connectionist Update Algorithm 90
7.1 Lambda-Gamma Training Rule 117
7.2 Generic Active Learning Algorithm 123
8.1 Generic Evolutionary Algorithm 128
8.2 Roulette Wheel Selection 136
8.3 Stochastic Universal Sampling 137
9.1 Generic Algorithm for Bitstring Crossover 145
9.2 One-Point Crossover Mask Calculation 145
9.3 Two-Point Crossover Mask Calculation 146
9.4 Uniform Crossover Mask Calculation 146
9.5 Gene Scanning Crossover Operator 153
9.6 Uniform/Random Mutation 155
9.7 Inmorder Mutation L 155
9.8 Messy Genetic Algorithm L. 160
9.9 Imteractive Evolution Algorithm 161
9.10 Algorithm to Maintain an Archive of Nondominated Solutions 171
9.11 Nondominated Sorting Genetic Algorithm 173
11.1 Basic Evolutionary Programming Algorithm 188
11.2 Solis and Wets Random Search Algorithm for Function Minimization 204

XXV

xxvi

LIST OF ALGORITHMS

11.3
12.1
12.2
12.3
12.4
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
14.1
14.2
15.1
15.2
15.3
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
17.1

Extinction Evolutionary Programming for Function Minimization . . 205
Evolution Strategy Algorithm 215
Polar Evolution Strategy 227
Pareto Archived Evolution Strategy 232
Archive Update Algorithm used by PAES 232
Differential Evolution Binomial Crossover 240
Differential Evolution Exponential Crossover 240
General Differential Evolution Algorithm 241
Hybrid Differential Evolution with Acceleration and Migration 246
Stochastic Gradient Descent for Neural Network Training 247
Differential Evolution with Stochastic Gradient Descent 248
Rank-Based Crossover Operator for Differential Evolution 249
Rank-Based Mutation Operator for Differential Evolution 249
Angle Modulated Differential Evolution 254
Binary Differential Evolution Algorithm 255
Initialization of Quantum Individuals 258
Cultural Algorithm 262
Fuzzy Rule-base for Cultural Algorithm Acceptance Function 267
Competitive Coevolutionary Algorithm with Two Populations 279
Single Population Competitive Coevolutionary Algorithm 279
Coevolutionary Training of Game Agents 282
gbest PSO Lo 291
best PSO . . o o o o 293
Particle Clustering Algorithm 299
Calculation of Spatial Neighborhoods 318
Selection-Based PSO 321
Global Best Spawning Algorithm 323
Life-Cycle PSO 330
Cooperative Split PSO Algorithm 331
Hybrid of Cooperative Split PSO and GCPSO 333
Selection of Particles to Reinitialize 336
Self-Organized Criticality PSO 337
Multi-start Particle Swarm Optimization 338
binary PSO . .« . o e 341
Coello Coello and Lechuga MOPSO 345
NichePSO Algorithm 351
NichePSO Sub-swarm Creation Algorithm 353
PSO Coevolutionary Game Training Algorithm 357
Artificial Ant Decision Process 363

LIST OF ALGORITHMS xxvii

17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
A1l
A2

Simple ACO Algorithm 367
Ant System Algorithm oL 371
Ant Colony System Algorithm 374
MMAS Algorithm with Periodic Use of the Global-Best Path 377
ANTS Algorithm oL 382
Lumer—Faieta Ant Colony Clustering Algorithm 388
Continuous Ant Colony Optimization Algorithm 397
Multiple Colony ACO Local Sharing Mechanism 400
Basic AIS Algorithm oL 427
Training ALCs with Negative Selection 429
CLONALG Algorithm for Pattern Recognition. 432
A Multi-layered AIS Algorithm 435
Artificial Immune Network (AINE) 437
Resource Allocation in the Artificial Immune Network 438
Self Stabilizing AIS 439
aiNet Learning Algorithm 443
Initialization Phase for an Adaptive Mailbox 446
Running Phase for an Adaptive Mailbox 447
General Local Search Algorithm 556

Simulated Annealing Algorithm 558

Preface to the Second Edition

Man has learned much from studies of natural systems, using what has been learned
to develop new algorithmic models to solve complex problems. This book presents an
introduction to some of these technological paradigms, under the umbrella of compu-
tational intelligence (CI). In this context, the book includes artificial neural networks,
evolutionary computation, swarm intelligence, artificial immune systems, and fuzzy
systems, which are respectively models of the following natural systems: biological
neural networks, evolution, swarm behavior of social organisms, natural immune sys-
tems, and human thinking processes.

Why this book on computational intelligence? Need arose from a graduate course,
where students did not have a deep background of artificial intelligence and mathe-
matics. Therefore the introductory perspective is essential, both in terms of the CI
paradigms and mathematical depth. While the material is introductory in nature, it
does not shy away from details, and does present the mathematical foundations to the
interested reader. The intention of the book is not to provide thorough attention to
all computational intelligence paradigms and algorithms, but to give an overview of
the most popular and frequently used models. For these models, detailed overviews
of different implementations are given. As such, the book is appropriate for beginners
in the CI field. The book is also applicable as prescribed material for a third year
undergraduate course.

In addition to providing an overview of CI paradigms, the book provides insights into
many new developments on the CI research front to tempt the interested reader. As
such, the material is useful to graduate students and researchers who want a broader
view of the different CI paradigms, also researchers from other fields who have no
knowledge of the power of CI techniques, e.g. bioinformaticians, biochemists, mechan-
ical and chemical engineers, economists, musicians and medical practitioners.

The book is organized in six parts. Part I provides a short introduction to the different
CI paradigms and a historical overview. Parts II to VI cover the different paradigms,
and can be reviewed in any order.

Part IT deals with artificial neural networks (NN), including the following topics: Chap-
ter 2 introduces the artificial neuron as the fundamental part of a neural network,
including discussions on different activation functions, neuron geometry and learning
rules. Chapter 3 covers supervised learning, with an introduction to different types
of supervised networks. These include feedforward NNs, functional link NNs, product
unit NNs, cascade NNs, and recurrent NNs. Different supervised learning algorithms
are discussed, including gradient descent, conjugate gradient methods, LeapFrog and

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

XXix

XXX Preface

particle swarm optimization. Chapter 4 covers unsupervised learning. Different un-
supervised NN models are discussed, including the learning vector quantizer and self-
organizing feature maps. Chapter 5 discusses radial basis function NNs. Reinforce-
ment learning is dealt with in Chapter 6. Much attention is given to performance
issues of supervised networks in Chapter 7. The focus of the chapter is on accuracy
measures and ways to improve performance.

Part III introduces several evolutionary computation models. Topics covered include:
an overview of the computational evolution process and basic operators in Chapter 8.
Chapter 9 covers genetic algorithms, Chapter 10 genetic programming, Chapter 11
evolutionary programming, Chapter 12 evolution strategies, Chapter 13 differential
evolution, Chapter 14 cultural algorithms, and Chapter 15 covers coevolution, intro-
ducing both competitive and symbiotic coevolution.

Part IV presents an introduction to two types of swarm-based models: Chapter 16 dis-
cusses particle swarm optimization, while ant algorithms are discussed in Chapter 17.

Artificial immune systems are covered in Part V, with the natural immune system
being discussed in Chapter 18 and a number of artificial immune models in Chapter 19.

Part VI deals with fuzzy systems. Chapter 20 presents an introduction to fuzzy logic
with a discussion of membership functions. Fuzzy inferencing systems are explained
in Chapter 21, while fuzzy controllers are discussed in Chapter 22. An overview of
rough sets is given in Chapter 23.

Throughout the book, assignments are given to highlight certain aspects of the covered
material and to stimulate thought. Some example applications are given where they
seemed appropriate to better illustrate the theoretical concepts.

The accompanying website of this book, which can be located at http://ci.cs.up.ac.za,
provides algorithms to implement many of the CI models discussed in this book.
These algorithms are implemented in Java, and form part of an opensource library,
Cllib, developed by the Computational Intelligence Research Group in the Depart-
ment of Computer Science, University of Pretoria. CIlib (http://cilib.sourceforge.net)
is a generic framework for easy implementation of new CI algoithms, and currently
contains frameworks for particle swarm optimization, neural networks, and evolution-
ary computation. Lists with acronyms and symbols used in the book can also be
downloaded from the book’s website.

As a final remark, it is necessary to thank a number of people who have helped to
produce this book. First of all, thanks to my mother, Magriet Engelbrecht, who has
helped with typing and proofreading most of the text. Also, thanks to Anri Henning
who spent a number of nights proofreading the material. The part on artificial immune
systems was written by one of my PhD students, Attie Graaff. Without his help, this
book would not have been so complete. Lastly, I thank all of my postgraduate students
who have helped with the development of Cllib.

Pretoria, South Africa

Part 1

INTRODUCTION

Chapter 1

Introduction to
Computational Intelligence

A major thrust in algorithmic development is the design of algorithmic models to
solve increasingly complex problems. Enormous successes have been achieved through
the modeling of biological and natural intelligence, resulting in so-called “intelligent
systems”. These intelligent algorithms include artificial neural networks, evolution-
ary computation, swarm intelligence, artificial immune systems, and fuzzy systems.
Together with logic, deductive reasoning, expert systems, case-based reasoning and
symbolic machine learning systems, these intelligent algorithms form part of the field
of Artificial Intelligence (AI). Just looking at this wide variety of AI techniques, Al
can be seen as a combination of several research disciplines, for example, computer
science, physiology, philosophy, sociology and biology.

But what is intelligence? Attempts to find definitions of intelligence still provoke heavy
debate. Dictionaries define intelligence as the ability to comprehend, to understand
and profit from experience, to interpret intelligence, having the capacity for thought
and reason (especially to a high degree). Other keywords that describe aspects of
intelligence include creativity, skill, consciousness, emotion and intuition.

Can computers be intelligent? This is a question that to this day causes more debate
than the definitions of intelligence. In the mid-1900s, Alan Turing gave much thought
to this question. He believed that machines could be created that would mimic the
processes of the human brain. Turing strongly believed that there was nothing the
brain could do that a well-designed computer could not. More than fifty years later
his statements are still visionary. While successes have been achieved in modeling
small parts of biological neural systems, there are still no solutions to the complex
problem of modeling intuition, consciousness and emotion — which form integral parts
of human intelligence.

In 1950 Turing published his test of computer intelligence, referred to as the Turing
test [858]. The test consisted of a person asking questions via a keyboard to both a
person and a computer. If the interrogator could not tell the computer apart from the
human, the computer could be perceived as being intelligent. Turing believed that it
would be possible for a computer with 10° bits of storage space to pass a 5-minute
version of the test with 70% probability by the year 2000. Has his belief come true?
The answer to this question is left to the reader, in fear of running head first into

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

4 1. Introduction to Computational Intelligence

another debate! However, the contents of this book may help to shed some light on
the answer to this question.

A more recent definition of artificial intelligence came from the IEEE Neural Networks
Council of 1996: the study of how to make computers do things at which people are
doing better. A definition that is flawed, but this is left to the reader to explore in
one of the assignments at the end of this chapter.

This book concentrates on a sub-branch of AI, namely Computational Intelligence
(CI) — the study of adaptive mechanisms to enable or facilitate intelligent behavior in
complex and changing environments. These mechanisms include those Al paradigms
that exhibit an ability to learn or adapt to new situations, to generalize, abstract,
discover and associate. The following CI paradigms are covered: artificial neural net-
works, evolutionary computation, swarm intelligence, artificial immune systems, and
fuzzy systems. While individual techniques from these CI paradigms have been ap-
plied successfully to solve real-world problems, the current trend is to develop hybrids
of paradigms, since no one paradigm is superior to the others in all situations. In
doing so, we capitalize on the respective strengths of the components of the hybrid CI
system, and eliminate weaknesses of individual components.

The rest of this chapter is organized as follows: Section 1.1 of this chapter presents a
short overview of the different CI paradigms, also discussing the biological motivation
for each paradigm. A short history of Al is presented in Section 1.2.

At this point it is necessary to state that there are different definitions of what con-
stitutes CI. This book reflects the opinion of the author, and may well cause some
debate. For example, swarm intelligence (SI) and artificial immune systems (AIS)
are classified as CI paradigms, while many researchers consider these paradigms to
belong only under Artificial Life. However, both particle swarm optimization (PSO)
and ant colony optimization (ACQO), as treated under SI, satisfy the definition of CI
given above, and are therefore included in this book as being CI techniques. The same
applies to AISs.

1.1 Computational Intelligence Paradigms

This book considers five main paradigms of Computation Intelligence (CI), namely
artificial neural networks (NN), evolutionary computation (EC), swarm intelligence
(SI), artificial immune systems (AIS), and fuzzy systems (FS). Figure 1.1 gives a
summary of the aim of the book. In addition to CI paradigms, probabilistic methods
are frequently used together with CI techniques, which is also shown in the figure.
Soft computing, a term coined by Lotfi Zadeh, is a different grouping of paradigms,
which usually refers to the collective set of CI paradigms and probabilistic methods.
The arrows indicate that techniques from different paradigms can be combined to form
hybrid systems.

Each of the CI paradigms has its origins in biological systems. NNs model biological

1.1 Computational Intelligence Paradigms 5

Probabilistic
Techniques

Figure 1.1 Computational Intelligence Paradigms

neural systems, EC models natural evolution (including genetic and behavioral evo-
lution), ST models the social behavior of organisms living in swarms or colonies, AIS
models the human immune system, and FS originated from studies of how organisms
interact with their environment.

1.1.1 Artificial Neural Networks

The brain is a complex, nonlinear and parallel computer. It has the ability to perform
tasks such as pattern recognition, perception and motor control much faster than any
computer — even though events occur in the nanosecond range for silicon gates, and
milliseconds for neural systems. In addition to these characteristics, others such as
the ability to learn, memorize and still generalize, prompted research in algorithmic
modeling of biological neural systems — referred to as artificial neural networks (NN).

It is estimated that there is in the order of 10-500 billion neurons in the human cortex,
with 60 trillion synapses. The neurons are arranged in approximately 1000 main
modules, each having about 500 neural networks. Will it then be possible to truly
model the human brain? Not now. Current successes in neural modeling are for small
artificial NNs aimed at solving a specific task. Problems with a single objective can
be solved quite easily with moderate-sized NNs as constrained by the capabilities of
modern computing power and storage space. The brain has, however, the ability to
solve several problems simultaneously using distributed parts of the brain. We still

6 1. Introduction to Computational Intelligence

have a long way to go ...

The basic building blocks of biological neural systems are nerve cells, referred to as
neurons. As illustrated in Figure 1.2, a neuron consists of a cell body, dendrites and
an axon. Neurons are massively interconnected, where an interconnection is between
the axon of one neuron and a dendrite of another neuron. This connection is referred
to as a synapse. Signals propagate from the dendrites, through the cell body to the
axon; from where the signals are propagated to all connected dendrites. A signal is
transmitted to the axon of a neuron only when the cell “fires”. A neuron can either
inhibit or excite a signal.

MNucleus Dendrite

Synapse

Cell Body rﬂ

Axon

Figure 1.2 A Biological Neuron

An artificial neuron (AN) is a model of a biological neuron (BN). Each AN receives
signals from the environment, or other ANs, gathers these signals, and when fired,
transmits a signal to all connected ANs. Figure 1.3 is a representation of an artificial
neuron. Input signals are inhibited or excited through negative and positive numerical
weights associated with each connection to the AN. The firing of an AN and the
strength of the exiting signal are controlled via a function, referred to as the activation
function. The AN collects all incoming signals, and computes a net input signal as
a function of the respective weights. The net input signal serves as input to the
activation function which calculates the output signal of the AN.

input signals

Figure 1.3 An Artificial Neuron

1.1 Computational Intelligence Paradigms 7

An artificial neural network (NN) is a layered network of ANs. An NN may consist
of an input layer, hidden layers and an output layer. ANs in one layer are connected,
fully or partially, to the ANs in the next layer. Feedback connections to previous layers
are also possible. A typical NN structure is depicted in Figure 1.4.

hidden layer

input layer

output layer

Figure 1.4 An Artificial Neural Network

Several different NN types have been developed, for example (the reader should note
that the list below is by no means complete):

single-layer NNs, such as the Hopfield network;

multilayer feedforward NNs, including, for example, standard backpropagation,
functional link and product unit networks;

temporal NNs, such as the Elman and Jordan simple recurrent networks as well
as time-delay neural networks;

self-organizing NNs, such as the Kohonen self-organizing feature maps and the
learning vector quantizer;

combined supervised and unsupervised NNs, e.g. some radial basis function
networks.

These NN types have been used for a wide range of applications, including diagno-
sis of diseases, speech recognition, data mining, composing music, image processing,
forecasting, robot control, credit approval, classification, pattern recognition, planning
game strategies, compression, and many others.

8 1. Introduction to Computational Intelligence

1.1.2 Evolutionary Computation

Evolutionary computation (EC) has as its objective to mimic processes from natural
evolution, where the main concept is survival of the fittest: the weak must die. In
natural evolution, survival is achieved through reproduction. Offspring, reproduced
from two parents (sometimes more than two), contain genetic material of both (or
all) parents — hopefully the best characteristics of each parent. Those individuals
that inherit bad characteristics are weak and lose the battle to survive. This is nicely
illustrated in some bird species where one hatchling manages to get more food, gets
stronger, and at the end kicks out all its siblings from the nest to die.

Evolutionary algorithms use a population of individuals, where an individual is re-
ferred to as a chromosome. A chromosome defines the characteristics of individuals in
the population. Each characteristic is referred to as a gene. The value of a gene is re-
ferred to as an allele. For each generation, individuals compete to reproduce offspring.
Those individuals with the best survival capabilities have the best chance to repro-
duce. Offspring are generated by combining parts of the parents, a process referred
to as crossover. Each individual in the population can also undergo mutation which
alters some of the allele of the chromosome. The survival strength of an individual
is measured using a fitness function which reflects the objectives and constraints of
the problem to be solved. After each generation, individuals may undergo culling, or
individuals may survive to the next generation (referred to as elitism). Additionally,
behavioral characteristics (as encapsulated in phenotypes) can be used to influence the
evolutionary process in two ways: phenotypes may influence genetic changes, and/or
behavioral characteristics evolve separately.

Different classes of evolutionary algorithms (EA) have been developed:

e Genetic algorithms which model genetic evolution.

e Genetic programming which is based on genetic algorithms, but individuals
are programs (represented as trees).

e Evolutionary programming which is derived from the simulation of adaptive
behavior in evolution (phenotypic evolution).

¢ Evolution strategies which are geared toward modeling the strategy parame-
ters that control variation in evolution, i.e. the evolution of evolution.

¢ Differential evolution, which is similar to genetic algorithms, differing in the
reproduction mechanism used.

e Cultural evolution which models the evolution of culture of a population and
how the culture influences the genetic and phenotypic evolution of individuals.

e Coevolution where initially “dumb” individuals evolve through cooperation,
or in competition with one another, acquiring the necessary characteristics to
survive.

Other aspects of natural evolution have also been modeled. For example, mass ex-
tinction, and distributed (island) genetic algorithms, where different populations are
maintained with genetic evolution taking place in each population. In addition, as-
pects such as migration among populations are modeled. The modeling of parasitic

1.1 Computational Intelligence Paradigms 9

behavior has also contributed to improved evolutionary techniques. In this case para-
sites infect individuals. Those individuals that are too weak die. On the other hand,
immunology has been used to study the evolution of viruses and how antibodies should
evolve to kill virus infections.

Evolutionary computation has been used successfully in real-world applications, for
example, data mining, combinatorial optimization, fault diagnosis, classification, clus-
tering, scheduling, and time series approximation.

1.1.3 Swarm Intelligence

Swarm intelligence (SI) originated from the study of colonies, or swarms of social or-
ganisms. Studies of the social behavior of organisms (individuals) in swarms prompted
the design of very efficient optimization and clustering algorithms. For example, sim-
ulation studies of the graceful, but unpredictable, choreography of bird flocks led to
the design of the particle swarm optimization algorithm, and studies of the foraging
behavior of ants resulted in ant colony optimization algorithms.

Particle swarm optimization (PSO) is a stochastic optimization approach, modeled on
the social behavior of bird flocks. PSO is a population-based search procedure where
the individuals, referred to as particles, are grouped into a swarm. Each particle in
the swarm represents a candidate solution to the optimization problem. In a PSO
system, each particle is “flown” through the multidimensional search space, adjusting
its position in search space according to its own experience and that of neighboring
particles. A particle therefore makes use of the best position encountered by itself
and the best position of its neighbors to position itself toward an optimum solution.
The effect is that particles “fly” toward an optimum, while still searching a wide area
around the current best solution. The performance of each particle (i.e. the “closeness”
of a particle to the global minimum) is measured according to a predefined fitness
function which is related to the problem being solved. Applications of PSO include
function approximation, clustering, optimization of mechanical structures, and solving
systems of equations.

Studies of ant colonies have contributed in abundance to the set of intelligent algo-
rithms. The modeling of pheromone depositing by ants in their search for the shortest
paths to food sources resulted in the development of shortest path optimization al-
gorithms. Other applications of ant colony optimization include routing optimization
in telecommunications networks, graph coloring, scheduling and solving the quadratic
assignment problem. Studies of the nest building of ants and bees resulted in the
development of clustering and structural optimization algorithms.

1.1.4 Artificial Immune Systems

The natural immune system (NIS) has an amazing pattern matching ability, used to
distinguish between foreign cells entering the body (referred to as non-self, or antigen)
and the cells belonging to the body (referred to as self). As the NIS encounters antigen,

10 1. Introduction to Computational Intelligence

the adaptive nature of the NIS is exhibited, with the NIS memorizing the structure of
these antigen for faster future response the antigen.

In NIS research, four models of the NIS can be found:

e The classical view of the immune system is that the immune system distin-
guishes between self and non-self, using lymphocytes produced in the lymphoid
organs. These lymphocytes “learn” to bind to antigen.

e Clonal selection theory, where an active B-Cell produces antibodies through
a cloning process. The produced clones are also mutated.

e Danger theory, where the immune system has the ability to distinguish be-
tween dangerous and non-dangerous antigen.

e Network theory, where it is assumed that B-Cells form a network. When a
B-Cell responds to an antigen, that B-Cell becomes activated and stimulates all
other B-Cells to which it is connected in the network.

An artificial immune system (AIS) models some of the aspects of a NIS, and is mainly
applied to solve pattern recognition problems, to perform classification tasks, and to
cluster data. One of the main application areas of AISs is in anomaly detection, such
as fraud detection, and computer virus detection.

1.1.5 Fuzzy Systems

Traditional set theory requires elements to be either part of a set or not. Similarly,
binary-valued logic requires the values of parameters to be either 0 or 1, with similar
constraints on the outcome of an inferencing process. Human reasoning is, however,
almost always not this exact. Our observations and reasoning usually include a mea-
sure of uncertainty. For example, humans are capable of understanding the sentence:
“Some Computer Science students can program in most languages”. But how can a
computer represent and reason with this fact?

Fuzzy sets and fuzzy logic allow what is referred to as approximate reasoning. With
fuzzy sets, an element belongs to a set to a certain degree of certainty. Fuzzy logic
allows reasoning with these uncertain facts to infer new facts, with a degree of certainty
associated with each fact. In a sense, fuzzy sets and logic allow the modeling of common
sense.

The uncertainty in fuzzy systems is referred to as nonstatistical uncertainty, and should
not be confused with statistical uncertainty. Statistical uncertainty is based on the
laws of probability, whereas nonstatistical uncertainty is based on vagueness, impre-
cision and/or ambiguity. Statistical uncertainty is resolved through observations. For
example, when a coin is tossed we are certain what the outcome is, while before toss-
ing the coin, we know that the probability of each outcome is 50%. Nonstatistical
uncertainty, or fuzziness, is an inherent property of a system and cannot be altered or
resolved by observations.

Fuzzy systems have been applied successfully to control systems, gear transmission

1.2 Short History 11

and braking systems in vehicles, controlling lifts, home appliances, controlling traffic
signals, and many others.

1.2 Short History

Aristotle (384-322 bc) was possibly the first to move toward the concept of artificial
intelligence. His aim was to explain and codify styles of deductive reasoning, which
he referred to as syllogisms. Ramon Llull (1235-1316) developed the Ars Magna:
an optimistic attempt to build a machine, consisting of a set of wheels, which was
supposed to be able to answer all questions. Today this is still just a dream — or
rather, an illusion. The mathematician Gottfried Leibniz (1646-1716) reasoned about
the existence of a calculus philosophicus, a universal algebra that can be used to
represent all knowledge (including moral truths) in a deductive system.

The first major contribution was by George Boole in 1854, with his development of the
foundations of propositional logic. In 1879, Gottlieb Frege developed the foundations
of predicate calculus. Both propositional and predicate calculus formed part of the
first Al tools.

It was only in the 1950s that the first definition of artificial intelligence was established
by Alan Turing. Turing studied how machinery could be used to mimic processes of
the human brain. His studies resulted in one of the first publications of Al, entitled
Intelligent Machinery. In addition to his interest in intelligent machines, he had an
interest in how and why organisms developed particular shapes. In 1952 he published
a paper, entitled The Chemical Basis of Morphogenesis — possibly the first studies in
what is now known as artificial life.

The term artificial intelligence was first coined in 1956 at the Dartmouth conference,
organized by John MacCarthy — now regarded as the father of AI. From 1956 to 1969
much research was done in modeling biological neurons. Most notable was the work on
perceptrons by Rosenblatt, and the adaline by Widrow and Hoff. In 1969, Minsky and
Papert caused a major setback to artificial neural network research. With their book,
called Perceptrons, they concluded that, in their “intuitive judgment”, the extension
of simple perceptrons to multilayer perceptrons “is sterile”. This caused research in
NNs to go into hibernation until the mid-1980s. During this period of hibernation a
few researchers, most notably Grossberg, Carpenter, Amari, Kohonen and Fukushima,
continued their research efforts.

The resurrection of NN research came with landmark publications from Hopfield,
Hinton, and Rumelhart and McLelland in the early and mid-1980s. From the late
1980s research in NNs started to explode, and is today one of the largest research
areas in Computer Science.

The development of evolutionary computation (EC) started with genetic algorithms
in the 1950s with the work of Fraser, Bremermann and Reed. However, it is John
Holland who is generally viewed as the father of EC, most specifically of genetic algo-
rithms. In these works, elements of Darwin’s theory of evolution [173] were modeled

12 1. Introduction to Computational Intelligence

algorithmically. In the 1960s, Rechenberg developed evolutionary strategies (ES). In-
dependently from this work, Lawrence Fogel developed evolutionary programming as
an approach to evolve behavioral models. Other important contributions that shaped
the field were by De Jong, Schaffer, Goldberg, Koza, Schwefel, Storn, and Price.

Many people believe that the history of fuzzy logic started with Gautama Buddha
(563 be) and Buddhism, which often described things in shades of gray. However, the
Western community considers the work of Aristotle on two-valued logic as the birth of
fuzzy logic. In 1920 Lukasiewicz published the first deviation from two-valued logic in
his work on three-valued logic — later expanded to an arbitrary number of values. The
quantum philosopher Max Black was the first to introduce quasi-fuzzy sets, wherein
degrees of membership to sets were assigned to elements. It was Lotfi Zadeh who
contributed most to the field of fuzzy logic, being the developer of fuzzy sets [944].
From then, until the 1980s fuzzy systems was an active field, producing names such
as Mamdani, Sugeno, Takagi and Bezdek. Then, fuzzy systems also experienced a
dark age in the 1980s, but was revived by Japanese researchers in the late 1980s.
Today it is a very active field with many successful applications, especially in control
systems. In 1991, Pawlak introduced rough set theory, where the fundamental concept
is that of finding a lower and upper approximation to input space. All elements within
the lower approximation have full membership, while the boundary elements (those
elements between the upper and lower approximation) belong to the set to a certain
degree.

Interestingly enough, it was an unacknowledged South African poet, Eugene N Marais
(1871-1936), who produced some of the first and most significant contributions to
swarm intelligence in his studies of the social behavior of both apes and ants. Two
books on his findings were published more than 30 years after his death, namely The
Soul of the White Ant [560] and The Soul of the Ape [559]. The algorithmic modeling
of swarms only gained momentum in the early 1990s with the work of Marco Dorigo on
the modeling of ant colonies. In 1995, Eberhart and Kennedy [224, 449] developed the
particle swarm optimization algorithm as a model of bird flocks. Swarm intelligence
is in its infancy, and is a promising field resulting in interesting applications.

The different theories in the science of immunology inspired different artificial immune
models (AISs), which are either based on a specific theory on immunology or a combi-
nation of the different theories. The initial classical view and theory of clonal selection
in the natural immune system was defined by Burnet [96] as B-Cells and Killer-T-Cells
with antigen-specific receptors. This view was enhanced by the definition of Bretscher
and Cohn [87] by introducing the concept of a helper T-Cell. Lafferty and Cunning-
ham [497] added a co-stimulatory signal to the helper T-Cell model of Bretscher and
Cohn [87].

The first work in AIS on the modeling of the discrimination between self and non-self
with mature T-Cells was introduced by Forrest et al. [281]. Forrest et al. introduced
a training technique known as the negative selection of T-Cells [281]. The model of
Mori et al [606] was the first to implement the clonal selection theory, which was
applied to optimization problems. The network theory of the natural immune system
was introduced and formulated by Jerne [416] and further developed by Perelson [677].
The theory of Jerne is that the B-Cells are interconnected to form a network of cells

1.3 Assignments 13

[416, 677]). The first mathematical model on the theory of Jerne was proposed by
Farmer et al. [255]. The network theory has been modeled into artificial immune
systems (AISs) for data mining and data analysis tasks. The earliest AIS research
based on the mathematical model of the network theory [255], was published by Hunt
and Cooke [398]. The model of Hunt and Cooke was applied to the recognition of DNA
sequences. The danger theory was introduced by Matzinger [567, 568] and is based
on the co-stimulated model of Lafferty and Cunningham [497]. The main idea of the
danger theory is that the immune system distinguishes between what is dangerous
and non-dangerous in the body. The first work on danger theory inspired AISs was
published by Aickelin and Cayzer [14].

1.3 Assignments

1. Comment on the eligibility of Turing’s test for computer intelligence, and his
belief that computers with 10° bits of storage would pass a 5-minute version of
his test with 70% probability.

2. Comment on the eligibility of the definition of artificial intelligence as given by
the 1996 IEEE Neural Networks Council.

3. Based on the definition of CI given in this chapter, show that each of the
paradigms (NN, EC, SI, AIS, and FS) does satisfy the definition.

Part 11

ARTIFICIAL NEURAL
NETWORKS

Artificial neural networks (NN) were inspired from brain modeling studies. Chapter 1
illustrated the relationship between biological and artificial neural networks. But why
invest so much effort in modeling biological neural networks? Implementations in a
number of application fields have presented ample rewards in terms of efficiency and
ability to solve complex problems. Some of the classes of applications to which artificial
NNs have been applied include:

classification, where the aim is to predict the class of an input vector;

pattern matching, where the aim is to produce a pattern best associated with a
given input vector;

pattern completion, where the aim is to complete the missing parts of a given
input vector;

optimization, where the aim is to find the optimal values of parameters in an
optimization problem;

control, where, given an input vector, an appropriate action is suggested;

function approzimation/times series modeling, indexfunction approximation
where the aim is to learn the functional relationships between input and de-
sired output vectors;

data mining, with the aim of discovering hidden patterns from data — also referred
to as knowledge discovery.

15

16

A neural network is basically a realization of a nonlinear mapping from R’ to R¥, i.e.
,fNN : RI — RK (11)

where I and K are respectively the dimension of the input and target (desired output)
space. The function fyn is usually a complex function of a set of nonlinear functions,
one for each neuron in the network.

Neurons form the basic building blocks of NNs. Chapter 2 discusses the single neuron,
also referred to as the perceptron, in detail. Chapter 3 discusses NNs under the su-
pervised learning regime, while Chapter 4 covers unsupervised learning NNs. Hybrid
supervised and unsupervised learning paradigms are discussed in Chapter 5. Rein-
forcement learning is covered in Chapter 6. Part II is concluded by Chapter 7 which
discusses NN performance issues, with reference to supervised learning.

Chapter 2
The Artificial Neuron

An artificial neuron (AN), or neuron, implements a nonlinear mapping from R’ usually
to [0,1] or [—1,1], depending on the activation function used. That is,

fan iR —[0,1] (2.1)
or

fan R = [1,1] (2.2)
where [is the number of input signals to the AN. Figure 2.1 presents an illustration

of an AN with notational conventions that will be used throughout this text. An AN
receives a vector of I input signals,

z = (21,22, ,21) (2.3)

either from the environment or from other ANs. To each input signal, z;, is associated
a weight, v;, to strengthen or deplete the input signal. The AN computes the net input
signal, and uses an activation function fay to compute the output signal, o, given the
net input. The strength of the output signal is further influenced by a threshold value,
0, also referred to as the bias.

21

22

zr

Figure 2.1 An Artificial Neuron

2.1 Calculating the Net Input Signal

The net input signal to an AN is usually computed as the weighted sum of all input
signals,

I
net = Z Zi; (2.4)
i=1

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

17

18 2. The Artificial Neuron

Artificial neurons that compute the net input signal as the weighted sum of input
signals are referred to as summation units (SU). An alternative to compute the net
input signal is to use product units (PU) [222], where

I
net = H z (2.5)
i=1

Product units allow higher-order combinations of inputs, having the advantage of
increased information capacity.

2.2 Activation Functions

The function fx receives the net input signal and bias, and determines the output (or
firing strength) of the neuron. This function is referred to as the activation function.
Different types of activation functions can be used. In general, activation functions
are monotonically increasing mappings, where (excluding the linear function)

fan(=00) =0 or fan(—o0)=-1 (2.6)
and
fan(o0) =1 (2.7)
Frequently used activation functions are enumerated below:

1. Linear function (see Figure 2.2(a) for § = 0):
fan(net — 6) = A(net —) (2.8)
where A is the slope of the function. The linear function produces a linearly

modulated output, where X is a constant.

2. Step function (see Figure 2.2(b) for § > 0):

fan(net —) = { M et >0 (2.9)

vo if net < 0

The step function produces one of two scalar output values, depending on the
value of the threshold 8. Usually, a binary output is produced for which v; =1
and y2 = 0; a bipolar output is also sometimes used where v =1 and v = —1.

3. Ramp function (see Figure 2.2(c) for § > 0):

y if net — 60 >¢
fan(net—0) =< net —0 if —e <met—0<e (2.10)
—y if net —0 < —e

The ramp function is a combination of the linear and step functions.

2.2 Activation Functions 19
fan(net —0) fan(net — 0)
A
I [
0

net — 0 net — 0

V2

J

(a) Linear function (b) Step function
fan(net — 0) fan(net —0)
A A
IVl IR 1 /J
0 net — 0 /
0=0
net — 0
S —
\ J
(¢) Ramp function (d) Sigmoid function
fan(net — 0) fan(net —0)
A A
1 ,,,,,,,,,,,,,,,,,,,,,,,, -
- =0 /
net — 0
,,,,,,,,,,,,,,,,,,,,,,,, -1

net — 0

(e) Hyperbolic tangent function

(f) Gaussian function

Figure 2.2 Activation Functions

20 2. The Artificial Neuron

4. Sigmoid function (see Figure 2.2(d) for § = 0):

1

S (2.11)

fan(net —6)

The sigmoid function is a continuous version of the ramp function, with
fan(net) € (0,1). The parameter A controls the steepness of the function.
Usually, A = 1.

5. Hyperbolic tangent (see Figure 2.2(e) for 6§ = 0):

e)\(netfe) _ 67/\(net70)

fAN(net o 9) = eA(net—0) + e—Mnet—0) (212)
or also approximated as
2
fAN(net — 6) = m -1 (213)
The output of the hyperbolic tangent is in the range (—1,1).
6. Gaussian function (see Figure 2.2(f) for § = 0):
fan(net —) = e~ (net=0)%/7" (2.14)

where net — 6 is the mean and o the standard deviation of the Gaussian distri-
bution.

2.3 Artificial Neuron Geometry

Single neurons can be used to realize linearly separable functions without any error.
Linear separability means that the neuron can separate the space of I-dimensional in-
put vectors yielding an above-threshold response from those having a below-threshold
response by an I-dimensional hyperplane. The hyperplane forms the boundary be-
tween the input vectors associated with the two output values. Figure 2.3 illustrates
the decision boundary for a neuron with the ramp activation function. The hyperplane
separates the input vectors for which), zjv; —6# > 0 from the input vectors for which
Zi ziv; — 0 < 0.

Figure 2.4 shows how two Boolean functions, AND and OR, can be implemented
using a single perceptron. These are examples of linearly separable functions. For
such simple functions, it is easy to manually determine values for the bias and the
weights. Alternatively, given the input signals and a value for 6, the weight values v;,
can easily be calculated by solving

vZ =10 (2.15)
where Z is the matrix of input patterns as given in the truth tables.

An example of a Boolean function that is not linearly separable is the XOR as illus-
trated in Figure 2.5. A single perceptron can not implement this function. If a single

2.4 Artificial Neuron Learning 21

net —60 <0)""

Figure 2.3 Artificial Neuron Boundary

perceptron is used, then the best accuracy that can be obtained is 75%. To be able
to learn functions that are not linearly separable, a layered NN of several neurons is
required. For example, the XOR function requires two input units, two hidden units
and one output unit.

2.4 Artificial Neuron Learning

The question that now remains to be answered is whether an automated approach
exists for determining the values of the weights v; and the threshold 67 As illustrated
in the previous section, it is easy to calculate these values for simple problems. But
suppose that no prior knowledge exists about the function — except for data — how can
the v; and 6 values be computed? The answer is through learning. The AN learns the
best values for the v; and 6 from the given data. Learning consists of adjusting weight
and threshold values until a certain criterion (or several criteria) is (are) satisfied.

There are three main types of learning;:

e Supervised learning, where the neuron (or NN) is provided with a data set
consisting of input vectors and a target (desired output) associated with each
input vector. This data set is referred to as the training set. The aim of super-
vised training is then to adjust the weight values such that the error between the
real output, o = f(net—60), of the neuron and the target output, ¢, is minimized.

e Unsupervised learning, where the aim is to discover patterns or features in
the input data with no assistance from an external source. Many unsupervised
learning algorithms basically perform a clustering of the training patterns.

¢ Reinforcement learning, where the aim is to reward the neuron (or parts of
a NN) for good performance, and to penalize the neuron for bad performance.

22

2. The Artificial Neuron

Truth Table

29 Decision Boundary

0 0 0
0 1 0
1 0 0
1 1 1

net —6 >0

net — 0 <0

The Artificial Neuron

n—nst 1 T
29 Vo = 1
(a) AND Perceptron
Truth Table 29 Decision Boundary
21 29 21 OR 29 L [|
0 0 0
0 1 1
1 0 1
1 1 1 net —0 >0
The Artificial Neuron
net—0 <0

1 V1 = 2

\ 4T B - 21

@ 21 OR Z9

29 Vo = 2

(b) OR Perceptron

Figure 2.4 Linear Separable Boolean Perceptrons

2.4 Artificial Neuron Learning 23

Truth Table %2 Decision Boundary

21 Z9 Z1 XOR Z9 o
0 0 0

0 1 1

1 0 1

1 1 0

= S

Figure 2.5 XOR Decision Boundaries

Several learning rules have been developed for the different learning types. Before con-
tinuing with these learning rules, we simplify our AN model by introducing augmented
vectors.

2.4.1 Augmented Vectors

An artificial neuron is characterized by its weight vector v, threshold 6 and activation
function. During learning, both the weights and the threshold are adapted. To simplify
learning equations, the input vector is augmented to include an additional input unit,
zr+1, referred to as the bias unit. The value of 274 is always -1, and the weight vy4
serves as the value of the threshold. The net input signal to the AN (assuming SUs)
is then calculated as

I

net = Z ziv; — 0
i=1
I

= E ZiVi + Z14+1V141
i=1
I+1

=)z (2.16)
i=1
where 6 = 271 1v741 = —Vr41.

In the case of the step function, an input vector yields an output of 1 when Zfill ZiV; >
0, and 0 when Zfill ziv; < 0.

The rest of this chapter considers training rules for single neurons.

24 2. The Artificial Neuron

2.4.2 Gradient Descent Learning Rule

While gradient descent (GD) is not the first training rule for ANs, it is possibly the
approach that is used most to train neurons (and NNs for that matter). GD requires
the definition of an error (or objective) function to measure the neuron’s error in
approximating the target. The sum of squared errors

Pr

£=) (tp—op)° (2.17)

p=1

is usually used, where ¢, and o, are respectively the target and actual output for the
p-th pattern, and Pr is the total number of input-target vector pairs (patterns) in the
training set.

The aim of GD is to find the weight values that minimize £. This is achieved by
calculating the gradient of £ in weight space, and to move the weight vector along the
negative gradient (as illustrated for a single weight in Figure 2.6).

Error

A

Minimum . Weight

Figure 2.6 Gradient Descent Illustrated

Given a single training pattern, weights are updated using

vi(t) = v;(t — 1) + Av;(t) (2.18)
with e
Avi(t) = n(—5) (2.19)
where
o0& af

=2, —0,) =——2 2.20
5o, = 2t =005 e (2:20)
and 7 is the learning rate (i.e. the size of the steps taken in the negative direction of
the gradient). The calculation of the partial derivative of f with respect to net, (the
net input for pattern p) presents a problem for all discontinuous activation functions,

2.5 Assignments 25

such as the step and ramp functions; z;, is the i-th input signal corresponding to
pattern p. The Widrow-Hoff learning rule presents a solution for the step and ramp
functions, while the generalized delta learning rule assumes continuous functions that
are at least once differentiable.

2.4.3 Widrow-Hoff Learning Rule

For the Widrow-Hoff learning rule [907], assume that f = net,. Then of _ — 1,

Onet,,
giving
o€
o, = —2(tp, — 0p)Zip (2.21)

Weights are then updated using
vi(t) = v (t — 1) + 2n(ty, — 0p)zip (2.22)

The Widrow-Hoff learning rule, also referred to as the least-means-square (LMS) al-
gorithm, was one of the first algorithms used to train layered neural networks with
multiple adaptive linear neurons. This network was commonly referred to as the
Madaline [907, 908].

2.4.4 Generalized Delta Learning Rule

The generalized delta learning rule is a generalization of the Widrow-Hoff learning rule
that assumes differentiable activation functions. Assume that the sigmoid function
(from equation (2.11)) is used. Then,

of
Tnet, op(1l—o0p) (2.23)

giving
o€
B —2(tp —0p)op(l —0p)z; p (2.24)

2.4.5 Error-Correction Learning Rule

For the error-correction learning rule it is assumed that binary-valued activation func-
tions are used, for example, the step function. Weights are only adjusted when the
neuron responds in error. That is, only when (¢, —0,) = 1 or (¢, —0p,) = —1, are
weights adjusted using equation (2.22).

2.5 Assignments

1. Explain why the threshold 6 is necessary. What is the effect of 6, and what will
the consequences be of not having a threshold?

26

2. The Artificial Neuron

. Explain what the effects of weight changes are on the separating hyperplane.

. Explain the effect of changing 6 on the hyperplane that forms the decision bound-

ary.

. Which of the following Boolean functions can be realized with a single neuron

that implements a SU? Justify your answer by giving weight and threshold values.
(a) 212223
(b) 2129 + Z122
(¢) 214 22

where z125 denotes (21 AND 2z3); z1 + 22 denotes (21 OR z3); Z1 denotes

. Is it possible to use a single PU to learn problems that are not linearly separable?
6. In the calculation of error, why is the error per pattern squared?

7. Can errors be calculated as |t, — o,| instead of (¢, — 0,)? if gradient descent is

used to adjust weights?

. Is the following statement true or false: A single neuron can be used to approz-

imate the function f(z) = 22?7 Justify your answer.

. What are the advantages of using the hyperbolic tangent activation function

instead of the sigmoid activation function?

Chapter 3

Supervised Learning Neural
Networks

Single neurons have limitations in the type of functions they can learn. A single neuron
(implementing a SU) can be used to realize linearly separable functions only. As soon
as functions that are not linearly separable need to be learned, a layered network of
neurons is required. Training these layered networks is more complex than training a
single neuron, and training can be supervised, unsupervised or through reinforcement.
This chapter deals with supervised training.

Supervised learning requires a training set that consists of input vectors and a target
vector associated with each input vector. The NN learner uses the target vector
to determine how well it has learned, and to guide adjustments to weight values to
reduce its overall error. This chapter considers different NN types that learn under
supervision. These network types include standard multilayer NNs, functional link
NN, simple recurrent NNs, time-delay NNs, product unit NNs, and cascade networks.
These different architectures are first described in Section 3.1. Different learning rules
for supervised training are then discussed in Section 3.2. The chapter ends with a
short discussion on ensemble NNs in Section 3.4.

3.1 Neural Network Types

Various multilayer NN types have been developed. Feedforward NNs such as the stan-
dard multilayer NN, functional link NN and product unit NN receive external signals
and simply propagate these signals through all the layers to obtain the result (output)
of the NN. There are no feedback connections to previous layers. Recurrent NNs, on
the other hand, have such feedback connections to model the temporal characteristics
of the problem being learned. Time-delay NNs, on the other hand, memorize a window
of previously observed patterns.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

27

28 3. Supervised Learning Neural Networks

3.1.1 Feedforward Neural Networks

Figure 3.1 illustrates a standard feedforward neural network (FFNN), consisting of
three layers: an input layer (note that some literature on NNs do not count the input
layer as a layer), a hidden layer and an output layer. While this figure illustrates
only one hidden layer, a FFNN can have more than one hidden layer. However, it
has been proved that FFNNs with monotonically increasing differentiable functions
can approximate any continuous function with one hidden layer, provided that the
hidden layer has enough hidden neurons [383]. A FFNN can also have direct (linear)
connections between the input layer and the output layer.

-1

Z1+1 Yj+1

Figure 3.1 Feedforward Neural Network

The output of a FFNN for any given input pattern z, is calculated with a single
forward pass through the network. For each output unit ok, we have (assuming no
direct connections between the input and output layers),

0’9717 = fok(netok,p)
J+1
= fou | D wrsfy, (nety,)
j=1

J+1 I+1
= fOk- Z wkjfyj <Z vjizi,p> (31)
Jj=1 i=1

where f,, and f, are respectively the activation function for output unit oy and

3.1 Neural Network Types 29

hidden unit y;; wy; is the weight between output unit o and hidden unit y;; z;,
is the value of input unit z; of input pattern z,; the (I 4 1)-th input unit and the
(J 4 1)-th hidden unit are bias units representing the threshold values of neurons in
the next layer.

Note that each activation function can be a different function. It is not necessary that
all activation functions be the same. Also, each input unit can implement an activation
function. It is usually assumed that input units have linear activation functions.

Figure 3.2 Functional Link Neural Network

3.1.2 Functional Link Neural Networks

In functional link neural networks (FLNN) input units do implement activation func-
tions (or rather, transformation functions). A FLNN is simply a FFNN with the input
layer expanded into a layer of functional higher-order units [314, 401]. The input layer,
with dimension I, is therefore expanded to functional units hq, hs,- - -, hr, where L is
the total number of functional units, and each functional unit h; is a function of the
input parameter vector (z1,---,z2r), i.e. hi(z1,---,2r) (see Figure 3.2). The weight
matrix U between the input layer and the layer of functional units is defined as

w = { 1 if functional unit h; is dependent of z; (3.2)

0 otherwise

For FLNNSs, v;; is the weight between hidden unit y; and functional link h;.

30 3. Supervised Learning Neural Networks

Calculation of the activation of each output unit og occurs in the same manner as for
FFNNSs, except that the additional layer of functional units is taken into account:

J+1 L
Okp = for | Y whjfy, (Z wh;(z,,)) (3.3)
j=1 1=1

The use of higher-order combinations of input units may result in faster training times
and improved accuracy (see, for example, [314, 401]).

3.1.3 Product Unit Neural Networks

Product unit neural networks (PUNN) have neurons that compute the weighted prod-
uct of input signals, instead of a weighted sum [222, 412, 509]. For product units, the
net input is computed as given in equation (2.5).

Different PUNNs have been suggested. In one type each input unit is connected to
SUs, and to a dedicated group of PUs. Another PUNN type has alternating layers of
product and summation units. Due to the mathematical complexity of having PUs
in more than one hidden layer, this section only illustrates the case for which just
the hidden layer has PUs, and no SUs. The output layer has only SUs, and linear
activation functions are assumed for all neurons in the network. Then, for each hidden
unit y;, the net input to that hidden unit is (note that no bias is included)

I
_ Vji
net?/j,p - H Zip
i=1

I
— Heﬂji ln(zi7p)
i=1

= eXiviin(zip) (3.4)

where z; , is the activation value of input unit z;, and vj; is the weight between input
z; and hidden unit y;.

An alternative to the above formulation of the net input signal for PUs is to include
a “distortion” factor within the product [406], such as

I+1
Vi
net,, == H 25 (3.5)
i=1
where 2741, = —1 for all patterns; v; 741 represents the distortion factor. The purpose

of the distortion factor is to dynamically shape the activation function during training
to more closely fit the shape of the true function represented by the training data.

(= v=T)

If z;,, < 0, then 2;, can be written as the complex number z; , = 2%|z;
that, substituted in (3.4), yields

- . S 2
net — ezi v]llnlzlvplezi ,UJlln,L (36)

Yi.p

3.1 Neural Network Types 31

Let ¢ =0+ 1= a+ br be a complex number representing 2. Then,
Inc=1Inre? =Inr 410 + 27k (3.7
where r = Va2 + b2 = 1.

Considering only the main argument, arg(c), & = 0 which implies that 27k: = 0.
Furthermore, § = 5 for 2 = (0, 1). Therefore, 10 = 17, which simplifies equation (3.10)
to Inc =15, and consequently,

Ine? =m (3.8)

Substitution of (3.8) in (3.6) gives

net,, =~ = e Vit In|zi,pl o305 vjime
I I
COS(Z vj7) +18in (Z UjﬂT)] (3.9)
i=1 i=1

Leaving out the imaginary part ([222] show that the added complexity of including
the imaginary part does not help with increasing performance),

I
net,, == eXi Vi InlZinl ¢og <7r Z 'Uji) (3.10)

— eXiviilnlzipl

i=1
Now, let
I
Pip = Zvﬁ ll’l‘Zi’p| (311)
i=1
I
bip = Zvjizi (3.12)
i=1
with
_ 0 if Zip > 0
Li= { 1 ifz,<0 (3.13)
and z; , # 0.
Then,
nety, = = el’r cos(mg;) (3.14)

The output value for each output unit is then calculated as

J+1

Ok p = for | D whjfy, ("7 cos(ne;) (3.15)

j=1

Note that a bias is now included for each output unit.

32 3. Supervised Learning Neural Networks

3.1.4 Simple Recurrent Neural Networks

Simple recurrent neural networks (SRNN) have feedback connections which add the
ability to also learn the temporal characteristics of the data set. Several different types
of SRNNs have been developed, of which the Elman and Jordan SRNNs are simple
extensions of FFNNs.

01

Context layer

Figure 3.3 Elman Simple Recurrent Neural Network

The Elman SRNN [236], as illustrated in Figure 3.3, makes a copy of the hidden
layer, which is referred to as the context layer. The purpose of the context layer is to
store the previous state of the hidden layer, i.e. the state of the hidden layer at the
previous pattern presentation. The context layer serves as an extension of the input
layer, feeding signals representing previous network states, to the hidden layer. The
input vector is therefore

Z= (21, ", 2141, 2142, " 21+147) (3.16)
actual inputs context units
Context units zyy9,- -, 2141+ are fully interconnected with all hidden units. The

connections from each hidden unit y; (for j = 1,---,J) to its corresponding context

3.1 Neural Network Types 33

unit zryi4; have a weight of 1. Hence, the activation value y; is simply copied to
Z1+144- It is, however, possible to have weights not equal to 1, in which case the
influence of previous states is weighted. Determining such weights adds additional
complexity to the training step.

Each output unit’s activation is then calculated as

J+1 I+14J

Ok,p = fok Zwk]f%(Z vjizim) (3.17)
j=1 i=1

where (2r12,p, s 214140p) = W1p(t = 1), -+ ysp(t —1)).

01

-

Figure 3.4 Jordan Simple Recurrent Neural Network

State layer

Jordan SRNNs [428], on the other hand, make a copy of the output layer instead of
the hidden layer. The copy of the output layer, referred to as the state layer, extends
the input layer to

Z= (21, 2141, 21425 " " s ZI+1+K) (3.18)

actual inputs state units

The previous state of the output layer then also serves as input to the network. For

34 3. Supervised Learning Neural Networks

each output unit,

J+1 I+14+K
Okp = fox Zwkjfyj< > Ujizi,p> (3.19)
j— =1

j=1

where (2142,p,- 21414+ 5.p) = (01,p(t = 1), -, 01 p(t = 1)).

““Q\Q
a(t-1) \@

Q vy
z1(t)

zi(t—1
1(t=1) @ bt
Z](T/ - 2)

@ -
z1(t —mny)

01 Uj 141

Figure 3.5 A Single Time-Delay Neuron

3.1.5 Time-Delay Neural Networks

A time-delay neural network (TDNN) [501], also referred to as backpropagation-
through-time, is a temporal network with its input patterns successively delayed in

3.1 Neural Network Types 35

time. A single neuron with n; time delays for each input unit is illustrated in Fig-
ure 3.5. This type of neuron is then used as a building block to construct a complete
feedforward TDNN.

Initially, only z;,(t), with ¢ = 0, has a value and z; ,(t — t/) iszero foralle=1,---,1
with time steps t = 1, -, ng; ng is the total number of time steps, or number of delayed
patterns. Immediately after the first pattern is presented, and before presentation of

the second pattern,
zip(t —1) = zip(t) (320)

After presentation of t patterns and before the presentation of pattern t + 1, for all
t=1,-,t, / ,
Zi,p(t —t) = Zi,p(t -t +].) (321)

This causes a total of n; patterns to influence the updates of weight values, thus
allowing the temporal characteristics to drive the shaping of the learned function.
Each connection between z; ,(t —t) and z;,(t —t + 1) has a value of 1.

The output of a TDNN is calculated as

J+1 I n
Okp = for | D wksfy, (Z > v zipt) + ZI+1Uj7I+1> (3.22)

j=1 i=1 t=0

3.1.6 Cascade Networks

A cascade NN (CNN) [252, 688] is a multilayer FENN where all input units have direct
connections to all hidden units and to all output units. Furthermore, the hidden units
are cascaded. That is, each hidden unit’s output serves as an input to all succeeding
hidden units and all output units. Figure 3.6 illustrates a CNN.

The output of a CNN is calculated is

I+1 J I+1 j—1
oy = o (S i S wss, (2 . y) (323
1=1 j=1 =1 =1

where uy; represents a weight between output unit k£ and input unit 7, s;; is a weight
between hidden units j and [, and y; is the activation of hidden unit .

At this point it is important to note that training of a CNN consists of finding weight
values and the size of the NN. Training starts with the simplest architecture containing
only the (I 4 1)K direct weights between input and output units (indicated by a solid
square in Figure 3.6). If the accuracy of the CNN is unacceptable one hidden unit
is added, which adds another (I + 1)J + (J — 1) + JK weights to the network. If
J =1, the network includes the weights indicated by the filled squares and circles in
Figure 3.6. When J = 2, the weights marked by filled triangles are added.

36 3. Supervised Learning Neural Networks

Y2

21

O
5 —() ®
O

2

ZI+1 0 o

=]

Figure 3.6 Cascade Neural Network
3.2 Supervised Learning Rules

Up to this point it was shown how NNs can be used to calculate an output value given
an input pattern. This section explains approaches to train the NN such that the
output of the network is an accurate approximation of the target values. First, the
learning problem is explained, and then different training algorithms are described.

3.2.1 The Supervised Learning Problem

Consider a finite set of input-target pairs D = {d, = (zp,t,)|p = 1,---, P} sampled
from a stationary density Q(D), with z; ,,tpp € Rfori=1,---, Jand k=1, ---, K;
z;p is the value of input unit z; and ¢, is the target value of output unit o; for
pattern p. According to the signal-plus-noise model,

ty = l(zy) + G (3.24)

where /1(z) is the unknown function. The input values z; ,, are sampled with probability
density w(z), and the (, are independent, identically distributed noise sampled with
density ¢({), having zero mean. The objective of learning is then to approximate the
unknown function u(z) using the information contained in the finite data set D. For
NN learning this is achieved by dividing the set D randomly into a training set Dy,
a validation set Dy, and a test set Dg (all being dependent from one another). The

3.2 Supervised Learning Rules 37

approximation to u(z) is found from the training set Dp, memorization is determined
from Dy (more about this later), and the generalization accuracy is estimated from
the test set D¢ (more about this later).

Since prior knowledge about Q(D) is usually not known, a nonparametric regression
approach is used by the NN learner to search through its hypothesis space H for a
function fyn (D7, W) which gives a good estimation of the unknown function p(z),
where fyn(Dr, W) € H. For multilayer NNs, the hypothesis space consists of all
functions realizable from the given network architecture as described by the weight
vector W.

During learning, the function fyy : RY — R¥ is found which minimizes the empirical

error
1 &

ST(DT;W) = —Z(FNN(ZP,W) —tp)Q (325)
Pr =
where Pr is the total number of training patterns. The hope is that a small empirical
(training) error will also give a small true error, or generalization error, defined as

Ea (0 W) = / (o (2 W) — £)2dz t) (3.26)

For the purpose of NN learning, the empirical error in equation (3.25) is referred
to as the objective function to be optimized by the optimization method. Several
optimization algorithms for training NNs have been developed [51, 57, 221]. These
algorithms are grouped into two classes:

e Local optimization, where the algorithm may get stuck in a local optimum
without finding a global optimum. Gradient descent and scaled conjugate gra-
dient are examples of local optimizers.

e Global optimization, where the algorithm searches for the global optimum
by employing mechanisms to search larger parts of the search space. Global
optimizers include LeapFrog, simulated annealing, evolutionary algorithms and
swarm optimization.

Local and global optimization techniques can be combined to form hybrid training
algorithms.

Learning consists of adjusting weights until an acceptable empirical error has been
reached. Two types of supervised learning algorithms exist, based on when weights
are updated:

e Stochastic/online learning, where weights are adjusted after each pattern
presentation. In this case the next input pattern is selected randomly from
the training set, to prevent any bias that may occur due to the order in which
patterns occur in the training set.

e Batch/offline learning, where weight changes are accumulated and used to
adjust weights only after all training patterns have been presented.

38 3. Supervised Learning Neural Networks

3.2.2 Gradient Descent Optimization

Gradient descent (GD) optimization has led to one of the most popular learning al-
gorithms, namely backpropagation, popularized by Werbos [897]. Learning iterations
(one learning iteration is referred to as an epoch) consists of two phases:

1. Feedforward pass, which simply calculates the output value(s) of the NN for
each training pattern (as discussed in Section 3.1).

2. Backward propagation, which propagates an error signal back from the out-
put layer toward the input layer. Weights are adjusted as functions of the back-
propagated error signal.

Feedforward Neural Networks

Assume that the sum squared error (SSE) is used as the objective function. Then, for

each pattern, z,,
K 2
1 tep —
& == <Zk=1(kp — Ok.p)) (3.27)

2 K

where K is the number of output units, and t; , and oy, are respectively the target
and actual output values of the k-th output unit.

The rest of the derivations refer to an individual pattern. The pattern subscript,
p, is therefore omitted for notational convenience. Also assume sigmoid activation
functions in the hidden and output layers with augmented vectors. All hidden and
output units use SUs. Then,

1

T (3.28)

ok = fo, (net,,) =

and
1

—_— 3.29
1 + e—netyj ()

yj = fy; (nety;) =

Weights are updated, in the case of stochastic learning, according to the following
equations:

where « is the momentum (discussed later).

In the rest of this section the equations for calculating Awy;(¢) and Av,;(t) are derived.
The reference to time, ¢, is omitted for notational convenience.

From (3.28),
80k 8ka ’

Onet,, - Onet,, = —ok)or = fo, (3.32)

3.2 Supervised Learning Rules 39

and
J+1

Onet,,
= =y 3.33
Owy; a’lUkj Z b Yi ()

where f;k is the derivative of the corresponding activation function. From equations
(3.32) and (3.33),

dop, 0o, Onet,,
Ow; Onet,, Owg;
= (1 —ok)ory,
= fo¥ (3.34)

From equation (3.27),

gi Doy, (Z tk — or)) = —(tr — ok) (3.35)

Define the output error that needs to be back-propagated as 6,, = dfet Then, from
equation (3.35) and (3.32),
OF
0oy, = 3
neto,
_ op oo
oy Oneto,
= —(tx —on)(1 — o)or = —(tx — k) fo, (3.36)

Then, the changes in the hidden-to-output weights are computed from equations
(3.35), (3.34) and (3.36) as
ok
o <o)

6wkj
BE 80k
80;C awkj
= —100,Y; (3.37)

Continuing with the input-to-hidden weights,

9y; Ofy, /
= J — 1 o) o
Onet,, Onety, (I —yj)y; =, "

(3.38)

J

and

Onet,, =
i _ i | = 2 3.39
dv;; Oy (Z Vjizi | = Zi (3.39)

=1

40 3. Supervised Learning Neural Networks

From equations (3.38) and (3.39),

0y; dy; Onety,
i Onet,, Ovj;
= (1-yj)yjz = f;,jzz' (3.40)
and
J+1
Onet,, 0
= WijYj | = Wky 3.41
dy; Oy, ; " ! (3.41)

From equations (3.36) and (3.41),
OE 0 [1&)
= = Z (=N (-o
> (3)
K a_E doi, Onet,,
Ooy, Onet,, Oy;

k=1
B X OE Onet,,
= Onet,, Oy,
K
= Zéokwkj (342)

E
Il
-

Define the hidden layer error, which needs to be back-propagated, from equations
(3.42) and (3.38) as,

oF
6 =
Y Onet,,
9F 9y,
Jy; Onet,,

K
= > Go,wiif,, (3.43)
k=1

Finally, the changes to input-to-hidden weights are calculated from equations (3.42),
(3.40) and (3.43) as
oF
Avy; = —
E 77(3%‘)
OF ayj

—Ua—yj dvji
= —ndy, 2 (3.44)

If direct weights from the input to the output layer are included, the following addi-
tional weight updates are needed:

OF
Aug; = U(—auk)

3.2 Supervised Learning Rules 41

_, 9E 0o,
naok 8uki
= _77§okzi (345)

where uy; is a weight from the i-th input unit to the k-th output unit.

In the case of batch learning, weights are updated as given in equations (3.30) and
(3.31), but with

Pr

Awgi(t) = > Awpjp(t) (3.46)
p=1
Pr

Avji(t) = > Avji,(t) (3.47)

where Awy; () and Avy; ,(t) are weight changes for individual patterns p, and Py is
the total number of patterns in the training set.

Stochastic learning is summarized in Algorithm 3.1.

Algorithm 3.1 Stochastic Gradient Descent Learning Algorithm

Initialize weights, 1, «, and the number of epochs ¢ = 0;
while stopping condition(s) not true do
Let ST = 0;
for each training pattern p do
Do the feedforward phase to calculate y;, (V j=1,---,J) and oy
vV k=1,---,K);
Compute output error signals d,, , and hidden layer error signals J,
Adjust weights wy; and v;; (backpropagation of errors);

Er+=[& = Zkl-(zl(tk,p - Ok,p)%

j,p7?

end
t=1t+1;
end

Stopping criteria usually includes:

e Stop when a maximum number of epochs has been exceeded.

e Stop when the mean squared error (MSE) on the training set,

P K
_ D pm1 2= (trp — On,p)’
B PrK

&r (3.48)

is small enough (other error measures such as the root mean squared error can
also be used).

e Stop when overfitting is observed, i.e. when training data is being memorized.
An indication of overfitting is when & > £y + og,, where €y is the average

42 3. Supervised Learning Neural Networks

validation error over the previous epochs, and o¢,, is the standard deviation in
validation error.

It is straightforward to apply GD optimization to the training of FLNNs, SRNNs and
TDNNSs, so derivations of the weight update equations are left to the reader. GD
learning for PUNNSs is given in the next section.

Product Unit Neural Networks

This section derives learning equations for PUs used in the hidden layer only, assuming
GD optimization and linear activation functions. Since only the equations for the
input-to-hidden weights change, only the derivations of these weight update equations
are given. The change Avj;; in weight vj; is

ok
Avji = n(—av“>
Jt

OE mety,
n Onet,, = Ovj;
Onet

— 4
P (3.49)

“M%;.p
where J,, is the error signal, computed in the same way as for SUs, and

I
L‘etyj'p e a H ZUJl
8’Uji avji LP

i=1

0
= (€777 cos(mdjp))

811]‘1‘
= ePir[ln|z | cos(mp;) — Limsin(mo;)] (3.50)

A major advantage of product units is an increased information capacity compared
to summation units [222, 509]. Durbin and Rumelhart showed that the information
capacity of a single PU (as measured by its capacity for learning random Boolean
patterns) is approximately 31, compared to 21 for a single SU ([is the number of inputs
to the unit) [222]. The larger capacity means that functions approximated using PUs
will require less processing elements than required if SUs were used. This point can be
illustrated further by considering the minimum number of processing units required
for learning the simple polynomial functions in Table 3.1. The minimal number of
SUs were determined using a sensitivity analysis variance analysis pruning algorithm
[238, 246], while the minimal number of PUs is simply the number of different powers
in the expression (provided a polynomial expression).

While PUNNSs provide the advantage of having smaller network architectures, a major
drawback of PUs is an increased number of local minima, deep ravines and valleys. The
search space for PUs is usually extremely convoluted. Gradient descent, which works
best when the search space is relatively smooth, therefore frequently gets trapped in
local minima or becomes paralyzed (which occurs when the gradient of the error with

3.2 Supervised Learning Rules 43

Table 3.1 SUs and PUs Needed for Simple Functions

Function SUs PUs

f(z) = z2 2 1
1) = 31
f(z)=2%+ z 3 2
f(z1,20) = 2325 —0.525 8 2

respect to the current weight is close to zero). Leerink et al. [509] illustrated that
the 6-bit parity problem could not be trained using GD and PUs. Two reasons were
identified to explain why GD failed: (1) weight initialization and (2) the presence of
local minima. The initial weights of a network are usually computed as small random
numbers. Leerink et al. argued that this is the worst possible choice of initial weights,
and suggested that larger initial weights be used instead. But, large weights lead to
large weight updates due to the exponential term in the weight update equation (see
equation (3.50)), which consequently cause the network to overshoot the minimum.
Experience has shown that GD only manages to train PUNNs when the weights are
initialized in close proximity of the optimal weight values — the optimal weight values
are, however, usually not available.

As an example to illustrate the complexity of the search space for PUs, consider the
approximation of the function f(z) = 23, with z € [~1,1]. Only one PU is needed,
resulting in a 1-1-1 NN architecture (that is, one input, one hidden and one output
unit). In this case the optimal weight values are v = 3 (the input-to-hidden weight)
and w = 1 (the hidden-to-output weight). Figures 3.7(a)-(b) present the search space
for v € [-1,4] and w € [—1,1.5]. The error is computed as the mean squared error over
500 randomly generated patterns. Figure 3.7(b) clearly illustrates 3 minima, with the
global minimum at v = 3, w = 1. These minima are better illustrated in Figure 3.7(c)
where w is kept constant at its optimum value of 1. Initial small random weights will
cause the network to be trapped in one of the local minima (having very large MSE).
Large initial weights may also be a bad choice. Assume an initial weight v > 4. The
derivative of the error with respect to v is extremely large due to the steep gradient of
the error surface. Consequently, a large weight update will be made which may cause
jumping over the global minimum. The neural network either becomes trapped in a
local minimum, or oscillates between the extreme points of the error surface.

A global stochastic optimization algorithm is needed to allow searching of larger parts
of the search space. The optimization algorithm should also not rely heavily on the
calculation of gradient information. Simulated annealing [509], genetic algorithms
[247, 412], particle swarm optimization [247, 866] and LeapFrog [247] have been used
successfully to train PUNNs.

3. Supervised Learning Neural Networks

44

ESEY KRS FaL
T f
L +++

£,

+

i

i

_ftﬁ m., ﬁ ﬁr{w
+t
ﬁ++ %;

"y

i

+t

¥

W

&
i
i

7

+1ﬁahﬁ

"
Wi

oLt g b ity

0
0
[}

Z7oo
s30

0
0
¢

0
!
¢

2000
1800
1600
1400
1200
1000

140

o

1.5 2 2.5 3 3.5 4

v1

-0.5 O O.5 1

-1

(a)

T T T T T T T T T
H L]
+ thy
ff
i E
p ot
+
L + 4
gt f
L + i
ti +y '
+
+++
L +++ 4
| 2 .
4
"
+F
L ++++ 4
+
| | _+ | | | | | |
o] o] o] 0 o} o} 0 0 0 o] o]
o] 5] 0 N a ¢} [0 ¥]
& = = = r r
N

1.5 2 25 3 3.5 4

v

-0.5 O 0.5 1

-1

Figure 3.7 Product Unit Neural Network Search Space for f(z) = z

3.2 Supervised Learning Rules 45

3.2.3 Scaled Conjugate Gradient

Conjugate gradient optimization trades off the simplicity of GD and the fast quadratic
convergence of Newton’s method. Several conjugate gradient learning algorithms have
been developed (look at the survey in [51]), most of which are based on the assumption
that the error function of all weights in the region of the solution can be accurately
approximated by

1
Er(Dp,w) = §WTHW — 0w

where H is the Hessian matrix. Since the dimension of the Hessian matrix is the total
number of weights in the network, the calculation of conjugate directions on the error
surface becomes computationally infeasible. Computationally feasible conjugate gra-
dient algorithms compute conjugate gradient directions without explicitly computing
the Hessian matrix, and perform weight updates along these directions.

Algorithm 3.2 Conjugate Gradient Neural Network Training Algorithm

Initialize the weight vector, w(0);
Define the initial direction vector as

p(0) = —& (w(0)) = § — Hw(0) (3.51)

fort=1,...,n, do
Calculate the step size,

n(t) = - W) P (3.52)
Calculate a new weight vector,

w(t+1) = w(t) +n(t)p(t) (3.53)
Calculate scale factors,

E(wt+1)TE (w(t+1)

= e win) (354
Calculate a new direction vector,
p(t+1)=—-Ew(t+1))+ B(t)p(t) (3.55)

end
Return weight vector, w(t + 1);

An important aspect in conjugate gradient methods is that of direction vectors,
{p(0),p(1),...,p(t — 1)}. These vectors are created to be conjugate with the weight
vector, w. That is, p? (t;)wp(t2) = 0 for t; # t5. A new conjugate direction vector
is generated at each iteration by adding to the calculated current negative gradient
vector of the error function a linear combination of the previous direction vectors. The
standard conjugate gradient algorithm is summarized in Algorithm 3.2. Note that this

46 3. Supervised Learning Neural Networks

algorithm assumes a quadratic error function, in which case the algorithm converges
in no more than n,, steps, where n,, is the total number of weights and biases.

Algorithm 3.3 Fletcher-Reeves Conjugate Gradient Algorithm

Initialize the weight vector, w(0);
Calculate the gradient, £ (w(0));
Compute the first direction vector as p(0) = —& (w(0));
while stopping conditions(s) not true do
fort=0,...,n, —1do
Calculate the step size,

n(t) = min E(w(t) +np(t)) (3.56)

Calculate a new weight vector,

w(t+1) =w(t) +n(t)p(t) (3.57)

Calculate scale factors,

_5(w(t+1)7E (w(t+1)
) = =)T (w0 (3.58)
Calculate a new direction vector,

p(t+1)=—E (w(t+1))+ B(t)p(t) (3.59)

end

if stopping condition(s) not true then

w(0) = w(ny) (3.60)

end

end

Return w(n,,) as the solution;

The Fletcher-Reeves conjugate gradient algorithm does not assume a quadratic error
function. The algorithm restarts after n,, iterations if a solution has not yet been
found. The Fletcher-Reeves conjugate gradient algorithm is summarized in Algo-
rithm 3.3.

The scale factors in Algorithms 3.2 and 3.3 can also be calculated in the following
ways:

e Polak-Ribiere method:

(3.61)

3.2 Supervised Learning Rules 47

e Hestenes-Stiefer method:

(3.62)

Algorithm 3.4 Scaled Conjugate Gradient Algorithm

Initialize the weight vector w(1) and the scalars o > 0,A; > 0 and \ = 0;
Let p(1) = r(1) = =& (w(1)), t = 1 and success = true;
Label A: if success = true then
Calculate the second-order information;
end
Scale s(t);
if 6(t) < 0 then
Make the Hessian matrix positive definite;
end
Calculate the step size;
Calculate the comparison parameter;
if A(t) > 0 then
A successful reduction in error can be made, so adjust the weights;
A(t) = 0;
success = true;
if ¢ mod n,, = 0 then
Restart the algorithm, with p(t + 1) = r(t + 1) and go to label A;
end
else
Create a new conjugate direction;
end
if A(t) > 0.75 then
Reduce the scale parameter with () = $A(¢);

end
end

else
A reduction in error is not possible, so let A\(t) = A(t) and success = false;
end
if A(t) < 0.25 then
Increase the scale parameter to A(t) = 4\(¢);
end
if the steepest descent direction r(t) # 0 then
Set t =t + 1 and go to label A;
end
else
Terminate and return w(t + 1) as the desired minimum;
end

Mpgller [533] proposed the scaled conjugate gradient (SCG) algorithm as a batch learn-
ing algorithm. Step sizes are automatically determined, and the algorithm is restarted

48 3. Supervised Learning Neural Networks

after n,, iterations if a good solution was not found. The SCG is summarized in
Algorithm 3.4. With reference to the different steps of this algorithm, find detail
below:

e Calculation of second-order information:

0= e (3:63)
G - 0 D)= (w0 -
5 = p(t)s(1) (3.65)

where p(t)7 is the transpose of vector p(t), and ||p(t)|| is the Euclidean norm.

e Perform scaling:

e Make the Hessian matrix positive definite:

s = s o)
(t) = s()+ (/\(t) 2||p(t ||2) p(t) (3.68)
— _ t)
At) = 2 ()\ ||p Dl |2 (3.69)
8(t) = —o6(t) + AP (3.70)
At) = A1) (3.71)
e Calculate the step size:
p(t) = pt)'r(t) (3.72)
nt) = Z((f)) (3.73)

Calculate the comparison parameter:

Age) = 2IEW() =~ Ew(D) + n(1)p(D)] 61
p(t)?
e Adjust the weights:
wt+1) = w(t)+n(t)p(t) (3.75
rt+1) = =& (w(t+1)) 3.76
e Create a new conjugate direction:
B) = et +1)|12 —x(t +1)Tr(t) (3.77)

p(t)
pt+1) = r({+1)+8@)p@H) (3.78)

3.3 Functioning of Hidden Units 49

The algorithm restarts each n,, consecutive epochs for which no reduction in error
could be achieved, at which point the algorithm finds a new direction to search. The
function to calculate the derivative, & (w) = g—vgv, computes the derivative of £ with
respect to each weight for each of the patterns. The derivatives over all the patterns

are then summed, i.e.

o€ o€
5 = > (3.79)

where w; is a single weight.

3.2.4 LeapFrog Optimization

LeapFrog is an optimization approach based on the physical problem of the motion
of a particle of unit mass in an n-dimensional conservative force field [799, 800]. The
potential energy of the particle in the force field is represented by the function to be
minimized — in the case of NNs, the potential energy is the MSE. The objective is to
conserve the total energy of the particle within the force field, where the total energy
consists of the particle’s potential and kinetic energy. The optimization method sim-
ulates the motion of the particle, and by monitoring the kinetic energy, an interfering
strategy is adapted to appropriately reduce the potential energy. The LeapFrog NN
training algorithm is given in Algorithm 3.5. The reader is referred to [799, 800] for
more information on this approach.

3.2.5 Particle Swarm Optimization

Particle swarm optimization (PSO), which is a stochastic population-based search
method (refer to Chapter 16), can be used to train a NN. In this case, each particle
represents a weight vector, and fitness is evaluated using the MSE function (refer to
Section 16.7 for more detail on NN training using PSO). What should be noted is
that weights and biases are adjusted without using any error signals, or any gradient
information. Weights are also not adjusted per training pattern. The PSO velocity
and position update equations are used to adjust weights and biases, after which the
training set is used to calculate the fitness of a particle (or NN) in Pr feedforward
passes.

Evolutionary algorithms can also be used in a similar way to train NNs.

3.3 Functioning of Hidden Units

Section 2.3 illustrated the geometry and functioning of a single perceptron. This
section illustrates the tasks of the hidden units in supervised NNs. For this purpose,
consider a standard FFNN consisting of one hidden layer employing SUs. To simplify
visual illustrations, consider the case of two-dimensional input for classification and
one-dimensional input for function approximation.

50 3. Supervised Learning Neural Networks

Algorithm 3.5 LeapFrog Algorithm

Create a random initial solution w(0), and let ¢t = —1,;
Let At = 0.5,6 = 1,m = 3,8, = 0.001,e = 1075,i = 0, = 2,5 = 0, p = 1;
Compute the initial acceleration a(0) = —VE(w(0)) and velocity v(0) =
repeat
t=t+1;
Compute ||Aw(t)]] = [|v(t)]|At;
if ||[Aw(t)|| < 0 then
p=p+ 1, At = pAt;
end
else
v(t) = Sv(t)/(Al V(1))
end
if s > m then
At = At/2, s = 0;
wit) = (w(t) +w(t — 1))/2;
v(t) = (v{t) + v{t — 1)) /4
end
w(t+1) =w(t) + v(t)At;
repeat
a(t+1)=-VEW(t+1));
v(t+1) =v(t) +alt+ 1)At
if a”(t 4 1)a(t) > 0 then

1a(0)At;

s =0;
end
else
s=s+1,p=1;
end

if ||a(t + 1)|| > € then
if [|[v(t+1)|| > [|v(¢)|| then

1 = 0;

end

else
w(t+2)=(w(t+1)+w(t))/2;
i =1+ 1;

Perform a restart: if i < j then
v(it+1)=(v(t+1)+v(t)/4

t=1t+1;
end
else
vit+1)=0,j=1t=t+1;
end
end
end

until [|[v(t + 1| > [[v(D)][;
until [|a(t+1)|| < €
Return w(t) as the solution;

3.4 Ensemble Neural Networks 51

Figure 3.8 Feedforward Neural Network Classification Boundary Illustration

For classification problems, the task of hidden units is to form the decision boundaries
to separate different classes. Figure 3.8 illustrates the boundaries for a three-class
problem. Solid lines represent boundaries. For this artificial problem ten boundaries
exist. Since each hidden unit implements one boundary, ten hidden units are required
to perform the classification as illustrated in the figure. Less hidden units can be used,
but at the cost of an increase in classification error. Also note that in the top left corner
there are misclassifications of class x, being part of the space for class . This problem
can be solved by using three additional hidden units to form these boundaries. How
can the number of hidden units be determined without using any prior knowledge
about the input space? This very important issue is dealt with in Chapter 7, where
the relationship between the number of hidden units and performance is investigated.

In the case of function approximation, assuming a one-dimensional function as depicted
in Figure 3.9, five hidden units with sigmoid activation functions are required to learn
the function. A sigmoid function is then fitted for each inflection point of the target
function. The number of hidden units is therefore the number of turning points plus
one. In the case of linear activation functions, the hidden units perform the same task.
However, more linear activation functions may be required to learn the function to the
same accuracy as obtained using sigmoid functions.

3.4 Ensemble Neural Networks

Training of NNs starts on randomly selected initial weights. This means that each
time a network is retrained on the same data set, different results can be expected,
since learning starts at different points in the search space; different NNs may disagree,
and make different errors. This problem in NN training prompted the development of

52 3. Supervised Learning Neural Networks

3 T T T T T T T T
True function ¢

Output

_2 Il Il Il Il Il Il Il Il

-1 08 -06 -04 02 0 02 04 06 08 1
Input Value

Figure 3.9 Hidden Unit Functioning for Function Approximation

ensemble networks, where the aim is to optimize results through the combination of a
number of individual networks, trained on the same task.

In its most basic form, an ensemble network — as illustrated in Figure 3.10 — consists
of a number of NNs all trained on the same data set, using the same architecture
and learning algorithm. At convergence of the individual NN members, the results of
the different NNs need to be combined to form one, final result. The final result of
an ensemble can be calculated in several ways, of which the following are simple and
efficient approaches:

e Select the NN within the ensemble that provides the best generalization perfor-
mance.

e Take the average over the outputs of all the members of the ensemble.

e Form a linear combination of the outputs of each of the NNs within the ensemble.
In this case a weight, w,, is assigned to each network as an indication of the
credibility of that network. The final output of the ensemble is therefore a
weighted sum of the outputs of the individual networks.

The combination of inputs as discussed above is sensible only when there is disagree-
ment among the ensemble members, or if members make their errors on different parts
of the search space.

Several adaptations of the basic ensemble model are of course possible. For example,
instead of having each NN train on the same data set, different data sets can be
used. One such approach is bagging, which is a bootstrap ensemble method that
creates individuals for its ensemble by training each member network on a random
redistribution of the original training set [84]. If the original training set contained

3.4 Ensemble Neural Networks 53

Output
Combination

Figure 3.10 Ensemble Neural Network

Pr patterns, then a data set of Pr patterns is randomly sampled from the original
training set for each of the ensemble members. This means that patterns may be
duplicated in the member training sets. Also, not all of the patterns in the original
training set will necessarily occur in the member training sets.

Alternatively, the architectures of the different NNs may differ. Even different NN
types can be used. It is also not necessary that each of the members be trained using
the same optimization algorithm.

The above approaches to ensemble networks train individual NNs in parallel, indepen-
dent of one another. Much more can be gained under a cooperative ensemble strategy,
where individual NNs (referred to as agents) exchange their experience and knowledge
during the training process. Research in such cooperative agents is now very active,
and the reader is recommended to read more about these.

One kind of cooperative strategy for ensembles is referred to as boosting [220, 290].
With boosting, members of the ensemble are not trained in parallel. They are trained
sequentially, where already trained members filter patterns into easy and hard pat-
terns. New, untrained members of the ensemble then focus more on the hard patterns
as identified by previously trained networks.

54

3. Supervised Learning Neural Networks

3.5 Assignments

1.

Give an expression for oy, for a FFNN with direct connections between the
input and output layer.

2. Why is the term (—1)%-+1 possible in equation (3.5)?

3. Explain what is meant by the terms overfitting and underfitting. Why is &y >

Ev + og, a valid indication of overfitting?

. Investigate the following aspects:

(a) Are direct connections between the input and output layers advantageous?
Give experimental results to illustrate.

(b) Compare a FFNN and an Elman RNN trained using GD. Use the following
function as benchmark: z; = 1+ 0.32z;_9 — 1.422_;, with 21,29 ~ U(—1,1),
sampled from a uniform distribution in the range (—1,1).

(¢) Compare stochastic learning and batch learning using GD for the function
0y = 2z where z; = 0.3z — 0.62¢4—_4 + 0.524_1 + 0.32?_6 — 0.223_4 + (¢, and
2zt ~U(—1,1) for t =1,---,10, and ¢ ~ N(0,0.05).

(d) Compare GD and SCG on any classification problem from the
UCI machine learning repository at http://www.ics.uci.edu/
~mlearn/MLRepository.html.

(e) Show if PSO performs better than GD in training a FFNN.

. Assume that gradient descent is used as the optimization algorithm, and derive

learning equations for the Elman SRNN, the Jordan SRNN, TDNN and FLNN.

6. Explain how a SRNN learns the temporal characteristics of data.

7. Show how a FLNN can be used to fit a polynomial through data points given in

10.

11.

12.

13.
14.
15.

a training set.

Explain why bias for only the output units of a PUNN, as discussed in this
chapter, is sufficient. In other words, the PUs do not have a bias. What will be
the effect if a bias is included in the PUs?

Explain why the function f(z1, z2) = 2323 — 0.52% requires only two PUs, if it is
assumed that PUs are only used in the hidden layer, with linear activations in
both the hidden and output layers.

Assume that a PUNN with PUs in the hidden layer, SUs in that output layer,
and linear activation functions in all layers, is used to approximate a polynomial.
Explain why the minimal number of hidden units is simply the total number of
non-constant, unique terms in the polynomial.

What is the main requirement for activation and error functions if gradient
descent is used to train supervised neural networks?

What is the main advantage of using recurrent neural networks instead of feed-
forward neural networks?

What is the main advantage in using PUs instead of SUs?
Propose a way in which a NN can learn a functional mapping and its derivative.

Show that the PUNN as given in Section 3.1.3 implements a polynomial approx-
imation.

Chapter 4

Unsupervised Learning
Neural Networks

An important feature of NNs is their ability to learn from their environment. Chapter 3
covered NN types that learned under the guidance of a supervisor or teacher. The
supervisor presents the NN learner with an input pattern and a desired response.
Supervised learning NNs then try to learn the functional mapping between the input
and desired response vectors. In contrast to supervised learning, the objective of
unsupervised learning is to discover patterns or features in the input data with no
help from a teacher. This chapter deals with the unsupervised learning paradigm.

Section 4.1 presents a short background on unsupervised learning. Hebbian learning
is presented in Section 4.2, while Section 4.3 covers principal component learning,
Section 4.4 covers the learning vector quantizer version I, and Section 4.5 discusses
self-organizing feature maps.

4.1 Background

Aristotle observed that human memory has the ability to connect items (e.g. objects,
feelings and ideas) that are similar, contradictory, that occur in close proximity, or
in succession [473]. The patterns that we associate may be of the same or different
types. For example, a photo of the sea may bring associated thoughts of happiness, or
smelling a specific fragrance may be associated with a certain feeling, memory or visual
image. Also, the ability to reproduce the pitch corresponding to a note, irrespective of
the form of the note, is an example of the pattern association behavior of the human
brain.

Artificial neural networks have been developed to model the pattern association abil-
ity of the human brain. These networks are referred to as associative memory NNs.
Associative memory NNs are usually two-layer NNs, where the objective is to adjust
the weights such that the network can store a set of pattern associations — without
any external help from a teacher. The development of these associative memory NNs
is mainly inspired from studies of the visual and auditory cortex of mammalian or-
ganisms, such as the bat. These artificial NNs are based on the fact that parts of the

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

95

56 4. Unsupervised Learning Neural Networks

brain are organized such that different sensory inputs are represented by topologically
ordered computational maps. The networks form a topographic map of the input
patterns, where the coordinates of the neurons correspond to intrinsic features of the
input patterns.

An additional feature modeled with associative memory NNs is to preserve old infor-
mation as new information becomes available. In contrast, supervised learning NNs
have to retrain on all the information when new data becomes available; if not, super-
vised networks tend to focus on the new information, forgetting what the network has
already learned.

Unsupervised learning NNs are functions that map an input pattern to an associated
target pattern, i.e.
fNN . RI — RK (41)

as illustrated in Figure 4.1. The single weight matrix determines the mapping from
the input vector z to the output vector o.

<1 2 I

Figure 4.1 Unsupervised Neural Network

4.2 Hebbian Learning Rule

The Hebbian learning rule, named after the neuropsychologist Hebb, is the oldest and
simplest learning rule. With Hebbian learning [203], weight values are adjusted based
on the correlation of neuron activation values. The motivation of this approach is
from Hebb’s hypothesis that the ability of a neuron to fire is based on that neuron’s
ability to cause other neurons connected to it to fire. In such cases the weight between
the two correlated neurons is strengthened (or increased). Using the notation from

4.2 Hebbian Learning Rule 57

Figure 4.1, the change in weight at time step ¢ is given as
Aug () = nokpzip (4.2)
Weights are then updated using
Ugi(t) = ugi(t — 1) + Aug;(¢) (4.3)
where 7 is the learning rate.

From equation (4.2), the adjustment of weight values is larger for those input-output
pairs for which the input value has a greater effect on the output values.

The Hebbian learning rule is summarized in Algorithm 4.1. The algorithm terminates
when there is no significant change in weight values, or when a specified number of
epochs has been exceeded.

Algorithm 4.1 Hebbian Learning Algorithm

Initialize all weights such that uy; =0, Vi=1,---, T and Vk=1,---, K;
while stopping condition(s) not true do
for each input pattern z, do
Compute the corresponding output vector o,;
end
Adjust the weights using equation (4.3);
end

A problem with Hebbian learning is that repeated presentation of input patterns leads
to an exponential growth in weight values, driving the weights into saturation. To
prevent saturation, a limit is posed on the increase in weight values. One type of limit
is to introduce a nonlinear forgetting factor:

Aug; (t) = N0k p2ip — YOk pUii (t — 1) (4.4)
where + is a positive constant, or equivalently,
Augi(t) = Y0r,p[B2ip — uri(t — 1)] (4.5)

with 8 = n/v. Equation (4.5) implies that inputs for which z; , < ug;(t — 1)/ have
their corresponding weights uy; decreased by a value proportional to the output value
ok,p.- When z; , > ug;(t — 1)/, weight uy, is increased proportional to oy, p.

Sejnowski proposed another way to formulate Hebb’s postulate, using the covariance
correlation of the neuron activation values [773]:

Augi(t) = nl(zi.p — Zi) (0k,p —)] (4.6)

with

Pr
Zi = Z Zi’p/P (47)
p=1

58 4. Unsupervised Learning Neural Networks

Pr

on = Y opp/P (4.8)

=1

Another variant of the Hebbian learning rule uses the correlation in the changes in
activation values over consecutive time steps. For this learning rule, referred to as
differential Hebbian learning,

Aug;(t) = nAz(t) Aok (t — 1) (4.9)
where
Azz(t) = Zi)p(t) — Zi)p(t — 1) (410)
and
Aop(t—1) =0 p(t — 1) — 0 p(t — 2) (4.11)

4.3 Principal Component Learning Rule

Principal component analysis (PCA) [426] is a statistical technique used to transform
a data space into a smaller space of the most relevant features. The aim is to project
the original I-dimensional space onto an ["_dimensional linear subspace, where ' <
I, such that the variance in the data is maximally explained within the smaller I'-
dimensional space. Features (or inputs) that have little variance are thereby removed.
The principal components of a data set are found by calculating the covariance (or
correlation) matrix of the data patterns, and by getting the minimal set of orthogonal
vectors (the eigenvectors) that span the space of the covariance matrix. Given the
set of orthogonal vectors, any vector in the space can be constructed with a linear
combination of the eigenvectors.

Oja developed the first principal components learning rule, with the aim of extract-
ing the principal components from the input data [635]. Oja’s principal components
learning rule is an extension of the Hebbian learning rule, referred to as normalized
Hebbian learning, to include a feedback term to constrain weights. In doing so, prin-
cipal components could be extracted from the data. The weight change is given as

Aukl(t) = uki(t) — u;ﬂ-(t —].)
= NOkplzip = Ok puri(t —1)]
= N0k pZip — N0k puki(t — 1) (4.12)
—_ —
Hebbian forgetting factor
The first term corresponds to standard Hebbian learning (refer to equation (4.2)),

while the second term is a forgetting factor to prevent weight values from becoming
unbounded.

The value of the learning rate, 1, above is important to ensure convergence to a stable
state. If i is too large, the algorithm will not converge due to numerical unstability.
If 1 is too small, convergence is extremely slow. Usually, the learning rate is time

4.4 Learning Vector Quantizer-I 59

dependent, starting with a large value that decays gradually as training progresses.
To ensure numerical stability of the algorithm, the learning rate 7 (t) for output unit
o must satisfy the inequality:

1
1.2\

0 <ni(t) < (4.13)

where \j is the largest eigenvalue of the covariance matrix of the inputs to the unit
[636]. A good initial value is given as 1;,(0) = 1/[2ZT Z], where Z is the input matrix.

Cichocki and Unbehauen [130] provided an adaptive learning rate that utilizes a for-
getting factor, 7, as follows:

M (t) = m (4.14)
with]
e (0) = 20) (4.15)

Usually, 0.9 <y < 1.

The above can be adapted to allow the same learning rate for all the weights in the

following way:
1

w0 = o (416)
with]
ne(0) = O (4.17)

Sanger [756] developed another principal components learning algorithm, similar to
that of Oja, referred to as generalized Hebbian learning. The only difference is the
inclusion of more feedback information and a decaying learning rate 7(t):

k

Aupi(t) = n(t)[zi,p08.p —0kp Y it — 1)0j,] (4.18)

Hebbian =0

For more information on principal component learning, the reader is referred to the
summary in [356].

4.4 Learning Vector Quantizer-I

One of the most frequently used unsupervised clustering algorithms is the learning
vector quantizer (LVQ) developed by Kohonen [472, 474]. While several versions of
LVQ exist, this section considers the unsupervised version, LVQ-I.

Ripley [731] defined clustering algorithms as those algorithms where the purpose is to
divide a set on n observations into m groups such that members of the same group

60 4. Unsupervised Learning Neural Networks

are more alike than members of different groups. The aim of a clustering algorithm is
therefore to construct clusters of similar input vectors (patterns), where similarity is
usually measured in terms of Euclidean distance. LVQ-I performs such clustering.

The training process of LVQ-I to construct clusters is based on competition. Referring
to Figure 4.1, each output unit o, represents a single cluster. The competition is among
the cluster output units. During training, the cluster unit whose weight vector is the
“closest” to the current input pattern is declared as the winner. The corresponding
weight vector and that of neighboring units are then adjusted to better resemble the
input pattern. The “closeness” of an input pattern to a weight vector is usually
measured using the Euclidean distance. The weight update is given as

R C e LR

where 7(¢) is a decaying learning rate, and ky, ,(t) is the set of neighbors of the winning
cluster unit oj for pattern p. It is, of course, not strictly necessary that LVQ-I makes
use of a neighborhood function, thereby updating only the weights of the winning
output unit.

21 1 2

5 D
o Uno
0
oY g)
3

(a) Clustering Problem (b) LVQ-I network

22 21 Z

Figure 4.2 Learning Vector Quantizer to Illustrate Clustering

An illustration of clustering, as done by LVQ-I, is given in Figure 4.2. The input
space, defined by two input units z; and 2o, is represented in Figure 4.2(a), while
Figure 4.2(b) illustrates the LVQ-I network architecture required to form the clusters.
Note that although only three classes exist, four output units are necessary — one for
each cluster. Less output units will lead to errors since patterns of different classes
will be grouped in the same cluster, while too many clusters may cause overfitting.
For the problem illustrated in Figure 4.2(a), an additional cluster unit may cause a
separate cluster to learn the single x in cluster 4.

The Kohonen LVQ-I algorithm is summarized in Algorithm 4.2. For the LVQ-I, weights
are either initialized to random values, sampled from a uniform distribution, or by

4.4 Learning Vector Quantizer-I 61

Algorithm 4.2 Learning Vector Quantizer-I Training Algorithm

Initialize the network weights, the learning rate, and the neighborhood radius;
while stopping condition(s) not true do
for each pattern p do
Compute the Euclidean distance, dj ;,, between input vector z, and each
weight vector ug = (ug1, g2, -, UKr) as

di.p(2p, ur) = (4.20)

Find the output unit oy for which the distance dy , is the smallest;
Update all the weights for the neighborhood kj, , using equation (4.19);
end
Update the learning rate;
Reduce the neighborhood radius at specified learning iterations;
end

taking the first input patterns as the initial weight vectors. For the example in Fig-
ure 4.2(b), the latter will result in the weights u11 = 21,1, w12 = 22,1, U21 = 21,2, U2z =
22,25 etc.

Stopping conditions may be

e a maximum number of epochs is reached,
e stop when weight adjustments are sufficiently small,
e a small enough quantization error has been reached, where the quantization error

is defined as »
> ooty 17y — ukll3

or - ==L (4.21)

One problem that may occur in LVQ networks is that one cluster unit may dominate
as the winning cluster unit. The danger of such a scenario is that most patterns will
be in one cluster. To prevent one output unit from dominating, a “conscience” factor
is incorporated in a function to determine the winning output unit. The conscience
factor penalizes an output for winning too many times. The activation value of output
units is calculated using

_J U for miny{dp(2p, ug) = bx()}
Okp = { 0 otherwise (4.22)
where)
bi(t) = 7(7 — gx(?)) (4.23)
and

9r(t) = gi(t = 1) + B(okp — g(t = 1)) (4.24)

62 4. Unsupervised Learning Neural Networks

In the above, dj, ;, is the Euclidean distance as defined in equation (4.20), I is the total
number of input units, and g;(0) = 0. Thus, by(0) = 4, which initially gives each
output unit an equal chance to be the winner; b (¢) is the conscience factor defined
for each output unit. The more an output unit wins, the larger the value of gi(t)
becomes, and b (t) becomes larger negative. Consequently, a factor b (¢)| is added to
the distance dj, ,. Usually, for normalized inputs, 8 = 0.0001 and v = 10.

4.5 Self-Organizing Feature Maps

Kohonen developed the self-organizing feature map (SOM) [474, 475, 476], as moti-
vated by the self-organization characteristics of the human cerebral cortex. Studies of
the cerebral cortex showed that the motor cortex, somatosensory cortex, visual cortex
and auditory cortex are represented by topologically ordered maps. These topological
maps form to represent the structures sensed in the sensory input signals.

The self-organizing feature map is a multidimensional scaling method to project an
I-dimensional input space to a discrete output space, effectively performing a com-
pression of input space onto a set of codebook vectors. The output space is usually a
two-dimensional grid. The SOM uses the grid to approximate the probability density
function of the input space, while still maintaining the topological structure of input
space. That is, if two vectors are close to one another in input space, so is the case
for the map representation.

The SOM closely resembles the learning vector quantizer discussed in the previous
section. The difference between the two unsupervised algorithms is that neurons are
usually organized on a rectangular grid for SOM, and neighbors are updated to also
perform an ordering of the neurons. In the process, SOMs effectively cluster the
input vectors through a competitive learning process, while maintaining the topological
structure of the input space.

Section 4.5.1 explains the standard stochastic SOM training rule, while a batch version
is discussed in Section 4.5.2. A growing approach to SOM is given in Section 4.5.3.
Different approaches to speed up the training of SOMs are overviewed in Section 4.5.4.
Section 4.5.5 explains the formation of clusters for visualization purposes. Section 4.5.6
discusses in brief different ways how the SOM can be used after training.

4.5.1 Stochastic Training Rule

SOM training is based on a competitive learning strategy. Assume I-dimensional
input vectors z,, where the subscript p denotes a single training pattern. The first
step of the training process is to define a map structure, usually a two-dimensional
grid (refer to Figure 4.3). The map is usually square, but can be of any rectangular
shape. The number of elements (neurons) in the map is less than the number of
training patterns. Ideally, the number of neurons should be equal to the number of
independent training patterns.

4.5 Self-Organizing Feature Maps 63

O O O O O O/ Map
o o o O O O

Input Vector

Figure 4.3 Self-organizing Map

Each neuron on the map is associated with and I-dimensional weight vector that forms
the centroid of one cluster. Larger cluster groupings are formed by grouping together
“similar” neighboring neurons.

Initialization of the codebook vectors can occur in various ways:

e Assign random values to each weight wy; = (wij1, Wij2, - - -, Wi 1), with K the
number of rows and J the number of columns of the map. The initial values
are bounded by the range of the corresponding input parameter. While random
initialization of weight vectors is simple to implement, this form of initialization
introduces large variance components into the map which increases training time.

e Assign to the codebook vectors randomly selected input patterns. That is,
Wi = Zp (4.25)

with p ~ U(1, Pr).

This approach may lead to premature convergence, unless weights are perturbed
with small random values.

e Find the principal components of the input space, and initialize the codebook
vectors to reflect these principal components.

e A different technique of weight initialization is due to Su et al. [818], where
the objective is to define a large enough hyper cube to cover all the training
patterns [818]. The algorithm starts by finding the four extreme points of the
map by determining the four extreme training patterns. Firstly, two patterns
are found with the largest inter-pattern Euclidean distance. A third pattern is

64 4. Unsupervised Learning Neural Networks

located at the furthest point from these two patterns, and the fourth pattern
with largest Euclidean distance from these three patterns. These four patterns
form the corners of the map. Weight values of the remaining neurons are found
through interpolation of the four selected patterns, in the following way:

— Weights of boundary neurons are initialized as

WiJ — W11

Wy = 71 (j—1)+wn (4.26)
Wi = % (G—1)+ w1 (4.27)
T % (k—1) + w11 (4.28)
Wiy = % (k—1) +wiy (4.29)

forall j=2,---,J—land k=2,--- K — 1.
— The remaining codebook vectors are initialized as

Wiy — Wk

J—-1
forall j=2,---,J—land k=2,--- K — 1.

(J—1)+wii (4.30)

Wik =

The standard training algorithm for SOMs is stochastic, where codebook vectors are
updated after each pattern is presented to the network. For each neuron, the associated
codebook vector is updated as

Wi (t+1) = W (8) + Pnn i (1) 2p — Wi (2)] (4.31)

where mn is the row and column index of the winning neuron. The winning neuron is
found by computing the Euclidean distance from each codebook vector to the input
vector, and selecting the neuron closest to the input vector. That is,

(Wi = 2p|l2 = min{{|w; — 2|3} (4.32)

The function hy,, ;(t) in equation (4.31) is referred to as the neighborhood function.
Thus, only those neurons within the neighborhood of the winning neuron mn have
their codebook vectors updated. For convergence, it is necessary that Ay, x;(t) — 0
when t — oc.

The neighborhood function is usually a function of the distance between the coordi-
nates of the neurons as represented on the map, i.e.

honn,gej () = B(|lemn — cijll3, 1) (4.33)

with the coordinates ¢y, cr; € R?. With increasing value of ||cp, — cxi]|3 (that is,
neuron kj is further away from the winning neuron mn), hpmn x; — 0. The neighbor-
hood can be defined as a square or hexagon. However, the smooth Gaussian kernel is

mostly used:
_ H(‘%nn—(’kj\\g

hann s (8) = m(t)e 2720 (4.34)

4.5 Self-Organizing Feature Maps 65

where 7)(¢) is the learning rate and o(t) is the width of the kernel. Both 7(t) and o(t)
are monotonically decreasing functions.

The learning process is iterative, continuing until a “good” enough map has been
found. The quantization error is usually used as an indication of map accuracy, defined
as the sum of Euclidean distances of all patterns to the codebook vector of the winning

neuron, i.e.
Pr

Er=2_llzy — wan(0)l3 (4.35)
p=1

Training stops when Er is sufficiently small.

4.5.2 Batch Map

The stochastic SOM training algorithm is slow due to the updates of weights after each
pattern presentation: all the weights are updated. Batch versions of the SOM training
rule have been developed that update weight values only after all patterns have been
presented. The first batch SOM training algorithm was developed by Kohonen [475],
and is summarized in Algorithm 4.3.

Algorithm 4.3 Batch Self-Organizing Map

Initialize the codebook vectors by assigning the first K.J training patterns to them,
where K J is the total number of neurons in the map;
while stopping condition(s) not true do
for each neuron, kj do
Collect a list of copies of all patterns z, whose nearest codebook vector
belongs to the topological neighborhood of that neuron;
end
for each codebook vector do
Compute the codebook vector as the mean over the corresponding list of
patterns;

end
end

Based on the batch learning approach above, Kaski et al. [442] developed a faster
version, as summarized in Algorithm 4.4.

4.5.3 Growing SOM

One of the design problems when using a SOM is deciding on the size of the map. Too
many neurons may cause overfitting of the training patterns, with each training pattern
assigned to a different neuron. Alternatively, the final SOM may have succeeded in
forming good clusters of similar patterns, but with many neurons with a zero or close
to zero frequency. The frequency of a neuron refers to the number of patterns for

66 4. Unsupervised Learning Neural Networks

Algorithm 4.4 Fast Batch Self-Organizing Map

Initialize the codebook vectors, wy;, using any initialization approach;
while stopping condition(s) not true do
for each neuron, kj do
Compute the mean over all patterns for which that neuron is the winner;
Denote the average by Wy;;
end
Adapt the weight values for each codebook vector using

o an Nnmhnm,kjwnm
an Nnmhnm,kj

where nm iterates over all neurons, IV, is the number of patterns for which
neuron nm is the winner, and hym ;5 is the neighborhood function which

indicates if neuron nm is in the neighborhood of neuron kj, and to what degree.
end

which that neuron is the winner, referred to as the best matching neuron (BMN). Too
many neurons also cause a substantial increase in computational complexity. Too few
neurons, on the other hand, will result in clusters with a high variance among the
cluster members.

An approach to find near optimal SOM architectures is to start training with a small
architecture, and to grow the map when more neurons are needed. One such SOM
growing algorithm is given in Algorithm 4.5, assuming a square map structure. Note
that the map-growing process coexists with the training process.

Growing of the map is stopped when any one of the following criteria is satisfied:

e the maximum map size has been reached;
e the largest neuron quantization error is less than a user specified threshold, ¢;

e the map has converged to the specified quantization error.

A few aspects of the growing algorithm above need some explanation. These are the
constants €, 7y, and the maximum map size as well as the different stopping conditions.
A good choice for v is 0.5. The idea of the interpolation step is to assign a weight
vector to the new neuron ab such that it removes patterns from neuron kj with the
largest quantization erro in order to reduce the error of that neuron. A value less than
0.5 will position neuron ab closer to kj, with the chance that more patterns will be
removed from neuron kj. A value larger than 0.5 will have the opposite effect.

The quantization error threshold, €, is important to ensure that a sufficient map size
is constructed. A small value for € may result in a too large map architecture, while
a too large € may result in longer training times to reach a large enough architecture.

An upper bound on the size of the map is easy to determine: it is simply the number
of training patterns, Pp. This is, however, undesirable. The maximum map size is

4.5 Self-Organizing Feature Maps 67

Algorithm 4.5 Growing Self-Organizing Map Algorithm

Initialize the codebook vectors for a small, undersized SOM;
while stopping condition(s) not true do
while growing condition not triggered do
Train the SOM for ¢ pattern presentations using any SOM training method;
end
if grow condition is met then
Find the neuron kj with the largest quantization error;
Find the furthest immediate neighbor mn in the row-dimension of the map,
and the furthest neuron rs in the column-dimension;
Insert a column between neurons kj and rs and a row between neurons kj
and mn (this step preserves the square structure of the map);
For each neuron ab in the new column, initialize the corresponding codebook
vectors wg; using
Wab = Y(Wa,p—1 + Wabt1) (4.37)

and for each neuron in the new row,

Wap = Y(Wa-1,6 + Wat1,) (4.38)

where v € (0,1)
end
end

Refine the weights of the final SOM architecture with additional training steps until
convergence has been reached.

rather expressed as BPr, with 8 € (0,1). Ultimately, the map size should be at least
equal to the number of independent variables in the training set. The optimal value
of (3 is problem dependent, and care should be taken to ensure that 3 is not too small
if a growing SOM is not used. If this is the case, the final map may not converge to
the required quantization error since the map size will be too small.

4.5.4 Improving Convergence Speed

Training of SOMs is slow, due to the large number of weight updates involved (all
the weights are updated for standard SOM training). Several mechanisms have been
developed to reduce the number of training calculations, thereby improving speed
of convergence. BatchMap is one such mechanism. Other approaches include the
following:

Optimizing the neighborhood

If the Gaussian neighborhood function as given in equation (4.34) is used, all neurons
will be in the neighborhood of the BMN, but to different degrees, due to the asymptotic

68 4. Unsupervised Learning Neural Networks

characteristics of the function. Thus, all codebook vectors are updated even if they
are far from the BMN. This is strictly not necessary, since neurons far away from the
BMN are dissimilar to the presented pattern, and will have negligible weight changes.
Many calculations can therefore be saved by clipping the Gaussian neighborhood at a
certain threshold — without degrading the performance of the SOM.

Additionally, the width of the neighborhood function can change dynamically during
training. The initial width is large, with a gradual decrease in the variance of the
Gaussian, which controls the neighborhood. For example,

o(t) = o(0)e™t/™ (4.39)
where 7y is a positive constant, and ¢(0) is the initial, large variance.

If the growing SOM (refer to Section 4.5.3) is used, the width of the Gaussian neigh-
borhood function should increase with each increase in map size.

Learning Rate

A time-decaying learning rate may be used, where training starts with a large learning
rate which gradually decreases. That is,

n(t) =n(0)e~"/™ (4.40)

where 7 is a positive constant and 7(0) is the initial, large learning rate.

Shortcut Winner Search

The shortcut winner search decreases the computational complexity by using a more
efficient search for the BMN. The search is based on the premise that the BMN of a
pattern is in the vicinity of the BMN for the previous epoch. The search for a BMN is
therefore constrained to the current BMN and its neighborhood. In short, the search
for a BMN for each pattern is summarized in Algorithm 4.6.

Algorithm 4.6 Shortcut Winner Search

Retrieve the previous BMN;
Calculate the distance of the pattern to the codebook vector of the previous BMN;
Calculate the distance of the pattern to all direct neighbors of the previous BMN;
if the previous BMN is still the best then
Terminate the search;
end
else
Let the new BMN be the neuron (within the neighborhood) closest to that
pattern;
end

4.5 Self-Organizing Feature Maps 69

Shortcut winner search does not perform a search for the BMN over the entire map,
but just within the neighborhood of the previous BMN, thereby substantially reducing
computational complexity.

4.5.5 Clustering and Visualization

The effect of the SOM training process is to cluster together similar patterns, while
preserving the topology of input space. After training, all that is given is the set of
trained weights with no explicit cluster boundaries. An additional step is required to
find these cluster boundaries.

One way to determine and visualize these cluster boundaries is to calculate the unified
distance matrix (U-matrix) [403], which contains a geometrical approximation of the
codebook vector distribution in the map. The U-matrix expresses for each neuron,
the distance to the neighboring codebook vectors. Large values within the U-matrix
indicate the position of cluster boundaries. Using a gray-scale scheme, Figure 4.4(a)
visualizes the U-matrix for the iris classification problem.

For the same problem, Figure 4.4(b) visualizes the clusters on the actual map. Bound-
aries are usually found by using Ward clustering [23] of the codebook vectors. Ward
clustering follows a bottom-up approach where each neuron initially forms its own
cluster. At consecutive iterations, two clusters that are closest to one another are
merged, until the optimal or specified number of clusters has been constructed. The
end result of Ward clustering is a set of clusters with a small variance over its members,
and a large variance between separate clusters.

The Ward distance measure is used to decide which clusters should be merged. The
distance measure is defined as

)

dps = ——||w, — w,]||? 4.41

rs TLT+TL3|| T S||2 ()

where r and s are cluster indices, n, and ns are the number of patterns within the

clusters, and w, and w, are the centroid vectors of these clusters (i.e. the average

of all the codebook vectors within the cluster). The two clusters are merged if their
distance, d,s, is the smallest. For the newly formed cluster, g,

1
w, = m(ner + nswy) (4.42)
and
Ng = Ny + N (4.43)

Note that, in order to preserve topological structure, two clusters can only be merged if
they are adjacent. Furthermore, only clusters that have a nonzero number of patterns
associated with them are merged.

70 4. Unsupervised Learning Neural Networks

U-Matrix - Iris Clusters - iris

00 02 04 06 0811 1313517

(a) U-Matrix (b) Map Illustration

[Component 3] - iris [Component 4] - iris

-0 07 -04 02 01 04 07 03 -0 07 -04 01 01 04 07 10
(¢) Component Map for Third Input (d) Component Map for Fourth Input

Figure 4.4 Visualization of SOM Clusters for Iris Classification

4.6 Assignments 71

4.5.6 Using SOM

The SOM has been applied to a variety of real-world problems, including image analy-
sis, speech recognition, music pattern analysis, signal processing, robotics, telecom-
munications, electronic-circuit design, knowledge discovery, and time series analysis.
The main advantage of SOMs comes from the easy visualization and interpretation of
clusters formed by the map.

In addition to visualizing the complete map as illustrated in Figure 4.4(b), the relative
component values in the codebook vectors can be visualized as illustrated in the same
figure. Here a component refers to an input attribute. That is, a component plane
can be constructed for each input parameter (component) to visualize the distribution
of the corresponding weight (using some color scale representation). The map and
component planes can be used for exploratory data analysis. For example, a marked
region on the visualized map can be projected onto the component planes to find the
values of the input parameters for that region.

A trained SOM can also be used as a classifier. However, since no target information is
available during training, the clusters formed by the map should be manually inspected
and labeled. A data vector is then presented to the map, and the winning neuron
determined. The corresponding cluster label is then used as the class.

Used in recall mode, the SOM can be used to interpolate missing values within a
pattern. Given such a pattern, the BMN is determined, ignoring the inputs with
missing values. A value is then found by either replacing the missing value with the
corresponding weight of the BMN, or through interpolation among a neighborhood of
neurons (e.g. take the average of the weight values of all neurons in the neighborhood
of the BMN).

4.6 Assignments

1. Implement and test a LVQ-I network to distinguish between different alphabet-
ical characters of different fonts.

2. Explain why it is necessary to retrain a supervised NN on all the training data,
including any new data that becomes available at a later stage. Why is this not
such an issue with unsupervised NNs?

3. Discuss an approach to optimize the LVQ-I network architecture.
4. How can PSO be used for unsupervised learning?

5. What is the main difference between the LVQ-I and SOM as an approach to
cluster multi-dimensional data?

6. For a SOM, if the training set contains Pr patterns, what is the upper bound
on the number of neurons necessary to fit the data? Justify your answer.

7. Explain the purpose of the neighborhood function of SOMs.

8. Assuming a Gaussian neighborhood function for SOMs, what can be done to
reduce the number of weight updates in a sensible way?

72

4. Unsupervised Learning Neural Networks

10.

11.
12.
13.

Explain how a SOM can be used to distinguish among different hand gestures.

Discuss a number of ways in which the SOM can be adapted to reduce its com-
putational complexity.

Explain how a SOM can be used as a classifier.
Explain how it is possible for the SOM to train on data with missing values.

How can a trained SOM be used to determine an appropriate value if for a given
input pattern an attribute does not have a value.

Chapter 5

Radial Basis Function
Networks

Several neural networks have been developed for both the supervised and the unsu-
pervised learning paradigms. While these NNs were seen to perform very well in their
respective application fields, improvements have been developed by combining super-
vised and unsupervised learning. This chapter discusses two such learning algorithms,
namely the learning vector quantizer-II in Section 5.1 and radial basis function NNs
in Section 5.2.

5.1 Learning Vector Quantizer-11

The learning vector quantizer (LVQ-II), developed by Kohonen, uses information from
a supervisor to implement a reward and punish scheme. The LVQ-II assumes that the
classifications of all input patterns are known. If the winning cluster unit correctly
classifies the pattern, the weights to that unit are rewarded by moving the weights to
better match the input pattern. On the other hand, if the winning unit misclassified
the input pattern, the weights are penalized by moving them away from the input
vector.

For the LVQ-II, the weight updates for the winning output unit o are given as

ip — Uki(t — if opp =t
Ay = {10 = kit = D] i oy = 1, .
u {—n<t>[zz—,p—um<t—1>} if opp %t (5.1)

Similarly to the LVQ-I, a conscience factor can be incorporated to penalize frequent
winners.

5.2 Radial Basis Function Neural Networks

A radial basis function (RBF) neural network (RBFNN) is a FFNN where hidden units
do not implement an activation function, but represents a radial basis function. An
RBFNN approximates a desired function by superposition of nonorthogonal, radially

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

73

74 5. Radial Basis Function Networks

symmetric functions. RBFNNs have been independently proposed by Broomhead and
Lowe [92], Lee and Kill [506], Niranjan and Fallside [630], and Moody and Darken
[605] as an approach to improve accuracy and to decrease training time complexity.

The RBFNN architecture is overviewed in Section 5.2.1, while different radial basis
functions are discussed in Section 5.2.2. Different training algorithms are given in
Section 5.2.3. Variations of RBFNNs are discussed in Section 5.2.4.

5.2.1 Radial Basis Function Network Architecture

-1

Figure 5.1 Radial Basis Function Neural Network

Figure 5.1 illustrates a general architecture of the RBFNN. The architecture is very
similar to that of a standard FFNN, with the following differences:

e Hidden units implement a radial basis function, ®. The output of each hidden
unit is calculated as
Yin(2p) = ([[2p — pl2) (5.2)
where 1; represents the center of the basis function, and || e ||2 is the Euclidean
norm.
e Weights from the input units to a hidden unit, referred to as ji;;, represent the
center of the radial basis function of hidden unit j.

5.2 Radial Basis Function Neural Networks 75

e Some radial basis functions are characterized by a width, o;. For such basis
functions, the weight from the basis unit in the input layer to each hidden unit
represents the width of the basis function. Note that input unit zyy; has an
input signal of +1.

The output of an RBFNN is calculated as

J+1
Ok,p = Z Wk;Y5,p (5.3)
j=1

Note that the output units of an RBFNN implement linear activation functions. The
output is therefore just a linear combination of basis functions.

As with FFNNs, it has been shown that RBFNNs are universal approximators [47,
349, 682].

5.2.2 Radial Basis Functions

Each hidden unit implements a radial basis function. These functions, also referred to
as kernel functions, are strictly positive, radially symmetric functions. A radial basis
function (RBF) has a unique maximum at its center, p;, and the function usually
drops off to zero rapidly further away from the center. The output of a hidden unit
indicates the closeness of the input vector, z,, to the center of the basis function.

In addition to the center of the function, some RBFs are characterized by a width,
0, which specifies the width of the receptive field of the RBF in the input space for
hidden unit j.

A number of RBFs have been proposed [123, 130]:

e Linear function, where

O(llzp — pill2) = llzp — w2 (5.4)

Cubic function, where
O(|lzp — pll2) = ll2p — m5l13 (5.5)

Thin-plate-spline function, where

O(|lzp — p5l2) = llzp — sll3 I [z — 1512 (5.6)
e Multiquadratic function, where

O(||zp — pill2s 05) = \/lzp — 133 + 03 (5.7)

e Inverse multiquadratic function, where
1

b2, — pylar3) = __
A/ l1zp — 15113 +oj

76 5. Radial Basis Function Networks

¢ Gaussian function, where
—llzp—p; |2/ (202
D(||zp — |2, oj) = e~ N1Zo—Hill2/ (2o (5.9)

e Logistic function, where

1
11 ollzo—ralB/o3—0;

O([lzp — njll2 05) =
where 6; is an adjusted bias.

Considering the above functions, the accuracy of an RBFNN is influenced by:

e The number of basis functions used. The more basis functions that are
used, the better the approximation of the target function will be. However,
unnecessary basis functions increase computational complexity.

e The location of the basis functions as defined by the center vector, p;, for
each basis function. Basis functions should be evenly distributed to cover the
entire input space.

e For some functions, the width of the receptive field, o;. The larger o; is, the
more of the input space is represented by that basis function.

Training of an RBFNN should therefore consider methods to find the best values for
these parameters.

5.2.3 Training Algorithms

A number of methods have been developed to train RBFNNs. These methods differ
mainly in the number of parameters that are learned. The fixed centers algorithm
adapts only the weights between the hidden and output layers. Adaptive centers
training algorithms adapt both weights, centers, and deviations. This section reviews
some of these training algorithms.

Training RBFNNs with Fixed Centers

Broomhead and Lowe [92] proposed a training method where it is assumed that RBF
centers are fixed. Centers are randomly selected from the training set. Provided that
a sufficient number of centers are uniformly selected from the training set, an adequate
sampling of the input space will be obtained. Common practice is to select a large
number of centers, and then to prune, after training, redundant basis functions. This
is usually done in a systematic manner, removing only those RBFs that do not cause
a significant degradation in accuracy.

The fixed centers training algorithm is summarized in Algorithm 5.1. With reference
to this algorithm, Gaussian RBFs are used, with widths calculated as

dmam .
oi=0= Li=1,...,J 5.11

5.2 Radial Basis Function Neural Networks 77

where J is the number of centers (or hidden units), and d;,q, is the maximum Eu-
clidean distance between centers.

Weight values of connections between the hidden and output layers are found by
solving for wy, in
wy, = (d7®) 1ot (5.12)

where wy, is the weight vector of output unit k, tj is the vector of target outputs, and
® € RP7%7 is the matrix of RBF nonlinear mappings performed by the hidden layer.

Algorithm 5.1 Training an RBFNN with Fixed Centers

Set J to indicate the number of centers;
Choose the centers, uj;, j=1,...,J, as

pj = 2zp, p~ U(L, Pr) (5.13)

Calculate the width, o;, using equation (5.11);

Initialize all wy;, k=1,...,K and j = 1,...,J to small random values;

Calculate the output for each output unit using equation (5.3) with Gaussian radial
basis functions;

Solve for the network weights using equation (5.12) for each k = 1,..., K;

Training an RBFNN using Gradient Descent

Moody and Darken [605] and Poggio and Girosi [682] used gradient descent to adjust
weights, centers, and widths. The algorithm is summarized in Algorithm 5.2.

In Algorithm 5.2, 1,7, and 7, respectively indicate the learning rate for weights,
centers, and widths. In this algorithm, centers are initialized by sampling from the
training set. The next subsection shows that these centers can be obtained in an
unsupervised training step, prior to training the weights between hidden units (radial
basis) and output units.

Two-Phase RBFNN Training

The training algorithms discussed thus far have shown slow convergence times [899]. In
order to increase training time, RBFNN training can be done in two phases [605, 881]:
(1) unsupervised learning of the centers, p;, and then, (2) supervised training of the wy,
weights between the hidden and output layers using gradient descent. Algorithm 5.3
summarizes a training algorithm where the first phase utilizes an LVQ-I to cluster
input patterns [881].

78 5. Radial Basis Function Networks

Algorithm 5.2 Gradient Descent Training of RBFNN

Select the number of centers, J;
for j=1,...,J do

b~ U(17 PT)§

i (t) = Zp;

0j(t) = Sz
end

for k=1,...,K do
for j=1,...,J do
W4 ~ U(wminawmaw);

end
end

while stopping condition(s) not true do
Select an input pattern, d, = (zp,t,);
for k=1,...,K do
Compute oy, ,, using equation (5.3);
for j=1,...,J do
Compute weight adjustment step size,

OF
Awg; () = —np—— (¢ 5.14
iy (1) = gy 1) (5.14)
Adjust weights using
Wi (t + 1) = wkj(t) + A’U)kj(t> (515)
end
end
for j=1,...,J do
fori=1,...,1 do
Compute center step size,
oF
Apii(t) = —n,=—(t 5.16
1i(t) Ny a,uji() ()
Adjust centers using
pi(t+ 1) = pji () + Apji(t) (5.17)
end
Compute width step size,
ok
Aoj(t) = 77)0£(t) (5.18)
Adjust widths using
oj(t+1) =0;(t) + Acg;(t) (5.19)

end
end

5.2 Radial Basis Function Neural Networks 79

Algorithm 5.3 Two-Phase RBFNN Training

Initialize wy;, k=1,...,K and j =1,...,J;

Initialize p1j;, 7 =1,...,Jandi=1,...,1I;

Initialize 0, j =1,...,J;

while LVQ-I has not converged do
Apply one epoch of LVQ-I to adjust p;, j=1,...,J;
Adjust 0, j=1,...,J;

end

t=0;

while gradient descent has not converged do
Select an input pattern, (z,,tp);
Compute the weight step sizes,

K
Awy;(t) =1 Z tkp = Okp)Yjp (5.20)
k=1
Adjust the weights,
’u}]gj(t +1) = W (t) + Awy; (t) (5.21)

end

Before the LVQ-I training phase, the RBFNN is initialized as follows:

e The centers are initialized by setting all the u;; weights to the average value of
all inputs in the training set.

e The weights are initialized by setting all o; to the standard deviation of all input
values over the training set.

e The hidden-to-output weights, wy;, are initialized to small random values.

At the end of each LVQ-I iteration, basis function widths are recalculated as follows:
For each hidden unit, find the average of the Euclidean distances between ; and the
input patterns for which the hidden unit was selected as the winner. The width, o;,
is set to this average.

Instead of using LVQ-I, Moody and Darken [605] uses K-means clustering in the first
phase. The K-means algorithm is initialized by setting each p; to a randomly selected
input pattern. Training patterns are assigned to their closest center, after which each
center is recomputed as

_ ZPECJ‘ z

=0

where C; is the set of patterns closest to center ;. Training patterns are again
reassigned to their closest center, after which the centers are recalculated. This process
continues until there is no significant change in the centers.

(5.22)

80 5. Radial Basis Function Networks

After the K-means clustering, the widths are determined as follow:
o = 7|l — pyll (5.23)
where 4 is the nearest neighbor of p;, and 7 € [1,1.5].

The second-phase is then executed to learn the weight values, wy; using gradient
descent, or by solving for wy as in equation (5.12).

5.2.4 Radial Basis Function Network Variations

Two variations of the standard RBFNN are discussed in this section. These variations
were developed as an attempt to improve the performance of RBFNNs.

Normalized Hidden Unit Activations

Moody and Darken [605] proposed that hidden unit activations must be normalized
using,
d s .
S (I1zp — wll2, 05) (5.24)
2i=1 ®(l|zp = pull2; 1)

ijp(zp>

This introduces the property that
J

S yin(zp) =1,%p=1,...,Pr (5.25)
j=1

which means that the above normalization represents the conditional probability of
hidden unit j generating z,. This probability is given as

. Pj(zp) Yip(Zp)
P(jlzp) = = 5.26
() 22]:1 Py(zp) 22]:1 Yi,p(2Zp) ()

Soft-Competition

The K-means clustering approach proposed by Moody and Darken can be considered
as a hard competition winner-takes-all action. An input pattern is assigned to the
cluster of patterns of the p; to which the input pattern is closest. Adjustment of p;
is then based only on those patterns for which it was selected as the winner.

In soft-competition [632], all input vectors have an influence on the adjustment of all
centers. For each hidden unit,

P .
T P(jlz,)z
i = Zp_l (J|2zp)2p (5.27)

>ty Pilzy)

where P(j|z,) is defined in equation (5.26).

5.3 Assignments 81

5.3 Assignments

1.

Compare the performance of an RBFNN and a FFNN on a
classification problem from the UCI machine learning repository
(http://www.ics.uci.edu/“mlearn/MLRepository.html).

. Compare the performance of the Gaussian and logistic basis functions.

Suggest an alternative to compute the hidden-to-output weights instead of using

GD.

Suggest an alternative to compute the input-to-hidden weights instead of using
LVQ-I.

5. Investigate alternative methods to initialize an RBF NN.

Is it crucial that all wy; be initialized to small random values? Motivate your
answer.

Develop a PSO, DE, and EP algorithm to train an RBFNN.

Chapter 6

Reinforcement Learning

The last learning paradigm to be discussed is that of reinforcement learning (RL) [823],
with its origins in the psychology of animal learning. The basic idea is that of awarding
the learner (agent) for correct actions, and punishing wrong actions. Intuitively, RL is
a process of trial and error, combined with learning. The agent decides on actions based
on the current environmental state, and through feedback in terms of the desirability
of the action, learns which action is best associated with which state. The agent learns
from interaction with the environment.

While RL is a general learning paradigm in Al, this chapter focuses on the role that
NNs play in RL. The LVQ-II serves as one example where RL is used to train a NN
to perform data clustering (refer to Section 5.1).

Section 6.1 provides an overview of RL. Model-free learning methods are given in
Section 6.2. Connectionist approaches to RL are described in Section 6.3.

6.1 Learning through Awards

Formally defined, reinforcement learning is the learning of a mapping from situations
to actions with the main objective to maximize the scalar reward or reinforcement
signal [824]. Informally, reinforcement learning is defined as learning by trial-and-
error from performance feedback from the environment or an external evaluator. The
agent has absolutely no prior knowledge of what action to take, and has to discover
(or explore) which actions yield the highest reward.

A typical reinforcement learning problem is illustrated in Figure 6.1. The agent re-
ceives sensory inputs from its environment, as a description of the current state of
the perceived environment. An action is executed, upon which the agent receives the
reinforcement signal or reward. This reward can be a positive or negative signal, de-
pending on the correctness of the action. A negative reward has the effect of punishing
the agent for a bad action.

The action may cause a change in the agent’s environment, thereby affecting the future
options and actions of the agent. The effects of actions on the environment and future
states can not always be predicted. It is therefore necessary that the agent frequently

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

83

84 6. Reinforcement Learning

Action
Learner
Sensory Reward
Input
Environment -

Figure 6.1 Reinforcement Learning Problem

monitors its environment.

One of the important issues in RL (which occurs in most search methods) is that of
the exploration—exploitation trade-off. As already indicated, RL has two important
components:

e A trial and error search to find good actions, which forms the exploration com-
ponent of RL.

e A memory of which actions worked well in which situations. This is the exploita-
tion component of RL.

It is important that the agent exploits what it has already learned, such that a reward
can be obtained. However, via the trial and error search, the agent must also explore
to improve action selections in the future.

A reinforcement learning agent has the following components:

e A policy, which is the decision making function of the agent. This function is
used to specify which action to execute in each of the situations that the agent
may encounter. The policy is basically a set of associations between actions and
situations, or alternatively, a set of stimulus-response rules.

e A reward function, which defines the goal of the agent. The reward function
defines what are good and bad actions for the agent for specific situations. The
reward is immediate, and represents only the current environment state. The
goal of the agent is to maximize the total reward that it receives over the long
run.

e A value function, which specifies the goal in the long run. The value function
is used to predict future reward, and is used to indicate what is good in the long
run.

e Optionally, an RL agent may also have a model of the environment. The envi-
ronmental model mimics the behavior of the environment. This can be done by
transition functions that describe transitions between different states.

6.1 Learning through Awards 85

For the value function, an important aspect is how the future should be taken into
account. A number of models have been proposed [432]:

e The finite-horizon model, in which the agent optimizes its expected reward

for the next n; steps, i.e.
n¢
> r(t)} (6.1)

t=1

E

where r(t) is the reward for time-step .

e The infinite-horizon discounted model, which takes the entire long-run
reward of the agent into consideration. However, each reward received in future
is geometrically discounted according to a discount factor, v € [0,1):

wa] (6.2)
t=0

The discount factor enforces a bound on the infinite sum.

E

e The average reward model, which prefers actions that optimize the agent’s
long-run average reward:

lim F

ng— 00

nit 3 r(t)} (6.3)

t=0

A problem with this model is that it is not possible to distinguish between a
policy that gains a large amount of reward in the initial phases, and a policy
where the largest gain is obtained in the later phases.

In order to find an optimal policy, 7*, it is necessary to find an optimal value function.
A candidate optimal value function is [432],

V*(s):gleaj(R(s,a)+’yZT(s,a,s)V*(s) ,s€S8 (6.4)
s'eS

where A is the set of all possible actions, S is the set of environmental states, R(s,a)
is the reward function, and T'(s,a, s) is the transition function. Equation (6.4) states
that the value of a state, s, is the expected instantaneous reward, R(s,a), for action
a plus the expected discounted value of the next state, using the best possible action.

From the above, a clear definition of the model in terms of the transition function,
T, and the reward function, R, is required. A number of algorithms have been de-
veloped for such RL problems. The reader is referred to [432, 824] for a summary of
these methods. Of more interest to this chapter are model-free learning methods, as
described in the next section.

86 6. Reinforcement Learning

6.2 Model-Free Reinforcement Learning Model

This section considers model-free RL. methods, where the objective is to obtain an
optimal policy without a model of the environment. This section reviews two ap-
proaches, namely temporal difference (TD) learning (in Section 6.2.1) and Q-learning
(in Section 6.2.2).

6.2.1 Temporal Difference Learning

Temporal difference (TD) learning [824] learns the value policy using the update rule,
V(s)=V(s) +n(r+V(s) = V(s)) (6.5)

where 7 is a learning rate, r is the immediate reward, v is the discount factor, s is the
current state, and s is a future state. Based on equation (6.5), whenever a state, s,
is visited, its estimated value is updated to be closer to r + nV (s).

The above model is referred to as TD(0), where only one future step is considered.
The TD method has been generalized to TD()) strategies [825], where A € [0,1] is a
weighting on the relevance of recent temporal differences of previous predictions. For
TD(A), the value function is learned using

V(u) = V(u) +n(r+V(s) = V(s))e(u) (6.6)

where e(u) is the eligibility of state u. The eligibility of a state is the degree to which
the state has been visited in the recent past, computed as

t

e(s) = SO ., (6.7)

t'=1
where
1 s=s
0,0, = { 0 otherwise (6.8)

The update in equation (6.6) is applied to every state, according to its eligibility, and
not just the previous state as for TD(0).

6.2.2 Q-Learning

In Q-learning [891], the task is to learn the expected discounted reinforcement values,
Q(s,a), of taking action a in state s, then continuing by always choosing actions
optimally. To relate Q-values to the value function, note that

V*(s) = max Q*(s,a) (6.9)

where V*(s) is the value of s assuming that the best action is taken initially.

6.3 Neural Networks and Reinforcement Learning 87

The Q-learning rule is given as
Qs,0) = Q(s,0) + n(r +7max Qs ,a') — Q(s,)) (6.10)

The agent then takes the action with the highest Q-value.

6.3 Neural Networks and Reinforcement Learning

Neural networks and reinforcement learning have been combined in a number of ways.
One approach of combining these models is to use a NN as an approximator of the
value function used to predict future reward [162, 432]. Another approach uses RL to
adjust weights. Both these approaches are discussed in this section.

As already indicated, the LVQ-II (refer to Section 5.1) implements a form of RL.
Weights of the winning output unit are positively updated only if that output unit
provided the correct response for the corresponding input pattern. If not, weights are
penalized through adjustment away from that input pattern. Other approaches to
use RL for NN training include RPROP (refer to Section 6.3.1), and gradient descent
on the expected reward (refer to Section 6.3.2). Connectionist Q-learning is used to
approximate the value function (refer to Section 6.3.3).

6.3.1 RPROP

Resilient propagation (RPROP) [727, 728] performs a direct adaptation of the weight
step using local gradient information. Weight adjustments are implemented in the
form of a reward or punishment, as follows: If the partial derivative, gT]i' (or aiij), of
weight vj; (or wy;) changes its sign, the weight update value, Aj; (Ag;), is decreased
by the factor, n~. The reason for this penalty is because the last weight update was
too large, causing the algorithm to jump over a local minimum. On the other hand, if
the derivative retains its sign, the update value is increased by factor n™ to accelerate

convergence.

For each weight, v;; (and wy;), the change in weight is determined as

Avji(t) = § +A5(1) i 2B (1) <0 (6.11)
0 otherwise
where
nt At —1) if ZE(E-1)2E(t) >0
Aty = At —1) i 2 1) 2E () <0 (6.12)
Aj;(t) otherwise

Using the above,

88 6. Reinforcement Learning

RPROP is summarized in Algorithm 6.1. The value of Ay indicates the first weight
step, and is chosen as a small value, e.g. Ag = 0.1 [728]. It is shown in [728] that
the performance of RPROP is insensitive to the value of Ay. Parameters A,,,, and
Anin Tespectively specify upper and lower limits on update step sizes. It is suggested
in [728] that n~ = 0.5 and n* = 1.2.

Algorithm 6.1 RPROP Neural Network Training Algorithm

Initialize NN weights to small random values;
Set Aji:Akj :Ao, V’L: 1,...,I+1, VJ:].,,J+1, Vk: 1,...,K;
Let t = 0;
while stopping condition(s) not true do
for each wyj, j=1,...,J+1, k=1,...,K do
if %(t — 1)%@) > 0 then
Akj (t) = min{Akj (t - 1) + Amaa}'
Ay (1) = —sign (2-(1)) Mgy (1)
wij(t+1) = wkj()+ Auwy (1):
else if aE (t —1)2E () < 0 then
Akj() maX{Ak] (t — 1) mm}
U)kj(t+1) :wkj(t) — Aw (tf 1)
oL _ .
owg; — 7

else if %(t - l)ﬂ(t) =0 then

A (t) = —s1gn(eO)ENSIOE
wri(t+1) = wy;(t) + Awkj(t);

end
Repeat the above for each v;; weight, j =1,...,J, i=1,..., I +1;
end

6.3.2 Gradient Descent Reinforcement Learning

For problems where only the immediate reward is maximized (i.e. there is no value
function, only a reward function), Williams [911] proposed weight update rules that
perform a gradient descent on the expected reward. These rules are then integrated
with back-propagation. Weights are updated as follows:

Awg; = 1 (rp — O)er; (6.14)

where 7;; is a non-negative learning rate, 7, is the reinforcement associated with
pattern z,, 0}, is the reinforcement threshold value, and ey; is the eligibility of weight
W, given as

erj = In(g;)] (6.15)

8wk]

where
g5 = P(Ok,p = tk'yp|Wk7Zp) (6.16)

6.3 Neural Networks and Reinforcement Learning 89

is the probability density function used to randomly generate actions, based on whether
the target was correctly predicted or not. Thus, this NN reinforcement learning rule
computes a GD in probability space.

Similar update equations are used for the v;; weights.

6.3.3 Connectionist Q-Learning

Neural networks have been used to learn the Q-function in Q-learning [527, 891, 745].
The NN is used to approximate the mapping between states and actions, and even to
generalize between states. The input to the NN is the current state of the environment,
and the output represents the action to execute. If there are n, actions, then either
one NN with n, output units can be used [825], or n, NNs, one for each of the actions,
can be used [527, 891, 745].

Assuming that one NN is used per action, Lin [527] used the Q-learning in equation
(6.10) to update weights as follows:

Aw(t) =nlr(t) + ymaxQ(t — 1) — Q(t)]V.Q(?) (6.17)

where Q(t) is used as shorthand notation for Q(s(t),a(t)) and V,Q(t) is a vector
of the output gradients, g—g(t), which are calculated by means of back-propagation.
Similar equations are used for the v; weights.

Watkins [891] proposed a combination of Q-learning with TD(\)-learning, in which
case,

Aw(t) = nlr(t) + ymax Q(t — 1) = Q] | Y- () VuQ(t) (6.18)

t' =0

where the relevance of the current error on earlier Q-value predictions is determined
by A. The update algorithm is given in Algorithm 6.2.

Rummery and Niranjan [745] proposed an alternative hybrid, where

Aw(t) = n(r(t) +1Q(t +1) — Q1) [S () VuQ(l) (6.23)

t'=0
which replaces the greedy max,e4 Q(¢t + 1) with Q(t + 1).

Peng and Williams [674] proposed the Q(A) method, which combines Q-learning and
TD(A)-learning as follows: A two step approach is followed, where weights are first
updated using equation (6.17), followed by

t

Aw(t) = nfr(t) +ymax Q(t + 1) — max Q(1)] 3 ()"~ V. Q(t) (6.24)

acA geA :
t' =0

90 6. Reinforcement Learning

Algorithm 6.2 Connectionist Q-Learning Update Algorithm

Reset all eligibilities, e(t) = 0;

t=0;

while stopping condition(s) not true do
Select action a(t) as the one with maximum predicted Q-value;
if £ > 0 then

wit)=w(lt—1)+nrit—1)+vQ(t) — Q(t —1))e(t — 1) (6.19)
end
Calculate V,,Q(t) with respect to action a(t);
Update eligibilities,
e(t) = V,Q(t) + yre(t — 1) (6.20)

Perform action a(t), and receive reward, r(t);
end

Algorithm 6.3 Q(\) Connectionist Update Algorithm

Reset all eligibilities, e(t) = 0;

t=0;

while stopping condition(s) not true do
Select action a(t) as the one with maximum predicted Q-value;
if t > 0 then

w(t) = wt-=1)+n(rl-1)+ymaxQ(t) - Q(t -]VuQ(t - 1)
+Hr—1)+ 7 max Q(t) — max Qt—1)]e(t—1)) (6.21)

end
Update eligibilities,
e(t) = Myle(t — 1) + A Q(t — 1)] (6.22)

Calculate V,,Q(t) with respect to action a(t);
Perform action a(t), and receive reward, r(t);
end

This gives an overall update of
awl) = I+ ymg Qe+ 1) - QIVLQL)
F 10+ 7 Qe+ 1) - mag Q(ole(r)) (6.25)

where the eligibility is calculated using

e(t) = 3. () VuQ(t —) = V. Q(t) + Me(?) (6.26)

t'=0

6.4 Assignments 91

Equation (6.26) keeps track of the weighted sum of previous error gradients.

The Q(A) update algorithm is given in Algorithm 6.3.

6.4 Assignments

1. Discuss how reinforcement learning can be used to guide a robot out of a room
filled with obstacles.

2. Discuss the influence of the reinforcement threshold in equation (6.14) on per-
formance.

3. Contrast reinforcement learning with coevolution (refer to Chapter 15).
4. For the RPROP algorithm, what will be the consequence if

(a) Apae is too small?
(b) nt is very large?
(¢) n~ is very small?

5. Provide a motivation for replacing max,e 4 Q(t+1) with Q(¢) in equation (6.23).

Chapter 7

Performance Issues
(Supervised Learning)

Performance is possibly the driving force of all organisms. If no attention is given to
improve performance, the quality of life will not improve. Similarly, performance is
the most important aspect that has to be considered when an artificial neural network
is being designed. The performance of an artificial NN is not just measured as the
accuracy achieved by the network, but aspects such as computational complexity and
convergence characteristics are just as important. These measures and other mea-
sures that quantify performance are discussed in Section 7.1, with specific reference to
supervised networks.

The design of NNs for optimal performance requires careful consideration of several
factors that influence network performance. In the early stages of NN research and
applications, the design of NNs was basically done by following the intuitive feelings of
an expert user, or by following rules of thumb. The vast number of theoretical analyses
of NNs made it possible to better understand the working of NNs — to unravel the
“black box”. These insights helped to design NNs with improved performance. Factors
that influence the performance of NNs are discussed in Section 7.3.

Although the focus of this chapter is on supervised learning, several ideas can be
extrapolated to unsupervised learning NNs.

7.1 Performance Measures

This section presents NN performance measures under three headings: accuracy, com-
plexity and convergence.

7.1.1 Accuracy

Generalization is a very important aspect of neural network learning. Since it is a
measure of how well the network interpolates to points not used during training, the
ultimate objective of NN learning is to produce a learner with low generalization error.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

93

94 7. Performance Issues (Supervised Learning)

That is, to minimize the true risk function
Ea(%W) = [(fyn (2. W) - £ a0z, t) (71)

where, from Section 3.2.1, Q(z, t) is the stationary density according to which patterns
are sampled, W describes the network weights, and z and t are respectively the input
and target vectors. The function fyn is an approximation of the true underlying
function. Since € is generally not known, fyy is found through minimization of the
empirical error function

1 &

Er(DriW) = 5> (fn(zp W) —t,)? (7.2)
p=1

over a finite data set Dy ~ Q. When Pr — oo, then &7 — £g. The aim of NN
learning is therefore to learn the examples presented in the training set well, while
still providing good generalization to examples not included in the training set. It is,
however, possible that a NN exhibits a very low training error, but bad generalization
due to overfitting (memorization) of the training patterns.

The most common measure of accuracy is the mean squared error (MSE), in which
case the training error, &7, is expressed as

_E L C (tep = 0np)?

P
= PrK

(7.3)

where Pr is the total number of training patterns in the training set D, and K is the
number of output units. The generalization error, &g, is approximated in the same
way, but with the first summation over the Pg patterns in the generalization, or test
set, Dg. Instead of the MSE, the sum squared error (SSE),

K

P
SSE =" (thp — 0kp)’ (7.4)
p=1k=1

can also be used, where P is the total number of patterns in the data set considered.
However, the SSE is not a good measure when the performance on different data set
sizes are compared.

An additional error measure is required for classification problems, since the MSE
alone is not a good descriptor of accuracy. In the case of classification problems, the
percentage correctly classified (or incorrectly classified) patterns is used as a measure
of accuracy. The reason why the MSE is not a good measure, is that the network
may have a good accuracy in terms of the number of correct classifications, while
having a relatively large MSE. If just the MSE is used to indicate when training
should stop, it can result in the network being trained too long in order to reach the
low MSE; hence, wasting time and increasing the chances of overfitting the training
data (with reference to the number of correct classifications). But when is a pattern
classified as correct? When the output class of the NN is the same as the target class
— which is not a problem to determine when the ramp or step function is used as the

7.1 Performance Measures 95

activation function in the output layer. In the case of continuous activation functions,
a pattern z, is usually considered as being correctly classified if for each output unit
0ks ((0kp > 0.5+6 and tr, =1) or (0, <0.5—0 and t, =0)), where 6 € [0, 0.5]
— of course, assuming that the target classes are binary encoded.

An additional measure of accuracy is to calculate the correlation between the out-
put and target values for all patterns. This measure, referred to as the correlation
coefficient, is calculated as

i@ =) 30 (i —)
TL0y
_ 2?21 TiYi — % Z?:l Z; Z?:l Yi (7.5)
Vi - LT w2 oF - LT)

where x; and y; are observations, T and ¥ are respectively the averages over all ob-
servations z; and y;, and o, and o, are the standard deviations of the z; and y;
observations respectively, and can be used to quantify the linear relationship between
variables and y. As measure of learning accuracy, where z = oy, and y = tgp,
the correlation coefficient quantifies the linear relationship between the approximated
(learned) function and the true function. A correlation value close to 1 indicates a
good approximation to the true function. Therefore, the correlation coefficient

T =

P P P
szl Ok plk,p — % szl Ok,p szl th.p

T =
P P P P
\/Zp:l Oi,p - %(Zp:l Ok-,P)2\/Zp=1 ti,p - %(Zp:l tk,p)z

is calculated as a measure of how well the NN approximates the true function.

(7.6)

Another very important aspect of NN accuracy is overfitting. Overfitting of a training
set means that the NN memorizes the training patterns, and consequently loses the
ability to generalize. That is, NNs that overfit cannot predict correct output for data
patterns not seen during training. Overfitting occurs when the NN architecture is too
large, i.e. the NN has too many weights (in statistical terms: too many free param-
eters) — a direct consequence of having too many hidden units and irrelevant input
units. If the NN is trained for too long, the excess free parameters start to memo-
rize all the training patterns, and even noise contained in the training set. Remedies
for overfitting include optimizing the network architecture and using enough training
patterns (discussed in Section 7.3).

Estimations of generalization error during training can be used to detect the point
of overfitting. The simplest approach to find the point of overfitting was developed
through studies of training and generalization profiles. Figure 7.1 presents a general
illustration of training and generalization errors as a function of training epochs. From
the start of training, both the training and generalization errors decrease - usually
exponentially. In the case of oversized NNs, there is a point at which the training
error continues to decrease, while the generalization error starts to increase. This is
the point of overfitting. Training should stop as soon an increase in generalization
error is observed.

96 7. Performance Issues (Supervised Learning)

Epoch

Figure 7.1 Illustration of Overfitting

In order to detect the point of overfitting, the original data set is divided into three
disjoint sets, i.e. the training set Dp, the generalization set D and the validation set
Dy . The validation set is then used to estimate the generalization error. Since both
the training error and the validation error usually fluctuate, determining the point of
overfitting is not straightforward. A moving average of the validation error has to be
used. Overfitting is then detected when

Ev>Ev+ ogy, (7.7)

where £y is the MSE on the validation set, £y is the average MSE on the validation
set since training started, and og,, is the standard deviation in validation error.

Robel suggested the generalization factor as an alternative indication of overfitting
[732]. Robel defines the generalization factor p = g—;, where &y and Ep are the MSE on
the validation set Dy and current training subset Dp respectively. The generalization
factor indicates the error made in training on Dy only, instead of training on the entire
input space. Overfitting is detected when p(t) > ¢,(t), where ¢,(t) = min{p,(t —
1),p + 0,,1.0}; t is the current epoch, p is the average generalization factor over a
fixed number of preceding epochs, and o, is the standard deviation. This test ensures
that p < 1.0. Keep in mind that p does not give an indication of the accuracy of
learning, but only the ratio between the training and validation error. For function
approximation problems (as is the case with Robel’s work) where the MSE is used as
a measure of accuracy, a generalization factor p < 1 means that the validation error
is smaller than the training error — which is desirable. As p becomes large (greater
than 1), the difference between the training error and validation error increases, which
indicates an increase in validation error with a decrease in training error — an indication
of overfitting. For classification problems where the percentage of correctly classified
patterns is used as a measure of accuracy, p should be larger than 1.

7.1 Performance Measures 97

It is important to note that the training error or the generalization error alone is not
sufficient to quantify the accuracy of a NN. Both these errors should be considered.

Additional Reading Material on Accuracy

The trade-off between training error and generalization has prompted much research in
the generalization performance of NNs. Average generalization performance has been
studied theoretically to better understand the behavior of NNs trained on a finite
data set. Research shows a dependence of generalization error on the training set, the
network architecture and weight values. Schwartz et al. [767] show the importance of
training set size for good generalization in the context of ensemble networks. Other
research uses the VC-dimension (Vapnik-Chervonenkis dimension) [8, 9, 152, 643] to
derive boundaries on the generalization error as a function of network and training set
size. Best known are the limits derived by Baum and Haussler [54] and Haussler et
al. [353]. While these limits are derived for, and therefore limited to, discrete input
values, Hole derives generalization limits for real valued inputs [375].

Limits on generalization have also been developed by studying the relationship between
training error and generalization error. Based on Akaike’s final prediction error and
information criterion [15], Moody derived the generalized prediction error which gives
a limit on the generalization error as a function of the training error, training set size,
the number of effective parameters, and the effective noise variance [603, 604]. Murata
et al. [616, 617, 618] derived a similar network information criterion. Using a different
approach, i.e. Vapnik’s Bernoulli theorem, Depenau and Mgller [202] derived a bound
as a function of training error, the VC-dimension and training set size.

These research results give, sometimes overly pessimistic, limits that help to clarify
the behavior of generalization and its relationship with architecture, training set size
and training error. Another important issue in the study of generalization is that of
overfitting. Overfitting means that the NN learns too much detail, effectively mem-
orizing training patterns. This normally happens when the network complexity does
not match the size of the training set, i.e. the number of adjustable weights (free
parameters) is larger than the number of independent patterns. If this is the case,
the weights learn individual patterns and even capture noise. This overfitting phe-
nomenon is the consequence of training on a finite data set, minimizing the empirical
error function given in equation (7.2), which differs from the true risk function given
in equation (7.1).

Amari et al. developed a statistical theory of overtraining in the asymptotic case
of large training set sizes [22, 21]. They analytically determine the ratio in which
patterns should be divided into training and test sets to obtain optimal generalization
performance and to avoid overfitting. Overfitting effects under large, medium and
small training set sizes have been investigated analytically by Amari et al. [21] and
Miiller et al. [612].

98 7. Performance Issues (Supervised Learning)

7.1.2 Complexity

The computational complexity of a NN is directly influenced by:

1. The network architecture: The larger the architecture, the more feedforward
calculations are needed to predict outputs after training, and the more learning
calculations are needed per pattern presentation.

2. The training set size: The larger the training set size, the more patterns are
presented for training. Therefore, the total number of learning calculations per
epoch is increased.

3. Complexity of the optimization method: As will be discussed in Section 7.3,
sophisticated optimization algorithms have been developed to improve the accu-
racy and convergence characteristics of NNs. The sophistication comes, however,
at the cost of increased computational complexity to determine the weight up-
dates.

Training time is usually quantified in terms of the number of epochs to reach specific
training or generalization errors. When different learning algorithms are compared, the
number of epochs is usually not an accurate estimate of training time or computational
complexity. Instead, the total number of pattern presentations, or weight updates are
used. A more accurate estimate of computational complexity is to count the total
number of calculations made during training.

7.1.3 Convergence

The convergence characteristics of a NN can be described by the ability of the network
to converge to specified error levels (usually considering the generalization error). The
ability of a network to converge to a specific error is expressed as the number of times,
out of a fixed number of simulations, that the network succeeded in reaching that
error. While this is an empirical approach, rigorous theoretical analysis has been done
for some network types.

7.2 Analysis of Performance

Any study of the performance of NNs (or any other stochastic algorithm for that mat-
ter) and any conclusions based on just one simulation are incomplete and inconclusive.
Conclusions on the performance of NNs must be based on the results obtained from
several simulations. For each simulation the NN starts with new random initial weights
and uses different training, validation and generalization sets, independent of previ-
ous sets. Performance results are then expressed as averages over all the simulations,
together with variances, or confidence intervals.

Let o denote the performance measure under consideration. Results are then reported
as pto,. The average p is an indication of the average performance over all simulations,

7.3 Performance Factors 99

while o, gives an indication of the variance in performance. The o, parameter is very
important in decision making. For example, if two algorithms A and B are compared
where the MSE for A is 0.0014+0.0001, and that of B is 0.000940.0006, then algorithm
A will be preferred even though B has a smaller MSE. Algorithm A has a smaller
variance, having MSE values in the range [0.0009, 0.0011], while B has MSE values in
a larger range of [0.0003,0.0015].

While the above approach to present results is sufficient, results are usually reported
with associated confidence intervals. If a confidence level of @ = 0.01 is used, for
example, then 99% of the observations will be within the calculated confidence interval.
Before explaining how to compute the confidence intervals, it is important to note that
statistical literature suggests that at least 30 independent simulations are needed. This
allows the normality assumption as stated by the central limit theorem: the probability
distribution governing the variable @ approaches a Normal distribution as the number
of observations (simulations) tends to infinity. Using this result, the confidence interval
associated with confidence level a can be estimated as

@:l: ta’n_lag (78)

where ¢, ,—1 is a constant obtained from the t-distribution with n — 1 degrees of
freedom (n is the number of simulations) and

>oii(0i —0)?

a— (7.9)

UQ:

It should be noted at this point that the t-test assumes that samples are normally
distributed. It is, however, not always the case that 30 samples will guarantee a
normal distribution. If not normally distributed, nonparametric tests need to be used.

7.3 Performance Factors

This section discusses various aspects that have an influence on the performance of
supervised NNs. These aspects include data manipulation, learning parameters, ar-
chitecture selection, and optimization methods.

7.3.1 Data Preparation

One of the most important steps in using a NN to solve real-world problems is to
collect and transform data into a form acceptable to the NN. The first step is to
decide on what the inputs and the outputs are. Obviously irrelevant inputs should be
excluded. Section 7.3.5 discusses ways in which the NN can decide itself which inputs
are irrelevant. The second step is to process the data in order to remove outliers,
handle missing data, transform non-numeric data to numeric data and to scale the
data into the active range of the activation functions used. Each of these aspects are
discussed in the sections below.

100 7. Performance Issues (Supervised Learning)

Missing Values

It is common that real-world data sets have missing values for input parameters. NNs
need a value for each of the input parameters. Therefore, something has to be done
with missing values. The following options exist:

e Remove the entire pattern if it has a missing value. While pattern removal solves
the missing value problem, other problems are introduced: (1) the available
information for training is reduced which can be a problem if data is already
limited, and (2) important information may be lost.

e Replace each missing value with the average value for that input parameter in
the case of continuous values, or with the most frequently occurring value in the
case of nominal or discrete values. This replacing of missing values introduces
no bias.

e For each input parameter that has a missing value, add an additional input
unit to indicate patterns for which parameters are missing. It can then be
determined after training whether the missing values had a significant influence
on the performance of the network.

While missing values present a problem to supervised neural networks, SOMs do not
suffer under these problems. Missing values do not need to be replaced. The BMN
for a pattern with missing values is, for example, calculated by ignoring the missing
value and the corresponding weight value of the codebook vector in the calculation of
the Euclidean distance between the pattern and codebook vector.

Coding of Input Values

All input values to a NN must be numeric. Nominal values therefore need to be
transformed to numerical values. A nominal input parameter that has n different
values is coded as n different binary input parameters, where the input parameter
that corresponds to a nominal value has the value 1, and the rest of these parameters
have the value 0. An alternative is to use just one input parameter and to map each
nominal value into an equivalent numerical value. This is, however, not a good idea,
since the NN will interpret the input parameter as having continuous values, thereby
losing the discrete characteristic of the original data.

Outliers

Outliers have severe effects on accuracy, especially when gradient descent is used with
the SSE as objective function. An outlier is a data pattern that deviates substantially
from the data distribution. Because of the large deviation from the norm, outliers
result in large errors, and consequently large weight updates. Figure 7.3 shows that
larger differences between target and output values cause an exponential increase in the
error if the SSE is used as objective function. The fitted function is then pulled toward
the outliers in an attempt to reduce the training error. As result, the generalization

7.3 Performance Factors 101

deteriorates. Figure 7.2 illustrates this effect.

Target

Outlier
[)

Large error Actual fitted
pulls function function

upwards
o -- ‘Expected fitted
_--* function

Input

Figure 7.2 Effect of Outliers

50
45
40
35
30
(t—o0)*25
20
15
10

(t—o)

Figure 7.3 Sum Squared Error Objective Function

The outlier problem can be addressed in the following ways:

e Remove outliers before training starts, using statistical techniques. While such
actions will eliminate the outlier problem, it is believed that important informa-
tion about the data might also be removed at the same time.

e Use a robust objective function that is not influenced by outliers. An example
objective function is the Huber function as illustrated in Figure 7.4 [396]. Pat-
terns for which the error is larger than |e| have a constant value, and have a zero
influence when weights are updated (the derivative of a constant is zero).

102 7. Performance Issues (Supervised Learning)

e Slade and Gedeon [796] and Gedeon et al. [311] proposed bimodal distribution
removal, where the aim is to remove outliers from training sets during training.
Frequency distributions of pattern errors are analyzed during training to identify
and remove outliers. If the original training set contains no outliers, the method
simply reduces to standard learning.

50 \ T
L SSE o
j?) | o Huber — |
35+ ° ° 4
30 — © o _
Error 25 - o o —
20 — o o |
15 © °© =
10 = -
5 _
0 ! ! ! !

(t o)

Figure 7.4 Huber Objective Function

Scaling and Normalization

Data needs to be scaled to the active range and domain of the activation functions
used. While it is not necessary to scale input values, performance can be improved
if inputs are scaled to the active domain of the activation functions. For example,
consider the sigmoid activation function. Simple mathematical calculations show that
the active domain of the sigmoid function is [—\/5, \/3}7 corresponding to the parts of
the function for which changes in input values have relatively large changes in output.
Values near the asymptotic ends of the sigmoid function have a very small influence
on weight updates. Changes in these values result in very small changes in output.
Furthermore, the derivatives near the asymptotes are approximately zero, causing
weight updates to be approximately zero; therefore, achieving no learning in these
areas.

When bounded activation functions are used, the target values have to be scaled to the
range of the activation function, for example (0,1) for the sigmoid function and (—1,1)
for the hyperbolic tangent. If t,, ;qe and ty, min are the maximum and minimum values
of the unscaled target ¢, then,

tu - tu,min

ts = (ts,maaz - ts,min) + ts,min (710)

tu,mam - tu,min

where t5mqz and tgpin are the new maximum and minimum values of the scaled
values, linearly maps the range [ty min, tu,maz] t0 the range [ts min, tsmaz)-

7.3 Performance Factors 103

In the case of classification problems, target values are usually elements of the set
{0.1,0.9} for the sigmoid function. The value 0.1 is used instead of 0, and 0.9 instead
of 1. Since the output of the sigmoid function can only approach 0 and 1, a NN can
never converge to the best set of weights if the target values are 0 or 1. In this case
the goal of the NN is always out of reach, and the network continues to push weight
values toward extreme values until training is stopped.

Scaling of target values into a smaller range does have the disadvantage of increased
training time. Engelbrecht et al. [244] showed that if target values are linearly scaled
using

ts =city + Co (711)

where ts and t,, are respectively the scaled and original unscaled target values, the NN
must be trained longer until

MSE, = (¢1)?MSE, (7.12)
to reach a desired accuracy, M SE,, on the original unscaled data set.

The hyperbolic tangent will therefore result in faster training times than the sigmoid
function, assuming the same initial conditions and training data.

The scaling process above is usually referred to as amplitude scaling, or min-max
scaling. Min-max scaling preserves the relationships among the original data. Two
other frequently used scaling methods are mean centering and variance scaling. To
explain these two scaling methods, assume that Z € R7*" is a matrix containing all
input vectors such that input vectors are arranged as columns in Z, and T € REXF
is the matrix of associated target vectors, arranged in column format. For the mean
centering process, compute

P
Zi = Y Ziy/P (7.13)
p=1
P
T = Y Tip/P (7.14)
p=1
foralli=1,---,J and k=1, ---,K; Z; is the average value for input z; over all the

patterns, and Ty, is the average target value for the k-th output unit over all patterns.
Then,

ZMN = Zip—Zi (7.15)
T/iw,p = Tep—Tk (7.16)

foralle=1,---,I,k=1,---, Kandp=1,---, P; Z%) is the scaled value of the input
to unit z; for pattern p, and T, ,%) is the corresponding scaled target value.

Variance scaling, on the other hand, computes for each row in each matrix the standard
deviations (I deviations for matrix Z and K deviations for matrix 7') over all P
elements in the row. Let o, denote the standard deviation of row ¢ of matrix Z, and

104 7. Performance Issues (Supervised Learning)

o, is the standard deviation of row k of matrix 7'. Then,
7z
zy, = =% 7.17
i,p o, ()
Ty
Ty, = —£ 7.18
k,p oty ()

foralli=1,---,, k=1, ,Kandp=1,---,P.

Mean centering and variance scaling can both be used on the same data set. Mean cen-
tering is, however, more appropriate when the data contains no biases, while variance
scaling is appropriate when training data are measured with different units.

Both mean centering and variance scaling can be used in situations where the minimum
and maximum values are unknown. Z-score normalization is another data transfor-
mation scheme that can be used in situations where the range of values is unknown. It
is essentially a combination of mean centering and variance scaling, and is very useful
when there are outliers in the data. For z-score normalization,

MV
ZE (7.19)
Typ—T
v = ke Tk (7.20)
, or

For some NN types, for example the LVQ, input data is preferred to be normalized to
vectors of unit length. The values z; ,, of each input parameter z; are then normalized
using .
Zip = %2 (7.21)
Zi:l Zip
The normalization above loses information on the absolute magnitude of the input
parameters, since it requires the length of all input vectors (patterns) to be the same.
Input patterns with parameter values of different magnitudes are normalized to the
same vector, e.g. vectors (—1,1,2,3) and (—3,3,6,9). Z-axis normalization is an
alternative approach that preserves the absolute magnitude information of input pat-
terns. Before the normalization step, input values are scaled to the range [—1,1].
Input values are then normalized using

’ A
o, = \/; (7.22)

and adding an additional input unit zy to the NN, referred to as the synthetic param-

eter, with value
1.2

where L is the Euclidean length of input vector z,,.

7.3 Performance Factors 105

Noise Injection

For problems with a limited number of training patterns, controlled injection of noise
helps to generate new training patterns. Provided that noise is sampled from a normal
distribution with a small variance and zero mean, it can be assumed that the resulting
changes in the network output will have insignificant consequences [379]. Also, the
addition of noise results in a convolutional smoothing of the target function, result-
ing in reduced training time and increased accuracy [713]. Engelbrecht used noise
injection around decision boundaries to generate new training patterns for improved
performance [237].

Training Set Manipulation

Several researchers have developed techniques to control the order in which patterns
are presented for learning. These techniques resulted in the improvement of training
time and accuracy. A short summary of such training set manipulation techniques is
given below.

Ohnishi et. al. [634] suggested a method called selective presentation where the
original training set is divided into two training sets. One set contains typical patterns,
and the other set contains confusing patterns. With “typical pattern” the authors
mean a pattern far from decision boundaries, while “confusing pattern” refers to a
pattern close to a boundary. The two training sets are created once before training.
Generation of these training sets assumes prior knowledge about the problem, i.e.
where decision boundaries are located in input space. In many practical applications
such prior knowledge is not available, thus limiting the applicability of this approach.
The selective presentation strategy alternately presents the learner with typical and
then confusing patterns.

Kohara developed selective presentation learning specifically for forecasting applica-
tions [471]. Before training starts, the algorithm generates two training sets. The one
set contains all patterns representing large next-day changes, while patterns represent-
ing small next-day changes are contained in the second set. Large-change patterns are
then simply presented more often than small-change patterns (similar to selective pre-
sentation).

Cloete and Ludik [137, 537] have done extensive research on training strategies. Firstly,
they proposed Increased Complexity Training where a NN first learns easy problems,
and then the complexity of the problem to be learned is gradually increased. The
original training set is split into subsets of increasing complexity before training com-
mences. A drawback of this method is that the complexity measure of training data
is problem dependent, thus making the strategy unsuitable for some tasks. Secondly,
Cloete and Ludik developed incremental training strategies, i.e. incremental subset
training [139] and incremental increased complexity training [538]. In incremental
subset training, training starts on a random initial subset. During training, random
subsets from the original training set are added to the actual training subset. Incre-
mental increased complexity training is a variation of increased complexity training,

106 7. Performance Issues (Supervised Learning)

where the complexity ranked order is maintained, but training is not done on each
complete complexity subset. Instead, each complexity subset is further divided into
smaller random subsets. Training starts on an initial subset of a complexity subset,
and is incrementally increased during training. Finally, delta training strategies were
proposed [138]. With delta subset training examples are ordered according to inter-
example distance, e.g. Hamming or Euclidean distance. Different strategies of example
presentations were investigated: smallest difference examples first, largest difference
examples first, and alternating difference.

When vast quantities of data are available, training on all these data can be pro-
hibitively slow, and may require reduction of the training set. The problem is which
of the data should be selected for training. An easy strategy is to simply sample a
smaller data set at each epoch using a uniform random number generator. Alterna-
tively, a fast clustering algorithm can be used to group similar patterns together, and
to sample a number of patterns from each cluster.

7.3.2 Weight Initialization

Gradient-based optimization methods, for example gradient descent, is very sensitive
to the initial weight vectors. If the initial position is close to a local minimum, con-
vergence will be fast. However, if the initial weight vector is on a flat area in the
error surface, convergence is slow. Furthermore, large initial weight values have been
shown to prematurely saturate units due to extreme output values with associated
zero derivatives [400]. In the case of optimization algorithms such as PSO and GAs,
initialization should be uniformly over the entire search space to ensure that all parts
of the search space are covered.

A sensible weight initialization strategy is to choose small random weights centered
around 0. This will cause net input signals to be close to zero. Activation functions
then output midrange values regardless of the values of input units. Hence, there is no
bias toward any solution. Wessels and Barnard [898] showed that random weights in

the range | \/f_alm7 \/f;m] is a good choice, where fanin is the number of connections

leading to a unit.

Why are weights not initialized to zero in the case of gradient-based optimization?
This strategy will work only if the NN has just one hidden unit. For more than
one hidden unit, all the units produce the same output, and thus make the same
contribution to the approximation error. All the weights are therefore adjusted with
the same value. Weights will remain the same irrespective of training time — hence,
no learning takes place. Initial weight values of zero for PSO will also fail, since no
velocity changes are made; therefore no weight changes. GAs, on the other hand, will
work with initial zero weights if mutation is implemented.

7.3 Performance Factors 107

7.3.3 Learning Rate and Momentum

The convergence speed of NNs is directly proportional to the learning rate . Consid-
ering stochastic GD, the momentum term added to the weight updates also has the
objective of improving convergence time.

Learning Rate

The learning rate controls the size of each step toward the minimum of the objective
function. If the learning rate is too small, the weight adjustments are correspond-
ingly small. More learning iterations are then required to reach a local minimum.
However, the search path will closely approximate the gradient path. Figure 7.5(a)
illustrates the effect of small . On the other hand, large n will have large weight
updates. Convergence will initially be fast, but the algorithm will eventually oscillate
without reaching the minimum. It is also possible that too large a learning rate will
cause “jumping” over a good local minimum proceeding toward a bad local minimum.
Figure 7.5(b) illustrates the oscillating behavior, while Figure 7.5(c) illustrates how
large learning rates may cause the network to overshoot a good minimum and get
trapped in a bad local minimum. Small learning rates also have the disadvantage of
being trapped in a bad local minimum as illustrated in Figure 7.5(d). The search path
goes down the first local minimum, with no mechanism to move out of it toward the
next, better minimum. Of course, the search trajectory depends on the initial starting
position. If the second initial point is used, the NN will converge to the better local
minimum.

But how should the value of the learning rate be selected? One approach is to find
the optimal value of the learning rate through cross-validation, which is a lengthy
process. An alternative is to select a small value (e.g. 0.1) and to increase the value
if convergence is too slow, or to decrease it if the error does not decrease fast enough.
Plaut et al. [680] proposed that the learning rate should be inversely proportional
to the fanin of a neuron. This approach has been theoretically justified through an
analysis of the eigenvalue distribution of the Hessian matrix of the objective function
[167].

Several heuristics have been developed to dynamically adjust the learning rate during
training. One of the simplest approaches is to assume that each weight has a different
learning rate ny;. The following rule is then applied to each weight before that weight
is updated: if the direction in which the error decreases at this weight change is the
same as the direction in which it has been decreasing recently, then 7 is increased; if
not, 7, is decreased [410]. The direction in which the error decreases is determined by
the sign of the partial derivative of the objective function with respect to the weight.
Usually, the average change over a number of pattern presentations is considered and
not just the previous adjustment.

An alternative is to use an annealing schedule to gradually reduce a large learning
rate to a smaller value (refer to equation 4.40). This allows for large initial steps, and
ensures small steps in the region of the minimum.

108 7. Performance Issues (Supervised Learning)

(a) Small n (b) Large n gets stuck

Starting position |

Starting position 2

(c) Large n overshoots (d) Small n gets stuck

Figure 7.5 Effect of Learning Rate

Of course more complex adaptive learning rate techniques have been developed, with
elaborate theoretical analysis. The interested reader is referred to [170, 552, 755, 880].

Momentum

Stochastic learning, where weights are adjusted after each pattern presentation, has
the disadvantage of fluctuating changes in the sign of the error derivatives. The net-
work spends a lot of time going back and forth, unlearning what the previous steps
have learned. Batch learning is a solution to this problem, since weight changes are
accumulated and applied only after all patterns in the training set have been presented.
Another solution is to keep with stochastic learning, and to add a momentum term.

7.3 Performance Factors 109

The idea of the momentum term is to average the weight changes, thereby ensuring
that the search path is in the average downhill direction. The momentum term is then
simply the previous weight change weighted by a scalar value a. If @ = 0, then the
weight changes are not influenced by past weight changes. The larger the value of «,
the longer the change in the steepest descent direction has to be persevered in order
to affect the direction in which weights are adjusted. A static value of 0.9 is usually
used.

The optimal value of o can also be determined through cross-validation. Strategies
have also been developed that use adaptive momentum rates, where each weight has
a different momentum rate. Fahlman developed the schedule

o9&
Owy; (t)

ag;(t) = (7.24)

98 0f
kaj(t—l) 6wkj(t)

This variation to the standard back-propagation algorithm is referred to as quickprop
[253]. Becker and Le Cun [57] calculated the momentum rate as a function of the
second-order error derivatives:

0%E

o=

For more information on other approaches to adapt the momentum rate refer to [644,
942].

7.3.4 Optimization Method

The optimization method used to determine weight adjustments has a large influence
on the performance of NNs. While GD is a very popular optimization method,
GD is plagued by slow convergence and susceptibility to local minima (as introduced
and discussed in Section 3.2.2). Improvements of GD have been made to address
these problems, for example, the addition of the momentum term. Also, second-
order derivatives of the objective function have been used to compute weight updates.
In doing so, more information about the structure of the error surface is used to
direct weight changes. The reader is referred to [51, 57, 533]. Other approaches
to improve NN training are to use global optimization algorithms instead of local
optimization algorithms, for example simulated annealing [736], genetic algorithms
[247, 412, 494], particle swarm optimization algorithms [157, 229, 247, 862, 864], and
LeapFrog optimization [247, 799, 800].

7.3.5 Architecture Selection

Referring to one of Ockham’s statements, if several networks fit the training set equally
well, then the simplest network (i.e. the network that has the smallest number of
weights) will on average give the best generalization performance [844]. This hypoth-
esis has been investigated and confirmed by Sietsma and Dow [789]. A network with

110 7. Performance Issues (Supervised Learning)

too many free parameters may actually memorize training patterns and may also ac-
curately fit the noise embedded in the training data, leading to bad generalization.
Overfitting can thus be prevented by reducing the size of the network through elimina-
tion of individual weights or units. The objective is therefore to balance the complexity
of the network with goodness-of-fit of the true function. This process is referred to as
architecture selection. Several approaches have been developed to select the optimal
architecture, i.e. regularization, network construction (growing) and pruning. These
approaches will be overviewed in more detail below.

Learning is not just perceived as finding the optimal weight values, but also finding the
optimal architecture. However, it is not always obvious what is the best architecture.
Finding the ultimate best architecture requires a search of all possible architectures.
For large networks an exhaustive search is prohibitive, since the search space consists
of 2% architectures, where w is the total number of weights [602]. Instead, heuristics
are used to reduce the search space. A simple method is to train a few networks of
different architecture and to choose the one that results in the lowest generalization
error as estimated from the generalized prediction error [603, 604] or the network
information criterion [616, 617, 618]. This approach is still expensive and requires
many architectures to be investigated to reduce the possibility that the optimal model
is not found. The NN architecture can alternatively be optimized by trial and error.
An architecture is selected, and its performance is evaluated. If the performance
is unacceptable, a different architecture is selected. This process continues until an
architecture is found that produces an acceptable generalization error.

Other approaches to architecture selection are divided into three categories:

e Regularization: Neural network regularization involves the addition of a
penalty term to the objective function to be minimized. In this case the ob-
jective function changes to

E=Er+ N\e (7.26)

where Er is the usual measure of data misfit, and ¢ is a penalty term, penalizing
network complexity (network size). The constant A controls the influence of the
penalty term. With the changed objective function, the NN now tries to find
a locally optimal trade-off between data-misfit and network complexity. Neural
network regularization has been studied rigorously by Girosi et al. [318], and
Williams [910].

Several penalty terms have been developed to reduce network size automatically
during training. Weight decay, where E¢ = % > w?, is intended to drive small
weights to zero [79, 346, 435, 491]. It is a simple method to implement, but
suffers from penalizing large weights at the same rate as small weights. To solve
this problem, Hanson and Pratt [346] propose the hyperbolic and exponential
penalty functions which penalize small weights more than large weights. Nowlan
and Hinton [633] developed a more complicated soft weight sharing, where the
distribution of weight values is modeled as a mixture of multiple Gaussian dis-
tributions. A narrow Gaussian is responsible for small weights, while a broad
Gaussian is responsible for large weights. Using this scheme, there is less pressure
on large weights to be reduced.

Weigend et al. [895] propose weight elimination where the penalty function

7.3 Performance Factors 111

Ec = %, effectively counts the number of weights. Minimization of this
objective function will then minimize the number of weights. The constant wy
is very important to the success of this approach. If wq is too small, the network
ends up with a few large weights, while a large value results in many small
weights. The optimal value for wg can be determined through cross-validation,

which is not cost-effective.

Chauvin [116, 117] introduces a penalty term that measures the “energy spent”
by the hidden units, where the energy is expressed as a function of the squared
activation of the hidden units. The aim is then to minimize the energy spent by
hidden units, and in so doing, to eliminate unnecessary units.

Kamimura and Nakanishi [435] show that, in an information theoretical context,
weight decay actually minimizes entropy. Entropy can also be minimized directly
by including an entropy penalty term in the objective function [434]. Minimiza-
tion of entropy means that the information about input patterns is minimized,
thus improving generalization. For this approach entropy is defined with respect
to hidden unit activity. Schittenkopf et al. [763] also propose an entropy penalty
term and show how it reduces complexity and avoids overfitting.

Yasui [938] develops penalty terms to make minimal and joint use of hidden units
by multiple outputs. Two penalty terms are added to the objective function to
control the evolution of hidden-to-output weights. One penalty causes weights
leading into an output unit to prevent another from growing, while the other
causes weights leaving a hidden unit to support another to grow.

While regularization models are generally easy to implement, the value of the
constant A in equation (7.26) may present problems. If X is too small, the
penalty term will have no effect. If A is too large, all weights might be driven
to zero. Regularization therefore requires a delicate balance between the normal
error term and the penalty term. Another disadvantage of penalty terms is that
they tend to create additional local minima [346], increasing the possibility of
converging to a bad local minimum. Penalty terms also increase training time
due to the added calculations at each weight update. In a bid to reduce this
complexity, Finnoff et al. [260] show that the performance of penalty terms is
greatly enhanced if they are introduced only after overfitting is observed.

e Network construction (growing): Network construction algorithms start
training with a small network and incrementally add hidden units during training
when the network is trapped in a local minimum [291, 368, 397, 495]. A small
network forms an approximate model of a subset of the training set. Each new
hidden unit is trained to reduce the current network error — yielding a better
approximation. Crucial to the success of construction algorithms is effective
criteria to trigger when to add a new unit, when to stop the growing process,
where and how to connect the new unit to the existing architecture, and how to
avoid restarting training. If these issues are treated on an ad hoc basis, overfitting
may occur and training time may be increased.

e Network pruning: Neural network pruning algorithms start with an oversized
network and remove unnecessary network parameters, either during training or
after convergence to a local minimum. Network parameters that are considered
for removal are individual weights, hidden units and input units. The decision

112 7. Performance Issues (Supervised Learning)

to prune a network parameter is based on some measure of parameter relevance
or significance. A relevance is computed for each parameter and a pruning
heuristic is used to decide when a parameter is considered as being irrelevant
or not. A large initial architecture allows the network to converge reasonably
quickly, with less sensitivity to local minima and the initial network size. Larger
networks have more functional flexibility, and are guaranteed to learn the input-
output mapping with the desired degree of accuracy. Due to the larger functional
flexibility, pruning weights and units from a larger network may give rise to a
better fit of the underlying function, hence better generalization [604].

A more elaborate discussion of pruning techniques is given next, with the main ob-
jective of presenting a flavor of the techniques available to prune NN architectures.
For more detailed discussions, the reader is referred to the given references. The first
results in the quest to find a solution to the architecture optimization problem were
the derivation of theoretical limits on the number of hidden units to solve a particular
problem [53, 158, 436, 751, 759]. However, these results are based on unrealistic as-
sumptions about the network and the problem to be solved. Also, they usually apply
to classification problems only. While these limits do improve our understanding of the
relationship between architecture and training set characteristics, they do not predict
the correct number of hidden units for a general class of problems.

Recent research concentrated on the development of more efficient pruning techniques
to solve the architecture selection problem. Several different approaches to pruning
have been developed. This chapter groups these approaches in the following gen-
eral classes: intuitive methods, evolutionary methods, information matrix methods,
hypothesis testing methods and sensitivity analysis methods.

e Intuitive pruning techniques: Simple intuitive methods based on weight
values and unit activation values have been proposed by Hagiwara [342]. The
goodness factor G! of unit i in layer [, G = 2o Zj(wéioé)z, where the first
sum is over all patterns, and ol is the output of the unit, assumes that an
important unit is one that excites frequently and has large weights to other
units. The consuming energy, Ef = Zp > j wé-io?rloé-, additionally assumes that

unit ¢ excites the units in the next layer. Both methods suffer from the flaw that

when a unit’s output is more frequently 0 than 1, that unit might be considered
as being unimportant, while this is not necessarily the case. Magnitude-based
pruning assumes that small weights are irrelevant [342, 526]. However, small
weights may be of importance, especially compared to very large weights that
cause saturation in hidden and output units. Also, large weights (in terms of

their absolute value) may cancel each other out.

e Evolutionary pruning techniques: The use of genetic algorithms (GA) to
prune NNs provides a biologically plausible approach to pruning [494, 712, 901,
904]. Using GA terminology, the population consists of several pruned versions
of the original network, each needed to be trained. Differently pruned networks
are created by the application of mutation, reproduction and crossover operators.
These pruned networks “compete” for survival, being awarded for using fewer
parameters and for improving generalization. GA NN pruning is thus a time-
consuming process.

7.3 Performance Factors 113

e Information matrix pruning techniques: Several researchers have used ap-
proximations to the Fisher information matrix to determine the optimal number
of hidden units and weights. Based on the assumption that outputs are lin-
early activated, and that least squares estimators satisfy asymptotic normality,
Cottrell et al. [160] compute the relevance of a weight as a function of the
information matrix, approximated by

Z 8fNN (afNN)T (727)

1= ow ow

ol -

p=1

Weights with a low relevance are removed.

Hayashi [355], Tamura et al. [837], Xue et al. [929] and Fletcher et al. [261]
use singular value decomposition (SVD) to analyze the hidden unit activation
covariance matrix to determine the optimal number of hidden units. Based on
the assumption that outputs are linearly activated, the rank of the covariance
matrix is the optimal number of hidden units (also see [292]). SVD of this
information matrix results in an eigenvalue and eigenvector decomposition where
low eigenvalues correspond to irrelevant hidden units. The rank is the number
of non-zero eigenvalues. Fletcher et al. [261] use the SVD of the conditional
Fisher information matrix, as given in equation (7.27), together with likelihood-
ratio tests to determine irrelevant hidden units. In this case the conditional
Fisher information matrix is restricted to weights between the hidden and output
layer only, whereas previous techniques are based on all network weights. Each
iteration of the pruning algorithm identifies exactly which hidden units to prune.

Principal Component Analysis (PCA) pruning techniques have been developed
that use the SVD of the Fisher information matrix to find the principal com-
ponents (relevant parameters) [434, 515, 763, 834]. These principal components
are linear transformations of the original parameters, computed from the eigen-
vectors obtained from a SVD of the information matrix. The result of PCA
is the orthogonal vectors on which variance in the data is maximally projected.
Non-principal components/parameters (parameters that do not account for data
variance) are pruned. Pruning using PCA is thus achieved through projection of
the original w-dimensional space onto a w -dimensional linear subspace (w/ <w)
spanned by the eigenvectors of the data’s correlation or covariance matrix cor-
responding to the largest eigenvalues.

e Hypothesis testing techniques: Formal statistical hypothesis tests can be
used to test the statistical significance of a subset of weights, or a subset of
hidden units. Steppe et al. [809] and Fletcher et al. [261] use the likelihood-
ratio test statistic to test the null hypothesis that a subset of weights is zero.
Weights associated with a hidden unit are tested to see if they are statistically
different from zero. If these weights are not statistically different from zero, the
corresponding hidden unit is pruned.

Belue and Bauer [58] propose a method that injects a noisy input parameter into
the NN model, and then use statistical tests to decide if the significances of the
original NN parameters are higher than that of the injected noisy parameter.
Parameters with lower significances than the noisy parameter are pruned.

114 7. Performance Issues (Supervised Learning)

Similarly, Prechelt [694] and Finnoff et al. [260] test the assumption that a
weight becomes zero during the training process. This approach is based on the
observation that the distribution of weight values is roughly normal. Weights
located in the left tail of this distribution are removed.

e Sensitivity analysis pruning techniques: Two main approaches to sensitiv-
ity analysis exist, namely with regard to the objective function and with regard
to the NN output function. Both sensitivity analysis with regard to the objective
function and sensitivity analysis with regard to the NN output function resulted
in the development of a number of pruning techniques. Possibly the most popu-
lar of these are optimal brain damage (OBD) [166] and its variants, optimal brain
surgeon (OBS) [351, 352] and optimal cell damage (OCD) [129]. A parameter
saliency measure is computed for each parameter, indicating the influence small
perturbations to the parameter have on the approximation error. Parameters
with a low saliency are removed. These methods are time-consuming due to the
calculation of the Hessian matrix. Buntine and Weigend [95] and Bishop [71]
derived methods to simplify the calculation of the Hessian matrix in a bid to
reduce the complexity of these pruning techniques. In OBD, OBS and OCD,
sensitivity analysis is performed with regard to the training error. Pedersen et
al. [669] and Burrascano [98] develop pruning techniques based on sensitivity
analysis with regard to the generalization error. Other objective function sensi-
tivity analysis pruning techniques have been developed by Mozer and Smolensky
[611] and Moody and Utans [602].

NN output sensitivity analysis pruning techniques have been developed that are
less complex than objective function sensitivity analysis, and that do not rely
on simplifying assumptions. Zurada et al. [962] introduced output sensitivity
analysis pruning of input units, further investigated by Engelbrecht et al. [245].
Engelbrecht and Cloete [238, 240, 246] extended this approach to also prune
irrelevant hidden units.

A similar approach to NN output sensitivity analysis was followed by Dorizzi et
al. [218] and Czernichow [168] to prune parameters of a RBFNN.

The aim of all architecture selection algorithms is to find the smallest architecture
that accurately fits the underlying function. In addition to improving generalization
performance and avoiding overfitting (as discussed earlier), smaller networks have the
following advantages. Once an optimized architecture has been found, the cost of
forward calculations is significantly reduced, since the cost of computation grows al-
most linearly with the number of weights. From the generalization limits overviewed
in section 7.3.7, the number of training patterns required to achieve a certain gen-
eralization performance is a function of the network architecture. Smaller networks
therefore require less training patterns. Also, the knowledge embedded in smaller
networks is more easily described by a set of simpler rules. Viktor et al. [879] show
that the number of rules extracted from smaller networks is less for pruned networks
than that extracted from larger networks. They also show that rules extracted from
smaller networks contain only relevant clauses, and that the combinatorics of the rule
extraction algorithm is significantly reduced. Furthermore, for smaller networks the
function of each hidden unit is more easily visualized. The complexity of decision
boundary detection algorithms is also reduced.

7.3 Performance Factors 115

With reference to the bias/variance decomposition of the MSE function [313], smaller
network architectures reduce the variance component of the MSE. NNs are gener-
ally plagued by high variance due to the limited training set sizes. This variance
is reduced by introducing bias through minimization of the network architecture.
Smaller networks are biased because the hypothesis space is reduced; thus limiting
the available functions that can fit the data. The effects of architecture selection on
the bias/variance trade-off have been studied by Gedeon et al. [311].

7.3.6 Adaptive Activation Functions

The performance of NNs can be improved by allowing activation functions to change
dynamically according to the characteristics of the training data. Omne of the first
techniques to use adaptive activations functions was developed by Zurada [961], where
the slope of the sigmoid activation function is learned together with the weights. A
slope parameter A is kept for each hidden and output unit. The lambda-learning
algorithm of Zurada was extended by Engelbrecht et al. [244] where the sigmoid

function is given as

_ g
f(net, \,v) = T o—net
where A is the slope of the function and ~ the maximum range. Engelbrecht et al. de-
veloped learning equations to also learn the maximum ranges of the sigmoid functions,
thereby performing automatic scaling. By using gamma-learning, it is not necessary
to scale target values to the range (0,1). The effect of changing the slope and range

of the sigmoid function is illustrated in Figure 7.6.

(7.28)

3.5 r r r r r r — — T
standard sigmoid
slope = 5
slope = 0.5 -
slope = 1, range =3 -
3 | e]
2.5 - —
2 —
=
=
=
o
1.5 | —
1
0.5 —
o T L P L L L L
-10 -8 -6 -4 -2 (o] 2 4 6 8 10

Input VValue
Figure 7.6 Adaptive Sigmoid

Algorithm 7.1 illustrates the differences between standard GD learning (referred to as

116 7. Performance Issues (Supervised Learning)

delta learning) and the lambda and gamma learning variations. (Note that although
the momentum terms are omitted below, a momentum term is usually used for the
weight, lambda and gamma updates.)

7.3.7 Active Learning

Ockham’s razor states that unnecessarily complex models should not be preferred to
simpler ones — a very intuitive principle [544, 844]. A neural network (NN) model
is described by the network weights. Model selection in NNs consists of finding a
set of weights that best performs the learning task. In this sense, the data, and not
just the architecture should be viewed as part of the NN model, since the data is
instrumental in finding the “best” weights. Model selection is then viewed as the
process of designing an optimal NN architecture as well as the implementation of
techniques to make optimal use of the available training data. Following from the
principle of Ockham’s razor is a preference then for both simple NN architectures and
optimized training data. Usually, model selection techniques address only the question
of which architecture best fits the task.

Standard error back-propagating NNs are passive learners. These networks passively
receive information about the problem domain, randomly sampled to form a fixed
size training set. Random sampling is believed to reproduce the density of the true
distribution. However, more gain can be achieved if the learner is allowed to use
current attained knowledge about the problem to guide the acquisition of training
examples. As passive learner, a NN has no such control over what examples are
presented for learning. The NN has to rely on the teacher (considering supervised
learning) to present informative examples.

The generalization abilities and convergence time of NNs are greatly influenced by
the training set size and distribution: Literature has shown that to generalize well,
the training set must contain enough information to learn the task. Here lies one of
the problems in model selection: the selection of concise training sets. Without prior
knowledge about the learning task, it is very difficult to obtain a representative training
set. Theoretical analysis provides a way to compute worst-case bounds on the number
of training examples needed to ensure a specified level of generalization. A widely used
theorem concerns the Vapnik-Chervonenkis (VC) dimension [8, 9, 54, 152, 375, 643].
This theorem states that the generalization error, Eg, of a learner with VC-dimension,
dyc, trained on Pr random examples will, with high confidence, be no worse than
a limit of order dy¢/Pr. For NN learners, the total number of weights in a one
hidden layer network is used as an estimate of the VC-dimension. This means that
the appropriate number of examples to ensure an &g generalization is approximately
the number of weights divided by &g.

The VC-dimension provides overly pessimistic bounds on the number of train-
ing examples, often leading to an overestimation of the required training set size
[152, 337, 643, 732, 948]. Experimental results have shown that acceptable gener-
alization performances can be obtained with training set sizes much less than that

7.3 Performance Factors 117

Algorithm 7.1 Lambda-Gamma Training Rule

Choose the values of the learning rates 11,72 and ns according to the learning rule:

Delta learning rule m>0,1m=0 n3=0
Lambda learning rule nm >0,1m72>0,n13=0
Gamma learning rule m>0,1m2=0n13>0

Lambda-gamma learning rule 77 >0, 3 >0, n3 >0
Initialize weights to small random values;
Initialize the number of epochs t = 0;
Initialize the steepness and range coefficients
Ay, =1, =1 Vi=1,...,J and Ay =7, =1 Vk=1,... K;
while stopping condition(s) not true do
Let 5T = 0;
for each patternp=1,..., Pr do
z =12z, and t =t;
for each j=1,...,J do
Yj = f(vij /\ijvfz);
end
for each k =1,...,K do
0k = f(Yors Xors WLY);
Ert = 3tk — op)%
Compute the error signal, d,, :

A

Jop = == (tk — 01)0k (Yo, — k) (7.29)

Yoy

Adjust output unit weights and gains, Vj=1,...,J + 1:
net,,

Wkj = Wkj + M0, Yjs Aoy = Aoy, + 7725% 2 (7.30)
ok
1
Yor = Yo + n3(tk — o) —o0k (7.31)
o
end
for each j=1,...,J do
Compute the error signal, d,.:
)‘y
Oy, = i (Yy — Zéokwlw (7.32)
’ny
Adjust hidden unit weights and gains, Vi=1,..., I + 1:
Vji = Vj; + 77161/,- Zis)‘.)‘UJ + 772 (5 net ” (7.33)
1 K
Vy; = Vy; T 7737f(7y,‘) >\yj) nety;) Z 0oy Wi (7.34)
Tys k=1
end
t=1t+1;
end

end

118 7. Performance Issues (Supervised Learning)

specified by the VC-dimension [152, 732]. Cohn and Tesauro [152] show that for ex-
periments conducted, the generalization error decreases exponentially with the number
of examples, rather than the 1/Pr result of the VC bound. Experimental results by
Lange and Méanner [502] show that more training examples do not necessarily improve
generalization. In their paper, Lange and Ménner introduce the notion of a critical
training set size. Through experimentation they found that examples beyond this
critical size do not improve generalization, illustrating that excess patterns have no
real gain. This critical training set size is problem dependent.

While enough information is crucial to effective learning, too large training set sizes
may be of disadvantage to generalization performance and training time [503, 948].
Redundant training examples may be from uninteresting parts of input space, and
do not serve to refine learned weights — it only introduces unnecessary computations,
thus increasing training time. Furthermore, redundant examples might not be equally
distributed, thereby biasing the learner.

The ideal, then, is to implement structures to make optimal use of available training
data. That is, to select only informative examples for training, or to present examples
in a way to maximize the decrease in training and generalization error. To this extent,
active learning algorithms have been developed.

Cohn et al. [151] define active learning (also referred to in the literature as example
selection, sequential learning, query-based learning) as any form of learning in which
the learning algorithm has some control over what part of the input space it receives
information from. An active learning strategy allows the learner to dynamically select
training examples, during training, from a candidate training set as received from the
teacher (supervisor). The learner capitalizes on current attained knowledge to select
examples from the candidate training set that are most likely to solve the problem,
or that will lead to a maximum decrease in error. Rather than passively accepting
training examples from the teacher, the network is allowed to use its current knowledge
about the problem to have some deterministic control over which training examples to
accept, and to guide the search for informative patterns. By adding this functionality
to a NN, the network changes from a passive learner to an active learner.

Figure 7.7 illustrates the difference between active learning and passive learning.

With careful dynamic selection of training examples, shorter training times and better
generalization may be obtained. Provided that the added complexity of the example
selection method does not exceed the reduction in training computations (due to a
reduction in the number of training patterns), training time will be reduced [399, 822,
948]. Generalization can potentially be improved, provided that selected examples
contain enough information to learn the task. Cohn [153] and Cohn et al. [151]
show through average case analysis that the expected generalization performance of
active learning is significantly better than passive learning. Seung et al. [777], Sung
and Niyogi [822] and Zhang [948] report similar improvements. Results presented
by Seung et al. indicate that generalization error decreases more rapidly for active
learning than for passive learning [777].

Two main approaches to active learning can be identified, i.e. incremental learning

7.3 Performance Factors 119

Training Set Neural Network
> — Dy, W
Dy Learner fnn(Dr, W)
Passive Learning
Training Set Neural Network

Y

— fan(Dr, W)

Dr Learner

Current Knowledge

Active Learning .
Operator Candidate
< Training Set
Ale) ain

Active Learning

Figure 7.7 Passive vs Active Learning

and selective learning. Incremental learning starts training on an initial subset of a
candidate training set. During training, at specified selection intervals (e.g. after a
specified number of epochs, or when the error on the current training subset no longer
decreases), further subsets are selected from the candidate examples using some criteria
or heuristics, and added to the training set. The training set consists of the union of
all previously selected subsets, while examples in selected subsets are removed from
the candidate set. Thus, as training progresses, the size of the candidate set decreases
while the size of the actual training set grows. Note that this chapter uses the term
incremental learning to denote data selection, and should not be confused with the
NN architecture selection growing approach. The term NN growing is used in this
chapter to denote the process of finding an optimal architecture starting with too few
hidden units and adding units during training.

In contrast to incremental learning, selective learning selects a new training subset
from the original candidate set at each selection interval. Selected patterns are not
removed from the candidate set. At each selection interval, all candidate patterns
have a chance to be selected. The subset is selected and used for training until some
convergence criteria on the subset is met (e.g. a specified error limit on the subset is
reached, the error decrease per iteration is too small, the maximum number of epochs
allowed on the subset is exceeded). A new training subset is then selected for the next

120 7. Performance Issues (Supervised Learning)

training period. This process repeats until the NN is trained to satisfaction.

The main difference between these two approaches to active learning is that no exam-
ples are discarded by incremental learning. In the limit, all examples in the candidate
set will be used for training. With selective learning, training starts on all candidate
examples, and uninformative examples are discarded as training progresses.

Selective Learning

Not much research has been done in selective learning. Hunt and Deller [399] developed
Selective Updating, where training starts on an initial candidate training set. Patterns
that exhibit a high influence on weights, i.e. patterns that cause the largest changes
in weight values, are selected from the candidate set and added to the training set.
Patterns that have a high influence on weights are selected at each epoch by calculating
the effect that patterns have on weight estimates. These calculations are based on
matrix perturbation theory, where an input pattern is viewed as a perturbation of
previous patterns. If the perturbation is expected to cause large changes to weights,
the corresponding pattern is included in the training set. The learning algorithm
does use current knowledge to select the next training subset, and training subsets
may differ from epoch to epoch. Selective Updating has the drawback of assuming
uncorrelated input units, which is often not the case for practical applications.

Another approach to selective learning is simply to discard those patterns that have
been classified correctly [50]. The effect of such an approach is that the training set
will include those patterns that lie close to decision boundaries. If the candidate set
contains outlier patterns, these patterns will, however, also be selected. This error
selection approach therefore requires a robust estimator (objective function) to be
used in the case of outliers.

Engelbrecht et al. [241, 242, 239] developed a selective learning approach for classifi-
cation problems where sensitivity analysis is used to locate patterns close to decision
boundaries. Only those patterns that are close to a decision boundary are selected for
training. The algorithm resulted in substantial reductions in the number of learning
calculations due to reductions in the training set size, while either maintaining perfor-
mance as obtained from learning from all the training data, or improving performance.

Incremental learning

Research on incremental learning is more abundant than for selective learning. Most
current incremental learning techniques have their roots in information theory, adapt-
ing Fedorov’s optimal experiment design for NN learning [153, 295, 544, 681, 822].
The different information theoretic incremental learning algorithms are very similar,
and differ only in whether they consider only bias, only variance, or both bias and
variance terms in their selection criteria.

Cohn [153] developed neural network optimal experiment design (OED), where the

7.3 Performance Factors 121

objective is to select, at each iteration, a new pattern from a candidate set which min-
imizes the expectation of the MSE. This is achieved by minimizing output variance
as estimated from the Fisher information matrix [153, 154]. The model assumes an
unbiased estimator and considers only the minimization of variance. OED is com-
putationally very expensive because it requires the calculation of the inverse of the
information matrix.

MacKay [544] proposed similar information-based objective functions for active learn-
ing, where the aim is to maximize the expected information gain by maximizing the
change in Shannon entropy when new patterns are added to the actual training set, or
by maximizing cross-entropy gain. Similar to OED, the maximization of information
gain is achieved by selecting patterns that minimize the expected MSE. Information-
based objective functions also ignore bias, by minimizing only variance. The required
inversion of the Hessian matrix makes this approach computationally expensive.

Plutowski and White [681] proposed selecting patterns that minimize the integrated
squared bias (ISB). At each iteration, a new pattern is selected from a candidate
set that maximizes the change, AISB, in the ISB. In effect, the patterns with error
gradient most highly correlated with the error gradient of the entire set of patterns
is selected. A noise-free environment is assumed and variance is ignored. Drawbacks
of this method are the need to calculate the inverse of a Hessian matrix, and the
assumption that the target function is known.

Sung and Niyogi [822] proposed an information theoretic approach to active learning
that considers both bias and variance. The learning goal is to minimize the expected
misfit between the target function and the approximated function. The patterns that
minimize the expected squared difference between the target and approximated func-
tion are selected to be included in the actual training set. In effect, the net amount
of information gained with each new pattern is then maximized. No assumption is
made about the target function. This technique is computationally expensive, since
it requires computations over two expectations, i.e. the a-posteriori distribution over
function space, and the a-posteriori distribution over the space of targets one would
expect given a candidate sample location.

One drawback of the incremental learning algorithms summarized above is that they
rely on the inversion of an information matrix. Fukumizu showed that, in relation to
pattern selection to minimize the expected MSE, the Fisher information matrix may
be singular [295]. If the information matrix is singular, the inverse of that matrix may
not exist. Fukumizu continues to show that the information matrix is singular if and
only if the corresponding NN contains redundant units. Thus, the information matrix
can be made non-singular by removing redundant hidden units. Fukumizu developed
an algorithm that incorporates an architecture reduction algorithm with a pattern
selection algorithm. This algorithm is complex due to the inversion of the information
matrix at each selection interval, but ensures a non-singular information matrix.

Approximations to the information theoretical incremental learning algorithms can be
used. Zhang [948] shows that information gain is maximized when a pattern is selected
whose addition leads to the greatest decrease in MSE. Zhang developed selective in-
cremental learning where training starts on an initial subset which is increased during

122 7. Performance Issues (Supervised Learning)

training by adding additional subsets, where each subset contains those patterns with
largest errors. Selective incremental learning has a very low computational overhead,
but is negatively influenced by outlier patterns since these patterns have large errors.

Dynamic pattern selection, developed by Rébel [732], is very similar to Zhang’s selec-
tive incremental learning. Robel defines a generalization factor on the current training
subset, expressed as Eg/Er where £ and Er are the MSE of the test set and the train-
ing set respectively. As soon as the generalization factor exceeds a certain threshold,
patterns with the highest errors are selected from the candidate set and added to the
actual training set. Testing against the generalization factor prevents overfitting of
the training subset. A low overhead is involved.

Very different from the methods previously described are incremental learning algo-
rithms for classification problems, where decision boundaries are utilized to guide the
search for optimal training subsets. Cohn et al. [151] developed selective sampling,
where patterns are sampled only within a region of uncertainty. Cohn et al. proposed
an SG-network (most specific/most general network) as an approach to compute the
region of uncertainty. Two separate networks are trained: one to learn a “most spe-
cific” concept s consistent with the given training data, and the other to learn a
“most general” concept, g. The region of uncertainty is then all patterns p such that
s(p) # g(p). In other words, the region of uncertainty encapsulates all those pat-
terns for which s and g present a different classification. A new training pattern is
selected from this region of uncertainty and added to the training set. After training
on the new training set, the region of uncertainty is recalculated, and another pattern
is sampled according to some distribution defined over the uncertainty region — a very
expensive approach. To reduce complexity, the algorithm is changed to select patterns
in batches, rather than individually. An initial pattern subset is drawn, the network
is trained on this subset, and a new region of uncertainty is calculated. Then, a new
distribution is defined over the region of uncertainty that is zero outside this region.
A next subset is drawn according to the new distribution and added to the training
set. The process repeats until convergence is reached.

Query-based learning, developed by Hwang et al. [402] differs from selective sampling
in that query-based learning generates new training data in the region of uncertainty.
The aim is to increase the steepness of the boundary between two distinct classes by
narrowing the regions of ambiguity. This is accomplished by inverting the NN output
function to compute decision boundaries. New data in the vicinity of boundaries are
then generated and added to the training set.

Seung et al. [777] proposed query by committee. The optimal training set is built by
selecting one pattern at a time from a candidate set based on the principle of maximal
disagreement among a committee of learners. Patterns classified correctly by half of
the committee, but incorrectly by the other half, are included in the actual training
set. Query by committee is time-consuming due to the simultaneous training of several
networks, but will be most effective for ensemble networks.

Engelbrecht et al. [243] developed an incremental learning algorithm where sensitivity
analysis is used to locate the most informative patterns. The most informative patterns
are viewed as those patterns in the midrange of the sigmoid activation function. Since

7.3 Performance Factors 123

these patterns have the largest derivatives of the output with respect to inputs, the
algorithm incrementally selects from a candidate set of patterns those patterns that
have the largest derivatives. Substantial reductions in computational complexity are
achieved using this algorithm, with improved accuracy.

The incremental learning algorithms reviewed in this section all make use of the NN
learner’s current knowledge about the learning task to select those patterns that are
most informative. These algorithms start with an initial training set, which is increased
during training by adding a single informative pattern, or a subset of informative
patterns.

In general, active learning is summarized as in Algorithm 7.2.

Algorithm 7.2 Generic Active Learning Algorithm

Initialize the NN architecture;
Construct an initial training subset Dg, from the candidate set D¢;
Initialize the current training set Dy < Dg,;
while stopping condition(s) not true do
while stopping condition(s) on training subset Dy not true do
Train the NN on training subset D7 to produce the function fyy (D1, W);
end
Apply the active learning operator to generate a new subset Dg_ at subset
selection interval 7, using either

Ds, — A™ (D¢, fnn(Dr, W)), Dr « Ds, (7.35)
for selective learning, or

Ds, — A" (D¢,Dr, fyn(Dr,W)) (7.36)
Dr «— Dpu DSS’ De «+— Do — 1)5S (737)

for incremental learning
end

In Algorithm 7.2, A denotes the active learning operator, which is defined as follows
for each of the active learning classes:

1) A= (D¢, fnn (D, W)) = Dg, where Dg C D¢. The operator A~ receives as input
the candidate set D¢, performs some calculations on each pattern z, € D¢, and
produces the subset Dg with the characteristics Dg C D¢, that is |Dg| < |D¢|. The
aim of this operator is therefore to produce a subset Dg from D¢ that is smaller than,
or equal to, Do. Then, let Dy <+ Dg, where Dr is the actual training set.

2) AY(D¢, Dr, fnn(Dr,W)) = Dg, where D¢, Dy and Dg are sets such that
Dy C D¢, Dg C Dc. The operator AT performs calculations on each pat-
tern z, € D¢ to determine if that element should be added to the current train-
ing set. Selected patterns are added to subset Dg. Thus, Dg = {zp|z, €
D¢, and 1z, satisfies the selection criteria}. Then, Dy <« Dp U Dg (the new

124

7. Performance Issues (Supervised Learning)

subset is added to the current training subset), and Do <+ Do — Dg.

Active learning operator A~ corresponds with selective learning where the training
set is “pruned”, while AT corresponds with incremental learning where the actual
training subset “grows”. Inclusion of the NN function fyy as a parameter of each
operator indicates the dependence on the NN’s current knowledge.

7.4 Assignments

Discuss measures that quantify the performance of unsupervised neural networks.

Discuss factors that influence the performance of unsupervised neural networks.
Explain how the performance can be improved.

Why is the SSE not a good measure to compare the performance of NNs on
different data set sizes?

Why is the MSE not a good measure of performance for classification problems?

5. One approach to incremental learning is to select from the candidate training

set the most informative pattern as the one with the largest error. Justify and
criticize this approach. Assume that a new pattern is selected at each epoch.

1

o et in the performance of

Explain the role of the steepness coefficient in
supervised NNs.

7. Explain how architecture selection can be used to avoid overfitting.

8. Explain how active learning can be used to avoid overfitting.

9. Consider the sigmoid activation function. Discuss how scaling of the training

10.

data affects the performance of NNs.

Explain how the Huber function makes a NN more robust to outliers.

Part 111

EVOLUTIONARY
COMPUTATION

The world we live in is constantly changing. In order to survive in a dynamically chang-
ing environment, individuals must have the ability to adapt. Evolution is this process
of adaption with the aim of improving the survival capabilities through processes such
as natural selection, survival of the fittest, reproduction, mutation, competition and
symbiosis.

This part covers evolutionary computing (EC) — a field of CI that models the processes
of natural evolution. Several evolutionary algorithms (EA) have been developed. This
text covers genetic algorithms in Chapter 9, genetic programming in Chapter 10,
evolutionary programming in Chapter 11, evolutionary strategies in Chapter 12, dif-
ferential evolution in Chapter 13, cultural algorithms in Chapter 14, and coevolution
in Chapter 15. An introduction to basic EC concepts is given in Chapter 8.

125

Chapter 8

Introduction to Evolutionary
Computation

Evolution is an optimization process where the aim is to improve the ability of an or-
ganism (or system) to survive in dynamically changing and competitive environments.
Evolution is a concept that has been hotly debated over centuries, and still causes ac-
tive debates.! When talking about evolution, it is important to first identify the area
in which evolution can be defined, for example, cosmic, chemical, stellar and planetary,
organic or man-made systems of evolution. For these different areas, evolution may
be interpreted differently. For the purpose of this part of the book, the focus is on
biological evolution. Even for this specific area, attempts to define the term biological
evolution still cause numerous debates, with the Lamarckian and Darwinian views be-
ing the most popular and accepted. While Darwin (1809-1882) is generally considered
as the founder of both the theory of evolution and the principle of common descent,
Lamarck (1744-1829) was possibly the first to theorize about biological evolution.

Jean-Baptiste Lamarck’s theory of evolution was that of heredity, i.e. the inheritance
of acquired traits. The main idea is that individuals adapt during their lifetimes,
and transmit their traits to their offspring. The offspring then continue to adapt.
According to Lamarckism, the method of adaptation rests on the concept of use and
disuse: over time, individuals lose characteristics they do not require, and develop
those which are useful by “exercising” them.

It was Charles Darwin’s theory of natural selection that became the foundation of
biological evolution (Alfred Wallace developed a similar theory at the same time, but
independently of Darwin). The Darwinian theory of evolution [173] can be summarized
as: In a world with limited resources and stable populations, each individual competes
with others for survival. Those individuals with the “best” characteristics (traits)
are more likely to survive and to reproduce, and those characteristics will be passed
on to their offspring. These desirable characteristics are inherited by the following
generations, and (over time) become dominant among the population.

A second part of Darwin’s theory states that, during production of a child organism,

IRefer to http:www.johmann.net/book/ciy7-1.html
http://www.talkorigins.org/fags/evolution-definition.html
http://www.evolutionfairytale.com/articles_debates/evolution-definition.html
http://www.creationdesign.org/ (accessed 05/08/2004).

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

127

128 8. Introduction to Evolutionary Computation

random events cause random changes to the child organism’s characteristics. If these
new characteristics are a benefit to the organism, then the chances of survival for that
organism are increased.

Evolutionary computation (EC) refers to computer-based problem solving systems
that use computational models of evolutionary processes, such as natural selection,
survival of the fittest and reproduction, as the fundamental components of such com-
putational systems.

This chapter gives an overview of the evolution processes modeled in EC. Section 8.1
presents a generic evolutionary algorithm (EA) and reviews the main components
of EAs. Section 8.2 discusses ways in which the computational individuals are repre-
sented, and Section 8.3 discusses aspects about the initial population. The importance
of fitness functions, and different types of fitness functions are discussed in Section 8.4.
Selection and reproduction operators are respectively discussed in Sections 8.5 and 8.6.
Algorithm stopping conditions are considered in Section 8.7. A short discussion on
the differences between EC and classical optimization is given in Section 8.8.

8.1 Generic Evolutionary Algorithm

Evolution via natural selection of a randomly chosen population of individuals can
be thought of as a search through the space of possible chromosome values. In that
sense, an evolutionary algorithm (EA) is a stochastic search for an optimal solution to
a given problem. The evolutionary search process is influenced by the following main
components of an EA:

e an encoding of solutions to the problem as a chromosome;

e a function to evaluate the fitness, or survival strength of individuals;

e initialization of the initial population;

e selection operators; and

e reproduction operators.

Algorithm 8.1 shows how these components are combined to form a generic EA.

Algorithm 8.1 Generic Evolutionary Algorithm

Let ¢ = 0 be the generation counter;
Create and initialize an n,-dimensional population, C(0), to consist of ns individuals;
while stopping condition(s) not true do
Evaluate the fitness, f(x;(t)), of each individual, x;(¢);
Perform reproduction to create offspring;
Select the new population, C(¢ + 1);
Advance to the new generation, i.e. t =t + 1;
end

8.2 Representation -- The Chromosome 129

The steps of an EA are applied iteratively until some stopping condition is satisfied
(refer to Section 8.7). Each iteration of an EA is referred to as a generation.

The different ways in which the EA components are implemented result in diffferent
EC paradigms:

e Genetic algorithms (GAs), which model genetic evolution.

e Genetic programming (GP), which is based on genetic algorithms, but indi-
viduals are programs (represented as trees).

e Evolutionary programming (EP), which is derived from the simulation of
adaptive behavior in evolution (i.e. phenotypic evolution).

e Evolution strategies (ESs), which are geared toward modeling the strategic
parameters that control variation in evolution, i.e. the evolution of evolution.

e Differential evolution (DE), which is similar to genetic algorithms, differing
in the reproduction mechanism used.

e Cultural evolution (CE), which models the evolution of culture of a popu-
lation and how the culture influences the genetic and phenotypic evolution of
individuals.

e Co-evolution (CoE), where initially “dumb” individuals evolve through cooper-
ation, or in competition with one another, acquiring the necessary characteristics
to survive.

These paradigms are discussed in detail in the chapters that follow in this part of the
book.

With reference to Algorithm 8.1, both parts of Darwin’s theory are encapsulated within
this algorithm:

e Natural selection occurs within the reproduction operation where the “best”
parents have a better chance of being selected to produce offspring, and to be
selected for the new population.

e Random changes are effected through the mutation operator.

8.2 Representation — The Chromosome

In nature, organisms have certain characteristics that influence their ability to survive
and to reproduce. These characteristics are represented by long strings of informa-
tion contained in the chromosomes of the organism. Chromosomes are structures of
compact intertwined molecules of DNA, found in the nucleus of organic cells. Each
chromosome contains a large number of genes, where a gene is the unit of heredity.
Genes determine many aspects of anatomy and physiology through control of protein
production. Each individual has a unique sequence of genes. An alternative form of a
gene is referred to as an allele.

In the context of EC, each individual represents a candidate solution to an optimization
problem. The characteristics of an individual is represented by a chromosome, also

130 8. Introduction to Evolutionary Computation

referred to as a genome. These characteristics refer to the variables of the optimization
problem, for which an optimal assignment is sought. Each variable that needs to be
optimized is referred to as a gene, the smallest unit of information. An assignment
of a value from the allowed domain of the corresponding variable is referred to as an
allele. Characteristics of an individual can be divided into two classes of evolutionary
information: genotypes and phenotypes. A genotype describes the genetic composition
of an individual, as inherited from its parents; it represents which allele the individual
possesses. A phenotype is the expressed behavioral traits of an individual in a specific
environment; it defines what an individual looks like. Complex relationships exist
between the genotype and phenotype [570]:

e pleiotropy, where random modification of genes causes unexpected variations in
the phenotypic traits, and

e polygeny, where several genes interact to produce a specific phenotypic trait.

An important step in the design of an EA is to find an appropriate representation of
candidate solutions (i.e. chromosomes). The efficiency and complexity of the search
algorithm greatly depends on the representation scheme. Different EAs from the
different paradigms use different representation schemes. Most EAs represent solutions
as vectors of a specific data type. An exception is genetic programming (GP) where
individuals are represented in a tree format.

The classical representation scheme for GAs is binary vectors of fixed length. In the
case of an n,-dimensional search space, each individual consists of n, variables with
each variable encoded as a bit string. If variables have binary values, the length of
each chromosome is n, bits. In the case of nominal-valued variables, each nominal
value can be encoded as an ng-dimensional bit vector where 2"¢ is the total number
of discrete nominal values for that variable. To solve optimization problems with
continuous-valued variables, the continuous search space problem can be mapped into
a discrete programming problem. For this purpose mapping functions are needed to
convert the space {0, 1} to the space R™=. For such mapping, each continuous-valued
variable is mapped to an ng-dimensional bit vector, i.e.

¢:R — (0,1) (8.1)

The domain of the continuous space needs to be restricted to a finite range,
[Xmin, Xmaz]- A standard binary encoding scheme can be used to transform the
individual x = (21,...,%j,...,%y,), with ; € R to the binary-valued individual,
b = (bl, ey bj, ey bnz), where bj = (b(j—l)nd+17 ey bjnd)a with b € {0, 1} and
the total number of bits, n, = nyng. Decoding each b; back to a floating-point rep-
resentation can be done using the function, ®; : {0,1}" — [Zmin ;s Tmae,;], Where
[39]

ndfl
Tmax,j — Tmin,j
(I)J(b) = Tpin,j + W (Z bj(ndl)2l> (82)
=1

Holland [376] and De Jong [191] provided the first applications of genetic algorithms
to solve continuous-valued problems using such a mapping scheme. It should be noted

8.2 Representation -- The Chromosome 131

that if a bitstring representation is used, a grid search is done in a discrete search space.
The EA may therefore fail to obtain a precise optimum. In fact, for a conversion form
a floating-point value to a bitstring of ng bits, the maximum attainable accuracy is

Tmax,j — Tmin,j
_— 8.3
Qnd _ 1 ()

for each vector component, j =1,...,n,.
Hamming distance
5 ---®--- binary coding

) S S Gray coding

Numerical value
Figure 8.1 Hamming Distance for Binary and Gray Coding

While binary coding is frequently used, it has the disadvantage of introducing Ham-
ming cliffs as illustrated in Figure 8.1. A Hamming cliff is formed when two numerically
adjacent values have bit representations that are far apart. For example, consider the
decimal numbers 7 and 8. The corresponding binary representations are (using a 4-bit
representation) 7 = 0111 and 8 = 1000, with a Hamming distance of 4 (the Hamming
distance is the number of corresponding bits that differ). This presents a problem
when a small change in variables should result in a small change in fitness. If, for
example, 7 represents the optimal solution, and the current best solution has a fitness
of 8, many bits need to be changed to cause a small change in fitness value.

An alternative bit representation is to use Gray coding, where the Hamming distance
between the representation of successive numerical values is one (as illustrated in
Figure 8.1). Table 8.1 compares binary and Gray coding for a 3-bit representation.

Binary numbers can easily be converted to Gray coding using the conversion

g = b
g = bbb+ b1l (8.4)

where b; is bit [of the binary number b1bs - - - by, , with b; the most significant bit; b
denotes not b, + means logical OR, and multiplication implies logical AND.

A Gray code representation, b; can be converted to a floating-point representation

132 8. Introduction to Evolutionary Computation

Table 8.1 Binary and Gray Coding

| Binary | Gray

0 | 000 000

1| 001 001

21 010 011

3] 011 010

41 100 110

5 | 101 111

6 | 110 101

7 111 100

using
T 1)) TLd—l nd—l
®;(b) = Tpin,g + N (Z (Z b(j_l)nd+q> mod 2) 2! (8.5)

=1 q=1

Real-valued representations have been used for a number of EAs, including GAs. Al-
though EP (refer to Chapter 11) was originally developed for finite-state machine
representations, it is now mostly applied to real-valued representations where each
vector component is a floating-point number, ie. z; € R,j = 1,...,n,. ESs and
DE, on the other hand, have been developed for floating-point representation (refer
to Chapters 12 and 13). Real-valued representations have also been used for GAs
[115, 178, 251, 411, 918]. Michalewicz [583] indicated that the original floating-point
representation outperforms an equivalent binary representation, leading to more ac-
curate, faster obtained solutions.

Other representation schemes that have been used include integer representations [778],
permutations [778, 829, 905, 906], finite-state representations [265, 275], tree represen-
tations (refer to Chapter 10), and mixed-integer representations [44].

8.3 Initial Population

Evolutionary algorithms are stochastic, population-based search algorithms. Each EA
therefore maintains a population of candidate solutions. The first step in applying
an EA to solve an optimization problem is to generate an initial population. The
standard way of generating an initial population is to assign a random value from the
allowed domain to each of the genes of each chromosome. The goal of random selection
is to ensure that the initial population is a uniform representation of the entire search
space. If regions of the search space are not covered by the initial population, chances
are that those parts will be neglected by the search process.

8.4 Fitness Function 133

The size of the initial population has consequences in terms of computational complex-
ity and exploration abilities. Large numbers of individuals increase diversity, thereby
improving the exploration abilities of the population. However, the more the individ-
uals, the higher the computational complexity per generation. While the execution
time per generation increases, it may be the case that fewer generations are needed to
locate an acceptable solution. A small population, on the other hand will represent a
small part of the search space. While the time complexity per generation is low, the
EA may need more generations to converge than for a large population.

In the case of a small population, the EA can be forced to explore more of the search
space by increasing the rate of mutation.

8.4 Fitness Function

In the Darwinian model of evolution, individuals with the best characteristics have
the best chance to survive and to reproduce. In order to determine the ability of
an individual of an EA to survive, a mathematical function is used to quantify how
good the solution represented by a chromosome is. The fitness function, f, maps a
chromosome representation into a scalar value:

f:T" >R (8.6)
where I' represents the data type of the elements of an n,-dimensional chromosome.

The fitness function represents the objective function, ¥, which describes the opti-
mization problem. It is not necessarily the case that the chromosome representation
corresponds to the representation expected by the objective function. In such cases,
a more detailed description of the fitness function is

FiSe2sy LRLR, (8.7)

where S¢ represents the search space of the objective function, and ®, ¥ and T re-
spectively represent the chromosome decoding function, the objective function, and
the scaling function. The (optional) scaling function is used in proportional selection
to ensure positive fitness values (refer to Section 8.5). As an example,

fi{0,1y» 2R LR LR, (8.8)

where an ny-bitstring representation is converted to a floating-point representation
using either equation (8.2) or (8.5).

For the purposes of the remainder of this part on EC, it is assumed that S¢ = Sx for
which f = W.

Usually, the fitness function provides an absolute measure of fitness. That is, the
solution represented by a chromosome is directly evaluated using the objective func-
tion. For some applications, for example game learning (refer to Chapter 11) it is not
possible to find an absolute fitness function. Instead, a relative fitness measure is used

134 8. Introduction to Evolutionary Computation

to quantify the performance of an individual in relation to that of other individuals
in the population or a competing population. Relative fitness measures are used in
coevolutionary algorithms (refer to Chapter 15).

It is important to realize at this point that different types of optimization problems
exist (refer to Section A.3), which have an influence on the formulation of the fitness
function:

e Unconstrained optimization problems as defined in Definition A.4, where, as-
suming that S¢ = Sx, the fitness function is simply the objective function.

e Constrained optimization problems as defined in Definition A.5. To solve con-
strained problems, some EAs change the fitness function to contain two objec-
tives: one is the original objective function, and the other is a constraint penalty
function (refer to Section A.6).

e Multi-objective optimization problems (MOP) as defined in Definition A.10.
MOPs can be solved by using a weighted aggregation approach (refer to Sec-
tion A.8), where the fitness function is a weighted sum of all the sub-objectives
(refer to equation (A.44)), or by using a Pareto-based optimization algorithm.

e Dynamic and noisy problems, where function values of solutions change over
time. Dynamic fitness functions are time-dependent whereas noisy functions
usually have an added Gaussian noise component. Dynamic problems are defined
in Definition A.16. Equation (A.58) gives a noisy function with an additive
Gaussian noise component.

As a final comment on the fitness function, it is important to emphasize its role in an
EA. The evolutionary operators, e.g. selection, crossover, mutation and elitism, usu-
ally make use of the fitness evaluation of chromosomes. For example, selection opera-
tors are inclined towards the most-fit individuals when selecting parents for crossover,
while mutation leans towards the least-fit individuals.

8.5 Selection

Selection is one of the main operators in EAs, and relates directly to the Darwinian
concept of survival of the fittest. The main objective of selection operators is to
emphasize better solutions. This is achieved in two of the main steps of an EA:

e Selection of the new population: A new population of candidate solutions
is selected at the end of each generation to serve as the population of the next
generation. The new population can be selected from only the offspring, or from
both the parents and the offspring. The selection operator should ensure that
good individuals do survive to next generations.

e Reproduction: Offspring are created through the application of crossover
and/or mutation operators. In terms of crossover, “superior” individuals should
have more opportunities to reproduce to ensure that offspring contain genetic
material of the best individuals. In the case of mutation, selection mechanisms

8.5 Selection 135

should focus on “weak” individuals. The hope is that mutation of weak individu-
als will result in introducing better traits to weak individuals, thereby increasing
their chances of survival.

Many selection operators have been developed. A summary of the most frequently
used operators is given in this section. Preceding this summary is a discussion of
selective pressure in Section 8.5.1.

8.5.1 Selective Pressure

Selection operators are characterized by their selective pressure, also referred to as the
takeover time, which relates to the time it requires to produce a uniform population. It
is defined as the speed at which the best solution will occupy the entire population by
repeated application of the selection operator alone [38, 320]. An operator with a high
selective pressure decreases diversity in the population more rapidly than operators
with a low selective pressure, which may lead to premature convergence to suboptimal
solutions. A high selective pressure limits the exploration abilities of the population.

8.5.2 Random Selection

Random selection is the simplest selection operator, where each individual has the
same probability of nL (where ng is the population size) to be selected. No fitness
information is used, which means that the best and the worst individuals have exactly
the same probability of surviving to the next generation. Random selection has the
lowest selective pressure among the selection operators discussed in this section.

8.5.3 Proportional Selection

Proportional selection, proposed by Holland [376], biases selection towards the most-
fit individuals. A probability distribution proportional to the fitness is created, and
individuals are selected by sampling the distribution,

() = st
ps(xi(t)) = 2 fr(xa(t))

where ng is the total number of individuals in the population, and ps(x;) is the
probability that x; will be selected. fy(x;) is the scaled fitness of x;, to produce a
positive floating-point value. For minimization problems, possible choices of scaling
function, Y, are

o fr(xi(t)) = Y(xi(t)) = finas — fu(xi(t)) where fu(x;(t)) = ¥(x;(t)) is the
raw fitness value of x;(t). However, knowledge of f,4. (the maximum possible
fitness) is usually not available. An alternative is to use fy,q.(t), which is the
maximum fitness observed up to time step t.

(8.9)

136 8. Introduction to Evolutionary Computation

o fr(xi(t)) = T(x(t)) = 1+f\11(xi(t])-)_fm,7',n(t)’ where [y, (t) is the minimum ob-
served fitness up to time step ¢. Here, fv(x;(t)) € (0, 1].

In the case of a maximization problem, the fitness values can be scaled to the range
(0,1] using
1

- 1+ fmaz(t) - f(xl(t))

fr(xi(t) = T(xi(t)) (8.10)

Two popular sampling methods used in proportional selection is roulette wheel sam-
pling and stochastic universal sampling.

Assuming maximization, and normalized fitness values, roulette wheel selection is
summarized in Algorithm 8.2. Roulette wheel selection is an example proportional
selection operator where fitness values are normalized (e.g. by dividing each fitness
by the maximum fitness value). The probability distribution can then be seen as a
roulette wheel, where the size of each slice is proportional to the normalized selection
probability of an individual. Selection can be likened to the spinning of a roulette
wheel and recording which slice ends up at the top; the corresponding individual is
then selected.

Algorithm 8.2 Roulette Wheel Selection

Let i = 1, where i denotes the chromosome index;

Calculate p;(x;) using equation (8.9);

sum = @g(x;);

Choose r ~ U(0,1);

while sum < r do
1 =14 1, i.e. advance to the next chromosome;
sum = sum + @s(X;);

end

Return x; as the selected individual;

When roulette wheel selection is used to create offspring to replace the entire popula-
tion, ns independent calls are made to Algorithm 8.2. It was found that this results in
a high variance in the number of offspring created by each individual. It may happen
that the best individual is not selected to produce offspring during a given generation.
To prevent this problem, Baker [46] proposed stochastic universal sampling (refer to
Algorithm 8.3), used to determine for each individual the number of offspring, A;, to
be produced by the individual with only one call to the algorithm.

Because selection is directly proportional to fitness, it is possible that strong individ-
uals may dominate in producing offspring, thereby limiting the diversity of the new
population. In other words, proportional selection has a high selective pressure.

8.5 Selection 137

Algorithm 8.3 Stochastic Universal Sampling

fori=1,...,nsdo
Ai(t) =0;
end
U(0, 1), where X is the total number of offspring;
um = 0.0;
for i=1,...,ns do

sum = sum + @4 (x;(t));
while r» < sum do

Ai ++;
rzr—I—%;
end

end
return A = (A1, ..., An,);

8.5.4 Tournament Selection

Tournament selection selects a group of n:s individuals randomly from the popula-
tion, where ngs < ms (ng is the total number of individuals in the population). The
performance of the selected n;s individuals is compared and the best individual from
this group is selected and returned by the operator. For crossover with two parents,
tournament selection is done twice, once for the selection of each parent.

Provided that the tournament size, n.s, is not too large, tournament selection prevents
the best individual from dominating, thus having a lower selection pressure. On the
other hand, if n;, is too small, the chances that bad individuals are selected increase.

Even though tournament selection uses fitness information to select the best individual
of a tournament, random selection of the individuals that make up the tournament
reduces selective pressure compared to proportional selection. However, note that the
selective pressure is directly related to nss. If nis = ng, the best individual will always
be selected, resulting in a very high selective pressure. On the other hand, if n;s = 1,
random selection is obtained.

8.5.5 Rank-Based Selection

Rank-based selection uses the rank ordering of fitness values to determine the probabil-
ity of selection, and not the absolute fitness values. Selection is therefore independent
of actual fitness values, with the advantage that the best individual will not dominate
in the selection process.

Non-deterministic linear sampling selects an individual, x;, such that ¢ ~
U(0,U(0,ns—1)), where the individuals are sorted in decreasing order of fitness value.
It is also assumed that the rank of the best individual is 0, and that of the worst in-
dividual is ng — 1.

138 8. Introduction to Evolutionary Computation

Linear ranking assumes that the best_individual creates A offspring, and the worst
individual \, where 1 < A< 2and A = 2—). The selection probability of each
individual is calculated as

ns

where f,(x;(t)) is the rank of x;(¢).

Nonlinear ranking techniques calculate the selection probabilities, for example, as
follows:
1 — e~ Fr(xi(®)

5 (8.12)

s (xi(t)) =

or
0s(x;) = v(1 — v)e 1= F0x0) (8.13)

where f,.(x;) is the rank of x; (i.e. the individual’s position in the ordered sequence of
individuals), 0 is a normalization constant, and v indicates the probability of selecting
the next individual.

Rank-based selection operators may use any sampling method to select individuals,
e.g. roulette wheel selection (Algorithm 8.2) or stochastic universal sampling (Algo-
rithm 8.3).

8.5.6 Boltzmann Selection

Boltzmann selection is based on the thermodynamical principles of simulated anneal-
ing (refer to Section A.5.2). It has been used in different ways, one of which computes
selection probabilities as follows:

1
P(xi(t) = T FemT® (8.14)
where T'(t) is the temperature parameter. A temperature schedule is used to reduce
T'(t) from its initial large value to a small value.

The initial large value ensures that all individuals have an equal probability of being
selected. As T'(t) becomes smaller, selection focuses more on the good individuals.
The sampling methods discussed in Section 8.5.3 can be used to select individuals.

Alternatively, Boltzmann selection can be used to select between two individuals, for
example, to decide if a parent, x;(t), should be replaced by its offspring, x,(t). If

1
U,1) > : 8.15
0.1) 1+ e Gea()—F (D) /T (1) (8.15)

then x;(t) is selected; otherwise, x;(t) is selected.

8.6 Reproduction Operators 139

8.5.7 (u T A)-Selection

The (1, A)- and (u+ A)-selection methods are deterministic rank-based selection meth-
ods used in evolutionary strategies (refer to Chapter 12). For both methods y indicates
the number of parents (which is the size of the population), and X is the number of off-
spring produced from each parent. After production of the A offspring, (u, A)-selection
selects the best p offspring for the next population. This process of selection is very
similar to beam search (refer to Section A.5.2). (1 + A)-selection, on the other hand,
selects the best p individuals from both the parents and the offspring.

8.5.8 Elitism

Elitism refers to the process of ensuring that the best individuals of the current
population survive to the next generation. The best individuals are copied to the new
population without being mutated. The more individuals that survive to the next
generation, the less the diversity of the new population.

8.5.9 Hall of Fame

The hall of fame is a selection scheme similar to the list of best players of an arcade
game. For each generation, the best individual is selected to be inserted into the hall
of fame. The hall of fame will therefore contain an archive of the best individuals
found from the first generation. The hall of fame can be used as a parent pool for
the crossover operator, or, at the last generation, the best individual is selected as the
best one in the hall of fame.

8.6 Reproduction Operators

Reproduction is the process of producing offspring from selected parents by apply-
ing crossover and/or mutation operators. Crossover is the process of creating one or
more new individuals through the combination of genetic material randomly selected
from two or more parents. If selection focuses on the most-fit individuals, the selec-
tion pressure may cause premature convergence due to reduced diversity of the new
populations.

Mutation is the process of randomly changing the values of genes in a chromosome.
The main objective of mutation is to introduce new genetic material into the popula-
tion, thereby increasing genetic diversity. Mutation should be applied with care not to
distort the good genetic material in highly fit individuals. For this reason, mutation
is usually applied at a low probability. Alternatively, the mutation probability can be
made proportional to the fitness of individuals: the less fit the individual, the more
it is mutated. To promote exploration in the first generations, the mutation proba-
bility can be initialized to a large value, which is then reduced over time to allow for

140 8. Introduction to Evolutionary Computation

exploitation during the final generations.

Reproduction can be applied with replacement, in which case newly generated indi-
viduals replace parent individuals only if the fitness of the new offspring is better than
that of the corresponding parents.

Since crossover and mutation operators are representation and EC paradigm depen-
dent, the different implementations of these operators are covered in chapters that
follow.

8.7 Stopping Conditions

The evolutionary operators are iteratively applied in an EA until a stopping condition
is satisfied. The simplest stopping condition is to limit the number of generations that
the EA is allowed to execute, or alternatively, a limit is placed on the number of fitness
function evaluations. This limit should not be too small, otherwise the EA will not
have sufficient time to explore the search space.

In addition to a limit on execution time, a convergence criterion is usually used to
detect if the population has converged. Convergence is loosely defined as the event
when the population becomes stagnant. In other words, when there is no genotypic or
phenotypic change in the population. The following convergence criteria can be used:

e Terminate when no improvement is observed over a number of consec-
utive generations. This can be detected by monitoring the fitness of the best
individual. If there is no significant improvement over a given time window, the
EA can be stopped. Alternatively, if the solution is not satisfactory, mechanisms
can be applied to increase diversity in order to force further exploration. For
example, the mutation probability and mutational step sizes can be increased.

e Terminate when there is no change in the population. If, over a number
of consecutive generations, the average change in genotypic information is too
small, the EA can be stopped.

e Terminate when an acceptable solution has been found. If x*(¢) rep-
resents the optimum of the objective function, then if the best individual, x;,
is such that f(x;) < |f(x) — €[, an acceptable solution is found; € is the error
threshold. If € is too large, solutions may be bad. Too small values of ¢ may
cause the EA never to terminate if a time limit is not imposed.

e Terminate when the objective function slope is approximately zero, as
defined in equation (16.16) of Chapter 16.

8.8 Evolutionary Computation versus Classical Optimization 141

8.8 Evolutionary Computation versus Classical Op-
timization

While classical optimization algorithms have been shown to be very successful (and
more efficient than EAs) in linear, quadratic, strongly convex, unimodal and other
specialized problems, EAs have been shown to be more efficient for discontinuous,
non-differentiable, multimodal and noisy problems.

EC and classical optimization (CO) differ mainly in the search process and information
about the search space used to guide the search process:

e The search process: CO uses deterministic rules to move from one point in
the search space to the next point. EC, on the other hand, uses probabilistic
transition rules. Also, EC applies a parallel search of the search space, while CO
uses a sequential search. An EA search starts from a diverse set of initial points,
which allows parallel search of a large area of the search space. CO starts from
one point, successively adjusting this point to move toward the optimum.

e Search surface information: CO uses derivative information, usually first-
order or second-order, of the search space to guide the path to the optimum.
EC, on the other hand, uses no derivative information. The fitness values of
individuals are used to guide the search.

8.9 Assignments

1. Discuss the importance of the fitness function in EC.
2. Discuss the difference between genetic and phenotypic evolution.

3. In the case of a small population size, how can we ensure that a large part of
the search space is covered?

4. How can premature convergence be prevented?
5. In what situations will a high mutation rate be of advantage?

6. Is the following statement valid? ‘“A genetic algorithm is assumed to have con-
verged to a local or global solution when the ratio f/fmaes is close to 1, where
fmaz and f are the mazimum and average fitness of the evolving population
respectively.”’

7. How can an EA be used to train a NN? In answering this question, focus on

(a) the representation scheme, and
(b) fitness function.

8. Show how an EA can be used to solve systems of equations, by illustrating how

(a) solutions are represented, and
(b) the fitness is calculated.

What problem can be identified in using an EA to solve systems of equations?

9. How can the effect of a high selective pressure be countered?

142

8. Introduction to Evolutionary Computation

10.

11.
12.

13.

Under which condition will stochastic universal sampling behave like tournament
selection?

Identify disadvantages of fitness-based selection operators.

For the nonlinear ranking methods given in equations (8.12) and (8.13), indicate
if these assume a minimization or maximization problem.

Critisize the following stopping condition: Stop execution of the EA when there
is no significant change in the average fitness of the population over a number
of consecutive generations.

Chapter 9

Genetic Algorithms

Genetic algorithms (GA) are possibly the first algorithmic models developed to sim-
ulate genetic systems. First proposed by Fraser [288, 289], and later by Bremermann
[86] and Reed et al. [711], it was the extensive work done by Holland [376] that pop-
ularized GAs. It is then also due to his work that Holland is generally considered the
father of GAs.

GAs model genetic evolution, where the characteristics of individuals are expressed
using genotypes. The main driving operators of a GA is selection (to model survival of
the fittest) and recombination through application of a crossover operator (to model
reproduction). This section discusses in detail GAs and their evolution operators,
organized as follows: Section 9.1 reviews the canonical GA as proposed by Holland.
Crossover operators for binary and floating-point representations are discussed in Sec-
tion 9.2. Mutation operators are covered in Section 9.3. GA control parameters are
discussed in Section 9.4. Different GA implementations are reviewed in Section 9.5,
while advanced topics are considered in Section 9.6. A summary of GA applications
is given in Section 9.7.

9.1 Canonical Genetic Algorithm

The canonical GA (CGA) as proposed by Holland [376] follows the general algorithm
as given in Algorithm 8.1, with the following implementation specifics:

e A bitstring representation was used.

e Proportional selection was used to select parents for recombination.

e One-point crossover (refer to Section 9.2) was used as the primary method to
produce offspring.

e Uniform mutation (refer to Section 9.3) was proposed as a background operator
of little importance.

It is valuable to note that mutation was not considered as an important operator
in the original GA implementations. It was only in later implementations that the
explorative power of mutation was used to improve the search capabilities of GAs.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

143

144 9. Genetic Algorithms

Since the CGA, several variations of the GA have been developed that differ in repre-
sentation scheme, selection operator, crossover operator, and mutation operator. Some
implementations introduce other concepts from nature such as mass extinction, culling,
population islands, amongst others. While it is impossible to provide a complete re-
view of these alternatives, this chapter provides a good flavor of these approaches to
illustrate the richness of GAs.

9.2 Crossover

Crossover operators can be divided into three main categories based on the arity (i.e.
the number of parents used) of the operator. This results in three main classes of
crossover operators:

e asexual, where an offspring is generated from one parent.
e sexual, where two parents are used to produce one or two offspring.

¢ multi-recombination, where more than two parents are used to produce one
or more offspring.

Crossover operators are further categorized based on the representation scheme used.
For example, binary-specific operators have been developed for binary string represen-
tations (refer to Section 9.2.1), and operators specific to floating-point representations
(refer to Section 9.2.2).

Parents are selected using any of the selection schemes discussed in Section 8.5. It
is, however, not a given that selected parents will mate. Recombination is applied
probabilistically. Each pair (or group) of parents have a probability, p., of producing
offspring. Usually, a high crossover probability (also referred to as the crossover rate)
is used.

In selection of parents, the following issues need to be considered:

e Due to probabilistic selection of parents, it may happen that the same individual
is selected as both parents, in which case the generated offspring will be a copy
of the parent. The parent selection process should therefore incorporate a test
to prevent such unnecessary operations.

e It is also possible that the same individual takes part in more than one applica-
tion of the crossover operator. This becomes a problem when fitness-proportional
selection schemes are used.

In addition to parent selection and the recombination process, the crossover operator
considers a replacement policy. If one offspring is generated, the offspring may replace
the worst parent. Such replacement can be based on the restriction that the offspring
must be more fit than the worst parent, or it may be forced. Alternatively, Boltzmann
selection (refer to Section 8.5.6) can be used to decide if the offspring should replace
the worst parent. Crossover operators have also been implemented where the offspring
replaces the worst individual of the population. In the case of two offspring, similar
replacement strategies can be used.

9.2 Crossover 145

9.2.1 Binary Representations

Most of the crossover operators for binary representations are sexual, being applied
to two selected parents. If x1(t) and x2(t) denote the two selected parents, then
the recombination process is summarized in Algorithm 9.1. In this algorithm, m(t)
is a mask that specifies which bits of the parents should be swapped to generate the
offspring, %, () and X2(t). Several crossover operators have been developed to compute
the mask:

e One-point crossover: Holland [376] suggested that segments of genes be
swapped between the parents to create their offspring, and not single genes.
A one-point crossover operator was developed that randomly selects a crossover
point, and the bitstrings after that point are swapped between the two parents.
Omne-point crossover is illustrated in Figure 9.1(a). The mask is computed using
Algorithm 9.2.

e Two-point crossover: In this case two bit positions are randomly selected, and
the bitstrings between these points are swapped as illustrated in Figure 9.1(b).
The mask is calculated using Algorithm 9.3. This operator can be generalized
to an n-point crossover [85, 191, 250, 711].

e Uniform crossover: The n,-dimensional mask is created randomly [10, 828]
as summarized in Algorithm 9.4. Here, p, is the bit-swapping probability. If
p. = 0.5, then each bit has an equal chance to be swapped. Uniform crossover
is illustrated in Figure 9.1(c).

Algorithm 9.1 Generic Algorithm for Bitstring Crossover

Let x1(t) = x1(t) and Xa(t) = x2(t);
if U(0,1) < p. then
Compute the binary mask, m(¢);
for j=1,...,n, do
if m; =1 then
//swap the bits
X15(t) = x2;(1) ;
Xo;5(t) = x1;(1);
end

end
end

Algorithm 9.2 One-Point Crossover Mask Calculation

Select the crossover point, & ~ U(1,n, — 1);
Initialize the mask: m;(¢t) =0, for all j =1,...,ny;
for j =¢41 ton, do

m;(t) = 1;
end

146 9. Genetic Algorithms

Algorithm 9.3 Two-Point Crossover Mask Calculation

Select the two crossover points, &1,& ~ U(1,n,);
Initialize the mask: m;(¢t) =0, for all j =1,...,ny;
for j =& +1 toé& do

m;(t) =1;
end

Algorithm 9.4 Uniform Crossover Mask Calculation

Initialize the mask: m;(t) =0, for all j =1,...,ny;
for j =1 ton, do
if U(0,1) < p, then
m;(t) = 1;
end
end

Bremermann et al. [85] proposed the first multi-parent crossover operators for binary
representations. Given n, parent vectors, x;(t),. .. ,Xn, (t), majority mating generates
one offspring using

0 ifn,>n,/2,1=1,...,n,
1 otherwise

x50 = { (9.1)

’

where n, is the number of parents with z;;(t) = 0.

A multiparent version of n-point crossover was also proposed by Bremermann et al.
[85], where n,, — 1 identical crossover points are selected in the n, parents. One
offspring is generated by selecting one segment from each parent.

Jones [427] developed a crossover hillclimbing operator that can be applied to any
representation. Crossover hillclimbing starts with two parents, and continues to pro-
duce offspring from this pair of parents until either a maximum number of crossover
attempts has been exceeded, or a pair of offspring is found where one of the offspring
has a better fitness than the best parent. Crossover hillclimbing then continues repro-
duction using these two offspring as the new parent pair. If a better parent pair cannot
be found within the specified time limit, the worst parent is replaced by a randomly
selected parent.

9.2.2 Floating-Point Representation

The crossover operators discussed above (excluding majority mating) can also be ap-
plied to floating-point representations as discrete recombination strategies. In contrast

9.2 Crossover 147

Parent 1 Parent 1
N N N N N I N N D I I
Parent 2 Parent 2

Mask Mask
[1] of 1] of of 1] of of of1 | o] of of of of of «] 1] 1]1 |
Offspring 1 Offspring 1
N I N A I v N N N B
Offspring 2 Offspring 2
T 7T T 0 T T N N N v i
(a) Uniform Crossover (b) One-point Crossover
Parent 1
N N N N A
Parent 2
NN N N N N A
Mask

Lol of tf +f +] 1] of of ofo]

Offspring 1

N N N Y v

Offspring 2

N I I

(¢) Two-point Crossover

Figure 9.1 Crossover Operators for Binary Representations

148 9. Genetic Algorithms

to these discrete operators where information is swapped between parents, intermedi-
ate recombination operators, developed specifically for floating-point representations,
blend components across the selected parents.

One of the first floating-point crossover operators is the linear operator proposed by
Wright [918]. From the parents, x;(¢) and x2(t), three candidate offspring are gen-
erated as (x1(t) + x2(t)), (1.5x1(¢) — 0.5x2(t)) and (—0.5x;(t) + 1.5x2(¢)). The two
best solutions are selected as the offspring. Wright [918] also proposed a directional
heuristic crossover operator where one offspring is created from two parents using

Tij (t) = U(O, 1)(X2j (t) — X1j (t)) + Xa; (t) (92)
subject to the constraint that parent x2(t) cannot be worse than parent x;(t).

Michalewicz [586] coined the arithmetic crossover, which is a multiparent recombina-
tion strategy that takes a weighted average over two or more parents. One offspring

is generated using
Ty

Zi(t) =Y mwy(t) (9:3)
=1

with Zl":“l v = 1. A specialization of the arithmetic crossover operator is obtained
for n, = 2, in which case

Tij(t) = (1 = y)x15(t) + y25(t) (9.4)

with v € [0,1]. If v = 0.5, the effect is that each component of the offspring is simply
the average of the corresponding components of the parents.

Eshelman and Schaffer [251] developed a variation of the weighted average given in
equation (9.4), referred to as the blend crossover (BLX-«), where

Ti5(t) = (1 —)z (t) + v5225 (1) (9.5)

with v; = (1 +2a)U(0,1) — a. The BLX-a operator randomly picks, for each compo-
nent, a random value in the range

[215(t) — (@2 (t) — 215(t)), 225 (t) + (w25 (t) — 71;(2))] (9.6)

BLX-a assumes that x1;(t) < x2;(t). Eshelman and Schaffer found that a = 0.5 works
well.

The BLX-a has the property that the location of the offspring depends on the dis-
tance that the parents are from one another. If this distance is large, then the distance
between the offpsring and its parents will be large. The BLX-«a allows a bit more ex-
ploration than the weighted average of equation (9.3), due to the stochastic component
in producing the offspring.

Michalewicz et al. [590] developed the two-parent geometrical crossover to produce a
single offspring as follows:

ij(t) = (w15195)"° (9.7)

9.2 Crossover 149

The geometrical crossover can be generalized to multi-parent recombination as follows:

Bij(t) = (a)as? . ay) (9.8)

where n,, is the number of parents, and Y, a; = 1.

Deb and Agrawal [196] developed the simulated binary crossover (SBX) to simulate the
behavior of the one-point crossover operator for binary representations. Two parents,

x1(t) and x2(t) are used to produce two offspring, where for j =1,...,n,
T15(t) = 05[(1 + ;) (t) + (1 — v;)w2;(t)] (9.9)
Faglt) = O05[(1—)ang(t) + (1+7,)22,(0)] (9.10)
where)
(27"]')m if T S 0.5
v¥i = L 9.11
! (—2(1irj)> " otherwise ()

where r; ~ U(0,1), and n > 0 is the distribution index. Deb and Agrawal suggested
that n = 1.

The SBX operator generates offspring symmetrically about the parents, which prevents
bias towards any of the parents. For large values of n there is a higher probability that
offspring will be created near the parents. For small n values, offspring will be more
distant from the parents.

While the above focused on sexual crossover operators (some of which can also be
extended to multiparent operators), the remainder of this section considers a number
of multiparent crossover operators. The main objective of these multiparent opera-
tors is to intensify the explorative capabilities compared to two-parent operators. By
aggregating information from multiple parents, more disruption is achieved with the
resemblance between offspring and parents on average smaller compared to two-parent
operators.

Ono and Kobayashi [642] developed the unimodal distributed (UNDX) operator where
two or more offspring are generated using three parents. The offspring are created from
an ellipsoidal probability distribution, with one of the axes formed along the line that
connects two of the parents. The extent of the orthogonal direction is determined from
the perpendicular distance of the third parent from the axis. The UNDX operator can
be generalized to work with any number of parents, with 3 < n, < n,. For the
generalization, n,, — 1 parents are randomly selected and their center of mass (mean),

X(t), is calculated, where
n,—1

Ti(t) = Y @y;(t) (9.12)

=1

From the mean, n, — 1 direction vectors, d;(t) = x;(t) — X(t) are computed, for
l=1,...,n, — 1. Using the direction vectors, the direction cosines are computed as
e (t) = d;(t)/|d;(t)|, where |d;(¢)| is the length of vector d;(¢). A random parent,
with index n, is selected. Let x,,, () —X(t) be the vector orthogonal to all e;(t), and

150 9. Genetic Algorithms

§ = |Xn, (t) —x(t)|. Let e;(t),! =ny,...,ns be the orthonormal basis of the subspace
orthogonal to the subspace spanned by the direction cosines, e (t), [=1,...,n, — 1.
Offspring are then generated using

ny—1 Ns
%i(t) =%(t)+ Y N(0,07)|diler + Y N(0,03)de;(t) (9.13)
=1 l=ny

0.35

1
where 07 = ——— and 09 = ——=22—.
1 A ru—2 2 A/ Ms—MNu—2

Using equation (9.13) any number of offspring can be created, sampled around the
center of mass of the selected parents. A higher probability is assigned to create
offspring near the center rather than near the parents. The effect of the UNDX
operator is illustrated in Figure 9.2(a) for n, = 4.

Tsutsui and Goldberg [857] and Renders and Bersini [714] proposed the simplex
crossover (SPX) operator as another center of mass approach to recombination. Ren-
ders and Bersini selects n,, > 2 parents, and determines the best and worst parent, say
x1(t) and x2(t) respectively. The center of mass, X(t) is computed over the selected
parents, but with x3(t) excluded. One offspring is generated using

%(t) = %(t) + (x1(t) — x(t)) (9.14)

Tsutsui and Goldberg followed a similar approach, selecting n, = n, + 1 parents
independent from one another for an n,-dimensional search space. These n, parents
form a simplex. The simplex is expanded in each of the n, directions, and offspring
sampled from the expanded simplex as illustrated in Figure 9.2(b). For n, =2, n, = 3,
and

X(t) =Y x(t) (9.15)
1=1
the expanded simplex is defined by the points

(1+7)(xi(t) —x(1)) (9.16)

forl =1,...,n, = 3 and v > 0. Offspring are obtained by uniform sampling of the
expanded simplex.

Deb et al. [198] proposed a variation of the UNDX operator, which they refer to as
parent-centric crossover (PCX). Instead of generating offspring around the center of
mass of the selected parents, offspring are generated around selected parents. PCX
selects n, parents and computes their center of mass, X(t). For each offspring to be
generated one parent is selected uniformly from the n, parents. A direction vector is
calculated for each offspring as

di(t) = x;(t) — X(t)

where x;(t) is the randomly selected parent. From the other n, —1 parents perpendic-
ular distances, ¢§;, for ¢ # 1 =1,...,n,, are calculated to the line d;(¢). The average

9.2 Crossover 151

Xl(t)

(a) UNDX Operator (b) SPX Operator

(¢) PCX Operator

Figure 9.2 Hlustration of Multi-parent Center of Mass Crossover Operators (dots rep-
resent potential offpsring)

over these distances is calculated, i.e.

Zl 1, l;éz

d= T (9.17)
Offspring is generated using
%i(t) = x;(t) + N(0,07)|ds(t)| + Y N(0,03)de(t) (9.18)
1=1,i#l

where x;(t) is the randomly selected parent of offspring X;(¢), and e;(t) are the n, —1

152 9. Genetic Algorithms

orthonormal bases that span the subspace perpendicular to d;(t).
The effect of the PCX operator is illustrated in Figure 9.2(c).

Eiben et al. [231, 232, 233] developed a number of gene scanning techniques as multi-
parent generalizations of n-point crossover. For each offspring to be created, the gene
scanning operator is applied as summarized in Algorithm 9.5. The algorithm contains
two main procedures:

e A scanning strategy, which assigns to each selected parent a probability that
the offspring will inherit the next component from that parent. The component
under consideration is indicated by a marker.

e A marker update strategy, which updates the markers of parents to point to the
next component of each parent.

Marker initialization and updates depend on the representation method. For binary
representations the marker of each parent is set to its first gene. The marker update
strategy simply advances the marker to the next gene.

Eiben et al. proposed three scanning strategies:

e Uniform scanning creates only one offspring. The probability, p(x;(t)), of
inheriting the gene from parent x;(t),l = 1,...,n,, as indicated by the marker
of that parent is computed as

1
ps(xi(t+1)) = — (9.19)
Ny
Each parent has an equal probability of contributing to the creation of the off-
spring.

e Occurrence-based scanning bases inheritance on the premise that the allele
that occur most in the parents for a particular gene is the best possible allele to
inherit by the offspring (similar to the majority mating operator). Occurrence-
based scanning assumes that fitness-proportional selection is used to select the
n, parents that take part in recombination.

e Fitness-based scanning, where the allele to be inherited is selected propor-
tional to the fitness of the parents. Considering maximization, the probability
to inherit from parent x;(t) is

fGa(t)
Xy f(xi(t)

Roulette-wheel selection is used to select the parent to inherit from.

ps(xi(t)) = (9.20)

For each of these scanning strategies, the offspring inherits p, (x;(t 4+ 1))n, genes from
parent x;(t).

9.3 Mutation 153

xall) jm&

1
IO
188
28
DS
is2
i
55

%elt) E e e e o e e

Single offspring Multiple offspring

wh
IO®
L 54
£

Figure 9.3 Diagonal Crossover

Algorithm 9.5 Gene Scanning Crossover Operator

Initialize parent markers;

for j=1,...,n; do
Select the parent, x;(t), to inherit from;
(1) = w1 (t);
Update parent markers;

end

The diagonal crossover operator developed by Eiben et al. [232] is a generalization of
n-point crossover for more than two parents: n > 1 crossover points are selected and
applied to all of the n, = n + 1 parents. One or n + 1 offspring can be generated by
selecting segments from the parents along the diagonals as illustrated in Figure 9.3,
forn =2,n, = 3.

9.3 Mutation

The aim of mutation is to introduce new genetic material into an existing individual;
that is, to add diversity to the genetic characteristics of the population. Mutation is
used in support of crossover to ensure that the full range of allele is accessible for each
gene. Mutation is applied at a certain probability, p,,, to each gene of the offspring,
x;(t), to produce the mutated offspring, X, (t). The mutation probability, also referred

7

154 9. Genetic Algorithms

to as the mutation rate, is usually a small value, p,, € [0,1], to ensure that good
solutions are not distorted too much.

Given that each gene is mutated at probability p,,, the probability that an individual
will be mutated is given by

Prob(x;(t) is mutated) = 1 — (1 — p,,)"* (9.21)
where the individual contains n, genes.

Assuming binary representations, if H(X;(t),x;(t)) is the Hamming distance between
offspring, %X;(t), and its mutated version, X;(t), then the probability that the mutated
version resembles the original offspring is given by

pmb(x;@)) ~ % (1) = pg(ii(t)ﬁxi(t))(l _ pm)nw—H(ii(t),xi(t)) (9.22)

This section describes mutation operators for binary and floating-point representations
in Sections 9.3.1 and 9.3.2 respectively. A macromutation operator is described in
Section 9.3.3.

9.3.1 Binary Representations

For binary representations, the following mutation operators have been developed:

e Uniform (random) mutation [376], where bit positions are chosen randomly
and the corresponding bit values negated as illustrated in Figure 9.4(a). Uniform
mutation is summarized in Algorithm 9.6.

e Inorder mutation, where two mutation points are randomly selected and only
the bits between these mutation points undergo random mutation. Inorder mu-
tation is illustrated in Figure 9.4(b) and summarized in Algorithm 9.7.

e Gaussian mutation: For binary representations of floating-point decision vari-
ables, Hinterding [366] proposed that the bitstring that represents a decision
variable be converted back to a floating-point value and mutated with Gaus-
sian noise. For each chromosome random numbers are drawn from a Poisson
distribution to determine the genes to be mutated. The bitstrings representing
these genes are then converted. To each of the floating-point values is added
the stepsize N(0,0,), where o; is 0.1 of the range of that decision variable. The
mutated floating-point value is then converted back to a bitstring. Hinterding
showed that Gaussian mutation on the floating-point representation of decision
variables provided superior results to bit flipping.

For large dimensional bitstrings, mutation may significantly add to the computational
cost of the GA. In a bid to reduce computational complexity, Birru [69] divided the
bitstring of each individual into a number of bins. The mutation probability is applied
to the bins, and if a bin is to be mutated, one of its bits are randomly selected and
flipped.

9.3 Mutation 155

Before Mutation Before Mutation
HERERNENEN HENEERENEN
mutation points T T T T mutation points T T
After Mutation After Mutation
L[P [P] HERRNEENEN
(a) Random Mutate (b) Inorder Mutate

Figure 9.4 Mutation Operators for Binary Representations

Algorithm 9.6 Uniform/Random Mutation

for j=1,...,n, do
if U(0,1) < p,, then

:E;j(t) = —&;;(t), where = denotes the boolean NOT operator;
end

end

Algorithm 9.7 Inorder Mutation

Select mutation points, &1,& ~ U(1,...,n.);
for j =¢&,...,& do
if U(0,1) < p,, then
z;(t) = ~&45(t);
end
end

9.3.2 Floating-Point Representations

As indicated by Hinterding [366] and Michalewicz [586], better performance is obtained
by using a floating-point representation when decision variables are floating-point val-
ues and by applying appropriate operators to these representations, than to convert
to a binary representation. This resulted in the development of mutation operators
for floating-point representations. One of the first proposals was a uniform mutation,
where [586]

) = Zi; () + A(t, Timaw,j — Tij(1)) if a random digit is 0
T\ = &) + A, Fij() — Zmin; (1)) if a random digit is 1

where A(t, x) returns random values from the range [0, z].

(9.23)

156 9. Genetic Algorithms

Any of the mutation operators discussed in Sections 11.2.1 (for EP) and 12.4.3 (for
ES) can be applied to GAs.

9.3.3 Macromutation Operator — Headless Chicken

Jones [427] proposed a macromutation operator, referred to as the headless chicken
operator. This operator creates an offspring by recombining a parent individual with
a randomly generated individual using any of the previously discussed crossover oper-
ators. Although crossover is used to combine an individual with a randomly generated
individual, the process cannot be referred to as a crossover operator, as the concept of
inheritence does not exist. The operator is rather considered as mutation due to the
introduction of new randomly generated genetic material.

9.4 Control Parameters

In addition to the population size, the performance of a GA is influenced by the
mutation rate, p,,, and the crossover rate, p.. In early GA studies very low values
for p,, and relatively high values for p. are propagated. Usually, the values for p,,
and p. are kept static. It is, however, widely accepted that these parameters have
a significant influence on performance, and that optimal settings for p,, and p. can
significantly improve performance. To obtain such optimal settings through empirical
parameter tuning is a time consuming process. A solution to the problem of finding
best values for these control parameters is to use dynanically changing parameters.

Although dynamic, and self-adjusting parameters have been used for EP and ES (refer
to Sections 11.3 and 12.3) as early as the 1960s, Fogarty [264] provided one of the
first studies of dynamically changing mutation rates for GAs. In this study, Fogarty
concluded that performance can be significantly improved using dynamic mutation
rates. Fogarty used the following schedules where the mutation rate exponentially
decreases with generation number:

1 0.11375

= .24
240 + 2t (9-24)

Pm(t)

As an alternative, Fogarty also proposed for binary representations a mutation rate

per bit, j = 1,...,ny, where n;, indicates the least significant bit:
. 0.3528
pm(f) = Toi—1 (9.25)

The two schedules above were combined to give

28 0.4026
T 1905 x 2-1 2t (6.26)

pm<j7 t)

A large initial mutation rate favors exploration in the initial steps of the search, and
with a decrease in mutation rate as the generation number increases, exploitation

9.5 Genetic Algorithm Variants 157

is facilitated. Different schedules can be used to reduce the mutation rate. The
schedule above results in an exponential decrease. An alternative may be to use a
linear schedule, which will result in a slower decrease in p,,, allowing more exploration.
However, a slower decrease may be too disruptive for already found good solutions.
A good strategy is to base the probability of being mutated on the fitness of the
individual: the more fit the individual is, the lower the probability that its genes will
be mutated; the more unfit the individual, the higher the probability of mutation.

Annealing schedules similar to those used for the learning rate of NNs (refer to equation
(4.40)), and to adjust control parameters for PSO and ACO can be applied to p,, (also
refer to Section A.5.2).

For floating-point representations, performance is also influenced by the mutational
step sizes. An ideal strategy is to start with large mutational step sizes to allow larger,
stochastic jumps within the search space. The step sizes are then reduced over time,
so that very small changes result near the end of the search process. Step sizes can also
be proportional to the fitness of an individual, with unfit individuals having larger step
sizes than fit individuals. As an alternative to deterministic schedules to adapt step
sizes, self-adaptation strategies as for EP and ES can be used (refer to Sections 11.3.3
and 12.3.3).

The crossover rate, p., also bears significant influence on performance. With its op-
timal value being problem dependent, the same adaptive strategies as for p,, can be
used to dynamically adjust pe.

In addition to p,, (and mutational step sizes in the case of floating-point represen-
tations) and p., the choice of the best evolutionary operators to use is also problem
dependent. While a best combination of crossover, mutation, and selection operators
together with best values for the control parameters can be obtained via empirical stud-
ies, a number of adaptive methods can be found as reviewed in [41]. These methods
adaptively switch between different operators based on search progress. Ultimately,
finding the best set of operators and control parameter values is a multi-objective
optimization problem by itself.

9.5 Genetic Algorithm Variants

Based on the general GA, different implementations of a GA can be obtained by
using different combinations of selection, crossover, and mutation operators. Although
different operator combinations result in different behaviors, the same algorithmic flow
as given in Algorithm 8.1 is followed. This section discusses a few GA implementations
that deviate from the flow given in Algorithm 8.1. Section 9.5.1 discusses generation
gap methods. The messy GA is described in Section 9.5.2. A short discussion on
interactive evolution is given in Section 9.5.3. Island (or parallel) GAs are discussed
in Section 9.5.4.

158 9. Genetic Algorithms

9.5.1 Generation Gap Methods

The GAs as discussed thus far differ from biological models of evolution in that pop-
ulation sizes are fixed. This allows the selection process to be described by two steps:

e Parent selection, and

e a replacement strategy that decides if offspring will replace parents, and which
parents to replace.

Two main classes of GAs are identified based on the replacement strategy used, namely
generational genetic algorithms (GGA) and steady state genetic algorithms (SSGA),
also referred to as incremental GAs. For GGAs the replacement strategy replaces
all parents with their offspring after all offpsring have been created and mutated.
This results in no overlap between the current population and the new population
(assuming that elitism is not used). For SSGAs, a decision is made immediately after
an offspring is created and mutated as to whether the parent or the offspring survives
to the next generation. Thus, there exists an overlap between the current and new
populations.

The amount of overlap between the current and new populations is referred to as the
generation gap [191]. GGAs have a zero generation gap, while SSGAs generally have
large generation gaps.

A number of replacement strategies have been developed for SSGAs:

e Replace worst [192], where the offspring replaces the worst individual of the
current population.

e Replace random [192, 829], where the offspring replaces a randomly selected
individual of the current population.

e Kill tournament [798], where a group of individuals is randomly selected, and
the worst individual of this group is replaced with the offspring. Alternatively,
a tournament size of two is used, and the worst individual is replaced with a
probability, 0.5 < p, < 1.

e Replace oldest, where a first-in-first-out strategy is followed by replacing the
oldest individual of the current population. This strategy has a high probability
of replacing one of the best individuals.

e Conservative selection [798] combines a first-in-first-out replacement strategy
with a modified deterministic binary tournament selection. A tournament size of
two individuals is used of which one is always the oldest individual of the current
population. The worst of the two is replaced by the offspring. This approach
ensures that the oldest individual will not be lost if it is the fittest.

o Elitist strategies of the above replacement strategies have also been developed,
where the best individual is excluded from selection.

e Parent-offspring competition, where a selection strategy is used to decide if
an offspring replaces one of its own parents.

9.5 Genetic Algorithm Variants 159

Theoretical and empirical studies of steady state GAs can be found in [734, 797, 798,
872].

9.5.2 Messy Genetic Algorithms

Standard GAs use populations where all individuals are of the same fixed size. For an
ngz-dimensional search space, a standard GA finds a solution through application of
the evolutionary operators to the complete n,-dimensional individuals. It may happen
that good individuals are found, but some of the genes of a good individual are non-
optimal. It may be difficult to find optimal allele for such genes through application
of crossover and mutation on the entire individual. It may even happen that crossover
looses optimized genes, or groups of optimized genes.

Goldberg et al. [321, 323, 324] developed the messy GA (mGA), which finds solutions
by evolving optimal building blocks and combining building blocks. Here a building
block refers to a group of genes. In a messy GA individuals are of variable length, and
specified by a list of position-value pairs. The position specifies the gene index, and
the value specifies the allele for that gene. These pairs are referred to as messy genes.
As an example, if n, = 4, then the individual, ((1,0)(3,1), (4,0)(1,1)), represents the
individual 0 % 10.

The messy representation may result in individuals that are over-specified or under-
specified. The example above illustrates both cases. The individual is over-specified
because gene 1 occurs twice. It is under-specified because gene 2 does not occur,
and has no value assigned. Fitness evaluation of messy individuals requires strategies
to cope with such individuals. For over-specified individuals, a first-come-first-served
approach is followed where the first specified value is assigned to the repeating gene.
For under-specified individuals, a missing gene’s allele is obtained from a competitive
template. The competitive template is a locally optimal solution. As an example, if
1101 is the template, the fitness of 0 * 10 is evaluated as the fitness of 0101.

The objective of mGAs is to evolve optimal building blocks, and to incrementally com-
bine optimized building blocks to form an optimal solution. An mGA is implemented
using two loops as shown in Algorithm 9.8. The inner loop consists of three steps:

e Initialization to create a population of building blocks of a specified length,
Ny
e Primordial, which aims to generate small, promising building blocks.
e Juxtapositional, to combine building blocks.
The outer loop specifies the size of the building blocks to be considered, starting with
the smallest size of one, and incrementally increasing the size until a maximum size is

reached, or an acceptable solution is found. The outer loop also sets the best solution
obtained from the juxtaposition step as the competitive template for the next iteration.

160 9. Genetic Algorithms

Algorithm 9.8 Messy Genetic Algorithm

Initialize the competitive template;
for n,, =1 10 Ny mar do

Initialize the population to contain building blocks of size n,,;

Apply the primordial step;

Apply the juxtaposition step;

Set the competitive template to the best solution from the juxtaposition step;
end

The initialization step creates all possible combinations of building blocks of length
Ny For ng-dimensional solutions, this results in a population size of

n, = 2nm (N) (9.27)

N

where |
n ng!

* = 9.28

(N,) N (Mg — Ny ()

This leads to one of the major disadvantages of mGAs, in that computational complex-
ity explodes with increase in n,, (i.e. building block size). The fast mGA addresses
this problem by starting with larger building block sizes and adding a gene deletion
operator to the primordial step to prune building blocks [322].

The primordial step is executed for a specified number of generations, applying only
selection to find the best building blocks. At regular intervals the population is halved,
with the worst individuals (building blocks) discarded. No crossover or mutation is
used. While any selection operator can be used, fitness proportional selection is usually
used. Because individuals in an mGA may contain different sets of genes (as specified
by the building blocks), thresholding selection has been proposed to apply selection
to “similar” individuals. Thresholding selection applies tournament selection between
two individuals that have in common a number of genes greater than a specified
threshold. The effect achieved via the primordial step is that poor building blocks are
eliminated, while good building blocks survive to the juxtaposition step.

The juxtaposition step applies cut and splice operators. The cut operator is applied
to selected individuals at a probability proportional to the length of the individual
(i.e. the size of the building block). The objective of the cut operator is to reduce
the size of building blocks by splitting the individual at a randomly selected gene.
The splicing operator combines two individuals to form a larger building block. Since
the probability of cutting is proportional to the length of the individual, and the
mGA starts with small building blocks, splicing occurs more in the beginning. As n,,
increases, cutting occurs more. Cutting and splicing then resembles crossover.

9.5 Genetic Algorithm Variants 161

9.5.3 Interactive Evolution

In standard GAs (and all EAs for that matter), the human user plays a passive role.
Selection is based on an explicitly defined analytical function, used to quantify the
quality of a candidate solution. It is, however, the case that such a function cannot be
defined for certain application areas, for example, evolving art, music, animations, etc.
For such application areas subjective judgment is needed, based on human intuition,
aesthetical values or taste. This requires interaction of a human evaluator as the
“fitness function”.

Interactive evolution (IE) [48, 179, 792] involves a human user online into the selection
and variation processes. The search process is now directed through interactive selec-
tion of solutions by the human user instead of an absolute fitness function. Dawkins
[179] was the first to consider IE to evolve biomorphs, which are tree-like representa-
tions of two-dimensional graphical forms. Todd and Latham [849] used IE to evolve
computer sculptures. Sims [792] provides further advances in the application of IE to
evolve complex simulated structures, textures, and motions.

Algorithm 9.9 provides a summary of the standard IE algorithm. The main com-
ponent of the IE algorithm is the interactive selection step. This step requires that
the phenotype of individuals be generated from the genotype, and visualized. Based
on the visual representations of candidate solutions, the user selects those individuals
that will take part in reproduction, and that will survive to the next generation. Some
kind of fitness function can be defined (if possible) to order candidate solutions and
to perform a pre-selection to reduce the number of solutions to be evaluated by the
human user.

In addition to act as the selection mechanism, the user can also interactively specify
the reproduction operators and population parameters.

Instead of the human user performing selection, interaction may be of the form where
the user assigns a fitness score to individuals. Automatic selection is then applied,
using these user assigned quality measures.

Algorithm 9.9 Interactive Evolution Algorithm

Set the generation counter, ¢t = 0;
Initialize the control parameters;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do
Determine reproduction operators, either automatically or via interaction;
Select parents via interaction;
Perform crossover to produce offspring;
Mutate offspring;
Select new population via interaction;
end

162 9. Genetic Algorithms

Although the section on IE is provided as part of the chapter on GAs, IE can be
applied to any of the EAs.

9.5.4 Island Genetic Algorithms

GAs lend themselves to parallel implementation. Three main categories of parallel
GA have been identified [100]:

e Single-population master-slave GAs, where the evaluation of fitness is distributed
over several processors.

e Single-population fine-grained GAs, where each individual is assigned to one pro-
cessor, and each processor is assigned only one individual. A small neighborhood
is defined for each individual, and selection and reproduction are restricted to
neighborhoods. Whitley [903] refers to these as cellular GAs.

e Multi-population, or island GAs, where multiple populations are used, each on
a separate processor. Information is exchanged among populations via a migra-
tion policy. Although developed for parallel implementation, island GAs can be
implemented on a single processor system.

The remainder of this section focuses on island GAs. In an island GA, a number of sub-
populations are evolved in parallel, in a cooperative framework [335, 903, 100]. In this
GA model, a number of islands occurs, where each island represents one population.
Selection, crossover and mutation occur in each subpopulation independently from the
other subpopulations. In addition, individuals are allowed to migrate between islands
(or subpopulations), as illustrated in Figure 9.5.

An integral part of an island GA is the migration policy which governs the exchange
of information between islands. A migration policy specifies [100, 102, 103, 104]:

e A communications topology, which determines the migration paths between
islands. For example, a ring topology (such as illustrated in Figure 16.4(b))
allows exchange of information between neighboring islands. The communica-
tion topology determines how fast (or slow) good solutions disseminate to other
subpopulations. For a sparsely connected structure (such as the ring topology),
islands are more isolated from one another, and the spread of information about
good solutions is slower. Sparse topologies also facilitate the appearance of mul-
tiple solutions. Densely connected structures have a faster spread of information,
which may lead to premature convergence.

e A migration rate, which determines the frequency of migration. Tied with
the migration rate is the question of when migration should occur. If migration
occurs too early, the number of good building blocks in the migrants may be too
small to have any influence at their destinations. Usually, migration occurs when
each population has converged. After exchange of individuals, all populations
are restarted.

e A selection mechanism to decide which individuals will migrate.

9.5 Genetic Algorithm Variants 163

------ > Migration

—memimem Visitation

Figure 9.5 An Island GA Model

e A replacement strategy to decide which individual of the destination island
will be replaced by the migrant.

Based on the selection and replacement strategies, island GAs can be grouped into
two classes of algorithms, namely static island GAs and dynamic island GAs. For
static island GAs, deterministic selection and replacement strategies are followed, for
example [101],

e a good migrant replaces a bad individual,

e a good migrant replaces a randomly selected individual,

e a randomly selected migrant replaces a bad individual, or

e a randomly selected migrant replaces a randomly selected individual.
To select the good migrant, any of the fitness-proportional selection operators given in
Section 8.5 can be used. For example, an elitist strategy will have the best individual
of a population move to another population. Gordon [329] uses tournament selection,
considering only two randomly selected individuals. The best of the two will migrate,

while the worst one will be replaced by the winning individual from the neighboring
population.

Dynamic models do not use a topology to determine migration paths. Instead, migra-
tion decisions are made probabilistically. Migration occurs at a specified probability.

164 9. Genetic Algorithms

If migration from an island does occur, the destination island is also decided prob-
abilistically. Tournament selection may be used, based on the average fitness of the
subpopulations. Additionally, an acceptance strategy can be used to decide if an im-
migrant should be accepted. For example, an immigrant is probabilistically accepted
if its fitness is better than the average fitness of the island (using, e.g. Boltzmann
selection).

Another interesting aspect to consider for island GAs is how subpopulations should be
initialized. Of course a pure random approach can be used, which will cause different
populations to share the same parts of the search space. A better approach would
be to initialize subpopulations to cover different parts of the search space, thereby
covering a larger search space and facilitating a kind of niching by individuals islands.
Also, in multicriteria optimization, each subpopulation can be allocated the task to
optimize one criterion. A meta-level step is then required to combine the solutions
from each island (refer to Section 9.6.3).

A different kind of “island” GA is the cooperative coevolutionary GA (CCGA) of
Potter [686, 687]. In this case, instead of distributing entire individuals over several
subpopulations, each subpopulation is given one or a few genes (one decision variable)
to optimize. The subpopulations are mutually exclusive, each having the task of
evolving a single (or limited set of) gene(s). A subpopulation therefore optimizes one
parameter (or a limited number of parameters) of the optimization problem. Thus, no
single subpopulation has the necessary information to solve the problem itself. Rather,
information of all the subpopulations must be combined to construct a solution.

Within the CCGA, a solution is constructed by adding together the best individual
from each subpopulation. The main problem is how to determine the best individual
of a subpopulation, since individuals do not represent complete solutions. A simple
solution to this problem is to keep all other components (genes) within a complete
chromosome fixed and to change just the gene that corresponds to the current sub-
population for which the best individual is sought. For each individual in the subpop-
ulation, the value of the corresponding gene in the complete chromosome is replaced
with that of the individual. Values of the other genes of the complete chromosome are
usually kept fixed at the previously determined best values.

The constructed complete chromosome is then a candidate solution to the optimization
problem.

It has been shown that such a cooperative approach substantially improves the ac-
curacy of solutions, and the convergence speed compared to non-cooperative, non-
coevolutionary GAs.

9.6 Advanced Topics

This section shows how GAs can be used to find multiple solutions (Section 9.6.1), to
solve multi-objective optimization problems (Section 9.6.3), to cope with constraints
(Section 9.6.2), and to track dynamically changing optima (Section 9.6.4). For each

9.6 Advanced Topics 165

of these problem types, only a few of the GA approaches are discussed.

9.6.1 Niching Genetic Algorithms

Section A.7 defines niching and different classes of niching methods. This section
provides a short summary of GA implementations with the ability to locate multiple
solutions to optimization problems.

Fitness Sharing

Fitness sharing is one of the earliest GA niching techniques, originally introduced as
a population diversity maintenance technique [325]. It is a parallel, explicit niching
approach. The algorithm regards each niche as a finite resource, and shares this
resource among all individuals in the niche. Individuals are encouraged to populate a
particular area of the search space by adapting their fitness based on the number of
other individuals that populate the same area. The fitness f(x;(t)) of individual x; is
adapted to its shared fitness:

fu(xi(D) = % (9.29)

where > j sh(dgp) is an estimate of how crowded a niche is. A common sharing function
is the triangular sharing function,

_ 1- (d/ashare)a ifd < Oshare
sh(d) = { 0 otherwise. (9.30)

The symbol d,;, represents the distance between individuals x, and x;. The distance
measure may be genotypic or phenotypic, depending on the optimization problem. If
the sharing function finds that d,; is less than ogpere, it returns a value in the range
[0, 1], which increases as d,; decreases. The more similar x, and x; are, the lower their
individual fitnesses will become. Individuals within o4 0f one another will reduce
each other’s fitness. Sharing assumes that the number of niches can be estimated, i.e.
it must be known prior to the application of the algorithm how many niches there are.
It is also assumed that niches occur at least a minimum distance, 204p,4r¢, from each
other.

Dynamic Niche Sharing

Miller and Shaw [593] introduced dynamic niche sharing as an optimized version of
fitness sharing. The same assumptions are made as with fitness sharing. Dynamic
niche sharing attempts to classify individuals in a population as belonging to one of
the emerging niches, or to a non-niche category. Fitness calculation for individuals
belonging to the non-niche category is the same as in the standard fitness sharing
technique above. The fitness of individuals found to belong to one of the developing

166 9. Genetic Algorithms

niches is diluted by dividing it by the size of the developing niche. Dynamically
finding niches is a simple process of iterating through the population of individuals
and constructing a set of non-overlapping areas in the search space. Dynamic sharing is
computationally less expensive than ‘normal’ sharing. Miller and Shaw [593] presented
results showing that dynamic sharing has improved performance when compared to
fitness sharing.

Sequential Niching

Sequential niching (SN), introduced by Beasley et al. [55], identifies multiple solutions
by adapting an optimization problem’s objective function’s fitness landscape through
the application of a derating function at a position where a potential solution was
found. A derating function is designed to lower the fitness appeal of previously located
solutions. By repeatedly running the algorithm, all optima are removed from the
fitness landscape. Sample derating functions, for a previous maximum x*, include:

Ix—x*11* - x
Ch(x,x") = (Bzt)” e —x <R (9.31)
1 otherwise
and
longfnxf"*H if " R
Ca(x,x*) =14 © P e - x| < (9.32)
1 otherwise

where R is the radius of the derating function’s effect. In G, a determines whether
the derating function is concave (a > 1) or convex (a < 1). For a =1, Gy is a linear
function. For G3, m determines ‘concavity’. Noting that lim,_olog(z) = —oo, m
must always be larger than 0. Smaller values for m result in a more concave derating
function. The fitness function f(x) is then redefined to be

M, 41(x) = M, (x) x G(x,%X,) (9.33)

where My(x) = f(x) and %, is the best individual found during run n of the algorithm.
G can be any derating function, such as G; and Gb.

Crowding

Crowding (or the crowding factor model), as introduced by De Jong [191], was origi-
nally devised as a diversity preservation technique. Crowding is inspired by a naturally
occurring phenomenon in ecologies, namely competition amongst similar individuals
for limited resources. Similar individuals compete to occupy the same ecological niche,
while dissimilar individuals do not compete, as they do not occupy the same ecolog-
ical niche. When a niche has reached its carrying capacity (i.e. being occupied by
the maximum number of individuals that can exist within it) older individuals are
replaced by newer (younger) individuals. The carrying capacity of the niche does not
change, so the population size will remain constant.

9.6 Advanced Topics 167

For a genetic algorithm, crowding is performed as follows: It is assumed that a pop-
ulation of GA individuals evolve over several generational steps. At each step, the
crowding algorithm selects only a portion of the current generation to reproduce. The
selection strategy is fitness proportionate, i.e. more fit individuals are more likely to
be chosen. After the selected individuals have reproduced, individuals in the current
population are replaced by their offspring. For each offspring, a random sample is
taken from the current generation, and the most similar individual is replaced by the
offspring individual.

Deterministic crowding (DC) is based on De Jong’s crowding technique, but with the
following improvements as suggested by Mahfoud [553]:

e Phenotypic similarity measures are used instead of genotypic measures. Pheno-
typic metrics embody domain specific knowledge that is most useful in multi-
modal optimization, as several different spatial positions can contain equally
optimal solutions.

o It was shown that there exists a high probability that the most similar individuals
to an offspring are its parents. Therefore, DC compares an offspring only to its
parents and not to a random sample of the population.

e Random selection is used to select individuals for reproduction. Offspring replace
parents only if the offspring perform better than the parents.

Probabilistic crowding, , introduced by Mengshoel et al. [578], is based on Mahfoud’s
deterministic crowding, but employs a probabilistic replacement strategy. Where the
original crowding and DC techniques replaced an individual x, with x; if x; was more
fit than x,, probabilistic crowding uses the following rule: If individuals x, and x; are
competing against each other, the probability of x, winning is given by

f(xa(t))
f(xa(t)) + f(x6(1))
where f(x,(t)) is the fitness of individual x,(¢). The core of the algorithm is therefore

to use a probabilistic tournament replacement strategy. Experimental results have
shown it to be both fast and effective.

P(x4(t) wins) = (9.34)

Coevolutionary Shared Niching

Goldberg and Wang [326] introduced coevolutionary shared niching (CSN). CSN lo-
cates niches by co-evolving two different populations of individuals in the same search
space, in parallel. Let the two parallel populations be designated by C; and Cs, respec-
tively. Population C; can be thought of as a normal population of candidate solutions,
and it evolves as a normal population of individuals. Individuals in population Cy are
scattered throughout the search space. Each individual in population C; associates
with itself a member of Cs that lies the closest to it using a genotypic metric. The
fitness calculation of the *" individual in population C;, C;.x;, is then adapted to
f(Crx;) = HGx0) where f (+) is the fitness function; Cs.ny designates the cardinality

Ca.m
of the set of in2di\f'iduals associated with individual C.x; and Ca.no is the index of the

168 9. Genetic Algorithms

closest individual in population Cs to individual C;.x; in population C;. The fitness of
individuals in population Cs is simply the average fitness of all the individuals associ-
ated to it in population C;, multiplied by Cs.x;. Goldberg and Wang also developed
the imprint CSN technique, that allows for the transfer of good performing individuals
from the C; to the Cy population.

CSN overcomes the limitation imposed by fixed inter-niche distances assumed in the
original fitness sharing algorithm [325] and its derivate, dynamic fitness sharing [593].
The concept of a niche radius is replaced by the association made between individuals
from the different populations.

Dynamic Niche Clustering

Dynamic niche clustering (DNC) is a fitness sharing based, cluster driven niching
technique [305, 306]. It is distinguished from all other niching techniques by the fact
that it supports ‘fuzzy’ clusters, i.e. clusters may overlap. This property allows the
algorithm to distinguish between different peaks in a multi-modal function that may lie
extremely close together. In most other niching techniques, a more general inter-niche
radius (such as the ogpqre parameter in fitness sharing) would prohibit this.

The algorithm constructs a nicheset, which is a list of niches in a population. The
nicheset persists over multiple generations. Initially, each individual in a population is
regarded to be in its own niche. Similar niches are identified using Euclidean distance
and merged. The population of individuals is then evolved over a pre-determined num-
ber of generational steps. Before selection takes place, the following process occurs:

e The midpoint of each niche in the nicheset is updated, using the formula

% =% Z;:l(xi - Eu) : f(xz)
“ w Z?:ul f(xi)

where X, is the midpoint of niche u, initially set to be equal to the position of
the individual from which it was constructed, as described above. n,, is the niche
count, or the number of individuals in the niche, f(x;) is the fitness of individual
X; in niche u.

(9.35)

e A list of inter-niche distances is calculated and sorted. Niches are then merged.

e Similar niches are merged. Each niche is associated with a minimum and maxi-
mum niche radius. If the midpoints of two niches lie within the minimum radii
of each other, they are merged.

e If any niche has a population size greater than 10% of the total population,
random checks are done on the niche population to ensure that all individuals
are focusing on the same optima. If this is not the case, such a niche may be
split into sub-niches, which will be optimized individually in further generational
steps.

Using the above technique, Gan and Warwick [307] also suggested a niche linkage
extension to model niches of arbitrary shape.

9.6 Advanced Topics 169

9.6.2 Constraint Handling

Section A.6 summarizes different classes of methods to solve constrained optimization
problems, as defined in Definition A.5. Standard genetic algorithms cannot be ap-
plied as is to solve constrained optimization problems. Most GA approaches to solve
constrained problems require a change in the fitness function, or in the behavior of
the algorithm itself.

Penalty methods are possibly one of the first approaches to address constraints [726].
As shown in Definition A.7, unfeasible solutions are penalized by adding a penalty
function. A popular approach to implement penalties is given in equations (A.25)
and (A.26) [584]. This approach basically converts the constrained problem to a
penalized unconstrained problem.

Homaifar et al. [380] proposed a multi-level penalty function, where the magnitude
of a penalty is proportional to the severity of the constraint violation. The multi-
level function assumes that a set of intervals (or penalty levels) are defined for each
constraint. An appropriate penalty value, A4, is assigned to each level, g =1,...,n,
for each constraint, m. The penalty function then changes to

ng+nn

p(X,',t)z Z)\mq(t)pm(xi) (9-36)
m=1

As an example, the following penalties can be used:

10Vt if po(xi) < 0.001
N (1) = 20Vt if p(x;) < 0.1
ma 100yt if po(x;) < 1.0

300yt otherwise

(9.37)

The multi-level function approach has the weakness that the number of parameters
that has to be maintained increases significantly with increase in the number of levels,
ng, and the number of constraints, ng + ny,.

Joines and Houck [425] proposed dynamic penalties, where

ng+np

p(xist) = (v x £)* Z P (%3) (9.38)

m=1

where v, a and 3 are constants. The longer the search continues, the higher the penalty
for constraint violations. This allows for better exploration.

Other penalty methods can be found in [587, 588, 691].

Often referred to as the “death penalty” method, unfeasible solutions can be rejected.
However, Michalewicz [585] shows that the method performs badly when the feasible
region is small compared to the entire search space.

The interested reader is referred to [584] for a more complete survey of constraint
handling methods.

170 9. Genetic Algorithms

9.6.3 Multi-Objective Optimization

Extensive research has been done to solve multi-objective optimization problems
(MOP) as defined in Definition A.10 [149, 195]. This section summarizes only a few
of these GA approaches to multi-objective optimization (MOO).

GA approaches for solving MOPs can be grouped into three main categories [421]:

e Weighted aggregation approaches where the objective is defined as a weighted
sum of sub-objectives.

¢ Population-based non-Pareto approaches, which do not make use of the
dominance relation as defined in Section A.8.

e Pareto-based approaches, which apply the dominance relation to find an ap-
proximation of the Pareto front.

Examples from the first and last classes are considered below.

Weighted Aggregation

One of the simplest approaches to deal with MOPs is to define an aggregate objective
function as a weighted sum of sub-objectives:

ng
Fx) =D wrfu(x) (9-39)

k=1
where ny > 2 is the total number of sub-objectives, and wy, € [0,1],k = 1,...,ny with

> ouk, wi = 1. While the aggregation approach above is very simple to implement and
computationally efficient, it suffers from the following problems:

e It is difficult to get the best values for the weights, wy, since these are problem
dependent.

e These methods have to be re-applied to find more than one solution, since only
one solution can be obtained with a single run of an aggregation algorithm.
However, even for repeated applications, there is no guarantee that different
solutions will be found.

e The conventional weighted aggregation as given above cannot solve MOPs with
a concave Pareto front [174].

To address these problems, Jin et al. [421, 422], proposed aggregation methods with
dynamically changing weights (for ny = 2) and an approach to maintain an archive
of nondominated solutions. The following approaches have been used to dynamically
adapt weights:

¢ Random distribution of weights, where for each individual,

wii(t) = U(0,ns)/ns (9.40)
wa,i(t) 1—wii(t) (9.41)

9.6 Advanced Topics 171

¢ Bang-bang weighted aggregation, where

wi(t) = sign(sin(2nt/7)) (9.42)

(%) (t) = 1- w1 (t) (943)
where 7 is the weights’ change frequency. Weights change abruptly from 0 to 1
each 7 generation.

e Dynamic weighted aggregation, where

wi(t) = |sin(2nt/7)] (9.44)
LLJQ(t) = l—wl(t) (945)

With this approach, weights change more gradually.

Jin et al. [421, 422] used Algorithm 9.10 to produce an archive of nondominated
solutions. This algorithm is called after the reproduction (crossover and mutation)
step.

Algorithm 9.10 Algorithm to Maintain an Archive of Nondominated Solutions

for each offspring, X;(t) do
if x;(t) dominates an individual in the current population, C(t), and x,(t) is not
dominated by any solutions in the archive and x;(t) s not similar to any solutions
in the archive then

if archive is not full then
Add x,(t) to the archive;

else if x;(t) dominates any solution x, in the archive then
Replace x, with x;(t);

else if any x,, in the archive dominates another xX,, in the archive then
Replace x,, with x,(t);

else
Discard x;(t);
end
end
else
Discard x;(t);
end
for each solution x,, in the archive do
if x,, dominates x,, in the archive then
Remove x,, from the archive;

end
end
end

172 9. Genetic Algorithms

Vector Evaluated Genetic Algorithm

The vector evaluated GA (VEGA) [760, 761] is one of the first algorithms to solve
MOPs using multiple populations. One subpopulation is associated with each objec-
tive. Selection is applied to each subpopulation to construct a mating pool. The result
of this selection process is that the best individuals with respect to each objective are
included in the mating pool. Crossover then continues by selecting parents from the
mating pool.

Niched Pareto Genetic Algorithm

Horn et al. [382] developed the niched Pareto GA (NPGA), where an adapted tourna-
ment selection operator is used to find nondominated solutions. The Pareto domina-
tion tournament selection operator randomly selects two candidate individuals, and a
comparison set of randomly selected individuals. Each candidate is compared against
each individual in the comparison set. If one candidate is dominated by an individual
in the comparison set, and the other candidate is not dominated, then the latter is
selected. If neither or both are dominated equivalence class sharing is used to select
one individual: The individual with the lowest niche count is selected, where the niche
count is the number of individuals within a niche radius, ospere, from the candidate.
This strategy will prefer a solution on a less populated part of the Pareto front.

Nondominated Sorting Genetic Algorithm

Srinivas and Deb [807] developed the nondominated sorting GA (NSGA), where
only the selection operator is changed. Individuals are Pareto-ranked into different
Pareto fronts as described in Section 12.6.2. Fitness proportionate selection is used
based on the shared fitness assigned to each solution. The NSGA is summarized in
Algorithm 9.11.

Deb et al. [197] pointed out that the NSGA has a very high computational complexity
of O(ngn?). Another issue with the NSGA is the reliance on a sharing parameter,
Oshare- 10 address these problems, a fast nondominated sorting strategy was proposed
and a crowding comparison operator defined. The fast nondominated sorting algorithm
calculates for each solution, x,, the number of solutions, n,, which dominates x,, and
the set, X, of solutions dominated by x,. All those solutions with n, = 0 are added
to a list, referred to as the current front. For each solution in the current front,
each element, x;, of the set A} has its counter, n;, decremented. When n;, = 0, the
corresponding solution is added to a temporary list. When all the elements of the
current front have been processed, its elements form the first front, and the temporary
list becomes the new current list. The process is repeated to form the other fronts.

To eliminate the need for a sharing parameter, solutions are sorted for each sub-
objective. For each subobjective, the average distance of the two points on either side
of x, is calculated. The sum of the average distances over all subobjectives gives the

9.6 Advanced Topics 173

Algorithm 9.11 Nondominated Sorting Genetic Algorithm

Set the generation counter, t = 0;
Initialize all control parameters;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do
Set the front counter, p = 1;
while there are individuals not assigned to a front do
Identify nondominated individuals;
Assign fitness to each of these individuals;
Apply fitness sharing to individuals in the front;
Remove individuals;
p=p+1
end
Apply reproduction using rank-based, shared fitness values;
Select new population;
t=t+1;
end

crowding distance, d,. If R, indicates the nondomination rank of x,, then a crowding
comparison operator is defined as: a <, b if (R, < Ry) or (R, = Ry) and (dg > dy)).
For two solutions with differing nondomination ranks, the one with the lower rank is
preferred. If both solutions have the same rank, the one located in the less populated
region of the Pareto front is preferred.

9.6.4 Dynamic Environments

A very simple approach to track solutions in a dynamic environment as defined in
Definition A.16 is to restart the GA when a change is detected. A restart approach
can be quite inefficient if changes in the landscape are small. For small changes, the
question arises if a changing optimum can be tracked by simply continuing with the
search. This will be possible only if the population has some degree of diversity to
enable further exploration. An ability to maintain diversity is therefore an important
ingredient in tracking changing optima. This is even more so for large changes in the
landscape, which may cause new optima to appear and existing ones to disappear.

A number of approaches have been developed to maintain population diversity. The
hyper-mutation strategy of Cobb [141] drastically increases the rate of mutation for a
number of generations when a change is detected. An increased rate of mutation as well
as an increased mutational step size allow for further exploration. The variable local
search strategy [873] gradually increases the mutational step sizes and rate of mutation
after a change is detected. Mutational step sizes are increased if no improvement is
obtained over a number of generations for the smaller step sizes.

Grefenstette [336] proposed the random immigrants strategy where, for each genera-
tion, part of the population is replaced by randomly generated individuals.

174 9. Genetic Algorithms

Mori et al. [607] proposed that a memory of every generation’s best individual be
stored (in a kind of hall-of-fame). Individuals stored in the memory serve as candidate
parents to the reproduction operators. The memory has a fixed size, which requires
some kind of replacement strategy. Branke [82] proposed that the best individual of
the current generation replaces the individual that is most similar.

For a more detailed treatment of dynamic environments, the reader is referred to [83].

9.7 Applications

Genetic algorithms have been applied to solve many real-world optimization problems.
The reader is referred to http://www.doc.ic.ac.uk/~nd/surprise_96/journal /vol4 /tcw2/
report.html for a good summary of and references to applications of GAs. The rest
of this section describes how a GA can be applied to routing optimization in
telecommunications networks [778]. Given a network of n, switches, an origin switch
and a destination switch, the objective is to find the best route to connect a call
between the origin and destination switches. The design of the GA is done in the
following steps:

1. Chromosome representation: A chromosome consists of a maximum of n,
switches. Chromosomes can be of variable length, since telecommunication
routes can differ in length. Each gene represents one switch. Integer values
representing switch numbers are used as gene values - no binary encoding is
used. The first gene represents the origin switch and the last gene represents the
destination switch. Example chromosomes are

(1 3 6 10)
(1525 10)=(1 5 2 10)

Duplicate switches are ignored. The first chromosome represents a route from
switch 1 to switch 3 to switch 6 to switch 10.

2. Initialization of population: Individuals are generated randomly, with the
restriction that the first gene represents the origin switch and the last gene
represents the destination switch. For each gene, the value of that gene is selected
as a uniform random value in the range [1,n,].

3. Fitness function: The multi-criteria objective function
f(xi) = w1 fswiten(Xi) + wa fBrock (Xi) + wa furi(Xi) + wafoost(xi) (9.46)

is used where x|
X
fSwitch (X’L) = n (947)

€T

represents the minimization of route length, where x; denotes the route and |x;]
is the total number of switches in the route,

[|

foroen(xi) =1~ [(1 = Bap + can) (9.48)

abex;

9.8 Assignments 175

with

(9.49)

_ 1 if ab does not exist
Qab 0 if ab does exist

represent the objective to select routes with minimum congestion, where By
denotes the blocking probability on the link between switches a and b,

fota(xi) = min {1 — Uap} + ap (9.50)

abex;

maximizes utilization, where U,, quantifies the level of utilization of the link

between a and b, and
%]

feost(x:) = Z Cab + b (9.51)

abex;

ensures that minimum cost routes are selected, where Cy; represents the financial
cost of carrying a call on the link between a and b. The constants w; to w4 control
the influence of each criterion.

4. Use any selection operator.
5. Use any crossover operator.
6. Mutation: Mutation consists of replacing selected genes with a uniformly ran-

dom selected switch in the range [1, n.].

This example is an illustration of a GA that uses a numeric representation, and variable
length chromosomes with constraints placed on the structure of the initial individuals.

9.8 Assignments

1. Discuss the importance of the crossover rate, by considering the effect of different
values in the range [0,1].

2. Compare the following replacement strategies for crossover operators that pro-
duce only one offspring:
(a) The offspring always replaces the worst parent.

(b) The offspring replaces the worst parent only when its fitness is better than
the worst parent.

(¢) The offspring always replaces the worst individual in the population.

(d) Boltzmann selection is used to decide if the offspring should replace the
worst parent.

3. Show how the heuristic crossover operator incorporates search direction.
4. Propose a multiparent version of the geometrical crossover operator.

5. Propose a marker initialization and update strategy for gene scanning applied
to order-based representations

6. Propose a random mutation operator for discrete-valued decision variables.
7. Show how a GA can be used to train a FFNN.

176 9. Genetic Algorithms

oo

. In the context of GAs, when is a high mutation rate an advantage?

Ne)

. Is the following strategy sensible? Explain your answer. “Start evolution with a
large mutation rate, and decrease the mutation rate with an increase in genera-
tion number.”

10. Discuss how a GA can be used to cluster data.

11. For floating-point representations, devise a deterministic schedule to dynamically
adjust mutational step sizes. Discuss the merits of your proposal.

12. Suggest ways in which the competitive template can be initialized for messy

GAs.

13. Discuss the consequences of migrating the best individuals before islands have
converged.

14. Discuss the influence that the size of the comparison set has on the performance
of the niched Pareto GA.

Chapter 10

Genetic Programming

Genetic programming (GP) is viewed by many researchers as a specialization of genetic
algorithms. Similar to GAs, GP concentrates on the evolution of genotypes. The main
difference between the two paradigms is in the representation scheme used. Where GAs
use string (or vector) representations, GP uses a tree representation. Originally, GP
was developed by Koza [478, 479] to evolve computer programs. For each generation,
each evolved program (individual) is executed to measure its performance within the
problem domain. The result obtained from the evolved computer program is then
used to quantify the fitness of that program.

This chapter provides a very compact overview of basic GP implementations to solve
specific problems. More detail about GP can be found in the books by Koza [482, 483].
The chapter is organized as follows: The tree-based representation scheme is discussed
in Section 10.1. Section 10.2 discusses initialization of the GP population, and the
fitness function is covered in Section 10.3. Crossover and mutation operators are
described in Sections 10.4 and 10.5. A building-block approach to GP is reviewed in
Section 10.6. A summary of GP applications is given in Section 10.7.

10.1 Tree-Based Representation

GP was developed to evolve executable computer programs [478, 479]. Each individual,
or chromosome, represents one computer program, represented using a tree structure.
Tree-based representations have a number of implications that the reader should be
aware of:

e Adaptive individuals: Contrary to GAs where the size of individuals are usu-
ally fixed, a GP population will usually have individuals of different size, shape
and complexity. Here size refers to the tree depth, and shape refers to the branch-
ing factor of nodes in the tree. The size and shape of a specific individual are
also not fixed, but may change due to application of the reproduction operators.

e Domain-specific grammar: A grammar needs to be defined that accurately
reflects the problem to be solved. It should be possible to represent any possible
solution using the defined grammar.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

177

178 10. Genetic Programming

Table 10.1 XOR Truth Table

T1 X2 | Target Output
0

0
0
1
1

= O = O
(e

Figure 10.1 Tree-Representation of XOR

As mentioned above, a grammar forms an important part of chromosome represen-
tation. As part of the grammar, a terminal set, function set, and semantic rules
need to be defined. The terminal set specifies all the variables and constants, while
the function set contains all the functions that can be applied to the elements of the
terminal set. These functions may include mathematical, arithmetic and/or Boolean
functions. Decision structures such as if-then-else and loops can also be included in
the function set. Using tree terminology, elements of the terminal set form the leaf
nodes of the evolved tree, and elements of the function set form the non-leaf nodes.
For a specific problem, the search space consists of the set of all possible trees that
can be constructed using the defined grammar.

Two examples are given next to illustrate GP representations. One of the first appli-
cations of GP was to evolve Boolean expressions. Consider the expression,

and given a data set of interpretations and their associated target outputs (as given
in Table 10.1), the task is to evolve this expression. The solution is represented in
Figure 10.1. For this problem, the function set is defined as {AND,OR, NOT'}, and
the terminal set is {z1,22} where z1, 22 € {0,1}.

10.2 Initial Population 179

Figure 10.2 Tree-Representation for Mathematical Expressions

The next example considers the problem of evolving a mathematical expression. Con-
sider the task of evolving the program,

y:=x*1n(a)+sin(z) /exp(-x)-3.4;

The terminal set is specified as {a, x, z,3.4} with a, z, 2 € R. The minimal function set
is given as {—, +, %, /,sin, exp, In}. The global optimum is illustrated in Figure 10.2.

In addition to the terminal and function sets, rules can be specified to ensure the
construction of semantically correct trees. For example, the logarithmic function, In,
can take only positive values. Similarly, the second parameter of the division operator
can not be zero.

10.2 Initial Population

The initial population is generated randomly within the restrictions of a maximum
depth and semantics as expressed by the given grammar. For each individual, a root
is randomly selected from the set of function elements. The branching factor (the
number of children) of the root, and each non-terminal node, are determined by the
arity of the selected function. For each non-root node, the initialization algorithm
randomly selects an element either from the terminal set or the function set. As soon
as an element from the terminal set is selected, the corresponding node becomes a leaf
node and is no longer considered for expansion.

180 10. Genetic Programming

Instead of initializing individuals as large trees, individuals can be initialized to be
as simple as possible. During the evolutionary process these individuals will grow if
increased complexity is necessary (refer to Section 10.6). This facilitates creation of
simple solutions.

10.3 Fitness Function

The fitness function used for GP is problem-dependent. Because individuals usually
represent a program, calculation of fitness requires the program to be evaluated against
a number of test cases. Its performance on the test cases is then used to quantify the
individual’s fitness. For example, refer to the problems considered in Section 10.1.
For the Boolean expression, fitness is calculated as the number of correctly predicted
target outputs. For the mathematical expression a data set of sample input patterns
and associated target output is needed. Each pattern contains a value for each of the
variables (a, z and z) and the corresponding value of y. For each pattern the output of
the expression represented by the individual is determined by executing the program.
The output is compared with the target output to compute the error for that pattern.
The MSE over the errors for all the patterns gives the fitness of the individual.

As will be shown in Section 10.6, GP can also be used to evolve decision trees. For
this application each individual represents a decision tree. The fitness of individuals
is calculated as the classification accuracy of the corresponding decision tree. If the
objective is to evolve a game strategy in terms of a computer program [479, 481], the
fitness of an individual can be the number of times that the individual won the game
out of a total number of games played.

In addition to being used as a measure of the performance of individuals, the fitness
function can also be used to penalize individuals with undesirable structural properties.
For example, instead of having a predetermined depth limit, the depth of a tree can
be penalized by adding an appropriate penalty term to the fitness function. Similarly,
bushy trees (which result when nodes have a large branching factor) can be penalized
by adding a penalty term to the fitness function. The fitness function can also be used
to penalize semantically incorrect individuals.

10.4 Crossover Operators

Any of the previously discussed selection operators (refer to Section 8.5) can be used
to select two parents to produce offspring. Two approaches can be used to generate
offspring, each one differing in the number of offspring generated:

e Generating one offspring: A random node is selected within each of the
parents. Crossover then proceeds by replacing the corresponding subtree in the
one parent by that of the other parent. Figure 10.3(a) illustrates this operator.

10.4 Crossover Operators 181

Parent 1 ” Parent 2 In
+ +
-<— g(\ /
3 4/\)(k z Sin a/\Z
3.4 a 3.4

j Offspring

3.4
(a) Creation of one offspring
Parent 1 * Parent 2 ln
3.4 a 3~4
Offspring 2
Offspring 1 ‘ Spring

exp + TN
‘ A sin /

. * A
NN .
a4 X Z Sln

| RN

34 34 a

(b) Creation of two offspring

Figure 10.3 Genetic Programming Crossover

182 10. Genetic Programming

e Generating two offspring: Again, a random node is selected in each of the
two parents. In this case the corresponding subtrees are swapped to create the
two offspring as illustrated in Figure 10.3(b).

10.5 Mutation Operators

Mutation operators are usually developed to suit the specific application. However,
many of the mutation operators developed for GP are applicable to general GP rep-
resentations. With reference to Figure 10.4(a), the following mutation operators can
be applied:

e Function node mutation: A non-terminal node, or function node, is randomly
selected and replaced with a node of the same arity, randomly selected from the
function set. Figure 10.4(b) illustrates that function node ‘+’ is replaced with
function node ‘—’.

e Terminal node mutation: A leaf node, or terminal node, is randomly selected
and replaced with a new terminal node, also randomly selected from the termi-
nal set. Figure 10.4(c) illustrates that terminal node a has been replaced with
terminal node z.

e Swap mutation: A function node is randomly selected and the arguments of
that node are swapped as illustrated in Figure 10.4(d).

e Grow mutation: With grow mutation a node is randomly selected and re-
placed by a randomly generated subtree. The new subtree is restricted by a
predetermined depth. Figure 10.4(e) illustrates that the node 3.4 is replaced
with a subtree.

e Gaussian mutation: A terminal node that represents a constant is randomly
selected and mutated by adding a Gaussian random value to that constant.
Figure 10.4(f) illustrates Gaussian mutation.

e Trunc mutation: A function node is randomly selected and replaced by a
random terminal node. This mutation operator performs a pruning of the tree.
Figure 10.4(g) illustrates that the + function node is replaced by the terminal
node a.

Individuals to be mutated are selected according to a mutation probability p,,. In ad-
dition to a mutation probability, nodes within the selected tree are mutated according
to a probability p,. The larger the probability p,, the more the genetic build-up of
that individual is changed. On the other hand, the larger the mutation probability
Pm, the more individuals will be mutated.

All of the mutation operators can be implemented, or just a subset thereof. If more
than one mutation operator is implemented, then either one operator is selected ran-
domly, or more than one operator is selected and applied in sequence.

In addition to the mutation operators above, Koza [479] proposed the following asexual
operators:

10.5 Mutation Operators 183

In In In
+ + new node of +
/\ /\ same arity /\
exp / exp : / exp /
¢ a z % a z * a z
/\ /\ /\ New terminal node
34 a 34 a 34 1<
(a) Original tree (b) Function node (¢) Terminal node
In
In In ‘
| .

+ /\
/\ Arguments swapped exp / exp /
X N /\
a

Z

; p
/\ sin/\z 3.51 a
| \

a X 3.41+N(0,0.1)
(d) Swapping (e) Grow (f) Gaussian
In
+
exp /
a a Z
(g) Trunc

Figure 10.4 Genetic Programming Mutation Operators

184 10. Genetic Programming

e Permutation operator: This operator is similar to the swap mutation. If a
function has n parameters, the permutation operator generates a random permu-
tation from the possible n! permutations of parameters. The arguments of the
function are then permutated according to this randomly generated permutation.

e Editing operator: This operator is used to restructure individuals according to
predefined rules. For example, a subtree that represents the Boolean expression,
x AND =z is replaced with the single node, z. Editing rules can also be used to
enforce semantic rules.

e Building block operator: The objective of the building block operator is to
automatically identify potentially useful building blocks. A new function node
is defined for an identified building block and is used to replace the subtree
represented by the building block. The advantage of this operator is that good
building blocks will not be altered by reproduction operators.

10.6 Building Block Genetic Programming

The GP process discussed thus far generates an initial population of individuals where
each individual represents a tree consisting of several nodes and levels. An alternative
approach has been developed in [248, 742] — specifically for evolving decision trees
— referred to as a building-block approach to GP (BGP). In this approach, initial
individuals consist of only a root and the immediate children of that node. Evolution
starts on these “small” initial trees. When the simplicity of the population’s individ-
uals can no longer account for the complexity of the problem to be solved, and no
improvement in the fitness of any of the individuals within the population is observed,
individuals are expanded. Expansion occurs by adding a randomly generated building
block (i.e. a new node) to individuals. In other words, grow mutation is applied.
This expansion occurs at a specified expansion probability, p., and therefore not all of
the individuals are expanded. Described more formally, the building-block approach
starts with models with a few degrees of freedom — most likely too few to solve the
problem to the desired degree of accuracy. During the evolution process, more degrees
of freedom are added when no further improvements are observed. In between the
triggering of expansion, crossover and mutation occur as for normal GP.

This approach to GP helps to reduce the computational complexity of the evolution
process, and helps to produce smaller individuals.

10.7 Applications

GP was developed to evolve computer programs [478, 479]. Programs have been
evolved for a wide range of problem types as illustrated in [479]. These problem types

10.8 Assignments

185

Table 10.2 Genetic Programming Applications

| Application ‘ References

Decision trees
Game-playing
Bioinformatics
Data mining
Robotics

[248, 479, 685, 742]
(479, 481]

[484, 485]

648, 741, 917]
1206, 486, 347]

include Boolean expressions, planning, symbolic function identification, empirical dis-
covery, solving systems of equations, concept formation, automatic programming, pat-
tern recognition, game-playing strategies, and neural network design. Table 10.2 pro-
vides a summary of other applications of GP.

A very complete list of GP publications and applications can be found at
http://www.cs.bham.ac.uk/~ubl/biblio/gp-html/

10.8 Assignments

1. Explain how a GP can be used to evolve a program to control a robot, where the
objective of the robot is to move out of a room (through the door) filled with

obstacles.

2. First explain what a decision tree is, and then show how GP can be used to

evolve decision trees.

3. Is it possible to use GP for adaptive story telling?

4. Given a pre-condition and a post-condition of a function, is it possible to evolve

the function using GP?

5. Explain why BGP is computationally less expensive than GP.

6. Show how a GP can be used to evolve polynomial expressions.

7. Discuss how GP can be used to evolve the evaluation function used to evaluate
the desirability of leaf nodes in a game tree.

Chapter 11

Evolutionary Programming

Evolutionary programming (EP) originated from the research of L.J. Fogel in 1962
[275] on using simulated evolution to develop artificial intelligence. While EP shares
the objective of imitating natural evolutionary processes with GAs and GP, it differs
substantially in that EP emphasizes the development of behavioral models and not
genetic models: EP is derived from the simulation of adaptive behavior in evolution.
That is, EP considers phenotypic evolution. EP iteratively applies two evolutionary
operators, namely variation through application of mutation operators, and selection.
Recombination operators are not used within EP.

This chapter provides an overview of EP, organized as follows: The basic EP is de-
scribed in Section 11.1. Different mutation and selection operators are discussed in
Section 11.2. Self-adaptation and strategy parameters are discussed in Section 11.3.
Variations of EP that combine aspects from other optimization paradigms are reviewed
in Section 11.4. A compact treatment of a few advanced topics is given in Section 11.5,
including constraint handling, multi-objective optimization, niching, and dynamic en-
vironments.

11.1 Basic Evolutionary Programming

Evolutionary programming (EP) was conceived by Laurence Fogel in the early 1960s
[275, 276] as an alternative approach to artificial intelligence (AI), which, at that time,
concentrated on models of human intelligence. From his observation that intelligence
can be viewed as “that property which allows a system to adapt its behavior to meet
desired goals in a range of environments” [267], a model has been developed that
imitates evolution of behavioral traits. The evolutionary process, first developed to
evolve finite state machines (FSM), consists of finding a set of optimal behaviors from a
space of observable behaviors. Therefore, in contrast to other EAs, the fitness function
measures the “behavioral error” of an individual with respect to the environment of
that individual.

As an approach to evolve FSMs, individuals in an EP population use a representa-
tion of ordered sequences, which differs significantly from the bitstring representation
proposed by Holland for GAs (refer to Chapter 9). EP is, however, not limited to
an ordered sequence representation. David Fogel et al. [271, 272] extended EP for

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

187

188

11. Evolutionary Programming

real-valued vector representations, with application to the optimization of continuous
functions.

As summarized in Algorithm 11.1, EP utilizes four main components of EAs:

e Initialization: As with other EC paradigms, a population of individuals is

initialized to uniformly cover the domain of the optimization problem.

e Mutation: The mutation operator’s main objective is to introduce variation in

the population, i.e. to produce new candidate solutions. Each parent produces
one or more offspring through application of the mutation operator. A number
of EP mutation operators have been developed, as discussed in Section 11.2.1.

Evaluation: A fitness function is used to quantify the “behavioral error” of
individuals. While the fitness function provides an absolute fitness measure to
indicate how well the individual solves the problem being optimized, survival in
EP is usually based on a relative fitness measure (refer to Chapter 15). A score is
computed to quantify how well an individual compares with a randomly selected
group of competing individuals. Individuals that survive to the next generation
are selected based on this relative fitness. The search process in EP is therefore
driven by a relative fitness measure, and not an absolute fitness measure as is
the case with most EAs.

Selection: The main purpose of the selection operator is to select those indi-
viduals that survive to the next generation. Selection is a competitive process
where parents and their offspring compete to survive, based on their performance
against a group of competitors. Different selection strategies are discussed in
Section 11.2.2.

Mutation and selection operators are applied iteratively until a stopping condition is
satisfied. Any of the stopping conditions given in Section 8.7 can be used.

Algorithm 11.1 Basic Evolutionary Programming Algorithm

Set the generation counter, t = 0;
Initialize the strategy parameters;
Create and initialize the population, C(0), of ns individuals;
for each individual, x;(t) € C(t) do
Evaluate the fitness, f(x;(t));

end

while stopping condition(s) not true do
for each individual, x;(t) € C(t) do

Create an offspring, x;(t), by applying the mutation operator;
Evaluate the fitness, f(x;(t));
Add x;(t) to the set of offspring, C'(£);

end

Select the new population, C(t + 1), from C(t) UC (t), by applying a selection
operator;

t=t+1;

end

11.2 Evolutionary Programming Operators 189

In comparison with GAs and GP, there are a few differences between these EAs and
EP, some of which have already been discussed:

e EP emphasizes phenotypic evolution, instead of genotypic evolution. The focus
is on behaviors.

e Due to the above, EP does not make use of any recombination operator. There
is no exchange of genetic material.

e EP uses a relative fitness function to quantify performance with respect to a
randomly chosen group of individuals.

e Selection is based on competition. Those individuals that perform best against
a group of competitors have a higher probability of being included in the next
generation.

e Parents and offspring compete for survival.

e The behavior of individuals is influenced by strategy parameters, which de-
termine the amount of variation between parents and offspring. Section 11.3
discusses strategy parameters in more detail.

11.2 Evolutionary Programming Operators

The search process of an EP algorithm is driven by two main evolutionary opera-
tors, namely mutation and selection. Different implementations of these operators are
discussed in Sections 11.2.1 and 11.2.2 respectively.

11.2.1 Mutation Operators

As mutation is the only means of introducing variation in an EP population, it is
very important that the design of a mutation operator considers the exploration—
exploitation trade-off. The variation process should facilitate exploration in the early
stages of the search to ensure that as much of the search space is covered as possible.
After an initial exploration phase, individuals should be allowed to exploit obtained
information about the search space to fine tune solutions. A number of mutation
operators have been developed, which addressses this trade-off to varying degrees.

For this discussion, assume that the task is to minimize a continuous, unconstrained
function, f : R™ — R. If x;(¢) denotes a candidate solution (as represented by the
i-th individual) at generation ¢, then each z;;(t) € R,j =1,...,n,.

In general, mutation is defined as

x5(t) = @ij(t) + Awy(t) (11.1)

where x;(t) is the offspring created from parent x;(¢) by adding a step size Ax;(t) to
the parent. The step size is noise sampled from some probability distribution, where

190 11. Evolutionary Programming

the deviation of the noise is determined by a strategy parameter, 0;;. Generally, the
step size is calculated as
Azij(t) = (o35 (t)mi5 (1) (11.2)

where ® : R — R is a function that scales the contribution of the noise, n;;(t).

Based on the characteristics of the scaling function, ®, EP algorithms can be grouped
into three main categories of algorithms:

e non-adaptive EP, in which case ®(¢) = o. In other words, the deviations in
step sizes remain static.

e dynamic EP, where the deviations in step sizes change over time using some
deterministic function, @, usually a function of the fitness of individuals.

e self-adaptive EP, in which case deviations in step sizes change dynamically.
The best values for o;; are learned in parallel with the decision variables, x;;.

Since the deviations, 0;;, have an influence on the behavior of individuals in the case
of dynamic and self-adaptive EP, these deviations are referred to as strategy parame-
ters. Each individual has its own strategy parameters, in which case an individual is
represented as the tuple,

Xi(t) = (xi(t), 04(t)) (11.3)

While deviations are the most popular choice for strategy parameters, Fogel [265, 266],
extended EP to use correlation coefficients between components of the individual as
strategy parameters, similar to their use in evolution strategies (refer to Chapter 12).
Strategy parameters are discussed in more detail in Section 11.3.

As is the case with all EAs, EP follows a stochastic search process. Stochasticity is
introduced by computing step sizes as a function of noise, 7;;, sampled from some
probability distribution. The following distributions have been used for EP:

e Uniform: Noise is sampled from a uniform distribution [580]
nij(t) ~ U<xmin,ja-rmaa:7j> (11.4)

where Xnin and Xmqs provide lower and upper bounds for the values of 7;;. It
is important to note that

Elnyl=0 (11.5)
to prevent any bias induced by the noise. Here E[e] denotes the expectation
operator.

Wong and Yuryevich [916] proposed a uniform mutation operator where
Awj(t) = U(0,1)(g;(t) — x45(t)) (11.6)

with y(t) the best individual from the current population, C(¢). This mutation
operator directs all individuals to make random movements towards the best
individual (very similar to the social component used in particle swarm opti-
mization; refer to Chapter 16). Note that the best individual does not change.

11.2 Evolutionary Programming Operators 191

e Gaussian: For the Gaussian mutation operators, noise is sampled from a
zero-mean, normal distribution [266, 265]:

nij(t) ~ N(0,0:5(t)) (11.7)

For completeness sake, and comparison with other distributions, the Gaussian
density function is given as (assuming a zero mean)

T 2002
fale) = e /G (11.8)

where o is the deviation of the distribution.
e Cauchy: For the Cauchy mutation operators [934, 932, 936],

where v is the scale parameter.

The Cauchy density function centered at the origin is defined by

folw) = 21—2 (11.10)

TV 4+ x?

for v > 0. The corresponding distribution function is
11
Fo(x) = = + — arctan(~) (11.11)
2 7 v

The Cauchy distribution has wider tails than the Gaussian distribution, and
therefore produces more, larger mutations than the Gaussian distribution.

e Lévy: For the Lévy distribution [505],

The Lévy probability function, centered around the origin, is given as

1 [v
Fr,(x) = _/0 e~ cos(qx)dq (11.13)

™

where v > 0 is the scaling factor, and 0 < v < 2 controls the shape of the
distribution. If v = 1, the Cauchy distribution is obtained, and if v = 2, the
Gaussian distribution is obtained.

For |z| >> 1, the Lévy density function can be approximated by
fr(z) oc =+ (11.14)

An algorithm for generating Lévy random numbers is given in [505].

e Exponential: In this case [621],

ni;(t) ~ E(0,§) (11.15)

192 11. Evolutionary Programming

The density function of the double exponential probability distribution is given
as

fee(z) = ge‘g'w‘ (11.16)

where £ > 0 controls the variance (which is equal to 5%) Random numbers can
be calculated as follows: '

11n(2y) if y <0.5
= 3 B
& { “lm2(1-y) ify>05 (11.17)
where y ~ U(0,1). It can be noted that E(0,&) = %E(O, 1).
e Chaos: A chaotic distribution is used to sample noise [417]:
ni;(t) ~ R(0,1) (11.18)

where R(0, 1) represents a chaotic sequence within the space (—1,1). The chaotic
sequence can be generated using

Ti41 :sin(2/xt)1:t, tZO,l (1119)

e Combined distributions: Chellapilla [118] proposed the mean mutation op-
erator (MMO), which uses a linear combination of Gaussian and Cauchy distri-
butions. In this case,

1ij () = 135 (t) + neis (1) (11.20)

where
N, ~ N(0,1) (11.21)
nei ~ C0,1) (11.22)

The resulting distribution generates more very small and large mutations com-
pared to the Gaussian distribution. It generates more very small and small
mutations compared to the Cauchy distribution. Generally, this convoluted dis-
tribution produces larger mutations than the Gaussian distribution, and smaller
mutations than the Cauchy distribution.

Chellapilla also proposed an adaptive MMO, where
Awyj(t) = 7i5(1)(Ci; (0, 1) + v (1) Ni; (0, 1)) (11.23)

where v;;(t) = 02,;(t) is an overall scaling parameter, and v;; = 01;;/02,;
determines the shape of the probability distribution function; oy ;; and o2 ;; are
deviation strategy parameters. For low values of v;;, the Cauchy distribution is
approximated, while large values of v;; resemble the Gaussian distribution.

The question now is how these distributions address the exploration—exploitation
trade-off. Recall that a balance of small and large mutations is needed. The Cauchy
distribution, due to its wider tail, creates more, and larger mutations than the Gaus-
sian distribution. The Cauchy distribution therefore facilitates better exploration
than the Gaussian distribution. The Lévy distribution have tails in-between that of

11.2 Evolutionary Programming Operators 193

the Gaussian and Cauchy distributions, and therefore also provides better exploration
than for the Gaussian distribution. While the Cauchy distribution does result in larger
mutations, care should be taken in applying Cauchy mutations. As pointed out by
Yao et al. [936], the smaller peak of the Cauchy distribution implies less time for
exploitation. The Cauchy mutation operators therefore are weaker than the Gaussian
operators in fine-tuning solutions. Yao et al. [932, 936] also show that the large mu-
tations caused by Cauchy operators are beneficial only when candidate solutions are
far from the optimum. It is due to these advantages and disadvantages that the Lévy
distribution and convolutions such as those given in equations (11.20) and (11.23) offer
good alternatives for balancing exploration and exploitation.

Another factor that plays an important role in balancing exploration and exploita-
tion is the way in which strategy parameters are calculated and managed, since step
sizes are directly influenced by these parameters. The next section discusses strategy
parameters in more detail.

11.2.2 Selection Operators

Selection operators are applied in EP to select those individuals that will survive to
the next generation. In the original EP, and most variations of it, the new population
is selected from all the parents and their offspring. That is, parents and offspring
compete to survive. Differing from other EAs, competition is based on a relative
fitness measure and not an absolute fitness measure. An absolute fitness measure
refers to the actual fitness function that quantifies how optimal a candidate solution
is. On the other hand, the relative fitness measure expresses how well an individual
performs compared to a group of randomly selected competitors (selected from the
parents and offspring).

As suggested by Fogel [275], this is possibly the first hint towards coevolutionary
optimization. For more detail on coevolution and relative fitness measures, refer to
Chapter 15. This section only points out those methods that have been applied to EP.

For the purposes of this section, notation is changed to correspond with that of EP
literature. In this light, u is used to indicate the number of parent individuals (i.e.
population size, ny), and A is used to indicate the number of offspring.

The first step in the selection process is to calculate a score, or relative fitness, for each
parent, x;(t), and offspring, x;(t). Define P(t) = C(t) UC (t) to be the competition
pool, and let u;(t) € P(t),i = 1,...,u+ X denote an individual in the competition
pool. Then, for each u;(t) € P(t) a group of np competitors is randomly selected from
the remainder of individuals (i.e. from P(¢)\{u;(¢)}). A score is calculated for each
u;(t) as follows

Sl(t) = Zpsil(ﬂ (1124)
=1

194 11. Evolutionary Programming

where (assuming minimization)

rlt) { 1 fu(t) < fm(n) (11.25)

0 otherwise

Wong and Yuryevich [916], and Ma and Lai [542] proposed an alternative scoring

strategy where
: f(wi(t))
sut) =4+ T < Fme (11.26)
0 otherwise

where the np opponents are selected as | = [2ure 4+ 1], with r1, 79 ~ U(0, 1).

In this case, if f(u;(t)) << f(w(t)), in which case the fitness of u; is significantly
better than that of u;, then u; will have a high probability of being assigned a winning
score of 1. This approach is less strict than the requirement that f(u;(¢)) < f(w/(?)),
somewhat reducing the effects of selection pressure.

Based on the score assigned to each individual, u;(t), any of a number of selection
methods can be used (as summarized in Section 8.5):

e Elitism: the best p individuals from P(t) are selected to form the new popu-
lation, C(t + 1).

e Tournament selection: The best ¢ individuals are stochastically selected using
tournament selection.

e Proportional selection: Each individual is assigned a probability of being

selected:)
si(t
ps(Wi(t)) = =5 (11.27)
12 si(t)
Roulette-wheel selection can then be used to select the p individuals for the next
generation.

e Nonlinear ranking selection [933]: Individuals are sorted in ascending order
of score and then ranked. Then,

i
ps (Wzu—i(t) = —=— (11.28)
Py
Instead of using a stochastic selection, ranking can be used to find the p elite
individuals to form the new population.

Different methods have also been proposed to decide which of the parent or its offspring
will survive to the next generation. Wei et al. [894] proposed that each parent pro-
duces more than one offspring, where the number of offspring produced is determined
by the fitness of the individual. The more fit the parent is, the more offspring are
generated. The best offspring generated from a parent is selected (based on absolute
fitness measure), and competes with the parent for survival. Competition between
the parent and offspring is based on simulated annealing [894]. The offspring, x;(t),
survives to the next generation if f(x;(t)) < f(x;(t)) or if

6(—(f(x;(t))—f(xqt(75)))/T(75)) > U(0,1) (11.29)

11.3 Strategy Parameters 195

where 7 is the temperature coefficient, with 7(¢) = y7(t —1),0 < v < 1; otherwise the
parent survives.

The above metropolis selection has the advantage that the offspring has a chance of
surviving even if it has a worse fitness than the parent, which reduces selection pressure
and improves exploration.

11.3 Strategy Parameters

As hinted in equation (11.2), step sizes are dependent on strategy parameters, which
form an integral part of EP mutation operators. Although Section 11.2.1 indicated
that a strategy parameter is associated with each component of an individual, it is
totally possible to use one strategy parameter per individual. However, the latter
approach limits the degrees of freedom in addressing the exploration — exploitation
trade-off. For the purposes of this section, it is assumed that each component has
its own strategy parameter, and that individuals are represented as given in equation
(11.3).

11.3.1 Static Strategy Parameters

The simplest approach to handling strategy parameters is to fix the values of devia-
tions. In this case, the strategy parameter function is linear, i.e.

D(04;(t)) = 0i;(t) = 03 (11.30)
where o;; is a small value. Offspring are then calculated as (assuming a Gaussian
distribution)

;5 (t) = z4(t) + Nij (0, 045) (11.31)
with Az;;(t) = N;;(0,0;;). The notation N;;(e,e) indicates that a new random value
is sampled for each component of each individual.

A disadvantage of this approach is that a too small value for o;; limits exploration
and slows down convergence. On the other hand, a too large value for o;; limits
exploitation and the ability to fine-tune a solution.

11.3.2 Dynamic Strategies

One of the first approaches to change the values of strategy parameters over time, was
to set them to the fitness of the individual [271, 265]:

0ij(t) = oi(t) = vf(xi(1)) (11.32)
in which case offspring is generated using
zy(t) = it + N(0,03(t))

= l‘ij(t) —|—O’i(t)N(O,1) (1133)

196 11. Evolutionary Programming

In the above, v € (0,1].

If knowledge of the global optimum exists, the error of an individual can be used
instead of absolute fitness. However, such information is usually not available. Alter-
natively, the phenotypic distance from the best individual can be used as follows:

0ij(t) = o5(t) = |f(¥) — f(xi)| (11.34)
where ¥ is the most fit individual. Distance in decision space can also be used [827]:
oij(t) = oi(t) = E(¥,%:) (11.35)

where E(e, o) gives the Euclidean distance between the two vectors.

The advantage of this approach is that the weaker an individual is, the more that
individual will be mutated. The offspring then moves far from its weak parent. On
the other hand, the stronger an individual is, the less the offspring will be removed
from its parent, allowing the current good solution to be refined. This approach does
have some disadvantages:

e If fitness values are very large, step sizes may be too large, causing individuals
to overshoot a good minimum.

e The problem is even worse if the function value of the optimum is a large, non-
zero value. If the fitness values of good individuals are large, large step sizes
result, causing individuals to move away from good solutions. In such cases,
if knowledge of the optimum is available, using an error measure will be more
appropriate.

A number of proposals have been made to control step sizes as a function of fitness.
A non-extensive list of these methods is given below (unless otherwise stated, these
methods assume a minimization problem):

e Fogel [266] proposed an additive approach, where

x;j (t) = 24 (t) + 1/ Bij (#) f(xi) + vij + Nij(0,1) (11.36)

where (3;; and +y;; are respectively the proportionality constant and offset pa-
rameter.

e For the function f(x1,72) = 2% + 23, Béick and Schwefel [45] proposed that

) = L24/T660)

Ny

where n,, is the dimension of the problem (in this case, n, = 2).

e For training recurrent neural networks, Angeline et al. [28] proposed that
@y (t) = 25(t) + Boi; ()N (0, 1) (11.38)
where 3 is the proportionality constant, and

oij(t) = U(0,1) {1 - %} (11.39)

11.3 Strategy Parameters 197

with fiqe(t) the maximum fitness of the current population. Take note that the
objective here is to maximize f, and that f(x;(¢)) returns a positive value. If
f(xi(t)) is a small value, then o;;(t) will be large (bounded above by 1), which
results in large mutations. Deviations are scaled by a uniform number in the
range [0, 1] to ensure a mix of small and large step sizes.

e Ma and Lai [542] proposed that deviations be proportional to normalized fitness

values: /
Ty (t) = Xij (t) + ﬁijai(t)Nij (0, 1) (1140)
where (;; is the proportionality constant, and deviations are calculated as
(T
oi(t) = ﬁfs(x) (11.41)

=1 f (xu1(t))
with ng the size of the population. This approach assumes f is minimized.
e Yuryevich and Wong [943] proposed that

fmaz(t) — f(x:(1)) >
+v 11.42

0 (11.9)
to combine both boundary information and fitness information. In the above

Xmin and Xp,q. specify the bounds in decision space, and v > 0 is an offset
parameter to ensure non-zero deviations. Usually, v is a small value.

Uz’j(t) = (mmax,j - :Emin,j) <

This approach assumes that f is maximized. The inclusion of boundary con-
straints forces large mutations for components with a large domain, and small
mutations if the domain is small.

e Swain and Morris [827] set deviations proportional to the distance from the best
individual, i.e.
0ij (t) = Bijlg; (t) — i ()] + (11.43)

where v > 0, and the proportionality constant is calculated as

5 (Xmin) Xmaz)

™

Bij =B (11.44)
with 8 € [0,2], and &(Xmin, Xmaz) gives the width of the search space as the
Euclidean distance between the vectors X,,;, and X;,q,. The parameter, v,
defines a search neighborhood. Larger values of v promote exploration, while
smaller values promote exploitation. A good idea is to adapt 7y over time, starting
with large values that are decreased over time.

Offspring are generated using
@y () = @5(t) — dir(w;) o (t) Ny (0, 1) (11.45)

where the direction of the update is

dir(z,;) = sign(y; — xi;) (11.46)

198 11. Evolutionary Programming

e Gao [308] suggested that

Oij (t) l ﬁjf(xi (t)) + o7 [fmaw(t) - fmin(t)

where it is proposed that v = 2.5; fiae and fiu, refer to the largest and smallest
fitness values of the current population.

(11.47)

11.3.3 Self-Adaptation

The emphasis of EP is on developing behavioral models. EP is derived from simulations
of adaptive behavior. Previous sections have already indicated the strong influence
that strategy parameters have on the behavior of individuals, as quantified via the
fitness function. Two of the major problems concerning strategy parameters are the
amount of mutational noise that should be added, and the severity (i.e. step sizes) of
such noise. To address these problems, and to produce truly self-organizing behavior,
strategy parameters can be “evolved” (or “learned”) in parallel with decision variables.
An EP that utilizes such mechanisms is referred to as a self-adaptive EP.

Self-adaptation is not unique to EP. According to Fogel et al. [277], the idea of self-
adaptation stretches back as far as 1967 with proposals by Rechenberg. However,
Schwefel [769] provided the first detailed account of self-adaptation in the context of
evolution strategies (ES) (also refer to Chapter 12). With reference to EP, Fogel et
al. [271] provided the first suggestions for self-adaptive EP. Since then, a number of
self-adaptation methods have been proposed. These methods can be divided into three
broad categories [40]:

e Additive methods: The first self-adaptive EP as proposed by Fogel et al. [265]
is an additive method where

oij(t + 1) = 045(t) + noy; (t) Ni; (0, 1) (11.48)

with n referred to as the learning rate. In the first application of this approach,
n = 1/6. If 0;;(t) < 0, then o;;(t) = ~, where v is a small positive constant
(typically, v = 0.001) to ensure positive, non-zero deviations.

As an alternative, Fogel [266] proposed

03t +1) = 045(t) + 1/ fo(0:5(t)) Ni; (0, 1) (11.49)

a ifa>0

f”(a):{ v ifa<0

ensures that the square root is applied to a positive, non-zero value.

where
(11.50)

e Multiplicative methods: Jiang and Wang [418] proposed a multiplicative ad-
justment, where
t
ij(t+1) = o (0)(Are™ 277 + \g) (11.51)
where A1, A and A3 are control parameters, and n; is the maximum number of
iterations.

11.3 Strategy Parameters 199

e Lognormal methods: Borrowed from the ES literature [277],

0 (t+ 1) = 03 ()TN O D+ Nig (0.1) (11.52)

with
ro= %ﬁ (11.53)
;= (11.54)

Offspring are produced using

/

xij (t) = [L’ij(t) + O'ij(t)NZ‘j (O, 1) (1155)

Self-adaptive EP showed the undesirable behavior of stagnation due to the tendency
that strategy parameters converge too fast. The consequence is that deviations become
small too fast, thereby limiting exploration. The search stagnates for some time until
strategy parameters grow sufficiently large due to random variation.

One solution to this problem is to impose a lower bound on the values of ¢;;. However,
this triggers another problem of deciding when o;; values are to be considered as too
small. Liang et al. [524] provided a solution by considering dynamic lower bounds:

3

where 0., (t) is the lower bound at time step (generation) ¢, £ € [0.25,0.45] is the
reference rate, and n,,(t) is the number of successful consecutive mutations (i.e. the
number of mutations that results in improved fitness values). This approach is based
on the 1/5 success rule of Rechenberg [709] (refer to Chapter 12).

Gmin(t+1) = Gmuin () (”m—“)) (11.56)

Matsumura et al. [565] developed the robust EP (REP) where the representation of
each individual is expanded to allow for n, strategy parameter vectors to be associated
with each individual, as follows

(Xi(t)70'i0,...,O'ik,,...O'inU) (1157)

where 0, is referred to as the active strategy parameter vector, obtained through ap-
plication of three mutation operators on the other strategy parameter vectors. Com-
ponent values of the strategy parameter vectors are mutated as follows:

e Duplication:
7i0;(t) = 0io;(t) (11.58)
o;(t) = oig—1);1t) (11.59)

forl € {1,2,...,n,}. Then o;;(t) is self-adapted by application of the lognormal
method of equation (11.52) on the O’;kj (t) for k=0,1,...,n,.

200 11. Evolutionary Programming

e Deletion:

’

oia—n; () = ou;(t) (11.60)
Tingj(t) = min{amam(t%iom(t)} (11.61)
k=0

forl € {1,2,...,n,}. Then o;;(t) is self-adapted by application of the lognormal
method of equation (11.52) on the G';kj (t) for k=0,1,...,n,.

e Invert:

i0; (1) = ouy(t) (11.62)

ou;(t) = oioj(t) (11.63)

forl € {1,2,...,n,}. The lognormal self-adaptation method of equation (11.52)
is applied to 0;0;(t) and 0;;,(t) to produce 0o;(t) and oy;;(t) respectively.

After application of the mutation operators, offspring is created using

’

Ty (t) = Tjj (t) + 0405 (t)C(O, 1) (1164)

In a similar way, Fogel and Fogel [269] proposed multiple-vector self-adaptation. In
their strategy, at each iteration and before offspring is generated, the active strategy
parameter vector has a probability of p, of changing to one of the other 7, — 1 vectors.
The problem is then to determine the best values for 7, and p,, which are problem
dependent.

At this point it should be noted that offspring is first generated, and then strategy
parameters are updated. This differs from ES where strategy parameters are updated
first, and then offspring is generated. The order should not have a significant influence,
as use of new values for strategy parameters is delayed for just one generation of EP.

11.4 Evolutionary Programming Implementations

This section gives a short overview of a number of EP algorithm implementations.Note
that this is not an exhaustive review of different EP implementations.

11.4.1 Classical Evolutionary Programming

Yao et al. [934, 936] coined the term classical EP (CEP) to refer to EP with Gaussian
mutation. More specifically, CEP uses the lognormal self-adaptation given in equa-
tion (11.52), and produces offspring using equation (11.55). Elitism selection is used
to construct the new population from the current parent population and generated
offspring.

11.4 Evolutionary Programming Implementations 201

11.4.2 Fast Evolutionary Programming

Yao et al. [934, 936] and Wei et al. [894] adapted the CEP to produce the fast EP
(FEP) by changing the distribution from which mutational noise is sampled to the
Cauchy mutation as given in equation (11.9) with v = 1. Offspring is generated using

/

i5(t) = wij (t) + 035 (£)Ci; (0, 1) (11.65)

where the lognormal self-adaptation (refer to equation (11.52)) is used. Elitism is used
to select the new population.

The wider tails of the Cauchy distribution provide larger step sizes, and therefore result
in faster convergence. An analysis of FEP showed that step sizes may be too large
for proper exploitation [932, 936], while Gaussian mutations showed a better ability
to fine-tune solutions. This prompted a proposal for the improved FEP (IFEP). For
each parent, IFEP generates two offspring, one using Gaussian mutation and one using
Cauchy mutation. The best offspring is chosen as the surviving offspring, which will
compete with the parent for survival. An alternative approach would be to start the
search using Cauchy mutations, and to switch to Gaussian mutation at a later point.
However, such a strategy introduces the problem of when the optimal switching point is
reached. Diversity measures provide a solution here, where the switch can occur when
diversity is below a given threshold to indicate that exploitation should be favored.

The mean mutation operators of Chellapilla [118] (refer to equations (11.20) and
(11.23)) provide a neat solution by using a convolution of Gaussian and Cauchy dis-
tributions.

11.4.3 Exponential Evolutionary Programming

Narihisa et al. [621] proposed that the double exponential probability distribution
as defined in equation (11.16) be used to sample mutational noise. Offspring are
generated using

/ 1
where o;; is self-adapted, and the variance of the distribution is controlled by £. The
smaller the value of &, the greater the variance. Larger values of £ result in smaller
step sizes. To ensure initial exploration and later exploitation, £ can be initialized to
a small value that increases with time.

11.4.4 Accelerated Evolutionary Programming

In an attempt to improve the convergence speed of EP, Kim et al. [462] proposed the
accelerated EP (AEP), which uses two variation operators:

e A directional operator to determine the direction of the search based fitness
scores, and

202 11. Evolutionary Programming

e the Gaussian mutation operator given in equation (11.7).

Individuals are represented as

Xi(t) = (%i(t), pi(t), ai(t)) (11.67)

where p;; € {—1,1},j =1,...,n, gives the search direction for each component of the
i-th individual, and a; represents the age of the individual. Age is used to force wider
exploration if offspring are worse than their parents.

Offspring generation consists of two steps. The first step updates age parameters for
each individual, and determines search directions (assuming minimization):

_J1 if f(xi(t)) < f(xi(t —1))
ai(t) = { ai(t—1)+1 otherwise (11.68)

and

= { S5 00 DD

If the fitness of an individual improved, the search will continue in the direction of
the improvement. If the fitness does not improve, the age is incremented, which will
result in larger step sizes as follows: If a;(¢) = 1, then

zy(t) = () + pis (BN (0, 04(t))] (11.71)

Otherwise, if a;(t) > 1,
oi(t) = yaf(xi(t))ai(t) (11.72)
zy;(t) = @i(t)+ N(0,0i(1)) (11.73)

where ;1 and 79 are positive constants.

Selection occurs by having an offspring compete directly with its parent using absolute
fitness.

Wen et al. [896] used a similar approach, but using the dynamic strategy parameter
approach given in equation (11.41).

11.4.5 Momentum Evolutionary Programming

Choi and Oh [126] proposed an EP algorithm based on backpropagation learning of
feedforward neural networks (refer to Section 3.2.2). The best individual, §(¢), of the
current population, C(t), calculated as

y(8) =xi(t) : f(xi(t)) = min {f(xi(t))} (11.74)

i=1,..,p

11.4 Evolutionary Programming Implementations 203

is taken as the target. The temporal error between this target, y(t), and the individual,
x;(t), is then used by the mutation operator to improve exploration. For each parent,
x;(t), an offspring is generated as follows (assuming minimization):

’

7 (t) = w5 (t) + nAzi;(t) + aZi; (1) (11.75)
where
Azij(t) = (;(t) — zi;(t))[Niz (0,1)] (11.76)
(1) = mpi(t)Azij(t — 1) + ady(t — 1) (11.77)
with 17 > 0 the learning rate, o > 0 the momentum rate, and
1 if f(x(t—1)) < flx(t—1
w0 ={ 5 i D<) 179

11.4.6 Evolutionary Programming with Local Search

A very simple approach to improve the exploitation ability of EP, is to add a hill-
climbing facility to generated offspring. While a better fitness can be obtained, hill-
climbing is applied to each offspring [235]. Alternatively, gradient descent has been
used to regenerate offspring [920, 779]. For each offspring, x,(t), recalculate the off-
spring using

’ ’ 8f
2 (t) = () — mi(t) Pes(D) (11.79)
where the learning rate is calculated as
o)
mi(t) RO (11.80)

= S S 2 9f __ oFf
h=1 £4j=1 Oxin(t)0z;(t) Oz:n(t) Oxi;(t)

As an alternative to gradient descent, Birru et al. [70] used conjugate gradient search

(refer to Section 3.2.3), where line searches are performed for each component of the
offspring. The initial search direction is the downhill gradient, with subsequent search
directions chosen along subsequent gradient components that are orthogonal to all
previous search directions.

Birru et al. [70] also proposed a derivitive-free local search method to refine offspring.
The stochastic search developed by Solis and Wets [802] is applied to each offspring
at a specified probability. Based on this probability, if the local search is performed,
a limited number of steps is done as summarized in Algorithm 11.2.

11.4.7 Evolutionary Programming with Extinction

Fogel et al. [274] incorporated concepts of mass extinction into EP. The outcome of
an extinction event is that a significant portion of populations is killed, after which

204 11. Evolutionary Programming

Algorithm 11.2 Solis and Wets Random Search Algorithm for Function Minimization

Initialize the candidate solution, x(0), with x;(0) ~ U(Zmin.j; Tmazj), 3 = 1y, N}
Let t =0;
Let p(0) =1,
while stopping condition(s) not true do
t=t+1;

Generate a new candidate solution as x (t) = x(t) + p(t)N(0, 0);
if £(x (1)) < f(x(t)) then

x(t) =x (t);
end
else
p(t) = —p(t —1);
x (t) = x(t) + p(t)N(0,0);
if f(x (¢)) < f(x(t)) then
X(t) =X (t)v
end
else
forj=1,...,n, do
T (t) ~ U($min,j7xma$7j);
end
end
end
end

reproduction produces totally new populations with different survival behaviors than
populations that existed before extinction. Central to the EP with extinction is the
concept of environmental stress, which is a random variable sampled from a uniform
distribution, i.e.

5(t) ~ U(0,0.96) (11.81)

If the normalized fitness of an individual is less than the environmental stress, then
that individual is killed. The fitness of each individual is normalized as follows:

f(Xl(t)) - fmam (t)
fmin(t) - fmaw (t)

where frin(t) and fi,q.(t) are respectively the lowest and largest fitness values of the
current generation, and « € [0, 1] provides a lower limit on the percentage killed.

fxi) =a+(1-a) (11.82)

The EP with extinction is summarized in Algorithm 11.3.

11.4.8 Hybrid with Particle Swarm Optimization

A number of suggestions have been made to combine EP with particle swarm opti-
mization (PSO) (refer to Chapter 16). Wei et al. [893], and Sinha and Purkayastha

11.4 Evolutionary Programming Implementations 205

Algorithm 11.3 Extinction Evolutionary Programming for Function Minimization

Set the generation counter, t = 0;
Initialize the strategy parameters;
Create and initialize the population, C(0);
while stopping condition(s) not true do
t=t+1;
Let C(t) =C(t — 1);
o(t) ~U(0,0.96);
nsg = 0;
fori=1,...,udo
if f(x;(t)) < d(t) then
C(t) = C(t)\{x(t) };
ns =ns + 1;
end
end

if ns > 0 then
Let ng = ngy — ng be the number of survivors;
for each of the top 10% survivors do

ns 3 .
Generate RER offspring;

end
Calculate the fitness of all offspring;
Select ng of the offspring using tournament selection;
Add selected offspring to C(t);
end
else
Mutate the top 10% individuals of C(t);
for each offspring, x,(t), generated do
if f(x;(1)) < f(xi(t)) then
x;(t) = x;(1);
end
end

end
end

[794] applies the PSO position update (refer to Chapter 16),

and then mutate the new position using an EP mutation operator. Wei et al. [893]
uses the mutation operator and self-adaptation of CEP, while Sinha and Purkayastha
[794] uses a variation of the dynamic strategy parameter approach of equation (11.42),

where
Ul(t) =7 [%} (mmax,j - xmin,j) (1184)

with Gaussian mutational noise. That is,

zij(t +1) = 245(t) + vij(t) + 0:N;;(0,1) (11.85)

206 11. Evolutionary Programming

11.5 Advanced Topics

This section provides a very compact review of some approaches to apply EP to prob-
lems more difficult than unconstrained problems.

11.5.1 Constraint Handling Approaches

Any of a number of methods from the EC literature can be used to evolve feasible
solutions that satisfy all constraints (with reference to problems as defined in Defini-
tion A.5). With reference to Section A.6, the following approaches have been used in
EP literature:

e Penalty methods (refer to Section A.6.2), where a penalty is added to the objec-
tive function to penalize an individual for constraint violation [445, 795, 463].

e The constrained problem is converted to an unconstrained dual Lagrangian prob-
lem, where Lagrangian multipliers are optimized in parallel with decision vari-
ables [463]. Kim and Myung [463] developed a two-phase EP for constrained
problems. Phase one uses a penalty function. The best individual from phase
one is then used to generate a new population for phase two, which optimizes
the dual Lagrangian problem.

e Mutation operators are adapted to ensure that only feasible offspring are gen-
erated [943]. El-Sharkh and El-Keib [235] applied hill-climbing to offspring to
reduce the number of constraints violated. If the hill-climbing search fails in
producing a feasible solution, mutation is applied again. Ma and Lai [542] used
a simple, but inefficient approach by setting components that violate constraints
to boundary values.

11.5.2 Multi-Objective Optimization and Niching

Multi-objective optimization (MOO) techniques that can be found in the general EA
literature can be applied to EP to solve multi-objective problems as defined in Defini-
tion A.10. Simple approaches are to use weight aggregation methods as summarized
in Section A.8.2. Pareto-based methods have been used in [953].

To implement a niching EP algorithm, Li et al. [519] utilized crowding and fitness
sharing as used in GAs. Damavandi and Safavi-Nacini [169] used a clustering algorithm
applied to individuals to facilitate niche formation.

11.5.3 Dynamic Environments

Not much has been done to analyze the performance of EP for dynamically changing,
or noisy landscapes. Ma and Lai [542] used Gaussian mutations with dynamic strategy
parameters as defined in equation (11.41) with success, while Matsumura et al. [566]

11.6 Applications 207

analyzed the performance of CEP, FEP and robust EP on noisy-environments. Béck
[40] concluded that EP with additive strategy parameters fails for dynamic landscapes,
while lognormal self-adaptation succeeded.

11.6 Applications

The first application of EP was to evolve finite-state machines. Section 11.6.1 shows
how this can be done, while Section 11.6.2 illustrates how EP can be used to optimize
a continuous function. Section 11.6.3 shows how an EP can be used to train a NN. A
summary of real-world applications of EP is given in Section 11.6.4.

11.6.1 Finite-State Machines

EP was originally developed to evolve finite-state machines (FSM). The aim of this
application type is to evolve a program to predict the next symbol (of a finite alphabet)
based on a sequence of previously observed symbols.

A finite-state machine is essentially a computer program that represents a sequence
of actions that must be executed, where each action depends on the current state of
the machine and an input. Formally, a FSM is defined as

FSM = (8,7,0,p,) (11.86)

where S is a finite set of machine states, Z is a finite set of input symbols, O is a finite
set of output symbols (the alphabet of the FSM), p : § x Z — § is the next state
function, and ¢ : § x Z — O is the next output function. An example of a 3-state
FSM is given in Figure 11.1 (taken from [278]). The response of the FSM to a given
string of symbols is given in Table 11.1, presuming an initial state C'.

Table 11.1 Response of Finite-State Machine

Present state C
Input symbol 0
Next state B
Output symbol | B

SN~ w
e
@ =
@ WO >
2 oW

Representation

Each state can be represented by a 6-bit string. The first bit represents the activation
of the corresponding state (0 indicates not active, and 1 indicates active). The second
bit represents the input symbol, the next two bits represent the next state, and the last
two bits represent the output symbol. Each individual therefore consists of 18 bits.
The initial population is randomly generated, with the restriction that the output
symbol and next state bits represent only valid values.

208 11. Evolutionary Programming

Figure 11.1 Finite-State Machine [278§]

Fitness Evaluation

The fitness of each individual is measured as the individual’s ability to correctly predict
the next output symbol. A sequence of symbols is used for this purpose. The first
symbol from the sequence is presented to each individual, and the predicted symbol
compared to the next symbol in the sequence. The second symbol is then presented
as input, and the process iterates over the entire sequence. The individual with the
most correct predictions is considered the most fit individual.

Mutation

The following mutation operations can be applied: The initial state can be changed,
a state can be deleted, a state can be added, a state transition can be changed, or an
output symbol for a given state and input symbol can be changed.

These operators are applied probabilistically, in one of the following ways:

e Select a uniform random number between 1 and 5. The corresponding mutation
operator is then applied with probability p,,.

e Generate a Poisson number, £ with mean A. Select £ mutation operators uni-
formly from the set of operators, and apply them in sequence.

11.6.2 Function Optimization

The next example application of EP is in function optimization. Consider, for example,
finding the minimum of the function sin(27z)e™* in the range [0, 2].

11.6 Applications 209

Representation

The function has one parameter. Each individual is therefore represented by a vector
consisting of one floating-point element (not binary encoded). The initial population
is generated randomly, with each individual’s parameter x;; selected such that x;; ~
U(0,2).

Fitness Evaluation

In the case of minimization, the fittest individual is the one with the smallest value
for the function being optimized; that is, the individual with the smallest value for
the function sin(27z)e~*. For maximization, it is the largest value.

Mutation

Any of the mutation operators discussed in Section 11.2.1 can be used to produce
offspring.

11.6.3 Training Neural Networks

One of the first applications as an approach to optimize unconstrained functions was
to train supervised feedforward neural networks [272]. Since then, EP has been applied
to many neural network problems [28, 571, 933].

Representation

Each individual represents one neural network (NN), where a component represents a
single weight or bias.

Fitness Evaluation

The mean squared error (MSE), or sum squared error (SSE), can be used to quan-
tify the performance of a NN. In the case of a classification task, the percentage of
incorrectly classified patterns can be used. Fitness evaluation involves conversion of
the vector representation used for individuals to a layered NN structure in order to
perform feedforward passes for patterns in the given data set.

210 11. Evolutionary Programming
Table 11.2 Real-World Applications of Evolutionary Programming
| Application Class | References |
Bayesian networks [519]
Controller design [889]
Robotics 350, 445, 465]
Games (267, 273]
Image processing [546]
Power systems [110, 111, 417, 543, 779, 916, 943]
Scheduling and routing | [235, 270, 795]
Model selection (542, 620]
Design [169, 381, 819]
Mutation

Any of the mutation operators discussed in Section 11.2.1 can be used to adjust weight
and bias values. Special mutation operators are available if the NN architecture is
optimized simultaneously with weight values [28, 933]. Optimizing NN architecture
is a discrete-valued optimization problem. Architecture mutation operators include
node deletion and addition, as well as removing or adding a connection between two
nodes.

11.6.4 Real-World Applications

Table 11.2 summarizes some applications of EP. This table should not be considered
as an exhaustive list.

11.7 Assignments

1. Show if EP can be used to evolve the regular expression of a sequence of char-
acters.

2. Use unconstrained functions from Section A.5.3 to show which probability dis-
tribution results in step sizes that maximize exploration.

3. Develop an EP to train an LVQ-I network.

4. The representation scheme used in Section 11.6.1 to evolve FSMs can be reduced
to use less bits. Suggest a way in which this can be accomplished.

5. How can premature convergence be prevented in EP?

6. With reference to Chapter 12 discuss the similarities and differences between EP
and ES.

11.7 Assignments 211

10.
11.

12.

13.
14.
15.

With reference to Chapter 15 discuss the influence of different fitness sampling
methods on EP performance.

With reference to Chapter 15 discuss the influence of different fitness sharing
methods on EP performance.

Evaluate the performance of different mutation operators on the following de-
ceptive function [169]:

B sin(m(zy — 2)) sin(m(zy — 2))|°
flz1,20) = [1 — Wztl‘l = 2)(1‘2 - ;) ‘|
x[2+ (1 — 7) + 2(2z2 — 7)?] (11.87)

for @1, x9,~ U(0,12). The global minimum is f*(x1,22) = 0 at (z1,22) = (2,2),
and the local minimum of f*(x1,z2) = 2 at (x1,22) = (7,7).

Explain why mutational noise should have a mean of 0.

Propose a method to ensure that the uniform mutation operator in equation
(11.6) does not prematurely stagnate.

Compare the characteristics of the Lévy distribution with that of the Gaussian
and Cauchy distributions in relation to the exploration—exploitation trade-off.

Propose ways in which strategy parameters can be initialized.
Propose an approach to self-adapt the a parameter of the Lévy distribution.

Discuss the merits of the following approach to calculate dynamic strategy pa-
rameters:

0ij(t) = oi(t) = [f(y(£)) — f(xa(t))] (11.88)

where y(t) is the best individual of the current generation.

Chapter 12

Evolution Strategies

Rechenberg reasoned that, since biological processes have been optimized by evolution,
and evolution is a biological process itself, then it must be the case that evolution
optimizes itself [710]. Evolution strategies (ES), piloted by Rechenberg in the 1960s
[708, 709] and further explored by Schwefel [768], are then based on the concept of the
evolution of evolution. While ESs consider both genotypic and phenotypic evolution,
the emphasis is toward the phenotypic behavior of individuals. Each individual is
represented by its genetic building blocks and a set of strategy parameters that models
the behavior of that individual in its environment. Evolution then consists of evolving
both the genetic characteristics and the strategy parameters, where the evolution of
the genetic characteristics is controlled by the strategy parameters. An additional
difference between ESs and other EC paradigms is that changes due to mutation are
only accepted in the case of success. In other words, mutated individuals are only
accepted if the mutation resulted in improving the fitness of the individual. Also
interesting in ESs is that offspring can also be produced from more than two parents.

The rest of this chapter is organized as follows: An overview of the first ES is given
in Section 12.1. A generic framework for ES algorithms is given in Section 12.2, and
the main components of ES are discussed. Section 12.3 discusses strategy parameters
— one of the most distinguishing aspects of ES. Evolutionary operators for ES are
described in Section 12.4. A few ES variants are described in Section 12.5. Advanced
topics are addressed in Section 12.6, including constraint handling, multi-objective
optimization, niching, and dynamic environments.

12.1 (1+1)-ES

The first ES was developed for experimental optimization, applied to hydrodynamical
problems [708]. This ES, referred to as the (1 4+ 1)-ES, does not make use of a
population. A single individual is used from which one offspring is produced through
application of a mutation operator. The (1 + 1)-ES is one of the first evolutionary
algorithms that represents an individual as a tuple to consist of the decision vector, x,
to be optimized and a vector of strategy parameters, . The strategy parameter vector
represents the mutational step size for each dimension, which is adapted dynamically
according to performance.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

213

214 12. Evolution Strategies

The individual is represented as the tuple,

x(t) = (x(t),0(t)) (12.1)

According to the biological observation that offspring are similar to their parents,
and that smaller deviations from the parent occur more often than larger ones, the
offspring, ,))

x (t) = (x (t),0 (1)) (12.2)

is created (very similar to the CEP in Chapter 11) by adding Gaussian noise as follows:

z;(t) = x;(t) + N;(0,04(t))
= ZEj(t)—FO'j(t)Nj(O,l) (123)

Strategy parameters are adapted based on the 1/5 success rule proposed by Rechen-
berg: Increase deviations, o, if the relative frequency of successful mutations over
a certain period is larger than 1/5; otherwise, deviations are decreased. Schwefel
[769, 770] proposed that, after t > 10n,, if ¢ mod n, = 0, the number of successful
mutations, n,,, that have occurred during steps t — 10n, to t — 1 is calculated. The
deviations are then updated using,

aoi(t) i ng, < 2ng
o;(t)=1q oj(t)/a if ny >2n, (12.4)
o;(t) if gy, = 2n,

where o = 0.85. A successful mutation produces an offspring with a fitness that is
better than the fitness of the parent.

Note that the original (1+1)-ES as proposed by Rechenburg did not adapt deviations.
Variations have also been proposed where 0;(t) =0, j=1,...,n,.

The selection operator selects the best between the parent and the offspring. That is,
assuming minimization,

X(t + 1) — { X/(t) if f(xl(t)) < f(X(t)) (12'5)

x(t) otherwise

and
e () DO

Rechenberg [709] suggested that the (1 + 1)-ES can be extended to a multimembered
ES, denoted as the (u + 1)-ES. This strategy uses a population of g > 1 parents.
Two parents are randomly selected and recombined by discrete, multipoint crossover
to produce one offspring. If x;(¢) and x5(¢) denote the two parents, then

’ o $1j(t) lf T‘j S 05
z;(t) = { T2;(t) otherwise (12.7)

12.2 Generic Evolution Strategy Algorithm 215

and

] _ Ulj(t) if Tj S 0.5
o;(t) = { 02;(t) otherwise (12.8)

where r; ~ U(0,1),7 =1,...,ny.
The offspring is mutated as for (1 + 1)-ES. An elitist approach is followed to select

the new population: the best p individuals out of the p + 1 (parents and offspring)
survive to the next generation.

Due to problems with self-adaptation of step sizes, (1 + 1)-ES (also referred to as the
steady-state ES) have not been regularly used.

12.2 Generic Evolution Strategy Algorithm

A generic framework for the implementation of an ES is given in Algorithm 12.1.
Parameters p and A respectively indicate the number of parents and the number of
offspring.

Algorithm 12.1 Evolution Strategy Algorithm

Set the generation counter, t = 0;
Initialize the strategy parameters;
Create and initialize the population, C(0), of p individuals;
for each individual, x;(t) € C(t) do
Evaluate the fitness, f(x;(t));
end
while stopping condition(s) not true do
fori=1,...,)do
Choose p > 2 parents at random;
Create offspring through application of crossover operator on parent
genotypes and strategy parameters;
Mutate offspring strategy parameters and genotype;
Evaluate the fitness of the offspring;
end
Select the new population, C(t 4 1);
t=t+1;
end

As summarized in Algorithm 12.1, an ES uses the following main components:

e Initialization: For each individual, its genotype is initialized to fall within the
problem boundary constraints. The strategy parameters are also initialized.

e Recombination: Offspring are produced through application of a crossover
operator on two or more parents. ES crossover operators are discussed in Sec-
tion 12.4.2.

216 12. Evolution Strategies

e Mutation: Offspring are mutated, where mutational step sizes are determined
from self-adaptive strategy parameters. Mutation operators for ES are discussed
in Section 12.4.3.

e Evaluation: An absolute fitness function is used to determine the quality of
the solution represented by the genotype of the individual.

e Selection: Selection operators are used for two purposes in an ES. Firstly, to
select parents for recombination, and secondly, to determine which individu-
als survive to the next generation. Selection methods for ES are discussed in
Section 12.4.1.

Any of the stopping conditions discussed in Section 8.7 can be used to terminate
execution of an ES.

12.3 Strategy Parameters and Self-Adaptation

As with EP, strategy parameters are associated with each individual. These strategy
parameters are self-adapted in order to determine the best search direction and maxi-
mum step size per dimension. In essence, the strategy parameters define the mutation
distribution from which mutational step sizes are sampled. The main goal of a self-
adaptation strategy is to refine the mutation distribution such that maximal search
progress is maintained. This section discusses strategy parameters and self-adaptation
in relation to ES. Since much of what has been discussed about self-adaptation in EP

(refer to Chapter 11) is also applicable to ES, this section emphasizes aspects related
to ES.

Section 12.3.1 discusses different types of strategy parameters, while variations in
which these parameters can be used are described in Section 12.3.2. Different self-
adaptation strategies proposed in ES literature is overviewed in Section 12.3.3.

12.3.1 Strategy Parameter Types

First implementations of ES used one type of strategy parameter, i.e. the deviation of
the Gaussian distributed noise used by the mutation operator [708, 709, 769]. In this
case, individuals are represented as

xi(t) = (xi(t), oi(t)) (12.9)

where x; € R™ represents the genotype (i.e. the vector of decision variables), and
o; represents the deviation strategy parameter vector. Usually, o; € R’*. However,
ES have been tested using one deviation for all components of the genotype, i.e.
oij =04, j =1,...,n, in which case o; € Ry [42, 39].

Using more strategy parameters provide more degrees of freedom to individuals to fine
tune their mutation distribution in all dimensions (refer to Section 12.3.2 for visual
illustrations of this point).

12.3 Strategy Parameters and Self-Adaptation 217

If deviations are used as the only strategy parameters, best search directions are
determined along the axes of the coordinate system in which the search space resides.
It is not always the case that the best search direction (i.e. the gradient) is aligned with
the axes. In such cases, the search trajectory have been shown to fluctuate along the
gradient, decreasing the rate of progress toward the optimum [43]. More information
about the search is needed to speed up convergence for such cases. More information
about the fitness function, which defines the search space, can be obtained by the
Hessian matrix of the fitness function. If the Hessian is used as strategy parameter,
mutations are done as follows:

’

x;(t) = x;(t) + N(O,H ™) (12.10)
where H is the Hessian matrix.

It is, however, not feasible to use the Hessian matrix. Fitness (objective) functions
are not always guaranteed to have a second-order derivative. Even if a second-order
derivative does exist, it is computationally expensive to calculate the Hessian.

Schwefel [769] proposed that the covariance matrix, C~!, described by the deviation
strategy parameters of the individual, be used as additional information to determine
optimal step sizes and directions. In this case,

x,(t) = x;(t) + N(0,C) (12.11)

where N (0, C) refers to a normally distributed random vector r with expectation zero
and probability density [43],

det C 6_%1,7"01,
(2m)z

x

falr) = (12.12)

The diagonal elements of C~! are the variances, 012», while the off-diagonal elements
are the covariances of the mutational step sizes.

Covariances are given by rotation angles which describe the rotations that need to
be done to transform an uncorrelated mutation vector to a correlated vector. If w;(t)
denotes the vector of rotational angles for individual ¢, then individuals are represented
as the triplet,

Xi(t) = (xi(t), 03(t), wi(t)) (12.13)

where x;(t) € R™,04(t) € R, wi(t) € R==1/2 and wy(t) € (0,2n],k =
1, .. ng(ng —1)/2.

The rotational angles are used to represent the covariances among the n, genetic
variables in the genetic vector x;. Because the covariance matrix is symmetric, a vector
can be used to represent the rotational angles instead of a matrix. The rotational
angles are used to calculate an orthogonal rotation matrix, 7'(w;), as

Ng—1 ng

Tw) =[] JI R (12.14)

=1 j=itl

218 12. Evolution Strategies

which is the product of n,(n, —1)/2 rotation matrices. Each rotation matrix Ry;(w;)
is a unit matrix with ry = cos(w;x) and r;; = —rj = —sin(wix), with k =1 & (I =
1,j=2),k=2< (I =1,7 = 3),---. The rotational matrix is used by the mutation
operator as described in Section 12.4.3.

12.3.2 Strategy Parameter Variants

As discussed in Section 12.3.1, the two types of strategy parameters that have been
used are the standard deviation of mutational step sizes, and rotational angles that
represent covariances of mutational step sizes. These strategy parameters have resulted
in a number of self-adaptation variants [39, 364]. For the discussion below, let n,
denote the number of deivation parameters used, and n, the number of rotational
angles. The following cases have been used:

e n, = 1,n, =0, i.e. only one deviation parameter is used (0; = o € Ry, j =
1,...,ny) for all components of the genotype, and no rotational angles. The
mutation distribution has a circular shape as illustrated in Figure 12.1(a). The
middle of the circle indicates the position of the parent, x;, while the boundary
indicates the deviation in step sizes. Keep in mind that this distribution indicates
the probability of the position of the offspring, x;, with the highest probability
at the center.

The strategy parameter is adjusted as follows:

o, (t) = oy (t)e™ O (12.15)
where 7 = \/+Tz
While adjustment of the single parameter is computationally fast, the approach
is not flexible when the coordinates have different gradients.

e n, = ng,n, = 0, in which each component has its own deviation parameter.
The mutation distribution has an elliptic shape as illustrated in Figure 12.1(b),
where 01 < 0. In this case the increased number of parameters causes a linear
increase in computational complexity, but the added degrees of freedom provide
for better flexibility. Different gradients along the coordinate axes can now be
taken into consideration.

Strategy parameters are updated as follows:

0;(t) = oy (t)e” NODFTN; 0D (12.16)

1 .

2y

e Ny = Ngyyn, = Ngy(ny — 1)/2, where in addition to the deviations, rotational
angles are used. The elliptical mutation distribution is rotated with respect to
the coordinate axes as illustrated in Figure 12.1(c). Such rotations allow better
approximation of the contours of the search space.

’
_ 1 _
where 7 = NG and 7 =

Deviation parameters are updated using equation (12.16), while rotational angles
are updated using,

wii (t) = wik (t) + vN;(0,1) mod 27 (12.17)

12.3 Strategy Parameters and Self-Adaptation 219

&y Ty

[}

T T
X 1 o 1

(a) ne =1, n, =0 (b) no =ng, nw =0

T

I

01

(¢) N = na, Nw = ng(ng —1)/2
Figure 12.1 Ilustration of Mutation Distributions for ES

where v ~ 0.0873 [39].

Adding the rotational angles improves flexibility, but at the cost of a quadratic
increase in computational complexity.

e 1 < ny, < ng: This approach allows for different degrees of freedom. For all
Jj > ns, deviation o, is used.
12.3.3 Self-Adaptation Strategies

The most frequently used approach to self-adapt strategy parameters is the lognor-
mal self-adaptation mechanism used above in Section 12.3.2. Additive methods as

220 12. Evolution Strategies

discussed in Section 11.3.3 for EP can also be used.

Lee et al. [507] and Miiller et al. [614] proposed that reinforcement learning be used
to adapt strategy parameters, as follows:

(1) = 015 (£)e® I NOD+7N; O1) (12.18)

where O,(t) is the sum of temporal rewards over the last ng generations for individual
7, 1.e.
1 &> /
Oi(t)=— Y 0i(t—t) (12.19)

t'=0

Different methods can be used to calculate the reward for each individual at each time
step. Lee et al. [507] proposed that

0.5 if Af(xi(t)) >0
0,;(t) =4 0 if Af(xi(t)) =0 (12.20)
1 Af(xi(t)) <0

where deterioration in fitness is heavily penalized. In equation (12.20),

Af(xi(t) = f(xi(t) — f(xi(t — 1)) (12.21)

Miiller et al. [614] suggested a reward of +1,0 or —1 depending on performance.
Alternatively, they suggested that

o 0,;(t) = f(x;(t)) — f(xi(t — At)), with 0 < At < ¢. This approach bases rewards
on changes in phenotypic behavior, as quantified by the fitness function. The
more an individual improves its current fitness, the greater the reward. On
the other hand the worse the fitness of the individual becomes, the greater the
penalty for that individual.

o 0,;(t) = sign(f(xi(t)) — f(xi(t — At))). This scheme results in +1,0, —1 rewards.

o 0,;(t) = ||xi(t) — x;(t — At)||sign(f(x:(t)) — f(xi(t — At))). Here the reward (or
punishment) is proportional to the step size in decision (genotypic) space.

Ostermeier and Hansen [645] considered a self-adaptation scheme where n, = 1 and
where a covariance matrix is used. In this scheme, the deviation of an offspring is
calculated as a function of the deviations of those parents from which the offspring
has been derived. For each offspring, x;(t),l =1,...,\

o,(t) = I o)] et (12.22)

e (t)

where €(t) is the index set of the p parents of offspring x;(t), and the distribution of
¢ is such that prob(§ = 0.4) = prob({ = —0.4) = 0.5. Section 12.4.3 shows how this
self-adaptation scheme is used in a coordinate system independent mutation operator.

12.4 Evolution Strategy Operators 221

Kursawe [492] used a self-adaptation scheme where 1 < n, < n,, and each individual
uses a different number of deviation parameters, n,,(t). At each generation, t, the
number of deviation parameters can be increased or decreased at a probability of 0.05.
If the number of deviation parameters increases, i.e. ng,(t) = ngy, (t —1), then the new
deviation parameter is initialized as

Neg i(t*l)
1 ,
Ting.i(t)(t) = e Z oix(t) (12.23)
a5t k=1

12.4 Evolution Strategy Operators

Evolution strategies use the three main operators of EC, namely selection, crossover,
and mutation. These operators are discussed in Sections 12.4.1, 12.4.2, and 12.4.3
respectively.

12.4.1 Selection Operators

Selection is used for two tasks in an ES: (1) to select parents that will take part in
the recombination process and (2) to select the new population. For selecting the p
parents for the crossover operator, any of the selection methods reviewed in Section 8.5
can be used. Usually, parents are randomly selected.

For each generation, \ offspring are generated from p parents and mutated. After
crossover and mutation, the individuals for the next generation are selected. Two
main strategies have been developed:

e (u+ A) — ES: In this case (also referred to as the plus strategies) the ES
generates A offspring from p parents, with 1 < p < A < co. The next generation
consists of the p best individuals selected from p parents and A offspring. The
(u+X)—ES strategy implements elitism to ensure that the fittest parents survive
to the next generation.

o (1, A) — ES: In this case (also referred to as the comma strategies), the next
generation consists of the p best individuals selected from the A offspring. Elitism
is not used, and therefore this approach exhibits a lower selective pressure than
the plus strategies. Diversity is therefore larger than for the plus strategies, which
results in better exploration. The (u, A\) — ES requires that 1 < pu < A\ < oo.

Using the above notation, ES are collectively referred to as (u T A)-ES. The (u+)
notation has been extended to (u,k,A), where x denotes the maximum lifespan of
an individual. If an individual exceeds its lifespan, it is not selected for the next
population. Note that (u, A)-ES is equivalent to (u, 1, A)-ES.

The best selection strategy to use depends on the problem being solved. Highly convo-
luted search spaces need more exploration, for which the (u, A)-ES are more applicable.

222 12. Evolution Strategies

Because information about the characteristics of the search space is usually not avail-
able, it is not possible to say which selection scheme will be more appropriate for an
arbitrary function. For this reason, Huang and Chen [392] developed a fuzzy con-
troller to decide on the number of parents that may survive to the next generation.
The fuzzy controller receives population diversity measures as input, and attempts to
balance exploration against exploitation.

Runarsson and Yao [746] developed a continuous selection method for ES; which is
essentially a continuous version of (u, A)-ES. The basis of this selection method is that
the population changes continuously, and not discretely after each generation. There
is no selection of a new population at discrete generational intervals. Selection is only
used to select parents for recombination, based on a fitness ranking of individuals. As
soon as a new offspring is created, it is inserted in the population and the ranking is
immediately updated. The consequence is that, at each creation of an offspring, the
worst individual among the p parents and offspring is eliminated.

12.4.2 Crossover Operators

In order to introduce recombination in ES, Rechenberg [709] proposed that the (1+1)-
ES be extended to a (u + 1)-ES (refer to Section 12.1). The (u + 1)-ES is therefore
the first ES that utilized a crossover operator. In ES, crossover is applied to both
the genotype (vector of decision variables) and the strategy parameters. Crossover is
implemented somewhat differently from other EAs.

Crossover operators differ in the number of parents used to produce a single offspring
and in the way that the genetic material and strategy parameters of the parents are
combined to form the offspring. In general, the notation (11/p, T A) is used to indicate
that p parents are used per application of the crossover operator. Based on the value
of p, the following two approaches can be found:

e Local crossover (p = 2), where one offspring is generated from two randomly
selected parents.

e Global crossover (2 < p < p), where more than two randomly selected parents
are used to produce one offspring. The larger the value of p, the more diverse
the generated offspring is compared to smaller p values. Global crossover with
large p improves the exploration ability of the ES.

In both local and global crossover, recombination is done in one of two ways:

e Discrete recombination, where the actual allele of parents are used to con-
struct the offspring. For each component of the genotype or strategy parameter
vectors, the corresponding component of a randomly selected parent is used.
The notation (u/pp T A) is used to denote discrete recombination.

e Intermediate recombination, where allele for the offspring is a weighted
average of the allele of the parents (remember that floating-point representations
are assumed for the genotype). The notation (u/pr T A) is used to denote
intermediate recombination.

12.4 Evolution Strategy Operators 223

Based on the above, five main types of recombination have been identified for ES:
e No recombination: If x;(t) is the parent, the offspring is simply x;(t) = x:(¢).
e Local, discrete recombination, where

- o xag(t) £ U;(0,1) 0.5
Xl]u) B { Xi,j(t) otherwise (12.24)

The offspring, x;(t) = (X;(¢),5:(t), & (t)) inherits from both parents, y;, (t) =
(xi, (£), 04, (1), w1 (1)) and xi, (£) = (i, (), 04, (), wi, (1))
e Local, intermediate recombination, where

[i‘lj(t) = ’I"l‘ilj(t) + (1 — T’)Z‘izj(t), Vi=1,...,n, (1225)
and

5'lj(t) = ’I"O’ilj(t) +(1- T‘)O‘izj(t), Vi=1,...,n; (12.26)
with r ~ U(0,1). If rotational angles are used, then

wik(t) = rwi, k(t) + (1 = r)oi,k(t)] mod 2m, VE =1,...,ny(n, — 1) (12.27)

e Global, discrete recombination, where

X (t) i U;(0,1) <0.5
X (t) = { Xr;j(t) otherwise (12.28)

with r; ~ €; € is the set of indices of the p parents selected for crossover.

e Global, intermediate recombination, which is similar to the local recombi-
nation above, except that the index ¢ is replaced with r; ~ €;. Alternatively,
the average of the parents can be calculated to form the offspring [62],

(sz Zal(t), Zwi(t)> (12.29)

Izumi et. al. [409] proposed an arithmetic recombination between the best individual
and the average over all the parents:

p

Bt =ry(t) + (1-1)= 3 xi(t) (12.30)

p i€Qy

where y(t) is the best individual of the current generation. The same can be applied to
the strategy parameters. This strategy ensures that offspring are located around the
best individual. However, care must be taken as this operator may cause premature
stagnation, especially for large r.

224 12. Evolution Strategies

12.4.3 Mutation Operators

Offspring produced by the crossover operator are all mutated with probability one.
The mutation operator executes two steps for each offspring:

e The first step self-adapts strategy parameters as discussed in Sections 12.3.2 and
12.3.3.

e The second step mutates the offspring, x;, to produce a mutated offspring, sz
as follows)

x;(t) = Z(t) + Axy(¢) (12.31)

The A mutated offspring, XZ(t) = (x;(t),&l(t),djl(t)) take part in the selection

process, together with the parents depending on whether a (1 + A)-ES or a
(1, A)-ES is used.

This section considers only mutation of the genotype, as mutation (self-adaptation) of
the strategy parameters has been discussed in previous sections.

If only deviations are used as strategy parameters, the genotype, X;(t), of each off-
spring, x;(t),l =1,..., A, is mutated as follows:

o If n, =1, Azy(t) = oy(t)N;(0,1),Vj =1,...,ng.
o If n, =n,, Axy(t) = 05;(t)N;(0,1),V5 =1,...,n,

o If 1 < n, < ng, Al‘lj(t) = o,;(t)N;(0,1),Vj = 1,...,n, and Ax;(t) =
Opn, (H)N;(0,1),Y] =ns +1,...,n,

If deviations and rotational angles are used, assuming that n, = n,, then
Ax(t) = T (& (t))S(6:(¢))N(0,1) (12.32)

where T'(&;(t)) is the orthogonal rotation matrix,

Ng—1 ng

T@®) =[] [Ra(@(®) (12.33)

a=1 b=a+1

which is a product of n,(n, —1)/2 rotation matrices. Each rotation matrix, Ra,(@i(t)),
is a unit matrix with each element defined as follows: r = cos(@x) and r4p = —7Tpg =
—sin(@), fork=1,...,nz(n,—1)/2andk=1< (a=1,b=2),k=2< (a=1,b=
3),.... S(a,(t)) = diag(671(t), Fi2(t), - . ., Gin, (t)) is the diagonal matrix representation
of deviations.

Based on similar reasoning as for EP (refer to Section 11.2.1), Yao and Liu [935]
replaced the Gaussian distribution with a Cauchy distribution to produce the fast ES.
Huband et al. [395] developed a probabilistic mutation as used in GAs and GP, where
each component of the genotype is mutated at a given probability. It is proposed that
the probability of mutation be 1/n,. This approach imposes a smoothing effect on
search trajectories.

Hildebrand et al. [364] proposed a directed mutation, where preference can be given
to specific coordinate directions. As illustrated in Figure 12.2; the directed mutation

12.4 Evolution Strategy Operators 225

X

o1

Figure 12.2 Directed Mutation Operator for ES

results in an asymmetrical mutation probability distribution. Here the step size is
larger for the x5 axis than for the x; axis, and positive directions are preferred. As
each component of the genotype is mutated independently, it is sufficient to define a
1-dimensional asymmetrical probability density function. Hildebrand et al. proposed
the function,

2 _z? .
7\/5(1—#@)(6 v) ifx <0
fp(z) = 2

)) a0 (12.34)
Vro(l+vite) \ € wxr =z

where ¢ > 0 is the positive directional value.

The directional mutation method uses only deviations as strategy parameters, but as-
sociates a directional value, c;, with each deviation, ;. Both o and c are self-adapted,
giving a total of 2n, strategy parameters. This is computationally more efficient than
using a ng(n, — 1)/2-sized rotational vector, and provides more information about
preferred search directions and step sizes than deviations alone.

If D(c, o) denotes the asymmetric distribution, then Ax;;(t) = D;(c;;(¢), 045(%)).

Ostermeier and Hansen [645] developed a coordinate system invariant mutation oper-
ator, with self-adaptation as discussed in Section 12.3.3. Genotypes are mutated using
both deviations and correlations, as follows:

x;(t)zl > xit) + 6N (0, Ci(t)) (12.35)

i€ (t)

226 12. Evolution Strategies

where .
Cilt) = > &r(t)&h (1) (12.36)
k=1
with & (t) ~ N(O, % > icaur) Ci(t)) and np, is the mutation strength. For large values
of n,,, the mutation strength is small, because a large sample, &1, &, ..., &,,,, provides

a closer approximation to the original distribution than a smaller sample. Ostermeier
and Hansen suggested that n,, = n,.

12.5 Evolution Strategy Variants

Previous sections have already discussed a number of different self-adaptation and
mutation strategies for ES. This section describes a few ES implementations that
differ somewhat from the generic ES algorithm summarized in Algorithm 12.1.

12.5.1 Polar Evolution Strategies

Bian et al. [66], and Sierra and Echeverria [788] independently proposed that the
components of genotype be transformed to polar coordinates. Instead of the original
genotype, the “polar genotypes”are evolved.

For an n,-dimensional Cartesian coordinate, the corresponding polar coordinate is
given as

(r,0n,—2,...,01,9) (12.37)
where 0 < ¢ <27, 0< 0, <mforg=1,...,n, —2, and r > 0. Each individual is
therefore represented as

xi(t) = (x7(t), 0i(t)) (12.38)
where ,x? = (r,0n,; —2,...,01,¢). Polar coordinates are transformed back to Carte-
sian coordinates as follows:

x1 = rcos¢sinbsinbs...sinb, _o
2o = rsingsinf;sinby...sinf,, o
x3 = rcosfisinfy...sinf,, _o
(12.39)
x; = rcosf_osinf;_q...sin0,, o
Tp = 1080, 9

The mutation operator uses deviations to adjust the ¢ and 0, angles:

’

o (d1(t) + G4, (t)N(0,1)) mod 27 (12.40)
O10(t) = 7 — (O1q(t) + 5oy, (t)N4(0,1)) mod (12.41)

12.5 Evolution Strategy Variants 227

Algorithm 12.2 Polar Evolution Strategy

Set the generation counter, t = 0;
Initialize the strategy parameters, 04,00,4,¢ =1,...,n; — 2;
Create and initialize the population, C(0), as follows:;
fori=1,...,u do
r=1;
$i(0) ~ U(0,2m);
0iq(0) ~U(0,7),Vg=1,.
x}(0) = (r,0;(0), $:(0));
xi(0) = (x7(0), 0:(0));
end
for each individual, x;(0) € C(0) do
Transform polar coordinate x¥(0) to Cartesian coordinate nx;(0);
Evaluate the fitness, f(x;(0));
end
while stopping condition(s) not true do
for [=1,...,)\, generate offspring do
Randomly choose two parents;
Create offspring, ¥;(¢), using local, discrete recombination;
Mutate)Zl(t) to produce x;(t);
Transform x7 (¢) back to Cartesian x;(t);
Evaluate the fitness, f(x;(t));

p

end

Select p individuals from the A offspring to form C(t + 1);

t=t+1;
end
where ¢;(t) and qu(t) 1,...,n, — 2 refer to the components of the off-
spring, Y;(t),l = 1,..)\ produced by the crossover operator, and &,(t) =

y .
(Gpu(t),00,1(t),00 lg(t), -109,1(ny—2)(t)), is its strategy parameter vector. Note that
r =1 is not mutated.

The polar ES as used in [788] is summarized in Algorithm 12.2.

12.5.2 Evolution Strategies with Directed Variation

A direction-based mutation operator has been discussed in Section 12.4.3. Zhou and
Li [960] proposed a different approach to bias certain directions within the mutation
operator, and presented two alternative implementations to utilize directional varia-
tion.

The approach is based on intervals defined over the range of each decision variable,
and interval fitnesses. For each component of each genotype, the direction of mutation
is towards a neighboring interval with highest interval fitness. Assume that the j-th
component is bounded by the range [ach-nJ7 mmam’j]. This interval is divided into ny

228 12. Evolution Strategies

subintervals of equal length, where the s-th interval is computed as

Lo = |wmins + (s — 1) (M) Ting + 8 (M)} (12.42)
nr nr
The fitness of interval I;, is defined by

m

fLjs) = Z Fr(as(t) € 1is) f(xi(t)) (12.43)
where "
Fr(es(t) € I,) = { oo ijgg o (12.44)

and f(x;(t)) is the normalized fitness of x;(t),

(12.45)

The minimum and maximum fitness of the current population is indicated by fpin ()
and fiaz(t) respectively.

Directed variation is applied to each component of each individual as follows. For
component z;;(t), the direction of mutation is determined by f(I;s), f(Ijs—1) and
f(lj7s+1)a where .Z‘»Lj(t) S Ijs- If f(I]S) > f(lj7s—l) and f(I]S) > f(Ij,s+l)7 no directed
variation will be applied. If f(I; s—1) > f(I;s) > f(I;s+1), then z;;(t) moves toward

subinterval /; ;1 with probability 1— f(f I(JIJ =)1) . The move is implemented by replacing

x;;(t) with a random number uniformly distributed between ;;(t) and the middle-
point of the interval I ;_1. A similar approach is followed when f(I; 1) < f(I;s) <
fLs41)- I f(Is) < f(Ijs—1) and f(Ijs) < f(Ij,s+1), then z;;(t) moves toward any
of its neighboring intervals with equal probability.

For the above, f(Ij0) = f(Ijn,+1) = 0.

Two approaches have been proposed to apply directed variation. For the first, directed
variation is applied, after selection, to the y members of the new population. For the
second strategy, each parent produces one offspring using directed variation. Crossover
is then applied as usual to create the remaining A — u offspring. The selection operator
is applied to the p parents, the p offspring produced by directed variation, and the
A — p offspring produced by crossover.

12.5.3 Incremental Evolution Strategies

Incremental ES search for an optimal solution by dividing the search process into n,
phases — one phase for each decision variable [597]. Each phase consists of two steps.
The first step applies a single variable evolution on the one decision variable, while the
second step applies a multi-variable evolution after the first phase. For phase numbers
less than n,, a context vector is needed to evaluate the fitness of the partially evolved
individual (similar to the CCGA and CPSO discussed in Sections 15.3 and 16.5.4).

12.6 Advanced Topics 229

12.5.4 Surrogate Evolution Strategy

Surrogate methods have been developed specifically for problems where the fitness
function is computationally expensive to evaluate. The fitness function is approx-
imated by a set of basis functions, called surrogates. Evaluation of the surrogate
model is computationally less expensive than the original function. The reader is
referred to [860] for more detail on surrogate models for ES.

12.6 Advanced Topics

This section shows how ES can be used to solve constrained problems (Section 12.6.1),
multi-objective optimization problems (Section 12.6.2), problems with dynamically
changing optima (Section 12.6.3), and to locate multiple optima (Section 12.6.4).

12.6.1 Constraint Handling Approaches

While a number of ES variations have been developed to cope with constraints, this
section discusses only some of these approaches.

Tahk and Sun [830] converted the constrained problem to an unconstrained problem
using the augmented Lagrangian approach given in Section A.6.2. A coevolutionary
approach is used to find the saddle point, (x*, Ags A}), of the Lagrangian given in equa-
tion (A.27). Two populations are used, each with different objectives, both evolved in
parallel. Assuming a minimization problem, the one population minimizes the fitness
function,

f(x) = max L(x, Ay, An) (12.46)

)\gv)\h

where L(x, Ay, A\) is defined in equation (A.27). The second population maximizes
the fitness function,
f(Ags An) = min L(x, Ag, Ap) (12.47)

Both populations use an ES as search algorithm.

Kramer et al. [488] developed a biased mutation operator to lead the search to more
promising, feasible areas. The mean of the Gaussian distribution, from which muta-
tional step sizes are sampled, is biased to shift the center of the mutation distribution
as illustrated in Figure 12.3.

Let &(t) = (&1(2), ..., &mn, (t)) be the bias coefficient vector, with &;;(0) ~ U(—1,1),
for all j = 1,...,n,. The bias vector, §;(t), is then defined as (§;;(t) = o4;(t)&;(¢).
Mutational step sizes are calculated as

Awj(t) = 03 (O)N;(0,1) + Bi; (t) = N;j (&;5(t), 03 (1)) (12.48)
Bias coefficients are self-adapted using

€;(t) = &;(t) + aN(0,1) (12.49)

230 12. Evolution Strategies

T

%)

X

Figure 12.3 Biased Mutation for Evolution Strategies

with o = 0.1 (suggested in [488]).

A very simple approach to handle constraints is to change the selection operator to
select the next population as follows: Until u individuals have been selected,
e First select the best feasible individuals.

e If all feasible solutions have been selected, select those that violate the fewest
constraints.

e As last resort, when individuals are infeasible, and they violate the same number
of constraints, select the most fit individuals.

When a selection operator is applied to select one of two individuals, the following
rules can be applied:

e If both are feasible, select the one with the best fitness.
e If one is feasible, and the other infeasible, select the feasible solution.

e If both are infeasible, select the one that violates the fewest constraints. If
constraint violation is the same, select the most fit individual.

12.6.2 Multi-Objective Optimization

One of the first, simple ES for solving multi-objective (MOO) problems was devel-
oped by Knowles and Corne [469]. The Pareto archived evolution strategy (PAES)

12.6 Advanced Topics 231

consists of three parts: (1) a candidate solution generator, (2) the candidate solution
acceptance function, and (3) the nondominated-solutions archive.

The candidate solution generator is an (1 + 1)-ES, where the individual that survives
to the next generation is based on dominance. If the parent dominates the offspring,
the latter is rejected, and the parent survives. If the offspring dominates the parent,
the offspring survives to the next generation. If neither the parent nor the offspring is
dominating, the offspring is compared with the nondominated solutions in the archive,
as summarized in Algorithm 12.4.

The archive maintains a set of nondominated solutions to the MOO. The size of the
archive is restricted. When an offspring dominates the current solutions in the archive,
it is included in the archive. When the offspring is dominated by any of the solutions
in the archive, the offspring is not included in the archive. When the offspring and
the solutions in the archive are nondominating, the offspring is accepted and included
in the archive based on the degree of crowding in the corresponding area of objective
space.

To keep track of crowding, a grid is defined over objective space, and for each cell of the
grid a counter is maintained to keep track of the number of nondominated solutions
for that part of the Pareto front. When an offspring is accepted into the archive, and
the archive has reached its capacity, the offspring replaces one of the solutions in the
highest populated grid cell (provided that the grid cell corresponding to the offspring
has a lower frequency count). When the parent and its offspring are nondominating,
the one with the lower frequency count is accepted in the archive.

The PAES is summarized in Algorithm 12.3.

Costa and Oliveira [159] developed a different approach to ensure that nondominated
solutions survive to next generations, and to produce diverse solutions with respect to
objective space. Fitnesses of individuals are based on a Pareto ranking, where individ-
uals are grouped into a number of Pareto fronts. An individual’s fitness is determined
based on the Pareto front in which the individual resides. At each generation, the
Pareto ranking process proceeds as follows. All of the nondominated solutions from
the X offspring, or u + A parents and offspring, form the first Pareto front. These
individuals are then removed, and the nondominating solutions from the remainder of
the individuals form the second Pareto front. This process of forming Pareto fronts
continues until all A (or u 4+ A) individuals are assigned to a Pareto front. Individuals
of the first Pareto front is assigned a fitness of 1/n., where n,. is the niche count. The
niche count is the number of individuals in this front that lies within a distance of
Oshare from the individual (distance is measured with respect to objective space). The
threshold, ospare, is referred to as the niche radius. Individuals of the next Pareto
front is assigned a fitness of (1+ fuyorst)/Me, Where fuorst is the worst fitness from the
previous front. This process of fitness assignment continues until all individuals have
been assigned a fitness.

The fitness sharing approach described above promotes diversity of nondominated
solutions. The process of creating Pareto fronts ensures that dominated individuals are
excluded from future generations as follows: Depending on the ES used, p individuals

232 12. Evolution Strategies

Algorithm 12.3 Pareto Archived Evolution Strategy

Set generation counter;
Generate a random parent solution;
Evaluate the parent;
Add the parent to the archive;
while stopping condition(s) not true do
Create offspring through mutation;
Evaluate offspring;
if offspring is not dominated by parent then
Compare offspring with solutions in the archive;
Update the archive using Algorithm 12.4;
if offspring dominated parent then
Offspring survives to new generation to become the parent;
end
else
//nondominating case
Select the individual that maps to the grid cell with lowest frequency
count;

end
end
end

Algorithm 12.4 Archive Update Algorithm used by PAES

Input: A candidate solution and an archive of nondominated solutions;
Output: An updated archive;
if candidate is dominated by any member of the archive then
Reject the candidate;
end
else
if candidate dominates any solutions in the archive then
Remove all dominated members from the archive;
Add candidate to the archive;
end
else
if archive is full then
if candidate will increase diversity in the archive then
Remove the solution with the highest frequency from the archive;
end
Add candidate to the archive;

end
end
end

12.6 Advanced Topics 233

are selected from A\ or p + A individuals to form the new population. Individuals are
sorted according to their fitness values in ascending order. If the number of individuals
in the first front is greater than p, the next population is selected from the first front
individuals using tournament selection. Otherwise the best p individuals are selected.
An archive of fixed size is maintained to contain a set of nondominated solutions, or
elite. A specified number of these solutions are randomly selected and included in the
next population.

At each generation, each Pareto optimal solution of the current population is tested
for inclusion in the archive. The candidate solution is included if

e all solutions in the archive are different from the candidate solution, thereby
further promoting diversity,

e none of the solutions in the archive dominates the candidate solution, and

e the distance between the candidate and any of the solutions in the archive is
larger than a defined threshold.

Other ES approaches to solve MOPs can be found in [395, 464, 613, 637].

12.6.3 Dynamic and Noisy Environments

Beyer [61, 62, 63, 64] provided the first theoretical analyses of ES. In [61] Beyer made
one of the first statements claiming that ES are robust against disturbances of the
search landscape. Béck and Hammel [42] provided some of the first empirical results
to show that low levels of noise in the objective function do not have an influence on
performance. Under higher noise levels, they recommended that the (i, A\)-ES, with
i > 1 be used, due to its ability to maintain diversity. In a more elaborate study,
Béck [40] reconfirmed these statements and showed that the (u, A)-ES was perfectly
capable to track dynamic optima for a number of different dynamic environments.

Markon et al. [562] showed that (u + A)-ES with threshold-selection is capable of
optimizing noisy functions. With threshold-selection an offspring is selected only if its
performance is better than its parents by a given margin.

Arnold and Beyer [32] provided a study of the performance of ES on noisy functions,
where noise is generated from a Gaussian, Cauchy, or x? distribution. Beyer [65] and
Arnold [31] showed that rescaled mutations improve the performance of ES on noisy
functions. Under rescaled mutations, mutational step sizes are multiplied by a scaling
factor (which is greater than one) to allow larger step sizes, while preventing that these
large step sizes are inherited by offspring. Instead, the smaller step sizes are inherited.

12.6.4 Niching

In order to locate multiple solutions, Aichholzer et al. [12] developed a multipopulation
ES, referred to as the 7(u/p, k, \)-ES, where 7 is the number of subpopulations and &
specifies the number of generations that each individual is allowed to survive. Given 7

234 12. Evolution Strategies

clusters, recombination proceeds as follows: One of the clusters is randomly selected,
and roulette wheel selection is used to select one of the individuals from this cluster
as one of the parents. The second parent is selected from any cluster, but such that
individuals from remote clusters are selected with a low probability. Over time, clusters
tend to form over local minima.

Shir and Béck [785] proposed a dynamic niching algorithm for ES that identifies fitness-
peaks using a peak identification algorithm. Each fitness-peak will correspond to one
of the niches. For each generation, the dynamic niche ES applies the following steps:
The mutation operator is applied to each individual. After determination of the fitness
of each individual, the dynamic peak identification algorithm is applied to identify nx
niches. Individuals are assigned to their closest niche, after which recombination is
applied within niche boundaries. If required, niches are populated with randomly
generated individuals.

If nk niches have to be formed, they are created such that their peaks are a distance
of at least +W from one another, where

Ny

1
r= 9 Z(fmax,j - l'min,j)Q (12.50)

Jj=1

Peaks are formed from the current individuals of the population, by sequentially con-
sidering each as a fitness peak. If an individual is n{;ﬁ from already defined fitness
peaks, then that individual is considered as the next peak. This process continues

until nx peaks have been found or until all individuals have been considered.

Recombination considers a uniform distribution of resources. Each peak is allowed
o= % parents, and produces A = ﬁ offspring in every generation. For each

peak, A offspring are created as follows: One of the parents is selected from the
individuals of that niche using tournament selection. The other parent, which should
differ from the first parent, is selected as the best individual of that niche. If a niche
contains only one individual, the second parent will be the best individual from another
niche. Intermediate recombination is used for the strategy parameters, and discrete
recombination for the genotypes.

The selection operator selects fi individuals for the next generation by selecting n5 of
the best A offspring, along with the best ji —n5 parents from that niche. If there are
not enough parents to make up a total of i individuals, the remainder is filled up by
generating random individuals.

New niches are generated at each generation. Repeated application of the above
process results in niches, where each niche represents a different solution.

Shir and Béck [785] expanded the approach above to a (1,\)-ES with corrrelated
mutations.

12.7 Applications of Evolution Strategies 235

Table 12.1 Applications of Evolution Strategies

| Application Class | References |
Parameter optimization | [256, 443, 548, 679]
Controller design 59, 456, 646|
Induction motor design | [464]

[

[
Neural network training | [59, 550]

[

[

[

Transformer design 952]
Computer security 52]
Power systems 204]

12.7 Applications of Evolution Strategies

The first application of ES was in experimental optimization as applied to hydrody-
namical problems [708]. Since then most new ES implementations were tested on
functional optimization problems. ES have, however, been applied to a number of
real-world problems, as summarized in Table 12.1 (note that this is not an exhaustive
list of applications).

12.8 Assignments

1. Discuss the differences and similarities between ES and EP.

2. Can an ES that utilizes strategy parameters be considered a cultural algorithm?
Motivate your answer.

3. Determine if the reward scheme as given in equation (12.20) is applicable to
minimization or maximization tasks. If it is for minimization (maximization)
show how it can be changed for maximization (minimization).

4. Identify problems with the reinforcement learning approach where the reward
is proportional to changes in phenotypic space. Do the same for the approach
where reward is proportional to step sizes in decision (genetic) space.

5. Implement an (1 + A)-ES to train a FFNN on any problem of your choice, and
compare its performance with an (u + 1)-ES, (p + A)-ES, and (u, A)-ES.

6. Evaluate the following approaches to initialize deviation strategy parameters:

(a) For all individuals, the same initial value is used for all components of the
genotype, i.e.

0'1‘47‘(0) :0'(0>, Vi = 1,...,TLS,V]':1,...,’[19J

where 0(0) = amin;—i ., {|Tmaz,j — Tmin,;|} With a =0.9.
(b) The same as above, but a = 0.1.

236 12. Evolution Strategies

(¢) For each individual, a different initial value is used, but the same for each
component of the genotype, i.e.

0:;(0) =0;(0), Vi =1,...,n,

where ¢;(0) ~ U(0, aminj—1,.._n, {|Tmaz,j — Tmin,j|}) for a =0.9 and o =
0.1.

(4) The same as above, but with o;(0) ~ [N(0,aminj1,.. {[Tmass -
Tomin ;| })] for a = 0.9 and o = 0.1.

(e) Each component of each genotype uses a different initial value, i.e.

0i;(0) ~ |N(O,ozj:1£nin {lTmaz,j —Tminj|), Vi=1,...,n,Vji=1,... 0y

for a ~ U(0,1).

7. Discuss the advantages of using a lifespan within (u, &, A)-ES compared to (u, A)-
ES.

8. True or false: (u + A)-ES implements a hill-climbing search. Motivate your
answer.

Chapter 13

Differential Evolution

Differential evolution (DE) is a stochastic, population-based search strategy developed
by Storn and Price [696, 813] in 1995. While DE shares similarities with other evolu-
tionary algorithms (EA), it differs significantly in the sense that distance and direction
information from the current population is used to guide the search process. Further-
more, the original DE strategies were developed to be applied to continuous-valued
landscapes.

This chapter provides an overview of DE, organized as follows: Section 13.1 discusses
the most basic DE strategy and illustrates the method of adaptation. Alternative DE
strategies are described in Sections 13.2 and 13.3. Section 13.4 shows how the original
DE can be applied to discrete-valued and binary-valued landscapes. A number of
advanced topics are covered in Section 13.5, including multi-objective optimization
(MOO), constraint handling, and dynamic environments. Some applications of DE
are summarized in Section 13.6.

13.1 Basic Differential Evolution

For the EAs covered in the previous chapters, variation from one generation to the next
is achieved by applying crossover and/or mutation operators. If both these operators
are used, crossover is usually applied first, after which the generated offspring are
mutated. For these algorithms, mutation step sizes are sampled from some probability
distribution function. DE differs from these evolutionary algorithms in that

e mutation is applied first to generate a trial vector, which is then used within the
crossover operator to produce one offspring, and

e mutation step sizes are not sampled from a prior known probability distribution
function.

In DE, mutation step sizes are influenced by differences between individuals of the
current population.

Section 13.1.1 discusses the concept of difference vectors, used to determine muta-
tion step sizes. The mutation, crossover, and selection operators are described in
Sections 13.1.2 to 13.1.4. Section 13.1.5 summarizes the DE algorithm, and control

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

237

238 13. Differential Evolution

parameters are discussed in Section 13.1.6. A geometric illustration of the DE variation
approach is given in Section 13.1.7.

13.1.1 Difference Vectors

The positions of individuals provide valuable information about the fitness landscape.
Provided that a good uniform random initialization method is used to construct the
initial population, the initial individuals will provide a good representation of the
entire search space, with relatively large distances between individuals. Over time,
as the search progresses, the distances between individuals become smaller, with all
individuals converging to the same solution. Keep in mind that the magnitude of the
initial distances between individuals is influenced by the size of the population. The
more individuals in a population, the smaller the magnitude of the distances.

Distances between individuals are a very good indication of the diversity of the current
population, and of the order of magnitude of the step sizes that should be taken
in order for the population to contract to one point. If there are large distances
between individuals, it stands to reason that individuals should make large step sizes
in order to explore as much of the search space as possible. On the other hand,
if the distances between individuals are small, step sizes should be small to exploit
local areas. It is this behaviour that is achieved by DE in calculating mutation step
sizes as weighted differences between randomly selected individuals. The first step of
mutation is therefore to first calculate one or more difference vectors, and then to use
these difference vectors to determine the magnitude and direction of step sizes.

Using vector differentials to achieve variation has a number of advantages. Firstly,
information about the fitness landscape, as represented by the current population, is
used to direct the search. Secondly, due to the central limit theorem [177], mutation
step sizes approaches a Gaussian (Normal) distribution, provided that the population
is sufficiently large to allow for a good number of difference vectors [811].1 The mean
of the distribution formed by the difference vectors are always zero, provided that
individuals used to calculate difference vectors are selected uniformly from the pop-
ulation [695, 164]. Under the condition that individuals are uniformly selected, this
characteristic follows from the fact that difference vectors (x;, — x;,) and (x;, — x;,)
occur with equal frequency, where x;, and x;, are two randomly selected individuals.
The zero mean of the resulting step sizes ensures that the population will not suffer
from genetic drift. It should also be noted that the deviation of this distribution is
determined by the magnitude of the difference vectors. Eventually, differentials will
become infinitesimal, resulting in very small mutations.

Section 13.2 shows that more than one differential can be used to determine the muta-
tion step size. If n, is the number of differentials used, and ny is the population size,
then the total number of differential perturbations is given by [429]

Ng |~ 2n,
(on, >2nv. O(ns™) (13.1)

1The central limit theorem states that the probability distribution governing a random variable
approaches the Normal distribution as the number of samples of that random variable tends to infinity.

13.1 Basic Differential Evolution 239

Equation (13.1) expresses the total number of directions that can be explored per
generation. To increase the exploration power of DE, the number of directions can be
increased by increasing the population size and/or the number of differentials used.

At this point it is important to emphasize that the original DE was developed for
searching through continuous-valued landscapes. The sections that follow will show
that exploration of the search space is achieved using vector algebra, applied to the
individuals of the current population.

13.1.2 Mutation

The DE mutation operator produces a trial vector for each individual of the current
population by mutating a target vector with a weighted differential. This trial vector
will then be used by the crossover operator to produce offspring. For each parent,
x;(t), generate the trial vector, u,(t), as follows: Select a target vector, x;, (), from
the population, such that ¢ # 4;. Then, randomly select two individuals, x;, and x;,,
from the population such that ¢ # i1 # ia # i3 and ia,i3 ~ U(1,n,). Using these
individuals, the trial vector is calculated by perturbing the target vector as follows:

() = x4, (£) + Bl (£) = i, (1)) (13.2)

where 8 € (0,00) is the scale factor, controlling the amplication of the differential
variation.

Different approaches can be used to select the target vector and to calculate differen-
tials as discussed in Section 13.2.

13.1.3 Crossover

The DE crossover operator implements a discrete recombination of the trial vector,
u;(t), and the parent vector, x;(t), to produce offspring, x,(¢). Crossover is imple-

mented as follows: o it
’ . Ui t i j S j
zi5(t) = { z;;(t) otherwise (13.3)

where z;;(t) refers to the j-th element of the vector x;(t), and J is the set of element
indices that will undergo perturbation (or in other words, the set of crossover points).
Different methods can be used to determine the set, J, of which the following two
approaches are the most frequently used [811, 813]:

e Binomial crossover: The crossover points are randomly selected from the set
of possible crossover points, {1,2,...,n;}, where n, is the problem dimension.
Algorithm 13.1 summarizes this process. In this algorithm, p,. is the probability
that the considered crossover point will be included. The larger the value of
pr, the more crossover points will be selected compared to a smaller value. This
means that more elements of the trial vector will be used to produce the offspring,
and less of the parent vector. Because a probabilistic decision is made as to the

240 13. Differential Evolution

inclusion of a crossover point, it may happen that no points may be selected, in
which case the offspring will simply be the original parent, x;(t). This problem
becomes more evident for low dimensional search spaces. To enforce that at least
one element of the offspring differs from the parent, the set of crossover points,
J, is initialized to include a randomly selected point, j*.

e Exponential crossover: From a randomly selected index, the exponential
crossover operator selects a sequence of adjacent crossover points, treating the
list of potential crossover points as a circular array. The pseudocode in Algo-
rithm 13.2 shows that at least one crossover point is selected, and from this
index, selects the next until U(0,1) > p, or |J| = n,.

Algorithm 13.1 Differential Evolution Binomial Crossover for Selecting Crossover
Points

Jre~ U(l,’flx);
J—TJU{i"h
for each j € {1,...,n,} do
if U(0,1) < p, and j # j* then
J <= T U{i}h
end
end

Algorithm 13.2 Differential Evolution Exponential Crossover for Selecting Crossover
Points

J —{}

j~U(0,n,; —1);

repeat
J—=Ju{j+1k

Jj=(+1) modny;
until U(0,1) > p, or |T| = ng;

13.1.4 Selection

Selection is applied to determine which individuals will take part in the mutation
operation to produce a trial vector, and to determine which of the parent or the
offspring will survive to the next generation. With reference to the mutation operator,
a number of selection methods have been used. Random selection is usually used
to select the individuals from which difference vectors are calculated. For most DE
implementations the target vector is either randomly selected or the best individual is
selected (refer to Section 13.2).

To construct the population for the next generation, deterministic selection is used:
the offspring replaces the parent if the fitness of the offspring is better than its parent;
otherwise the parent survives to the next generation. This ensures that the average
fitness of the population does not deteriorate.

13.1 Basic Differential Evolution 241

13.1.5 General Differential Evolution Algorithm

Algorithm 13.3 provides a generic implementation of the basic DE strategies. Initial-
ization of the population is done by selecting random values for the elements of each
individual from the bounds defined for the problem being solved. That is, for each
individual, x;(¢), z;;(t) ~ U(@min,j» Tmaz,j); Where Xpin and X, define the search
boundaries.

Any of the stopping conditions given in Section 8.7 can be used to terminate the
algorithm.

Algorithm 13.3 General Differential Evolution Algorithm

Set the generation counter, ¢t = 0;
Initialize the control parameters, 5 and p;;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do
for each individual, x;(t) € C(t) do
Evaluate the fitness, f(x;(t));
Create the trial vector, u,(t) by applying the mutation operator;
Create an offspring, x;(t)7 by applying the crossover operator;
if f(x;(t)) is better than f(x;(t)) then
Add x;(t) to C(t +1);
end
else
Add x;(t) to C(t + 1);
end

end
end

Return the individual with the best fitness as the solution;

13.1.6 Control Parameters

In addition to the population size, ng, the performance of DE is influenced by two
control parameters, the scale factor, 3, and the probability of recombination, p,. The
effects of these parameters are discussed below:

e Population size: As indicated in equation (13.1), the size of the population
has a direct influence on the exploration ability of DE algorithms. The more
individuals there are in the population, the more differential vectors are available,
and the more directions can be explored. However, it should be kept in mind
that the computational complexity per generation increases with the size of the
population. Empirical studies provide the guideline that ng ~ 10n,. The nature
of the mutation process does, however, provide a lower bound on the number of
individuals as ng > 2n, + 1, where n,, is the number of differentials used. For n,
differentials, 2n, different individuals are required, 2 for each differential. The

242 13. Differential Evolution

additional individual represents the target vector.

e Scaling factor: The scaling factor, § € (0, 00), controls the amplification of the
differential variations, (x;, —X;,). The smaller the value of 3, the smaller the mu-
tation step sizes, and the longer it will be for the algorithm to converge. Larger
values for [facilitate exploration, but may cause the algorithm to overshoot
good optima. The value of 3 should be small enough to allow differentials to
explore tight valleys, and large enough to maintain diversity. As the population
size increases, the scaling factor should decrease. As explained in Section 13.1.1,
the more individuals in the population, the smaller the magnitude of the dif-
ference vectors, and the closer individuals will be to one another. Therefore,
smaller step sizes can be used to explore local areas. More individuals reduce
the need for large mutation step sizes. Empirical results suggest that large val-
ues for both ng and 3 often result in premature convergence [429, 124], and that
B = 0.5 generally provides good performance [813, 164, 19].

e Recombination probability: The probability of recombination, p,, has a di-
rect influence on the diversity of DE. This parameter controls the number of
elements of the parent, x;(t), that will change. The higher the probability of
recombination, the more variation is introduced in the new population, thereby
increasing diversity and increasing exploration. Increasing p, often results in
faster convergence, while decreasing p, increases search robustness [429, 164].

Most implementations of DE strategies keep the control parameters constant. Al-
though empirical results have shown that DE convergence is relatively insensitive to
different values of these parameters, performance (in terms of accuracy, robustnes, and
speed) can be improved by finding the best values for control parameters for each new
problem. Finding optimal parameter values can be a time consuming exercise, and
for this reason, self-adaptive DE strategies have been developed. These methods are
discussed in Section 13.3.3.

13.1.7 Geometrical Illustration

Figure 13.1(a) illustrates the mutation operator of the DE as described in Sec-
tion 13.1.2. The optimum is indicated by x*, and it is assumed that 8 = 1.5. The
crossover operator is illustrated in Figure 13.1(b). For this illustration the offspring
consists of the first element of the trial vector, u;(¢), and the second element of the
parent, x;(t).

13.2 DE/xz/y/z

A number of variations to the basic DE as discussed in Section 13.1 have been devel-
oped. The different DE strategies differ in the way that the target vector is selected,
the number of difference vectors used, and the way that crossover points are deter-
mined. In order to characterize these variations, a general notation was adopted in
the DE literature, namely DE/x/y/z [811, 813]. Using this notation, x refers to the

243

13.2 DE/x/y/z

0
B (1) — ()

Tin (a) Mutation Operator

Ti1

(b) Crossover Operator

Figure 13.1 Differential Evolution Mutation and Crossover Ilustrated

244 13. Differential Evolution

method of selecting the target vector, y indicates the number of difference vectors
used, and z indicates the crossover method used. The DE strategy discussed in Sec-
tion 13.1 is referred to as DE/rand/1/bin for binomial crossover, and DE/rand/1/exp
for exponential crossover. Other basic DE strategies include [429, 811, 813]:

e DE/best/1/z: For this strategy, the target vector is selected as the best in-
dividual, %(¢), from the current population. In this case, the trial vector is
calculated as

w(t) = %(t) + Bxi, (1) — i, (1)) (13.4)
Any of the crossover methods can be used.

e DE/xz/n,/z: For this strategy, more than one difference vector is used. The
trial vector is calculated as

wi(t) = %6, (8) + B> (i (1) — X3, 1(1)) (13.5)
k=1

where x;, 1 (t) =X, 1 (t) indicates the k-th difference vector, x;, () can be selected
using any suitable method for selecting the target vector, and any of the crossover
methods can be used. With reference to equation (13.1), the larger the value of
N, the more directions can be explored per generation.

¢ DE/rand-to-best/n,/z: This strategy combines the rand and best strategies
to calculate the trial vector as follows:

Ny

wi(t) = (1) + (1= 7)xi, () + 8) (%0 i (1) — Xy 1 (t) (13.6)
k=1

where x;, (¢) is randomly selected, and v € [0,1] controls the greediness of the
mutation operator. The closer v is to 1, the more greedy the search process
becomes. In other words, =y close to 1 favors exploitation while a value close to 0
favors exploration. A good strategy will be to use an adaptive ~, with v(0) = 0.
The value of y(t) increases with each new generation towards the value 1.

Note that if v = 0, the DE/rand/y/z strategies are obtained, while v = 1 gives
the DE/best/y/z strategies.

e DE/current-to-best/1+n, /z: With this strategy, the parent is mutated using
at least two difference vectors. One difference vector is calculated from the best
vector and the parent vector, while the rest of the difference vectors are calculated
using randomly selected vectors:

ui(t) = xi(t) + B(x(t) = %)) + 3 i(xil,k(t) = i, k(1)) (13.7)
k=1

Empirical studies have shown that DE/rand/1/bin maintains good diversity, while
DE/current-to-best/2/bin shows good convergence characteristics [698]. Due to this
observation, Qin and Suganthan [698] developed a DE algorithm that dynamically
switch between these two strategies. Each of these strategies is assigned a probability

13.3 Variations to Basic Differential Evolution 245

of being applied. If p, ;1 is the probability that DE/rand/1/bin will be applied, then
Ps,2 = 1 —ps 1 is the probability that DE/current-to-best/2/bin will be applied. Then,

ns,1(Ns,2 +1g2)
ns2(ns,1 +np1) +ns1(ns2 + nyo2)

Ps,1 = (13.8)
where n, 1 and ng 2 are respectively the number of offspring that survive to the next
generation for DE/rand/1/bin, and ny 1 and ny o represent the number of discarded
offspring for each strategy. The more offspring that survive for a specific strategy, the
higher the probability for selecting that strategy for the next generation.

13.3 Variations to Basic Differential Evolution

The basic DE strategies have been shown to be very efficient and robust [811, 813,
811, 813]. A number of adaptations of the original DE strategies have been developed
in order to further improve performance. This section reviews some of these DE varia-
tions. Section 13.3.1 describe hybrid DE methods, a population-based DE is described
in Section 13.3.2, and self-adaptive DE strategies are discussed in Section 13.3.3.

13.3.1 Hybrid Differential Evolution Strategies

DE has been combined with other EAs, particle swarm optimization (PSO), and
gradient-based techniques. This section summarizes some of these hybrid methods.

Gradient-Based Hybrid Differential Evolution

One of the first DE hybrids was developed by Chiou and Wang [124], referred to
as the hybrid DE. As indicated in Algorithm 13.4, the hybrid DE introduces two
new operations: an acceleration operator to improve convergence speed — without
decreasing diversity — and a migration operator to provide the DE with the improved
ability to escape local optima.

The acceleration operator uses gradient descent to adjust the best individual toward
obtaining a better position if the mutation and crossover operators failed to improve
the fitness of the best individual. Let x(¢) denote the best individual of the current
population, C(t), before application of the mutation and crossover operators, and let
%X(t 4+ 1) be the best individual for the next population after mutation and crossover
have been applied to all individuals. Then, assuming a minimization problem, the
acceleration operator computes the vector

_ x(t+1) if f(x(t+1)) < f(x(t))
X0 = { %(t+1) —n(t)Vf otherwise (13.9)

where n(t) € (0, 1] is the learning rate, or step size; V f is the gradient of the objective
function, f. The new vector, x(t), replaces the worst individual in the new population,

C(t).

246 13. Differential Evolution

Algorithm 13.4 Hybrid Differential Evolution with Acceleration and Migration

Set the generation counter, t = 0;
Initialize the control parameters, 8 and p,;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do
Apply the migration operator if necessary;
for each individual, x;(t) € C(t) do
Evaluate the fitness, f(x;(t));
Create the trial vector, u;(t) by applying the mutation operator;
Create an offspring, x; (t) by applying the crossover operator;
if f(x;(t)) is better than f(x;(t)) then
Add x;(t) to C(t + 1);
end
else
Add x;(t) to C(t + 1);
end
end

Apply the acceleration operator if necessary;
end
Return the individual with the best fitness as the solution;

The learning rate is initialized to one, i.e. (0) = 1. If the gradient descent step failed
to create a new vector, x(t), with better fitness, the learning rate is reduced by a
factor. The gradient descent step is then repeated until n(¢)V f is sufficiently close to
zero, or a maximum number of gradient descent steps have been executed.

While use of gradient descent can significantly speed up the search, it has the disad-
vantage that the DE may get stuck in a local minimum, or prematurely converge. The
migration operator addresses this problem by increasing population diversity. This is
done by spawning new individuals from the best individual, and replacing the current
population with these new individuals. Individuals are spawned as follows:

2i(t) = maz = Emin (13.10)

/ Z; (t) + Tij (ﬂfmimj — :%j) it U(0,1) < Ii’f%
&j(t) + 1rij(Tmas,; — ;) otherwise
where r;; ~ U(0,1). Spawned individual x;(t) becomes x;(t + 1).

The migration operator is applied only when the diversity of the current population
becomes too small; that is, when

i Tt | J(na(ns — 1)) < & (13.11)

xi ()%(2)

13.3 Variations to Basic Differential Evolution 247

with

ao={} B SOmO

where €; and e; are respectively the tolerance for the population diversity and gene
diversity with respect to the best individual, x(t). If Z;;(t) = 0, then the value of
the j-th element of individual ¢ is close to the value of the j-th element of the best
individual.

Magoulas et al. [550] combined a stochastic gradient descent (SGD) [549] and DE in
a sequential manner to train artificial neural networks (NN). Here, SGD is first used
to find a good approximate solution using the process outlined in Algorithm 13.5. A
population of DE individuals is then created, with individuals in the neighborhood of
the solution returned by the SGD step. As outlined in Algorithm 13.6, the task of
DE is to refine the solution obtained from SGD by using then DE to perform a local
search.

Algorithm 13.5 Stochastic Gradient Descent for Neural Network Training

Initialize the NN weight vector, w(0);
Initialize the learning rate, n(0), and the meta-step size, n,;
Set the pattern presentation number, ¢t = 0;
repeat
for each training pattern, p do
Calculate E(w(t));
Calculate VE(w(t));
Update the weights using

w(t+ 1) =w(t) +n(t)VE(w(t)) (13.13)
Calculate the new step size using
n(t+1) =nt)+nm < VE(W(t —1)), VE(w(t)) > (13.14)
t=t+1;
end

Return w(t + 1) as the solution;
until until a termination condition is satisfied,

In Algorithms 13.5 and 13.6, < e,e > denotes the inner product between the two
given vectors, £ is the NN training objective function (usually the sum-squared error),
o is the standard deviation of mutations to w used to create DE individuals in the
neighborhood of w, and D7 is the training set. The DE algorithm uses the objective
function, &£, to assess the fitness of individuals.

248 13. Differential Evolution

Algorithm 13.6 Differential Evolution with Stochastic Gradient Descent

w = SGD(Dr);
Set the individual counter, ¢ = 0;
Set C(0) = {};
repeat
1=1+1;
x;(0) =w + N(0,0);
C(0) —C(0) +{x:(0)};
until ¢ = ng;
Apply any DE strategy;
Return the best solution from the final population;

Evolutionary Algorithm-Based Hybrids

Due to the efficiency of DE, Hrstka and Kucerovd [384] used the DE reproduction
process as a crossover operator in a simple GA.

Chang and Chang [113] used standard mutation operators to increase DE population
diversity by adding noise to the created trial vectors. In [113], uniform noise is added
to each component of trial vectors, i.e.

uij(t) = Ujj (t) + U(umin,ja Uma:c,j) (1315)

where Umin,; and Umas,; define the boundaries of the added noise. However, the
approach above should be considered carefully, as the expected mean of the noise
added is " o
min,j mazx,j

5 (13.16)
If this mean is not zero, the population may suffer genetic drift. An alternative is to
sample the noise from a Gaussian or Cauchy distribution with zero mean and a small
deviation (refer to Section 11.2.1).

Sarimveis and Nikolakopoulos [758] use rank-based selection to decide which individ-
uals will take part to calculate difference vectors. At each generation, after the fitness
of all individuals have been calculated, individuals are arranged in descending or-
der, x1(t),%2(t), ..., Xy, (t) where x;, (¢t) precedes x, (t) if f(x;,(t)) > f(xi,(t)). The
crossover operator is then applied as summarized in Algorithm 13.7 assuming mini-
mization. After application of crossover on all the individuals, the resulting population
is again ranked in descending order. The mutation operator in Algorithm 13.8 is then
applied.

With reference to Algorithm 13.8, p,, ; refers to the probability of mutation, with each
individual assigned a different probability based on its rank. The lower the rank of
an individual, the more unfit the individual is, and the higher the probability that
the individual will be mutated. Mutation step sizes are initially large, decreasing over
time due to the exponential term used in equations (13.17) and (13.18). The direction
of the mutation is randomly decided, using the random variable, rs.

13.3 Variations to Basic Differential Evolution 249

Algorithm 13.7 Rank-Based Crossover Operator for Differential Evolution

Rank all individuals in decreasing order of fitness;
fori=1,...,n, do

r~U(0,1);

x,(t) = X (t) + 7 (%it1 (1) = %4(8));

if f(x;(t)) < f(xi+1(t)) then

x;(t) = x;(b);

end

end

Algorithm 13.8 Rank-Based Mutation Operator for Differential Evolution

Rank all individuals in decreasing order of fitness;

fori=1,...,n, do
_ ne—itl.
Pm,i = n 9

for j = 1,.5..,nw do
r1 ~ U(O, 1);
if (’I"l > pm,i) then
T ~ {07 1};
rg ~ [](07 1);
if (ro = 0) then
2i(t) = @35 (£) + (Tmaz.g — @5 (£)rae™>™ (13.17)
end
if (ro = 1) then

() = 245 (t) — (2ij(t) — Tynin g)rae 2™ (13.18)

end
end
end)
if f(x;(t)) < f(xi(t)) then
X

xi(t) = x;(t);
end
end

250 13. Differential Evolution

Particle Swarm Optimization Hybrids

A few studies have combined DE with particle swarm optimization(PSO) (refer to
Chapter 16).

Hendtlass [360] proposed that the DE reproduction process be applied to the particles
in a PSO swarm at specified intervals. At the specified intervals, the PSO swarm
serves as the population for a DE algorithm, and the DE is executed for a number
of generations. After execution of the DE, the evolved population is then further
optimized using PSO. Kannan et al. [437] apply DE to each particle for a number of
iterations, and replaces the particle with the best individual obtained from the DE
process.

Zhang and Xie [954], and Talbi and Batouche [836] follow a somewhat different ap-
proach. Only the personal best positions are changed using

' _ | 00+ ifj e Tit)
Yyt +1) = { Yi; () otherwise (13.19)

where J is the general difference vector defined as

5; = y1;(t) . Y24 (t) (13.20)
with y1(¢) and y2(t) randomly selected personal best positions; the notations y;(t) and
yi(t) are used to indicate a personal best and neighborhood best respectively (refer to
Chapter 16). The offspring, y,(¢ + 1), replaces the current personal best, y;(¢), only
if the offspring has a better fitness.

13.3.2 Population-Based Differential Evolution

In order to improve the exploration ability of DE, Ali and T6rn [19] proposed to use
two population sets. The second population, referred to as the auxiliary population,
Cq(t), serves as an archive of those offspring rejected by the DE selection operator.
During the initialization process, ng pairs of vectors are randomly created. The best
of the two vectors is inserted as an individual in the population, C(0), while the other
vector, x%(0), is inserted in the auxiliary population, C,(0). At each generation, for
each offspring created, if the fitness of the offspring is not better than the parent,
instead of discarding the offspring, x;(t), it is considered for inclusion in the auxiliary
population. If f(x;(t)) is better than x¢(¢), then x;(t) replaces x¢(¢). The auxiliary set
is periodically used to replace the worst individuals in C(t) with the best individuals
from C,(t).

13.3.3 Self-Adaptive Differential Evolution

Although empirical studies have shown that DE convergence is relatively insensitive
to control parameter values, performance can be greatly improved if parameter values

13.3 Variations to Basic Differential Evolution 251

are optimized. For the DE strategies discussed thus far, values of control parameters
are static, and do not change over time. These strategies require an additional search
process to find the best values for control parameters for each different problem — a
process that is usually time consuming. It is also the case that different values for a
control parameter are optimal for different stages of the optimization process. As an
alternative, a number of DE strategies have been developed where values for control
parameters adapt dynamically. This section reviews these approaches.

Dynamic Parameters

One of the first proposals for dynamically changing the values of the DE control pa-
rameters was proposed by Chang and Xu [112], where the probability of recombination
is linearly decreased from 1 to 0.7, and the scale factor is linearly increased from 0.3
to 0.5:

pr(t) = pr(t—1)— (pr(0) —0.7)/m (13.21)
pt) = pBt—1)—(0.5-p(0))/ne (13.22)

where p,.(0) = 1.0 and 5(0) = 0.3; n; is the maximum number of iterations.

Abbass et al. [3] proposed an approach where a new value is sampled for the scale
factor for each application of the mutation operator. The scale factor is sampled from
a Gaussian distribution, 8 ~ N(0,1). This approach is also used in [698, 735]. In
[698], the mean of the distribution was changed to 0.5 and the deviation to 0.3 (i.e.
B ~ N(0.5,0.3)), due to the empirical results that suggest that 3 = 0.5 provides on
average good results. Abbass [2] extends this to the probability of recombination, i.e.
pr ~ N(0,1). Abbass refers incorrectly to the resulting DE strategy as being self-
adaptive. For self-adaptive strategies, values of control parameters are evolved over
time; this is not the case in [2, 3].

Self-Adaptive Parameters

Self-adaptive strategies usually make use of information about the search space as
obtained from the current population (or a memory of previous populations) to self-
adjust values of control parameters.

Ali and T6rn [19] use the fitness of individuals in the current population to determine
a new value for the scale factor. That is,

max § Bmin, 1 — Smas(t) if —;‘“8)) <1

B(t) = Fanin (1) i (13.23)

max { Bmin, 1 — % otherwise

which ensures that 5(t) € [Bmin, 1), where Gy is a lower bound on the scaling factor;
fmin(t) and fr,qz(t) are respectively the minimum and maximum fitness values for the
current population, C(t). AS fmin approaches fqz, the diversity of the population
decreases, and the value of 3(t) approaches (,,,;, — ensuring smaller step sizes when the

252 13. Differential Evolution

population starts to converge. On the other hand, the smaller the ratio ‘j;:’:j—:gg (for
minimization problems) or]{"‘78))‘ (for maximization problems), the more diverse

the population and the larger the step sizes will be — favoring exploration.

Qin and Suganthan [698] propose that the probability of recombination be self-adapted
as follows:

pr(t) ~ N(pp, (£),0.1) (13.24)

where p, (0) = 0.5, and p, (¢) is calculated as the average over successful values of
pr(t). A p.(t) value can be considered as being successful if the fitness of the best
individual improved under that value of p,.(t). It is not clear if one probability is used
in [698] for the entire population, or if each individual has its own probability, p, ;(t).
This approach to self-adaptation can, however, be applied for both scenarios.

For the self-adaptive Pareto DE, Abbass [2] adapts the probability of recombination
dynamically as

Pr.i(t) = pr,iy () + N(0,1)[pr,i, (t) — Pris (1)] (13.25)
where i1 # iy # i3 # i ~ U(1,...,ns), while sampling the scale factor from N (0, 1).

Note that equation (13.25) implies that each individual has its own, learned probability
of recombination.

Omran et al. [641] propose a self-adaptive DE strategy that makes use of the approach
in equation (13.25) to dynamically adapt the scale factor. That is, for each individual,

Bi(t) = Bi,(t) + N(0,0.5)[B5 (t) — Bis (1)] (13.26)
where i4 # i5 # ig i ~ U(1,...,ns). The mutation operator as given in equation
(13.2) changes to

u;(t) = x4, () + Bi(t)[xi, (t) + x4, (t)] (13.27)

The crossover probability can be sampled from a Gaussian distribution as discussed
above, or adapted according to equation (13.25).

13.4 Differential Evolution for Discrete-Valued
Problems

Differential evolution has been developed for optimizing continuous-valued parameters.
However, a simple discretization procedure can be used to convert the floating-point
solution vectors into discrete-valued vectors. Such a procedure has been used by a
number of researchers in order to apply DE to integer and mixed-integer programming
[258, 390, 499, 531, 764, 817]. The approach is quite simple: each floating-point value
of a solution vector is simply rounded to the nearest integer. For a discrete-valued
parameter where an ordering exists among the values of the parameter, Lampinen and
Zelinka [499] and Feoktistov and Janaqi [258] take the index number in the ordered
sequence as the discretized value.

13.4 Differential Evolution for Discrete-Valued Problems 253

Pampard et al. [653] proposed an approach to apply DE to binary-valued search spaces:
The angle modulated DE (AMDE) [653] uses the standard DE to evolve a generating
function to produce bitstring solutions. This chapter proposes an alternative, the
binary DE (binDE) which treats each floating-point element of solution vectors as a
probability of producing either a bit 0 or a bit 1. These approaches are respectively
discussed in Sections 13.4.1 and 13.4.2.

13.4.1 Angle Modulated Differential Evolution

Pampara et al. [653] proposed a DE algorithm to evolve solutions to binary-valued
optimization problems, without having to change the operation of the original DE. This
is achieved by using a homomorphous mapping [487] to abstract a problem (defined
in binary-valued space) into a simpler problem (defined in continuous-valued space),
and then to solve the problem in the abstracted space. The solution obtained in the
abstracted space is then transformed back into the original space in order to solve the
problem. The angle modulated DE (AMDE) makes use of angle modulation (AM),
a technique derived from the telecommunications industry [697], to implement such a
homomorphous mapping between binary-valued and continuous-valued space.

The objective is to evolve, in the abstracted space, a bitstring generating function,
which will be used in the original space to produce bit-vector solutions. The generating
function as used in AM is

g(x) =sin(2n(x —a) x b x cos(2n(z —a) X ¢)) +d (13.28)

where z is a single element from a set of evenly separated intervals determined by the
required number of bits that need to be generated (i.e. the dimension of the original,
binary-valued space).

The coefficients in equation (13.28) determine the shape of the generating function: a
represents the horizontal shift of the generating function, b represents the maximum
frequency of the sin function, ¢ represents the frequency of the cos function, and d
represents the vertical shift of the generating function. Figure 13.2 illustrates the
function for a = 0,b = 1,¢ = 1, and d = 0, with = € [-2,2]. The AMDE evolves
values for the four coefficients, a, b, c, and d. Solving a binary-valued problem thus
reverts to solving a 4-dimensional problem in a continuous-valued space. After each
iteration of the AMDE, the fitness of each individual in the population is determined by
substituting the evolved values for the coefficients (as represented by the individual)
into equation (13.28). The resulting function is sampled at evenly spaced intervals
and a bit value is recorded for each interval. If the output of the function in equation
(13.28) is positive, a bit-value of 1 is recorded; otherwise, a bit-value of 0 is recorded.
The resulting bit string is then evaluated by the fitness function defined in the original
binary-valued space in order to determine the quality of the solution.

The AMDE is summarized in Algorithm 13.9.

Pampara et al. [653] show that the AMDE is very efficient and provides accurate
solutions to binary-valued problems. Furthermore, the AMDE has the advantage that

254 13. Differential Evolution

0.8 - i
0.6 | I
04 |

0.2 -

(x)
o

-0.2 4
-0.4 l .
-0.6 l 4

-0.8 i .

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

Figure 13.2 Angle Modulation Illustrated

Algorithm 13.9 Angle Modulated Differential Evolution

Generate a population of 4-dimensional individuals;
repeat
Apply any DE strategy for one iteration;
for each individual do
Substitute evolved values for coefficients a, b, ¢ and d into equation (13.28);
Produce n, bit-values to form a bit-vector solution;

Calculate the fitness of the bit-vector solution in the original bit-valued space;
end
until a convergence criterion is satisfied,;

an ng-dimensional binary-valued problem is transformed into a smaller 4-dimensional
continuous-valued problem.

13.4.2 Binary Differential Evolution

The binary DE (binDE) borrows concepts from the binary particle swarm optimizer
(binPSO), developed by Kennedy and Eberhart [450] (also refer to Section 16.5.7). As
with DE, particle swarm optimization (PSO; refer to Chapter 16) uses vector algebra
to calculate new search positions, and was therefore developed for continuous-valued
problems. In PSO, a velocity vector represents the mutation step sizes as stochastically
weighted difference vectors (i.e. the social and cognitive components). The binPSO
does not interpret the velocity as a step size vector. Rather, each component of the
velocity vector is used to compute the probability that the corresponding component
of the solution vector is bit 0 or bit 1.

13.5 Advanced Topics 255

In a similar way, the binDE uses the floating-point DE individuals to determine a
probability for each component. These probabilities are then used to generate a bit-
string solution from the floating-point vector. This bitstring is used by the fitness
function to determine its quality. The resulting fitness is then associated with the
floating-point representation of the individual.

Let x;(t) represent a DE individual, with each x;;(t) (j = 1,...,n,, where n, is
the dimension of the binary-valued problem) floating-point number. Then, the corre-
sponding bitstring solution, y;(t), is calcualted using

Yij = { 1 if f(wy(t)) < 0.5 (13.29)

where f is the sigmoid function,

1

f(z) = [(13.30)

The fitness of the individual x;(t) is then simply the fitness obtained using the binary
representation, y; ().

The binDE algorithm is summarized in Algorithm 13.10.

Algorithm 13.10 Binary Differential Evolution Algorithm

Initialize a population and set control parameter values;

t=0;
while stopping condition(s) not true do
t=t+1;

Select parent x;(t);

Select individuals for reproduction;

Produce one offspring, x (t);

yi(t) = generated bitstring from x;(¢);

y;(t) = generated bitstring from x;(t);

if f(y;(t)) is better than f(x;(t)) then
Replace parent, x;(t), with offspring, x;(t);

end

else
Retain parent, x;(t);

end
end

13.5 Advanced Topics

The discussions in the previous sections considered application of DE to unconstrained,
single-objective optimization problems, where the fitness landscape remains static.
This section provides a compact overview of adaptations to the DE such that different
types of optimization problems as summarized in Appendix A can be solved using DE.

256 13. Differential Evolution

13.5.1 Constraint Handling Approaches

With reference to Section A.6, the following methods have been used to apply DE to
solve constrained optimization problems as defined in Definition A.5:

e Penalty methods (refer to Section A.6.2), where the objective function is adapted
by adding a function to penalize solutions that violate constraints [113, 394, 499,
810, 884].

e Converting the constrained problem to an unconstrained problem by embedding
constraints in an augmented Lagrangian (refer to Section A.6.2) [125, 390, 528,
758]. Lin et al. [529] combines both the penalty and the augmented Lagrangian
functions to convert a constrained problem to an unconstrained one.

e In order to preserve the feasibility of initial solutions, Chang and Wu [114] used
feasible directions to determine step sizes and search directions.

e By changing the selection operator of DE, infeasible solutions can be rejected,
and the repair of infeasible solutions facilitated. In order to achieve this, the
selection operator accepts an offspring, x;, under the following conditions [34,
56, 498]:

—if x; satisfies all the constraints, and f(x;) < f(x;), then x; replaces the
parent, x; (assuming minimization);
— if x; is feasible and x; is infeasible, then x; replaces X;;
— if both x; and x; are infeasible, then if the number of constraints violated
by x; is less than or equal to the number of constraints violated by x;, then
x; replaces x;.
In the case that both the parent and the offspring represent infeasible solutions,

there is no selection pressure towards better parts of the fitness landscape; rather,
towards solutions with the smallest number of violated constraints.

Boundary constraints are easily enforced by clamping offspring to remain within the
given boundaries [34, 164, 498, 499]:

.T/ (t) _ mmin,j + U(Oa 1)(mmaz,j - xmin,j) 1f 1’;7 (t) < mmin,j or 1’;7 > xmam,j
Y z,;(t) otherwise
(13.31)
This restarts the offspring to a random position within the boundaries of the search
space.

13.5.2 Multi-Objective Optimization

As defined in Definition A.10, multi-objective optimization requires multiple, conflict-
ing objectives to be simultaneously optimized. A number of adaptations have been
made to DE in order to solve multiple objectives, most of which make use of the
concept of dominance as defined in Definition A.11.

Multi-objective DE approaches include:

13.5 Advanced Topics 257

Converting the problem into a minimax problem [390, 925].

Weight aggregation methods [35].

Population-based methods, such as the vector evaluated DE (VEDE) [659],
based on the vector evaluated GA (VEGA) [761] (also refer to Section 9.6.3). If
K objectives have to be optimized, K sub-populations are used, where each sub-
population optimizes one of the objectives. These sub-populations are organized
in a ring topology (as illustrated in Figure 16.4(b)). At each iteration, before
application of the DE reproduction operators, the best individual, C.X(t), of
population Ci migrates to population Cgy1 (that of Ci41 migrates to Cp), and is
used in population Ci41 to produce the trial vectors for that population.

Pareto-based methods, which change the DE operators to include the dominance
concept.

Mutation: Abbass et al. [2, 3] applied mutation only on non-dominated solu-
tions within the current generation. Xue et al. [928] computed the differential
as the difference between a randomly selected individual, x;,, and a randomly
selected vector, x;,, that dominates x;,; that is, x;, = x;,. If x;, is not domi-
nated by any other individual of the current generation, the differential is set to
zZero.

Selection: A simple change to the selection operator is to replace the parent, x;,
with the offspring X;, only if X; = x; [3, 2, 659]. Alternatively, ideas from non-
dominated sorting genetic algorithms [197] can be used, where non-dominated
sorting and ranking is applied to parents and offspring [545, 928]. The next
population is then selected with preference to those individuals with a higher
rank.

13.5.3 Dynamic Environments

Not much research has been done in applying DE to dynamically changing landscapes
(refer to Section A.9). Chiou and Wang [125] applied the DE with acceleration and
migration (refer to Algorithm 13.4) to dynamic environments, due to the improved
exploration as provided by the migration phase. Magoulas et al. [550] applied the
SGDDE (refer to Algorithm 13.6) to slowly changing fitness landscapes.

Mendes and Mohais [577] develop a DE algorithm, referred to as DynDE, to locate
and maintain multiple solutions in dynamically changing landscapes. Firstly, it is
important to note the following assumptions:

1. It is assumed that the number of peaks, ny, to be found are known, and that
these peaks are evenly distributed through the search space.

2. Changes in the fitness landscape are small and gradual.

DynDE uses multiple populations, with each population maintaining one of the peaks.
To ensure that each peak represents a different solution, an exclusion strategy is fol-
lowed: At each iteration, the best individuals of each pair of sub-populations are com-
pared. If these global best positions are too close to one another, the sub-population

258 13. Differential Evolution

with the worst global best solution is re-initialized. DynDE re-initializes the one sub-
population when
X

€ (Cry X(1), Cry X (1)) < —7—
2ny "

(13.32)
where £(Cy, .%x(t),Cr,.%(t)) is the Euclidean distance between the best individuals of
sub-populations Ci, and Cy,, X represents the extent of the search space, ny is the
number of peaks, and n, is the search space dimension. It is this condition that
requires assumption 1, which suffers from obvious problems. For example, peaks are
not necessarily evenly distributed. It may also be the case that two peaks exist with a
distance less than 2#% from one another. Also, it is rarely the case that the number
X

of peaks is known.

After a change is detected, a strategy is followed to increase diversity. This is done by
assigning a different behavior to some of the individuals of the affected sub-population.
The following diversity increasing strategies have been proposed [577]:

e Re-initialize the sub-populations: While this strategy does maximize diversity,
it also leads to a severe loss of knowledge obtained about the search space.

e Use quantum individuals: Some of the individuals are re-initialized to random
points inside a ball centered at the global best individual, x(¢), as outlined in
Algorithm 13.11. In this algorithm, R4, is the maximum radius from X(¢).

e Use Brownian individuals: Some positions are initialized to random positions
around x(t), where the random step sizes from %(t) are sampled from a Gaussian
distribution. That is,

x;(t) = x(t) + N(0,0) (13.33)

e Introduce some form of entropy: Some individuals are simply added noise, sam-
pled from a Gaussian distribution. That is,

Algorithm 13.11 Initialization of Quantum Individuals

for each individual, x;(t), to be re-initialized do
Generate a random vector, r; ~ N(0, 1);
Compute the distance of r; from the origin, i.e.

(13.35)

Find the radius, R ~ U(0, Rz);
x;(t) = %(t) + Rr;/E(r;,0);
end

13.6 Applications 259

13.6 Applications

Differential evolution has mostly been applied to optimize functions defined over
continuous-valued landscapes [695, 811, 813, 876]. Considering an unconstrained op-
timization problem, such as listed in Section A.5.3, each individual, x;, will be repre-
sented by an n,-dimensional vector where each z;; € R. For the initial population,
each individual is initialized using

mij ~ U(xm,in,jv xmam,j) (1336)
The fitness function is simply the function to be optimized.

DE has also been applied to train neural networks (NN) (refer to Table 13.1 for
references). In this case an individual represents a complete NN. Each element of an
individual is one of the weights or biases of the NN, and the fitness function is, for
example, the sum-squared error (SSE).

Table 13.1 summarizes a number of real-world applications of DE. Please note that
this is not meant to be a complete list.

Table 13.1 Applications of Differential Evolution

Application Class | Reference |

Clustering (640, 667]

Controllers [112, 124, 164, 165, 394, 429, 438, 599

Filter design [113, 810, 812, 883]

Image analysis [441, 521, 522, 640, 926]

Integer-Programming | [390, 499, 500, 528, 530, 817]

Model selection [331, 354, 749]
[
[
[

NN training 1, 122, 550, 551, 598]
Scheduling 528, 531, 699, 748]
System design 36, 493, 496, 848, 839, 885]

13.7 Assignments

1. Show how DE can be used to train a FFNN.

2. Discuss the influence of different values for the population diversity tolerance,
€1, and the gene diversity tolerance, €, as used in equations (13.11) and (13.12)
for the hybrid DE.

3. Discuss the merits of the following two statements:
(a) If the probability of recombination is very low, then DE exhibits a high
probability of stagnation.

(b) For a small population size, it is sensible to have a high probability of
recombination.

260

13. Differential Evolution

For the DE/rand-to-best/y/z strategies, suggest an approach to balance explo-
ration and exploitation.

Discuss the consequences of too large and too small values of the standard devi-
ation, o, used in Algorithm 13.6.

Explain in detail why the method for adding noise to trial vectors as given in
equation (13.15) may result in genetic drift.

. With reference to the DynDE algorithm in Section 13.5.3, explain the effect of

very small and very large values of the standard deviation, o.

Researchers in DE have suggested that the recombination probability should
be sampled from a Gaussian distribution, N(0, 1), while others have suggested
that N(0.5,0.15) should be used. Compare these two suggestions and provide a
recommendation as to which approach is best.

Investigate the performance of a DE strategy if the scale factor is sampled from
a Cauchy distribution.

Chapter 14

Cultural Algorithms

Standard evolutionary algorithms (as discussed in previous chapters) have been suc-
cessful in solving diverse and complex problems in search and optimization. The search
process used by standard EAs is unbiased, using little or no domain knowledge to guide
the search process. However, the performance of EAs can be improved considerably if
domain knowledge is used to bias the search process. Domain knowledge then serves
as a mechanism to reduce the search space by pruning undesirable parts of the solution
space, and by promoting desirable parts. Cultural evolution (CE) [717], based on the
principles of human social evolution, was developed by Reynolds [716, 717, 724] in the
early 1990s as an approach to bias the search process with prior knowledge about the
domain as well as knowledge gained during the evolutionary process.

Evolutionary computation mimics biological evolution, which is based on the principle
of genetic inheritance. In natural systems, genetic evolution is a slow process. Cultural
evolution, on the other hand, enables societies to adapt to their changing environments
at rates that exceed that of biological evolution.

The rest of this chapter is organized as follows: A compact definition of culture and
artificial culture is given in Section 14.1. A general cultural algorithm (CA) framework
is given in Section 14.2, outlining the different components of CA implementations.
Section 14.3 describes the belief space component of CAs. A fuzzy CA approach is
described in Section 14.4. Advanced topics, including constrained environments are
covered in Section 14.5. Applications of CAs are summarized in Section 14.6.

14.1 Culture and Artificial Culture

A number of definitions of culture can be found, for example’:

e Culture is a system of symbolically encoded conceptual phenomena that are
socially and historically transmitted within and between social groups [223].

e Culture refers to the cumulative deposit of knowledge, experience, beliefs, val-
ues, attitudes, meanings, hierarchies, religion, notions of time, roles, spatial re-
lations, concepts of the universe, and material objects and possessions acquired

Lwww.tamu.edu/classes/cosc/choudhury/culture.html

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
(©2007 John Wiley & Sons, Ltd

261

262 14. Cultural Algorithms

by a group of people in the course of generations through individual and group
striving.

e Culture is the sum total of the learned behavior of a group of people that is
generally considered to be the tradition of that people and is transmitted from
generation to generation.

e Culture is a collective programming of the mind that distinguishes the members
of one group or category of people from another.

In terms of evolutionary computation, culture is modeled as the source of data that
influences the behavior of all individuals within that population. This differs from EP
and ES where the behavioral characteristics of individuals — for the current generation
only — are modeled using phenotypes. Within cultural algorithms, culture stores the
general behavioral traits of the population. Cultural information is then accessible to
all the individuals of a population, and over many generations.

14.2 Basic Cultural Algorithm

A cultural algorithm (CA) is a dual-inheritance system, which maintains two search
spaces: the population space (to represent a genetic component based on Darwinian
principles), and a belief space (to represent a cultural component). It is the latter that
distinguishes CAs from other EAs.

The belief space models the cultural information about the population, while the
population space represents the individuals on a genotypic and/or phenotypic level.
Both the population and belief spaces evolve in parallel, with both influencing one
another. A communication protocol therefore forms an integral part of a CA. Such a
protocol defines two communication channels. One for a select group of individuals to
adapt the set of beliefs, and another defining the way that the beliefs influence all of
the individuals in the population space.

A pseudocode cultural algorithm is given in Algorithm 14.1, and illustrated in Fig-
ure 14.1.

Algorithm 14.1 Cultural Algorithm

Set the generation counter, ¢t = 0;
Create and initialize the population space, C(0);
Create and initialize the belief space, B(0);
while stopping condition(s) not true do
Evaluate the fitness of each x;(t) € C(t);
Adjust (B(t), Accept (C(t)));
Variate (C(¢), Influence (B(t)));
t=t+1;
Select the new population;
end

14.3 Belief Space 263

Adjust beliefs

Accept Influence population

Selection u Fitness evaluation

Variate population

Figure 14.1 Illustration of Population and Belief Spaces of Cultural Algorithms

At each iteration (each generation), individuals are first evaluated using the fitness
function specified for the EA on the population level. An acceptance function is then
used to determine which individuals from the current population have an influence
on the current beliefs. The experience of the accepted individuals is then used to
adjust the beliefs (to simulate evolution of culture). The adjusted beliefs are then
used to influence the evolution of the population. The variation operators (crossover
and mutation) use the beliefs to control the changes in individuals. This is usually
achieved through self-adapting control parameters, as functions of the beliefs.

The population space is searched using any of the standard EAs, for example an EP
[720] or GA [716]. Recently, particle swarm optimization (PSO) has been used on
the population space level [219]. The next section discusses the belief space in more
detail.

14.3 Belief Space

The belief space serves as a knowledge repository, where the collective behaviors (or
beliefs) of the individuals in the population space are stored. The belief space is also
referred to as the meme pool, where a meme is a unit of information transmitted by
behavioral means. The belief space serves as a global knowledge repository of behav-
ioral traits. The memes within the belief space are generalizations of the experience
of individuals within the population space. These experiential generalizations are ac-
cumulated and shaped over several generations, and not just one generation. These
generalizations express the beliefs as to what the optimal behavior of individuals con-
stitutes.

264 14. Cultural Algorithms

The belief space can effectively be used to prune the population space. Each individual
represents a point in the population search space: the knowledge within the belief
space is used to move individuals away from undesirable areas in the population space
towards more promising areas.

Some form of communication protocol is implemented to transfer information between
the two search spaces. The communication protocol specifies operations that control
the influence individuals have on the structure of the belief space, as well as the
influence that the belief space has on the evolution process in the population level.
This allows individuals to dictate their culture, causing culture to also evolve. On
the other hand, the cultural information is used to direct the evolution on population
level towards promising areas in the search space. It has been shown that the use of
a belief space reduces computational effort substantially [717, 725].

Various CAs have been developed, which differ in the data structures used to model
the belief space, the EA used on the population level, and the implementation of the
communication protocol. Section 14.3.1 provides an overview of different knowledge
components within the belief space. Acceptance and influence functions are discussed
in Sections 14.3.2 and 14.3.4 respectively.

14.3.1 Knowledge Components

The belief space contains a number of knowledge components to represent the be-
havioral patterns of individuals from the population space. The types of knowledge
components and data structures used to represent the knowledge depends on the prob-
lem being solved. The first application of CAs used version spaces represented as a
lattice to store schemata [716]. For function optimization, vector representations are
used (discussed below) [720]. Other representations that have been used include fuzzy
systems [719, 725], ensemble structures [722], and hierarchical belief spaces [420].

In general, the belief space contains at least two knowledge components [720]:

e A situational knowledge component, which keeps track of the best solutions
found at each generation.

e A normative knowledge component, which provides standards for individual
behaviors, used as guidelines for mutational adjustments to individuals. In the
case of function optimization, the normative knowledge component maintains
a set of intervals, one for each dimension of the problem being solved. These
intervals characterize the range of what is believed to be good areas to search in
each dimension.

If only these two components are used, the belief space is represented as the tuple,
B(t) = (S(t), N () (14.1)

where S(t) represents the situational knowledge component, and A/ (¢) represents the
normative knowledge component. The situational component is the set of best solu-
tions,

Sit)={yn@):1=1,...,ns} (14.2)

14.3 Belief Space 265

and the normative component is represented as
N(t) = (X(t), Xa(t), ..., X, (1)) (14.3)
where, for each dimension, the following information is stored:
Aj(t) = (Z; (1), L; (1), U;(#)) (14.4)

Z; denotes the closed interval, Z;(t) = [Tmin,j(t), Tmaz,; ()] = {z : Tmin,; < z <
Tmag,j} Lj(t) is the score for the lower bound, and Uj(t) is the score for the upper
bound.

In addition to the above knowledge components, the following knowledge components
can be added [672, 752]:

e A domain knowledge component, which is similar to the situational knowledge
component in that it stores the best positions found. The domain knowledge
component differs from the situational knowledge component in that knowledge
is not re-initialized at each generation, but contains an archive of best solutions
since evolution started — very similar to the hall-of-fame used in coevolution.

e A history knowledge component, used in problems where search landscapes
may change. This component maintains information about sequences of envi-
ronmental changes. For each environmental change, the following information is
stored: the current best solution, the directional change for each dimension and
the current change distance.

e A topographical knowledge component, which maintains a multi-dimensional
grid representation of the search space. Information is kept about each cell of
the grid, e.g. frequency of individuals that occupy the cell. Such frequency
information can be used to improve exploration by forcing mutation direction
towards unexplored areas.

The type of knowledge components and the way that knowledge is represented have
an influence on the acceptance and influence functions, as discussed in the following
sections.

14.3.2 Acceptance Functions

The acceptance function determines which individuals from the current population will
be used to shape the beliefs for the entire population. Static methods use absolute
ranking, based on fitness values, to select the top n% individuals. Any of the selection
methods for EAs (refer to Section 8.5) can be used, for example elitism, tournament
selection, or roulette-wheel selection, provided that the number of individuals remains
the same.

Dynamic methods do not have a fixed number of individuals that adjust the belief
space. Instead, the number of individuals may change from generation to generation.
Relative ranking, for example, selects individuals with above average (or median)

266 14. Cultural Algorithms

performance [128]. Alternatively, the number of individuals is determined as

n,
ns(t) = [=1] (14.5)
with v € [0,1]. Using this approach, the number of individuals used to adjust the
belief space is initially large, with the number decreasing exponentially over time.
Other simulated-annealing based schedules can be used instead.

Adaptive methods use information about the search space and process to self-adjust
the number of individuals to be selected. Reynolds and Chung [719] proposed a fuzzy
acceptance function to determine the number of individuals based on generation num-
ber and individual success ratio. Membership functions are defined to implement the
rules given in Algorithm 14.2.

14.3.3 Adjusting the Belief Space

For the purpose of this section, it is assumed that the belief space maintains a situ-
ational and normative knowledge component, and that a continuous, unconstrained
function is minimized.

With the number of accepted individuals, np(t), known, the two knowledge compo-
nents can be updated as follows [720]:

e Situational knowledge: Assuming that only one element is kept in the situa-
tional knowledge component,

St+1)={yt+1)} (14.6)
where
yit+1) = { ;n(i;lzlwwnts(t){xl(t)} i)ft}{e(f;;ilgl’wﬂs(t){Xl(t)}) < f(¥y®))
(14.7)

e Normative knowledge: In adjusting the normative knowledge component, a
conservative approach is followed when narrowing intervals, thereby delaying
too early exploration. Widening of intervals is applied more progressively. The
interval update rule is as follows:

Tomin j(t+1) = { Zi(i)j " gtﬁgr(v?lsi Tmin,j(t) or f(xi(t)) < L;(t) (14.8)

3= { 200 0 s SO <UD

b1y = { J0) a0 s RO <L

14.3 Belief Space 267

Algorithm 14.2 Fuzzy Rule-base for Cultural Algorithm Acceptance Function

if the current generation is early in the search then
if the success ratio is low then
Accept a medium number of individuals (30%);
end
if the success ratio is medium then
Accept a medium number of individuals;
end
if the success ratio is high then
Accept a larger number of individuals (40%);

end
end

if the current generation is in the middle stages of the search then
if the success ratio is low then
Accept a smaller number of individuals (20%);
end
if the success ratio is medium then
Accept a medium number of individuals;
end
if the success ratio is high then
Accept a medium number of individuals;

end
end

if the current generation is near the end of the search then
if the success ratio is low then
Accept a smaller number of individuals;
end
if the success ratio is medium then
Accept a smaller number of individuals;
end
if the success ratio is high then
Accept a medium number of individuals;

end
end

1= S0 L0 DOy

for each x,(¢t),l =1,...,np(t).

14.3.4 Influence Functions

Beliefs are used to adjust individuals in the population space to conform closer to the
global beliefs. The adjustments are realized via influence functions. To illustrate this

268 14. Cultural Algorithms

process, assume that an EP is used as the search algorithm in the population space.
The resulting algorithm is referred to as a CAEP.

The belief space is used to determine the mutational step sizes, and the direction
of changes (i.e. whether step sizes are added or subtracted). Reynolds and Chung
[720] proposed four ways in which the knowledge components can be used within the
influence function:

e Only the normative component is used to determine step sizes during offspring
generation:

’

5(t) = wij(t) + size(Z;())Ni; (0, 1) (14.12)

where
size(Z;(t)) = Tmaw,j(t) = Tmin,j (t) (14.13)

is the size of the belief interval for component j.

e Only the situational component is used for determining change direction:

ij (t) + |oij (0)Nij (0, 1) if @i (1) < 9;(t) € S(¢)
z;(t) = q i (t) = loij ()N (0, 1) if z45(¢) > g;(t) € S(2) (14.14)
Tij (t) + 045 (t)Nij(O, 1) otherwise

where 055 is the strategy parameter associated with component j of individual
i.

e The normative component is used to determine change directions, and the situ-
ational component is used to determine step sizes. Equation (14.14) is used, but
with

04 (t) = size(Z(t)) (14.15)

e The normative component is used for both the search directions and step sizes:
x;5(t) + |size(Z,

i
zij(t) = ¢ wij(t) — |size(Z;(
zij(t) + Psize(Z;

£))Ni;(0
£))Ni; (0,
() Nij

where 3 > 0 is a scaling coefficient.

‘ if Tij (t) < Tmin,j (t)
‘ if Izj(t) > Tmaz,j (t) (1416)
) otherwise

1)
1)
1

)

14.4 Fuzzy Cultural Algorithm

Section 14.3.2 discussed a fuzzy acceptance function, which initially allows many in-
dividuals to adjust the belief space, and less individuals as the generation number
increases. This section discusses a completely fuzzy CA approach, where an alter-
native fuzzy acceptance function is used and both belief space and population space
adaptations are based on fuzzy logic. This fuzzy CA was shown to improve accuracy
and convergence speed [725].

14.4 Fuzzy Cultural Algorithm 269

14.4.1 Fuzzy Acceptance Function

Reynolds and Zhu [725] proposed an acceptance function that selects few individuals
in the early steps of the search, but more as the generation number increases. The
motivation for this approach stems from the fact that the initial population usually
has only a few fit individuals that can sensibly contribute to the belief space.

As the first step, a fuzzy similarity matrix (or fuzzy equivalence relation), R, is con-
structed for the population space where

ry =1 LX) =Tl (14.17)
=1 |f(x1)]
fori,j =1,...,ns, with n, the size of the population, and R = [r;;]. Before calculation

of R, the individuals are sorted from best to worst according to fitness. The equivalence
relation is then used to calculate the a-cuts matrix (refer to Section 20.4), R, as

follows: 0
o 1 if Tij >« t

Qij = { 0 if Tij S Oé(t) (1418)

where «a(t) is referred to as the refinement value, and Ry = [a5] for ¢, = 1,...,n,.

A value of a;;; = 1 indicates an elite individual that will be used to update the belief
space, while a value of o;; = 0 indicates a non-elite individual. Because elements are
sorted according to fitness, the elite elements will occupy the first elements of R,,.

The refinement value is initialized to a large value, but bounded by the interval [0, 1],
which will ensure a small number of elite individuals. After each generation, the value
of o is changed according to

a(t+1)= { iE ift > e (14.19)

1—(t—€)/ny ifte[0,¢€)

where 71 and ~, are positive constants (suggested to be 41 = 0.2 and v2 = 2.66 [725]),
and e is set such that €/t,,q, = 0.3.

14.4.2 Fuzzified Belief Space

Only two knowledge components are considered. The situational component is crisp
and stores the best individual. The normative component is fuzzified.

The fuzzy interval update rule occurs in the following steps for each x;(t),l =
1,...,ng(t):

1. Initialization: Upper and lower bounds are initialized to the domain, as follows:

Tmin,ij(0) = Tmin,; (14.20)
Tmazj(0) = Tmaa,; (14.21)

where Zp,in; and Tp,qq,; are the domain bounds for component j.

270 14. Cultural Algorithms

2. Calculate the center of the interval for each individual as

cij(t) = %(mmimlj(t) + Tmaz 15 (1)) (14.22)

Interval bounds are adjusted until Zpin15(t), Tmaz,