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Preface to the Second Edition

Man has learned much from studies of natural systems, using what has been learned
to develop new algorithmic models to solve complex problems. This book presents an
introduction to some of these technological paradigms, under the umbrella of compu-
tational intelligence (CI). In this context, the book includes artificial neural networks,
evolutionary computation, swarm intelligence, artificial immune systems, and fuzzy
systems, which are respectively models of the following natural systems: biological
neural networks, evolution, swarm behavior of social organisms, natural immune sys-
tems, and human thinking processes.

Why this book on computational intelligence? Need arose from a graduate course,
where students did not have a deep background of artificial intelligence and mathe-
matics. Therefore the introductory perspective is essential, both in terms of the CI
paradigms and mathematical depth. While the material is introductory in nature, it
does not shy away from details, and does present the mathematical foundations to the
interested reader. The intention of the book is not to provide thorough attention to
all computational intelligence paradigms and algorithms, but to give an overview of
the most popular and frequently used models. For these models, detailed overviews
of different implementations are given. As such, the book is appropriate for beginners
in the CI field. The book is also applicable as prescribed material for a third year
undergraduate course.

In addition to providing an overview of CI paradigms, the book provides insights into
many new developments on the CI research front to tempt the interested reader. As
such, the material is useful to graduate students and researchers who want a broader
view of the different CI paradigms, also researchers from other fields who have no
knowledge of the power of CI techniques, e.g. bioinformaticians, biochemists, mechan-
ical and chemical engineers, economists, musicians and medical practitioners.

The book is organized in six parts. Part I provides a short introduction to the different
CI paradigms and a historical overview. Parts II to VI cover the different paradigms,
and can be reviewed in any order.

Part II deals with artificial neural networks (NN), including the following topics: Chap-
ter 2 introduces the artificial neuron as the fundamental part of a neural network,
including discussions on different activation functions, neuron geometry and learning
rules. Chapter 3 covers supervised learning, with an introduction to different types
of supervised networks. These include feedforward NNs, functional link NNs, product
unit NNs, cascade NNs, and recurrent NNs. Different supervised learning algorithms
are discussed, including gradient descent, conjugate gradient methods, LeapFrog and
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particle swarm optimization. Chapter 4 covers unsupervised learning. Different un-
supervised NN models are discussed, including the learning vector quantizer and self-
organizing feature maps. Chapter 5 discusses radial basis function NNs. Reinforce-
ment learning is dealt with in Chapter 6. Much attention is given to performance
issues of supervised networks in Chapter 7. The focus of the chapter is on accuracy
measures and ways to improve performance.

Part III introduces several evolutionary computation models. Topics covered include:
an overview of the computational evolution process and basic operators in Chapter 8.
Chapter 9 covers genetic algorithms, Chapter 10 genetic programming, Chapter 11
evolutionary programming, Chapter 12 evolution strategies, Chapter 13 differential
evolution, Chapter 14 cultural algorithms, and Chapter 15 covers coevolution, intro-
ducing both competitive and symbiotic coevolution.

Part IV presents an introduction to two types of swarm-based models: Chapter 16 dis-
cusses particle swarm optimization, while ant algorithms are discussed in Chapter 17.

Artificial immune systems are covered in Part V, with the natural immune system
being discussed in Chapter 18 and a number of artificial immune models in Chapter 19.

Part VI deals with fuzzy systems. Chapter 20 presents an introduction to fuzzy logic
with a discussion of membership functions. Fuzzy inferencing systems are explained
in Chapter 21, while fuzzy controllers are discussed in Chapter 22. An overview of
rough sets is given in Chapter 23.

Throughout the book, assignments are given to highlight certain aspects of the covered
material and to stimulate thought. Some example applications are given where they
seemed appropriate to better illustrate the theoretical concepts.

The accompanying website of this book, which can be located at http://ci.cs.up.ac.za,
provides algorithms to implement many of the CI models discussed in this book.
These algorithms are implemented in Java, and form part of an opensource library,
CIlib, developed by the Computational Intelligence Research Group in the Depart-
ment of Computer Science, University of Pretoria. CIlib (http://cilib.sourceforge.net)
is a generic framework for easy implementation of new CI algoithms, and currently
contains frameworks for particle swarm optimization, neural networks, and evolution-
ary computation. Lists with acronyms and symbols used in the book can also be
downloaded from the book’s website.

As a final remark, it is necessary to thank a number of people who have helped to
produce this book. First of all, thanks to my mother, Magriet Engelbrecht, who has
helped with typing and proofreading most of the text. Also, thanks to Anri Henning
who spent a number of nights proofreading the material. The part on artificial immune
systems was written by one of my PhD students, Attie Graaff. Without his help, this
book would not have been so complete. Lastly, I thank all of my postgraduate students
who have helped with the development of CIlib.

Pretoria, South Africa



Part I

INTRODUCTION

1





Chapter 1

Introduction to
Computational Intelligence

A major thrust in algorithmic development is the design of algorithmic models to
solve increasingly complex problems. Enormous successes have been achieved through
the modeling of biological and natural intelligence, resulting in so-called “intelligent
systems”. These intelligent algorithms include artificial neural networks, evolution-
ary computation, swarm intelligence, artificial immune systems, and fuzzy systems.
Together with logic, deductive reasoning, expert systems, case-based reasoning and
symbolic machine learning systems, these intelligent algorithms form part of the field
of Artificial Intelligence (AI). Just looking at this wide variety of AI techniques, AI
can be seen as a combination of several research disciplines, for example, computer
science, physiology, philosophy, sociology and biology.

But what is intelligence? Attempts to find definitions of intelligence still provoke heavy
debate. Dictionaries define intelligence as the ability to comprehend, to understand
and profit from experience, to interpret intelligence, having the capacity for thought
and reason (especially to a high degree). Other keywords that describe aspects of
intelligence include creativity, skill, consciousness, emotion and intuition.

Can computers be intelligent? This is a question that to this day causes more debate
than the definitions of intelligence. In the mid-1900s, Alan Turing gave much thought
to this question. He believed that machines could be created that would mimic the
processes of the human brain. Turing strongly believed that there was nothing the
brain could do that a well-designed computer could not. More than fifty years later
his statements are still visionary. While successes have been achieved in modeling
small parts of biological neural systems, there are still no solutions to the complex
problem of modeling intuition, consciousness and emotion – which form integral parts
of human intelligence.

In 1950 Turing published his test of computer intelligence, referred to as the Turing
test [858]. The test consisted of a person asking questions via a keyboard to both a
person and a computer. If the interrogator could not tell the computer apart from the
human, the computer could be perceived as being intelligent. Turing believed that it
would be possible for a computer with 109 bits of storage space to pass a 5-minute
version of the test with 70% probability by the year 2000. Has his belief come true?
The answer to this question is left to the reader, in fear of running head first into
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4 1. Introduction to Computational Intelligence

another debate! However, the contents of this book may help to shed some light on
the answer to this question.

A more recent definition of artificial intelligence came from the IEEE Neural Networks
Council of 1996: the study of how to make computers do things at which people are
doing better. A definition that is flawed, but this is left to the reader to explore in
one of the assignments at the end of this chapter.

This book concentrates on a sub-branch of AI, namely Computational Intelligence
(CI) – the study of adaptive mechanisms to enable or facilitate intelligent behavior in
complex and changing environments. These mechanisms include those AI paradigms
that exhibit an ability to learn or adapt to new situations, to generalize, abstract,
discover and associate. The following CI paradigms are covered: artificial neural net-
works, evolutionary computation, swarm intelligence, artificial immune systems, and
fuzzy systems. While individual techniques from these CI paradigms have been ap-
plied successfully to solve real-world problems, the current trend is to develop hybrids
of paradigms, since no one paradigm is superior to the others in all situations. In
doing so, we capitalize on the respective strengths of the components of the hybrid CI
system, and eliminate weaknesses of individual components.

The rest of this chapter is organized as follows: Section 1.1 of this chapter presents a
short overview of the different CI paradigms, also discussing the biological motivation
for each paradigm. A short history of AI is presented in Section 1.2.

At this point it is necessary to state that there are different definitions of what con-
stitutes CI. This book reflects the opinion of the author, and may well cause some
debate. For example, swarm intelligence (SI) and artificial immune systems (AIS)
are classified as CI paradigms, while many researchers consider these paradigms to
belong only under Artificial Life. However, both particle swarm optimization (PSO)
and ant colony optimization (ACO), as treated under SI, satisfy the definition of CI
given above, and are therefore included in this book as being CI techniques. The same
applies to AISs.

1.1 Computational Intelligence Paradigms

This book considers five main paradigms of Computation Intelligence (CI), namely
artificial neural networks (NN), evolutionary computation (EC), swarm intelligence
(SI), artificial immune systems (AIS), and fuzzy systems (FS). Figure 1.1 gives a
summary of the aim of the book. In addition to CI paradigms, probabilistic methods
are frequently used together with CI techniques, which is also shown in the figure.
Soft computing, a term coined by Lotfi Zadeh, is a different grouping of paradigms,
which usually refers to the collective set of CI paradigms and probabilistic methods.
The arrows indicate that techniques from different paradigms can be combined to form
hybrid systems.

Each of the CI paradigms has its origins in biological systems. NNs model biological
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NN EC

SIFS

Probabilistic
Techniques

AIS

Figure 1.1 Computational Intelligence Paradigms

neural systems, EC models natural evolution (including genetic and behavioral evo-
lution), SI models the social behavior of organisms living in swarms or colonies, AIS
models the human immune system, and FS originated from studies of how organisms
interact with their environment.

1.1.1 Artificial Neural Networks

The brain is a complex, nonlinear and parallel computer. It has the ability to perform
tasks such as pattern recognition, perception and motor control much faster than any
computer – even though events occur in the nanosecond range for silicon gates, and
milliseconds for neural systems. In addition to these characteristics, others such as
the ability to learn, memorize and still generalize, prompted research in algorithmic
modeling of biological neural systems – referred to as artificial neural networks (NN).

It is estimated that there is in the order of 10-500 billion neurons in the human cortex,
with 60 trillion synapses. The neurons are arranged in approximately 1000 main
modules, each having about 500 neural networks. Will it then be possible to truly
model the human brain? Not now. Current successes in neural modeling are for small
artificial NNs aimed at solving a specific task. Problems with a single objective can
be solved quite easily with moderate-sized NNs as constrained by the capabilities of
modern computing power and storage space. The brain has, however, the ability to
solve several problems simultaneously using distributed parts of the brain. We still
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have a long way to go ...

The basic building blocks of biological neural systems are nerve cells, referred to as
neurons. As illustrated in Figure 1.2, a neuron consists of a cell body, dendrites and
an axon. Neurons are massively interconnected, where an interconnection is between
the axon of one neuron and a dendrite of another neuron. This connection is referred
to as a synapse. Signals propagate from the dendrites, through the cell body to the
axon; from where the signals are propagated to all connected dendrites. A signal is
transmitted to the axon of a neuron only when the cell “fires”. A neuron can either
inhibit or excite a signal.

Figure 1.2 A Biological Neuron

An artificial neuron (AN) is a model of a biological neuron (BN). Each AN receives
signals from the environment, or other ANs, gathers these signals, and when fired,
transmits a signal to all connected ANs. Figure 1.3 is a representation of an artificial
neuron. Input signals are inhibited or excited through negative and positive numerical
weights associated with each connection to the AN. The firing of an AN and the
strength of the exiting signal are controlled via a function, referred to as the activation
function. The AN collects all incoming signals, and computes a net input signal as
a function of the respective weights. The net input signal serves as input to the
activation function which calculates the output signal of the AN.

output signalf(net)

weightinput signals

Figure 1.3 An Artificial Neuron
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An artificial neural network (NN) is a layered network of ANs. An NN may consist
of an input layer, hidden layers and an output layer. ANs in one layer are connected,
fully or partially, to the ANs in the next layer. Feedback connections to previous layers
are also possible. A typical NN structure is depicted in Figure 1.4.

hidden layer

output layer

input layer

Figure 1.4 An Artificial Neural Network

Several different NN types have been developed, for example (the reader should note
that the list below is by no means complete):

• single-layer NNs, such as the Hopfield network;

• multilayer feedforward NNs, including, for example, standard backpropagation,
functional link and product unit networks;

• temporal NNs, such as the Elman and Jordan simple recurrent networks as well
as time-delay neural networks;

• self-organizing NNs, such as the Kohonen self-organizing feature maps and the
learning vector quantizer;

• combined supervised and unsupervised NNs, e.g. some radial basis function
networks.

These NN types have been used for a wide range of applications, including diagno-
sis of diseases, speech recognition, data mining, composing music, image processing,
forecasting, robot control, credit approval, classification, pattern recognition, planning
game strategies, compression, and many others.
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1.1.2 Evolutionary Computation

Evolutionary computation (EC) has as its objective to mimic processes from natural
evolution, where the main concept is survival of the fittest: the weak must die. In
natural evolution, survival is achieved through reproduction. Offspring, reproduced
from two parents (sometimes more than two), contain genetic material of both (or
all) parents – hopefully the best characteristics of each parent. Those individuals
that inherit bad characteristics are weak and lose the battle to survive. This is nicely
illustrated in some bird species where one hatchling manages to get more food, gets
stronger, and at the end kicks out all its siblings from the nest to die.

Evolutionary algorithms use a population of individuals, where an individual is re-
ferred to as a chromosome. A chromosome defines the characteristics of individuals in
the population. Each characteristic is referred to as a gene. The value of a gene is re-
ferred to as an allele. For each generation, individuals compete to reproduce offspring.
Those individuals with the best survival capabilities have the best chance to repro-
duce. Offspring are generated by combining parts of the parents, a process referred
to as crossover. Each individual in the population can also undergo mutation which
alters some of the allele of the chromosome. The survival strength of an individual
is measured using a fitness function which reflects the objectives and constraints of
the problem to be solved. After each generation, individuals may undergo culling, or
individuals may survive to the next generation (referred to as elitism). Additionally,
behavioral characteristics (as encapsulated in phenotypes) can be used to influence the
evolutionary process in two ways: phenotypes may influence genetic changes, and/or
behavioral characteristics evolve separately.

Different classes of evolutionary algorithms (EA) have been developed:

• Genetic algorithms which model genetic evolution.

• Genetic programming which is based on genetic algorithms, but individuals
are programs (represented as trees).

• Evolutionary programming which is derived from the simulation of adaptive
behavior in evolution (phenotypic evolution).

• Evolution strategies which are geared toward modeling the strategy parame-
ters that control variation in evolution, i.e. the evolution of evolution.

• Differential evolution, which is similar to genetic algorithms, differing in the
reproduction mechanism used.

• Cultural evolution which models the evolution of culture of a population and
how the culture influences the genetic and phenotypic evolution of individuals.

• Coevolution where initially “dumb” individuals evolve through cooperation,
or in competition with one another, acquiring the necessary characteristics to
survive.

Other aspects of natural evolution have also been modeled. For example, mass ex-
tinction, and distributed (island) genetic algorithms, where different populations are
maintained with genetic evolution taking place in each population. In addition, as-
pects such as migration among populations are modeled. The modeling of parasitic
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behavior has also contributed to improved evolutionary techniques. In this case para-
sites infect individuals. Those individuals that are too weak die. On the other hand,
immunology has been used to study the evolution of viruses and how antibodies should
evolve to kill virus infections.

Evolutionary computation has been used successfully in real-world applications, for
example, data mining, combinatorial optimization, fault diagnosis, classification, clus-
tering, scheduling, and time series approximation.

1.1.3 Swarm Intelligence

Swarm intelligence (SI) originated from the study of colonies, or swarms of social or-
ganisms. Studies of the social behavior of organisms (individuals) in swarms prompted
the design of very efficient optimization and clustering algorithms. For example, sim-
ulation studies of the graceful, but unpredictable, choreography of bird flocks led to
the design of the particle swarm optimization algorithm, and studies of the foraging
behavior of ants resulted in ant colony optimization algorithms.

Particle swarm optimization (PSO) is a stochastic optimization approach, modeled on
the social behavior of bird flocks. PSO is a population-based search procedure where
the individuals, referred to as particles, are grouped into a swarm. Each particle in
the swarm represents a candidate solution to the optimization problem. In a PSO
system, each particle is “flown” through the multidimensional search space, adjusting
its position in search space according to its own experience and that of neighboring
particles. A particle therefore makes use of the best position encountered by itself
and the best position of its neighbors to position itself toward an optimum solution.
The effect is that particles “fly” toward an optimum, while still searching a wide area
around the current best solution. The performance of each particle (i.e. the “closeness”
of a particle to the global minimum) is measured according to a predefined fitness
function which is related to the problem being solved. Applications of PSO include
function approximation, clustering, optimization of mechanical structures, and solving
systems of equations.

Studies of ant colonies have contributed in abundance to the set of intelligent algo-
rithms. The modeling of pheromone depositing by ants in their search for the shortest
paths to food sources resulted in the development of shortest path optimization al-
gorithms. Other applications of ant colony optimization include routing optimization
in telecommunications networks, graph coloring, scheduling and solving the quadratic
assignment problem. Studies of the nest building of ants and bees resulted in the
development of clustering and structural optimization algorithms.

1.1.4 Artificial Immune Systems

The natural immune system (NIS) has an amazing pattern matching ability, used to
distinguish between foreign cells entering the body (referred to as non-self, or antigen)
and the cells belonging to the body (referred to as self). As the NIS encounters antigen,
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the adaptive nature of the NIS is exhibited, with the NIS memorizing the structure of
these antigen for faster future response the antigen.

In NIS research, four models of the NIS can be found:

• The classical view of the immune system is that the immune system distin-
guishes between self and non-self, using lymphocytes produced in the lymphoid
organs. These lymphocytes “learn” to bind to antigen.

• Clonal selection theory, where an active B-Cell produces antibodies through
a cloning process. The produced clones are also mutated.

• Danger theory, where the immune system has the ability to distinguish be-
tween dangerous and non-dangerous antigen.

• Network theory, where it is assumed that B-Cells form a network. When a
B-Cell responds to an antigen, that B-Cell becomes activated and stimulates all
other B-Cells to which it is connected in the network.

An artificial immune system (AIS) models some of the aspects of a NIS, and is mainly
applied to solve pattern recognition problems, to perform classification tasks, and to
cluster data. One of the main application areas of AISs is in anomaly detection, such
as fraud detection, and computer virus detection.

1.1.5 Fuzzy Systems

Traditional set theory requires elements to be either part of a set or not. Similarly,
binary-valued logic requires the values of parameters to be either 0 or 1, with similar
constraints on the outcome of an inferencing process. Human reasoning is, however,
almost always not this exact. Our observations and reasoning usually include a mea-
sure of uncertainty. For example, humans are capable of understanding the sentence:
“Some Computer Science students can program in most languages”. But how can a
computer represent and reason with this fact?

Fuzzy sets and fuzzy logic allow what is referred to as approximate reasoning. With
fuzzy sets, an element belongs to a set to a certain degree of certainty. Fuzzy logic
allows reasoning with these uncertain facts to infer new facts, with a degree of certainty
associated with each fact. In a sense, fuzzy sets and logic allow the modeling of common
sense.

The uncertainty in fuzzy systems is referred to as nonstatistical uncertainty, and should
not be confused with statistical uncertainty. Statistical uncertainty is based on the
laws of probability, whereas nonstatistical uncertainty is based on vagueness, impre-
cision and/or ambiguity. Statistical uncertainty is resolved through observations. For
example, when a coin is tossed we are certain what the outcome is, while before toss-
ing the coin, we know that the probability of each outcome is 50%. Nonstatistical
uncertainty, or fuzziness, is an inherent property of a system and cannot be altered or
resolved by observations.

Fuzzy systems have been applied successfully to control systems, gear transmission
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and braking systems in vehicles, controlling lifts, home appliances, controlling traffic
signals, and many others.

1.2 Short History

Aristotle (384–322 bc) was possibly the first to move toward the concept of artificial
intelligence. His aim was to explain and codify styles of deductive reasoning, which
he referred to as syllogisms. Ramon Llull (1235–1316) developed the Ars Magna:
an optimistic attempt to build a machine, consisting of a set of wheels, which was
supposed to be able to answer all questions. Today this is still just a dream – or
rather, an illusion. The mathematician Gottfried Leibniz (1646–1716) reasoned about
the existence of a calculus philosophicus, a universal algebra that can be used to
represent all knowledge (including moral truths) in a deductive system.

The first major contribution was by George Boole in 1854, with his development of the
foundations of propositional logic. In 1879, Gottlieb Frege developed the foundations
of predicate calculus. Both propositional and predicate calculus formed part of the
first AI tools.

It was only in the 1950s that the first definition of artificial intelligence was established
by Alan Turing. Turing studied how machinery could be used to mimic processes of
the human brain. His studies resulted in one of the first publications of AI, entitled
Intelligent Machinery. In addition to his interest in intelligent machines, he had an
interest in how and why organisms developed particular shapes. In 1952 he published
a paper, entitled The Chemical Basis of Morphogenesis – possibly the first studies in
what is now known as artificial life.

The term artificial intelligence was first coined in 1956 at the Dartmouth conference,
organized by John MacCarthy – now regarded as the father of AI. From 1956 to 1969
much research was done in modeling biological neurons. Most notable was the work on
perceptrons by Rosenblatt, and the adaline by Widrow and Hoff. In 1969, Minsky and
Papert caused a major setback to artificial neural network research. With their book,
called Perceptrons, they concluded that, in their “intuitive judgment”, the extension
of simple perceptrons to multilayer perceptrons “is sterile”. This caused research in
NNs to go into hibernation until the mid-1980s. During this period of hibernation a
few researchers, most notably Grossberg, Carpenter, Amari, Kohonen and Fukushima,
continued their research efforts.

The resurrection of NN research came with landmark publications from Hopfield,
Hinton, and Rumelhart and McLelland in the early and mid-1980s. From the late
1980s research in NNs started to explode, and is today one of the largest research
areas in Computer Science.

The development of evolutionary computation (EC) started with genetic algorithms
in the 1950s with the work of Fraser, Bremermann and Reed. However, it is John
Holland who is generally viewed as the father of EC, most specifically of genetic algo-
rithms. In these works, elements of Darwin’s theory of evolution [173] were modeled



12 1. Introduction to Computational Intelligence

algorithmically. In the 1960s, Rechenberg developed evolutionary strategies (ES). In-
dependently from this work, Lawrence Fogel developed evolutionary programming as
an approach to evolve behavioral models. Other important contributions that shaped
the field were by De Jong, Schaffer, Goldberg, Koza, Schwefel, Storn, and Price.

Many people believe that the history of fuzzy logic started with Gautama Buddha
(563 bc) and Buddhism, which often described things in shades of gray. However, the
Western community considers the work of Aristotle on two-valued logic as the birth of
fuzzy logic. In 1920 Lukasiewicz published the first deviation from two-valued logic in
his work on three-valued logic – later expanded to an arbitrary number of values. The
quantum philosopher Max Black was the first to introduce quasi-fuzzy sets, wherein
degrees of membership to sets were assigned to elements. It was Lotfi Zadeh who
contributed most to the field of fuzzy logic, being the developer of fuzzy sets [944].
From then, until the 1980s fuzzy systems was an active field, producing names such
as Mamdani, Sugeno, Takagi and Bezdek. Then, fuzzy systems also experienced a
dark age in the 1980s, but was revived by Japanese researchers in the late 1980s.
Today it is a very active field with many successful applications, especially in control
systems. In 1991, Pawlak introduced rough set theory, where the fundamental concept
is that of finding a lower and upper approximation to input space. All elements within
the lower approximation have full membership, while the boundary elements (those
elements between the upper and lower approximation) belong to the set to a certain
degree.

Interestingly enough, it was an unacknowledged South African poet, Eugene N Marais
(1871-1936), who produced some of the first and most significant contributions to
swarm intelligence in his studies of the social behavior of both apes and ants. Two
books on his findings were published more than 30 years after his death, namely The
Soul of the White Ant [560] and The Soul of the Ape [559]. The algorithmic modeling
of swarms only gained momentum in the early 1990s with the work of Marco Dorigo on
the modeling of ant colonies. In 1995, Eberhart and Kennedy [224, 449] developed the
particle swarm optimization algorithm as a model of bird flocks. Swarm intelligence
is in its infancy, and is a promising field resulting in interesting applications.

The different theories in the science of immunology inspired different artificial immune
models (AISs), which are either based on a specific theory on immunology or a combi-
nation of the different theories. The initial classical view and theory of clonal selection
in the natural immune system was defined by Burnet [96] as B-Cells and Killer-T-Cells
with antigen-specific receptors. This view was enhanced by the definition of Bretscher
and Cohn [87] by introducing the concept of a helper T-Cell. Lafferty and Cunning-
ham [497] added a co-stimulatory signal to the helper T-Cell model of Bretscher and
Cohn [87].

The first work in AIS on the modeling of the discrimination between self and non-self
with mature T-Cells was introduced by Forrest et al. [281]. Forrest et al. introduced
a training technique known as the negative selection of T-Cells [281]. The model of
Mori et al [606] was the first to implement the clonal selection theory, which was
applied to optimization problems. The network theory of the natural immune system
was introduced and formulated by Jerne [416] and further developed by Perelson [677].
The theory of Jerne is that the B-Cells are interconnected to form a network of cells
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[416, 677]. The first mathematical model on the theory of Jerne was proposed by
Farmer et al. [255]. The network theory has been modeled into artificial immune
systems (AISs) for data mining and data analysis tasks. The earliest AIS research
based on the mathematical model of the network theory [255], was published by Hunt
and Cooke [398]. The model of Hunt and Cooke was applied to the recognition of DNA
sequences. The danger theory was introduced by Matzinger [567, 568] and is based
on the co-stimulated model of Lafferty and Cunningham [497]. The main idea of the
danger theory is that the immune system distinguishes between what is dangerous
and non-dangerous in the body. The first work on danger theory inspired AISs was
published by Aickelin and Cayzer [14].

1.3 Assignments

1. Comment on the eligibility of Turing’s test for computer intelligence, and his
belief that computers with 109 bits of storage would pass a 5-minute version of
his test with 70% probability.

2. Comment on the eligibility of the definition of artificial intelligence as given by
the 1996 IEEE Neural Networks Council.

3. Based on the definition of CI given in this chapter, show that each of the
paradigms (NN, EC, SI, AIS, and FS) does satisfy the definition.





Part II

ARTIFICIAL NEURAL
NETWORKS

Artificial neural networks (NN) were inspired from brain modeling studies. Chapter 1
illustrated the relationship between biological and artificial neural networks. But why
invest so much effort in modeling biological neural networks? Implementations in a
number of application fields have presented ample rewards in terms of efficiency and
ability to solve complex problems. Some of the classes of applications to which artificial
NNs have been applied include:

• classification, where the aim is to predict the class of an input vector;

• pattern matching, where the aim is to produce a pattern best associated with a
given input vector;

• pattern completion, where the aim is to complete the missing parts of a given
input vector;

• optimization, where the aim is to find the optimal values of parameters in an
optimization problem;

• control, where, given an input vector, an appropriate action is suggested;

• function approximation/times series modeling, indexfunction approximation
where the aim is to learn the functional relationships between input and de-
sired output vectors;

• data mining, with the aim of discovering hidden patterns from data – also referred
to as knowledge discovery.
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A neural network is basically a realization of a nonlinear mapping from RI to RK , i.e.

fNN : RI → RK (1.1)

where I and K are respectively the dimension of the input and target (desired output)
space. The function fNN is usually a complex function of a set of nonlinear functions,
one for each neuron in the network.

Neurons form the basic building blocks of NNs. Chapter 2 discusses the single neuron,
also referred to as the perceptron, in detail. Chapter 3 discusses NNs under the su-
pervised learning regime, while Chapter 4 covers unsupervised learning NNs. Hybrid
supervised and unsupervised learning paradigms are discussed in Chapter 5. Rein-
forcement learning is covered in Chapter 6. Part II is concluded by Chapter 7 which
discusses NN performance issues, with reference to supervised learning.



Chapter 2

The Artificial Neuron

An artificial neuron (AN), or neuron, implements a nonlinear mapping from RI usually
to [0, 1] or [−1, 1], depending on the activation function used. That is,

fAN : RI → [0, 1] (2.1)

or
fAN : RI → [−1, 1] (2.2)

where I is the number of input signals to the AN. Figure 2.1 presents an illustration
of an AN with notational conventions that will be used throughout this text. An AN
receives a vector of I input signals,

z = (z1, z2, · · · , zI) (2.3)

either from the environment or from other ANs. To each input signal, zi, is associated
a weight, vi, to strengthen or deplete the input signal. The AN computes the net input
signal, and uses an activation function fAN to compute the output signal, o, given the
net input. The strength of the output signal is further influenced by a threshold value,
θ, also referred to as the bias.

v2

z1

z2

zI

v1

vI

of(net− θ)

Figure 2.1 An Artificial Neuron

2.1 Calculating the Net Input Signal

The net input signal to an AN is usually computed as the weighted sum of all input
signals,

net =
I∑

i=1

zivi (2.4)

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
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Artificial neurons that compute the net input signal as the weighted sum of input
signals are referred to as summation units (SU). An alternative to compute the net
input signal is to use product units (PU) [222], where

net =
I∏

i=1

zvi
i (2.5)

Product units allow higher-order combinations of inputs, having the advantage of
increased information capacity.

2.2 Activation Functions

The function fAN receives the net input signal and bias, and determines the output (or
firing strength) of the neuron. This function is referred to as the activation function.
Different types of activation functions can be used. In general, activation functions
are monotonically increasing mappings, where (excluding the linear function)

fAN (−∞) = 0 or fAN (−∞) = −1 (2.6)

and
fAN (∞) = 1 (2.7)

Frequently used activation functions are enumerated below:

1. Linear function (see Figure 2.2(a) for θ = 0):

fAN (net− θ) = λ(net− θ) (2.8)

where λ is the slope of the function. The linear function produces a linearly
modulated output, where λ is a constant.

2. Step function (see Figure 2.2(b) for θ > 0):

fAN (net− θ) =
{

γ1 if net ≥ θ
γ2 if net < θ

(2.9)

The step function produces one of two scalar output values, depending on the
value of the threshold θ. Usually, a binary output is produced for which γ1 = 1
and γ2 = 0; a bipolar output is also sometimes used where γ1 = 1 and γ2 = −1.

3. Ramp function (see Figure 2.2(c) for θ > 0):

fAN (net− θ) =




γ if net− θ ≥ ε
net− θ if −ε < net− θ < ε
−γ if net− θ ≤ −ε

(2.10)

The ramp function is a combination of the linear and step functions.



2.2 Activation Functions 19

fAN(net− θ)

net− θ

(a) Linear function

γ2

fAN(net− θ)

γ1

θ

net− θ

(b) Step function

net− θθ

γ

fAN(net− θ)

−γ

(c) Ramp function

net− θ

θ = 0

1

fAN(net− θ)

(d) Sigmoid function

net− θ

fAN(net− θ)

−1

1

θ = 0

(e) Hyperbolic tangent function

net− θ

fAN(net− θ)

(f) Gaussian function

Figure 2.2 Activation Functions
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4. Sigmoid function (see Figure 2.2(d) for θ = 0):

fAN (net− θ) =
1

1 + e−λ(net−θ)
(2.11)

The sigmoid function is a continuous version of the ramp function, with
fAN (net) ∈ (0, 1). The parameter λ controls the steepness of the function.
Usually, λ = 1.

5. Hyperbolic tangent (see Figure 2.2(e) for θ = 0):

fAN (net− θ) =
eλ(net−θ) − e−λ(net−θ)

eλ(net−θ) + e−λ(net−θ)
(2.12)

or also approximated as

fAN (net− θ) =
2

1 + e−λ(net−θ)
− 1 (2.13)

The output of the hyperbolic tangent is in the range (−1, 1).

6. Gaussian function (see Figure 2.2(f) for θ = 0):

fAN (net− θ) = e−(net−θ)2/σ2
(2.14)

where net− θ is the mean and σ the standard deviation of the Gaussian distri-
bution.

2.3 Artificial Neuron Geometry

Single neurons can be used to realize linearly separable functions without any error.
Linear separability means that the neuron can separate the space of I-dimensional in-
put vectors yielding an above-threshold response from those having a below-threshold
response by an I-dimensional hyperplane. The hyperplane forms the boundary be-
tween the input vectors associated with the two output values. Figure 2.3 illustrates
the decision boundary for a neuron with the ramp activation function. The hyperplane
separates the input vectors for which

∑
i zivi− θ > 0 from the input vectors for which∑

i zivi − θ < 0.

Figure 2.4 shows how two Boolean functions, AND and OR, can be implemented
using a single perceptron. These are examples of linearly separable functions. For
such simple functions, it is easy to manually determine values for the bias and the
weights. Alternatively, given the input signals and a value for θ, the weight values vi,
can easily be calculated by solving

vZ = θ (2.15)

where Z is the matrix of input patterns as given in the truth tables.

An example of a Boolean function that is not linearly separable is the XOR as illus-
trated in Figure 2.5. A single perceptron can not implement this function. If a single
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net− θ = 0

net− θ < 0

θ

net− θ > 0

Figure 2.3 Artificial Neuron Boundary

perceptron is used, then the best accuracy that can be obtained is 75%. To be able
to learn functions that are not linearly separable, a layered NN of several neurons is
required. For example, the XOR function requires two input units, two hidden units
and one output unit.

2.4 Artificial Neuron Learning

The question that now remains to be answered is whether an automated approach
exists for determining the values of the weights vi and the threshold θ? As illustrated
in the previous section, it is easy to calculate these values for simple problems. But
suppose that no prior knowledge exists about the function – except for data – how can
the vi and θ values be computed? The answer is through learning. The AN learns the
best values for the vi and θ from the given data. Learning consists of adjusting weight
and threshold values until a certain criterion (or several criteria) is (are) satisfied.

There are three main types of learning:

• Supervised learning, where the neuron (or NN) is provided with a data set
consisting of input vectors and a target (desired output) associated with each
input vector. This data set is referred to as the training set. The aim of super-
vised training is then to adjust the weight values such that the error between the
real output, o = f(net−θ), of the neuron and the target output, t, is minimized.

• Unsupervised learning, where the aim is to discover patterns or features in
the input data with no assistance from an external source. Many unsupervised
learning algorithms basically perform a clustering of the training patterns.

• Reinforcement learning, where the aim is to reward the neuron (or parts of
a NN) for good performance, and to penalize the neuron for bad performance.
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The Artificial Neuron

Truth Table Decision Boundary

z2
v2 = 1

z1 v1 = 1

θ = 2
z1 AND z2

z1 z2 z1 AND z2

00 0

10 0

01 0

1 1 1

z1

z2

net− θ > 0

net− θ < 0

(a) AND Perceptron

Truth Table

The Artificial Neuron

Decision Boundary

z2 z1 OR z2

00

10

1 0

1 1 1

0

1

1

z1

z2
v2 = 2

z1 v1 = 2

θ = 2
z1 OR z2

z1

net− θ > 0

net− θ < 0

z2

(b) OR Perceptron

Figure 2.4 Linear Separable Boolean Perceptrons
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Truth Table Decision Boundary

z1

z2

z1 z2 z1 XOR z2

00 0

10

1 0

1 1

1

0

1

Figure 2.5 XOR Decision Boundaries

Several learning rules have been developed for the different learning types. Before con-
tinuing with these learning rules, we simplify our AN model by introducing augmented
vectors.

2.4.1 Augmented Vectors

An artificial neuron is characterized by its weight vector v, threshold θ and activation
function. During learning, both the weights and the threshold are adapted. To simplify
learning equations, the input vector is augmented to include an additional input unit,
zI+1, referred to as the bias unit. The value of zI+1 is always -1, and the weight vI+1

serves as the value of the threshold. The net input signal to the AN (assuming SUs)
is then calculated as

net =
I∑

i=1

zivi − θ

=
I∑

i=1

zivi + zI+1vI+1

=
I+1∑
i=1

zivi (2.16)

where θ = zI+1vI+1 = −vI+1.

In the case of the step function, an input vector yields an output of 1 when
∑I+1

i=1 zivi ≥
0, and 0 when

∑I+1
i=1 zivi < 0.

The rest of this chapter considers training rules for single neurons.
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2.4.2 Gradient Descent Learning Rule

While gradient descent (GD) is not the first training rule for ANs, it is possibly the
approach that is used most to train neurons (and NNs for that matter). GD requires
the definition of an error (or objective) function to measure the neuron’s error in
approximating the target. The sum of squared errors

E =
PT∑
p=1

(tp − op)2 (2.17)

is usually used, where tp and op are respectively the target and actual output for the
p-th pattern, and PT is the total number of input-target vector pairs (patterns) in the
training set.

The aim of GD is to find the weight values that minimize E . This is achieved by
calculating the gradient of E in weight space, and to move the weight vector along the
negative gradient (as illustrated for a single weight in Figure 2.6).

Error

Minimum Weight

Figure 2.6 Gradient Descent Illustrated

Given a single training pattern, weights are updated using

vi(t) = vi(t− 1) + ∆vi(t) (2.18)

with
∆vi(t) = η(− ∂E

∂vi
) (2.19)

where
∂E
∂vi

= −2(tp − op)
∂f

∂netp
zi,p (2.20)

and η is the learning rate (i.e. the size of the steps taken in the negative direction of
the gradient). The calculation of the partial derivative of f with respect to netp (the
net input for pattern p) presents a problem for all discontinuous activation functions,
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such as the step and ramp functions; zi,p is the i-th input signal corresponding to
pattern p. The Widrow-Hoff learning rule presents a solution for the step and ramp
functions, while the generalized delta learning rule assumes continuous functions that
are at least once differentiable.

2.4.3 Widrow-Hoff Learning Rule

For the Widrow-Hoff learning rule [907], assume that f = netp. Then ∂f
∂netp

= 1,
giving

∂E
∂vi

= −2(tp − op)zi,p (2.21)

Weights are then updated using

vi(t) = vi(t− 1) + 2η(tp − op)zi,p (2.22)

The Widrow-Hoff learning rule, also referred to as the least-means-square (LMS) al-
gorithm, was one of the first algorithms used to train layered neural networks with
multiple adaptive linear neurons. This network was commonly referred to as the
Madaline [907, 908].

2.4.4 Generalized Delta Learning Rule

The generalized delta learning rule is a generalization of the Widrow-Hoff learning rule
that assumes differentiable activation functions. Assume that the sigmoid function
(from equation (2.11)) is used. Then,

∂f

∂netp
= op(1− op) (2.23)

giving
∂E
∂vi

= −2(tp − op)op(1− op)zi,p (2.24)

2.4.5 Error-Correction Learning Rule

For the error-correction learning rule it is assumed that binary-valued activation func-
tions are used, for example, the step function. Weights are only adjusted when the
neuron responds in error. That is, only when (tp − op) = 1 or (tp − op) = −1, are
weights adjusted using equation (2.22).

2.5 Assignments

1. Explain why the threshold θ is necessary. What is the effect of θ, and what will
the consequences be of not having a threshold?
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2. Explain what the effects of weight changes are on the separating hyperplane.

3. Explain the effect of changing θ on the hyperplane that forms the decision bound-
ary.

4. Which of the following Boolean functions can be realized with a single neuron
that implements a SU? Justify your answer by giving weight and threshold values.

(a) z1z2z3

(b) z1z2 + z1z2

(c) z1 + z2

where z1z2 denotes (z1 AND z2); z1 + z2 denotes (z1 OR z2); z1 denotes
(NOT z1).

5. Is it possible to use a single PU to learn problems that are not linearly separable?

6. In the calculation of error, why is the error per pattern squared?

7. Can errors be calculated as |tp − op| instead of (tp − op)2 if gradient descent is
used to adjust weights?

8. Is the following statement true or false: A single neuron can be used to approx-
imate the function f(z) = z2? Justify your answer.

9. What are the advantages of using the hyperbolic tangent activation function
instead of the sigmoid activation function?



Chapter 3

Supervised Learning Neural
Networks

Single neurons have limitations in the type of functions they can learn. A single neuron
(implementing a SU) can be used to realize linearly separable functions only. As soon
as functions that are not linearly separable need to be learned, a layered network of
neurons is required. Training these layered networks is more complex than training a
single neuron, and training can be supervised, unsupervised or through reinforcement.
This chapter deals with supervised training.

Supervised learning requires a training set that consists of input vectors and a target
vector associated with each input vector. The NN learner uses the target vector
to determine how well it has learned, and to guide adjustments to weight values to
reduce its overall error. This chapter considers different NN types that learn under
supervision. These network types include standard multilayer NNs, functional link
NNs, simple recurrent NNs, time-delay NNs, product unit NNs, and cascade networks.
These different architectures are first described in Section 3.1. Different learning rules
for supervised training are then discussed in Section 3.2. The chapter ends with a
short discussion on ensemble NNs in Section 3.4.

3.1 Neural Network Types

Various multilayer NN types have been developed. Feedforward NNs such as the stan-
dard multilayer NN, functional link NN and product unit NN receive external signals
and simply propagate these signals through all the layers to obtain the result (output)
of the NN. There are no feedback connections to previous layers. Recurrent NNs, on
the other hand, have such feedback connections to model the temporal characteristics
of the problem being learned. Time-delay NNs, on the other hand, memorize a window
of previously observed patterns.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
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3.1.1 Feedforward Neural Networks

Figure 3.1 illustrates a standard feedforward neural network (FFNN), consisting of
three layers: an input layer (note that some literature on NNs do not count the input
layer as a layer), a hidden layer and an output layer. While this figure illustrates
only one hidden layer, a FFNN can have more than one hidden layer. However, it
has been proved that FFNNs with monotonically increasing differentiable functions
can approximate any continuous function with one hidden layer, provided that the
hidden layer has enough hidden neurons [383]. A FFNN can also have direct (linear)
connections between the input layer and the output layer.
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Figure 3.1 Feedforward Neural Network

The output of a FFNN for any given input pattern zp is calculated with a single
forward pass through the network. For each output unit ok, we have (assuming no
direct connections between the input and output layers),

ok,p = fok
(netok,p

)

= fok


J+1∑

j=1

wkjfyj
(netyj,p

)




= fok


J+1∑

j=1

wkjfyj

(
I+1∑
i=1

vjizi,p

) (3.1)

where fok
and fyj

are respectively the activation function for output unit ok and
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hidden unit yj ; wkj is the weight between output unit ok and hidden unit yj ; zi,p

is the value of input unit zi of input pattern zp; the (I + 1)-th input unit and the
(J + 1)-th hidden unit are bias units representing the threshold values of neurons in
the next layer.

Note that each activation function can be a different function. It is not necessary that
all activation functions be the same. Also, each input unit can implement an activation
function. It is usually assumed that input units have linear activation functions.
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Figure 3.2 Functional Link Neural Network

3.1.2 Functional Link Neural Networks

In functional link neural networks (FLNN) input units do implement activation func-
tions (or rather, transformation functions). A FLNN is simply a FFNN with the input
layer expanded into a layer of functional higher-order units [314, 401]. The input layer,
with dimension I, is therefore expanded to functional units h1, h2, · · · , hL, where L is
the total number of functional units, and each functional unit hl is a function of the
input parameter vector (z1, · · · , zI), i.e. hl(z1, · · · , zI) (see Figure 3.2). The weight
matrix U between the input layer and the layer of functional units is defined as

uli =
{

1 if functional unit hl is dependent of zi

0 otherwise (3.2)

For FLNNs, vjl is the weight between hidden unit yj and functional link hl.
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Calculation of the activation of each output unit ok occurs in the same manner as for
FFNNs, except that the additional layer of functional units is taken into account:

ok,p = fok


J+1∑

j=1

wkjfyj

(
L∑

l=1

vjlhl(zp)

) (3.3)

The use of higher-order combinations of input units may result in faster training times
and improved accuracy (see, for example, [314, 401]).

3.1.3 Product Unit Neural Networks

Product unit neural networks (PUNN) have neurons that compute the weighted prod-
uct of input signals, instead of a weighted sum [222, 412, 509]. For product units, the
net input is computed as given in equation (2.5).

Different PUNNs have been suggested. In one type each input unit is connected to
SUs, and to a dedicated group of PUs. Another PUNN type has alternating layers of
product and summation units. Due to the mathematical complexity of having PUs
in more than one hidden layer, this section only illustrates the case for which just
the hidden layer has PUs, and no SUs. The output layer has only SUs, and linear
activation functions are assumed for all neurons in the network. Then, for each hidden
unit yj , the net input to that hidden unit is (note that no bias is included)

netyj,p
=

I∏
i=1

z
vji

i,p

=
I∏

i=1

evji ln(zi,p)

= e
∑

i vji ln(zi,p) (3.4)

where zi,p is the activation value of input unit zi, and vji is the weight between input
zi and hidden unit yj .

An alternative to the above formulation of the net input signal for PUs is to include
a “distortion” factor within the product [406], such as

netyj,p
=

I+1∏
i=1

z
vji

i,p (3.5)

where zI+1,p = −1 for all patterns; vj,I+1 represents the distortion factor. The purpose
of the distortion factor is to dynamically shape the activation function during training
to more closely fit the shape of the true function represented by the training data.

If zi,p < 0, then zi,p can be written as the complex number zi,p = ı2|zi,p| (ı =
√−1)

that, substituted in (3.4), yields

netyj,p
= e

∑
i vji ln |zi,p|e

∑
i vji ln ı2 (3.6)
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Let c = 0 + ı = a + bı be a complex number representing ı. Then,

ln c = ln reıθ = ln r + ıθ + 2πkı (3.7)

where r =
√

a2 + b2 = 1.

Considering only the main argument, arg(c), k = 0 which implies that 2πkı = 0.
Furthermore, θ = π

2 for ı = (0, 1). Therefore, ıθ = ıπ
2 , which simplifies equation (3.10)

to ln c = ıπ
2 , and consequently,

ln ı2 = ıπ (3.8)

Substitution of (3.8) in (3.6) gives

netyj,p
= e

∑
i vji ln |zi,p|e

∑
i vjiπı

= e
∑

i vji ln |zi,p|
[
cos(

I∑
i=1

vjiπ) + ı sin

(
I∑

i=1

vjiπ

)]
(3.9)

Leaving out the imaginary part ([222] show that the added complexity of including
the imaginary part does not help with increasing performance),

netyj,p
= e

∑
i vji ln |zi,p| cos

(
π

I∑
i=1

vji

)
(3.10)

Now, let

ρj,p =
I∑

i=1

vji ln |zi,p| (3.11)

φj,p =
I∑

i=1

vjiIi (3.12)

with

Ii =
{

0 if zi,p > 0
1 if zi,p < 0 (3.13)

and zi,p �= 0.

Then,
netyj,p

= eρj,p cos(πφj,p) (3.14)

The output value for each output unit is then calculated as

ok,p = fok


J+1∑

j=1

wkjfyj
(eρj,p cos(πφj,p))


 (3.15)

Note that a bias is now included for each output unit.
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3.1.4 Simple Recurrent Neural Networks

Simple recurrent neural networks (SRNN) have feedback connections which add the
ability to also learn the temporal characteristics of the data set. Several different types
of SRNNs have been developed, of which the Elman and Jordan SRNNs are simple
extensions of FFNNs.

1

1

Context layer

Figure 3.3 Elman Simple Recurrent Neural Network

The Elman SRNN [236], as illustrated in Figure 3.3, makes a copy of the hidden
layer, which is referred to as the context layer. The purpose of the context layer is to
store the previous state of the hidden layer, i.e. the state of the hidden layer at the
previous pattern presentation. The context layer serves as an extension of the input
layer, feeding signals representing previous network states, to the hidden layer. The
input vector is therefore

z = (z1, · · · , zI+1︸ ︷︷ ︸
actual inputs

, zI+2, · · · , zI+1+J︸ ︷︷ ︸
context units

) (3.16)

Context units zI+2, · · · , zI+1+J are fully interconnected with all hidden units. The
connections from each hidden unit yj (for j = 1, · · · , J) to its corresponding context
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unit zI+1+j have a weight of 1. Hence, the activation value yj is simply copied to
zI+1+j . It is, however, possible to have weights not equal to 1, in which case the
influence of previous states is weighted. Determining such weights adds additional
complexity to the training step.

Each output unit’s activation is then calculated as

ok,p = fok


J+1∑

j=1

wkjfyj
(
I+1+J∑

i=1

vjizi,p)


 (3.17)

where (zI+2,p, · · · , zI+1+J,p) = (y1,p(t− 1), · · · , yJ,p(t− 1)).

1

1

State layer

Figure 3.4 Jordan Simple Recurrent Neural Network

Jordan SRNNs [428], on the other hand, make a copy of the output layer instead of
the hidden layer. The copy of the output layer, referred to as the state layer, extends
the input layer to

z = (z1, · · · , zI+1︸ ︷︷ ︸
actual inputs

, zI+2, · · · , zI+1+K︸ ︷︷ ︸
state units

) (3.18)

The previous state of the output layer then also serves as input to the network. For
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each output unit,

ok,p = fok


J+1∑

j=1

wkjfyj

(
I+1+K∑

i=1

vjizi,p

) (3.19)

where (zI+2,p, · · · , zI+1+K,p) = (o1,p(t− 1), · · · , oK,p(t− 1)).
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Figure 3.5 A Single Time-Delay Neuron

3.1.5 Time-Delay Neural Networks

A time-delay neural network (TDNN) [501], also referred to as backpropagation-
through-time, is a temporal network with its input patterns successively delayed in
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time. A single neuron with nt time delays for each input unit is illustrated in Fig-
ure 3.5. This type of neuron is then used as a building block to construct a complete
feedforward TDNN.

Initially, only zi,p(t), with t = 0, has a value and zi,p(t− t
′
) is zero for all i = 1, · · · , I

with time steps t
′
= 1, · · · , nt; nt is the total number of time steps, or number of delayed

patterns. Immediately after the first pattern is presented, and before presentation of
the second pattern,

zi,p(t− 1) = zi,p(t) (3.20)

After presentation of t
′

patterns and before the presentation of pattern t
′
+ 1, for all

t = 1, · · · , t′ ,
zi,p(t− t

′
) = zi,p(t− t

′
+ 1) (3.21)

This causes a total of nt patterns to influence the updates of weight values, thus
allowing the temporal characteristics to drive the shaping of the learned function.
Each connection between zi,p(t− t

′
) and zi,p(t− t

′
+ 1) has a value of 1.

The output of a TDNN is calculated as

ok,p = fok


J+1∑

j=1

wkjfyj

(
I∑

i=1

nt∑
t=0

vj,i(t)zi,p(t) + zI+1vj,I+1

) (3.22)

3.1.6 Cascade Networks

A cascade NN (CNN) [252, 688] is a multilayer FFNN where all input units have direct
connections to all hidden units and to all output units. Furthermore, the hidden units
are cascaded. That is, each hidden unit’s output serves as an input to all succeeding
hidden units and all output units. Figure 3.6 illustrates a CNN.

The output of a CNN is calculated is

ok,p = fok


I+1∑

i=1

ukizi +
J∑

j=1

wkjfyj

(
I+1∑
i=1

vjizi +
j−1∑
l=1

sjlyl

) (3.23)

where uki represents a weight between output unit k and input unit i, sjl is a weight
between hidden units j and l, and yl is the activation of hidden unit l.

At this point it is important to note that training of a CNN consists of finding weight
values and the size of the NN. Training starts with the simplest architecture containing
only the (I +1)K direct weights between input and output units (indicated by a solid
square in Figure 3.6). If the accuracy of the CNN is unacceptable one hidden unit
is added, which adds another (I + 1)J + (J − 1) + JK weights to the network. If
J = 1, the network includes the weights indicated by the filled squares and circles in
Figure 3.6. When J = 2, the weights marked by filled triangles are added.
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Figure 3.6 Cascade Neural Network

3.2 Supervised Learning Rules

Up to this point it was shown how NNs can be used to calculate an output value given
an input pattern. This section explains approaches to train the NN such that the
output of the network is an accurate approximation of the target values. First, the
learning problem is explained, and then different training algorithms are described.

3.2.1 The Supervised Learning Problem

Consider a finite set of input-target pairs D = {dp = (zp, tp)|p = 1, · · · , P} sampled
from a stationary density Ω(D), with zi,p, tk,p ∈ R for i = 1, · · · , I and k = 1, · · · , K;
zi,p is the value of input unit zi and tk,p is the target value of output unit ok for
pattern p. According to the signal-plus-noise model,

tp = µ(zp) + ζp (3.24)

where µ(z) is the unknown function. The input values zi,p are sampled with probability
density ω(z), and the ζk,p are independent, identically distributed noise sampled with
density φ(ζ), having zero mean. The objective of learning is then to approximate the
unknown function µ(z) using the information contained in the finite data set D. For
NN learning this is achieved by dividing the set D randomly into a training set DT ,
a validation set DV , and a test set DG (all being dependent from one another). The
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approximation to µ(z) is found from the training set DT , memorization is determined
from DV (more about this later), and the generalization accuracy is estimated from
the test set DG (more about this later).

Since prior knowledge about Ω(D) is usually not known, a nonparametric regression
approach is used by the NN learner to search through its hypothesis space H for a
function fNN (DT ,W) which gives a good estimation of the unknown function µ(z),
where fNN (DT ,W) ∈ H. For multilayer NNs, the hypothesis space consists of all
functions realizable from the given network architecture as described by the weight
vector W .

During learning, the function fNN : RI −→ RK is found which minimizes the empirical
error

ET (DT ;W) =
1

PT

PT∑
p=1

(FNN (zp,W)− tp)2 (3.25)

where PT is the total number of training patterns. The hope is that a small empirical
(training) error will also give a small true error, or generalization error, defined as

EG(Ω;W) =
∫

(fNN (z,W)− t)2dΩ(z, t) (3.26)

For the purpose of NN learning, the empirical error in equation (3.25) is referred
to as the objective function to be optimized by the optimization method. Several
optimization algorithms for training NNs have been developed [51, 57, 221]. These
algorithms are grouped into two classes:

• Local optimization, where the algorithm may get stuck in a local optimum
without finding a global optimum. Gradient descent and scaled conjugate gra-
dient are examples of local optimizers.

• Global optimization, where the algorithm searches for the global optimum
by employing mechanisms to search larger parts of the search space. Global
optimizers include LeapFrog, simulated annealing, evolutionary algorithms and
swarm optimization.

Local and global optimization techniques can be combined to form hybrid training
algorithms.

Learning consists of adjusting weights until an acceptable empirical error has been
reached. Two types of supervised learning algorithms exist, based on when weights
are updated:

• Stochastic/online learning, where weights are adjusted after each pattern
presentation. In this case the next input pattern is selected randomly from
the training set, to prevent any bias that may occur due to the order in which
patterns occur in the training set.

• Batch/offline learning, where weight changes are accumulated and used to
adjust weights only after all training patterns have been presented.



38 3. Supervised Learning Neural Networks

3.2.2 Gradient Descent Optimization

Gradient descent (GD) optimization has led to one of the most popular learning al-
gorithms, namely backpropagation, popularized by Werbos [897]. Learning iterations
(one learning iteration is referred to as an epoch) consists of two phases:

1. Feedforward pass, which simply calculates the output value(s) of the NN for
each training pattern (as discussed in Section 3.1).

2. Backward propagation, which propagates an error signal back from the out-
put layer toward the input layer. Weights are adjusted as functions of the back-
propagated error signal.

Feedforward Neural Networks

Assume that the sum squared error (SSE) is used as the objective function. Then, for
each pattern, zp,

Ep =
1
2

(∑K
k=1(tk,p − ok,p)2

K

)
(3.27)

where K is the number of output units, and tk,p and ok,p are respectively the target
and actual output values of the k-th output unit.

The rest of the derivations refer to an individual pattern. The pattern subscript,
p, is therefore omitted for notational convenience. Also assume sigmoid activation
functions in the hidden and output layers with augmented vectors. All hidden and
output units use SUs. Then,

ok = fok
(netok

) =
1

1 + e−netok
(3.28)

and
yj = fyj

(netyj
) =

1
1 + e−netyj

(3.29)

Weights are updated, in the case of stochastic learning, according to the following
equations:

wkj(t) + = ∆wkj(t) + α∆wkj(t− 1) (3.30)
vji(t) + = ∆vji(t) + α∆vji(t− 1) (3.31)

where α is the momentum (discussed later).

In the rest of this section the equations for calculating ∆wkj(t) and ∆vji(t) are derived.
The reference to time, t, is omitted for notational convenience.

From (3.28),
∂ok

∂netok

=
∂fok

∂netok

= (1− ok)ok = f
′
ok

(3.32)
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and
∂netok

∂wkj
=

∂

∂wkj


J+1∑

j=1

wkjyj


 = yj (3.33)

where f
′
ok

is the derivative of the corresponding activation function. From equations
(3.32) and (3.33),

∂ok

∂wkj
=

∂ok

∂netok

∂netok

∂wkj

= (1− ok)okyj

= f
′
ok

yj (3.34)

From equation (3.27),

∂E

∂ok
=

∂

∂ok

(
1
2

K∑
k=1

(tk − ok)2
)

= −(tk − ok) (3.35)

Define the output error that needs to be back-propagated as δok
= ∂E

∂netok
. Then, from

equation (3.35) and (3.32),

δok
=

∂E

∂netok

=
∂E

∂ok

∂ok

∂netok

= −(tk − ok)(1− ok)ok = −(tk − ok)f
′
ok

(3.36)

Then, the changes in the hidden-to-output weights are computed from equations
(3.35), (3.34) and (3.36) as

∆wkj = η

(
− ∂E

∂wkj

)

= −η
∂E

∂ok

∂ok

∂wkj

= −ηδok
yj (3.37)

Continuing with the input-to-hidden weights,

∂yj

∂netyj

=
∂fyj

∂netyj

= (1− yj)yj = f
′
yj

(3.38)

and
∂netyj

∂vji
=

∂

∂vji

(
I+1∑
i=1

vjizi

)
= zi (3.39)
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From equations (3.38) and (3.39),

∂yj

∂vji
=

∂yj

∂netyj

∂netyj

∂vji

= (1− yj)yjzi = f
′
yj

zi (3.40)

and
∂netok

∂yj
=

∂

∂yj


J+1∑

j=1

wkjyj


 = wkj (3.41)

From equations (3.36) and (3.41),

∂E

∂yj
=

∂

∂yj

(
1
2

K∑
k=1

(tk − ok)2
)

=
K∑

k=1

∂E

∂ok

∂ok

∂netok

∂netok

∂yj

=
K∑

k=1

∂E

∂netok

∂netok

∂yj

=
K∑

k=1

δok
wkj (3.42)

Define the hidden layer error, which needs to be back-propagated, from equations
(3.42) and (3.38) as,

δyj
=

∂E

∂netyj

=
∂E

∂yj

∂yj

∂netyj

=
K∑

k=1

δok
wkjf

′
yj

(3.43)

Finally, the changes to input-to-hidden weights are calculated from equations (3.42),
(3.40) and (3.43) as

∆vji = η

(
− ∂E

∂vji

)

= −η
∂E

∂yj

∂yj

∂vji

= −ηδyj
zi (3.44)

If direct weights from the input to the output layer are included, the following addi-
tional weight updates are needed:

∆uki = η

(
− ∂E

∂uki

)
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= −η
∂E

∂ok

∂ok

∂uki

= −ηδok
zi (3.45)

where uki is a weight from the i-th input unit to the k-th output unit.

In the case of batch learning, weights are updated as given in equations (3.30) and
(3.31), but with

∆wkj(t) =
PT∑
p=1

∆wkj,p(t) (3.46)

∆vji(t) =
PT∑
p=1

∆vji,p(t) (3.47)

where ∆wkj,p(t) and ∆vji,p(t) are weight changes for individual patterns p, and PT is
the total number of patterns in the training set.

Stochastic learning is summarized in Algorithm 3.1.

Algorithm 3.1 Stochastic Gradient Descent Learning Algorithm

Initialize weights, η, α, and the number of epochs t = 0;
while stopping condition(s) not true do

Let ET = 0;
for each training pattern p do

Do the feedforward phase to calculate yj,p (∀ j = 1, · · · , J) and ok,p

(∀ k = 1, · · · , K);
Compute output error signals δok,p

and hidden layer error signals δyj,p
;

Adjust weights wkj and vji (backpropagation of errors);
ET + = [Ep =

∑K
k=1(tk,p − ok,p)2];

end
t = t + 1;

end

Stopping criteria usually includes:

• Stop when a maximum number of epochs has been exceeded.

• Stop when the mean squared error (MSE) on the training set,

ET =

∑PT

p=1

∑K
k=1(tk,p − ok,p)2

PT K
(3.48)

is small enough (other error measures such as the root mean squared error can
also be used).

• Stop when overfitting is observed, i.e. when training data is being memorized.
An indication of overfitting is when EV > EV + σEV

, where EV is the average
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validation error over the previous epochs, and σEV
is the standard deviation in

validation error.

It is straightforward to apply GD optimization to the training of FLNNs, SRNNs and
TDNNs, so derivations of the weight update equations are left to the reader. GD
learning for PUNNs is given in the next section.

Product Unit Neural Networks

This section derives learning equations for PUs used in the hidden layer only, assuming
GD optimization and linear activation functions. Since only the equations for the
input-to-hidden weights change, only the derivations of these weight update equations
are given. The change ∆vji in weight vji is

∆vji = η

(
− ∂E

∂vji

)

= −η
∂E

∂netyj,p

netyj,p

∂vji

= −ηδyj,p

∂netyj,p

∂vji
(3.49)

where δyj,p
is the error signal, computed in the same way as for SUs, and

netyj,p

∂vji
=

∂

∂vji

(
I∏

i=1

z
vji

i,p

)

=
∂

∂vji
(eρj,p cos(πφj,p))

= eρj,p [ln |zi,p| cos(πφj,p)− Iiπ sin(πφj,p)] (3.50)

A major advantage of product units is an increased information capacity compared
to summation units [222, 509]. Durbin and Rumelhart showed that the information
capacity of a single PU (as measured by its capacity for learning random Boolean
patterns) is approximately 3I, compared to 2I for a single SU (I is the number of inputs
to the unit) [222]. The larger capacity means that functions approximated using PUs
will require less processing elements than required if SUs were used. This point can be
illustrated further by considering the minimum number of processing units required
for learning the simple polynomial functions in Table 3.1. The minimal number of
SUs were determined using a sensitivity analysis variance analysis pruning algorithm
[238, 246], while the minimal number of PUs is simply the number of different powers
in the expression (provided a polynomial expression).

While PUNNs provide the advantage of having smaller network architectures, a major
drawback of PUs is an increased number of local minima, deep ravines and valleys. The
search space for PUs is usually extremely convoluted. Gradient descent, which works
best when the search space is relatively smooth, therefore frequently gets trapped in
local minima or becomes paralyzed (which occurs when the gradient of the error with
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Table 3.1 SUs and PUs Needed for Simple Functions

Function SUs PUs
f(z) = z2 2 1
f(z) = z6 3 1
f(z) = z2 + z5 3 2
f(z1, z2) = z3

1z7
2 − 0.5z6

1 8 2

respect to the current weight is close to zero). Leerink et al. [509] illustrated that
the 6-bit parity problem could not be trained using GD and PUs. Two reasons were
identified to explain why GD failed: (1) weight initialization and (2) the presence of
local minima. The initial weights of a network are usually computed as small random
numbers. Leerink et al. argued that this is the worst possible choice of initial weights,
and suggested that larger initial weights be used instead. But, large weights lead to
large weight updates due to the exponential term in the weight update equation (see
equation (3.50)), which consequently cause the network to overshoot the minimum.
Experience has shown that GD only manages to train PUNNs when the weights are
initialized in close proximity of the optimal weight values – the optimal weight values
are, however, usually not available.

As an example to illustrate the complexity of the search space for PUs, consider the
approximation of the function f(z) = z3, with z ∈ [−1, 1]. Only one PU is needed,
resulting in a 1-1-1 NN architecture (that is, one input, one hidden and one output
unit). In this case the optimal weight values are v = 3 (the input-to-hidden weight)
and w = 1 (the hidden-to-output weight). Figures 3.7(a)-(b) present the search space
for v ∈ [−1, 4] and w ∈ [−1, 1.5]. The error is computed as the mean squared error over
500 randomly generated patterns. Figure 3.7(b) clearly illustrates 3 minima, with the
global minimum at v = 3, w = 1. These minima are better illustrated in Figure 3.7(c)
where w is kept constant at its optimum value of 1. Initial small random weights will
cause the network to be trapped in one of the local minima (having very large MSE).
Large initial weights may also be a bad choice. Assume an initial weight v ≥ 4. The
derivative of the error with respect to v is extremely large due to the steep gradient of
the error surface. Consequently, a large weight update will be made which may cause
jumping over the global minimum. The neural network either becomes trapped in a
local minimum, or oscillates between the extreme points of the error surface.

A global stochastic optimization algorithm is needed to allow searching of larger parts
of the search space. The optimization algorithm should also not rely heavily on the
calculation of gradient information. Simulated annealing [509], genetic algorithms
[247, 412], particle swarm optimization [247, 866] and LeapFrog [247] have been used
successfully to train PUNNs.
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Figure 3.7 Product Unit Neural Network Search Space for f(z) = z3
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3.2.3 Scaled Conjugate Gradient

Conjugate gradient optimization trades off the simplicity of GD and the fast quadratic
convergence of Newton’s method. Several conjugate gradient learning algorithms have
been developed (look at the survey in [51]), most of which are based on the assumption
that the error function of all weights in the region of the solution can be accurately
approximated by

ET (DT ,w) =
1
2
wTHw− θTw

where H is the Hessian matrix. Since the dimension of the Hessian matrix is the total
number of weights in the network, the calculation of conjugate directions on the error
surface becomes computationally infeasible. Computationally feasible conjugate gra-
dient algorithms compute conjugate gradient directions without explicitly computing
the Hessian matrix, and perform weight updates along these directions.

Algorithm 3.2 Conjugate Gradient Neural Network Training Algorithm

Initialize the weight vector, w(0);
Define the initial direction vector as

p(0) = −E ′
(w(0)) = θ −Hw(0) (3.51)

for t = 1, . . . , nw do
Calculate the step size,

η(t) = −E
′
(w(t))Tp(t)

p(t)THp(t)
(3.52)

Calculate a new weight vector,

w(t + 1) = w(t) + η(t)p(t) (3.53)

Calculate scale factors,

β(t) =
E ′

(w(t + 1))TE ′
(w(t + 1)

E ′(w(t))TE ′(w(t))
(3.54)

Calculate a new direction vector,

p(t + 1) = −E(w(t + 1)) + β(t)p(t) (3.55)

end
Return weight vector, w(t + 1);

An important aspect in conjugate gradient methods is that of direction vectors,
{p(0),p(1), . . . ,p(t− 1)}. These vectors are created to be conjugate with the weight
vector, w. That is, pT (t1)wp(t2) = 0 for t1 �= t2. A new conjugate direction vector
is generated at each iteration by adding to the calculated current negative gradient
vector of the error function a linear combination of the previous direction vectors. The
standard conjugate gradient algorithm is summarized in Algorithm 3.2. Note that this
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algorithm assumes a quadratic error function, in which case the algorithm converges
in no more than nw steps, where nw is the total number of weights and biases.

Algorithm 3.3 Fletcher-Reeves Conjugate Gradient Algorithm

Initialize the weight vector, w(0);
Calculate the gradient, E ′

(w(0));
Compute the first direction vector as p(0) = −E ′

(w(0));
while stopping conditions(s) not true do

for t = 0, . . . , nw − 1 do
Calculate the step size,

η(t) = min
η≥0

E(w(t) + ηp(t)) (3.56)

Calculate a new weight vector,

w(t + 1) = w(t) + η(t)p(t) (3.57)

Calculate scale factors,

β(t) =
E ′

(w(t + 1))TE ′
(w(t + 1)

E ′(w(t))TE ′(w(t))
(3.58)

Calculate a new direction vector,

p(t + 1) = −E ′
(w(t + 1)) + β(t)p(t) (3.59)

end
if stopping condition(s) not true then

w(0) = w(nw) (3.60)

end
end
Return w(nw) as the solution;

The Fletcher-Reeves conjugate gradient algorithm does not assume a quadratic error
function. The algorithm restarts after nw iterations if a solution has not yet been
found. The Fletcher-Reeves conjugate gradient algorithm is summarized in Algo-
rithm 3.3.

The scale factors in Algorithms 3.2 and 3.3 can also be calculated in the following
ways:

• Polak-Ribiere method:

β(t) =
(E ′

(w(t + 1))− E ′
(w(t)))TE ′

(w(t + 1))
E ′(w(t))TE ′(w(t))

(3.61)
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• Hestenes-Stiefer method:

β(t) =
(E ′

(w(t + 1))− E ′
(w(t)))TE ′

(w(t + 1))
p(t)T (E ′(w(t + 1))− E ′(w(t)))

(3.62)

Algorithm 3.4 Scaled Conjugate Gradient Algorithm

Initialize the weight vector w(1) and the scalars σ > 0, λ1 > 0 and λ = 0;
Let p(1) = r(1) = −E ′

(w(1)), t = 1 and success = true;
Label A: if success = true then

Calculate the second-order information;
end
Scale s(t);
if δ(t) ≤ 0 then

Make the Hessian matrix positive definite;
end
Calculate the step size;
Calculate the comparison parameter;
if ∆(t) ≥ 0 then

A successful reduction in error can be made, so adjust the weights;
λ(t) = 0;
success = true;
if t mod nw = 0 then

Restart the algorithm, with p(t + 1) = r(t + 1) and go to label A;
end
else

Create a new conjugate direction;
end
if ∆(t) ≥ 0.75 then

Reduce the scale parameter with λ(t) = 1
2λ(t);

end
end
else

A reduction in error is not possible, so let λ(t) = λ(t) and success = false;
end
if ∆(t) < 0.25 then

Increase the scale parameter to λ(t) = 4λ(t);
end
if the steepest descent direction r(t) �= 0 then

Set t = t + 1 and go to label A;
end
else

Terminate and return w(t + 1) as the desired minimum;
end

Møller [533] proposed the scaled conjugate gradient (SCG) algorithm as a batch learn-
ing algorithm. Step sizes are automatically determined, and the algorithm is restarted
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after nw iterations if a good solution was not found. The SCG is summarized in
Algorithm 3.4. With reference to the different steps of this algorithm, find detail
below:

• Calculation of second-order information:

σ(t) =
σ

||p(t)|| (3.63)

s(t) =
E ′

(w(t) + σ(t)p(t))− E ′
(w(t))

σ(t)
(3.64)

δ(t) = p(t)T s(t) (3.65)

where p(t)T is the transpose of vector p(t), and ||p(t)|| is the Euclidean norm.

• Perform scaling:

s(t) + = (λ(t)− λ(t))p(t) (3.66)
δ(t) + = (λ(t)− λ(t))||p(t)||2 (3.67)

• Make the Hessian matrix positive definite:

s(t) = s(t) +
(

λ(t)− 2
δ(t)

||p(t)||2
)

p(t) (3.68)

λ(t) = 2
(

λ(t)− 2
δ(t)

||p(t)||2
)

(3.69)

δ(t) = −δ(t) + λ(t)||p(t)||2 (3.70)
λ(t) = λ(t) (3.71)

• Calculate the step size:

µ(t) = p(t)T r(t) (3.72)

η(t) =
µ(t)
δ(t)

(3.73)

• Calculate the comparison parameter:

∆(t) =
2δ(t)[E(w(t))− E(w(t) + η(t)p(t))]

µ(t)2
(3.74)

• Adjust the weights:

w(t + 1) = w(t) + η(t)p(t) (3.75)

r(t + 1) = −E ′
(w(t + 1)) (3.76)

• Create a new conjugate direction:

β(t) =
||r(t + 1)||2 − r(t + 1)T r(t)

µ(t)
(3.77)

p(t + 1) = r(t + 1) + β(t)p(t) (3.78)
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The algorithm restarts each nw consecutive epochs for which no reduction in error
could be achieved, at which point the algorithm finds a new direction to search. The
function to calculate the derivative, E ′

(w) = ∂E
∂w , computes the derivative of E with

respect to each weight for each of the patterns. The derivatives over all the patterns
are then summed, i.e.

∂E
∂wi

=
PT∑
p=1

∂E
∂wi,p

(3.79)

where wi is a single weight.

3.2.4 LeapFrog Optimization

LeapFrog is an optimization approach based on the physical problem of the motion
of a particle of unit mass in an n-dimensional conservative force field [799, 800]. The
potential energy of the particle in the force field is represented by the function to be
minimized – in the case of NNs, the potential energy is the MSE. The objective is to
conserve the total energy of the particle within the force field, where the total energy
consists of the particle’s potential and kinetic energy. The optimization method sim-
ulates the motion of the particle, and by monitoring the kinetic energy, an interfering
strategy is adapted to appropriately reduce the potential energy. The LeapFrog NN
training algorithm is given in Algorithm 3.5. The reader is referred to [799, 800] for
more information on this approach.

3.2.5 Particle Swarm Optimization

Particle swarm optimization (PSO), which is a stochastic population-based search
method (refer to Chapter 16), can be used to train a NN. In this case, each particle
represents a weight vector, and fitness is evaluated using the MSE function (refer to
Section 16.7 for more detail on NN training using PSO). What should be noted is
that weights and biases are adjusted without using any error signals, or any gradient
information. Weights are also not adjusted per training pattern. The PSO velocity
and position update equations are used to adjust weights and biases, after which the
training set is used to calculate the fitness of a particle (or NN) in PT feedforward
passes.

Evolutionary algorithms can also be used in a similar way to train NNs.

3.3 Functioning of Hidden Units

Section 2.3 illustrated the geometry and functioning of a single perceptron. This
section illustrates the tasks of the hidden units in supervised NNs. For this purpose,
consider a standard FFNN consisting of one hidden layer employing SUs. To simplify
visual illustrations, consider the case of two-dimensional input for classification and
one-dimensional input for function approximation.
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Algorithm 3.5 LeapFrog Algorithm

Create a random initial solution w(0), and let t = −1;
Let ∆t = 0.5, δ = 1, m = 3, δ1 = 0.001, ε = 10−5, i = 0, j = 2, s = 0, p = 1;
Compute the initial acceleration a(0) = −∇E(w(0)) and velocity v(0) = 1

2a(0)∆t;
repeat

t = t + 1;
Compute ||∆w(t)|| = ||v(t)||∆t;
if ||∆w(t)|| < δ then

p = p + δ1, ∆t = p∆t;
end
else

v(t) = δv(t)/(∆t||v(t)||);
end
if s ≥ m then

∆t = ∆t/2, s = 0;
w(t) = (w(t) + w(t− 1))/2;
v(t) = (v(t) + v(t− 1))/4;

end
w(t + 1) = w(t) + v(t)∆t;
repeat

a(t + 1) = −∇E(w(t + 1));
v(t + 1) = v(t) + a(t + 1)∆t;
if aT (t + 1)a(t) > 0 then

s = 0;
end
else

s = s + 1, p = 1;
end
if ||a(t + 1)|| > ε then

if ||v(t + 1)|| > ||v(t)|| then
i = 0;

end
else

w(t + 2) = (w(t + 1) + w(t))/2;
i = i + 1;
Perform a restart: if i ≤ j then

v(t + 1) = (v(t + 1) + v(t))/4;
t = t + 1;

end
else

v(t + 1) = 0, j = 1, t = t + 1;
end

end
end

until ||v(t + 1)|| > ||v(t)||;
until ||a(t + 1)|| ≤ ε;
Return w(t) as the solution;



3.4 Ensemble Neural Networks 51

Figure 3.8 Feedforward Neural Network Classification Boundary Illustration

For classification problems, the task of hidden units is to form the decision boundaries
to separate different classes. Figure 3.8 illustrates the boundaries for a three-class
problem. Solid lines represent boundaries. For this artificial problem ten boundaries
exist. Since each hidden unit implements one boundary, ten hidden units are required
to perform the classification as illustrated in the figure. Less hidden units can be used,
but at the cost of an increase in classification error. Also note that in the top left corner
there are misclassifications of class ×, being part of the space for class •. This problem
can be solved by using three additional hidden units to form these boundaries. How
can the number of hidden units be determined without using any prior knowledge
about the input space? This very important issue is dealt with in Chapter 7, where
the relationship between the number of hidden units and performance is investigated.

In the case of function approximation, assuming a one-dimensional function as depicted
in Figure 3.9, five hidden units with sigmoid activation functions are required to learn
the function. A sigmoid function is then fitted for each inflection point of the target
function. The number of hidden units is therefore the number of turning points plus
one. In the case of linear activation functions, the hidden units perform the same task.
However, more linear activation functions may be required to learn the function to the
same accuracy as obtained using sigmoid functions.

3.4 Ensemble Neural Networks

Training of NNs starts on randomly selected initial weights. This means that each
time a network is retrained on the same data set, different results can be expected,
since learning starts at different points in the search space; different NNs may disagree,
and make different errors. This problem in NN training prompted the development of
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Figure 3.9 Hidden Unit Functioning for Function Approximation

ensemble networks, where the aim is to optimize results through the combination of a
number of individual networks, trained on the same task.

In its most basic form, an ensemble network – as illustrated in Figure 3.10 – consists
of a number of NNs all trained on the same data set, using the same architecture
and learning algorithm. At convergence of the individual NN members, the results of
the different NNs need to be combined to form one, final result. The final result of
an ensemble can be calculated in several ways, of which the following are simple and
efficient approaches:

• Select the NN within the ensemble that provides the best generalization perfor-
mance.

• Take the average over the outputs of all the members of the ensemble.

• Form a linear combination of the outputs of each of the NNs within the ensemble.
In this case a weight, wn, is assigned to each network as an indication of the
credibility of that network. The final output of the ensemble is therefore a
weighted sum of the outputs of the individual networks.

The combination of inputs as discussed above is sensible only when there is disagree-
ment among the ensemble members, or if members make their errors on different parts
of the search space.

Several adaptations of the basic ensemble model are of course possible. For example,
instead of having each NN train on the same data set, different data sets can be
used. One such approach is bagging, which is a bootstrap ensemble method that
creates individuals for its ensemble by training each member network on a random
redistribution of the original training set [84]. If the original training set contained
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Output

NN1 NN2 NNN

z1 zI

Figure 3.10 Ensemble Neural Network

PT patterns, then a data set of PT patterns is randomly sampled from the original
training set for each of the ensemble members. This means that patterns may be
duplicated in the member training sets. Also, not all of the patterns in the original
training set will necessarily occur in the member training sets.

Alternatively, the architectures of the different NNs may differ. Even different NN
types can be used. It is also not necessary that each of the members be trained using
the same optimization algorithm.

The above approaches to ensemble networks train individual NNs in parallel, indepen-
dent of one another. Much more can be gained under a cooperative ensemble strategy,
where individual NNs (referred to as agents) exchange their experience and knowledge
during the training process. Research in such cooperative agents is now very active,
and the reader is recommended to read more about these.

One kind of cooperative strategy for ensembles is referred to as boosting [220, 290].
With boosting, members of the ensemble are not trained in parallel. They are trained
sequentially, where already trained members filter patterns into easy and hard pat-
terns. New, untrained members of the ensemble then focus more on the hard patterns
as identified by previously trained networks.
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3.5 Assignments

1. Give an expression for ok,p for a FFNN with direct connections between the
input and output layer.

2. Why is the term (−1)vj,I+1 possible in equation (3.5)?

3. Explain what is meant by the terms overfitting and underfitting. Why is EV >
EV + σEV

a valid indication of overfitting?

4. Investigate the following aspects:

(a) Are direct connections between the input and output layers advantageous?
Give experimental results to illustrate.

(b) Compare a FFNN and an Elman RNN trained using GD. Use the following
function as benchmark: zt = 1 + 0.3zt−2 − 1.4z2

t−1, with z1, z2 ∼ U(−1, 1),
sampled from a uniform distribution in the range (−1, 1).

(c) Compare stochastic learning and batch learning using GD for the function
ot = zt where zt = 0.3zt−6− 0.6zt−4 + 0.5zt−1 + 0.3z2

t−6− 0.2z2
t−4 + ζt, and

zt ∼ U(−1, 1) for t = 1, · · · , 10, and ζt ∼ N(0, 0.05).
(d) Compare GD and SCG on any classification problem from the

UCI machine learning repository at http://www.ics.uci.edu/
~mlearn/MLRepository.html.

(e) Show if PSO performs better than GD in training a FFNN.

5. Assume that gradient descent is used as the optimization algorithm, and derive
learning equations for the Elman SRNN, the Jordan SRNN, TDNN and FLNN.

6. Explain how a SRNN learns the temporal characteristics of data.

7. Show how a FLNN can be used to fit a polynomial through data points given in
a training set.

8. Explain why bias for only the output units of a PUNN, as discussed in this
chapter, is sufficient. In other words, the PUs do not have a bias. What will be
the effect if a bias is included in the PUs?

9. Explain why the function f(z1, z2) = z3
1z7

2 − 0.5z6
1 requires only two PUs, if it is

assumed that PUs are only used in the hidden layer, with linear activations in
both the hidden and output layers.

10. Assume that a PUNN with PUs in the hidden layer, SUs in that output layer,
and linear activation functions in all layers, is used to approximate a polynomial.
Explain why the minimal number of hidden units is simply the total number of
non-constant, unique terms in the polynomial.

11. What is the main requirement for activation and error functions if gradient
descent is used to train supervised neural networks?

12. What is the main advantage of using recurrent neural networks instead of feed-
forward neural networks?

13. What is the main advantage in using PUs instead of SUs?

14. Propose a way in which a NN can learn a functional mapping and its derivative.

15. Show that the PUNN as given in Section 3.1.3 implements a polynomial approx-
imation.



Chapter 4

Unsupervised Learning
Neural Networks

An important feature of NNs is their ability to learn from their environment. Chapter 3
covered NN types that learned under the guidance of a supervisor or teacher. The
supervisor presents the NN learner with an input pattern and a desired response.
Supervised learning NNs then try to learn the functional mapping between the input
and desired response vectors. In contrast to supervised learning, the objective of
unsupervised learning is to discover patterns or features in the input data with no
help from a teacher. This chapter deals with the unsupervised learning paradigm.

Section 4.1 presents a short background on unsupervised learning. Hebbian learning
is presented in Section 4.2, while Section 4.3 covers principal component learning,
Section 4.4 covers the learning vector quantizer version I, and Section 4.5 discusses
self-organizing feature maps.

4.1 Background

Aristotle observed that human memory has the ability to connect items (e.g. objects,
feelings and ideas) that are similar, contradictory, that occur in close proximity, or
in succession [473]. The patterns that we associate may be of the same or different
types. For example, a photo of the sea may bring associated thoughts of happiness, or
smelling a specific fragrance may be associated with a certain feeling, memory or visual
image. Also, the ability to reproduce the pitch corresponding to a note, irrespective of
the form of the note, is an example of the pattern association behavior of the human
brain.

Artificial neural networks have been developed to model the pattern association abil-
ity of the human brain. These networks are referred to as associative memory NNs.
Associative memory NNs are usually two-layer NNs, where the objective is to adjust
the weights such that the network can store a set of pattern associations – without
any external help from a teacher. The development of these associative memory NNs
is mainly inspired from studies of the visual and auditory cortex of mammalian or-
ganisms, such as the bat. These artificial NNs are based on the fact that parts of the
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brain are organized such that different sensory inputs are represented by topologically
ordered computational maps. The networks form a topographic map of the input
patterns, where the coordinates of the neurons correspond to intrinsic features of the
input patterns.

An additional feature modeled with associative memory NNs is to preserve old infor-
mation as new information becomes available. In contrast, supervised learning NNs
have to retrain on all the information when new data becomes available; if not, super-
vised networks tend to focus on the new information, forgetting what the network has
already learned.

Unsupervised learning NNs are functions that map an input pattern to an associated
target pattern, i.e.

fNN : RI → RK (4.1)

as illustrated in Figure 4.1. The single weight matrix determines the mapping from
the input vector z to the output vector o.

o1 o2 oK

u2I uK1

uK2

uKI

z1 z2 zI

Figure 4.1 Unsupervised Neural Network

4.2 Hebbian Learning Rule

The Hebbian learning rule, named after the neuropsychologist Hebb, is the oldest and
simplest learning rule. With Hebbian learning [203], weight values are adjusted based
on the correlation of neuron activation values. The motivation of this approach is
from Hebb’s hypothesis that the ability of a neuron to fire is based on that neuron’s
ability to cause other neurons connected to it to fire. In such cases the weight between
the two correlated neurons is strengthened (or increased). Using the notation from
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Figure 4.1, the change in weight at time step t is given as

∆uki(t) = ηok,pzi,p (4.2)

Weights are then updated using

uki(t) = uki(t− 1) + ∆uki(t) (4.3)

where η is the learning rate.

From equation (4.2), the adjustment of weight values is larger for those input-output
pairs for which the input value has a greater effect on the output values.

The Hebbian learning rule is summarized in Algorithm 4.1. The algorithm terminates
when there is no significant change in weight values, or when a specified number of
epochs has been exceeded.

Algorithm 4.1 Hebbian Learning Algorithm

Initialize all weights such that uki = 0, ∀i = 1, · · · , I and ∀k = 1, · · · , K;
while stopping condition(s) not true do

for each input pattern zp do
Compute the corresponding output vector op;

end
Adjust the weights using equation (4.3);

end

A problem with Hebbian learning is that repeated presentation of input patterns leads
to an exponential growth in weight values, driving the weights into saturation. To
prevent saturation, a limit is posed on the increase in weight values. One type of limit
is to introduce a nonlinear forgetting factor:

∆uki(t) = ηok,pzi,p − γok,puki(t− 1) (4.4)

where γ is a positive constant, or equivalently,

∆uki(t) = γok,p[βzi,p − uki(t− 1)] (4.5)

with β = η/γ. Equation (4.5) implies that inputs for which zi,p < uki(t − 1)/β have
their corresponding weights uki decreased by a value proportional to the output value
ok,p. When zi,p > uki(t− 1)/β, weight uki is increased proportional to ok,p.

Sejnowski proposed another way to formulate Hebb’s postulate, using the covariance
correlation of the neuron activation values [773]:

∆uki(t) = η[(zi,p − zi)(ok,p − ok)] (4.6)

with

zi =
PT∑
p=1

zi,p/P (4.7)
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ok =
PT∑
p=1

ok,p/P (4.8)

Another variant of the Hebbian learning rule uses the correlation in the changes in
activation values over consecutive time steps. For this learning rule, referred to as
differential Hebbian learning,

∆uki(t) = η∆zi(t)∆ok(t− 1) (4.9)

where
∆zi(t) = zi,p(t)− zi,p(t− 1) (4.10)

and
∆ok(t− 1) = ok,p(t− 1)− ok,p(t− 2) (4.11)

4.3 Principal Component Learning Rule

Principal component analysis (PCA) [426] is a statistical technique used to transform
a data space into a smaller space of the most relevant features. The aim is to project
the original I-dimensional space onto an I

′
-dimensional linear subspace, where I

′
<

I, such that the variance in the data is maximally explained within the smaller I
′
-

dimensional space. Features (or inputs) that have little variance are thereby removed.
The principal components of a data set are found by calculating the covariance (or
correlation) matrix of the data patterns, and by getting the minimal set of orthogonal
vectors (the eigenvectors) that span the space of the covariance matrix. Given the
set of orthogonal vectors, any vector in the space can be constructed with a linear
combination of the eigenvectors.

Oja developed the first principal components learning rule, with the aim of extract-
ing the principal components from the input data [635]. Oja’s principal components
learning rule is an extension of the Hebbian learning rule, referred to as normalized
Hebbian learning, to include a feedback term to constrain weights. In doing so, prin-
cipal components could be extracted from the data. The weight change is given as

∆uki(t) = uki(t)− uki(t− 1)
= ηok,p[zi,p − ok,puki(t− 1)]
= ηok,pzi,p︸ ︷︷ ︸

Hebbian

− ηo2
k,puki(t− 1)︸ ︷︷ ︸

forgetting factor

(4.12)

The first term corresponds to standard Hebbian learning (refer to equation (4.2)),
while the second term is a forgetting factor to prevent weight values from becoming
unbounded.

The value of the learning rate, η, above is important to ensure convergence to a stable
state. If η is too large, the algorithm will not converge due to numerical unstability.
If η is too small, convergence is extremely slow. Usually, the learning rate is time
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dependent, starting with a large value that decays gradually as training progresses.
To ensure numerical stability of the algorithm, the learning rate ηk(t) for output unit
ok must satisfy the inequality:

0 < ηk(t) <
1

1.2λk
(4.13)

where λk is the largest eigenvalue of the covariance matrix of the inputs to the unit
[636]. A good initial value is given as ηk(0) = 1/[2ZTZ], where Z is the input matrix.

Cichocki and Unbehauen [130] provided an adaptive learning rate that utilizes a for-
getting factor, γ, as follows:

ηk(t) =
1

γ
ηk(t−1) + o2

k(t)
(4.14)

with
ηk(0) =

1
o2

k(0)
(4.15)

Usually, 0.9 ≤ γ ≤ 1.

The above can be adapted to allow the same learning rate for all the weights in the
following way:

ηk(t) =
1

γ
ηk(t−1) + ||o(t)||22

(4.16)

with
ηk(0) =

1
||o(0)||22

(4.17)

Sanger [756] developed another principal components learning algorithm, similar to
that of Oja, referred to as generalized Hebbian learning. The only difference is the
inclusion of more feedback information and a decaying learning rate η(t):

∆uki(t) = η(t)[zi,pok,p︸ ︷︷ ︸
Hebbian

−ok,p

k∑
j=0

uji(t− 1)oj,p] (4.18)

For more information on principal component learning, the reader is referred to the
summary in [356].

4.4 Learning Vector Quantizer-I

One of the most frequently used unsupervised clustering algorithms is the learning
vector quantizer (LVQ) developed by Kohonen [472, 474]. While several versions of
LVQ exist, this section considers the unsupervised version, LVQ-I.

Ripley [731] defined clustering algorithms as those algorithms where the purpose is to
divide a set on n observations into m groups such that members of the same group
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are more alike than members of different groups. The aim of a clustering algorithm is
therefore to construct clusters of similar input vectors (patterns), where similarity is
usually measured in terms of Euclidean distance. LVQ-I performs such clustering.

The training process of LVQ-I to construct clusters is based on competition. Referring
to Figure 4.1, each output unit ok represents a single cluster. The competition is among
the cluster output units. During training, the cluster unit whose weight vector is the
“closest” to the current input pattern is declared as the winner. The corresponding
weight vector and that of neighboring units are then adjusted to better resemble the
input pattern. The “closeness” of an input pattern to a weight vector is usually
measured using the Euclidean distance. The weight update is given as

∆uki(t) =
{

η(t)[zi,p − uki(t− 1)] if k ∈ κk,p(t)
0 otherwise (4.19)

where η(t) is a decaying learning rate, and κk,p(t) is the set of neighbors of the winning
cluster unit ok for pattern p. It is, of course, not strictly necessary that LVQ-I makes
use of a neighborhood function, thereby updating only the weights of the winning
output unit.

21

3
4

z1

z2

(a) Clustering Problem

1 2 3 4

z1 z2

u22

u11

u12

u21

(b) LVQ-I network

Figure 4.2 Learning Vector Quantizer to Illustrate Clustering

An illustration of clustering, as done by LVQ-I, is given in Figure 4.2. The input
space, defined by two input units z1 and z2, is represented in Figure 4.2(a), while
Figure 4.2(b) illustrates the LVQ-I network architecture required to form the clusters.
Note that although only three classes exist, four output units are necessary – one for
each cluster. Less output units will lead to errors since patterns of different classes
will be grouped in the same cluster, while too many clusters may cause overfitting.
For the problem illustrated in Figure 4.2(a), an additional cluster unit may cause a
separate cluster to learn the single × in cluster 4.

The Kohonen LVQ-I algorithm is summarized in Algorithm 4.2. For the LVQ-I, weights
are either initialized to random values, sampled from a uniform distribution, or by
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Algorithm 4.2 Learning Vector Quantizer-I Training Algorithm

Initialize the network weights, the learning rate, and the neighborhood radius;
while stopping condition(s) not true do

for each pattern p do
Compute the Euclidean distance, dk,p, between input vector zp and each
weight vector uk = (uk1, uk2, · · · , uKI) as

dk,p(zp,uk) =

√√√√ I∑
i=1

(zi,p − uki)2 (4.20)

Find the output unit ok for which the distance dk,p is the smallest;
Update all the weights for the neighborhood κk,p using equation (4.19);

end
Update the learning rate;
Reduce the neighborhood radius at specified learning iterations;

end

taking the first input patterns as the initial weight vectors. For the example in Fig-
ure 4.2(b), the latter will result in the weights u11 = z1,1, u12 = z2,1, u21 = z1,2, u22 =
z2,2, etc.

Stopping conditions may be

• a maximum number of epochs is reached,

• stop when weight adjustments are sufficiently small,

• a small enough quantization error has been reached, where the quantization error
is defined as

QT =

∑PT

p=1 ||zp − uk||22
PT

(4.21)

One problem that may occur in LVQ networks is that one cluster unit may dominate
as the winning cluster unit. The danger of such a scenario is that most patterns will
be in one cluster. To prevent one output unit from dominating, a “conscience” factor
is incorporated in a function to determine the winning output unit. The conscience
factor penalizes an output for winning too many times. The activation value of output
units is calculated using

ok,p =
{

1 for min∀k{dk,p(zp,uk)− bk(t)}
0 otherwise (4.22)

where
bk(t) = γ(

1
I
− gk(t)) (4.23)

and
gk(t) = gk(t− 1) + β(ok,p − gk(t− 1)) (4.24)
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In the above, dk,p is the Euclidean distance as defined in equation (4.20), I is the total
number of input units, and gk(0) = 0. Thus, bk(0) = 1

I , which initially gives each
output unit an equal chance to be the winner; bk(t) is the conscience factor defined
for each output unit. The more an output unit wins, the larger the value of gk(t)
becomes, and bk(t) becomes larger negative. Consequently, a factor |bk(t)| is added to
the distance dk,p. Usually, for normalized inputs, β = 0.0001 and γ = 10.

4.5 Self-Organizing Feature Maps

Kohonen developed the self-organizing feature map (SOM) [474, 475, 476], as moti-
vated by the self-organization characteristics of the human cerebral cortex. Studies of
the cerebral cortex showed that the motor cortex, somatosensory cortex, visual cortex
and auditory cortex are represented by topologically ordered maps. These topological
maps form to represent the structures sensed in the sensory input signals.

The self-organizing feature map is a multidimensional scaling method to project an
I-dimensional input space to a discrete output space, effectively performing a com-
pression of input space onto a set of codebook vectors. The output space is usually a
two-dimensional grid. The SOM uses the grid to approximate the probability density
function of the input space, while still maintaining the topological structure of input
space. That is, if two vectors are close to one another in input space, so is the case
for the map representation.

The SOM closely resembles the learning vector quantizer discussed in the previous
section. The difference between the two unsupervised algorithms is that neurons are
usually organized on a rectangular grid for SOM, and neighbors are updated to also
perform an ordering of the neurons. In the process, SOMs effectively cluster the
input vectors through a competitive learning process, while maintaining the topological
structure of the input space.

Section 4.5.1 explains the standard stochastic SOM training rule, while a batch version
is discussed in Section 4.5.2. A growing approach to SOM is given in Section 4.5.3.
Different approaches to speed up the training of SOMs are overviewed in Section 4.5.4.
Section 4.5.5 explains the formation of clusters for visualization purposes. Section 4.5.6
discusses in brief different ways how the SOM can be used after training.

4.5.1 Stochastic Training Rule

SOM training is based on a competitive learning strategy. Assume I-dimensional
input vectors zp, where the subscript p denotes a single training pattern. The first
step of the training process is to define a map structure, usually a two-dimensional
grid (refer to Figure 4.3). The map is usually square, but can be of any rectangular
shape. The number of elements (neurons) in the map is less than the number of
training patterns. Ideally, the number of neurons should be equal to the number of
independent training patterns.
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Figure 4.3 Self-organizing Map

Each neuron on the map is associated with and I-dimensional weight vector that forms
the centroid of one cluster. Larger cluster groupings are formed by grouping together
“similar” neighboring neurons.

Initialization of the codebook vectors can occur in various ways:

• Assign random values to each weight wkj = (wkj1, wkj2, · · · , wKJI), with K the
number of rows and J the number of columns of the map. The initial values
are bounded by the range of the corresponding input parameter. While random
initialization of weight vectors is simple to implement, this form of initialization
introduces large variance components into the map which increases training time.

• Assign to the codebook vectors randomly selected input patterns. That is,

wkj = zp (4.25)

with p ∼ U(1, PT ).

This approach may lead to premature convergence, unless weights are perturbed
with small random values.

• Find the principal components of the input space, and initialize the codebook
vectors to reflect these principal components.

• A different technique of weight initialization is due to Su et al. [818], where
the objective is to define a large enough hyper cube to cover all the training
patterns [818]. The algorithm starts by finding the four extreme points of the
map by determining the four extreme training patterns. Firstly, two patterns
are found with the largest inter-pattern Euclidean distance. A third pattern is
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located at the furthest point from these two patterns, and the fourth pattern
with largest Euclidean distance from these three patterns. These four patterns
form the corners of the map. Weight values of the remaining neurons are found
through interpolation of the four selected patterns, in the following way:

– Weights of boundary neurons are initialized as

w1j =
w1J −w11

J − 1
(j − 1) + w11 (4.26)

wKj =
wKJ −wK1

J − 1
(j − 1) + wK1 (4.27)

wk1 =
wK1 −w11

K − 1
(k − 1) + w11 (4.28)

wkJ =
wKJ −w1J

K − 1
(k − 1) + w1J (4.29)

for all j = 2, · · · , J − 1 and k = 2, · · · , K − 1.
– The remaining codebook vectors are initialized as

wkj =
wkJ −wk1

J − 1
(j − 1) + wk1 (4.30)

for all j = 2, · · · , J − 1 and k = 2, · · · , K − 1.

The standard training algorithm for SOMs is stochastic, where codebook vectors are
updated after each pattern is presented to the network. For each neuron, the associated
codebook vector is updated as

wkj(t + 1) = wkj(t) + hmn,kj(t)[zp −wkj(t)] (4.31)

where mn is the row and column index of the winning neuron. The winning neuron is
found by computing the Euclidean distance from each codebook vector to the input
vector, and selecting the neuron closest to the input vector. That is,

||wmn − zp||2 = min
∀kj

{||wkj − zp||22} (4.32)

The function hmn,kj(t) in equation (4.31) is referred to as the neighborhood function.
Thus, only those neurons within the neighborhood of the winning neuron mn have
their codebook vectors updated. For convergence, it is necessary that hmn,kj(t) → 0
when t →∞.

The neighborhood function is usually a function of the distance between the coordi-
nates of the neurons as represented on the map, i.e.

hmn,kj(t) = h(||cmn − ckj ||22, t) (4.33)

with the coordinates cmn, ckj ∈ R2. With increasing value of ||cmn − ckj ||22 (that is,
neuron kj is further away from the winning neuron mn), hmn,kj → 0. The neighbor-
hood can be defined as a square or hexagon. However, the smooth Gaussian kernel is
mostly used:

hmn,kj(t) = η(t)e−
||cmn−ckj ||22

2σ2(t) (4.34)
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where η(t) is the learning rate and σ(t) is the width of the kernel. Both η(t) and σ(t)
are monotonically decreasing functions.

The learning process is iterative, continuing until a “good” enough map has been
found. The quantization error is usually used as an indication of map accuracy, defined
as the sum of Euclidean distances of all patterns to the codebook vector of the winning
neuron, i.e.

ET =
PT∑
p=1

||zp −wmn(t)||22 (4.35)

Training stops when ET is sufficiently small.

4.5.2 Batch Map

The stochastic SOM training algorithm is slow due to the updates of weights after each
pattern presentation: all the weights are updated. Batch versions of the SOM training
rule have been developed that update weight values only after all patterns have been
presented. The first batch SOM training algorithm was developed by Kohonen [475],
and is summarized in Algorithm 4.3.

Algorithm 4.3 Batch Self-Organizing Map

Initialize the codebook vectors by assigning the first KJ training patterns to them,
where KJ is the total number of neurons in the map;
while stopping condition(s) not true do

for each neuron, kj do
Collect a list of copies of all patterns zp whose nearest codebook vector
belongs to the topological neighborhood of that neuron;

end
for each codebook vector do

Compute the codebook vector as the mean over the corresponding list of
patterns;

end
end

Based on the batch learning approach above, Kaski et al. [442] developed a faster
version, as summarized in Algorithm 4.4.

4.5.3 Growing SOM

One of the design problems when using a SOM is deciding on the size of the map. Too
many neurons may cause overfitting of the training patterns, with each training pattern
assigned to a different neuron. Alternatively, the final SOM may have succeeded in
forming good clusters of similar patterns, but with many neurons with a zero or close
to zero frequency. The frequency of a neuron refers to the number of patterns for



66 4. Unsupervised Learning Neural Networks

Algorithm 4.4 Fast Batch Self-Organizing Map

Initialize the codebook vectors, wkj , using any initialization approach;
while stopping condition(s) not true do

for each neuron, kj do
Compute the mean over all patterns for which that neuron is the winner;
Denote the average by wkj ;

end
Adapt the weight values for each codebook vector using

wkj =
∑

nm Nnmhnm,kjwnm∑
nm Nnmhnm,kj

(4.36)

where nm iterates over all neurons, Nnm is the number of patterns for which
neuron nm is the winner, and hnm,kj is the neighborhood function which
indicates if neuron nm is in the neighborhood of neuron kj, and to what degree.

end

which that neuron is the winner, referred to as the best matching neuron (BMN). Too
many neurons also cause a substantial increase in computational complexity. Too few
neurons, on the other hand, will result in clusters with a high variance among the
cluster members.

An approach to find near optimal SOM architectures is to start training with a small
architecture, and to grow the map when more neurons are needed. One such SOM
growing algorithm is given in Algorithm 4.5, assuming a square map structure. Note
that the map-growing process coexists with the training process.

Growing of the map is stopped when any one of the following criteria is satisfied:

• the maximum map size has been reached;

• the largest neuron quantization error is less than a user specified threshold, ε;

• the map has converged to the specified quantization error.

A few aspects of the growing algorithm above need some explanation. These are the
constants ε, γ, and the maximum map size as well as the different stopping conditions.
A good choice for γ is 0.5. The idea of the interpolation step is to assign a weight
vector to the new neuron ab such that it removes patterns from neuron kj with the
largest quantization erro in order to reduce the error of that neuron. A value less than
0.5 will position neuron ab closer to kj, with the chance that more patterns will be
removed from neuron kj. A value larger than 0.5 will have the opposite effect.

The quantization error threshold, ε, is important to ensure that a sufficient map size
is constructed. A small value for ε may result in a too large map architecture, while
a too large ε may result in longer training times to reach a large enough architecture.

An upper bound on the size of the map is easy to determine: it is simply the number
of training patterns, PT . This is, however, undesirable. The maximum map size is
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Algorithm 4.5 Growing Self-Organizing Map Algorithm

Initialize the codebook vectors for a small, undersized SOM;
while stopping condition(s) not true do

while growing condition not triggered do
Train the SOM for t

′
pattern presentations using any SOM training method;

end
if grow condition is met then

Find the neuron kj with the largest quantization error;
Find the furthest immediate neighbor mn in the row-dimension of the map,
and the furthest neuron rs in the column-dimension;
Insert a column between neurons kj and rs and a row between neurons kj
and mn (this step preserves the square structure of the map);
For each neuron ab in the new column, initialize the corresponding codebook
vectors wab using

wab = γ(wa,b−1 + wa,b+1) (4.37)

and for each neuron in the new row,

wab = γ(wa−1,b + wa+1,b) (4.38)

where γ ∈ (0, 1)
end

end
Refine the weights of the final SOM architecture with additional training steps until
convergence has been reached.

rather expressed as βPT , with β ∈ (0, 1). Ultimately, the map size should be at least
equal to the number of independent variables in the training set. The optimal value
of β is problem dependent, and care should be taken to ensure that β is not too small
if a growing SOM is not used. If this is the case, the final map may not converge to
the required quantization error since the map size will be too small.

4.5.4 Improving Convergence Speed

Training of SOMs is slow, due to the large number of weight updates involved (all
the weights are updated for standard SOM training). Several mechanisms have been
developed to reduce the number of training calculations, thereby improving speed
of convergence. BatchMap is one such mechanism. Other approaches include the
following:

Optimizing the neighborhood

If the Gaussian neighborhood function as given in equation (4.34) is used, all neurons
will be in the neighborhood of the BMN, but to different degrees, due to the asymptotic
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characteristics of the function. Thus, all codebook vectors are updated even if they
are far from the BMN. This is strictly not necessary, since neurons far away from the
BMN are dissimilar to the presented pattern, and will have negligible weight changes.
Many calculations can therefore be saved by clipping the Gaussian neighborhood at a
certain threshold – without degrading the performance of the SOM.

Additionally, the width of the neighborhood function can change dynamically during
training. The initial width is large, with a gradual decrease in the variance of the
Gaussian, which controls the neighborhood. For example,

σ(t) = σ(0)e−t/τ1 (4.39)

where τ1 is a positive constant, and σ(0) is the initial, large variance.

If the growing SOM (refer to Section 4.5.3) is used, the width of the Gaussian neigh-
borhood function should increase with each increase in map size.

Learning Rate

A time-decaying learning rate may be used, where training starts with a large learning
rate which gradually decreases. That is,

η(t) = η(0)e−t/τ2 (4.40)

where τ2 is a positive constant and η(0) is the initial, large learning rate.

Shortcut Winner Search

The shortcut winner search decreases the computational complexity by using a more
efficient search for the BMN. The search is based on the premise that the BMN of a
pattern is in the vicinity of the BMN for the previous epoch. The search for a BMN is
therefore constrained to the current BMN and its neighborhood. In short, the search
for a BMN for each pattern is summarized in Algorithm 4.6.

Algorithm 4.6 Shortcut Winner Search

Retrieve the previous BMN;
Calculate the distance of the pattern to the codebook vector of the previous BMN;
Calculate the distance of the pattern to all direct neighbors of the previous BMN;
if the previous BMN is still the best then

Terminate the search;
end
else

Let the new BMN be the neuron (within the neighborhood) closest to that
pattern;

end
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Shortcut winner search does not perform a search for the BMN over the entire map,
but just within the neighborhood of the previous BMN, thereby substantially reducing
computational complexity.

4.5.5 Clustering and Visualization

The effect of the SOM training process is to cluster together similar patterns, while
preserving the topology of input space. After training, all that is given is the set of
trained weights with no explicit cluster boundaries. An additional step is required to
find these cluster boundaries.

One way to determine and visualize these cluster boundaries is to calculate the unified
distance matrix (U-matrix) [403], which contains a geometrical approximation of the
codebook vector distribution in the map. The U-matrix expresses for each neuron,
the distance to the neighboring codebook vectors. Large values within the U-matrix
indicate the position of cluster boundaries. Using a gray-scale scheme, Figure 4.4(a)
visualizes the U-matrix for the iris classification problem.

For the same problem, Figure 4.4(b) visualizes the clusters on the actual map. Bound-
aries are usually found by using Ward clustering [23] of the codebook vectors. Ward
clustering follows a bottom-up approach where each neuron initially forms its own
cluster. At consecutive iterations, two clusters that are closest to one another are
merged, until the optimal or specified number of clusters has been constructed. The
end result of Ward clustering is a set of clusters with a small variance over its members,
and a large variance between separate clusters.

The Ward distance measure is used to decide which clusters should be merged. The
distance measure is defined as

drs =
nrns

nr + ns
||wr −ws||22 (4.41)

where r and s are cluster indices, nr and ns are the number of patterns within the
clusters, and wr and ws are the centroid vectors of these clusters (i.e. the average
of all the codebook vectors within the cluster). The two clusters are merged if their
distance, drs, is the smallest. For the newly formed cluster, q,

wq =
1

nr + ns
(nrwr + nsws) (4.42)

and
nq = nr + ns (4.43)

Note that, in order to preserve topological structure, two clusters can only be merged if
they are adjacent. Furthermore, only clusters that have a nonzero number of patterns
associated with them are merged.
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(a) U-Matrix (b) Map Illustration

(c) Component Map for Third Input (d) Component Map for Fourth Input

i

Figure 4.4 Visualization of SOM Clusters for Iris Classification
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4.5.6 Using SOM

The SOM has been applied to a variety of real-world problems, including image analy-
sis, speech recognition, music pattern analysis, signal processing, robotics, telecom-
munications, electronic-circuit design, knowledge discovery, and time series analysis.
The main advantage of SOMs comes from the easy visualization and interpretation of
clusters formed by the map.

In addition to visualizing the complete map as illustrated in Figure 4.4(b), the relative
component values in the codebook vectors can be visualized as illustrated in the same
figure. Here a component refers to an input attribute. That is, a component plane
can be constructed for each input parameter (component) to visualize the distribution
of the corresponding weight (using some color scale representation). The map and
component planes can be used for exploratory data analysis. For example, a marked
region on the visualized map can be projected onto the component planes to find the
values of the input parameters for that region.

A trained SOM can also be used as a classifier. However, since no target information is
available during training, the clusters formed by the map should be manually inspected
and labeled. A data vector is then presented to the map, and the winning neuron
determined. The corresponding cluster label is then used as the class.

Used in recall mode, the SOM can be used to interpolate missing values within a
pattern. Given such a pattern, the BMN is determined, ignoring the inputs with
missing values. A value is then found by either replacing the missing value with the
corresponding weight of the BMN, or through interpolation among a neighborhood of
neurons (e.g. take the average of the weight values of all neurons in the neighborhood
of the BMN).

4.6 Assignments

1. Implement and test a LVQ-I network to distinguish between different alphabet-
ical characters of different fonts.

2. Explain why it is necessary to retrain a supervised NN on all the training data,
including any new data that becomes available at a later stage. Why is this not
such an issue with unsupervised NNs?

3. Discuss an approach to optimize the LVQ-I network architecture.

4. How can PSO be used for unsupervised learning?

5. What is the main difference between the LVQ-I and SOM as an approach to
cluster multi-dimensional data?

6. For a SOM, if the training set contains PT patterns, what is the upper bound
on the number of neurons necessary to fit the data? Justify your answer.

7. Explain the purpose of the neighborhood function of SOMs.

8. Assuming a Gaussian neighborhood function for SOMs, what can be done to
reduce the number of weight updates in a sensible way?
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9. Explain how a SOM can be used to distinguish among different hand gestures.

10. Discuss a number of ways in which the SOM can be adapted to reduce its com-
putational complexity.

11. Explain how a SOM can be used as a classifier.

12. Explain how it is possible for the SOM to train on data with missing values.

13. How can a trained SOM be used to determine an appropriate value if for a given
input pattern an attribute does not have a value.



Chapter 5

Radial Basis Function
Networks

Several neural networks have been developed for both the supervised and the unsu-
pervised learning paradigms. While these NNs were seen to perform very well in their
respective application fields, improvements have been developed by combining super-
vised and unsupervised learning. This chapter discusses two such learning algorithms,
namely the learning vector quantizer-II in Section 5.1 and radial basis function NNs
in Section 5.2.

5.1 Learning Vector Quantizer-II

The learning vector quantizer (LVQ-II), developed by Kohonen, uses information from
a supervisor to implement a reward and punish scheme. The LVQ-II assumes that the
classifications of all input patterns are known. If the winning cluster unit correctly
classifies the pattern, the weights to that unit are rewarded by moving the weights to
better match the input pattern. On the other hand, if the winning unit misclassified
the input pattern, the weights are penalized by moving them away from the input
vector.

For the LVQ-II, the weight updates for the winning output unit ok are given as

∆uki =
{

η(t)[zi,p − uki(t− 1)] if ok,p = tk,p

−η(t)[zi,p − uki(t− 1)] if ok,p �= tk,p
(5.1)

Similarly to the LVQ-I, a conscience factor can be incorporated to penalize frequent
winners.

5.2 Radial Basis Function Neural Networks

A radial basis function (RBF) neural network (RBFNN) is a FFNN where hidden units
do not implement an activation function, but represents a radial basis function. An
RBFNN approximates a desired function by superposition of nonorthogonal, radially
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74 5. Radial Basis Function Networks

symmetric functions. RBFNNs have been independently proposed by Broomhead and
Lowe [92], Lee and Kill [506], Niranjan and Fallside [630], and Moody and Darken
[605] as an approach to improve accuracy and to decrease training time complexity.

The RBFNN architecture is overviewed in Section 5.2.1, while different radial basis
functions are discussed in Section 5.2.2. Different training algorithms are given in
Section 5.2.3. Variations of RBFNNs are discussed in Section 5.2.4.

5.2.1 Radial Basis Function Network Architecture
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Figure 5.1 Radial Basis Function Neural Network

Figure 5.1 illustrates a general architecture of the RBFNN. The architecture is very
similar to that of a standard FFNN, with the following differences:

• Hidden units implement a radial basis function, Φ. The output of each hidden
unit is calculated as

yj,p(zp) = Φ(||zp − µj ||2) (5.2)

where µj represents the center of the basis function, and || • ||2 is the Euclidean
norm.

• Weights from the input units to a hidden unit, referred to as µij , represent the
center of the radial basis function of hidden unit j.
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• Some radial basis functions are characterized by a width, σj . For such basis
functions, the weight from the basis unit in the input layer to each hidden unit
represents the width of the basis function. Note that input unit zI+1 has an
input signal of +1.

The output of an RBFNN is calculated as

ok,p =
J+1∑
j=1

wkjyj,p (5.3)

Note that the output units of an RBFNN implement linear activation functions. The
output is therefore just a linear combination of basis functions.

As with FFNNs, it has been shown that RBFNNs are universal approximators [47,
349, 682].

5.2.2 Radial Basis Functions

Each hidden unit implements a radial basis function. These functions, also referred to
as kernel functions, are strictly positive, radially symmetric functions. A radial basis
function (RBF) has a unique maximum at its center, µj , and the function usually
drops off to zero rapidly further away from the center. The output of a hidden unit
indicates the closeness of the input vector, zp, to the center of the basis function.

In addition to the center of the function, some RBFs are characterized by a width,
σj , which specifies the width of the receptive field of the RBF in the input space for
hidden unit j.

A number of RBFs have been proposed [123, 130]:

• Linear function, where

Φ(||zp − µj ||2) = ||zp − µj ||2 (5.4)

• Cubic function, where

Φ(||zp − µj ||2) = ||zp − µj ||32 (5.5)

• Thin-plate-spline function, where

Φ(||zp − µj ||2) = ||zp − µj ||22 ln ||zp − µj ||2 (5.6)

• Multiquadratic function, where

Φ(||zp − µj ||2, σj) =
√
||zp − µj ||22 + σ2

j (5.7)

• Inverse multiquadratic function, where

Φ(||zp − µj ||2, σj) =
1√

||zp − µj ||22 + σ2
j

(5.8)
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• Gaussian function, where

Φ(||zp − µj ||2, σj) = e−||zp−µj ||22/(2σ2
j ) (5.9)

• Logistic function, where

Φ(||zp − µj ||2, σj) =
1

1 + e||zp−µj ||22/σ2
j−θj

(5.10)

where θj is an adjusted bias.

Considering the above functions, the accuracy of an RBFNN is influenced by:

• The number of basis functions used. The more basis functions that are
used, the better the approximation of the target function will be. However,
unnecessary basis functions increase computational complexity.

• The location of the basis functions as defined by the center vector, µj , for
each basis function. Basis functions should be evenly distributed to cover the
entire input space.

• For some functions, the width of the receptive field, σj . The larger σj is, the
more of the input space is represented by that basis function.

Training of an RBFNN should therefore consider methods to find the best values for
these parameters.

5.2.3 Training Algorithms

A number of methods have been developed to train RBFNNs. These methods differ
mainly in the number of parameters that are learned. The fixed centers algorithm
adapts only the weights between the hidden and output layers. Adaptive centers
training algorithms adapt both weights, centers, and deviations. This section reviews
some of these training algorithms.

Training RBFNNs with Fixed Centers

Broomhead and Lowe [92] proposed a training method where it is assumed that RBF
centers are fixed. Centers are randomly selected from the training set. Provided that
a sufficient number of centers are uniformly selected from the training set, an adequate
sampling of the input space will be obtained. Common practice is to select a large
number of centers, and then to prune, after training, redundant basis functions. This
is usually done in a systematic manner, removing only those RBFs that do not cause
a significant degradation in accuracy.

The fixed centers training algorithm is summarized in Algorithm 5.1. With reference
to this algorithm, Gaussian RBFs are used, with widths calculated as

σj = σ =
dmax√

J
, j = 1, . . . , J (5.11)
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where J is the number of centers (or hidden units), and dmax is the maximum Eu-
clidean distance between centers.

Weight values of connections between the hidden and output layers are found by
solving for wk in

wk = (ΦT Φ)−1ΦT tk (5.12)

where wk is the weight vector of output unit k, tk is the vector of target outputs, and
Φ ∈ RPT ×J is the matrix of RBF nonlinear mappings performed by the hidden layer.

Algorithm 5.1 Training an RBFNN with Fixed Centers

Set J to indicate the number of centers;
Choose the centers, µj , j = 1, . . . , J , as

µj = zp, p ∼ U(1, PT ) (5.13)

Calculate the width, σj , using equation (5.11);
Initialize all wkj , k = 1, . . . , K and j = 1, . . . , J to small random values;
Calculate the output for each output unit using equation (5.3) with Gaussian radial
basis functions;
Solve for the network weights using equation (5.12) for each k = 1, . . . , K;

Training an RBFNN using Gradient Descent

Moody and Darken [605] and Poggio and Girosi [682] used gradient descent to adjust
weights, centers, and widths. The algorithm is summarized in Algorithm 5.2.

In Algorithm 5.2, ηw, ηµ, and ησ respectively indicate the learning rate for weights,
centers, and widths. In this algorithm, centers are initialized by sampling from the
training set. The next subsection shows that these centers can be obtained in an
unsupervised training step, prior to training the weights between hidden units (radial
basis) and output units.

Two-Phase RBFNN Training

The training algorithms discussed thus far have shown slow convergence times [899]. In
order to increase training time, RBFNN training can be done in two phases [605, 881]:
(1) unsupervised learning of the centers, µj , and then, (2) supervised training of the wk

weights between the hidden and output layers using gradient descent. Algorithm 5.3
summarizes a training algorithm where the first phase utilizes an LVQ-I to cluster
input patterns [881].
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Algorithm 5.2 Gradient Descent Training of RBFNN

Select the number of centers, J ;
for j = 1, . . . , J do

p ∼ U(1, PT );
µj(t) = zp;
σj(t) = dmax√

J
;

end
for k = 1, . . . , K do

for j = 1, . . . , J do
wkj ∼ U(wmin, wmax);

end
end
while stopping condition(s) not true do

Select an input pattern, dp = (zp, tp);
for k = 1, . . . , K do

Compute ok,p using equation (5.3);
for j = 1, . . . , J do

Compute weight adjustment step size,

∆wkj(t) = −ηw
∂E

∂wkj
(t) (5.14)

Adjust weights using

wkj(t + 1) = wkj(t) + ∆wkj(t) (5.15)

end
end
for j = 1, . . . , J do

for i = 1, . . . , I do
Compute center step size,

∆µji(t) = −ηµ
∂E

∂µji
(t) (5.16)

Adjust centers using

µji(t + 1) = µji(t) + ∆µji(t) (5.17)

end
Compute width step size,

∆σj(t) = −ησ
∂E

∂σj
(t) (5.18)

Adjust widths using
σj(t + 1) = σj(t) + ∆σj(t) (5.19)

end
end
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Algorithm 5.3 Two-Phase RBFNN Training

Initialize wkj , k = 1, . . . , K and j = 1, . . . , J ;
Initialize µji, j = 1, . . . , J and i = 1, . . . , I;
Initialize σj , j = 1, . . . , J ;
while LVQ-I has not converged do

Apply one epoch of LVQ-I to adjust µj , j = 1, . . . , J ;
Adjust σj , j = 1, . . . , J ;

end
t = 0;
while gradient descent has not converged do

Select an input pattern, (zp, tp);
Compute the weight step sizes,

∆wkj(t) = η
K∑

k=1

(tk,p − ok,p)yj,p (5.20)

Adjust the weights,
wkj(t + 1) = wkj(t) + ∆wkj(t) (5.21)

end

Before the LVQ-I training phase, the RBFNN is initialized as follows:

• The centers are initialized by setting all the µji weights to the average value of
all inputs in the training set.

• The weights are initialized by setting all σj to the standard deviation of all input
values over the training set.

• The hidden-to-output weights, wkj , are initialized to small random values.

At the end of each LVQ-I iteration, basis function widths are recalculated as follows:
For each hidden unit, find the average of the Euclidean distances between µj and the
input patterns for which the hidden unit was selected as the winner. The width, σj ,
is set to this average.

Instead of using LVQ-I, Moody and Darken [605] uses K-means clustering in the first
phase. The K-means algorithm is initialized by setting each µj to a randomly selected
input pattern. Training patterns are assigned to their closest center, after which each
center is recomputed as

µj =

∑
p∈Cj

zp

|Cj | (5.22)

where Cj is the set of patterns closest to center µj . Training patterns are again
reassigned to their closest center, after which the centers are recalculated. This process
continues until there is no significant change in the centers.
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After the K-means clustering, the widths are determined as follow:

σj = τ ||µl − µj || (5.23)

where µl is the nearest neighbor of µj , and τ ∈ [1, 1.5].

The second-phase is then executed to learn the weight values, wkj using gradient
descent, or by solving for wk as in equation (5.12).

5.2.4 Radial Basis Function Network Variations

Two variations of the standard RBFNN are discussed in this section. These variations
were developed as an attempt to improve the performance of RBFNNs.

Normalized Hidden Unit Activations

Moody and Darken [605] proposed that hidden unit activations must be normalized
using,

yj,p(zp) =
Φ(||zp − µj ||2, σj)∑J
l=1 Φ(||zp − µl||2, σl)

(5.24)

This introduces the property that

J∑
j=1

yj,p(zp) = 1, ∀p = 1, . . . , PT (5.25)

which means that the above normalization represents the conditional probability of
hidden unit j generating zp. This probability is given as

P (j|zp) =
Pj(zp)∑J
l=1 Pl(zp)

=
yj,p(zp)∑J
l=1 yl,p(zp)

(5.26)

Soft-Competition

The K-means clustering approach proposed by Moody and Darken can be considered
as a hard competition winner-takes-all action. An input pattern is assigned to the
cluster of patterns of the µj to which the input pattern is closest. Adjustment of µj

is then based only on those patterns for which it was selected as the winner.

In soft-competition [632], all input vectors have an influence on the adjustment of all
centers. For each hidden unit,

µj =

∑PT

p=1 P (j|zp)zp∑PT

p=1 P (j|zp)
(5.27)

where P (j|zp) is defined in equation (5.26).
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5.3 Assignments

1. Compare the performance of an RBFNN and a FFNN on a
classification problem from the UCI machine learning repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html).

2. Compare the performance of the Gaussian and logistic basis functions.

3. Suggest an alternative to compute the hidden-to-output weights instead of using
GD.

4. Suggest an alternative to compute the input-to-hidden weights instead of using
LVQ-I.

5. Investigate alternative methods to initialize an RBF NN.

6. Is it crucial that all wkj be initialized to small random values? Motivate your
answer.

7. Develop a PSO, DE, and EP algorithm to train an RBFNN.





Chapter 6

Reinforcement Learning

The last learning paradigm to be discussed is that of reinforcement learning (RL) [823],
with its origins in the psychology of animal learning. The basic idea is that of awarding
the learner (agent) for correct actions, and punishing wrong actions. Intuitively, RL is
a process of trial and error, combined with learning. The agent decides on actions based
on the current environmental state, and through feedback in terms of the desirability
of the action, learns which action is best associated with which state. The agent learns
from interaction with the environment.

While RL is a general learning paradigm in AI, this chapter focuses on the role that
NNs play in RL. The LVQ-II serves as one example where RL is used to train a NN
to perform data clustering (refer to Section 5.1).

Section 6.1 provides an overview of RL. Model-free learning methods are given in
Section 6.2. Connectionist approaches to RL are described in Section 6.3.

6.1 Learning through Awards

Formally defined, reinforcement learning is the learning of a mapping from situations
to actions with the main objective to maximize the scalar reward or reinforcement
signal [824]. Informally, reinforcement learning is defined as learning by trial-and-
error from performance feedback from the environment or an external evaluator. The
agent has absolutely no prior knowledge of what action to take, and has to discover
(or explore) which actions yield the highest reward.

A typical reinforcement learning problem is illustrated in Figure 6.1. The agent re-
ceives sensory inputs from its environment, as a description of the current state of
the perceived environment. An action is executed, upon which the agent receives the
reinforcement signal or reward. This reward can be a positive or negative signal, de-
pending on the correctness of the action. A negative reward has the effect of punishing
the agent for a bad action.

The action may cause a change in the agent’s environment, thereby affecting the future
options and actions of the agent. The effects of actions on the environment and future
states can not always be predicted. It is therefore necessary that the agent frequently
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Figure 6.1 Reinforcement Learning Problem

monitors its environment.

One of the important issues in RL (which occurs in most search methods) is that of
the exploration–exploitation trade-off. As already indicated, RL has two important
components:

• A trial and error search to find good actions, which forms the exploration com-
ponent of RL.

• A memory of which actions worked well in which situations. This is the exploita-
tion component of RL.

It is important that the agent exploits what it has already learned, such that a reward
can be obtained. However, via the trial and error search, the agent must also explore
to improve action selections in the future.

A reinforcement learning agent has the following components:

• A policy, which is the decision making function of the agent. This function is
used to specify which action to execute in each of the situations that the agent
may encounter. The policy is basically a set of associations between actions and
situations, or alternatively, a set of stimulus-response rules.

• A reward function, which defines the goal of the agent. The reward function
defines what are good and bad actions for the agent for specific situations. The
reward is immediate, and represents only the current environment state. The
goal of the agent is to maximize the total reward that it receives over the long
run.

• A value function, which specifies the goal in the long run. The value function
is used to predict future reward, and is used to indicate what is good in the long
run.

• Optionally, an RL agent may also have a model of the environment. The envi-
ronmental model mimics the behavior of the environment. This can be done by
transition functions that describe transitions between different states.
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For the value function, an important aspect is how the future should be taken into
account. A number of models have been proposed [432]:

• The finite-horizon model, in which the agent optimizes its expected reward
for the next nt steps, i.e.

E

[
nt∑

t=1

r(t)

]
(6.1)

where r(t) is the reward for time-step t.

• The infinite-horizon discounted model, which takes the entire long-run
reward of the agent into consideration. However, each reward received in future
is geometrically discounted according to a discount factor, γ ∈ [0, 1):

E

[ ∞∑
t=0

γtr(t)

]
(6.2)

The discount factor enforces a bound on the infinite sum.

• The average reward model, which prefers actions that optimize the agent’s
long-run average reward:

lim
nt→∞E

[
1
nt

nt∑
t=0

r(t)

]
(6.3)

A problem with this model is that it is not possible to distinguish between a
policy that gains a large amount of reward in the initial phases, and a policy
where the largest gain is obtained in the later phases.

In order to find an optimal policy, π∗, it is necessary to find an optimal value function.
A candidate optimal value function is [432],

V ∗(s) = max
a∈A


R(s, a) + γ

∑
s′∈S

T (s, a, s
′
)V ∗(s

′
)


 , s ∈ S (6.4)

where A is the set of all possible actions, S is the set of environmental states, R(s, a)
is the reward function, and T (s, a, s

′
) is the transition function. Equation (6.4) states

that the value of a state, s, is the expected instantaneous reward, R(s, a), for action
a plus the expected discounted value of the next state, using the best possible action.

From the above, a clear definition of the model in terms of the transition function,
T , and the reward function, R, is required. A number of algorithms have been de-
veloped for such RL problems. The reader is referred to [432, 824] for a summary of
these methods. Of more interest to this chapter are model-free learning methods, as
described in the next section.
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6.2 Model-Free Reinforcement Learning Model

This section considers model-free RL methods, where the objective is to obtain an
optimal policy without a model of the environment. This section reviews two ap-
proaches, namely temporal difference (TD) learning (in Section 6.2.1) and Q-learning
(in Section 6.2.2).

6.2.1 Temporal Difference Learning

Temporal difference (TD) learning [824] learns the value policy using the update rule,

V (s) = V (s) + η(r + γV (s
′
)− V (s)) (6.5)

where η is a learning rate, r is the immediate reward, γ is the discount factor, s is the
current state, and s

′
is a future state. Based on equation (6.5), whenever a state, s,

is visited, its estimated value is updated to be closer to r + ηV (s
′
).

The above model is referred to as TD(0), where only one future step is considered.
The TD method has been generalized to TD(λ) strategies [825], where λ ∈ [0, 1] is a
weighting on the relevance of recent temporal differences of previous predictions. For
TD(λ), the value function is learned using

V (u) = V (u) + η(r + γV (s
′
)− V (s))e(u) (6.6)

where e(u) is the eligibility of state u. The eligibility of a state is the degree to which
the state has been visited in the recent past, computed as

e(s) =
t∑

t′=1

(λγ)t−t
′
δs,st

(6.7)

where

δs,st
=
{

1 s = st

0 otherwise (6.8)

The update in equation (6.6) is applied to every state, according to its eligibility, and
not just the previous state as for TD(0).

6.2.2 Q-Learning

In Q-learning [891], the task is to learn the expected discounted reinforcement values,
Q(s, a), of taking action a in state s, then continuing by always choosing actions
optimally. To relate Q-values to the value function, note that

V ∗(s) = max
a

Q∗(s, a) (6.9)

where V ∗(s) is the value of s assuming that the best action is taken initially.
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The Q-learning rule is given as

Q(s, a) = Q(s, a) + η(r + γ max
a′∈A

Q(s
′
, a

′
)−Q(s, a)) (6.10)

The agent then takes the action with the highest Q-value.

6.3 Neural Networks and Reinforcement Learning

Neural networks and reinforcement learning have been combined in a number of ways.
One approach of combining these models is to use a NN as an approximator of the
value function used to predict future reward [162, 432]. Another approach uses RL to
adjust weights. Both these approaches are discussed in this section.

As already indicated, the LVQ-II (refer to Section 5.1) implements a form of RL.
Weights of the winning output unit are positively updated only if that output unit
provided the correct response for the corresponding input pattern. If not, weights are
penalized through adjustment away from that input pattern. Other approaches to
use RL for NN training include RPROP (refer to Section 6.3.1), and gradient descent
on the expected reward (refer to Section 6.3.2). Connectionist Q-learning is used to
approximate the value function (refer to Section 6.3.3).

6.3.1 RPROP

Resilient propagation (RPROP) [727, 728] performs a direct adaptation of the weight
step using local gradient information. Weight adjustments are implemented in the
form of a reward or punishment, as follows: If the partial derivative, ∂E

∂vji
(or ∂E

∂wkj
), of

weight vji (or wkj) changes its sign, the weight update value, ∆ji (∆kj), is decreased
by the factor, η−. The reason for this penalty is because the last weight update was
too large, causing the algorithm to jump over a local minimum. On the other hand, if
the derivative retains its sign, the update value is increased by factor η+ to accelerate
convergence.

For each weight, vji (and wkj), the change in weight is determined as

∆vji(t) =




−∆ji(t) if ∂E
∂vji

(t) > 0
+∆ji(t) if ∂E

∂vji
(t) < 0

0 otherwise
(6.11)

where

∆ji(t) =




η+∆ji(t− 1) if ∂E
∂vji

(t− 1) ∂E
∂vji

(t) > 0
η−∆ji(t− 1) if ∂E

∂vji
(t− 1) ∂E

∂vji
(t) < 0

∆ji(t) otherwise
(6.12)

Using the above,
vji(t + 1) = vji(t) + ∆vji(t) (6.13)
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RPROP is summarized in Algorithm 6.1. The value of ∆0 indicates the first weight
step, and is chosen as a small value, e.g. ∆0 = 0.1 [728]. It is shown in [728] that
the performance of RPROP is insensitive to the value of ∆0. Parameters ∆max and
∆min respectively specify upper and lower limits on update step sizes. It is suggested
in [728] that η− = 0.5 and η+ = 1.2.

Algorithm 6.1 RPROP Neural Network Training Algorithm

Initialize NN weights to small random values;
Set ∆ji = ∆kj = ∆0, ∀i = 1, . . . , I + 1, ∀j = 1, . . . , J + 1, ∀k = 1, . . . , K;
Let t = 0;
while stopping condition(s) not true do

for each wkj , j = 1, . . . , J + 1, k = 1, . . . , K do
if ∂E

∂wkj
(t− 1) ∂E

∂wkj
(t) > 0 then

∆kj(t) = min{∆kj(t− 1)η+, ∆max};
∆wkj(t) = −sign

(
∂E

∂wkj
(t)
)

∆kj(t);
wkj(t + 1) = wkj(t) + ∆wkj(t);

else if ∂E
∂wkj

(t− 1) ∂E
∂wkj

(t) < 0 then
∆kj(t) = max{∆kj(t− 1)η−, ∆min};
wkj(t + 1) = wkj(t)−∆wkj(t− 1);

∂E
∂wkj

= 0;

else if ∂E
∂wkj

(t− 1) ∂E
∂wkj

(t) = 0 then

∆wkj(t) = −sign
(

∂E
∂wkj

(t)
)

∆kj(t);
wkj(t + 1) = wkj(t) + ∆wkj(t);

end
Repeat the above for each vji weight, j = 1, . . . , J, i = 1, . . . , I + 1;

end

6.3.2 Gradient Descent Reinforcement Learning

For problems where only the immediate reward is maximized (i.e. there is no value
function, only a reward function), Williams [911] proposed weight update rules that
perform a gradient descent on the expected reward. These rules are then integrated
with back-propagation. Weights are updated as follows:

∆wkj = ηkj(rp − θk)ekj (6.14)

where ηkj is a non-negative learning rate, rp is the reinforcement associated with
pattern zp, θk is the reinforcement threshold value, and ekj is the eligibility of weight
wkj , given as

ekj =
∂

∂wkj
[ln(gj)] (6.15)

where
gj = P (ok,p = tk,p|wk, zp) (6.16)
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is the probability density function used to randomly generate actions, based on whether
the target was correctly predicted or not. Thus, this NN reinforcement learning rule
computes a GD in probability space.

Similar update equations are used for the vji weights.

6.3.3 Connectionist Q-Learning

Neural networks have been used to learn the Q-function in Q-learning [527, 891, 745].
The NN is used to approximate the mapping between states and actions, and even to
generalize between states. The input to the NN is the current state of the environment,
and the output represents the action to execute. If there are na actions, then either
one NN with na output units can be used [825], or na NNs, one for each of the actions,
can be used [527, 891, 745].

Assuming that one NN is used per action, Lin [527] used the Q-learning in equation
(6.10) to update weights as follows:

∆w(t) = η[r(t) + γ max
a∈A

Q(t− 1)−Q(t)]∇wQ(t) (6.17)

where Q(t) is used as shorthand notation for Q(s(t), a(t)) and ∇wQ(t) is a vector
of the output gradients, ∂Q

∂w (t), which are calculated by means of back-propagation.
Similar equations are used for the vj weights.

Watkins [891] proposed a combination of Q-learning with TD(λ)-learning, in which
case,

∆w(t) = η[r(t) + γ max
a∈A

Q(t− 1)−Q(t)]


 t∑

t′=0

(λγ)t−t
′
∇wQ(t

′
)


 (6.18)

where the relevance of the current error on earlier Q-value predictions is determined
by λ. The update algorithm is given in Algorithm 6.2.

Rummery and Niranjan [745] proposed an alternative hybrid, where

∆w(t) = η(r(t) + γQ(t + 1)−Q(t))


 t∑

t′=0

(λγ)t−t
′
∇wQ(t

′
)


 (6.23)

which replaces the greedy maxa∈A Q(t + 1) with Q(t + 1).

Peng and Williams [674] proposed the Q(λ) method, which combines Q-learning and
TD(λ)-learning as follows: A two step approach is followed, where weights are first
updated using equation (6.17), followed by

∆w(t) = η[r(t) + γ max
a∈A

Q(t + 1)−max
q∈A

Q(t)]
t∑

t′=0

(λγ)t−t
′
∇wQ(t

′
) (6.24)
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Algorithm 6.2 Connectionist Q-Learning Update Algorithm

Reset all eligibilities, e(t) = 0;
t = 0;
while stopping condition(s) not true do

Select action a(t) as the one with maximum predicted Q-value;
if t > 0 then

w(t) = w(t− 1) + η(r(t− 1) + γQ(t)−Q(t− 1))e(t− 1) (6.19)

end
Calculate ∇wQ(t) with respect to action a(t);
Update eligibilities,

e(t) = ∇wQ(t) + γλe(t− 1) (6.20)

Perform action a(t), and receive reward, r(t);
end

Algorithm 6.3 Q(λ) Connectionist Update Algorithm

Reset all eligibilities, e(t) = 0;
t = 0;
while stopping condition(s) not true do

Select action a(t) as the one with maximum predicted Q-value;
if t > 0 then

w(t) = w(t− 1) + η([r(t− 1) + γ max
a∈A

Q(t)−Q(t− 1)]∇wQ(t− 1)

+[r(t− 1) + γ max
a∈A

Q(t)−max
a∈A

Q(t− 1)]e(t− 1)) (6.21)

end
Update eligibilities,

e(t) = λγ[e(t− 1) + λwQ(t− 1)] (6.22)

Calculate ∇wQ(t) with respect to action a(t);
Perform action a(t), and receive reward, r(t);

end

This gives an overall update of

∆w(t) = η

(
[r(t) + γ max

a∈A
Q(t + 1)−Q(t)]∇wQ(t)

+ [r(t) + γ max
a∈A

Q(t + 1)−max
a∈A

Q(t)]e(t)
)

(6.25)

where the eligibility is calculated using

e(t) =
t∑

t′=0

(λγ)t−t
′
∇wQ(t− t

′
) = ∇wQ(t) + λγe(t) (6.26)
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Equation (6.26) keeps track of the weighted sum of previous error gradients.

The Q(λ) update algorithm is given in Algorithm 6.3.

6.4 Assignments

1. Discuss how reinforcement learning can be used to guide a robot out of a room
filled with obstacles.

2. Discuss the influence of the reinforcement threshold in equation (6.14) on per-
formance.

3. Contrast reinforcement learning with coevolution (refer to Chapter 15).

4. For the RPROP algorithm, what will be the consequence if

(a) ∆max is too small?
(b) η+ is very large?
(c) η− is very small?

5. Provide a motivation for replacing maxa∈A Q(t+1) with Q(t) in equation (6.23).





Chapter 7

Performance Issues
(Supervised Learning)

Performance is possibly the driving force of all organisms. If no attention is given to
improve performance, the quality of life will not improve. Similarly, performance is
the most important aspect that has to be considered when an artificial neural network
is being designed. The performance of an artificial NN is not just measured as the
accuracy achieved by the network, but aspects such as computational complexity and
convergence characteristics are just as important. These measures and other mea-
sures that quantify performance are discussed in Section 7.1, with specific reference to
supervised networks.

The design of NNs for optimal performance requires careful consideration of several
factors that influence network performance. In the early stages of NN research and
applications, the design of NNs was basically done by following the intuitive feelings of
an expert user, or by following rules of thumb. The vast number of theoretical analyses
of NNs made it possible to better understand the working of NNs – to unravel the
“black box”. These insights helped to design NNs with improved performance. Factors
that influence the performance of NNs are discussed in Section 7.3.

Although the focus of this chapter is on supervised learning, several ideas can be
extrapolated to unsupervised learning NNs.

7.1 Performance Measures

This section presents NN performance measures under three headings: accuracy, com-
plexity and convergence.

7.1.1 Accuracy

Generalization is a very important aspect of neural network learning. Since it is a
measure of how well the network interpolates to points not used during training, the
ultimate objective of NN learning is to produce a learner with low generalization error.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
c©2007 John Wiley & Sons, Ltd
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That is, to minimize the true risk function

EG(Ω;W) =
∫

(fNN (z,W)− t )2dΩ(z, t ) (7.1)

where, from Section 3.2.1, Ω(z, t ) is the stationary density according to which patterns
are sampled, W describes the network weights, and z and t are respectively the input
and target vectors. The function fNN is an approximation of the true underlying
function. Since Ω is generally not known, fNN is found through minimization of the
empirical error function

ET (DT ;W) =
1

PT

PT∑
p=1

(fNN (zp, W )− tp)2 (7.2)

over a finite data set DT ∼ Ω. When PT → ∞, then ET → EG. The aim of NN
learning is therefore to learn the examples presented in the training set well, while
still providing good generalization to examples not included in the training set. It is,
however, possible that a NN exhibits a very low training error, but bad generalization
due to overfitting (memorization) of the training patterns.

The most common measure of accuracy is the mean squared error (MSE), in which
case the training error, ET , is expressed as

ET =

∑PT

p=1

∑K
k=1(tk,p − ok,p)2

PT K
(7.3)

where PT is the total number of training patterns in the training set DT , and K is the
number of output units. The generalization error, EG, is approximated in the same
way, but with the first summation over the PG patterns in the generalization, or test
set, DG. Instead of the MSE, the sum squared error (SSE),

SSE =
P∑

p=1

K∑
k=1

(tk,p − ok,p)2 (7.4)

can also be used, where P is the total number of patterns in the data set considered.
However, the SSE is not a good measure when the performance on different data set
sizes are compared.

An additional error measure is required for classification problems, since the MSE
alone is not a good descriptor of accuracy. In the case of classification problems, the
percentage correctly classified (or incorrectly classified) patterns is used as a measure
of accuracy. The reason why the MSE is not a good measure, is that the network
may have a good accuracy in terms of the number of correct classifications, while
having a relatively large MSE. If just the MSE is used to indicate when training
should stop, it can result in the network being trained too long in order to reach the
low MSE; hence, wasting time and increasing the chances of overfitting the training
data (with reference to the number of correct classifications). But when is a pattern
classified as correct? When the output class of the NN is the same as the target class
– which is not a problem to determine when the ramp or step function is used as the
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activation function in the output layer. In the case of continuous activation functions,
a pattern zp is usually considered as being correctly classified if for each output unit
ok, ((ok,p ≥ 0.5 + θ and tk,p = 1) or (ok,p ≤ 0.5− θ and tk,p = 0)), where θ ∈ [0, 0.5]
– of course, assuming that the target classes are binary encoded.

An additional measure of accuracy is to calculate the correlation between the out-
put and target values for all patterns. This measure, referred to as the correlation
coefficient, is calculated as

r =
∑n

i=1(xi − x)
∑n

i=1(yi − y)
σxσy

=
∑n

i=1 xiyi − 1
n

∑n
i=1 xi

∑n
i=1 yi√∑n

i=1 x2
i − 1

n (
∑n

i=1 xi)2
√∑n

i=1 y2
i − 1

n (
∑n

i=1 yi)2
(7.5)

where xi and yi are observations, x and y are respectively the averages over all ob-
servations xi and yi, and σx and σy are the standard deviations of the xi and yi

observations respectively, and can be used to quantify the linear relationship between
variables x and y. As measure of learning accuracy, where x = ok,p and y = tk,p,
the correlation coefficient quantifies the linear relationship between the approximated
(learned) function and the true function. A correlation value close to 1 indicates a
good approximation to the true function. Therefore, the correlation coefficient

r =

∑P
p=1 ok,ptk,p − 1

P

∑P
p=1 ok,p

∑P
p=1 tk,p√∑P

p=1 o2
k,p − 1

P (
∑P

p=1 ok,p)2
√∑P

p=1 t2k,p − 1
P (
∑P

p=1 tk,p)2
(7.6)

is calculated as a measure of how well the NN approximates the true function.

Another very important aspect of NN accuracy is overfitting. Overfitting of a training
set means that the NN memorizes the training patterns, and consequently loses the
ability to generalize. That is, NNs that overfit cannot predict correct output for data
patterns not seen during training. Overfitting occurs when the NN architecture is too
large, i.e. the NN has too many weights (in statistical terms: too many free param-
eters) – a direct consequence of having too many hidden units and irrelevant input
units. If the NN is trained for too long, the excess free parameters start to memo-
rize all the training patterns, and even noise contained in the training set. Remedies
for overfitting include optimizing the network architecture and using enough training
patterns (discussed in Section 7.3).

Estimations of generalization error during training can be used to detect the point
of overfitting. The simplest approach to find the point of overfitting was developed
through studies of training and generalization profiles. Figure 7.1 presents a general
illustration of training and generalization errors as a function of training epochs. From
the start of training, both the training and generalization errors decrease - usually
exponentially. In the case of oversized NNs, there is a point at which the training
error continues to decrease, while the generalization error starts to increase. This is
the point of overfitting. Training should stop as soon an increase in generalization
error is observed.
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Figure 7.1 Illustration of Overfitting

In order to detect the point of overfitting, the original data set is divided into three
disjoint sets, i.e. the training set DT , the generalization set DG and the validation set
DV . The validation set is then used to estimate the generalization error. Since both
the training error and the validation error usually fluctuate, determining the point of
overfitting is not straightforward. A moving average of the validation error has to be
used. Overfitting is then detected when

EV > EV + σEV
(7.7)

where EV is the MSE on the validation set, EV is the average MSE on the validation
set since training started, and σEV

is the standard deviation in validation error.

Röbel suggested the generalization factor as an alternative indication of overfitting
[732]. Röbel defines the generalization factor ρ = EV

ET
, where EV and ET are the MSE on

the validation set DV and current training subset DT respectively. The generalization
factor indicates the error made in training on DT only, instead of training on the entire
input space. Overfitting is detected when ρ(t) > ϕρ(t), where ϕρ(t) = min{ϕρ(t −
1), ρ + σρ, 1.0}; t is the current epoch, ρ is the average generalization factor over a
fixed number of preceding epochs, and σρ is the standard deviation. This test ensures
that ρ ≤ 1.0. Keep in mind that ρ does not give an indication of the accuracy of
learning, but only the ratio between the training and validation error. For function
approximation problems (as is the case with Röbel’s work) where the MSE is used as
a measure of accuracy, a generalization factor ρ < 1 means that the validation error
is smaller than the training error – which is desirable. As ρ becomes large (greater
than 1), the difference between the training error and validation error increases, which
indicates an increase in validation error with a decrease in training error – an indication
of overfitting. For classification problems where the percentage of correctly classified
patterns is used as a measure of accuracy, ρ should be larger than 1.
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It is important to note that the training error or the generalization error alone is not
sufficient to quantify the accuracy of a NN. Both these errors should be considered.

Additional Reading Material on Accuracy

The trade-off between training error and generalization has prompted much research in
the generalization performance of NNs. Average generalization performance has been
studied theoretically to better understand the behavior of NNs trained on a finite
data set. Research shows a dependence of generalization error on the training set, the
network architecture and weight values. Schwartz et al. [767] show the importance of
training set size for good generalization in the context of ensemble networks. Other
research uses the VC-dimension (Vapnik-Chervonenkis dimension) [8, 9, 152, 643] to
derive boundaries on the generalization error as a function of network and training set
size. Best known are the limits derived by Baum and Haussler [54] and Haussler et
al. [353]. While these limits are derived for, and therefore limited to, discrete input
values, Hole derives generalization limits for real valued inputs [375].

Limits on generalization have also been developed by studying the relationship between
training error and generalization error. Based on Akaike’s final prediction error and
information criterion [15], Moody derived the generalized prediction error which gives
a limit on the generalization error as a function of the training error, training set size,
the number of effective parameters, and the effective noise variance [603, 604]. Murata
et al. [616, 617, 618] derived a similar network information criterion. Using a different
approach, i.e. Vapnik’s Bernoulli theorem, Depenau and Møller [202] derived a bound
as a function of training error, the VC-dimension and training set size.

These research results give, sometimes overly pessimistic, limits that help to clarify
the behavior of generalization and its relationship with architecture, training set size
and training error. Another important issue in the study of generalization is that of
overfitting. Overfitting means that the NN learns too much detail, effectively mem-
orizing training patterns. This normally happens when the network complexity does
not match the size of the training set, i.e. the number of adjustable weights (free
parameters) is larger than the number of independent patterns. If this is the case,
the weights learn individual patterns and even capture noise. This overfitting phe-
nomenon is the consequence of training on a finite data set, minimizing the empirical
error function given in equation (7.2), which differs from the true risk function given
in equation (7.1).

Amari et al. developed a statistical theory of overtraining in the asymptotic case
of large training set sizes [22, 21]. They analytically determine the ratio in which
patterns should be divided into training and test sets to obtain optimal generalization
performance and to avoid overfitting. Overfitting effects under large, medium and
small training set sizes have been investigated analytically by Amari et al. [21] and
Müller et al. [612].
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7.1.2 Complexity

The computational complexity of a NN is directly influenced by:

1. The network architecture: The larger the architecture, the more feedforward
calculations are needed to predict outputs after training, and the more learning
calculations are needed per pattern presentation.

2. The training set size: The larger the training set size, the more patterns are
presented for training. Therefore, the total number of learning calculations per
epoch is increased.

3. Complexity of the optimization method: As will be discussed in Section 7.3,
sophisticated optimization algorithms have been developed to improve the accu-
racy and convergence characteristics of NNs. The sophistication comes, however,
at the cost of increased computational complexity to determine the weight up-
dates.

Training time is usually quantified in terms of the number of epochs to reach specific
training or generalization errors. When different learning algorithms are compared, the
number of epochs is usually not an accurate estimate of training time or computational
complexity. Instead, the total number of pattern presentations, or weight updates are
used. A more accurate estimate of computational complexity is to count the total
number of calculations made during training.

7.1.3 Convergence

The convergence characteristics of a NN can be described by the ability of the network
to converge to specified error levels (usually considering the generalization error). The
ability of a network to converge to a specific error is expressed as the number of times,
out of a fixed number of simulations, that the network succeeded in reaching that
error. While this is an empirical approach, rigorous theoretical analysis has been done
for some network types.

7.2 Analysis of Performance

Any study of the performance of NNs (or any other stochastic algorithm for that mat-
ter) and any conclusions based on just one simulation are incomplete and inconclusive.
Conclusions on the performance of NNs must be based on the results obtained from
several simulations. For each simulation the NN starts with new random initial weights
and uses different training, validation and generalization sets, independent of previ-
ous sets. Performance results are then expressed as averages over all the simulations,
together with variances, or confidence intervals.

Let � denote the performance measure under consideration. Results are then reported
as �±σ
. The average � is an indication of the average performance over all simulations,
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while σ
 gives an indication of the variance in performance. The σ
 parameter is very
important in decision making. For example, if two algorithms A and B are compared
where the MSE for A is 0.001±0.0001, and that of B is 0.0009±0.0006, then algorithm
A will be preferred even though B has a smaller MSE. Algorithm A has a smaller
variance, having MSE values in the range [0.0009, 0.0011], while B has MSE values in
a larger range of [0.0003, 0.0015].

While the above approach to present results is sufficient, results are usually reported
with associated confidence intervals. If a confidence level of α = 0.01 is used, for
example, then 99% of the observations will be within the calculated confidence interval.
Before explaining how to compute the confidence intervals, it is important to note that
statistical literature suggests that at least 30 independent simulations are needed. This
allows the normality assumption as stated by the central limit theorem: the probability
distribution governing the variable � approaches a Normal distribution as the number
of observations (simulations) tends to infinity. Using this result, the confidence interval
associated with confidence level α can be estimated as

�± tα,n−1σ
 (7.8)

where tα,n−1 is a constant obtained from the t-distribution with n − 1 degrees of
freedom (n is the number of simulations) and

σ
 =

√∑n
i=1(�i − �)2

n(n− 1)
(7.9)

It should be noted at this point that the t-test assumes that samples are normally
distributed. It is, however, not always the case that 30 samples will guarantee a
normal distribution. If not normally distributed, nonparametric tests need to be used.

7.3 Performance Factors

This section discusses various aspects that have an influence on the performance of
supervised NNs. These aspects include data manipulation, learning parameters, ar-
chitecture selection, and optimization methods.

7.3.1 Data Preparation

One of the most important steps in using a NN to solve real-world problems is to
collect and transform data into a form acceptable to the NN. The first step is to
decide on what the inputs and the outputs are. Obviously irrelevant inputs should be
excluded. Section 7.3.5 discusses ways in which the NN can decide itself which inputs
are irrelevant. The second step is to process the data in order to remove outliers,
handle missing data, transform non-numeric data to numeric data and to scale the
data into the active range of the activation functions used. Each of these aspects are
discussed in the sections below.
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Missing Values

It is common that real-world data sets have missing values for input parameters. NNs
need a value for each of the input parameters. Therefore, something has to be done
with missing values. The following options exist:

• Remove the entire pattern if it has a missing value. While pattern removal solves
the missing value problem, other problems are introduced: (1) the available
information for training is reduced which can be a problem if data is already
limited, and (2) important information may be lost.

• Replace each missing value with the average value for that input parameter in
the case of continuous values, or with the most frequently occurring value in the
case of nominal or discrete values. This replacing of missing values introduces
no bias.

• For each input parameter that has a missing value, add an additional input
unit to indicate patterns for which parameters are missing. It can then be
determined after training whether the missing values had a significant influence
on the performance of the network.

While missing values present a problem to supervised neural networks, SOMs do not
suffer under these problems. Missing values do not need to be replaced. The BMN
for a pattern with missing values is, for example, calculated by ignoring the missing
value and the corresponding weight value of the codebook vector in the calculation of
the Euclidean distance between the pattern and codebook vector.

Coding of Input Values

All input values to a NN must be numeric. Nominal values therefore need to be
transformed to numerical values. A nominal input parameter that has n different
values is coded as n different binary input parameters, where the input parameter
that corresponds to a nominal value has the value 1, and the rest of these parameters
have the value 0. An alternative is to use just one input parameter and to map each
nominal value into an equivalent numerical value. This is, however, not a good idea,
since the NN will interpret the input parameter as having continuous values, thereby
losing the discrete characteristic of the original data.

Outliers

Outliers have severe effects on accuracy, especially when gradient descent is used with
the SSE as objective function. An outlier is a data pattern that deviates substantially
from the data distribution. Because of the large deviation from the norm, outliers
result in large errors, and consequently large weight updates. Figure 7.3 shows that
larger differences between target and output values cause an exponential increase in the
error if the SSE is used as objective function. The fitted function is then pulled toward
the outliers in an attempt to reduce the training error. As result, the generalization
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deteriorates. Figure 7.2 illustrates this effect.
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Figure 7.2 Effect of Outliers
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The outlier problem can be addressed in the following ways:

• Remove outliers before training starts, using statistical techniques. While such
actions will eliminate the outlier problem, it is believed that important informa-
tion about the data might also be removed at the same time.

• Use a robust objective function that is not influenced by outliers. An example
objective function is the Huber function as illustrated in Figure 7.4 [396]. Pat-
terns for which the error is larger than |ε| have a constant value, and have a zero
influence when weights are updated (the derivative of a constant is zero).
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• Slade and Gedeon [796] and Gedeon et al. [311] proposed bimodal distribution
removal, where the aim is to remove outliers from training sets during training.
Frequency distributions of pattern errors are analyzed during training to identify
and remove outliers. If the original training set contains no outliers, the method
simply reduces to standard learning.
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Figure 7.4 Huber Objective Function

Scaling and Normalization

Data needs to be scaled to the active range and domain of the activation functions
used. While it is not necessary to scale input values, performance can be improved
if inputs are scaled to the active domain of the activation functions. For example,
consider the sigmoid activation function. Simple mathematical calculations show that
the active domain of the sigmoid function is [−√3,

√
3], corresponding to the parts of

the function for which changes in input values have relatively large changes in output.
Values near the asymptotic ends of the sigmoid function have a very small influence
on weight updates. Changes in these values result in very small changes in output.
Furthermore, the derivatives near the asymptotes are approximately zero, causing
weight updates to be approximately zero; therefore, achieving no learning in these
areas.

When bounded activation functions are used, the target values have to be scaled to the
range of the activation function, for example (0, 1) for the sigmoid function and (−1, 1)
for the hyperbolic tangent. If tu,max and tu,min are the maximum and minimum values
of the unscaled target tu, then,

ts =
tu − tu,min

tu,max − tu,min
(ts,max − ts,min) + ts,min (7.10)

where ts,max and ts,min are the new maximum and minimum values of the scaled
values, linearly maps the range [tu,min, tu,max] to the range [ts,min, ts,max].
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In the case of classification problems, target values are usually elements of the set
{0.1, 0.9} for the sigmoid function. The value 0.1 is used instead of 0, and 0.9 instead
of 1. Since the output of the sigmoid function can only approach 0 and 1, a NN can
never converge to the best set of weights if the target values are 0 or 1. In this case
the goal of the NN is always out of reach, and the network continues to push weight
values toward extreme values until training is stopped.

Scaling of target values into a smaller range does have the disadvantage of increased
training time. Engelbrecht et al. [244] showed that if target values are linearly scaled
using

ts = c1tu + c2 (7.11)

where ts and tu are respectively the scaled and original unscaled target values, the NN
must be trained longer until

MSEs = (c1)2MSEr (7.12)

to reach a desired accuracy, MSEr, on the original unscaled data set.

The hyperbolic tangent will therefore result in faster training times than the sigmoid
function, assuming the same initial conditions and training data.

The scaling process above is usually referred to as amplitude scaling, or min-max
scaling. Min-max scaling preserves the relationships among the original data. Two
other frequently used scaling methods are mean centering and variance scaling. To
explain these two scaling methods, assume that Z ∈ RI×P is a matrix containing all
input vectors such that input vectors are arranged as columns in Z, and T ∈ RK×P

is the matrix of associated target vectors, arranged in column format. For the mean
centering process, compute

Zi =
P∑

p=1

Zi,p/P (7.13)

T k =
P∑

p=1

Tk,p/P (7.14)

for all i = 1, · · · , I and k = 1, · · · , K; Zi is the average value for input zi over all the
patterns, and T k is the average target value for the k-th output unit over all patterns.
Then,

ZM
i,p = Zi,p − Zi (7.15)

TM
k,p = Tk,p − T k (7.16)

for all i = 1, · · · , I, k = 1, · · · , K and p = 1, · · · , P ; ZM
i,p is the scaled value of the input

to unit zi for pattern p, and TM
k,p is the corresponding scaled target value.

Variance scaling, on the other hand, computes for each row in each matrix the standard
deviations (I deviations for matrix Z and K deviations for matrix T ) over all P
elements in the row. Let σzi

denote the standard deviation of row i of matrix Z, and
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σtk
is the standard deviation of row k of matrix T . Then,

ZV
i,p =

Zi,p

σzi

(7.17)

TV
k,p =

Tk,p

σtk

(7.18)

for all i = 1, · · · , I, k = 1, · · · , K and p = 1, · · · , P .

Mean centering and variance scaling can both be used on the same data set. Mean cen-
tering is, however, more appropriate when the data contains no biases, while variance
scaling is appropriate when training data are measured with different units.

Both mean centering and variance scaling can be used in situations where the minimum
and maximum values are unknown. Z-score normalization is another data transfor-
mation scheme that can be used in situations where the range of values is unknown. It
is essentially a combination of mean centering and variance scaling, and is very useful
when there are outliers in the data. For z-score normalization,

ZMV
i,p =

Zi,p − Zi

σzi

(7.19)

TMV
k,p =

Tk,p − T k

σtk

(7.20)

For some NN types, for example the LVQ, input data is preferred to be normalized to
vectors of unit length. The values zi,p of each input parameter zi are then normalized
using

z
′
i,p =

zi,p√∑I
i=1 z2

i,p

(7.21)

The normalization above loses information on the absolute magnitude of the input
parameters, since it requires the length of all input vectors (patterns) to be the same.
Input patterns with parameter values of different magnitudes are normalized to the
same vector, e.g. vectors (−1, 1, 2, 3) and (−3, 3, 6, 9). Z-axis normalization is an
alternative approach that preserves the absolute magnitude information of input pat-
terns. Before the normalization step, input values are scaled to the range [−1, 1].
Input values are then normalized using

z
′
i,p =

zi,p√
I

(7.22)

and adding an additional input unit z0 to the NN, referred to as the synthetic param-
eter, with value

z0 =

√
1− L2

I
(7.23)

where L is the Euclidean length of input vector zp.
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Noise Injection

For problems with a limited number of training patterns, controlled injection of noise
helps to generate new training patterns. Provided that noise is sampled from a normal
distribution with a small variance and zero mean, it can be assumed that the resulting
changes in the network output will have insignificant consequences [379]. Also, the
addition of noise results in a convolutional smoothing of the target function, result-
ing in reduced training time and increased accuracy [713]. Engelbrecht used noise
injection around decision boundaries to generate new training patterns for improved
performance [237].

Training Set Manipulation

Several researchers have developed techniques to control the order in which patterns
are presented for learning. These techniques resulted in the improvement of training
time and accuracy. A short summary of such training set manipulation techniques is
given below.

Ohnishi et. al. [634] suggested a method called selective presentation where the
original training set is divided into two training sets. One set contains typical patterns,
and the other set contains confusing patterns. With “typical pattern” the authors
mean a pattern far from decision boundaries, while “confusing pattern” refers to a
pattern close to a boundary. The two training sets are created once before training.
Generation of these training sets assumes prior knowledge about the problem, i.e.
where decision boundaries are located in input space. In many practical applications
such prior knowledge is not available, thus limiting the applicability of this approach.
The selective presentation strategy alternately presents the learner with typical and
then confusing patterns.

Kohara developed selective presentation learning specifically for forecasting applica-
tions [471]. Before training starts, the algorithm generates two training sets. The one
set contains all patterns representing large next-day changes, while patterns represent-
ing small next-day changes are contained in the second set. Large-change patterns are
then simply presented more often than small-change patterns (similar to selective pre-
sentation).

Cloete and Ludik [137, 537] have done extensive research on training strategies. Firstly,
they proposed Increased Complexity Training where a NN first learns easy problems,
and then the complexity of the problem to be learned is gradually increased. The
original training set is split into subsets of increasing complexity before training com-
mences. A drawback of this method is that the complexity measure of training data
is problem dependent, thus making the strategy unsuitable for some tasks. Secondly,
Cloete and Ludik developed incremental training strategies, i.e. incremental subset
training [139] and incremental increased complexity training [538]. In incremental
subset training, training starts on a random initial subset. During training, random
subsets from the original training set are added to the actual training subset. Incre-
mental increased complexity training is a variation of increased complexity training,
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where the complexity ranked order is maintained, but training is not done on each
complete complexity subset. Instead, each complexity subset is further divided into
smaller random subsets. Training starts on an initial subset of a complexity subset,
and is incrementally increased during training. Finally, delta training strategies were
proposed [138]. With delta subset training examples are ordered according to inter-
example distance, e.g. Hamming or Euclidean distance. Different strategies of example
presentations were investigated: smallest difference examples first, largest difference
examples first, and alternating difference.

When vast quantities of data are available, training on all these data can be pro-
hibitively slow, and may require reduction of the training set. The problem is which
of the data should be selected for training. An easy strategy is to simply sample a
smaller data set at each epoch using a uniform random number generator. Alterna-
tively, a fast clustering algorithm can be used to group similar patterns together, and
to sample a number of patterns from each cluster.

7.3.2 Weight Initialization

Gradient-based optimization methods, for example gradient descent, is very sensitive
to the initial weight vectors. If the initial position is close to a local minimum, con-
vergence will be fast. However, if the initial weight vector is on a flat area in the
error surface, convergence is slow. Furthermore, large initial weight values have been
shown to prematurely saturate units due to extreme output values with associated
zero derivatives [400]. In the case of optimization algorithms such as PSO and GAs,
initialization should be uniformly over the entire search space to ensure that all parts
of the search space are covered.

A sensible weight initialization strategy is to choose small random weights centered
around 0. This will cause net input signals to be close to zero. Activation functions
then output midrange values regardless of the values of input units. Hence, there is no
bias toward any solution. Wessels and Barnard [898] showed that random weights in
the range [ −1√

fanin
, 1√

fanin
] is a good choice, where fanin is the number of connections

leading to a unit.

Why are weights not initialized to zero in the case of gradient-based optimization?
This strategy will work only if the NN has just one hidden unit. For more than
one hidden unit, all the units produce the same output, and thus make the same
contribution to the approximation error. All the weights are therefore adjusted with
the same value. Weights will remain the same irrespective of training time – hence,
no learning takes place. Initial weight values of zero for PSO will also fail, since no
velocity changes are made; therefore no weight changes. GAs, on the other hand, will
work with initial zero weights if mutation is implemented.
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7.3.3 Learning Rate and Momentum

The convergence speed of NNs is directly proportional to the learning rate η. Consid-
ering stochastic GD, the momentum term added to the weight updates also has the
objective of improving convergence time.

Learning Rate

The learning rate controls the size of each step toward the minimum of the objective
function. If the learning rate is too small, the weight adjustments are correspond-
ingly small. More learning iterations are then required to reach a local minimum.
However, the search path will closely approximate the gradient path. Figure 7.5(a)
illustrates the effect of small η. On the other hand, large η will have large weight
updates. Convergence will initially be fast, but the algorithm will eventually oscillate
without reaching the minimum. It is also possible that too large a learning rate will
cause “jumping” over a good local minimum proceeding toward a bad local minimum.
Figure 7.5(b) illustrates the oscillating behavior, while Figure 7.5(c) illustrates how
large learning rates may cause the network to overshoot a good minimum and get
trapped in a bad local minimum. Small learning rates also have the disadvantage of
being trapped in a bad local minimum as illustrated in Figure 7.5(d). The search path
goes down the first local minimum, with no mechanism to move out of it toward the
next, better minimum. Of course, the search trajectory depends on the initial starting
position. If the second initial point is used, the NN will converge to the better local
minimum.

But how should the value of the learning rate be selected? One approach is to find
the optimal value of the learning rate through cross-validation, which is a lengthy
process. An alternative is to select a small value (e.g. 0.1) and to increase the value
if convergence is too slow, or to decrease it if the error does not decrease fast enough.
Plaut et al. [680] proposed that the learning rate should be inversely proportional
to the fanin of a neuron. This approach has been theoretically justified through an
analysis of the eigenvalue distribution of the Hessian matrix of the objective function
[167].

Several heuristics have been developed to dynamically adjust the learning rate during
training. One of the simplest approaches is to assume that each weight has a different
learning rate ηkj . The following rule is then applied to each weight before that weight
is updated: if the direction in which the error decreases at this weight change is the
same as the direction in which it has been decreasing recently, then ηkj is increased; if
not, ηkj is decreased [410]. The direction in which the error decreases is determined by
the sign of the partial derivative of the objective function with respect to the weight.
Usually, the average change over a number of pattern presentations is considered and
not just the previous adjustment.

An alternative is to use an annealing schedule to gradually reduce a large learning
rate to a smaller value (refer to equation 4.40). This allows for large initial steps, and
ensures small steps in the region of the minimum.
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(a) Small η (b) Large η gets stuck

(c) Large η overshoots

Starting position 1

Starting position 2

(d) Small η gets stuck

Figure 7.5 Effect of Learning Rate

Of course more complex adaptive learning rate techniques have been developed, with
elaborate theoretical analysis. The interested reader is referred to [170, 552, 755, 880].

Momentum

Stochastic learning, where weights are adjusted after each pattern presentation, has
the disadvantage of fluctuating changes in the sign of the error derivatives. The net-
work spends a lot of time going back and forth, unlearning what the previous steps
have learned. Batch learning is a solution to this problem, since weight changes are
accumulated and applied only after all patterns in the training set have been presented.
Another solution is to keep with stochastic learning, and to add a momentum term.
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The idea of the momentum term is to average the weight changes, thereby ensuring
that the search path is in the average downhill direction. The momentum term is then
simply the previous weight change weighted by a scalar value α. If α = 0, then the
weight changes are not influenced by past weight changes. The larger the value of α,
the longer the change in the steepest descent direction has to be persevered in order
to affect the direction in which weights are adjusted. A static value of 0.9 is usually
used.

The optimal value of α can also be determined through cross-validation. Strategies
have also been developed that use adaptive momentum rates, where each weight has
a different momentum rate. Fahlman developed the schedule

αkj(t) =
∂E

∂wkj(t)

∂E
∂wkj(t−1) − ∂E

∂wkj(t)

(7.24)

This variation to the standard back-propagation algorithm is referred to as quickprop
[253]. Becker and Le Cun [57] calculated the momentum rate as a function of the
second-order error derivatives:

α = (
∂2E
∂w2

kj

)−1 (7.25)

For more information on other approaches to adapt the momentum rate refer to [644,
942].

7.3.4 Optimization Method

The optimization method used to determine weight adjustments has a large influence
on the performance of NNs. While GD is a very popular optimization method,
GD is plagued by slow convergence and susceptibility to local minima (as introduced
and discussed in Section 3.2.2). Improvements of GD have been made to address
these problems, for example, the addition of the momentum term. Also, second-
order derivatives of the objective function have been used to compute weight updates.
In doing so, more information about the structure of the error surface is used to
direct weight changes. The reader is referred to [51, 57, 533]. Other approaches
to improve NN training are to use global optimization algorithms instead of local
optimization algorithms, for example simulated annealing [736], genetic algorithms
[247, 412, 494], particle swarm optimization algorithms [157, 229, 247, 862, 864], and
LeapFrog optimization [247, 799, 800].

7.3.5 Architecture Selection

Referring to one of Ockham’s statements, if several networks fit the training set equally
well, then the simplest network (i.e. the network that has the smallest number of
weights) will on average give the best generalization performance [844]. This hypoth-
esis has been investigated and confirmed by Sietsma and Dow [789]. A network with
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too many free parameters may actually memorize training patterns and may also ac-
curately fit the noise embedded in the training data, leading to bad generalization.
Overfitting can thus be prevented by reducing the size of the network through elimina-
tion of individual weights or units. The objective is therefore to balance the complexity
of the network with goodness-of-fit of the true function. This process is referred to as
architecture selection. Several approaches have been developed to select the optimal
architecture, i.e. regularization, network construction (growing) and pruning. These
approaches will be overviewed in more detail below.

Learning is not just perceived as finding the optimal weight values, but also finding the
optimal architecture. However, it is not always obvious what is the best architecture.
Finding the ultimate best architecture requires a search of all possible architectures.
For large networks an exhaustive search is prohibitive, since the search space consists
of 2w architectures, where w is the total number of weights [602]. Instead, heuristics
are used to reduce the search space. A simple method is to train a few networks of
different architecture and to choose the one that results in the lowest generalization
error as estimated from the generalized prediction error [603, 604] or the network
information criterion [616, 617, 618]. This approach is still expensive and requires
many architectures to be investigated to reduce the possibility that the optimal model
is not found. The NN architecture can alternatively be optimized by trial and error.
An architecture is selected, and its performance is evaluated. If the performance
is unacceptable, a different architecture is selected. This process continues until an
architecture is found that produces an acceptable generalization error.

Other approaches to architecture selection are divided into three categories:

• Regularization: Neural network regularization involves the addition of a
penalty term to the objective function to be minimized. In this case the ob-
jective function changes to

E = ET + λEC (7.26)

where ET is the usual measure of data misfit, and EC is a penalty term, penalizing
network complexity (network size). The constant λ controls the influence of the
penalty term. With the changed objective function, the NN now tries to find
a locally optimal trade-off between data-misfit and network complexity. Neural
network regularization has been studied rigorously by Girosi et al. [318], and
Williams [910].

Several penalty terms have been developed to reduce network size automatically
during training. Weight decay, where EC = 1

2

∑
w2

i , is intended to drive small
weights to zero [79, 346, 435, 491]. It is a simple method to implement, but
suffers from penalizing large weights at the same rate as small weights. To solve
this problem, Hanson and Pratt [346] propose the hyperbolic and exponential
penalty functions which penalize small weights more than large weights. Nowlan
and Hinton [633] developed a more complicated soft weight sharing, where the
distribution of weight values is modeled as a mixture of multiple Gaussian dis-
tributions. A narrow Gaussian is responsible for small weights, while a broad
Gaussian is responsible for large weights. Using this scheme, there is less pressure
on large weights to be reduced.

Weigend et al. [895] propose weight elimination where the penalty function
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EC =
∑ w2

i /w2
0

1+w2
i /w2

0
, effectively counts the number of weights. Minimization of this

objective function will then minimize the number of weights. The constant w0

is very important to the success of this approach. If w0 is too small, the network
ends up with a few large weights, while a large value results in many small
weights. The optimal value for w0 can be determined through cross-validation,
which is not cost-effective.

Chauvin [116, 117] introduces a penalty term that measures the “energy spent”
by the hidden units, where the energy is expressed as a function of the squared
activation of the hidden units. The aim is then to minimize the energy spent by
hidden units, and in so doing, to eliminate unnecessary units.

Kamimura and Nakanishi [435] show that, in an information theoretical context,
weight decay actually minimizes entropy. Entropy can also be minimized directly
by including an entropy penalty term in the objective function [434]. Minimiza-
tion of entropy means that the information about input patterns is minimized,
thus improving generalization. For this approach entropy is defined with respect
to hidden unit activity. Schittenkopf et al. [763] also propose an entropy penalty
term and show how it reduces complexity and avoids overfitting.

Yasui [938] develops penalty terms to make minimal and joint use of hidden units
by multiple outputs. Two penalty terms are added to the objective function to
control the evolution of hidden-to-output weights. One penalty causes weights
leading into an output unit to prevent another from growing, while the other
causes weights leaving a hidden unit to support another to grow.

While regularization models are generally easy to implement, the value of the
constant λ in equation (7.26) may present problems. If λ is too small, the
penalty term will have no effect. If λ is too large, all weights might be driven
to zero. Regularization therefore requires a delicate balance between the normal
error term and the penalty term. Another disadvantage of penalty terms is that
they tend to create additional local minima [346], increasing the possibility of
converging to a bad local minimum. Penalty terms also increase training time
due to the added calculations at each weight update. In a bid to reduce this
complexity, Finnoff et al. [260] show that the performance of penalty terms is
greatly enhanced if they are introduced only after overfitting is observed.

• Network construction (growing): Network construction algorithms start
training with a small network and incrementally add hidden units during training
when the network is trapped in a local minimum [291, 368, 397, 495]. A small
network forms an approximate model of a subset of the training set. Each new
hidden unit is trained to reduce the current network error – yielding a better
approximation. Crucial to the success of construction algorithms is effective
criteria to trigger when to add a new unit, when to stop the growing process,
where and how to connect the new unit to the existing architecture, and how to
avoid restarting training. If these issues are treated on an ad hoc basis, overfitting
may occur and training time may be increased.

• Network pruning: Neural network pruning algorithms start with an oversized
network and remove unnecessary network parameters, either during training or
after convergence to a local minimum. Network parameters that are considered
for removal are individual weights, hidden units and input units. The decision
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to prune a network parameter is based on some measure of parameter relevance
or significance. A relevance is computed for each parameter and a pruning
heuristic is used to decide when a parameter is considered as being irrelevant
or not. A large initial architecture allows the network to converge reasonably
quickly, with less sensitivity to local minima and the initial network size. Larger
networks have more functional flexibility, and are guaranteed to learn the input-
output mapping with the desired degree of accuracy. Due to the larger functional
flexibility, pruning weights and units from a larger network may give rise to a
better fit of the underlying function, hence better generalization [604].

A more elaborate discussion of pruning techniques is given next, with the main ob-
jective of presenting a flavor of the techniques available to prune NN architectures.
For more detailed discussions, the reader is referred to the given references. The first
results in the quest to find a solution to the architecture optimization problem were
the derivation of theoretical limits on the number of hidden units to solve a particular
problem [53, 158, 436, 751, 759]. However, these results are based on unrealistic as-
sumptions about the network and the problem to be solved. Also, they usually apply
to classification problems only. While these limits do improve our understanding of the
relationship between architecture and training set characteristics, they do not predict
the correct number of hidden units for a general class of problems.

Recent research concentrated on the development of more efficient pruning techniques
to solve the architecture selection problem. Several different approaches to pruning
have been developed. This chapter groups these approaches in the following gen-
eral classes: intuitive methods, evolutionary methods, information matrix methods,
hypothesis testing methods and sensitivity analysis methods.

• Intuitive pruning techniques: Simple intuitive methods based on weight
values and unit activation values have been proposed by Hagiwara [342]. The
goodness factor Gl

i of unit i in layer l, Gl
i =

∑
p

∑
j(w

l
jio

l
i)

2, where the first
sum is over all patterns, and ol

i is the output of the unit, assumes that an
important unit is one that excites frequently and has large weights to other
units. The consuming energy, El

i =
∑

p

∑
j wl

jio
l+1
j ol

j , additionally assumes that
unit i excites the units in the next layer. Both methods suffer from the flaw that
when a unit’s output is more frequently 0 than 1, that unit might be considered
as being unimportant, while this is not necessarily the case. Magnitude-based
pruning assumes that small weights are irrelevant [342, 526]. However, small
weights may be of importance, especially compared to very large weights that
cause saturation in hidden and output units. Also, large weights (in terms of
their absolute value) may cancel each other out.

• Evolutionary pruning techniques: The use of genetic algorithms (GA) to
prune NNs provides a biologically plausible approach to pruning [494, 712, 901,
904]. Using GA terminology, the population consists of several pruned versions
of the original network, each needed to be trained. Differently pruned networks
are created by the application of mutation, reproduction and crossover operators.
These pruned networks “compete” for survival, being awarded for using fewer
parameters and for improving generalization. GA NN pruning is thus a time-
consuming process.
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• Information matrix pruning techniques: Several researchers have used ap-
proximations to the Fisher information matrix to determine the optimal number
of hidden units and weights. Based on the assumption that outputs are lin-
early activated, and that least squares estimators satisfy asymptotic normality,
Cottrell et al. [160] compute the relevance of a weight as a function of the
information matrix, approximated by

I =
1
P

P∑
p=1

∂fNN

∂w
(
∂fNN

∂w
)T (7.27)

Weights with a low relevance are removed.

Hayashi [355], Tamura et al. [837], Xue et al. [929] and Fletcher et al. [261]
use singular value decomposition (SVD) to analyze the hidden unit activation
covariance matrix to determine the optimal number of hidden units. Based on
the assumption that outputs are linearly activated, the rank of the covariance
matrix is the optimal number of hidden units (also see [292]). SVD of this
information matrix results in an eigenvalue and eigenvector decomposition where
low eigenvalues correspond to irrelevant hidden units. The rank is the number
of non-zero eigenvalues. Fletcher et al. [261] use the SVD of the conditional
Fisher information matrix, as given in equation (7.27), together with likelihood-
ratio tests to determine irrelevant hidden units. In this case the conditional
Fisher information matrix is restricted to weights between the hidden and output
layer only, whereas previous techniques are based on all network weights. Each
iteration of the pruning algorithm identifies exactly which hidden units to prune.

Principal Component Analysis (PCA) pruning techniques have been developed
that use the SVD of the Fisher information matrix to find the principal com-
ponents (relevant parameters) [434, 515, 763, 834]. These principal components
are linear transformations of the original parameters, computed from the eigen-
vectors obtained from a SVD of the information matrix. The result of PCA
is the orthogonal vectors on which variance in the data is maximally projected.
Non-principal components/parameters (parameters that do not account for data
variance) are pruned. Pruning using PCA is thus achieved through projection of
the original w-dimensional space onto a w

′
-dimensional linear subspace (w

′
< w)

spanned by the eigenvectors of the data’s correlation or covariance matrix cor-
responding to the largest eigenvalues.

• Hypothesis testing techniques: Formal statistical hypothesis tests can be
used to test the statistical significance of a subset of weights, or a subset of
hidden units. Steppe et al. [809] and Fletcher et al. [261] use the likelihood-
ratio test statistic to test the null hypothesis that a subset of weights is zero.
Weights associated with a hidden unit are tested to see if they are statistically
different from zero. If these weights are not statistically different from zero, the
corresponding hidden unit is pruned.

Belue and Bauer [58] propose a method that injects a noisy input parameter into
the NN model, and then use statistical tests to decide if the significances of the
original NN parameters are higher than that of the injected noisy parameter.
Parameters with lower significances than the noisy parameter are pruned.
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Similarly, Prechelt [694] and Finnoff et al. [260] test the assumption that a
weight becomes zero during the training process. This approach is based on the
observation that the distribution of weight values is roughly normal. Weights
located in the left tail of this distribution are removed.

• Sensitivity analysis pruning techniques: Two main approaches to sensitiv-
ity analysis exist, namely with regard to the objective function and with regard
to the NN output function. Both sensitivity analysis with regard to the objective
function and sensitivity analysis with regard to the NN output function resulted
in the development of a number of pruning techniques. Possibly the most popu-
lar of these are optimal brain damage (OBD) [166] and its variants, optimal brain
surgeon (OBS) [351, 352] and optimal cell damage (OCD) [129]. A parameter
saliency measure is computed for each parameter, indicating the influence small
perturbations to the parameter have on the approximation error. Parameters
with a low saliency are removed. These methods are time-consuming due to the
calculation of the Hessian matrix. Buntine and Weigend [95] and Bishop [71]
derived methods to simplify the calculation of the Hessian matrix in a bid to
reduce the complexity of these pruning techniques. In OBD, OBS and OCD,
sensitivity analysis is performed with regard to the training error. Pedersen et
al. [669] and Burrascano [98] develop pruning techniques based on sensitivity
analysis with regard to the generalization error. Other objective function sensi-
tivity analysis pruning techniques have been developed by Mozer and Smolensky
[611] and Moody and Utans [602].

NN output sensitivity analysis pruning techniques have been developed that are
less complex than objective function sensitivity analysis, and that do not rely
on simplifying assumptions. Zurada et al. [962] introduced output sensitivity
analysis pruning of input units, further investigated by Engelbrecht et al. [245].
Engelbrecht and Cloete [238, 240, 246] extended this approach to also prune
irrelevant hidden units.

A similar approach to NN output sensitivity analysis was followed by Dorizzi et
al. [218] and Czernichow [168] to prune parameters of a RBFNN.

The aim of all architecture selection algorithms is to find the smallest architecture
that accurately fits the underlying function. In addition to improving generalization
performance and avoiding overfitting (as discussed earlier), smaller networks have the
following advantages. Once an optimized architecture has been found, the cost of
forward calculations is significantly reduced, since the cost of computation grows al-
most linearly with the number of weights. From the generalization limits overviewed
in section 7.3.7, the number of training patterns required to achieve a certain gen-
eralization performance is a function of the network architecture. Smaller networks
therefore require less training patterns. Also, the knowledge embedded in smaller
networks is more easily described by a set of simpler rules. Viktor et al. [879] show
that the number of rules extracted from smaller networks is less for pruned networks
than that extracted from larger networks. They also show that rules extracted from
smaller networks contain only relevant clauses, and that the combinatorics of the rule
extraction algorithm is significantly reduced. Furthermore, for smaller networks the
function of each hidden unit is more easily visualized. The complexity of decision
boundary detection algorithms is also reduced.
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With reference to the bias/variance decomposition of the MSE function [313], smaller
network architectures reduce the variance component of the MSE. NNs are gener-
ally plagued by high variance due to the limited training set sizes. This variance
is reduced by introducing bias through minimization of the network architecture.
Smaller networks are biased because the hypothesis space is reduced; thus limiting
the available functions that can fit the data. The effects of architecture selection on
the bias/variance trade-off have been studied by Gedeon et al. [311].

7.3.6 Adaptive Activation Functions

The performance of NNs can be improved by allowing activation functions to change
dynamically according to the characteristics of the training data. One of the first
techniques to use adaptive activations functions was developed by Zurada [961], where
the slope of the sigmoid activation function is learned together with the weights. A
slope parameter λ is kept for each hidden and output unit. The lambda-learning
algorithm of Zurada was extended by Engelbrecht et al. [244] where the sigmoid
function is given as

f(net, λ, γ) =
γ

1 + e−λnet
(7.28)

where λ is the slope of the function and γ the maximum range. Engelbrecht et al. de-
veloped learning equations to also learn the maximum ranges of the sigmoid functions,
thereby performing automatic scaling. By using gamma-learning, it is not necessary
to scale target values to the range (0, 1). The effect of changing the slope and range
of the sigmoid function is illustrated in Figure 7.6.
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Algorithm 7.1 illustrates the differences between standard GD learning (referred to as
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delta learning) and the lambda and gamma learning variations. (Note that although
the momentum terms are omitted below, a momentum term is usually used for the
weight, lambda and gamma updates.)

7.3.7 Active Learning

Ockham’s razor states that unnecessarily complex models should not be preferred to
simpler ones – a very intuitive principle [544, 844]. A neural network (NN) model
is described by the network weights. Model selection in NNs consists of finding a
set of weights that best performs the learning task. In this sense, the data, and not
just the architecture should be viewed as part of the NN model, since the data is
instrumental in finding the “best” weights. Model selection is then viewed as the
process of designing an optimal NN architecture as well as the implementation of
techniques to make optimal use of the available training data. Following from the
principle of Ockham’s razor is a preference then for both simple NN architectures and
optimized training data. Usually, model selection techniques address only the question
of which architecture best fits the task.

Standard error back-propagating NNs are passive learners. These networks passively
receive information about the problem domain, randomly sampled to form a fixed
size training set. Random sampling is believed to reproduce the density of the true
distribution. However, more gain can be achieved if the learner is allowed to use
current attained knowledge about the problem to guide the acquisition of training
examples. As passive learner, a NN has no such control over what examples are
presented for learning. The NN has to rely on the teacher (considering supervised
learning) to present informative examples.

The generalization abilities and convergence time of NNs are greatly influenced by
the training set size and distribution: Literature has shown that to generalize well,
the training set must contain enough information to learn the task. Here lies one of
the problems in model selection: the selection of concise training sets. Without prior
knowledge about the learning task, it is very difficult to obtain a representative training
set. Theoretical analysis provides a way to compute worst-case bounds on the number
of training examples needed to ensure a specified level of generalization. A widely used
theorem concerns the Vapnik-Chervonenkis (VC) dimension [8, 9, 54, 152, 375, 643].
This theorem states that the generalization error, EG, of a learner with VC-dimension,
dV C , trained on PT random examples will, with high confidence, be no worse than
a limit of order dV C/PT . For NN learners, the total number of weights in a one
hidden layer network is used as an estimate of the VC-dimension. This means that
the appropriate number of examples to ensure an EG generalization is approximately
the number of weights divided by EG.

The VC-dimension provides overly pessimistic bounds on the number of train-
ing examples, often leading to an overestimation of the required training set size
[152, 337, 643, 732, 948]. Experimental results have shown that acceptable gener-
alization performances can be obtained with training set sizes much less than that
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Algorithm 7.1 Lambda-Gamma Training Rule

Choose the values of the learning rates η1, η2 and η3 according to the learning rule:
Delta learning rule η1 > 0, η2 = 0, η3 = 0
Lambda learning rule η1 > 0, η2 > 0, η3 = 0
Gamma learning rule η1 > 0, η2 = 0, η3 > 0
Lambda-gamma learning rule η1 > 0, η2 > 0, η3 > 0

Initialize weights to small random values;
Initialize the number of epochs t = 0;
Initialize the steepness and range coefficients
λyj

= γyj
= 1 ∀ j = 1, . . . , J and λok

= γok
= 1 ∀ k = 1, . . . , K;

while stopping condition(s) not true do
Let ET = 0;
for each pattern p = 1, . . . , PT do

z = zp and t = tp;
for each j = 1, . . . , J do

yj = f(γyj
, λyj

,vT
j z);

end
for each k = 1, . . . , K do

ok = f(γok
, λok

,wT
k y);

ET + = 1
2 (tk − ok)2;

Compute the error signal, δok
:

δok
= −λok

γok

(tk − ok)ok(γok
− ok) (7.29)

Adjust output unit weights and gains, ∀ j = 1, . . . , J + 1:

wkj = wkj + η1δok
yj , λok

= λok
+ η2δok

netok

λok

(7.30)

γok
= γok

+ η3(tk − ok)
1

γok

ok (7.31)
end
for each j = 1, . . . , J do

Compute the error signal, δyj
:

δyj
=

λyj

γyj

yj(γyj
− yj)

K∑
k=1

δok
wkj (7.32)

Adjust hidden unit weights and gains, ∀ i = 1, . . . , I + 1:

vji = vji + η1δyj
zi, λyj

= λyj
+ η2

1
λyj

δyj
netyj

(7.33)

γyj
= γyj

+ η3
1

γyj

f(γyj
, λyj

, netyj
)

K∑
k=1

δok
wkj (7.34)

end
t = t + 1;

end
end
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specified by the VC-dimension [152, 732]. Cohn and Tesauro [152] show that for ex-
periments conducted, the generalization error decreases exponentially with the number
of examples, rather than the 1/PT result of the VC bound. Experimental results by
Lange and Männer [502] show that more training examples do not necessarily improve
generalization. In their paper, Lange and Männer introduce the notion of a critical
training set size. Through experimentation they found that examples beyond this
critical size do not improve generalization, illustrating that excess patterns have no
real gain. This critical training set size is problem dependent.

While enough information is crucial to effective learning, too large training set sizes
may be of disadvantage to generalization performance and training time [503, 948].
Redundant training examples may be from uninteresting parts of input space, and
do not serve to refine learned weights – it only introduces unnecessary computations,
thus increasing training time. Furthermore, redundant examples might not be equally
distributed, thereby biasing the learner.

The ideal, then, is to implement structures to make optimal use of available training
data. That is, to select only informative examples for training, or to present examples
in a way to maximize the decrease in training and generalization error. To this extent,
active learning algorithms have been developed.

Cohn et al. [151] define active learning (also referred to in the literature as example
selection, sequential learning, query-based learning) as any form of learning in which
the learning algorithm has some control over what part of the input space it receives
information from. An active learning strategy allows the learner to dynamically select
training examples, during training, from a candidate training set as received from the
teacher (supervisor). The learner capitalizes on current attained knowledge to select
examples from the candidate training set that are most likely to solve the problem,
or that will lead to a maximum decrease in error. Rather than passively accepting
training examples from the teacher, the network is allowed to use its current knowledge
about the problem to have some deterministic control over which training examples to
accept, and to guide the search for informative patterns. By adding this functionality
to a NN, the network changes from a passive learner to an active learner.

Figure 7.7 illustrates the difference between active learning and passive learning.

With careful dynamic selection of training examples, shorter training times and better
generalization may be obtained. Provided that the added complexity of the example
selection method does not exceed the reduction in training computations (due to a
reduction in the number of training patterns), training time will be reduced [399, 822,
948]. Generalization can potentially be improved, provided that selected examples
contain enough information to learn the task. Cohn [153] and Cohn et al. [151]
show through average case analysis that the expected generalization performance of
active learning is significantly better than passive learning. Seung et al. [777], Sung
and Niyogi [822] and Zhang [948] report similar improvements. Results presented
by Seung et al. indicate that generalization error decreases more rapidly for active
learning than for passive learning [777].

Two main approaches to active learning can be identified, i.e. incremental learning
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and selective learning. Incremental learning starts training on an initial subset of a
candidate training set. During training, at specified selection intervals (e.g. after a
specified number of epochs, or when the error on the current training subset no longer
decreases), further subsets are selected from the candidate examples using some criteria
or heuristics, and added to the training set. The training set consists of the union of
all previously selected subsets, while examples in selected subsets are removed from
the candidate set. Thus, as training progresses, the size of the candidate set decreases
while the size of the actual training set grows. Note that this chapter uses the term
incremental learning to denote data selection, and should not be confused with the
NN architecture selection growing approach. The term NN growing is used in this
chapter to denote the process of finding an optimal architecture starting with too few
hidden units and adding units during training.

In contrast to incremental learning, selective learning selects a new training subset
from the original candidate set at each selection interval. Selected patterns are not
removed from the candidate set. At each selection interval, all candidate patterns
have a chance to be selected. The subset is selected and used for training until some
convergence criteria on the subset is met (e.g. a specified error limit on the subset is
reached, the error decrease per iteration is too small, the maximum number of epochs
allowed on the subset is exceeded). A new training subset is then selected for the next
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training period. This process repeats until the NN is trained to satisfaction.

The main difference between these two approaches to active learning is that no exam-
ples are discarded by incremental learning. In the limit, all examples in the candidate
set will be used for training. With selective learning, training starts on all candidate
examples, and uninformative examples are discarded as training progresses.

Selective Learning

Not much research has been done in selective learning. Hunt and Deller [399] developed
Selective Updating, where training starts on an initial candidate training set. Patterns
that exhibit a high influence on weights, i.e. patterns that cause the largest changes
in weight values, are selected from the candidate set and added to the training set.
Patterns that have a high influence on weights are selected at each epoch by calculating
the effect that patterns have on weight estimates. These calculations are based on
matrix perturbation theory, where an input pattern is viewed as a perturbation of
previous patterns. If the perturbation is expected to cause large changes to weights,
the corresponding pattern is included in the training set. The learning algorithm
does use current knowledge to select the next training subset, and training subsets
may differ from epoch to epoch. Selective Updating has the drawback of assuming
uncorrelated input units, which is often not the case for practical applications.

Another approach to selective learning is simply to discard those patterns that have
been classified correctly [50]. The effect of such an approach is that the training set
will include those patterns that lie close to decision boundaries. If the candidate set
contains outlier patterns, these patterns will, however, also be selected. This error
selection approach therefore requires a robust estimator (objective function) to be
used in the case of outliers.

Engelbrecht et al. [241, 242, 239] developed a selective learning approach for classifi-
cation problems where sensitivity analysis is used to locate patterns close to decision
boundaries. Only those patterns that are close to a decision boundary are selected for
training. The algorithm resulted in substantial reductions in the number of learning
calculations due to reductions in the training set size, while either maintaining perfor-
mance as obtained from learning from all the training data, or improving performance.

Incremental learning

Research on incremental learning is more abundant than for selective learning. Most
current incremental learning techniques have their roots in information theory, adapt-
ing Fedorov’s optimal experiment design for NN learning [153, 295, 544, 681, 822].
The different information theoretic incremental learning algorithms are very similar,
and differ only in whether they consider only bias, only variance, or both bias and
variance terms in their selection criteria.

Cohn [153] developed neural network optimal experiment design (OED), where the
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objective is to select, at each iteration, a new pattern from a candidate set which min-
imizes the expectation of the MSE. This is achieved by minimizing output variance
as estimated from the Fisher information matrix [153, 154]. The model assumes an
unbiased estimator and considers only the minimization of variance. OED is com-
putationally very expensive because it requires the calculation of the inverse of the
information matrix.

MacKay [544] proposed similar information-based objective functions for active learn-
ing, where the aim is to maximize the expected information gain by maximizing the
change in Shannon entropy when new patterns are added to the actual training set, or
by maximizing cross-entropy gain. Similar to OED, the maximization of information
gain is achieved by selecting patterns that minimize the expected MSE. Information-
based objective functions also ignore bias, by minimizing only variance. The required
inversion of the Hessian matrix makes this approach computationally expensive.

Plutowski and White [681] proposed selecting patterns that minimize the integrated
squared bias (ISB). At each iteration, a new pattern is selected from a candidate
set that maximizes the change, ∆ISB, in the ISB. In effect, the patterns with error
gradient most highly correlated with the error gradient of the entire set of patterns
is selected. A noise-free environment is assumed and variance is ignored. Drawbacks
of this method are the need to calculate the inverse of a Hessian matrix, and the
assumption that the target function is known.

Sung and Niyogi [822] proposed an information theoretic approach to active learning
that considers both bias and variance. The learning goal is to minimize the expected
misfit between the target function and the approximated function. The patterns that
minimize the expected squared difference between the target and approximated func-
tion are selected to be included in the actual training set. In effect, the net amount
of information gained with each new pattern is then maximized. No assumption is
made about the target function. This technique is computationally expensive, since
it requires computations over two expectations, i.e. the a-posteriori distribution over
function space, and the a-posteriori distribution over the space of targets one would
expect given a candidate sample location.

One drawback of the incremental learning algorithms summarized above is that they
rely on the inversion of an information matrix. Fukumizu showed that, in relation to
pattern selection to minimize the expected MSE, the Fisher information matrix may
be singular [295]. If the information matrix is singular, the inverse of that matrix may
not exist. Fukumizu continues to show that the information matrix is singular if and
only if the corresponding NN contains redundant units. Thus, the information matrix
can be made non-singular by removing redundant hidden units. Fukumizu developed
an algorithm that incorporates an architecture reduction algorithm with a pattern
selection algorithm. This algorithm is complex due to the inversion of the information
matrix at each selection interval, but ensures a non-singular information matrix.

Approximations to the information theoretical incremental learning algorithms can be
used. Zhang [948] shows that information gain is maximized when a pattern is selected
whose addition leads to the greatest decrease in MSE. Zhang developed selective in-
cremental learning where training starts on an initial subset which is increased during
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training by adding additional subsets, where each subset contains those patterns with
largest errors. Selective incremental learning has a very low computational overhead,
but is negatively influenced by outlier patterns since these patterns have large errors.

Dynamic pattern selection, developed by Röbel [732], is very similar to Zhang’s selec-
tive incremental learning. Röbel defines a generalization factor on the current training
subset, expressed as EG/ET where EG and ET are the MSE of the test set and the train-
ing set respectively. As soon as the generalization factor exceeds a certain threshold,
patterns with the highest errors are selected from the candidate set and added to the
actual training set. Testing against the generalization factor prevents overfitting of
the training subset. A low overhead is involved.

Very different from the methods previously described are incremental learning algo-
rithms for classification problems, where decision boundaries are utilized to guide the
search for optimal training subsets. Cohn et al. [151] developed selective sampling,
where patterns are sampled only within a region of uncertainty. Cohn et al. proposed
an SG-network (most specific/most general network) as an approach to compute the
region of uncertainty. Two separate networks are trained: one to learn a “most spe-
cific” concept s consistent with the given training data, and the other to learn a
“most general” concept, g. The region of uncertainty is then all patterns p such that
s(p) �= g(p). In other words, the region of uncertainty encapsulates all those pat-
terns for which s and g present a different classification. A new training pattern is
selected from this region of uncertainty and added to the training set. After training
on the new training set, the region of uncertainty is recalculated, and another pattern
is sampled according to some distribution defined over the uncertainty region – a very
expensive approach. To reduce complexity, the algorithm is changed to select patterns
in batches, rather than individually. An initial pattern subset is drawn, the network
is trained on this subset, and a new region of uncertainty is calculated. Then, a new
distribution is defined over the region of uncertainty that is zero outside this region.
A next subset is drawn according to the new distribution and added to the training
set. The process repeats until convergence is reached.

Query-based learning, developed by Hwang et al. [402] differs from selective sampling
in that query-based learning generates new training data in the region of uncertainty.
The aim is to increase the steepness of the boundary between two distinct classes by
narrowing the regions of ambiguity. This is accomplished by inverting the NN output
function to compute decision boundaries. New data in the vicinity of boundaries are
then generated and added to the training set.

Seung et al. [777] proposed query by committee. The optimal training set is built by
selecting one pattern at a time from a candidate set based on the principle of maximal
disagreement among a committee of learners. Patterns classified correctly by half of
the committee, but incorrectly by the other half, are included in the actual training
set. Query by committee is time-consuming due to the simultaneous training of several
networks, but will be most effective for ensemble networks.

Engelbrecht et al. [243] developed an incremental learning algorithm where sensitivity
analysis is used to locate the most informative patterns. The most informative patterns
are viewed as those patterns in the midrange of the sigmoid activation function. Since
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these patterns have the largest derivatives of the output with respect to inputs, the
algorithm incrementally selects from a candidate set of patterns those patterns that
have the largest derivatives. Substantial reductions in computational complexity are
achieved using this algorithm, with improved accuracy.

The incremental learning algorithms reviewed in this section all make use of the NN
learner’s current knowledge about the learning task to select those patterns that are
most informative. These algorithms start with an initial training set, which is increased
during training by adding a single informative pattern, or a subset of informative
patterns.

In general, active learning is summarized as in Algorithm 7.2.

Algorithm 7.2 Generic Active Learning Algorithm

Initialize the NN architecture;
Construct an initial training subset DS0 from the candidate set DC ;
Initialize the current training set DT ← DS0 ;
while stopping condition(s) not true do

while stopping condition(s) on training subset DT not true do
Train the NN on training subset DT to produce the function fNN (DT ,W);

end
Apply the active learning operator to generate a new subset DSs

at subset
selection interval τs, using either

DSs
← A−(DC , fNN (DT ,W)), DT ← DSs

(7.35)

for selective learning, or

DSs
← A+(DC , DT , fNN (DT ,W)) (7.36)

DT ← DT ∪DSs
, DC ← DC −DSs

(7.37)

for incremental learning
end

In Algorithm 7.2, A denotes the active learning operator, which is defined as follows
for each of the active learning classes:

1) A−(DC , fNN (DT ,W)) = DS , where DS ⊆ DC . The operator A− receives as input
the candidate set DC , performs some calculations on each pattern zp ∈ DC , and
produces the subset DS with the characteristics DS ⊆ DC , that is |DS | ≤ |DC |. The
aim of this operator is therefore to produce a subset DS from DC that is smaller than,
or equal to, DC . Then, let DT ← DS , where DT is the actual training set.

2) A+(DC , DT , fNN (DT ,W)) = DS , where DC , DT and DS are sets such that
DT ⊆ DC , DS ⊆ DC . The operator A+ performs calculations on each pat-
tern zp ∈ DC to determine if that element should be added to the current train-
ing set. Selected patterns are added to subset DS . Thus, DS = {zp|zp ∈
DC , and zp satisfies the selection criteria}. Then, DT ← DT ∪ DS (the new
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subset is added to the current training subset), and DC ← DC −DS .

Active learning operator A− corresponds with selective learning where the training
set is “pruned”, while A+ corresponds with incremental learning where the actual
training subset “grows”. Inclusion of the NN function fNN as a parameter of each
operator indicates the dependence on the NN’s current knowledge.

7.4 Assignments

1. Discuss measures that quantify the performance of unsupervised neural networks.

2. Discuss factors that influence the performance of unsupervised neural networks.
Explain how the performance can be improved.

3. Why is the SSE not a good measure to compare the performance of NNs on
different data set sizes?

4. Why is the MSE not a good measure of performance for classification problems?

5. One approach to incremental learning is to select from the candidate training
set the most informative pattern as the one with the largest error. Justify and
criticize this approach. Assume that a new pattern is selected at each epoch.

6. Explain the role of the steepness coefficient in 1
1+e−λnet in the performance of

supervised NNs.

7. Explain how architecture selection can be used to avoid overfitting.

8. Explain how active learning can be used to avoid overfitting.

9. Consider the sigmoid activation function. Discuss how scaling of the training
data affects the performance of NNs.

10. Explain how the Huber function makes a NN more robust to outliers.



Part III

EVOLUTIONARY
COMPUTATION

The world we live in is constantly changing. In order to survive in a dynamically chang-
ing environment, individuals must have the ability to adapt. Evolution is this process
of adaption with the aim of improving the survival capabilities through processes such
as natural selection, survival of the fittest, reproduction, mutation, competition and
symbiosis.

This part covers evolutionary computing (EC) – a field of CI that models the processes
of natural evolution. Several evolutionary algorithms (EA) have been developed. This
text covers genetic algorithms in Chapter 9, genetic programming in Chapter 10,
evolutionary programming in Chapter 11, evolutionary strategies in Chapter 12, dif-
ferential evolution in Chapter 13, cultural algorithms in Chapter 14, and coevolution
in Chapter 15. An introduction to basic EC concepts is given in Chapter 8.
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Chapter 8

Introduction to Evolutionary
Computation

Evolution is an optimization process where the aim is to improve the ability of an or-
ganism (or system) to survive in dynamically changing and competitive environments.
Evolution is a concept that has been hotly debated over centuries, and still causes ac-
tive debates.1 When talking about evolution, it is important to first identify the area
in which evolution can be defined, for example, cosmic, chemical, stellar and planetary,
organic or man-made systems of evolution. For these different areas, evolution may
be interpreted differently. For the purpose of this part of the book, the focus is on
biological evolution. Even for this specific area, attempts to define the term biological
evolution still cause numerous debates, with the Lamarckian and Darwinian views be-
ing the most popular and accepted. While Darwin (1809–1882) is generally considered
as the founder of both the theory of evolution and the principle of common descent,
Lamarck (1744–1829) was possibly the first to theorize about biological evolution.

Jean-Baptiste Lamarck’s theory of evolution was that of heredity, i.e. the inheritance
of acquired traits. The main idea is that individuals adapt during their lifetimes,
and transmit their traits to their offspring. The offspring then continue to adapt.
According to Lamarckism, the method of adaptation rests on the concept of use and
disuse: over time, individuals lose characteristics they do not require, and develop
those which are useful by “exercising” them.

It was Charles Darwin’s theory of natural selection that became the foundation of
biological evolution (Alfred Wallace developed a similar theory at the same time, but
independently of Darwin). The Darwinian theory of evolution [173] can be summarized
as: In a world with limited resources and stable populations, each individual competes
with others for survival. Those individuals with the “best” characteristics (traits)
are more likely to survive and to reproduce, and those characteristics will be passed
on to their offspring. These desirable characteristics are inherited by the following
generations, and (over time) become dominant among the population.

A second part of Darwin’s theory states that, during production of a child organism,
1Refer to http:www.johmann.net/book/ciy7-1.html

http://www.talkorigins.org/faqs/evolution-definition.html
http://www.evolutionfairytale.com/articles debates/evolution-definition.html
http://www.creationdesign.org/ (accessed 05/08/2004).

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
c©2007 John Wiley & Sons, Ltd
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random events cause random changes to the child organism’s characteristics. If these
new characteristics are a benefit to the organism, then the chances of survival for that
organism are increased.

Evolutionary computation (EC) refers to computer-based problem solving systems
that use computational models of evolutionary processes, such as natural selection,
survival of the fittest and reproduction, as the fundamental components of such com-
putational systems.

This chapter gives an overview of the evolution processes modeled in EC. Section 8.1
presents a generic evolutionary algorithm (EA) and reviews the main components
of EAs. Section 8.2 discusses ways in which the computational individuals are repre-
sented, and Section 8.3 discusses aspects about the initial population. The importance
of fitness functions, and different types of fitness functions are discussed in Section 8.4.
Selection and reproduction operators are respectively discussed in Sections 8.5 and 8.6.
Algorithm stopping conditions are considered in Section 8.7. A short discussion on
the differences between EC and classical optimization is given in Section 8.8.

8.1 Generic Evolutionary Algorithm

Evolution via natural selection of a randomly chosen population of individuals can
be thought of as a search through the space of possible chromosome values. In that
sense, an evolutionary algorithm (EA) is a stochastic search for an optimal solution to
a given problem. The evolutionary search process is influenced by the following main
components of an EA:

• an encoding of solutions to the problem as a chromosome;

• a function to evaluate the fitness, or survival strength of individuals;

• initialization of the initial population;

• selection operators; and

• reproduction operators.

Algorithm 8.1 shows how these components are combined to form a generic EA.

Algorithm 8.1 Generic Evolutionary Algorithm

Let t = 0 be the generation counter;
Create and initialize an nx-dimensional population, C(0), to consist of ns individuals;
while stopping condition(s) not true do

Evaluate the fitness, f(xi(t)), of each individual, xi(t);
Perform reproduction to create offspring;
Select the new population, C(t + 1);
Advance to the new generation, i.e. t = t + 1;

end
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The steps of an EA are applied iteratively until some stopping condition is satisfied
(refer to Section 8.7). Each iteration of an EA is referred to as a generation.

The different ways in which the EA components are implemented result in diffferent
EC paradigms:

• Genetic algorithms (GAs), which model genetic evolution.
• Genetic programming (GP), which is based on genetic algorithms, but indi-

viduals are programs (represented as trees).
• Evolutionary programming (EP), which is derived from the simulation of

adaptive behavior in evolution (i.e. phenotypic evolution).
• Evolution strategies (ESs), which are geared toward modeling the strategic

parameters that control variation in evolution, i.e. the evolution of evolution.
• Differential evolution (DE), which is similar to genetic algorithms, differing

in the reproduction mechanism used.
• Cultural evolution (CE), which models the evolution of culture of a popu-

lation and how the culture influences the genetic and phenotypic evolution of
individuals.

• Co-evolution (CoE), where initially “dumb” individuals evolve through cooper-
ation, or in competition with one another, acquiring the necessary characteristics
to survive.

These paradigms are discussed in detail in the chapters that follow in this part of the
book.

With reference to Algorithm 8.1, both parts of Darwin’s theory are encapsulated within
this algorithm:

• Natural selection occurs within the reproduction operation where the “best”
parents have a better chance of being selected to produce offspring, and to be
selected for the new population.

• Random changes are effected through the mutation operator.

8.2 Representation – The Chromosome

In nature, organisms have certain characteristics that influence their ability to survive
and to reproduce. These characteristics are represented by long strings of informa-
tion contained in the chromosomes of the organism. Chromosomes are structures of
compact intertwined molecules of DNA, found in the nucleus of organic cells. Each
chromosome contains a large number of genes, where a gene is the unit of heredity.
Genes determine many aspects of anatomy and physiology through control of protein
production. Each individual has a unique sequence of genes. An alternative form of a
gene is referred to as an allele.

In the context of EC, each individual represents a candidate solution to an optimization
problem. The characteristics of an individual is represented by a chromosome, also
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referred to as a genome. These characteristics refer to the variables of the optimization
problem, for which an optimal assignment is sought. Each variable that needs to be
optimized is referred to as a gene, the smallest unit of information. An assignment
of a value from the allowed domain of the corresponding variable is referred to as an
allele. Characteristics of an individual can be divided into two classes of evolutionary
information: genotypes and phenotypes. A genotype describes the genetic composition
of an individual, as inherited from its parents; it represents which allele the individual
possesses. A phenotype is the expressed behavioral traits of an individual in a specific
environment; it defines what an individual looks like. Complex relationships exist
between the genotype and phenotype [570]:

• pleiotropy, where random modification of genes causes unexpected variations in
the phenotypic traits, and

• polygeny, where several genes interact to produce a specific phenotypic trait.

An important step in the design of an EA is to find an appropriate representation of
candidate solutions (i.e. chromosomes). The efficiency and complexity of the search
algorithm greatly depends on the representation scheme. Different EAs from the
different paradigms use different representation schemes. Most EAs represent solutions
as vectors of a specific data type. An exception is genetic programming (GP) where
individuals are represented in a tree format.

The classical representation scheme for GAs is binary vectors of fixed length. In the
case of an nx-dimensional search space, each individual consists of nx variables with
each variable encoded as a bit string. If variables have binary values, the length of
each chromosome is nx bits. In the case of nominal-valued variables, each nominal
value can be encoded as an nd-dimensional bit vector where 2nd is the total number
of discrete nominal values for that variable. To solve optimization problems with
continuous-valued variables, the continuous search space problem can be mapped into
a discrete programming problem. For this purpose mapping functions are needed to
convert the space {0, 1}nb to the space Rnx . For such mapping, each continuous-valued
variable is mapped to an nd-dimensional bit vector, i.e.

φ : R → (0, 1)nd (8.1)

The domain of the continuous space needs to be restricted to a finite range,
[xmin,xmax]. A standard binary encoding scheme can be used to transform the
individual x = (x1, . . . , xj , . . . , xnx

), with xj ∈ R to the binary-valued individual,
b = (b1, . . . ,bj , . . . ,bnx

), where bj = (b(j−1)nd+1, . . . , bjnd
), with bl ∈ {0, 1} and

the total number of bits, nb = nxnd. Decoding each bj back to a floating-point rep-
resentation can be done using the function, Φj : {0, 1}nd → [xmin,j , xmax,j ], where
[39]

Φj(b) = xmin,j +
xmax,j − xmin,j

2nd − 1

(
nd−1∑
l=1

bj(nd−l)2l

)
(8.2)

Holland [376] and De Jong [191] provided the first applications of genetic algorithms
to solve continuous-valued problems using such a mapping scheme. It should be noted
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that if a bitstring representation is used, a grid search is done in a discrete search space.
The EA may therefore fail to obtain a precise optimum. In fact, for a conversion form
a floating-point value to a bitstring of nd bits, the maximum attainable accuracy is

xmax,j − xmin,j

2nd − 1
(8.3)

for each vector component, j = 1, . . . , nx.
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Figure 8.1 Hamming Distance for Binary and Gray Coding

While binary coding is frequently used, it has the disadvantage of introducing Ham-
ming cliffs as illustrated in Figure 8.1. A Hamming cliff is formed when two numerically
adjacent values have bit representations that are far apart. For example, consider the
decimal numbers 7 and 8. The corresponding binary representations are (using a 4-bit
representation) 7 = 0111 and 8 = 1000, with a Hamming distance of 4 (the Hamming
distance is the number of corresponding bits that differ). This presents a problem
when a small change in variables should result in a small change in fitness. If, for
example, 7 represents the optimal solution, and the current best solution has a fitness
of 8, many bits need to be changed to cause a small change in fitness value.

An alternative bit representation is to use Gray coding, where the Hamming distance
between the representation of successive numerical values is one (as illustrated in
Figure 8.1). Table 8.1 compares binary and Gray coding for a 3-bit representation.

Binary numbers can easily be converted to Gray coding using the conversion

g1 = b1

gl = bl−1bl + bl−1bl (8.4)

where bl is bit l of the binary number b1b2 · · · bnb
, with b1 the most significant bit; bl

denotes not bl, + means logical OR, and multiplication implies logical AND.

A Gray code representation, bj can be converted to a floating-point representation
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Table 8.1 Binary and Gray Coding

Binary Gray
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

using

Φj(b) = xmin,j +
xmax,j − xmin,j

2nd − 1

(
nd−1∑
l=1

(
nd−l∑
q=1

b(j−1)nd+q

)
mod 2

)
2l (8.5)

Real-valued representations have been used for a number of EAs, including GAs. Al-
though EP (refer to Chapter 11) was originally developed for finite-state machine
representations, it is now mostly applied to real-valued representations where each
vector component is a floating-point number, i.e. xj ∈ R, j = 1, . . . , nx. ESs and
DE, on the other hand, have been developed for floating-point representation (refer
to Chapters 12 and 13). Real-valued representations have also been used for GAs
[115, 178, 251, 411, 918]. Michalewicz [583] indicated that the original floating-point
representation outperforms an equivalent binary representation, leading to more ac-
curate, faster obtained solutions.

Other representation schemes that have been used include integer representations [778],
permutations [778, 829, 905, 906], finite-state representations [265, 275], tree represen-
tations (refer to Chapter 10), and mixed-integer representations [44].

8.3 Initial Population

Evolutionary algorithms are stochastic, population-based search algorithms. Each EA
therefore maintains a population of candidate solutions. The first step in applying
an EA to solve an optimization problem is to generate an initial population. The
standard way of generating an initial population is to assign a random value from the
allowed domain to each of the genes of each chromosome. The goal of random selection
is to ensure that the initial population is a uniform representation of the entire search
space. If regions of the search space are not covered by the initial population, chances
are that those parts will be neglected by the search process.
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The size of the initial population has consequences in terms of computational complex-
ity and exploration abilities. Large numbers of individuals increase diversity, thereby
improving the exploration abilities of the population. However, the more the individ-
uals, the higher the computational complexity per generation. While the execution
time per generation increases, it may be the case that fewer generations are needed to
locate an acceptable solution. A small population, on the other hand will represent a
small part of the search space. While the time complexity per generation is low, the
EA may need more generations to converge than for a large population.

In the case of a small population, the EA can be forced to explore more of the search
space by increasing the rate of mutation.

8.4 Fitness Function

In the Darwinian model of evolution, individuals with the best characteristics have
the best chance to survive and to reproduce. In order to determine the ability of
an individual of an EA to survive, a mathematical function is used to quantify how
good the solution represented by a chromosome is. The fitness function, f , maps a
chromosome representation into a scalar value:

f : Γnx → R (8.6)

where Γ represents the data type of the elements of an nx-dimensional chromosome.

The fitness function represents the objective function, Ψ, which describes the opti-
mization problem. It is not necessarily the case that the chromosome representation
corresponds to the representation expected by the objective function. In such cases,
a more detailed description of the fitness function is

f : SC
Φ→ SX

Ψ→ R
Υ→ R+ (8.7)

where SC represents the search space of the objective function, and Φ, Ψ and Υ re-
spectively represent the chromosome decoding function, the objective function, and
the scaling function. The (optional) scaling function is used in proportional selection
to ensure positive fitness values (refer to Section 8.5). As an example,

f : {0, 1}nb
Φ→ Rnx

Ψ→ R
Υ→ R+ (8.8)

where an nb-bitstring representation is converted to a floating-point representation
using either equation (8.2) or (8.5).

For the purposes of the remainder of this part on EC, it is assumed that SC = SX for
which f = Ψ.

Usually, the fitness function provides an absolute measure of fitness. That is, the
solution represented by a chromosome is directly evaluated using the objective func-
tion. For some applications, for example game learning (refer to Chapter 11) it is not
possible to find an absolute fitness function. Instead, a relative fitness measure is used
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to quantify the performance of an individual in relation to that of other individuals
in the population or a competing population. Relative fitness measures are used in
coevolutionary algorithms (refer to Chapter 15).

It is important to realize at this point that different types of optimization problems
exist (refer to Section A.3), which have an influence on the formulation of the fitness
function:

• Unconstrained optimization problems as defined in Definition A.4, where, as-
suming that SC = SX , the fitness function is simply the objective function.

• Constrained optimization problems as defined in Definition A.5. To solve con-
strained problems, some EAs change the fitness function to contain two objec-
tives: one is the original objective function, and the other is a constraint penalty
function (refer to Section A.6).

• Multi-objective optimization problems (MOP) as defined in Definition A.10.
MOPs can be solved by using a weighted aggregation approach (refer to Sec-
tion A.8), where the fitness function is a weighted sum of all the sub-objectives
(refer to equation (A.44)), or by using a Pareto-based optimization algorithm.

• Dynamic and noisy problems, where function values of solutions change over
time. Dynamic fitness functions are time-dependent whereas noisy functions
usually have an added Gaussian noise component. Dynamic problems are defined
in Definition A.16. Equation (A.58) gives a noisy function with an additive
Gaussian noise component.

As a final comment on the fitness function, it is important to emphasize its role in an
EA. The evolutionary operators, e.g. selection, crossover, mutation and elitism, usu-
ally make use of the fitness evaluation of chromosomes. For example, selection opera-
tors are inclined towards the most-fit individuals when selecting parents for crossover,
while mutation leans towards the least-fit individuals.

8.5 Selection

Selection is one of the main operators in EAs, and relates directly to the Darwinian
concept of survival of the fittest. The main objective of selection operators is to
emphasize better solutions. This is achieved in two of the main steps of an EA:

• Selection of the new population: A new population of candidate solutions
is selected at the end of each generation to serve as the population of the next
generation. The new population can be selected from only the offspring, or from
both the parents and the offspring. The selection operator should ensure that
good individuals do survive to next generations.

• Reproduction: Offspring are created through the application of crossover
and/or mutation operators. In terms of crossover, “superior” individuals should
have more opportunities to reproduce to ensure that offspring contain genetic
material of the best individuals. In the case of mutation, selection mechanisms
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should focus on “weak” individuals. The hope is that mutation of weak individu-
als will result in introducing better traits to weak individuals, thereby increasing
their chances of survival.

Many selection operators have been developed. A summary of the most frequently
used operators is given in this section. Preceding this summary is a discussion of
selective pressure in Section 8.5.1.

8.5.1 Selective Pressure

Selection operators are characterized by their selective pressure, also referred to as the
takeover time, which relates to the time it requires to produce a uniform population. It
is defined as the speed at which the best solution will occupy the entire population by
repeated application of the selection operator alone [38, 320]. An operator with a high
selective pressure decreases diversity in the population more rapidly than operators
with a low selective pressure, which may lead to premature convergence to suboptimal
solutions. A high selective pressure limits the exploration abilities of the population.

8.5.2 Random Selection

Random selection is the simplest selection operator, where each individual has the
same probability of 1

ns
(where ns is the population size) to be selected. No fitness

information is used, which means that the best and the worst individuals have exactly
the same probability of surviving to the next generation. Random selection has the
lowest selective pressure among the selection operators discussed in this section.

8.5.3 Proportional Selection

Proportional selection, proposed by Holland [376], biases selection towards the most-
fit individuals. A probability distribution proportional to the fitness is created, and
individuals are selected by sampling the distribution,

ϕs(xi(t)) =
fΥ(xi(t))∑ns

l=1 fΥ(xl(t))
(8.9)

where ns is the total number of individuals in the population, and ϕs(xi) is the
probability that xi will be selected. fΥ(xi) is the scaled fitness of xi, to produce a
positive floating-point value. For minimization problems, possible choices of scaling
function, Υ, are

• fΥ(xi(t)) = Υ(xi(t)) = fmax − fΨ(xi(t)) where fΨ(xi(t)) = Ψ(xi(t)) is the
raw fitness value of xi(t). However, knowledge of fmax (the maximum possible
fitness) is usually not available. An alternative is to use fmax(t), which is the
maximum fitness observed up to time step t.
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• fΥ(xi(t)) = Υ(xi(t)) = 1
1+fΨ(xi(t))−fmin(t) , where fmin(t) is the minimum ob-

served fitness up to time step t. Here, fΥ(xi(t)) ∈ (0, 1].

In the case of a maximization problem, the fitness values can be scaled to the range
(0,1] using

fΥ(xi(t)) = Υ(xi(t)) =
1

1 + fmax(t)− f(xi(t))
(8.10)

Two popular sampling methods used in proportional selection is roulette wheel sam-
pling and stochastic universal sampling.

Assuming maximization, and normalized fitness values, roulette wheel selection is
summarized in Algorithm 8.2. Roulette wheel selection is an example proportional
selection operator where fitness values are normalized (e.g. by dividing each fitness
by the maximum fitness value). The probability distribution can then be seen as a
roulette wheel, where the size of each slice is proportional to the normalized selection
probability of an individual. Selection can be likened to the spinning of a roulette
wheel and recording which slice ends up at the top; the corresponding individual is
then selected.

Algorithm 8.2 Roulette Wheel Selection

Let i = 1, where i denotes the chromosome index;
Calculate ϕs(xi) using equation (8.9);
sum = ϕs(xi);
Choose r ∼ U(0, 1);
while sum < r do

i = i + 1, i.e. advance to the next chromosome;
sum = sum + ϕs(xi);

end
Return xi as the selected individual;

When roulette wheel selection is used to create offspring to replace the entire popula-
tion, ns independent calls are made to Algorithm 8.2. It was found that this results in
a high variance in the number of offspring created by each individual. It may happen
that the best individual is not selected to produce offspring during a given generation.
To prevent this problem, Baker [46] proposed stochastic universal sampling (refer to
Algorithm 8.3), used to determine for each individual the number of offspring, λi, to
be produced by the individual with only one call to the algorithm.

Because selection is directly proportional to fitness, it is possible that strong individ-
uals may dominate in producing offspring, thereby limiting the diversity of the new
population. In other words, proportional selection has a high selective pressure.
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Algorithm 8.3 Stochastic Universal Sampling

for i = 1, . . . , ns do
λi(t) = 0;

end
r ∼ U(0, 1

λ ), where λ is the total number of offspring;
sum = 0.0;
for i = 1, . . . , ns do

sum = sum + ϕs(xi(t));
while r < sum do

λi + +;
r = r + 1

λ ;
end

end
return λ = (λ1, . . . , λns

);

8.5.4 Tournament Selection

Tournament selection selects a group of nts individuals randomly from the popula-
tion, where nts < ns (ns is the total number of individuals in the population). The
performance of the selected nts individuals is compared and the best individual from
this group is selected and returned by the operator. For crossover with two parents,
tournament selection is done twice, once for the selection of each parent.

Provided that the tournament size, nts, is not too large, tournament selection prevents
the best individual from dominating, thus having a lower selection pressure. On the
other hand, if nts is too small, the chances that bad individuals are selected increase.

Even though tournament selection uses fitness information to select the best individual
of a tournament, random selection of the individuals that make up the tournament
reduces selective pressure compared to proportional selection. However, note that the
selective pressure is directly related to nts. If nts = ns, the best individual will always
be selected, resulting in a very high selective pressure. On the other hand, if nts = 1,
random selection is obtained.

8.5.5 Rank-Based Selection

Rank-based selection uses the rank ordering of fitness values to determine the probabil-
ity of selection, and not the absolute fitness values. Selection is therefore independent
of actual fitness values, with the advantage that the best individual will not dominate
in the selection process.

Non-deterministic linear sampling selects an individual, xi, such that i ∼
U(0, U(0, ns−1)), where the individuals are sorted in decreasing order of fitness value.
It is also assumed that the rank of the best individual is 0, and that of the worst in-
dividual is ns − 1.
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Linear ranking assumes that the best individual creates λ̂ offspring, and the worst
individual λ̃, where 1 ≤ λ̂ ≤ 2 and λ̃ = 2 − λ̂. The selection probability of each
individual is calculated as

ϕs(xi(t)) =
λ̃ + (fr(xi(t))/(ns − 1))(λ̂− λ̃)

ns
(8.11)

where fr(xi(t)) is the rank of xi(t).

Nonlinear ranking techniques calculate the selection probabilities, for example, as
follows:

ϕs(xi(t)) =
1− e−fr(xi(t))

β
(8.12)

or
ϕs(xi) = ν(1− ν)np−1−fr(xi) (8.13)

where fr(xi) is the rank of xi (i.e. the individual’s position in the ordered sequence of
individuals), β is a normalization constant, and ν indicates the probability of selecting
the next individual.

Rank-based selection operators may use any sampling method to select individuals,
e.g. roulette wheel selection (Algorithm 8.2) or stochastic universal sampling (Algo-
rithm 8.3).

8.5.6 Boltzmann Selection

Boltzmann selection is based on the thermodynamical principles of simulated anneal-
ing (refer to Section A.5.2). It has been used in different ways, one of which computes
selection probabilities as follows:

ϕ(xi(t)) =
1

1 + ef(xi(t))/T (t)
(8.14)

where T (t) is the temperature parameter. A temperature schedule is used to reduce
T (t) from its initial large value to a small value.

The initial large value ensures that all individuals have an equal probability of being
selected. As T (t) becomes smaller, selection focuses more on the good individuals.
The sampling methods discussed in Section 8.5.3 can be used to select individuals.

Alternatively, Boltzmann selection can be used to select between two individuals, for
example, to decide if a parent, xi(t), should be replaced by its offspring, x

′
i(t). If

U(0, 1) >
1

1 + e(f(xi(t))−f(x
′
i(t)))/T (t)

(8.15)

then x
′
i(t) is selected; otherwise, xi(t) is selected.
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8.5.7 (µ +, λ)-Selection

The (µ, λ)- and (µ+λ)-selection methods are deterministic rank-based selection meth-
ods used in evolutionary strategies (refer to Chapter 12). For both methods µ indicates
the number of parents (which is the size of the population), and λ is the number of off-
spring produced from each parent. After production of the λ offspring, (µ, λ)-selection
selects the best µ offspring for the next population. This process of selection is very
similar to beam search (refer to Section A.5.2). (µ + λ)-selection, on the other hand,
selects the best µ individuals from both the parents and the offspring.

8.5.8 Elitism

Elitism refers to the process of ensuring that the best individuals of the current
population survive to the next generation. The best individuals are copied to the new
population without being mutated. The more individuals that survive to the next
generation, the less the diversity of the new population.

8.5.9 Hall of Fame

The hall of fame is a selection scheme similar to the list of best players of an arcade
game. For each generation, the best individual is selected to be inserted into the hall
of fame. The hall of fame will therefore contain an archive of the best individuals
found from the first generation. The hall of fame can be used as a parent pool for
the crossover operator, or, at the last generation, the best individual is selected as the
best one in the hall of fame.

8.6 Reproduction Operators

Reproduction is the process of producing offspring from selected parents by apply-
ing crossover and/or mutation operators. Crossover is the process of creating one or
more new individuals through the combination of genetic material randomly selected
from two or more parents. If selection focuses on the most-fit individuals, the selec-
tion pressure may cause premature convergence due to reduced diversity of the new
populations.

Mutation is the process of randomly changing the values of genes in a chromosome.
The main objective of mutation is to introduce new genetic material into the popula-
tion, thereby increasing genetic diversity. Mutation should be applied with care not to
distort the good genetic material in highly fit individuals. For this reason, mutation
is usually applied at a low probability. Alternatively, the mutation probability can be
made proportional to the fitness of individuals: the less fit the individual, the more
it is mutated. To promote exploration in the first generations, the mutation proba-
bility can be initialized to a large value, which is then reduced over time to allow for
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exploitation during the final generations.

Reproduction can be applied with replacement, in which case newly generated indi-
viduals replace parent individuals only if the fitness of the new offspring is better than
that of the corresponding parents.

Since crossover and mutation operators are representation and EC paradigm depen-
dent, the different implementations of these operators are covered in chapters that
follow.

8.7 Stopping Conditions

The evolutionary operators are iteratively applied in an EA until a stopping condition
is satisfied. The simplest stopping condition is to limit the number of generations that
the EA is allowed to execute, or alternatively, a limit is placed on the number of fitness
function evaluations. This limit should not be too small, otherwise the EA will not
have sufficient time to explore the search space.

In addition to a limit on execution time, a convergence criterion is usually used to
detect if the population has converged. Convergence is loosely defined as the event
when the population becomes stagnant. In other words, when there is no genotypic or
phenotypic change in the population. The following convergence criteria can be used:

• Terminate when no improvement is observed over a number of consec-
utive generations. This can be detected by monitoring the fitness of the best
individual. If there is no significant improvement over a given time window, the
EA can be stopped. Alternatively, if the solution is not satisfactory, mechanisms
can be applied to increase diversity in order to force further exploration. For
example, the mutation probability and mutational step sizes can be increased.

• Terminate when there is no change in the population. If, over a number
of consecutive generations, the average change in genotypic information is too
small, the EA can be stopped.

• Terminate when an acceptable solution has been found. If x∗(t) rep-
resents the optimum of the objective function, then if the best individual, xi,
is such that f(xi) ≤ |f(x) − ε|, an acceptable solution is found; ε is the error
threshold. If ε is too large, solutions may be bad. Too small values of ε may
cause the EA never to terminate if a time limit is not imposed.

• Terminate when the objective function slope is approximately zero, as
defined in equation (16.16) of Chapter 16.
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8.8 Evolutionary Computation versus Classical Op-
timization

While classical optimization algorithms have been shown to be very successful (and
more efficient than EAs) in linear, quadratic, strongly convex, unimodal and other
specialized problems, EAs have been shown to be more efficient for discontinuous,
non-differentiable, multimodal and noisy problems.

EC and classical optimization (CO) differ mainly in the search process and information
about the search space used to guide the search process:

• The search process: CO uses deterministic rules to move from one point in
the search space to the next point. EC, on the other hand, uses probabilistic
transition rules. Also, EC applies a parallel search of the search space, while CO
uses a sequential search. An EA search starts from a diverse set of initial points,
which allows parallel search of a large area of the search space. CO starts from
one point, successively adjusting this point to move toward the optimum.

• Search surface information: CO uses derivative information, usually first-
order or second-order, of the search space to guide the path to the optimum.
EC, on the other hand, uses no derivative information. The fitness values of
individuals are used to guide the search.

8.9 Assignments

1. Discuss the importance of the fitness function in EC.

2. Discuss the difference between genetic and phenotypic evolution.

3. In the case of a small population size, how can we ensure that a large part of
the search space is covered?

4. How can premature convergence be prevented?

5. In what situations will a high mutation rate be of advantage?

6. Is the following statement valid? ‘‘A genetic algorithm is assumed to have con-
verged to a local or global solution when the ratio f/fmax is close to 1, where
fmax and f are the maximum and average fitness of the evolving population
respectively.’’

7. How can an EA be used to train a NN? In answering this question, focus on

(a) the representation scheme, and
(b) fitness function.

8. Show how an EA can be used to solve systems of equations, by illustrating how

(a) solutions are represented, and
(b) the fitness is calculated.

What problem can be identified in using an EA to solve systems of equations?

9. How can the effect of a high selective pressure be countered?
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10. Under which condition will stochastic universal sampling behave like tournament
selection?

11. Identify disadvantages of fitness-based selection operators.

12. For the nonlinear ranking methods given in equations (8.12) and (8.13), indicate
if these assume a minimization or maximization problem.

13. Critisize the following stopping condition: Stop execution of the EA when there
is no significant change in the average fitness of the population over a number
of consecutive generations.



Chapter 9

Genetic Algorithms

Genetic algorithms (GA) are possibly the first algorithmic models developed to sim-
ulate genetic systems. First proposed by Fraser [288, 289], and later by Bremermann
[86] and Reed et al. [711], it was the extensive work done by Holland [376] that pop-
ularized GAs. It is then also due to his work that Holland is generally considered the
father of GAs.

GAs model genetic evolution, where the characteristics of individuals are expressed
using genotypes. The main driving operators of a GA is selection (to model survival of
the fittest) and recombination through application of a crossover operator (to model
reproduction). This section discusses in detail GAs and their evolution operators,
organized as follows: Section 9.1 reviews the canonical GA as proposed by Holland.
Crossover operators for binary and floating-point representations are discussed in Sec-
tion 9.2. Mutation operators are covered in Section 9.3. GA control parameters are
discussed in Section 9.4. Different GA implementations are reviewed in Section 9.5,
while advanced topics are considered in Section 9.6. A summary of GA applications
is given in Section 9.7.

9.1 Canonical Genetic Algorithm

The canonical GA (CGA) as proposed by Holland [376] follows the general algorithm
as given in Algorithm 8.1, with the following implementation specifics:

• A bitstring representation was used.

• Proportional selection was used to select parents for recombination.

• One-point crossover (refer to Section 9.2) was used as the primary method to
produce offspring.

• Uniform mutation (refer to Section 9.3) was proposed as a background operator
of little importance.

It is valuable to note that mutation was not considered as an important operator
in the original GA implementations. It was only in later implementations that the
explorative power of mutation was used to improve the search capabilities of GAs.
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Since the CGA, several variations of the GA have been developed that differ in repre-
sentation scheme, selection operator, crossover operator, and mutation operator. Some
implementations introduce other concepts from nature such as mass extinction, culling,
population islands, amongst others. While it is impossible to provide a complete re-
view of these alternatives, this chapter provides a good flavor of these approaches to
illustrate the richness of GAs.

9.2 Crossover

Crossover operators can be divided into three main categories based on the arity (i.e.
the number of parents used) of the operator. This results in three main classes of
crossover operators:

• asexual, where an offspring is generated from one parent.

• sexual, where two parents are used to produce one or two offspring.

• multi-recombination, where more than two parents are used to produce one
or more offspring.

Crossover operators are further categorized based on the representation scheme used.
For example, binary-specific operators have been developed for binary string represen-
tations (refer to Section 9.2.1), and operators specific to floating-point representations
(refer to Section 9.2.2).

Parents are selected using any of the selection schemes discussed in Section 8.5. It
is, however, not a given that selected parents will mate. Recombination is applied
probabilistically. Each pair (or group) of parents have a probability, pc, of producing
offspring. Usually, a high crossover probability (also referred to as the crossover rate)
is used.

In selection of parents, the following issues need to be considered:

• Due to probabilistic selection of parents, it may happen that the same individual
is selected as both parents, in which case the generated offspring will be a copy
of the parent. The parent selection process should therefore incorporate a test
to prevent such unnecessary operations.

• It is also possible that the same individual takes part in more than one applica-
tion of the crossover operator. This becomes a problem when fitness-proportional
selection schemes are used.

In addition to parent selection and the recombination process, the crossover operator
considers a replacement policy. If one offspring is generated, the offspring may replace
the worst parent. Such replacement can be based on the restriction that the offspring
must be more fit than the worst parent, or it may be forced. Alternatively, Boltzmann
selection (refer to Section 8.5.6) can be used to decide if the offspring should replace
the worst parent. Crossover operators have also been implemented where the offspring
replaces the worst individual of the population. In the case of two offspring, similar
replacement strategies can be used.
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9.2.1 Binary Representations

Most of the crossover operators for binary representations are sexual, being applied
to two selected parents. If x1(t) and x2(t) denote the two selected parents, then
the recombination process is summarized in Algorithm 9.1. In this algorithm, m(t)
is a mask that specifies which bits of the parents should be swapped to generate the
offspring, x̃1(t) and x̃2(t). Several crossover operators have been developed to compute
the mask:

• One-point crossover: Holland [376] suggested that segments of genes be
swapped between the parents to create their offspring, and not single genes.
A one-point crossover operator was developed that randomly selects a crossover
point, and the bitstrings after that point are swapped between the two parents.
One-point crossover is illustrated in Figure 9.1(a). The mask is computed using
Algorithm 9.2.

• Two-point crossover: In this case two bit positions are randomly selected, and
the bitstrings between these points are swapped as illustrated in Figure 9.1(b).
The mask is calculated using Algorithm 9.3. This operator can be generalized
to an n-point crossover [85, 191, 250, 711].

• Uniform crossover: The nx-dimensional mask is created randomly [10, 828]
as summarized in Algorithm 9.4. Here, px is the bit-swapping probability. If
px = 0.5, then each bit has an equal chance to be swapped. Uniform crossover
is illustrated in Figure 9.1(c).

Algorithm 9.1 Generic Algorithm for Bitstring Crossover

Let x̃1(t) = x1(t) and x̃2(t) = x2(t);
if U(0, 1) ≤ pc then

Compute the binary mask, m(t);
for j = 1, . . . , nx do

if mj = 1 then
//swap the bits
x̃1j(t) = x2j(t) ;
x̃2j(t) = x1j(t);

end
end

end

Algorithm 9.2 One-Point Crossover Mask Calculation

Select the crossover point, ξ ∼ U(1, nx − 1);
Initialize the mask: mj(t) = 0, for all j = 1, . . . , nx;
for j = ξ + 1 to nx do

mj(t) = 1;
end
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Algorithm 9.3 Two-Point Crossover Mask Calculation

Select the two crossover points, ξ1, ξ2 ∼ U(1, nx);
Initialize the mask: mj(t) = 0, for all j = 1, . . . , nx;
for j = ξ1 + 1 to ξ2 do

mj(t) = 1;
end

Algorithm 9.4 Uniform Crossover Mask Calculation

Initialize the mask: mj(t) = 0, for all j = 1, . . . , nx;
for j = 1 to nx do

if U(0, 1) ≤ px then
mj(t) = 1;

end
end

Bremermann et al. [85] proposed the first multi-parent crossover operators for binary
representations. Given nµ parent vectors, x1(t), . . . ,xnµ

(t), majority mating generates
one offspring using

x̃ij(t) =
{

0 if n
′
µ ≥ nµ/2, l = 1, . . . , nµ

1 otherwise
(9.1)

where n
′
µ is the number of parents with xlj(t) = 0.

A multiparent version of n-point crossover was also proposed by Bremermann et al.
[85], where nµ − 1 identical crossover points are selected in the nµ parents. One
offspring is generated by selecting one segment from each parent.

Jones [427] developed a crossover hillclimbing operator that can be applied to any
representation. Crossover hillclimbing starts with two parents, and continues to pro-
duce offspring from this pair of parents until either a maximum number of crossover
attempts has been exceeded, or a pair of offspring is found where one of the offspring
has a better fitness than the best parent. Crossover hillclimbing then continues repro-
duction using these two offspring as the new parent pair. If a better parent pair cannot
be found within the specified time limit, the worst parent is replaced by a randomly
selected parent.

9.2.2 Floating-Point Representation

The crossover operators discussed above (excluding majority mating) can also be ap-
plied to floating-point representations as discrete recombination strategies. In contrast
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Parent 1

Parent 2

Mask

0 0 0 1 0 0 11 1 0

Offspring 1

Offspring 2

(a) Uniform Crossover

Parent 1

Parent 2

Mask
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Offspring 1
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(b) One-point Crossover

Parent 1

Parent 2

Mask

0 1 1 1 0 0 00 1 0

Offspring 1

Offspring 2

(c) Two-point Crossover

Figure 9.1 Crossover Operators for Binary Representations
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to these discrete operators where information is swapped between parents, intermedi-
ate recombination operators, developed specifically for floating-point representations,
blend components across the selected parents.

One of the first floating-point crossover operators is the linear operator proposed by
Wright [918]. From the parents, x1(t) and x2(t), three candidate offspring are gen-
erated as (x1(t) + x2(t)), (1.5x1(t) − 0.5x2(t)) and (−0.5x1(t) + 1.5x2(t)). The two
best solutions are selected as the offspring. Wright [918] also proposed a directional
heuristic crossover operator where one offspring is created from two parents using

x̃ij(t) = U(0, 1)(x2j(t)− x1j(t)) + x2j(t) (9.2)

subject to the constraint that parent x2(t) cannot be worse than parent x1(t).

Michalewicz [586] coined the arithmetic crossover, which is a multiparent recombina-
tion strategy that takes a weighted average over two or more parents. One offspring
is generated using

x̃ij(t) =
nµ∑
l=1

γlxlj(t) (9.3)

with
∑nµ

l=1 γl = 1. A specialization of the arithmetic crossover operator is obtained
for nµ = 2, in which case

x̃ij(t) = (1− γ)x1j(t) + γx2j(t) (9.4)

with γ ∈ [0, 1]. If γ = 0.5, the effect is that each component of the offspring is simply
the average of the corresponding components of the parents.

Eshelman and Schaffer [251] developed a variation of the weighted average given in
equation (9.4), referred to as the blend crossover (BLX-α), where

x̃ij(t) = (1− γj)x1j(t) + γjx2j(t) (9.5)

with γj = (1 + 2α)U(0, 1)−α. The BLX-α operator randomly picks, for each compo-
nent, a random value in the range

[x1j(t)− α(x2j(t)− x1j(t)), x2j(t) + α(x2j(t)− x1j(t))] (9.6)

BLX-α assumes that x1j(t) < x2j(t). Eshelman and Schaffer found that α = 0.5 works
well.

The BLX-α has the property that the location of the offspring depends on the dis-
tance that the parents are from one another. If this distance is large, then the distance
between the offpsring and its parents will be large. The BLX-α allows a bit more ex-
ploration than the weighted average of equation (9.3), due to the stochastic component
in producing the offspring.

Michalewicz et al. [590] developed the two-parent geometrical crossover to produce a
single offspring as follows:

x̃ij(t) = (x1jx2j)0.5 (9.7)
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The geometrical crossover can be generalized to multi-parent recombination as follows:

x̃ij(t) = (xα1
1j xα2

2j . . . x
αnµ

nµj ) (9.8)

where nµ is the number of parents, and
∑nµ

l=1 αl = 1.

Deb and Agrawal [196] developed the simulated binary crossover (SBX) to simulate the
behavior of the one-point crossover operator for binary representations. Two parents,
x1(t) and x2(t) are used to produce two offspring, where for j = 1, . . . , nx

x̃1j(t) = 0.5[(1 + γj)x1j(t) + (1− γj)x2j(t)] (9.9)
x̃2j(t) = 0.5[(1− γj)x1j(t) + (1 + γj)x2j(t)] (9.10)

where

γj =


 (2rj)

1
η+1 if rj ≤ 0.5(

1
2(1−rj)

) 1
η+1

otherwise
(9.11)

where rj ∼ U(0, 1), and η > 0 is the distribution index. Deb and Agrawal suggested
that η = 1.

The SBX operator generates offspring symmetrically about the parents, which prevents
bias towards any of the parents. For large values of η there is a higher probability that
offspring will be created near the parents. For small η values, offspring will be more
distant from the parents.

While the above focused on sexual crossover operators (some of which can also be
extended to multiparent operators), the remainder of this section considers a number
of multiparent crossover operators. The main objective of these multiparent opera-
tors is to intensify the explorative capabilities compared to two-parent operators. By
aggregating information from multiple parents, more disruption is achieved with the
resemblance between offspring and parents on average smaller compared to two-parent
operators.

Ono and Kobayashi [642] developed the unimodal distributed (UNDX) operator where
two or more offspring are generated using three parents. The offspring are created from
an ellipsoidal probability distribution, with one of the axes formed along the line that
connects two of the parents. The extent of the orthogonal direction is determined from
the perpendicular distance of the third parent from the axis. The UNDX operator can
be generalized to work with any number of parents, with 3 ≤ nµ ≤ ns. For the
generalization, nµ − 1 parents are randomly selected and their center of mass (mean),
x(t), is calculated, where

xj(t) =
nµ−1∑
l=1

xlj(t) (9.12)

From the mean, nµ − 1 direction vectors, dl(t) = xl(t) − x(t) are computed, for
l = 1, . . . , nµ − 1. Using the direction vectors, the direction cosines are computed as
el(t) = dl(t)/|dl(t)|, where |dl(t)| is the length of vector dl(t). A random parent,
with index nµ is selected. Let xnµ

(t)− x(t) be the vector orthogonal to all el(t), and
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δ = |xnµ
(t)− x(t)|. Let el(t), l = nµ, . . . , ns be the orthonormal basis of the subspace

orthogonal to the subspace spanned by the direction cosines, el(t), l = 1, . . . , nµ − 1.
Offspring are then generated using

x̃i(t) = x(t) +
nµ−1∑
l=1

N(0, σ2
1)|dl|el +

ns∑
l=nµ

N(0, σ2
2)δel(t) (9.13)

where σ1 = 1√
nµ−2

and σ2 = 0.35√
ns−nµ−2

.

Using equation (9.13) any number of offspring can be created, sampled around the
center of mass of the selected parents. A higher probability is assigned to create
offspring near the center rather than near the parents. The effect of the UNDX
operator is illustrated in Figure 9.2(a) for nµ = 4.

Tsutsui and Goldberg [857] and Renders and Bersini [714] proposed the simplex
crossover (SPX) operator as another center of mass approach to recombination. Ren-
ders and Bersini selects nµ > 2 parents, and determines the best and worst parent, say
x1(t) and x2(t) respectively. The center of mass, x(t) is computed over the selected
parents, but with x2(t) excluded. One offspring is generated using

x̃(t) = x(t) + (x1(t)− x2(t)) (9.14)

Tsutsui and Goldberg followed a similar approach, selecting nµ = nx + 1 parents
independent from one another for an nx-dimensional search space. These nµ parents
form a simplex. The simplex is expanded in each of the nµ directions, and offspring
sampled from the expanded simplex as illustrated in Figure 9.2(b). For nx = 2, nµ = 3,
and

x(t) =
nµ∑
l=1

xl(t) (9.15)

the expanded simplex is defined by the points

(1 + γ)(xl(t)− x(t)) (9.16)

for l = 1, . . . , nµ = 3 and γ ≥ 0. Offspring are obtained by uniform sampling of the
expanded simplex.

Deb et al. [198] proposed a variation of the UNDX operator, which they refer to as
parent-centric crossover (PCX). Instead of generating offspring around the center of
mass of the selected parents, offspring are generated around selected parents. PCX
selects nµ parents and computes their center of mass, x(t). For each offspring to be
generated one parent is selected uniformly from the nµ parents. A direction vector is
calculated for each offspring as

di(t) = xi(t)− x(t)

where xi(t) is the randomly selected parent. From the other nµ−1 parents perpendic-
ular distances, δl, for i �= l = 1, . . . , nµ, are calculated to the line di(t). The average
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x1(t)

x3(t)

x2(t)

x(t)

(a) UNDX Operator

x3(t)

x(t)

x1(t)

x2(t)

(b) SPX Operator

x2(t)

x3(t)

x(t)

x1(t)

(c) PCX Operator

Figure 9.2 Illustration of Multi-parent Center of Mass Crossover Operators (dots rep-
resent potential offpsring)

over these distances is calculated, i.e.

δ =

∑nµ

l=1,l 	=i δl

nµ − 1
(9.17)

Offspring is generated using

x̃i(t) = xi(t) + N(0, σ2
1)|di(t)|+

nµ∑
l=1,i 	=l

N(0, σ2
2)δel(t) (9.18)

where xi(t) is the randomly selected parent of offspring x̃i(t), and el(t) are the nµ− 1
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orthonormal bases that span the subspace perpendicular to di(t).

The effect of the PCX operator is illustrated in Figure 9.2(c).

Eiben et al. [231, 232, 233] developed a number of gene scanning techniques as multi-
parent generalizations of n-point crossover. For each offspring to be created, the gene
scanning operator is applied as summarized in Algorithm 9.5. The algorithm contains
two main procedures:

• A scanning strategy, which assigns to each selected parent a probability that
the offspring will inherit the next component from that parent. The component
under consideration is indicated by a marker.

• A marker update strategy, which updates the markers of parents to point to the
next component of each parent.

Marker initialization and updates depend on the representation method. For binary
representations the marker of each parent is set to its first gene. The marker update
strategy simply advances the marker to the next gene.

Eiben et al. proposed three scanning strategies:

• Uniform scanning creates only one offspring. The probability, ps(xl(t)), of
inheriting the gene from parent xl(t), l = 1, . . . , nµ, as indicated by the marker
of that parent is computed as

ps(xl(t + 1)) =
1
nµ

(9.19)

Each parent has an equal probability of contributing to the creation of the off-
spring.

• Occurrence-based scanning bases inheritance on the premise that the allele
that occur most in the parents for a particular gene is the best possible allele to
inherit by the offspring (similar to the majority mating operator). Occurrence-
based scanning assumes that fitness-proportional selection is used to select the
nµ parents that take part in recombination.

• Fitness-based scanning, where the allele to be inherited is selected propor-
tional to the fitness of the parents. Considering maximization, the probability
to inherit from parent xl(t) is

ps(xl(t)) =
f(xl(t))∑nµ

i=1 f(xi(t))
(9.20)

Roulette-wheel selection is used to select the parent to inherit from.

For each of these scanning strategies, the offspring inherits ps(xl(t + 1))nx genes from
parent xl(t).
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Figure 9.3 Diagonal Crossover

Algorithm 9.5 Gene Scanning Crossover Operator

Initialize parent markers;
for j = 1, . . . , nx do

Select the parent, xl(t), to inherit from;
x̃j(t) = xlj(t);
Update parent markers;

end

The diagonal crossover operator developed by Eiben et al. [232] is a generalization of
n-point crossover for more than two parents: n ≥ 1 crossover points are selected and
applied to all of the nµ = n + 1 parents. One or n + 1 offspring can be generated by
selecting segments from the parents along the diagonals as illustrated in Figure 9.3,
for n = 2, nµ = 3.

9.3 Mutation

The aim of mutation is to introduce new genetic material into an existing individual;
that is, to add diversity to the genetic characteristics of the population. Mutation is
used in support of crossover to ensure that the full range of allele is accessible for each
gene. Mutation is applied at a certain probability, pm, to each gene of the offspring,
x̃i(t), to produce the mutated offspring, x

′
i(t). The mutation probability, also referred



154 9. Genetic Algorithms

to as the mutation rate, is usually a small value, pm ∈ [0, 1], to ensure that good
solutions are not distorted too much.

Given that each gene is mutated at probability pm, the probability that an individual
will be mutated is given by

Prob(x̃i(t) is mutated) = 1− (1− pm)nx (9.21)

where the individual contains nx genes.

Assuming binary representations, if H(x̃i(t),x
′
i(t)) is the Hamming distance between

offspring, x̃i(t), and its mutated version, x
′
i(t), then the probability that the mutated

version resembles the original offspring is given by

Prob(x
′
i(t)) ≈ x̃i(t)) = p

H(x̃i(t),x
′
i(t))

m (1− pm)nx−H(x̃i(t),x
′
i(t)) (9.22)

This section describes mutation operators for binary and floating-point representations
in Sections 9.3.1 and 9.3.2 respectively. A macromutation operator is described in
Section 9.3.3.

9.3.1 Binary Representations

For binary representations, the following mutation operators have been developed:

• Uniform (random) mutation [376], where bit positions are chosen randomly
and the corresponding bit values negated as illustrated in Figure 9.4(a). Uniform
mutation is summarized in Algorithm 9.6.

• Inorder mutation, where two mutation points are randomly selected and only
the bits between these mutation points undergo random mutation. Inorder mu-
tation is illustrated in Figure 9.4(b) and summarized in Algorithm 9.7.

• Gaussian mutation: For binary representations of floating-point decision vari-
ables, Hinterding [366] proposed that the bitstring that represents a decision
variable be converted back to a floating-point value and mutated with Gaus-
sian noise. For each chromosome random numbers are drawn from a Poisson
distribution to determine the genes to be mutated. The bitstrings representing
these genes are then converted. To each of the floating-point values is added
the stepsize N(0, σj), where σj is 0.1 of the range of that decision variable. The
mutated floating-point value is then converted back to a bitstring. Hinterding
showed that Gaussian mutation on the floating-point representation of decision
variables provided superior results to bit flipping.

For large dimensional bitstrings, mutation may significantly add to the computational
cost of the GA. In a bid to reduce computational complexity, Birru [69] divided the
bitstring of each individual into a number of bins. The mutation probability is applied
to the bins, and if a bin is to be mutated, one of its bits are randomly selected and
flipped.
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Figure 9.4 Mutation Operators for Binary Representations

Algorithm 9.6 Uniform/Random Mutation

for j = 1, . . . , nx do
if U(0, 1) ≤ pm then

x
′
ij(t) = ¬x̃ij(t), where ¬ denotes the boolean NOT operator;

end
end

Algorithm 9.7 Inorder Mutation

Select mutation points, ξ1, ξ2 ∼ U(1, . . . , nx);
for j = ξ1, . . . , ξ2 do

if U(0, 1) ≤ pm then
x

′
ij(t) = ¬x̃ij(t);

end
end

9.3.2 Floating-Point Representations

As indicated by Hinterding [366] and Michalewicz [586], better performance is obtained
by using a floating-point representation when decision variables are floating-point val-
ues and by applying appropriate operators to these representations, than to convert
to a binary representation. This resulted in the development of mutation operators
for floating-point representations. One of the first proposals was a uniform mutation,
where [586]

x
′
ij(t) =

{
x̃ij(t) + ∆(t, xmax,j − x̃ij(t)) if a random digit is 0
x̃ij(t) + ∆(t, x̃ij(t)− xmin,j(t)) if a random digit is 1 (9.23)

where ∆(t, x) returns random values from the range [0, x].
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Any of the mutation operators discussed in Sections 11.2.1 (for EP) and 12.4.3 (for
ES) can be applied to GAs.

9.3.3 Macromutation Operator – Headless Chicken

Jones [427] proposed a macromutation operator, referred to as the headless chicken
operator. This operator creates an offspring by recombining a parent individual with
a randomly generated individual using any of the previously discussed crossover oper-
ators. Although crossover is used to combine an individual with a randomly generated
individual, the process cannot be referred to as a crossover operator, as the concept of
inheritence does not exist. The operator is rather considered as mutation due to the
introduction of new randomly generated genetic material.

9.4 Control Parameters

In addition to the population size, the performance of a GA is influenced by the
mutation rate, pm, and the crossover rate, pc. In early GA studies very low values
for pm and relatively high values for pc are propagated. Usually, the values for pm

and pc are kept static. It is, however, widely accepted that these parameters have
a significant influence on performance, and that optimal settings for pm and pc can
significantly improve performance. To obtain such optimal settings through empirical
parameter tuning is a time consuming process. A solution to the problem of finding
best values for these control parameters is to use dynanically changing parameters.

Although dynamic, and self-adjusting parameters have been used for EP and ES (refer
to Sections 11.3 and 12.3) as early as the 1960s, Fogarty [264] provided one of the
first studies of dynamically changing mutation rates for GAs. In this study, Fogarty
concluded that performance can be significantly improved using dynamic mutation
rates. Fogarty used the following schedules where the mutation rate exponentially
decreases with generation number:

pm(t) =
1

240
+

0.11375
2t

(9.24)

As an alternative, Fogarty also proposed for binary representations a mutation rate
per bit, j = 1, . . . , nb, where nb indicates the least significant bit:

pm(j) =
0.3528
2j−1

(9.25)

The two schedules above were combined to give

pm(j, t) =
28

1905× 2j−1
=

0.4026
2t+j−1

(9.26)

A large initial mutation rate favors exploration in the initial steps of the search, and
with a decrease in mutation rate as the generation number increases, exploitation
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is facilitated. Different schedules can be used to reduce the mutation rate. The
schedule above results in an exponential decrease. An alternative may be to use a
linear schedule, which will result in a slower decrease in pm, allowing more exploration.
However, a slower decrease may be too disruptive for already found good solutions.
A good strategy is to base the probability of being mutated on the fitness of the
individual: the more fit the individual is, the lower the probability that its genes will
be mutated; the more unfit the individual, the higher the probability of mutation.

Annealing schedules similar to those used for the learning rate of NNs (refer to equation
(4.40)), and to adjust control parameters for PSO and ACO can be applied to pm (also
refer to Section A.5.2).

For floating-point representations, performance is also influenced by the mutational
step sizes. An ideal strategy is to start with large mutational step sizes to allow larger,
stochastic jumps within the search space. The step sizes are then reduced over time,
so that very small changes result near the end of the search process. Step sizes can also
be proportional to the fitness of an individual, with unfit individuals having larger step
sizes than fit individuals. As an alternative to deterministic schedules to adapt step
sizes, self-adaptation strategies as for EP and ES can be used (refer to Sections 11.3.3
and 12.3.3).

The crossover rate, pc, also bears significant influence on performance. With its op-
timal value being problem dependent, the same adaptive strategies as for pm can be
used to dynamically adjust pc.

In addition to pm (and mutational step sizes in the case of floating-point represen-
tations) and pc, the choice of the best evolutionary operators to use is also problem
dependent. While a best combination of crossover, mutation, and selection operators
together with best values for the control parameters can be obtained via empirical stud-
ies, a number of adaptive methods can be found as reviewed in [41]. These methods
adaptively switch between different operators based on search progress. Ultimately,
finding the best set of operators and control parameter values is a multi-objective
optimization problem by itself.

9.5 Genetic Algorithm Variants

Based on the general GA, different implementations of a GA can be obtained by
using different combinations of selection, crossover, and mutation operators. Although
different operator combinations result in different behaviors, the same algorithmic flow
as given in Algorithm 8.1 is followed. This section discusses a few GA implementations
that deviate from the flow given in Algorithm 8.1. Section 9.5.1 discusses generation
gap methods. The messy GA is described in Section 9.5.2. A short discussion on
interactive evolution is given in Section 9.5.3. Island (or parallel) GAs are discussed
in Section 9.5.4.
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9.5.1 Generation Gap Methods

The GAs as discussed thus far differ from biological models of evolution in that pop-
ulation sizes are fixed. This allows the selection process to be described by two steps:

• Parent selection, and

• a replacement strategy that decides if offspring will replace parents, and which
parents to replace.

Two main classes of GAs are identified based on the replacement strategy used, namely
generational genetic algorithms (GGA) and steady state genetic algorithms (SSGA),
also referred to as incremental GAs. For GGAs the replacement strategy replaces
all parents with their offspring after all offpsring have been created and mutated.
This results in no overlap between the current population and the new population
(assuming that elitism is not used). For SSGAs, a decision is made immediately after
an offspring is created and mutated as to whether the parent or the offspring survives
to the next generation. Thus, there exists an overlap between the current and new
populations.

The amount of overlap between the current and new populations is referred to as the
generation gap [191]. GGAs have a zero generation gap, while SSGAs generally have
large generation gaps.

A number of replacement strategies have been developed for SSGAs:

• Replace worst [192], where the offspring replaces the worst individual of the
current population.

• Replace random [192, 829], where the offspring replaces a randomly selected
individual of the current population.

• Kill tournament [798], where a group of individuals is randomly selected, and
the worst individual of this group is replaced with the offspring. Alternatively,
a tournament size of two is used, and the worst individual is replaced with a
probability, 0.5 ≤ pr ≤ 1.

• Replace oldest, where a first-in-first-out strategy is followed by replacing the
oldest individual of the current population. This strategy has a high probability
of replacing one of the best individuals.

• Conservative selection [798] combines a first-in-first-out replacement strategy
with a modified deterministic binary tournament selection. A tournament size of
two individuals is used of which one is always the oldest individual of the current
population. The worst of the two is replaced by the offspring. This approach
ensures that the oldest individual will not be lost if it is the fittest.

• Elitist strategies of the above replacement strategies have also been developed,
where the best individual is excluded from selection.

• Parent-offspring competition, where a selection strategy is used to decide if
an offspring replaces one of its own parents.
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Theoretical and empirical studies of steady state GAs can be found in [734, 797, 798,
872].

9.5.2 Messy Genetic Algorithms

Standard GAs use populations where all individuals are of the same fixed size. For an
nx-dimensional search space, a standard GA finds a solution through application of
the evolutionary operators to the complete nx-dimensional individuals. It may happen
that good individuals are found, but some of the genes of a good individual are non-
optimal. It may be difficult to find optimal allele for such genes through application
of crossover and mutation on the entire individual. It may even happen that crossover
looses optimized genes, or groups of optimized genes.

Goldberg et al. [321, 323, 324] developed the messy GA (mGA), which finds solutions
by evolving optimal building blocks and combining building blocks. Here a building
block refers to a group of genes. In a messy GA individuals are of variable length, and
specified by a list of position-value pairs. The position specifies the gene index, and
the value specifies the allele for that gene. These pairs are referred to as messy genes.
As an example, if nx = 4, then the individual, ((1, 0)(3, 1), (4, 0)(1, 1)), represents the
individual 0 ∗ 10.

The messy representation may result in individuals that are over-specified or under-
specified. The example above illustrates both cases. The individual is over-specified
because gene 1 occurs twice. It is under-specified because gene 2 does not occur,
and has no value assigned. Fitness evaluation of messy individuals requires strategies
to cope with such individuals. For over-specified individuals, a first-come-first-served
approach is followed where the first specified value is assigned to the repeating gene.
For under-specified individuals, a missing gene’s allele is obtained from a competitive
template. The competitive template is a locally optimal solution. As an example, if
1101 is the template, the fitness of 0 ∗ 10 is evaluated as the fitness of 0101.

The objective of mGAs is to evolve optimal building blocks, and to incrementally com-
bine optimized building blocks to form an optimal solution. An mGA is implemented
using two loops as shown in Algorithm 9.8. The inner loop consists of three steps:

• Initialization to create a population of building blocks of a specified length,
nm.

• Primordial, which aims to generate small, promising building blocks.

• Juxtapositional, to combine building blocks.

The outer loop specifies the size of the building blocks to be considered, starting with
the smallest size of one, and incrementally increasing the size until a maximum size is
reached, or an acceptable solution is found. The outer loop also sets the best solution
obtained from the juxtaposition step as the competitive template for the next iteration.
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Algorithm 9.8 Messy Genetic Algorithm

Initialize the competitive template;
for nm = 1 to nm,max do

Initialize the population to contain building blocks of size nm;
Apply the primordial step;
Apply the juxtaposition step;
Set the competitive template to the best solution from the juxtaposition step;

end

The initialization step creates all possible combinations of building blocks of length
nm. For nx-dimensional solutions, this results in a population size of

ns = 2nm

(
nx

nm

)
(9.27)

where (
nx

nm

)
=

nx!
nm!(nx − nm)!

(9.28)

This leads to one of the major disadvantages of mGAs, in that computational complex-
ity explodes with increase in nm (i.e. building block size). The fast mGA addresses
this problem by starting with larger building block sizes and adding a gene deletion
operator to the primordial step to prune building blocks [322].

The primordial step is executed for a specified number of generations, applying only
selection to find the best building blocks. At regular intervals the population is halved,
with the worst individuals (building blocks) discarded. No crossover or mutation is
used. While any selection operator can be used, fitness proportional selection is usually
used. Because individuals in an mGA may contain different sets of genes (as specified
by the building blocks), thresholding selection has been proposed to apply selection
to “similar” individuals. Thresholding selection applies tournament selection between
two individuals that have in common a number of genes greater than a specified
threshold. The effect achieved via the primordial step is that poor building blocks are
eliminated, while good building blocks survive to the juxtaposition step.

The juxtaposition step applies cut and splice operators. The cut operator is applied
to selected individuals at a probability proportional to the length of the individual
(i.e. the size of the building block). The objective of the cut operator is to reduce
the size of building blocks by splitting the individual at a randomly selected gene.
The splicing operator combines two individuals to form a larger building block. Since
the probability of cutting is proportional to the length of the individual, and the
mGA starts with small building blocks, splicing occurs more in the beginning. As nm

increases, cutting occurs more. Cutting and splicing then resembles crossover.
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9.5.3 Interactive Evolution

In standard GAs (and all EAs for that matter), the human user plays a passive role.
Selection is based on an explicitly defined analytical function, used to quantify the
quality of a candidate solution. It is, however, the case that such a function cannot be
defined for certain application areas, for example, evolving art, music, animations, etc.
For such application areas subjective judgment is needed, based on human intuition,
aesthetical values or taste. This requires interaction of a human evaluator as the
“fitness function”.

Interactive evolution (IE) [48, 179, 792] involves a human user online into the selection
and variation processes. The search process is now directed through interactive selec-
tion of solutions by the human user instead of an absolute fitness function. Dawkins
[179] was the first to consider IE to evolve biomorphs, which are tree-like representa-
tions of two-dimensional graphical forms. Todd and Latham [849] used IE to evolve
computer sculptures. Sims [792] provides further advances in the application of IE to
evolve complex simulated structures, textures, and motions.

Algorithm 9.9 provides a summary of the standard IE algorithm. The main com-
ponent of the IE algorithm is the interactive selection step. This step requires that
the phenotype of individuals be generated from the genotype, and visualized. Based
on the visual representations of candidate solutions, the user selects those individuals
that will take part in reproduction, and that will survive to the next generation. Some
kind of fitness function can be defined (if possible) to order candidate solutions and
to perform a pre-selection to reduce the number of solutions to be evaluated by the
human user.

In addition to act as the selection mechanism, the user can also interactively specify
the reproduction operators and population parameters.

Instead of the human user performing selection, interaction may be of the form where
the user assigns a fitness score to individuals. Automatic selection is then applied,
using these user assigned quality measures.

Algorithm 9.9 Interactive Evolution Algorithm

Set the generation counter, t = 0;
Initialize the control parameters;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do

Determine reproduction operators, either automatically or via interaction;
Select parents via interaction;
Perform crossover to produce offspring;
Mutate offspring;
Select new population via interaction;

end
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Although the section on IE is provided as part of the chapter on GAs, IE can be
applied to any of the EAs.

9.5.4 Island Genetic Algorithms

GAs lend themselves to parallel implementation. Three main categories of parallel
GA have been identified [100]:

• Single-population master-slave GAs, where the evaluation of fitness is distributed
over several processors.

• Single-population fine-grained GAs, where each individual is assigned to one pro-
cessor, and each processor is assigned only one individual. A small neighborhood
is defined for each individual, and selection and reproduction are restricted to
neighborhoods. Whitley [903] refers to these as cellular GAs.

• Multi-population, or island GAs, where multiple populations are used, each on
a separate processor. Information is exchanged among populations via a migra-
tion policy. Although developed for parallel implementation, island GAs can be
implemented on a single processor system.

The remainder of this section focuses on island GAs. In an island GA, a number of sub-
populations are evolved in parallel, in a cooperative framework [335, 903, 100]. In this
GA model, a number of islands occurs, where each island represents one population.
Selection, crossover and mutation occur in each subpopulation independently from the
other subpopulations. In addition, individuals are allowed to migrate between islands
(or subpopulations), as illustrated in Figure 9.5.

An integral part of an island GA is the migration policy which governs the exchange
of information between islands. A migration policy specifies [100, 102, 103, 104]:

• A communications topology, which determines the migration paths between
islands. For example, a ring topology (such as illustrated in Figure 16.4(b))
allows exchange of information between neighboring islands. The communica-
tion topology determines how fast (or slow) good solutions disseminate to other
subpopulations. For a sparsely connected structure (such as the ring topology),
islands are more isolated from one another, and the spread of information about
good solutions is slower. Sparse topologies also facilitate the appearance of mul-
tiple solutions. Densely connected structures have a faster spread of information,
which may lead to premature convergence.

• A migration rate, which determines the frequency of migration. Tied with
the migration rate is the question of when migration should occur. If migration
occurs too early, the number of good building blocks in the migrants may be too
small to have any influence at their destinations. Usually, migration occurs when
each population has converged. After exchange of individuals, all populations
are restarted.

• A selection mechanism to decide which individuals will migrate.
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Figure 9.5 An Island GA Model

• A replacement strategy to decide which individual of the destination island
will be replaced by the migrant.

Based on the selection and replacement strategies, island GAs can be grouped into
two classes of algorithms, namely static island GAs and dynamic island GAs. For
static island GAs, deterministic selection and replacement strategies are followed, for
example [101],

• a good migrant replaces a bad individual,

• a good migrant replaces a randomly selected individual,

• a randomly selected migrant replaces a bad individual, or

• a randomly selected migrant replaces a randomly selected individual.

To select the good migrant, any of the fitness-proportional selection operators given in
Section 8.5 can be used. For example, an elitist strategy will have the best individual
of a population move to another population. Gordon [329] uses tournament selection,
considering only two randomly selected individuals. The best of the two will migrate,
while the worst one will be replaced by the winning individual from the neighboring
population.

Dynamic models do not use a topology to determine migration paths. Instead, migra-
tion decisions are made probabilistically. Migration occurs at a specified probability.
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If migration from an island does occur, the destination island is also decided prob-
abilistically. Tournament selection may be used, based on the average fitness of the
subpopulations. Additionally, an acceptance strategy can be used to decide if an im-
migrant should be accepted. For example, an immigrant is probabilistically accepted
if its fitness is better than the average fitness of the island (using, e.g. Boltzmann
selection).

Another interesting aspect to consider for island GAs is how subpopulations should be
initialized. Of course a pure random approach can be used, which will cause different
populations to share the same parts of the search space. A better approach would
be to initialize subpopulations to cover different parts of the search space, thereby
covering a larger search space and facilitating a kind of niching by individuals islands.
Also, in multicriteria optimization, each subpopulation can be allocated the task to
optimize one criterion. A meta-level step is then required to combine the solutions
from each island (refer to Section 9.6.3).

A different kind of “island” GA is the cooperative coevolutionary GA (CCGA) of
Potter [686, 687]. In this case, instead of distributing entire individuals over several
subpopulations, each subpopulation is given one or a few genes (one decision variable)
to optimize. The subpopulations are mutually exclusive, each having the task of
evolving a single (or limited set of) gene(s). A subpopulation therefore optimizes one
parameter (or a limited number of parameters) of the optimization problem. Thus, no
single subpopulation has the necessary information to solve the problem itself. Rather,
information of all the subpopulations must be combined to construct a solution.

Within the CCGA, a solution is constructed by adding together the best individual
from each subpopulation. The main problem is how to determine the best individual
of a subpopulation, since individuals do not represent complete solutions. A simple
solution to this problem is to keep all other components (genes) within a complete
chromosome fixed and to change just the gene that corresponds to the current sub-
population for which the best individual is sought. For each individual in the subpop-
ulation, the value of the corresponding gene in the complete chromosome is replaced
with that of the individual. Values of the other genes of the complete chromosome are
usually kept fixed at the previously determined best values.

The constructed complete chromosome is then a candidate solution to the optimization
problem.

It has been shown that such a cooperative approach substantially improves the ac-
curacy of solutions, and the convergence speed compared to non-cooperative, non-
coevolutionary GAs.

9.6 Advanced Topics

This section shows how GAs can be used to find multiple solutions (Section 9.6.1), to
solve multi-objective optimization problems (Section 9.6.3), to cope with constraints
(Section 9.6.2), and to track dynamically changing optima (Section 9.6.4). For each
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of these problem types, only a few of the GA approaches are discussed.

9.6.1 Niching Genetic Algorithms

Section A.7 defines niching and different classes of niching methods. This section
provides a short summary of GA implementations with the ability to locate multiple
solutions to optimization problems.

Fitness Sharing

Fitness sharing is one of the earliest GA niching techniques, originally introduced as
a population diversity maintenance technique [325]. It is a parallel, explicit niching
approach. The algorithm regards each niche as a finite resource, and shares this
resource among all individuals in the niche. Individuals are encouraged to populate a
particular area of the search space by adapting their fitness based on the number of
other individuals that populate the same area. The fitness f(xi(t)) of individual xi is
adapted to its shared fitness:

fs(xi(t)) =
f(xi(t))∑
j sh(dab)

(9.29)

where
∑

j sh(dab) is an estimate of how crowded a niche is. A common sharing function
is the triangular sharing function,

sh(d) =
{

1− (d/σshare)α if d < σshare

0 otherwise. (9.30)

The symbol dab represents the distance between individuals xa and xb. The distance
measure may be genotypic or phenotypic, depending on the optimization problem. If
the sharing function finds that dab is less than σshare, it returns a value in the range
[0, 1], which increases as dab decreases. The more similar xa and xb are, the lower their
individual fitnesses will become. Individuals within σshare of one another will reduce
each other’s fitness. Sharing assumes that the number of niches can be estimated, i.e.
it must be known prior to the application of the algorithm how many niches there are.
It is also assumed that niches occur at least a minimum distance, 2σshare, from each
other.

Dynamic Niche Sharing

Miller and Shaw [593] introduced dynamic niche sharing as an optimized version of
fitness sharing. The same assumptions are made as with fitness sharing. Dynamic
niche sharing attempts to classify individuals in a population as belonging to one of
the emerging niches, or to a non-niche category. Fitness calculation for individuals
belonging to the non-niche category is the same as in the standard fitness sharing
technique above. The fitness of individuals found to belong to one of the developing
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niches is diluted by dividing it by the size of the developing niche. Dynamically
finding niches is a simple process of iterating through the population of individuals
and constructing a set of non-overlapping areas in the search space. Dynamic sharing is
computationally less expensive than ‘normal’ sharing. Miller and Shaw [593] presented
results showing that dynamic sharing has improved performance when compared to
fitness sharing.

Sequential Niching

Sequential niching (SN), introduced by Beasley et al. [55], identifies multiple solutions
by adapting an optimization problem’s objective function’s fitness landscape through
the application of a derating function at a position where a potential solution was
found. A derating function is designed to lower the fitness appeal of previously located
solutions. By repeatedly running the algorithm, all optima are removed from the
fitness landscape. Sample derating functions, for a previous maximum x∗, include:

G1(x,x∗) =

{ (
‖x−x∗‖

R

)α

if ‖x− x∗‖ < R

1 otherwise
(9.31)

and

G2(x,x∗) =

{
elog m R−‖x−x∗‖

R if ‖x− x∗‖ < R
1 otherwise

(9.32)

where R is the radius of the derating function’s effect. In G1, α determines whether
the derating function is concave (α > 1) or convex (α < 1). For α = 1, G1 is a linear
function. For G2, m determines ‘concavity’. Noting that limx→0 log(x) = −∞, m
must always be larger than 0. Smaller values for m result in a more concave derating
function. The fitness function f(x) is then redefined to be

Mn+1(x) ≡ Mn(x)×G(x, x̂n) (9.33)

where M0(x) ≡ f(x) and x̂n is the best individual found during run n of the algorithm.
G can be any derating function, such as G1 and G2.

Crowding

Crowding (or the crowding factor model), as introduced by De Jong [191], was origi-
nally devised as a diversity preservation technique. Crowding is inspired by a naturally
occurring phenomenon in ecologies, namely competition amongst similar individuals
for limited resources. Similar individuals compete to occupy the same ecological niche,
while dissimilar individuals do not compete, as they do not occupy the same ecolog-
ical niche. When a niche has reached its carrying capacity (i.e. being occupied by
the maximum number of individuals that can exist within it) older individuals are
replaced by newer (younger) individuals. The carrying capacity of the niche does not
change, so the population size will remain constant.
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For a genetic algorithm, crowding is performed as follows: It is assumed that a pop-
ulation of GA individuals evolve over several generational steps. At each step, the
crowding algorithm selects only a portion of the current generation to reproduce. The
selection strategy is fitness proportionate, i.e. more fit individuals are more likely to
be chosen. After the selected individuals have reproduced, individuals in the current
population are replaced by their offspring. For each offspring, a random sample is
taken from the current generation, and the most similar individual is replaced by the
offspring individual.

Deterministic crowding (DC) is based on De Jong’s crowding technique, but with the
following improvements as suggested by Mahfoud [553]:

• Phenotypic similarity measures are used instead of genotypic measures. Pheno-
typic metrics embody domain specific knowledge that is most useful in multi-
modal optimization, as several different spatial positions can contain equally
optimal solutions.

• It was shown that there exists a high probability that the most similar individuals
to an offspring are its parents. Therefore, DC compares an offspring only to its
parents and not to a random sample of the population.

• Random selection is used to select individuals for reproduction. Offspring replace
parents only if the offspring perform better than the parents.

Probabilistic crowding, , introduced by Mengshoel et al. [578], is based on Mahfoud’s
deterministic crowding, but employs a probabilistic replacement strategy. Where the
original crowding and DC techniques replaced an individual xa with xb if xb was more
fit than xa, probabilistic crowding uses the following rule: If individuals xa and xb are
competing against each other, the probability of xa winning is given by

P (xa(t) wins) =
f(xa(t))

f(xa(t)) + f(xb(t))
(9.34)

where f(xa(t)) is the fitness of individual xa(t). The core of the algorithm is therefore
to use a probabilistic tournament replacement strategy. Experimental results have
shown it to be both fast and effective.

Coevolutionary Shared Niching

Goldberg and Wang [326] introduced coevolutionary shared niching (CSN). CSN lo-
cates niches by co-evolving two different populations of individuals in the same search
space, in parallel. Let the two parallel populations be designated by C1 and C2, respec-
tively. Population C1 can be thought of as a normal population of candidate solutions,
and it evolves as a normal population of individuals. Individuals in population C2 are
scattered throughout the search space. Each individual in population C1 associates
with itself a member of C2 that lies the closest to it using a genotypic metric. The
fitness calculation of the ith individual in population C1, C1.xi, is then adapted to
f ′(C1.xi) = f(C1.xi)

C2.n2
, where f(·) is the fitness function; C2.n2 designates the cardinality

of the set of individuals associated with individual C2.xi and C2.n2 is the index of the
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closest individual in population C2 to individual C1.xi in population C1. The fitness of
individuals in population C2 is simply the average fitness of all the individuals associ-
ated to it in population C1, multiplied by C2.xi. Goldberg and Wang also developed
the imprint CSN technique, that allows for the transfer of good performing individuals
from the C1 to the C2 population.

CSN overcomes the limitation imposed by fixed inter-niche distances assumed in the
original fitness sharing algorithm [325] and its derivate, dynamic fitness sharing [593].
The concept of a niche radius is replaced by the association made between individuals
from the different populations.

Dynamic Niche Clustering

Dynamic niche clustering (DNC) is a fitness sharing based, cluster driven niching
technique [305, 306]. It is distinguished from all other niching techniques by the fact
that it supports ‘fuzzy’ clusters, i.e. clusters may overlap. This property allows the
algorithm to distinguish between different peaks in a multi-modal function that may lie
extremely close together. In most other niching techniques, a more general inter-niche
radius (such as the σshare parameter in fitness sharing) would prohibit this.

The algorithm constructs a nicheset, which is a list of niches in a population. The
nicheset persists over multiple generations. Initially, each individual in a population is
regarded to be in its own niche. Similar niches are identified using Euclidean distance
and merged. The population of individuals is then evolved over a pre-determined num-
ber of generational steps. Before selection takes place, the following process occurs:

• The midpoint of each niche in the nicheset is updated, using the formula

xu = xu +
∑nu

i=1(xi − xu) · f(xi)∑nu

i=1 f(xi)
(9.35)

where xu is the midpoint of niche u, initially set to be equal to the position of
the individual from which it was constructed, as described above. nu is the niche
count, or the number of individuals in the niche, f(xi) is the fitness of individual
xi in niche u.

• A list of inter-niche distances is calculated and sorted. Niches are then merged.

• Similar niches are merged. Each niche is associated with a minimum and maxi-
mum niche radius. If the midpoints of two niches lie within the minimum radii
of each other, they are merged.

• If any niche has a population size greater than 10% of the total population,
random checks are done on the niche population to ensure that all individuals
are focusing on the same optima. If this is not the case, such a niche may be
split into sub-niches, which will be optimized individually in further generational
steps.

Using the above technique, Gan and Warwick [307] also suggested a niche linkage
extension to model niches of arbitrary shape.
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9.6.2 Constraint Handling

Section A.6 summarizes different classes of methods to solve constrained optimization
problems, as defined in Definition A.5. Standard genetic algorithms cannot be ap-
plied as is to solve constrained optimization problems. Most GA approaches to solve
constrained problems require a change in the fitness function, or in the behavior of
the algorithm itself.

Penalty methods are possibly one of the first approaches to address constraints [726].
As shown in Definition A.7, unfeasible solutions are penalized by adding a penalty
function. A popular approach to implement penalties is given in equations (A.25)
and (A.26) [584]. This approach basically converts the constrained problem to a
penalized unconstrained problem.

Homaifar et al. [380] proposed a multi-level penalty function, where the magnitude
of a penalty is proportional to the severity of the constraint violation. The multi-
level function assumes that a set of intervals (or penalty levels) are defined for each
constraint. An appropriate penalty value, λmq, is assigned to each level, q = 1, . . . , nq

for each constraint, m. The penalty function then changes to

p(xi, t) =
nq+nh∑
m=1

λmq(t)pm(xi) (9.36)

As an example, the following penalties can be used:

λmq(t) =




10
√

t if pm(xi) < 0.001
20
√

t if pm(xi) ≤ 0.1
100

√
t if pm(xi) ≤ 1.0

300
√

t otherwise

(9.37)

The multi-level function approach has the weakness that the number of parameters
that has to be maintained increases significantly with increase in the number of levels,
nq, and the number of constraints, ng + nh.

Joines and Houck [425] proposed dynamic penalties, where

p(xi, t) = (γ × t)α

ng+nh∑
m=1

pβ
m(xi) (9.38)

where γ, α and β are constants. The longer the search continues, the higher the penalty
for constraint violations. This allows for better exploration.

Other penalty methods can be found in [587, 588, 691].

Often referred to as the “death penalty” method, unfeasible solutions can be rejected.
However, Michalewicz [585] shows that the method performs badly when the feasible
region is small compared to the entire search space.

The interested reader is referred to [584] for a more complete survey of constraint
handling methods.
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9.6.3 Multi-Objective Optimization

Extensive research has been done to solve multi-objective optimization problems
(MOP) as defined in Definition A.10 [149, 195]. This section summarizes only a few
of these GA approaches to multi-objective optimization (MOO).

GA approaches for solving MOPs can be grouped into three main categories [421]:

• Weighted aggregation approaches where the objective is defined as a weighted
sum of sub-objectives.

• Population-based non-Pareto approaches, which do not make use of the
dominance relation as defined in Section A.8.

• Pareto-based approaches, which apply the dominance relation to find an ap-
proximation of the Pareto front.

Examples from the first and last classes are considered below.

Weighted Aggregation

One of the simplest approaches to deal with MOPs is to define an aggregate objective
function as a weighted sum of sub-objectives:

f(x) =
nk∑

k=1

ωkfk(x) (9.39)

where nk ≥ 2 is the total number of sub-objectives, and ωk ∈ [0, 1], k = 1, . . . , nk with∑nk

k=1 ωk = 1. While the aggregation approach above is very simple to implement and
computationally efficient, it suffers from the following problems:

• It is difficult to get the best values for the weights, ωk, since these are problem
dependent.

• These methods have to be re-applied to find more than one solution, since only
one solution can be obtained with a single run of an aggregation algorithm.
However, even for repeated applications, there is no guarantee that different
solutions will be found.

• The conventional weighted aggregation as given above cannot solve MOPs with
a concave Pareto front [174].

To address these problems, Jin et al. [421, 422], proposed aggregation methods with
dynamically changing weights (for nk = 2) and an approach to maintain an archive
of nondominated solutions. The following approaches have been used to dynamically
adapt weights:

• Random distribution of weights, where for each individual,

ω1,i(t) = U(0, ns)/ns (9.40)
ω2,i(t) = 1− ω1,i(t) (9.41)
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• Bang-bang weighted aggregation, where

ω1(t) = sign(sin(2πt/τ )) (9.42)
ω2(t) = 1− ω1(t) (9.43)

where τ is the weights’ change frequency. Weights change abruptly from 0 to 1
each τ generation.

• Dynamic weighted aggregation, where

ω1(t) = | sin(2πt/τ )| (9.44)
ω2(t) = 1− ω1(t) (9.45)

With this approach, weights change more gradually.

Jin et al. [421, 422] used Algorithm 9.10 to produce an archive of nondominated
solutions. This algorithm is called after the reproduction (crossover and mutation)
step.

Algorithm 9.10 Algorithm to Maintain an Archive of Nondominated Solutions

for each offspring, x
′
i(t) do

if x
′
i(t) dominates an individual in the current population, C(t), and x

′
i(t) is not

dominated by any solutions in the archive and x
′
i(t) is not similar to any solutions

in the archive then
if archive is not full then

Add x
′
i(t) to the archive;

else if x
′
i(t) dominates any solution xa in the archive then

Replace xa with x
′
i(t);

else if any xa1 in the archive dominates another xa2 in the archive then
Replace xa2 with x

′
i(t);

else
Discard x

′
i(t);

end
end
else

Discard x
′
i(t);

end
for each solution xa1 in the archive do

if xa1 dominates xa2 in the archive then
Remove xa2 from the archive;

end
end

end
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Vector Evaluated Genetic Algorithm

The vector evaluated GA (VEGA) [760, 761] is one of the first algorithms to solve
MOPs using multiple populations. One subpopulation is associated with each objec-
tive. Selection is applied to each subpopulation to construct a mating pool. The result
of this selection process is that the best individuals with respect to each objective are
included in the mating pool. Crossover then continues by selecting parents from the
mating pool.

Niched Pareto Genetic Algorithm

Horn et al. [382] developed the niched Pareto GA (NPGA), where an adapted tourna-
ment selection operator is used to find nondominated solutions. The Pareto domina-
tion tournament selection operator randomly selects two candidate individuals, and a
comparison set of randomly selected individuals. Each candidate is compared against
each individual in the comparison set. If one candidate is dominated by an individual
in the comparison set, and the other candidate is not dominated, then the latter is
selected. If neither or both are dominated equivalence class sharing is used to select
one individual: The individual with the lowest niche count is selected, where the niche
count is the number of individuals within a niche radius, σshare, from the candidate.
This strategy will prefer a solution on a less populated part of the Pareto front.

Nondominated Sorting Genetic Algorithm

Srinivas and Deb [807] developed the nondominated sorting GA (NSGA), where
only the selection operator is changed. Individuals are Pareto-ranked into different
Pareto fronts as described in Section 12.6.2. Fitness proportionate selection is used
based on the shared fitness assigned to each solution. The NSGA is summarized in
Algorithm 9.11.

Deb et al. [197] pointed out that the NSGA has a very high computational complexity
of O(nkn3

s). Another issue with the NSGA is the reliance on a sharing parameter,
σshare. To address these problems, a fast nondominated sorting strategy was proposed
and a crowding comparison operator defined. The fast nondominated sorting algorithm
calculates for each solution, xa, the number of solutions, na, which dominates xa, and
the set, Xa, of solutions dominated by xa. All those solutions with na = 0 are added
to a list, referred to as the current front. For each solution in the current front,
each element, xb, of the set Xb has its counter, nb, decremented. When nb = 0, the
corresponding solution is added to a temporary list. When all the elements of the
current front have been processed, its elements form the first front, and the temporary
list becomes the new current list. The process is repeated to form the other fronts.

To eliminate the need for a sharing parameter, solutions are sorted for each sub-
objective. For each subobjective, the average distance of the two points on either side
of xa is calculated. The sum of the average distances over all subobjectives gives the
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Algorithm 9.11 Nondominated Sorting Genetic Algorithm

Set the generation counter, t = 0;
Initialize all control parameters;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do

Set the front counter, p = 1;
while there are individuals not assigned to a front do

Identify nondominated individuals;
Assign fitness to each of these individuals;
Apply fitness sharing to individuals in the front;
Remove individuals;
p = p + 1;

end
Apply reproduction using rank-based, shared fitness values;
Select new population;
t = t + 1;

end

crowding distance, da. If Ra indicates the nondomination rank of xa, then a crowding
comparison operator is defined as: a ≤∗ b if (Ra < Rb) or ((Ra = Rb) and (da > db)).
For two solutions with differing nondomination ranks, the one with the lower rank is
preferred. If both solutions have the same rank, the one located in the less populated
region of the Pareto front is preferred.

9.6.4 Dynamic Environments

A very simple approach to track solutions in a dynamic environment as defined in
Definition A.16 is to restart the GA when a change is detected. A restart approach
can be quite inefficient if changes in the landscape are small. For small changes, the
question arises if a changing optimum can be tracked by simply continuing with the
search. This will be possible only if the population has some degree of diversity to
enable further exploration. An ability to maintain diversity is therefore an important
ingredient in tracking changing optima. This is even more so for large changes in the
landscape, which may cause new optima to appear and existing ones to disappear.

A number of approaches have been developed to maintain population diversity. The
hyper-mutation strategy of Cobb [141] drastically increases the rate of mutation for a
number of generations when a change is detected. An increased rate of mutation as well
as an increased mutational step size allow for further exploration. The variable local
search strategy [873] gradually increases the mutational step sizes and rate of mutation
after a change is detected. Mutational step sizes are increased if no improvement is
obtained over a number of generations for the smaller step sizes.

Grefenstette [336] proposed the random immigrants strategy where, for each genera-
tion, part of the population is replaced by randomly generated individuals.
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Mori et al. [607] proposed that a memory of every generation’s best individual be
stored (in a kind of hall-of-fame). Individuals stored in the memory serve as candidate
parents to the reproduction operators. The memory has a fixed size, which requires
some kind of replacement strategy. Branke [82] proposed that the best individual of
the current generation replaces the individual that is most similar.

For a more detailed treatment of dynamic environments, the reader is referred to [83].

9.7 Applications

Genetic algorithms have been applied to solve many real-world optimization problems.
The reader is referred to http://www.doc.ic.ac.uk/~nd/surprise 96/journal/vol4/tcw2/
report.html for a good summary of and references to applications of GAs. The rest
of this section describes how a GA can be applied to routing optimization in
telecommunications networks [778]. Given a network of nx switches, an origin switch
and a destination switch, the objective is to find the best route to connect a call
between the origin and destination switches. The design of the GA is done in the
following steps:

1. Chromosome representation: A chromosome consists of a maximum of nx

switches. Chromosomes can be of variable length, since telecommunication
routes can differ in length. Each gene represents one switch. Integer values
representing switch numbers are used as gene values - no binary encoding is
used. The first gene represents the origin switch and the last gene represents the
destination switch. Example chromosomes are

(1 3 6 10)

(1 5 2 5 10) = (1 5 2 10)

Duplicate switches are ignored. The first chromosome represents a route from
switch 1 to switch 3 to switch 6 to switch 10.

2. Initialization of population: Individuals are generated randomly, with the
restriction that the first gene represents the origin switch and the last gene
represents the destination switch. For each gene, the value of that gene is selected
as a uniform random value in the range [1, nx].

3. Fitness function: The multi-criteria objective function

f(xi) = ω1fSwitch(xi) + ω2fBlock(xi) + ω3fUtil(xi) + ω4fCost(xi) (9.46)

is used where

fSwitch(xi) =
|xi|
nx

(9.47)

represents the minimization of route length, where xi denotes the route and |xi|
is the total number of switches in the route,

fBlock(xi) = 1−
|xi|∏

ab∈xi

(1−Bab + αab) (9.48)
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with

αab =
{

1 if ab does not exist
0 if ab does exist (9.49)

represent the objective to select routes with minimum congestion, where Bab

denotes the blocking probability on the link between switches a and b,

fUtil(xi) = min
ab∈xi

{1− Uab}+ αab (9.50)

maximizes utilization, where Uab quantifies the level of utilization of the link
between a and b, and

fCost(xi) =
|xi|∑

ab∈xi

Cab + αab (9.51)

ensures that minimum cost routes are selected, where Cab represents the financial
cost of carrying a call on the link between a and b. The constants ω1 to ω4 control
the influence of each criterion.

4. Use any selection operator.

5. Use any crossover operator.

6. Mutation: Mutation consists of replacing selected genes with a uniformly ran-
dom selected switch in the range [1, nx].

This example is an illustration of a GA that uses a numeric representation, and variable
length chromosomes with constraints placed on the structure of the initial individuals.

9.8 Assignments

1. Discuss the importance of the crossover rate, by considering the effect of different
values in the range [0,1].

2. Compare the following replacement strategies for crossover operators that pro-
duce only one offspring:

(a) The offspring always replaces the worst parent.
(b) The offspring replaces the worst parent only when its fitness is better than

the worst parent.
(c) The offspring always replaces the worst individual in the population.
(d) Boltzmann selection is used to decide if the offspring should replace the

worst parent.

3. Show how the heuristic crossover operator incorporates search direction.

4. Propose a multiparent version of the geometrical crossover operator.

5. Propose a marker initialization and update strategy for gene scanning applied
to order-based representations

6. Propose a random mutation operator for discrete-valued decision variables.

7. Show how a GA can be used to train a FFNN.
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8. In the context of GAs, when is a high mutation rate an advantage?

9. Is the following strategy sensible? Explain your answer. “Start evolution with a
large mutation rate, and decrease the mutation rate with an increase in genera-
tion number.”

10. Discuss how a GA can be used to cluster data.

11. For floating-point representations, devise a deterministic schedule to dynamically
adjust mutational step sizes. Discuss the merits of your proposal.

12. Suggest ways in which the competitive template can be initialized for messy
GAs.

13. Discuss the consequences of migrating the best individuals before islands have
converged.

14. Discuss the influence that the size of the comparison set has on the performance
of the niched Pareto GA.



Chapter 10

Genetic Programming

Genetic programming (GP) is viewed by many researchers as a specialization of genetic
algorithms. Similar to GAs, GP concentrates on the evolution of genotypes. The main
difference between the two paradigms is in the representation scheme used. Where GAs
use string (or vector) representations, GP uses a tree representation. Originally, GP
was developed by Koza [478, 479] to evolve computer programs. For each generation,
each evolved program (individual) is executed to measure its performance within the
problem domain. The result obtained from the evolved computer program is then
used to quantify the fitness of that program.

This chapter provides a very compact overview of basic GP implementations to solve
specific problems. More detail about GP can be found in the books by Koza [482, 483].
The chapter is organized as follows: The tree-based representation scheme is discussed
in Section 10.1. Section 10.2 discusses initialization of the GP population, and the
fitness function is covered in Section 10.3. Crossover and mutation operators are
described in Sections 10.4 and 10.5. A building-block approach to GP is reviewed in
Section 10.6. A summary of GP applications is given in Section 10.7.

10.1 Tree-Based Representation

GP was developed to evolve executable computer programs [478, 479]. Each individual,
or chromosome, represents one computer program, represented using a tree structure.
Tree-based representations have a number of implications that the reader should be
aware of:

• Adaptive individuals: Contrary to GAs where the size of individuals are usu-
ally fixed, a GP population will usually have individuals of different size, shape
and complexity. Here size refers to the tree depth, and shape refers to the branch-
ing factor of nodes in the tree. The size and shape of a specific individual are
also not fixed, but may change due to application of the reproduction operators.

• Domain-specific grammar: A grammar needs to be defined that accurately
reflects the problem to be solved. It should be possible to represent any possible
solution using the defined grammar.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
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Table 10.1 XOR Truth Table

x1 x2 Target Output
0 0 0
0 1 1
1 0 1
1 1 0

OR

AND AND

NOT NOTx1

x1x2

x2

Figure 10.1 Tree-Representation of XOR

As mentioned above, a grammar forms an important part of chromosome represen-
tation. As part of the grammar, a terminal set, function set, and semantic rules
need to be defined. The terminal set specifies all the variables and constants, while
the function set contains all the functions that can be applied to the elements of the
terminal set. These functions may include mathematical, arithmetic and/or Boolean
functions. Decision structures such as if-then-else and loops can also be included in
the function set. Using tree terminology, elements of the terminal set form the leaf
nodes of the evolved tree, and elements of the function set form the non-leaf nodes.
For a specific problem, the search space consists of the set of all possible trees that
can be constructed using the defined grammar.

Two examples are given next to illustrate GP representations. One of the first appli-
cations of GP was to evolve Boolean expressions. Consider the expression,

(x1 AND NOT x2) OR (NOT x1 AND x2)

and given a data set of interpretations and their associated target outputs (as given
in Table 10.1), the task is to evolve this expression. The solution is represented in
Figure 10.1. For this problem, the function set is defined as {AND, OR, NOT}, and
the terminal set is {x1, x2} where x1, x2 ∈ {0, 1}.
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Figure 10.2 Tree-Representation for Mathematical Expressions

The next example considers the problem of evolving a mathematical expression. Con-
sider the task of evolving the program,

y:=x*ln(a)+sin(z)/exp(-x)-3.4;

The terminal set is specified as {a, x, z, 3.4} with a, x, z ∈ R. The minimal function set
is given as {−, +, ∗, /, sin, exp, ln}. The global optimum is illustrated in Figure 10.2.

In addition to the terminal and function sets, rules can be specified to ensure the
construction of semantically correct trees. For example, the logarithmic function, ln,
can take only positive values. Similarly, the second parameter of the division operator
can not be zero.

10.2 Initial Population

The initial population is generated randomly within the restrictions of a maximum
depth and semantics as expressed by the given grammar. For each individual, a root
is randomly selected from the set of function elements. The branching factor (the
number of children) of the root, and each non-terminal node, are determined by the
arity of the selected function. For each non-root node, the initialization algorithm
randomly selects an element either from the terminal set or the function set. As soon
as an element from the terminal set is selected, the corresponding node becomes a leaf
node and is no longer considered for expansion.
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Instead of initializing individuals as large trees, individuals can be initialized to be
as simple as possible. During the evolutionary process these individuals will grow if
increased complexity is necessary (refer to Section 10.6). This facilitates creation of
simple solutions.

10.3 Fitness Function

The fitness function used for GP is problem-dependent. Because individuals usually
represent a program, calculation of fitness requires the program to be evaluated against
a number of test cases. Its performance on the test cases is then used to quantify the
individual’s fitness. For example, refer to the problems considered in Section 10.1.
For the Boolean expression, fitness is calculated as the number of correctly predicted
target outputs. For the mathematical expression a data set of sample input patterns
and associated target output is needed. Each pattern contains a value for each of the
variables (a, x and z) and the corresponding value of y. For each pattern the output of
the expression represented by the individual is determined by executing the program.
The output is compared with the target output to compute the error for that pattern.
The MSE over the errors for all the patterns gives the fitness of the individual.

As will be shown in Section 10.6, GP can also be used to evolve decision trees. For
this application each individual represents a decision tree. The fitness of individuals
is calculated as the classification accuracy of the corresponding decision tree. If the
objective is to evolve a game strategy in terms of a computer program [479, 481], the
fitness of an individual can be the number of times that the individual won the game
out of a total number of games played.

In addition to being used as a measure of the performance of individuals, the fitness
function can also be used to penalize individuals with undesirable structural properties.
For example, instead of having a predetermined depth limit, the depth of a tree can
be penalized by adding an appropriate penalty term to the fitness function. Similarly,
bushy trees (which result when nodes have a large branching factor) can be penalized
by adding a penalty term to the fitness function. The fitness function can also be used
to penalize semantically incorrect individuals.

10.4 Crossover Operators

Any of the previously discussed selection operators (refer to Section 8.5) can be used
to select two parents to produce offspring. Two approaches can be used to generate
offspring, each one differing in the number of offspring generated:

• Generating one offspring: A random node is selected within each of the
parents. Crossover then proceeds by replacing the corresponding subtree in the
one parent by that of the other parent. Figure 10.3(a) illustrates this operator.
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• Generating two offspring: Again, a random node is selected in each of the
two parents. In this case the corresponding subtrees are swapped to create the
two offspring as illustrated in Figure 10.3(b).

10.5 Mutation Operators

Mutation operators are usually developed to suit the specific application. However,
many of the mutation operators developed for GP are applicable to general GP rep-
resentations. With reference to Figure 10.4(a), the following mutation operators can
be applied:

• Function node mutation: A non-terminal node, or function node, is randomly
selected and replaced with a node of the same arity, randomly selected from the
function set. Figure 10.4(b) illustrates that function node ‘+’ is replaced with
function node ‘−’.

• Terminal node mutation: A leaf node, or terminal node, is randomly selected
and replaced with a new terminal node, also randomly selected from the termi-
nal set. Figure 10.4(c) illustrates that terminal node a has been replaced with
terminal node z.

• Swap mutation: A function node is randomly selected and the arguments of
that node are swapped as illustrated in Figure 10.4(d).

• Grow mutation: With grow mutation a node is randomly selected and re-
placed by a randomly generated subtree. The new subtree is restricted by a
predetermined depth. Figure 10.4(e) illustrates that the node 3.4 is replaced
with a subtree.

• Gaussian mutation: A terminal node that represents a constant is randomly
selected and mutated by adding a Gaussian random value to that constant.
Figure 10.4(f) illustrates Gaussian mutation.

• Trunc mutation: A function node is randomly selected and replaced by a
random terminal node. This mutation operator performs a pruning of the tree.
Figure 10.4(g) illustrates that the + function node is replaced by the terminal
node a.

Individuals to be mutated are selected according to a mutation probability pm. In ad-
dition to a mutation probability, nodes within the selected tree are mutated according
to a probability pn. The larger the probability pn, the more the genetic build-up of
that individual is changed. On the other hand, the larger the mutation probability
pm, the more individuals will be mutated.

All of the mutation operators can be implemented, or just a subset thereof. If more
than one mutation operator is implemented, then either one operator is selected ran-
domly, or more than one operator is selected and applied in sequence.

In addition to the mutation operators above, Koza [479] proposed the following asexual
operators:
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• Permutation operator: This operator is similar to the swap mutation. If a
function has n parameters, the permutation operator generates a random permu-
tation from the possible n! permutations of parameters. The arguments of the
function are then permutated according to this randomly generated permutation.

• Editing operator: This operator is used to restructure individuals according to
predefined rules. For example, a subtree that represents the Boolean expression,
x AND x is replaced with the single node, x. Editing rules can also be used to
enforce semantic rules.

• Building block operator: The objective of the building block operator is to
automatically identify potentially useful building blocks. A new function node
is defined for an identified building block and is used to replace the subtree
represented by the building block. The advantage of this operator is that good
building blocks will not be altered by reproduction operators.

10.6 Building Block Genetic Programming

The GP process discussed thus far generates an initial population of individuals where
each individual represents a tree consisting of several nodes and levels. An alternative
approach has been developed in [248, 742] – specifically for evolving decision trees
– referred to as a building-block approach to GP (BGP). In this approach, initial
individuals consist of only a root and the immediate children of that node. Evolution
starts on these “small” initial trees. When the simplicity of the population’s individ-
uals can no longer account for the complexity of the problem to be solved, and no
improvement in the fitness of any of the individuals within the population is observed,
individuals are expanded. Expansion occurs by adding a randomly generated building
block (i.e. a new node) to individuals. In other words, grow mutation is applied.
This expansion occurs at a specified expansion probability, pe, and therefore not all of
the individuals are expanded. Described more formally, the building-block approach
starts with models with a few degrees of freedom – most likely too few to solve the
problem to the desired degree of accuracy. During the evolution process, more degrees
of freedom are added when no further improvements are observed. In between the
triggering of expansion, crossover and mutation occur as for normal GP.

This approach to GP helps to reduce the computational complexity of the evolution
process, and helps to produce smaller individuals.

10.7 Applications

GP was developed to evolve computer programs [478, 479]. Programs have been
evolved for a wide range of problem types as illustrated in [479]. These problem types
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Table 10.2 Genetic Programming Applications

Application References
Decision trees [248, 479, 685, 742]
Game-playing [479, 481]
Bioinformatics [484, 485]
Data mining [648, 741, 917]
Robotics [206, 486, 347]

include Boolean expressions, planning, symbolic function identification, empirical dis-
covery, solving systems of equations, concept formation, automatic programming, pat-
tern recognition, game-playing strategies, and neural network design. Table 10.2 pro-
vides a summary of other applications of GP.

A very complete list of GP publications and applications can be found at
http://www.cs.bham.ac.uk/~ubl/biblio/gp-html/

10.8 Assignments

1. Explain how a GP can be used to evolve a program to control a robot, where the
objective of the robot is to move out of a room (through the door) filled with
obstacles.

2. First explain what a decision tree is, and then show how GP can be used to
evolve decision trees.

3. Is it possible to use GP for adaptive story telling?

4. Given a pre-condition and a post-condition of a function, is it possible to evolve
the function using GP?

5. Explain why BGP is computationally less expensive than GP.

6. Show how a GP can be used to evolve polynomial expressions.

7. Discuss how GP can be used to evolve the evaluation function used to evaluate
the desirability of leaf nodes in a game tree.





Chapter 11

Evolutionary Programming

Evolutionary programming (EP) originated from the research of L.J. Fogel in 1962
[275] on using simulated evolution to develop artificial intelligence. While EP shares
the objective of imitating natural evolutionary processes with GAs and GP, it differs
substantially in that EP emphasizes the development of behavioral models and not
genetic models: EP is derived from the simulation of adaptive behavior in evolution.
That is, EP considers phenotypic evolution. EP iteratively applies two evolutionary
operators, namely variation through application of mutation operators, and selection.
Recombination operators are not used within EP.

This chapter provides an overview of EP, organized as follows: The basic EP is de-
scribed in Section 11.1. Different mutation and selection operators are discussed in
Section 11.2. Self-adaptation and strategy parameters are discussed in Section 11.3.
Variations of EP that combine aspects from other optimization paradigms are reviewed
in Section 11.4. A compact treatment of a few advanced topics is given in Section 11.5,
including constraint handling, multi-objective optimization, niching, and dynamic en-
vironments.

11.1 Basic Evolutionary Programming

Evolutionary programming (EP) was conceived by Laurence Fogel in the early 1960s
[275, 276] as an alternative approach to artificial intelligence (AI), which, at that time,
concentrated on models of human intelligence. From his observation that intelligence
can be viewed as “that property which allows a system to adapt its behavior to meet
desired goals in a range of environments” [267], a model has been developed that
imitates evolution of behavioral traits. The evolutionary process, first developed to
evolve finite state machines (FSM), consists of finding a set of optimal behaviors from a
space of observable behaviors. Therefore, in contrast to other EAs, the fitness function
measures the “behavioral error” of an individual with respect to the environment of
that individual.

As an approach to evolve FSMs, individuals in an EP population use a representa-
tion of ordered sequences, which differs significantly from the bitstring representation
proposed by Holland for GAs (refer to Chapter 9). EP is, however, not limited to
an ordered sequence representation. David Fogel et al. [271, 272] extended EP for
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real-valued vector representations, with application to the optimization of continuous
functions.

As summarized in Algorithm 11.1, EP utilizes four main components of EAs:

• Initialization: As with other EC paradigms, a population of individuals is
initialized to uniformly cover the domain of the optimization problem.

• Mutation: The mutation operator’s main objective is to introduce variation in
the population, i.e. to produce new candidate solutions. Each parent produces
one or more offspring through application of the mutation operator. A number
of EP mutation operators have been developed, as discussed in Section 11.2.1.

• Evaluation: A fitness function is used to quantify the “behavioral error” of
individuals. While the fitness function provides an absolute fitness measure to
indicate how well the individual solves the problem being optimized, survival in
EP is usually based on a relative fitness measure (refer to Chapter 15). A score is
computed to quantify how well an individual compares with a randomly selected
group of competing individuals. Individuals that survive to the next generation
are selected based on this relative fitness. The search process in EP is therefore
driven by a relative fitness measure, and not an absolute fitness measure as is
the case with most EAs.

• Selection: The main purpose of the selection operator is to select those indi-
viduals that survive to the next generation. Selection is a competitive process
where parents and their offspring compete to survive, based on their performance
against a group of competitors. Different selection strategies are discussed in
Section 11.2.2.

Mutation and selection operators are applied iteratively until a stopping condition is
satisfied. Any of the stopping conditions given in Section 8.7 can be used.

Algorithm 11.1 Basic Evolutionary Programming Algorithm

Set the generation counter, t = 0;
Initialize the strategy parameters;
Create and initialize the population, C(0), of ns individuals;
for each individual, xi(t) ∈ C(t) do

Evaluate the fitness, f(xi(t));
end
while stopping condition(s) not true do

for each individual, xi(t) ∈ C(t) do
Create an offspring, x

′
i(t), by applying the mutation operator;

Evaluate the fitness, f(x
′
i(t));

Add x
′
i(t) to the set of offspring, C′

(t);
end
Select the new population, C(t + 1), from C(t) ∪ C′

(t), by applying a selection
operator;
t = t + 1;

end
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In comparison with GAs and GP, there are a few differences between these EAs and
EP, some of which have already been discussed:

• EP emphasizes phenotypic evolution, instead of genotypic evolution. The focus
is on behaviors.

• Due to the above, EP does not make use of any recombination operator. There
is no exchange of genetic material.

• EP uses a relative fitness function to quantify performance with respect to a
randomly chosen group of individuals.

• Selection is based on competition. Those individuals that perform best against
a group of competitors have a higher probability of being included in the next
generation.

• Parents and offspring compete for survival.

• The behavior of individuals is influenced by strategy parameters, which de-
termine the amount of variation between parents and offspring. Section 11.3
discusses strategy parameters in more detail.

11.2 Evolutionary Programming Operators

The search process of an EP algorithm is driven by two main evolutionary opera-
tors, namely mutation and selection. Different implementations of these operators are
discussed in Sections 11.2.1 and 11.2.2 respectively.

11.2.1 Mutation Operators

As mutation is the only means of introducing variation in an EP population, it is
very important that the design of a mutation operator considers the exploration–
exploitation trade-off. The variation process should facilitate exploration in the early
stages of the search to ensure that as much of the search space is covered as possible.
After an initial exploration phase, individuals should be allowed to exploit obtained
information about the search space to fine tune solutions. A number of mutation
operators have been developed, which addressses this trade-off to varying degrees.

For this discussion, assume that the task is to minimize a continuous, unconstrained
function, f : Rnx → R. If xi(t) denotes a candidate solution (as represented by the
i-th individual) at generation t, then each xij(t) ∈ R, j = 1, . . . , nx.

In general, mutation is defined as

x
′
ij(t) = xij(t) + ∆xij(t) (11.1)

where x
′
i(t) is the offspring created from parent xi(t) by adding a step size ∆xi(t) to

the parent. The step size is noise sampled from some probability distribution, where
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the deviation of the noise is determined by a strategy parameter, σij . Generally, the
step size is calculated as

∆xij(t) = Φ(σij(t))ηij(t) (11.2)

where Φ : R → R is a function that scales the contribution of the noise, ηij(t).

Based on the characteristics of the scaling function, Φ, EP algorithms can be grouped
into three main categories of algorithms:

• non-adaptive EP, in which case Φ(σ) = σ. In other words, the deviations in
step sizes remain static.

• dynamic EP, where the deviations in step sizes change over time using some
deterministic function, Φ, usually a function of the fitness of individuals.

• self-adaptive EP, in which case deviations in step sizes change dynamically.
The best values for σij are learned in parallel with the decision variables, xij .

Since the deviations, σij , have an influence on the behavior of individuals in the case
of dynamic and self-adaptive EP, these deviations are referred to as strategy parame-
ters. Each individual has its own strategy parameters, in which case an individual is
represented as the tuple,

χi(t) = (xi(t), σi(t)) (11.3)

While deviations are the most popular choice for strategy parameters, Fogel [265, 266],
extended EP to use correlation coefficients between components of the individual as
strategy parameters, similar to their use in evolution strategies (refer to Chapter 12).
Strategy parameters are discussed in more detail in Section 11.3.

As is the case with all EAs, EP follows a stochastic search process. Stochasticity is
introduced by computing step sizes as a function of noise, ηij , sampled from some
probability distribution. The following distributions have been used for EP:

• Uniform: Noise is sampled from a uniform distribution [580]

ηij(t) ∼ U(xmin,j , xmax,j) (11.4)

where xmin and xmax provide lower and upper bounds for the values of ηij . It
is important to note that

E[ηij ] = 0 (11.5)

to prevent any bias induced by the noise. Here E[•] denotes the expectation
operator.

Wong and Yuryevich [916] proposed a uniform mutation operator where

∆xij(t) = U(0, 1)(ŷj(t)− xij(t)) (11.6)

with ŷ(t) the best individual from the current population, C(t). This mutation
operator directs all individuals to make random movements towards the best
individual (very similar to the social component used in particle swarm opti-
mization; refer to Chapter 16). Note that the best individual does not change.
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• Gaussian: For the Gaussian mutation operators, noise is sampled from a
zero-mean, normal distribution [266, 265]:

ηij(t) ∼ N(0, σij(t)) (11.7)

For completeness sake, and comparison with other distributions, the Gaussian
density function is given as (assuming a zero mean)

fG(x) =
1

σ
√

2π
e−x2/(2σ2) (11.8)

where σ is the deviation of the distribution.

• Cauchy: For the Cauchy mutation operators [934, 932, 936],

ηij(t) ∼ C(0, ν) (11.9)

where ν is the scale parameter.

The Cauchy density function centered at the origin is defined by

fC(x) =
1
π

ν

ν + x2
(11.10)

for ν > 0. The corresponding distribution function is

FC(x) =
1
2

+
1
π

arctan(
x

ν
) (11.11)

The Cauchy distribution has wider tails than the Gaussian distribution, and
therefore produces more, larger mutations than the Gaussian distribution.

• Lévy: For the Lévy distribution [505],

ηij(t) ∼ L(ν) (11.12)

The Lévy probability function, centered around the origin, is given as

FL,ν,γ(x) =
1
π

∫ ∞

0

e−γqν

cos(qx)dq (11.13)

where γ > 0 is the scaling factor, and 0 < ν < 2 controls the shape of the
distribution. If ν = 1, the Cauchy distribution is obtained, and if ν = 2, the
Gaussian distribution is obtained.

For |x| >> 1, the Lévy density function can be approximated by

fL(x) ∝ x−(ν+1) (11.14)

An algorithm for generating Lévy random numbers is given in [505].

• Exponential: In this case [621],

ηij(t) ∼ E(0, ξ) (11.15)
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The density function of the double exponential probability distribution is given
as

fE,ξ(x) =
ξ

2
e−ξ|x| (11.16)

where ξ > 0 controls the variance (which is equal to 2
ξ2 ). Random numbers can

be calculated as follows:

x =
{ 1

ξ ln(2y) if y ≤ 0.5
−1

ξ ln(2(1− y)) if y > 0.5 (11.17)

where y ∼ U(0, 1). It can be noted that E(0, ξ) = 1
ξ E(0, 1).

• Chaos: A chaotic distribution is used to sample noise [417]:

ηij(t) ∼ R(0, 1) (11.18)

where R(0, 1) represents a chaotic sequence within the space (−1, 1). The chaotic
sequence can be generated using

xt+1 = sin(2/xt)xt, t = 0, 1 . . . (11.19)

• Combined distributions: Chellapilla [118] proposed the mean mutation op-
erator (MMO), which uses a linear combination of Gaussian and Cauchy distri-
butions. In this case,

ηij(t) = ηN,ij(t) + ηC,ij(t) (11.20)

where

ηN,ij ∼ N(0, 1) (11.21)
ηC,ij ∼ C(0, 1) (11.22)

The resulting distribution generates more very small and large mutations com-
pared to the Gaussian distribution. It generates more very small and small
mutations compared to the Cauchy distribution. Generally, this convoluted dis-
tribution produces larger mutations than the Gaussian distribution, and smaller
mutations than the Cauchy distribution.

Chellapilla also proposed an adaptive MMO, where

∆xij(t) = γij(t)(Cij(0, 1) + νij(t)Nij(0, 1)) (11.23)

where γij(t) = σ2,ij(t) is an overall scaling parameter, and νij = σ1,ij/σ2,ij

determines the shape of the probability distribution function; σ1,ij and σ2,ij are
deviation strategy parameters. For low values of νij , the Cauchy distribution is
approximated, while large values of νij resemble the Gaussian distribution.

The question now is how these distributions address the exploration–exploitation
trade-off. Recall that a balance of small and large mutations is needed. The Cauchy
distribution, due to its wider tail, creates more, and larger mutations than the Gaus-
sian distribution. The Cauchy distribution therefore facilitates better exploration
than the Gaussian distribution. The Lévy distribution have tails in-between that of
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the Gaussian and Cauchy distributions, and therefore also provides better exploration
than for the Gaussian distribution. While the Cauchy distribution does result in larger
mutations, care should be taken in applying Cauchy mutations. As pointed out by
Yao et al. [936], the smaller peak of the Cauchy distribution implies less time for
exploitation. The Cauchy mutation operators therefore are weaker than the Gaussian
operators in fine-tuning solutions. Yao et al. [932, 936] also show that the large mu-
tations caused by Cauchy operators are beneficial only when candidate solutions are
far from the optimum. It is due to these advantages and disadvantages that the Lévy
distribution and convolutions such as those given in equations (11.20) and (11.23) offer
good alternatives for balancing exploration and exploitation.

Another factor that plays an important role in balancing exploration and exploita-
tion is the way in which strategy parameters are calculated and managed, since step
sizes are directly influenced by these parameters. The next section discusses strategy
parameters in more detail.

11.2.2 Selection Operators

Selection operators are applied in EP to select those individuals that will survive to
the next generation. In the original EP, and most variations of it, the new population
is selected from all the parents and their offspring. That is, parents and offspring
compete to survive. Differing from other EAs, competition is based on a relative
fitness measure and not an absolute fitness measure. An absolute fitness measure
refers to the actual fitness function that quantifies how optimal a candidate solution
is. On the other hand, the relative fitness measure expresses how well an individual
performs compared to a group of randomly selected competitors (selected from the
parents and offspring).

As suggested by Fogel [275], this is possibly the first hint towards coevolutionary
optimization. For more detail on coevolution and relative fitness measures, refer to
Chapter 15. This section only points out those methods that have been applied to EP.

For the purposes of this section, notation is changed to correspond with that of EP
literature. In this light, µ is used to indicate the number of parent individuals (i.e.
population size, ns), and λ is used to indicate the number of offspring.

The first step in the selection process is to calculate a score, or relative fitness, for each
parent, xi(t), and offspring, x

′
i(t). Define P(t) = C(t) ∪ C′

(t) to be the competition
pool, and let ui(t) ∈ P(t), i = 1, . . . , µ + λ denote an individual in the competition
pool. Then, for each ui(t) ∈ P(t) a group of nP competitors is randomly selected from
the remainder of individuals (i.e. from P(t)\{ui(t)}). A score is calculated for each
ui(t) as follows

si(t) =
nP∑
l=1

sil(t) (11.24)
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where (assuming minimization)

sil(t) =
{

1 if f(ui(t)) < f(ul(t))
0 otherwise (11.25)

Wong and Yuryevich [916], and Ma and Lai [542] proposed an alternative scoring
strategy where

sil(t) =

{
1 if r1 < f(ul(t))

f(ul(t))+f(ui(t))

0 otherwise
(11.26)

where the nP opponents are selected as l = �2µr2 + 1�, with r1, r2 ∼ U(0, 1).

In this case, if f(ui(t)) << f(ul(t)), in which case the fitness of ui is significantly
better than that of ul, then ui will have a high probability of being assigned a winning
score of 1. This approach is less strict than the requirement that f(ui(t)) < f(ul(t)),
somewhat reducing the effects of selection pressure.

Based on the score assigned to each individual, ui(t), any of a number of selection
methods can be used (as summarized in Section 8.5):

• Elitism: the best µ individuals from P(t) are selected to form the new popu-
lation, C(t + 1).

• Tournament selection: The best µ individuals are stochastically selected using
tournament selection.

• Proportional selection: Each individual is assigned a probability of being
selected:

ps(ui(t)) =
si(t)∑2µ
l=1 sl(t)

(11.27)

Roulette-wheel selection can then be used to select the µ individuals for the next
generation.

• Nonlinear ranking selection [933]: Individuals are sorted in ascending order
of score and then ranked. Then,

ps

(
u(2µ−i)(t)

)
=

i∑2µ
l=1 l

(11.28)

Instead of using a stochastic selection, ranking can be used to find the µ elite
individuals to form the new population.

Different methods have also been proposed to decide which of the parent or its offspring
will survive to the next generation. Wei et al. [894] proposed that each parent pro-
duces more than one offspring, where the number of offspring produced is determined
by the fitness of the individual. The more fit the parent is, the more offspring are
generated. The best offspring generated from a parent is selected (based on absolute
fitness measure), and competes with the parent for survival. Competition between
the parent and offspring is based on simulated annealing [894]. The offspring, x

′
i(t),

survives to the next generation if f(x
′
i(t)) < f(xi(t)) or if

e(−(f(x
′
i(t))−f(xi(t)))/τ(t)) > U(0, 1) (11.29)
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where τ is the temperature coefficient, with τ (t) = γτ(t− 1), 0 < γ < 1; otherwise the
parent survives.

The above metropolis selection has the advantage that the offspring has a chance of
surviving even if it has a worse fitness than the parent, which reduces selection pressure
and improves exploration.

11.3 Strategy Parameters

As hinted in equation (11.2), step sizes are dependent on strategy parameters, which
form an integral part of EP mutation operators. Although Section 11.2.1 indicated
that a strategy parameter is associated with each component of an individual, it is
totally possible to use one strategy parameter per individual. However, the latter
approach limits the degrees of freedom in addressing the exploration – exploitation
trade-off. For the purposes of this section, it is assumed that each component has
its own strategy parameter, and that individuals are represented as given in equation
(11.3).

11.3.1 Static Strategy Parameters

The simplest approach to handling strategy parameters is to fix the values of devia-
tions. In this case, the strategy parameter function is linear, i.e.

Φ(σij(t)) = σij(t) = σij (11.30)

where σij is a small value. Offspring are then calculated as (assuming a Gaussian
distribution)

x
′
ij(t) = xij(t) + Nij(0, σij) (11.31)

with ∆xij(t) = Nij(0, σij). The notation Nij(•, •) indicates that a new random value
is sampled for each component of each individual.

A disadvantage of this approach is that a too small value for σij limits exploration
and slows down convergence. On the other hand, a too large value for σij limits
exploitation and the ability to fine-tune a solution.

11.3.2 Dynamic Strategies

One of the first approaches to change the values of strategy parameters over time, was
to set them to the fitness of the individual [271, 265]:

σij(t) = σi(t) = γf(xi(t)) (11.32)

in which case offspring is generated using

x
′
ij(t) = xij(t) + N(0, σi(t))

= xij(t) + σi(t)N(0, 1) (11.33)
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In the above, γ ∈ (0, 1].

If knowledge of the global optimum exists, the error of an individual can be used
instead of absolute fitness. However, such information is usually not available. Alter-
natively, the phenotypic distance from the best individual can be used as follows:

σij(t) = σi(t) = |f(ŷ)− f(xi)| (11.34)

where ŷ is the most fit individual. Distance in decision space can also be used [827]:

σij(t) = σi(t) = E(ŷ,xi) (11.35)

where E(•, •) gives the Euclidean distance between the two vectors.

The advantage of this approach is that the weaker an individual is, the more that
individual will be mutated. The offspring then moves far from its weak parent. On
the other hand, the stronger an individual is, the less the offspring will be removed
from its parent, allowing the current good solution to be refined. This approach does
have some disadvantages:

• If fitness values are very large, step sizes may be too large, causing individuals
to overshoot a good minimum.

• The problem is even worse if the function value of the optimum is a large, non-
zero value. If the fitness values of good individuals are large, large step sizes
result, causing individuals to move away from good solutions. In such cases,
if knowledge of the optimum is available, using an error measure will be more
appropriate.

A number of proposals have been made to control step sizes as a function of fitness.
A non-extensive list of these methods is given below (unless otherwise stated, these
methods assume a minimization problem):

• Fogel [266] proposed an additive approach, where

x
′
ij(t) = xij(t) +

√
βij(t)f(xi) + γij + Nij(0, 1) (11.36)

where βij and γij are respectively the proportionality constant and offset pa-
rameter.

• For the function f(x1, x2) = x2
1 + x2

2, Bäck and Schwefel [45] proposed that

σij(t) = σi(t) =
1.224

√
f(xi(t))

nx
(11.37)

where nx is the dimension of the problem (in this case, nx = 2).

• For training recurrent neural networks, Angeline et al. [28] proposed that

x
′
ij(t) = xij(t) + βσij(t)Nij(0, 1) (11.38)

where β is the proportionality constant, and

σij(t) = U(0, 1)
[
1− f(xi(t))

fmax(t)

]
(11.39)
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with fmax(t) the maximum fitness of the current population. Take note that the
objective here is to maximize f , and that f(xi(t)) returns a positive value. If
f(xi(t)) is a small value, then σij(t) will be large (bounded above by 1), which
results in large mutations. Deviations are scaled by a uniform number in the
range [0, 1] to ensure a mix of small and large step sizes.

• Ma and Lai [542] proposed that deviations be proportional to normalized fitness
values:

x
′
ij(t) = xij(t) + βijσi(t)Nij(0, 1) (11.40)

where βij is the proportionality constant, and deviations are calculated as

σi(t) =
f(xi(t))∑ns

l=1 f(xl(t))
(11.41)

with ns the size of the population. This approach assumes f is minimized.

• Yuryevich and Wong [943] proposed that

σij(t) = (xmax,j − xmin,j)
(

fmax(t)− f(xi(t))
fmax(t)

+ γ

)
(11.42)

to combine both boundary information and fitness information. In the above
xmin and xmax specify the bounds in decision space, and γ > 0 is an offset
parameter to ensure non-zero deviations. Usually, γ is a small value.

This approach assumes that f is maximized. The inclusion of boundary con-
straints forces large mutations for components with a large domain, and small
mutations if the domain is small.

• Swain and Morris [827] set deviations proportional to the distance from the best
individual, i.e.

σij(t) = βij |ŷj(t)− xij(t)|+ γ (11.43)

where γ > 0, and the proportionality constant is calculated as

βij = β

√E(xmin,xmax)
π

(11.44)

with β ∈ [0, 2], and E(xmin,xmax) gives the width of the search space as the
Euclidean distance between the vectors xmin and xmax. The parameter, γ,
defines a search neighborhood. Larger values of γ promote exploration, while
smaller values promote exploitation. A good idea is to adapt γ over time, starting
with large values that are decreased over time.

Offspring are generated using

x
′
ij(t) = xij(t)− dir(xij)σij(t)Nij(0, 1) (11.45)

where the direction of the update is

dir(xij) = sign(ŷj − xij) (11.46)
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• Gao [308] suggested that

σij(t) =

[
1√

βjf(xi(t)) + γj

] [
γ

fmax(t)− fmin(t)

]
(11.47)

where it is proposed that γ = 2.5; fmax and fmin refer to the largest and smallest
fitness values of the current population.

11.3.3 Self-Adaptation

The emphasis of EP is on developing behavioral models. EP is derived from simulations
of adaptive behavior. Previous sections have already indicated the strong influence
that strategy parameters have on the behavior of individuals, as quantified via the
fitness function. Two of the major problems concerning strategy parameters are the
amount of mutational noise that should be added, and the severity (i.e. step sizes) of
such noise. To address these problems, and to produce truly self-organizing behavior,
strategy parameters can be “evolved” (or “learned”) in parallel with decision variables.
An EP that utilizes such mechanisms is referred to as a self-adaptive EP.

Self-adaptation is not unique to EP. According to Fogel et al. [277], the idea of self-
adaptation stretches back as far as 1967 with proposals by Rechenberg. However,
Schwefel [769] provided the first detailed account of self-adaptation in the context of
evolution strategies (ES) (also refer to Chapter 12). With reference to EP, Fogel et
al. [271] provided the first suggestions for self-adaptive EP. Since then, a number of
self-adaptation methods have been proposed. These methods can be divided into three
broad categories [40]:

• Additive methods: The first self-adaptive EP as proposed by Fogel et al. [265]
is an additive method where

σij(t + 1) = σij(t) + ησij(t)Nij(0, 1) (11.48)

with η referred to as the learning rate. In the first application of this approach,
η = 1/6. If σij(t) ≤ 0, then σij(t) = γ, where γ is a small positive constant
(typically, γ = 0.001) to ensure positive, non-zero deviations.

As an alternative, Fogel [266] proposed

σij(t + 1) = σij(t) +
√

fσ(σij(t))Nij(0, 1) (11.49)

where

fσ(a) =
{

a if a > 0
γ if a ≤ 0 (11.50)

ensures that the square root is applied to a positive, non-zero value.

• Multiplicative methods: Jiang and Wang [418] proposed a multiplicative ad-
justment, where

σij(t + 1) = σ(0)(λ1e
−λ2

t
nt + λ3) (11.51)

where λ1, λ2 and λ3 are control parameters, and nt is the maximum number of
iterations.
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• Lognormal methods: Borrowed from the ES literature [277],

σij(t + 1) = σij(t)e(τNi(0,1)+τ
′
Nij(0,1)) (11.52)

with

τ
′

=
1√

2
√

nx

(11.53)

τ =
1√
2nx

(11.54)

Offspring are produced using

x
′
ij(t) = xij(t) + σij(t)Nij(0, 1) (11.55)

Self-adaptive EP showed the undesirable behavior of stagnation due to the tendency
that strategy parameters converge too fast. The consequence is that deviations become
small too fast, thereby limiting exploration. The search stagnates for some time until
strategy parameters grow sufficiently large due to random variation.

One solution to this problem is to impose a lower bound on the values of σij . However,
this triggers another problem of deciding when σij values are to be considered as too
small. Liang et al. [524] provided a solution by considering dynamic lower bounds:

σmin(t + 1) = σmin(t)
(

nm(t)
ξ

)
(11.56)

where σmin(t) is the lower bound at time step (generation) t, ξ ∈ [0.25, 0.45] is the
reference rate, and nm(t) is the number of successful consecutive mutations (i.e. the
number of mutations that results in improved fitness values). This approach is based
on the 1/5 success rule of Rechenberg [709] (refer to Chapter 12).

Matsumura et al. [565] developed the robust EP (REP) where the representation of
each individual is expanded to allow for nσ strategy parameter vectors to be associated
with each individual, as follows

(xi(t), σi0, . . . , σik, . . . σinσ
) (11.57)

where σi0 is referred to as the active strategy parameter vector, obtained through ap-
plication of three mutation operators on the other strategy parameter vectors. Com-
ponent values of the strategy parameter vectors are mutated as follows:

• Duplication:

σ
′
i0j(t) = σi0j(t) (11.58)

σ
′
ilj(t) = σi(l−1)j(t) (11.59)

for l ∈ {1, 2, . . . , nσ}. Then σikj(t) is self-adapted by application of the lognormal
method of equation (11.52) on the σ

′
ikj(t) for k = 0, 1, . . . , nσ.
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• Deletion:

σ
′
i(l−1)j(t) = σilj(t) (11.60)

σinσj(t) = min{σmax(t),
nσ−1∑
k=0

σikj(t)} (11.61)

for l ∈ {1, 2, . . . , nσ}. Then σikj(t) is self-adapted by application of the lognormal
method of equation (11.52) on the σ

′
ikj(t) for k = 0, 1, . . . , nσ.

• Invert:

σ
′
i0j(t) = σilj(t) (11.62)

σ
′
ilj(t) = σi0j(t) (11.63)

for l ∈ {1, 2, . . . , nσ}. The lognormal self-adaptation method of equation (11.52)
is applied to σ

′
i0j(t) and σ

′
ilj(t) to produce σi0j(t) and σilj(t) respectively.

After application of the mutation operators, offspring is created using

x
′
ij(t) = xij(t) + σi0j(t)C(0, 1) (11.64)

In a similar way, Fogel and Fogel [269] proposed multiple-vector self-adaptation. In
their strategy, at each iteration and before offspring is generated, the active strategy
parameter vector has a probability of pσ of changing to one of the other ησ−1 vectors.
The problem is then to determine the best values for ησ and pσ, which are problem
dependent.

At this point it should be noted that offspring is first generated, and then strategy
parameters are updated. This differs from ES where strategy parameters are updated
first, and then offspring is generated. The order should not have a significant influence,
as use of new values for strategy parameters is delayed for just one generation of EP.

11.4 Evolutionary Programming Implementations

This section gives a short overview of a number of EP algorithm implementations.Note
that this is not an exhaustive review of different EP implementations.

11.4.1 Classical Evolutionary Programming

Yao et al. [934, 936] coined the term classical EP (CEP) to refer to EP with Gaussian
mutation. More specifically, CEP uses the lognormal self-adaptation given in equa-
tion (11.52), and produces offspring using equation (11.55). Elitism selection is used
to construct the new population from the current parent population and generated
offspring.



11.4 Evolutionary Programming Implementations 201

11.4.2 Fast Evolutionary Programming

Yao et al. [934, 936] and Wei et al. [894] adapted the CEP to produce the fast EP
(FEP) by changing the distribution from which mutational noise is sampled to the
Cauchy mutation as given in equation (11.9) with ν = 1. Offspring is generated using

x
′
ij(t) = xij(t) + σij(t)Cij(0, 1) (11.65)

where the lognormal self-adaptation (refer to equation (11.52)) is used. Elitism is used
to select the new population.

The wider tails of the Cauchy distribution provide larger step sizes, and therefore result
in faster convergence. An analysis of FEP showed that step sizes may be too large
for proper exploitation [932, 936], while Gaussian mutations showed a better ability
to fine-tune solutions. This prompted a proposal for the improved FEP (IFEP). For
each parent, IFEP generates two offspring, one using Gaussian mutation and one using
Cauchy mutation. The best offspring is chosen as the surviving offspring, which will
compete with the parent for survival. An alternative approach would be to start the
search using Cauchy mutations, and to switch to Gaussian mutation at a later point.
However, such a strategy introduces the problem of when the optimal switching point is
reached. Diversity measures provide a solution here, where the switch can occur when
diversity is below a given threshold to indicate that exploitation should be favored.

The mean mutation operators of Chellapilla [118] (refer to equations (11.20) and
(11.23)) provide a neat solution by using a convolution of Gaussian and Cauchy dis-
tributions.

11.4.3 Exponential Evolutionary Programming

Narihisa et al. [621] proposed that the double exponential probability distribution
as defined in equation (11.16) be used to sample mutational noise. Offspring are
generated using

x
′
ij(t) = xij(t) + σij(t)

1
ξ
Eij(0, 1) (11.66)

where σij is self-adapted, and the variance of the distribution is controlled by ξ. The
smaller the value of ξ, the greater the variance. Larger values of ξ result in smaller
step sizes. To ensure initial exploration and later exploitation, ξ can be initialized to
a small value that increases with time.

11.4.4 Accelerated Evolutionary Programming

In an attempt to improve the convergence speed of EP, Kim et al. [462] proposed the
accelerated EP (AEP), which uses two variation operators:

• A directional operator to determine the direction of the search based fitness
scores, and



202 11. Evolutionary Programming

• the Gaussian mutation operator given in equation (11.7).

Individuals are represented as

χi(t) = (xi(t), ρi(t), ai(t)) (11.67)

where ρij ∈ {−1, 1}, j = 1, . . . , nx gives the search direction for each component of the
i-th individual, and ai represents the age of the individual. Age is used to force wider
exploration if offspring are worse than their parents.

Offspring generation consists of two steps. The first step updates age parameters for
each individual, and determines search directions (assuming minimization):

ai(t) =
{

1 if f(xi(t)) < f(xi(t− 1))
ai(t− 1) + 1 otherwise (11.68)

and

ρij(t) =
{

sign(xij(t)− xij(t− 1)) if f(xi(t)) < f(xi(t− 1))
ρij(t− 1) otherwise (11.69)

If the fitness of an individual improved, the search will continue in the direction of
the improvement. If the fitness does not improve, the age is incremented, which will
result in larger step sizes as follows: If ai(t) = 1, then

σi(t) = γ1f(xi(t)) (11.70)

x
′
ij(t) = xij(t) + ρij(t)|N(0, σi(t))| (11.71)

Otherwise, if ai(t) > 1,

σi(t) = γ2f(xi(t))ai(t) (11.72)

x
′
ij(t) = xij(t) + N(0, σi(t)) (11.73)

where γ1 and γ2 are positive constants.

Selection occurs by having an offspring compete directly with its parent using absolute
fitness.

Wen et al. [896] used a similar approach, but using the dynamic strategy parameter
approach given in equation (11.41).

11.4.5 Momentum Evolutionary Programming

Choi and Oh [126] proposed an EP algorithm based on backpropagation learning of
feedforward neural networks (refer to Section 3.2.2). The best individual, ŷ(t), of the
current population, C(t), calculated as

ŷ(t) = xi(t) : f(xi(t)) = min
i=1,...,µ

{f(xi(t))} (11.74)
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is taken as the target. The temporal error between this target, ŷ(t), and the individual,
xi(t), is then used by the mutation operator to improve exploration. For each parent,
xi(t), an offspring is generated as follows (assuming minimization):

x
′
ij(t) = xij(t) + η∆xij(t) + αx̃ij(t) (11.75)

where

∆xij(t) = (ŷj(t)− xij(t))|Nij(0, 1)| (11.76)
x̃ij(t) = ηρi(t)∆xij(t− 1) + αx̃ij(t− 1) (11.77)

with η > 0 the learning rate, α > 0 the momentum rate, and

ρi(t) =
{

1 if f(x
′
i(t− 1)) < f(xi(t− 1))

0 otherwise
(11.78)

11.4.6 Evolutionary Programming with Local Search

A very simple approach to improve the exploitation ability of EP, is to add a hill-
climbing facility to generated offspring. While a better fitness can be obtained, hill-
climbing is applied to each offspring [235]. Alternatively, gradient descent has been
used to regenerate offspring [920, 779]. For each offspring, x

′
i(t), recalculate the off-

spring using

x
′
ij(t) = x

′
ij(t)− ηi(t)

∂f

∂xij(t)
(11.79)

where the learning rate is calculated as

ηi(t) =

∑nx

j=1
∂f

∂xij(t)∑nx

h=1

∑nx

j=1
∂2f

∂xih(t)∂xij(t)
∂f

∂xih(t)
∂f

∂xij(t)

(11.80)

As an alternative to gradient descent, Birru et al. [70] used conjugate gradient search
(refer to Section 3.2.3), where line searches are performed for each component of the
offspring. The initial search direction is the downhill gradient, with subsequent search
directions chosen along subsequent gradient components that are orthogonal to all
previous search directions.

Birru et al. [70] also proposed a derivitive-free local search method to refine offspring.
The stochastic search developed by Solis and Wets [802] is applied to each offspring
at a specified probability. Based on this probability, if the local search is performed,
a limited number of steps is done as summarized in Algorithm 11.2.

11.4.7 Evolutionary Programming with Extinction

Fogel et al. [274] incorporated concepts of mass extinction into EP. The outcome of
an extinction event is that a significant portion of populations is killed, after which
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Algorithm 11.2 Solis and Wets Random Search Algorithm for Function Minimization

Initialize the candidate solution, x(0), with xj(0) ∼ U(xmin,j , xmax,j), j = 1, . . . , nx;
Let t = 0;
Let ρ(0) = 1;
while stopping condition(s) not true do

t = t + 1;
Generate a new candidate solution as x

′
(t) = x(t) + ρ(t)N(0, σ);

if f(x
′
(t)) < f(x(t)) then

x(t) = x
′
(t);

end
else

ρ(t) = −ρ(t− 1);
x

′
(t) = x(t) + ρ(t)N(0, σ);

if f(x
′
(t)) < f(x(t)) then

x(t) = x
′
(t);

end
else

for j = 1, . . . , nx do
xj(t) ∼ U(xmin,j , xmax,j);

end
end

end
end

reproduction produces totally new populations with different survival behaviors than
populations that existed before extinction. Central to the EP with extinction is the
concept of environmental stress, which is a random variable sampled from a uniform
distribution, i.e.

δ(t) ∼ U(0, 0.96) (11.81)

If the normalized fitness of an individual is less than the environmental stress, then
that individual is killed. The fitness of each individual is normalized as follows:

f̃(xi(t)) = α + (1− α)
[
f(xi(t))− fmax(t)
fmin(t)− fmax(t)

]
(11.82)

where fmin(t) and fmax(t) are respectively the lowest and largest fitness values of the
current generation, and α ∈ [0, 1] provides a lower limit on the percentage killed.

The EP with extinction is summarized in Algorithm 11.3.

11.4.8 Hybrid with Particle Swarm Optimization

A number of suggestions have been made to combine EP with particle swarm opti-
mization (PSO) (refer to Chapter 16). Wei et al. [893], and Sinha and Purkayastha
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Algorithm 11.3 Extinction Evolutionary Programming for Function Minimization

Set the generation counter, t = 0;
Initialize the strategy parameters;
Create and initialize the population, C(0);
while stopping condition(s) not true do

t = t + 1;
Let C(t) = C(t− 1);
δ(t) ∼ U(0, 0.96);
nδ = 0;
for i = 1, . . . , µ do

if f̃(xi(t)) < δ(t) then
C(t) = C(t)\{xi(t)};
nδ = nδ + 1;

end
end
if nδ > 0 then

Let ñs = ns − nδ be the number of survivors;
for each of the top 10% survivors do

Generate nδ

0.1ñs
offspring;

end
Calculate the fitness of all offspring;
Select nδ of the offspring using tournament selection;
Add selected offspring to C(t);

end
else

Mutate the top 10% individuals of C(t);
for each offspring, x

′
i(t), generated do

if f(x
′
i(t)) < f(xi(t)) then

xi(t) = x
′
i(t);

end
end

end
end

[794] applies the PSO position update (refer to Chapter 16),

xi(t + 1) = xi(t) + vi(t) (11.83)

and then mutate the new position using an EP mutation operator. Wei et al. [893]
uses the mutation operator and self-adaptation of CEP, while Sinha and Purkayastha
[794] uses a variation of the dynamic strategy parameter approach of equation (11.42),
where

σi(t) = γ

[
f(xi(t))
fmin(t)

]
(xmax,j − xmin,j) (11.84)

with Gaussian mutational noise. That is,

xij(t + 1) = xij(t) + νij(t) + σiNij(0, 1) (11.85)
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11.5 Advanced Topics

This section provides a very compact review of some approaches to apply EP to prob-
lems more difficult than unconstrained problems.

11.5.1 Constraint Handling Approaches

Any of a number of methods from the EC literature can be used to evolve feasible
solutions that satisfy all constraints (with reference to problems as defined in Defini-
tion A.5). With reference to Section A.6, the following approaches have been used in
EP literature:

• Penalty methods (refer to Section A.6.2), where a penalty is added to the objec-
tive function to penalize an individual for constraint violation [445, 795, 463].

• The constrained problem is converted to an unconstrained dual Lagrangian prob-
lem, where Lagrangian multipliers are optimized in parallel with decision vari-
ables [463]. Kim and Myung [463] developed a two-phase EP for constrained
problems. Phase one uses a penalty function. The best individual from phase
one is then used to generate a new population for phase two, which optimizes
the dual Lagrangian problem.

• Mutation operators are adapted to ensure that only feasible offspring are gen-
erated [943]. El-Sharkh and El-Keib [235] applied hill-climbing to offspring to
reduce the number of constraints violated. If the hill-climbing search fails in
producing a feasible solution, mutation is applied again. Ma and Lai [542] used
a simple, but inefficient approach by setting components that violate constraints
to boundary values.

11.5.2 Multi-Objective Optimization and Niching

Multi-objective optimization (MOO) techniques that can be found in the general EA
literature can be applied to EP to solve multi-objective problems as defined in Defini-
tion A.10. Simple approaches are to use weight aggregation methods as summarized
in Section A.8.2. Pareto-based methods have been used in [953].

To implement a niching EP algorithm, Li et al. [519] utilized crowding and fitness
sharing as used in GAs. Damavandi and Safavi-Nacini [169] used a clustering algorithm
applied to individuals to facilitate niche formation.

11.5.3 Dynamic Environments

Not much has been done to analyze the performance of EP for dynamically changing,
or noisy landscapes. Ma and Lai [542] used Gaussian mutations with dynamic strategy
parameters as defined in equation (11.41) with success, while Matsumura et al. [566]
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analyzed the performance of CEP, FEP and robust EP on noisy-environments. Bäck
[40] concluded that EP with additive strategy parameters fails for dynamic landscapes,
while lognormal self-adaptation succeeded.

11.6 Applications

The first application of EP was to evolve finite-state machines. Section 11.6.1 shows
how this can be done, while Section 11.6.2 illustrates how EP can be used to optimize
a continuous function. Section 11.6.3 shows how an EP can be used to train a NN. A
summary of real-world applications of EP is given in Section 11.6.4.

11.6.1 Finite-State Machines

EP was originally developed to evolve finite-state machines (FSM). The aim of this
application type is to evolve a program to predict the next symbol (of a finite alphabet)
based on a sequence of previously observed symbols.

A finite-state machine is essentially a computer program that represents a sequence
of actions that must be executed, where each action depends on the current state of
the machine and an input. Formally, a FSM is defined as

FSM = (S, I,O, ρ, φ) (11.86)

where S is a finite set of machine states, I is a finite set of input symbols, O is a finite
set of output symbols (the alphabet of the FSM), ρ : S × I → S is the next state
function, and φ : S × I → O is the next output function. An example of a 3-state
FSM is given in Figure 11.1 (taken from [278]). The response of the FSM to a given
string of symbols is given in Table 11.1, presuming an initial state C.

Table 11.1 Response of Finite-State Machine

Present state C B C A A B
Input symbol 0 1 1 1 0 0
Next state B C A A B C
Output symbol β α γ β β γ

Representation

Each state can be represented by a 6-bit string. The first bit represents the activation
of the corresponding state (0 indicates not active, and 1 indicates active). The second
bit represents the input symbol, the next two bits represent the next state, and the last
two bits represent the output symbol. Each individual therefore consists of 18 bits.
The initial population is randomly generated, with the restriction that the output
symbol and next state bits represent only valid values.
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Figure 11.1 Finite-State Machine [278]

Fitness Evaluation

The fitness of each individual is measured as the individual’s ability to correctly predict
the next output symbol. A sequence of symbols is used for this purpose. The first
symbol from the sequence is presented to each individual, and the predicted symbol
compared to the next symbol in the sequence. The second symbol is then presented
as input, and the process iterates over the entire sequence. The individual with the
most correct predictions is considered the most fit individual.

Mutation

The following mutation operations can be applied: The initial state can be changed,
a state can be deleted, a state can be added, a state transition can be changed, or an
output symbol for a given state and input symbol can be changed.

These operators are applied probabilistically, in one of the following ways:

• Select a uniform random number between 1 and 5. The corresponding mutation
operator is then applied with probability pm.

• Generate a Poisson number, ξ with mean λ. Select ξ mutation operators uni-
formly from the set of operators, and apply them in sequence.

11.6.2 Function Optimization

The next example application of EP is in function optimization. Consider, for example,
finding the minimum of the function sin(2πx)e−x in the range [0, 2].
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Representation

The function has one parameter. Each individual is therefore represented by a vector
consisting of one floating-point element (not binary encoded). The initial population
is generated randomly, with each individual’s parameter xij selected such that xij ∼
U(0, 2).

Fitness Evaluation

In the case of minimization, the fittest individual is the one with the smallest value
for the function being optimized; that is, the individual with the smallest value for
the function sin(2πx)e−x. For maximization, it is the largest value.

Mutation

Any of the mutation operators discussed in Section 11.2.1 can be used to produce
offspring.

11.6.3 Training Neural Networks

One of the first applications as an approach to optimize unconstrained functions was
to train supervised feedforward neural networks [272]. Since then, EP has been applied
to many neural network problems [28, 571, 933].

Representation

Each individual represents one neural network (NN), where a component represents a
single weight or bias.

Fitness Evaluation

The mean squared error (MSE), or sum squared error (SSE), can be used to quan-
tify the performance of a NN. In the case of a classification task, the percentage of
incorrectly classified patterns can be used. Fitness evaluation involves conversion of
the vector representation used for individuals to a layered NN structure in order to
perform feedforward passes for patterns in the given data set.
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Table 11.2 Real-World Applications of Evolutionary Programming

Application Class References
Bayesian networks [519]
Controller design [889]
Robotics [350, 445, 465]
Games [267, 273]
Image processing [546]
Power systems [110, 111, 417, 543, 779, 916, 943]
Scheduling and routing [235, 270, 795]
Model selection [542, 620]
Design [169, 381, 819]

Mutation

Any of the mutation operators discussed in Section 11.2.1 can be used to adjust weight
and bias values. Special mutation operators are available if the NN architecture is
optimized simultaneously with weight values [28, 933]. Optimizing NN architecture
is a discrete-valued optimization problem. Architecture mutation operators include
node deletion and addition, as well as removing or adding a connection between two
nodes.

11.6.4 Real-World Applications

Table 11.2 summarizes some applications of EP. This table should not be considered
as an exhaustive list.

11.7 Assignments

1. Show if EP can be used to evolve the regular expression of a sequence of char-
acters.

2. Use unconstrained functions from Section A.5.3 to show which probability dis-
tribution results in step sizes that maximize exploration.

3. Develop an EP to train an LVQ-I network.

4. The representation scheme used in Section 11.6.1 to evolve FSMs can be reduced
to use less bits. Suggest a way in which this can be accomplished.

5. How can premature convergence be prevented in EP?

6. With reference to Chapter 12 discuss the similarities and differences between EP
and ES.
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7. With reference to Chapter 15 discuss the influence of different fitness sampling
methods on EP performance.

8. With reference to Chapter 15 discuss the influence of different fitness sharing
methods on EP performance.

9. Evaluate the performance of different mutation operators on the following de-
ceptive function [169]:

f(x1, x2) =

[
1−

∣∣∣∣ sin(π(x1 − 2)) sin(π(x2 − 2))
π2(x1 − 2)(x2 − 2)

∣∣∣∣5
]

×[2 + (x1 − 7)2 + 2(x2 − 7)2] (11.87)

for x1, x2,∼ U(0, 12). The global minimum is f∗(x1, x2) = 0 at (x1, x2) = (2, 2),
and the local minimum of f∗(x1, x2) = 2 at (x1, x2) = (7, 7).

10. Explain why mutational noise should have a mean of 0.

11. Propose a method to ensure that the uniform mutation operator in equation
(11.6) does not prematurely stagnate.

12. Compare the characteristics of the Lévy distribution with that of the Gaussian
and Cauchy distributions in relation to the exploration–exploitation trade-off.

13. Propose ways in which strategy parameters can be initialized.

14. Propose an approach to self-adapt the α parameter of the Lévy distribution.

15. Discuss the merits of the following approach to calculate dynamic strategy pa-
rameters:

σij(t) = σi(t) = |f(ŷ(t))− f(xi(t))| (11.88)

where ŷ(t) is the best individual of the current generation.





Chapter 12

Evolution Strategies

Rechenberg reasoned that, since biological processes have been optimized by evolution,
and evolution is a biological process itself, then it must be the case that evolution
optimizes itself [710]. Evolution strategies (ES), piloted by Rechenberg in the 1960s
[708, 709] and further explored by Schwefel [768], are then based on the concept of the
evolution of evolution. While ESs consider both genotypic and phenotypic evolution,
the emphasis is toward the phenotypic behavior of individuals. Each individual is
represented by its genetic building blocks and a set of strategy parameters that models
the behavior of that individual in its environment. Evolution then consists of evolving
both the genetic characteristics and the strategy parameters, where the evolution of
the genetic characteristics is controlled by the strategy parameters. An additional
difference between ESs and other EC paradigms is that changes due to mutation are
only accepted in the case of success. In other words, mutated individuals are only
accepted if the mutation resulted in improving the fitness of the individual. Also
interesting in ESs is that offspring can also be produced from more than two parents.

The rest of this chapter is organized as follows: An overview of the first ES is given
in Section 12.1. A generic framework for ES algorithms is given in Section 12.2, and
the main components of ES are discussed. Section 12.3 discusses strategy parameters
– one of the most distinguishing aspects of ES. Evolutionary operators for ES are
described in Section 12.4. A few ES variants are described in Section 12.5. Advanced
topics are addressed in Section 12.6, including constraint handling, multi-objective
optimization, niching, and dynamic environments.

12.1 (1 + 1)-ES

The first ES was developed for experimental optimization, applied to hydrodynamical
problems [708]. This ES, referred to as the (1 + 1)-ES, does not make use of a
population. A single individual is used from which one offspring is produced through
application of a mutation operator. The (1 + 1)-ES is one of the first evolutionary
algorithms that represents an individual as a tuple to consist of the decision vector, x,
to be optimized and a vector of strategy parameters, σ. The strategy parameter vector
represents the mutational step size for each dimension, which is adapted dynamically
according to performance.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
c©2007 John Wiley & Sons, Ltd
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The individual is represented as the tuple,

χ(t) = (x(t), σ(t)) (12.1)

According to the biological observation that offspring are similar to their parents,
and that smaller deviations from the parent occur more often than larger ones, the
offspring,

χ
′
(t) = (x

′
(t), σ

′
(t)) (12.2)

is created (very similar to the CEP in Chapter 11) by adding Gaussian noise as follows:

x
′
j(t) = xj(t) + Nj(0, σj(t))

= xj(t) + σj(t)Nj(0, 1) (12.3)

Strategy parameters are adapted based on the 1/5 success rule proposed by Rechen-
berg: Increase deviations, σj , if the relative frequency of successful mutations over
a certain period is larger than 1/5; otherwise, deviations are decreased. Schwefel
[769, 770] proposed that, after t > 10nx, if t mod nx = 0, the number of successful
mutations, nm, that have occurred during steps t − 10nx to t − 1 is calculated. The
deviations are then updated using,

σ
′
j(t) =




ασj(t) if nm < 2nx

σj(t)/α if nm > 2nx

σj(t) if nm = 2nx

(12.4)

where α = 0.85. A successful mutation produces an offspring with a fitness that is
better than the fitness of the parent.

Note that the original (1+1)-ES as proposed by Rechenburg did not adapt deviations.
Variations have also been proposed where σj(t) = σ, j = 1, . . . , nx.

The selection operator selects the best between the parent and the offspring. That is,
assuming minimization,

x(t + 1) =
{

x
′
(t) if f(x

′
(t)) < f(x(t))

x(t) otherwise
(12.5)

and

σ(t + 1) =
{

σ
′
(t) if f(x

′
(t)) < f(x(t))

σ(t) otherwise
(12.6)

Rechenberg [709] suggested that the (1 + 1)-ES can be extended to a multimembered
ES, denoted as the (µ + 1)-ES. This strategy uses a population of µ > 1 parents.
Two parents are randomly selected and recombined by discrete, multipoint crossover
to produce one offspring. If x1(t) and x2(t) denote the two parents, then

x
′
j(t) =

{
x1j(t) if rj ≤ 0.5
x2j(t) otherwise (12.7)
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and

σj(t) =
{

σ1j(t) if rj ≤ 0.5
σ2j(t) otherwise (12.8)

where rj ∼ U(0, 1), j = 1, . . . , nx.

The offspring is mutated as for (1 + 1)-ES. An elitist approach is followed to select
the new population: the best µ individuals out of the µ + 1 (parents and offspring)
survive to the next generation.

Due to problems with self-adaptation of step sizes, (µ + 1)-ES (also referred to as the
steady-state ES) have not been regularly used.

12.2 Generic Evolution Strategy Algorithm

A generic framework for the implementation of an ES is given in Algorithm 12.1.
Parameters µ and λ respectively indicate the number of parents and the number of
offspring.

Algorithm 12.1 Evolution Strategy Algorithm

Set the generation counter, t = 0;
Initialize the strategy parameters;
Create and initialize the population, C(0), of µ individuals;
for each individual, χi(t) ∈ C(t) do

Evaluate the fitness, f(xi(t));
end
while stopping condition(s) not true do

for i = 1, . . . , λ do
Choose ρ ≥ 2 parents at random;
Create offspring through application of crossover operator on parent
genotypes and strategy parameters;
Mutate offspring strategy parameters and genotype;
Evaluate the fitness of the offspring;

end
Select the new population, C(t + 1);
t = t + 1;

end

As summarized in Algorithm 12.1, an ES uses the following main components:

• Initialization: For each individual, its genotype is initialized to fall within the
problem boundary constraints. The strategy parameters are also initialized.

• Recombination: Offspring are produced through application of a crossover
operator on two or more parents. ES crossover operators are discussed in Sec-
tion 12.4.2.
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• Mutation: Offspring are mutated, where mutational step sizes are determined
from self-adaptive strategy parameters. Mutation operators for ES are discussed
in Section 12.4.3.

• Evaluation: An absolute fitness function is used to determine the quality of
the solution represented by the genotype of the individual.

• Selection: Selection operators are used for two purposes in an ES. Firstly, to
select parents for recombination, and secondly, to determine which individu-
als survive to the next generation. Selection methods for ES are discussed in
Section 12.4.1.

Any of the stopping conditions discussed in Section 8.7 can be used to terminate
execution of an ES.

12.3 Strategy Parameters and Self-Adaptation

As with EP, strategy parameters are associated with each individual. These strategy
parameters are self-adapted in order to determine the best search direction and maxi-
mum step size per dimension. In essence, the strategy parameters define the mutation
distribution from which mutational step sizes are sampled. The main goal of a self-
adaptation strategy is to refine the mutation distribution such that maximal search
progress is maintained. This section discusses strategy parameters and self-adaptation
in relation to ES. Since much of what has been discussed about self-adaptation in EP
(refer to Chapter 11) is also applicable to ES, this section emphasizes aspects related
to ES.

Section 12.3.1 discusses different types of strategy parameters, while variations in
which these parameters can be used are described in Section 12.3.2. Different self-
adaptation strategies proposed in ES literature is overviewed in Section 12.3.3.

12.3.1 Strategy Parameter Types

First implementations of ES used one type of strategy parameter, i.e. the deviation of
the Gaussian distributed noise used by the mutation operator [708, 709, 769]. In this
case, individuals are represented as

χi(t) = (xi(t), σi(t)) (12.9)

where xi ∈ Rnx represents the genotype (i.e. the vector of decision variables), and
σi represents the deviation strategy parameter vector. Usually, σi ∈ Rnx

+ . However,
ES have been tested using one deviation for all components of the genotype, i.e.
σij = σi, j = 1, . . . , nx, in which case σi ∈ R+ [42, 39].

Using more strategy parameters provide more degrees of freedom to individuals to fine
tune their mutation distribution in all dimensions (refer to Section 12.3.2 for visual
illustrations of this point).
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If deviations are used as the only strategy parameters, best search directions are
determined along the axes of the coordinate system in which the search space resides.
It is not always the case that the best search direction (i.e. the gradient) is aligned with
the axes. In such cases, the search trajectory have been shown to fluctuate along the
gradient, decreasing the rate of progress toward the optimum [43]. More information
about the search is needed to speed up convergence for such cases. More information
about the fitness function, which defines the search space, can be obtained by the
Hessian matrix of the fitness function. If the Hessian is used as strategy parameter,
mutations are done as follows:

x
′
i(t) = xi(t) + N(0,H−1) (12.10)

where H is the Hessian matrix.

It is, however, not feasible to use the Hessian matrix. Fitness (objective) functions
are not always guaranteed to have a second-order derivative. Even if a second-order
derivative does exist, it is computationally expensive to calculate the Hessian.

Schwefel [769] proposed that the covariance matrix, C−1, described by the deviation
strategy parameters of the individual, be used as additional information to determine
optimal step sizes and directions. In this case,

x
′
i(t) = xi(t) + N(0,C) (12.11)

where N(0,C) refers to a normally distributed random vector r with expectation zero
and probability density [43],

fG(r) =
detC
(2π)n

x

e−
1
2 rT Cr (12.12)

The diagonal elements of C−1 are the variances, σ2
j , while the off-diagonal elements

are the covariances of the mutational step sizes.

Covariances are given by rotation angles which describe the rotations that need to
be done to transform an uncorrelated mutation vector to a correlated vector. If ωi(t)
denotes the vector of rotational angles for individual i, then individuals are represented
as the triplet,

χi(t) = (xi(t), σi(t), ωi(t)) (12.13)

where xi(t) ∈ Rnx , σi(t) ∈ Rnx
+ , ωi(t) ∈ Rnx(nx−1)/2, and ωik(t) ∈ (0, 2π], k =

1, . . . , nx(nx − 1)/2.

The rotational angles are used to represent the covariances among the nx genetic
variables in the genetic vector xi. Because the covariance matrix is symmetric, a vector
can be used to represent the rotational angles instead of a matrix. The rotational
angles are used to calculate an orthogonal rotation matrix, T (ωi), as

T (ωi) =
nx−1∏
l=1

nx∏
j=i+1

Rlj(ωi) (12.14)
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which is the product of nx(nx − 1)/2 rotation matrices. Each rotation matrix Rlj(ωi)
is a unit matrix with rll = cos(ωik) and rlj = −rjl = − sin(ωik), with k = 1 ⇔ (l =
1, j = 2), k = 2 ⇔ (l = 1, j = 3), · · ·. The rotational matrix is used by the mutation
operator as described in Section 12.4.3.

12.3.2 Strategy Parameter Variants

As discussed in Section 12.3.1, the two types of strategy parameters that have been
used are the standard deviation of mutational step sizes, and rotational angles that
represent covariances of mutational step sizes. These strategy parameters have resulted
in a number of self-adaptation variants [39, 364]. For the discussion below, let nσ

denote the number of deivation parameters used, and nω the number of rotational
angles. The following cases have been used:

• nσ = 1, nω = 0, i.e. only one deviation parameter is used (σj = σ ∈ R+, j =
1, . . . , nx) for all components of the genotype, and no rotational angles. The
mutation distribution has a circular shape as illustrated in Figure 12.1(a). The
middle of the circle indicates the position of the parent, xi, while the boundary
indicates the deviation in step sizes. Keep in mind that this distribution indicates
the probability of the position of the offspring, x

′
i, with the highest probability

at the center.
The strategy parameter is adjusted as follows:

σ
′
i(t) = σi(t)eτN(0,1) (12.15)

where τ = 1√
nx

.

While adjustment of the single parameter is computationally fast, the approach
is not flexible when the coordinates have different gradients.

• nσ = nx, nω = 0, in which each component has its own deviation parameter.
The mutation distribution has an elliptic shape as illustrated in Figure 12.1(b),
where σ1 < σ2. In this case the increased number of parameters causes a linear
increase in computational complexity, but the added degrees of freedom provide
for better flexibility. Different gradients along the coordinate axes can now be
taken into consideration.
Strategy parameters are updated as follows:

σ
′
ij(t) = σij(t)eτ

′
N(0,1)+τNj (0,1) (12.16)

where τ
′
= 1√

2nx
and τ = 1√

2
√

nx

.

• nσ = nx, nω = nx(nx − 1)/2, where in addition to the deviations, rotational
angles are used. The elliptical mutation distribution is rotated with respect to
the coordinate axes as illustrated in Figure 12.1(c). Such rotations allow better
approximation of the contours of the search space.
Deviation parameters are updated using equation (12.16), while rotational angles
are updated using,

ω
′
ik(t) = ωik(t) + γNj(0, 1) mod 2π (12.17)



12.3 Strategy Parameters and Self-Adaptation 219

x2

x1xi

σ

(a) nσ = 1, nω = 0

x2

x1

xi

σ1

σ2

(b) nσ = nx, nω = 0

x2

x1

σ1

ω

σ2

xi

(c) nσ = nx, nω = nx(nx − 1)/2

Figure 12.1 Illustration of Mutation Distributions for ES

where γ ≈ 0.0873 [39].

Adding the rotational angles improves flexibility, but at the cost of a quadratic
increase in computational complexity.

• 1 < nσ < nx: This approach allows for different degrees of freedom. For all
j > nσ, deviation σnσ

is used.

12.3.3 Self-Adaptation Strategies

The most frequently used approach to self-adapt strategy parameters is the lognor-
mal self-adaptation mechanism used above in Section 12.3.2. Additive methods as
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discussed in Section 11.3.3 for EP can also be used.

Lee et al. [507] and Müller et al. [614] proposed that reinforcement learning be used
to adapt strategy parameters, as follows:

σ
′
ij(t) = σij(t)eΘi(t)|τ

′
N(0,1)+τNj(0,1)| (12.18)

where Θi(t) is the sum of temporal rewards over the last nΘ generations for individual
i, i.e.

Θi(t) =
1

nΘ

nΘ∑
t′=0

θi(t− t
′
) (12.19)

Different methods can be used to calculate the reward for each individual at each time
step. Lee et al. [507] proposed that

θij(t) =




0.5 if ∆f(xi(t)) > 0
0 if ∆f(xi(t)) = 0
−1 if ∆f(xi(t)) < 0

(12.20)

where deterioration in fitness is heavily penalized. In equation (12.20),

∆f(xi(t)) = f(xi(t))− f(xi(t− 1)) (12.21)

Müller et al. [614] suggested a reward of +1, 0 or −1 depending on performance.
Alternatively, they suggested that

• θij(t) = f(xi(t))− f(xi(t−∆t)), with 0 < ∆t < t. This approach bases rewards
on changes in phenotypic behavior, as quantified by the fitness function. The
more an individual improves its current fitness, the greater the reward. On
the other hand the worse the fitness of the individual becomes, the greater the
penalty for that individual.

• θij(t) = sign(f(xi(t))−f(xi(t−∆t))). This scheme results in +1, 0,−1 rewards.

• θij(t) = ||xi(t)− xi(t−∆t)||sign(f(xi(t))− f(xi(t−∆t))). Here the reward (or
punishment) is proportional to the step size in decision (genotypic) space.

Ostermeier and Hansen [645] considered a self-adaptation scheme where nσ = 1 and
where a covariance matrix is used. In this scheme, the deviation of an offspring is
calculated as a function of the deviations of those parents from which the offspring
has been derived. For each offspring, x

′
l(t), l = 1, . . . , λ,

σ
′
l(t) =




ρ

√ ∏
i∈Ωl(t)

σi(t)


 eξ (12.22)

where Ωl(t) is the index set of the ρ parents of offspring x
′
l(t), and the distribution of

ξ is such that prob(ξ = 0.4) = prob(ξ = −0.4) = 0.5. Section 12.4.3 shows how this
self-adaptation scheme is used in a coordinate system independent mutation operator.
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Kursawe [492] used a self-adaptation scheme where 1 ≤ nσ ≤ nx, and each individual
uses a different number of deviation parameters, nσi

(t). At each generation, t, the
number of deviation parameters can be increased or decreased at a probability of 0.05.
If the number of deviation parameters increases, i.e. nσi

(t) = nσi
(t− 1), then the new

deviation parameter is initialized as

σinσ,i(t)(t) =
1

nσ,i(t− 1)

nσ,i(t−1)∑
k=1

σik(t) (12.23)

12.4 Evolution Strategy Operators

Evolution strategies use the three main operators of EC, namely selection, crossover,
and mutation. These operators are discussed in Sections 12.4.1, 12.4.2, and 12.4.3
respectively.

12.4.1 Selection Operators

Selection is used for two tasks in an ES: (1) to select parents that will take part in
the recombination process and (2) to select the new population. For selecting the ρ
parents for the crossover operator, any of the selection methods reviewed in Section 8.5
can be used. Usually, parents are randomly selected.

For each generation, λ offspring are generated from µ parents and mutated. After
crossover and mutation, the individuals for the next generation are selected. Two
main strategies have been developed:

• (µ + λ) − ES: In this case (also referred to as the plus strategies) the ES
generates λ offspring from µ parents, with 1 ≤ µ ≤ λ < ∞. The next generation
consists of the µ best individuals selected from µ parents and λ offspring. The
(µ+λ)−ES strategy implements elitism to ensure that the fittest parents survive
to the next generation.

• (µ, λ) − ES: In this case (also referred to as the comma strategies), the next
generation consists of the µ best individuals selected from the λ offspring. Elitism
is not used, and therefore this approach exhibits a lower selective pressure than
the plus strategies. Diversity is therefore larger than for the plus strategies, which
results in better exploration. The (µ, λ)− ES requires that 1 ≤ µ < λ < ∞.

Using the above notation, ES are collectively referred to as (µ +, λ)-ES. The (µ + λ)
notation has been extended to (µ, κ, λ), where κ denotes the maximum lifespan of
an individual. If an individual exceeds its lifespan, it is not selected for the next
population. Note that (µ, λ)-ES is equivalent to (µ, 1, λ)-ES.

The best selection strategy to use depends on the problem being solved. Highly convo-
luted search spaces need more exploration, for which the (µ, λ)-ES are more applicable.
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Because information about the characteristics of the search space is usually not avail-
able, it is not possible to say which selection scheme will be more appropriate for an
arbitrary function. For this reason, Huang and Chen [392] developed a fuzzy con-
troller to decide on the number of parents that may survive to the next generation.
The fuzzy controller receives population diversity measures as input, and attempts to
balance exploration against exploitation.

Runarsson and Yao [746] developed a continuous selection method for ES, which is
essentially a continuous version of (µ, λ)-ES. The basis of this selection method is that
the population changes continuously, and not discretely after each generation. There
is no selection of a new population at discrete generational intervals. Selection is only
used to select parents for recombination, based on a fitness ranking of individuals. As
soon as a new offspring is created, it is inserted in the population and the ranking is
immediately updated. The consequence is that, at each creation of an offspring, the
worst individual among the µ parents and offspring is eliminated.

12.4.2 Crossover Operators

In order to introduce recombination in ES, Rechenberg [709] proposed that the (1+1)-
ES be extended to a (µ + 1)-ES (refer to Section 12.1). The (µ + 1)-ES is therefore
the first ES that utilized a crossover operator. In ES, crossover is applied to both
the genotype (vector of decision variables) and the strategy parameters. Crossover is
implemented somewhat differently from other EAs.

Crossover operators differ in the number of parents used to produce a single offspring
and in the way that the genetic material and strategy parameters of the parents are
combined to form the offspring. In general, the notation (µ/ρ, +, λ) is used to indicate
that ρ parents are used per application of the crossover operator. Based on the value
of ρ, the following two approaches can be found:

• Local crossover (ρ = 2), where one offspring is generated from two randomly
selected parents.

• Global crossover (2 < ρ ≤ µ), where more than two randomly selected parents
are used to produce one offspring. The larger the value of ρ, the more diverse
the generated offspring is compared to smaller ρ values. Global crossover with
large ρ improves the exploration ability of the ES.

In both local and global crossover, recombination is done in one of two ways:

• Discrete recombination, where the actual allele of parents are used to con-
struct the offspring. For each component of the genotype or strategy parameter
vectors, the corresponding component of a randomly selected parent is used.
The notation (µ/ρD

+, λ) is used to denote discrete recombination.

• Intermediate recombination, where allele for the offspring is a weighted
average of the allele of the parents (remember that floating-point representations
are assumed for the genotype). The notation (µ/ρI

+, λ) is used to denote
intermediate recombination.
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Based on the above, five main types of recombination have been identified for ES:

• No recombination: If χi(t) is the parent, the offspring is simply χ̃l(t) = χi(t).

• Local, discrete recombination, where

χ̃lj(t) =
{

χi1j(t) if Uj(0, 1) ≤ 0.5
χi2j(t) otherwise (12.24)

The offspring, χ̃l(t) = (x̃l(t), σ̃l(t), ω̃l(t)) inherits from both parents, χi1(t) =
(xi1(t), σi1(t), ω1(t)) and χi2(t) = (xi2(t), σi2(t), ωi2(t)).

• Local, intermediate recombination, where

x̃lj(t) = rxi1j(t) + (1− r)xi2j(t), ∀j = 1, . . . , nx (12.25)

and
σ̃lj(t) = rσi1j(t) + (1− r)σi2j(t), ∀j = 1, . . . , nx (12.26)

with r ∼ U(0, 1). If rotational angles are used, then

ωlk(t) = [rωi1k(t) + (1− r)σi2k(t)] mod 2π, ∀k = 1, . . . , nx(nx − 1) (12.27)

• Global, discrete recombination, where

χ̃lj(t) =
{

χi1j(t) if Uj(0, 1) ≤ 0.5
χrjj(t) otherwise (12.28)

with rj ∼ Ωl; Ωl is the set of indices of the ρ parents selected for crossover.

• Global, intermediate recombination, which is similar to the local recombi-
nation above, except that the index i2 is replaced with rj ∼ Ωl. Alternatively,
the average of the parents can be calculated to form the offspring [62],

χ̃l(t) =

(
1
ρ

ρ∑
i=1

xi(t),
1
ρ

ρ∑
i=1

σi(t),
1
ρ

ρ∑
i=1

ωi(t)

)
(12.29)

Izumi et. al. [409] proposed an arithmetic recombination between the best individual
and the average over all the parents:

x̃l(t) = rŷ(t) + (1− r)
1
ρ

ρ∑
i∈Ωl

xi(t) (12.30)

where ŷ(t) is the best individual of the current generation. The same can be applied to
the strategy parameters. This strategy ensures that offspring are located around the
best individual. However, care must be taken as this operator may cause premature
stagnation, especially for large r.
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12.4.3 Mutation Operators

Offspring produced by the crossover operator are all mutated with probability one.
The mutation operator executes two steps for each offspring:

• The first step self-adapts strategy parameters as discussed in Sections 12.3.2 and
12.3.3.

• The second step mutates the offspring, χ̃l, to produce a mutated offspring, χ
′
l,

as follows
x

′
l(t) = x̃l(t) + ∆xl(t) (12.31)

The λ mutated offspring, χ
′
l(t) = (x

′
l(t), σ̃l(t), ω̃l(t)) take part in the selection

process, together with the parents depending on whether a (µ + λ)-ES or a
(µ, λ)-ES is used.

This section considers only mutation of the genotype, as mutation (self-adaptation) of
the strategy parameters has been discussed in previous sections.

If only deviations are used as strategy parameters, the genotype, x̃l(t), of each off-
spring, χ̃l(t), l = 1, . . . , λ, is mutated as follows:

• If nσ = 1, ∆xlj(t) = σl(t)Nj(0, 1), ∀j = 1, . . . , nx.

• If nσ = nx, ∆xlj(t) = σlj(t)Nj(0, 1), ∀j = 1, . . . , nx

• If 1 < nσ < nx, ∆xlj(t) = σlj(t)Nj(0, 1), ∀j = 1, . . . , nσ and ∆xlj(t) =
σlnσ

(t)Nj(0, 1), ∀j = nσ + 1, . . . , nx

If deviations and rotational angles are used, assuming that nσ = nx, then

∆xl(t) = T(ω̃l(t))S(σ̃l(t))N(0, 1) (12.32)

where T(ω̃l(t)) is the orthogonal rotation matrix,

T(ω̃l(t)) =
nx−1∏
a=1

nx∏
b=a+1

Rab(ω̃l(t)) (12.33)

which is a product of nx(nx−1)/2 rotation matrices. Each rotation matrix, Rab(ω̃l(t)),
is a unit matrix with each element defined as follows: r = cos(ω̃lk) and rab = −rba =
− sin(ω̃lk), for k = 1, . . . , nx(nx−1)/2 and k = 1 ⇔ (a = 1, b = 2), k = 2 ⇔ (a = 1, b =
3), . . .. S(σ̃l(t)) = diag(σ̃l1(t), σ̃l2(t), . . . , σ̃lnx

(t)) is the diagonal matrix representation
of deviations.

Based on similar reasoning as for EP (refer to Section 11.2.1), Yao and Liu [935]
replaced the Gaussian distribution with a Cauchy distribution to produce the fast ES.
Huband et al. [395] developed a probabilistic mutation as used in GAs and GP, where
each component of the genotype is mutated at a given probability. It is proposed that
the probability of mutation be 1/nx. This approach imposes a smoothing effect on
search trajectories.

Hildebrand et al. [364] proposed a directed mutation, where preference can be given
to specific coordinate directions. As illustrated in Figure 12.2, the directed mutation
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Figure 12.2 Directed Mutation Operator for ES

results in an asymmetrical mutation probability distribution. Here the step size is
larger for the x2 axis than for the x1 axis, and positive directions are preferred. As
each component of the genotype is mutated independently, it is sufficient to define a
1-dimensional asymmetrical probability density function. Hildebrand et al. proposed
the function,

fD(x) =




2√
πσ(1+

√
1+c)

(
e−

x2
σ

)
if x < 0

2√
πσ(1+

√
1+c)

(
e−

x2
σ(1+c)

)
if x ≥ 0

(12.34)

where c > 0 is the positive directional value.

The directional mutation method uses only deviations as strategy parameters, but as-
sociates a directional value, cj , with each deviation, σj . Both σ and c are self-adapted,
giving a total of 2nx strategy parameters. This is computationally more efficient than
using a nx(nx − 1)/2-sized rotational vector, and provides more information about
preferred search directions and step sizes than deviations alone.

If D(c, σ) denotes the asymmetric distribution, then ∆xij(t) = Dj(cij(t), σij(t)).

Ostermeier and Hansen [645] developed a coordinate system invariant mutation oper-
ator, with self-adaptation as discussed in Section 12.3.3. Genotypes are mutated using
both deviations and correlations, as follows:

x
′
l(t) =

1
ρ

∑
i∈Ωl(t)

xi(t) + σ̃lN(0,Cl(t)) (12.35)



226 12. Evolution Strategies

where

Cl(t) =
nm∑
k=1

ξlk(t)ξT
lk(t) (12.36)

with ξlk(t) ∼ N(0, 1
ρ

∑
i∈Ωl(t)

Ci(t)) and nm is the mutation strength. For large values
of nm, the mutation strength is small, because a large sample, ξ1, ξ2, . . . , ξnm

, provides
a closer approximation to the original distribution than a smaller sample. Ostermeier
and Hansen suggested that nm = nx.

12.5 Evolution Strategy Variants

Previous sections have already discussed a number of different self-adaptation and
mutation strategies for ES. This section describes a few ES implementations that
differ somewhat from the generic ES algorithm summarized in Algorithm 12.1.

12.5.1 Polar Evolution Strategies

Bian et al. [66], and Sierra and Echeverŕia [788] independently proposed that the
components of genotype be transformed to polar coordinates. Instead of the original
genotype, the “polar genotypes”are evolved.

For an nx-dimensional Cartesian coordinate, the corresponding polar coordinate is
given as

(r, θnx−2, . . . , θ1, φ) (12.37)

where 0 ≤ φ < 2π, 0 ≤ θq ≤ π for q = 1, . . . , nx − 2, and r > 0. Each individual is
therefore represented as

χi(t) = (xp
i (t), σi(t)) (12.38)

where ,xp
i = (r, θnx − 2, . . . , θ1, φ). Polar coordinates are transformed back to Carte-

sian coordinates as follows:

x1 = r cos φ sin θ1 sin θ2 . . . sin θnx−2

x2 = r sin φ sin θ1 sin θ2 . . . sin θnx−2

x3 = r cos θ1 sin θ2 . . . sin θnx−2

... = (12.39)
xi = r cos θi−2 sin θi−1 . . . sin θnx−2

... =
xn = r cos θnx−2

The mutation operator uses deviations to adjust the φ and θq angles:

φ
′
l = (φ̃l(t) + σ̃φ,l(t)N(0, 1)) mod 2π (12.40)

θlq(t) = π − (θ̃lq(t) + σ̃θlq
(t)Nq(0, 1)) mod π (12.41)
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Algorithm 12.2 Polar Evolution Strategy

Set the generation counter, t = 0;
Initialize the strategy parameters, σφ, σθ,q, q = 1, . . . , nx − 2;
Create and initialize the population, C(0), as follows:;
for i = 1, . . . , µ do

r = 1;
φi(0) ∼ U(0, 2π);
θiq(0) ∼ U(0, π), ∀q = 1, . . . , nx − 2;
xp

i (0) = (r, θi(0), φi(0));
χi(0) = (xp

i (0), σi(0));
end
for each individual, χl(0) ∈ C(0) do

Transform polar coordinate xp
i (0) to Cartesian coordinate nxi(0);

Evaluate the fitness, f(xi(0));
end
while stopping condition(s) not true do

for l = 1, . . . , λ, generate offspring do
Randomly choose two parents;
Create offspring, χ̃l(t), using local, discrete recombination;
Mutate χ̃l(t) to produce χ

′
l(t);

Transform xp
l (t) back to Cartesian xl(t);

Evaluate the fitness, f(xi(t));
end
Select µ individuals from the λ offspring to form C(t + 1);
t = t + 1;

end

where φ̃l(t) and θ̃lq(t), q = 1, . . . , nx − 2 refer to the components of the off-
spring, χ̃l(t), l = 1, . . . , λ produced by the crossover operator, and σ̃l(t) =
(σ̃φ,l(t), σ̃θ,l1(t), σ̃θ,l2(t), . . . , σ̃θ,l(nx−2)(t)), is its strategy parameter vector. Note that
r = 1 is not mutated.

The polar ES as used in [788] is summarized in Algorithm 12.2.

12.5.2 Evolution Strategies with Directed Variation

A direction-based mutation operator has been discussed in Section 12.4.3. Zhou and
Li [960] proposed a different approach to bias certain directions within the mutation
operator, and presented two alternative implementations to utilize directional varia-
tion.

The approach is based on intervals defined over the range of each decision variable,
and interval fitnesses. For each component of each genotype, the direction of mutation
is towards a neighboring interval with highest interval fitness. Assume that the j-th
component is bounded by the range [xmin,j , xmax,j ]. This interval is divided into nI
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subintervals of equal length, where the s-th interval is computed as

Ijs =
[
xmin,j + (s− 1)

(
xmax,j − xmin,j

nI

)
, xmin,j + s

(
xmax,j − xmin,j

nI

)]
(12.42)

The fitness of interval Ijs is defined by

f(Ijs) =
µ∑

i=1

fI(xij(t) ∈ Ijs)f̃(xi(t)) (12.43)

where

fI(xij(t) ∈ Ijs) =
{

1 if xij(t) ∈ Ijs

0 if xij(t) �∈ Ijs
(12.44)

and f̃(xi(t)) is the normalized fitness of xi(t),

f̃(xi(t)) =
f(xi(t))− fmin(t)
fmax(t)− fmin(t)

(12.45)

The minimum and maximum fitness of the current population is indicated by fmin(t)
and fmax(t) respectively.

Directed variation is applied to each component of each individual as follows. For
component xij(t), the direction of mutation is determined by f(Ijs), f(Ij,s−1) and
f(Ij,s+1), where xij(t) ∈ Ijs. If f(Ijs) > f(Ij,s−1) and f(Ijs) > f(Ij,s+1), no directed
variation will be applied. If f(Ij,s−1) > f(Ijs) > f(Ij,s+1), then xij(t) moves toward
subinterval Ij,s−1 with probability 1− f(Ijs)

f(Ij,s−1)
. The move is implemented by replacing

xij(t) with a random number uniformly distributed between xij(t) and the middle-
point of the interval Ij,s−1. A similar approach is followed when f(Ij,s−1) < f(Ijs) <
f(Ij,s+1). If f(Ijs) < f(Ij,s−1) and f(Ijs) < f(Ij,s+1), then xij(t) moves toward any
of its neighboring intervals with equal probability.

For the above, f(Ij0) = f(Ij,nI+1) = 0.

Two approaches have been proposed to apply directed variation. For the first, directed
variation is applied, after selection, to the µ members of the new population. For the
second strategy, each parent produces one offspring using directed variation. Crossover
is then applied as usual to create the remaining λ−µ offspring. The selection operator
is applied to the µ parents, the µ offspring produced by directed variation, and the
λ− µ offspring produced by crossover.

12.5.3 Incremental Evolution Strategies

Incremental ES search for an optimal solution by dividing the search process into nx

phases – one phase for each decision variable [597]. Each phase consists of two steps.
The first step applies a single variable evolution on the one decision variable, while the
second step applies a multi-variable evolution after the first phase. For phase numbers
less than nx, a context vector is needed to evaluate the fitness of the partially evolved
individual (similar to the CCGA and CPSO discussed in Sections 15.3 and 16.5.4).
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12.5.4 Surrogate Evolution Strategy

Surrogate methods have been developed specifically for problems where the fitness
function is computationally expensive to evaluate. The fitness function is approx-
imated by a set of basis functions, called surrogates. Evaluation of the surrogate
model is computationally less expensive than the original function. The reader is
referred to [860] for more detail on surrogate models for ES.

12.6 Advanced Topics

This section shows how ES can be used to solve constrained problems (Section 12.6.1),
multi-objective optimization problems (Section 12.6.2), problems with dynamically
changing optima (Section 12.6.3), and to locate multiple optima (Section 12.6.4).

12.6.1 Constraint Handling Approaches

While a number of ES variations have been developed to cope with constraints, this
section discusses only some of these approaches.

Tahk and Sun [830] converted the constrained problem to an unconstrained problem
using the augmented Lagrangian approach given in Section A.6.2. A coevolutionary
approach is used to find the saddle point, (x∗, λ∗

g, λ
∗
h), of the Lagrangian given in equa-

tion (A.27). Two populations are used, each with different objectives, both evolved in
parallel. Assuming a minimization problem, the one population minimizes the fitness
function,

f(x) = max
λg,λh

L(x, λg, λh) (12.46)

where L(x, λg, λh) is defined in equation (A.27). The second population maximizes
the fitness function,

f(λg, λh) = min
x

L(x, λg, λh) (12.47)

Both populations use an ES as search algorithm.

Kramer et al. [488] developed a biased mutation operator to lead the search to more
promising, feasible areas. The mean of the Gaussian distribution, from which muta-
tional step sizes are sampled, is biased to shift the center of the mutation distribution
as illustrated in Figure 12.3.

Let ξi(t) = (ξi1(t), . . . , ξinx
(t)) be the bias coefficient vector, with ξij(0) ∼ U(−1, 1),

for all j = 1, . . . , nx. The bias vector, βi(t), is then defined as βij(t) = σij(t)ξij(t).
Mutational step sizes are calculated as

∆xij(t) = σij(t)Nj(0, 1) + βij(t) = Nj(ξij(t), σij(t)) (12.48)

Bias coefficients are self-adapted using

ξ
′
ij(t) = ξij(t) + αN(0, 1) (12.49)
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Figure 12.3 Biased Mutation for Evolution Strategies

with α = 0.1 (suggested in [488]).

A very simple approach to handle constraints is to change the selection operator to
select the next population as follows: Until µ individuals have been selected,

• First select the best feasible individuals.

• If all feasible solutions have been selected, select those that violate the fewest
constraints.

• As last resort, when individuals are infeasible, and they violate the same number
of constraints, select the most fit individuals.

When a selection operator is applied to select one of two individuals, the following
rules can be applied:

• If both are feasible, select the one with the best fitness.

• If one is feasible, and the other infeasible, select the feasible solution.

• If both are infeasible, select the one that violates the fewest constraints. If
constraint violation is the same, select the most fit individual.

12.6.2 Multi-Objective Optimization

One of the first, simple ES for solving multi-objective (MOO) problems was devel-
oped by Knowles and Corne [469]. The Pareto archived evolution strategy (PAES)
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consists of three parts: (1) a candidate solution generator, (2) the candidate solution
acceptance function, and (3) the nondominated-solutions archive.

The candidate solution generator is an (1 + 1)-ES, where the individual that survives
to the next generation is based on dominance. If the parent dominates the offspring,
the latter is rejected, and the parent survives. If the offspring dominates the parent,
the offspring survives to the next generation. If neither the parent nor the offspring is
dominating, the offspring is compared with the nondominated solutions in the archive,
as summarized in Algorithm 12.4.

The archive maintains a set of nondominated solutions to the MOO. The size of the
archive is restricted. When an offspring dominates the current solutions in the archive,
it is included in the archive. When the offspring is dominated by any of the solutions
in the archive, the offspring is not included in the archive. When the offspring and
the solutions in the archive are nondominating, the offspring is accepted and included
in the archive based on the degree of crowding in the corresponding area of objective
space.

To keep track of crowding, a grid is defined over objective space, and for each cell of the
grid a counter is maintained to keep track of the number of nondominated solutions
for that part of the Pareto front. When an offspring is accepted into the archive, and
the archive has reached its capacity, the offspring replaces one of the solutions in the
highest populated grid cell (provided that the grid cell corresponding to the offspring
has a lower frequency count). When the parent and its offspring are nondominating,
the one with the lower frequency count is accepted in the archive.

The PAES is summarized in Algorithm 12.3.

Costa and Oliveira [159] developed a different approach to ensure that nondominated
solutions survive to next generations, and to produce diverse solutions with respect to
objective space. Fitnesses of individuals are based on a Pareto ranking, where individ-
uals are grouped into a number of Pareto fronts. An individual’s fitness is determined
based on the Pareto front in which the individual resides. At each generation, the
Pareto ranking process proceeds as follows. All of the nondominated solutions from
the λ offspring, or µ + λ parents and offspring, form the first Pareto front. These
individuals are then removed, and the nondominating solutions from the remainder of
the individuals form the second Pareto front. This process of forming Pareto fronts
continues until all λ (or µ + λ) individuals are assigned to a Pareto front. Individuals
of the first Pareto front is assigned a fitness of 1/nc, where nc is the niche count. The
niche count is the number of individuals in this front that lies within a distance of
σshare from the individual (distance is measured with respect to objective space). The
threshold, σshare, is referred to as the niche radius. Individuals of the next Pareto
front is assigned a fitness of (1+ fworst)/nc, where fworst is the worst fitness from the
previous front. This process of fitness assignment continues until all individuals have
been assigned a fitness.

The fitness sharing approach described above promotes diversity of nondominated
solutions. The process of creating Pareto fronts ensures that dominated individuals are
excluded from future generations as follows: Depending on the ES used, µ individuals
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Algorithm 12.3 Pareto Archived Evolution Strategy

Set generation counter;
Generate a random parent solution;
Evaluate the parent;
Add the parent to the archive;
while stopping condition(s) not true do

Create offspring through mutation;
Evaluate offspring;
if offspring is not dominated by parent then

Compare offspring with solutions in the archive;
Update the archive using Algorithm 12.4;
if offspring dominated parent then

Offspring survives to new generation to become the parent;
end
else

//nondominating case
Select the individual that maps to the grid cell with lowest frequency
count;

end
end

end

Algorithm 12.4 Archive Update Algorithm used by PAES

Input: A candidate solution and an archive of nondominated solutions;
Output: An updated archive;
if candidate is dominated by any member of the archive then

Reject the candidate;
end
else

if candidate dominates any solutions in the archive then
Remove all dominated members from the archive;
Add candidate to the archive;

end
else

if archive is full then
if candidate will increase diversity in the archive then

Remove the solution with the highest frequency from the archive;
end
Add candidate to the archive;

end
end

end
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are selected from λ or µ + λ individuals to form the new population. Individuals are
sorted according to their fitness values in ascending order. If the number of individuals
in the first front is greater than µ, the next population is selected from the first front
individuals using tournament selection. Otherwise the best µ individuals are selected.
An archive of fixed size is maintained to contain a set of nondominated solutions, or
elite. A specified number of these solutions are randomly selected and included in the
next population.

At each generation, each Pareto optimal solution of the current population is tested
for inclusion in the archive. The candidate solution is included if

• all solutions in the archive are different from the candidate solution, thereby
further promoting diversity,

• none of the solutions in the archive dominates the candidate solution, and

• the distance between the candidate and any of the solutions in the archive is
larger than a defined threshold.

Other ES approaches to solve MOPs can be found in [395, 464, 613, 637].

12.6.3 Dynamic and Noisy Environments

Beyer [61, 62, 63, 64] provided the first theoretical analyses of ES. In [61] Beyer made
one of the first statements claiming that ES are robust against disturbances of the
search landscape. Bäck and Hammel [42] provided some of the first empirical results
to show that low levels of noise in the objective function do not have an influence on
performance. Under higher noise levels, they recommended that the (µ, λ)-ES, with
µ > 1 be used, due to its ability to maintain diversity. In a more elaborate study,
Bäck [40] reconfirmed these statements and showed that the (µ, λ)-ES was perfectly
capable to track dynamic optima for a number of different dynamic environments.

Markon et al. [562] showed that (µ + λ)-ES with threshold-selection is capable of
optimizing noisy functions. With threshold-selection an offspring is selected only if its
performance is better than its parents by a given margin.

Arnold and Beyer [32] provided a study of the performance of ES on noisy functions,
where noise is generated from a Gaussian, Cauchy, or χ2

1 distribution. Beyer [65] and
Arnold [31] showed that rescaled mutations improve the performance of ES on noisy
functions. Under rescaled mutations, mutational step sizes are multiplied by a scaling
factor (which is greater than one) to allow larger step sizes, while preventing that these
large step sizes are inherited by offspring. Instead, the smaller step sizes are inherited.

12.6.4 Niching

In order to locate multiple solutions, Aichholzer et al. [12] developed a multipopulation
ES, referred to as the τ (µ/ρ, κ, λ)-ES, where τ is the number of subpopulations and κ
specifies the number of generations that each individual is allowed to survive. Given τ
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clusters, recombination proceeds as follows: One of the clusters is randomly selected,
and roulette wheel selection is used to select one of the individuals from this cluster
as one of the parents. The second parent is selected from any cluster, but such that
individuals from remote clusters are selected with a low probability. Over time, clusters
tend to form over local minima.

Shir and Bäck [785] proposed a dynamic niching algorithm for ES that identifies fitness-
peaks using a peak identification algorithm. Each fitness-peak will correspond to one
of the niches. For each generation, the dynamic niche ES applies the following steps:
The mutation operator is applied to each individual. After determination of the fitness
of each individual, the dynamic peak identification algorithm is applied to identify nK

niches. Individuals are assigned to their closest niche, after which recombination is
applied within niche boundaries. If required, niches are populated with randomly
generated individuals.

If nK niches have to be formed, they are created such that their peaks are a distance
of at least r

nx
√

nK
from one another, where

r =
1
2

√√√√ nx∑
j=1

(xmax,j − xmin,j)2 (12.50)

Peaks are formed from the current individuals of the population, by sequentially con-
sidering each as a fitness peak. If an individual is r

nx
√

nK
from already defined fitness

peaks, then that individual is considered as the next peak. This process continues
until nK peaks have been found or until all individuals have been considered.

Recombination considers a uniform distribution of resources. Each peak is allowed
µ̃ = µ

nK
parents, and produces λ̃ = λ

nK
offspring in every generation. For each

peak, λ̃ offspring are created as follows: One of the parents is selected from the
individuals of that niche using tournament selection. The other parent, which should
differ from the first parent, is selected as the best individual of that niche. If a niche
contains only one individual, the second parent will be the best individual from another
niche. Intermediate recombination is used for the strategy parameters, and discrete
recombination for the genotypes.

The selection operator selects µ̃ individuals for the next generation by selecting nλ̃ of
the best λ̃ offspring, along with the best µ̃− nλ̃ parents from that niche. If there are
not enough parents to make up a total of µ̃ individuals, the remainder is filled up by
generating random individuals.

New niches are generated at each generation. Repeated application of the above
process results in niches, where each niche represents a different solution.

Shir and Bäck [785] expanded the approach above to a (1, λ)-ES with corrrelated
mutations.
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Table 12.1 Applications of Evolution Strategies

Application Class References
Parameter optimization [256, 443, 548, 679]
Controller design [59, 456, 646]
Induction motor design [464]
Neural network training [59, 550]
Transformer design [952]
Computer security [52]
Power systems [204]

12.7 Applications of Evolution Strategies

The first application of ES was in experimental optimization as applied to hydrody-
namical problems [708]. Since then most new ES implementations were tested on
functional optimization problems. ES have, however, been applied to a number of
real-world problems, as summarized in Table 12.1 (note that this is not an exhaustive
list of applications).

12.8 Assignments

1. Discuss the differences and similarities between ES and EP.

2. Can an ES that utilizes strategy parameters be considered a cultural algorithm?
Motivate your answer.

3. Determine if the reward scheme as given in equation (12.20) is applicable to
minimization or maximization tasks. If it is for minimization (maximization)
show how it can be changed for maximization (minimization).

4. Identify problems with the reinforcement learning approach where the reward
is proportional to changes in phenotypic space. Do the same for the approach
where reward is proportional to step sizes in decision (genetic) space.

5. Implement an (1 + λ)-ES to train a FFNN on any problem of your choice, and
compare its performance with an (µ + 1)-ES, (µ + λ)-ES, and (µ, λ)-ES.

6. Evaluate the following approaches to initialize deviation strategy parameters:

(a) For all individuals, the same initial value is used for all components of the
genotype, i.e.

σij(0) = σ(0), ∀i = 1, . . . , ns, ∀j = 1, . . . , nx

where σ(0) = α minj=1,...,nx
{|xmax,j − xmin,j |} with α = 0.9.

(b) The same as above, but α = 0.1.
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(c) For each individual, a different initial value is used, but the same for each
component of the genotype, i.e.

σij(0) = σi(0), ∀j = 1, . . . , nx

where σi(0) ∼ U(0, α minj=1,...,nx
{|xmax,j − xmin,j |}) for α = 0.9 and α =

0.1.
(d) The same as above, but with σi(0) ∼ |N(0, α minj=1,...,nx

{|xmax,j −
xmin,j |})| for α = 0.9 and α = 0.1.

(e) Each component of each genotype uses a different initial value, i.e.

σij(0) ∼ |N(0, α min
j=1,...,nx

{|xmax,j−xmin,j |})|, ∀i = 1, . . . , ns, ∀j = 1, . . . , nx

for α ∼ U(0, 1).

7. Discuss the advantages of using a lifespan within (µ, κ, λ)-ES compared to (µ, λ)-
ES.

8. True or false: (µ + λ)-ES implements a hill-climbing search. Motivate your
answer.



Chapter 13

Differential Evolution

Differential evolution (DE) is a stochastic, population-based search strategy developed
by Storn and Price [696, 813] in 1995. While DE shares similarities with other evolu-
tionary algorithms (EA), it differs significantly in the sense that distance and direction
information from the current population is used to guide the search process. Further-
more, the original DE strategies were developed to be applied to continuous-valued
landscapes.

This chapter provides an overview of DE, organized as follows: Section 13.1 discusses
the most basic DE strategy and illustrates the method of adaptation. Alternative DE
strategies are described in Sections 13.2 and 13.3. Section 13.4 shows how the original
DE can be applied to discrete-valued and binary-valued landscapes. A number of
advanced topics are covered in Section 13.5, including multi-objective optimization
(MOO), constraint handling, and dynamic environments. Some applications of DE
are summarized in Section 13.6.

13.1 Basic Differential Evolution

For the EAs covered in the previous chapters, variation from one generation to the next
is achieved by applying crossover and/or mutation operators. If both these operators
are used, crossover is usually applied first, after which the generated offspring are
mutated. For these algorithms, mutation step sizes are sampled from some probability
distribution function. DE differs from these evolutionary algorithms in that

• mutation is applied first to generate a trial vector, which is then used within the
crossover operator to produce one offspring, and

• mutation step sizes are not sampled from a prior known probability distribution
function.

In DE, mutation step sizes are influenced by differences between individuals of the
current population.

Section 13.1.1 discusses the concept of difference vectors, used to determine muta-
tion step sizes. The mutation, crossover, and selection operators are described in
Sections 13.1.2 to 13.1.4. Section 13.1.5 summarizes the DE algorithm, and control
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parameters are discussed in Section 13.1.6. A geometric illustration of the DE variation
approach is given in Section 13.1.7.

13.1.1 Difference Vectors

The positions of individuals provide valuable information about the fitness landscape.
Provided that a good uniform random initialization method is used to construct the
initial population, the initial individuals will provide a good representation of the
entire search space, with relatively large distances between individuals. Over time,
as the search progresses, the distances between individuals become smaller, with all
individuals converging to the same solution. Keep in mind that the magnitude of the
initial distances between individuals is influenced by the size of the population. The
more individuals in a population, the smaller the magnitude of the distances.

Distances between individuals are a very good indication of the diversity of the current
population, and of the order of magnitude of the step sizes that should be taken
in order for the population to contract to one point. If there are large distances
between individuals, it stands to reason that individuals should make large step sizes
in order to explore as much of the search space as possible. On the other hand,
if the distances between individuals are small, step sizes should be small to exploit
local areas. It is this behaviour that is achieved by DE in calculating mutation step
sizes as weighted differences between randomly selected individuals. The first step of
mutation is therefore to first calculate one or more difference vectors, and then to use
these difference vectors to determine the magnitude and direction of step sizes.

Using vector differentials to achieve variation has a number of advantages. Firstly,
information about the fitness landscape, as represented by the current population, is
used to direct the search. Secondly, due to the central limit theorem [177], mutation
step sizes approaches a Gaussian (Normal) distribution, provided that the population
is sufficiently large to allow for a good number of difference vectors [811].1 The mean
of the distribution formed by the difference vectors are always zero, provided that
individuals used to calculate difference vectors are selected uniformly from the pop-
ulation [695, 164]. Under the condition that individuals are uniformly selected, this
characteristic follows from the fact that difference vectors (xi1 − xi2) and (xi2 − xi1)
occur with equal frequency, where xi1 and xi2 are two randomly selected individuals.
The zero mean of the resulting step sizes ensures that the population will not suffer
from genetic drift. It should also be noted that the deviation of this distribution is
determined by the magnitude of the difference vectors. Eventually, differentials will
become infinitesimal, resulting in very small mutations.

Section 13.2 shows that more than one differential can be used to determine the muta-
tion step size. If nv is the number of differentials used, and ns is the population size,
then the total number of differential perturbations is given by [429](

ns

2nv

)
2nv! ≈ O(n2nv

s ) (13.1)

1The central limit theorem states that the probability distribution governing a random variable
approaches the Normal distribution as the number of samples of that random variable tends to infinity.
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Equation (13.1) expresses the total number of directions that can be explored per
generation. To increase the exploration power of DE, the number of directions can be
increased by increasing the population size and/or the number of differentials used.

At this point it is important to emphasize that the original DE was developed for
searching through continuous-valued landscapes. The sections that follow will show
that exploration of the search space is achieved using vector algebra, applied to the
individuals of the current population.

13.1.2 Mutation

The DE mutation operator produces a trial vector for each individual of the current
population by mutating a target vector with a weighted differential. This trial vector
will then be used by the crossover operator to produce offspring. For each parent,
xi(t), generate the trial vector, ui(t), as follows: Select a target vector, xi1(t), from
the population, such that i �= i1. Then, randomly select two individuals, xi2 and xi3 ,
from the population such that i �= i1 �= i2 �= i3 and i2, i3 ∼ U(1, ns). Using these
individuals, the trial vector is calculated by perturbing the target vector as follows:

ui(t) = xi1(t) + β(xi2(t)− xi3(t)) (13.2)

where β ∈ (0,∞) is the scale factor, controlling the amplication of the differential
variation.

Different approaches can be used to select the target vector and to calculate differen-
tials as discussed in Section 13.2.

13.1.3 Crossover

The DE crossover operator implements a discrete recombination of the trial vector,
ui(t), and the parent vector, xi(t), to produce offspring, x

′
i(t). Crossover is imple-

mented as follows:

x
′
ij(t) =

{
uij(t) if j ∈ J
xij(t) otherwise (13.3)

where xij(t) refers to the j-th element of the vector xi(t), and J is the set of element
indices that will undergo perturbation (or in other words, the set of crossover points).
Different methods can be used to determine the set, J , of which the following two
approaches are the most frequently used [811, 813]:

• Binomial crossover: The crossover points are randomly selected from the set
of possible crossover points, {1, 2, . . . , nx}, where nx is the problem dimension.
Algorithm 13.1 summarizes this process. In this algorithm, pr is the probability
that the considered crossover point will be included. The larger the value of
pr, the more crossover points will be selected compared to a smaller value. This
means that more elements of the trial vector will be used to produce the offspring,
and less of the parent vector. Because a probabilistic decision is made as to the
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inclusion of a crossover point, it may happen that no points may be selected, in
which case the offspring will simply be the original parent, xi(t). This problem
becomes more evident for low dimensional search spaces. To enforce that at least
one element of the offspring differs from the parent, the set of crossover points,
J , is initialized to include a randomly selected point, j∗.

• Exponential crossover: From a randomly selected index, the exponential
crossover operator selects a sequence of adjacent crossover points, treating the
list of potential crossover points as a circular array. The pseudocode in Algo-
rithm 13.2 shows that at least one crossover point is selected, and from this
index, selects the next until U(0, 1) ≥ pr or |J | = nx.

Algorithm 13.1 Differential Evolution Binomial Crossover for Selecting Crossover
Points

j∗ ∼ U(1, nx);
J ← J ∪ {j∗};
for each j ∈ {1, . . . , nx} do

if U(0, 1) < pr and j �= j∗ then
J ← J ∪ {j};

end
end

Algorithm 13.2 Differential Evolution Exponential Crossover for Selecting Crossover
Points

J ← {};
j ∼ U(0, nx − 1);
repeat

J ← J ∪ {j + 1};
j = (j + 1) mod nx;

until U(0, 1) ≥ pr or |J | = nx;

13.1.4 Selection

Selection is applied to determine which individuals will take part in the mutation
operation to produce a trial vector, and to determine which of the parent or the
offspring will survive to the next generation. With reference to the mutation operator,
a number of selection methods have been used. Random selection is usually used
to select the individuals from which difference vectors are calculated. For most DE
implementations the target vector is either randomly selected or the best individual is
selected (refer to Section 13.2).

To construct the population for the next generation, deterministic selection is used:
the offspring replaces the parent if the fitness of the offspring is better than its parent;
otherwise the parent survives to the next generation. This ensures that the average
fitness of the population does not deteriorate.
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13.1.5 General Differential Evolution Algorithm

Algorithm 13.3 provides a generic implementation of the basic DE strategies. Initial-
ization of the population is done by selecting random values for the elements of each
individual from the bounds defined for the problem being solved. That is, for each
individual, xi(t), xij(t) ∼ U(xmin,j , xmax,j), where xmin and xmax define the search
boundaries.

Any of the stopping conditions given in Section 8.7 can be used to terminate the
algorithm.

Algorithm 13.3 General Differential Evolution Algorithm

Set the generation counter, t = 0;
Initialize the control parameters, β and pr;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do

for each individual, xi(t) ∈ C(t) do
Evaluate the fitness, f(xi(t));
Create the trial vector, ui(t) by applying the mutation operator;
Create an offspring, x

′
i(t), by applying the crossover operator;

if f(x
′
i(t)) is better than f(xi(t)) then

Add x
′
i(t) to C(t + 1);

end
else

Add xi(t) to C(t + 1);
end

end
end
Return the individual with the best fitness as the solution;

13.1.6 Control Parameters

In addition to the population size, ns, the performance of DE is influenced by two
control parameters, the scale factor, β, and the probability of recombination, pr. The
effects of these parameters are discussed below:

• Population size: As indicated in equation (13.1), the size of the population
has a direct influence on the exploration ability of DE algorithms. The more
individuals there are in the population, the more differential vectors are available,
and the more directions can be explored. However, it should be kept in mind
that the computational complexity per generation increases with the size of the
population. Empirical studies provide the guideline that ns ≈ 10nx. The nature
of the mutation process does, however, provide a lower bound on the number of
individuals as ns > 2nv +1, where nv is the number of differentials used. For nv

differentials, 2nv different individuals are required, 2 for each differential. The
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additional individual represents the target vector.

• Scaling factor: The scaling factor, β ∈ (0,∞), controls the amplification of the
differential variations, (xi2−xi3). The smaller the value of β, the smaller the mu-
tation step sizes, and the longer it will be for the algorithm to converge. Larger
values for β facilitate exploration, but may cause the algorithm to overshoot
good optima. The value of β should be small enough to allow differentials to
explore tight valleys, and large enough to maintain diversity. As the population
size increases, the scaling factor should decrease. As explained in Section 13.1.1,
the more individuals in the population, the smaller the magnitude of the dif-
ference vectors, and the closer individuals will be to one another. Therefore,
smaller step sizes can be used to explore local areas. More individuals reduce
the need for large mutation step sizes. Empirical results suggest that large val-
ues for both ns and β often result in premature convergence [429, 124], and that
β = 0.5 generally provides good performance [813, 164, 19].

• Recombination probability: The probability of recombination, pr, has a di-
rect influence on the diversity of DE. This parameter controls the number of
elements of the parent, xi(t), that will change. The higher the probability of
recombination, the more variation is introduced in the new population, thereby
increasing diversity and increasing exploration. Increasing pr often results in
faster convergence, while decreasing pr increases search robustness [429, 164].

Most implementations of DE strategies keep the control parameters constant. Al-
though empirical results have shown that DE convergence is relatively insensitive to
different values of these parameters, performance (in terms of accuracy, robustnes, and
speed) can be improved by finding the best values for control parameters for each new
problem. Finding optimal parameter values can be a time consuming exercise, and
for this reason, self-adaptive DE strategies have been developed. These methods are
discussed in Section 13.3.3.

13.1.7 Geometrical Illustration

Figure 13.1(a) illustrates the mutation operator of the DE as described in Sec-
tion 13.1.2. The optimum is indicated by x∗, and it is assumed that β = 1.5. The
crossover operator is illustrated in Figure 13.1(b). For this illustration the offspring
consists of the first element of the trial vector, ui(t), and the second element of the
parent, xi(t).

13.2 DE/x/y/z

A number of variations to the basic DE as discussed in Section 13.1 have been devel-
oped. The different DE strategies differ in the way that the target vector is selected,
the number of difference vectors used, and the way that crossover points are deter-
mined. In order to characterize these variations, a general notation was adopted in
the DE literature, namely DE/x/y/z [811, 813]. Using this notation, x refers to the
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Figure 13.1 Differential Evolution Mutation and Crossover Illustrated
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method of selecting the target vector, y indicates the number of difference vectors
used, and z indicates the crossover method used. The DE strategy discussed in Sec-
tion 13.1 is referred to as DE/rand/1/bin for binomial crossover, and DE/rand/1/exp
for exponential crossover. Other basic DE strategies include [429, 811, 813]:

• DE/best/1/z: For this strategy, the target vector is selected as the best in-
dividual, x̂(t), from the current population. In this case, the trial vector is
calculated as

ui(t) = x̂(t) + β(xi2(t)− xi3(t)) (13.4)

Any of the crossover methods can be used.

• DE/x/nv/z: For this strategy, more than one difference vector is used. The
trial vector is calculated as

ui(t) = xi1(t) + β

nv∑
k=1

(xi2,k(t)− xi3,k(t)) (13.5)

where xi2,k(t)−xi3,k(t) indicates the k-th difference vector, xi1(t) can be selected
using any suitable method for selecting the target vector, and any of the crossover
methods can be used. With reference to equation (13.1), the larger the value of
nv, the more directions can be explored per generation.

• DE/rand-to-best/nv/z: This strategy combines the rand and best strategies
to calculate the trial vector as follows:

ui(t) = γx̂(t) + (1− γ)xi1(t) + β

nv∑
k=1

(xi2,k(t)− xi3,k(t)) (13.6)

where xi1(t) is randomly selected, and γ ∈ [0, 1] controls the greediness of the
mutation operator. The closer γ is to 1, the more greedy the search process
becomes. In other words, γ close to 1 favors exploitation while a value close to 0
favors exploration. A good strategy will be to use an adaptive γ, with γ(0) = 0.
The value of γ(t) increases with each new generation towards the value 1.

Note that if γ = 0, the DE/rand/y/z strategies are obtained, while γ = 1 gives
the DE/best/y/z strategies.

• DE/current-to-best/1+nv/z: With this strategy, the parent is mutated using
at least two difference vectors. One difference vector is calculated from the best
vector and the parent vector, while the rest of the difference vectors are calculated
using randomly selected vectors:

ui(t) = xi(t) + β(x̂(t)− xi(t)) + β

nv∑
k=1

(xi1,k(t)− xi2,k(t)) (13.7)

Empirical studies have shown that DE/rand/1/bin maintains good diversity, while
DE/current-to-best/2/bin shows good convergence characteristics [698]. Due to this
observation, Qin and Suganthan [698] developed a DE algorithm that dynamically
switch between these two strategies. Each of these strategies is assigned a probability
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of being applied. If ps,1 is the probability that DE/rand/1/bin will be applied, then
ps,2 = 1−ps,1 is the probability that DE/current-to-best/2/bin will be applied. Then,

ps,1 =
ns,1(ns,2 + nf,2)

ns,2(ns,1 + nf,1) + ns,1(ns,2 + nf,2)
(13.8)

where ns,1 and ns,2 are respectively the number of offspring that survive to the next
generation for DE/rand/1/bin, and nf,1 and nf,2 represent the number of discarded
offspring for each strategy. The more offspring that survive for a specific strategy, the
higher the probability for selecting that strategy for the next generation.

13.3 Variations to Basic Differential Evolution

The basic DE strategies have been shown to be very efficient and robust [811, 813,
811, 813]. A number of adaptations of the original DE strategies have been developed
in order to further improve performance. This section reviews some of these DE varia-
tions. Section 13.3.1 describe hybrid DE methods, a population-based DE is described
in Section 13.3.2, and self-adaptive DE strategies are discussed in Section 13.3.3.

13.3.1 Hybrid Differential Evolution Strategies

DE has been combined with other EAs, particle swarm optimization (PSO), and
gradient-based techniques. This section summarizes some of these hybrid methods.

Gradient-Based Hybrid Differential Evolution

One of the first DE hybrids was developed by Chiou and Wang [124], referred to
as the hybrid DE. As indicated in Algorithm 13.4, the hybrid DE introduces two
new operations: an acceleration operator to improve convergence speed – without
decreasing diversity – and a migration operator to provide the DE with the improved
ability to escape local optima.

The acceleration operator uses gradient descent to adjust the best individual toward
obtaining a better position if the mutation and crossover operators failed to improve
the fitness of the best individual. Let x̂(t) denote the best individual of the current
population, C(t), before application of the mutation and crossover operators, and let
x̂(t + 1) be the best individual for the next population after mutation and crossover
have been applied to all individuals. Then, assuming a minimization problem, the
acceleration operator computes the vector

x(t) =
{

x̂(t + 1) if f(x̂(t + 1)) < f(x̂(t))
x̂(t + 1)− η(t)∇f otherwise (13.9)

where η(t) ∈ (0, 1] is the learning rate, or step size; ∇f is the gradient of the objective
function, f . The new vector, x(t), replaces the worst individual in the new population,
C(t).
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Algorithm 13.4 Hybrid Differential Evolution with Acceleration and Migration

Set the generation counter, t = 0;
Initialize the control parameters, β and pr;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do

Apply the migration operator if necessary;
for each individual, xi(t) ∈ C(t) do

Evaluate the fitness, f(xi(t));
Create the trial vector, ui(t) by applying the mutation operator;
Create an offspring, x

′
i(t) by applying the crossover operator;

if f(x
′
i(t)) is better than f(xi(t)) then

Add x
′
i(t) to C(t + 1);

end
else

Add xi(t) to C(t + 1);
end

end
Apply the acceleration operator if necessary;

end
Return the individual with the best fitness as the solution;

The learning rate is initialized to one, i.e. η(0) = 1. If the gradient descent step failed
to create a new vector, x(t), with better fitness, the learning rate is reduced by a
factor. The gradient descent step is then repeated until η(t)∇f is sufficiently close to
zero, or a maximum number of gradient descent steps have been executed.

While use of gradient descent can significantly speed up the search, it has the disad-
vantage that the DE may get stuck in a local minimum, or prematurely converge. The
migration operator addresses this problem by increasing population diversity. This is
done by spawning new individuals from the best individual, and replacing the current
population with these new individuals. Individuals are spawned as follows:

x
′
ij(t) =

{
x̂j(t) + rij(xmin,j − x̂j) if U(0, 1) <

x̂j−xmin,j

xmax,j−xmin,j

x̂j(t) + rij(xmax,j − x̂j) otherwise
(13.10)

where rij ∼ U(0, 1). Spawned individual x
′
i(t) becomes xi(t + 1).

The migration operator is applied only when the diversity of the current population
becomes too small; that is, when


ns∑
i=1

xi(t) 	=x̂(t)

Iij(t)


 /(nx(ns − 1)) < ε1 (13.11)
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with

Iij(t) =
{

1 if |(xij(t)− x̂j(t))/x̂j(t)| > ε2
0 otherwise (13.12)

where ε1 and ε2 are respectively the tolerance for the population diversity and gene
diversity with respect to the best individual, x̂(t). If Iij(t) = 0, then the value of
the j-th element of individual i is close to the value of the j-th element of the best
individual.

Magoulas et al. [550] combined a stochastic gradient descent (SGD) [549] and DE in
a sequential manner to train artificial neural networks (NN). Here, SGD is first used
to find a good approximate solution using the process outlined in Algorithm 13.5. A
population of DE individuals is then created, with individuals in the neighborhood of
the solution returned by the SGD step. As outlined in Algorithm 13.6, the task of
DE is to refine the solution obtained from SGD by using then DE to perform a local
search.

Algorithm 13.5 Stochastic Gradient Descent for Neural Network Training

Initialize the NN weight vector, w(0);
Initialize the learning rate, η(0), and the meta-step size, ηm;
Set the pattern presentation number, t = 0;
repeat

for each training pattern, p do
Calculate E(w(t));
Calculate ∇E(w(t));
Update the weights using

w(t + 1) = w(t) + η(t)∇E(w(t)) (13.13)

Calculate the new step size using

η(t + 1) = η(t) + ηm < ∇E(w(t− 1)),∇E(w(t)) > (13.14)

t = t + 1;
end
Return w(t + 1) as the solution;

until until a termination condition is satisfied;

In Algorithms 13.5 and 13.6, < •, • > denotes the inner product between the two
given vectors, E is the NN training objective function (usually the sum-squared error),
σ is the standard deviation of mutations to w used to create DE individuals in the
neighborhood of w, and DT is the training set. The DE algorithm uses the objective
function, E , to assess the fitness of individuals.
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Algorithm 13.6 Differential Evolution with Stochastic Gradient Descent

w = SGD(DT );
Set the individual counter, i = 0;
Set C(0) = {};
repeat

i = i + 1;
xi(0) = w + N(0, σ);
C(0) ← C(0) + {xi(0)};

until i = ns;
Apply any DE strategy;
Return the best solution from the final population;

Evolutionary Algorithm-Based Hybrids

Due to the efficiency of DE, Hrstka and Kucerová [384] used the DE reproduction
process as a crossover operator in a simple GA.

Chang and Chang [113] used standard mutation operators to increase DE population
diversity by adding noise to the created trial vectors. In [113], uniform noise is added
to each component of trial vectors, i.e.

uij(t) = uij(t) + U(umin,j , umax,j) (13.15)

where umin,j and umax,j define the boundaries of the added noise. However, the
approach above should be considered carefully, as the expected mean of the noise
added is

umin,j + umax,j

2
(13.16)

If this mean is not zero, the population may suffer genetic drift. An alternative is to
sample the noise from a Gaussian or Cauchy distribution with zero mean and a small
deviation (refer to Section 11.2.1).

Sarimveis and Nikolakopoulos [758] use rank-based selection to decide which individ-
uals will take part to calculate difference vectors. At each generation, after the fitness
of all individuals have been calculated, individuals are arranged in descending or-
der, x1(t),x2(t), . . . ,xns

(t) where xi1(t) precedes xi2(t) if f(xi1(t)) > f(xi2(t)). The
crossover operator is then applied as summarized in Algorithm 13.7 assuming mini-
mization. After application of crossover on all the individuals, the resulting population
is again ranked in descending order. The mutation operator in Algorithm 13.8 is then
applied.

With reference to Algorithm 13.8, pm,i refers to the probability of mutation, with each
individual assigned a different probability based on its rank. The lower the rank of
an individual, the more unfit the individual is, and the higher the probability that
the individual will be mutated. Mutation step sizes are initially large, decreasing over
time due to the exponential term used in equations (13.17) and (13.18). The direction
of the mutation is randomly decided, using the random variable, r2.
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Algorithm 13.7 Rank-Based Crossover Operator for Differential Evolution

Rank all individuals in decreasing order of fitness;
for i = 1, . . . , ns do

r ∼ U(0, 1);
x

′
i(t) = xi(t) + r(xi+1(t)− xi(t));

if f(x
′
i(t)) < f(xi+1(t)) then

xi(t) = x
′
i(t);

end
end

Algorithm 13.8 Rank-Based Mutation Operator for Differential Evolution

Rank all individuals in decreasing order of fitness;
for i = 1, . . . , ns do

pm,i = ns−i+1
ns

;
for j = 1, . . . , nx do

r1 ∼ U(0, 1);
if (r1 > pm,i) then

r2 ∼ {0, 1};
r3 ∼ U(0, 1);
if (r2 = 0) then

x
′
ij(t) = xij(t) + (xmax,j − xij(t))r3e

−2t/nt (13.17)

end
if (r2 = 1) then

x
′
ij(t) = xij(t)− (xij(t)− xmin,j)r3e

−2t/nt (13.18)

end
end

end
if f(x

′
i(t)) < f(xi(t)) then

xi(t) = x
′
i(t);

end
end
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Particle Swarm Optimization Hybrids

A few studies have combined DE with particle swarm optimization(PSO) (refer to
Chapter 16).

Hendtlass [360] proposed that the DE reproduction process be applied to the particles
in a PSO swarm at specified intervals. At the specified intervals, the PSO swarm
serves as the population for a DE algorithm, and the DE is executed for a number
of generations. After execution of the DE, the evolved population is then further
optimized using PSO. Kannan et al. [437] apply DE to each particle for a number of
iterations, and replaces the particle with the best individual obtained from the DE
process.

Zhang and Xie [954], and Talbi and Batouche [836] follow a somewhat different ap-
proach. Only the personal best positions are changed using

y
′
ij(t + 1) =

{
ŷij(t) + δj if j ∈ Ji(t)
yij(t) otherwise (13.19)

where δ is the general difference vector defined as

δj =
y1j(t)− y2j(t)

2
(13.20)

with y1(t) and y2(t) randomly selected personal best positions; the notations yi(t) and
ŷi(t) are used to indicate a personal best and neighborhood best respectively (refer to
Chapter 16). The offspring, y

′
i(t + 1), replaces the current personal best, yi(t), only

if the offspring has a better fitness.

13.3.2 Population-Based Differential Evolution

In order to improve the exploration ability of DE, Ali and Törn [19] proposed to use
two population sets. The second population, referred to as the auxiliary population,
Ca(t), serves as an archive of those offspring rejected by the DE selection operator.
During the initialization process, ns pairs of vectors are randomly created. The best
of the two vectors is inserted as an individual in the population, C(0), while the other
vector, xa

i (0), is inserted in the auxiliary population, Ca(0). At each generation, for
each offspring created, if the fitness of the offspring is not better than the parent,
instead of discarding the offspring, x

′
i(t), it is considered for inclusion in the auxiliary

population. If f(x
′
i(t)) is better than xa

i (t), then x
′
i(t) replaces xa

i (t). The auxiliary set
is periodically used to replace the worst individuals in C(t) with the best individuals
from Ca(t).

13.3.3 Self-Adaptive Differential Evolution

Although empirical studies have shown that DE convergence is relatively insensitive
to control parameter values, performance can be greatly improved if parameter values
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are optimized. For the DE strategies discussed thus far, values of control parameters
are static, and do not change over time. These strategies require an additional search
process to find the best values for control parameters for each different problem – a
process that is usually time consuming. It is also the case that different values for a
control parameter are optimal for different stages of the optimization process. As an
alternative, a number of DE strategies have been developed where values for control
parameters adapt dynamically. This section reviews these approaches.

Dynamic Parameters

One of the first proposals for dynamically changing the values of the DE control pa-
rameters was proposed by Chang and Xu [112], where the probability of recombination
is linearly decreased from 1 to 0.7, and the scale factor is linearly increased from 0.3
to 0.5:

pr(t) = pr(t− 1)− (pr(0)− 0.7)/nt (13.21)
β(t) = β(t− 1)− (0.5− β(0))/nt (13.22)

where pr(0) = 1.0 and β(0) = 0.3; nt is the maximum number of iterations.

Abbass et al. [3] proposed an approach where a new value is sampled for the scale
factor for each application of the mutation operator. The scale factor is sampled from
a Gaussian distribution, β ∼ N(0, 1). This approach is also used in [698, 735]. In
[698], the mean of the distribution was changed to 0.5 and the deviation to 0.3 (i.e.
β ∼ N(0.5, 0.3)), due to the empirical results that suggest that β = 0.5 provides on
average good results. Abbass [2] extends this to the probability of recombination, i.e.
pr ∼ N(0, 1). Abbass refers incorrectly to the resulting DE strategy as being self-
adaptive. For self-adaptive strategies, values of control parameters are evolved over
time; this is not the case in [2, 3].

Self-Adaptive Parameters

Self-adaptive strategies usually make use of information about the search space as
obtained from the current population (or a memory of previous populations) to self-
adjust values of control parameters.

Ali and Törn [19] use the fitness of individuals in the current population to determine
a new value for the scale factor. That is,

β(t) =


 max

{
βmin, 1−

∣∣∣ fmax(t)
fmin(t)

∣∣∣} if
∣∣∣ fmax(t)

fmin(t)

∣∣∣ < 1

max
{

βmin, 1−
∣∣∣ fmin(t)
fmax(t)

∣∣∣} otherwise
(13.23)

which ensures that β(t) ∈ [βmin, 1), where βmin is a lower bound on the scaling factor;
fmin(t) and fmax(t) are respectively the minimum and maximum fitness values for the
current population, C(t). As fmin approaches fmax, the diversity of the population
decreases, and the value of β(t) approaches βmin – ensuring smaller step sizes when the
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population starts to converge. On the other hand, the smaller the ratio
∣∣∣ fmax(t)

fmin(t)

∣∣∣ (for

minimization problems) or
∣∣∣ fmin(t)
fmax(t)

∣∣∣ (for maximization problems), the more diverse
the population and the larger the step sizes will be – favoring exploration.

Qin and Suganthan [698] propose that the probability of recombination be self-adapted
as follows:

pr(t) ∼ N(µpr
(t), 0.1) (13.24)

where µpr
(0) = 0.5, and µpr

(t) is calculated as the average over successful values of
pr(t). A pr(t) value can be considered as being successful if the fitness of the best
individual improved under that value of pr(t). It is not clear if one probability is used
in [698] for the entire population, or if each individual has its own probability, pr,i(t).
This approach to self-adaptation can, however, be applied for both scenarios.

For the self-adaptive Pareto DE, Abbass [2] adapts the probability of recombination
dynamically as

pr,i(t) = pr,i1(t) + N(0, 1)[pr,i2(t)− pr,i3(t)] (13.25)

where i1 �= i2 �= i3 �= i ∼ U(1, . . . , ns), while sampling the scale factor from N(0, 1).
Note that equation (13.25) implies that each individual has its own, learned probability
of recombination.

Omran et al. [641] propose a self-adaptive DE strategy that makes use of the approach
in equation (13.25) to dynamically adapt the scale factor. That is, for each individual,

βi(t) = βi4(t) + N(0, 0.5)[βi5(t)− βi6(t)] (13.26)

where i4 �= i5 �= i6 �= i ∼ U(1, . . . , ns). The mutation operator as given in equation
(13.2) changes to

ui(t) = xi1(t) + βi(t)[xi2(t) + xi3(t)] (13.27)

The crossover probability can be sampled from a Gaussian distribution as discussed
above, or adapted according to equation (13.25).

13.4 Differential Evolution for Discrete-Valued
Problems

Differential evolution has been developed for optimizing continuous-valued parameters.
However, a simple discretization procedure can be used to convert the floating-point
solution vectors into discrete-valued vectors. Such a procedure has been used by a
number of researchers in order to apply DE to integer and mixed-integer programming
[258, 390, 499, 531, 764, 817]. The approach is quite simple: each floating-point value
of a solution vector is simply rounded to the nearest integer. For a discrete-valued
parameter where an ordering exists among the values of the parameter, Lampinen and
Zelinka [499] and Feoktistov and Janaqi [258] take the index number in the ordered
sequence as the discretized value.
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Pampará et al. [653] proposed an approach to apply DE to binary-valued search spaces:
The angle modulated DE (AMDE) [653] uses the standard DE to evolve a generating
function to produce bitstring solutions. This chapter proposes an alternative, the
binary DE (binDE) which treats each floating-point element of solution vectors as a
probability of producing either a bit 0 or a bit 1. These approaches are respectively
discussed in Sections 13.4.1 and 13.4.2.

13.4.1 Angle Modulated Differential Evolution

Pampará et al. [653] proposed a DE algorithm to evolve solutions to binary-valued
optimization problems, without having to change the operation of the original DE. This
is achieved by using a homomorphous mapping [487] to abstract a problem (defined
in binary-valued space) into a simpler problem (defined in continuous-valued space),
and then to solve the problem in the abstracted space. The solution obtained in the
abstracted space is then transformed back into the original space in order to solve the
problem. The angle modulated DE (AMDE) makes use of angle modulation (AM),
a technique derived from the telecommunications industry [697], to implement such a
homomorphous mapping between binary-valued and continuous-valued space.

The objective is to evolve, in the abstracted space, a bitstring generating function,
which will be used in the original space to produce bit-vector solutions. The generating
function as used in AM is

g(x) = sin(2π(x− a)× b× cos(2π(x− a)× c)) + d (13.28)

where x is a single element from a set of evenly separated intervals determined by the
required number of bits that need to be generated (i.e. the dimension of the original,
binary-valued space).

The coefficients in equation (13.28) determine the shape of the generating function: a
represents the horizontal shift of the generating function, b represents the maximum
frequency of the sin function, c represents the frequency of the cos function, and d
represents the vertical shift of the generating function. Figure 13.2 illustrates the
function for a = 0, b = 1, c = 1, and d = 0, with x ∈ [−2, 2]. The AMDE evolves
values for the four coefficients, a, b, c, and d. Solving a binary-valued problem thus
reverts to solving a 4-dimensional problem in a continuous-valued space. After each
iteration of the AMDE, the fitness of each individual in the population is determined by
substituting the evolved values for the coefficients (as represented by the individual)
into equation (13.28). The resulting function is sampled at evenly spaced intervals
and a bit value is recorded for each interval. If the output of the function in equation
(13.28) is positive, a bit-value of 1 is recorded; otherwise, a bit-value of 0 is recorded.
The resulting bit string is then evaluated by the fitness function defined in the original
binary-valued space in order to determine the quality of the solution.

The AMDE is summarized in Algorithm 13.9.

Pampará et al. [653] show that the AMDE is very efficient and provides accurate
solutions to binary-valued problems. Furthermore, the AMDE has the advantage that
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Figure 13.2 Angle Modulation Illustrated

Algorithm 13.9 Angle Modulated Differential Evolution

Generate a population of 4-dimensional individuals;
repeat

Apply any DE strategy for one iteration;
for each individual do

Substitute evolved values for coefficients a, b, c and d into equation (13.28);
Produce nx bit-values to form a bit-vector solution;
Calculate the fitness of the bit-vector solution in the original bit-valued space;

end
until a convergence criterion is satisfied;

an nx-dimensional binary-valued problem is transformed into a smaller 4-dimensional
continuous-valued problem.

13.4.2 Binary Differential Evolution

The binary DE (binDE) borrows concepts from the binary particle swarm optimizer
(binPSO), developed by Kennedy and Eberhart [450] (also refer to Section 16.5.7). As
with DE, particle swarm optimization (PSO; refer to Chapter 16) uses vector algebra
to calculate new search positions, and was therefore developed for continuous-valued
problems. In PSO, a velocity vector represents the mutation step sizes as stochastically
weighted difference vectors (i.e. the social and cognitive components). The binPSO
does not interpret the velocity as a step size vector. Rather, each component of the
velocity vector is used to compute the probability that the corresponding component
of the solution vector is bit 0 or bit 1.
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In a similar way, the binDE uses the floating-point DE individuals to determine a
probability for each component. These probabilities are then used to generate a bit-
string solution from the floating-point vector. This bitstring is used by the fitness
function to determine its quality. The resulting fitness is then associated with the
floating-point representation of the individual.

Let xi(t) represent a DE individual, with each xij(t) (j = 1, . . . , nx, where nx is
the dimension of the binary-valued problem) floating-point number. Then, the corre-
sponding bitstring solution, yi(t), is calcualted using

yij =
{

0 if f(xij(t)) ≥ 0.5
1 if f(xij(t)) < 0.5 (13.29)

where f is the sigmoid function,

f(x) =
1

1 + e−x
(13.30)

The fitness of the individual xi(t) is then simply the fitness obtained using the binary
representation, yi(t).

The binDE algorithm is summarized in Algorithm 13.10.

Algorithm 13.10 Binary Differential Evolution Algorithm

Initialize a population and set control parameter values;
t = 0;
while stopping condition(s) not true do

t = t + 1;
Select parent xi(t);
Select individuals for reproduction;
Produce one offspring, x

′
(t);

yi(t) = generated bitstring from xi(t);
y

′
i(t) = generated bitstring from x

′
i(t);

if f(y
′
i(t)) is better than f(x

′
i(t)) then

Replace parent, xi(t), with offspring, x
′
i(t);

end
else

Retain parent, xi(t);
end

end

13.5 Advanced Topics

The discussions in the previous sections considered application of DE to unconstrained,
single-objective optimization problems, where the fitness landscape remains static.
This section provides a compact overview of adaptations to the DE such that different
types of optimization problems as summarized in Appendix A can be solved using DE.
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13.5.1 Constraint Handling Approaches

With reference to Section A.6, the following methods have been used to apply DE to
solve constrained optimization problems as defined in Definition A.5:

• Penalty methods (refer to Section A.6.2), where the objective function is adapted
by adding a function to penalize solutions that violate constraints [113, 394, 499,
810, 884].

• Converting the constrained problem to an unconstrained problem by embedding
constraints in an augmented Lagrangian (refer to Section A.6.2) [125, 390, 528,
758]. Lin et al. [529] combines both the penalty and the augmented Lagrangian
functions to convert a constrained problem to an unconstrained one.

• In order to preserve the feasibility of initial solutions, Chang and Wu [114] used
feasible directions to determine step sizes and search directions.

• By changing the selection operator of DE, infeasible solutions can be rejected,
and the repair of infeasible solutions facilitated. In order to achieve this, the
selection operator accepts an offspring, x

′
i, under the following conditions [34,

56, 498]:

– if x
′
i satisfies all the constraints, and f(x

′
i) ≤ f(xi), then x

′
i replaces the

parent, xi (assuming minimization);
– if x

′
i is feasible and xi is infeasible, then x

′
i replaces xi;

– if both x
′
i and xi are infeasible, then if the number of constraints violated

by x
′
i is less than or equal to the number of constraints violated by xi, then

x
′
i replaces xi.

In the case that both the parent and the offspring represent infeasible solutions,
there is no selection pressure towards better parts of the fitness landscape; rather,
towards solutions with the smallest number of violated constraints.

Boundary constraints are easily enforced by clamping offspring to remain within the
given boundaries [34, 164, 498, 499]:

x
′
ij(t) =

{
xmin,j + U(0, 1)(xmax,j − xmin,j) if x

′
ij(t) < xmin,j or x

′
ij > xmax,j

x
′
ij(t) otherwise

(13.31)
This restarts the offspring to a random position within the boundaries of the search
space.

13.5.2 Multi-Objective Optimization

As defined in Definition A.10, multi-objective optimization requires multiple, conflict-
ing objectives to be simultaneously optimized. A number of adaptations have been
made to DE in order to solve multiple objectives, most of which make use of the
concept of dominance as defined in Definition A.11.

Multi-objective DE approaches include:
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• Converting the problem into a minimax problem [390, 925].

• Weight aggregation methods [35].

• Population-based methods, such as the vector evaluated DE (VEDE) [659],
based on the vector evaluated GA (VEGA) [761] (also refer to Section 9.6.3). If
K objectives have to be optimized, K sub-populations are used, where each sub-
population optimizes one of the objectives. These sub-populations are organized
in a ring topology (as illustrated in Figure 16.4(b)). At each iteration, before
application of the DE reproduction operators, the best individual, Ck.x̂(t), of
population Ck migrates to population Ck+1 (that of Ck+1 migrates to C0), and is
used in population Ck+1 to produce the trial vectors for that population.

• Pareto-based methods, which change the DE operators to include the dominance
concept.

Mutation: Abbass et al. [2, 3] applied mutation only on non-dominated solu-
tions within the current generation. Xue et al. [928] computed the differential
as the difference between a randomly selected individual, xi1 , and a randomly
selected vector, xi2 , that dominates xi1 ; that is, xi1 � xi2 . If xi1 is not domi-
nated by any other individual of the current generation, the differential is set to
zero.

Selection: A simple change to the selection operator is to replace the parent, xi,
with the offspring x

′
i, only if x

′
i � xi [3, 2, 659]. Alternatively, ideas from non-

dominated sorting genetic algorithms [197] can be used, where non-dominated
sorting and ranking is applied to parents and offspring [545, 928]. The next
population is then selected with preference to those individuals with a higher
rank.

13.5.3 Dynamic Environments

Not much research has been done in applying DE to dynamically changing landscapes
(refer to Section A.9). Chiou and Wang [125] applied the DE with acceleration and
migration (refer to Algorithm 13.4) to dynamic environments, due to the improved
exploration as provided by the migration phase. Magoulas et al. [550] applied the
SGDDE (refer to Algorithm 13.6) to slowly changing fitness landscapes.

Mendes and Mohais [577] develop a DE algorithm, referred to as DynDE, to locate
and maintain multiple solutions in dynamically changing landscapes. Firstly, it is
important to note the following assumptions:

1. It is assumed that the number of peaks, nX , to be found are known, and that
these peaks are evenly distributed through the search space.

2. Changes in the fitness landscape are small and gradual.

DynDE uses multiple populations, with each population maintaining one of the peaks.
To ensure that each peak represents a different solution, an exclusion strategy is fol-
lowed: At each iteration, the best individuals of each pair of sub-populations are com-
pared. If these global best positions are too close to one another, the sub-population
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with the worst global best solution is re-initialized. DynDE re-initializes the one sub-
population when

E(Ck1 .x̂(t), Ck2 .x̂(t)) <
X

2n
1/nx

X
(13.32)

where E(Ck1 .x̂(t), Ck2 .x̂(t)) is the Euclidean distance between the best individuals of
sub-populations Ck1 and Ck2 , X represents the extent of the search space, nX is the
number of peaks, and nx is the search space dimension. It is this condition that
requires assumption 1, which suffers from obvious problems. For example, peaks are
not necessarily evenly distributed. It may also be the case that two peaks exist with a
distance less than X

2n
1/nx
X

from one another. Also, it is rarely the case that the number

of peaks is known.

After a change is detected, a strategy is followed to increase diversity. This is done by
assigning a different behavior to some of the individuals of the affected sub-population.
The following diversity increasing strategies have been proposed [577]:

• Re-initialize the sub-populations: While this strategy does maximize diversity,
it also leads to a severe loss of knowledge obtained about the search space.

• Use quantum individuals: Some of the individuals are re-initialized to random
points inside a ball centered at the global best individual, x̂(t), as outlined in
Algorithm 13.11. In this algorithm, Rmax is the maximum radius from x̂(t).

• Use Brownian individuals: Some positions are initialized to random positions
around x̂(t), where the random step sizes from x̂(t) are sampled from a Gaussian
distribution. That is,

xi(t) = x̂(t) + N(0, σ) (13.33)

• Introduce some form of entropy: Some individuals are simply added noise, sam-
pled from a Gaussian distribution. That is,

xi(t) = xi(t) + N(0, σ) (13.34)

Algorithm 13.11 Initialization of Quantum Individuals

for each individual, xi(t), to be re-initialized do
Generate a random vector, ri ∼ N(0, 1);
Compute the distance of ri from the origin, i.e.

E(ri,0) =

√√√√ nx∑
j=1

rij (13.35)

Find the radius, R ∼ U(0, Rmax);
xi(t) = x̂(t) + Rri/E(ri,0);

end
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13.6 Applications

Differential evolution has mostly been applied to optimize functions defined over
continuous-valued landscapes [695, 811, 813, 876]. Considering an unconstrained op-
timization problem, such as listed in Section A.5.3, each individual, xi, will be repre-
sented by an nx-dimensional vector where each xij ∈ R. For the initial population,
each individual is initialized using

xij ∼ U(xmin,j , xmax,j) (13.36)

The fitness function is simply the function to be optimized.

DE has also been applied to train neural networks (NN) (refer to Table 13.1 for
references). In this case an individual represents a complete NN. Each element of an
individual is one of the weights or biases of the NN, and the fitness function is, for
example, the sum-squared error (SSE).

Table 13.1 summarizes a number of real-world applications of DE. Please note that
this is not meant to be a complete list.

Table 13.1 Applications of Differential Evolution

Application Class Reference
Clustering [640, 667]
Controllers [112, 124, 164, 165, 394, 429, 438, 599]
Filter design [113, 810, 812, 883]
Image analysis [441, 521, 522, 640, 926]
Integer-Programming [390, 499, 500, 528, 530, 817]
Model selection [331, 354, 749]
NN training [1, 122, 550, 551, 598]
Scheduling [528, 531, 699, 748]
System design [36, 493, 496, 848, 839, 885]

13.7 Assignments

1. Show how DE can be used to train a FFNN.

2. Discuss the influence of different values for the population diversity tolerance,
ε1, and the gene diversity tolerance, ε2, as used in equations (13.11) and (13.12)
for the hybrid DE.

3. Discuss the merits of the following two statements:

(a) If the probability of recombination is very low, then DE exhibits a high
probability of stagnation.

(b) For a small population size, it is sensible to have a high probability of
recombination.
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4. For the DE/rand-to-best/y/z strategies, suggest an approach to balance explo-
ration and exploitation.

5. Discuss the consequences of too large and too small values of the standard devi-
ation, σ, used in Algorithm 13.6.

6. Explain in detail why the method for adding noise to trial vectors as given in
equation (13.15) may result in genetic drift.

7. With reference to the DynDE algorithm in Section 13.5.3, explain the effect of
very small and very large values of the standard deviation, σ.

8. Researchers in DE have suggested that the recombination probability should
be sampled from a Gaussian distribution, N(0, 1), while others have suggested
that N(0.5, 0.15) should be used. Compare these two suggestions and provide a
recommendation as to which approach is best.

9. Investigate the performance of a DE strategy if the scale factor is sampled from
a Cauchy distribution.



Chapter 14

Cultural Algorithms

Standard evolutionary algorithms (as discussed in previous chapters) have been suc-
cessful in solving diverse and complex problems in search and optimization. The search
process used by standard EAs is unbiased, using little or no domain knowledge to guide
the search process. However, the performance of EAs can be improved considerably if
domain knowledge is used to bias the search process. Domain knowledge then serves
as a mechanism to reduce the search space by pruning undesirable parts of the solution
space, and by promoting desirable parts. Cultural evolution (CE) [717], based on the
principles of human social evolution, was developed by Reynolds [716, 717, 724] in the
early 1990s as an approach to bias the search process with prior knowledge about the
domain as well as knowledge gained during the evolutionary process.

Evolutionary computation mimics biological evolution, which is based on the principle
of genetic inheritance. In natural systems, genetic evolution is a slow process. Cultural
evolution, on the other hand, enables societies to adapt to their changing environments
at rates that exceed that of biological evolution.

The rest of this chapter is organized as follows: A compact definition of culture and
artificial culture is given in Section 14.1. A general cultural algorithm (CA) framework
is given in Section 14.2, outlining the different components of CA implementations.
Section 14.3 describes the belief space component of CAs. A fuzzy CA approach is
described in Section 14.4. Advanced topics, including constrained environments are
covered in Section 14.5. Applications of CAs are summarized in Section 14.6.

14.1 Culture and Artificial Culture

A number of definitions of culture can be found, for example1:

• Culture is a system of symbolically encoded conceptual phenomena that are
socially and historically transmitted within and between social groups [223].

• Culture refers to the cumulative deposit of knowledge, experience, beliefs, val-
ues, attitudes, meanings, hierarchies, religion, notions of time, roles, spatial re-
lations, concepts of the universe, and material objects and possessions acquired

1www.tamu.edu/classes/cosc/choudhury/culture.html
Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
c©2007 John Wiley & Sons, Ltd
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by a group of people in the course of generations through individual and group
striving.

• Culture is the sum total of the learned behavior of a group of people that is
generally considered to be the tradition of that people and is transmitted from
generation to generation.

• Culture is a collective programming of the mind that distinguishes the members
of one group or category of people from another.

In terms of evolutionary computation, culture is modeled as the source of data that
influences the behavior of all individuals within that population. This differs from EP
and ES where the behavioral characteristics of individuals – for the current generation
only – are modeled using phenotypes. Within cultural algorithms, culture stores the
general behavioral traits of the population. Cultural information is then accessible to
all the individuals of a population, and over many generations.

14.2 Basic Cultural Algorithm

A cultural algorithm (CA) is a dual-inheritance system, which maintains two search
spaces: the population space (to represent a genetic component based on Darwinian
principles), and a belief space (to represent a cultural component). It is the latter that
distinguishes CAs from other EAs.

The belief space models the cultural information about the population, while the
population space represents the individuals on a genotypic and/or phenotypic level.
Both the population and belief spaces evolve in parallel, with both influencing one
another. A communication protocol therefore forms an integral part of a CA. Such a
protocol defines two communication channels. One for a select group of individuals to
adapt the set of beliefs, and another defining the way that the beliefs influence all of
the individuals in the population space.

A pseudocode cultural algorithm is given in Algorithm 14.1, and illustrated in Fig-
ure 14.1.

Algorithm 14.1 Cultural Algorithm

Set the generation counter, t = 0;
Create and initialize the population space, C(0);
Create and initialize the belief space, B(0);
while stopping condition(s) not true do

Evaluate the fitness of each xi(t) ∈ C(t);
Adjust (B(t), Accept (C(t)));
Variate (C(t), Influence (B(t)));
t = t + 1;
Select the new population;

end
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Accept Influence population

Fitness evaluation

Variate population

Selection

Adjust beliefs

Figure 14.1 Illustration of Population and Belief Spaces of Cultural Algorithms

At each iteration (each generation), individuals are first evaluated using the fitness
function specified for the EA on the population level. An acceptance function is then
used to determine which individuals from the current population have an influence
on the current beliefs. The experience of the accepted individuals is then used to
adjust the beliefs (to simulate evolution of culture). The adjusted beliefs are then
used to influence the evolution of the population. The variation operators (crossover
and mutation) use the beliefs to control the changes in individuals. This is usually
achieved through self-adapting control parameters, as functions of the beliefs.

The population space is searched using any of the standard EAs, for example an EP
[720] or GA [716]. Recently, particle swarm optimization (PSO) has been used on
the population space level [219]. The next section discusses the belief space in more
detail.

14.3 Belief Space

The belief space serves as a knowledge repository, where the collective behaviors (or
beliefs) of the individuals in the population space are stored. The belief space is also
referred to as the meme pool, where a meme is a unit of information transmitted by
behavioral means. The belief space serves as a global knowledge repository of behav-
ioral traits. The memes within the belief space are generalizations of the experience
of individuals within the population space. These experiential generalizations are ac-
cumulated and shaped over several generations, and not just one generation. These
generalizations express the beliefs as to what the optimal behavior of individuals con-
stitutes.
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The belief space can effectively be used to prune the population space. Each individual
represents a point in the population search space: the knowledge within the belief
space is used to move individuals away from undesirable areas in the population space
towards more promising areas.

Some form of communication protocol is implemented to transfer information between
the two search spaces. The communication protocol specifies operations that control
the influence individuals have on the structure of the belief space, as well as the
influence that the belief space has on the evolution process in the population level.
This allows individuals to dictate their culture, causing culture to also evolve. On
the other hand, the cultural information is used to direct the evolution on population
level towards promising areas in the search space. It has been shown that the use of
a belief space reduces computational effort substantially [717, 725].

Various CAs have been developed, which differ in the data structures used to model
the belief space, the EA used on the population level, and the implementation of the
communication protocol. Section 14.3.1 provides an overview of different knowledge
components within the belief space. Acceptance and influence functions are discussed
in Sections 14.3.2 and 14.3.4 respectively.

14.3.1 Knowledge Components

The belief space contains a number of knowledge components to represent the be-
havioral patterns of individuals from the population space. The types of knowledge
components and data structures used to represent the knowledge depends on the prob-
lem being solved. The first application of CAs used version spaces represented as a
lattice to store schemata [716]. For function optimization, vector representations are
used (discussed below) [720]. Other representations that have been used include fuzzy
systems [719, 725], ensemble structures [722], and hierarchical belief spaces [420].

In general, the belief space contains at least two knowledge components [720]:

• A situational knowledge component, which keeps track of the best solutions
found at each generation.

• A normative knowledge component, which provides standards for individual
behaviors, used as guidelines for mutational adjustments to individuals. In the
case of function optimization, the normative knowledge component maintains
a set of intervals, one for each dimension of the problem being solved. These
intervals characterize the range of what is believed to be good areas to search in
each dimension.

If only these two components are used, the belief space is represented as the tuple,

B(t) = (S(t),N (t)) (14.1)

where S(t) represents the situational knowledge component, and N (t) represents the
normative knowledge component. The situational component is the set of best solu-
tions,

S(t) = {ŷl(t) : l = 1, . . . , nS} (14.2)
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and the normative component is represented as

N (t) = (X1(t),X2(t), . . . ,Xnx
(t)) (14.3)

where, for each dimension, the following information is stored:

Xj(t) = (Ij(t), Lj(t), Uj(t)) (14.4)

Ij denotes the closed interval, Ij(t) = [xmin,j(t), xmax,j(t)] = {x : xmin,j ≤ x ≤
xmax,j}, Lj(t) is the score for the lower bound, and Uj(t) is the score for the upper
bound.

In addition to the above knowledge components, the following knowledge components
can be added [672, 752]:

• A domain knowledge component, which is similar to the situational knowledge
component in that it stores the best positions found. The domain knowledge
component differs from the situational knowledge component in that knowledge
is not re-initialized at each generation, but contains an archive of best solutions
since evolution started – very similar to the hall-of-fame used in coevolution.

• A history knowledge component, used in problems where search landscapes
may change. This component maintains information about sequences of envi-
ronmental changes. For each environmental change, the following information is
stored: the current best solution, the directional change for each dimension and
the current change distance.

• A topographical knowledge component, which maintains a multi-dimensional
grid representation of the search space. Information is kept about each cell of
the grid, e.g. frequency of individuals that occupy the cell. Such frequency
information can be used to improve exploration by forcing mutation direction
towards unexplored areas.

The type of knowledge components and the way that knowledge is represented have
an influence on the acceptance and influence functions, as discussed in the following
sections.

14.3.2 Acceptance Functions

The acceptance function determines which individuals from the current population will
be used to shape the beliefs for the entire population. Static methods use absolute
ranking, based on fitness values, to select the top n% individuals. Any of the selection
methods for EAs (refer to Section 8.5) can be used, for example elitism, tournament
selection, or roulette-wheel selection, provided that the number of individuals remains
the same.

Dynamic methods do not have a fixed number of individuals that adjust the belief
space. Instead, the number of individuals may change from generation to generation.
Relative ranking, for example, selects individuals with above average (or median)
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performance [128]. Alternatively, the number of individuals is determined as

nB(t) = �nsγ

t
� (14.5)

with γ ∈ [0, 1]. Using this approach, the number of individuals used to adjust the
belief space is initially large, with the number decreasing exponentially over time.
Other simulated-annealing based schedules can be used instead.

Adaptive methods use information about the search space and process to self-adjust
the number of individuals to be selected. Reynolds and Chung [719] proposed a fuzzy
acceptance function to determine the number of individuals based on generation num-
ber and individual success ratio. Membership functions are defined to implement the
rules given in Algorithm 14.2.

14.3.3 Adjusting the Belief Space

For the purpose of this section, it is assumed that the belief space maintains a situ-
ational and normative knowledge component, and that a continuous, unconstrained
function is minimized.

With the number of accepted individuals, nB(t), known, the two knowledge compo-
nents can be updated as follows [720]:

• Situational knowledge: Assuming that only one element is kept in the situa-
tional knowledge component,

S(t + 1) = {ŷ(t + 1)} (14.6)

where

ŷ(t + 1) =
{

minl=1,...,nB(t){xl(t)} if f(minl=1,...,nB(t){xl(t)}) < f(ŷ(t))
ŷ(t) otherwise

(14.7)

• Normative knowledge: In adjusting the normative knowledge component, a
conservative approach is followed when narrowing intervals, thereby delaying
too early exploration. Widening of intervals is applied more progressively. The
interval update rule is as follows:

xmin,j(t + 1) =
{

xlj(t) if xlj(t) ≤ xmin,j(t) or f(xl(t)) < Lj(t)
xmin,j(t) otherwise (14.8)

xmax,j(t + 1) =
{

xlj(t) if xlj(t) ≥ xmax,j(t) or f(xl(t)) < Uj(t)
xmax,j(t) otherwise (14.9)

Lj(t + 1) =
{

f(xl(t)) if xlj(t) ≤ xmin,j(t) or f(xl(t)) < Lj(t)
Lj(t) otherwise (14.10)
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Algorithm 14.2 Fuzzy Rule-base for Cultural Algorithm Acceptance Function

if the current generation is early in the search then
if the success ratio is low then

Accept a medium number of individuals (30%);
end
if the success ratio is medium then

Accept a medium number of individuals;
end
if the success ratio is high then

Accept a larger number of individuals (40%);
end

end
if the current generation is in the middle stages of the search then

if the success ratio is low then
Accept a smaller number of individuals (20%);

end
if the success ratio is medium then

Accept a medium number of individuals;
end
if the success ratio is high then

Accept a medium number of individuals;
end

end
if the current generation is near the end of the search then

if the success ratio is low then
Accept a smaller number of individuals;

end
if the success ratio is medium then

Accept a smaller number of individuals;
end
if the success ratio is high then

Accept a medium number of individuals;
end

end

Uj(t + 1) =
{

f(xlj(t)) if xlj(t) ≥ xmax,j(t) or f(xl(t)) < Uj(t)
Uj(t) otherwise (14.11)

for each xl(t), l = 1, . . . , nB(t).

14.3.4 Influence Functions

Beliefs are used to adjust individuals in the population space to conform closer to the
global beliefs. The adjustments are realized via influence functions. To illustrate this
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process, assume that an EP is used as the search algorithm in the population space.
The resulting algorithm is referred to as a CAEP.

The belief space is used to determine the mutational step sizes, and the direction
of changes (i.e. whether step sizes are added or subtracted). Reynolds and Chung
[720] proposed four ways in which the knowledge components can be used within the
influence function:

• Only the normative component is used to determine step sizes during offspring
generation:

x
′
ij(t) = xij(t) + size(Ij(t))Nij(0, 1) (14.12)

where
size(Ij(t)) = xmax,j(t)− xmin,j(t) (14.13)

is the size of the belief interval for component j.

• Only the situational component is used for determining change direction:

x
′
ij(t) =




xij(t) + |σij(t)Nij(0, 1)| if xij(t) < ŷj(t) ∈ S(t)
xij(t)− |σij(t)Nij(0, 1)| if xij(t) > ŷj(t) ∈ S(t)
xij(t) + σij(t)Nij(0, 1) otherwise

(14.14)

where σij is the strategy parameter associated with component j of individual
i.

• The normative component is used to determine change directions, and the situ-
ational component is used to determine step sizes. Equation (14.14) is used, but
with

σij(t) = size(I(t)) (14.15)

• The normative component is used for both the search directions and step sizes:

xij(t) =




xij(t) + |size(Ij(t))Nij(0, 1)| if xij(t) < xmin,j(t)
xij(t)− |size(Ij(t))Nij(0, 1)| if xij(t) > xmax,j(t)
xij(t) + βsize(Ij(t))Nij(0, 1) otherwise

(14.16)

where β > 0 is a scaling coefficient.

14.4 Fuzzy Cultural Algorithm

Section 14.3.2 discussed a fuzzy acceptance function, which initially allows many in-
dividuals to adjust the belief space, and less individuals as the generation number
increases. This section discusses a completely fuzzy CA approach, where an alter-
native fuzzy acceptance function is used and both belief space and population space
adaptations are based on fuzzy logic. This fuzzy CA was shown to improve accuracy
and convergence speed [725].
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14.4.1 Fuzzy Acceptance Function

Reynolds and Zhu [725] proposed an acceptance function that selects few individuals
in the early steps of the search, but more as the generation number increases. The
motivation for this approach stems from the fact that the initial population usually
has only a few fit individuals that can sensibly contribute to the belief space.

As the first step, a fuzzy similarity matrix (or fuzzy equivalence relation), R, is con-
structed for the population space where

rij = 1− |f(xi)− f(xj)|∑ns

l=1 |f(xl)| (14.17)

for i, j = 1, . . . , ns, with ns the size of the population, and R = [rij ]. Before calculation
of R, the individuals are sorted from best to worst according to fitness. The equivalence
relation is then used to calculate the α-cuts matrix (refer to Section 20.4), Rα as
follows:

αij =
{

1 if rij > α(t)
0 if rij ≤ α(t) (14.18)

where α(t) is referred to as the refinement value, and Rα = [αij ] for i, j = 1, . . . , ns.
A value of αij = 1 indicates an elite individual that will be used to update the belief
space, while a value of αij = 0 indicates a non-elite individual. Because elements are
sorted according to fitness, the elite elements will occupy the first elements of Rα.

The refinement value is initialized to a large value, but bounded by the interval [0, 1],
which will ensure a small number of elite individuals. After each generation, the value
of α is changed according to

α(t + 1) =
{

γ1 if t ≥ ε
1− γ2(t− ε)/nt if t ∈ [0, ε) (14.19)

where γ1 and γ2 are positive constants (suggested to be γ1 = 0.2 and γ2 = 2.66 [725]),
and ε is set such that ε/tmax = 0.3.

14.4.2 Fuzzified Belief Space

Only two knowledge components are considered. The situational component is crisp
and stores the best individual. The normative component is fuzzified.

The fuzzy interval update rule occurs in the following steps for each xl(t), l =
1, . . . , nB(t):

1. Initialization: Upper and lower bounds are initialized to the domain, as follows:

xmin,lj(0) = xmin,j (14.20)
xmax,lj(0) = xmax,j (14.21)

where xminj and xmax,j are the domain bounds for component j.
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2. Calculate the center of the interval for each individual as

cij(t) =
1
2
(xmin,lj(t) + xmax,lj(t)) (14.22)

Interval bounds are adjusted until xmin,lj(t), xmax,lj(t) ∈ [0.9clj(t), 1.1clj(t)].

3. Compute the fuzzy membership functions, fL(xj) and fU (xj) for each individual
for the lower and upper bounds respectively:

fL(xj) =
1

1 + xα
j

(14.23)

fU (xj) =
1

1 + xα
j

(14.24)

for α ≥ 0.

4. Update the lower boundary of each component of individual l:

xmin,lj(t + 1) =




xmin,lj(t) + µ(xlj(t))(xlj(t)− xmin,lj(t))
if xmin,lj(t) ≤ xlj(t) < 0.9clj(t)

xmin,lj(t)
if 0.9clj(t) ≤ xlj(t) < 1.1clj(t)

(14.25)

where µ(xlj(t)) = fL(xlj(t)).

5. Update the upper boundary of each component of individual l:

xmax,lj(t + 1) =




xmax,lj(t) + µ(xlj(t))(xlj(t)− xmax,lj(t))
if 1.1clj(t) < xlj(t) ≤ xmax,lj(t)

xmax,lj(t)
if 0.9clj(t) ≤ xlj(t) ≤ 1.1clj(t)

(14.26)

where µ(xlj(t)) = fU (xlj(t)).

14.4.3 Fuzzy Influence Function

The fuzzified normative knowledge is used to determine both the step size and the
direction of change. Mutational step sizes are based on the age, ai(t), of individuals
as defined in equation (11.68). For each generation that a parent performs better than
its offspring, the parent’s age is incremented. When the offpsring replaces the parent,
the corresponding age is set to 1. The influence function will effect larger mutations to
individuals with a lower age value, as such individuals are still in a strong exploration
phase. Assuming an EP for the population space, offspring are generated as follows
for each parent, xi(t):

x
′
ij(t) =




xij(t) + σij(t)|size(Ij(t))Nij(0, 1)| if xij(t) < xmin,ij(t)
xij(t)− σij(t)|size(Ij(t))Nij(0, 1)| if xij(t) > xmax,ij(t)
xij(t) + σij(t)size(Ij(t))Nij(0, 1) otherwise

(14.27)

where σij(t) is computed as

σij(t) = µ(ai(t)) =
{

1− 1
ai(t)

if ai(t) < α

0 if ai(t) ≥ α
(14.28)
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where α is a positive constant. If a parent performs better than its offspring for more
than α generations, then that individual will not be mutated.

14.5 Advanced Topics

This section discusses specific CA implementations for solving constrained optimiza-
tion problems (Section 14.5.1), multi-objective optimization problems (Section 14.5.2),
and dynamic environments (Section 14.5.3).

14.5.1 Constraint Handling

Reynolds and Peng [721], and Dos Santos Coelho and Mariani [219] used a penalty
approach (refer to Section A.6.2) to solve constrained problems. The approach fol-
lowed by Reynolds [721] is to simply set the fitness of any individual that violates a
constraint, to an infeasible value. These penalty methods do not make use of the belief
space to guide individuals to move towards feasible space. Chung and Reynolds [128]
represented constraints as interval-constraint networks. These networks are then used
to determine if an individual violates any of the constraints. In the case of constraint
violations, information from the belief space is used to repair that individual.

Jin and Reynolds [419] expanded the interval representation of the normative knowl-
edge component to also represent constraints. The approach fits a grid structure over
the search space, where the cells are referred to as belief cells. Belief cells are then
classified into one of four categories (as illustrated in Figure 14.2):

• feasible, which represents a part of the search space where no constraint is
violated;

• infeasible, where at least one constraint is violated;

• semi-feasible, in which case the cell contains both feasible parts of the search
space; and

• unknown

The intervals as given in the normative knowledge component are used to divide the
search space as represented by these intervals into hypercubes or belief cells. The type
of belief cell is determined based on the number of individuals that fall in that cell.
For each cell,

• if there are no feasible or infeasible individuals, the cell is classified as unknown;

• if there are no infeasible individuals, but at least one feasible individual, the cell
is classified as feasible;

• if there are no feasible individuals, but at least one infeasible individual, the cell
is classified as infeasible; or

• if there are both feasible and infeasible individuals, the cell is classified as semi-
feasible.
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Figure 14.2 Illustration of Belief Cells

Initially, all cells are classified as unknown.

The update of the belief space requires the counters of feasible and infeasible individ-
uals per belief cell to be updated. At regular intervals, the normative component is
updated by redefining the hypercubes based on the most recent intervals as contained
in this knowledge component. After recalculation of hypercubes, all the feasible and
infeasible counters have to be updated. Coello and Becerra [145] proposed that the
acceptance function be adapted to use fitness as a secondary criterion in selecting in-
dividuals. Instead, feasible individuals should be given preference to update the belief
space.

The influence function is changed to promote creation of feasible offspring. If xij(t) is
within a feasible, semi-feasible, or unknown hypercube, mutation is applied such that
the individual remains in the same hypercube, or stays very close to it. If xij(t) is in
an infeasible cell, the direction of mutation is such that the individual moves closer
to a semi-infeasible cell. If there is no semi-feasible cell in the vicinity of xij(t), the
move is made towards an unknown cell. Failing this, xij(t) is initialized to a random
position within the interval defined by the normative component.

14.5.2 Multi-Objective Optimization

Coello and Becerra [146] developed the first CA for solving multi-objective optimiza-
tion problems (MOP). The belief space is constructed to consist of a normative compo-
nent (representing intervals) and a grid. The grid is constructed over objective space,
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and for each cell the number of nondominated solutions that lie within that cell is
recorded. This information is then used to ensure that nondominated solutions are
uniformly distributed along the Pareto front.

The normative knowledge component is updated at regular intervals, while the grid
is updated at each generation. Updating the grid simply involves recalculating the
number of nondominated solutions per cell. An update to the normative component
triggers a recalculation of the grid over objective space.

Within the population space, selection of the new population is adapted to make use
of the grid information contained in the belief space. Tournament selection is used,
and applied to the parents and offspring. The rules of tournament selection is updated
as follows:

• If an individual dominates its competitor, then the dominating individual wins.

• If none of the two competing individuals are dominating, or if their objective
values are the same, then

– if one of the individuals lies outside of the grid, then that individual is
selected.

– if both lie in the grid, the one in the less populated cell is selected.

• If none of the cases above are satisfied, the more fit individual is selected.

This MOO approach using CAs maintains an archive of nondominated solutions [146].

14.5.3 Dynamic Environments

Saleem and Reynolds [752] showed that the self-adaptability of CAs, due to the dynam-
ically changing belief space, makes CAs suitable for tracking optima in dynamically
changing environments. The belief space is extended to store information from pre-
vious and current environmental states. Environmental history is stored in a table,
containing the following information for each environment: the location of the best
solution (i.e. the current item stored in the situational knowledge component), the
fitness value of that solution, the change magnitude in each dimension, and the con-
sequent change in fitness value. This information is then used in a dynamic influence
function to introduce diversity into the population, proportional to the magnitude of
change.

The step size is calculated as

∆xij(t) =
2|f(xi(t))− f̃(xi(t))|

f̂(t)
Uij(0, 1) (14.29)

where f represents the landscape before change, and f̃ represents the changed land-
scape; f̂(t) is the fitness value of the best solution as stored in the history table. This
results in large step sizes for large environmental changes; thereby increasing diversity.
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14.6 Applications

Cultural algorithms have been applied to solve a number of problems, with one of
the first applications modeling the evolution of agriculture in the Valley of Oaxaca
(Mexico) [715, 721]. Other applications of CAs include concept learning [826], induc-
ing decision trees [718], real-valued function optimization [720], optimizing semantic
networks [747], software testing [647], assessing the quality of GP [163], data mining
[420], image segmentation [723], and robotics [287].

14.7 Assignments

1. Discuss how a CA can be used to train a FFNN.

2. What are the similarities and differences between CAs and ES?

3. Discuss the validity of the following statement: The belief space can be likened
to a blackboard system used in multi-agent systems.

4. With reference to [24], show how CAs address the three levels of adaptation:
population, individual, and component.

5. Investigate the performance of different selection operators, as discussed in Sec-
tion 8.5, as acceptance function.

6. Propose membership functions for the fuzzy sets used to implement the rules
as given in Algorithm 14.2 for the fuzzy acceptance function discussed in Sec-
tion 14.3.2.

7. Discuss the merits of the fuzzy acceptance function of Section 14.3.2 with refer-
ence to the fuzzy rules summarized in Algorithm 14.2.

8. Implement a DE for the population space of a CA, and compare its performance
with CAEP.



Chapter 15

Coevolution

Coevolution is the complementary evolution of closely associated species. Coevolution
between two species is nicely illustrated using Holland’s example of the competitive
interaction between a plant and insects [377]. Consider a certain species of plant living
in an environment containing insects that eat the plant. The survival “game” consists
of two parts: (1) to survive, the plant needs to evolve mechanisms to defend itself from
the insects, and (2) the insects need the plant as food source to survive. Both the
plant and the insects evolve in complexity to obtain characteristics that will enable
them to survive. For example, the plant may evolve a tough exterior, but then the
insects evolve stronger jaws. Next the plant may evolve a poison to kill the insects.
Next generations of the insect evolve an enzyme to digest the poison. The effect
of this coevolutionary process is that, with each generation, both the plant and the
insects become better at their defensive and offensive roles. In the next generation,
each species change in response to the actions of the other species during the previous
generation.

The biological example described above is an example of predator-prey competitive
coevolution, ‘where there is an inverse fitness interaction between the two species. A
win for the one species means a failure for the other. To survive, the “losing” species
adapts to counter the “winning” species in order to become the new winner. During
this process the complexity of both the predator and the prey increases.

An alternative coevolutionary process is symbiosis, where the different species coop-
erate instead of compete. In this case a success in one species improves the survival
strength of the other species. Symbiotic coevolution is thus achieved through a positive
fitness feedback among the species that take part in this cooperating process.

In standard EAs, evolution is usually viewed as if the population attempts to adapt in
a fixed physical environment. In contrast, coevolutionary (CoE) algorithms (CoEA)
realize that in natural evolution the physical environment is influenced by other
independently-acting biological populations. Evolution is therefore not just locally
within each population, but also in response to environmental changes as caused by
other populations. Another difference between standard EAs and CoEAs is that EAs
define the meaning of optimality through an absolute fitness function. This fitness
function then drives the evolutionary process. On the other hand, CoEAs do not
define optimality using a fitness function, but attempt to evolve an optimal species
where optimality is defined as defeating opponents (in the case of predator-prey CoE).

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
c©2007 John Wiley & Sons, Ltd
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Section 15.1 provides a summary of different types of coevolution. Competitive coevo-
lution is discussed in Section 15.2, while some cooperative coevolution approaches are
summarized in Section 15.3.

15.1 Coevolution Types

As indicated in the introduction of this chapter, two main classes of coevolutionary
approaches can be identified, namely competitive coevolution and cooperative coevo-
lution. For each of these classes, Fukuda and Kubota [293] identified a number of
subclasses. For competitive coevolution, the following subclasses can be found:

• Competition, where both species are inhibited. Due to the inverse fitness
interaction between the two species, success in one of the species is felt as failure
by the other species.

• Amensalism, where one species is inhibited, and the other is not affected.

In the case of cooperative (or symbiotic) coevolution, the following subclasses can be
identified:

• Mutualism, where both species benefit. The positive fitness interaction leads
to an improvement in one species whenever the other species improves.

• Commensalism, where only one of the species benefits, while the other is not
affected.

• Parasitism, where one of the species (the parasite) benefits, while the other
species (the host) is harmed.

The focus of this chapter will be on competitive (predator-prey) coevolution and mu-
tualism.

15.2 Competitive Coevolution

Competitive coevolution (CCE) works to produce optimal competing species through
a pure bootstrapping process. Solutions to problems are found without any prior
knowledge from human experts, or any other information on how to solve the problem.
A CCE algorithm usually evolves two populations simultaneously. Individuals in one
population represent solutions to a problem, while individuals in the other population
represent test cases. Individuals in the solution population evolve to solve as many
test cases as possible, while individuals in the test population evolve to present an
incrementally increasing level of difficulty to the solution individuals. The fitness
of individuals in the solution population is proportional to the number of test cases
solved by the solution. The fitness of individuals in the test population is inversely
proportional to the number of strategies that solve it.

This is the CCE approach popularized by Hillis [365]. However, Hillis was not the first
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to consider CCE. Miller [594, 595] and Axelrod [33] used CCE to evolve strategies
for the iterated prisoner’s dilemma (IPD). Holland [377] incorporated coevolution in
a single population GA, where individuals compete against other individuals of the
same population.

Section 15.2.1 discusses competitive fitness. The hall of fame concept is discussed in
Section 15.2.1. A generic CCE algorithm is given in Section 15.2.2. Some applications
of CCE are given in Section 15.2.3.

15.2.1 Competitive Fitness

Standard EAs use a user-defined, absolute fitness function to quantify the quality of
solutions. This absolute fitness function directly represents the optimization problem.
The fitness of each individual is evaluated independently from any other population,
or individual, using this fitness function. In CCE, the driving force of the evolution-
ary process is via a relative fitness function that only expresses the performance of
individuals in one population in comparison with individuals in another population.
Usually, the relative fitness computes a score of how many opponents are beaten by
an individual. It should be clear that the only quantification of optimality is which
population’s individuals perform better. No fitness function that describes the optimal
point is used.

In order to calculate the relative fitness of an individual, two aspects are of importance:
(1) Which individuals from the competing population are used, and (2) exactly how
these competing individuals are used to compute the relative fitness. The first aspect
refers to fitness sampling, and is discussed in Section 15.2.1. Relative fitness evaluation
approaches are summarized in Section 15.2.1.

Fitness Sampling

The relative fitness of individuals is evaluated against a sample of individuals from the
competing population. The following sampling schemes have been developed:

• All versus all sampling [33], where each individual is tested against all the
individuals of the other population.

• Random sampling [711], where the fitness of each individual is tested against
a randomly selected group (consisting of one or more) individuals from the other
population. The random sampling approach is computationally less complex
than all versus all sampling.

• Tournament sampling [27], which uses relative fitness measures to select the
best opponent individual.

• All versus best sampling [793], where all the individuals are tested against
the fittest individual of the other population.

• Shared sampling [738, 739, 740], where the sample is selected as those opponent
individuals with maximum competitive shared fitness. Shared sampling tends
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to select opponents that beat a large number of individuals from the competing
population.

Relative Fitness Evaluation

The following approaches can be followed to measure the relative fitness of each indi-
vidual in a population. Assume that the two populations C1 and C2 coevolve, and the
aim is to calculate the relative fitness of each individual C1.xi of population C1.

• Simple fitness: A sample of individuals is taken from population C2, and the
number of individuals in population C2 for which C1.xi is the winner, is counted.
The relative fitness of C1.xi is simply the sum of successes for C1.xi.

• Fitness sharing [323]: A sharing function is defined to take into consideration
similarity among the individuals of population C1. The simple fitness of an
individual is divided by the sum of its similarities with all the other individuals
in that population. Similarity can be defined as the number of individuals that
also beats the individuals from the population C2 sample. The consequence of
the fitness sharing function is that unusual individuals are rewarded.

• Competitive fitness sharing [738, 739, 740]: In this case the fitness of indi-
vidual C1.xi is defined as

f(C1.xi) =
C2.ns∑
l=1

1
C1.nl

(15.1)

where C2.x1, · · · , C2.xC2.ns
form the population C2 sample, and C1.nl is the total

number of individuals in population C1 that defeat individual C2.xl. The compet-
itive fitness sharing method rewards those population C1 individuals that beat
population C2 individuals, which few other population C1 individuals could beat.
It is therefore not necessarily the case that the best population C1 individual
beats the most population C2 individuals.

• Tournament fitness [27] holds a number of single elimination, binary tour-
naments to determine a relative fitness ranking. Tournament fitness results in a
tournament tree, with the root element as the best individual. For each level in
the tree, two opponents are randomly selected from that level, and the best of
the two advances to the next level. In the case of an odd number of competitors,
a single individual from the current level moves to the next level. After tourna-
ment ranking, any of the standard selection operators (refer to Section 8.5) can
be used to select parents.

Hall of Fame

Elitism is a mechanism used in standard EAs to ensure that the best parents of a
current generation survive to the next generation. To be able to survive for more
generations, an individual has to be highly fit in almost every population. For coevo-
lution, Rosin and Belew [740] introduced the hall of fame to extend elitism in time. At
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each generation the best individual of a population is stored in that population’s hall
of fame. The hall of fame may have a limited size, in which case a new individual to
be inserted in the hall of fame will replace the worst individual (or the oldest one). In-
dividuals from one population now compete against a sample of the current opponent
population and its hall of fame. The hall of fame prevents overspecialization.

15.2.2 Generic Competitive Coevolutionary Algorithm

The generic CCE algorithm in Algorithm 15.1 assumes that two competing popula-
tions are used. For a single population CCE algorithm, refer to Algorithm 15.2. For
both these algorithms, any standard EA can be used to evolve each population for
one iteration (i.e. perform reproduction and select the new population). Table 15.1
provides a summary of some publications for EAs used, including PSO.

Algorithm 15.1 Competitive Coevolutionary Algorithm with Two Populations

Initialize two populations, C1 and C2;
while stopping condition(s) not true do

for each C1.xi, i = 1, . . . , C1.ns do
Select a sample of opponents from C2;
Evaluate the relative fitness of C1.xi with respect to this sample;

end
for each C2.xi, i = 1, . . . , C2.ns do

Select a sample of opponents from C1;
Evaluate the relative fitness of C2.xi with respect to this sample;

end
Evolve population C1 for one generation;
Evolve population C2 for one generation;

end
Select the best individual from the solution population, S1;

Algorithm 15.2 Single Population Competitive Coevolutionary Algorithm

Initialize one population, C;
while stopping condition(s) not true do

for each C.xi, i = 1, . . . , C.ns do
Select a sample of opponents from C to exclude C.xi;
Evaluate the relative fitness of C.xi with respect to the sample;

end
Evolve population C for one generation;

end
Select the best individual from C as the solution;

Algorithm 15.1 assumes that C1 is the solution population and C2 is the test population.
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Table 15.1 Algorithms Used to Achieve Adaptation in CCE

Algorithm Reference
GA [37, 132, 657, 750, 855]
EP [119, 120, 268, 532]
ES [60, 914]
GP [343, 357, 358, 480]
PSO [286, 580, 654]

In CCE it is also possible to use two competing solution populations, in which case
the individuals in one population serve as the test cases of individuals in the other
populations. Here the solution returned by the algorithm is the best individual over
both populations.

The performance of a CCE can be greatly improved if the two competing populations
are as diverse as possible. Diversity can be maintained by incorporating mechanisms
to facilitate niche formation. Shared sampling and the fitness sharing methods achieve
this goal. Alternatively, any niching (speciation) algorithm can be implemented.

15.2.3 Applications of Competitive Coevolution

The first applications of coevolution were to evolve IPD strategies [33, 594, 595], and
to evolve sorting algorithms [365]. Since these applications, CCE has been applied to
a variety of complex real-world problems, as summarized in Table 15.2 (please note
that this is not a complete list of applications).

The remainder of this section shows how CCE can be used to evolve game players
for two-player, zero-sum, board games. The approach described here is based on the
work of Chellapilla and Fogel [120, 121, 268] for Checkers, and further investigated by
[156, 286, 580, 654] for Chess, Checkers, Tick-Tack-Toe, the IPD, and Bao. However,
the model described here is not game specific.

The coevolutionary game learning model trains neural networks in a coevolutionary
fashion to approximate the evaluation function of leaf nodes in a game tree. The
learning model consists of three components:

• A game tree, expanded to a given ply-depth using game tree expansion algo-
rithms such as minimax [629]. The root tree represents the current board state,
while the other nodes in the tree represent future board states. The objective
is to find the next move to take the player maximally closer to its goal, i.e. to
win the game. To evaluate the desirability of future board states, an evaluation
function is applied to the leaf nodes.

• A neural network evaluation function to estimate the desirability of board states
represented by the leaf nodes. The NN receives a board state as its input, and
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Table 15.2 Applications of Competitive Coevolution

Application Reference
Game learning [119, 120, 171, 249, 268, 286, 580, 615, 684, 739]
Military tactical planning [455]
Controller design [513]
Robot controllers [20, 60, 132, 293, 424, 541, 631, 658, 859]
Evolving marketing strategies [786]
Rule generation for [415]
fuzzy logic controllers
Constrained optimization [144, 589, 784]
Autonomous vehicles [93]
Scheduling [855]
Neural network training [119, 120, 286, 580, 657]
Drug design [738]
Iterated prisoners dilemma [33, 172, 594, 595]

produces a scalar output as the board state desirability.

• A population of NNs, where each NN is represented by one individual, and
trained in competition with other NNs. Any EA (or PSO) can be used to adapt
the weights.

The objective of the above model, also summarized in Algorithm 15.3, is to evolve
game-playing agents from zero knowledge about playing strategies. As is evident
from Algorithm 15.3, the training process is not supervised. No target evaluation
of board states is provided. The lack of desired outputs for the NN necessitates a
coevolutionary training mechanism, where a NN competes against a sample of NNs
in game tournaments. After each NN has played a number of games against each of
its opponents, it is assigned a score based on the number of wins, losses and draws.
These scores are then used as the relative fitness measure. Note that the population
of NNs is randomly initialized.

15.3 Cooperative Coevolution

Section 15.1 referred to three different types of cooperative coevolution. This section
focuses on mutualism, where individuals from different species (or subpopulations)
have to cooperate in some way to solve a global task. Here, the fitness of an individual
depends on that individual’s ability to collaborate with individuals from other species.
One of the major problems to resolve in such cooperative coevolution algorithms is
that of credit assignment: How should the fitness achieved by the collective effort of
all species be fairly split among the participating individuals.

De Jong and Potter [194] proposed a general framework for evolving complex solutions
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Algorithm 15.3 Coevolutionary Training of Game Agents

Create and randomly initialize a population of NNs;
while stopping condition(s) not true do

for each individual (or NN) do
Select a sample of competitors from the population;
for each opponent do

for a specified number of times do
Play a game as first player using the NNs as board state evaluators in
a game tree;
Record if game was won, lost, or drawn;
Play another game against the same opponent, but as second player;
Record if game was won, lost, or drawn;

end
end
Determine a score for the individual;

end
Evolve the population for one generation;

end
Return the best individual as the NN evaluation function;

by merging subcomponents, evolved independently from one another. A separate
population is used to evolve each subcomponent using some EA. Representations from
each subcomponent is then combined to form a complete solution, which is evaluated
to determine a global fitness. Based on this global fitness, some credit flows back to
each subcomponent reflecting how well that component collaborated with the others.
This local fitness is then used within the subpopulation to evolve a better solution.

Potter and De Jong [687] applied this approach to function optimization. For an
nx-dimensional problem, nx subpopulations are used – one for each dimension of
the problem. Each subpopulation is therefore responsible for optimizing one of the
parameters of the problem, and no subpopulation can form a complete solution by
itself. Collaboration is achieved by merging a representative from each subpopulation.
The effectiveness of this collaboration is estimated as follows: Considering the j-th
subpopulation, Cj , then each individual, Cj .xi, of Cj performs a single collaboration
with the best individual from each of the other subpopulations by merging these best
components with Cj .xi to form a complete solution. The credit assigned to Cj .xi is
simply the fitness of the complete solution.

Potter and De Jong found that this approach does not perform well when problem
parameters are strongly interdependent, due to the greediness of the credit assignment
approach. To reduce greediness two collaboration vectors can be constructed. The
first vector is constructed by considering the best individuals from each subpopulation
as described above. The second vector chooses random individuals from the other
subpopulations, and merges these with Cj .xi. The best fitness of the two vectors is
used as the credit for Cj .xi.

In addition to function optimization, Potter and De Jong also applied this approach
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to evolve cascade neural networks [688] and robot learning [194, 690].

Other applications of cooperative coevolution include the evolution of predator-prey
strategies using GP [358], evolving fuzzy membership functions [671], robot controllers
[631], time series prediction [569], and neural network training [309].

15.4 Assignments

1. Design a CCE algorithm for playing tick-tack-toe.

2. Explain the importance of the relative fitness function in the success of a CCE
algorithm.

3. Discuss the validity of the following statement: CCGA will not be successful if
the genes of a chromosome are highly correlated.

4. Compare the different fitness sampling strategies with reference to computational
complexity.

5. What will be the effect if fitness sampling is done only with reference to the hall
of fame?

6. Why is shared sampling a good approach to calculate relative fitness?

7. Why is niche formation so important in CCE?

8. Design a CCE to evolve IPD strategies.

9. Implement a cooperative coevolutionary DE.





Part IV

COMPUTATIONAL
SWARM INTELLIGENCE

Suppose that you and a group of friends are on a treasure finding mission. You have
knowledge of the approximate area of the treasure, but do not know exactly where it
is located. You want that treasure, or at least some part of it. Among your friends you
have agreed on some sharing mechanism so that all who have taken part in the search
will be rewarded, but with the person who found the treasure getting a higher reward
than all others, and the rest being rewarded based on distance from the treasure at
the time when the first one finds the treasure. Each one in the group has a metal
detector and can communicate the strength of the signal and his current location to
the nearest neighbors. Each person therefore knows whether one of his neighbors is
nearer to the treasure than he is. What actions will you take? You basically have two
choices: (1) Ignore your friends, and search for the treasure without any information
that your friends may provide. In this case, if you find the treasure, it is all yours.
However, if you do not find it first, you get nothing. (2) Make use of the information
that you perceive from your neighboring friends, and move in the direction of your
closest friend with the strongest signal. By making use of local information, and acting
upon it, you increase your chances of finding the treasure, or at least maximizing your
reward.

This is an extremely simple illustration of the benefits of cooperation in situations
where you do not have global knowledge of an environment. Individuals within the
group interact to solve the global objective by exchanging locally available information,
which in the end propagates through the entire group such that the problem is solved
more efficiently than can be done by a single individual.

In loose terms, the group can be referred to as a swarm. Formally, a swarm can be
defined as a group of (generally mobile) agents that communicate with each other
(either directly or indirectly), by acting on their local environment [371]. The in-
teractions between agents result in distributive collective problem-solving strategies.
Swarm intelligence (SI) refers to the problem-solving behavior that emerges from the
interaction of such agents, and computational swarm intelligence (CSI) refers to al-
gorithmic models of such behavior. More formally, swarm intelligence is the property
of a system whereby the collective behaviors of unsophisticated agents interacting lo-
cally with their environment cause coherent functional global patterns to emerge [702].
Swarm intelligence has also been referred to as collective intelligence.

285
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Studies of social animals and social insects have resulted in a number of computational
models of swarm intelligence. Biological swarm systems that have inspired computa-
tional models include ants, termites, bees, spiders, fish schools, and bird flocks. Within
these swarms, individuals are relatively simple in structure, but their collective behav-
ior is usually very complex. The complex behavior of a swarm is a result of the pattern
of interactions between the individuals of the swarm over time. This complex behavior
is not a property of any single individual, and is usually not easily predicted or deduced
from the simple behaviors of the individuals. This is referred to as emergence. More
formally defined, emergence is the process of deriving some new and coherent struc-
tures, patterns and properties (or behaviors) in a complex system. These structures,
patterns and behaviors come to existence without any coordinated control system,
but emerge from the interactions of individuals with their local (potentially adaptive)
environment.

The collective behavior of a swarm of social organisms therefore emerges in a non-
linear manner from the behaviors of the individuals of that swarm. There exists a
tight coupling between individual and collective behavior: the collective behavior of
individuals shapes and dictates the behavior of the swarm. On the other hand, swarm
behavior has an influence on the conditions under which each individual performs its
actions. These actions may change the environment, and thus the behaviors of that
individual and its neighbors may also change – which again may change the collective
swarm behavior. From this, the most important ingredient of swarm intelligence, and
facilitator of emergent behavior, is interaction, or cooperation. Interaction among in-
dividuals aids in refining experiential knowledge about the environment. Interaction
in biological swarm systems happens in a number of ways, of which social interaction
is the most prominent. Here, interaction can be direct (by means of physical contact,
or by means of visual, audio, or chemical perceptual inputs) or indirect (via local
changes of the environment). The term stigmergy is used to refer to the indirect form
of communication between individuals.

Examples of emergent behavior from nature are numerous:

• Termites build large nest structures with a complexity far beyond the compre-
hension and ability of a single termite.

• Tasks are dynamically allocated within an ant colony, without any central man-
ager or task coordinator.

• Recruitment via waggle dances in bee species, which results in optimal foraging
behavior. Foraging behavior also emerges in ant colonies as a result of simple
trail-following behaviors.

• Birds in a flock and fish in a school self-organize in optimal spatial patterns.
Schools of fish determine their behavior (such as swimming direction and speed)
based on a small number of neighboring individuals. The spatial patterns of bird
flocks result from communication by sound and visual perception.

• Predators, for example a group of lionesses, exhibit hunting strategies to out-
smart their prey.

• Bacteria communicate using molecules (comparable to pheromones) to collec-
tively keep track of changes in their environment.
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• Slime moulds consist of very simple cellular organisms with limited abilities.
However, in times of food shortage they aggregate to form a mobile slug with
the ability to transport the assembled individuals to new feeding areas.

The objective of computational swarm intelligence models is to model the simple
behaviors of individuals, and the local interactions with the environment and neigh-
boring individuals, in order to obtain more complex behaviors that can be used to
solve complex problems, mostly optimization problems. For example, particle swarm
optimization (PSO) models two simple behaviors: each individual (1) moves toward
its closest best neighbor, and (2) moves back to the state that the individual has ex-
perienced to be best for itself. As a result, the collective behavior that emerges is that
of all individuals converging on the environment state that is best for all individuals.
On the other hand, ant colony optimization models the very simple pheromone trail-
following behavior of ants, where each ant perceives pheromone concentrations in its
local environment and acts by probabilistically selecting the direction with the highest
pheromone concentration. From this emerges the behavior of finding the best alterna-
tive (shortest path) from a collection of alternatives. Models of the local behavior of
ants attending to cemeteries result in the complex behavior of grouping similar objects
into clusters.

This part is devoted to the two computational swarm intelligence paradigms, particle
swarm optimization (PSO), presented in Chapter 16, and ant algorithms (AA), pre-
sented in Chapter 17. The former was inspired from models of the flocking behavior
of birds, while the latter was inspired from a number of models of different behaviors
observed in ant and termite colonies.





Chapter 16

Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm is a population-based search al-
gorithm based on the simulation of the social behavior of birds within a flock. The
initial intent of the particle swarm concept was to graphically simulate the graceful
and unpredictable choreography of a bird flock [449], with the aim of discovering pat-
terns that govern the ability of birds to fly synchronously, and to suddenly change
direction with a regrouping in an optimal formation. From this initial objective, the
concept evolved into a simple and efficient optimization algorithm.

In PSO, individuals, referred to as particles, are “flown” through hyperdimensional
search space. Changes to the position of particles within the search space are based
on the social-psychological tendency of individuals to emulate the success of other
individuals. The changes to a particle within the swarm are therefore influenced by
the experience, or knowledge, of its neighbors. The search behavior of a particle is
thus affected by that of other particles within the swarm (PSO is therefore a kind of
symbiotic cooperative algorithm). The consequence of modeling this social behavior
is that the search process is such that particles stochastically return toward previously
successful regions in the search space.

The remainder of this chapter is organized as follows: An overview of the basic PSO,
i.e. the first implementations of PSO, is given in Section 16.1. The very important
concepts of social interaction and social networks are discussed in Section 16.2. Basic
variations of the PSO are described in Section 16.3, while more elaborate improvements
are given in Section 16.5. A discussion of PSO parameters is given in Section 16.4.
Some advanced topics are discussed in Section 16.6.

16.1 Basic Particle Swarm Optimization

Individuals in a particle swarm follow a very simple behavior: to emulate the success of
neighboring individuals and their own successes. The collective behavior that emerges
from this simple behavior is that of discovering optimal regions of a high dimensional
search space.

A PSO algorithm maintains a swarm of particles, where each particle represents a
potential solution. In analogy with evolutionary computation paradigms, a swarm is
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similar to a population, while a particle is similar to an individual. In simple terms,
the particles are “flown” through a multidimensional search space, where the position
of each particle is adjusted according to its own experience and that of its neighbors.
Let xi(t) denote the position of particle i in the search space at time step t; unless
otherwise stated, t denotes discrete time steps. The position of the particle is changed
by adding a velocity, vi(t), to the current position, i.e.

xi(t + 1) = xi(t) + vi(t + 1) (16.1)

with xi(0) ∼ U(xmin,xmax).

It is the velocity vector that drives the optimization process, and reflects both the
experiential knowledge of the particle and socially exchanged information from the
particle’s neighborhood. The experiential knowledge of a particle is generally referred
to as the cognitive component, which is proportional to the distance of the particle
from its own best position (referred to as the particle’s personal best position) found
since the first time step. The socially exchanged information is referred to as the social
component of the velocity equation.

Originally, two PSO algorithms have been developed which differ in the size of their
neighborhoods. These two algorithms, namely the gbest and lbest PSO, are summa-
rized in Sections 16.1.1 and 16.1.2 respectively. A comparison between gbest and lbest
PSO is given in Section 16.1.3. Velocity components are decsribed in Section 16.1.4,
while an illustration of the effect of velocity updates is given in Section 16.1.5. Aspects
about the implementation of a PSO algorithm are discussed in Section 16.1.6.

16.1.1 Global Best PSO

For the global best PSO, or gbest PSO, the neighborhood for each particle is the entire
swarm. The social network employed by the gbest PSO reflects the star topology
(refer to Section 16.2). For the star neighborhood topology, the social component of
the particle velocity update reflects information obtained from all the particles in the
swarm. In this case, the social information is the best position found by the swarm,
referred to as ŷ(t).

For gbest PSO, the velocity of particle i is calculated as

vij(t + 1) = vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (16.2)

where vij(t) is the velocity of particle i in dimension j = 1, . . . , nx at time step
t, xij(t) is the position of particle i in dimension j at time step t, c1 and c2 are
positive acceleration constants used to scale the contribution of the cognitive and
social components respectively (discussed in Section 16.4), and r1j(t), r2j(t) ∼ U(0, 1)
are random values in the range [0, 1], sampled from a uniform distribution. These
random values introduce a stochastic element to the algorithm.

The personal best position, yi, associated with particle i is the best position the
particle has visited since the first time step. Considering minimization problems, the
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personal best position at the next time step, t + 1, is calculated as

yi(t + 1) =
{

yi(t) if f(xi(t + 1)) ≥ f(yi(t))
xi(t + 1) if f(xi(t + 1)) < f(yi(t))

(16.3)

where f : Rnx → R is the fitness function. As with EAs, the fitness function measures
how close the corresponding solution is to the optimum, i.e. the fitness function
quantifies the performance, or quality, of a particle (or solution).

The global best position, ŷ(t), at time step t, is defined as

ŷ(t) ∈ {y0(t), . . . ,yns
(t)}|f(ŷ(t)) = min{f(y0(t)), . . . , f(yns

(t))} (16.4)

where ns is the total number of particles in the swarm. It is important to note that
the definition in equation (16.4) states that ŷ is the best position discovered by any
of the particles so far – it is usually calculated as the best personal best position. The
global best position can also be selected from the particles of the current swarm, in
which case [359]

ŷ(t) = min{f(x0(t)), . . . , f(xns
(t))} (16.5)

The gbest PSO is summarized in Algorithm 16.1.

Algorithm 16.1 gbest PSO

Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, . . . , ns do
//set the personal best position
if f(xi) < f(yi) then

yi = xi;
end
//set the global best position if f(yi) < f(ŷ) then

ŷ = yi;
end

end
for each particle i = 1, . . . , ns do

update the velocity using equation (16.2);
update the position using equation (16.1);

end
until stopping condition is true;

16.1.2 Local Best PSO

The local best PSO, or lbest PSO, uses a ring social network topology (refer to Sec-
tion 16.2) where smaller neighborhoods are defined for each particle. The social compo-
nent reflects information exchanged within the neighborhood of the particle, reflecting
local knowledge of the environment. With reference to the velocity equation, the social
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contribution to particle velocity is proportional to the distance between a particle and
the best position found by the neighborhood of particles. The velocity is calculated as

vij(t + 1) = vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)] (16.6)

where ŷij is the best position, found by the neighborhood of particle i in dimension j.
The local best particle position, ŷi, i.e. the best position found in the neighborhood
Ni, is defined as

ŷi(t + 1) ∈ {Ni|f(ŷi(t + 1)) = min{f(x)}, ∀x ∈ Ni} (16.7)

with the neighborhood defined as

Ni = {yi−nNi
(t),yi−nNi

+1(t), . . . ,yi−1(t),yi(t),yi+1(t), . . . ,yi+nNi
(t)} (16.8)

for neighborhoods of size nNi
. The local best position will also be referred to as the

neighborhood best position.

It is important to note that for the basic PSO, particles within a neighborhood have
no relationship to each other. Selection of neighborhoods is done based on particle
indices. However, strategies have been developed where neighborhoods are formed
based on spatial similarity (refer to Section 16.2).

There are mainly two reasons why neighborhoods based on particle indices are pre-
ferred:

1. It is computationally inexpensive, since spatial ordering of particles is not re-
quired. For approaches where the distance between particles is used to form
neighborhoods, it is necessary to calculate the Euclidean distance between all
pairs of particles, which is of O(n2

s) complexity.

2. It helps to promote the spread of information regarding good solutions to all
particles, irrespective of their current location in the search space.

It should also be noted that neighborhoods overlap. A particle takes part as a member
of a number of neighborhoods. This interconnection of neighborhoods also facilitates
the sharing of information among neighborhoods, and ensures that the swarm con-
verges on a single point, namely the global best particle. The gbest PSO is a special
case of the lbest PSO with nNi

= ns.

Algorithm 16.2 summarizes the lbest PSO.

16.1.3 gbest versus lbest PSO

The two versions of PSO discussed above are similar in the sense that the social com-
ponent of the velocity updates causes both to move towards the global best particle.
This is possible for the lbest PSO due to the overlapping neighborhoods.

There are two main differences between the two approaches with respect to their
convergence characteristics [229, 489]:
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Algorithm 16.2 lbest PSO

Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, . . . , ns do
//set the personal best position
if f(xi) < f(yi) then

yi = xi;
end
//set the neighborhood best position
if f(yi) < f(ŷi) then

ŷ = yi;
end

end
for each particle i = 1, . . . , ns do

update the velocity using equation (16.6);
update the position using equation (16.1);

end
until stopping condition is true;

• Due to the larger particle interconnectivity of the gbest PSO, it converges faster
than the lbest PSO. However, this faster convergence comes at the cost of less
diversity than the lbest PSO.

• As a consequence of its larger diversity (which results in larger parts of the search
space being covered), the lbest PSO is less susceptible to being trapped in local
minima. In general (depending on the problem), neighborhood structures such
as the ring topology used in lbest PSO improves performance [452, 670].

A more in-depth discussion on neighborhoods can be found in Section 16.2.

16.1.4 Velocity Components

The velocity calculation as given in equations (16.2) and (16.6) consists of three terms:

• The previous velocity, vi(t), which serves as a memory of the previous flight
direction, i.e. movement in the immediate past. This memory term can be seen
as a momentum, which prevents the particle from drastically changing direction,
and to bias towards the current direction. This component is also referred to as
the inertia component.

• The cognitive component, c1r1(yi − xi), which quantifies the performance of
particle i relative to past performances. In a sense, the cognitive component
resembles individual memory of the position that was best for the particle. The
effect of this term is that particles are drawn back to their own best positions,
resembling the tendency of individuals to return to situations or places that
satisfied them most in the past. Kennedy and Eberhart also referred to the
cognitive component as the “nostalgia” of the particle [449].
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Figure 16.1 Geometrical Illustration of Velocity and Position Updates for a Single
Two-Dimensional Particle

• The social component, c2r2(ŷ−xi), in the case of the gbest PSO or, c2r2(ŷi−
xi), in the case of the lbest PSO, which quantifies the performance of particle i
relative to a group of particles, or neighbors. Conceptually, the social component
resembles a group norm or standard that individuals seek to attain. The effect of
the social component is that each particle is also drawn towards the best position
found by the particle’s neighborhood.

The contribution of the cognitive and social components are weighed by a stochastic
amount, c1r1 or c2r2, respectively. The effects of these weights are discussed in more
detail in Section 16.4.

16.1.5 Geometric Illustration

The effect of the velocity equation can easily be illustrated in a two-dimensional vector
space. For the sake of the illustration, consider a single particle in a two-dimensional
search space.

An example movement of the particle is illustrated in Figure 16.1, where the particle
subscript has been dropped for notational convenience. Figure 16.1(a) illustrates the
state of the swarm at time step t. Note how the new position, x(t + 1), moves closer
towards the global best ŷ(t). For time step t + 1, as illustrated in Figure 16.1(b),
assume that the personal best position does not change. The figure shows how the
three components contribute to still move the particle towards the global best particle.

It is of course possible for a particle to overshoot the global best position, mainly due
to the momentum term. This results in two scenarios:

1. The new position, as a result of overshooting the current global best, may be a
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better position than the current global best. In this case the new particle position
will become the new global best position, and all particles will be drawn towards
it.

2. The new position is still worse than the current global best particle. In subse-
quent time steps the cognitive and social components will cause the particle to
change direction back towards the global best.

The cumulative effect of all the position updates of a particle is that each particle
converges to a point on the line that connects the global best position and the personal
best position of the particle. A formal proof can be found in [863, 870].

x2

x1

ŷ

(a) At time t = 0

x2

x1

ŷ

(b) At time t = 1

Figure 16.2 Multi-particle gbest PSO Illustration

Returning to more than one particle, Figure 16.2 visualizes the position updates with
reference to the task of minimizing a two-dimensional function with variables x1 and
x2 using gbest PSO. The optimum is at the origin, indicated by the symbol ‘×’.
Figure 16.2(a) illustrates the initial positions of eight particles, with the global best
position as indicated. Since the contribution of the cognitive component is zero for each
particle at time step t = 0, only the social component has an influence on the position
adjustments. Note that the global best position does not change (it is assumed that
vi(0) = 0, for all particles). Figure 16.2(b) shows the new positions of all the particles
after the first iteration. A new global best position has been found. Figure 16.2(b) now
indicates the influence of all the velocity components, with particles moving towards
the new global best position.

Finally, the lbest PSO, as illustrated in Figure 16.3, shows how particles are influenced
by their immediate neighbors. To keep the graph readable, only some of the movements
are illustrated, and only the aggregate velocity direction is indicated. In neighborhood
1, both particles a and b move towards particle c, which is the best solution within
that neighborhood. Considering neighborhood 2, particle d moves towards f , so does
e. For the next iteration, e will be the best solution for neighborhood 2. Now d and
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Figure 16.3 Illustration of lbest PSO

f move towards e as illustrated in Figure 16.3(b) (only part of the solution space is
illustrated). The blocks represent the previous positions. Note that e remains the best
solution for neighborhood 2. Also note the general movement towards the minimum.

More in-depth analyses of particle trajectories can be found in [136, 851, 863, 870].

16.1.6 Algorithm Aspects

A few aspects of Algorithms 16.1 and 16.2 still need to be discussed. These aspects
include particle initialization, stopping conditions and defining the terms iteration and
function evaluation.

With reference to Algorithms 16.1 and 16.2, the optimization process is iterative. Re-
peated iterations of the algorithms are executed until a stopping condition is satisfied.
One such iteration consists of application of all the steps within the repeat...until
loop, i.e. determining the personal best positions and the global best position, and
adjusting the velocity of each particle. Within each iteration, a number of function
evaluations (FEs) are performed. A function evaluation (FE) refers to one calculation
of the fitness function, which characterizes the optimization problem. For the basic
PSO, a total of ns function evaluations are performed per iteration, where ns is the
total number of particles in the swarm.

The first step of the PSO algorithm is to initialize the swarm and control parameters.
In the context of the basic PSO, the acceleration constants, c1 and c2, the initial veloc-
ities, particle positions and personal best positions need to be specified. In addition,
the lbest PSO requires the size of neighborhoods to be specified. The importance of
optimal values for the acceleration constants are discussed in Section 16.4.
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Usually, the positions of particles are initialized to uniformly cover the search space. It
is important to note that the efficiency of the PSO is influenced by the initial diversity
of the swarm, i.e. how much of the search space is covered, and how well particles are
distributed over the search space. If regions of the search space are not covered by the
initial swarm, the PSO will have difficulty in finding the optimum if it is located within
an uncovered region. The PSO will discover such an optimum only if the momentum
of a particle carries the particle into the uncovered area, provided that the particle
ends up on either a new personal best for itself, or a position that becomes the new
global best.

Assume that an optimum needs to be located within the domain defined by the two
vectors, xmin and xmax, which respectively represents the minimum and maximum
ranges in each dimension. Then, an efficient initialization method for the particle
positions is:

x(0) = xmin,j + rj(xmax,j − xmin,j), ∀j = 1, . . . , nx, ∀i = 1, . . . , ns (16.9)

where rj ∼ U(0, 1).

The initial velocities can be initialized to zero, i.e.

vi(0) = 0 (16.10)

While it is possible to also initialize the velocities to random values, it is not necessary,
and it must be done with care. In fact, considering physical objects in their initial
positions, their velocities are zero – they are stationary. If particles are initialized with
nonzero velocities, this physical analogy is violated. Random initialization of position
vectors already ensures random positions and moving directions. If, however, velocities
are also randomly initialized, such velocities should not be too large. Large initial
velocities will have large initial momentum, and consequently large initial position
updates. Such large initial position updates may cause particles to leave the boundaries
of the search space, and may cause the swarm to take more iterations before particles
settle on a single solution.

The personal best position for each particle is initialized to the particle’s position at
time step t = 0, i.e.

yi(0) = xi(0) (16.11)

Different initialization schemes have been used by researchers to initialize the particle
positions to ensure that the search space is uniformly covered: Sobol sequences [661],
Faure sequences [88, 89, 90], and nonlinear simplex method [662].

While it is important for application of the PSO to solve real-world problems, in that
particles are uniformly distributed over the entire search space, uniformly distributed
particles are not necessarily good for empirical studies of different algorithms. This
typical initialization method can give false impressions of the relative performance of
algorithms as shown in [312]. For many of the benchmark functions used to evaluate
the performance of optimization algorithms (refer, for example, to Section A.5.3),
uniform initialization will result in particles being symmetrically distributed around
the optimum of the function to be optimized. In most cases it is then trivial for an
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optimization algorithm to find the optimum. Gehlhaar and Fogel suggest initializing
in areas that do not contain the optima, in order to validate the ability of the algorithm
to locate solutions outside the initialized space [312].

The last aspect of the PSO algorithms concerns the stopping conditions, i.e. criteria
used to terminate the iterative search process. A number of termination criteria have
been used and proposed in the literature. When selecting a termination criterion, two
important aspects have to be considered:

1. The stopping condition should not cause the PSO to prematurely converge, since
suboptimal solutions will be obtained.

2. The stopping condition should protect against oversampling of the fitness. If a
stopping condition requires frequent calculation of the fitness function, compu-
tational complexity of the search process can be significantly increased.

The following stopping conditions have been used:

• Terminate when a maximum number of iterations, or FEs, has been
exceeded. It is obvious to realize that if this maximum number of iterations (or
FEs) is too small, termination may occur before a good solution has been found.
This criterion is usually used in conjunction with convergence criteria to force
termination if the algorithm fails to converge. Used on its own, this criterion is
useful in studies where the objective is to evaluate the best solution found in a
restricted time period.

• Terminate when an acceptable solution has been found. Assume that
x∗ represents the optimum of the objective function f . Then, this criterion
will terminate the search process as soon as a particle, xi, is found such that
f(xi) ≤ |f(x∗) − ε|; that is, when an acceptable error has been reached. The
value of the threshold, ε, has to be selected with care. If ε is too large, the search
process terminates on a bad, suboptimal solution. On the other hand, if ε is too
small, the search may not terminate at all. This is especially true for the basic
PSO, since it has difficulties in refining solutions [81, 361, 765, 782]. Furthermore,
this stopping condition assumes prior knowledge of what the optimum is – which
is fine for problems such as training neural networks, where the optimum is
usually zero. It is, however, the case that knowledge of the optimum is usually
not available.

• Terminate when no improvement is observed over a number of itera-
tions. There are different ways in which improvement can be measured. For
example, if the average change in particle positions is small, the swarm can be
considered to have converged. Alternatively, if the average particle velocity over
a number of iterations is approximately zero, only small position updates are
made, and the search can be terminated. The search can also be terminated
if there is no significant improvement over a number of iterations. Unfortu-
nately, these stopping conditions introduce two parameters for which sensible
values need to be found: (1) the window of iterations (or function evaluations)
for which the performance is monitored, and (2) a threshold to indicate what
constitutes unacceptable performance.

• Terminate when the normalized swarm radius is close to zero. When
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the normalized swarm radius, calculated as [863]

Rnorm =
Rmax

diameter(S)
(16.12)

where diameter(S) is the diameter of the initial swarm and the maximum radius,
Rmax, is

Rmax = ||xm − ŷ||, m = 1, . . . , ns (16.13)

with
||xm − ŷ|| ≥ ||xi − ŷ||, ∀i = 1, . . . , ns (16.14)

is close to zero, the swarm has little potential for improvement, unless the global
best is still moving. In the equations above, || • || is a suitable distance norm,
e.g. Euclidean distance.

The algorithm is terminated when Rnorm < ε. If ε is too large, the search process
may stop prematurely before a good solution is found. Alternatively, if ε is too
small, the search may take excessively more iterations for the particles to form
a compact swarm, tightly centered around the global best position.

Algorithm 16.3 Particle Clustering Algorithm

Initialize cluster C = {ŷ};
for about 5 times do

Calculate the centroid of cluster C:

x =

∑|C|
i=1,xi∈C xi

|C| (16.15)

for ∀xi ∈ S do
if ||xi − x|| < ε then

C ← C ∪ {xi};
end

endFor
endFor

A more aggressive version of the radius method above can be used, where parti-
cles are clustered in the search space. Algorithm 16.3 provides a simple particle
clustering algorithm from [863]. The result of this algorithm is a single cluster,
C. If |C|/ns > δ, the swarm is considered to have converged. If, for example,
δ = 0.7, the search will terminate if at least 70% of the particles are centered
around the global best position. The threshold ε in Algorithm 16.3 has the same
importance as for the radius method above. Similarly, if δ is too small, the search
may terminate prematurely.

This clustering approach is similar to the radius approach except that the clus-
tering approach will more readily decide that the swarm has converged.

• Terminate when the objective function slope is approximately zero.
The stopping conditions above consider the relative positions of particles in the
search space, and do not take into consideration information about the slope of
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the objective function. To base termination on the rate of change in the objective
function, consider the ratio [863],

f
′
(t) =

f(ŷ(t))− f(ŷ(t− 1))
f(ŷ(t))

(16.16)

If f
′
(t) < ε for a number of consecutive iterations, the swarm is assumed to have

converged. This approximation to the slope of the objective function is superior
to the methods above, since it actually determines if the swarm is still making
progress using information about the search space.

The objective function slope approach has, however, the problem that the search
will be terminated if some of the particles are attracted to a local minimum,
irrespective of whether other particles may still be busy exploring other parts of
the search space. It may be the case that these exploring particles could have
found a better solution had the search not terminated. To solve this problem,
the objective function slope method can be used in conjunction with the radius
or cluster methods to test if all particles have converged to the same point before
terminating the search process.

In the above, convergence does not imply that the swarm has settled on an optimum
(local or global). With the term convergence is meant that the swarm has reached an
equilibrium, i.e. just that the particles converged to a point, which is not necessarily
an optimum [863].

16.2 Social Network Structures

The feature that drives PSO is social interaction. Particles within the swarm learn
from each other and, on the basis of the knowledge obtained, move to become more
similar to their “better” neighbors. The social structure for PSO is determined by
the formation of overlapping neighborhoods, where particles within a neighborhood
influence one another. This is in analogy with observations of animal behavior, where
an organism is most likely to be influenced by others in its neighborhood, and where
organisms that are more successful will have a greater influence on members of the
neighborhood than the less successful.

Within the PSO, particles in the same neighborhood communicate with one another
by exchanging information about the success of each particle in that neighborhood.
All particles then move towards some quantification of what is believed to be a better
position. The performance of the PSO depends strongly on the structure of the social
network. The flow of information through a social network, depends on (1) the degree
of connectivity among nodes (members) of the network, (2) the amount of clustering
(clustering occurs when a node’s neighbors are also neighbors to one another), and (3)
the average shortest distance from one node to another [892].

With a highly connected social network, most of the individuals can communicate with
one another, with the consequence that information about the perceived best member
quickly filters through the social network. In terms of optimization, this means faster
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convergence to a solution than for less connected networks. However, for the highly
connected networks, the faster convergence comes at the price of susceptibility to local
minima, mainly due to the fact that the extent of coverage in the search space is less
than for less connected social networks. For sparsely connected networks with a large
amount of clustering in neighborhoods, it can also happen that the search space is
not covered sufficiently to obtain the best possible solutions. Each cluster contains
individuals in a tight neighborhood covering only a part of the search space. Within
these network structures there usually exist a few clusters, with a low connectivity
between clusters. Consequently information on only a limited part of the search space
is shared with a slow flow of information between clusters.

Different social network structures have been developed for PSO and empirically stud-
ied. This section overviews only the original structures investigated [229, 447, 452,
575]:

• The star social structure, where all particles are interconnected as illustrated
in Figure 16.4(a). Each particle can therefore communicate with every other
particle. In this case each particle is attracted towards the best solution found
by the entire swarm. Each particle therefore imitates the overall best solution.
The first implementation of the PSO used a star network structure, with the
resulting algorithm generally being referred to as the gbest PSO. The gbest PSO
has been shown to converge faster than other network structures, but with a
susceptibility to be trapped in local minima. The gbest PSO performs best for
unimodal problems.

• The ring social structure, where each particle communicates with its nN im-
mediate neighbors. In the case of nN = 2, a particle communicates with its
immediately adjacent neighbors as illustrated in Figure 16.4(b). Each parti-
cle attempts to imitate its best neighbor by moving closer to the best solution
found within the neighborhood. It is important to note from Figure 16.4(b) that
neighborhoods overlap, which facilitates the exchange of information between
neighborhoods and, in the end, convergence to a single solution. Since informa-
tion flows at a slower rate through the social network, convergence is slower, but
larger parts of the search space are covered compared to the star structure. This
behavior allows the ring structure to provide better performance in terms of the
quality of solutions found for multi-modal problems than the star structure. The
resulting PSO algorithm is generally referred to as the lbest PSO.

• The wheel social structure, where individuals in a neighborhood are isolated
from one another. One particle serves as the focal point, and all information
is communicated through the focal particle (refer to Figure 16.4(c)). The focal
particle compares the performances of all particles in the neighborhood, and
adjusts its position towards the best neighbor. If the new position of the focal
particle results in better performance, then the improvement is communicated
to all the members of the neighborhood. The wheel social network slows down
the propagation of good solutions through the swarm.

• The pyramid social structure, which forms a three-dimensional wire-frame as
illustrated in Figure 16.4(d).

• The four clusters social structure, as illustrated in Figure 16.4(e). In this
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(a) Star (b) Ring

(c) Wheel (d) Pyramid

(e) Four Clusters (f) Von Neumann

Figure 16.4 Example Social Network Structures
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network structure, four clusters (or cliques) are formed with two connections
between clusters. Particles within a cluster are connected with five neighbors.

• The Von Neumann social structure, where particles are connected in a grid
structure as illustrated in Figure 16.4(f). The Von Neumann social network has
been shown in a number of empirical studies to outperform other social networks
in a large number of problems [452, 670].

While many studies have been done using the different topologies, there is no outright
best topology for all problems. In general, the fully connected structures perform best
for unimodal problems, while the less connected structures perform better on multi-
modal problems, depending on the degree of particle interconnection [447, 452, 575,
670].

Neighborhoods are usually determined on the basis of particle indices. For example,
for the lbest PSO with nN = 2, the neighborhood of a particle with index i includes
particles i− 1, i and i + 1. While indices are usually used, Suganthan based neighbor-
hoods on the Euclidean distance between particles [820].

16.3 Basic Variations

The basic PSO has been applied successfully to a number of problems, including
standard function optimization problems [25, 26, 229, 450, 454], solving permutation
problems [753] and training multi-layer neural networks [224, 225, 229, 446, 449, 854].
While the empirical results presented in these papers illustrated the ability of the PSO
to solve optimization problems, these results also showed that the basic PSO has prob-
lems with consistently converging to good solutions. A number of basic modifications
to the basic PSO have been developed to improve speed of convergence and the quality
of solutions found by the PSO. These modifications include the introduction of an in-
ertia weight, velocity clamping, velocity constriction, different ways of determining the
personal best and global best (or local best) positions, and different velocity models.
This section discusses these basic modifications.

16.3.1 Velocity Clamping

An important aspect that determines the efficiency and accuracy of an optimization
algorithm is the exploration–exploitation trade-off. Exploration is the ability of a
search algorithm to explore different regions of the search space in order to locate a
good optimum. Exploitation, on the other hand, is the ability to concentrate the search
around a promising area in order to refine a candidate solution. A good optimization
algorithm optimally balances these contradictory objectives. Within the PSO, these
objectives are addressed by the velocity update equation.

The velocity updates in equations (16.2) and (16.6) consist of three terms that con-
tribute to the step size of particles. In the early applications of the basic PSO, it was
found that the velocity quickly explodes to large values, especially for particles far
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from the neighborhood best and personal best positions. Consequently, particles have
large position updates, which result in particles leaving the boundaries of the search
space – the particles diverge. To control the global exploration of particles, velocities
are clamped to stay within boundary constraints [229]. If a particle’s velocity exceeds
a specified maximum velocity, the particle’s velocity is set to the maximum velocity.
Let Vmax,j denote the maximum allowed velocity in dimension j. Particle velocity is
then adjusted before the position update using,

vij(t + 1) =

{
v

′
ij(t + 1) if v

′
ij(t + 1) < Vmax,j

Vmax,j if v
′
ij(t + 1) ≥ Vmax,j

(16.17)

where v
′
ij is calculated using equation (16.2) or (16.6).

The value of Vmax,j is very important, since it controls the granularity of the search
by clamping escalating velocities. Large values of Vmax,j facilitate global exploration,
while smaller values encourage local exploitation. If Vmax,j is too small, the swarm
may not explore sufficiently beyond locally good regions. Also, too small values for
Vmax,j increase the number of time steps to reach an optimum. Furthermore, the
swarm may become trapped in a local optimum, with no means of escape. On the
other hand, too large values of Vmax,j risk the possibility of missing a good region.
The particles may jump over good solutions, and continue to search in fruitless regions
of the search space. While large values do have the disadvantage that particles may
jump over optima, particles are moving faster.

This leaves the problem of finding a good value for each Vmax,j in order to balance
between (1) moving too fast or too slow, and (2) exploration and exploitation. Usually,
the Vmax,j values are selected to be a fraction of the domain of each dimension of the
search space. That is,

Vmax,j = δ(xmax,j − xmin,j) (16.18)

where xmax,j and xmin,j are respectively the maximum and minimum values of the
domain of x in dimension j, and δ ∈ (0, 1]. The value of δ is problem-dependent, as
was found in a number of empirical studies [638, 781]. The best value should be found
for each different problem using empirical techniques such as cross-validation.

There are two important aspects of the velocity clamping approach above that the
reader should be aware of:

1. Velocity clamping does not confine the positions of particles, only the step sizes
as determined from the particle velocity.

2. In the above equations, explicit reference is made to the dimension, j. A max-
imum velocity is associated with each dimension, proportional to the domain
of that dimension. For the sake of the argument, assume that all dimensions
are clamped with the same constant Vmax. Therefore if a dimension, j, exists
such that xmax,j − xmin,j << Vmax, particles may still overshoot an optimum
in dimension j.

While velocity clamping has the advantage that explosion of velocity is controlled,
it also has disadvantages that the user should be aware of (that is in addition to
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Figure 16.5 Effects of Velocity Clamping

the problem-dependent nature of Vmax,j values). Firstly, velocity clamping changes
not only the step size, but also the direction in which a particle moves. This effect is
illustrated in Figure 16.5 (assuming two-dimensional particles). In this figure, xi(t+1)
denotes the position of particle i without using velocity clamping. The position x

′
i(t+1)

is the result of velocity clamping on the second dimension. Note how the search
direction and the step size have changed. It may be said that these changes in search
direction allow for better exploration. However, it may also cause the optimum not to
be found at all.

Another problem with velocity clamping occurs when all velocities are equal to the
maximum velocity. If no measures are implemented to prevent this situation, particles
remain to search on the boundaries of a hypercube defined by [xi(t)−Vmax,xi(t) +
Vmax]. It is possible that a particle may stumble upon the optimum, but in general
the swarm will have difficulty in exploiting this local area. This problem can be solved
in different ways, with the introduction of an inertia weight (refer to Section 16.3.2)
being one of the first solutions. The problem can also be solved by reducing Vmax,j

over time. The idea is to start with large values, allowing the particles to explore the
search space, and then to decrease the maximum velocity over time. The decreasing
maximum velocity constrains the exploration ability in favor of local exploitation at
mature stages of the optimization process. The following dynamic velocity approaches
have been used:

• Change the maximum velocity when no improvement in the global best position
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has been seen over τ consecutive iterations [766]:

Vmax,j(t + 1) =
{

γVmax,j(t) if f(ŷ(t)) ≥ f(ŷ(t− t
′
)) ∀ t

′
= 1, . . . , nt′

Vmax,j(t) otherwise
(16.19)

where γ decreases from 1 to 0.01 (the decrease can be linear or exponential
using an annealing schedule similar to that given in Section 16.3.2 for the inertia
weight).

• Exponentially decay the maximum velocity, using [254]

Vmax,j(t + 1) = (1− (t/nt)α)Vmax,j(t) (16.20)

where α is a positive constant, found by trial and error, or cross-validation
methods; nt is the maximum number of time steps (or iterations).

Finally, the sensitivity of PSO to the value of δ (refer to equation (16.18)) can be
reduced by constraining velocities using the hyperbolic tangent function, i.e.

vij(t + 1) = Vmax,j tanh

(
v

′
ij(t + 1)
Vmax,j

)
(16.21)

where v
′
ij(t + 1) is calculated from equation (16.2) or (16.6).

16.3.2 Inertia Weight

The inertia weight was introduced by Shi and Eberhart [780] as a mechanism to
control the exploration and exploitation abilities of the swarm, and as a mechanism
to eliminate the need for velocity clamping [227]. The inertia weight was successful in
addressing the first objective, but could not completely eliminate the need for velocity
clamping. The inertia weight, w, controls the momentum of the particle by weighing
the contribution of the previous velocity – basically controlling how much memory of
the previous flight direction will influence the new velocity. For the gbest PSO, the
velocity equation changes from equation (16.2) to

vij(t + 1) = wvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (16.22)

A similar change is made for the lbest PSO.

The value of w is extremely important to ensure convergent behavior, and to opti-
mally tradeoff exploration and exploitation. For w ≥ 1, velocities increase over time,
accelerating towards the maximum velocity (assuming velocity clamping is used), and
the swarm diverges. Particles fail to change direction in order to move back towards
promising areas. For w < 1, particles decelerate until their velocities reach zero (de-
pending on the values of the acceleration coefficients). Large values for w facilitate
exploration, with increased diversity. A small w promotes local exploitation. However,
too small values eliminate the exploration ability of the swarm. Little momentum is
then preserved from the previous time step, which enables quick changes in direc-
tion. The smaller w, the more do the cognitive and social components control position
updates.
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As with the maximum velocity, the optimal value for the inertia weight is problem-
dependent [781]. Initial implementations of the inertia weight used a static value for
the entire search duration, for all particles for each dimension. Later implementations
made use of dynamically changing inertia values. These approaches usually start with
large inertia values, which decreases over time to smaller values. In doing so, particles
are allowed to explore in the initial search steps, while favoring exploitation as time
increases. At this time it is crucial to mention the important relationship between
the values of w, and the acceleration constants. The choice of value for w has to be
made in conjunction with the selection of the values for c1 and c2. Van den Bergh and
Engelbrecht [863, 870] showed that

w >
1
2
(c1 + c2)− 1 (16.23)

guarantees convergent particle trajectories. If this condition is not satisfied, divergent
or cyclic behavior may occur. A similar condition was derived by Trelea [851].

Approaches to dynamically varying the inertia weight can be grouped into the following
categories:

• Random adjustments, where a different inertia weight is randomly selected
at each iteration. One approach is to sample from a Gaussian distribution, e.g.

w ∼ N(0.72, σ) (16.24)

where σ is small enough to ensure that w is not predominantly greater than one.
Alternatively, Peng et al. used [673]

w = (c1r1 + c2r2) (16.25)

with no random scaling of the cognitive and social components.

• Linear decreasing, where an initially large inertia weight (usually 0.9) is lin-
early decreased to a small value (usually 0.4). From Naka et al. [619], Rat-
naweera et al. [706], Suganthan [820], Yoshida et al. [941]

w(t) = (w(0)− w(nt))
(nt − t)

nt
+ w(nt) (16.26)

where nt is the maximum number of time steps for which the algorithm is ex-
ecuted, w(0) is the initial inertia weight, w(nt) is the final inertia weight, and
w(t) is the inertia at time step t. Note that w(0) > w(nt).

• Nonlinear decreasing, where an initially large value decreases nonlinearly to a
small value. Nonlinear decreasing methods allow a shorter exploration time than
the linear decreasing methods, with more time spent on refining solutions (ex-
ploiting). Nonlinear decreasing methods will be more appropriate for smoother
search spaces. The following nonlinear methods have been defined:

– From Peram et al. [675],

w(t + 1) =
(w(t)− 0.4)(nt − t)

nt + 0.4
(16.27)

with w(0) = 0.9.
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– From Venter and Sobieszczanski-Sobieski [874, 875],

w(t + 1) = αw(t
′
) (16.28)

where α = 0.975, and t
′
is the time step when the inertia last changed. The

inertia is only changed when there is no significant difference in the fitness
of the swarm. Venter and Sobieszczanski-Sobieski measure the variation
in particle fitness of a 20% subset of randomly selected particles. If this
variation is too small, the inertia is changed. An initial inertia weight
of w(0) = 1.4 is used with a lower bound of w(nt) = 0.35. The initial
w(0) = 1.4 ensures that a large area of the search space is covered before
the swarm focuses on refining solutions.

– Clerc proposes an adaptive inertia weight approach where the amount of
change in the inertia value is proportional to the relative improvement of
the swarm [134]. The inertia weight is adjusted according to

wi(t + 1) = w(0) + (w(nt)− w(0))
emi(t) − 1
emi(t) + 1

(16.29)

where the relative improvement, mi, is estimated as

mi(t) =
f(ŷi(t))− f(xi(t))
f(ŷi(t)) + f(xi(t))

(16.30)

with w(nt) ≈ 0.5 and w(0) < 1.
Using this approach, which was developed for velocity updates without the
cognitive component, each particle has its own inertia weight based on its
distance from the local best (or neighborhood best) position. The local best
position, ŷi(t) can just as well be replaced with the global best position ŷ(t).
Clerc motivates his approach by considering that the more an individual
improves upon his/her neighbors, the more he/she follows his/her own way,
and vice versa. Clerc reported that this approach results in fewer iterations
[134].

• Fuzzy adaptive inertia, where the inertia weight is dynamically adjusted on
the basis of fuzzy sets and rules. Shi and Eberhart [783] defined a fuzzy system
for the inertia adaptation to consist of the following components:

– Two inputs, one to represent the fitness of the global best position, and the
other the current value of the inertia weight.

– One output to represent the change in inertia weight.
– Three fuzzy sets, namely LOW, MEDIUM and HIGH, respectively imple-

mented as a left triangle, triangle and right triangle membership function
[783].

– Nine fuzzy rules from which the change in inertia is calculated. An example
rule in the fuzzy system is [229, 783]:
if normalized best fitness is LOW, and
current inertia weight value is LOW

then the change in weight is MEDIUM
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• Increasing inertia, where the inertia weight is linearly increased from 0.4 to
0.9 [958].

The linear and nonlinear adaptive inertia methods above are very similar to the tem-
perature schedule of simulated annealing [467, 649] (also refer to Section A.5.2).

16.3.3 Constriction Coefficient

Clerc developed an approach very similar to the inertia weight to balance the
exploration–exploitation trade-off, where the velocities are constricted by a constant
χ, referred to as the constriction coefficient [133, 136]. The velocity update equation
changes to:

vij(t + 1) = χ[vij(t) + φ1(yij(t)− xij(t)) + φ2(ŷj(t)− xij(t))] (16.31)

where
χ =

2κ

|2− φ−√
φ(φ− 4)| (16.32)

with φ = φ1 + φ2, φ1 = c1r1 and φ2 = c2r2. Equation (16.32) is used under the
constraints that φ ≥ 4 and κ ∈ [0, 1]. The above equations were derived from a formal
eigenvalue analysis of swarm dynamics [136].

The constriction approach was developed as a natural, dynamic way to ensure conver-
gence to a stable point, without the need for velocity clamping. Under the conditions
that φ ≥ 4 and κ ∈ [0, 1], the swarm is guaranteed to converge. The constriction
coefficient, χ, evaluates to a value in the range [0, 1] which implies that the velocity is
reduced at each time step.

The parameter, κ, in equation (16.32) controls the exploration and exploitation abili-
ties of the swarm. For κ ≈ 0, fast convergence is obtained with local exploitation. The
swarm exhibits an almost hill-climbing behavior. On the other hand, κ ≈ 1 results
in slow convergence with a high degree of exploration. Usually, κ is set to a constant
value. However, an initial high degree of exploration with local exploitation in the
later search phases can be achieved using an initial value close to one, decreasing it to
zero.

The constriction approach is effectively equivalent to the inertia weight approach.
Both approaches have the objective of balancing exploration and exploitation, and
in doing so of improving convergence time and the quality of solutions found. Low
values of w and χ result in exploitation with little exploration, while large values result
in exploration with difficulties in refining solutions. For a specific χ, the equivalent
inertia model can be obtained by simply setting w = χ, φ1 = χc1r1 and φ2 = χc2r2.
The differences in the two approaches are that

• velocity clamping is not necessary for the constriction model,

• the constriction model guarantees convergence under the given constraints, and

• any ability to regulate the change in direction of particles must be done via the
constants φ1 and φ2 for the constriction model.
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While it is not necessary to use velocity clamping with the constriction model, Eberhart
and Shi showed empirically that if velocity clamping and constriction are used together,
faster convergence rates can be obtained [226].

16.3.4 Synchronous versus Asynchronous Updates

The gbest and lbest PSO algorithms presented in Algorithms 16.1 and 16.2 perform syn-
chronous updates of the personal best and global (or local) best positions. Synchronous
updates are done separately from the particle position updates. Alternatively, asyn-
chronous updates calculate the new best positions after each particle position update
(very similar to a steady state GA, where offspring are immediately introduced into
the population). Asynchronous updates have the advantage that immediate feedback
is given about the best regions of the search space, while feedback with synchronous
updates is only given once per iteration. Carlisle and Dozier reason that asynchronous
updates are more important for lbest PSO where immediate feedback will be more ben-
eficial in loosely connected swarms, while synchronous updates are more appropriate
for gbest PSO [108].

Selection of the global (or local) best positions is usually done by selecting the absolute
best position found by the swarm (or neighborhood). Kennedy proposed to select the
best positions randomly from the neighborhood [448]. This is done to break the
effect that one, potentially bad, solution drives the swarm. The random selection was
specifically used to address the difficulties that the gbest PSO experience on highly
multi-modal problems. The performance of the basic PSO is also strongly influenced
by whether the best positions (gbest or lbest) are selected from the particle positions
of the current iterations, or from the personal best positions of all particles. The
difference between the two approaches is that the latter includes a memory component
in the sense that the best positions are the best positions found over all iterations. The
former approach neglects the temporal experience of the swarm. Selection from the
personal best positions is similar to the “hall of fame” concept (refer to Sections 8.5.9
and 15.2.1) used within evolutionary computation.

16.3.5 Velocity Models

Kennedy [446] investigated a number of variations to the full PSO models presented
in Sections 16.1.1 and 16.1.2. These models differ in the components included in the
velocity equation, and how best positions are determined. This section summarizes
these models.

Cognition-Only Model

The cognition-only model excludes the social component from the original velocity
equation as given in equation (16.2). For the cognition-only model, the velocity update
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changes to
vij(t + 1) = vij(t) + c1r1j(t)(yij(t)− xij(t)) (16.33)

The above formulation excludes the inertia weight, mainly because the velocity models
in this section were investigated before the introduction of the inertia weight. However,
nothing prevents the inclusion of w in equation (16.33) and the velocity equations that
follow in this section.

The behavior of particles within the cognition-only model can be likened to nostalgia,
and illustrates a stochastic tendency for particles to return toward their previous best
position.

From empirical work, Kennedy reported that the cognition-only model is slightly more
vulnerable to failure than the full model [446]. It tends to locally search in areas where
particles are initialized. The cognition-only model is slower in the number of iterations
it requires to reach a good solution, and fails when velocity clamping and the accelera-
tion coefficient are small. The poor performance of the cognitive model is confirmed by
Carlisle and Dozier [107], but with respect to dynamic changing environments (refer
to Section 16.6.3). The cognition-only model was, however, successfully used within
niching algorithms [89] (also refer to Section 16.6.4).

Social-Only Model

The social-only model excludes the cognitive component from the velocity equation:

vij(t + 1) = vij(t) + c2r2j(t)(ŷj(t)− xij(t)) (16.34)

for the gbest PSO. For the lbest PSO, ŷj is simply replaced with ŷij .

For the social-only model, particles have no tendency to return to previous best posi-
tions. All particles are attracted towards the best position of their neighborhood.

Kennedy empirically illustrated that the social-only model is faster and more efficient
than the full and cognitive models [446], which is also confirmed by the results from
Carlisle and Dozier [107] for dynamic environments.

Selfless Model

The selfless model is basically the social model, but with the neighborhood best solu-
tion only chosen from a particle’s neighbors. In other words, the particle itself is not
allowed to become the neighborhood best. Kennedy showed the selfless model to be
faster than the social-only model for a few problems [446]. Carlisle and Dozier’s results
show that the selfless model performs poorly for dynamically changing environments
[107].
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16.4 Basic PSO Parameters

The basic PSO is influenced by a number of control parameters, namely the dimension
of the problem, number of particles, acceleration coefficients, inertia weight, neighbor-
hood size, number of iterations, and the random values that scale the contribution
of the cognitive and social components. Additionally, if velocity clamping or con-
striction is used, the maximum velocity and constriction coefficient also influence the
performance of the PSO. This section discusses these parameters.

The influence of the inertia weight, velocity clamping threshold and constriction co-
efficient has been discussed in Section 16.3. The rest of the parameters are discussed
below:

• Swarm size, ns, i.e. the number of particles in the swarm: the more particles
in the swarm, the larger the initial diversity of the swarm – provided that a
good uniform initialization scheme is used to initialize the particles. A large
swarm allows larger parts of the search space to be covered per iteration. How-
ever, more particles increase the per iteration computational complexity, and
the search degrades to a parallel random search. It is also the case that more
particles may lead to fewer iterations to reach a good solution, compared to
smaller swarms. It has been shown in a number of empirical studies that the
PSO has the ability to find optimal solutions with small swarm sizes of 10 to 30
particles [89, 865]. Success has even been obtained for fewer than 10 particles
[863]. While empirical studies give a general heuristic of ns ∈ [10, 30], the op-
timal swarm size is problem-dependent. A smooth search space will need fewer
particles than a rough surface to locate optimal solutions. Rather than using
the heuristics found in publications, it is best that the value of ns be optimized
for each problem using cross-validation methods.

• Neighborhood size: The neighborhood size defines the extent of social inter-
action within the swarm. The smaller the neighborhoods, the less interaction
occurs. While smaller neighborhoods are slower in convergence, they have more
reliable convergence to optimal solutions. Smaller neighborhood sizes are less
susceptible to local minima. To capitalize on the advantages of small and large
neighborhood sizes, start the search with small neighborhoods and increase the
neighborhood size proportionally to the increase in number of iterations [820].
This approach ensures an initial high diversity with faster convergence as the
particles move towards a promising search area.

• Number of iterations: The number of iterations to reach a good solution is also
problem-dependent. Too few iterations may terminate the search prematurely.
A too large number of iterations has the consequence of unnecessary added
computational complexity (provided that the number of iterations is the only
stopping condition).

• Acceleration coefficients: The acceleration coefficients, c1 and c2, together
with the random vectors r1 and r2, control the stochastic influence of the cogni-
tive and social components on the overall velocity of a particle. The constants
c1 and c2 are also referred to as trust parameters, where c1 expresses how much
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confidence a particle has in itself, while c2 expresses how much confidence a par-
ticle has in its neighbors. With c1 = c2 = 0, particles keep flying at their current
speed until they hit a boundary of the search space (assuming no inertia). If
c1 > 0 and c2 = 0, all particles are independent hill-climbers. Each particle finds
the best position in its neighborhood by replacing the current best position if
the new position is better. Particles perform a local search. On the other hand,
if c2 > 0 and c1 = 0, the entire swarm is attracted to a single point, ŷ. The
swarm turns into one stochastic hill-climber.

Particles draw their strength from their cooperative nature, and are most effec-
tive when nostalgia (c1) and envy (c2) coexist in a good balance, i.e. c1 ≈ c2. If
c1 = c2, particles are attracted towards the average of yi and ŷ [863, 870]. While
most applications use c1 = c2, the ratio between these constants is problem-
dependent. If c1 >> c2, each particle is much more attracted to its own personal
best position, resulting in excessive wandering. On the other hand, if c2 >> c1,
particles are more strongly attracted to the global best position, causing parti-
cles to rush prematurely towards optima. For unimodal problems with a smooth
search space, a larger social component will be efficient, while rough multi-modal
search spaces may find a larger cognitive component more advantageous.

Low values for c1 and c2 result in smooth particle trajectories, allowing particles
to roam far from good regions to explore before being pulled back towards good
regions. High values cause more acceleration, with abrupt movement towards or
past good regions.

Usually, c1 and c2 are static, with their optimized values being found empirically.
Wrong initialization of c1 and c2 may result in divergent or cyclic behavior
[863, 870].

Clerc [134] proposed a scheme for adaptive acceleration coefficients, assuming
the social velocity model (refer to Section 16.3.5):

c2(t) =
c2,min + c2,max

2
+

c2,max − c2,min

2
+

e−mi(t) − 1
e−mi(t) + 1

(16.35)

where mi is as defined in equation (16.30). The formulation of equation (16.30)
implies that each particle has its own adaptive acceleration as a function of the
slope of the search space at the current position of the particle.

Ratnaweera et al. [706] builds further on a suggestion by Suganthan [820] to lin-
early adapt the values of c1 and c2. Suganthan suggested that both acceleration
coefficients be linearly decreased, but reported no improvement in performance
using this scheme [820]. Ratnaweera et al. proposed that c1 decreases linearly
over time, while c2 increases linearly [706]. This strategy focuses on exploration
in the early stages of optimization, while encouraging convergence to a good
optimum near the end of the optimization process by attracting particles more
towards the neighborhood best (or global best) positions. The values of c1(t)
and c2(t) at time step t is calculated as

c1(t) = (c1,min − c1,max)
t

nt
+ c1,max (16.36)

c2(t) = (c2,max − c2,min)
t

nt
+ c2,min (16.37)



314 16. Particle Swarm Optimization

where c1,max = c2,max = 2.5 and c1,min = c2,min = 0.5.

A number of theoretical studies have shown that the convergence behavior of PSO is
sensitive to the values of the inertia weight and the acceleration coefficients [136, 851,
863, 870]. These studies also provide guidelines to choose values for PSO parameters
that will ensure convergence to an equilibrium point. The first set of guidelines are
obtained from the different constriction models suggested by Clerc and Kennedy [136].
For a specific constriction model and selected φ value, the value of the constriction
coefficient is calculated to ensure convergence.

For an unconstricted simplified PSO system that includes inertia, the trajectory of a
particle converges if the following conditions hold [851, 863, 870, 937]:

1 > w >
1
2
(φ1 + φ2)− 1 ≥ 0 (16.38)

and 0 ≤ w < 1. Since φ1 = c1U(0, 1) and φ2 = c2U(0, 1), the acceleration coefficients,
c1 and c2 serve as upper bounds of φ1 and φ2. Equation (16.38) can then be rewritten
as

1 > w >
1
2
(c1 + c2)− 1 ≥ 0 (16.39)

Therefore, if w, c1 and c2 are selected such that the condition in equation (16.39)
holds, the system has guaranteed convergence to an equilibrium state.

The heuristics above have been derived for the simplified PSO system with no stochas-
tic component. It can happen that, for stochastic φ1 and φ2 and a w that violates
the condition stated in equation (16.38), the swarm may still converge. The stochastic
trajectory illustrated in Figure 16.6 is an example of such behavior. The particle fol-
lows a convergent trajectory for most of the time steps, with an occasional divergent
step.

Van den Bergh and Engelbrecht show in [863, 870] that convergent behavior will be
observed under stochastic φ1 and φ2 if the ratio,

φratio =
φcrit

c1 + c2
(16.40)

is close to 1.0, where

φcrit = sup φ | 0.5 φ− 1 < w, φ ∈ (0, c1 + c2] (16.41)

It is even possible that parameter choices for which φratio = 0.5, may lead to convergent
behavior, since particles spend 50% of their time taking a step along a convergent
trajectory.

16.5 Single-Solution Particle Swarm Optimization

Initial empirical studies of the basic PSO and basic variations as discussed in this chap-
ter have shown that the PSO is an efficient optimization approach – for the benchmark
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Figure 16.6 Stochastic Particle Trajectory for w = 0.9 and c1 = c2 = 2.0

problems considered in these studies. Some studies have shown that the basic PSO
improves on the performance of other stochastic population-based optimization algo-
rithms such as genetic algorithms [88, 89, 106, 369, 408, 863]. While the basic PSO
has shown some success, formal analysis [136, 851, 863, 870] has shown that the per-
formance of the PSO is sensitive to the values of control parameters. It was also shown
that the basic PSO has a serious defect that may cause stagnation [868].

A variety of PSO variations have been developed, mainly to improve the accuracy of
solutions, diversity and convergence behavior. This section reviews some of these vari-
ations for locating a single solution to unconstrained, single-objective, static optimiza-
tion problems. Section 16.5.2 considers approaches that differ in the social interaction
of particles. Some hybrids with concepts from EC are discussed in Section 16.5.3.
Algorithms with multiple swarms are discussed in Section 16.5.4. Multi-start methods
are given in Section 16.5.5, while methods that use some form of repelling mechanism
are discussed in Section 16.5.6. Section 16.5.7 shows how PSO can be changed to solve
binary-valued problems.

Before these PSO variations are discussed, Section 16.5.1 outlines a problem with the
basic PSO.
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16.5.1 Guaranteed Convergence PSO

The basic PSO has a potentially dangerous property: when xi = yi = ŷ, the velocity
update depends only on the value of wvi. If this condition is true for all particles
and it persists for a number of iterations, then wvi → 0, which leads to stagnation of
the search process. This point of stagnation may not necessarily coincide with a local
minimum. All that can be said is that the particles converged to the best position
found by the swarm. The PSO can, however, be pulled from this point of stagnation
by forcing the global best position to change when xi = yi = ŷ.

The guaranteed convergence PSO (GCPSO) forces the global best particle to search
in a confined region for a better position, thereby solving the stagnation problem
[863, 868]. Let τ be the index of the global best particle, so that

yτ = ŷ (16.42)

GCPSO changes the position update to

xτj(t + 1) = ŷj(t) + wvτj(t) + ρ(t)(1− 2r2(t)) (16.43)

which is obtained using equation (16.1) if the velocity update of the global best particle
changes to

vτj(t + 1) = −xτj(t) + ŷj(t) + wvτj(t) + ρ(t)(1− 2r2j(t)) (16.44)

where ρ(t) is a scaling factor defined in equation (16.45) below. Note that only the
global best particle is adjusted according to equations (16.43) and (16.44); all other
particles use the equations as given in equations (16.1) and (16.2).

The term −xτj(t) in equation (16.44) resets the global best particle’s position to the
position ŷj(t). The current search direction, wvτj(t), is added to the velocity, and
the term ρ(t)(1− 2r2j(t)) generates a random sample from a sample space with side
lengths 2ρ(t). The scaling term forces the PSO to perform a random search in an area
surrounding the global best position, ŷ(t). The parameter, ρ(t) controls the diameter
of this search area, and is adapted using

ρ(t + 1) =




2ρ(t) if #successes(t) > εs

0.5ρ(t) if #failures(t) > εf

ρ(t) otherwise
(16.45)

where #successes and #failures respectively denote the number of consecutive suc-
cesses and failures. A failure is defined as f(ŷ(t)) ≤ f(ŷ(t + 1)); ρ(0) = 1.0 was found
empirically to provide good results [863, 868]. The threshold parameters, εs and εf

adhere to the following conditions:

#successes(t + 1) > #successes(t) ⇒ #failures(t + 1) = 0 (16.46)
#failures(t + 1) > #failures(t) ⇒ #successes(t + 1) = 0 (16.47)

The optimal choice of values for εs and εf is problem-dependent. Van den Bergh et al.
[863, 868] recommends that εs = 15 and εf = 5 be used for high-dimensional search
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spaces. The algorithm is then quicker to punish poor ρ settings than it is to reward
successful ρ values.

Instead of using static εs and εf values, these values can be learnt dynamically. For
example, increase sc each time that #failures > εf , which makes it more difficult
to reach the success state if failures occur frequently. Such a conservative mechanism
will prevent the value of ρ from oscillating rapidly. A similar strategy can be used for
εs.

The value of ρ determines the size of the local area around ŷ where a better position
for ŷ is searched. GCPSO uses an adaptive ρ to find the best size of the sampling
volume, given the current state of the algorithm. When the global best position is
repeatedly improved for a specific value of ρ, the sampling volume is increased to
allow step sizes in the global best position to increase. On the other hand, when εf

consecutive failures are produced, the sampling volume is too large and is consequently
reduced. Stagnation is prevented by ensuring that ρ(t) > 0 for all time steps.

16.5.2 Social-Based Particle Swarm Optimization

Social-based PSO implementations introduce a new social topology, or change the way
in which personal best and neighborhood best positions are calculated.

Spatial Social Networks

Neighborhoods are usually formed on the basis of particle indices. That is, assuming
a ring social network, the immediate neighbors of a particle with index i are particles
with indices (i − 1 mod ns) and (i − 1 mod ns), where ns is the total number of
particles in the swarm. Suganthan proposed that neighborhoods be formed on the
basis of the Euclidean distance between particles [820]. For neighborhoods of size
nN , the neighborhood of particle i is defined to consist of the nN particles closest to
particle i. Algorithm 16.4 summarizes the spatial neighborhood selection process.

Calculation of spatial neighborhoods require that the Euclidean distance between all
particles be calculated at each iteration, which significantly increases the computa-
tional complexity of the search algorithm. If nt iterations of the algorithm is executed,
the spatial neighborhood calculation adds a O(ntn

2
s) computational cost. Determin-

ing neighborhoods based on distances has the advantage that neighborhoods change
dynamically with each iteration.

Fitness-Based Spatial Neighborhoods

Braendler and Hendtlass [81] proposed a variation on the spatial neighborhoods im-
plemented by Suganthan, where particles move towards neighboring particles that
have found a good solution. Assuming a minimization problem, the neighborhood of
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Algorithm 16.4 Calculation of Spatial Neighborhoods; Ni is the neighborhood of
particle i

Calculate the Euclidean distance E(xi1 ,xi2), ∀i1, i2 = 1, . . . , ns;
S = {i : i = 1, . . . , ns};
for i = 1, . . . , ns do

S
′
= S;

for i
′
= 1, . . . , nN

i
′ do

Ni = Ni ∪ {xi′′ : E(xi,xi′′ ) = min{E(xi,xi′′′ ), ∀xi′′′ ∈ S
′};

S
′
= S

′ \ {xi′′};
end

end

particle i is defined as the nN particles with the smallest value of

E(xi,xi′ )× f(xi′ ) (16.48)

where E(xi,xi′ ) is the Euclidean distance between particles i and i
′
, and f(xi′ ) is the

fitness of particle i
′
. Note that this neighborhood calculation mechanism also allows

for overlapping neighborhoods.

Based on this scheme of determining neighborhoods, the standard lbest PSO veloc-
ity equation (refer to equation (16.6)) is used, but with ŷi the neighborhood-best
determined using equation (16.48).

Growing Neighborhoods

As discussed in Section 16.2, social networks with a low interconnection converge
slower, which allows larger parts of the search space to be explored. Convergence of
the fully interconnected star topology is faster, but at the cost of neglecting parts
of the search space. To combine the advantages of better exploration by neighbor-
hood structures and the faster convergence of highly connected networks, Suganthan
combined the two approaches [820]. The search is initialized with an lbest PSO with
nN = 2 (i.e. with the smallest neighborhoods). The neighborhood sizes are then
increased with increase in iteration until each neighborhood contains the entire swarm
(i.e. nN = ns).

Growing neighborhoods are obtained by adding particle position xi2(t) to the neigh-
borhood of particle position xi1(t) if

||xi1(t)− xi2(t)||2
dmax

< ε (16.49)

where dmax is the largest distance between any two particles, and

ε =
3t + 0.6nt

nt
(16.50)
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with nt the maximum number of iterations.

This allows the search to explore more in the first iterations of the search, with faster
convergence in the later stages of the search.

Hypercube Structure

For binary-valued problems, Abdelbar and Abdelshahid [5] used a hypercube neigh-
borhood structure. Particles are defined as neighbors if the Hamming distance between
the bit representation of their indices is one. To make use of the hypercube topology,
the total number of particles must be a power of two, where particles have indices
from 0 to 2nN − 1. Based on this, the hypercube has the properties [5]:

• Each neighborhood has exactly nN particles.

• The maximum distance between any two particles is exactly nN .

• If particles i1 and i2 are neighbors, then i1 and i2 will have no other neighbors
in common.

Abdelbar and Abdelshahid found that the hypercube network structure provides better
results than the gbest PSO for the binary problems studied.

Fully Informed PSO

Based on the standard velocity updates as given in equations (16.2) and (16.6), each
particle’s new position is influenced by the particle itself (via its personal best posi-
tion) and the best position in its neighborhood. Kennedy and Mendes observed that
human individuals are not influenced by a single individual, but rather by a statistical
summary of the state of their neighborhood [453]. Based on this principle, the veloc-
ity equation is changed such that each particle is influenced by the successes of all its
neighbors, and not on the performance of only one individual. The resulting PSO is
referred to as the fully informed PSO (FIPS).

Two models are suggested [453, 576]:

• Each particle in the neighborhood, Ni, of particle i is regarded equally. The
cognitive and social components are replaced with the term

nNi∑
m=1

r(t)(ym(t)− xi(t))
nNi

(16.51)

where nNi
= |Ni|, Ni is the set of particles in the neighborhood of particle i

as defined in equation (16.8), and r(t) ∼ U(0, c1 + c2)nx . The velocity is then
calculated as

vi(t + 1) = χ

(
vi(t) +

nNi∑
m=1

r(t)(ym(t)− xi(t))
nNi

)
(16.52)
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Although Kennedy and Mendes used constriction models of type 1
′

(refer to
Section 16.3.3), inertia or any of the other models may be used.

Using equation (16.52), each particle is attracted towards the average behavior
of its neighborhood.

Note that if Ni includes only particle i and its best neighbor, the velocity equa-
tion becomes equivalent to that of lbest PSO.

• A weight is assigned to the contribution of each particle based on the performance
of that particle. The cognitive and social components are replaced by∑nNi

m=1
φmpm(t)
f(xm(t))∑nNi

m=1
φm

f(xm(t))

(16.53)

where φm ∼ U(0, c1+c2
nNi

), and

pm(t) =
φ1ym(t) + φ2ŷm(t)

φ1 + φ2
(16.54)

The velocity equation then becomes

vi(t + 1) = χ


vi(t) +

∑nNi
m=1

(
φmpm(t)
f(xm(t))

)
∑nNi

m=1

(
φm

f(xm(t))

)

 (16.55)

In this case a particle is attracted more to its better neighbors.

A disadvantage of the FIPS is that it does not consider the fact that the influences of
multiple particles may cancel each other. For example, if two neighbors respectively
contribute the amount of a and −a to the velocity update of a specific particle, then
the sum of their influences is zero. Consider the effect when all the neighbors of a
particle are organized approximately symmetrically around the particle. The change
in weight due to the FIPS velocity term will then be approximately zero, causing the
change in position to be determined only by χvi(t).

Barebones PSO

Formal proofs [851, 863, 870] have shown that each particle converges to a point that
is a weighted average between the personal best and neighborhood best positions. If
it is assumed that c1 = c2, then a particle converges, in each dimension to

yij(t) + ŷij(t)
2

(16.56)

This behavior supports Kennedy’s proposal to replace the entire velocity by random
numbers sampled from a Gaussian distribution with the mean as defined in equation
(16.56) and deviation,

σ = |yij(t)− ŷij(t)| (16.57)
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The velocity therefore changes to

vij(t + 1) ∼ N

(
yij(t) + ŷij(t)

2
, σ

)
(16.58)

In the above, ŷij can be the global best position (in the case of gbest PSO), the local
best position (in the case of a neighborhood-based algorithm), a randomly selected
neighbor, or the center of a FIPS neighborhood. The position update changes to

xij(t + 1) = vij(t + 1) (16.59)

Kennedy also proposed an alternative to the barebones PSO velocity in equation
(16.58), where

vij(t + 1) =
{

yij(t) if U(0, 1) < 0.5
N( yij(t)+ŷij(t)

2 , σ) otherwise
(16.60)

Based on equation (16.60), there is a 50% chance that the j-th dimension of the particle
dimension changes to the corresponding personal best position. This version can be
viewed as a mutation of the personal best position.

16.5.3 Hybrid Algorithms

This section describes just some of the PSO algorithms that use one or more concepts
from EC.

Selection-Based PSO

Angeline provided the first approach to combine GA concepts with PSO [26], showing
that PSO performance can be improved for certain classes of problems by adding a
selection process similar to that which occurs in evolutionary algorithms. The selection
procedure as summarized in Algorithm 16.5 is executed before the velocity updates
are calculated.

Algorithm 16.5 Selection-Based PSO

Calculate the fitness of all particles;
for each particle i = 1, . . . , ns do

Randomly select nts particles;
Score the performance of particle i against the nts randomly selected particles;

end
Sort the swarm based on performance scores;
Replace the worst half of the swarm with the top half, without changing the personal
best positions;
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Although the bad performers are penalized by being removed from the swarm, memory
of their best found positions is not lost, and the search process continues to build on
previously acquired experience. Angeline showed empirically that the selection based
PSO improves on the local search capabilities of PSO [26]. However, contrary to one
of the objectives of natural selection, this approach significantly reduces the diversity
of the swarm [363]. Since half of the swarm is replaced by the other half, diversity is
decreased by 50% at each iteration. In other words, the selection pressure is too high.

Diversity can be improved by replacing the worst individuals with mutated copies of
the best individuals. Performance can also be improved by considering replacement
only if the new particle improves the fitness of the particle to be deleted. This is
the approach followed by Koay and Srinivasan [470], where each particle generates
offspring through mutation.

Reproduction

Reproduction refers to the process of producing offspring from individuals of the cur-
rent population. Different reproduction schemes have been used within PSO. One of
the first approaches can be found in the Cheap-PSO developed by Clerc [134], where
a particle is allowed to generate a new particle, kill itself, or modify the inertia and
acceleration coefficient, on the basis of environment conditions. If there is no sufficient
improvement in a particle’s neighborhood, the particle spawns a new particle within
its neighborhood. On the other hand, if a sufficient improvement is observed in the
neighborhood, the worst particle of that neighborhood is culled.

Using this approach to reproduction and culling, the probability of adding a particle
decreases with increasing swarm size. On the other hand, a decreasing swarm size
increases the probability of spawning new particles.

The Cheap-PSO includes only the social component, where the social acceleration
coefficient is adapted using equation (16.35) and the inertia is adapted using equation
(16.29).

Koay and Srinivasan [470] implemented a similar approach to dynamically changing
swarm sizes. The approach was developed by analogy with the natural adaptation of
the amoeba to its environment: when the amoeba receives positive feedback from its
environment (i.e. that sufficient food sources exist), it reproduces by releasing more
spores. On the other hand, when food sources are scarce, reproduction is reduced.
Taking this analogy to optimization, when a particle finds itself in a potential opti-
mum, the number of particles is increased in that area. Koay and Srinivasan spawn
only the global best particle (assuming gbest PSO) in order to reduce the computa-
tional complexity of the spawning process. The choice of spawning only the global
best particle can be motivated by the fact that the global best particle will be the
first particle to find itself in a potential optimum. Stopping conditions as given in
Section 16.1.6 can be used to determine if a potential optimum has been found. The
spawning process is summarized in Algorithm 16.6. It is also possible to apply the
same process to the neighborhood best positions if other neighborhood networks are
used, such as the ring structure.
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Algorithm 16.6 Global Best Spawning Algorithm

if ŷ(t) is in a potential minimum then
repeat

ŷ = ŷ(t);
for NumberOfSpawns=1 to 10 do

for a = 1 to NumberOfSpawns do
ŷa = ŷ(t) + N(0, σ);
if f(ŷa) < f(ŷ) then

ŷ = ŷa;
end

end
end

until f(ŷ) ≥ f(ŷ(t));
ŷ(t) = ŷ;

end

Løvberg et al. [534, 536] used an arithmetic crossover operator to produce offspring
from two randomly selected particles. Assume that particles a and b are selected
for crossover. The corresponding positions, xa(t) and xb(t) are then replaced by the
offspring,

xi1(t + 1) = r(t)xi1(t) + (1− r(t))xi2(t) (16.61)
xi2(t + 1) = r(t)xi2(t) + (1− r(t))xi1(t) (16.62)

with the corresponding velocities,

vi1(t + 1) =
vi1(t) + vi2(t)
||vi1(t) + vi2(t)||

||vi1(t)|| (16.63)

vi2(t + 1) =
vi1(t) + vi2(t)
||vi1(t) + vi2(t)||

||vi2(t)|| (16.64)

where r1(t) ∼ U(0, 1)nx . The personal best position of an offspring is initialized
to its current position. That is, if particle i1 was involved in the crossover, then
yi1(t + 1) = xi1(t + 1).

Particles are selected for breeding at a user-specified breeding probability. Given that
this probability is less than one, not all of the particles will be replaced by offspring.
It is also possible that the same particle will be involved in the crossover operation
more than once per iteration. Particles are randomly selected as parents, not on the
basis of their fitness. This prevents the best particles from dominating the breeding
process. If the best particles were allowed to dominate, the diversity of the swarm
would decrease significantly, causing premature convergence. It was found empirically
that a low breeding probability of 0.2 provides good results [536].

The breeding process is done for each iteration after the velocity and position updates
have been done.

The breeding mechanism proposed by Løvberg et al. has the disadvantage that parent
particles are replaced even if the offspring is worse off in fitness. Also, if f(xi1(t+1)) >
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f(xi1(t)) (assuming a minimization problem), replacement of the personal best with
xi1(t+1) loses important information about previous personal best positions. Instead
of being attracted towards the previous personal best position, which in this case will
have a better fitness, the offspring is attracted to a worse solution. This problem
can be addressed by replacing xi1(t) with its offspring only if the offspring provides a
solution that improves on particle i1’s personal best position, yi1(t).

Gaussian Mutation

Gaussian mutation has been applied mainly to adjust position vectors after the velocity
and update equations have been applied, by adding random values sampled from a
Gaussian distribution to the components of particle position vectors, xi(t + 1).

Miranda and Fonseca [596] mutate only the global best position as follows,

ŷ(t + 1) = ŷ
′
(t + 1) + η

′
N(0, 1) (16.65)

where ŷ
′
(t + 1) represents the unmutated global best position as calculated from

equation (16.4), η
′
is referred to as a learning parameter, which can be a fixed value,

or adapted as a strategy parameter as in evolutionary strategies.

Higashi and Iba [363] mutate the components of particle position vectors at a specified
probability. Let x

′
i(t + 1) denote the new position of particle i after application of the

velocity and position update equations, and let Pm be the probability that a component
will be mutated. Then, for each component, j = 1, . . . , nx, if U(0, 1) < Pm, then
component x

′
ij(t + 1) is mutated using [363]

xij(t + 1) = x
′
ij(t + 1) + N(0, σ)x

′
ij(t + 1) (16.66)

where the standard deviation, σ, is defined as

σ = 0.1(xmax,j − xmin,j) (16.67)

Wei et al. [893] directly apply the original EP Gaussian mutation operator:

xij(t + 1) = x
′
ij(t + 1) + ηij(t)Nj(0, 1) (16.68)

where ηij controls the mutation step sizes, calculated for each dimension as

ηij(t) = ηij(t− 1) eτ
′
N(0,1)+τNj(0,1) (16.69)

with τ and τ
′
as defined in equations (11.54) and (11.53).

The following comments can be made about this mutation operator:

• With ηij(0) ∈ (0, 1], the mutation step sizes decrease with increase in time step,
t. This allows for initial exploration, with the solutions being refined in later
time steps. It should be noted that convergence cannot be ensured if mutation
step sizes do not decrease over time.
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• All the components of the same particle are mutated using the same value,
N(0, 1). However, for each component, an additional random number, Nj(0, 1),
is also used. Each component will therefore be mutated by a different amount.

• The amount of mutation depends on the dimension of the problem, by the cal-
culation of τ and τ

′
. The larger nx, the smaller the mutation step sizes.

Secrest and Lamont [772] adjust particle positions as follows,

xi(t + 1) =
{

yi(t) + vi(t + 1) if U(0, 1) > c1

ŷ(t) + vi(t + 1) otherwise (16.70)

where
vi(t + 1) = |vi(t + 1)|rθ (16.71)

In the above, rθ is a random vector with magnitude of one and angle uniformly dis-
tributed from 0 to 2π. |vi(t + 1)| is the magnitude of the new velocity, calculated
as

|vi(t + 1)| =
{

N(0, (1− c2)||yi(t)− ŷ(t)||2) if U(0, 1) > c1

N(0, c2||yi(t)− ŷ(t)||2) otherwise (16.72)

Coefficient c1 ∈ (0, 1) specifies the trust between the global and personal best positions.
The larger c1, the more particles are placed around the global best position; c2 ∈ (0, 1)
establishes the point between the global best and the personal best to which the
corresponding particle will converge.

Cauchy Mutation

In the fast EP, Yao et al. [934, 936] showed that mutation step sizes sampled from
a Cauchy distribution result in better performance than sampling from a Gaussian
distribution. This is mainly due to the fact that the Cauchy distribution has more of
its probability in the tails of the distribution, resulting in an increased probability of
large mutation step sizes (therefore, better exploration). Stacey et al. [808] applied
the EP Cauchy mutation operator to PSO. Given that nx is the dimension of particles,
each dimension is mutated with a probability of 1/nx. If a component xij(t) is selected
for mutation, the mutation step size, ∆xij(t), is sampled from a Cauchy distribution
with probability density function given by equation (11.10).

Differential Evolution Based PSO

Differential evolution (DE) makes use of an arithmetic crossover operator that involves
three randomly selected parents (refer to Chapter 13). Let x1(t) �= x2(t) �= x3(t) be
three particle positions randomly selected from the swarm. Then each dimension of
particle i is calculated as follows:

x
′
ij(t + 1) =

{
x1j(t) + β(x2j(t)− x3j(t)) if U(0, 1) ≤ Pc or j = U(1, nx)
xij(t) otherwise (16.73)
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where Pc ∈ (0, 1) is the probability of crossover, and β > 0 is a scaling factor.

The position of the particle is only replaced if the offspring is better. That is, xi(t+1) =
x

′
i(t + 1) only if f(x

′
i(t + 1)) < f(xi(t)), otherwise xi(t + 1) = xi(t) (assuming a

minimization problem).

Hendtlass applied the above DE process to the PSO by executing the DE crossover
operator from time to time [360]. That is, at specified intervals, the swarm serves as
population for the DE algorithm, and the DE algorithm is executed for a number of
iterations. Hendtlass reported that this hybrid produces better results than the basic
PSO. Kannan et al. [437] applies DE to each particle for a number of iterations, and
replaces the particle with the best individual obtained from the DE process.

Zhang and Xie [954] followed a somewhat different approach where only the personal
best positions are changed using the following operator:

y
′
ij(t + 1) =

{
ŷij(t) + δj if U(0, 1) < Pc and j = U(1, nx)
yij(t) otherwise (16.74)

where δ is the general difference vector defined as,

δj =
y1j(t)− y2j(t)

2
(16.75)

with y1j(t) and y2j(t) randomly selected personal best positions. Then, yij(t + 1) is
set to y

′
ij(t + 1) only if the new personal best has a better fitness evaluation.

16.5.4 Sub-Swarm Based PSO

A number of cooperative and competitive PSO implementations that make use of
multiple swarms have been developed. Some of these are described below.

Multi-phase PSO approaches divide the main swarm of particles into subgroups, where
each subgroup performs a different task, or exhibits a different behavior. The behavior
of a group or task performed by a group usually changes over time in response to the
group’s interaction with the environment. It can also happen that individuals may
migrate between groups.

The breeding between sub-swarms developed by Løvberg et al. [534, 536] (refer to
Section 16.5.3) is one form of cooperative PSO, where cooperation is implicit in the
exchange of genetic material between parents of different sub-swarms.

Al-Kazemi and Mohan [16, 17, 18] explicitly divide the main swarm into two sub-
swarms, of equal size. Particles are randomly assigned to one of the sub-swarms.
Each sub-swarm can be in one of two phases:

• Attraction phase, where the particles of the corresponding sub-swarm are
allowed to move towards the global best position.

• Repulsion phase, where the particles of the corresponding sub-swarm move
away from the global best position.
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For their multi-phase PSO (MPPSO), the velocity update is defined as [16, 17]:

vij(t + 1) = wvij(t) + c1xij(t) + c2ŷj(t) (16.76)

The personal best position is excluded from the velocity equation, since a hill-climbing
procedure is followed where a particle’s position is only updated if the new position
results in improved performance.

Let the tuple (w, c1, c2) represent the values of the inertia weight, w, and acceleration
coefficients c1 and c2. Particles that find themselves in phase 1 exhibit an attraction
towards the global best position, which is achieved by setting (w, c1, c2) = (1,−1, 1).
Particles in phase 2 have (w, c1, c2) = (1, 1,−1), forcing them to move away from the
global best position.

Sub-swarms switch phases either

• when the number of iterations in the current phase exceeds a user specified
threshold, or

• when particles in any phase show no improvement in fitness during a user-
specified number of consecutive iterations.

In addition to the velocity update as given in equation (16.76), velocity vectors are
periodically initialized to new random vectors. Care should be taken with this process,
not to reinitialize velocities when a good solution is found, since it may pull particles
out of this good optimum. To make sure that this does not happen, particle velocities
can be reinitialized based on a reinitialization probability. This probability starts with
a large value that decreases over time. This approach ensures large diversity in the
initial steps of the algorithm, emphasizing exploration, while exploitation is favored
in the later steps of the search.

Cooperation between the subgroups is achieved through the selection of the global
best particle, which is the best position found by all the particles in both sub-swarms.

Particle positions are not updated using the standard position update equation. In-
stead, a hill-climbing process is followed to ensure that the fitness of a particle is
monotonically decreasing (increasing) in the case of a minimization (maximization)
problem. The position vector is updated by randomly selecting ς consecutive com-
ponents from the velocity vector and adding these velocity components to the cor-
responding position components. If no improvement is obtained for any subset of ς
consecutive components, the position vector does not change. If an improvement is
obtained, the corresponding position vector is accepted. The value of ς changes for
each particle, since it is randomly selected, with ς ∼ U(1, ςmax), with ςmax initially
small, increasing to a maximum of nx (the dimension of particles).

The attractive and repulsive PSO (ARPSO) developed by Riget and Vesterstrøm
[729, 730, 877] follows a similar process where the entire swarm alternates between
an attraction and repulsion phase. The difference between the MPPSO and ARPSO
lies in the velocity equation, in that there are no explicit sub-swarms in ARPSO,
and ARPSO uses information from the environment to switch between phases. While
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ARPSO was originally applied to one swarm, nothing prevents its application to sub-
swarms.

The ARPSO is based on the diversity guided evolutionary algorithm developed by
Ursem [861], where the standard Gaussian mutation operator is changed to a directed
mutation in order to increase diversity. In ARPSO, if the diversity of the swarm,
measured using

diversity(S(t)) =
1
ns

ns∑
i=1

√√√√ nx∑
j=1

(xij(t)− xj(t))2 (16.77)

where xj(t) is the average of the j-th dimension over all particles, i.e.

xj(t) =
∑ns

i=1 xij(t)
ns

(16.78)

is greater than a threshold, ϕmin, then the swarm switches to the attraction phase;
otherwise the swarm switches to the repulsion phase until a threshold diversity, ϕmax

is reached. The attraction phase uses the basic PSO velocity and position update
equations. For the repulsion phase, particles repel each other using,

vij(t + 1) = wvij(t)− c1r1j(t)(yij(t)− xij(t))− c2r2j(t)(ŷij(t)− xij(t)) (16.79)

Riget and Vesterstrøm used ϕmin = 5×10−6 and ϕmax = 0.25 as proposed by Ursem.

In the division of labor PSO (DLPSO), each particle has a response threshold, θik, for
each task, k. Each particle receives task-related stimuli, sik. If the received stimuli are
much lower than the response threshold, the particle engages in the corresponding task
with a low probability. If sik > θik, the probability of engaging in the task is higher.
Let ϑik denote the state of particle i with respect to task k. If ϑik = 0, then particle
i is not performing task k. On the other hand, if ϑik = 1, then task k is performed
by particle i. At each time step, each particle determines if it should become active
or inactive on the basis of a given probability. An attractive particle performs task k
with probability

P (ϑik = 0 → ϑik = 1) = Pθik
(θik, sik) =

sα
ik

θα
ik + sα

ik

(16.80)

where α controls the steepness of the response function, Pθ. For high α, high proba-
bilities are assigned to values of sik just above θik.

The probability of an active particle to become inactive is taken as a constant, user-
specified value, Pϑ.

The DLPSO uses only one task (the task subscript is therefore omitted), namely local
search. In this case, the stimuli is the number of time steps since the last improvement
in the fitness of the corresponding particle. When a particle becomes active, the local
search is performed as follows: if ϑi = 1, then xi(t) = ŷi(t) and vi(t) is randomly
assigned with length equal to the length of the velocity of the neighborhood best
particle. The probability of changing to an inactive particle is Pϑ = 1, meaning that a
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particle becomes inactive immediately after its local search task is completed. Inactive
particles follow the velocity and position updates of the basic PSO. The probability,
P (ϑi = 1 → ϑi = 0) is kept high to ensure that the PSO algorithm does not degrade
to a pure local search algorithm.

The local search, or exploitation, is only necessary when the swarm starts to con-
verge to a solution. The probability of task execution should therefore be small ini-
tially, increasing over time. To achieve this, the absolute ageing process introduced
by Théraulaz et al. [842] for ACO is used in the DLPSO to dynamically adjust the
values of the response thresholds

θi(t) = β e−αt (16.81)

with α, β > 0.

Empirical results showed that the DLPSO obtained significantly better results as a
GA and the basic PSO [877, 878].

Krink and Løvberg [490, 534] used the life-cycle model to change the behavior of indi-
viduals. Using the life-cycle model, an individual can be in any of three phases: a PSO
particle, a GA individual, or a stochastic hill-climber. The life-cycle model used here is
in analogy with the biological process where an individual progresses through various
phases from birth to maturity and reproduction. The transition between phases of the
life-cycle is usually triggered by environmental factors.

For the life-cycle PSO (LCPSO), the decision to change from one phase to another
depends on an individual’s success in searching the fitness landscape. In the original
model, all individuals start as particles and exhibit behavior as dictated by the PSO
velocity and position update equations. The second phase in the life-cycle changes a
particle to an individual in a GA, where its behavior is governed by the process of
natural selection and survival of the fittest. In the last phase, an individual changes
into a solitary stochastic hill-climber. An individual switches from one phase to the
next if its fitness is not improved over a number of consecutive iterations. The LCPSO
is summarized in Algorithm 16.7.

Application of the LCPSO results in the formation of three subgroups, one for each
behavior (i.e. PSO, GA or hill-climber). Therefore, the main population may at the
same time consist of individuals of different behavior.

While the original implementation initialized all individuals as PSO particles, the ini-
tial population can also be initialized to contain individuals of different behavior from
the first time step. The rationale for starting with PSO particles can be motivated by
the observation that the PSO has been shown to converge faster than GAs. Using hill-
climbing as the third phase also makes sense, since exploitation should be emphasized
in the later steps of the search process, with the initial PSO and GA phases focusing
on exploration.
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Algorithm 16.7 Life-Cycle PSO

Initialize a population of individuals;
repeat

for all individuals do
Evaluate fitness;
if fitness did not improve then

Switch to next phase;
end

end
for all PSO particles do

Calculate new velocity vectors;
Update positions;

end
for all GA individuals do

Perform reproduction;
Mutate;
Select new population;

end
for all Hill-climbers do

Find possible new neighboring solution;
Evaluate fitness of new solution;
Move to new solution with specified probability;

end
until stopping condition is true;

Cooperative Split PSO

The cooperative split PSO, first introduced in [864] by Van den Bergh and Engelbrecht,
is based on the cooperative coevolutionary genetic algorithm (CCGA) developed by
Potter [686] (also refer to Section 15.3). In the cooperative split PSO, denoted by
CPSO-SK , each particle is split into K separate parts of smaller dimension [863, 864,
869]. Each part is then optimized using a separate sub-swarm. If K = nx, each
dimension is optimized by a separate sub-swarm, using any PSO algorithm. The
number of parts, K, is referred to as the split factor.

The difficulty with the CPSO-SK algorithm is how to evaluate the fitness of the
particles in the sub-swarms. The fitness of each particle in sub-swarm Sk cannot be
computed in isolation from other sub-swarms, since a particle in a specific sub-swarm
represents only part of the complete nx-dimensional solution. To solve this problem,
a context vector is maintained to represent the nx-dimensional solution. The simplest
way to construct the context vector is to concatenate the global best positions from the
K sub-swarms. To evaluate the fitness of particles in sub-swarm Sk, all the components
of the context vector are kept constant except those that correspond to the components
of sub-swarm Sk. Particles in sub-swarm Sk are then swapped into the corresponding
positions of the context vector, and the original fitness function is used to evaluate the
fitness of the context vector. The fitness value obtained is then assigned as the fitness



16.5 Single-Solution Particle Swarm Optimization 331

of the corresponding particle of the sub-swarm.

This process has the advantage that the fitness function, f , is evaluated after each
subpart of the context vector is updated, resulting in a much finer-grained search. One
of the problems with optimizing the complete nx-dimensional problem is that, even if
an improvement in fitness is obtained, some of the components of the nx-dimensional
vector may move away from an optimum. The improved fitness could have been
obtained by a sufficient move towards the optimum in the other vector components.
The evaluation process of the CPSO-SK addresses this problem by tuning subparts of
the solution vector separately.

Algorithm 16.8 Cooperative Split PSO Algorithm

K1 = nx mod K;
K2 = K − (nx mod K);
Initialize K1 �nx/K�-dimensional swarms;
Initialize K2 �nx/K�-dimensional swarms;
repeat

for each sub-swarm Sk,k = 1, . . . , K do
for each particle i = 1, . . . , Sk.ns do

if f(b(k, Sk.xi)) < f(b(k, Sk.yi)) then
Sk.yi = Sk.xi;

end
if f(b(k, Sk.yi)) < f(b(k, Sk.ŷ)) then

Sk.ŷ = Sk.yi;
end

end
Apply velocity and position updates;

end
until stopping condition is true;

The CPSO-SK algorithm is summarized in Algorithm 16.8. In this algorithm, b(k, z)
returns an nx-dimensional vector formed by concatenating the global best positions
from all the sub-swarms, except for the k-th component which is replaced with z, where
z represents the position vector of any particle from sub-swarm Sk. The context vector
is therefore defined as

b(k, z) = (S1.ŷ, . . . , Sk−1.ŷ, z, Sk+1.ŷ, . . . , SK .ŷ) (16.82)

While the CPSO-SK algorithm has shown significantly better results than the basic
PSO, it has to be noted that performance degrades when correlated components are
split into different sub-swarms. If it is possible to identify which parameters correlate,
then these parameters can be grouped into the same swarm — which will solve the
problem. However, such prior knowledge is usually not available. The problem can
also be addressed to a certain extent by allowing a particle to become the global best
or personal best of its sub-swarm only if it improves the fitness of the context vector.

Algorithm 16.9 summarizes a hybrid search where the CPSO and GCPSO algorithms
are interweaved. Additionally, a rudimentary form of cooperation is implemented
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between the CPSO-SK and GCPSO algorithms. Information about the best positions
discovered by each algorithm is exchanged by copying the best discovered solution
of the one algorithm to the swarm of the other algorithm. After completion of one
iteration of the CPSO-SK algorithm, the context vector is used to replace a randomly
selected particle from the GCPSO swarm (excluding the global best, Q.ŷ). After
completion of a GCPSO iteration, the new global best particle, Q.ŷ, is split into the
required subcomponents to replace a randomly selected individual of the corresponding
CPSO-SK algorithm (excluding the global best positions).

Predator-Prey PSO

The predator-prey relationship that can be found in nature is an example of a compet-
itive environment. This behavior has been used in the PSO to balance exploration and
exploitation [790]. By introducing a second swarm of predator particles, scattering of
prey particles can be obtained by having prey particles being repelled by the presence
of predator particles. Repelling facilitates better exploration of the search space, while
the consequent regrouping promotes exploitation.

In their implementation of the predator–prey PSO, Silva et al. [790] use only one
predator to pursue the global best prey particle. The velocity update for the predator
particle is defined as

vp(t + 1) = r(ŷ(t)− xp(t)) (16.83)

where vp and xp are respectively the velocity and position vectors of the predator
particle, p; r ∼ U(0, Vmax,p)nx . The speed at which the predator catches the best
prey is controlled by Vmax,p. The larger Vmax,p, the larger the step sizes the predator
makes towards the global best.

The prey particles update their velocity using

vij(t + 1) = wvij(t) + c1r1j(t)(yij(t)− xij(t)) + c2r2j(t)(ŷj(t)− xij(t))
+c3r3j(t)D(d) (16.84)

where d is the Euclidean distance between prey particle i and the predator, r3j(t) ∼
U(0, 1), and

D(d) = α e−βd (16.85)

D(d) quantifies the influence that the predator has on the prey. The influence grows
exponentially with proximity, and is further controlled by the positive constants α and
β.

Components of the position vector of a particle is updated using equation (16.84)
based on a “fear” probability, Pf . For each dimension, if U(0, 1) < Pf , then position
xij(t) is updated using equation (16.84); otherwise the standard velocity update is
used.
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Algorithm 16.9 Hybrid of Cooperative Split PSO and GCPSO

K1 = nx mod K;
K2 = K − (nx mod K);
Initialize K1�nx/K�-dimensional swarms:Sk, k = 1, . . . , K;
Initialize K2�nx/K�-dimensional swarms:Sk, k = K + 1, . . . , K;
Initialize an n-dimensional swarm, Q;
repeat

for each sub-swarm Sk, k = 1, . . . , K do
for each particle i = 1, . . . , Sk.ns do

if f(b(k, Sk.xi)) < f(b(k, Sk.yi)) then
Sk.yi = Sk.xi;

end
if f(b(k, Sk.yi)) < f(b(k, Sk.ŷ)) then

Sk.ŷ = Sk.yi;
end

end
Apply velocity and position updates;

end
Select a random l ∼ U(1, ns/2)|Q.yl �= Q.ŷ;
Replace Q.xl with the context vector b;
for each particle i = 1, . . . , ns do

if f(Q.xi) < f(Q.yi) then
Q.yi = Q.xi;

end
if f(Q.yi) < f(Q.ŷ) then

Q.ŷ = Q.yi;
end

end
Apply GCPSO velocity and position updates;
for each swarm Sk, k = 1, . . . , K do

Select a random m ∼ U(1, Sk.ns/2)|Sk.ym �= Sk.ŷ;
Replace Sk.xm with the corresponding components of Q.ŷ;

end
until stopping condition is true;

16.5.5 Multi-Start PSO Algorithms

One of the major problems with the basic PSO is lack of diversity when particles start
to converge to the same point. As an approach to prevent the premature stagnation of
the basic PSO, several methods have been developed to continually inject randomness,
or chaos, into the swarm. This section discusses these approaches, collectively referred
to as multi-start methods.

Multi-start methods have as their main objective to increase diversity, whereby larger
parts of the search space are explored. Injection of chaos into the swarm introduces
a negative entropy. It is important to remember that continual injection of random
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positions will cause the swarm never to reach an equilibrium state. While not all the
methods discussed below consider this fact, all of the methods can address the problem
by reducing the amount of chaos over time.

Kennedy and Eberhart [449] were the first to mention the advantages of randomly
reinitializing particles, a process referred to as craziness. Although Kennedy men-
tioned the potential advantages of a craziness operator, no evaluation of such operators
was given. Since then, a number of researchers have proposed different approaches to
implement a craziness operator for PSO.

When considering any method to add randomness to the swarm, a number of aspects
need to be considered, including what should be randomized, when should randomiza-
tion occur, how should it be done, and which members of the swarm will be affected?
Additionally, thought should be given to what should be done with personal best
positions of affected particles. These aspects are discussed next.

The diversity of the swarm can be increased by randomly initializing position vectors
[534, 535, 863, 874, 875, 922, 923] and/or velocity vectors [765, 766, 922, 923, 924].

By initializing positions, particles are physically relocated to a different, random po-
sition in the search space. If velocity vectors are randomized and positions kept con-
stant, particles retain their memory of their current and previous best solutions, but
are forced to search in different random directions. If a better solution is not found
due to random initialization of the velocity vector of a particle, the particle will again
be attracted towards its personal best position.

If position vectors are initialized, thought should be given to what should be done
with personal best positions and velocity vectors. Total reinitialization will have a
particle’s personal best also initialized to the new random position [534, 535, 923].
This effectively removes the particle’s memory and prevents the particle from moving
back towards its previously found best position (depending on when the global best
position is updated). At the first iteration after reinitialization the “new” particle is
attracted only towards the previous global best position of the swarm. Alternatively,
reinitialized particles may retain their memory of previous best positions. It should be
noted that the latter may have less diversity than removing particle memories, since
particles are immediately moving back towards their previous personal best positions.
It may, of course, happen that a new personal best position is found en route. When
positions are reinitialized, velocities are usually initialized to zero, to have a zero
momentum at the first iteration after reinitialization. Alternatively, velocities can be
initialized to small random values [923]. Venter and Sobieszczanski-Sobieski [874, 875]
initialize velocities to the cognitive component before reinitialization. This ensures a
momentum back towards the personal best position.

The next important question to consider is when to reinitialize. If reinitialization
happens too soon, the affected particles may not have had sufficient time to explore
their current regions before being relocated. If the time to reinitialization is too long,
it may happen that all particles have already converged. This is not really a problem,
other than wasted computational time since no improvements are seen in this state.
Several approaches have been identified to decide when to reinitialize:
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• At fixed intervals, as is done in the mass extinction PSO developed by Xie et
al. [923, 924]. As discussed above, fixed intervals may prematurely reinitialize a
particle.

• Probabilistic approaches, where the decision to reinitialize is based on a prob-
ability. In the dissipative PSO, Xie et al. [922] reinitialize velocities and po-
sitions based on chaos factors that serve as probabilities of introducing chaos
in the system. Let cv and cl, with cv, cl ∈ [0, 1], be respectively the chaos
factors for velocity and location. Then, for each particle, i, and each dimen-
sion, j, if rij ∼ U(0, 1) < cv, then the velocity component is reinitialized to
vij(t + 1) = U(0, 1)Vmax,j . Also, if rij ∼ U(0, 1) < cl, then the position com-
ponent is initialized to xij(t + 1) ∼ U(xmin,j , xmax,j). A problem with this
approach is that it will keep the swarm from reaching an equilibrium state. To
ensure that an equilibrium can be reached, while still taking advantage of chaos
injection, start with large chaos factors that reduce over time. The initial large
chaos factors increase diversity in the first phases of the search, allowing particles
to converge in the final stages. A similar probabilistic approach to reinitializing
velocities is followed in [765, 766].

• Approaches based on some “convergence” condition, where certain events trigger
reinitialization. Using convergence criteria, particles are allowed to first exploit
their local regions before being reinitialized.

Venter and Sobieszczanski-Sobieski [874, 875] and Xie et al. [923] initiate reini-
tialization when particles do not improve over time. Venter and Sobieszczanski-
Sobieski evaluate the variation in particle fitness of the current swarm. If the
variation is small, then particles are centered in close proximity to the global
best position. Particles that are two standard deviations away from the swarm
center are reinitialized. Xie et al. count for each xi �= ŷ the number of times that
f(xi)− f(ŷ) < ε. When this count exceeds a given threshold, the corresponding
particle is reinitialized. Care should be taken in setting values for ε and the
count threshold. If ε is too large, particles will be reinitialized before having any
chance of exploiting their current regions.

Clerc [133] defines a hope and re-hope criterion. If there is still hope that the
objective can be reached, particles are allowed to continue in their current search
directions. If not, particles are reinitialized around the global best position,
taking into consideration the local shape of the objective function.

Van den Bergh [863] defined a number of convergence tests for a multi-start PSO,
namely the normalized swarm radius condition, the particle cluster condition and
the objective function slope condition (also refer to Section 16.1.6 for a discussion
on these criteria).

Løvberg and Krink [534, 535] use self-organized criticality (SOC) to determine
when to reinitialize particles. Each particle maintains an additional variable,
Ci, referred to as the criticality of the particle. If two particles are closer than a
threshold distance, ε, from one another, then both have their criticality increased
by one. The larger the criticality of all particles, the more uniform the swarm
becomes. To prevent criticality from building up, each Ci is reduced by a fraction
in each iteration. As soon as Ci > C, where C is the global criticality limit,
particle i is reinitialized. Its criticality is distributed to its immediate neighbors
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and Ci = 0. Løvberg and Krink also set the inertia weight value of each particle
to wi = 0.2 + 0.1Ci. This forces the particle to explore more when it is too
similar to other particles.

The next issue to consider is which particles to reinitialize. Obviously, it will not be a
good idea to reinitialize the global best particle! From the discussions above, a num-
ber of selection methods have already been identified. Probabilistic methods decide
which particles to reinitialize based on a user-defined probability. The convergence
methods use specific convergence criteria to identify particles for reinitialization. For
example, SOC PSO uses criticality measures (refer to Algorithm 16.11), while others
keep track of the improvement in particle fitness. Van den Bergh [863] proposed a
random selection scheme, where a particle is reinitialized at each tr iteration (also
refer to Algorithm 16.10). This approach allows each particle to explore its current
region before being reinitialized. To ensure that the swarm will reach an equilibrium
state, start with a large tr < ns, which decreases over time.

Algorithm 16.10 Selection of Particles to Reinitialize; τ indicates the index of the
global best particle

Create and initialize an nx-dimensional PSO: S;
sidx = 0;
repeat

if sidx �= τ then
S.xidx ∼ U(xmin,xmax);

end
sidx = (sidx + 1) mod tr;
for each particle i = 1, . . . , ns do

if f(S.xi) < f(S.yi) then
S.yi = S.x;

end
if f(S.yi) < f(S.ŷ) then

S.ŷ = S.yi;
end

end
Update velocities;
Update position;

until stopping condition is true;

Finally, how are particles reinitialized? As mentioned earlier, velocities and/or posi-
tions can be reinitialized. Most approaches that reinitialize velocities set each velocity
component to a random value constrained by the maximum allowed velocity. Venter
and Sobieszczanski-Sobieski [874, 875] set the velocity vector to the cognitive compo-
nent after reinitialization of position vectors.

Position vectors are usually initialized to a new position subject to boundary con-
straints; that is, xij(t + 1) ∼ U(xmin,j , xmax,j). Clerc [133] reinitializes particles on
the basis of estimates of the local shape of the objective function. Clerc [135] also
proposes alternatives, where a particle returns to its previous best position, and from
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Algorithm 16.11 Self-Organized Criticality PSO

Create and initialize an nx-dimensional PSO: S;
Set Ci = 0, ∀i = 1, . . . , ns;
repeat

Evaluate fitness of all particles;
Update velocities;
Update positions;
Calculate criticality for all particles;
Reduce criticality for each particle;
while ∃i = 1, . . . , ns such that Ci > C do

Disperse criticality of particle i;
Reinitialize xi;

end
until stopping condition is true;

there moves randomly for a fixed number of iterations.

A different approach to multi-start PSOs is followed in [863], as summarized in Algo-
rithm 16.12. Particles are randomly initialized, and a PSO algorithm is executed until
the swarm converges. When convergence is detected, the best position is recorded and
all particles randomly initialized. The process is repeated until a stopping condition is
satisfied, at which point the best recorded solution is returned. The best recorded so-
lution can be refined using local search before returning the solution. The convergence
criteria listed in Section 16.1.6 are used to detect convergence of the swarm.

16.5.6 Repelling Methods

Repelling methods have been used to improve the exploration abilities of PSO. Two
of these approaches are described in this section.

Charged PSO

Blackwell and Bentley developed the charged PSO based on an analogy of electrostatic
energy with charged particles [73, 74, 75]. The idea is to introduce two opposing forces
within the dynamics of the PSO: an attraction to the center of mass of the swarm
and inter-particle repulsion. The attraction force facilitates convergence to a single
solution, while the repulsion force preserves diversity.

The charged PSO changes the velocity equation by adding a particle acceleration, ai,
to the standard equation. That is,

vij(t + 1) = wvij(t) + c1r1(t)[yij(t)− xij(t)] + c2r2(t)[ŷj(t)− xij(t)] + aij(t) (16.86)
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Algorithm 16.12 Multi-start Particle Swarm Optimization; ŷ is the best solution
over all the restarts of the algorithm

Create and initialize an nx-dimensional swarm, S;
repeat

if f(S.ŷ) < f(ŷ) then
ŷ = S.ŷ;

end
if the swarm S has converged then

Reinitialize all particles;
end
for each particle i = 1, · · · , S.ns do

if f(S.xi) < f(S.yi) then
S.yi = S.x;

end
if f(S.yi) < f(S.ŷ) then

S.ŷ = S.yi;
end

end
Update velocities;
Update position;

until stopping condition is true;
Refine ŷ using local search;
Return ŷ as the solution;

The acceleration determines the magnitude of inter-particle repulsion, defined as [75]

ai(t) =
ns∑

l=1,i 	=l

ail(t) (16.87)

with the repulsion force between particles i and l defined as

ail(t) =




(
QiQl

||xi(t)−xl(t)||3
)

(xi(t)− xl(t)) if Rc ≤ ||xi(t)− xl(t)|| ≤ Rp(
QiQl(xi(t)−xl(t))
R2

c ||xi(t)−xl(t)||
)

if ||xi(t)− xl(t)|| < Rc

0 if ||xi(t)− xl(t)|| > Rp

(16.88)

where Qi is the charged magnitude of particle i, Rc is referred to as the core radius,
and Rp is the perception limit of each particle.

Neutral particles have a zero charged magnitude, i.e. Qi = 0. Only when Qi �= 0 are
particles charged, and do particles repel from each other. Therefore, the standard PSO
is a special case of the charged PSO with Qi = 0 for all particles. Particle avoidance
(inter-particle repulsion) occurs only when the separation between two particles is
within the range [Rc, Rp]. In this case the smaller the separation, the larger the
repulsion between the corresponding particles. If the separation between two particles
becomes very small, the acceleration will explode to large values. The consequence
will be that the particles never converge due to extremely large repulsion forces. To
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prevent this, acceleration is fixed at the core radius for particle separations less than
Rc. Particles that are far from one another, i.e. further than the particle perception
limit, Rp, do not repel one another. In this case ail(t) = 0, which allows particles to
move towards the global best position. The value of Rp will have to be optimized for
each application.

The acceleration, ai(t), is determined for each particle before the velocity update.

Blackwell and Bentley suggested as electrostatic parameters, Rc = 1, Rp =
√

3xmax

and Qi = 16 [75].

Electrostatic repulsion maintains diversity, enabling the swarm to automatically detect
and respond to changes in the environment. Empirical evaluations of the charged PSO
in [72, 73, 75] have shown it to be very efficient in dynamic environments. Three types
of swarms were defined and studied:

• Neutral swarm, where Qi = 0 for all particles i = 1, . . . , ns.

• Charged swarm, where Qi > 0 for all particles i = 1, . . . , ns. All particles
therefore experience repulsive forces from the other particles (when the separa-
tion is less than rp).

• Atomic swarm, where half of the swarm is charged (Qi > 0) and the other half
is neutral (Qi = 0).

It was found that atomic swarms perform better than charged and neutral swarms [75].
As a possible explanation of why atomic swarms perform better than charged swarms,
consider as worst case what will happen when the separation between particles never
gets below Rc. If the separation between particles is always greater than or equal to
Rc, particles repel one another, which never allows particles to converge to a single
position. Inclusion of neutral particles ensures that these particles converge to an
optimum, while the charged particles roam around to automatically detect and adjust
to environment changes.

Particles with Spatial Extention

Particles with spatial extension were developed to prevent the swarm from prema-
turely converging [489, 877]. If one particle locates an optimum, then all particles
will be attracted to the optimum – causing all particles to cluster closely. The spatial
extension of particles allows some particles to explore other areas of the search space,
while others converge to the optimum to further refine it. The exploring particles may
locate a different, more optimal solution.

The objective of spatial extension is to dynamically increase diversity when particles
start to cluster. This is achieved by adding a radius to each particle. If two particles
collide, i.e. their radii intersect, then the two particles bounce off. Krink et al. [489]
and Vesterstrøm and Riget [877] investigated three strategies for spatial extension:

• random bouncing, where colliding particles move in a random new direction
at the same speed as before the collision;
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• realistic physical bouncing; and
• simple velocity-line bouncing, where particles continue to move in the same

direction but at a scaled speed. With scale factor in [0, 1] particles slow down,
while a scale factor greater than one causes acceleration to avoid a collision. A
negative scale factor causes particles to move in the opposite direction to their
previous movement.

Krink et al. showed that random bouncing is not as efficient as the consistent bouncing
methods.

To ensure convergence of the swarm, particles should bounce off on the basis of a
probability. An initial large bouncing probability will ensure that most collisions
result in further exploration, while a small bouncing probability for the final steps will
allow the swarm to converge. At all times, some particles will be allowed to cluster
together to refine the current best solution.

16.5.7 Binary PSO

PSO was originally developed for continuous-valued search spaces. Kennedy and Eber-
hart developed the first discrete PSO to operate on binary search spaces [450, 451].
Since real-valued domains can easily be transformed into binary-valued domains (using
standard binary coding or Gray coding), this binary PSO can also be applied to real-
valued optimization problems after such transformation (see [450, 451] for applications
of the binary PSO to real-valued problems).

For the binary PSO, particles represent positions in binary space. Each element of a
particle’s position vector can take on the binary value 0 or 1. Formally, xi ∈ Bnx , or
xij ∈ {0, 1}. Changes in a particle’s position then basically implies a mutation of bits,
by flipping a bit from one value to the other. A particle may then be seen to move to
near and far corners of a hypercube by flipping bits.

One of the first problems to address in the development of the binary PSO, is how to
interpret the velocity of a binary vector. Simply seen, velocity may be described by
the number of bits that change per iteration, which is the Hamming distance between
xi(t) and xi(t + 1), denoted by H(xi(t),xi(t + 1)). If H(xi(t),xi(t + 1)) = 0, zero
bits are flipped and the particle does not move; ||vi(t)|| = 0. On the other hand,
||vi(t)|| = nx is the maximum velocity, meaning that all bits are flipped. That is,
xi(t + 1) is the complement of xi(t). Now that a simple interpretation of the velocity
of a bit-vector is possible, how is the velocity of a single bit (single dimension of the
particle) interpreted?

In the binary PSO, velocities and particle trajectories are rather defined in terms of
probabilities that a bit will be in one state or the other. Based on this probabilistic
view, a velocity vij(t) = 0.3 implies a 30% chance to be bit 1, and a 70% chance to be
bit 0. This means that velocities are restricted to be in the range [0, 1] to be interpreted
as a probability. Different methods can be employed to normalize velocities such that
vij ∈ [0, 1]. One approach is to simply divide each vij by the maximum velocity,
Vmax,j . While this approach will ensure velocities are in the range [0,1], consider
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what will happen when the maximum velocities are large, with vij(t) << Vmax,j for
all time steps, t = 1, . . . , nt. This will limit the maximum range of velocities, and
thus the chances of a position to change to bit 1. For example, if Vmax,j = 10, and
vij(t) = 5, then the normalized velocity is v

′
ij(t) = 0.5, with only a 50% chance

that xij(t + 1) = 1. This normalization approach may therefore cause premature
convergence to bad solutions due to limited exploration abilities.

A more natural normalization of velocities is obtained by using the sigmoid function.
That is,

v
′
ij(t) = sig(vij(t)) =

1
1 + e−vij(t)

(16.89)

Using equation (16.89), the position update changes to

xij(t + 1) =
{

1 if r3j(t) < sig(vij(t + 1))
0 otherwise (16.90)

with r3j(t) ∼ U(0, 1). The velocity, vij(t), is now a probability for xij(t) to be 0 or 1.
For example, if vij(t) = 0, then prob(xij(t+1) = 1) = 0.5 (or 50%). If vij(t) < 0, then
prob(xij(t + 1) = 1) < 0.5, and if vij(t) > 0, then prob(xij(t + 1) = 1) > 0.5. Also
note that prob(xij(t) = 0) = 1 − prob(xij(t) = 1). Note that xij can change even if
the value of vij does not change, due to the random number r3j in the equation above.

It is only the calculation of position vectors that changes from the real-valued PSO.
The velocity vectors are still real-valued, with the same velocity calculation as given
in equation (16.2), but including the inertia weight. That is, xi,yi, ŷ ∈ Bnx while
vi ∈ Rnx .

The binary PSO is summarized in Algorithm 16.13.

Algorithm 16.13 binary PSO

Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, . . . , ns do
if f(xi) < f(yi) then

yi = xi;
end
if f(yi) < f(ŷ) then

ŷ = yi;
end

end
for each particle i = 1, . . . , ns do

update the velocity using equation (16.2);
update the position using equation (16.90);

end
until stopping condition is true;
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16.6 Advanced Topics

This section describes a few PSO variations for solving constrained problems, multi-
objective optimization problems, problems with dynamically changing objective func-
tions and to locate multiple solutions.

16.6.1 Constraint Handling Approaches

A very simple approach to cope with constraints is to reject infeasible particles, as
follows:

• Do not allow infeasible particles to be selected as personal best or neighborhood
global best solutions. In doing so, infeasible particles will never influence other
particles in the swarm. Infeasible particles are, however, pulled back to feasible
space due to the fact that personal best and neighborhood best positions are
in feasible space. This approach can only be efficient if the ratio of number of
infeasible particles to feasible particles is small. If this ratio is too large, the
swarm may not have enough diversity to effectively cover the (feasible) space.

• Reject infeasible particles by replacing them with new randomly generated po-
sitions from the feasible space. Reinitialization within feasible space gives these
particles an opportunity to become best solutions. However, it is also possible
that these particles (or any other particle for that matter), may roam outside
the boundaries of feasible space. This approach may be beneficial in cases where
the feasible space is made up of a number of disjointed regions. The strategy
will allow particles to cross boundaries of one feasible region to explore another
feasible region.

Most applications of PSO to constrained problems make use of penalty methods to
penalize those particles that violate constraints [663, 838, 951].

Similar to the approach discussed in Section 12.6.1, Shi and Krohling [784] and Laskari
et al. [504] converted the constrained problem to an unconstrained Lagrangian.

Repair methods, which allow particles to roam into infeasible space, have also been
developed. These are simple methods that apply repairing operators to change infea-
sible particles to represent feasible solutions. Hu and Eberhart et al. [388] developed
an approach where particles are not allowed to be attracted by infeasible particles.

The personal best of a particle changes only if the fitness of the current position
is better and if the current position violates no constraints. This ensures that the
personal best positions are always feasible. Assuming that neighborhood best positions
are selected from personal best positions, it is also guaranteed that neighborhood best
positions are feasible. In the case where the neighborhood best positions are selected
from the current particle positions, neighborhood best positions should be updated
only if no constraint is violated. Starting with a feasible set of particles, if a particle
moves out of feasible space, that particle will be pulled back towards feasible space.
Allowing particles to roam into infeasible space, and repairing them over time by
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moving back to feasible best positions facilitates better exploration. If the feasible
space consists of disjointed feasible regions, the chances are increased for particles to
explore different feasible regions.

El-Gallad et al. [234] replaced infeasible particles with their feasible personal best
positions. This approach assumes feasible initial particles and that personal best
positions are replaced only with feasible solutions. The approach is very similar to
that of Hu and Eberhart [388], but with less diversity. Replacement of an infeasible
particle with its feasible personal best, forces an immediate repair. The particle is
immediately brought back into feasible space. The approach of Hu and Eberhart
allow an infeasible particle to explore more by pulling it back into feasible space over
time. But, keep in mind that during this exploration, the infeasible particle will have
no influence on the rest of the swarm while it moves within infeasible space.

Venter and Sobieszczanski-Sobieski [874, 875] proposed repair of infeasible solutions
by setting

vi(t) = 0 (16.91)
vi(t + 1) = c1r1(t)(yi(t)− xi(t)) + c2r2(t)(ŷ(t)− xi(t)) (16.92)

for all infeasible particles, i. In other words, the memory of previous velocity (direction
of movement) is deleted for infeasible particles, and the new velocity depends only on
the cognitive and social components. Removal of the momentum has the effect that
infeasible particles are pulled back towards feasible space (assuming that the personal
best positions are only updated if no constraints are violated).

16.6.2 Multi-Objective Optimization

A great number of PSO variations can be found for solving MOPs. This section
describes only a few of these but provides references to other approaches.

The dynamic neighborhood MOPSO, developed by Hu and Eberhart [387], dynamically
determines a new neighborhood for each particle in each iteration, based on distance in
objective space. Neighborhoods are determined on the basis of the simplest objective.
Let f1(x) be the simplest objective function, and let f2(x) be the second objective.
The neighbors of a particle are determined as those particles closest to the particle
with respect to the fitness values for objective f1(x). The neighborhood best particle
is selected as the particle in the neighborhood with the best fitness according to the
second objective, f1(x). Personal best positions are replaced only if a particle’s new
position dominates its current personal best solution.

The dynamic neighborhood MOPSO has a few disadvantages:

• It is not easily scalable to more than two objectives, and its usability is therefore
restricted to MOPs with two objectives.

• It assumes prior knowledge about the objectives to decide which is the most
simple for determination of neighborhoods.
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• It is sensitive to the ordering of objectives, since optimization is biased towards
improving the second objective.

Parsopoulos and Vrahatis [659, 660, 664, 665] developed the vector evaluated PSO
(VEPSO), on the basis of the vector-evaluated genetic algorithm (VEGA) developed
by Schaffer [761] (also refer to Section 9.6.3). VEPSO uses two sub-swarms, where
each sub-swarm optimizes a single objective. This algorithm is therefore applicable to
MOPs with only two objectives. VEPSO follows a kind of coevolutionary approach.
The global best particle of the first swarm is used in the velocity equation of the second
swarm, while the second swarm’s global best particle is used in the velocity update of
the first swarm. That is,

S1.vij(t + 1) = wS1.vij(t) + c1r1j(t)(S1.yij(t)− S1.xij(t))
+ c2r2j(t)(S2.ŷi(t)− S1.xij(t)) (16.93)

S2.vij(t + 1) = wS2.vij(t) + c1r1j(t)(S2.yij(t)− S2.xij(t))
+ c2rij(t)(S1.ŷj(t)− S.x2j(t)) (16.94)

where sub-swarm S1 evaluates individuals on the basis of objective f1(x), and sub-
swarm S2 uses objective f2(x).

The MOPSO algorithm developed by Coello Coello and Lechuga is one of the first PSO-
based MOO algorithms that extensively uses an archive [147, 148]. This algorithm is
based on the Pareto archive ES (refer to Section 12.6.2), where the objective function
space is separated into a number of hypercubes.

A truncated archive is used to store non-dominated solutions. During each iteration,
if the archive is not yet full, a new particle position is added to the archive if the
particle represents a non-dominated solution. However, because of the size limit of
the archive, priority is given to new non-dominated solutions located in less populated
areas, thereby ensuring that diversity is maintained. In the case that members of
the archive have to be deleted, those members in densely populated areas have the
highest probability of deletion. Deletion of particles is done during the process of sep-
arating the objective function space into hypercubes. Densely populated hypercubes
are truncated if the archive exceeds its size limit. After each iteration, the number
of members of the archive can be reduced further by eliminating from the archive all
those solutions that are now dominated by another archive member.

For each particle, a global guide is selected to guide the particle toward less dense areas
of the Pareto front. To select a guide, a hypercube is first selected. Each hypercube
is assigned a selective fitness value,

fsel(Hh) =
α

fdel(Hh)
(16.95)

where fdel(Hh) = Hh.ns is the deletion fitness value of hypercube Hh; α = 10 and
Hh.ns represents the number of nondominated solutions in hypercube Hh. More
densely populated hypercubes will have a lower score. Roulette wheel selection is
then used to select a hypercube, Hh, based on the selection fitness values. The global
guide for particle i is selected randomly from among the members of hypercube Hh.
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Hence, particles will have different global guides. This ensures that particles are at-
tracted to different solutions. The local guide of each particle is simply the personal
best position of the particle. Personal best positions are only updated if the new posi-
tion, xi(t + 1) ≺ yi(t). The global guide replaces the global best, and the local guide
replaces the personal best in the velocity update equation.

In addition to the normal position update, a mutation operator (also referred to as
a craziness operator in the context of PSO) is applied to the particle positions. The
degree of mutation decreases over time, and the probability of mutation also decreases
over time. That is,

xij(t + 1) = N(0, σ(t))xij(t) + vij(t + 1) (16.96)

where, for example
σ(t) = σ(0) e−t (16.97)

with σ(0) an initial large variance.

The MOPSO developed by Coello Coello and Lechuga is summarized in Algo-
rithm 16.14.

Algorithm 16.14 Coello Coello and Lechuga MOPSO

Create and initialize an nx-dimensional swarm S;
Let A = ∅ and A.ns = 0;
Evaluate all particles in the swarm;
for all non-dominated xi do

A = A ∪ {xi};
end
Generate hypercubes;
Let yi = xi for all particles;
repeat

Select global guide, ŷ;
Select local guide, yi;
Update velocities using equation (16.2);
Update positions using equation (16.96);
Check boundary constraints;
Evaluate all particles in the swarm;
Update the repository, A;

until stopping condition is true;

Li [517] applied a nondominated sorting approach similar to that described in Sec-
tion 12.6.2 to PSO. Other MOO algorithms can be found in [259, 389, 609, 610, 940,
956].
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16.6.3 Dynamic Environments

Early results of the application of the PSO to type I environments (refer to Section A.9)
with small spatial severity showed that the PSO has an implicit ability to track chang-
ing optima [107, 228, 385]. Each particle progressively converges on a point on the
line that connects its personal best position with the global best position [863, 870].
The trajectory of a particle can be described by a sinusoidal wave with diminishing
amplitude around the global best position [651, 652]. If there is a small change in the
location of an optimum, it is likely that one of these oscillating particles will discover
the new, nearby optimum, and will pull the other particles to swarm around the new
optimum.

However, if the spatial severity is large, causing the optimum to be displaced outside
the radius of the contracting swarm, the PSO will fail to locate the new optimum due
to loss of diversity. In such cases mechanisms need to be employed to increase the
swarm diversity.

Consider spatial changes where the value of the optimum remains the same after
the change, i.e. f(x∗(t)) = f(x∗(t + 1)), with x∗(t) �= x∗(t + 1). Since the fitness
remains the same, the global best position does not change, and remains at the old
optimum. Similarly, if f(x∗(t)) > f(x∗(t+1)), assuming minimization, the global best
position will also not change. Consequently, the PSO will fail to track such a changing
minimum. This problem can be solved by re-evaluating the fitness of particles at time
t + 1 and updating global best and personal best positions. However, keep in mind
that the same problem as discussed above may still occur if the optimum is displaced
outside the radius of the swarm.

One of the goals of optimization algorithms for dynamic environments is to locate
the optimum and then to track it. The self-adaptation ability of the PSO to track
optima (as discussed above) assumes that the PSO did not converge to an equilibrium
state in its first goal to locate the optimum. When the swarm reaches an equilibrium
(i.e. converged to a solution), vi = 0. The particles have no momentum and the
contributions from the cognitive and social components are zero. The particles will
remain in this stable state even if the optimum does change. In the case of dynamic
environments, it is possible that the swarm reaches an equilibrium if the temporal
severity is low (in other words, the time between consecutive changes is large). It is
therefore important to read the literature on PSO for dynamic environments with this
aspect always kept in mind.

The next aspects to consider are the influence of particle memory, velocity clamping
and the inertia weight. The question to answer is: to what extent do these parameters
and characteristics of the PSO limit or promote tracking of changing optima? These
aspects are addressed next:

• Each particle has a memory of its best position found thus far, and velocity
is adjusted to also move towards this position. Similarly, each particle retains
information about the global best (or local best) position. When the environ-
ment changes this information becomes stale. If, after an environment change,
particles are still allowed to make use of this, now stale, information, they are
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drawn to the old optimum – an optimum that may no longer exist in the changed
environment. It can thus be seen that particle memory (from which the global
best is selected) is detrimental to the ability of PSO to track changing optima.
A solution to this problem is to reinitialize or to re-evaluate the personal best
positions (particle memory).

• The inertia weight, together with the acceleration coefficients balance the explo-
ration and exploitation abilities of the swarm. The smaller w, the less the swarm
explores. Usually, w is initialized with a large value that decreases towards a
small value (refer to Section 16.3.2). At the time that a change occurs, the value
of w may have reduced too much, thereby limiting the swarm’s exploration abil-
ity and its chances of locating the new optimum. To alleviate this problem, the
value of w should be restored to its initial large value when a change in the envi-
ronment is detected. This also needs to be done for the acceleration coefficients
if adaptive accelerations are used.

• Velocity clamping also has a large influence on the exploration ability of PSO
(refer to 16.3.1). Large velocity clamping (i.e. small Vmax,j values) limits the
step sizes, and more rapidly results in smaller momentum contributions than
lesser clamping. For large velocity clamping, the swarm will have great difficulty
in escaping the old optimum in which it may find itself trapped. To facilitate
tracking of changing objectives, the values of Vmax,j therefore need to be chosen
carefully.

When a change in environment is detected, the optimization algorithm needs to react
appropriately to adapt to these changes. To allow timeous and efficient tracking
of optima, it is important to correctly and timeously detect if the environment did
change. The task is easy if it is known that changes occur periodically (with the change
frequency known), or at predetermined intervals. It is, however, rarely the case that
prior information about when changes occur is available. An automated approach is
needed to detect changes based on information received from the environment.

Carlisle and Dozier [106, 109] proposed the use of a sentry particle, or more than one
sentry particle. The task of the sentry is to detect any change in its local environment.
If only one sentry is used, the same particle can be used for all iterations. However,
feedback from the environment will then only be from one small part of the environ-
ment. Around the sentry the environment may be static, but it may have changed
elsewhere. A better strategy is to select the particle randomly from the swarm for
each iteration. Feedback is then received from different areas of the environment.

A sentry particle stores a copy of its most recent fitness value. At the start of the
next iteration, the fitness of the sentry particle is re-evaluated and compared with its
previously stored value. If there is a difference in the fitness, a change has occurred.

More sentries allow simultaneous feedback from more parts of the environment. If
multiple sentries are used detection of changes is faster and more reliable. However,
the fitness of a sentry particle is evaluated twice per iteration. If fitness evaluation
is costly, multiple sentries will significantly increase the computational complexity of
the search algorithm.

As an alternative to using randomly selected sentry particles, Hu and Eberhart [385]
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proposed to monitor changes in the fitness of the global best position. By monitoring
the fitness of the global best particle, change detection is based on globally provided
information. To increase the accuracy of change detection, Hu and Eberhart [386]
later also monitored the global second-best position. Detection of the second-best and
global best positions limits the occurrence of false alarms. Monitoring of these global
best positions is based on the assumption that if the optimum location changes, then
the optimum value of the current location also changes.

One of the first studies in the application of PSO to dynamic environments came from
Carlisle and Dozier [107], where the efficiency of different velocity models (refer to
Section 16.3.5) has been evaluated. Carlisle and Dozier observed that the social-only
model is faster in tracking changing objectives than the full model. However, the
reliability of the social-only model deteriorates faster than the full model for larger
update frequencies. The selfless and cognition-only models do not perform well on
changing environments. Keep in mind that these observations were without changing
the original velocity models, and should be viewed under the assumption that the
swarm had not yet reached an equilibrium state. Since this study, a number of other
studies have been done to investigate how the PSO should be changed to track dynamic
optima. These studies are summarized in this section.

From these studies in dynamic environments, it became clear that diversity loss is the
major reason for the failure of PSO to achieve more efficient tracking.

Eberhart and Shi [228] proposed using the standard PSO, but with a dynamic, ran-
domly selected inertia coefficient. For this purpose, equation (16.24) is used to select
a new w(t) for each time step. In their implementation, c1 = c2 = 1.494, and velocity
clamping was not done. As motivation for this change, recall from Section 16.3.1 that
velocity clamping restricts the exploration abilities of the swarm. Therefore, removal
of velocity clamping facilitates larger exploration, which is highly beneficial. Further-
more, from Section 16.3.2, the inertia coefficient controls the exploration–exploitation
trade-off. Since it cannot be predicted in dynamically changing environments if explo-
ration or exploitation is preferred, the randomly changing w(t) ensures a good mix of
focusing on both exploration and exploitation.

While this PSO implementation presented promising results, the efficiency is limited
to type I environments with a low severity and type II environments where the value of
the optimum is better after the change in the environment. This restriction is mainly
due to the memory of particles (i.e. the personal best positions and the global best
selected from the personal best positions), and that changing the inertia will not be
able to kick the swarm out of the current optimum when vi(t) ≈ 0, ∀i = 1, . . . , ns.

A very simple approach to increase diversity is to reinitialize the swarm, which means
that all particle positions are set to new random positions, and the personal best and
neighborhood best positions are recalculated. Eberhart and Shi [228] suggested the
following approaches:

• Do not reinitialize the swarm, and just continue to search from the current
position. This approach only works for small changes, and when the swarm has
not yet reached an equilibrium state.
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• Reinitialize the entire swarm. While this approach does neglect the swarm’s
memory and breaks the swarm out of a current optimum, it has the disadvantage
that the swarm needs to search all over again. If changes are not severe, the
consequence is an unnecessary increase in computational complexity due to an
increase in the number of iterations to converge to the new optimum. The danger
is also that the swarm may converge on a worse local optimum. Reinitialization
of the entire swarm is more effective under severe environment changes.

• Reinitialize only parts of the swarm, but make sure to retain the global best
position. The reinitialization of a percentage of the particle positions injects more
diversity, and also preserves memory of the search space by keeping potentially
good particles (existing particles may be close to the changed optimum). Hu
and Eberhart experimented with a number of reinitialization percentages [386],
and observed that lower reinitialization is preferred for smaller changes. Larger
changes require more particles to be reinitialized for efficient tracking. It was
also found empirically that total reinitialization is not efficient.

Particles’ memory of previous best positions is a major cause of the inefficiency of
the PSO in tracking changing optima. This statement is confirmed by the results of
Carlisle and Dozier [107], where it was found that the cognition-only model showed
poor performance. The cognitive component promotes the nostalgic tendency to return
to previously found best positions. However, after a change in the environment, these
positions become stale since they do not necessarily reflect the search space for the
changed environment. The consequence is that particles are attracted to outdated
positions.

Carlisle and Dozier [107], and Hu and Eberhart [385] proposed that the personal best
positions of all particles be reset to the current position of the particle when a change
is detected. This action effectively clears the memory of all particles. Resetting of the
personal best positions is only effective when the swarm has not yet converged to a
solution [386]. If this is the case, w(t)v(t) ≈ 0 and the contribution of the cognitive
component will be zero for all particles, since (yi(t) − xi(t)) = 0, ∀i = 1, . . . , ns.
Furthermore, the contribution of the social component will also be approximately
zero, since, at convergence, all particles orbit around the same global best position
(with an approximately zero swarm radius). Consequently, velocity updates are very
small, as is the case for position updates.

To address the above problem, resetting of the personal best positions can be combined
with partial reinitialization of the swarm [386]. In this case, reinitialization increases
diversity while resetting of the personal best positions prevents return to out-of-date
positions.

Looking more carefully at the resetting of personal best positions, it may not always be
a good strategy to simply reset all personal best positions. Remember that by doing
so, all particles forget any experience that they have gained about the search space
during the search process. It might just be that after an environment change, the
personal best position of a particle is closer to the new goal than the current position.
Under less severe changes, it is possible that the personal best position remains the
best position for that particle. Carlisle and Dozier proposed that the personal best
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positions first be evaluated after the environment change and if the personal best
position is worse than the current position for the new environment, only then reset
the personal best position [109].

The global best position, if selected from the personal best positions, also adds to the
memory of the swarm. If the environment changes, then the global best position is
based on stale information. To address this problem, any of the following strategies
can be followed:

• After resetting of the personal best positions, recalculate the global best position
from the more up-to-date personal best positions.

• Recalculate the global best position only if it is worse under the new environment.

• Find the global best position only from the current particle positions and not
from the personal best positions [142].

The same reasoning applies to neighborhood best positions.

The charged PSO discussed in Section 16.5.6 has been developed to track dynamically
changing optima, facilitated by the repelling mechanism. Other PSO implementations
for dynamic environments can be found in [142, 518, 955].

16.6.4 Niching PSO

Although the basic PSO was developed to find single solutions to optimization prob-
lems, it has been observed for PSO implementations with special parameter choices
that the basic PSO has an inherent ability to find multiple solutions. Agrafiotis and
Cedeño, for example, observed for a specific problem that particles coalesce into a
small number of local minima [11]. However, any general conclusions about the PSO’s
niching abilities have to be reached with extreme care, as explained below.

The main driving forces of the PSO are the cognitive and social components. It is
the social component that prevents speciation. Consider, for example, the gbest PSO.
The social component causes all particles to be attracted towards the best position
obtained by the swarm, while the cognitive component exerts an opposing force (if
the global best position is not the same as a particle’s personal best position) towards
a particle’s own best solution. The resulting effect is that particles converge to a
point between the global best and personal best positions, as was formally proven in
[863, 870]. If the PSO is executed until the swarm reaches an equilibrium point, then
each particle will have converged to such a point between the global best position and
the personal best position of that particle, with a final zero velocity.

Brits et al. [91] showed empirically that the lbest PSO succeeds in locating a small
percentage of optima for a number of functions. However, keep in mind that these
studies terminated the algorithms when a maximum number of function evaluations
was exceeded, and not when an equilibrium state was reached. Particles may therefore
still have some momentum, further exploring the search space. It is shown in [91] that
the basic PSO fails miserably compared to specially designed lbest PSO niching algo-
rithms. Of course, the prospect of locating more multiple solutions will improve with
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an increase in the number of particles, but at the expense of increased computational
complexity. The basic PSO also fails another important objective of niching algo-
rithms, namely to maintain niches. If the search process is allowed to continue, more
particles converge to the global best position in the process to reach an equilibrium,
mainly due to the social component (as explained above).

Emanating from the discussion in this section, it is desirable to rather adapt the basic
PSO with true speciation abilities. One such algorithm, the NichePSO is described
next.

The NichePSO was developed to find multiple solutions to general multi-modal prob-
lems [89, 88, 91]. The basic operating principle of NichePSO is the self-organization
of particles into independent sub-swarms. Each sub-swarm locates and maintains a
niche. Information exchange is only within the boundaries of a sub-swarm. No in-
formation is exchanged between sub-swarms. This independency among sub-swarms
allows sub-swarms to maintain niches. To emphasize: each sub-swarm functions as
a stable, individual swarm, evolving on its own, independent of individuals in other
swarms.

The NichePSO starts with one swarm, referred to as the main swarm, containing all
particles. As soon as a particle converges on a potential solution, a sub-swarm is
created by grouping together particles that are in close proximity to the potential
solution. These particles are then removed from the main swarm, and continue within
their sub-swarm to refine (and to maintain) the solution. Over time, the main swarm
shrinks as sub-swarms are spawned from it. NichePSO is considered to have converged
when sub-swarms no longer improve the solutions that they represent. The global best
position from each sub-swarm is then taken as an optimum (solution).

The NichePSO is summarized in Algorithm 16.15. The different steps of the algorithm
are explained in more detail in the following sections.

Algorithm 16.15 NichePSO Algorithm

Create and initialize a nx-dimensional main swarm, S;
repeat

Train the main swarm, S, for one iteration using the cognition-only model;
Update the fitness of each main swarm particle, S.xi;
for each sub-swarm Sk do

Train sub-swarm particles, Sk.xi, using a full model PSO;
Update each particle’s fitness;
Update the swarm radius Sk.R;

endFor
If possible, merge sub-swarms;
Allow sub-swarms to absorb any particles from the main swarm that moved into
the sub-swarm;
If possible, create new sub-swarms;

until stopping condition is true;
Return Sk.ŷ for each sub-swarm Sk as a solution;
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Main Swarm Training

The main swarm uses a cognition-only model (refer to Section 16.3.5) to promote
exploration of the search space. Because the social component serves as an attractor
for all particles, it is removed from the velocity update equation. This allows particles
to converge on different parts of the search space.

It is important to note that velocities must be initialized to zero.

Sub-swarm Training

The sub-swarms are independent swarms, trained using a full model PSO (refer to
Section 16.1). Using a full model to train sub-swarms allows particle positions to be
adjusted on the basis both of particle’s own experience (the cognitive component) and
of socially obtained information (the social component). While any full model PSO
can be used to train the sub-swarms, the NichePSO as presented in [88, 89] uses the
GCPSO (discussed in Section 16.5.1). The GCPSO is used since it has guaranteed
convergence to a local minimum [863], and because the GCPSO has been shown to
perform well on extremely small swarms [863]. The latter property of GCPSO is
necessary because sub-swarms initially consist of only two particles. The gbest PSO
has a tendency to stagnate with such small swarms.

Identification of Niches

A sub-swarm is formed when a particle seems to have converged on a solution. If
a particle’s fitness shows little change over a number of iterations, a sub-swarm is
created with that particle and its closest topological neighbor. Formally, the standard
deviation, σi, in the fitness f(xi) of each particle is tracked over a number of iterations.
If σi < ε, a sub-swarm is created. To avoid problem-dependence, σi is normalized
according to the domain. The closest neighbor, l, to the position xi of particle i is
computed using Euclidean distance, i.e.

l = arg min
a
{||xi − xa||} (16.98)

with 1 ≤ i, a ≤ S.ns, i �= a and S.ns is the size of the main swarm.

The sub-swarm creation, or niche identification process is summarized in Algo-
rithm 16.16. In this algorithm, Q represents the set of sub-swarms, Q = {S1, · · · , SK},
with |Q| = K. Each sub-swarm has Sk.ns particles. During initialization of the
NichePSO, K is initialized to zero, and Q is initialized to the empty set.

Absorption of Particles into a Sub-swarm

It is likely that particles of the main swarm move into the area of the search space
covered by a sub-swarm Sk. Such particles are merged with the sub-swarm, for the
following reasons:
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Algorithm 16.16 NichePSO Sub-swarm Creation Algorithm

if σi < ε then
k = k + 1;
Create sub-swarm Sk = {xi,xl};
Let Q ← Q∪ Sk;
Let S ← S \ Sk;

end

• Inclusion of particles that traverse the search space of an existing sub-swarm
may improve the diversity of the sub-swarm.

• Inclusion of such particles into a sub-swarm will speed up their progression to-
wards an optimum through the addition of social information within the sub-
swarm.

More formally, if for particle i,

||xi − Sk.ŷ|| ≤ Sk.R (16.99)

then absorb particle i into sub-swarm Sk:

Sk ← Sk ∪ {xi} (16.100)
S ← S \ {xi} (16.101)

In equation (16.99), Sk.R refers to the radius of sub-swarm Sk, defined as

Sk.R = max{||Sk.ŷ− Sk.xi||}, ∀i = 1, . . . , Sk.ns (16.102)

where Sk.ŷ is the global best position of sub-swarm Sk.

Merging Sub-swarms

It is possible that more than one sub-swarm form to represent the same optimum. This
is due to the fact that sub-swarm radii are generally small, approximating zero as the
solution represented is refined over time. It may then happen that a particle that moves
toward a potential solution is not absorbed into a sub-swarm that is busy refining that
solution. Consequently, a new sub-swarm is created. This leads to the redundant
refinement of the same solution by multiple swarms. To solve this problem, similar
sub-swarms are merged. Swarms are considered similar if the hyperspace defined by
their particle positions and radii intersect. The new, larger sub-swarm then benefits
from the social information and experience of both swarms. The resulting sub-swarm
usually exhibits larger diversity than the original, smaller sub-swarms.

Formally stated, two sub-swarms, Sk1 and Sk2 , intersect when

||Sk1 .ŷ− Sk2 .ŷ|| < (Sk1 .R + Sk2 .R) (16.103)
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If Sk1 .R = Sk2 .R = 0, the condition in equation (16.103) fails, and the following
merging test is considered:

||Sk1 .ŷ− Sk2 .ŷ|| < µ (16.104)

where µ is a small value close to zero, e.g. µ = 10−3. If µ is too large, the result may
be that dissimilar swarms are merged with the consequence that a candidate solution
may be lost.

To avoid tuning of µ over the domain of the search space, ||Sk1 .ŷ − Sk2 .ŷ|| are nor-
malized to the interval [0, 1].

Stopping Conditions

Any of a number of stopping conditions can be used to terminate the search for multiple
solutions. It is important that the stopping conditions ensure that each sub-swarm
has converged onto a unique solution.

The reader is referred to [88] for a more detailed analysis of the NichePSO.

16.7 Applications

PSO has been used mostly to optimize functions with continuous-valued parameters.
One of the first applications of PSO was in training neural networks, as summarized in
Section 16.7.1. A game learning application of PSO is summarized in Section 16.7.3.
Other applications are listed in Table 16.1.

16.7.1 Neural Networks

The first applications of PSO was to train feedforward neural networks (FFNN) [224,
446]. These first studies in training FFNNs using PSO have shown that the PSO
is an efficient alternative to NN training. Since then, numerous studies have further
explored the power of PSO as a training algorithm for a number of different NN
architectures. Studies have also shown for specific applications that NNs trained using
PSO provide more accurate results. Section 16.7.1 and Section 16.7.1 respectively
address supervised and unsupervised training. NN architecture selection approaches
are discussed in Section 16.7.2.

Supervised Learning

The main objective in supervised NN training is to adjust a set of weights such that an
objective (error) function is minimized. Usually, the SSE error is used as the objective
function (refer to equation (2.17)).
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In order to use PSO to train an NN, a suitable representation and fitness function
needs to be found. Since the objective is to minimize the error function, the fitness
function is simply the given error function (e.g. the SSE given in equation (2.17)).
Each particle represents a candidate solution to the optimization problem, and since
the weights of a trained NN are a solution, a single particle represents one complete
network. Each component of a particle’s position vector represents one NN weight or
bias. Using this representation, any of the PSO algorithms can be used to find the
best weights for an NN to minimize the error function.

Eberhart and Kennedy [224, 446] provided the first results of applying the basic PSO
to the training of FFNNs. Mendes et al. [575] evaluated the performance of different
neighborhood topologies (refer to Section 16.2) on training FFNNs. The topologies
tested included the star, ring, pyramid, square and four clusters topologies. Hirata et
al. [367], and Gudise and Venayagamoorthy [338] respectively evaluated the ability
of lbest and gbest PSO to train FFNNs. Al-Kazemi and Mohan applied the multi-
phase PSO (refer to Section 16.5.4) to NN training. Van den Bergh and Engelbrecht
showed that the cooperative PSO (refer to Section 16.5.4) and GCPSO (refer to Sec-
tion 16.5.1) perform very well as NN training algorithms for FFNNs [863, 864]. Settles
and Rylander also applied the cooperative PSO to NN training [776].

He et al. [359] used the basic PSO to train a fuzzy NN, after which accurate rules
have been extracted from the trained network.

The real power of PSO as an NN training algorithm was illustrated by Engelbrecht
and Ismail [247, 406, 407, 408] and Van den Bergh and Engelbrecht [867] in training
NNs with product units. The basic PSO and cooperative PSO have been shown
to outperform optimizers such as gradient-descent, LeapFrog (refer to Section 3.2.4),
scaled conjugate gradient (refer to Section 3.2.3) and genetic algorithms (refer to
Chapter 9). Paquet and Engelbrecht [655, 656] have further illustrated the power of
the linear PSO in training support vector machines.

Salerno [753] used the basic PSO to train Elman recurrent neural networks (RNN).
The PSO was successful for simple problems, but failed to train an RNN for parsing
natural language phrases. Tsou and MacNish [854] also showed that the basic PSO
fails to train certain RNNs, and developed a Newton-based PSO that successfully
trained a RNN to learn regular language rules. Juang [430] combined the PSO as an
operator in a GA to evolve RNNs. The PSO was used to enhance elitist individuals.

Unsupervised Learning

While plenty of work has been done in using PSO algorithms to train supervised
networks, not much has been done to show how PSO performs as an unsupervised
training algorithm. Xiao et al. [921] used the gbest PSO to evolve weights for a self-
organizing map (SOM) [476] (also refer to Section 4.5) to perform gene clustering.
The training process consists of two phases. The first phase uses PSO to find an
initial weight set for the SOM. The second phase initializes a PSO with the weight set
obtained from the first phase. The PSO is then used to refine this weight set.
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Messerschmidt and Engelbrecht [580], and Franken and Engelbrecht [283, 284, 285]
used the gbest, lbest and Von Neumann PSO algorithms as well as the GCPSO to
coevolve neural networks to approximate the evaluation function of leaf nodes in game
trees. No target values were available; therefore NNs compete in game tournaments
against groups of opponents in order to determine a score or fitness for each NN. During
the coevolutionary training process, weights are adjusted using PSO algorithms to
have NNs (particles) move towards the best game player. The coevolutionary training
process has been applied successfully to the games of tick-tack-toe, checkers, bao, the
iterated prisoner’s dilemma, and a probabilistic version of tick-tack-toe. For more
information, refer to Section 15.2.3.

16.7.2 Architecture Selection

Zhang and Shao [949, 950] proposed a PSO model to simultaneously optimize NN
weights and architecture. Two swarms are maintained: one swarm optimizes the
architecture, and the other optimizes weights. Particles in the architecture swarm
are two-dimensional, with each particle representing the number of hidden units used
and the connection density. The first step of the algorithm randomly initializes these
architecture particles within predefined ranges.

The second swarm’s particles represent actual weight vectors. For each architecture
particle, a swarm of particles is created by randomly initializing weights to correspond
with the number of hidden units and the connection density specified by the architec-
ture particle. Each of these swarms is evolved using a PSO, where the fitness function
is the MSE computed from the training set. After convergence of each NN weights
swarm, the best weight vector is identified from each swarm (note that the selected
weight vectors are of different architectures). The fitness of these NNs are then eval-
uated using a validation set containing patterns not used for training. The obtained
fitness values are used to quantify the performance of the different architecture speci-
fications given by the corresponding particles of the architecture swarm. Using these
fitness values, the architecture swarm is further optimized using PSO.

This process continues until a termination criterion is satisfied, at which point the
global best particle is one with an optimized architecture and weight values.

16.7.3 Game Learning

Messerschmidt and Engelbrecht [580] developed a PSO approach to train NNs in a
coevolutionary mechanism to approximate the evaluation function of leaf nodes in a
game tree as described in Section 15.2.3. The initial model was applied to the simple
game of tick-tack-toe.

As mentioned in Section 15.2.3 the training process is not supervised. No target eval-
uation of board states is provided. The lack of desired outputs for the NN necessitates
a coevolutionary training mechanism, where NN agents compete against other agents,
and all inferior NNs strive to beat superior NNs. For the PSO coevolutionary training
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algorithm, summarized in Algorithm 16.17, a swarm of particles is randomly created,
where each particle represents a single NN. Each NN plays in a tournament against
a group of randomly selected opponents, selected from a competition pool (usually
consisting of all the current particles of the swarm and all personal best positions).
After each NN has played against a group of opponents, it is assigned a score based
on the number of wins, losses and draws achieved. These scores are then used to
determine personal best and neighborhood best solutions. Weights are adjusted using
the position and velocity updates of any PSO algorithm.

Algorithm 16.17 PSO Coevolutionary Game Training Algorithm

Create and randomly initialize a swarm of NNs;
repeat

Add each personal best position to the competition pool;
Add each particle to the competition pool;
for each particle (or NN) do

Randomly select a group of opponents from the competition pool;
for each opponent do

Play a game (using game trees to determine next moves) against the
opponents, playing as first player;
Record if game was won, lost or drawn;
Play a game against same opponent, but as the second player;
Record if game was won, lost or drawn;

end
Determine a score for each particle;
Compute new personal best positions based on scores;

end
Compute neighbor best positions;
Update particle velocities;
Update particle positions;

until stopping condition is true;
Return global best particle as game-playing agent;

The basic algorithm as given in Algorithm 16.17 has been applied successfully to the
zero-sum games of tick-tack-toe [283, 580], checkers [284], and bao [156]. Franken
and Engelbrecht also applied the approach to the non-zero-sum game, the iterated
prisoner’s dilemma [285]. A variant of the approach, using two competing swarms has
recently been used to train agents for a probabilistic version of tick-tac-toe [654].

16.8 Assignments

1. Discuss in detail the differences and similarities between PSO and EAs.

2. Discuss how PSO can be used to cluster data.

3. Why is it better to base the calculation of neighborhoods on the index assigned
to particles and not on geometrical information such as Euclidean distance?
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Table 16.1 Applications of Particle Swarm Optimization

Application References
Clustering [638, 639]
Design [7, 316, 700, 874, 875]
Scheduling [7, 470, 707, 754]
Planning [771, 775, 856, 886]
Controllers [143, 155, 297, 959]
Power systems [6, 296, 297, 299, 437, 444]
Bioinformatics [627, 705, 921]
Data mining [805]

4. Explain how PSO can be used to approximate functions using an n-th order
polynomial.

5. Show how PSO can be used to solve a system of equations.

6. If the basic PSO is used to solve a system of equations, what problem(s) do you
foresee? How can these be addressed?

7. How can PSO be used to solve problems with discrete-valued parameters?

8. For the predator-prey PSO, what will be the effect if more than one predator is
used?

9. Critically discuss the following strategy applied to a dynamic inertia weight:
Start with an inertia weight of 2.0, and linearly decrease it to 0.5 as a function
of the iteration number.

10. The GCPSO was developed to address a specific problem with the standard
PSO. What is this problem? If mutation is combined with the PSO, will this
problem be addressed?

11. Consider the following adaptation of the standard gbest PSO algorithm: all
particles, except for the gbest particle, use the standard PSO velocity update and
position update equations. The new position of the gbest particle is, however,
determined by using the LeapFrog algorithm. Comment on this strategy. What
advantages do you see, any disadvantages? Will it solve the problem of the
standard PSO in the question above?

12. Explain why the basic gbest PSO cannot be used to find niches (multiple solu-
tions), neither in parallel nor sequentially (assuming that the fitness function is
not allowed to be augmented).

13. Explain why velocities should be initialized to zero for the NichePSO.

14. Can it be said that PSO implements a form of

(a) competitive coevolution?
(b) cooperative coevolution?

Justify your answers.

15. Discuss the validity of the following statement: “PSO is an EA.”



Chapter 17

Ant Algorithms

Ants appeared on earth some 100 million years ago, and have a current total population
estimated at 1016 individuals [378]. It is further estimated that the total weight of
ants is in the same order of magnitude as the total weight of human beings. Most of
these ants are social insects, living in colonies of 30 to millions of individuals. Ants
are not the only social insects living in colonies. The complex behaviors that emerge
from colonies of ants have intrigued humans, and there have been many studies of ant
colonies aimed at a better understanding of these collective behaviors. Collective ant
behaviors that have been studied include the foraging behavior, division of labour,
cemetery organization and brood care, and construction of nests. The South African,
Eugéne Marais (1872-1936) was one of the first to study termite colonies. He published
his observations as early as 1927 in local magazines and newspapers. In his book, The
Soul of the Ant [558] (first published in 1937, after his death), he described in detail
his experimental procedures and observations of the workings of termite societies. The
Belgian, Maurice Maeterlinck (1862–1949), published The Life of the White Ant [547],
which was largely drawn from Marais’s articles (see the discussion in [558]).

Following on form this pioneering work, the French biologist Pierre-Paul Grassé [333]
postulated on the mechanics of termite communication in his studies of their nest con-
struction behavior. Grassé determined that a form of indirect communication exists
between individuals, which he termed stigmergy. It is through this local interaction
between individuals, and between individuals and the environment, that more complex
behaviors emerges. More recently, Deneubourg et al. [199] studied one example of stig-
mergy, namely pheromonal communication. From these studies, the first algorithmic
models of foraging behavior have been developed and implemented [208].

While most research efforts concentrated on developing algorithmic models of foraging
behavior, models have been developed for other behaviors, including division of labour,
cooperative support, self-assembly, and cemetery organization. These complex behav-
iors emerge from the collective behavior of very unsophisticated individuals. In the
context of collective behaviour, social insects are basically stimulus–response agents.
Based on information perceived from the local environment, an individual performs
a simple, basic action. These simple actions appear to have a large random com-
ponent. Despite this simplicity in individual behavior, social insects form a highly
structured social organism. To illustrate the complexity, and structured organization
of ant colonies, Marais [558] pointed out the resemblance between the human body
and a termite society.
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This chapter provides an introductory overview of ant algorithms. Section 17.1 con-
siders the foraging behavior of ants and discusses the first ant algorithms developed
on the basis of foraging models to solve discrete combinatorial optimization problems.
Models of the cemetery organization and brood care behaviors are discussed in Sec-
tion 17.2. The division of labor behavior is covered in Section 17.3. Some advanced
topics are presented in Section 17.4, including application of ACO in continuous en-
vironments, MOO, dynamic environments, and handling constraints. Applications of
ant algorithms (AA) are summarized in Section 17.5

17.1 Ant Colony Optimization Meta-Heuristic

One of the first behaviors studied by entomologists was the ability of ants to find
the shortest path between their nest and a food source. From these studies and
observations followed the first algorithmic models of the foraging behavior of ants, as
developed by Marco Dorigo [208]. Since then, research in the development of AAs
has gained momentum, resulting in a large number of algorithms and applications.
Collectively, algorithms that were developed as a result of studies of ant foraging
behavior are referred to as instances of the ant colony optimization meta-heuristic
(ACO-MH) [211, 215]. This section provides an overview of the ACO-MH, with a
focus on the basic principles of ACO algorithms, and the first algorithms that have
been developed. Section 17.1.1 gives an overview of the foraging behavior of real
ants, and introduces the concepts of stigmergy and artificial ants. A very simple ant
algorithm implementation is discussed in Section 17.1.3 to illustrate the basic principles
of AAs. Sections 17.1.4 to 17.1.11 respectively discuss the ant system (AS), ant colony
system (ACS), max-min ant system (MMAS), Ant-Q, fast ant system, Antabu, AS-
rank and ANTS instances of the ACO-MH. These algorithms were the first set of
ant algorithms implemented, mainly with reference to the traveling salesman problem
(TSP). Section 17.1.12 provides a discussion on the parameters of these algorithms.

17.1.1 Foraging Behavior of Ants

How do ants find the shortest path between their nest and food source, without any
visible, central, active coordination mechanisms? Studies of the foraging behavior
of several species of real ants revealed an initial random or chaotic activity pattern
in the search for food [216, 304, 628]. As soon as a food source is located, activity
patterns become more organized with more and more ants following the same path
to the food source. “Auto-magically”, soon all ants follow the same, shortest path.
This emergent behavior is a result of a recruitment mechanism whereby ants that have
located a food source influence other ants towards the food source. The recruitment
mechanism differs for different species, and can either be in the form of direct contact,
or indirect “communication.” Most ant species use the latter form of recruitment,
where communication is via pheromone trails. When an ant locates a food source,
it carries a food item to the nest and lays pheromone along the trail. Forager ants
decide which path to follow based on the pheromone concentrations on the different
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paths. Paths with a larger pheromone concentration have a higher probability of
being selected. As more ants follow a specific trail, the desirability of that path is
reinforced by more pheromone being deposited by the foragers, which attracts more
ants to follow that path. The collective behavior that results is a form of autocatalytic
behavior, where positive feedback about a food path causes that path to be followed
by more and more ants [209, 216].

The indirect communication where ants modify their environment (by laying of
pheromones) to influence the behavior of other ants is referred to as stigmergy (refer
to Section 17.1.2.

The Bridge Experiments

Deneubourg et al. [199] studied the foraging behavior of the Argentine ant species
Iridomyrmex humilis in order to develop a formal model to describe its behavior. In
this laboratory experiment, as illustrated in Figure 17.1, the nest is separated from the
food source by a bridge with two equally long branches. Initially, both branches were
free of any pheromones. After a finite time period, one of the branches was selected,
with most of the ants following the path, even with both branches being of the same
length. The selection of one of the branches is due to random fluctuations in path
selection, causing higher concentrations on the one path.

From this experiment, referred to as the binary bridge experiment (and illustrated in
Figure 17.1), a simple formal model was developed to characterize the path selection
process [666]. For this purpose, it is assumed that ants deposit the same amount of
pheromone and that pheromone does not evaporate. Let nA(t) and nB(t) denote the
number of ants on paths A and B respectively at time step t. Pasteels et al. [666]
found empirically that the probability of the next ant to choose path A at time step
t + 1 is given as,

PA(t + 1) =
(c + nA(t))α

(c + nA(t))α + (c + nB)α
= 1− PB(t + 1) (17.1)

where c quantifies the degree of attraction of an unexplored branch, and α is the bias
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Figure 17.2 Shortest Path Selection by Forager Ants

to using pheromone deposits in the decision process. The larger the value of α, the
higher the probability that the next ant will follow the path with a higher pheromone
concentration – even if that branch has only slightly more pheromone deposits. The
larger the value of c, the more pheromone deposits are required to make the choice of
path non-random. It was found empirically that α ≈ 2 and c ≈ 20 provide a best fit
to the experimentally observed behavior.

Using the probability defined in equation (17.1), the decision rule of an ant that arrives
at the binary bridge is expressed as follows: if U(0, 1) ≤ PA(t + 1) then follow path A
otherwise follow path B.

Goss et al. [330] extended the binary bridge experiment, where one of the branches
of the bridge was longer than the other, as illustrated in Figure 17.2. Dots in this
figure indicate ants. Initially, paths are chosen randomly with approximately the
same number of ants following both paths (as illustrated in Figure 17.2(a)). Over
time, more and more ants follow the shorter path as illustrated in Figure 17.2(b).
Selection is biased towards the shortest path, since ants that follow the shortest path
return to the nest earlier than ants on the longer path. The pheromone on the shorter
path is therefore reinforced sooner than that on the longer path.

Goss et al. [330] found that the probability of selecting the shorter path increases with
the length ratio between the two paths. This has been referred to as the differential
path length effect by Dorigo et al. [210, 212].

To summarize the findings of the studies of real ants, the emergence of shortest path
selection behavior is explained by autocatalysis (positive feedback) and the differential
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path length effect [210, 212].

Although an ant colony exhibits complex adaptive behavior, a single ant follows very
simple behaviors. An ant can be seen as a stimulus–response agent [629]: the ant
observes pheromone concentrations and produces an action based on the pheromone-
stimulus. An ant can therefore abstractly be considered as a simple computational
agent. An artificial ant algorithmically models this simple behavior of real ants. The
logic implemented is a simple production system with a set of production rules as
illustrated in Algorithm 17.1. This algorithm is executed at each point where the ant
needs to make a decision.

Algorithm 17.1 Artificial Ant Decision Process

Let r ∼ U(0, 1);
for each potential path A do

Calculate PA using, e.g., equation (17.1);
if r ≤ PA then

Follow path A;
Break;

end
end

While Algorithm 17.1 implements a simple random selection mechanism, any other
probabilistic selection mechanism (as overviewed in Section 8.5) can be used, for ex-
ample, roulette wheel selection.

17.1.2 Stigmergy and Artificial Pheromone

Generally stated, stigmergy is a class of mechanisms that mediate animal-to-animal
interactions [840]. The term stigmergy was formally defined by Grassé [333] as a
form of indirect communication mediated by modifications of the environment. This
definition originated from observations of the nest-building behavior of the termite
species Bellicositermes natalensis and Cubitermes. Grassé observed that coordination
and regulation of nest-building activities are not on an individual level, but achieved
by the current nest structure. The actions of individuals are triggered by the current
configuration of the nest structure. Similar observations have been made by Marais
[558], with respect to the Termes natalensis.

The word stigmergy is aptly constructed from the two Greek words [341],

• stigma, which means sign, and
• ergon, which means work.

Individuals observe signals, which trigger a specific response or action. The action
may reinforce or modify signals to influence the actions of other individuals.

Two forms of stigmergy have been defined [341, 871, 902]: sematectonic and sign-
based. Sematectonic stigmergy refers to communication via changes in the physical
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characteristics of the environment. Example activities that are accomplished through
sematectonic stigmergy include nest building, nest cleaning, and brood sorting (refer to
Section 17.2 considers algorithms based on sematectonic stigmergy). Sign-based stig-
mergy facilitates communication via a signaling mechanism, implemented via chemical
compounds deposited by ants. As an example, foraging behavior emerges from ants
following pheromone trails deposited by other ants.

Ant algorithms are population-based systems inspired by observations of real ant
colonies. Cooperation among individuals in an ant algorithm is achieved by exploiting
the stigmergic communication mechanisms observed in real ant colonies. Algorithmic
modeling of the behavior of ants is thus based on the concept of artificial stigmergy,
defined by Dorigo and Di Caro as the “indirect communication mediated by numeric
modifications of environmental states which are only locally accessible by the commu-
nicating agents” [211]. The essence of modeling ant behavior is to find a mathematical
that accurately describes the stigmergetic characteristics of the corresponding ant in-
dividuals. The main part of such a model is the definition of stigmergic variables which
encapsulate the information used by artificial ants to communicate indirectly. In the
contextof foraging behavior, artificial pheromone plays the role of stigmergic variable.

As discussed above, ants have the ability to always find the shortest path between their
nest and the food source. As ants move from a food source to the nest, an amount of
pheromone is dropped by each ant. Future ants choose paths probabilistically on on
the basis of the amount of pheromone. The higher the pheromone concentration, the
more the chance that the corresponding path will be selected. Some ant species have
the amount of pheromone deposited proportional to the quality of the food [210].

Over time, shorter paths will have stronger pheromone concentrations, since ants
return faster on those paths. Pheromone evaporates over time, with the consequence
that the pheromone concentrations on the longer paths decrease more quickly than on
the shorter paths.

Artificial pheromone mimics the characteristics of real pheromone, and indicates the
“popularity” of a solution to the optimization problem under consideration. In effect,
artificial pheromone encodes a long-term memory about the entire search process.

17.1.3 Simple Ant Colony Optimization

The first ant algorithm developed was the ant system (refer to Section 17.1.4)[208, 209],
and since then several improvements of the ant system have been devised [300, 301,
555, 743, 815]. These algorithms have somewhat more complex decision processes
than that illustrated in Algorithm 17.1. To provide a gentle, didactic introduction
to ant algorithms, this section breaks the chronological order in which ant algorithms
have been developed to first present the simple ACO (SACO) [212, 217]. The SACO
is an algorithmic implementation of the double bridge experiment of Deneubourg et
al. [199] (refer to Section 17.1.1), and is used in this section to illustrate the basic
components and behavior of the ACO-MH.

Consider the general problem of finding the shortest path between two nodes on a
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Figure 17.3 Graph for Shortest Path Problems

graph, G = (V, E), where V is the set of vertices (nodes) and E is a matrix representing
the connections between nodes. The graph has nG = |V | nodes. The length, Lk, of
the path constructed by ant k is calculated as the number of hops in the path from the
origin to the destination node. An example graph and selected path are illustrated in
Figure 17.3. The length of the indicated route is 2. A pheromone concentration, τij ,
is associated With each edge, (i, j), of the graph.

For the SACO, each edge is assigned a small random value to indicate the initial
pheromone, τij(0). Strictly speaking, edges do not have any pheromone concentrations
for the first step. An ant randomly selects which edge to follow next. Using the
simple decision logic summarized in Algorithm 17.1, implementation is made easier
by initializing the pheromone concentration on each link to a small random value. A
number of ants, k = 1, . . . , nk, are placed on the source node. For each iteration of
SACO (refer to Algorithm 17.2), each ant incrementally constructs a path (solution) to
the destination node. At each node, each ant executes a decision policy to determine
the next link of the path. If ant k is currently located at node i, it selects the next
node j ∈ N k

i , based on the transition probability [212, 217],

pk
ij(t) =

{
τα

ij(t)∑
j∈Nk

i
τα

ij(t)
if j ∈ N k

i

0 if j �∈ N k
i

(17.2)

where N k
i is the set of feasible nodes connected to node i, with respect to ant k. If,

for any node i and ant k, N k
i = ∅, then the predecessor to node i is included in N k

i .
Note that this may cause loops to occur within constructed paths. These loops are
removed once the destination node has been reached.

In the equation above, α is a positive constant used to amplify the influence of
pheromone concentrations. Large values of α give excessive importance to pheromone,
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especially the initial random pheromones, which may lead to rapid convergence to sub-
optimal paths.

Once all ants have constructed a complete path from the origin node to the destination
node, and all loops have been removed, each ant retraces its path to the source node
deterministically, and deposits a pheromone amount,

∆τk
ij(t) ∝

1
Lk(t)

(17.3)

to each link, (i, j), of the corresponding path; Lk(t) is the length of the path con-
structed by ant k at time step t.

That is,

τij(t + 1) = τij(t) +
nk∑

k=1

∆τk
ij(t) (17.4)

where nk is the number of ants.

Using equation (17.3), the total pheromone intensity of a link is proportional to the
desirability of the paths in which the link occurs, based on the length of the cor-
responding path. The deposited pheromone, ∆τk

ij , calculated using equation (17.3),
expresses the quality of the corresponding solution. For SACO, the quality of a so-
lution (the constructed path) is simply expressed as the inverse of the length of the
path in terms of the number of hops in the path. Any other measure can be used, for
example the cost of traveling on the path, or the physical distance traveled. In general,
if xk(t) denotes a solution at time step t, then f(xk(t)) expresses the quality of the
solution. If ∆τk is not proportional to the quality of the solution and all ants deposit
the same amount of pheromone (i.e. ∆τ1

ij = ∆τ2
ij = . . . = ∆τnk

ij ), then it is only the
differential path length effect that biases path selection towards the shortest path –
very similar to the observations of Deneubourg et al. [199]. This discussion leads to
the two main forms of solution evaluation employed by ant algorithms, namely

• implicit evaluation, where ants exploit the differential path length effect to bias
the search of other agents, and

• explicit evaluation, where pheromone amounts are proportional to some quality
measure of constructed solutions.

If the amount of pheromone deposited is inversely proportional to the quality of the
solution (as is the case in equation (17.3)), then the larger f(xk(t)) (that is, the
worse the constructed solution), the smaller 1/f(xk(t)), hence the less the amount of
pheromone deposited on the link. Thus, a long path causes all the links of that path
to become less desirable as a component of the final solution. This is the case for any
quality measure, f , that needs to be minimized.

Any of a number of termination criteria can be used in Algorithm 17.2 (and for the
rest of the ant algorithms discussed later), for example,

• terminate when a maximum number of iterations, nt, has been exceeded;

• terminate when an acceptable solution has been found, with f(xk(t)) ≤ ε;
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Algorithm 17.2 Simple ACO Algorithm

Initialize τij(0) to small random values;
Let t = 0;
Place nk ants on the origin node;
repeat

for each ant k = 1, . . . , nk do
//Construct a path xk(t);
xk(t) = ∅;
repeat

Select next node based on the probability defined in equation (17.2);
Add link (i, j) to path xk(t);

until destination node has been reached;
Remove all loops from xk(t);
Calculate the path length f(xk(t));

end
for each link (i, j) of the graph do

//pheromone evaporation;
Reduce the pheromone, τij(t), using equation (17.5);

end
for each ant k = 1, . . . , nk do

for each link (i, j) of xk(t) do
∆τk = 1

f(xk(t))
;

Update τij using equation (17.4);
end

end
t = t + 1;

until stopping condition is true;
Return the path xk(t) with smallest f(xk(t)) as the solution;

• terminate when all ants (or most of the ants) follow the same path.

The initial experiments on the binary bridge problem [212] found that ants rapidly
converge to a solution, and that little time is spent exploring alternative paths. To force
ants to explore more, and to prevent premature convergence, pheromone intensities
on links are allowed to “evaporate” at each iteration of the algorithm before being
reinforced on the basis of the newly constructed paths. For each link, (i, j), let

τij(t) ← (1− ρ)τij(t) (17.5)

with ρ ∈ [0, 1]. The constant, ρ, specifies the rate at which pheromones evaporate,
causing ants to “forget” previous decisions. In other words, ρ controls the influence of
search history. For large values of ρ, pheromone evaporates rapidly, while small values
of ρ result in slower evaporation rates. The more pheromones evaporate, the more
random the search becomes, facilitating better exploration. For ρ = 1, the search is
completely random.

At this point it is important to emphasize that solution construction is the result of
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cooperative behavior that emerges from the simple behaviors of individual ants: each
ant chooses the next link of its path based on information provided by other ants,
in the form of pheromone deposits. This again refers to the autocatalytic behavior
exhibited by forager ants. It is also important to note that the information used to
aid in the decision making process is limited to the local environment of the ant.

In their experiments, Dorigo and Di Caro found that [212, 217]

• SACO works well for very simple graphs, with the shortest path being selected
most often;

• for larger graphs, performance deteriorates with the algorithm becoming less
stable and more sensitive to parameter choices;

• convergence to the shortest path is good for a small number of ants, while too
many ants cause non-convergent behavior;

• evaporation becomes more important for more complex graphs. If ρ = 0, i.e.
no evaporation, the algorithm does not converge. If pheromone evaporates too
much (a large ρ is used), the algorithm often converged to sub-optimal solutions
for complex problems;

• for smaller α, the algorithm generally converges to the shortest path. For com-
plex problems, large values of α result in worse convergence behavior.

From these studies of the simple ACO algorithm, the importance of the exploration–
exploitation trade-off becomes evident. Care should be taken to employ mechanisms
to ensure that ants do not exploit pheromone concentrations such that the algorithm
prematurely stagnates on sub-optimal solutions, but that ants are forced to explore
alternative paths. In the sections (and chapters) that follow, different mechanisms are
discussed to balance exploitation and exploration.

The simple ACO algorithm discussed in the previous section has shown some success
in finding the shortest paths in graphs. The performance of the algorithm can be im-
proved significantly by very simple changes to Algorithm 17.2. These changes include
addition of heuristic information to determine the probability of selecting a link, mem-
ory to prevent cycles, and different pheromone update rules using local and/or global
information about the environment. The next sections provide an overview of the
early ant algorithms which are based on such changes of the simple ACO algorithm.

17.1.4 Ant System

The first ant algorithm was developed by Dorigo [208], referred to as ant system (AS)
[4, 77, 216]. AS improves on SACO by changing the transition probability, pk

ij , to
include heuristic information, and by adding a memory capability by the inclusion of
a tabu list. In AS, the probability of moving from node i to node j is given as

pk
ij(t) =




τα
ij(t)ηβ

ij(t)∑
u∈Nk

i
(t) τα

iu(t)ηβ
iu(t)

if j ∈ N k
i (t)

0 if j �∈ N k
i (t)

(17.6)
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where τij represents the a posteriori effectiveness of the move from node i to node j, as
expressed in the pheromone intensity of the corresponding link, (i, j); ηij represents the
a priori effectiveness of the move from i to j (i.e. the attractiveness, or desirability,
of the move), computed using some heuristic. The pheromone concentrations, τij ,
indicate how profitable it has been in the past to make a move from i to j, serving as
a memory of previous best moves.

The transition probability in equation (17.6) differs from that of SACO in equation
(17.2) on two aspects:

• The transition probability used by AS is a balance between pheromone intensity
(i.e. history of previous successful moves), τij , and heuristic information (ex-
pressing desirability of the move), ηij . This effectively balances the exploration–
exploitation trade-off. The search process favors actions that it has found in the
past and which proved to be effective, thereby exploiting knowledge obtained
about the search space. On the other hand, in order to discover such actions,
the search has to investigate previously unseen actions, thereby exploring the
search space. The best balance between exploration and exploitation is achieved
through proper selection of the parameters α and β. If α = 0, no pheromone
information is used, i.e. previous search experience is neglected. The search then
degrades to a stochastic greedy search. If β = 0, the attractiveness (or potential
benefit) of moves is neglected and the search algorithm is similar to SACO with
its associated problems.

The heuristic information adds an explicit bias towards the most attractive solu-
tions, and is therefore a problem-dependent function. For example, for problems
where the distance (or cost) of a path needs to be minimized,

ηij =
1

dij
(17.7)

where dij is the distance (or cost) between the nodes i and j.

• The set, N k
i , defines the set of feasible nodes for ant k when located on node i.

The set of feasible nodes may include only the immediate neighbors of node i.
Alternatively, to prevent loops, N k

i may include all nodes not yet visited by ant
k. For this purpose, a tabu list is usually maintained for each ant. As an ant
visits a new node, that node is added to the ant’s tabu list. Nodes in the tabu
list are removed from N k

i , ensuring that no node is visited more than once.

Maniezzo and Colorni used a different formulation of the probability used to determine
the next node [557]:

pk
ij(t) =

{
ατij(t)+(1−α)ηij∑

u∈Nk
i

(t)(ατiu(t)+(1−α)ηiu(t)) if j ∈ N k
i (t)

0 otherwise
(17.8)

Parameter α defines a relative importance of the pheromone concentration τij(t) with
respect to the desirability, ηij(t), of link (i, j). The probability pk

ij expresses a com-
promise between exploiting desirability (for small α), and pheromone intensity. This
formulation removes the need for the parameter β.
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Pheromone evaporation is implemented as given in equation (17.5). After completion
of a path by each ant, the pheromone on each link is updated as

τij(t + 1) = τij(t) + ∆τij(t) (17.9)

with

∆τij(t) =
nk∑

k=1

∆τk
ij(t) (17.10)

where ∆τk
ij(t) is the amount of pheromone deposited by ant k on link (i, j) and k at

time step t. Dorigo et al. [216] developed three variations of AS, each differing in the
way that ∆τk

ij is calculated (assuming a minimization problem):

• Ant-cycle AS:

∆τk
ij(t) =

{ Q
f(xk(t))

if link (i, j) occurs in path xk(t)
0 otherwise

(17.11)

For the ant-cycle implementation, pheromone deposits are inversely proportional
to the quality, f(xk(t)), of the complete path constructed by the ant. Global in-
formation is therefore used to update pheromone concentrations. Q is a positive
constant.

For maximization tasks,

∆τk
ij(t) =

{
Qf(xk(t)) if link (i, j) occurs in path xk(t)
0 otherwise (17.12)

• Ant-density AS:

∆τk
ij(t) =

{
Q if link (i, j) occurs in path xk(t)
0 otherwise (17.13)

Each ant deposits the same amount of pheromone on each link of its constructed
path. This approach essentially counts the number of ants that followed link
(i, j). The higher the density of the traffic on the link, the more desirable that
link becomes as component of the final solution.

• Ant-quantity AS:

∆τk
ij(t) =

{
Q
dij

if link (i, j) occurs in path xk(t)
0 otherwise

(17.14)

In this case, only local information, dij , is used to update pheromone concentra-
tions. Lower cost links are made more desirable. If dij represents the distance
between links, then ant-quantity AS prefers selection of the shortest links.

The AS algorithm is summarized in Algorithm 17.3. During the initialization step,
placement of ants is dictated by the problem being solved. If the objective is to find the
shortest path between a given source and destination node, then all nk ants are placed
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Algorithm 17.3 Ant System Algorithm

t = 0;
Initialize all parameters, i.e. α, β, ρ, Q, nk, τ0;
Place all ants, k = 1, . . . , nk;
for each link (i, j) do

τij(t) ∼ U(0, τ0);
end
repeat

for each ant k = 1, . . . , nk do
xk(t) = ∅;
repeat

From current node i, select next node j with probability as defined in
equation (17.6);
xk(t) = xk(t) ∪ {(i, j)};

until full path has been constructed;
Compute f(xk(t));

end
for each link (i, j) do

Apply evaporation using equation (17.5);
Calculate ∆τij(t) using equation (17.10);
Update pheromone using equation (17.4);

end
for each link (i, j) do

τij(t + 1) = τij(t);
end
t = t + 1;

until stopping condition is true;
Return xk(t) : f(xk(t)) = mink′=1,...,nk

{f(xk
′
(t))};

at the source node. On the other hand, if the objective is to construct the shortest
Hamiltonian path (i.e. a path that connects all nodes, once only), then the nk ants
are randomly distributed over the entire graph. By placing ants on randomly selected
nodes, the exploration ability of the search algorithm is improved. Pheromones are
either initialized to a constant value, τ0, or to small random values in the range [0, τ0].

Using Algorithm 17.3 as a skeleton, Dorigo et al. [216] experimented with the three
versions of AS. From the experiments, which focused on solving the traveling salesman
problem (both the symmetric and asymmetric versions) and the quadratic assignment
problem, it was concluded that the ant-cycle AS performs best, since global informa-
tion about the quality of solutions is used to determine the amount of pheromones to
deposit. For the ant-density and ant-quantity models, the search is not directed by
any measure of quality of the solutions.

Dorigo et al. [216] also introduced an elitist strategy where, in addition to the re-
inforcement of pheromones based on equation (17.4), an amount proportional to the
length of the best path is added to the pheromones on all the links that form part of
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the best path [216]. The pheromone update equation changes to

τij(t + 1) = τij(t) + ∆τij(t) + ne∆τ e
ij(t) (17.15)

where

∆τ e
ij(t) =

{ Q
f(x̃(t)) if (i, j) ∈ x̃(t)
0 otherwise

(17.16)

and e is the number of elite ants. In equation (17.16), x̃(t) is the current best route,
with f(x̃(t)) = mink=1,...,nk

{f(xk(t))}. The elitist strategy has as its objective direct-
ing the search of all ants to construct a solution to contain links of the current best
route.

17.1.5 Ant Colony System

The ant colony system (ACS) was developed by Gambardella and Dorigo to improve
the performance of AS [77, 215, 301]. ACS differs from AS in four aspects: (1) a
different transition rule is used, (2) a different pheromone update rule is defined, (3)
local pheromone updates are introduced, and (4) candidate lists are used to favor
specific nodes. Each of these modifications is discussed next.

The ACS transition rule, also referred to as a pseudo-random-proportional action rule
[301], was developed to explicitly balance the exploration and exploitation abilities of
the algorithm. Ant k, currently located at node i, selects the next node j to move to
using the rule,

j =
{

arg maxu∈Nk
i (t){τiu(t)ηβ

iu(t)} if r ≤ r0

J if r > r0
(17.17)

where r ∼ U(0, 1), and r0 ∈ [0, 1] is a user-specified parameter; J ∈ N k
i (t) is a node

randomly selected according to probability

pk
iJ (t) =

τiJ(t)ηβ
iJ(t)∑

u∈Nk
i

τiu(t)ηβ
iu(t)

(17.18)

N k
i (t) is a set of valid nodes to visit.

The transition rule in equation (17.17) creates a bias towards nodes connected by short
links and with a large amount of pheromone. The parameter r0 is used to balance
exploration and exploitation: if r ≤ r0, the algorithm exploits by favoring the best
edge; if r > r0, the algorithm explores. Therefore, the smaller the value of r0, the less
best links are exploited, while exploration is emphasized more. It is important to note
that the transition rule is the same as that of AS when r > r0. Also note that the
ACS transition rule uses α = 1, and is therefore omitted from equation (17.18).

Unlike AS, only the globally best ant (e.g. the ant that constructed the shortest
path, x+(t)) is allowed to reinforce pheromone concentrations on the links of the
corresponding best path. Pheromone is updated using the global update rule,

τij(t + 1) = (1− ρ1)τij(t) + ρ1∆τij(t) (17.19)
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where

∆τij(t) =
{ 1

f(x+(t)) if (i, j) ∈ x+(t)
0 otherwise

(17.20)

with f(x+)(t) = |x+(t)|, in the case of finding shortest paths.

The ACS global update rule causes the search to be more directed, by encouraging
ants to search in the vicinity of the best solution found thus far. This strategy favors
exploitation, and is applied after all ants have constructed a solution.

Gambardella and Dorigo [215, 301] implemented two methods of selecting the path,
x+(t), namely

• iteration-best, where x+(t) represents the best path found during the current
iteration, t, denoted as x̃(t), and

• global-best, where x+(t) represents the best path found from the first iteration
of the algorithm, denoted as x̂(t).

For the global-best strategy, the search process exploits more by using more global
information.

Pheromone evaporation is also treated slightly differently to that of AS. Referring
to equation (17.19), for small values of ρ1, the existing pheromone concentrations on
links evaporate slowly, while the influence of the best route is dampened. On the
other hand, for large values of ρ1, previous pheromone deposits evaporate rapidly, but
the influence of the best path is emphasized. The effect of large ρ1 is that previous
experience is neglected in favor of more recent experiences. Exploration is emphasized.
While the value of ρ1 is usually fixed, a strategy where ρ1 is adjusted dynamically from
large to small values will favor exploration in the initial iterations of the search, while
focusing on exploiting the best found paths in the later iterations.

In addition to the global updating rule, ACS uses the local updating rule,

τij(t) = (1− ρ2)τij(t) + ρ2τ0 (17.21)

with ρ2 also in (0, 1), and τ0 is a small positive constant. Experimental results on
different TSPs showed that τ0 = (nGL)−1 provided good results [215]; nG is the
number of nodes in graph G, and L is the length of a tour produced by a nearest-
neighbor heuristic for TSPs [737] (L can be any rough approximation to the optimal
tour length [215]).

ACS also redefines the meaning of the neighborhood set from which next nodes are
selected. The set of nodes, N k

i (t), is organized to contain a list of candidate nodes.
These candidate nodes are preferred nodes, to be visited first. Let nl < |N k

i (t)| denote
the number of nodes in the candidate list. The nl nodes closest (in distance or cost)
to node i are included in the candidate list and ordered by increasing distance. When
a next node is selected, the best node in the candidate list is selected. If the candidate
list is empty, then node j is selected from the remainder of N k

i (t). Selection of a
non-candidate node can be based on equation (17.18), or alternatively the closest
non-candidate j ∈ N k

i (t) can be selected.
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Algorithm 17.4 Ant Colony System Algorithm

t = 0; Initialize parameters β, ρ1, ρ2, r0, τ0, nk;
Place all ants, k = 1, . . . , nk;
for each link (i, j) do

τij(t) ∼ U(0, τ0);
end
x̂(t) = ∅;
f(x̂(t)) = 0;
repeat

for each ant k = 1, . . . , nk do
xk(t) = ∅;
repeat

if ∃j ∈ candidate list then
Choose j ∈ N k

i (t) from candidate list using equations (17.17) and
(17.18);

end
else

Choose non-candidate j ∈ N k
i (t);

end
xk(t) = xk(t) ∪ {(i, j)};
Apply local update using equation (17.21);

until full path has been constructed;
Compute f(xk(t));

end
x = xk(t) : f(xk(t)) = mink′=1,...,nk

{f(xk
′
(t))};

Compute f(x);
if f(x) < f(x̂(t)) then

x̂(t) = x;
f(x̂(t)) = f(x);

end
for each link (i, j) ∈ x̂(t) do

Apply global update using equation (17.19);
end
for each link (i, j) do

τij(t + 1) = τij(t);
end
x̂(t + 1) = x̂(t);
f(x̂(t + 1)) = f(x̂(t));
t = t + 1;

until stopping condition is true;
Return x̂(t) as the solution;
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ACS is summarized in Algorithm 17.4.

In order to apply ACS to large, complex problems, Dorigo and Gambardella added a
local search procedure to iteratively improve solutions [215].

17.1.6 Max-Min Ant System

AS was shown to prematurely stagnate for complex problems. Here, stagnation means
that all ants follow exactly the same path, and premature stagnation occurs when ants
explore little and too rapidly exploit the highest pheromone concentrations. Stützle
and Hoos have introduced the max-min ant system (MMAS) to address the premature
stagnation problem of AS [815, 816]. The main difference between MMAS and AS is
that pheromone intensities are restricted within given intervals. Additional differences
are that only the best ant may reinforce pheromones, initial pheromones are set to the
max allowed value, and a pheromone smoothing mechanism is used.

The pheromone global update is similar to that of ACS, in equation (17.19), where
∆τij(t) is calculated on the basis either of the global-best path or of the iteration-
best path. The first version of MMAS focused on the iteration-best path, where x̃(t)
represents the best path found during the current iteration [815]. Later versions also
included the global-best path, x̂(t), using different strategies [816]:

• Using only the global-best path to determine ∆τij(t), in which case x̂(t) is the
best overall path found from the first iteration. Using only the global best path
may concentrate the search too quickly around the global best solution, thus
limiting exploration. This problem is reduced if the iteration-best path is used,
since best paths may differ considerably from one iteration to the next, thereby
allowing more exploration.

• Use mixed strategies, where both the iteration-best and the global-best paths
are used to update pheromone concentrations. As default, the iteration-best
path is used to favor exploration with the global-best path used periodically.
Alternatively, the frequency at which the global-best path is used to update
pheromones is increased over time.

• At the point of stagnation, all pheromone concentrations, τij , are reinitialized
to the maximum allowed value, after which only the iteration-best path is used
for a limited number of iterations.

The λ-branching factor, with λ = 0.05, is used to determine the point of stagna-
tion. Gambardella and Dorigo defined the mean λ-branching factor as an indica-
tion of the dimension of the search space [300]. Over time the mean λ-branching
factor decreases to a small value at point of stagnation. The λi-branching fac-
tor is defined as the number of links leaving node i with τij-values greater than
λδi + τi,min; δi = τi,max − τi,min, where

τi,min = min
jεNi

{τij} (17.22)

τi,max = max
jεNi

{τij} (17.23)
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and Ni is the set of all nodes connected to node i. If∑
i∈V λi

nG
< ε (17.24)

where ε is a small positive value, it is assumed that the search process stagnated.

Throughout execution of the MMAS algorithm, all τij are restricted within predefined
ranges. For the first MMAS version, τij ∈ [τmin, τmax] for all links (i, j), where both
τmin and τmax were problem-dependent static parameters [815]. If after application
of the global update rule τij(t + 1) > τmax, τij(t + 1) is explicitly set equal to τmax.
On the other hand, if τij(t + 1) < τmin, τij(t + 1) is set to τmin. Using an upper
bound for pheromone concentrations helps to avoid stagnation behavior: pheromone
concentrations are prevented from growing excessively, which limits the probability of
rapidly converging to the best path. Having a lower limit, τmin > 0, has the advantage
that all links have a nonzero probability of being included in a solution. In fact, if
τmin > 0 and ηij < ∞, the probability of choosing a specific link as part of a solution
is never zero. The positive lower bound therefore facilitates better exploration.

Stützle and Hoos [816] formally derived that the maximum pheromone concentration
is asymptotically bounded. That is, for any τij it holds that

lim
t→∞ τij(t) = τij ≤ 1

1− ρ

1
f∗ (17.25)

where f∗ is the cost (e.g. length) of the theoretical optimum solution.

This provides a theoretical value for the upper bound, τmax. Since the optimal solution
is generally not known, and therefore f∗ is an unknown value, MMAS initializes to an
estimate of f∗, by setting f∗ = f(x̂(t)), where f(x̂(t)) is the cost of the global-best
path. This means that the maximum value for pheromone concentrations changes as
soon as a new global-best position is found. The pheromone upper bound,

τmax(t) =
(

1
1− ρ

)
1

f(x̂(t))
(17.26)

is therefore time-dependent.

Stützle and Hoos [816] derive formally that sensible values for the lower bound on
pheromone concentrations can be calculated using

τmin(t) =
τmax(t)(1−√

p̂nG)
(nG/2− 1)

√
p̂nG

(17.27)

where p̂ is the probability at which the best solution is constructed. Note that p̂ < 1
to ensure that τmin(t) > 0. Also note that if p̂ is too small, then τmin(t) > τmax(t). In
such cases, MMAS sets τmin(t) = τmax(t), which has the effect that only the heuristic
information, ηij , is used. The value of p̂ is a user-defined parameter that needs to be
optimized for each new application.

During the initialization step of the MMAS algorithm (refer to Algorithm 17.5), all
pheromone concentrations are initialized to the maximum allowed value, τmax(0) =
τmax.
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Algorithm 17.5 MMAS Algorithm with Periodic Use of the Global-Best Path

Initialize parameters α, β, ρ, nk, p̂, τmin, τmax, fλ;
t = 0, τmax(0) = τmax, τmin(0) = τmin;
Place all ants, k = 1, . . . , nk;
τij(t) = τmax(0), for all links (i, j);
x+(t) = ∅, f(x+(t)) = 0;
repeat

if stagnation point then
for each link (i, j) do

Calculate ∆τij(t) using equation (17.28);
τij(t + 1) = τij(t) + ∆τij(t);

end
end
for each ant k = 1, . . . , nk do

xk(t) = ∅;
repeat

Select next node j with probability defined in equation (17.6);
xk(t) = xk(t) ∪ {(i, j)};

until full path has been constructed;
Compute f(xk(t));

end
(t mod fλ = 0) ? (Iteration Best = false) : (Iteration Best = true);
if Iteration Best = true then

Find iteration-best: x+(t) = xk(t) : f(xk(t)) = mink′=1,...,nk
{f(xk

′
(t))};

Compute f(x+(t));
end
else

Find global-best: x = xk(t) : f(xk(t)) = mink′=1,...,nk
{f(xk

′
(t))};

Compute f(x);
if f(x) < f(x+(t)) then

x+(t) = x;
f(x+(t)) = f(x);

end
end
for each link (i, j) ∈ x+(t) do

Apply global update using equation (17.19);
end
Constrict τij(t) to be in [τmin(t), τmax(t)] for all (i, j);
x+(t + 1) = x+(t);
f(x+(t + 1)) = f(x+(t));
t = t + 1;
Update τmax(t) using equation (17.26);
Update τmin(t) using equation (17.27);

until stopping condition is true;
Return x+(t) as the solution;
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The max-min approach was also applied to ACS, referred to as MMACS. In this
case, the larger the value of r0 (refer to equation (17.17)), the tighter the pheromone
concentration limits have to be chosen. A lower τmax/τmin ratio has to be used
for larger r0 to prevent ants from too often preferring links with high pheromone
concentrations.

Even though pheromone concentrations are clamped within a defined range, stagna-
tion still occurred, although less than for AS. To address this problem, a pheromone
smoothing strategy is used to reduce the differences between high and low pheromone
concentrations. At the point of stagnation, all pheromone concentrations are increased
proportional to the difference with the maximum bound, i.e.

∆τij(t) ∝ (τmax(t)− τij(t)) (17.28)

Using this smoothing strategy, stronger pheromone concentrations are proportionally
less reinforced than weaker concentrations. This increases the chances of links with
low pheromone intensity to be selected as part of a path, and thereby increases the
exploration abilities of the algorithm.

Algorithm 17.5 summarizes MMAS, where the iteration-best path is used as default
to update pheromones and the global-best is used periodically at frequency fλ.

17.1.7 Ant-Q

Gambardella and Dorigo [213, 300] developed a variant of ACS in which the local
update rule was inspired by Q-learning [891] (also refer to Chapter 6). In Ant-Q, the
pheromone notion is dropped to be replaced by Ant-Q value (or AQ-value). The goal
of Ant-Q is to learn AQ-values such that the discovery of good solutions is favored in
probability.

Let µij(t) denote the AQ-value on the link between nodes i and j at time step t. Then
the transition rule (action choice rule) is given by (similarly to equation (17.17))

j =
{

arg maxu∈Nk
i (t){µα

iu(t)ηβ
iu(t)} if r ≤ r0

J otherwise
(17.29)

The parameters α and β weigh the importance of the learned AQ-values, µij , and
the heuristic information, ηij . The AQ-values express how useful it is to move to
node j from the current node i. In equation (17.29), J is a random variable selected
according to a probability distribution given by a function of the AQ-values, µij , and
the heuristic values ηij .

Three different rules have been proposed to select a value for the random variable, J :

• For the pseudo-random action choice rule, J is a node randomly selected from
the set N k

i (t) according to the uniform distribution.
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• For the pseudo-random-proportional action choice rule, J ∈ V is selected accord-
ing to the distribution,

pk
ij(t) =




µα
ij(t)η

β
ij(t)∑

u∈Nk
i

(t) µα
iu(t)ηβ

iu(t)
if j ∈ N k

i (t)

0 otherwise
(17.30)

• For the random-proportional action choice rule, r0 = 0 in equation (17.29). The
next node is therefore always selected randomly based on the distribution given
by equation (17.30).

Gambardella and Dorigo show that the pseudo-random-proportional action choice rule
is best for Ant-Q (considering the traveling salesman problem (TSP)).

AQ-values are learned using the updating rule (very similar to that of Q-learning),

µij(t + 1) = (1− ρ)µij(t) + ρ

(
∆µij(t) + γ max

u∈Nk
j (t)

{µju(t)}
)

(17.31)

where ρ is referred to as the discount factor (by analogy with pheromone evaporation)
and γ is the learning step size. Note that if γ = 0, then equation (17.31) reduces to
the global update equation of ACS (refer to equation (17.19)).

In Ant-Q, update equation (17.31) is applied for each ant k after each new node j has
been selected, but with ∆µij(t) = 0. The effect is that the AQ-value associated with
link (i, j) is reduced by a factor of (1− ρ) each time that the link is selected to form
part of a candidate solution. At the same time the AQ-value is reinforced with an
amount proportional to the AQ-value of the best link, (j, u), leaving node j such that
the future desirability of link (j, u) is increased. The update according to equation
(17.31) can be seen as the local update rule, similar to equation (17.21) of ACS.

In addition to the above local update, a delayed reinforcement is used, similar to
the global update rule of ACS (refer to equation (17.19)). After all paths have been
constructed, one for each ant, AQ-values are updated using equation (17.31), where
∆µij(t) is calculated using equation (17.20) with x+(t) either the global-best or the
iteration-best path. Gambardella and Dorigo found from their experimental results
(with respect to the TSP), that the iteration-best approach is less sensitive to changes
in parameter γ, and is faster in locating solutions of the same quality as the global-best
approach.

17.1.8 Fast Ant System

Taillard and Gambardella [831, 832] developed the fast ant system (FANT), specifi-
cally to solve the quadratic assignment problem (QAP). The main differences between
FANT and the other ACO algorithms discussed so far are that (1) FANT uses only
one ant, and (2) a different pheromone update rule is applied which does not make
use of any evaporation.
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The use of only one ant significantly reduces the computational complexity. FANT
uses as transition rule equation (17.6), but with β = 0. No heuristic information is
used. The pheromone update rule is defined as

τij(t + 1) = τij(t) + w1∆τ̃ij(t) + w2∆τ̂+
ij (t) (17.32)

where w1 and w2 are parameters to determine the relative reinforcement provided
by the current solution at iteration t and the best solution found so far. The added
pheromones are calculated as

∆τ̃ij(t) =
{

1 if (i, j) ∈ x̃(t)
0 otherwise (17.33)

and

∆τ̂ij(t) =
{

1 if (i, j) ∈ x̂(t)
0 otherwise (17.34)

where x̃(t) and x̂(t) are respectively the best paths found in iteration t and the global-
best path found from the start of the search.

Pheromones are initialized to τij(0) = 1. As soon as a new x̂(t) is obtained, all
pheromones are reinitialized to τij(0) = 1. This step exploits the search area around
the global best path, x̂(t). If, at time step t, the same solution is found as the
current global best solution, the value of w1 is increased by one. This step facilitates
exploration by decreasing the contribution, ∆τ̂ij(t), associated with the global best
path.

17.1.9 Antabu

Roux et al. [743, 744] and Kaji [433] adapted AS to include a local search using tabu
search (refer to Section A.5.2) to refine solutions constructed by each iteration of AS.
In addition to using tabu search as local search procedure, the global update rule is
changed such that each ant’s pheromone deposit on each link of its constructed path
is proportional to the quality of the path. Each ant, k, updates pheromones using

τij(t + 1) = (1− ρ)τij(t) +
(

ρ

f(xk(t))

)(
f(x−(t))− f(xk(t))

f(x̂(t))

)
(17.35)

where f(x−(t)) is the cost of the worst path found so far, f(x̂(t)) is the cost of the
best path found so far, and f(xk(t)) is the cost of the path found by ant k. Equation
(17.35) is applied for each ant k for each link (i, j) ∈ xk(t).

17.1.10 AS-rank

Bullnheimer et al. [94] proposed a modification of AS to: (1) allow only the best ant
to update pheromone concentrations on the links of the global-best path, (2) to use
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elitist ants, and (3) to let ants update pheromone on the basis of a ranking of the ants.
For AS-rank, the global update rule changes to

τij(t + 1) = (1− ρ)τij(t) + ne∆τ̂ij(t) + ∆τ r
ij(t) (17.36)

where
∆τ̂ij(t) =

Q

f(x̂(t))
(17.37)

with x̂(t) the best path constructed so far. If ne elite ants are used, and the nk ants
are sorted such that f(x1(t)) ≤ f(x2(t)) ≤ . . . ≤ f(xnk(t)), then

∆τ r
ij(t) =

ne∑
σ=1

∆τσ
ij(t) (17.38)

where

∆τσ
ij(t) =

{
(ne−σ)Q
f(xσ(t)) if (i, j) ∈ xσ(t)
0 otherwise

(17.39)

with σ indicating the rank of the corresponding ant. This elitist strategy differs from
that implemented in AS (refer to Section 17.1.4) in that the contribution of an elite
ant to pheromone concentrations is directly proportional to its performance ranking:
the better the ranking (i.e. small σ) the more the contribution.

17.1.11 ANTS

Approximated non-deterministic tree search (ANTS) was developed by Maniezzo and
Carbonaro [555, 556] as an extension of AS. ANTS differs from AS in: (1) the transition
probability calculation, (2) the global update rule, and (3) the approach to avoid
stagnation.

ANTS uses the transition probability as defined in equation (17.8). The set N k
i con-

tains all feasible moves from the current node i. Pheromone intensities are updated
after all ants have completed construction of their paths. Pheromones are updated
using equations (17.5) and (17.10), but with

∆τk
ij(t) = τ0

(
1− f(xk(t))− ε

f(t)− ε

)
(17.40)

where f(xk(t)) represents the cost of the corresponding path, xk(t), of ant k at iteration
t, and f(t) is a moving average on the cost of the last n̂t global-best solutions found
by the algorithm. If f(x̂(t)) denotes the cost of the global-best solution at iteration t,
then

f(t) =

∑t
t′=t−n̂t

f(x̂(t
′
))

n̂t
(17.41)

If t < n̂t, the moving average is calculated over the available t best solutions. In
equation (17.40), ε is a lower bound to the cost of the optimal solution.
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Algorithm 17.6 ANTS Algorithm

t = 0;
Initialize parameters α, β, ρ, Q, nk, τ0, n̂t, ε;
Place all ants, k = 1, . . . , nk;
for each link (i, j) do

τij(t) = τ0;
end
x̂(t) = ∅;
f(x̂(t) = 0;
repeat

for each ant k = 1, . . . , nk do
xk(t) = ∅;
repeat

Select next node j with probability defined in equation (17.8);
xk(t) = xk(t) ∪ {(i, j)};

until full path has been constructed;
Compute f(xk(t));

end
x = xk(t) : f(xk(t)) = mink′=1,...,nk

{f(xk
′
(t))};

Compute f(x);
if f(x) < f(x̂(t)) then

x̂(t) = x;
f(x̂(t)) = f(x);

end
n̂t = min{t, n̂t};
Calculate moving average, f(t), using equation (17.41);
for each link (i, j) do

Apply global update using equations (17.5), (17.10) and (17.40);
end
for each link (i, j) do

τij(t + 1) = τij(t);
end
x̂(t + 1) = x̂(t);
f(x̂(t + 1)) = f(x̂(t));
t = t + 1;

until stopping condition is true;
Return x̂(t) as the solution;
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Table 17.1 General ACO Algorithm Parameters
Parameter Meaning Comment
nk Number of ants
nt Maximum number of iterations
τ0 Initial pheromone amount not for MMAS
ρ Pheromone persistence ρ1, ρ2 for ACS
α Pheromone intensification α = 1 for ACS
β Heuristic intensification not for SACO, ANTS

The calculation of the amount of pheromone, ∆τk
ij , deposited by each ant effectively

avoids premature stagnation: pheromone concentrations are reduced if the cost of an
ant’s solution is lower than the moving average; otherwise, pheromone concentrations
are increased. The update mechanism makes it possible to discriminate small achieve-
ments in the final iterations of the search algorithm, and avoids exploitation in the
early iterations.

ANTS is summarized in Algorithm 17.6.

17.1.12 Parameter Settings

Each of the algorithms discussed thus far uses a number of control parameters that
influence the performance of the algorithms (refer to Table 17.1). Here performance
refers to the quality of solutions found (if any is found) and the time to reach these
solutions.

The following parameters are common to most ACO algorithms:

• nk, the number of ants: From the first studies of ACO algorithms, the influence
of the number of ants on performance has been studied [215, 216]. An obvious
influence of the number of ants relates to computational complexity. The more
ants used, the more paths have to be constructed, and the more pheromone
deposits calculated. As an example, the computational complexity of AS is
O(ncn

2
Gnk), where nc = ntnk is the total number of cycles, nt is the total

number of iterations, and nG is the number of nodes in the solutions (assuming
that all solutions have the same number of nodes).

The success of ACO algorithms is in the cooperative behavior of multiple ants.
Through the deposited pheromones, ants communicate their experience and
knowledge about the search space to other ants. The fewer ants used, the less
the exploration ability of the algorithm, and consequently the less information
about the search space is available to all ants. Small values of nk may then cause
sub-optimal solutions to be found, or early stagnation. Too many ants are not
necessarily beneficial (as has been shown, for example, with SACO). With large
values of nk, it may take significantly longer for pheromone intensities on good
links to increase to higher levels than they do on bad links.
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For solving the TSP, Dorigo et al. [216] found that nk ≈ nG worked well. For
ACS, Dorigo and Gambardella [215] formally derived that the optimal number
of ants can be calculated using

nk =
log(φ1 − 1)− log(φ2 − 2)

r0 log(1− ρ2)
(17.42)

where φ1τ0 is the average pheromone concentration on the edges of the last best
path before the global update, and φ2τ0 after the global update. Unfortunately,
the optimal values of φ1 and φ2 are not known. Again for the TSP, empirical
analyses showed that ACS worked best when (φ1−1)/(φ2−1) ≈ 0.4, which gives
nk = 10 [215].

It is important to note that the above is for a specific algorithm, used to solve a
specific class of problems. The value of nk should rather be optimized for each
different algorithm and problem.

• nt, maximum number of iterations: It is easy to see that nt plays an important
role in ensuring quality solutions. If nt is too small, ants may not have enough
time to explore and to settle on a single path. If nt is too large, unnecessary
computations may be done.

• τ0, initial pheromone: During the initialization step, all pheromones are either
initialized to a constant value, τ0 (for MMAS, τ0 = τmax), or to random values in
the range [0, τ0]. In the case of random values, τ0 is selected to be a small positive
value. If a large value is selected for τ0, and random values are selected from
the uniform distribution, then pheromone concentrations may differ significantly.
This may cause a bias towards the links with large initial concentrations, with
links that have small pheromone values being neglected as components of the
final solution.

There is no easy answer to the very important question of how to select the best values
for the control parameters. While many empirical studies have investigated these
parameters, suggested values and heuristics to calculate values should be considered
with care. These are given for specific algorithms and specific problems, and should
not be accepted in general. To maximize the efficiency of any of the algorithms, the
values of the relevant control parameters have to be optimized for the specific problem
being solved. This can be done through elaborate empirical analyses. Alternatively,
an additional algorithm can be used to “learn” the best values of the parameters for
the given algorithm and problem [4, 80].

17.2 Cemetery Organization and Brood Care

Many ant species, for example Lasius niger and Pheidole pallidula, exhibit the behavior
of clustering corpses to form cemeteries [127] (cited in [77]). Each ant seems to behave
individually, moving randomly in space while picking up or depositing (dropping)
corpses. The decision to pick up or drop a corpse is based on local information of
the ant’s current position. This very simple behavior of individual ants results in the



17.2 Cemetery Organization and Brood Care 385

emergence of a more complex behavior of cluster formation. It was further observed
that cemeteries are sited around spatial heterogeneities [77, 563].

A similar behavior is observed in many ant species, such as Leptothorax unifasciatus,
in the way that the colony cares for the brood [77, 912, 913]. Larvae are sorted in such
a way that different brood stages are arranged in concentric rings. Smaller larvae are
located in the center, with larger larvae on the periphery. The concentric clusters are
organized in such a way that small larvae receive little individual space, while large
larvae receive more space.

While these behaviors are still not fully understood, a number of studies have resulted
in mathematical models to simulate the clustering and sorting behaviors. Based on
these simulations, algorithms have been implemented to cluster data, to draw graphs,
and to develop robot swarms with the ability to sort objects. This section discusses
these mathematical models and algorithms. Section 17.2.1 discusses the basic ant
colony clustering (ACC) model, and a generalization of this model is given in Sec-
tion 17.2.2. A minimal ACC approach is summarized in Section 17.2.3.

17.2.1 Basic Ant Colony Clustering Model

The first algorithmic implementations that simulate cemetery formation were inspired
by the studies of Chrétien of the ants Lasius niger [127]. Based on physical experi-
ments, Chrétien derived the probability of an ant dropping a corpse next to an n-cluster
as being proportional to 1− (1 − p)n for n ≤ 30, where p is a fitting parameter [78].
Ants cannot, however, precisely determine the size of clusters. Instead, the size of
clusters is determined by the effort to transport the corpse (the corpse may catch on
other items, making the walk more difficult). It is likely that the corpse is deposited
when the effort becomes too great.

On the basis of of Chrétien’s observations, Deneubourg et al. [200] developed a model
to describe the simple behavior of ants. The main idea is that items in less dense areas
should be picked up and dropped at a different location where more of the same type
exist. The resulting model is referred to as the basic model.

Assuming only one type of item, all items are randomly distributed on a two-
dimensional grid, or lattice. Each grid-point contains only one item. Ants are placed
randomly on the lattice, and move in random directions one cell at a time. After each
move, an unladen ant decides to pick up an item (if the corresponding cell has an
item) based on the probability

Pp =
(

γ1

γ1 + λ

)2

(17.43)

where λ is the fraction of items the ant perceives in its neighborhood, and γ1 > 0.
When there are only a few items in the ant’s neighborhood, that is λ << γ1, then Pp

approaches 1; hence, objects have a high probability of being picked up. On the other
hand, if the ant observes many objects, that is λ >> γ1, Pp approaches 0, and the
probability that the ant will pick up an object is small.
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Each loaded ant has a probability of dropping the carried object, given by

Pd =
(

λ

γ2 + λ

)2

(17.44)

provided that the corresponding cell is empty; γ2 > 0. If a large number of items is
observed in the neighborhood, i.e. λ >> γ2, then Pd approaches 1, and the probability
of dropping the item is high. If λ << γ2, then Pd approaches 0.

The fraction of items, λ, is calculated by making use of a short-term memory for each
ant. Each ant keeps track of the last T time steps, and λ is simply the number of
items observed during these T time steps, divided by the largest number of items that
can be observed during the last T time steps. If only one item can be observed during
each time step, λ = nλ/T , where nλ is the number of encountered items.

The basic model is easily expanded to more than one type of item. Let A and B
denote two types of items. Then equations (17.43) and (17.44) are used as is, but with
λ replaced by λA or λB depending on the type of item encountered.

17.2.2 Generalized Ant Colony Clustering Model

Lumer and Faieta [540] generalized the basic model of Deneubourg et al. (refer to
Section 17.2.1) to cluster data vectors with real-valued elements for exploratory data
analysis applications. This section presents the original Lumer–Faieta algorithm and
discusses extensions and modifications to improve the quality of solutions and to speed
up the clustering process.

Lumer--Faieta Algorithm

The first problem to solve, in applying the basic model to real-valued vectors, is to
define a distance, or dissimilarity, d(ya,yb), between data vectors ya and yb, using
any applicable norm. For real-valued vectors, the Euclidean distance between the two
vectors has been used most frequently to quantify dissimilarity. The next problem
is to determine how these dissimilarity measures should be used to group together
similar data vectors, in such a way that

• intra-cluster distances are minimized; that is, the distances between data vectors
within a cluster should be small to form a compact, condensed cluster.

• inter-cluster distances are maximized; that is, the different clusters should be
well separated.

As for the basic model, data vectors are placed randomly on a two-dimensional grid.
Ants move randomly around on the grid, while observing the surrounding area of n2

N
sites, referred to as the nN -patch. The surrounding area is simply a square neighbor-
hood, NnN×nN (i), of the nN × nN sites surrounding the current position, i, of the
ant. Assume that an ant is on site i at time t, and finds data vector ya. The “local”



17.2 Cemetery Organization and Brood Care 387

density, λ(ya), of data vector ya within the ant’s neighborhood is then given as

λ(ya) = max


0,

1
n2
N

∑
yb∈NnN ×nN (i)

(
1− d(ya,yb)

γ

)
 (17.45)

where γ > 0 defines the scale of dissimilarity between items ya and yb. The constant
γ determines when two items should, or should not be located next to each other. If
γ is too large, it results in the fusion of individual clusters, clustering items together
that do not belong together. If γ is too small, many small clusters are formed. Items
that belong together are not clustered together. It is thus clear that γ has a direct
influence on the number of clusters formed. The dissimilarity constant also has an
influence on the speed of the clustering process. The larger γ, the faster the process
is.

Using the measure of similarity, λ(ya), the picking up and dropping probabilities are
defined as [540]

Pp(ya) =
(

γ1

γ1 + λ(ya)

)2

(17.46)

Pd(ya) =
{

2λ(ya) if λ(ya) < γ2

1 if λ(ya) ≥ γ2
(17.47)

A summary of the Lumer–Faieta ant colony clustering algorithm is given in Algo-
rithm 17.7.

The following aspects of Algorithm 17.7 need clarification:

• nt is the maximum number of iterations.

• The grid size: There should be more sites than data vectors, since items are
not stacked. Each site may contain only one item. If the number of sites is
approximately the same as the number of items, there are not enough free cells
available for ants to move to. Large clusters are formed with a high classification
error. On the other hand, if there are many more sites than items, many small
clusters may be formed. Also, clustering takes long due to the large distances
that items need to be transported.

• The number of ants: There should be fewer ants than data vectors. If there
are too many ants, it may happen that most of the items are carried by ants.
Consequently, density calculation results in close to zero values of λ(ya). Drop-
ping probabilities are then small, and most ants keep carrying their load without
depositing it. Clusters may never be formed. On the other hand, if there are
too few ants, it takes longer to form clusters.

• Local density: Consider that an ant carries item ya. If the n2
N neighboring

sites have items similar to ya, λ(ya) ≈ 1. Item ya is then dropped with high
probability (assuming that the site is empty). On the other hand, if the items
are very dissimilar from ya, λ(ya) ≈ 0, and the item has a very low probability
of being dropped. In the case of an unladen ant, the pick-up probability is large.



388 17. Ant Algorithms

Algorithm 17.7 Lumer–Faieta Ant Colony Clustering Algorithm

Place each data vector ya randomly on a grid;
Place nk ants on randomly selected sites;
Initialize values of γ1, γ2, γ and nt;
for t = 1 to nt do

for each ant, k = 1, · · · , nk do
if ant k is unladen and the site is occupied by item ya then

Compute λ(ya) using equation (17.45);
Compute Pp(ya) using equation (17.46);
if U(0, 1) ≤ Pp(ya) then

Pick up item ya;
end

end
else

if ant k carries item ya and site is empty then
Compute λ(ya) using equation (17.45);
Compute Pd(ya) using equation (17.47);
if U(0, 1) ≤ Pd(ya) then

Drop item ya;
end

end
end
Move to a randomly selected neighboring site not occupied by another ant;

end
end

• Patch size, nN : A larger patch size allows an ant to use more information
to make its decision. Better estimates of local densities are obtained, which
generally improve the quality of clusters. However, a larger patch size is com-
putationally more expensive and inhibits quick formation of clusters during the
early iterations. Smaller sizes reduce computational effort, and less information
is used. This may lead to many small clusters.

Modifications to Lumer--Faieta Algorithm

The algorithm developed by Lumer and Faieta [540] showed success in a number of
applications. The algorithm does, however, have the tendency to create more clusters
than necessary. A number of modifications have been made to address this problem,
and to speed up the search:

• Different Moving Speeds: Ants are allowed to move at different speeds [540].
Fast-moving ants form coarser clusters by being less selective in their estimation
of the average similarity of a data vector to its neighbors. Slower agents are
more accurate in refining the cluster boundaries. Different moving speeds are
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easily modeled using

λ(ya) = max


0,

1
n2
N

∑
yb∈NnN ×nN (i)

(
1− d(ya,yb)

γ(1− v−1
vmax

)

)
 (17.48)

where v ∼ U(1, vmax), and vmax is the maximum moving speed.

• Short-Term Memory: Each ant may have a short-term memory, which
allows the ant to remember a limited number of previously carried items and
the position where these items have been dropped [540, 601]. If the ant picks
up another item, the position of the best matching memorized data item biases
the direction of the agent’s random walk. This approach helps to group together
similar data items.

Handl et al. [344] changed the short-term memory strategy based on the ob-
servation that items stored in the memory of one ant may have been moved by
some other ant, and is no longer located at the memorized position. For each
memorized position, ya, the ant calculates the local density, λ(ya). The ant
probabilistically moves to that memorized position with highest local density. If
the ant does not make the move, its memory is cleared and the dropping decision
is based on the standard unbiased dropping probabilities.

• Behavioral Switches: Ants are not allowed to start destroying clusters if they
have not performed an action for a number of time steps. This strategy allows
the algorithm to escape from local optima.

• Distance/Dissimilarity Measures:

For floating-point vectors, the Euclidean distance

dE(ya,yb) =

√√√√ ny∑
l=1

(yal − ybl)2 (17.49)

is the most frequently used distance measure. As an alternative, Yang and Kamel
[931] uses the cosine similarity function,

dC(ya,yb) = 1− sim(ya,yb) (17.50)

where

sim(ya,yb) =
∑ny

l=1 yalybl√∑ny

l=1 y2
al

∑ny

l=1 y2
bl

(17.51)

The cosine function, sim(ya,yb), computes the angle between the two vectors,
ya and yb. As ya and yb become more similar, sim(ya,yb) approaches 1.0, and
dC(ya,yb) becomes 0.

• Pick-up and Dropping Probabilities: Pick-up and dropping probabilities
different from equation (17.46) and (17.47) have been formulated specifically in
attempts to speed up the clustering process:
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– Yang and Kamel [931] use a continuous, bounded, monotic increasing func-
tion to calculate the pick-up probability as

Pp = 1− fs(λ(ya)) (17.52)

and the dropping probability as

Pd = fs(λ(ya)) (17.53)

where fs is the sigmoid function.
– Wu and Shi [919] defines the pick-up probability as

Pp =




1 if λ(ya) ≤ 0
1− γ1λ(ya) if 0 < λ(ya) ≤ 1/γ1

0 if λ(ya) > 1/γ1

(17.54)

and the dropping probability as

Pd =




1 if λ(ya) ≥ 1/γ2

γ2λ(ya) if 0 < λ(ya) < 1/γ2

0 if λ(ya) ≤ 0
(17.55)

with γ1, γ2 > 0.
– Handl et al. [344] used the probabilities

Pp =
{

1 if λ(ya) ≤ 1
1

λ(ya)2 otherwise (17.56)

Pd =
{

1 if λ(ya) > 1
λ(ya)4 otherwise (17.57)

The above probabilities use a different local density calculation, where an addi-
tional constraint is added:

λ(ya) =

{
max{0, 1

n2
N

∑
yb∈NnN ×nN (i)(1− d(yayb)

γ )} if ∀yb, (1− d(ya,yb)
γ ) > 0

0 otherwise
(17.58)

• Heterogeneous Ants: The Lumer–Faieta clustering algorithm uses homo-
geneous ants. That is, all ants have the same behavior as governed by static
control parameters, nN and γ. Using static control parameters introduces the
problem of finding optimal values for these parameters. Since the best values for
these parameters depend on the data set being clustered, the parameters should
be optimized for each new data set. Heterogeneous ants address this problem by
having different values for the control parameters for each ant. Monmarché et al.
[601] randomly selected a value for each control parameter for each ant within
defined ranges. New values can be selected for each iteration of the algorithm
or can remain static.

Handl et al. [344] used heterogeneous ants with dynamically changing values for
nN and γ. Ants start with small values of nN , which gradually increase over
time. This approach saves on computational effort during the first iterations
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and prevents difficulties with initial cluster formation. Over time nN increases to
prevent a large number of small clusters form forming. The similarity coefficient,
γ, is dynamically adjusted for each ant on the basis of the ant’s activity. Activity
is reflected by the frequency of successful pick-ups and drops of items. Initially,
γk(0) ∼ U(0, 1) for each ant k. Then, after each iteration,

γk(t + 1) =


 γk(t) + 0.01 if nk

f (t)

nf
> 0.99

γk(t)− 0.01 if nk
f (t)

nf
≤ 0.99

(17.59)

where nk
f (t) is the number of failed dropping actions of ant k at time step t and

nf > 0.

17.2.3 Minimal Model for Ant Clustering

As mentioned in Section 17.2.1, real ants cluster corpses around heterogeneities. The
basic model proposed by Deneubourg et al. [199] (refer to Section 17.2.1) does not
exhibit the same behavior. Martin et al. [563] proposed a minimal model to simulate
cemetery formation where clusters are formed around heterogeneities. In this minimal
model, no pick-up or dropping probabilities are used. Also, ants do not have memories.
The dynamics of the minimal model consist of alternating two rules:

• The pick-up and dropping rule: Whenever an unladen ant observes a corpse
(data item) in one or more of its neighboring sites, a corpse is picked up with
probability one. If more than one corpse is found, one corpse is randomly se-
lected. After moving at least one step away, the corpse is dropped but only if the
ant is surrounded by at least one other corpse. The carried corpse is dropped in
a randomly selected empty site.

Ants do not walk over corpses, and can therefore potentially get trapped.

• Random walk rule: Ants move one site at a time, but always in the same
direction for a pre-assigned random number of steps. When all these steps have
been made, a new random direction is selected, as well as the number of steps.
If a corpse is encountered on the ant’s path, and that corpse is not picked up,
then a new direction is randomly selected.

Martin et al. [563] showed that this very simple model provides a more accurate
simulation of corpse clustering by real ants.

17.3 Division of Labor

The ecological success of social insects has been attributed to work efficiency achieved
by division of labor among the workers of a colony, whereby each worker specializes
in a subset of the required tasks [625]. Division of labor occurs in biological systems
when all the individuals of that system (colony) are co-adapted through divergent
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specialization, in such a way that there is a fitness gain as a consequence of such
specialization [774].

Division of labor has been observed in a number of eusocial insects [774, 850], including
ants [328, 348, 558, 693, 882], wasps [298, 624], and the honey bee [393, 625, 733]. Here
eusociality refers to the presence of [214]:

• cooperation in caring for the young,

• reproductive division of labor, with more or less sterile individuals working on
behalf of those individuals involved with reproduction, and

• overlap of generations.

Within these insect colonies, a number of tasks are done, including reproduction,
caring for the young, foraging, cemetery organization, waste disposal, and defense.
Task allocation and coordination occurs mostly without any central control, especially
for large colonies. Instead, individuals respond to simple local cues, for example
the pattern of interactions with other individuals [328], or chemical signals. Also
very interesting, is that task allocation is dynamic, based on external and internal
factors. Even though certain groups of individuals may specialize in certain tasks,
task switching occurs when environmental conditions demand such switches. This
section provides an overview of the division of labor in insect colonies. Section 17.3
gives a summary of different types of division of labor, and gives an overview of a
few mechanisms that facilitate task allocation and coordination. A simple model of
division of labor based on response thresholds is discussed in Section 17.3.2. This
model is generalized in Section 17.3.3 to dynamic task allocation and specialization.

17.3.1 Division of Labor in Insect Colonies

Social insects are characterized by one fundamental type of division of labor i.e. re-
productive division of labor [216, 882]. Reproduction is carried out by a very small
fraction of individuals, usually by one queen. In addition to this primary division of
labor into reproductive and worker castes, a further division of labor exists among the
workers. Worker division of labor can occur in the following forms [77]:

• Temporal polyethism, also referred to as the age subcaste [77, 216, 393, 625].
With temporal polyethism, individuals of the same age tend to perform the
same tasks, and form an age caste. Evidence suggests that social interaction is a
mechanism by which workers assess their relative ages [625]. As an example, in
honey bee colonies, younger bees tend to the hive while older bees forage [393].
Temporal polyethism is more prominent in honey bees and eusocial wasps [625].

• Worker polymorphism, where workers have different morphologies [77, 558,
882]. Workers of the same morphological structure belong to the same morpho-
logical caste, and tend to perform the same tasks. For example, minor ants care
for the brood, while major ants forage [77]. As another example, the termite
species Termes natalensis has soldier ants that differ significantly in morpho-
logical structure from the worker termites [558]. Morphological castes are more
prominent in ant and termite species [625].
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• Individual variability: Even for individuals in an age or morphological caste,
differences may occur among individuals in the frequency and sequence of task
performance. Groups of individuals in the same caste that perform the same set
of tasks in a given period are referred to as behavioral ants.

A very important aspect of division of labor is its plasticity. Ratios of workers that
perform different tasks that maintain the colony’s viability and reproductive success
may vary over time. That is, workers may switch tasks. It can even happen that
major ants switch over to perform tasks of minor ants. Variations in these ratios are
caused by internal perturbations or external environmental conditions, e.g. climatic
conditions, food availability, and predation. Eugene N. Marais reports in [558] one of
the earliest observations of task switching. Very important to the survival of certain
termite species is the maintenance of underground fungi gardens. During a drought,
termites are forced to transport water over very large distances to feed the gardens.
During such times, all worker termites, including the soldiers have been observed to
perform the task of water transportation. Not even in the case of intentional harm
to the nest structure do the ants deviate from the water transportation task. In
less disastrous conditions, soldiers will immediately appear on the periphery of any
“wounds” in the nest structure, while worker ants repair the structure.

Without a central coordinator, the question is: how are tasks allocated and coor-
dinated, and how is it determined which individuals should switch tasks? While it
is widely accepted that environmental conditions, or local cues, play this role, this
behavior is still not well understood. Observations of specific species have produced
some answers, for example:

• In honey bees, juvenile hormone is involved in the task coordination [393]. It
was found that young and older bees have different levels of juvenile hormone:
juvenile hormone blood titers typically increases with age. It is low in young
bees that work in the hive, and high for foragers. Huang and Robinson observed
drops in juvenile hormone when foragers switch to hive-related tasks [393].

• Gordon and Mehdiabadi [328] found for the red harvester ant, Pogonomyrmex
barbatus, that task switches are based on recent history of brief antennal con-
tacts between ants. They found that the time an ant spent performing midden
work was positively correlated with the number of midden workers that the ant
encountered while being away from the midden. It is also the case that ants busy
with a different task are more likely to begin midden work when their encounters
with midden workers exceed a threshold.

• Termite species maintain waste heaps, containing waste transported from fungi
gardens [348]. Here division of labor is enforced by aggressive behavior directed
towards workers contaminated with garbage. This behavior ensures that garbage
workers rarely leave the waste disposal areas.

17.3.2 Task Allocation Based on Response Thresholds

Théraulaz et al. [841] developed a simple task allocation model based on the notion
of response threshold [77, 216, 733]. Response thresholds refer to the likelihood of
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reacting to task-associated stimuli. Individuals with a low threshold perform a task
at a lower level of stimulus than individuals with high thresholds. Individuals be-
come engaged in a specific task when the level of task-associated stimuli exceeds their
thresholds. If a task is not performed by individuals, the intensity of the corresponding
stimulus increases. On the other hand, intensity decreases as more ants perform the
task. Here, the task-associated stimuli serve as stigmergic variable.

This section reviews a model of response thresholds observed in ants and bees.

Single Task Allocation

Let sj be the intensity of task-j-associated stimuli. The intensity can be a measure
of the number of encounters, or a chemical concentration. A response threshold, θkj ,
determines the tendency of individual k to respond to the stimulus, sj , associated with
task j. For a fixed threshold model, individual k engages in task j with probability
[77, 216, 841],

Pθkj
(sj) =

sω
j

sω
j + θω

kj

(17.60)

where ω > 1 determines the steepness of the threshold. Usually, ω = 2. For sj << θkj ,
Pθkj

(sj) is close to zero, and the probability of performing task j is very small. For
sj >> θkj , the probability of performing task j is close to one. An alternative threshold
response function is [77]

Pθkj
(sj) = 1− e−sj/θkj (17.61)

Assume that there is only one task (the task subscript is therefore dropped in what
follows). Also assume only two castes. If ϑk denotes the state of an individual, then
ϑk = 0 indicates that ant k is inactive, while ϑk = 1 indicates that the ant is performing
the task. Then,

P (ϑk = 0 → ϑk = 1) =
s2

s2 + θ2
k

(17.62)

is the probability that an inactive ant will become active.

An active ant, busy with the task, becomes inactive with probability Pk = p per time
unit, i.e.

P (ϑk = 1 → ϑk = 0) = p (17.63)

Therefore, an active ant spends an average 1/p time performing the task. An individual
may become engaged in the task again, immediately after releasing the task. Stimulus
intensity changes over time due to increase in demand and task performance. If σ is
the increase in demand, γ is the decrease associated with one ant performing the task,
and nact is the number of active ants, then

s(t + 1) = s(t) + σ − γnact (17.64)

The more ants engaged in the task, the smaller the intensity, s, becomes, and con-
sequently, the smaller the probability that an inactive ant will take up the task. On
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the other hand, if all ants are inactive, or if there are not enough ants busy with the
task (i.e. σ > γnact), the probability increases that inactive ants will participate in
the task.

Allocation of Multiple Tasks

Let there be nj tasks, and let nkj be the number of workers of caste k performing
task j. Each individual has a vector of thresholds, θk, where each θkj is the threshold
allocated to the stimulus of task j. After 1/p time units of performing task j, the ant
stops with this task, and selects another task on the basis of the probability defined
in equation (17.60). It may be the case that the same task is again selected.

17.3.3 Adaptive Task Allocation and Specialization

The fixed response threshold model discussed in Section 17.3.2 has a number of limi-
tations [77, 216, 841]:

• It cannot account for temporal polyethism, since it assumes that individuals are
differentiated and are given pre-assigned roles.

• It cannot account for task specialization within castes.

• It is only valid over small time scales where thresholds can be considered con-
stant.

These limitations are addressed by allowing thresholds to vary over time [77, 841].
Thresholds are adapted using a simple reinforcement mechanism. A threshold de-
creases when the corresponding task is performed, and increases when the task is
not performed. Let ξ and φ respectively represent the learning coefficient and the
forgetting coefficient. Then, if ant k performs task j in the next time unit, then

θkj(t + 1) = θkj(t)− ξ (17.65)

If ant k does not perform task j, then

θkj(t + 1) = θkj(t) + φ (17.66)

If tkj is the fraction of time that ant k spent on task j, then it spent 1− tkj time on
other tasks. The change in threshold value is then given by

θkj(t + 1) = θkj(t)− tkjξ + (1− tkj)φ (17.67)

The decision to perform task j is based on the response threshold function (refer to
equation (17.60)).

The more ant k performs task j, the smaller θkj becomes (obviously, θkj is bounded in
the range [θmin, θmax]). If demand sj is high, and remains high, the probability Pθkj

is high. This means that ant k will have an increased probability of choosing task j.
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However, if too many ants perform task j, sj also decreases by the factor γnact. In
this case the probability increases that ants will switch tasks, and start to specialize
in a new task.

17.4 Advanced Topics

This section shows how AAs can be used to optimize functions defined over continuous
spaces, and to solve MOPs as well as dynamically changing problems.

17.4.1 Continuous Ant Colony Optimization

Ant colony optimization algorithms were originally developed to solve discrete op-
timization problems, where the values assigned to variables of the solution are con-
strained by a fixed finite set of discrete values. In order to apply ant colony algorithms
to solve continuous optimization problems, the main problem is to determine a way
to map the continuous space problem to a graph search problem. A simple solution to
this problem is to encode floating-point variables using binary string representations
[523]. If a floating-point variable is encoded using an n bit-string, the graph represen-
tation G = (V, E), contains 2n nodes – two nodes per bit (one for each possible value,
i.e. 0 and 1). A link exists between each pair of nodes. Based on this representation,
the discrete ACO algorithms can be used to solve the problem. It is, however, the
case that binary representation of floating-point values loses precision. This section
discusses an ACO algorithm for optimizing continuous spaces without discretizing the
solution variables.

The first ACO algorithm for continuous function optimization was developed by
Bilchev and Parmee [67, 68]. This approach focused on local optimization. Wodrich
and Bilchev [915] extended the local search algorithm to a global search algorithm,
which was further improved by Jayaraman et al. [414], Mathur et al. [564] and Rajesh
et al. [701]. This global search algorithm, referred to as continuous ACO (CACO), is
described next.

The CACO algorithm performs a bi-level search, with a local search component to
exploit good regions of the search space, and a global search component to explore
bad regions. With reference to Algorithm 17.8, the search is performed by nk ants, of
which nl ants perform local searches and ng ants perform global searches. The first
step of the algorithm is to create nr regions. Each region represents a point in the
continuous search space. If xi denotes the i-th region, then xij ∼ U(xmin,j , xmax,j)
for each dimension j = 1, . . . , nx and each region i = 1, . . . , nr; xmin,j and xmax,j are
respectively the minimum and maximum values of the domain in the j-th dimension.
After initialization of the nr regions, the fitness of each region is evaluated, where the
fitness function is simply the continuous function being optimized. Let f(xi) denote
the fitness of region xi. The pheromone, τi, for each region is initialized to one.

The global search identifies the ng weakest regions, and uses these regions to find ng
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Algorithm 17.8 Continuous Ant Colony Optimization Algorithm

Create nr regions;
τi(0) = 1, i = 1, . . . , nr;
repeat

Evaluate fitness, f(xi), of each region;
Sort regions in descending order of fitness;
Send 90% of ng global ants for crossover and mutation;
Send 10% of ng global ants for trail diffusion;
Update pheromone and age of ng weak regions;
Send nl ants to probabilistically chosen good regions;
for each local ant do

if region with improved fitness is found then
Move ant to better region;
Update pheromone;

end
else

Increase age of region;
Choose new random direction;

end
Evaporate all pheromone;

end
until stopping condition is true;
Return region xi with best fitness as solution;

new regions to explore. Most of the global ants perform crossover to produce new
regions, with a few ants being involved in trail diffusion. For the crossover operation,
for each variable x

′
ij of the offspring, choose a random weak region xi and let x

′
ij = xij ,

with probability Pc (referred to as the crossover probability). After the crossover step,
the offspring x

′
i is mutated by adding Gaussian noise to each variable x

′
ij :

x
′
ij ← x

′
ij + N(0, σ2) (17.68)

where the mutation step size, σ, is reduced at each time step:

σ ← σmax(1− r(1−t/nt)
γ1 ) (17.69)

where r ∼ U(0, 1), σmax is the maximum step size, t is the current time step, nt is
the maximum number of iterations, and γ1 controls the degree of nonlinearity. The
nonlinear reduction in mutation steps limits exploration in later iterations to allow for
better exploitation.

Trail diffusion implements a form of arithmetic crossover. Two weak regions are ran-
domly selected as parents. For parents xi and xl, the offspring x

′
is calculated as

x
′
j = γ2xij + (1− γ2)xlj (17.70)

where γ2 ∼ U(0, 1).
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For the local search process, each ant k of the nl local ants selects a region xi based
on the probability

pk
i (t) =

τα
i (t)ηβ

i (t)∑
j∈Nk

i
τα
j (t)ηβ(t)

(17.71)

which biases towards the good regions. The ant then moves a distance away from the
selected region, xi, to a new region, x

′
i, using

x
′
i = xi + ∆x (17.72)

where
∆xij = ci −miai (17.73)

with ci and mi user-defined parameters, and ai the age of region xi. The age of a
region indicates the “weakness” of the corresponding solution. If the new position,
x

′
i, does not have a better fitness than xi, the age of xi is incremented. On the other

hand, if the new region has a better fitness, the position vector of the i-th region is
replaced with the new vector x

′
i.

The direction in which an ant moves remains the same if a region of better fitness is
found. However, if the new region is less fit, a new direction is randomly chosen.

Pheromone is updated by adding an amount to each τi proportional to the fitness of
the corresponding region.

Other approaches to solving continuous optimization problems can be found in [439,
510, 511, 512, 887].

17.4.2 Multi-Objective Optimization

One of the first applications of multiple colony ACO algorithms was to solve multi-
objective optimization problems (MOP). This section discusses such algorithms.

MOPs are solved by assigning to each colony the responsibility of optimizing one
of the objectives. If nc objectives need to be optimized, a total of nc colonies are
used. Colonies cooperate to find a solution that optimizes all objectives by sharing
information about the solutions found by each colony.

Gambardella et al. [303] implemented a two-colony system to solve a variant of the
vehicle routing problem. A local search heuristic is first used to obtain a feasible
solution, x(0), which is then improved by the two colonies, each with respect to a
different objective. Each colony maintains its own pheromone matrix, initialized to
have a bias towards the initial solution, x(0). If at any time, t, one of the colonies,
Cc, obtains a better solution, then x(t) = x̃c(t) where x̃c(t) is the iteration-best
solution of colony Cc. At this point the colonies are reinitialized such that pheromone
concentrations are biased towards the new best solution.

Ippolito et al. [404] use non-dominated sorting to implement sharing between colonies
through local and global pheromone updates. Each colony implements an ACS algo-
rithm to optimize one of the objectives. Separate pheromone matrices are maintained
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by the different colonies. Both local and global updates are based on

τij(t + 1) = τij(t) + γτ0fij(t) (17.74)

where γ ∈ (0, 1), and τ0 is the initial pheromone on link (i, j) (all τij(0) = τ0); fij(t) is
referred to as a fitness value, whose calculation depends on whether equation (17.74)
is used for local or global updates. The fitness value is calculated on the basis of a
sharing mechanism, performed before applying the pheromone updates. The purpose
of the sharing mechanism is to exchange information between the different colonies.
Two sharing mechanisms are employed, namely local sharing and global sharing:

• Local sharing: After each next move has been selected (i.e. the next node
is added to the current path to form a new partial solution), local sharing is
applied. For this purpose, non-dominated sorting (refer to Section 9.6.3 and
Algorithm 9.11) is used to rank all partial solutions in classes of non-dominance.
Each non-dominance class forms a Pareto front, PFp containing np = |PFp|
non-dominated solutions. The sharing mechanism assigns a fitness value fk

p to
each solution in Pareto front PFp, as summarized in Algorithm 17.9. For the
purposes of this algorithm, let xk denote the solution vector that corresponds
to the partial path constructed by ant k at the current time step. Then, dab

represents the normalized Euclidean distance between solution vectors xa and
xb, calculated as

dab =

√√√√ L∑
l=1

(
xa

l − xb
l

xmax,l − xmin,l

)2

(17.75)

where L ≤ nx is the length of the current paths (assuming that all paths are
always of the same length), and xmax and xmin respectively are the maximum
and minimum values of the variables that make up a solution.

A sharing value σab is calculated for each distance, dab, as follows:

σab =

{
1−

(
dab

σshare

)2

if dab < σshare

0 otherwise
(17.76)

where
σshare =

0.5√
L
n∗

p

(17.77)

n∗
p is the desired number of Pareto optimal solutions. Using the sharing values,

a niche count, ξa, is calculated for each solution vector xa, as

ξa =
np∑
b=1

σab (17.78)

The fitness value of each solution xa is calculated on the basis of the niche count:

fa
p =

fp

ξa
(17.79)
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With reference to the local update using equation (17.74), fij(t) is the fitness
value of the Pareto front to which the corresponding solution belongs, calculated
as

fp+1 = fmin,p − εp (17.80)

where εp is a small positive number, and

fmin,p =
{

mina=1,...,np
{fa

p } if p > 1
f1 if p = 1 (17.81)

with f1 an appropriate positive constant.

• Global sharing: After completion of all paths, the corresponding solutions
are again (as for local sharing) grouped into non-dominance classes. The fitness
value, fij(t) for the global update is calculated for the global-best solution similar
to that of local sharing (as given in Algorithm 17.9), but this time with respect
to the complete solutions.

Algorithm 17.9 Multiple Colony ACO Local Sharing Mechanism

for each Pareto front PFp, p = 1, . . . , n∗
p do

for each solution xa ∈ PFp do
for each solution xb ∈ PFp do

Calculate dab using equation (17.75);
Calculate sharing value σab using equation (17.76);

end
Calculate niche count ξa using equation (17.78);
Calculate fitness value fa

p using equation (17.79);
end
Calculate fp using equation (17.80);

end

Mariano and Morales [561] adapt the Ant-Q algorithm (refer to Section 17.1.7) to
use multiple colonies, referred to as families, to solve MOPs. Each colony tries to
optimize one of the objectives considering the solutions found for the other objectives.
The reward received depends on how the actions of a family helped to find trade-
off solutions between the rest of the colonies. Each colony, Cc, for c = 1, . . . , nc,
has the same number of ants, |Cc|. During each iteration, colonies find solutions
sequentially, with the |Cc| solutions found by the one colony influencing the starting
points of the next colony, by initializing AQ-values to bias toward the solutions of
the preceding colony. When all colonies have constructed their solutions, the non-
dominated solutions are selected. A reward is given to all ants in each of the colonies
that helped in constructing a non-dominated solution. The search continues until
all solutions found are non-dominated solutions, or until a predetermined number of
iterations has been exceeded.

Multi-pheromone matrix methods use more than one pheromone matrix, one for each
of the sub-objectives. Assuming only two objectives, Iredi et al. [405], uses two
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pheromone matrices, τ1 and τ2, one for each of the objectives. A separate heuristic
information matrix is also used for each of the objectives. The AS transition rule is
changed to

pij(t) =




τψα
1,ij(t)τ

(1−ψ)α
2,ij (t)ηψβ

1ij(t)η
(1−ψ)β
2ij (t)∑

u∈Ni(t) τψα
1,iu(t)τ

(1−ψ)α
2,iu (t)ηψβ

1iu(t)η
(1−ψ)β
2iu (t)

if j ∈ Ni(t)

0 if j �∈ Ni(t)
(17.82)

where ψ is calculated for each ant as the ratio of the ant index to the total number of
ants.

Every ant that generated a non-dominated solution is allowed to update both
pheromone matrices, by depositing an amount of 1

nP
, where nP is the number of

ants that constructed a non-dominated solution. All non-dominated solutions are
maintained in an archive.

Doerner et al. [205] modified the ACS (refer to Section 17.1.5) by using multiple
pheromone matrices, one for each objective. For each ant, a weight is assigned to each
objective to weight the contribution of the corresponding pheromone to determining
the probability of selecting the next component in a solution. The ACS transition rule
is changed to

j =
{

arg maxu∈Ni(t){(
∑nc

c=1 wcτc,iu(t))α
ηβ

iu(t)} if r ≤ r0

J if r > r0
(17.83)

where nc is the number of objectives, wc is the weight assigned to the c-th objective,
and J is selected on the basis of the probability

pc
iJ (t) =

(
∑nc

c=1 wcτc,iJ (t))α
ηβ

iJ (t)∑
u∈Ni

(
∑nc

c=1 wcτc,iu(t))α
ηβ

iu(t)
(17.84)

Local pheromone updates are as for the original ACS, but done separately for each
objective:

τc,ij = (1− ρ)τc,ij + ρτ0 (17.85)

The global update changes to

τc,ij = (1− ρ)τc,ij + ρ∆τc,ij (17.86)

where

∆τc,ij =




15 if (i, j) ∈ best and second-best solution
10 if (i, j) ∈ best solution
5 if (i, j) ∈ second-best solution
0 otherwise

(17.87)

with the best solutions above referring to non-dominated solutions. An archive of
non-dominated solutions is maintained.

Cardoso et al. [105] extended the AS to solve MOPs in dynamically changing envi-
ronments. A pheromone matrix, τc, and pheromone amplification coefficient, αc, is
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maintained for each objective function fc. The AS transition rule is changed to

pij(t) =

{
ηijβ(t)

∏nc
c=1(τc,ij)

αc∑
u∈Ni(t) ηiuβ(t)

∏nc
c=1(τc,iu)αc

if j ∈ Ni(t)

0 if j �∈ Ni(t)
(17.88)

All visited links are updated by each ant with an amount Q
fk(x) .

The approach of Iredi et al. [405] discussed above makes use of a different heuristic
matrix for each objective (refer to equation (17.82)). Barán and Schaerer [49] devel-
oped a different approach based on ACS, as a variation of the approach developed by
Gambardella et al. [303]. A single colony is used, with a single pheromone matrix, but
one heuristic matrix for each objective. Assuming two objectives, the ACS transition
rule changes to

j =
{

arg maxu∈Ni(t){τiu(t)ηψβ
1,iu(t)η(1−ψ)β

2,iu (t)} if r ≤ r0

J if r > r0
(17.89)

where ψ ∈ [0, 1] and J is selected on the basis of the probability,

pk
iJ (t) =

τiJ (t)ηψβ
1,iJ (t)η(1−ψ)β

2,iJ (t)∑
u∈Ni

τiu(t)ηψβ
1,iu(t)η(1−ψ)β

2,iu (t)
(17.90)

For the local update rule, the constant τ0 is initially calculated using

τ0 =
1

f1f2

(17.91)

where f1 and f2 are the average objective values over a set of heuristically obtained
solutions (prior to the execution of the ant algorithm) for the two objectives respec-
tively. The constant is, however, changed over time. At each iteration, τ

′
0 is calculated

using equation (17.91), but calculated over the current set of non-dominated solu-
tions. If τ

′
0 > τ0, then pheromone trails are initialized to τ0 = τ

′
0; otherwise, the global

pheromone update is applied with respect to each solution x ∈ P, where P is the set
on non-dominated solutions:

τij = (1− ρ)τij +
ρ

f1(x)f2(x)
(17.92)

17.4.3 Dynamic Environments

For dynamic optimization problems (refer to Section A.9), the search space changes
over time. A current good solution may not be a good solution after a change in
the environment has occurred. Ant algorithms may not be able to track changing
environments due to pheromone concentrations that become too strong [77]. If most of
the ants have already settled on the same solution, the high pheromone concentrations
on the links representing that solution cause that solution to be constructed by all
future ants with very high probability even though a change has occurred. To enable
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ACO algorithms to track changing environments, mechanisms have to be employed to
favor exploration.

For example, using the transition probability of ACS (refer to equation (17.18)), ex-
ploration is increased by selecting a small value for r0 and increasing β. This will
force more random transition decisions, where the new, updated heuristic information
creates a bias towards the selection of links that are more desirable according to the
changed environment.

An alternative is to use an update rule where only those links that form part of a
solution have their pheromone updated, including an evaporation component similar
to the local update rule of ACS (refer to Section 17.1.5). Over time the pheromone
concentrations on the frequently used links decrease, and these links become less fa-
vorable. Less frequently used links will then be explored.

A very simple strategy is to reinitialize pheromone after change detection, but to keep a
reference to the previous best solution found. If the location of an environment change
can be identified, the pheromone of links in the neighborhood can be reinitialized to
a maximum value, forcing these links to be more desirable. If these links turn out
to represent bad solution components, reinforcement will be small (since it is usually
proportional to the quality of the solution), and over time desirability of the links
reduces due to evaporation.

Guntsch and Middendorf [340] proposed to repair solutions when a change occurred.
This can be done by applying a local search procedure to all solutions. Alternatively,
components affected by change are deleted from the solution, connecting the prede-
cessor and successor of the deleted component. New components (not yet used in the
solution) are then inserted on the basis of a greedy algorithm. The position where a
new component is inserted is the position that causes the least cost increase, or highest
cost decrease (depending on the objective).

Sim and Sun [791] used a multiple colony system, where colonies are repelled by the
pheromone of other colonies to promote exploration in the case of changing environ-
ments.

Other approaches to cope with changing environments change the pheromone update
rules to favor exploration: Li and Gong [520] modify both the local and global update
rules. The local update rule is changed to

τij(t + 1) = (1− ρ1(τij(t)))τij(t) + ∆τij(t) (17.93)

where ρ1(τij) is a monotonically increasing function of τij , e.g.

ρ1(τij) =
1

1 + e−(τij+θ)
(17.94)

where θ > 0.

The dynamic changing evaporation constant has the effect that high pheromone values
are decreased more than low pheromone values. In the event of an environment change,
and if a solution is no longer the best solution, the pheromone concentrations on the
corresponding links decrease over time.
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The global update is done similarly, but only with respect to the global-best and
global-worst solutions, i.e.

τij(t + 1) = (1− ρ2(τij(t)))τij(t) + γij∆τij(t) (17.95)

where

γij =




+1 if (i, j) is in the global-best solution
−1 if (i, j) is in the global-worst solution
0 otherwise

(17.96)

Guntsch and Middendorf [339] proposed three pheromone update rules for dynamic
environments. The objective of these update rules is to find an optimal balance be-
tween resetting enough information to allow for exploration of new solutions, while
keeping enough information of the previous search process to speed up the process of
finding a solution. For each of the strategies, a reset value, γi ∈ [0, 1] is calculated,
and pheromone reinitialized using

τij(t + 1) = (1− γi)τij + γi
1

nG − 1
(17.97)

where nG is the number of nodes in the representation graph. The following strategies
were proposed:

• Restart strategy: For this strategy,

γi = λR (17.98)

where λR ∈ [0, 1] is referred to as the strategy-specific parameter. This strategy
does not take the location of the environment change into account.

• η-strategy: Heuristic information is used to decide to what degree pheromone
values are equalized:

γi = max{0, dη
ij} (17.99)

where
dη

ij = 1− η

ληηij
, λη ∈ [0,∞) (17.100)

and

η =
1

nG(nG − 1)

nG∑
i=1

∑
j=1,j 	=i

ηij (17.101)

Here γi is proportional to the distance from the changed component, and equal-
ization is done on all links incident to the changed component.

• τ -strategy: Pheromone values are used to equalize links closer to the changed
component more than further links:

γi = min{1, λτdτ
ij}, λτ ∈ [0,∞) (17.102)

where

dτ
ij = max

Nij


 ∏

(x,y)∈Nij

τxy

τmax


 (17.103)

and Nij is the set of all paths from i to j.
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Table 17.2 Ant Algorithm Applications

Problem Reference
Assignment problems [29, 230, 508, 555, 608, 704, 801]
Bioinformatics [573, 787]
Data clustering [540, 853]
Robotics [574, 912]
Routing [94, 99, 131, 161, 207, 516]
Scheduling [76, 282, 302, 334, 391, 572, 579, 927]
Sequential ordering problem [302]
Set covering [180]
Shortest common super-sequence [591]
Text mining [345, 370, 525, 703]

17.5 Applications

Ant algorithms have been applied to a large number of real-world problems. One of
the first applications is that of the ACO to solve the TSP [142,150]. ACO algorithms
can, however, be applied to optimization problems for which the following problem-
dependent aspects can be defined [77, 216]:

1. An appropriate graph representation to represent the discrete search space.
The graph should accurately represent all states and transitions between states.
A solution representation scheme also has to be defined.

2. An autocatalytic (positive) feedback process; that is, a mechanism to up-
date pheromone concentrations such that current successes positively influence
future solution construction.

3. Heuristic desirability of links in the representation graph.

4. A constraint-satisfaction method to ensure that only feasible solutions are
constructed.

5. A solution construction method which defines the way in which solutions are
built, and a state transition probability.

In addition to the above requirements, the solution construction method may specify
a local search heuristic to refine solutions.

This section provides a detailed explanation of how ACO can be applied to solve the
TSP and the QAP. Table 17.2 provides a list of other applications (this list is by no
means complete).
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17.5.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is the first application to which an ACO al-
gorithm was applied [208, 216]. It is an NP-hard combinatorial optimization problem
[310], and is the most frequently used problem in ACO literature [208, 213, 214, 216,
300, 301, 339, 340, 433, 592, 814, 815, 821, 852, 900, 939]. This section shows how
ACO algorithms can be used to solve the TSP.

Problem Definition

Given a set of nπ cities, the objective is to find a minimal length closed (Hamiltonian)
tour that visits each city once. Let π represent a solution as a permutation of the
cities {1, . . . , nπ}, where π(i) indicates the i-th city visited. Then, Π(nπ) is the set of
all permutations of {1, . . . , nπ}, i.e. the search space. Formally, the TSP is defined as
finding the optimal permutation π∗, where

π∗ = arg min
π∈Π(nπ)

f(π) (17.104)

where

f(π) =
nπ∑

i,j=1

dij (17.105)

is the objective function, with dij the distance between cities i and j. Let D =
[dij ]nπ×nπ

denote the distance matrix.

Two versions of the TSP are defined based on the characteristics of the distance matrix.
If dij = dji for all i, j = 1 . . . , nπ, then the problem is referred to as the symmetric TSP
(STSP). If dij �= dji, the distance matrix is asymmetric resulting in the asymmetric
TSP (ATSP).

Problem Representation

The representation graph is the 3-tuple, G = (V, E, D), where V is the set of nodes,
each representing one city, E represents the links between cities, and D is the distance
matrix which assigns a weight to each link (i, j) ∈ E. A solution is represented as
an ordered sequence π = (1, 2, . . . , nπ) which indicates the order in which cities are
visited.

Heuristic Desirability

The desirability of adding city j after city i is calculated as

ηij(t) =
1

dij(t)
(17.106)
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Reference to the time step t is included here to allow dynamic problems where distances
may change over time.

Constraint Satisfaction

The TSP defines two constraints:

1. All cities must be visited.

2. Each city is visited once only.

To ensure that cities are visited once only, a tabu list is maintained for each partial
solution to contain all cities already visited. Let Υk denote the tabu list of the k-th
ant. Then, N k

i (t) = V \Υk(t) is the set of cities not yet visited after reaching city i.
The first constraint is satisfied by requiring each solution to contain n cities, and by
result of the tabu list.

Solution Construction

Ants are placed on random cities, and each ant incrementally constructs a solution,
by selecting the next city using the transition probability of any of the previously
discussed ACO algorithms.

Local Search

The most popular search heuristics applied to TSP are the 2-opt and 3-opt heuristics
[423]. Both heuristics involve exchanging links until a local minimum has been found.
The 2-opt heuristic [433, 815, 900] makes two breaks in the tour and recombines nodes
in the only other possible way. If the cost of the tour is improved, the modification
is accepted. The 2-opt heuristic is illustrated in Figure 17.4(a). The 3-opt heuristic
[215, 814, 815, 900] breaks the tour at three links, and recombines the nodes to form
two alternative tours. The best of the original and two alternatives are kept. The
3-opt heuristic is illustrated in Figure 17.4(b). For the ATSP, a variation of the 3-opt
is implemented to allow only exchanges that do not change the order in which cities
are visited.

17.5.2 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is possibly the second problem to which
an ACO algorithm was applied [216], and is, after the TSP, the most frequently used
problem for benchmarking ACO algorithms [216, 304, 340, 557, 743, 744, 835]. The
QAP, introduced by Koopmans and Beckman [477], is an NP-hard problem considered
as one of the hardest optimization problems. Even instances of relatively small size of
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Figure 17.4 2-opt and 3-opt Local Search Heuristic

n ≥ 25 cannot be solved exactly. This section discusses approaches to solve the QAP
using ACO algorithms.

Problem Definition

The main objective in QAPs is to assign facilities to locations such that the product
of the flow among activities is minimized, under the constraint that all facilities must
be allocated to a location and each location can have only one facility assigned to it.

The solution is a permutation π of {1, . . . , nπ}, where nπ is the number of facilities
and locations. Formally, the objective function to be minimized is defined as

f(π) =
nπ∑

i,j=1

dijfπ(i)π(j) (17.107)

where dij is the Euclidean distance between locations i and j, fhk characterizes the
flow between facilities h and k, and π(i) is the activity assigned to location i.

Problem Representation

The search space is represented by a graph, G = (V, E). Each node, vi ∈ V, i =
1, . . . , nπ, represents a location i. Associated with each link (i, j) ∈ E = {(i, j)|i, j ∈
V } is a distance dij . An assignment is a permutation π of {1, . . . , nπ}.
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Solution Construction

Ants are randomly placed on the graph, and each ant constructs a permutation of
facilities incrementally. When in location i, the ant selects a facility from the set
of unallocated facilities and assigns that facility to location i. A complete solution
is found when all locations have been visited. Different mechanisms can be used
to step through the graph of locations, for example, in sequential or random order
[557]. Dorigo et al. [216] used a different approach where the objective function is
expressed as a combination of the potential vectors of distance and flow matrices. If
D = [dij ]nπ×nπ

is the distance matrix, and F = [fhk]nπ×nπ
the flow matrix, define the

potential vectors, D and F, as

Di =
nπ∑
j=1

Dij , i = 1, . . . , nπ (17.108)

Fh =
nπ∑

k=1

Fhk, h = 1, . . . , nπ (17.109)

The next location is deterministically chosen from the free locations as the location
with the lowest distance potential, Di.

For location i facility h (using the potential vectors approach), can be selected de-
terministically as the not yet assigned facility with the highest flow potential. Al-
ternatively, selection can be made probabilistically using an appropriate transition
probability function. Stützle and Hoos [816] used the transition probability

pk
ih(t) =

{
τih∑

j∈Nk
i

(t) τjh
if location i is still free

0 otherwise
(17.110)

Maniezzo and Colorni [557] defined the transition probability as

pk
ih(t) =

{
ατih(t)+(1−α)ηih∑

j∈Nk
i

(t) ατjh(t)+(1−α)ηjh
if location i is still free

0 otherwise
(17.111)

Instead of using a constructive approach to solve the QAP, Gambardella et al. [304]
and Talbi et al. [835] used the hybrid AS (HAS) to modify approximate solutions. Each
ant receives a complete solution obtained from a nearest-neighbor heuristic and refines
the solution via a series of nπ/3 swaps. For each swap, the first location i is selected
randomly from {1, 2, . . . , nπ}, and the second location, j, is selected according to the
rule: if U(0, 1) < r, then j ∼ U{1, . . . , nπ}\{i}; otherwise, j is selected according to
the probability,

pk
ij(t) =

τiπk(j) + τjπk(i)∑nπ
l=1
l 	=i

(τiπk(l) + τlπk(i))
(17.112)
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Heuristic Desirability

Based on the potential vectors defined in equation (17.108) and (17.109) [216],

ηi =
1

sih
(17.113)

where sih = DiFh ∈ S = DFT gives the potential goodness of assigning facility h to
location i.

Constraint Satisfaction

The QAP defines two constraints:

• all facilities have to be assigned, and

• only one facility can be allocated per location.

To ensure that facilities are not assigned more than once, each ant maintains a facility
tabu list. When a new facility has to be assigned, selection is from the facilities not yet
assigned, i.e. {1, . . . , nπ}\Υk. Ants terminate solution construction when all nodes
(locations) have been visited, which ensures (together with the tabu list) that each
location contains one facility.

Local Search Heuristics

Gambardella et al. [304] consider all possible swaps in a random order. If a swap results
in an improved solution, that modification is accepted. The difference in objective
function value due to swapping of facilities π(i) and π(j) is calculated as

∆f(π, i, j, ) = (dii − djj)(fπ(j)π(j) − fπ(i)π(i))
+(dij − dji)(fπ(j)π(i) − fπ(i)π(j))

+
nπ∑

l=1,l �=i

l 	=j

[(dli − dlj)(fπ(l)π(j) − fπ(l)π(i)) + (17.114)

+(dil − djl)(fπ(j)π(l) − fπ(i)π(l))]

The modification is accepted if ∆f(π, i, j) < 0.

Stützle and Hoos [816] proposed two strategies to decide if a swap is accepted:

• The first-improvement strategy accepts the first improving move, similar to
standard hill-climbing search.

• The best-improvement strategy considers the entire neighborhood and ac-
cepts the move that gives the best improvement [557], similar to steepest ascent
hill-climbing search.
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While the first-improvement strategy is computationally less expensive than the best-
improvement strategy, it may require more moves to reach a local optimum.

Roux et al. [743, 744] and Talbi et al. [835] used TS as local search method. Talbi
et al. used a recency-based memory, with the size of the tabu list selected randomly
between n/2 and 3n/2.

17.5.3 Other Applications

Ant algorithms have been applied to many problems. Some of these are summarized
in Table 17.2. Note that this table is not a complete list of applications, but just
provides a flavor of different applications.

17.6 Assignments

1. Consider the following situation: ant A1 follows the shortest of two paths to the
food source, while ant A2 follows the longer path. After A2 reached the food
source, which path back to the nest has a higher probability of being selected by
A2? Justify your answer.

2. Discuss the importance of the forgetting factor in the pheromone trail depositing
equation.

3. Discuss the effects of the α and β parameters in the transition rule of equation
(17.6).

4. Show how the ACO approach to solving the TSP satisfies all the constraints of
the TSP.

5. Comment on the following strategy: Let the amount of pheromone deposited be
a function of the best route. That is, the ant with the best route, deposits more
pheromone. Propose a pheromone update rule.

6. Comment on the similarities and differences between the ant colony approach to
clustering and SOMs.

7. For the ant clustering algorithm, explain why

(a) the 2D-grid should have more sites than number of ants;
(b) there should be more sites than data vectors.

8. Devise a dynamic forgetting factor for pheromone evaporation.





Part V

ARTIFICIAL IMMUNE
SYSTEMS

An artificial immune system (AIS) models the natural immune system’s ability to
detect cells foreign to the body. The result is a new computational paradigm with
powerful pattern recognition abilities, mainly applied to anomaly detection.

Different views on how the natural immune system (NIS) functions have been devel-
oped, causing some debate among immunologists. These models include the classical
view of lymphocytes that are used to distinguish between self and non-self, the clonal
selection theory where stimulated B-Cells produce mutated clones, danger theory,
which postulates that the NIS has the ability to distinguish between dangerous and
non-dangerous foreign cells, and lastly, the network theory where it is assumed that
B-Cells form a network of detectors.

Computational models have been developed for all these views, and successfully ap-
plied to solve real-world problems. This part1 aims to provide an introduction to these
computational models of the immune system. Chapter 18 provides an overview of the
natural immune system, while artificial immune systems are discussed in Chapter 19.

1This part on artificial immune systems has been written by one of my PhD students, Attie
Graaff. Herewith I extend my thanks to Attie for contributing this part to the book, making this a
very complete book on computational intelligence.
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Chapter 18

Natural Immune System

The body has many defense mechanisms, which among others are the skin of the body,
the membrane that covers the hollow organs and vessels, and the adaptive immune
system. The adaptive immune system reacts to a specific foreign body material or
pathogenic material (referred to as antigen). During these reactions the adaptive
immune system adapts to better detect the encountered antigen and a ‘memory’ is
built up of regular encountered antigen. The obtained memory speeds up and improves
the reaction of the adaptive immune system to future exposure to the same antigen.
Due to this reason defense reactions are divided into three types: non-specific defense
reactions, inherited defense reactions and specific defense reactions [582]. The adaptive
immune system forms part of the specific defense reactions.

Different theories exist in the study of immunology regarding the functioning and or-
ganizational behavior between lymphocytes in response to encountered antigen. These
theories include the classical view, clonal selection theory, network theory, and danger
theory. Since the clonal selection, danger theory and network theory are based on
concepts and elements within the classical view (see Section 18.1), the classical view
will first be discussed in detail to form a bases onto which the other three theories will
be explained in Sections 18.5, 18.6 and 18.7.

18.1 Classical View

The classical view of the immune system is that the immune system distinguishes
between what is normal (self) and foreign (non-self or antigen) in the body. The
recognition of antigens leads to the creation of specialized activated cells, which in-
activate or destroy these antigens. The natural immune system mostly consists of
lymphocytes and lymphoid organs. These organs are the tonsils and adenoids, thy-
mus, lymph nodes, spleen, Peyer’s patches, appendix, lymphatic vessels, and bone
marrow. Lymphoid organs are responsible for the growth, development and deploy-
ment of the lymphocytes in the immune system. The lymphocytes are used to detect
any antigens in the body. The immune system works on the principle of a pattern
recognition system, recognizing non-self patterns from the self patterns [678].

The initial classical view was defined by Burnet [96] as B-Cells and Killer-T-Cells
with antigen-specific receptors. Antigens triggered an immune response by interacting
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with these receptors. This interaction is known as stimulation (or signal 1). It was
Bretscher and Cohn [87] who enhanced the initial classical view by introducing the
concept of a helper T-Cell (see Section 18.3.1). This is known as the help signal (or
signal 2). In later years, Lafferty and Cunningham added a co-stimulatory signal to the
helper T-Cell model of Bretscher and Cohn. Lafferty and Cunningham [497] proposed
that the helper T-Cell is co-stimulated with a signal from an antigen-presenting cell
(APC). The motivation for the co-stimulated model was that T-Cells in a body had a
stronger response to cells from the same species as the T-Cells in comparison to cells
from different species than the T-Cells. Thus, the APC is species specific.

The rest of this chapter explains the development of the different cell types in the
immune system, antigens and antibodies, immune reactions and immunity types and
the detection process of foreign body material as defined by the different theories.

18.2 Antibodies and Antigens

Within the natural immune system, antigens are material that can trigger immune
response. An immune response is the body’s reaction to antigens so that the antigens
are eliminated to prevent damage to the body. Antigens can be either bacteria, fungi,
parasites and/or viruses [762]. An antigen must be recognized as foreign (non-self).
Every cell has a huge variety of antigens in its surface membrane. The foreign antigen
is mostly present in the cell of micro-organisms and in the cell membrane of ‘donor
cells’. Donor cells are transplanted blood cells obtained through transplanted organs
or blood. The small segments on the surface of an antigen are called epitopes and the
small segments on antibodies are called paratopes (as shown in Figure 18.1). Epitopes
trigger a specific immune response and antibodies’ paratopes bind to these epitopes
with a certain binding strength, measured as affinity [582].

Antibodies are chemical proteins. In contradiction to antigens, antibodies form part
of self and are produced when lymphocytes come into contact with antigen (non-
self). An antibody has a Y-shape (as shown Figure 18.1). Both arms of the Y consist
of two identical heavy and two identical light chains. The chains are distinct into
heavy and light since the heavy chain contains double the number of amino-acids than
the light chain. The tips of the arms are called the variable regions and vary from
one antibody to another [762]. The variable regions (paratopes) enable the antibody
to match antigen and bind to the epitopes of an antigen. After a binding between
an antibody and an antigen’s epitope, an antigen-antibody-complex is formed, which
results into the de-activation of the antigen [582]. There are five classes of antibodies:
IgM, IgG, IgA, IgE, IgD [582].

18.3 The White Cells

All cells in the body are created in the bone marrow (as illustrated in Figure 18.2).
Some of these cells develop into large cell- and particle-devouring white cells known
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Figure 18.1 Antigen-Antibody-Complex

as phagocytes [762]. Phagocytes include monocytes, macrophages and neutrophils.
Macrophages are versatile cells that secrete powerful chemicals and play an impor-
tant role in T-Cell activation. Other cells develop into small white cells known as
lymphocytes.

18.3.1 The Lymphocytes

There are two types of lymphocytes: the T-Cell and B-Cell, both created in the bone
marrow. On the surface of the T-Cells and B-Cells are receptor molecules that bind
to other cells. The T-Cell binds only with molecules that are on the surface of other
cells. The T-Cell first become mature in the thymus, whereas the B-Cell is already
mature after creation in the bone marrow. A T-Cell becomes mature if and only if it
does not have receptors that bind with molecules that represent self cells. It is there-
fore very important that the T-Cell can differentiate between self and non-self cells.
Thus lymphocytes have different states: immature, mature, memory and annihilated
(Figure 18.3 illustrates the life cycle of lymphocytes). These states are discussed in
the subsections to follow below. Both T-Cells and B-Cells secrete lymphokines and
macrophages secrete monokines. Monokines and lymphokines are known as cytokines
and their function is to encourage cell growth, promote cell activation or destroy target
cells [762]. These molecules on the surface of a cell are named the major histocompati-
bility complex molecules (MHC-molecules). Their main function is to bring to light the
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internal structure of a cell. MHC-molecules are grouped into two classes: Type I and
Type II. MHC-molecules of Type I is on the surface of any cell and MHC-molecules
of Type II mainly on the surface of B-Cells [678]. There are two types of T-Cells:
The Helper-T-Cell and Natural-Killer-T-Cell. Each of these types of lymphocytes are
described in detail below.

Immature Mature Memory

Annihilated

Figure 18.3 Life Cycle of A Lymphocyte

The B-Cell

B-Cells are created in the bone marrow with monomeric IgM-receptors on their sur-
faces. A monomeric receptor is a chemical compound that can undergo a chemical
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reaction with other molecules to form larger molecules. In contrast to T-Cells, B-Cells
leave the bone marrow as mature lymphocytes. B-Cells mostly exist in the spleen and
tonsils. It is in the spleen and tonsils that the B-Cells develop into plasma cells after
the B-Cells come into contact with antigens. After developing into plasma cells, the
plasma cells produce antibodies that are effective against antigens [582]. The B-Cell
has antigen-specific receptors and recognizes in its natural state the antigens. When
contact is made between B-Cell and antigen, clonal proliferation on the B-Cell takes
place and is strengthened by Helper-T-Cells (as explained the next subsection). Dur-
ing clonal proliferation two types of cells are formed: plasma cells and memory cells.
The function of memory cells is to proliferate to plasma cells for a faster reaction to
frequently encountered antigens and produce antibodies for the antigens. A plasma
cell is a B-Cell that produces antibodies.

The Helper-T-Cell (HTC)

When a B-Cell’s receptor matches an antigen, the antigen is partitioned into peptides
(as shown in Figure 18.4). The peptides are then brought to the surface of the B-Cell
by an MHC-molecule of Type II. Macrophages also break down antigen and the broken
down antigen is brought to the surface of the macrophage by an MHC-molecule of Type
II. The HTC binds to the MHC-molecule on the surface of the B-Cell or macrophage
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and proliferates or suppresses the B-Cell response to the partitioned cell, by secreting
lymphokines. This response is known as the primary response. When the HTC bounds
to the MHC with a high affinity, the B-Cell is proliferated. The B-Cell then produces
antibodies with the same structure or pattern as represented by the peptides. The
production of antibodies is done after a cloning process of the B-Cell.

When the HTC does not bind with a high affinity, the B-Cell response is suppressed.
Affinity is a force that causes the HTC to elect a MHC on the surface of the B-Cell
with which the HTC has a stronger binding to unite, rather than with another MHC
with a weaker binding. A higher affinity implies a stronger binding between the HTC
and MHC. The antibodies then bind to the antigens’ epitopes that have the same
complementary structure or pattern. Epitopes are the portions on an antigen that
are recognized by antibodies. When a B-Cell is proliferated enough, i.e. the B-Cell
frequently detects antigens, it goes into a memory status, and when it is suppressed
frequently it becomes annihilated and replaced by a newly created B-Cell. The immune
system uses the B-Cells with memory status in a secondary response to frequently
seen antigens of the same structure. The secondary response is much faster than the
primary response, since no HTC signal or binding to the memory B-Cell is necessary
for producing antibodies [678].

Peptides
MHC I

Cell dies

Natural Killer T Cell

Antigen

Macrophage

Partitioning antigen

Figure 18.5 Macrophage and NKTC

The Natural-Killer-T-Cell (NKTC)

The NKTC binds to MHC-molecules of Type I (as illustrated in Figure 18.5). These
MHC-molecules are found on all cells. Their function is to bring to light any viral
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proteins from a virally infected cell. The NKTC then binds to the MHC-molecule of
Type I and destroys not only the virally infected cell but also the NKTC itself [678].

18.4 Immunity Types

Immunity can be obtained either naturally or artificially. In both cases immunity can
be active or passive. This section discusses the different types of immunity.

Active naturally-obtained immunity: Due to memory-cells, active naturally-
obtained immunity is more or less permanent. It develops when the body gets infected
or receives foreign red blood cells and actively produces antibodies to deactivate the
antigen [582].

Passive naturally-obtained immunity: Passive naturally-obtained immunity is
short-lived since antibodies are continuously broken down without creation of new
antibodies. New antibodies are not created because the antigens did not activate
the self immune system. The immunity type develops from IgG-antibodies that are
transplanted from the mother to the baby. The secreted IgA-antibodies in mothers-
milk are another example of this immunity type and protect the baby from any antigens
with which the mother came into contact [582].

Active artificially-obtained immunity: Active artificially-obtained immunity
develops when dead organisms or weakened organisms are therapeutically applied.
The concept is that special treated organisms keep their antigens without provoking
illness-reactions [582].

Passive artificially-obtained immunity: Passive artificially-obtained immunity
is obtained when a specific antibody that was produced by another human or animal,
is injected into the body for an emergency treatment. Immunity is short-lived, since
the immune system is not activated [582].

18.5 Learning the Antigen Structure

Learning in the immune system is based on increasing the population size of those lym-
phocytes that frequently recognize antigens. Learning by the immune system is done
by a process known as affinity maturation. Affinity maturation can be broken down
into two smaller processes namely, a cloning process and a somatic hyper-mutation
process. The cloning process is more generally known as clonal selection, which is the
proliferation of the lymphocytes that recognize the antigens.
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The interaction of the lymphocyte with an antigen leads to an activation of the lym-
phocyte where upon the cell is proliferated and grown into a clone. When an antigen
stimulates a lymphocyte, the lymphocyte not only secretes antibodies to bind to the
antigen but also generates mutated clones of itself in an attempt to have a higher
binding affinity with the detected antigen. The latter process is known as somatic
hyper-mutation. Thus, through repetitive exposure to the antigen, the immune sys-
tem learns and adapts to the shape of the frequently encountered antigen and moves
from a random receptor creation to a repertoire that represents the antigens more pre-
cisely. Lymphocytes in a clone produce antibodies if it is a B-Cell and secrete growth
factors (lymphokines) in the case of an HTC.

Since antigens determine or select the lymphocytes that need to be cloned, the process
is called clonal selection [582]. The fittest clones are those which produce antibodies
that bind to antigen best (with highest affinity). Since the total number of lymphocytes
in the immune system is regulated, the increase in size of some clones decreases the
size of other clones. This leads to the immune system forgetting previously learned
antigens. When a familiar antigen is detected, the immune system responds with
larger cloning sizes. This response is referred to as the secondary immune response
[678]. Learning is also based on decreasing the population size of those lymphocytes
that seldom or never detect any antigens. These lymphocytes are removed from the
immune system. For the affinity maturation process to be successful, the receptor
molecule repository needs to be as complete and diverse as possible to recognize any
foreign shape [678].

18.6 The Network Theory

The network theory was first introduced by Jerne [416, 677], and states that B-Cells
are interconnected to form a network of cells. When a B-Cell in the network responds
to a foreign cell, the activated B-Cell stimulates all the other B-Cells to which it is
connected in the network. Thus, a lymphocyte is not only stimulated by an antigen,
but can also be stimulated or suppressed by neighboring lymphocytes, i.e. when a
lymphocyte reacts to the stimulation of an antigen, the secretion of antibodies and
generation of mutated clones (see Section 18.5) stimulate the lymphocyte’s immediate
neighbors. This implies that a neighbor lymphocyte can then in turn also react to
the stimulation of the antigen-stimulated lymphocyte by generating mutated clones,
stimulating the next group of neighbors, etc.

18.7 The Danger Theory

The danger theory was introduced by Matzinger [567, 568] and is based on the co-
stimulated model of Lafferty and Cunningham [497]. The main idea of the danger
theory is that the immune system distinguishes between what is dangerous and non-
dangerous in the body. The danger theory differs from the classical view in that the
immune system does not respond to all foreign cells, but only to those foreign cells



18.7 The Danger Theory 423

Partitioning antigen
Antigen Receptor

B Cell

MHC II
Peptides

LymphokinesPlasma cell
Antibodies

APC

Stress signal

antigen

Mature T Cell

Co stimulation

Necrotic cell death

Figure 18.6 Co-Stimulation of T-Cell by an APC

that are harmful or dangerous to the body. A foreign cell is seen to be dangerous
to the body if it causes body cells to stress or die. Matzinger gives two motivational
reasons for defining the new theory, which is that the immune system needs to adapt
to a changing self and that the immune system does not always react on foreign or
non-self.

Although cell death is common within the body, the immune system only reacts to
those cell deaths that are not normal programmed cell death (apoptosis), i.e. non-
apoptotic or necrotic deaths. When a cell is infected by a virus, the cell itself will
send out a stress signal (known as signal 0) of necrotic death to activate the antigen
presenting cells (APCs) (as illustrated in Figure 18.6). Thus, co-stimulation of an
APC to a helper T-Cell is only possible if the APC was activated with a danger
or stress signal. Therefore, the neighboring cells of an APC determines the APC’s
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state. Hereon the immune reaction process is as discussed within the classical view
(see Section 18.1), where now mature helper T-Cells are presented with a peptide
representation of the antigen and co-stimulated by an activated APC.

The different types of signals from a dying or stressed cell is unknown. According
to Matzinger these signals could either be defined as the sensing of a certain protein
within a cell that leaked after the cell’s death or an unexpected connection lost between
connected cells after one of the cells died. Thus, if none of the above signals are fired
by a cell, no immune response will be triggered by an antigen to activate the antigen
presenting cells (APCs).

Thus, from a danger immune system perspective a T-Cell only needs to be able to
differentiate APCs from any other cells. If an APC activated a T-Cell through co-
stimulation, then only will the immune system respond with a clonal proliferation of
the B-Cell (as discussed in Section 18.3.1). The B-Cell will then secrete antibodies to
bind with the dangerous antigen instead of binding to all foreign harmless antigen.

18.8 Assignments

1. Identify the main difference between the classicial view of the NIS

(a) and network theory,
(b) and danger theory.

2. Discuss the merit of the following statement: “The lymphocytes in the classical
view perform a pattern matching function.”

3. At this point, discuss how the principles of a NIS can be used to solve real-world
problems where anomalies need to be detected, such as fraud.

4. Discuss the merit of the following statement: “A model of the NIS (based on the
classical view) can be used as a classifier.”



Chapter 19

Artificial Immune Models

Chapter 18 discussed the different theories with regards to the functioning and orga-
nizational behavior of the natural immune system (NIS). These theories inspired the
modeling of the NIS into an artificial immune system (AIS) for application in non-
biological environments. Capabilities of the NIS within each theory, are summarised
below:

• The NIS only needs to know the structure of self/normal cells.

• The NIS can distinguish between self and foreign/non-self cells.

• A foreign cell can be sensed as dangerous or non-dangerous.

• Lymphocytes are cloned and mutated to learn and adapt to the structure of the
encountered foreign cells.

• The build-up of a memory on the learned structures of the foreign cells.

• A faster secondary response to frequently encountered foreign cells, due to the
built-up memory.

• The cooperation and co-stimulation among lymphocytes to learn and react to
encountered foreign cells.

• The formation of lymphocyte networks as a result of the cooperation and co-
stimulation among lymphocytes.

This chapter discusses some of the existing AIS models. More detail is provided on
the most familiar AIS models. These models are either based on or inspired by the
capabilities of the NIS (as summarised above) and implement some or all of the basic
AIS concepts as listed in Section 19.1. The chapter contains a section for each of
the different theories in immunology as discussed in Chapter 18. In each of these
sections, the AIS models that are based on or inspired by the applicable theory, are
discussed. The rest of the chapter is organised as follows: Section 19.1 lists the basic
concepts of an artificial immune system. A basic AIS algorithm is proposed and given
in pseudo code. The different parts of the basic AIS pseudo code is briefly discussed.
Section 19.2 discusses the AIS models based on or inspired by the classical view of
the natural immune system. Section 19.3 gives an algorithm in pseudo code that is
inspired by the clonal selection theory of the natural immune system. Other clonal
selection inspired models are also discussed. Section 19.4 discusses the AIS models
based on or inspired by the network theory of the natural immune system. Section 19.5
discusses the AIS models based on or inspired by danger theory. Section 19.6 concludes
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the chapter by giving a brief overview on some of the problem domains to which the
artificial immune system has been successfully applied.

19.1 Artificial Immune System Algorithm

The capabilities of the NIS summarized above imply that it is mainly the inner working
and cooperation between the mature T-Cells and B-Cells that is responsible for the
secretion of antibodies as an immune response to antigens. The T-Cell becomes mature
in the thymus. A mature T-Cell is self-tolerant, i.e. the T-Cell does not bind to self
cells. The mature T-Cell’s ability to discriminate between self cells and non-self cells
makes the NIS capable of detecting non-self cells. When a receptor of the B-Cell binds
to an antigen, the antigen is partitioned and then brought to the surface with an
MHC-molecule. The receptor of the T-Cell binds with a certain affinity to the MHC-
molecule on the surface of the B-Cell. The affinity can be seen as a measurement to
the number of lymphokines that must be secreted by the T-Cell to clonally proliferate
the B-Cell into a plasma cell that can produce antibodies. The memory of the NIS
on frequently detected antigen is built-up by the B-Cells that frequently proliferate
into plasma cells. Thus, to model an AIS, there are a few basic concepts that must be
considered:

• There are trained detectors (artificial lymphocytes) that detect non-self patterns
with a certain affinity.

• The artificial immune system may need a good repository of self patterns or
self and non-self patterns to train the artificial lymphocytes (ALCs) to be self-
tolerant.

• The affinity between an ALC and a pattern needs to be measured. The measured
affinity indicates to what degree an ALC detects a pattern.

• To be able to measure affinity, the representation of the patterns and the ALCs
need to have the same structure.

• The affinity between two ALCs needs to be measured. The measured affinity
indicates to what degree an ALC links with another ALC to form a network.

• The artificial immune system has memory that is built-up by the artificial lym-
phocytes that frequently detect non-self patterns.

• When an ALC detects non-self patterns, it can be cloned and the clones can be
mutated to have more diversity in the search space.

Using the above concepts as a guideline, the pseudo code in Algorithm 19.1 is a
proposal of a basic AIS. Each of the algorithm’s parts are briefly explained next.

1. Initializing C and determining DT : The population C can either be populated
with randomly generated ALCs or with ALCs that are initialized with a cross
section of the data set to be learned. If a cross section of the data set is used to
initialize the ALCs, the complement of the data set will determine the training
set DT . These and other initialization methods are discussed for each of the AIS
models in the sections to follow.
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Algorithm 19.1 Basic AIS Algorithm

Initialize a set of ALCs as population C;
Determine the antigen patterns as training set DT ;
while some stopping condition(s) not true do

for each antigen pattern zp ∈ DT do
Select a subset of ALCs for exposure to zp, as population S ⊆ C;
for each ALC, xi ∈ S do

Calculate the antigen affinity between zp and xi;
end
Select a subset of ALCs with the highest calculated antigen affinity as
population H ⊆ S;
Adapt the ALCs in H with some selection method, based on the calculated
antigen affinity and/or the network affinity among ALCs in H;
Update the stimulation level of each ALC in H;

end
end

2. Stopping condition for the while-loop: In most of the discussed AIS models,
the stopping condition is based on convergence of the ALC population or a preset
number of iterations.

3. Selecting a subset, S, of ALCs: The selected subset S can be the entire set
P or a number of randomly selected ALCs from P. Selection of S can also be
based on the stimulation level (as discussed below).

4. Calculating the antigen affinity: The antigen affinity is the measurement
of similarity or dissimilarity between an ALC and an antigen pattern. The most
commonly used measures of affinity in existing AIS models are the Euclidean
distance, r-continuous matching rule, hamming distance and cosine similarity.

5. Selecting a subset, H, of ALCs: In some of the AIS models, the selection of
highest affinity ALCs is based on a preset affinity threshold. Thus, the selected
subset H can be the entire set S, depending on the preset affinity threshold.

6. Calculating the network affinity: This is the measurement of affinity be-
tween two ALCs. The different measures of network affinity are the same as those
for antigen affinity. A preset network affinity threshold determines whether two
or more ALCs are linked to form a network.

7. Adapting the ALCs in subset H: Adaptation of ALCs can be seen as the
maturation process of the ALC, supervised or unsupervised. Some of the se-
lection methods that can be used are negative selection (or positive selection),
clonal selection and/or some evolutionary technique with mutation operators.
ALCs that form a network can influence each other to adapt to an antigen.
These selection methods are discussed for each of the discussed AIS models in
the chapter.

8. Updating the stimulation of an ALC: The stimulation level is calculated in
different ways in existing AIS models. In some AIS models, the stimulation level
is seen as the summation of antigen affinities, which determines the resource
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level of an ALC. The stimulation level can also be used to determine a selection
of ALCs as the memory set. The memory set contains the ALCs that most
frequently match an antigen pattern, thus memory status is given to these ALCs.
The stimulation level is discussed for the different AIS models in the chapter.

19.2 Classical View Models

One of the main features in the classical view of the natural immune system is the ma-
ture T-Cells, which are self-tolerant, i.e. mature T-Cells have the ability to distinguish
between self cells and foreign/non-self cells. This section discusses AIS models based
on or inspired by the classical view of the natural immune system. Thus, the discussed
AIS models train artificial lymphocytes (ALCs) on a set of self patterns to be self-
tolerant, i.e. the ability to distinguish between self and non-self patterns. A training
technique known as negative selection is discussed as well as the different measuring
techniques to determine a match between an ALC and a self/non-self pattern.

19.2.1 Negative Selection

One of the AIS models based on the classical view of the natural immune system is the
model introduced by Forrest et al. [281]. In this classical AIS, Forrest et al. introduced
a training technique known as negative selection. In the model, all patterns and ALCs
are represented by nominal-valued attributes or as binary strings.

The affinity between an ALC and a pattern is measured using the r-continuous match-
ing rule. Figure 19.1 illustrates the r-continuous matching rule between an ALC and
a pattern.

The r-continuous matching rule is a partial matching rule, i.e. an ALC detects a
pattern if there are r-continuous or more matches in the corresponding positions. r
is the degree of affinity for an ALC to detect a pattern. In Figure 19.1 there are
seven continuous matches between the ALC and the pattern. Thus, if r = 4, the ALC
matches the pattern in Figure 19.1, since 7 > r. If r > 7, the ALC does not match
the pattern in the figure. A higher value of r indicates a stronger affinity between an
ALC and a pattern.

A set of ALCs in the model represents the mature T-Cells in the natural immune
system. A training set of self patterns is used to train the set of ALCs using the
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negative selection technique. Algorithm 19.2 summarizes negative selection.

Algorithm 19.2 Training ALCs with Negative Selection

Set counter na as the number of self-tolerant ALCs to train;
Create an empty set of self-tolerant ALCs as C;
Determine the training set of self patterns as DT ;
while size of C not equal to na do

Randomly generate an ALC, xi;
Matched=false;
for each self pattern zp ∈ DT do

if affinity between xi and zp is higher than affinity threshold r then
matched=true;
break;

end
end
if not matched then

Add xi to set C;
end

end

For each randomly generated ALC, the affinity between the ALC and each self pattern
in the training set is calculated. If the affinity between any self pattern and an ALC is
higher than the affinity threshold, r, the ALC is discarded and a new ALC is randomly
generated. The new ALC also needs to be measured against the training set of self
patterns. If the affinity between all the self patterns and an ALC is lower than the
affinity threshold, r, the ALC is added to the self-tolerant set of ALCs. Thus, the
set of ALCs is negatively selected, i.e. only those ALCs with a calculated affinity less
than the affinity threshold, r, will be included in the set of ALCs.

The trained, self-tolerant set of ALCs is then presented with a testing set of self
and non-self patterns for classification. The affinity between each training pattern
and the set of self-tolerant ALCs is calculated. If the calculated affinity is below the
affinity threshold, r, the pattern is classified as a self pattern; otherwise, the pattern
is classified as a non-self pattern. The training set is monitored by continually testing
the ALC set against the training set for changes. A drawback of the negative selection
model is that the training set needs to have a good representation of self patterns.
Another drawback is the exhaustive replacement of an ALC during the monitoring of
the training set until the randomly generated ALC is self-tolerant.

19.2.2 Evolutionary Approaches

A different approach is proposed by Kim and Bentley [457] where ALCs are not ran-
domly generated and tested with negative selection, but an evolutionary process is
used to evolve ALCs towards non-self and to maintain diversity and generality among
the ALCs. The model by Potter and De Jong [689] applies a coevolutionary genetic
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algorithm to evolve ALCs towards the selected class of non-self patterns in the training
set and further away from the selected class of self patterns. Once the fitness of the
ALC set evolves to a point where all the non-self patterns and none of the self patterns
are detected, the ALCs represent a description of the concept. If the training set of self
and non-self patterns is noisy, the ALC set will be evolved until most of the non-self
patterns are detected and as few as possible self patterns are detected. The evolved
ALCs can discriminate between examples and counter-examples of a given concept.
Each class of patterns in the training set is selected in turn as self and all other classes
as non-self to evolve the different concept in the training set.

Gonzalez et al. [327] present a negative selection method that is able to train ALCs
with continuous-valued self patterns. The ALCs are evolved away from the training set
of self patterns and well separated from one another to maximize the coverage of non-
self, i.e. the least possible overlap among the evolved set of ALCs is desired. A similar
approach is presented in the model of Graaff and Engelbrecht [332]. All patterns are
represented as binary strings and the Hamming distance is used as affinity measure.
A genetic algorithm is used to evolve ALCs away from the training set of self patterns
towards a maximum non-self space coverage and a minimum overlap among existing
ALCs in the set. The difference to the model of Gonzalez et al. [327], is that each ALC
in the set has an affinity threshold. The ALCs are trained with an adapted negative
selection method as illustrated in Figure 19.2.

With the adapted negative selection method the affinity threshold, aneg, of an ALC
is determined by the distance to the closest self pattern from the ALC. The affinity
threshold, aneg, is used to determine a match with a non-self pattern. Thus, if the
measured affinity between a pattern and an ALC is less than the ALC’s affinity thresh-
old, aneg, the pattern is classified as a non-self pattern. Figure 19.2 also illustrates the
drawback of false positives and false negatives when the ALCs are trained with the
adapted negative selection method. These drawbacks are due to an incomplete static
self set. The known self is the incomplete static self set that is used to train the ALCs
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and the unknown self is the self patterns that are not known during training. The
unknown self can also represent self patterns that are outliers to the set of known self
patterns.

Surely all evolved ALCs will cover non-self space, but not all ALCs will detect non-self
patterns. Therefore, Graaff and Engelbrecht [332] proposed a transition function, the
life counter function, to determine an ALC’s status. ALCs with annihilated status
are removed in an attempt only to have mature and memory ALCs with optimum
classification of non-self patterns.

19.3 Clonal Selection Theory Models

The process of clonal selection in the natural immune system was discussed in Sec-
tion 18.5. Clonal selection in AIS is the selection of a set of ALCs with the highest
calculated affinity with a non-self pattern. The selected ALCs are then cloned and
mutated in an attempt to have a higher binding affinity with the presented non-self
pattern. The mutated clones compete with the existing set of ALCs, based on the
calculated affinity between the mutated clones and the non-self pattern, for survival
to be exposed to the next non-self pattern. This section discusses some of the AIS
models inspired by the clonal selection theory and gives the pseudo code for one of
these AIS models.

19.3.1 CLONALG

The selection of a lymphocyte by a detected antigen for clonal proliferation, inspired
the modeling of CLONALG. De Castro and Von Zuben [186, 190] presented CLON-
ALG as an algorithm that performs machine-learning and pattern recognition tasks.
All patterns are presented as binary strings.

The affinity between an ALC and a non-self pattern is measured as the Hamming
distance between the ALC and the non-self pattern. The Hamming distance gives
an indication of the similarity between two patterns, i.e. a lower Hamming distance
between an ALC and a non-self pattern implies a stronger affinity.

All patterns in the training set are seen as non-self patterns. Algorithm 19.3 summa-
rizes CLONALG for pattern recognition tasks. The different parts of the algorithm
are explained next.

The set of ALCs, C, is initialized with na randomly generated ALCs. The ALC set is
split into a memory set of ALCs, M, and the remaining set of ALCs, R, which are not
in M. Thus, C = M∪R and |C| = |M|+ |R| (i.e. na = nm + nr). The assumption
in CLONALG is that there is one memory ALC for each of the patterns that needs to
be recognized in DT .

Each training pattern, zp, at random position, p, in DT , is presented to C. The affinity
between zp and each ALC in C is calculated. A subset of the nh highest affinity ALCs
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Algorithm 19.3 CLONALG Algorithm for Pattern Recognition

t = tmax;
Determine the antigen patterns as training set DT ;
Initialize a set of na randomly generated ALCs as population C;
Select a subset of nm = |DT | memory ALCs, as population M⊆ C;
Select a subset of na − nm ALCs, as population R ⊆ C;
while t > 0 do

for each antigen pattern zp ∈ DT do
Calculate the affinity between zp and each of the ALCs in C;
Select nh of the highest affinity ALCs with zp from C as subset H;
Sort the ALCs of H in ascending order, according to the ALCs affinity;
Generate W as the set of clones for each ALC in H;
Generate W ′

as the set of mutated clones for each ALC in W ;
Calculate the affinity between zp and each of the ALCs in W ′

;
Select the ALC with the highest affinity in W ′

as x̂;
Insert x̂ in M at position p;
Replace nl of the lowest affinity ALCs in R with randomly generated ALCs;

end
t = t− 1;

end

is selected from C as subset H. The nh selected ALCs are then sorted in ascending
order of affinity with zp. Each ALC in the sorted H are cloned proportional to the
calculated affinity with zp and added to set W . The number of clones, nci, generated
for an ALC, xi, at position i in the sorted set H, is defined in [190] as

nci = round

(
β × nh

i

)
(19.1)

where β is a multiplying factor and round returns the closest integer.

The ALCs in the cloned set, W , are mutated with a mutation rate that is inversely
proportional to the calculated affinity, i.e. a higher affinity implies a lower rate of
mutation. The mutated clones in W are added to a set of mutated clones, W ′

. The
affinity between the mutated clones in W ′

and the selected training pattern, zp, is
calculated.

The ALC with the highest calculated affinity in W ′
, x̂, replaces the ALC at position,

p, in set M, if the affinity of x̂ is higher than the affinity of the ALC in set M.
Randomly generated ALCs replace nl of the lowest affinity ALCs in R. The learning
process repeats, until the maximum number of generations, tmax, has been reached. A
modified version of CLONALG has been applied to multi-modal function optimization
[190].
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19.3.2 Dynamic Clonal Selection

In some cases the problem that needs to be optimized consists of self patterns that
changes through time. To address these types of problems, the dynamic clonal selection
algorithm (DCS) was introduced by Kim and Bentley [461]. The dynamic clonal
selection algorithm is based on the AIS proposed by Hofmeyr [372]. The basic concept
is to have three different populations of ALCs, categorized into immature, mature and
memory ALC populations.

Kim and Bentley [461] explored the effect of three parameters on the adaptability of the
model to changing self. These parameters were the tolerization period, the activation
threshold and the life span. The tolerization period is a threshold on the number of
generations during which ALCs can become self-tolerant. The activation threshold is
used as a measure to determine if a mature ALC met the minimum number of antigen
matches to be able to become a memory ALC. The life span parameter indicates the
maximum number of generations that a mature ALC is allowed to be in the system.

If the mature ALC’s life span meets the pre-determined life span parameter value,
the mature ALC is deleted from the system. The experimental results with different
parameter settings indicated that an increase in the life span with a decrease in the
activation threshold resulted in the model to have an increase in detecting true non-
self patterns. An increase in the tolerization period resulted in less self patterns being
detected falsely than non-self patterns, but only if the self patterns were stable.

With a changing self the increase in tolerization period had no remarkable influence
in the false detection of self patterns as non-self patterns. Although the DCS could
incrementally learn the structure of self and non-self patterns, it lacked the ability to
learn any changes in unseen self patterns. The memory ALCs in the DCS algorithm
had infinite lifespan. This feature was omitted in the extended DCS by removing
memory ALCs that were not self-tolerant to newly introduced self patterns [460].

A further extension to the DCS was done by introducing hyper-mutation on the deleted
memory ALCs [459]. The deleted memory ALCs were mutated to seed the immature
detector population, i.e. deleted memory ALCs form part of a gene library. Since
these deleted memory ALCs contain information (which was responsible for giving
them memory status), applying mutation on these ALCs will retain and fine tune the
system, i.e. reinforcing the algorithm with previously trained ALCs.

19.3.3 Multi-Layered AIS

Knight and Timmis [468] proposed a novel clonal selection inspired model that consists
of multi-layers to address some of the shortfalls of the AINE model as discussed in
Section 19.4. The defined layers interact to adapt and learn the structure of the
presented antigen patterns. The model follows the framework for an AIS as presented
in [182]. The basic requirements in [182] for an AIS are the representation of the
components (like B-Cells), the evaluation of interactions between these components or
their environment (affinity) and adaptability of the model in a dynamic environment
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(i.e. different selection methods, e.g. negative or clonal selection).

The proposed multi-layered AIS consists of the following layers: the free-antibody
layer (F), B-Cell layer (B) and the memory layer (M). The set of training patterns,
DT , is seen as antigen. Each layer has an affinity threshold (aF , aB, aM), and a death
threshold (εF , εB, εM). The death threshold is measured against the length of time
since a cell was last stimulated within a specific layer. If the death threshold does not
exceed this calculated length of time, the cell dies and is removed from the population
in the specific layer. The affinity threshold (aF , aB, aM) determines whether an
antigen binds to an entity within a specific layer. The affinity, fa, between an antigen
pattern and an entity in a layer is measured using Euclidean distance. Algorithm 19.4
summarizes the multi-layered AIS. The different parts of the algorithm are discussed
next.

An antigen, zp, first enters the free-antibody layer, F . In the free-antibody layer, the
antigen pattern is then presented to n

′
f free-antibodies. The number of free-antibody

bindings is stored in the variable nb. The antigen, zp, then enters the B-Cell layer, B,
and is randomly presented to the B-Cells in this layer until it binds to one of the B-
Cells. After binding, the stimulated B-Cell, uk, produces a clone, ũk, if the stimulation
level exceeds a predetermined stimulation threshold, γB. The stimulation level is based
on the number of free-antibody bindings, nb, as calculated in the free-antibody layer.
The clone is then mutated as u

′
k and added to the B-Cell layer. The stimulated B-

Cell, uk, produces free antibodies that are mutated versions of the original B-Cell.
The number of free antibodies produced by a B-Cell is defined in [468] as follows:

fF (zp,uk) = (amax − fa (zp,uk))× α (19.2)

where fF is the number of antibodies that are added to the free-antibody layer, amax

is the maximum possible distance between a B-Cell and an antigen pattern in the data
space (i.e. lowest possible affinity), fa (zp,uk) is the affinity between antigen, zp, and
B-Cell, uk, and α is some positive constant.

If an antigen does not bind to any of the B-Cells, a new B-Cell, unew, is created with
the same presentation as the unbinded antigen, zp. The new B-Cell is added to the
B-Cell layer resulting in a more diverse coverage of antigen data. The new B-Cell,
unew, also produces mutated free antibodies, which are added to the free-antibody
layer.

The final layer, M, consists only of memory cells and only responds to new memory
cells. The clone, ũk, is presented as a new memory cell to the memory layer, M. The
memory cell with the lowest affinity to ũk is selected as vmin. If the affinity between
ũk and vmin is lower than the predetermined memory threshold, aM, and the affinity
of ũk is less than the affinity of vmin with the antigen, zp (that was responsible for
the creation of the new memory cell, ũk), then vmin is replaced by the new memory
cell, ũk. If the affinity between ũk and vmin is higher than the predetermined memory
threshold, aM, the new memory cell, ũk, is added to the memory layer.

The multi-layered model improved the SSAIS model [626] (discussed in Section 19.4)
in that the multi-layered model obtained better compression on data while forming
stable clusters.
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Algorithm 19.4 A Multi-layered AIS Algorithm

Determine the antigen patterns as training set DT ;
for each antigen pattern, zp ∈ DT do

nb = 0;
bcell bind = false;
Randomly select n

′
f free antibodies from set F as subset E ;

for each free antibody, yj ∈ E do
Calculate the affinity, fa (zp,yj);
if fa (zp,yj) < aF then

nb + +;
Remove free antibody yj from set F ;

end
end
for each randomly selected B-Cell, uk, at index position, k, in B-Cell set, B do

Calculate the affinity, fa (zp,uk);
if fa (zp,uk) < aB then

bcell bind = true;
break;

end
end
if not bcell bind then

Initialize new B-Cell, unew, with zp and add to B-Cell set B;
Produce fF (zp,unew) free antibodies and add to free-antibody set F ;

end
else

Produce fF (zp,uk) free antibodies and add to free-antibody set F ;
Update stimulation level of uk by adding nb;
if stimulation level of uk ≥ γB then

Clone B-Cell, uk, as ũk;
Mutate ũk as u

′
k;

Add u
′
k to B-Cell set B;

Select memory cell, vmin, from M as memory cell with lowest affinity, fa,
to ũk;
if fa (ũk,vmin) < aM then

Add ũk to memory set M;
end
else

if fa (zp, ũk) < fa (zp,vmin) then
Replace memory cell, vmin, with clone, ũk, in memory set, M;

end
end

end
end

end
for each cell, xi, in set F ∪ B ∪M do

if living time of xi > εF ,B,M then
Remove xi from corresponding set;

end
end
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19.4 Network Theory Models

This section discusses the AIS models based on or inspired by the network theory of the
natural immune system (as discussed in Section 18.6). The ALCs in a network based
AIS interact with each other to learn the structure of a non-self pattern, resulting
in the formation of ALC networks. The ALCs in a network co-stimulates and/or co-
suppress each other to adapt to the non-self pattern. The stimulation of an ALC is
based on the calculated affinity between the ALC and the non-self pattern and/or
the calculated affinity between the ALC and network ALCs as co-stimulation and/or
co-suppression.

19.4.1 Artificial Immune Network

The network theory was first modeled by Timmis and Neal [846] resulting in the arti-
ficial immune network (AINE). AINE defines the new concept of artificial recognition
balls (ARBs), which are bounded by a resource limited environment. In summary,
AINE consists of a population of ARBs, links between the ARBs, a set of antigen
training patterns (of which a cross section is used to initialize the ARBs) and some
clonal operations for learning. An ARB represents a region of antigen space that is
covered by a certain type of B-Cell.

ARBs that are close to each other (similar) in antigen space are connected with
weighted edges to form a number of individual network structures. The similarity
(affinity) between ARBs and between the ARBs and an antigen is measured using
Euclidean distance. Two ARBs are connected if the affinity between them is below
the network affinity threshold, an, calculated as the average distance between all the
antigen patterns in the training set, DT . Algorithm 19.5 summarizes AINE.

For each iteration, all training patterns in set DT are presented to the set of ARBs, A.
After each iteration, each ARB, wi, calculates its stimulation level, larb,i, and allocates
resources (i.e. B-Cells) based on its stimulation level as defined in equation (19.7).
The stimulation level, larb,i, of an ARB, wi, is calculated as the summation of the
antigen stimulation, la,i, the network stimulation, ln,i, and the network suppression,
sn,i. The stimulation level of an ARB is defined as [626]

larb,i(wi) = la,i(wi) + ln,i(wi) + sn,i(wi) (19.3)

with

la,i(wi) =
|La,i|∑
k=0

1− La,ik (19.4)

ln,i(wi) =
|Ln,i|∑
k=0

1− Ln,ik (19.5)

sn,i(wi) = −
|Ln,i|∑
k=0

Ln,ik (19.6)
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Algorithm 19.5 Artificial Immune Network (AINE)

Normalise the training data;
Initialise the ARB population, A, using a randomly selected cross section of the
normalised training data;
Initialise the antigen set, DT , with the remaining normalised training data;
Set the maximum number of available resources, nr,max;
for each ARB, wi ∈ A do

for each ARB, wj ∈ A do
Calculate the ARB affinity, fa (wi,wj);
if fa (wi,wj) < an and i �= j then

Add fa (wi,wj) to the set of network stimulation levels, Ln,i;
end

end
end
while stopping condition not true do

for each antigen, zp ∈ DT do
for each ARB, wi ∈ A do

Calculate the antigen affinity, fa (zp,wi);
if fa (zp,wi) < an then

Add fa (zp,wi) to the set of antigen stimulation levels, La,i;
end

end
end
Allocate resources to the set of ARBs, A, using Algorithm 19.6;
Clone and mutate remaining ARBs in A;
Integrate mutated clones into A;

end

where La,i is the normalised set of affinities between an ARB, wi, and all antigen zp ∈
DT for which fa (zp,wi) < an. The antigen stimulation, la,i is therefore the sum of
all antigen affinities smaller than an. Note that 0 ≤ La,ik ≤ 1 for all La,ik ∈ La,i. The
network stimulation, ln,i, and the network suppression, sn,i, are the sum of affinities
between an ARB and all its connected neighbours as defined in equations (19.5) and
(19.6) respectively. Here Ln,i is the normalised set of affinities between an ARB, wi,
and all other ARBs in set A. Network stimulation and suppression are based on the
summation of the distances to the |Ln,i| linked neighbours of the ARB, wi. Network
suppression, sn,i represents the dissimilarity between an ARB and its neighbouring
ARBs. Network suppression keeps the size of the ARB population under control.

The number of resources allocated to an ARB is calculated as

fr(wi) = α× (
larb,i(wi)2

)
(19.7)

where larb,i is the stimulation level and α some constant. Since the stimulation level
of the ARBs in A are normalised, some of the ARBs will have no resources allo-
cated. After the resource allocation step, the weakest ARBs (i.e. ARBs having zero
resources) are removed from the population of ARBs. Each of the remaining ARBs
in the population, A, is then cloned and mutated if the calculated stimulation level of
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Algorithm 19.6 Resource Allocation in the Artificial Immune Network

Set the number of allocated resources, nr = 0;
for each ARB, wi ∈ A do

Allocate resources, fr (wi);
nr = nr + fr (wi);

end
Sort the set of ARBs, A, in ascending order of fr;
if nr > nr,max then

α1 = nr − nr,max;
for each ARB, wi ∈ A do

α2 = fr (wi);
if α2 = 0 then

Remove wi from set A;
end
else

α2 = α2 − α1;
if α2 ≤ 0 then

Remove wi from set A;
α1 = −α2;

end
else

fr (wi) = α2;
break;

end
end

end
end

the ARB is above a certain threshold. These mutated clones are then integrated into
the population by re-calculating the network links between the ARBs in A.

Since ARBs compete for resources based on their stimulation level, an upper limit is
set to the number of resources (i.e. B-Cells) available. The stopping condition can be
based on whether the maximum size of A has been reached.

19.4.2 Self Stabilizing AIS

The self stabilizing AIS (SSAIS) was developed by Neal [626] to simplify and improve
AINE. The main difference between these two models is that the SSAIS does not have
a shared/distributed pool with a fixed number of resources that ARBs must compete
for. The resource level of an ARB is increased if the ARB has the highest stimulation
for an incoming pattern. Each ARB calculates its resource level locally. After a data
pattern has been presented to all of the ARBs, the resource level of the most stim-
ulated ARB is increased by addition of the ARB’s stimulation level. Algorithm 19.7
summarizes the self stabilizing AIS. The differences between Algorithm 19.5 (AINE)
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and Algorithm 19.7 (SSAIS) are discussed next.

Algorithm 19.7 Self Stabilizing AIS

Normalize the training data;
Initialize the ARB population, A, using a cross section of the normalized training
data;
Initialize the antigen set, DT , with the remaining normalized training data;
for each antigen, zp ∈ DT do

Present zp to each wi ∈ A;
Calculate stimulation level, larb,i, for each ARB, wi;
Select the ARB with the highest calculated stimulation level as ŵ;
Increase the resource level of ŵ;
for each ARB, wi ∈ B;wi �= ŵ do

Deplete the resources of wi;
end
Remove ARBs with the number of allocated resources less than nr,min;
Generate nc clones of ŵ and mutate;
Integrate clones (mutated or not) into A;

end

SSAIS defines the stimulation level, larb,i, of an ARB as [626]

larb,i = la,i + δ (19.8)

where
la,i(wi, zp) = 1− d (wi, zp) (19.9)

and
δ(wi) =

ln,i

|Ln,i| (19.10)

For the above, ln,i is defined in (19.5) and d (w,zp) is the Euclidean distance between an
ARB, wi, and a training pattern, zp, in normalised data space (i.e. 0 ≤ d (wi, zp) ≤ 1);
δ is the average of the summation over the distances between ARB wi to its |Ln,i|
linked neighbours. Network suppression as defined in equation (19.6) is discarded to
prevent premature convergence of ARBs to dominating training patterns.

For each training pattern, zp ∈ DT , presented to the network of ARBs the resource
level of each ARB that does not have the highest stimulation level is geometrically
decayed using [626]

fr (wi, zp) = ν × fr (wi,xp−1) (19.11)

where fr (wi, zp) is the number of resources for an ARB, wi, after being presented to
p training patterns; ν is the decaying rate of resources for an ARB. All ARBs with a
resource level less than the fixed predefined mortality threshold, εdeath, are culled from
the network. Resources are only allocated by the ARB, ŵ, with the highest calculated
stimulation level, larb. The number of resources allocated to ŵ is calculated using
[626]

fr (ŵ, zp) = ν × (fr (ŵ, zp−1) + larb (ŵ, zp)) (19.12)
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where larb (ŵ, zp) is the stimulation level of the highest stimulated ARB after being
presented to p training patterns.

The highest stimulated ARB, ŵ, generates nc clones, calculated as [626]

nc =
fr (ŵ, zp)
εdeath × 10

(19.13)

Thus, the number of clones generated by an ARB is proportional to the resource level
of the ARB. The generated clones are mutated with a fixed mutation rate. If a clone
is mutated, the clone is assigned εdeath × 10 resources from the ARB’s resource level.
Clones (mutated or not) are integrated with the network of ARBs, A.

The SSAIS resulted in a model that can adapt to continuously changing data sets,
and a genuinely stable AIS. A drawback to SSAIS is that the final networks that are
formed have poor data compression and the SSAIS model has a time lag to adapt to
the introduction of a new region of data due to the lack of diversity of the network of
ARBs.

19.4.3 Enhanced Artificial Immune Network

Another enhancement of the AINE model was proposed by Nasraoui et al. [622].
The enhanced AINE was applied to the clustering (profiling) of session patterns for a
specific web site. A drawback of AINE [846] is that the population of ARBs increases
at a high rate. The population is also overtaken by a few ARBs with high stimulation
levels that matches a small number of antigen, resulting in premature convergence
of the population of ARBs. AINE [846] represents clusters of poor quality with a
repertoire of ARBs that is not diverse enough to represent the antigen space due to
premature convergence.

The enhanced AINE requires two passes through the antigen training set (session
patterns). To avoid premature convergence of the population of ARBs, the number of
resources allocated to an ARB was calculated as [622]

γ1 × (log larb,i) (19.14)

where larb,i is the stimulation level of the ARB and γ1 is some positive constant. This
modification to the number of resources allocated to an ARB limits the influence of
those ARBs with high stimulation to slowly overtake the population.

The number of clones, nc, generated by an ARB is defined as [622]

nc = γ2 × larb,i (19.15)

where γ2 is a positive constant. After the integration of the mutated clones, the ARBs
with the same B-Cell representation are merged into one ARB. Merging identical
ARBs limits the high rate of population growth. Merging of two ARBs, w1 and w2,
is by applying a crossover operator to the ARBs’ attributes, defined as [622]

w∗
k =

(w1k + w2k)
2

(19.16)



19.4 Network Theory Models 441

where w∗
k is the value of attribute k of the merged ARB.

The Euclidean distance used in AINE was replaced by the cosine similarity between
two session patterns [622]. The cosine similarity, ϑ, between two vectors is defined as

ϑ (x,y) =
∑|x|

k=1 xkyk√∑|x|
k=1 xk ×

∑|y|
k=1 yk

(19.17)

where xk and yk are the values of the k-th attribute in vectors x and y respectively.

19.4.4 Dynamic Weighted B-Cell AIS

Most of the existing network based AIS models consist of a number of interconnected
(linked) B-Cells. The linked B-Cells form networks that need to be maintained. Often
the required number of network B-Cells exceeds the number of training patterns that
needs to be learned by the model, resulting in an increase in the number of links
between these B-Cells. This makes the model unscalable and in some cases non-
adaptive to dynamic environments.

The set of ARBs in [846] is an example of such an immune network. The number
of ARBs could reach the same size as the training set or even exceed it, making
the model unscalable. An alternative scalable network AIS, which is also adaptable in
dynamic environments, was presented in [623]. This scalable model consists of dynamic
weighted B-Cells (DWB-Cells). A DWB-Cell represents an influence zone, which can
be defined as a weight function that decreases with the time since the antigen has
been presented to the network and with the distance between the DWB-Cell and the
presented antigen.

The model also proposed the incorporation of a dynamic stimulation/suppression fac-
tor into the stimulation level of a DWB-Cell to control the proliferation and redun-
dancy of DWB-Cells in the network, thus old sub-nets die if not re-stimulated by
current incoming antigen patterns. A drawback of existing immune network based
learning models is that the number of interactions between the B-Cells in the network
and a specific antigen are immense. The model of [623] uses K-means to cluster the
DWB-Cells in order to decrease the number of interactions between an antigen pat-
tern and the B-Cells in the network. The centroids of each of these formed clusters (or
sub-nets) are used to represent the sub-nets and interact with the presented antigen
pattern.

A DWB-Cell is only cloned if it reached maturity. Maturity of a DWB-Cell is reached
when the cell’s age exceeds a minimum time threshold. Cloning of a DWB-Cell is
proportional to the cell’s stimulation level. If a DWB-Cell’s age exceeds a maximum
time threshold, cloning of the cell is prevented, thus increasing the probability to
clone newer DWB-Cells. The mechanism of somatic hyper mutation is computationally
expensive and is replaced in the DWB-model by dendritic injection. When the immune
network encounters an antigen that the network cannot react to, the specific antigen is
initialized as a DWB-Cell. Thus, new information is injected into the immune network.
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Dendritic injection models the dendritic cells, which function in the natural immune
system has only recently been understood. The DWB-model has proven to be robust
to noise, adaptive and scalable in learning antigen structures.

19.4.5 Adapted Artificial Immune Network

One of the drawbacks in the model of Timmis [845] is the difficulty to keep the network
size within certain boundaries through all the iterations. This drawback makes the
model unstable. The model presented in [909] adapts the model in [845] with a few
changes in the implementation. Some of these changes are that the training set is
used as the antigen set in the model with a set of randomly initiated antibodies. The
model in [845] randomly assigns the patterns in the training set to the antigen set and
antibody set.

A further change to the model is in the initialization of the network affinity threshold
(NAT). In [845] the NAT was calculated as an average distance between all the patterns
in the antigen set. In the adapted model, only the average distance between the n× k
lowest distances in the antigen set was calculated, where n is the size of the antigen
set and k some constant.

The stimulation level of an antibody in the adapted model is defined as the affinity
between the antibody and the set of antigens. The model in [845] considered the degree
of stimulation of the antibody and the degree of suppression of the antibody by other
antibodies. The adapted model in [909] improves on the model in [845] in that the
maximum network size is limited to the number of training patterns in the training
set and stable clusters are formed with a minimal number of control parameters.

19.4.6 aiNet

The aiNet model developed by De Castro and Von Zuben [184, 187] implements some
of the principles found in the immune network theory. A typical network in the model
consists of nodes (the B-Cells or antibodies) which are connected by edges to form
node pairs. A weight value (connection strength) is assigned to each edge, to indicate
the similarity between two nodes. Thus, the network that is formed during training is
presented by an edge-weighted graph.

Algorithm 19.8 summarizes aiNet. aiNet uses clonal selection [97] to adapt the network
of antibodies, B, to training patterns, DT . Thus, the data in the training set is seen
as antigens. During training the model builds a network of memory cells to determine
any clusters in the data. The model uses Euclidean distance as a metric of affinity (or
dissimilarity), d (zp,yj), between a training pattern, zp, and an antibody, yj , in the
network. A higher value of d (zp,yj) implies a higher degree of dissimilarity between
an antibody and an antigen training pattern.

Clonal selection is applied to nh of the antibodies with the highest affinity (dissim-
ilarity) to a specific antigen. The number of clones, nc, for each antibody, yj , is
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Algorithm 19.8 aiNet Learning Algorithm

Determine the antigen patterns as training set DT ;
while stopping condition not true do

for each antigen pattern, zp ∈ DT do
for each antibody, yj ∈ B do

Calculate the antigen affinity fa (zp,yj);
end
Select nh of the highest affinity antibodies as set H;
for each yj ∈ H do

Create nc clones of yj ;
Mutate the nc created clones and add to set H′

;
end
for each y

′
j ∈ H

′
do

Calculate the antigen affinity, fa(zp,y
′
j);

end
Select nh% of the highest affinity antibodies as set M;
for each yj ∈M do

if fa (zp,yj) > amax then
Remove yj from M;

end
end
for each yj1 ∈M do

for each yj2 ∈M do
Calculate the network affinity fa (yj1 ,yj2);
if fa (yj1 ,yj2) < εs then

Mark yj1 and yj2 as elimination from M;
end

end
end
Remove all elimination antibodies from M;
B = B ∪M;

end
for each yj1 ∈ B do

for each yj2 ∈ B do
Calculate the network affinity, fa (yj1 ,yj2);
if fa (yj1 ,yj1) < εs then

Mark yj1 and yj2 as elimination from B;
end

end
end
Remove all elimination antibodies from B;
Replace nl% of the lowest affinity antibodies in B with randomly generated
antibodies;

end
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proportional to the affinity, fa(zp,yi) = d (zp,yj) of the antibody. The number of
clones, nc, is calculated as

nc = round (na(1− fa(zp,yj)) (19.18)

where na = |B| is the number of antibodies. The nc clones of each antibody are
mutated according to their affinity (dissimilarity) to guide the search to a locally
optimized network; that is, to improve the recognition of antigens. The mutated
clones are added to a set, H′

. Antibodies are mutated as follows [184],

y
′
j = yj − pm (yj − zp) (19.19)

where yj is the antibody, zp is the antigen training pattern, and pm is the mutation
rate. The mutation rate is inverse proportional to the calculated affinity, fa (zp,yj).
The higher the calculated affinity, the less yj is mutated. Based on the affinity (dissim-
ilarity) of the mutated clones with the antigen pattern zp, nh% of the highest affinity
mutated clones are selected as the memory set, M. An antibody in M is removed if
the affinity between the antibody and zp is higher than the threshold, amax.

The Euclidean distance metric is also used to determine the affinity between antibodies
in the network. A smaller Euclidean distance implies a higher degree of similarity
between the two antibodies. The similarity between antibodies is measured against a
suppression threshold, εs, resulting in elimination of the antibodies if the suppression
threshold is not exceeded. This results in network pruning and elimination of self-
recognizing antibodies.

The affinity (similarity) among antibodies in M is measured against εs for removal
from M. M is then concatenated with the set of antibodies B. The affinity among
antibodies in B is measured against εs for removal from B. A percentage, nl%, of
antibodies with the lowest affinity to zp in B is replaced with randomly generated
antibodies.

The stopping condition of the while-loop can be one of the following [184]:

1. Setting an iteration counter: A counter can be set to determine the maximum
number of iterations.

2. Setting the maximum size of the network: The while-loop can be stopped
when the size of the network reaches a maximum.

3. Testing for convergence: The algorithm terminates when the average error
between the training patterns and the antibodies in M rises after a number of
consecutive iterations.

The formed weighted-edge graph maps clusters in the data set to network clusters.
The aiNet model uses the minimal spanning tree of the formed weighted-edge graph
or hierarchical agglomerative clustering to determine the structure of the network
clusters in the graph.

Some of the drawbacks of the aiNet model is the large number of parameters that need
to be specified and that the cost of computation increases as the number of variables
of a training pattern increases. The minimum spanning tree will also have difficulty
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in determining the network clusters if there are intersections between the clusters in
the training data set. aiNet is capable of reducing data redundancy and obtaining a
compressed representation of the data.

19.5 Danger Theory Models

In contrast to the classical view of the natural immune system, danger theory distin-
guishes between what is dangerous and non-dangerous, rather than what is self and
non-self (as discussed in Section 18.7). A foreign cell is seen to be dangerous if the cell
causes a stress signal of abnormal cell death in the body, i.e. necrotic cell death. One
of the motivations for the danger theory is the ability of the natural immune system
to adapt to a changing self. This motivation has inspired some of the discussed danger
AIS models in this section. Each of the discussed models has a different definition of
a stress signal and is thus problem specific. The main difference between the danger
AIS models to those AIS models inspired by the classical view (as discussed in 19.2),
is the inclusion of a signal to determine whether a non-self pattern is dangerous or
not.

19.5.1 Mobile Ad-Hoc Networks

Dynamic source routing (DSR) is one of the communication protocols that can be used
between terminal nodes in a mobile ad-hoc network. A mobile ad-hoc network consists
of terminal nodes, each with a radio as communication device to transmit information
to other terminal nodes in the network, i.e. no infrastructure between nodes. Thus,
nodes not only function as terminals, but also as relays of the transmitted information
in the network. This type of network topology requires a common routing protocol
like DSR. Thus, the correct execution of the DSR protocol by each node in the ad-hoc
network is crucial.

Sometimes a node misbehaves in the network. This misbehaviour can be associated
with nodes that are in standby mode (not relaying information), hardware failures
or malicious software (like viruses) on the node can try to overthrow the network.
A danger theory inspired AIS is proposed in [757] to detect misbehaving nodes in a
mobile ad-hoc network. Each node in the network applies an instance of the algorithm
on observations made by the node. The nodes communicate detection information
between each other.

Self is defined as normal network traffic without any packet loss. This implies that
the defined self is dynamic, since a new node in the network might generate new
unseen traffic without any packet loss, i.e dynamic self. Each node in the network
monitors/observes the traffic for each of the neighboring nodes in the network. These
observations are buffered for a specific buffering time. If the buffering time elapsed, the
buffered observations are seen as self patterns and are randomly selected to generate
self-tolerant detectors for the node. Existing detectors that detect a self pattern are
removed and replaced by the newly generated detectors. Negative selection is used to
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generate these detectors.

Observations in the buffer are presented to existing detectors. If an existing detector
matches an observation, the score of the detector is rewarded with a value of one;
otherwise, it is penalized with a value of one. A detector can only match an observation
if the observation is accompanied by a danger signal. Detectors are clustered according
to their detection scores. If a source node experience a packet loss (misbehaving node),
the source node will generate an observation with a danger signal along the route
where the packet loss was experienced. The action taken by the neighboring nodes is
to discard the observation from the buffered observations through correlation with the
danger signal (also observed). This prevents the generation of detectors on non-self
observations.

19.5.2 An Adaptive Mailbox

The danger theory inspired the proposal of an AIS for an adaptive mailbox. The
proposed AIS in [772] classifies interesting from uninteresting emails. The algorithm
is divided into two phases: an initialization phase (training) and a running phase
(testing).

Algorithm 19.9 summarizes the initialization phase. The initialization phase monitors
the user’s actions for each new email, z, received. If z is deleted by the user, an anti-
body, ynew, is generated to detect the deleted email. After adding the new antibody
to the antibody set, B, the existing antibodies in the set are cloned and mutated to
improve the generalization of the antibody set. Thus, the antibody set, B, represents
uninteresting email. The initialization phase continuous until the size of the antibody
set, B, reached a certain maximum, na.

Algorithm 19.9 Initialization Phase for an Adaptive Mailbox

while |B| < na do
if user action = delete email, z, then

Generate an antibody, ynew, from z;
Add, ynew, to the set of antibodies, B;
for each antibody, yj ∈ B do

Clone and mutate antibody, yj , to maximize affinity with antibody, ynew;
Add, nh, highest affinity clones to B;

end
end

end

The running phase (see Algorithm 19.10) labels all incoming email, z, that are deleted
by the user as uninteresting and buffers them as antigen in DT . When the buffered
emails reach a specific size, nT , the buffer, DT , is presented to the antibody set, B.
The antibody set then adapts to the presented buffer of emails (antigens) through
clonal selection. Thus, the antibody set, B, adapts to the changing interest of the user
to represent the latest general set of antibodies (uninteresting emails).
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Algorithm 19.10 Running Phase for an Adaptive Mailbox

while true do
Wait for action from user;
if user action = delete email, z, then

Assign class uninteresting to e;
end
else

Assign class interesting to z;
end
Generate an antigen, z

′
, from email, z;

Add z
′
to buffered set, DT ;

if |DT | = nT then
for each yj ∈ B do

un = 0;
in = 0;
for each z

′
p ∈ DT do

Calculate fa(z
′
p,yj);

if z
′
p is of class uninteresting then
un = un + fa(z

′
p,yj);

end
else

in = in + fa(z
′
p,yj);

end
end
α = un− in;
Clone and mutate yj in proportion to α;

end
Remove nl of the antibodies with the lowest calculated α from B;
Remove all antigens from DT ;

end
Calculate the degree of danger as, θ;
while θ > θmax do

Add θ unread emails to set, U ;
for each z

′
p ∈ U do

for each yj ∈ B do
Calculate fa(z

′
p,yj);

end
Set ah = highest affinity in U ;
if ah > amax then

Move z
′
p to temporary store or mark as deleted;

end
end

end
end
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The number of unread emails in the inbox determines the degree of the danger signal,
θ. If the degree of the danger signal reaches a limit, θmax, the unread emails, U , are
presented to the set of antibodies, B, for classification as uninteresting. An email,
z

′
p ∈ U , is classified as uninteresting if the highest calculated affinity, ah, is higher

than an affinity threshold, amax. The uninteresting classified email is then moved to
a temporary folder or deleted. The degree of the danger signal needs to be calculated
for each new email received.

19.5.3 Intrusion Detection

The basic function of an intrusion detection system (IDS) is to monitor incoming traffic
at a specific host connected to a network. The IDS creates a profile of normal user
traffic and signals an alarm of intrusion for any detected abnormal traffic, i.e. traffic
not forming part of the normal profile. A problem to this solution of profile creation,
is that the normal traffic changes through time. Thus, the profile gets outdated.

The danger signal used in danger theory inspired the modeling of an adaptable IDS.
The danger signal can be defined as a signal generated by the host if any incoming traf-
fic resulted in abnormal CPU usage, memory usage or security attacks. The adaptable
IDS will only signal an alarm of abnormal traffic if the IDS receives a danger signal
from the host. If no danger signal is received from the host, the profile is adapted to
accommodate the new detected normal traffic. Danger theory inspired AISs applied
to intrusion/anomaly detection can be found in [13, 30].

19.6 Applications and Other AIS models

Artificial immune systems have been successfully applied to many problem do-
mains. Some of these domains range from network intrusion and anomaly detection
[13, 30, 176, 279, 280, 327, 373, 374, 457, 458, 803, 804] to data classification models
[692, 890], virus detection [281], concept learning [689], data clustering [184], robotics
[431, 892], pattern recognition and data mining [107, 398, 845, 847]. The AIS has
also been applied to the initialization of feed-forward neural network weights [189],
the initialization of centers of a radial basis function neural network [188] and the
optimization of multi-modal functions [181, 294]. The interested reader is referred to
[175, 183, 185] for more information on AIS applications.

19.7 Assignments

1. With reference to negative selection as described in Section 19.2.1, discuss the
consequences of having small values for r. Also discuss the consequences for
large values.

2. A drawback of negative selection is that the training set needs to have a good
representation of self patterns. Why is this the case?
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3. How can an AIS be used for classification problems where there is more than
two classes?

4. How does the self stabilizing AIS improve on AINE?

5. How does the enhanced artificial immune network improve on AINE?

6. The enhanced artificial immune network calculates the number of clones gener-
ated by an ARB as nc = l × sl.

(a) Why is the number of clones a function of the stimulation level?
(b) Explain the consequences of large and small values of l.

7. For the aiNet model in Algorithm 19.5, how does network suppression help to
control the size of the ARB population?

8. Why should an antibody be mutated less the higher the affinity of the antibody
to an antigen training pattern, considering the aiNet model?

9. Discuss the influence of different values for the danger signal threshold as applied
in the adaptive mailbox problem discussed in Section 19.5.2





Part VI

FUZZY SYSTEMS

Two-valued, or Boolean, logic is a well-defined and used theory. Boolean logic is es-
pecially important for implementation in computing systems where information, or
knowledge about a problem, is binary encoded. Boolean logic also played an impor-
tant role in the development of the first AI reasoning systems, especially the inference
engine of expert systems [315]. For such knowledge representation and reasoning sys-
tems, propositional and first-order predicate calculus are extensively used as represen-
tation language [539, 629]. Associated with Boolean logic is the traditional two-valued
set theory, where an element either belongs to a set or not. That is, set member-
ship is precise. Coupled with Boolean knowledge, two-valued set theory enabled the
development of exact reasoning systems.

While some successes have been achieved using two-valued logic and sets, it is not
possible to solve all problems by mapping the domain into two-valued variables. Most
real-world problems are characterized by the ability of a representation language (or
logic) to process incomplete, imprecise, vague or uncertain information. While two-
valued logic and set theory fail in such environments, fuzzy logic and fuzzy sets give the
formal tools to reason about such uncertain information. With fuzzy logic, domains
are characterized by linguistic terms, rather than by numbers. For example, in the
phrases ‘‘it is partly cloudy’’, or ‘‘Stephan is very tall’’, both partly and very are
linguistic terms describing the magnitude of the fuzzy (or linguistic) variables cloudy
and tall. The human brain has the ability to understand these terms, and infer from
them that it will most probably not rain, and that Stephan might just be a good
basket ball player (note, again, the fuzzy terms!). However, how do we use two-valued
logic to represent these phrases?

Together with fuzzy logic, fuzzy set theory provides the tools to develop software
products that model human reasoning (also referred to as approximate reasoning).
In fuzzy sets, an element belongs to a set to a degree, indicating the certainty (or
uncertainty) of membership.

The development of logic has a long and rich history, in which major philosophers
played a role. The foundations of two-valued logic stemmed from the efforts of Aristotle
(and other philosophers of that time), resulting in the so-called Laws of Thought [440].
The first version of these laws was proposed around 400 B.C., namely the Law of the
Excluded Middle. This law states that every proposition must have only one of two
outcomes: either true or false. Even in that time, immediate objections were given
with examples of propositions that could be true, and simultaneously not true.

451
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It was another great philosopher, Plato, who laid the foundations of what is today
referred to as fuzzy logic. It was, however, only in the 1900s that Lejewski and
Lukasiewicz [514] proposed the first alternative to the Aristotelian two-valued logic.
Three-valued logic has a third value which is assigned a numeric value between true and
false. Lukasiewicz later extended this to four-valued and five-valued logic. It was only
recently, in 1965, that Lotfi Zadeh [944] produced the foundations of infinite-valued
logic with his mathematics of fuzzy set theory.

Following the work of Zadeh, much research has been done in the theory of fuzzy
systems, with applications in control, information systems, pattern recognition and
decision support. Some successful real-world applications include automatic control of
dam gates for hydroelectric-powerplants, camera aiming, compensation against vibra-
tions in camcorders, cruise-control for automobiles, controlling air-conditioning sys-
tems, document archiving systems, optimized planning of bus time-tables, and many
more. While fuzzy sets and logic have been used to solve real-world problems, they
were also combined with other CI paradigms to form hybrid systems, for example,
fuzzy neural networks and fuzzy genetic algorithms [957].

A different set theoretic approach which also uses the concept of membership functions,
namely rough sets (introduced by Pawlak in 1982 [668]), is sometimes confused with
fuzzy sets. While both fuzzy sets and rough sets make use of membership functions,
rough sets differ in the sense that a lower and upper approximation to the rough set
is determined. The lower approximation consists of all elements that belong with full
certainty to the corresponding set, while the upper approximation consists of elements
that may possibly belong to the set. Rough sets are frequently used in machine
learning as classifier, where they are used to find the smallest number of features to
discern between classes [600]. Rough sets are also used for extracting knowledge from
incomplete data [600, 683]. Hybrid approaches that employ both fuzzy and rough sets
have also been developed [843].

The remainder of this Part is organized as follows: Chapter 20 discusses fuzzy sets,
while fuzzy logic and reasoning are covered in Chapter 21. A short overview of fuzzy
controllers is given in Chapter 22. The Part is concluded with an overview of rough
set theory in Chapter 23.



Chapter 20

Fuzzy Sets

Consider the problem of designing a set of all tall people, and assigning all the people
you know to this set. Consider classical set theory where an element is either a member
of the set or not. Suppose all tall people are described as those with height greater
than 1.75m. Then, clearly a person of height 1.78m will be an element of the set tall,
and someone with height 1.5m will not belong to the set of tall people. But, the same
will apply to someone of height 1.73m, which implies that someone who falls only 2cm
short is not considered as being tall. Also, using two-valued set theory, there is no
distinction among members of the set of tall people. For example, someone of height
1.78m and one of height 2.1m belongs equally to the set! Thus, no semantics are
included in the description of membership.

The alternative, fuzzy sets, has no problem with this situation. In this case all the
people you know will be members of the set tall, but to different degrees. For example,
a person of height 2.1m may be a member of the set to degree 0.95, while someone of
length 1.7m may belong to the set with degree 0.4.

Fuzzy sets are an extension of crisp (two-valued) sets to handle the concept of par-
tial truth, which enables the modeling of the uncertainties of natural language. The
vagueness in natural language is further emphasized by linguistic terms used to de-
scribe objects or situations. For example, the phrase when it is very cloudy, it will most
probably rain, has the linguistic terms very and most probably – which are understood
by the human brain. Fuzzy sets, together with fuzzy reasoning systems, give the tools
to also write software, which enables computing systems to understand such vague
terms, and to reason with these terms.

This chapter formally introduces fuzzy sets. Section 20.1 defines fuzzy sets, while
membership functions are discussed in Section 20.2. Operators that can be applied to
fuzzy sets are covered in Section 20.3. Characteristics of fuzzy sets are summarized
in Section 20.4. The chapter is concluded with a discussion of the differences between
fuzziness and probability in Section 20.5.

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
c©2007 John Wiley & Sons, Ltd
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20.1 Formal Definitions

Different to classical sets, elements of a fuzzy set have membership degrees to that
set. The degree of membership to a fuzzy set indicates the certainty (or uncertainty)
that the element belongs to that set. Formally defined, suppose X is the domain, or
universe of discourse, and x ∈ X is a specific element of the domain X. Then, the
fuzzy set A is characterized by a membership mapping function [944]

µA : X → [0, 1] (20.1)

Therefore, for all x ∈ X, µA(x) indicates the certainty to which element x belongs to
fuzzy set A. For two-valued sets, µA(x) is either 0 or 1.

Fuzzy sets can be defined for discrete (finite) or continuous (infinite) domains. The
notation used to denote fuzzy sets differ based on the type of domain over which
that set is defined. In the case of a discrete domain X, the fuzzy set can either
be expressed in the form of an nx-dimensional vector or using the sum notation. If
X = {x1, x2, · · · , xnx

}, then, using set notation,

A = {(µA(xi)/xi)|xi ∈ X, i = 1, · · · , nx} (20.2)

Using sum notation,

A = µA(x1)/x1 + µA(x2)/x2 + · · ·+ µA(xnx
)/xnx

=
nx∑
i=1

µA(xi)/xi (20.3)

where the sum should not be confused with algebraic summation. The use of sum
notation above simply serves as an indication that A is a set of ordered pairs. A
continuous fuzzy set, A, is denoted as

A =
∫

X

µ(x)/x (20.4)

Again, the integral notation should not be algebraically interpreted.

20.2 Membership Functions

The membership function is the essence of fuzzy sets. A membership function, also
referred to as the characteristic function of the fuzzy set, defines the fuzzy set. The
function is used to associate a degree of membership of each of the elements of the
domain to the corresponding fuzzy set. Two-valued sets are also characterized by
a membership function. For example, consider the domain X of all floating-point
numbers in the range [0, 100]. Define the crisp set A ⊂ X of all floating-point numbers
in the range [10, 50]. Then, the membership function for the crisp set A is represented
in Figure 20.1. All x ∈ [10, 50] have µA(x) = 1, while all other floating-point numbers
have µA(x) = 0.

Membership functions for fuzzy sets can be of any shape or type as determined by
experts in the domain over which the sets are defined. While designers of fuzzy sets
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Figure 20.1 Illustration of Membership Function for Two-Valued Sets
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Figure 20.2 Illustration of tall Membership Function

have much freedom in selecting appropriate membership functions, these functions
must satisfy the following constraints:

• A membership function must be bounded from below by 0 and from above by 1.

• The range of a membership function must therefore be [0, 1].

• For each x ∈ X, µA(x) must be unique. That is, the same element cannot map
to different degrees of membership for the same fuzzy set.

Returning to the tall fuzzy set, a possible membership function can be defined as (also
illustrated in Figure 20.2)

tall(x) =




0 if length(x) < 1.5m
(length(x)− 1.5m)× 2.0m if 1.5m ≤ length(x) ≤ 2.0m
1 if length(x) > 2.0m

(20.5)

Now, assume that a person has a length of 1.75m, then µA(1.75) = 0.5.

While the tall membership function above used a discrete step function, more complex
discrete and continuous functions can be used, for example:
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• Triangular functions (refer to Figure 20.3(a)), defined as

µA(x) =




0 if x ≤ αmin
x−αmin

β−αmin
if x ∈ (αmin, β]

αmax−x
αmax−β if x ∈ (β, αmax)
0 if x ≥ αmax

(20.6)

• Trapezoidal functions (refer to Figure 20.3(b)), defined as

µA(x) =




0 if x ≤ αmin
x−αmin

β1−αmin
if x ∈ [αmin, β1)

αmax−x
αmax−β2

if x ∈ (β2, αmax)
0 if x ≥ αmax

(20.7)

• Γ-membership functions, defined as

µAx =
{

0 if x ≤ α

1− e−γ(x−α)2 if x > α
(20.8)

• S-membership functions, defined as

µA(x) =




0 if x ≤ αmin

2
(

x−αmin

αmax−αmin

)2

if x ∈ (αmin, β]

1− 2
(

x−αmax

αmax−αmin

)2

if x ∈ (β, αmax)
1 if x ≥ αmax

(20.9)

• Logistic function (refer to Figure 20.3(c)), defined as

µA(x) =
1

1 + e−γx
(20.10)

• Exponential-like function, defined as

µA(x) =
1

1 + γ(x− β)2
(20.11)

with γ > 1.

• Gaussian function (refer to Figure 20.3(d)), defined as

µA(x) = e−γ(x−β)2 (20.12)

It is the task of the human expert of the domain to define the function that captures
the characteristics of the fuzzy set.
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20.3 Fuzzy Operators

As for crisp sets, relations and operators are defined for fuzzy sets. Each of these
relations and operators are defined below. For this purpose let X be the domain, or
universe, and A and B are fuzzy sets defined over the domain X.

Equality of fuzzy sets: For two-valued sets, sets are equal if the two sets have
exactly the same elements. For fuzzy sets, however, equality cannot be concluded
if the two sets have the same elements. The degree of membership of elements
to the sets must also be equal. That is, the membership functions of the two
sets must be the same.

Therefore, two fuzzy sets A and B are equal if and only if the sets have the same
domain, and µA(x) = µB(x) for all x ∈ X. That is, A = B.

Containment of fuzzy sets: For two-valued sets, A ⊂ B if all the elements of A
are also elements of B. For fuzzy sets, this definition is not complete, and the
degrees of membership of elements to the sets have to be considered.

Fuzzy set A is a subset of fuzzy set B if and only if µA(x) ≤ µB(x) for all x ∈ X.
That is, A ⊂ B.

Figure 20.4 shows two membership functions for which A ⊂ B.

Complement of a fuzzy set (NOT): The complement of a two-valued set is simply
the set containing the entire domain without the elements of that set. For fuzzy
sets, the complement of the set A consists of all the elements of set A, but the
membership degrees differ. Let A denote the complement of set A. Then, for all
x ∈ X, µA(x) = 1− µA(x). It also follows that A ∩A �= ∅ and A ∪A �= X.

Intersection of fuzzy sets (AND): The intersection of two-valued sets is the set
of elements occurring in both sets. Operators that implement intersection are
referred to as t-norms. The result of a t-norm is a set that contain all the
elements of the two fuzzy sets, but with degree of membership that depends on
the specific t-norm. A number of t-norms have been used, of which the min-
operator and the product operator are the most popular. If A and B are two
fuzzy sets, then

• Min-operator: µA∩B(x) = min{µA(x), µB(x)}, ∀x ∈ X

• Product operator: µA∩B(x) = µA(x)µB(x), ∀x ∈ X

The difference between the two operations should be noted. Taking the product
of membership degrees is a much stronger operator than taking the minimum,
resulting in lower membership degrees for the intersection. It should also be
noted that the ultimate result of a series of intersections approaches 0.0, even if
the degrees of memberships to the original sets are high.

Other t-norms are [676],

• µA∩B(x) = 1

1+ p

√(
1−µA(x)

p

)p
+
(

1−µB(x)
p

)p
, for p > 0.

• µA∩B(x) = max{0, (1+p)(µA(x)+µB(x)−1)−pµA(x)µB(x)}, for p ≥ −1.
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• µA∩B(x) = µA(x)µB(x)
p+(1−p)(µA(x)+µB(x)−µA(x)µB(x)) , for p > 0.

• µA∩B(x) = 1
p
√

1
(µA(x))p + 1

(µB(x))p −1

• µA∩B(x) = µA(x)µB(x)
max{µA(x)µB(x),p} , for p ∈ [0, 1].

• µA∩B(x) = p × min{µA(x), µB(x)} + (1 − p) × 1
2 (µA(x) + µB(x)), where

p ∈ [0, 1] [930].

Union of fuzzy sets (OR): The union of two-valued sets contains the elements of
all of the sets. The same is true for fuzzy sets, but with membership degrees
that depend on the specific uninion operator used. These operators are referred
to as s-norms, of which the max-operator and summation operator are most
frequently used:

• Max-operator: µA∪B(x) = max{µA(x), µB(x)}, ∀x ∈ X, or
• Summation operator: µA∪B(x) = µA(x)+µB(x)−µA(x)µB(x), ∀x ∈ X

Again, careful consideration must be given to the differences between the two
approaches above. In the limit, a series of unions will have a result that approx-
imates 1.0, even though membership degrees are low for the original sets!

Other s-norms are [676],

• µA∪B(x) = 1

1+ p

√(
µA(x)

1−µA(x)

)p
+
(

µB(x)
1−µB(x)

)p
, for p > 0.

• µA∪B(x) = min{1, µA(x) + µB(x) + pµA(x)µB(x)}, for p ≥ 0.

• µA∪B(x) = µA(x)+µB(x)−µA(x)µB(x)−(1−p)µA(x)µB(x)
1−(1−p)µA(x)µB(x) , for p ≥ 0.

• µA∪B(x) = 1− 1
p
√

1
(1−µA(x))p + 1

(1−µB(x))p −1

• 1− (1−µA(x))(1−µB(x))
max{(1−µA(x)),(1−µB(x)),p} for p ∈ [0, 1].

• µA∪B(x) = p × max{µA(x), µB(x)} + (1 − p) × 1
2 (µA(x) + µB(x)), where

p ∈ [0, 1] [930].

Operations on two-valued sets are easily visualized using Venn-diagrams. For fuzzy
sets the effects of operations can be illustrated by graphing the resulting membership
function, as illustrated in Figure 20.5. For the illustration in Figure 20.5, assume
the fuzzy sets A, defined as floating point numbers between [50, 80], and B, defined
as numbers about 40 (refer to Figure 20.5(a) for definitions of the membership func-
tions). The complement of set A is illustrated in Figure 20.5(b), the intersection of
the two sets are given in Figure 20.5(c) (assuming the min operator), and the union
in Figure 20.5(d) (assuming the max operator).

20.4 Fuzzy Set Characteristics

As discussed previously, fuzzy sets are described by membership functions. In this
section, characteristics of membership functions are overviewed. These characteristics
include normality, height, support, core, cut, unimodality, and cardinality.
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Normality: A fuzzy set A is normal if that set has an element that belongs to the
set with degree 1. That is,

∃x ∈ A • µA(x) = 1 (20.13)

then A is normal, otherwise, A is subnormal. Normality can alternatively be
defined as

sup
x

µA(x) = 1 (20.14)

Height: The height of a fuzzy set is defined as the supremum of the membership
function, i.e.

height(A) = sup
x

µA(x) (20.15)

Support: The support of fuzzy set A is the set of all elements in the universe of
discourse, X, that belongs to A with non-zero membership. That is,

support(A) = {x ∈ X|µA(x) > 0} (20.16)

Core: The core of fuzzy set A is the set of all elements in the domain that belongs
to A with membership degree 1. That is,

core(A) = {x ∈ X|µA(x) = 1} (20.17)

α-cut: The set of elements of A with membership degree greater than α is referred
to as the α-cut of A:

Aα = {x ∈ X|µA(x) ≥ α} (20.18)

Unimodality: A fuzzy set is unimodal if its membership function is a unimodal
function, i.e. the function has just one maximum.

Cardinality: The cardinality of two-valued sets is simply the number of elements
within the sets. This is not the same for fuzzy sets. The cardinality of fuzzy set
A, for a finite domain, X, is defined as

card(A) =
∑
x∈X

µA(x) (20.19)

and for an infinite domain,

card(A) =
∫

x∈X

µA(x)dx (20.20)

For example, if X = {a, b, c, d}, and A = 0.3/a + 0.9/b + 0.1/c + 0.7/d, then
card(A) = 0.3 + 0.9 + 0.1 + 0.7 = 2.0.

Normalization: A fuzzy set is normalized by dividing the membership function by
the height of the fuzzy set. That is,

normalized(A) =
µA(x)

height(x)
(20.21)
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Other characteristics of fuzzy sets (i.e. concentration, dilation, contrast intensification,
fuzzification) are described in Section 21.1.1.

The properties of fuzzy sets are very similar to that of two-valued sets, however, there
are some differences. Fuzzy sets follow, similar to two-valued sets, the commutative,
associative, distributive, transitive and idempotency properties. One of the major
differences is in the properties of the cardinality of fuzzy sets, as listed below:

• card(A) + card(B) = card(A ∩B) + card(A ∪B)

• card(A) + card(A) = card(X)

where A and B are fuzzy sets, and X is the universe of discourse.

20.5 Fuzziness and Probability

There is often confusion between the concepts of fuzziness and probability. It is im-
portant that the similarities and differences between these two terms are understood.
Both terms refer to degrees of certainty (or uncertainty) of events occurring. But
that is where the similarities stop. Degrees of certainty as given by statistical prob-
ability are only meaningful before the associated event occurs. After that event, the
probability no longer applies, since the outcome of the event is known. For example,
before flipping a fair coin, there is a 50% probability that heads will be on top, and
a 50% probability that it will be tails. After the event of flipping the coin, there is
no uncertainty as to whether heads or tails are on top, and for that event the degree
of certainty no longer applies. In contrast, membership to fuzzy sets is still relevant
after an event occurred. For example, consider the fuzzy set of tall people, with Peter
belonging to that set with degree 0.9. Suppose the event to execute is to determine
if Peter is good at basketball. Given some membership function, the outcome of the
event is a degree of membership to the set of good basketball players. After the event
occurred, Peter still belongs to the set of tall people with degree 0.9.

Furthermore, probability assumes independence among events, while fuzziness is not
based on this assumption. Also, probability assumes a closed world model where
everything is known, and where probability is based on frequency measures of occurring
events. That is, probabilities are estimated based on a repetition of a finite number
of experiments carried out in a stationary environment. The probability of an event
A is thus estimated as

Prob(A) = lim
n→∞

nA

n
(20.22)

where nA is the number of experiments for which event A occurred, and n is the
total number of experiments. Fuzziness does not assume everything to be known, and
is based on descriptive measures of the domain (in terms of membership functions),
instead of subjective frequency measures.

Fuzziness is not probability, and probability is not fuzziness. Probability and fuzzy
sets can, however, be used in a symbiotic way to express the probability of a fuzzy
event.
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Figure 20.6 Membership Functions for Assignments 1 and 2

20.6 Assignments

1. Perform intersection and union for the fuzzy sets in Figure 20.5 using the t-norms
and s-norms defined in Section 20.3.

2. Give the height, support, core and normalization of the fuzzy sets in Figure 20.5.

3. Consider the two fuzzy sets:

long pencils = {pencil1/0.1, pencil2/0.2, pencil3/0.4, pencil4/0.6,

pencil5/0.8, pencil6/1.0}
medium pencils = {pencil1/1.0, pencil2/0.6, pencil3/0.4, pencil4/0.3,

pencil5/0.1}
(a) Determine the union of the two sets.
(b) Determine the intersection of the two sets.

4. What is the difference between the membership function of an ordinary set and
a fuzzy set?

5. Consider the membership functions of two fuzzy sets, A and B, as given in
Figure 20.6.

(a) Draw the membership function for the fuzzy set C = A ∩ B, using the
min-operator.

(b) Compute µC(5).
(c) Is C normal? Justify your answer.

6. Consider the fuzzy sets A and B such that core(A) ∩ core(B) = ∅. Is fuzzy set
C = A ∩B normal? Justify your answer.

7. Show that the min-operator is

(a) commutative
(b) idempotent
(c) transitive





Chapter 21

Fuzzy Logic and Reasoning

The previous chapter discussed theoretical aspects of fuzzy sets. The fuzzy set oper-
ators allow rudimentary reasoning about facts. For example, consider the three fuzzy
sets tall, good athlete and good basketball player. Now assume

µtall(Peter) = 0.9 and µgood athlete(Peter) = 0.8

µtall(Carl) = 0.9 and µgood athlete(Carl) = 0.5

If it is known that a good basketball player is tall and is a good athlete, then which
one of Peter or Carl will be the better basketball player? Through application of the
intersection operator,

µgood basketball player(Peter) = min{0.9, 0.8} = 0.8

µgood basketball player(Carl) = min{0.9, 0.5} = 0.5

Using the standard fuzzy set operators, it is possible to determine that Peter will be
better at the sport than Carl.

The example above is a very simplistic situation. For most real-world problems, the
sought outcome is a function of a number of complex events or scenarios. For example,
actions made by a controller are determined by a set of fuzzy if-then rules. The if-then
rules describe situations that can occur, with a corresponding action that the controller
should execute. It is, however, possible that more than one situation, as described by
if-then rules, are simultaneously active, with different actions. The problem is to
determine the best action to take. A mechanism is therefore needed to infer an action
from a set of activated situations.

What is necessary is a formal logic system that can be used to reason about uncer-
tainties in order to derive at plausible actions. Fuzzy logic [945] is such a system,
which together with an inferencing system form a tool for approximate reasoning.
Section 21.1 provides a short definition of fuzzy logic and a short overview of its main
concepts. The process of fuzzy inferencing is described in Section 21.2.

21.1 Fuzzy Logic

Zadeh [947] defines fuzzy logic (FL) as a logical system, which is an extension of multi-
valued logic that is intended to serve as a logic for approximate reasoning. The two
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most important concepts within FL is that of a linguistic variable and the fuzzy if-then
rule. These concepts are discussed in the next subsections.

21.1.1 Linguistics Variables and Hedges

Lotfi Zadeh [946] introduced the concept of linguistic variable (or fuzzy variable) in
1973, which allows computation with words in stead of numbers. Linguistic variables
are variables with values that are words or sentences from natural language. For ex-
ample, referring again to the set of tall people, tall is a linguistic variable. Sensory
inputs are linguistic variables, or nouns in a natural language, for example, tempera-
ture, pressure, displacement, etc. Linguistic variables (and hedges, explained below)
allow the translation of natural language into logical, or numerical statements, which
provide the tools for approximate reasoning (refer to Section 21.2).

Linguistic variables can be divided into different categories:

• Quantification variables, e.g. all, most, many, none, etc.

• Usuality variables, e.g. sometimes, frequently, always, seldom, etc.

• Likelihood variables, e.g. possible, likely, certain, etc.

In natural language, nouns are frequently combined with adjectives for quantifications
of these nouns. For example, in the phrase very tall, the noun tall is quantified by the
adjective very, indicating a person who is “taller” than tall. In fuzzy systems theory,
these adjectives are referred to as hedges. A hedge serves as a modifier of fuzzy values.
In other words, the hedge very changes the membership of elements of the set tall
to different membership values in the set very tall. Hedges are implemented through
subjective definitions of mathematical functions, to transform membership values in a
systematic manner.

To illustrate the implementation of hedges, consider again the set of tall people, and
assume the membership function µtall characterizes the degree of membership of ele-
ments to the set tall. Our task is to create a new set, very tall of people that are very
tall. In this case, the hedge very can be implemented as the square function. That is,
µvery tall(x) = µtall(x)2. Hence, if Peter belongs to the set tall with certainty 0.9, then
he also belongs to the set very tall with certainty 0.81. This makes sense according to
our natural understanding of the phrase very tall: Degree of membership to the set
very tall should be less than membership to the set tall. Alternatively, consider the set
sort of tall to represent all people that are sort of tall, i.e. people that are shorter than
tall. In this case, the hedge sort of can be implemented as the square root function,
µsort of tall(x) =

√
µtall(x). So, if Peter belongs to the set tall with degree 0.81, he

belongs to the set sort of tall with degree 0.9.

Different kinds of hedges can be defined, as listed below:

• Concentration hedges (e.g. very), where the membership values get relatively
smaller. That is, the membership values get more concentrated around points
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with higher membership degrees. Concentration hedges can be defined, in gen-
eral terms, as

µA′ (x) = µA(x)p, for p > 1 (21.1)

where A
′
is the concentration of set A.

• Dilation hedges (e.g. somewhat, sort of, generally), where membership values
increases. Dilation hedges are defined, in general, as

µA′ (x) = µA(x)1/p for p > 1 (21.2)

• Contrast intensification hedges (e.g. extremely), where memberships lower
than 1/2 are diminished, but memberships larger than 1/2 are elevated. This
hedge is defined as,

µA′ (x) =
{

2p−1µA(x)p if µA(x) ≤ 0.5
1− 2p−1(1− µA(x))p if µA(x) > 0.5 (21.3)

which intensifies contrast.

• Vague hedges (e.g. seldom), are opposite to contrast intensification hedges,
having membership values altered using

µA′ (x) =
{ √

µA(x)/2 if µA(x) ≤ 0.5
1−√

(1− µA(x))/2 if µA(x) > 0.5
(21.4)

Vague hedges introduce more “fuzziness” into the set.

• Probabilistic hedges, which express probabilities, e.g. likely, not very likely,
probably, etc.

21.1.2 Fuzzy Rules

For fuzzy systems in general, the dynamic behavior of that system is characterized by
a set of linguistic fuzzy rules. These rules are based on the knowledge and experience
of a human expert within that domain. Fuzzy rules are of the general form

if antecedent(s) then consequent(s) (21.5)

The antecedent and consequent of a fuzzy rule are propositions containing linguistic
variables. In general, a fuzzy rule is expressed as

if A is a and B is b then C is c (21.6)

where A and B are fuzzy sets with universe of discourse X1, and C is a fuzzy set with
universe of discourse X2. Therefore, the antecedent of a rule form a combination of
fuzzy sets through application of the logic operators (i.e. complement, intersection,
union). The consequent part of a rule is usually a single fuzzy set, with a corresponding
membership function. Multiple fuzzy sets can also occur within the consequent, in
which case they are combined using the logic operators.
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Figure 21.1 Fuzzy Rule-Based Reasoning System

Together, the fuzzy sets and fuzzy rules form the knowledge base of a fuzzy rule-based
reasoning system. In addition to the knowledge base, a fuzzy reasoning system consists
of three other components, each performing a specific task in the reasoning process,
i.e. fuzzification, inferencing and defuzzification. The different components of a fuzzy
rule based system are illustrated in Figure 21.1.

The question is now what sense can be made from a single fuzzy rule. For example,
for the rule,

if Age is Old the Speed is Slow (21.7)

what can be said about Speed if Age has the value of 70? Given the membership
functions for Age and Speed in Figure 21.2(a), then find µOld(70), which is 0.4. For
linguistic variable Speed find the intersection of the horizontal line with membership
function Slow. This gives the shaded area in Figure 21.2(b). A defuzzification operator
(refer to Section 21.2) is then used to find the center of gravity of the shaded area,
which gives the value of Speed = 3.

This simple example leads to the next question: How is a plausible outcome determined
if a system has more than one rule? This question is answered in the next section.

21.2 Fuzzy Inferencing

Together, the fuzzy sets and fuzzy rules form the knowledge base of a fuzzy rule-based
reasoning system. In addition to the knowledge base, a fuzzy reasoning system consists
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Figure 21.2 Interpreting a Fuzzy Rule

of three other components, each performing a specific task in the reasoning process,
i.e. fuzzification, inferencing, and defuzzification (refer to Figure 21.1).

The remainder of this section is organized as follows: fuzzification is discussed in
Section 21.2.1, fuzzy inferencing in Section 21.2.2, and defuzzification in Section 21.2.3.

21.2.1 Fuzzification

The antecedents of the fuzzy rules form the fuzzy “input space,” while the consequents
form the fuzzy “output space”. The input space is defined by the combination of input
fuzzy sets, while the output space is defined by the combination of output sets. The
fuzzification process is concerned with finding a fuzzy representation of non-fuzzy input
values. This is achieved through application of the membership functions associated
with each fuzzy set in the rule input space. That is, input values from the universe of
discourse are assigned membership values to fuzzy sets.
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For illustration purposes, assume the fuzzy sets A and B, and assume the correspond-
ing membership functions have been defined already. Let X denote the universe of
discourse for both fuzzy sets. The fuzzification process receives the elements a, b ∈ X,
and produces the membership degrees µA(a), µA(b), µB(a) and µB(b).

21.2.2 Inferencing

The task of the inferencing process is to map the fuzzified inputs (as received from
the fuzzification process) to the rule base, and to produce a fuzzified output for each
rule. That is, for the consequents in the rule output space, a degree of membership
to the output sets are determined based on the degrees of membership in the input
sets and the relationships between the input sets. The relationships between input
sets are defined by the logic operators that combine the sets in the antecedent. The
output fuzzy sets in the consequent are then combined to form one overall membership
function for the output of the rule.

Assume input fuzzy sets A and B with universe of discourse X1 and the output fuzzy
set C with X2 as universe of discourse. Consider the rule

if A is a and B is b then C is c (21.8)

From the fuzzification process, the inference engine knows µA(a) and µB(b). The
first step of the inferencing process is then to calculate the firing strength of each
rule in the rule base. This is achieved through combination of the antecedent sets
using the operators discussed in Section 20.3. For the example above, assuming the
min-operator, the firing strength is

min{µA(a), µB(b)} (21.9)

For each rule k, the firing strength αk is thus computed.

The next step is to accumulate all activated outcomes. During this step, one single
fuzzy value is determined for each ci ∈ C. Usually, the final fuzzy value, βi, associated
with each outcome ci is computed using the max-operator, i.e.

βi = max
∀k

{αki
} (21.10)

where αki
is the firing strength of rule k which has outcome ci.

The end result of the inferencing process is a series of fuzzified output values. Rules
that are not activated have a zero firing strength.

Rules can be weighted a priori with a factor (in the range [0,1]), representing the
degree of confidence in that rule. These rule confidence degrees are determined by the
human expert during the design process.
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21.2.3 Defuzzification

The firing strengths of rules represent the degree of membership to the sets in the
consequent of the corresponding rule. Given a set of activated rules and their cor-
responding firing strengths, the task of the defuzzification process is to convert the
output of the fuzzy rules into a scalar, or non-fuzzy value.

For the sake of the argument, suppose the following hedges are defined for linguistic
variable C (refer to Figure 21.3(a) for the definition of the membership functions):
large decrease (LD), slight increase (SI), no change (NC), slight increase (SI), and
large increase (LI). Assume three rules with the following C membership values: µLI =
0.8, µSI = 0.6 and µNC = 0.3.

Several inference methods exist to find an approximate scalar value to represent the
action to be taken:

• The max-min method: The rule with the largest firing strength is selected,
and it is determined which consequent membership function is activated. The
centroid of the area under that function is calculated and the horizontal coordi-
nate of that centroid is taken as the output of the controller. For our example,
the largest firing strength is 0.8, which corresponds to the large increase mem-
bership function. Figure 21.3(b) illustrates the calculation of the output.

• The averaging method: For this approach, the average rule firing strength is
calculated, and each membership function is clipped at the average. The centroid
of the composite area is calculated and its horizontal coordinate is used as output
of the controller. All rules therefore play a role in determining the action of the
controller. Refer to Figure 21.3(c) for an illustration of the averaging method.

• The root-sum-square method: Each membership function is scaled such that
the peak of the function is equal to the maximum firing strength that corre-
sponds to that function. The centroid of the composite area under the scaled
functions are computed and its horizontal coordinate is taken as output (refer
to Figure 21.3(d)).

• The clipped center of gravity method: For this approach, each membership
function is clipped at the corresponding rule firing strengths. The centroid of
the composite area is calculated and the horizontal coordinate is used as the
output of the controller. This approach to centroid calculation is illustrated in
Figure 21.3(e).

The calculation of the centroid of the trapezoidal areas depends on whether the domain
of the functions is discrete or continuous. For a discrete domain of a finite number
of values, nx, the output of the defuzzification process is calculated as (

∑
has its

algebraic meaning)

output =
∑nx

i=1 xiµC(xi)∑nx

i=1 µC(xi)
(21.11)

In the case of a continuous domain (
∫

has its algebraic meaning),

output =

∫
x∈X

xµ(x)dx∫
x∈X

µ(x)dx
(21.12)
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where X is the universe of discourse.

21.3 Assignments

1. For the two pencil fuzzy sets in the assignments of Chapter 20, define a hedge
for the set very long pencils, and give the resulting set.

2. Consider the following rule base:

if x is Small then y is Big

if x is Medium then y is Small

if x is Big then y is Medium

Given the membership functions illustrated in Figure 21.4, answer the following
questions:

(a) Using the clipped center of gravity method, draw the composite function
for which the centroid needs to be calculated, for x = 2.

(b) Compute the defuzzified output on the discrete domain,
Y = {0, 1, 2, 3, 4, 5, 6, 7, 8}

3. Repeat the assignment above for the root-sum-square method.

4. Develop a set of fuzzy rules and membership functions to adapt the values of
w, c1 and c2 of a gbest PSO.

5. Show how a fuzzy system can be used to adapt the learning rate of a FFNN
trained using gradient descent.
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Figure 21.3 Defuzzification Methods for Centroid Calculation
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Figure 21.4 Membership Functions for Assignments 2 and 3



Chapter 22

Fuzzy Controllers

The design of fuzzy controllers is one of the largest application areas of fuzzy logic.
Where fuzzy logic is frequently described as computing with words rather than numbers,
fuzzy control is described as control with sentences rather than equations. Thus,
instead of describing the control strategy in terms of differential equations, control is
expressed as a set of linguistic rules. These linguistic rules are easier understood by
humans than systems of mathematical equations.

The first application of fuzzy control comes from the work of Mamdani and Assilian
[554] in 1975, with their design of a fuzzy controller for a steam engine. The objective
of the controller was to maintain a constant speed by controlling the pressure on
pistons, by adjusting the heat supplied to a boiler. Since then, a vast number of fuzzy
controllers have been developed for consumer products and industrial processes. For
example, fuzzy controllers have been developed for washing machines, video cameras,
air conditioners, etc., while industrial applications include robot control, underground
trains, hydro-electrical power plants, cement kilns, etc.

This chapter gives a short overview of fuzzy controllers. Section 22.1 discusses the
components of such controllers, while Section 22.2 overviews some types of fuzzy con-
trollers.

22.1 Components of Fuzzy Controllers

A fuzzy controller can be regarded as a nonlinear static function that maps controller
inputs onto controller outputs. A controller is used to control some system, or plant.
The system has a desired response that must be maintained under whatever inputs
are received. The inputs to the system can, however, change the state of the system,
which causes a change in response. The task of the controller is then to take corrective
action by providing a set of inputs that ensures the desired response. As illustrated
in Figure 22.1, a fuzzy controller consists of four main components, which are integral
to the operation of the controller:

• Fuzzy rule base: The rule base, or knowledge base, contains the fuzzy rules
that represent the knowledge and experience of a human expert of the system.
These rules express a nonlinear control strategy for the system.
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Inputs Outputs
System

Condition

Interface
Fuzzy

Rule Base

Fuzzy Controller

Action

Interface

Figure 22.1 A Fuzzy Controller

While rules are usually obtained from human experts, and are static, strategies
have been developed that adapt or refine rules through learning using neural
networks or evolutionary algorithms [257, 888].

• Condition interface (fuzzifier): The fuzzifier receives the actual outputs of
the system, and transforms these non-fuzzy values into membership degrees to
the corresponding fuzzy sets. In addition to the system outputs, the fuzzification
of input values to the system also occurs via the condition interface.

• Action interface (defuzzifier): The action interface defuzzifies the outcome
of the inference engine to produce a non-fuzzy value to represent the actual
control function to be applied to the system.

• Inference engine: The inference engine performs inferencing upon fuzzified
inputs to produce a fuzzy output (refer to Section 21.2.2).

As stated earlier, a fuzzy controller is basically a nonlinear control function. The
nonlinearity in fuzzy controllers is caused by

• the fuzzification process, if nonlinear membership functions are used;

• the rule base, since rules express a nonlinear control strategy;

• the inference engine, if, for example, the min-operator is used for intersection
and the max-operator is used for union; and

• the defuzzification process.
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22.2 Fuzzy Controller Types

While there exists a number of different types of fuzzy controllers, they all have the
same components and involve the same design steps. The differences between types
of fuzzy controllers are mainly in the implementation of the inference engine and the
defuzzifier.

The design of a fuzzy controller involves the following aspects: A universe of discourse
needs to be defined, and the fuzzy sets and membership functions for both the input
and output spaces have to be designed. With the help of a human expert, the linguistic
rules that describe the dynamic behavior need to be defined. The designer has to decide
on how the fuzzifier, inference engine and defuzzifier have to be implemented, after
considering all the different options (refer to Section 21.1). Other issues that need to
be considered include the preprocessing of the raw measurements as obtained from
measuring equipment. Preprocessing involves the removal of noise, discretization of
continuous values, scaling and transforming values into a linguistic form.

In the next sections, three controller types are discussed, namely table-based, Mamdani
and Takagi-Sugeno.

22.2.1 Table-Based Controller

Table-based controllers are used for discrete universes, where it is feasible to calculate
all combinations of inputs. The relation between all input combinations and their
corresponding outputs are then arranged in a table. In cases where there are only two
inputs and one output, the controller operates on a two-dimensional look-up table. The
two dimensions correspond to the inputs, while the entries in the table correspond to
the outputs. Finding a corresponding output involves a simple and fast look-up in the
table. Table-based controllers become inefficient for situations with a large number of
input and output values.

22.2.2 Mamdani Fuzzy Controller

Mamdani and Assilian [554] produced the first fuzzy controller. Mamdani-type con-
trollers follow the following simple steps:

1. Identify and name input linguistic variables and define their numerical ranges.

2. Identify and name output linguistic variables and define their numerical ranges.

3. Define a set of fuzzy membership functions for each of the input variables, as
well as the output variables.

4. Construct the rule base that represents the control strategy.

5. Perform fuzzification of input values.

6. Perform inferencing to determine firing strengths of activated rules.
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7. Defuzzify, using centroid of gravity, to determine the corresponding action to be
executed.

22.2.3 Takagi-Sugeno Controller

For the table-based and Mamdani controllers, the output sets are singletons (i.e. a
single set), or combinations of singletons where the combinations are achieved through
application of the fuzzy set operators. Output sets can, however, also be linear com-
binations of the inputs. Takagi and Sugeno suggested an approach to allow for such
complex output sets, referred to as Takagi-Sugeno fuzzy controllers [413, 833]. In
general, the rule structure for Takagi-Sugeno fuzzy controllers is

if f1(A1 is a1, A2 is a2, · · · , An is an) then C = f2(a1, a2, · · · , an) (22.1)

where f1 is a logical function, and f2 is some mathematical function of the inputs;
C is the consequent, or output variable being inferred, ai is an antecedent, or input
variable, and Ai is a fuzzy set represented by the membership function µAi

. The
complete rule base is defined by nK rules.

The firing strength of each rule is computed using the min-operator, i.e.

αk = min
∀i|ai∈Ak

{µAi
(ai)} (22.2)

where Ak is the set of antecedents of rule k. Alternatively, the product can be used
to calculate rule firing strengths:

αk =
∏

∀i|ai∈Ak

µAi
(ai) (22.3)

The output of the controller is then determined as

C =
∑nK

k=1 αkf2(a1, · · · , an)∑nK

k=1 αk
(22.4)

The main advantage of Takagi-Sugeno controllers is that it breaks the closed-loop
approach of the Mamdani controllers. For the Mamdani controllers the system is
statically described by rules. For the Takagi-Sugeno controllers, the fact that the
consequent of rules is a mathematical function, provides for a more dynamic control.

22.3 Assignments

1. Design a Mamdani fuzzy controller to control a set of ten lifts for a building of
forty storey to maximize utilization and minimize delays.

2. Design a Mamdani fuzzy controller for an automatic gearbox for motor vehicles.

3. Consider the following rule base:
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if x is Small then y is Big

if x is Medium then y is Small

if x is Big then y is Medium

Given the membership functions illustrated in Figure 21.4, answer the following
questions: using a Mamdani-type fuzzy controller, what are the firing strengths
of each rule?

4. Consider the following Takagi-Sugeno rules:

if x is A1 and y is B1 then z1 = x + y + 1

if x is A2 and y is B1 then z2 = 2x + y + 1

if x is A1 and y is B2 then z3 = 2x + 3y

if x is A2 and y is B2 then z4 = 2x + 5

Compute the value of z for x = 1, y = 4 and the antecedent fuzzy sets

A1 = {1/0.1, 2/0.6, 3/1.0}

A2 = {1/0.9, 2/0.4, 3/0.0}
B1 = {4/1.0, 5/1.0, 6/0.3}
B2 = {4/0.1, 5/0.9, 6/1.0}





Chapter 23

Rough Sets

Fuzzy set theory is the first to have a theoretical treatment of the problem of vagueness
and uncertainty, and has had many successful implementations. Fuzzy set theory is,
however, not the only theoretical logic that addresses these concepts. Pawlak [668]
developed a new theoretical framework to reason with vague concepts and uncertainty.
While rough set theory is somewhat related to fuzzy set theory, there are major dif-
ferences.

B X

B X

BNB

X

U

Figure 23.1 Rough Set Illustration

Rough set theory is based on the assumption that some information, or knowledge,
about the elements of the universe of discourse is initially available. This is contrary to
fuzzy set theory where no such prior information is assumed. The information available
about elements is used to find similar elements and indiscernible elements. Rough set
theory is then based on the concepts of upper and lower approximations of sets (refer
to Figure 23.1). The lower approximation contains those elements that belong to
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the set with full certainty, while the upper approximation encapsulates elements for
which membership is uncertain. The boundary region of a set, which is the difference
between the upper and lower approximations, thus contains all examples which cannot
be classified based on the available information.

Rough sets have been shown to be fruitful in a variety of application areas, including
decision support, machine learning, information retrieval and data mining. What
makes rough sets so desirable for real-world applications is their robustness to noisy
environments, and situations where data is incomplete. It is a supervised approach,
which clarifies the set-theoretic characteristics of classes over combinatorial patterns
of the attributes. In doing so, rough sets also perform automatic feature selection by
finding the smallest set of input parameters necessary to discern between classes.

The idea of discernibility is defined in Section 23.1, based on the formal definition
of a decision system. Section 23.2 shows how rough sets treat vagueness by forming
a boundary region, while Section 23.3 discusses the treatment of uncertainty in the
implementation of the rough membership function.

23.1 Concept of Discernibility

The discussion on rough sets will be with reference to a decision system. Firstly, an
information system is formally defined as an ordered pair A = (U, A), where U is
the universe of discourse and A is a non-empty set of attributes. The universe of
discourse is a set of objects (or patterns, examples), while the attributes define the
characteristics of a single object. Each attribute a ∈ A is a function a : U → Va, where
Va is the range of values for attribute a.

A decision system is an information system for which the attributes are grouped into
disjoint sets of condition attributes and decision attributes. The condition attributes
represent the input parameters, and the decision attributes represent the class.

The basic idea upon which rough sets rests is the discernibility between objects. If
two objects are indiscernible over a set of attributes, it means that the objects have
the same values for these attributes. Formally, the indiscernibility relation is defined
as:

IND(B) = {(x, y) ∈ U2|a(x) = a(y) ∀a ∈ B} (23.1)

where B ⊆ A. With U/IND(B) is denoted the set of equivalence classes in the relation
IND(B). That is, U/IND(B) contains one class for each set of objects that satisfy
IND(B) over all attributes in B. Objects are therefore grouped together, where the
objects in different groups cannot be discerned between.

A discernibility matrix is a two-dimensional matrix where the equivalence classes form
the indices, and each element is the set of attributes that can be used to discern between
the corresponding classes. Formally, for a set of attributes B ⊆ A in A = (U, A), the
discernibility matrix MD(B) is defined as

MD(B) = {mD(i, j)}n×n (23.2)
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for 1 ≤ i, j ≤ n, and n = |U/IND(B)|, with

mD(i, j) = {a ∈ B|a(Ei) �= a(Ej)} (23.3)

for i, j = 1, · · · , n; a(Ei) indicates that attribute a belongs to equivalence class Ei.

Using the discernibility matrix, discernibility functions can be defined to compute
the minimal number of attributes necessary to discern equivalence classes from one
another. The discernibility function f(B), with B ⊆ A, is defined as

f(B) = ∧i,j∈{1···n} ∨mD(Ei, Ej) (23.4)

where
mD(i, j) = {a|a ∈ mD(i, j)} (23.5)

and a is the Boolean variable associated with a, and n = |U/IND(B)|; ∨mD(Ei, Ej)
is the disjunction over the set of Boolean variables, and ∧ denotes conjunction.

The discernibility function f(B) finds the minimal set of attributes required to discern
any equivalence class from all others. Alternatively, the relative discernibility function
f(E, B) finds the minimal set of attributes required to discern a given class, E, from
the other classes, using the set of attributes, B. That is,

f(E, B) = ∧j∈{1···n} ∨mD(E, Ej) (23.6)

It is now possible to find all dispensible, or redundant, attributes. An attribute
a ∈ B ⊆ A is dispensible if IND(B) = IND(B − {a}). Using the definition of dis-
pensibility, a reduct of B ⊆ A is the set of attributes B

′ ⊆ B such that all a ∈ B−B
′

are dispensible, and IND(B) = IND(B
′
). The reduct of B is denoted by RED(B),

while RED(E, B) denotes the relative reduct of B for equivalence class E. A relative
reduct contains sufficient information to discern objects in one class from all other
classes.

23.2 Vagueness in Rough Sets

Vagueness in rough set theory, where vagueness is with reference to concepts (e.g. a
tall person), is based on the definition of a boundary region. The boundary region is
defined in terms of an upper and lower approximation of the set under consideration.

Consider the set X ⊆ U , and the subset of attributes B ⊆ A. The lower approximation
of X with regard to B is defined as (also refer to Figure 23.1)

BX = ∪{E ∈ U/IND(B)|E ⊆ X} (23.7)

and the upper approximation of X,

BX = ∪{E ∈ U/IND(B)|E ∩X �= ∅} (23.8)



484 23. Rough Sets

The lower approximation is the set of objects that can be classified with full certainty
as members of X, while the upper approximation is the set of objects that may possibly
be classified as belonging to X.

The region,
BNB(X) = BX −BX (23.9)

is defined as the B-boundary of X. If BNB(X) = ∅, then X is crisp with reference to
B. If BNB(X) �= ∅, then X is rough with reference to B.

Rough sets can thus be seen as a mathematical model of vague concepts. Vagueness
can then be defined as

αB(X) =
|BX|
|BX| (23.10)

with αB(X) ∈ [0, 1]. If αB(X) = 1, the set X is crisp, otherwise X is rough.

23.3 Uncertainty in Rough Sets

A vague concept has a non-empty boundary region, where the elements of that region
cannot be classified with certainty as members of the concept. All elements in the
boundary region of a rough set therefore have an associated degree of membership,
calculated using the rough membership function for a class E,

µX
B (E, X) =

|E ∩X|
|E| (23.11)

with µX
B (E, X) ∈ [0, 1], E ∈ U/IND(B) and X ⊆ U .

Using the rough membership function, the following definitions are valid:

BX = {x ∈ U |µX
B (x) = 1} (23.12)

BX = {x ∈ U |µX
B (x) > 0} (23.13)

BNB(X) = {x ∈ U |0 < µX
B (x) < 1} (23.14)

The above shows that vagueness can, in fact, be defined in terms of uncertainty.

Some properties of the rough membership function are summarized below:

• µX
B (x) = 1 iff x ∈ BX

• µX
B (x) = 0 iff x ∈ U −BX

• 0 < µX
B (x) < 1 iff x ∈ BNB(X)

• Complement: µU−X
B (x) = 1− µX

B (x) for any x ∈ U

• Union: µX∪Y
B (x) ≥ max{µX

B (x), µY
B(x)} for any x ∈ U

• Intersection: µX∩Y
B (x) ≤ min{µX

B (x), µY
B(x)} for any x ∈ U
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23.4 Assignments

1. Compare fuzzy sets and rough sets to show their similarities and differences.

2. Discuss the validity of the following two statements:

(a) two-valued sets form a subset of rough sets
(b) two-valued sets form a subset of fuzzy sets
(c) fuzzy sets are special kinds of rough sets.

3. Discuss how rough sets can be used as classifiers.
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[128] C-J. Chung and R.G. Reynolds. A Testbed for Solving Optimization Prob-
lems using Cultural Algorithms. In L.J Fogel, P.J. Angeline, and T. Bäck, edi-
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[601] N. Monmarché, M. Slimane, and G. Venturini. AntClass: Discovery of Clus-
ters in Numeric Data by an Hybridization of an Ant Colony with the K-Means
Algorithm. Technical report, Laboratoire d’Informatique, University of Tours,
1999.

[602] J. Moody and J. Utans. Architecture Selection Strategies for Neural Networks:
Application to Corporate Bond Rating Prediction. In A.N. Refenes, editor,
Neural Networks in the Capital Markets, pages 277–300. John Wiley & Sons,
1995.



526 REFERENCES

[603] J.E. Moody. The Effective Number of Parameters: An Analysis of Generalization
and Regularization in Nonlinear Learning Systems. In J. Moody, S.J. Hanson,
and R. Lippmann, editors, Advances in Neural Information Processing Systems,
volume 4, pages 847–854, 1992.

[604] J.E. Moody. Prediction Risk and Architecture Selection for Neural Networks.
In V. Cherkassky, J.H. Friedman, and H. Wechsler, editors, From Statistics to
Neural Networks: Theory and Pattern Recognition Applications, pages 147–165.
Springer, 1994.

[605] J.E. Moody and C. Darken. Learning with Localized Receptive Fields. In
D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the Connec-
tionist Models Summer School, pages 133–143, San Mateo, C.A., 1989. Morgan
Kaufmann.

[606] K. Mori, M. Tsukiyama, and T. Fukada. Immune Algorithm with Searching
Diversity and Its Application to Resource Allocation Problems. Transactions of
the Institute of Electrical Engineers of Japan, 113(10):872–878, 1993.

[607] N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa. Adaptation to Changing Envi-
ronments by Means of the Memory Based Thermodynamical Genetic Algorithm.
In Proceedings of the Seventh International Conference on Genetic Algorithms,
pages 299–306, 1997.

[608] P. Morillo, M. Fernández, and J.M. Orduña. An ACS-Based Partitioning Method
for Distributed Virtual Environment Systems. In Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium, page 148, 2003.

[609] S. Mostaghim and J. Teich. Strategies for Finding Local Guides in Multi-
Objective Particle Swarm Optimization (MOPSO). In Proceedings of the IEEE
Swarm Intelligence Symposium, pages 26–33, 2003.

[610] S. Mostaghim and J. Teich. The Role of ε-dominance in Multi-objective Par-
ticle Swarm Optimization Methods. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 1764–1771, 2003.

[611] M.C. Mozer and P. Smolensky. Skeletonization: A Technique for Trimming
the Fat from a Network via Relevance Assessment. In D.S. Touretzky, editor,
Advances in Neural Information Processing Systems, volume 1, pages 107–115,
1989.

[612] K-R. Müller, M. Finke, N. Murata, K. Schulten, and S. Amari. A Numerical
Study on Learning Curves in Stochastic Multi-Layer Feed-Forward Networks.
Neural Computation, 8(5):1085–1106, 1995.

[613] S.D. Müller, I.F. Sbalzarini, J.H. Walther, and P.D. Koumoutsakos. Evolution
Strategies for the Optimization of Microdevices. In Proceedings of the IEEE
Congress on Evolutionary Computation, volume 1, pages 302–309, 2001.

[614] S.D. Müller, N.N. Schraudolph, and P.D. Koumoutsakos. Step Size Adaptation
in Evolution Strategies using Reinforcement Learning. In Proceedings of the
IEEE Congress on Evolutionary Computation, volume 1, pages 151–156, 2002.

[615] Y. Murakami, H. Sato, and A. Namatame. Co-evolution in Negotiation Games.
In Proceedings of the Fourth International Conference on Computational Intel-
ligence and Multimedia Applications, pages 241–245, 2001.



REFERENCES 527

[616] N. Murata, S. Yoshizawa, and S. Amari. A Criterion for Determining the Num-
ber of Parameters in an Artificial Neural Network Model. In T. Kohonen,
K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks,
pages 9–14. Elsevier Science Publishers, 1991.

[617] N. Murata, S. Yoshizawa, and S. Amari. Learning Curves, Model Selection and
Complexity of Neural Networks. In C. Lee Giles, S.J. Hanson, and J.D. Cowan,
editors, Advances in Neural Information Processing Systems, volume 5, pages
607–614, 1994.

[618] N. Murata, S. Yoshizawa, and S. Amari. Network Information Criterion – De-
termining the Number of Hidden Units for an Artificial Neural Network Model.
IEEE Transactions on Neural Networks, 5(6):865–872, 1994.

[619] S. Naka, T. Genji, T. Yura, and Y. Fukuyama. Practical Distribution State Esti-
mation using Hybrid Particle Swarm Optimization. In IEEE Power Engineering
Society Winter Meeting, volume 2, pages 815–820, 2001.

[620] D. Nam, Y.D. Seo, L-J. Park, C.H. Park, and B. Kim. Parameter Optimization of
an On-Chip Voltage Reference Circuit using Evolutionary Programming. IEEE
Transactions on Evolutionary Computation, 5(4):414–421, 2001.

[621] H. Narihisa, T. Taniguchi, M. Thuda, and K. Katayama. Efficiency of Parallel
Exponential Evolutionary Programming. In Proceedings of the International
Conference Workshop on Parallel Processing, pages 588–595, 2005.

[622] O. Nasraoui, D. Dasgupta, and F. Gonzalez. The Promise and Challenges of Ar-
tificial Immune System Based Web Usage Mining: Preliminary Results. In Pro-
ceedings of the Second SIAM International Conference on Data Mining, pages
29–39, 2002.

[623] O. Nasraoui, F. Gonzalez, C. Cardona, C. Rojas, and D. Dasgupta. A Scal-
able Artificial Immune System Model for Dynamic Unsupervised Learning. In
Proceedings of the Genetic and Evolutionary Computation Conference, Lecture
Notes in Computer Science, volume 2723, pages 219–230. Springer-Verlag, 2003.

[624] D. Naug and R. Gadagkar. The Role of Age in Temporal Polyethism in a
Primitively Eusocial Wasp. Behavioral Ecology and Sociobiology, 42:37–47, 1998.

[625] D. Naug and R. Gadagkar. Flexible Division of Labor Mediated by Social In-
teractions in an Insect Colony – A Simulation Model. Journal of Theoretical
Biology, 197:123–133, 1999.

[626] M. Neal. An Artificial Immune System for Continuous Analysis of Time-varying
Data. In Proceedings of the First International Conference on Artificial Immune
Systems, volume 1, pages 76–85, 2002.

[627] M. Neethling and A.P. Engelbrecht. Determining RNA Secondary Structure
using Set-Based Particle Swarm Optimization. In Proceedings of the IEEE
Congress on Evolutionary Computation, pages 1670–1677, 2006.

[628] L. Nemes and T. Roska. A CNN Model of Oscillation and Chaos in Ant Colonies:
A Case Study. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 42(10):741–745, 1995.

[629] N.J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.
[630] M. Niranjan and F. Fallside. Neural Networks and Radial Basis Functions in

Classifying Static Speech Patterns. Technical Report CUEDIF-INFENG17R22,
Engineering Department, Cambridge University, 1988.



528 REFERENCES

[631] G. Nitschke. Co-Evolution of Cooperation in a Pursuit Evasion Game. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 2, pages 2037–2042, 2003.

[632] S.J. Nowlan. Maximum Likelihood Competitive Learning. In Advances in Infor-
mation Processing Systems, volume 2, pages 574–582, San Mateo, C.A., 1990.
Morgan Kaufmann.

[633] S.J. Nowlan and G.E. Hinton. Simplifying Neural Networks By Soft Weight-
Sharing. Neural Computation, 4:473–493, 1992.

[634] N. Ohnishi, A. Okamoto, and N. Sugiem. Selective Presentation of Learning
Samples for Efficient Learning in Multi-Layer Perceptron. In Proceedings of
the IEEE International Joint Conference on Neural Networks, volume 1, pages
688–691, 1990.

[635] E. Oja. A Simplified Neuron Model as a Principal Component Analyzer. Journal
of Mathematical Biology, 15:267–273, 1982.

[636] E. Oja and J. Karhuner. On Stochastic Approximation of the Eigenvectors and
Eigenvalues of the Expectation of a Random Matrix. Journal of Mathematical
Analysis and Applications, 104:69–84, 1985.

[637] M. Oltean, C. Grosan, A. Abraham, and M. Köppen. Multiobjective Optimiza-
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[732] A. Röbel. The Dynamic Pattern Selection Algorithm: Effective Training and
Controlled Generalization of Backpropagation Neural Networks. Technical re-
port, Institut für Angewandte Informatik, Technische Universität, Berlin, 1994.

[733] G.E. Robinson. Modulation of Alarm Pheromone Perception in the Honey
Bee: Evidence for Division of Labour Based on Hormonally Regulated Response
Thresholds. Journal of Computational Physiology A, 160:619, 1987.
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Appendix A

Optimization Theory

Optimization algorithms are search methods, where the goal is to find a solution to
an optimization problem, such that a given quantity is optimized, possibly subject to
a set of constraints. Although this definition is simple, it hides a number of complex
issues. For example, the solution may consist of a combination of different data types,
nonlinear constraints may restrict the search area, the search space can be convoluted
with many candidate solutions, the characteristics of the problem may change over
time, or the quantity being optimized may have conflicting objectives. This is just
a short list of issues, given to illustrate some of the complexities an optimization
algorithm may have to face. This chapter provides a crisp summary of these issues,
and characterizes different problem types.

Section A.1 summarizes the main ingredients of optimization problems. A classifica-
tion of optimization problems is given in Section A.2. Section A.3 discusses optima
types. A list of optimization method classes is provided in Section A.4. Unconstrained
optimization problems are defined and discussed in Section A.5, constrained optimiza-
tion in Section A.6, multi-solution problems in Section A.7, multi-objective problems
in Section A.8, and dynamic environments in Section A.9.

A.1 Basic Ingredients of Optimization Problems

Each optimization problem consists of the following basic ingredients:

• An objective function, which represents the quantity to be optimized, that is,
the quantity to be minimized or maximized. Let f denote the objective func-
tion. Then a maximum of f is a minimum of −f . Some problems, specifically
constraint-satisfaction problems (CSP), do not define an explicit objective func-
tion. Instead, the objective is to find a solution that satisfies all of a set of
constraints.

• A set of unknowns or variables, which affects the value of the objective
function. If x represents the unknowns, also referred to as the independent
variables, then f(x) quantifies the quality of the candidate solution, x.

• A set of constraints, which restricts the values that can be assigned to the
unknowns. Most problems define at least a set of boundary constraints, which
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define the domain of values for each variable. Constraints can, however, be
more complex, excluding certain candidate solutions from being considered as
solutions.

The goal of an optimization method is then to assign values, from the allowed domain,
to the unknowns such that the objective function is optimized and all constraints are
satisfied. To achieve this goal, the optimization algorithm searches for a solution in a
search space, S, of candidate solutions. In the case of constrained problems, a solution
is found in the feasible space, F ⊆ S.

A.2 Optimization Problem Classifications

Optimization problems are classified based on a number of characteristics:

• The number of variables that influences the objective function: A problem
with only one variable to be optimized is referred to as a univariate problem. If
more than one variable is considered, the problem is referred to as a multivariate
problem.

• The type of variables: A continuous problem has continuous-valued variables,
i.e. xj ∈ R, for each j = 1, . . . , nx. If xi ∈ Z, the problem is referred to
as an integer or discrete optimization problem. A mixed integer problem has
both continuous-valued and integer-valued variables. Problems where solutions
are permutations of integer-valued variables are referred to as combinatorial
optimization problems.

• The degree of nonlinearity of the objective function: Linear problems
have an objective function that is linear in the variables. Quadratic problems
use quadratic functions. When other nonlinear objective functions are used, the
problem is referred to as a nonlinear problem.

• The constraints used: A problem that uses only boundary constraints is re-
ferred to as an unconstrained problem. Constrained problems have additional
equality and/or inequality constraints.

• The number of optima: If there exists only one clear solution, the problem is
unimodal. If more than one optimum exists, the problem is multimodal. Some
problems may have false optima, in which case the problem is referred to as
being deceptive.

• The number of optimization criteria: If the quantity to be optimized is
expressed using only one objective function, the problem is referred to as a uni-
objective (or single-objective) problem. A multi-objective problem specifies more
than one sub-objective, which need to be simultaneously optimized.

The optimization methods used to solve the above problem types differ significantly,
as will be illustrated in the parts that follow.
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Figure A.1 Types of Optima for Unconstrained Problems

A.3 Optima Types

Solutions found by optimization algorithms are classified by the quality of the solution.
The main types of solutions are referred to as local optima or global optima. For the
purpose of this section, a minimization problem is assumed.

A global optimum (considering a minimization problem) is formally defined as follows:

Definition A.1 Global minimum: The solution x∗ ∈ F , is a global optimum of the
objective function, f , if

f(x∗) < f(x), ∀x ∈ F (A.1)

where F ⊆ S.

The global optimum is therefore the best of a set of candidate solutions, as illustrated
in Figure A.1 for a minimization problem. As illustrated in Figure A.2, a problem
may have more than one global optimum.

A local minimum is defined as follows (as illustrated in Figure A.1):

Definition A.2 Strong local minimum: The solution, x∗
N ∈ N ⊆ F , is a strong

local minimum of f , if
f(x∗

N ) < f(x), ∀x ∈ N (A.2)

where N ⊆ F is a set of feasible points in the neighborhood of x∗
N .
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Definition A.3 Weak local minimum: The solution, x∗
N ∈ N ⊆ F , is a weak local

minimum of f , if
f(x∗

N ) ≤ f(x), ∀x ∈ N (A.3)

where N ⊆ F is a set of feasible points in the neighborhood of x∗
N .

A.4 Optimization Method Classes

An optimization algorithm searches for an optimum solution by iteratively transform-
ing a current candidate solution into a new, hopefully better, solution. Optimization
methods can be divided into two main classes, based on the type of solution that is
located. Local search algorithms use only local information of the search space sur-
rounding the current solution to produce a new solution. Since only local information
is used, local search algorithms locate local optima (which may be a global minimum).
A global search algorithm uses more information about the search space to locate a
global optimum. It is said that global search algorithms explore the entire search
space, while local search algorithms exploit neighborhoods. Optimization algorithms
are further classified into deterministic and stochastic methods. Stochastic methods
use random elements to transform one candidate solution into a new solution. The
new point can therefore not be predicted. Deterministic methods, on the other hand,
do not make use of random elements.

Based on the problem characteristics, optimization methods are grouped in the follow-
ing classes (within each of these classes further subdivision occurs based on whether
local or global optima are located, and based on whether random elements are used
to investigate new points in the search space):
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• unconstrained methods, used to optimize unconstrained problems;

• constrained methods, used to find solutions in constrained search spaces;

• multi-objective optimization methods for problems with more than one
objective to optimize;

• multi-solution (niching) methods with the ability to locate more than one
solution; and

• dynamic methods with the ability to locate and track changing optima.

Subsequent sections discuss each of these optimization method classes.

A.5 Unconstrained Optimization

Except for boundary constraints, unconstrained optimization problems place no re-
strictions on the values that can be assigned to variables of the problem. The feasible
space is simply the entire search space. This chapter provides a formal definition of
unconstrained optimization problems in Section A.5.1. Section A.5.2 summarizes al-
gorithms used in later chapters, and Section A.5.3 gives a list of classical benchmark
problems.

A.5.1 Problem Definition

The general unconstrained optimization problem is defined as

Definition A.4 Unconstrained optimization problem:

minimize f(x), x = (x1, x2, . . . , xnx
)

subject to xj ∈ dom(xj) (A.4)

where x ∈ F = S, and dom(xj) is the domain of variable xj.

For a continuous problem, the domain of each variable is R, i.e. xj ∈ R. For an integer
problem, xj ∈ Z, while dom(xi) for a general discrete problem is a finite set of values.
Note that an integer problem is simply a special case of a discrete problem.

A.5.2 Optimization Algorithms

Many optimization algorithms have been developed to solve unconstrained problems.
This section summarizes only a few that support the material presented in this book.
The reader is referred to [201, 262, 263, 317, 806] for more detail.
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General Local Search Procedure

Local search methods follow the same basic structure as given in Algorithm A.1. A
starting point, x(0), is selected, and its quality evaluated. Then, iteratively a search
direction is determined and a move is made in that direction.

Algorithm A.1 General Local Search Algorithm

Find starting point x(0) ∈ S;
t = 0;
repeat

Evaluate f(x(t));
Calculate a search direction, q(t);
Calculate step length η(t);
Set x(t + 1) to x(t) + η(t)q(t);
t = t + 1;

until stopping condition is true;
Return x(t) as the solution;

Search directions and step lengths can be determined using steepest gradient descent,
conjugate gradients, or Newton methods (amongst many others).

Beam Search

Beam search (BS) is a classical tree local search method [650]. The search method
allows the extension of partial, or approximate, solutions in a number of ways as
determined by tree branches. Each step of the algorithm extends a partial solution
from the set B (referred to as the beam) in at most nc possible ways. A newly
constructed solution is stored in the set of complete solutions, Bc, if that solution
represents a complete solution. If not, the new partial solution is added to the set
Bp of partial solutions. At the end of each iteration, a new beam, B, is created by
selecting nb solutions from Bp, where nb is the beam width. BS uses a lower bound
on the objective function value to select partial solutions from Bp. The lower bound
specifies the minimum objective function value for any complete solution that can
be constructed from a partial solution. Partial solutions are usually extended using
a deterministic greedy policy, which is based on a weighting function that assigns
weights to all the possible extensions.

Tabu Search

Tabu search (TS) is an iterative neighborhood search algorithm [319, 362], where the
neighborhood changes dynamically. TS enhances local search by actively avoiding
points in the search space already visited. By avoiding already visited points, loops
in search trajectories are avoided and local optima can be escaped. The main feature
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of TS is the use of an explicit memory. A simple TS usually implements two forms of
memory:

• A frequency-based memory, which maintains information about how often
a search point has been visited (or how often a move has been made) during a
specified time interval.

• A recency-based memory, which maintains information about how recently a
search point has been visited (or how recently a move has been made). Recency
is based on the iteration at which the event occurred.

If, for example, the frequency count of a search point exceeds a given threshold, then
that point is classified as being tabu for the next cycle of iterations. Positions specified
in the tabu list are excluded from the neighborhood of candidate positions that can
be visited from the current position. Positions remain in the tabu list for a specified
time period.

The following may be used to terminate TS:

• the neighborhood is empty, i.e. all possible neighboring points have already been
visited, or

• when the number of iterations since the last improvement is larger than a spec-
ified threshold.

Simulated Annealing

Annealing refers to the cooling process of a liquid or solid, and the analysis of the
behavior of substances as they cool [581]. As temperature reduces, the mobility of
molecules reduces, with the tendency that molecules may align themselves in a crys-
talline structure. The aligned structure is the minimum energy state for the system.
To ensure that this alignment is obtained, cooling must occur at a sufficiently slow
rate. If the substance is cooled at a too rapid rate, an amorphous state may be reached.

Simulated annealing is an optimization process based on the physical process described
above. In the context of mathematical optimization, the minimum of an objective
function represents the minimum energy of the system. Simulated annealing is an
algorithmic implementation of the cooling process to find the optimum of an objective
function [466, 467, 649, 806].

Simulated annealing (SA) uses a random search strategy, which not only accepts new
positions that decrease the objective function (assuming a minimization problem), but
also accepts positions that increase objective function values. The latter is accepted
probabilistically based on the Boltzmann–Gibbs distribution. If Pij is the probability
of moving from point xi to xj , then Pij is calculated using

Pij =

{
1 if f(xj) < f(xi)

e
− f(xj)−f(xi)

cbT otherwise
(A.5)

where cb > 0 is the Boltzmann constant and T is the temperature of the system.
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Algorithm A.2 summarizes the SA algorithm. The algorithm requires specification of
the following components:

• A representation of possible solutions, which is usually a vector of floating-
point values.

• A mechanism to generate new solutions by adding small random changes
to current solutions. For example, for continuous-valued vectors,

x(t + 1) = x(t) + D(t)r(t) (A.6)

where r(t) ∼ U(−1, 1)nx , and D is a diagonal matrix that defines the maximum
change allowed in each variable. When an improved solution is found,

D(t + 1) = (1− α)D(t) + αωR(t) (A.7)

where R(t) is a diagonal matrix whose elements are the magnitudes of the suc-
cessful changes made to each variable, and α and ω are constants.

For integer problems,
x(t + 1) = x(t) + r(t) (A.8)

where each element of r(t) is randomly selected from the set {−1, 0, 1}.
• A method to evaluate solutions, which is usually just the objective function

in the case of unconstrained problems.

• An annealing schedule, which consists of an initial temperature and rules for
lowering the temperature with increase in number of iterations. The annealing
schedule determines the degree of uphill movement (objective function increase)
allowed during the search. An initial high temperature is selected, which is then
incrementally reduced using, for example,

– Exponential cooling: T (t + 1) = αT (t), where α ∈ (0, 1).
– Linear cooling: T (t+1) = T (t)−∆T , where, e.g. ∆T = (T (0)−T (nt))/nt;

T (0) is the initial large temperature, and T (nt) is the final temperature at
the last iteration, nt.

Algorithm A.2 Simulated Annealing Algorithm

Create initial solution, x(0);
Set initial temperature, T (0);
t = 0;
repeat

Generate new solution, x;
Determine quality, f(x);
Calculate acceptance probability using equation (A.5);
if U(0, 1) ≤ acceptance probability then

x(t) = x;
end

until stopping condition is true;
Return x(t) as the solution;
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LeapFrog Algorithm

LeapFrog is an optimization approach based on the physical problem of the motion
of a particle of unit mass in an nx-dimensional conservative force field [799, 800]. For
more detail refer to Section 3.2.4.

A.5.3 Example Benchmark Problems

This section lists a number of the classical benchmark functions used to evaluate the
performance of optimization algorithms for unconstrained optimization. The purpose
of the section is not to provide an extensive list of example problems, but to provide
a list that can be used as a good starting point when analyzing the performance of
optimization methods.

Spherical:

f(x) =
nx∑
j=1

x2
j (A.9)

with xj ∈ [−100, 100] and f∗(x) = 0.0.

Quadric:

f(x) =
nx∑
j=1

(
j∑

k=1

xj

)2

(A.10)

with xj ∈ [−100, 100] and f∗(x) = 0.0.

Ackley:

f(x) = −20e
−0.2

√
1

nx

∑nx
j=1 x2

j − e
1

nx

∑nx
j=1 cos(2πxj) + 20 + e (A.11)

with xj ∈ [−30, 30] and f∗(x) = 0.0.

Bohachevsky 1:

f(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7 (A.12)

with x1, x2 ∈ [−50, 50] and f∗(x1, x2) = 0.0.

Colville:

f(x1, x2, x3, x4) = 100(x2 − x2
1)

2 + (1− x1)2 + 90(x4 − x2
3)

2

+(1− x3)2 + 10.1((x2 − 1)2 + (x4 − 1)2)
+19.8(x2 − 1)(x4 − 1) (A.13)

with x1, x2, x3, x4 ∈ [−10, 10] and f∗(x1, x2, x3, x4) = 0.0.

Easom:
f(x1, x2) = − cos(x1) cos(x2)e−(x1−π)2−(x2−π)2 (A.14)

with x1, x2 ∈ [−100, 100] and f∗(x1, x2) = −1.0.
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Griewank:

f(x) = 1 +
1

4000

nx∑
j=1

x2
j −

nx∏
j=1

cos
(

xj√
j

)
(A.15)

with xj ∈ [−600, 600] and f∗(x) = 0.0.

Hyperellipsoid:

f(x) =
nx∑
j=1

j2x2
j (A.16)

with xj ∈ [−1, 1] and f∗(x) = 0.0.

Rastrigin:

f(x) =
nx∑
j=1

(x2
j − 10 cos(2πxj) + 10) (A.17)

with xj ∈ [−5.12, 5.12] and f∗(x) = 0.0.

Rosenbrock:

f(x) =
nx/2∑
j=1

[100(x2j − x2
2j−1)

2 + (1− x2j−1)2] (A.18)

with xj ∈ [−2.048, 2.048] and f∗(x) = 0.0.

Schwefel:

f(x) =
nx∑
j=1

xj sin
(√

|xj |
)

+ 418.9829nx (A.19)

with xj ∈ [−500, 500] and f∗(x) = 0.0.

A.6 Constrained Optimization

Many real-world optimization problems are solved subject to sets of constraints. Con-
straints place restrictions on the search space, specifying regions of the space that are
infeasible. Optimization algorithms have to find solutions that do not lie in infeasi-
ble regions. That is, solutions have to satisfy all specified constraints. This chapter
provides a mathematical definition of the constrained optimization problem in Sec-
tion A.6.1. An overview of constraint handling methods is given in Section A.6.2.
Section A.6.3 provides a list of benchmark functions.

A.6.1 Problem Definition

Assuming a minimization problem, the general constrained problem is defined as:
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Definition A.5 Constrained optimization problem:

minimize f(x), x = (x1, . . . , xnx
)

subject to gm(x) ≤ 0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh

xj ∈ dom(xj) (A.20)

where ng and nh are the number of inequality and equality constraints respectively,
and dom(xj) is as defined in Section A.5.1.

A special instance of the constrained optimization problem is defined below, where
only linear equality constraints of the form Ax = b are defined:

Definition A.6 Constrained optimization with linear equality constraints:

minimize f(x), x = (x1, . . . , xnx
)

subject to Ax = b (A.21)

where A ∈ Rnh×nx and b ∈ Rnh .

Figure A.3 illustrates the effect of constraints. The shaded area indicates the infea-
sible region of the search space. Note how the global optimum for the unconstrained
function is no longer the global optimum for the constrained problem. Instead, the
best solution is an extremum (not called an optimum, since the derivative of the best
solution is not zero).

A.6.2 Constraint Handling Methods

The following types of constraints can be found:

• Boundary constraints, which basically define the borders of the search space.
Upper and lower bounds on each dimension of the search space define the hy-
percube in which solutions must be found. While boundaries are usually defined
by specifying upper and lower bounds on variables, such box constraints are not
the only way in which boundaries are specified. The boundary of a search space
can, for example, be on the circumference of a hypersphere. It is also the case
that a problem can be unbounded.

• Equality constraints specify that a function of the variables of the problem
must be equal to a constant.

• Inequality constraints specify that a function of the variables must be less
than or equal to (or, greater than or equal to) a constant.

Constraints can be linear or nonlinear.

Constraint handling methods have to consider a number of important questions, which
relate mainly to the trade-off between feasible and infeasible solutions:
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Figure A.3 Constrained Problem Illustration

• How should two feasible solutions be compared? The answer to this question is
somewhat obvious: the solution with the better objective function value should
be preferred.

• How should two infeasible solutions be compared? In this case the answer is not
at all obvious, and is usually problem-dependent. The issues to consider are:

– should the infeasible solution with the best objective function value be
preferred?

– should the solution with the least number of constraint violations or lowest
degree of violation be preferred?

– should a balance be found between best objective function value and degree
of violation?

• Should it be assumed that any feasible solution is better than any unfeasible
solution? Alternatively, can objective function value and degree of violation
be optimally balanced? Again, the answer to this problem may be problem-
dependent. In financial-critical, or life-critical problems, the first strategy should
be preferred to ensure no financial loss, or loss of life. Less critical problems,
such as time-tabling, may consider solutions where less severe constraints are
violated.

Research in constraint handling methods are numerous in the evolutionary computa-
tion (EC) and swarm intelligence (SI) paradigms. Based on these research efforts, con-
straint handling methods have been categorized in a number of classes [140, 487, 584]:
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• Reject infeasible solutions, where solutions are not constrained to the feasible
space. Solutions that find themselves in infeasible space are simply rejected or
ignored.

• Penalty function methods, which add a penalty to the objective function to
discourage search in infeasible areas of the search space.

• Convert the constrained problem to an unconstrained problem, then
solve the unconstrained problem.

• Preserving feasibility methods, which assumes that solutions are initialized
in feasible space, and applies specialized operators to transform feasible solutions
to new, feasible solutions. These methods constrict solutions to move only in
feasible space, where all constraints are satisfied at all times.

• Pareto ranking methods, which use concepts from multi-objective optimiza-
tion, such as non-dominance (refer to Section A.8), to rank solutions based on
degree of violation.

• Repair methods, which apply special operators or actions to infeasible solu-
tions to facilitate changing infeasible solutions to feasible solutions.

The rest of this section provides a short definition and discussion of two of these
approaches.

Penalty Methods

Penalty methods add a function to the objective function to penalize vectors that rep-
resent infeasible solutions. Assuming a constrained minimization problem as defined
in Definition A.5,

Definition A.7 Penalty method:

minimize F (x, t) = f(x, t) + λp(x, t) (A.22)

where λ is the penalty coefficient and p(x, t) is the (possibly) time-dependent penalty
function.

A major problem of penalty-based methods is due to the added penalty function, which
changes the shape of the objective function. While the change in objective function is
necessary to increase the slope of the function in the infeasible areas (assuming min-
imization), the penalty function may introduce false minima into the original search
space as defined by the unpenalized function. These false minima may trap search
algorithms. Figure A.4 illustrates the effect of penalty functions. Figure A.4(a) illus-
trates the function

f(x1, x2) =
x1 cos(x1)

20
+ 2e−x2

1−(x2−1)2 + 0.01x1x2 (A.23)

with one clear maximum at x∗ = (0.0, 0.0). Figure A.4(b) illustrates the penalized
objective,

F (x1, x2) = f(x1, x2) + λp(x1, x2) (A.24)
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Figure A.4 Illustration of the Effect of Penalty Functions

where λ = 0.05 and p(x1, x2) = 3x1. Notice how the penalty causes the slope of the
function to increase for large x1 and x2 values, with function values exceeding that
of the maximum of the original function f(x1, x2). This effect is for a low penalty
coefficient of λ = 0.05. For larger values, the slope increases even more as illustrated
in Figure A.4(c) for λ = 0.1.

The penalty function is usually constructed from a set of functions, one for each of the
constraints, quantifying the degree to which a solution violates the constraint. That
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is,

p(xi, t) =
ng+nh∑
m=1

λm(t)pm(xi) (A.25)

where

pm(xi) =
{

max{0, gm(xi)α} if m ∈ [1, . . . , ng] (inequality)
|hm(xi)|α if m ∈ [ng + 1, . . . , ng + nh] (equality) (A.26)

with α a positive constant, representing the power of the penalty. In equation (A.25),
λm(t) represents a time-varying degree to which violation of the m-th constraint con-
tributes to the overall penalty. More emphasis can therefore be given to crucial con-
straints. The constraint penalty coefficient can of course be static, i.e. λm(t) = λm.

Convert Constrained to Unconstrained Problem

A constrained problem can be converted to an unconstrained problem by defining
the Lagrangian for the constrained problem, and then by maximizing the Lagrangian.
Consider the standard constrained optimization problem as defined in Definition A.5,
referred to as the primal problem. The constraints in equation (A.20) can be introduced
into the objective function, f , by augmenting it with a weighted sum of the constraint
functions. Let λg ∈ Rng be the weights associated with the ng inequality constraints,
and λh ∈ Rnh be the weights associated with the nh equality constraints.

These vectors, referred to as the Lagrange multiplier vectors, define the Lagrangian,
L : Rnx × Rng × Rnh ,

L(x, λg, λh) = f(x) +
ng∑

m=1

λgmgm(x) +
ng+nh∑

m=ng+1

λhmhm(x) (A.27)

The dual problem associated with the primal problem in equation (A.20) is then
defined as

Definition A.8 Dual problem:

maximizeλg,λh
L(x, λg, λh)

subject to λgm ≥ 0, m = 1, . . . , ng + nh
(A.28)

If the primal problem is convex over the search space S, then the solution to the
primal problem is the vector x∗ of the saddle point, (x∗, λ∗

g, λ
∗
h), of the Lagrangian in

equation (A.27), such that

L(x∗, λg, λh) ≤ L(x∗, λ∗
g, λ

∗
h) ≤ L(x, λ∗

g, λ
∗
h) (A.29)

The vector x∗ that solves the primal problem, as well as the Lagrange multiplier
vectors, λ∗

g and λ∗
h, can be found by solving the min-max problem,

min
x

max
λg,λh

L(x, λg, λh) (A.30)
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For non-convex problems, the solution of the dual problem does not coincide with the
solution of the primal problem. For non-convex problems, the Lagrangian is augmented
by adding a penalty term, i.e.

L
′
(x, λg, λh) = L(x, λg, λh) + λp(x, t) (A.31)

where λ > 0, L(x, λg, λh) is as defined in equation (A.27), and the penalty p(x, t) is
as defined in equations (A.25) and (A.26) with λm(t) = 1 and α = 2.

A.6.3 Example Benchmark Problems

A number of benchmark functions for constrained optimization are listed in this sec-
tion. Again, the list is not intended to be complete. The objective is to provide a list
of constrained problems as a starting point in evaluating algorithms for constrained
optimization.

Constrained problem 1: Minimize the function

f(x) = 100(x2 − x2
1)

2 + (1− x1)2 (A.32)

subject to the nonlinear constraints,

x1 + x2
2 ≥ 0

x2
1 + x2 ≥ 0

with x1 ∈ [−0.5, 0.5] and x2 ≤ 1.0. The global optimum is x∗ = (0.5, 0.25), with
f(x∗) = 0.25.

Constrained problem 2: Minimize the function

f(x) = (x1 − 2)2 − (x2 − 1)2 (A.33)

subject to the nonlinear constraint

−x2
1 + x2 ≥ 0

and the linear constraint
x1 + x2 ≤ 2

with x∗ = (1, 1) and f(x∗) = 1.

Constrained problem 3: Minimize the function

f(x) = 5x1 + 5x2 + 5x3 + 5x4 − 5
4∑

j=1

x2
j −

13∑
j=5

xj (A.34)

subject to the constraints

2x1 + 2x2 + x10 + x11 ≤ 10 2x1 + 2x3 + x10 + x12 ≤ 10
2x2 + 2x3 + x11 + x12 ≤ 10 −8x1 + x10 ≤ 0
−8x2 + x11 ≤ 0 −8x3 + x12 ≤ 0
−2x4 − x5 + x10 ≤ 0 −2x6 − x7 + x11 ≤ 0
−2x8 − x9 + x12 ≤ 0
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with xj ∈ [0, 1] for j = 1, . . . , 9, xj ∈ [0, 100] for j = 10, 11, 12, and x13 ∈ [0, 1].
The solution is x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), with f(x∗) = −15.

Constrained problem 4: Maximize the function

f(x) = (
√

nx)nx

nx∏
j=1

xj (A.35)

subject to the equality constraint,
nx∑
j=1

x2
j = 1

with xj ∈ [0, 1]. The solution is x∗ = ( 1√
nx

, . . . , 1√
nx

), with f(x∗) = 1.

Constrained problem 5: Minimize the function

−10.5x1 − 7.5x2 − 3.5x3 − 2.5x4 − 1.5x5 − 10x6 − 0.5
5∑

j=1

x2
j (A.36)

subject to the constraints

6x1 + 3x2 + 3x3 + 2x4 + x5 − 6.5 ≤ 0
10x1 + 10x3 + x6 ≤ 20

with xj ∈ [0, 1] for j = 1, . . . , 5, and x6 ≥ 0. The best known solution is
f(x) = −213.0.

A.7 Multi-Solution Problems

Multi-solution problems are multi-modal, containing many optima. These optima
may include more than one global optimum and a number of local minima, or just
one global optimum together with more than one local optimum. The objective of
multi-solution optimization methods is to locate as many as possible of these optima.
A formal definition is given in Section A.7.1, with different algorithm categories listed
in Section A.7.2. Example benchmark problems are given in Section A.7.3.

A.7.1 Problem Definition

A multi-solution problem is formally defined as follows (assuming minimization):

Definition A.9 Multi-solution problem: Find a set of solutions, X =
{x∗

1,x
∗
2, . . . ,x

∗
nX }, such that each x∗ ∈ X is a minimum of the general optimization

problem as defined in Definition A.5. That is, for each x∗ ∈ X ,

||f ′
(x∗)|| ≤ ε(1 + |f(x∗)|) (A.37)

where ε is, for example, the square root of machine precision.
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In the evolutionary computation literature, multi-solution algorithms are referred to
as niching or speciation algorithms.

A.7.2 Niching Algorithm Categories

Niching algorithms can be categorized based on the way that niches are located. Three
categories are identified:

• Sequential niching (or temporal niching) develops niches over time. The pro-
cess iteratively locates a niche (or optimum), and removes any references to it
from the search space. Removal of references to niches usually involves mod-
ification of the search space. The search for, and removal of niches continues
sequentially until a convergence criterion is met, for example, no more niches
can be obtained over a number of generations.

• Parallel niching locates all niches in parallel. Individuals dynamically self-
organize, or speciate, on the locations of optima. In addition to locating niches,
parallel niching algorithms need to organize individuals such that they maintain
their positions around optimal locations over time. That is, once a niche is
found, individuals should keep grouping around the niche.

• Quasi-sequential niching locates niches sequentially, but does not change the
search space to remove the niche. Instead, the search for a new niche continues,
while the found niches are refined and maintained in parallel.

Regardless of the way in which niches are located, a further categorization of niching
algorithms can be made according to speciation behavior [553]:

• Sympatric speciation, where individuals form species that coexist in the same
search space, but evolve to exploit different resources. For example, different
kinds of fish feed on different food sources in the same environment.

• Allopatric speciation, where differentiation between individuals is based on
spatial isolation in the search space. There is no interspecies communication,
and subspecies can develop only through deviation from the available genetic
information (triggered by mutation). As an example, consider different fish
species that live and play around their food sources, with no concern about the
existence of other species living in different areas.

• Parapatric speciation, where development of new species is evolved as a result
of segregated species sharing a common border. Communication between the
original species may not have been encouraged or intended. For example, new
fish species may evolve based on the interaction with a small percentage of
different schools of fish. The new species may have different food requirements
and may eventually upset the environment’s stability.
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A.7.3 Example Benchmark Problems

This section lists five easy functions to test niching algorithms. In addition to these,
any of the multi-modal functions listed in the previous chapters can be used.

Niching problem 1: Maximize

f(x) = sin6(5πx) (A.38)

for x ∈ [0, 1]. The solutions are located at x = 0.1, x = 0.3, x = 0.5, x = 0.7 and
x = 0.9.

Niching problem 2: Maximize

f(x) =
(
e−2 log(2)×(x−0.1

0.8 )2)× sin6(5πx) (A.39)

for x ∈ [0, 1]. The solutions are located at x = 0.08, x = 0.25, x = 0.45, x = 0.68
and x = 0.93.

Niching problem 3: Maximize

f(x) = sin6(5π(x3/4 − 0.05)) (A.40)

for x ∈ [0, 1]. The solutions are located at x = 0.1, x = 0.3, x = 0.5, x = 0.7 and
x = 0.9.

Niching problem 4: Maximize

f(x) =
(
e−2 log(2)×(x−0.08

0.854 )2)× sin6(5π(x3/4 − 0.05)) (A.41)

for x ∈ [0, 1]. The solutions are located at x = 0.08, x = 0.25, x = 0.45, x = 0.68
and x = 0.93.

Niching problem 5 (modified Himmelblau function): Maximize

f(x1, x2) = 200− (x2
1 + x2 − 11)2 − (x1 + x2

2 − 7)2 (A.42)

with x1, x2 ∈ [−5, 5]. Maxima are located at (−2.81, 3.13), (3.0, 2.0),
(3.58,−1.85) and (−3.78,−3.28).

A.8 Multi-Objective Optimization

Many real-world problems require the simultaneous optimization of a number of ob-
jective functions. Some of these objectives may be in conflict with one another. For
example, consider finding optimal routes in data communications networks, where the
objectives may include to minimize routing cost, to minimize route length, to mini-
mize congestion, and to maximize utilization of physical infrastructure. There is an
important trade-off between the last two objectives: minimization of congestion is
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achieved by reducing the utilization of links. A reduction in utilization, on the other
hand, means that infrastructure, for which high installation and maintenance costs
are incurred, is under-utilized.

This chapter provides a theoretical overview of multi-objective optimization (MOO),
focusing on definitions that are needed in later chapters. The objective of this chapter
is by no means to give a complete treatment of MOO. The reader can find more
in-depth treatments in [150, 195]. Section A.8.1 defines the multi-objective problem
(MOP), and discusses the meaning of an optimum in terms of MOO. Section A.8.2
summarizes weight aggregation approaches to solve MOPs. Section A.8.3 provides
definitions of Pareto-optimality and dominance, and a lists a few example problems.

A.8.1 Multi-objective Problem

Let S ⊆ Rnx denote the nx-dimensional search space, and F ⊆ S the feasible space.
With no constraints, the feasible space is the same as the search space. Let x =
(x1, x2, . . . , xnx

) ∈ S, referred to as a decision vector. A single objective function,
fk(x), is defined as fk : Rnx → R. Let f(x) = (f1(x), f2(x), . . . , fnk

(x)) ∈ O ⊆ Rnk

be an objective vector containing nk objective function evaluations; O is referred to as
the objective space. The search space, S is also referred to as the decision space.

Using the notation above, the multi-objective optimization problem is defined as:

Definition A.10 Multi-objective problem:

minimize f(x)
subject to gm(x) ≤ 0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh

x ∈ [xmin,xmax]nx

(A.43)

In equation (A.43), gm and hm are respectively the inequality and equality constraints,
while x ∈ [xmin,xmax] represents the boundary constraints. Solutions, x∗, to the MOP
are in the feasible space, i.e. all x∗ ∈ F .

The meaning of an “optimum” has to be redefined for MOO. In terms of uni-objective
optimization (UOO) where only one objective is optimized, a local optimum and global
optimum is as defined in Section A.3. In terms of MOO, the definition of optimality
is not that simple. The main problem is the presence of conflicting objectives, where
improvement in one objective may cause a deterioration in another objective. For
example, maximization of the structural stability of a mechanical structure may cause
an increase in costs, working against the additional objective to minimize costs. Trade-
offs exist between such conflicting objectives, and the task is to find solutions that
balance these trade-offs. Such a balance is achieved when a solution cannot improve
any objective without degrading one or more of the other objectives. These solutions
are referred to as non-dominated solutions, of which many may exist.
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The objective when solving a MOP is therefore to produce a set of good compromises,
instead of a single solution. This set of solutions is referred to as the non-dominated
set, or the Pareto-optimal set. The corresponding objective vectors in objective space
are referred to as the Pareto front. The concepts of dominance and Pareto-optimality
are defined in the next section.

A.8.2 Weighted Aggregation Methods

One of the simplest approaches to deal with MOPs, is to define an aggregate objective
function as a weighted sum of the objectives. Uni-objective optimization algorithms
can then be applied, without any changes to the algorithm, to find optimum solutions.
For aggregation methods, the MOP is redefined as

minimize
∑nk

k=1 ωkfk(x)
subject to gm(x) ≤ 0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh

x ∈ [xmin,xmax]nx

ωk ≥ 0, k = 1, . . . , nk

(A.44)

It is also usually assumed that
∑nk

k=1 ωk = 1.

The aggregation approach does, however, have a number of problems:

• The algorithm has to be applied repeatedly to find different solutions if a single-
solution PSO is used. However, even for repeated applications, there is no guar-
antee that different solutions will be found. Alternatively, a niching strategy can
be used to find multiple solutions.

• It is difficult to get the best weight values, ωk, since these are problem-dependent.

• Aggregation methods can only be applied to generate members of the Pareto-
optimal set when the Pareto front is concave, regardless of the values of ωk

[174, 422].

The second problem can be addressed by not using fixed values, but to have these
weights change dynamically. The following two schemes can be used to dynamically
adjust the weights for two-objective problems [664, 665]:

• Bang-bang weighted aggregation:

ω1(t) = sign(sin(2πt/τ ))
ω2(t) = 1− ω1(t) (A.45)

where τ is the weights’ change frequency. Weights are changed abruptly due to
the use of sign in equation (A.45).

• Dynamic weighted aggregation:

ω1(t) = | sin(2πt/τ )|
ω2(t) = 1− ω1(t) (A.46)

With this approach, weights change more gradually.
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f2(x)

f1
f1(x)

Dominated by f

Figure A.5 Illustration of Dominance

A.8.3 Pareto-Optimality

This section provides a number of definitions that are needed when talking about
MOO. Definitions include dominance, Pareto-optimal, Pareto-optimal front, and oth-
ers. These definitions assume minimization.

Definition A.11 Domination: A decision vector, x1 dominates a decision vector,
x2 (denoted by x1 ≺ x2), if and only if

• x1 is not worse than x2 in all objectives, i.e. fk(x1) ≤ fk(x2), ∀k = 1, . . . , nk,
and

• x1 is strictly better than x2 in at least one objective, i.e. ∃k = 1, . . . , nk : fk(x1) <
fk(x2).

Similarly, an objective vector, f1, dominates another objective vector, f2, if f1 is not
worse than f2 in all objective values, and f1 is better than f2 in at least one of the
objective values. Objective vector dominance is denoted by f1 ≺ f2.

From Definition A.11, solution x1 is better than solution x2 if x1 ≺ x2 (i.e. x1

dominates x2), which happens when f1 ≺ f2.

The concept of dominance is illustrated in Figure A.5, for a two-objective function,
f(x) = (f1(x), f2(x)). The striped area denotes the area of objective vectors dominated
by f.

Definition A.12 Weak domination: A decision vector, x1, weakly dominates a
decision vector, x2 (denoted by x1 � x2), if and only if
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• x1 is not worse that x2 in all objectives, i.e. fk(x1) ≤ fk(x2), ∀k = 1, . . . , nk.

Definition A.13 Pareto-optimal: A decision vector, x∗ ∈ F is Pareto-optimal
if there does not exist a decision vector, x �= x∗ ∈ F that dominates it. That is,
�k : fk(x) < fk(x∗). An objective vector, f∗(x), is Pareto-optimal if x is Pareto-
optimal.

The concept of Pareto-optimality is named after the mathematician Vilfredo Pareto,
who generalized this concept, first introduced by Francis Ysidro Edgeworth.

Definition A.14 Pareto-optimal set: The set of all Pareto-optimal decision vectors
form the Pareto-optimal set, P∗. That is,

P∗ = {x∗ ∈ F| � ∃x ∈ F : x ≺ x∗} (A.47)

The Pareto-optimal set therefore contains the set of solutions, or balanced trade-offs,
for the MOP. The corresponding objective vectors are referred to as the Pareto-optimal
front:

Definition A.15 Pareto-optimal front: Given the objective vector, f(x), and the
Pareto-optimal solution set, P∗, then the Pareto-optimal front, PF∗ ⊆ O, is defined
as

PF∗ = {f = (f1(x∗), f2(x∗), . . . , fk(x∗))|x∗ ∈ P} (A.48)

The Pareto front therefore contains all the objective vectors corresponding to decision
vectors that are not dominated by any other decision vector. An example Pareto front
is illustrated for the following functions in Figure A.6 [664, 665]:

• The convex, uniform Pareto front in Figure A.6(a) for MOP

f(x) = (f1(x), f2(x)) (A.49)

f1(x) =
1
nx

nx∑
j=1

x2
j

f2(x) =
1
nx

nx∑
j=1

(xj − 2)2

• The convex, non-uniform Pareto front in Figure A.6(b) for MOP

f(x) = (f1(x), f2(x)) (A.50)
f1(x) = x1

f2(x) = g(x)(1−
√

f1(x)/g(x))

where

g(x) = 1 +
9

nx − 1

nx∑
j=2

xj
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Figure A.6 Example Pareto-Optimal Fronts
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• The concave Pareto front in Figure A.6(c) for the MOP of Figure A.6(b), but
with

f2(x) = g(x)(1− (f1(x)/g(x))2) (A.51)

• The partially concave and partially convex Pareto front in Figure A.6(d) for the
MOP of Figure A.6(b), but with

f2(x) = g(x)(1− 4
√

f1(x)/g(x)− (f1(x)/g(x))4) (A.52)

• The discrete, convex Pareto front in Figure A.6(e) for the MOP of Figure A.6(b),
but with

f2(x) = g(x)(1−
√

f1(x)/g(x)− (f1(x)/g(x)) sin(10πf1(x))) (A.53)

The objective when solving a MOP is to approximate the true Pareto-optimal front,
and then to select the solution that represents the best trade-off (for problems which,
in the end, require only one solution). To find the exact true Pareto-optimal front (i.e.
to find all the Pareto-optimal solutions in F) is usually computationally prohibitive.
The task is therefore reduced to finding an approximation to the true Pareto front
such that

• the distance to the Pareto front is minimized,

• the set of non-dominated solutions, i.e. the Pareto-optimal set, is as diverse as
possible, and

• already found non-dominated solutions are maintained.

The task of finding an approximation to the true Pareto front is therefore in itself a
MOP, where the first objective ensures an accurate approximation, and the second
objective ensures that the entire Pareto front is covered.

A.9 Dynamic Optimization Problems

Dynamic optimization problems have objective functions that change over time. Such
changes in objective function cause changes in the position of optima, and the char-
acteristics of the search space. Existing optima may disappear while new optima
may appear. This chapter provides a formal definition of a dynamic problem in Sec-
tion A.9.1, and lists different types of dynamic problems in Section A.9.2. Example
benchmark problems are given in Section A.9.3.

A.9.1 Definition

A dynamic optimization problem is formally defined as
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Definition A.16 Dynamic optimization problem:

minimize f(x, �(t)), x = (x1, . . . , xnx
), �(t) = (�1(t), . . . , �n�

)
subject to gm(x) ≤ 0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh

xj ∈ dom(xj) (A.54)

where �(t) is a vector of time-dependent objective function control parameters. The
objective is to find

x∗(t) = min
x

f(x, �(t)) (A.55)

where x∗(t) is the optimum found at time step t.

The goal of an optimization algorithm for dynamic environments is then to locate an
optimum and to track its trajectory as closely as possible.

A.9.2 Dynamic Environment Types

In order to track the optimum over time, the optimization algorithm needs to detect
and track changes. The environment may change on any timescale, referred to as
temporal severity. Changes can be continuously spread over time, at irregular time
intervals or periodically. Due to these changes, the position of an optimum may change
by any amount, referred to as spatial severity.

Eberhart et al. defines three types of dynamic environments [228, 385]:

• Type I environments, where the location of the optimum in problem space
is subject to change. The change in the optimum, x∗(t) is quantified by the
severity parameter, ζ, which measures the jump in location of the optimum.

• Type II environments, where the location of the optimum remains the same,
but the value, f(x∗(t)), of the optimum changes.

• Type III environments, where both the location of the optimum and its value
changes.

The changes in the environment, as caused by the control parameters, can be in one
or more of the dimensions of the problem. If the change is in all the dimensions, then
for type I environments, the change in optimum is quantified by ζI, where I is the
unit vector.

Examples of these types of dynamic environments are illustrated in Figures A.7 and
A.8. Figure A.7 illustrates the dynamic function,

f(x, �(t)) =
nx∑
j=1

(xj −�1(t))2 + �2(t) (A.56)

for nx = 2. Figure A.7(a) illustrates the static function with both control parameters
set to zero. A type I environment is illustrated in A.7(b) with �1 = 3 and �2 = 0.
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Figure A.7 Dynamic Parabola Objective Function
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With control parameter �1 �= 0, the location of the optimum, x∗ = (0, 0), moves with
severity, ζ = �2

1 . Figure A.7(c) illustrates a type II environment with �1 = 0 and
�2 = 50. The position of the optimum remains at x∗ = (0, 0), but its value changes
form 0.0 to �2. A type III environment is illustrated in Figure A.7(d), with �1 = 3
and �2 = 50.

Figure A.8 illustrates the static version, type I, II and III environments respectively
in subfigures (a), (b), (c) and (d), for the following function:

f(x, �) = |f1(x, �) + f2(x, �) + f3(x, �)| (A.57)

with

f1(x, �) = �1(1− x1)2e(−x2
1−(x2−1)2)

f2(x, �) = −0.1
(x1

5
−�2x

3
1 − x5

2

)2

e(−x2
1−x2

2)

f3(x, �) = 0.5e(−(x1+1)2−x2
2)

with

Static �1 = 1, �2 = 1
Type I �1 = 1, �2 = 2.5
Type II �1 = 3, �2 = 1
Type III �1 = 0.5, �2 = 5

Note, for the type II environment, the appearance of more maxima, which becomes
the global optimum for the type III environment.

Noisy environments (a special form of dynamic environment) can easily be visualized
and tested by adding Gaussian noise to the objective function:

f(x, �(t)) = f(x)(1 + N(0, �(t))) (A.58)

A.9.3 Example Benchmark Problems

In addition to the functions given in equations (A.56) and (A.57), the following dy-
namic test function generator [193] can be used to generate functions to test optimiza-
tion algorithms for dynamic environments:

f(x1, x2) = max
l=1,...,nX

[Hl −Rl

√
(x1 − x1l)2 + (x2 − x2l)2] (A.59)

where nX is the number of optima, and the l-th optimum is specified by its posi-
tion (x1l, x2l), height Hl, and slope Rl. Dynamic environments can be simulated by
changing these parameters over time.
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(c) Type II environment, �1 = 3, �2 = 1
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(d) Type III environment, �1 = 0.5, �2 = 5

Figure A.8 Dynamic Objective Function
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(µ + 1)-ES, 214
(µ + λ)-ES, 221
(µ, λ)-ES, 221
α-cut, 461
α-cuts, 269
λ-branching factor, 375
τ (µ/ρ, κ, λ)-ES, 233
r-continuous matching rule, 428
z-score normalization, 104
gbest PSO, 290, 292
lbest PSO, 291, 292
2-opt heuristic, 407
3-opt heuristic, 407

absolute fitness, 133, 193, 277
acceleration coefficients, 290, 312

linear adaptive, 313
nonlinear adaptive, 313

activation function, 6, 18
adaptive, 115
Gaussian function, 20
hyperbolic tangent function, 20
linear function, 18
ramp function, 18
sigmoid function, 20
step function, 18

active learning, 116
definition, 118
expected misfit, 121
incremental learning, 119, 120
pseudocode algorithm, 123
selective learning, 119, 120

adaptive activation function, 115
adaptive task allocation, 395
affinity, 416

antigen, 427
artificial lymphocyte, 431

age, 270
age subcaste, 392
aggregation methods

bang-bang, 571
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dynamic, 571
aiNet, 442
allele, 8, 129, 130
allopatric speciation, 568
analysis of performance, 98

confidence interval, 99
angle modulated differential evolution,

253
angle modulation, 253
annealing schedule, 558
ant algorithm, 359

ant colony optimization, 360
cemetery organization, 384
division of labor, 391

ant algorithms, 9
ant clustering

basic model, 385
behavioral switches, 389
different moving speeds, 388
dissimilarity measures, 389
heterogeneous ants, 390
Lumer–Faieta, 386
minimal model, 391
short-term memory, 389

ant colony optimization, 360
ant colony system, 372
ant system, 368
ant-Q, 378
antabu, 380
ANTS, 381
AS-rank, 380
continuous, 396
dynamic environment, 402
fast ant system, 379
max-min ant system, 375
multi-objective, 398
parameters, 383
quadratic assignment problem,

407
simple ACO, 364
stigmergy, 363
termination condition, 366
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transition probability, 365, 368,
369, 372

transition rule, 378
traveling salesman problem, 406

ant colony system, 372
ant system, 368

ant-cycle, 370
ant-density, 370
ant-quantity, 370

ant system-rank, 380
ant-Q, 378
antabu, 380
antibodies, 416
antigen, 9, 415, 416

affinity, 427
antigen presenting cells, 423
ANTS, 381
approximate reasoning, 10
architecture selection, 109

construction, 111
objective, 114
particle swarm optimization, 356
pruning, 111
regularization, 110
using sensitivity analysis, 114

artificial immune network, 436
artificial immune system, 10, 413, 425

basic algorithm, 426
classical view, 428
clonal selection, 431
danger theory, 445
negative selection, 12, 427
network theory, 436

artificial intelligence, 3, 11
definition, 4

artificial lymphocyte, 426
artificial neural network, 5, 7, 15

definition, 16
artificial neuron, 6, 17

activation function, 18
augmented vectors, 23
bias unit, 23
definition, 17
error-correction, 25
generalized delta, 25
geometry, 20, 51
gradient descent, 24
learning, 21

net input signal, 17
weights, 6
Widrow-Hoff, 25

artificial recognition balls, 436
associative memory, 55
asynchronous updates, 310
attraction, 326
attractive and repulsive PSO, 327
augmented vectors, 23
autocatalytic behavior, 361
average award model, 85

B-Cell, 417, 418
dynamic weighted, 441

backpropagation, 38
backward propagation, 38
feedforward pass, 38

backpropagation-through-time, 34
backward propagation, 38
bagging, 52
bang-bang aggregation, 571
barebones PSO, 320
basic ant clustering, 385
batch learning, 37, 41, 65, 108
batch map, 65
beam search, 139, 556
behavioral switches, 389
belief cells, 271
belief space, 262

fuzzy, 269
knowledge components, 264

domain, 265
history, 265
normative, 266
situational, 264, 266
topographical, 265

best matching neuron, 66
bias, 17
bias unit, 23
binary bridge experiment, 361
binary differential evolution, 254
binary encoding, 130
binary PSO, 340
biological neural systems, 5
biomorphs, 161
Boltzmann selection, 138
Boltzmann–Gibbs distribution, 557
Boolean logic, 451
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boosting, 53
boundary constraints, 256, 561
building-blocks, 159, 184

cascade network, 35
output, 35

Cauchy mutation, 191, 201
Cauchy mutation PSO, 325
cemetery organization, 384

ant clustering, 385
central limit theorem, 99
chaos factors, 335
charged PSO, 337
cheap PSO, 322
chromosome, 8, 129
chromosome representation

finite-state machine, 207
function optimization, 209
routing optimization, 174

classical evolutionary programming,
200

classical optimization, 141
classical view, 415, 428

negative selection, 428
classification, 15
clonal proliferation, 419
clonal selection, 10, 421, 431

CLONALG, 431
dynamic, 433
multi-layered AIS, 433

CLONALG, 431
clustering, 59

ant algorithm, 385
Lumer–Faieta, 386
Ward clustering, 69

coevolution, 8, 229, 275
competitive, 275, 276
competitive fitness sharing, 278
cooperative, 275, 276, 281
cooperative genetic algorithm, 282
fitness sampling, 277
fitness sharing, 278
function optimization, 282
game learning, 280
genetic algorithm, 164
hall of fame, 278
neural network, 280
predator-prey, 275

shared niching, 167
symbiosis, 275
tournament fitness, 278

coevolutionary algorithm, 275
cognition-only model, 310
cognitive component, 290, 293
collective intelligence, 285
combinatorial optimization problem,

552
competitive coevolution, 275, 276
competitive fitness sharing, 278
competitive learning, 62
competitive particle swarm optimiza-

tion
predator–prey PSO, 332

computational intelligence, 4
paradigms, 4

computational swarm intelligence, 285
confidence interval, 99
conjugate gradient, 45, 203

direction vectors, 45
Fletcher-Reeves, 46
Hestenes-Stiefer, 47
Polak-Ribiere, 46
scale factors, 46

connectionist Q-learning, 89
conscience factor, 61
constrained optimization, 552, 562

cultural algorithm, 271
definition, 561
differential evolution, 256
evolution strategies, 229
evolutionary programming, 206
genetic algorithm, 169
Lagrangian, 206, 229, 256
linear equality constraints, 561
methods, 561
particle swarm optimization, 342
penalty function, 169
penalty methods, 256, 271, 563

constraints, 551
boundary, 256, 561, 570
equality, 561, 570
handling methods, 562
inequality, 561, 570

constriction
coefficient, 309

consuming energy pruning, 112
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context layer, 32
continuous ACO

crossover, 397
mutation, 397
trail diffusion, 397

continuous optimization problem, 552
control, 15
control parameters, PSO, 312
convergence

evolutionary algorithm, 140
neural network, 98
PSO, 300

cooperative coevolution, 275, 276, 281
genetic algorithm, 330

cooperative coevolutionary genetic al-
gorithm, 282, 330

ALC training, 430
cooperative particle swarm optimiza-

tion
attractive and repulsive PSO, 327
division of labor PSO, 328
life-cycle, 329
split PSO, 330

correlation coefficient, 95
craziness, 334
crossover, 8, 139, 397

arithmetic, 148
binary representation, 145
binomial, 239
blend, 148
diagonal, 153
differential evolution, 239
discrete recombination, 146, 222
evolution strategies, 222
exponential, 240
floating-point representation, 146
gene scanning, 152
genetic algorithm, 144
genetic programming, 180
geometrical, 148
global, 222
hillclimbing, 146
intermediate recombination, 148,

222
linear, 148
local, 222
majority mating, 146
multi-parent, 146

one-point, 145
parent-centric, 150
simplex, 150
simulated binary, 149
two-point, 145
uniform, 145
unimodal distributed, 149

cultural algorithm, 262
acceptance function, 263, 265

fuzzy, 269
age, 270
belief cells, 271
belief space, 262, 263
constrained optimization, 271
dynamic environment, 273
fuzzy, 268
fuzzy belief space, 269
influence function, 267

fuzzy, 270
knowledge components, 264
multi-objective optimization, 272
particle swarm optimization, 263
penalty method, 271
population space, 262
self-adaptive, 273

cultural evolution, 8, 261

danger theory, 10, 13, 422, 445
adaptive mailbox, 446
intrusion detection, 448
mobile ad-hoc networks, 445

Darwin, Charles, 127
Darwinism, 127
data mining, 15
data preparation, 99

input coding, 100
missing values, 100
noise injection, 105
normalization, 104
outliers, 100
scaling, 102
training set manipulation, 105

decision boundaries, 51
decision rule, 362
decision space, 570
decision system, 482
decision tree, 180
decision vector, 570
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defuzzification, 471
averaging, 471
clipped center of gravity, 471
min-max, 471
root-sum-square, 471

dentritic injection, 441
derating function, 166
differential evolution, 8, 237

angle modulated, 253
binary, 254
binary-valued, 253
binomial crossover, 239
constraints, 256
crossover, 239
difference vectors, 238
discrete-valued, 252
dynamic environments, 257
dynamic parameters, 251
exponential crossover, 240
gradient-based, 245
Lagrangian, 256
multi-objective, 256
multi-population, 250
multiple populations, 257
mutation, 239
neural networks, 259
Pareto-based, 257
particle swarm optimization, 250
penalty methods, 256
PSO, 325
selection, 240
selection operator, 256
self-adaptive, 250, 252
self-adaptive parameters, 251
self-adaptive Pareto, 252
vector evaluated, 257

differential Hebbian learning, 58
differential path length, 362
direct weights, 40
discernibility, 482
discernibility function, 483
discernibility matrix, 482
discrete optimization problem, 552
discrete recombination, 146, 222, 239
dispensibility, 483
dissimilarity measures, 389
dissipative PSO, 335
diversity, 297, 334

division of labor, 391
adaptive task allocation, 395
individual variability, 393
juvenile hormone, 393
multiple tasks, 395
plasticity, 393
PSO, 328
reproductive, 392
response threshold, 393
single task, 394
specialization, 395
temporal polyethism, 392
worker polymorphism, 392
workers, 392

domination
definition, 572
weak, 572

dual problem, 565
dynamic aggregation, 571
dynamic clonal selection, 433
dynamic environment

genetic algorithm, 173
dynamic environments

ant colony optimization, 402
cultural algorithm, 273
differential evolution, 257
evolutionary programming, 206
evolutionary strategies, 233
particle swarm optimization, 346
spatial severity, 576
temporal severity, 576
types, 576

dynamic learning rate, 59, 68
dynamic neighborhood PSO, 343
dynamic optimization, 576
dynamic pattern selection, 122

elitism, 8, 139, 194, 278
Elman recurrent neural network, 32

context layer, 32
output, 33

emergence, 286
empirical error, 37, 94
enhanced artificial immune network,

440
ensemble neural network, 51

bagging, 52
boosting, 53
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entropy, 258
epoch, 38
equality constraints, 561
error

empirical, 94
mean squared, 41, 94
quantization, 61, 65
sum squared, 24, 38, 94
true, 94

error function, 24
empirical, 37
true, 37

error-correction, 25
Eugéne Marais, 359, 363
eusocial insects, 392
evolution

biological, 127
evolution of evolution, 213
evolution operator

mutation, 153
reproduction, 134, 139
selection, 134

evolution strategies, 8, 213
(1 + 1)-ES, 213
(µ + 1)-ES, 214
(µ + λ), 221
(µ, λ), 221
τ (µ/ρ, κ, λ), 233
constraints, 229
crossover, 222
dynamic environments, 233
dynamic niche ES, 234
fast ES, 224
incremental, 228
multi-objective optimization, 230
mutation, 224
niching, 233
Pareto archived, 231
polar, 226
selection, 214, 221
self-adaptation, 216
steady-state, 215
strategy parameters, 216

evolutionary algorithm, 8, 132
binary encoding, 130
coevolution, 275
components, 128
convergence, 140

cultural algorithm, 262
cultural evolution, 261
decoding function, 133
definition, 128
differential evolution, 237
evolutionary programming, 187
fitness function, 133
generation, 129
generation gap, 158
genetic algorithm, 143
genetic programming, 177
interactive evolution, 161
mapping function, 130
mutation, 153
objective function, 133
population, 132
reproduction, 134
scaling function, 133, 135
selection, 134
stopping conditions, 140

evolutionary algorithmsevolution
strategies, 213

evolutionary computation, 8, 11, 128
evolutionary programming, 8, 187

accelerated, 201
age, 202
classical, 200
constraints, 206
dynamic, 190
dynamic environments, 206
exponential, 201
fast, 201
finite-state machine, 207
fitness function, 188
function optimization, 208
improved fast, 201
local search, 203
mass extinction, 203
momentum, 202
multi-objective optimization, 206
mutation, 189
neural networks, 209
non-adaptive, 190
particle swarm optimization, 204
relative fitness, 188
self-adaptive, 190, 198
strategy parameters, 189, 190,

195
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evolutionary programming particle
swarm optimization

Cauchy mutation, 325
Gaussian mutation, 324

experiential knowledge, 290
exploitation, 303
exploration, 303
exploration–exploitation trade-off, 84,

189, 303

fast ant system, 379
fast evolution strategies, 224
fast evolutionary programming, 201
feedforward neural network, 28, 38

output, 28
feedforward pass, 38
finit-state machine, 207
finite-horizon model, 85
finite-state machine

chromosome representation, 207
fitness function, 208
mutation, 208

fitness function, 8, 133, 180, 291
absolute fitness, 133, 193, 277
evolutionary programming, 188
finite-state machine, 208
function optimization, 209
relative fitness, 133, 188, 193, 277,

278
routing optimization, 174

fitness sampling, 277
fitness sharing, 165, 231, 278
fitness-based spatial neighborhoods,

317
Fletcher-Reeves conjugate gradient, 46
foraging behavior

ants, 360
forgetting factor, 57

unsupervised learning, 57
fully informed PSO, 319
function evaluation, 296
function optimization

chromosome representation, 209
fitness function, 209

functional link neural network, 29
functional unit, 29
output, 30

functional unit, 29

fuzzification, 469
fuzziness, 10, 462
fuzzy controller, 475

components, 475
Mamdani, 477
table-based, 477
Takagi-Sugeno, 478

fuzzy cultural algorithm, 268
fuzzy inferencing, 465, 468, 470

defuzzification, 471
fuzzification, 469

fuzzy logic, 10, 451, 465
fuzzy operators, 457

complement, 457
containment, 457
equality, 457
intersection, 457
s-norm, 459
t-norm, 457
union, 459

fuzzy rule, 467
fuzzy sets, 10, 451, 453, 454

α-cut, 461
cardinality, 461
characteristics, 459
continuous, 454
core, 461
discrete, 454
height, 461
linguistic variable, 453, 466
membership, 454
membership function, 454
normality, 461
normalization, 461
support, 461
unimodality, 461

fuzzy systems, 10
fuzzy variable, 466

game learning, 280
particle swarm optimization, 356

Gaussian activation, 20
Gaussian kernel, 64
Gaussian mutation, 191
Gaussian mutation PSO, 324
gene, 8, 129, 130
generalization, 37, 93, 97
generalization factor, 96, 122
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generalized delta, 25
generalized Hebbian learning, 59
generation, 129
generation gap, 158
generational genetic algorithm, 158
genetic algorithm, 8, 143

canonical, 143
cellular, 162
constrained optimization, 169
control parameters, 156
cooperative coevolutionary, 164
crossover, 144
dynamic environment, 173
fast messy, 160
generation gap method, 158
generational, 158
interactive evolution, 161
island, 162
messy, 159
multi-objective, 170
niched Pareto, 172
niching, 165
nondominated sorting, 172
parallel, 162
representation, 130
self-adjusting parameters, 156
steady state, 158
vector evaluated, 172

genetic algorithm based particle swarm
optimization

cheap PSO, 322
reproduction PSO, 322

genetic programming, 8, 177
building-block, 184
crossover, 180
decision tree, 180
fitness function, 180
mutation, 182
population, 179

genome, 130
genotype, 130
global best position, 291
global minimum, 553
global optimization, 37
global-best, 373, 375
goodness factor pruning, 112
gradient descent, 24, 38, 77, 109, 203

artificial neuron, 24

feedforward neural network, 38
lambda-gamma learning, 115
product unit neural network, 42
reinforcement learning, 88

gradient-based differential evolution,
245

Grassé, Pierre-Paul, 359
Gray coding, 131
growing neighborhoods, 318
growing SOM, 65
guaranteed convergence PSO, 316

hall of fame, 139, 278
Hamiltonian path, 371
Hamming cliffs, 131
Hamming distance, 131, 431
Hebbian learning, 56

differential Hebbian learning, 58
generalized, 59
normalized Hebbian learning, 58
Sejnowski, 57

hedges, 466
concentration, 466
contrast intensification, 467
dilation, 467
probabilistic, 467
vague, 467

helper-T-Cell, 419
heredity, 127
Hestenes-Stiefer, 47
heterogeneous ants, 390
hidden units, 49
hillclimbing, 146, 203
history, 11

artificial immune systems, 12
artificial neural networks, 11
evolutionary computation, 11
fuzzy systems, 12
swarm intelligence, 12

hope criterion, 335
Huber’s function, 101
hyper-mutation, 433
hyperbolic tangent activation, 20
hypercube social network, 319

immune system, 415
affinity, 416
antibodies, 416
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antigen presenting cells, 423
B-Cell, 418
classical view, 415
clonal proliferation, 419
clonal selection, 421
danger theory, 422
helper T-Cell, 419
immunity types, 421
learning, 421
lymphocytes, 415
memory cells, 419
natural-killer-T-Cell, 420
network theory, 422
non-self, 415, 416
plasma cell, 419
self, 415
somatic hyper-mutation, 422

immune system models
classical view, 10
clonal selection, 10
danger theory, 10, 13
network theory, 10, 13

incremental evolution strategies, 228
incremental learning, 119, 120, 123

dynamic pattern selection, 122
information-based functions, 121
integrated squared bias, 121
optimal experiment design, 120
query by committee, 122
query-based learning, 122
selective incremental learning, 121
selective sampling, 122

independent variables, 551
indiscernibility relation, 482
individual, 8
individual variability, 393
inequality constraints, 561
inertia, 293
inertia weight, 306

fuzzy adaptive, 308
increasing, 309
linear decreasing, 307
nonlinear decreasing, 307
random, 307

infinite-horizon discounted model, 85
infinite-valued logic, 452
information sharing

barebones PSO, 320

fully informed PSO, 319
information-based functions, 121
informative pattern, 122
initialization

gradient descent, 106
particle positions, 297
particle velocities, 297
personal best position, 297
PSO, 296
self-organizing feature map, 63

integrated squared bias, 121
intelligence, 3
interactive evolution, 161
intermediate recombination, 148, 222
iteration

PSO, 296
iteration-best, 373, 375
iterations, 312

Jordan recurrent neural network, 33
output, 34
state layer, 33

juvenile hormone, 393

kernel functions, 75

Lagrange multipliers, 206, 565
Lagrangian, 206, 229, 256, 565
Lamarck, Jean-Baptiste, 127
Lamarckism, 127
lambda-gamma learning, 115
law of the excluded middle, 451
laws of thought, 451
LeapFrog, 49, 559
learning

accuracy, 93
artificial neuron, 21
batch, 37, 41, 108
competitive learning, 62
generalization, 93, 97
overfitting, 41, 95, 97
Q-learning, 86
reinforcement, 21, 83
stochastic, 37, 38, 41, 108
stopping criteria, 41
supervised, 21, 27
temporal difference, 86
unsupervised, 21, 55
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learning rate, 24, 58, 68, 107
dynamic, 59, 68

learning rule
coevolutionary, 280
conjugate gradient, 45, 47
error-correction, 25
evolutionary programming, 209
generalized delta, 25
generalized Hebbian learning, 59
gradient descent, 24, 38
Hebbian learning, 56
lambda-gamma, 115
LeapFrog, 49
LVQ-I, 59
normalized Hebbian learning, 58
particle swarm optimization, 49
principal components, 58
radial basis function network, 76
self-organizing feature map, 62
Widrow-Hoff, 25

learning vector quantizer, 59, 73
LVQ-I, 59
LVQ-II, 73

life-cycle PSO, 329
linear activation, 18
linear separability, 20, 22
linguistic fuzzy rule, 467
linguistic variable, 453, 466
local best position, 292
local minimum, 553
local optimization, 37
local optimum, 553
local search

2-opt heuristic, 407
3-opt heuristic, 407
conjugate gradient, 203
gradient descent, 203
hillclimbing, 203

Lumer–Faieta algorithm, 386
lymphocytes, 10, 415, 417

B-Cell, 417, 418
T-Cell, 417

madaline, 25
magnitude-based pruning, 112
major histocompatibility complex

molecules, 417
mapping function, 130

mass extinction, 203, 335
max-min ant system, 375
mean squared error, 41, 94
membership function, 454

fuzzy sets, 454
rough sets, 484

meme, 263
meme pool, 263
memory cells, 419
messy genetic algorithm, 159

fast, 160
migration rate, 162
min-max problem, 565
minimal ant clustering, 391
missing values, 100
model selection, 116
model-free reinforcement learning, 86
momentum, 108, 293
multi-layered artificial immune system,

433
multi-modal optimization problem, 552
multi-objective optimization, 552

ant colony optimization, 398
cultural algorithm, 272
definition, 570
differential evolution, 256
evolution strategies, 230
evolutionary programming, 206
genetic algorithm, 170
niched Pareto genetic algorithm,

172
nondominated sorting genetic al-

gorithm, 172
Pareto ranking, 231
particle swarm optimization, 343
self-adaptive Pareto DE, 252
vector evaluated genetic algo-

rithm, 172
weighted aggregation, 170, 257
weigthed aggregation, 571

multi-objective optimiztion
Pareto archived ES, 230

multi-objective problem
definition, 570

multi-phase PSO, 327
multi-start particle swarm optimiza-

tion, 333
convergence tests, 335
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craziness, 334
dissipative PSO, 335
mass extinction, 335
self-organized criticality, 335

multiple colonies
sharing mechanisms, 399

multiple task allocation, 395
mutation, 8, 139, 153, 397

adaptive mean mutation, 192
artificial immune system, 433
biased, 229
binary representation, 154
Cauchy, 191, 201, 325
chaos, 192
differential evolution, 239
directed, 224, 227
evolution strategies, 224
evolutionary programming, 189
exponential, 191, 201
floating-point representation, 155
function node mutation, 182
Gaussian, 154, 182, 191, 324
genetic programming, 182
grow mutation, 182
headless chicken, 156
inorder, 154
Lévy, 191
mean mutation operator, 192
random, 154
rate, 156
swap mutation, 182
terminal node mutation, 182
trunc mutation, 182
uniform, 154, 155, 190

natural immune system, 9, 415
lymphocytes, 10
models, 10

natural selection, 127
natural-killer-T-Cell, 420
negative selection, 12, 427, 428
neighborhood

gbest PSO, 290
lbest PSO, 292

neighborhood best position, 292
neighborhood function

Gaussian, 64, 67
self-organizing feature map, 64

neighborhood size, 312
neighborhood topology

four-clusters, 301
pyramid, 301
ring, 291, 301
star, 290, 301
Von Neumann, 303
wheels, 301

net input signal, 17
product unit, 18, 30
summation unit, 17

network theory, 10, 13, 422, 436
aiNet, 442
artificial immune network, 436
artificial recognition balls, 436
enhanced artificial immune net-

work, 440
self stabilizing AIS, 438

neural networks
performance measures, 93

niched Pareto genetic algorithm, 172
NichePSO, 351
niching

categories, 568
coevolutionary shared niching, 167
crowding, 166
deterministic crowding, 167
dynamic niche clustering, 168
dynamic niche ES, 234
dynamic niche sharing, 165
evolution strategies, 233
fitness sharing, 165
genetic algorithm, 165
parallel, 568
particle swarm optimization, 350
probabilistic crowding, 167
quasi-sequential, 568
sequential, 568
sequential niching, 166

niching methods
defined, 567

noise injection, 105
non-dominated solutions, 570
non-dominated sorting, 257
non-self, 9
nondominated sorting

genetic algorithm, 172
normalization, 104
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z-score, 104
Z-axis, 104

nostalgia, 293

objective function, 24, 133, 551
objective function slope, 300
objective space, 570
objective vector, 570
Ockham, 109, 116
offline learning, 37
offspring, 8
online learning, 37
optima types, 553
optimal experiment design, 120
optimality conditions

global minimum, 553
local minimum, 553
local optimum, 553

optimization, 15
combinatorial problem, 552
conjugate gradient, 45
constrained, 169, 206, 229
constrained problem, 552, 561
constraints, 551
continuous problem, 552
deterministic, 554
discrete problem, 552
dynamic environment, 173, 576
global, 37
global minimum, 553
gradient descent, 38
independent variables, 551
LeapFrog, 49
local, 37
local minimum, 553
local optimum, 553
methods, 554
multi-modal problem, 552
multi-objective, 170
multi-objective problem, 552, 570
niching, 567
objective function, 551
optima types, 553
particle swarm optimization, 49
problem characteristics, 552
problem classification, 552
random search, 204
scaled conjugate gradient, 47

unconstrained, 555
unconstrained problem, 552
uni-objective problem, 552
unimodal problem, 552

optimization methods
beam search, 139, 556
global search, 554
LeapFrog, 559
local search, 554, 556
simulated annealing, 138, 557
stochastic, 554
tabu search, 556

outliers, 100
Huber’s function, 101

overfitting, 41, 95, 97, 110
early stopping, 95
generalization factor, 96, 122

parallel niching, 568
parapatric speciation, 568
Pareto archived evolution strategy, 230
Pareto ranking, 231
Pareto-optimal

definition, 573
front, 573
set, 573

partial truth, 453
particle, 9, 289

position, 290
velocity, 290, 292

particle swarm optimization, 9, 49, 289
gbest, 290
lbest, 291
acceleration coefficients, 312
architecture selection, 356
asynchronous updates, 310
attractive and repulsive, 327
barebones, 320
binary, 340
Cauchy mutation PSO, 325
charged, 337
cheap PSO, 322
cognition-only model, 310
constrained, 342
constriction model, 309
convergence, 300
cultural algorithm, 263
differential evolution, 250, 325
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dissipative PSO, 335
division of labor, 328
dynamic environments, 346
dynamic neighborhood, 343
evolutionary programming, 204
fully informed, 319
game learning, 356
Gaussian mutation, 324
gbest, 292, 295
growing neighborhoods, 318
guaranteed convergence, 316
hypercube social network, 319
intertia weight, 306
lbest, 292, 295
life-cycle, 329
life-cycle model, 329
mass extinction, 335
multi-objective, 343, 344
multi-phase, 327
multi-start, 333
neural networks, 354
NichePSO, 351
niching, 350
parameters, 312
particle, 9
predator–prey, 332
product unit neural network, 355
recurrent neural network, 355
repelling methods, 337
reproduction, 322
selection, 321
self-organized criticality, 335
selfless model, 311
social-only model, 311
spatial extension, 339
spatial social networks, 317
split PSO, 330
sub-swarms, 326
synchronous updates, 310
unsupervised learning, 355
vector evaluated, 344
velocity models, 310

particles, 289
passive learning, 116
pattern completion, 15
pattern matching, 15
penalty function, 169
penalty methods, 563

problems, 563
performance factors, 99

active learning, 116
adaptive activation function, 115
architecture selection, 109
data preparation, 99
learning rate, 107
momentum, 108
optimization method, 109
weight initialization, 106

performance issues
accuracy, 93
analysis, 98
computational complexity, 98
confidence interval, 99
convergence, 98
correlation coefficient, 95
generalization, 97
generalization factor, 96
measures, 93
overfitting, 95, 110

personal best position, 290, 297
phenotype, 8, 130
phenotypic evolution, 8, 187
pheromone

smoothing, 378
pheromone evaporation, 367
pheromone trails, 360
pleiotropy, 130
Polak-Ribiere, 46
polar evolution stategies, 226
polygeny, 130
population, 8, 132, 179
position update, basic, 290
positive feedback, 361
predator–prey PSO, 332
predator-prey, 275
primal problem, 565
principal component analysis, 58, 113
principal component learning, 58

generalized Hebbian learning, 59
normalized Hebbian learning, 58
Oja, 58

probability, 462
definition, 462

product unit, 18, 30
distortion factor, 30
net input signal, 31



594 INDEX

product unit neural network, 30, 42
gradient descent, 42
output, 31
particle swarm optimization, 355

proportional selection, 135, 194
pruning

consuming energy, 112
evolutionary computation, 112
goodness factor, 112
hypothesis testing, 113
information matrix, 113
intuitive, 112
magnitude-based, 112
principal component analysis, 113
sensitivity analysis, 114
singular value decomposition, 113

Q-learning, 86
connectionist, 89

quadratic assignment problem, 407
quantization error, 61, 65
quasi-sequential niching, 568
query by committee, 122
query-based learning, 122
quickprop, 109

radial basis function network, 73
kernel functions, 75
learning rules, 76

fixed centers, 76
gradient descent, 77
unsupervised, 77

normalized hidden unit activation,
80

soft-competition, 80
radial basis functions, 75
ramp activation, 18
random search, 204
random selection, 135
rank-based selection, 137
re-hope criterion, 335
recruitment, 360
recurrent neural network, 32

Elman, 32
Jordan, 33
particle swarm optimization, 355

regularization, 110
weight decay, 110

weight elimination, 110
reinforcement learning, 21, 83

connectionist Q-learning, 89
eligibility, 86, 88, 90
evolution strategies, 220
gradient descent, 88
model, 84
model-free, 86
policy, 84, 85
Q-learning, 86
resilient propagation, 87
reward function, 84
temporal difference, 86
value function, 84

average award, 85
finite-horizon, 85
infinite-horizon discounted, 85

reinforcement signal, 83
relative discernibility function, 483
relative fitness, 133, 193, 277, 278
relative fitness function

simple fitness, 278
replacement strategy, 158
representation

binary, 130, 145, 154, 340
binary-valued, 130, 253
continuous, 396
continuous-valued, 130
discrete-valued, 252
floating-point, 146, 155
genetic algorithm, 130
Gray coding, 131
Hamming cliffs, 131
tree, 177

reproduction, 134, 139
crossover, 139
mutation, 139
PSO, 322
replacement strategy, 158

repulsion, 326, 328
resilient propagation, 87
response threshold, 393
reward function, 84
rotation matrix, 224
rough sets, 12, 452, 481

lower approximation, 481, 483
membership function, 484
uncertainty, 484
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upper approximation, 482, 483
vagueness, 483

roulette wheel selection, 136
routing optimization

chromosome representation, 174
fitness function, 174

s-norm, 459
scaled conjugate gradient, 47
scaling, 102

amplitude scaling, 103
disadvantage, 103
linear, 103
mean centering, 103
variance, 103

Sejnowski, 57
selection, 134

(µ +, λ), 139
Boltzmann, 138
differential evolution, 240, 256
elitism, 139, 194, 278
evolution strategies, 221
hall of fame, 139, 278
nonlinear ranking, 194
proportional, 135, 194
PSO, 321
random, 135
rank-based, 137

deterministic, 139
linear, 138
non-deterministic linear sam-

pling, 137
non-linear, 138

relative ranking, 265
roulette wheel, 136
selective pressure, 135
stochastic universal sampling, 136
thresholding, 160
tournament, 137, 194, 273

selective incremental learning, 121
selective learning, 119, 120, 123
selective pressure, 135
selective sampling, 122
self, 9
self stabilizing artificial immune

system, 438
self-adaptive differential evolution,

250

self-adjusting parameters, 156, 198,
251, 263

additive, 198
lognormal, 199
multiplicative, 198
reinforcement learning, 220

self-organized criticality PSO, 335
self-organizing feature map, 62

batch map, 65
best matching neuron, 66
clustering, 69
growing SOM, 65
initialization, 63
learning rate, 68
missing values, 100
neighborhood function, 64
shortcut winner search, 68
stochastic learning, 62
visualization, 69

self-tolerant, 426
selfless model, 311
sentry particle, 347
sequential niching, 166, 568
severity

spatial, 576
temporal, 576

sharing mechanisms, 399
global, 400
local, 399

short-term memory, 389
shortcut winner search, 68
sigmoid activation, 20
simple ant colony optimization, 364
simulated annealing, 138, 557

annealing schedule, 558
Boltzmann–Gibbs distribution,

557
single task allocation, 394
social component, 290, 294

ring neighborhood, 291
star neighborhood, 290

social network, 300
fitness-based spatial, 317
growing neighborhoods, 318
hypercube structure, 319
spatial, 317

social-only model, 311
soft computing, 4
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soft-competition, 80
spatial extension PSO, 339
spatial networks, 317
spatial severity, 576
specialization, 395
speciation

allopatric, 568
parapatric, 568
sympatric, 568

split factor, 330
split PSO, 330
state layer, 33
steady state genetic algorithm, 158
steady-state evolution strategies, 215
step activation, 18
stigmergy, 286, 359, 361, 363

definition, 363
sematectonic, 363
sign-based, 364

stimulus–response agent, 363
stochastic learning, 37, 38, 41, 62, 108
stochastic universal sampling, 136
stopping conditions

ACO, 366
PSO, 298

stopping criteria
LVQ-I, 61
supervised learning, 41

strategy parameters, 8, 189, 216
deviations, 216
dynamic, 195
evolution strategies, 216
evolutionary programming, 195
rotation angles, 217
self-adaptive, 198
static, 195

sum squared error, 24, 38, 94
summation unit, 17
supervised learning, 21, 27

batch learning, 108
conjugate gradient, 45
differential evolution, 259
gradient descent, 38, 109
LeapFrog, 49
learning problem, 36
particle swarm optimization, 49,

354
performance issues, 93

quickprop, 109
stochastic, 37
stochastic learning, 108
weight initialization, 106

supervised network
cascade network, 35
ensemble neural network, 51
feedforward neural network, 28
functional link neural network, 29
product unit neural network, 30
recurrent neural networks, 32
time-delay neural network, 34

swarm, 285, 289
radius

normalized, 299
size, 312

swarm intelligence, 9, 285
ant algorithms, 359
ant colony optimization, 360
cemetery organization, 384
division of labor, 391
particle swarm optimization, 289

symbiosis, 275
sympatric speciation, 568
synapse, 6
synchronous updates, 310

T-Cell, 417
t-norm, 457
tabu search, 556
temporal difference learning, 86
temporal polyethism, 392
temporal severity, 576
three-valued logic, 452
time-delay neural network, 34

output, 35
tournament fitness, 278
tournament selection, 137, 194, 273
trail diffusion, 397
training set manipulation, 105
trajectories

convergence condition, 314
transition probability

ACS, 372
ant system, 368, 369
simple ACO, 365

transition rule
ACS, 372



INDEX 597

Ant-Q, 378
traveling salesman problem, 406
true error, 37, 94
trust parameters, 312
Turing, 3, 11
Turing test, 3

uncertainty, 484
nonstatistical, 10
statistical, 10

unconstrained optimization, 552
benchmark functions, 559
definition, 555

uni-objective optimization, 552
unimodal optimization problem, 552
unsupervised learning, 21, 55

associative memory, 55
coevolution, 280
definition, 56
differential Hebbian learning, 58
generalized Hebbian learning, 59
Hebbian learning, 56
LVQ-I, 59
normalized Hebbian learning, 58
particle swarm optimization, 355
principal components, 58
Sejnowski, 57
self-organizing feature map, 62

vagueness, 483
VC-dimension, 97, 116

vector evaluated differential evolution,
257

vector evaluated genetic algorithm, 172
vector evaluated PSO, 344
velocity

clamping, 304
cognition-only model, 310
cognitive component, 293
components, 293
constriction, 309
geometric illustration, 294
inertia, 306
inertia component, 293
LeapFrog, 50
selfless model, 311
social component, 294
social-only model, 311

velocity update
gbest PSO, 290
lbest PSO, 292
cognitive component, 290
social component, 290

Wallace, Alfred, 127
Ward clustering, 69
weak domination, definition, 572
weight decay, 110
weight elimination, 110
weigted aggregation, 571
Widrow-Hoff, 25
worker polymorphism, 392
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