

ORACLE

jd
Developed By:Jignesh Dhol

Index

Contents

Ch:1 Introduction to RDBMS

Ch:2 SQL, SQL * Plus

Ch:3 Managing Tables and Data

Ch:4 Other ORACLE database objects

Ch:5 Transaction and Decision Control Language

Ch:6 Introduction to PL/SQL

Ch:7 Advanced PL/SQL

Ch:8 Oracle Database Structure

file:///D|/JigneshDhol/Oracle/Index.htm [6/26/02 11:58:05 AM]

0101. Contents

Ch:1 Introduction to RDBMS

Top:1 What is Database Management System ?

Top:2 Database Models

Hierarchical Model - Network Model - Relational Model

Top:3 What is Relational Database Management System ?

Top:4 Difference between DBMS / RDBMS

Top:5 E - R diagram

Top:6 Types of Relationship

One to One - One to Many - Many to Many

Top:7 Normalization

Top:8 Codd's Rules

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch1\0101.%20Contents.htm [6/26/02 12:06:29 PM]

0201. Contents

Ch:2 SQL, SQL *Plus

Top:1 Introduction to SQL

Top:2 SQL Commands and Datatypes

Top:3 Expression, Conditions and Operators

Top:4 SELECT statement

Top:5 Special Operator

Top:6 Join, Subquery

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch2\0201.%20Contents.htm [6/26/02 12:06:30 PM]

0301. Contents

Ch:3 Managing Tables and Data

Top:1 Creating and Altering tables (Including Constraints)

Top:2 Data Definition Language

Top:3 Data Manipulation Commands like

Insert, Update, Delete and Alter

Top:4 Functions

Aggregate, Date - Time, Arithmetic, Character,
Conversion, Miscellaneous

Top:5 SQL *Plus

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch3\0301.%20Contents.htm [6/26/02 12:06:32 PM]

0401. Contents

Ch:4 Other ORACLE database objects

Top:1 View

Top:2 Sequence

Top:3 Synonyms

Top:4 Index

Top:5 Database Links

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch4\0401.%20Contents.htm [6/26/02 12:06:34 PM]

0501. Contents

Ch:5 TCL and DCL

Top:1 What is transaction ?

Top:2 Starting and Ending of Transaction

Top:3 Commit, Rollback, Save Point

Top:4 Grant, Revoke

Top:5 Role, Creating Users, Change Password

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch5\0501.%20Contents.htm [6/26/02 12:06:35 PM]

0601. Contents

Ch:6 Introduction to PL/SQL

Top:1 SQL v/s PL/SQL

Top:2 PL/SQL Block Structure

Top:3 Language construct of PL/SQL

(Variables, Basic Datatypes, Composite Datatypes,
Conditions looping etc.)

Top:4 %TYPE and %ROWTYPE

Top:5 Using Cursor (Implicit, Explicit)

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch6\0601.%20Contents.htm [6/26/02 12:06:37 PM]

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch7\0701.%20Contents.htm

Ch:7 Advanced PL/SQL

Top:1 Creating and Using Procedure

Top:2 Functions

Top:3 Package

Top:4 Trigger

Top:5 Creating Objects

Top:6 PL/SQL Tables

Top:7 Nestead Tables

Top:8 Varrays

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch7\0701.%20Contents.htm [6/26/02 12:06:38 PM]

0801. Contents

Ch:8 Oracle Database Structure

Top:1 Initialization Parameter

Top:2 Control Files, Redo Logs files

Top:3 Processes

Top:4 Tablespace (Create, Alter, Drop)

Top:5 Oracle Blocks

Top:6 Import, Export

Top:7 SQL * Loader

Top:8 Instance Architecture

1. Database Processes

2. Memory Structure

file:///D|/JigneshDhol/Oracle/Book%20Ora\Ch8\0801.%20Contents.htm [6/26/02 12:06:40 PM]

0102. What is DBMS

TOP:1 What is Database Management System ?

C. J. Dates define a database system, as a computer base record
keeping system whose overall purpose to record and maintain
information. In other word, database is a collection of related records
and a set of programs to access this data. Because it is an entire
system and enables ones to enter, store and manage data it is call
Database Management System.

Modern Database Management System comes in many different
classifications, and with many different capabilities, but in general
they try or accomplish three things.

Data consolidation refers to the combining or unifying of separate data
file into centralized structure, and storing data in a non-redundant
format. A redundant format is a structure is that stores the same data
item two or more location. For instance, as seen in the examples
above, if within a company an employee address is stored not only by
the HRD Department in the employee history file, but also the account
department in the payroll file, the employee own department in a
project file, etc. then you have non centralized structure carrying
redundant information. An integrated (non-redundant) system stores
the employee's address stores only one location.

Data Sharing

Data sharing refer to the ability of the system to aloe multiple user
concurrent access to the individual pieces of data in the database. You
can think of the database as a 'pool' of sharable information.

Data Protection

file:///D|/JigneshDhol/Oracle/0102.%20What%20is%20DBMS.htm (1 of 3) [6/26/02 12:10:58 PM]

0102. What is DBMS

Data protection refers to the ability of a database management system
to maintain integrity of its data in the face of certain type of
processing adversity such as crashes, program failures, etc. if this
type of events occurs, the DBMS must have the ability to back out (or
undo) incomplete of erroneous changes to data stored in the
database.

How is a Database System Beneficial?

• The amount of redundancy in the stored data can be reduced.

• No more inconsistencies.

• The store data can be shared.

• Standards can be set and followed.

• Data integrity is maintained.

• Security of data can be implemented.

• Data independence.

DBMS Users

• The Database Designers

• The Database Administrator or DBA

• The Application Programmer

• The actual End-Users of the application

file:///D|/JigneshDhol/Oracle/0102.%20What%20is%20DBMS.htm (2 of 3) [6/26/02 12:10:58 PM]

0102. What is DBMS

file:///D|/JigneshDhol/Oracle/0102.%20What%20is%20DBMS.htm (3 of 3) [6/26/02 12:10:58 PM]

0103. Database Models

TOP:2 Database Models

Database Management Systems organize data in what is known as
data model. You and think of a data model as the infrastructure of the
data organization, in other word how the data is presented to the
user. There are three basic data models:

• The Hierarchical Model

• The Network Model

• The Relational Model

(i) The Hierarchical Model

One of the earliest database management systems was based on the
Hierarchical Model. In a hierarchical data model the records have a
parent-child relationship. The application used was Production
planning for automobile manufacturing companies. The model of
database is shown in following figure. An automobile manufacture may
manufacture various model of car. Each car model was decomposed
into its assemblies (Engine, Body and Chassis). Each assembly is
further decomposed into sub-assemblies (valves, spark plugs&ldots;)
and so on. If manufacturer wanted to generate the Bill of Materials for
a particular model of an automobile the hierarchical data model would
be very suitable because the bill of materials for a product has
hierarchical structure. Each record represents a particular part and
since the records have a parent-child relation-ship each part is linked
to its sub-part. The hierarchical model of support multiple occurrences

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (1 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

of the same record type.

One of the most popular hierarchic database management system was
IBM's Information Management System (IMS) introduced in 1968. IMS
is still most widely used DBMS in IBM mainframes.

The Characteristics of DBMS are:

• Data is represented as hierarchical trees.

The hierarchical database is characterized by parent-child
relationship between records. A record type, R1, is said to the
parent of record type, R@, if R1 is one level higher than R2 in
the hierarchic tree. The root of the hierarchy is the most
important record type and all records at different levels of the
hierarchy are dependent of the root. Each child record has
only one parent record. The parent record can have one or
more children record type.

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (2 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

• Represents a set of related records.

There can be one or more than one record occurrences for
given record type. When writes into database, one occurrence
of record of the record type is written. Similarly, whenever a
record is retrieved from the database, one occurrence if the
record type is retrieved.

• Hierarchy is established through pointers.

In the hierarchic database, the pointers link the records.
Pointers determine whether a particular record occurrence is
a parent of child record and path from parent to the child.

• Simple structure

The database is simple hierarchical tree. The parent and child

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (3 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

records can be stored close to each other on the disk,
minimizing disk input and output. The hierarchic data model
is simpler than a network model.

• High performance

The parent-child relationship is stored as a pointer from one
record to another; hence navigation through the database is
very fast resulting in high performance.

• Relationships between record types are pro-defined

The hierarchical DBMS is based on the hierarchic tree
structure in which the parent-child relationship is supported.
A record type, R!, is said to be the parent of record type, R2,
if R1 is one level higher than R2 in the hierarchical tree.
Records types at different level of the hierarchy are
dependent on the root, which is most important record type in
the hierarchy. Since the relationships are predefined,
flexibility is lost but a high performance compared to other
data models is achieved.

• Tedious to reorganize.

It is tedious to reorganize the database because the hierarchy
has to be maintained. Each time a record type is inserted of
deleted, the pointer have to be manipulated to maintain the
parent-child relationship. The reorganization is static and
appropriate changes have to be made to the application
programs.

• Real life requirement are more complex

The hierarchic DBMS is based on a simple parent-child
relationship, but real life applications are more complex and
cannot be represented by a hierarchic structure. In an order-
processing database, a single order might participate in three

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (4 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

different parent-child relationships linking the order to the
customer who placed the order, the items ordered and the
sales person who took the order. This complex structure
cannot be represented in a hierarchical structure.

(ii) The Network Model

To overcome the problem posed by the hierarchical data model, the
network model was developed. The network model modified the
hierarchical model by allowing multiple parent-child relationships. This
relation is known as set in network model was developed. The network
model together with the hierarchical data model was major a data
model for implementing numerous commercial DBMSs. The network
model structure and language construct were defined by the CODASYL
(Conference on Data Systems Language).

The characteristics of a network DBMS are:

• Data record types are represented as a network.

• A network is used when hierarchy is not established or when a
record participates is more than one relationship.

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (5 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

• Each sub-module can have one or more super-ordinate
modules. Since each multiple parent child relationship is
supported child record type could have one than more parent
record types.

• Represents a set of related records.

The sets that support multiple parent-child relationships and
the structure of the record have to be specified in advance.

• Complex structure

Since multiple parent-child relationship is supported,
database structure is very complicated. The network database
implements sets that support multiple parent-child
relationships. The sets have to be specified in advance. In the
tradeoff between flexibility and performance, a network model
is not very flexible to reorganize but has high performance
level.

• Difficult to reorganize

The network database is very difficult to reorganized because
insert and deleting a record would trace the pointers and
changing the appropriate links.

• Navigation done by the programmer

The programmer will have to write 3-GL programs specifying
the relationship and direction in which to navigate in the
database.

• 3-GL needed to program database

To access records the programmer has to navigate the
database record-by-record. Program will have to be written
specifying to which relationship to navigate and the direction.

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (6 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

• 3-GL inadequate for handling sets.

The records network model are processed one set at a time. 3-
GLs handle only one record at a time and hence are
inadequate for handling sets.

• Query facility not available

Network database management system do not have any
query facility and hence 3-GL programs will have to written
specifying the path and the relationship.

(iii) The Relational Model

An IBM research scientist Dr. E. F. Codd, was unhappy with the way
the DBMSs available in those day handled large volumes of data. He
felt the need to apply the rules and decline of mathematics to help
address the problems associated with the earlier models as

Data integrity

Data redundancy

In June 1970, he presented his paper titled ' A Relational Model of
Data for Large shared Databanks'. This paper actually laid down 12
rules. Which a true RDBMS would have to satisfy.

The term 'Relation' is derived from the set theory of mathematics. The
basis characteristics of a relational model are discussed here.

First, in a relation model, data is stored in relations. 'What are
relations?' will be the next question that we will answer. Before that,
consider the following example. Given below are two different lists.
One is a list of countries and their capitals. The other lists countries

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (7 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

and the local currencies used by them.

You will notice that their two different lists shown here. However,
there is a column, which is the common to both lists. This the column,
which contains names of the country. Now if someone wants to know
the currency used in Rome, first one should find out the name of the
country. Next that country should be looked up the next list to find out
the currency.

It is possible to get this information because it is possible to establish
relation between the two lists through a common column called
"country".

In the relational model data is stored in relations, relation is a formal
term for the table. In the example above we have stored information

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (8 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

about countries as a table. A table in a database as a unique table
name that identifies its contents. Each table can be called an
intersection of row and columns. One of the most important properties
of a table is that the rows are unordered. A row cannot be identified
by its position in the table. Every table must have a column that
uniquely identifies by each row in the table. It is essential that no two
rows should contain identical information. This is prevented by the use
of primary key.

Now we will exam the relational model in detail.

The relational model - the details

Let us consider any of the tables we have considered in the example
above less us take the currency table.

a new column called "codes" has been introduced as the primary key.
The table show above consist of the components listed below,

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (9 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

according to a relational model:

Domain

Domain is pool of values from where one or more attributes (columns)
can draw their actual values. For example, the values in the field
"country" are available from the name of all the countries in the world.
Hence, the domain name for this field is country.

tupple

according to the relational model, every relation or table is made up of
many tuples. They are called records- a term that we are already
familiar with. They are the rows that a table is made up of. Given
below are some of the tuples that are part of the currency table.

CHN China Remnimbi (quan)

FRN France Francs

PRT Portugal Escudo

The number of tuples in a table is the cardinality of the tuple.

Attributes

The term "attributes" refers to characteristic. The characteristic of the
tuple is reflected by its attributes or field. This simply means that what
the column contains will be define by the attributes of that column.
The number of attributes is called the degree of that table. Look at
some of the attributes shown below.

Peso

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (10 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

Australia

New Zealand

Although are relational model prescribe these above terms they do not
appear in the daily usage. The terms "records" and "fields" are
commonly used.

Advantages of a Relational Database Model

Some of the salient advantages of a relational database model have
been listed below:

Built in integrity at various levels.

Allow data integrity to be incorporated at the field level to ensure data
accuracy; integrity at the table level to avoid duplication of records
and to detect records with missing primary key values;

At the relationship level to ensure that relationships between tables
are valid.

Logical and Physical data Independence from database
applications

Changes made in the logical design of the database or changes made
in the database software will adversely affect the implementation of
the database.

Data consistency and accuracy

Due to the various levels, at which data integrity can be built in, data
is accurate and consistent.

Easy data retrieval and data sharing

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (11 of 12) [6/26/02 12:11:01 PM]

0103. Database Models

Data cab be easily extracted from one or more than one tables. Data
can also be easily shared users.

file:///D|/JigneshDhol/Oracle/0103.%20Database%20Models.htm (12 of 12) [6/26/02 12:11:01 PM]

0104. What is RDBMS

TOP:3 What is Relational Database Management
System ?

A relational database is a database structured on the relational model.
A Relational Database Management System or RDBMS is a suite of
software programs that can be used for creating, maintaining,
modifying and manipulating a relational database. It can also be used
to create the application that a user will require for interacting with
the data stored within the database. A very important point to note
here is that an RDBMS that satisfies the 12 criteria lay down by Dr.
Codd is called a true RDBMS. (Refer to Appendix A for Dr. Codd's 12
Rules).

Kinds of Relations

Various kinds of relations (tables) can exist in a relational system.
They are listed below:

Base Tables

Query results

Views

We are familiar with the concept of base tables. The other two types
will be discussed in subsequent sessions.

Base Tables

A base table is a table with a name that physically exists in a
database. It is a created by the user, not something that is derived

file:///D|/JigneshDhol/Oracle/0104.%20What%20is%20RDBMS.htm (1 of 5) [6/26/02 12:11:03 PM]

0104. What is RDBMS

from another table. A base table can be created, altered and removed
from a database. All these tasks are accomplished using SQL
statement, which will be covered in detail in subsequent sessions.

Query Results

When a 'question' is asked to a table, the resultant data is also stored
in tables. Such tables are called query result tables.

Views

A view is a virtual table. Some columns of a base table may not be
required by the user. In such cases, a view is created. This view will
consist only of those columns of the base table that the user is
interested in seeing. This format can be saved as a view by giving it a
name. This concept will be covered in subsequent sessions in further
detail.

Now that we have a better understanding of RDBMS concept, we
progress and understand how this relational model is represented.

In a previous session, we understood what the relational model is. A
database is meant to store data and this data in turn should provide
information needs of an organization, a conceptual model has to be
designed first.

The first step in this direction will be the collection and gathering of
the data that will be required information. The data analysis process is
where this will take place. Data analysis entails the collection of bills,
reports, forms and other such records. The next step is to assess the
uses of the organizations data and removing the data that is not
required or is getting repeated. A data analysis also involves
identifying tables, their fields and records and establishing
relationships between them.

The completion of data analysis is marked by the drawing of the entity
- relationship diagram or the ER diagram. In order to understand how

file:///D|/JigneshDhol/Oracle/0104.%20What%20is%20RDBMS.htm (2 of 5) [6/26/02 12:11:03 PM]

0104. What is RDBMS

to draw the ER diagram, it is important to first appreciate the ER
model. In this section, we will learn about the ER model and ER
diagrams.

The ER data model is based on the object-based logical models. Chen
introduced this model and its diagramming technique. Let's examine
the components of this model here. Thus model comprises of the
following components.

Entities

Attributes

Relationship

Entities

An entity can be defined as anything, which can be distinctly
identified. A place, person, picture, thing, concept, process, result or
data are some of the examples of an entity. As can be seen, the term
concept a very broad spectrum.

Entity Set

An entity set of entities of some type. The set of person studying in a
class can be defined as an entity set of student. Similarly it is possible
to define to customers of a shop, patients of a clinic etc. as entity sets.

Attributes

Each entity has a specific characteristic that is defined by the attribute

Relationships

A relationship is defined as an association among entities. We shall
understand this model with the help of an example.

file:///D|/JigneshDhol/Oracle/0104.%20What%20is%20RDBMS.htm (3 of 5) [6/26/02 12:11:03 PM]

0104. What is RDBMS

Consider an organization having many departments in it. Each
department has several employees are managed by a department
head.

Each entity is related with another relationships. In example that we
have considered above, each of the entities i.e. the department are all
distinct entities. Relationships in a relational database model are
categorized as:

One to One (1:1)

One to Many (or many to one)(1:M)

Many to Many (M:M)

Let us understand how these types of relationships apply in our
example. Each employee given a unique employee number. Since any
one employee can have only one employee number, this is called a
one to one relationship; one department can have only one
department head. This is also an example of a one to one relationship.

However, one department can have several employees working it. This
is an example of a one to many relationships. Thus, it can be said that
the relationship existing between employees and a department is of
the 1:M type.

In most real life situations, is difficult to find a many to many
relationship. In our example, here we do not have many to many

file:///D|/JigneshDhol/Oracle/0104.%20What%20is%20RDBMS.htm (4 of 5) [6/26/02 12:11:03 PM]

0104. What is RDBMS

relationships between any of entities.

If user is a familiar with the relationship among the tables in the
database, data can be accessed in a number of ways. Data can be
accessed from tables. Which are directly as well as indirectly related.

In the next section, we will learn how to represent these relationships
pictorially. The ER diagram is a way of expressing of representing this
relationship. We will learn more about this in detail in the next section.

file:///D|/JigneshDhol/Oracle/0104.%20What%20is%20RDBMS.htm (5 of 5) [6/26/02 12:11:03 PM]

0105. Difference DBMS vs RDBMS

TOP:4 Difference between DBMS v/s RDBMS

DBMS RDBMS

The concept of relationships
is missing in a DBMS. If it
exists it is very less

It is based on the concept
of relationships.

Speed of operation is very
slow.

Speed of operation is very
fast.

Hardware and software
requirements are less.

Hardware and software
requirements are high.

Facilities and Utilities
offered are limited.

Facilities and Utilities
offered are many.

file:///D|/JigneshDhol/Oracle/0105.%20Difference%20DBMS%20vs%20RDBMS.htm (1 of 2) [6/26/02 12:11:04 PM]

0105. Difference DBMS vs RDBMS

Platform is used is normally
DOS

Platform used can by any
DOS, UNIX, VAX,VMS etc.

Uses concept of a file. Uses concept of a table.

DBMS normally use a 3GL. RDBMS normally use a 4GL.

Examples are dBASE,
FOXBASE etc.

Examples are ORACLE,
INGERS etc.

file:///D|/JigneshDhol/Oracle/0105.%20Difference%20DBMS%20vs%20RDBMS.htm (2 of 2) [6/26/02 12:11:04 PM]

0106. E - R Diagram

TOP:5 Entity Relationship Diagram

Diagrams are one of the better ways to communicate different of a
components of a system. They are also too easy to understand by
everyone. They offer an overview of the entire system. An E-R
diagram is graphical method of representing entity classes, attributes
and relationships. An E-R diagram uses six basic symbols:

• A rectangle to denote an entity or entity set.

• A diamond to denote a relationship between two entities.

• An oval to denote attributes.

• A '1' to denote a single occurrence.

• An 'M' to denote multiple occurrences.

• A line which links attributes to an entity or entity set and
entity sets to relationships.

When an E-R diagram is built. The first step is defining entities. The
next step is to define the relationship between the entities. The final
step to identify the attributes that belong to each entity. Once the E-R
diagram is completed. The entities will become the files (or table).
Figure illustrates a many-to-one relationship between the entity sets
Employee and Department. The next process is that of normalization.
Which will be covered in detail in the next session.

file:///D|/JigneshDhol/Oracle/0106.%20E%20-%20R%20Diagram.htm (1 of 3) [6/26/02 12:11:06 PM]

0106. E - R Diagram

The importance of relationships

We will understand why relationships are a vital part of the database.
The main reasons are listed and described below.

• Relationships establish a connection between a pair of tables
that are logically related to each other in some manner. Data in a
customer's table and orders tables are logically related. When a
customer orders for an item, this order is recorded in the order
table. Hence a customer record in the customer's table is related
to the record in the order table.

• Relationships help refine and streamline table structures. This
helps in further in removing data redundancy.

• Data for many tables can be extracted at the same time if
relationship exists among the table.

• A well-defined relationship helps maintain a high level
integrity. For example a customer record from the customer table
cannot be deleted if a record for that customer exists in the order
table.

We will learn as progress with our study of RDBMS, that establish

file:///D|/JigneshDhol/Oracle/0106.%20E%20-%20R%20Diagram.htm (2 of 3) [6/26/02 12:11:06 PM]

0106. E - R Diagram

relationship carefully help in designing database that are easy to use.

file:///D|/JigneshDhol/Oracle/0106.%20E%20-%20R%20Diagram.htm (3 of 3) [6/26/02 12:11:06 PM]

0107. Types of Relationship

TOP:6 Types of Relationship

One to One (1:1)

One to Many (1:M) or Many to One

Many to Many (M:M)

One to One

A pair of table is define as having one to one relationship if one record
in the first table is related to only one record in the second table. Let's
consider an example to understand this. In our library example,
supports we have a books table with details of books as follows:

Book code

Book name

Book Author

Book Publisher

Book Cost etc.

The primary key is the book code. It is required to stored publisher
details in separate tables because many books can have the same
publisher. This leads to redundancy. Hence, a new table called
publisher is created the structure is follows:

Book Code

file:///D|/JigneshDhol/Oracle/0107.%20Types%20of%20Relationship.htm (1 of 3) [6/26/02 12:11:07 PM]

0107. Types of Relationship

Publisher Name

Publisher Add.

Publisher Tele. / Fax etc.

In this table, the book code is foreign key. Since any book can have
only one publisher, this is an example of one to one relationship. Look
at the pictorial representation of this relationship.

One to Many

A relationship is defined as one to many when a single record in the
first table points to many records in the second table. However, a
single record in the second table can only point to one record in the
table. Let's consider our library example again. Like our publisher table
suppose we create author table. One book title can be written by
several authors take the example of the book title-oracle power object-
developers guide. A publisher is Mc. Grow Hill and the authors are R.
Finkelstern, R. Greenwald and kasu sista

file:///D|/JigneshDhol/Oracle/0107.%20Types%20of%20Relationship.htm (2 of 3) [6/26/02 12:11:07 PM]

0107. Types of Relationship

In the fig. Above, notice that the three arrows from a picture that
reassembles a foot of crow. A crowfoot is normally used to signify the
one to many relationships.

Many to Many Relationship

A many to relationship exists between two tables if a single record in
the first table points to more then one record in the second table and a
single record in the second table points to many records in the first
table. We will understand this with the help of an example. We have
already seen the issue table and the member table in this case one
member can be issued (can borrow) many books at one instance. At
the same time, one book title can be borrowed by more than one
member at any instance. Not the crow feet pointing at both tables

file:///D|/JigneshDhol/Oracle/0107.%20Types%20of%20Relationship.htm (3 of 3) [6/26/02 12:11:07 PM]

0108. Normalization

TOP:7 Normalization

It is one of the most important concepts in the study of the RDBMS.
The case with which information is stored and retrieved. Depends a lot
on the way of the tables have been defined. Tables that are hugged
and bulky often defeat the purpose of having an RDBMS all together.
This is because such tables may not be easy to maintain

In this section, we will discuss the concept of normalization in detail. It
can be defined as a processed of putting data right-making it normal.
Normalization is important from the database design. Designer point
of view as it enables him to design better. It is concerned with
database design. There are two ways of approaching logical database
design-

The top down approach

The bottom-up approach

In the top down approach, first entities and relationship are identified;
the ER diagram is made and mapped with the tables. The ER modeling
technique uses the top down approach.

Normalization uses the bottom up approach. Normalization is the
technique that makes the relational data files differ from other data
files, which are referred to as flat files we will understand this with the
help of an example.

A library maintains a register of all books issued to its members. The
register contain the following column

file:///D|/JigneshDhol/Oracle/0108.%20Normalization.htm (1 of 5) [6/26/02 12:11:10 PM]

0108. Normalization

No. Name of the book Borrowed by Date of issue Date of
return

Every time a member failed to return the book, a letter is sent/a
telephone call is made to that member's house for reminding. In
separate part of the register. A list of all members name along with
their address and telephone numbers is maintain.

Member name Address and telephone number.

Now every time a member defaults in returning a book, the librarian
looks of the name of that member in the list and makes a reminder
call. In this case we can say that the librarian has a relational
database on paper. This is called a normalized data. Normalization is
here referring to data being collect and stored in natural grouping.
Issue detail of book and member details are stored as separate groups
or lists.

Like this library register even in RDBMS, it is imperative to have
normalized table. Normalization can be defined as the process of the
restructuring a relation (table). For reducing it to a form where each
domain would consist of single non composite values

Benefits of normalization

Normalization reduces repetition for example data redundancy. When
the same data is reputedly is stored it cases storage and access
problems.

file:///D|/JigneshDhol/Oracle/0108.%20Normalization.htm (2 of 5) [6/26/02 12:11:10 PM]

0108. Normalization

• Inconsistency in data retrieval

• error while updating data tables

Suppose the address and the telephone nos. of the members were
Grouped together in one table along with book details. How would it
make difference? First let take a look at the table below:

No Name
of
the
book

Borrowed
By

Address Telephone Date of
Issue

Date of
Return

As you can see there are no groups everything is put in one table now
consider a member who borrow above four books every weeks, it's
now easy to see how many times the address and telephone no of this
member will be stored. In the table leading to a huge amount of data

Suppose one member is changed his address. The no. of rows were
the address will have to be changed will be many. This duplication of
effort due to poor database design. as it can be seen data that has not
been normalized can be lead to a several problems two of which we
have discussed.

Having understood normalization and its benefits let's proceed what
happens after a table is normalized.

Normal Form

Dr. Codd originally defines three levels of normalization. These three

file:///D|/JigneshDhol/Oracle/0108.%20Normalization.htm (3 of 5) [6/26/02 12:11:10 PM]

0108. Normalization

levels were called first normal form. Second normal form and third
normal form respectively. Normalization is usually discussed in terms
of forms. Normal forms are table structures with minimum
redundancy. Normal forms that have been identified are:

• First normal form (1st NF)

• Second normal form (2nd NF)

• Third normal form (3rd NF)

• Boyce-Codd normal form

The first three forms were defined by Dr. codd. Later Dr. codd and
Boyce introduced one more normal form, which called the Boyce-Codd
normal form. Theory of normalization isa based on the concept of
function dependency. The diagram below illustrates the levels of
normalization.

In order to understand more about normal form we must have
understand is meant by functional dependency.

Establish deletion rules

Data integrity is one of the main advantages that relationships offer in
an RDBMS. Deletion rules must be established for a relationship. This
rule states what will happen if a record has to be deleted. Defining a
deletion rule prevents records from being operand; i.e. the record will

file:///D|/JigneshDhol/Oracle/0108.%20Normalization.htm (4 of 5) [6/26/02 12:11:10 PM]

0108. Normalization

exist in a subordinate table but will not exist in the main table. There
can be two option applicable for deletion rule.

Restrict: when deletion is restrict, a record in a subordinate table of a
one to one or many to one relationship can not be deleted for example
a publisher whose books are still found in the books table can not be
deleted. There are several examples where significance of such a rule
can be appreciated further.

In an employ table, an employ cannot be deleted because a salary
table still hold his record. In a pending order table, pending order
cannot be deleted until the order has been serviced. Customer who
has not paid these dues cannot be deleted from the customer table.

Cascade: in this type of rule when a record is deleted, all related
records in all subordinate tables will also be deleted. In the first
session we had talk about RDBMS maintaining data integrity. This is
how it is possible.

file:///D|/JigneshDhol/Oracle/0108.%20Normalization.htm (5 of 5) [6/26/02 12:11:10 PM]

0109. Codd's Rules

TOP:8 Codd's Rules

E.F.TED CODD'S LAWS For a fully functional Relational Database
Management System

Relational Database Management

A relational database management system uses only its relational
capabilities to manage the information stored in its database.

Information Representation

All information stored in a relational database is represented only by
data item values, which are stored in the tables that make up the
database. Associations between data items are not logically
represented in any other way, such as, by the use of pointers from
one table to the other.

Logical Accessibility

Every data item value stored in a relational database is accessible by
stating the name of the table it is stored in, the name of the column
under which it is stored and the value of the primary key that defines
the row in which it is stored.

Representation of null values

The database management system has a consistent method for
representing null values. For example, null values for numeric data
must be distinct from zero or any other numeric value and for
character data it must be different from a string of blanks or any other
character value.

file:///D|/JigneshDhol/Oracle/0109.%20Codd's%20Rules.htm (1 of 3) [6/26/02 12:11:11 PM]

0109. Codd's Rules

Catalog facilities

The logical description of a relational database is represented in the
same manner as ordinary data. This is done so that the facilities of the
relational database management system itself can be used to maintain
database description.

Data Language

A relational database management system may support many types of
languages for describing data and accessing the database. However,
there must be at least one language that uses ordinary character
strings to support the definition of data, the definition of views, the
manipulation of data, constraints on data integrity, information
concerning authorization and the boundaries for recovery of units.

View Updatibility

Any view that can be defined combinations of base tables, which are
theoretically updateable, is capable of being updated by the relational
database management system.

Insert, Update and Delete

Any operand that describes the results of a single retrieval operation is
capable of being applied to an insert, update or delete operation as
well.

Physical Data independence

Changes made to physical storage representations or access methods
do not require changes to be made to application programs.

Logical data independence

Changes made to tables, that do not modify any data stored in that

file:///D|/JigneshDhol/Oracle/0109.%20Codd's%20Rules.htm (2 of 3) [6/26/02 12:11:11 PM]

0109. Codd's Rules

table, do not require changes to be made to application programs.

Integrity Constraints

Constraints that apply to entity integrity and referential integrity are
specifiable by the data language implemented by the database
management system and not by the statements coded into the
applications program.

Database Distribution

The data language implemented by the relational database
management system supports the ability to distribute the database
without requiring changes to be made to application programs. This
facility must be provided in the data language, Whether or not the
database management system itself supports distributed databases.

Non-Subversion

If the relational database management system supports facilities that
allow application programs to operate on the tables a row at a time,
an application program using this type of database access is prevented
from bypassing entity integrity or referential integrity constraints that
are defined for the database.

file:///D|/JigneshDhol/Oracle/0109.%20Codd's%20Rules.htm (3 of 3) [6/26/02 12:11:11 PM]

0202. Introduction to SQL

TOP:1 Introduction to SQL (Structured Query
Language)

Every data table that we have created so far us. All this data would
data serve very little purpose if it could not be retrieved. In order to
retrieve this data, one needs to be able to 'talk' to the tables. The
structure query language allows users of the database communicate
with the database.

Data in a relational database can be retrieved using a standard
language like SQL. In an English like computer language, which makes
interaction between user and the database very simple. Let us first
look at its evolution.

SQL - A Brief History

SQL was first introduced by Dr. Codd in his pioneering work 'A
relational Model for Large Shared Data Banks'. Since introduction
many researchers at the San Jose Research Laboratories made efforts
in implementing Dr. Codd's ideas, the mid of 70s saw the development
of many computer programming language based on this relational
model. One of these was called Structure English Query Language of
SEQUEL language.

System T did well with relational database. One of such organization
called relational software from Belmont, California made it software
commercially available. It was a relational database called ORACLE.
This company later changed ins name to oracle corporation because of
the success of this software. Today oracle manufactures a wide range
of SQL products along with Relational Database Management System
software.

Since many software vendors started offering a large number of SQL

file:///D|/JigneshDhol/Oracle/0202.%20Introduction%20to%20SQL.htm (1 of 4) [6/26/02 12:12:14 PM]

0202. Introduction to SQL

base products, there was a dire need to standardize this language.
The first SQL standards were later adopted by the international
standard organization (ISO) in 1987. The database language SQL was
form under the approval both ANSI and ISO.

Why SQL?

Let us understand that why there is a need to SQL. Although other
programming language exist. The primary reason for doing so is that
SQL was created for the relational database. The relation model was
the considered when creating a SQL. SQL therefore is like a co-worker.
Assisting the RDBMS achieve the user's requirement. SQL simplifies
the task of creating, Manipulating and communicating the database. A
traditional and general programming language like C would be difficult
to use this purpose.

Characteristics of SQL

SQL is Non Procedural Language

in the conventional programming language, coding is essential to
achieve a given task. In addition to specifying the task to achieved
needs to be specifying the tasks to be achieved. How to go about
doing it has also to be specified. In SQL only the task that has to be
achieved needs to specify. For example, to retrieve rows from a table
we simply use the SELECT command.

A Data Sub language

SQL does not support programming language constructs. Conditional
statements like 'If Then', 'While' can not be used in SQL.

Not a database management system

SQL is an important tool for communication with the DBMS and
supports database management statements.

file:///D|/JigneshDhol/Oracle/0202.%20Introduction%20to%20SQL.htm (2 of 4) [6/26/02 12:12:14 PM]

0202. Introduction to SQL

Can be embedded in third generation languages like 'C' or
'COBOL' to facilities database access.

Use of SQL

SQL is language used for communication with the DBMS. It is a
language that can be used by all users such as

System Administrator

Database Administrator

Application Programmer

Management Personnel

End Users

it can used for the following:

It is an interactive query language that allows users to use
SQL statements to retrieve the data and display on it screen.
SQL is an important tool that allows adhoc queries on the
database.

A database programming language that allows programmer to
embed SQL statement in third generation language program
to access data from the database.

A database Administration Language that define the structure
of database, controls the user access to data and also the
level of user access.

Client/Server Language that allows application programs on
PCs connected via LAN to communicate with the database
server using SQL. Application using client/server Language
make optimum use of PCs and servers and also reduce traffic

file:///D|/JigneshDhol/Oracle/0202.%20Introduction%20to%20SQL.htm (3 of 4) [6/26/02 12:12:14 PM]

0202. Introduction to SQL

over the LAN.

Database Gateway Language uses SQL to communicate with
the distributed database.

Distributed Database language is used when data is
distributed over many machine. The Distributed Database
Management System uses SQL to communicated with the
distributed database.

Types of SQL

SQL is two types-interactive and embedded. While both operate
exactly the same way their usage differs. Interactive SQL is used to
interactive directly with the database there the output of the operation
is used of human consumption. Once a command is specific, it is
execute and the user can immediately view the output.

In the case embedded SQL, commands are SQL commands that are
written in some other languages, such as COBOL or Pascal. This
makes to programs very fast and powerful. In this course, we will use
SQL only in its interactive form.

file:///D|/JigneshDhol/Oracle/0202.%20Introduction%20to%20SQL.htm (4 of 4) [6/26/02 12:12:14 PM]

0203. SQL Commands and Datatypes

TOP:2 SQL Command and DataTypes

SQL Commands can classified as under:

DDL (Data Definition Language)

CREATE to create table or objects

ALTER to alter existing database

DROP to drop existing objects

TRUNCATE to remove whole data at a time

DML (Data Manipulation Language)

INSERT to insert data in table

UPDATE to update existing data in table

SELECT to view database

DELETE to delete particular records in database

TCL (Transaction Control Language)

COMMIT to save buffer data to storage device

file:///D|/JigneshDhol/Oracle/0203.%20SQL%20Commands%20and%20Datatypes.htm (1 of 5) [6/26/02 12:12:17 PM]

0203. SQL Commands and Datatypes

ROLLBACK to undo save

SAVEPOINT to keep break in save action

DCL (Decision Control Language)

GRANT to provide rights for user on database

REVOKE to revoke user rights

DATATYPES

NUMERIC

The NUMBER datatype is used to store zero, negative, positive, fixed
and floating point numbers with up to 38 digits of precision.numbers
range between 1.0 * 10 -130 and 1.0 * 10 126 .

NUMBER(p , s)

Where p is the precision up to 38 digits and s is the scale (number of
digits to the right of the decimal point).The scale can range between -
84 and 127.

NUMBER(p)

This is a fixed point number with a scale of zero and a precision of p.

NUMBER

file:///D|/JigneshDhol/Oracle/0203.%20SQL%20Commands%20and%20Datatypes.htm (2 of 5) [6/26/02 12:12:17 PM]

0203. SQL Commands and Datatypes

This is a floating point number with a precession of 38.

The following list shows how Oracle stores different scales and
precisions.:

Actual Data Defined as Stored as

123456.789 NUMBER(6,2) 123456.79

123456.789 NUMBER(6) 123457

123456.789 NUMBER(6,-2) 123400

123456.789 NUMBER 123456.789

DATE

Instead of storing date and time information in a character or numeric
format. IBM created a separate datatype. for each DATE datatype, the
following information is stored.

Century - Year - Month - Day - Hour - Minute - Second

You can easily retrieve the current date and time by using the function
SYSDATE.

Date arithmetic is possible using number constants or other
dates.Only addition and subtraction are supported. For example,
SYSDATE + 7 returns oneweek from today. Every database system
has a default date format that is defined by the initialization
parameter NLS_DATE_FORMAT. This parameter is usually set to DD-
MON-YY, where DD is the day of the month (the first day of the month

file:///D|/JigneshDhol/Oracle/0203.%20SQL%20Commands%20and%20Datatypes.htm (3 of 5) [6/26/02 12:12:17 PM]

0203. SQL Commands and Datatypes

is 01), MON is the abbreviated month name,and YY is a two-digit
designation. If you do not specify a time, the default time is 12:00:00
a.m. if only the time component is captured,the default date is the
first day of the current month.

CHARACTER

There are six character types available:

• The CHAR datatype is used where fixed-length fields are
necessary. Any length up to 2,000 characters can be specified.
The default length is 1. When Data is entered any space left over
is filled with blanks. All alphanumeric characters are allowed.

• The VARCHAR2 is used for variable-length fields. A length
component must be supplied when you use this datatype. The
maximum length is 4000 characters. All alphanumeric characters
are allowed.

• The LONG datatype is used to store large amounts of
variables-length. Any length up to 2GB can be specified. Be aware
that there are some restrictions to using this datatype:

Only one column per table can be defined as LONG.

A LONG column cannot be indexed.

A LONG column cannot be passed as an argument to
a procedure.

You cannot use a function to return a LONG column.

You cannot use a LONG column in WHERE, ORDER
BY, GROUP BY or DISTINCT by clauses.

file:///D|/JigneshDhol/Oracle/0203.%20SQL%20Commands%20and%20Datatypes.htm (4 of 5) [6/26/02 12:12:17 PM]

0203. SQL Commands and Datatypes

• The VARCHAR datatype is synonymous with
VARCHAR2.Oracle Corporation is reserving this for future use. Do
not use this datatype.

BINARY

Two datatypes, RAW and LONG RAW, are available for storing binary
type data such as digitized sound and images. These datatypes take
on characteristics similar to the VARCHAR2 and LONG datatypes
already mentioned.

Use the RAW datatype to store binary data up to 2,000 bytes and use
the LONG RAW datatype to store binary data up to 2GB. Oracle stores
and retrieves only binary data; no string manipulations are allowed.
Data is retrieved as hexadecimal character values.

file:///D|/JigneshDhol/Oracle/0203.%20SQL%20Commands%20and%20Datatypes.htm (5 of 5) [6/26/02 12:12:17 PM]

0206. Operators and Expression

TOP:3 Operators and Expressions

EXPRESSION

The definition of an expression is simple: An expression returns a
value. Expression types are very broad, covering different data types
such as String, Numeric, and Boolean. In fact, pretty much anything
following a clause (SELECT or FROM, for example) is an expression. In
the following example amount is an expression that returns the value
contained in the amount column.

SELECT amount FROM checks;

In the following statement NAME, ADDRESS, PHONE and
ADDRESSBOOK are expressions:

SELECT NAME, ADDRESS, PHONE FROM ADDRESSBOOK;

Now, examine the following expression:

WHERE NAME = 'BROWN'

It contains a condition, NAME = 'BROWN', which is an example of a
Boolean expression. NAME = 'BROWN' will be either TRUE or FALSE,
depending on the condition =.

CONDITIONS

If you ever want to find a particular item or group of items in your

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (1 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

database, you need one or more conditions. Conditions are contained
in the WHERE clause. In the preceding example, the condition is

NAME = 'BROWN'

To find everyone in your organization who worked more than 100
hours last month, your condition would be

NUMBEROFHOURS > 100

Conditions enable you to make selective queries. In their most
common form, conditions comprise a variable, a constant, and a
comparison operator. In the first example the variable is NAME, the
constant is 'BROWN', and the comparison operator is =. In the second
example the variable is NUMBEROFHOURS, the constant is 100, and
the comparison operator is >. You need to know about two more
elements before you can write conditional queries: the WHERE clause
and operators.

The WHERE Clause

The syntax of the WHERE clause is

SYNTAX:

WHERE <SEARCH CONDITION>

SELECT, FROM, and WHERE are the three most frequently used
clauses in SQL. WHERE simply causes your queries to be more
selective. Without the WHERE clause, the most useful thing you could
do with a query is display all records in the selected table(s). For
example:

INPUT:

SQL> SELECT * FROM BIKES;

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (2 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

lists all rows of data in the table BIKES.

OUTPUT:

NAME FRAMESIZE COMPOSITIONMILESRIDDENTYPE

TREK 2300 22.5 CARBON
FIBER

3500 RACING

BURLEY 22 STEEL 2000 TANDEM

GIANT 19 STEEL 1500 COMMUTER

FUJI 20 STEEL 500 TOURING

SPECIALIZED 16 STEEL 100 MOUNTAIN

CANNONDALE22.5 ALUMINUM 3000 RACING

6 rows selected.

If you wanted a particular bike, you could type

INPUT/OUTPUT:

SQL> SELECT * FROM BIKES WHERE NAME = 'BURLEY';

which would yield only one record:

NAME FRAMESIZE COMPOSITIONMILESRIDDENTYPE

BURLEY 22 STEEL 2000 TANDEM

ANALYSIS:

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (3 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

This simple example shows how you can place a condition on the data
that you want to retrieve.

OPERATORS

Arithmetic Logical Like Relational Miscellaneous

+ AND LIKE < Is

- OR > In

* NOT = Any

/ <= All

% >= The

 !=

 <>

The precedence of the operators are:

• The following have equal precedence

=, !=, >, <, >=, <=

BETWEEN&ldots;&ldots;AND , IN

LIKE, IS NULL

• NOT

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (4 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

• AND

OPERATORS in Details:

Operators are the elements you use inside an expression to articulate
how you want specified conditions to retrieve data. Operators fall into
six groups: arithmetic, comparison, character, logical, set, and
miscellaneous.

Arithmetic Operators

The arithmetic operators are plus (+), minus (-), divide (/), multiply
(*), and modulo (%). Modulo returns the integer remainder of a
division. Here are two examples:

5 % 2 = 1

6 % 2 = 0

If you place several of these arithmetic operators in an expression
without any parentheses, the operators are resolved in this order:
multiplication, division, modulo, addition, and subtraction. The
following sections examine the arithmetic operators in some detail and
give you a chance to write some queries.

Plus (+)

You can use the plus sign in several ways. Type the following
statement to display the PRICE table:

INPUT:

SQL> SELECT * FROM PRICE;

OUTPUT:

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (5 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

ITEM WHOLESALE

TOMATOES 0.34

POTATOES 0.51

BANANAS 0.67

3 rows selected.

Now type:

INPUT/OUTPUT:

SQL> SELECT ITEM, WHOLESALE, WHOLESALE + 0.15 FROM PRICE;

Here the + adds 15 percents to each price to produce the following:

ITEM WHOLESALES WHOLESALE + 0.15

TOMATOES 0.34 0.49

POTATOES 0.51 0.66

BANANAS 0.67 0.82

3 rows selected.

ANALYSIS:

What is this last column with the unattractive column heading
WHOLESALE+0.15 ? It's not in the original table. (Remember, you
used * in the SELECT clause, which causes all the columns to be
shown.) SQL allows you to create a virtual or derived column by

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (6 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

combining or modifying existing columns.

Retype the original entry:

INPUT/OUTPUT:

SQL> SELECT * FROM PRICE;

The following table results:

ITEM WHOLESALE

TOMATOES 0.34

POTATOES 0.51

BANANAS 0.67

3 rows selected.

ANALYSIS:

The output confirms that the original data has not been changed and
that the column heading WHOLESALE+0.15 is not a permanent part of
it. In fact, the column heading is so unattractive that you should do
something about it.

NOTE: It is simple to use all the other arithmatic operators like Plus
(+).

Comparison Operators

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (7 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

Comparison operators compare expressions and return one of three
values: TRUE, FALSE, or Unknown. Wait a minute! Unknown? TRUE
and FALSE are self-explanatory, but what is Unknown? To understand
how you could get an Unknown, you need to know a little about the
concept of NULL. In database terms NULL is the absence of data in a
field. It does not mean a column has a zero or a blank in it. A zero or
a blank is a value. NULL means nothing is in that field. If you make a
comparison like Field = 9 and the only value for Field is NULL, the
comparison will come back Unknown. Because Unknown is an
uncomfortable condition, most flavors of SQL change Unknown to
FALSE and provide a special operator, IS NULL, to test for a NULL
condition.

Here's an example of NULL: Suppose an entry in the PRICE table does
not contain a value for WHOLESALE. The results of a query might look
like this:

INPUT:

SQL> SELECT * FROM PRICE;

OUTPUT:

ITEM WHOLESALE

TOMATOES 0.34

POTATOES 0.51

ORANGES

Notice that nothing is printed out in the WHOLESALE field position for
oranges. The value for the field WHOLESALE for oranges is NULL. The
NULL is noticeable in this case because it is in a numeric column.
However, if the NULL appeared in the ITEM column, it would be
impossible to tell the difference between NULL and a blank.

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (8 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

Try to find the NULL:

INPUT/OUTPUT:

SQL> SELECT * FROM PRICE WHERE WHOLESALE IS NULL;

ITEM WHOLESALE

ORANGES

ANALYSIS:

As you can see by the output, ORANGES is the only item whose value
for WHOLESALE is NULL or does not contain a value. What if you use
the equal sign (=) instead?

INPUT/OUTPUT:

SQL> SELECT * FROM PRICE WHERE WHOLESALE = NULL;

no rows selected

ANALYSIS:

You didn't find anything because the comparison WHOLESALE = NULL
returned a FALSE--the result was unknown. It would be more
appropriate to use an IS NULL instead of =, changing the WHERE
statement to WHERE WHOLESALE IS NULL. In this case you would get
all the rows where a NULL existed.

This example also illustrates both the use of the most common
comparison operator, the equal sign (=), and the playground of all
comparison operators, the WHERE clause. You already know about the
WHERE clause, so here's a brief look at the equal sign.

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (9 of 10) [6/26/02 12:12:20 PM]

0206. Operators and Expression

file:///D|/JigneshDhol/Oracle/0206.%20Operators%20and%20Expression.htm (10 of 10) [6/26/02 12:12:20 PM]

0304. SELECT statement

TOP:4 SELECT Statement

The general syntax for a SELECT statement:

SYNTAX:

SELECT [DISTINCT | ALL] { * | { [schema.]{table | view |
snapshot}.* | expr } [[AS] c_alias] [, { [schema.]{table | view |
snapshot}.* | expr } [[AS] c_alias]] ... }

FROM [schema.]{table | view | snapshot}[@dblink] [t_alias] [,
[schema.]{table | view | snapshot}[@dblink] [t_alias]] ...

[WHERE condition]

[GROUP BY expr [, expr] ... [HAVING condition]]

[{UNION | UNION ALL | INTERSECT | MINUS} SELECT command]

[ORDER BY {expr|position} [ASC | DESC] [, {expr|position} [ASC |
DESC]] ...]

Query:1

The simple first query to perform, which yields all records available in
table

INPUT:

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (1 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

SQL> select * from dept;

OUTPUT:

DEPTNODNAME LOC

--------- -------------- -------------

10 ACCOUNTINGNEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

ANALYSIS:

This output looks just like the code in the example. Notice that
columns 1 in the output statement are right-justified and that columns
2 and 3 are left-justified. This format follows the alignment convention
in which numeric data types are right-justified and character data
types are left-justified.

The asterisk (*) in select * tells the database to return all the columns
associated with the given table described in the FROM clause. The
database determines the order in which to return the columns.

Terminating an SQL Statement

In implementations of SQL, the semicolon at the end of the statement
tells the interpreter that you are finished writing the query.

Query:2 Changing the Order of the Columns or selecting

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (2 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

particular columns

The preceding example of an SQL statement used the * to select all
columns from a table, the order of their appearance in the output
being determined by the database. To specify the order of the
columns, you could type something like:

INPUT:

SQL> SELECT dname, deptno from dept;

Notice that each column name is listed in the SELECT clause. The
order in which the columns are listed is the order in which they will
appear in the output. Notice both the commas that separate the
column names and the space between the final column name and the
subsequent clause (in this case FROM). The output would look like
this:

OUTPUT:

DNAME DEPTNO

-------------- ---------

ACCOUNTING 10

RESEARCH 20

SALES 30

OPERATIONS 40

Another way to write the same statement follows.

INPUT:

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (3 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

SQL> SELECT dname, DEPTNO

FROM dept;

Notice that the FROM clause has been carried over to the second line.
This convention is a matter of personal taste when writing SQL code.
The output would look same as above. Now you have the columns you
want to see. Notice the use of upper- and lowercase in the query. It
did not affect the result.

Query:3 Queries with Distinction

If you look at the original table, EMP, you see that some of the data
repeats. For example, if you looked at the JOB column using

INPUT:

SQL> select JOB from emp;

you would see

OUTPUT:

 JOB

CLERK

SALESMAN

SALESMAN

MANAGER

SALESMAN

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (4 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

MANAGER

MANAGER

ANALYST

PRESIDENT

SALESMAN

CLERK

CLERK

ANALYST

CLERK

14 rows selected.

Notice that the job 'salesman' is repeated. What if you wanted to see
how may different jobs were in this column? Try this:

INPUT:

SQL> select DISTINCT job from emp;

The result would be

OUTPUT:

 JOB

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (5 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

CLERK

SALESMAN

MANAGER

ANALYST

PRESIDENT

5 rows selected.

ANALYSIS:

Notice that only five rows are selected. Because you specified
DISTINCT, only one instance of the duplicated data is shown. ALL is a
keyword that is implied in the basic SELECT statement. You almost
never see ALL because SELECT <Table> and SELECT ALL <Table>
have the same result.

Query:4 WHERE Clause

With WHERE in your vocabulary, you can be more selective. To find all
the employee having salary more than 2500

INPUT:

SQL> SELECT ename, job, sal FROM emp WHERE SAL> 2500;

The WHERE clause returns the five instances in the table that meet
the required condition:

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (6 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

OUTPUT:

ENAME JOB SAL

---------- --------- ---------

JONES MANAGER 2975

BLAKE MANAGER 2850

SCOTT ANALYST 3000

KING PRESIDENT 5000

FORD ANALYST 3000

Query:5 The LIKE Clause

LIKE is an addition to the WHERE clause that works as a helping hand
to WHERE. Compare the results of the following query:

INPUT:

SQL> SELECT empno, ename FROM emp WHERE ename LIKE 'S%';

OUTPUT:

EMPNO ENAME

--------- ----------

7369 SMITH

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (7 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

7788 SCOTT

Query:6 The ORDER BY Clause

From time to time you will want to present the results of your query in
some kind of order. As you know, however, SELECT FROM gives you a
listing, and unless you have defined a primary key, your query comes
out in the order the rows were entered. Consider a beefed-up DEPT
table:

INPUT:

SQL> select * from dept order by dname;

OUTPUT:

DEPTNO DNAME LOC

------------- ------------ --------------

10 ACCOUNTING NEW YORK

40 OPERATIONS BOSTON

20 RESEARCH DALLAS

30 SALES CHICAGO

INPUT:

SQL> select * from dept order by deptno;

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (8 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

OUTPUT:

DEPTNO DNAME LOC

------------- ------------ --------------

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

ANALYSIS:

The ORDER BY clause gives you a way of ordering your results. For
example, to order the preceding listing by check DNAME in alphabetic
order, you would use ORDER BY clause:

Query:6 The GROUP BY Clause

You have/had learned how to use aggregate functions (COUNT, SUM,
AVG, MIN, and MAX). If you wanted to find the total amount of money
spent on salary for employee, you would type:

INPUT:

SQL> SELECT SUM(sal) from emp;

OUTPUT:

SUM(SAL)

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (9 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

 29025

You might get different result for this, it depends on salary column
value in your database. Now if you want to calculate sum of salary
department wise then you have to perform this way,

INPUT:

SQL> SELECT deptno, sum(sal) from emp group by deptno;

OUTPUT:

DEPTNO SUM(SAL)

------------- --------------

10 8750

20 10875

30 9400

NOTE: One simple rule, if you wish any table column along with
aggregate function then you must use to write that column with group
by clause else you'll get error like this;

INPUT:

SQL> SELECT deptno, job, avg(sal) from emp group by deptno;

OUTPUT:

SELECT deptno, job, avg(sal) from emp group by deptno

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (10 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

 *

ERROR at line 1:

ORA-00979: not a GROUP BY expression

ANALYSIS:

Here job is not included in group by expression, now let's correct this,

INPUT:

SQL> SELECT deptno, job, avg(sal) from emp group by deptno, JOB;

OUTPUT:

DEPTNO JOB AVG(SAL)

------------ ------------ --------------

10 CLERK 1300

10 MANAGER 2450

10 PRESIDENT 5000

20 ANALYST 3000

20 CLERK 950

20 MANAGER 2975

30 CLERK 950

30 MANAGER 2850

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (11 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

30 SALESMAN 1400

9 rows selected.

ANALYSIS:

This provides group value for each deptno and available job for that
department. AVG function yields result for each department and each
job.

Query:7 The HAVING Clause

How can you qualify the data used in your GROUP BY clause? Use the
table EMP and above example and try this:The following statement
qualifies this query to return only those departments with average
salaries more than 1300:

INPUT:

SQL> SELECT deptno, job, avg(sal) from emp group by deptno, JOB
HAVING AVG(sal)>1300;

OUTPUT:

DEPTNO JOB AVG(SAL)

------------ ------------ --------------

10 MANAGER 2450

10 PRESIDENT 5000

20 ANALYST 3000

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (12 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

20 MANAGER 2975

30 MANAGER 2850

30 SALESMAN 1400

6 rows selected.

ANALYSIS:

On sort, to provide condition on aggregate function or group by
function one must require HAVING clause.

FINAL EXAMPLE:

INPUT:

SQL> SELECT deptno, job, avg(sal) from emp group by deptno, JOB
HAVING AVG(sal)<6000 and deptno=10 order by job desc;

OUTPUT:

DEPTNO JOB AVG(SAL)

-------------------------- ----------------

10 PRESIDENT 5000

10 MANAGER 2450

10 CLERK 1300

ANALYSIS:

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (13 of 14) [6/26/02 12:12:24 PM]

0304. SELECT statement

This query shows all the clauses including Group by, Order by and
Having. Order By job Desc - here desc stands for descending. it pays
results in descending alphabetic order for job, you can mark in above
table.

file:///D|/JigneshDhol/Oracle/0304.%20SELECT%20statement.htm (14 of 14) [6/26/02 12:12:24 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

TOP:5 Special Operators

Operator:1 The LIKE Clause

LIKE is an addition to the WHERE clause that works as a helping hand
to WHERE. Compare the results of the following query:

INPUT:

SQL> SELECT empno, ename FROM emp WHERE ename LIKE 'S%';

OUTPUT:

EMPNO ENAME

--------- ----------

7369 SMITH

7788 SCOTT

INPUT:

SQL> SELECT empno, ename FROM emp WHERE ename LIKE '%N';

OUTPUT:

EMPNO ENAME

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (1 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

--------- ----------

7499 ALLEN

7654 MARTIN

INPUT:

SQL> SELECT empno, ename FROM emp WHERE ename LIKE '%A%';

OUTPUT:

EMPNO ENAME

--------- ----------

7499 ALLEN

7521 WARD

7654 MARTIN

7698 BLAKE

7782 CLARK

7869 ADAMS

7900 JAMES

Underscore (_)

The underscore is the single-character wildcard. Using a modified
version of the table EMP, type this:

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (2 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

INPUT:

SQL> SELECT empno, ename FROM emp WHERE ename LIKE '_LA%';

OUTPUT:

EMPNO ENAME

--------- ----------

7698 BLAKE

7782 CLARK

ANALYSIS:

Result shows the ename like any one character at the place of
underscore (_) then two words as 'LA' and rest any (%) character.
You can use several underscores in a statement.

Concatenation (||)

The || (double pipe) symbol concatenates two strings. Try this:

INPUT:

SQL> SELECT empno || ename FROM emp WHERE job like
'MANAGER';

OUTPUT:

EMPNO||ENAME

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (3 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

7566JONES

7698BLAKE

7782CLARK

ANALYSIS:

Notice that || is used instead of +. If you use + to try to concatenate
the strings, the SQL interpreter used for this example (Personal
Oracle8) returns the following error:

INPUT/OUTPUT:

SQL> SELECT EMPNO + ENAME FROM emp;

ERROR:

ORA-01722: invalid number

It is looking for two numbers to add and throws the error invalid
number when it doesn't find any. NOTE: Some implementations of
SQL use the plus sign to concatenate strings. Check your
implementation.

Here's a more practical example using concatenation:

INPUT/OUTPUT:

SQL> SELECT deptno || ' - ' || dname NAME FROM dept;

NAME

--

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (4 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

10 - ACCOUNTING

20 - RESEARCH

30 - SALES

40 - OPERATIONS

ANALYSIS:

This statement inserted a des (-) between the department no and
the name. Notice the extra spaces between the first name and the last
name in these examples. These spaces are actually part of the data.
With certain data types, spaces are right-padded to values less than
the total length allocated for a field.

Operator:2 Logical Operators

Logical operators separate two or more conditions in the WHERE
clause of an SQL statement.

INPUT/OUTPUT:

SQL> SELECT empno, ename, deptno, sal FROM emp WHERE deptno
= 10 AND sal > 2000;

EMPNO ENAME DEPTNO SAL

-------------- ------------- --------------------------
-

7782 CLARK 10 2450

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (5 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

7839 KING 10 5000

ANALYSIS:

This query performs data search in a way that department no must be
10 as well salary must be greater than 2000. This means this query
use logical operator and relational operator also.

AND

AND means that the expressions on both sides must be true to return
TRUE. If either expression is false, AND returns FALSE. For example,
to find out which employees have salary greater than 2000 and have
registration in department 10.

OR

You can also use OR to sum up a series of conditions. If any of the
comparisons is true, OR returns TRUE. To illustrate the difference,
conditions run the last query with OR instead of with AND:

INPUT/OUTPUT:

SQL> SELECT empno, ename, deptno, sal FROM emp WHERE deptno
= 10 OR sal > 2000;

EMPNO ENAME DEPTNO SAL

-------------- ------------- --------------------------
-

7566 JONES 20 2975

7698 BLAKE 30 2850

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (6 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

7782 CLARK 10 2450

7788 SCOTT 20 3000

7839 KING 10 5000

7902 FORD 20 3000

7934 MILLER 10 1300

ANALYSIS:

The original names are still in the list, but you have three new
entries.These five new names made the list because they satisfied one
of the conditions. OR requires that only one of the conditions be true
in order for data to be returned.

NOT

NOT means just that. If the condition it applies to evaluates to TRUE,
NOT make it FALSE. If the condition after the NOT is FALSE, it
becomes TRUE. For example, the following SELECT returns the only
two names not beginning with S in the table:

INPUT:

SQL> SELECT ename, job FROM emp WHERE job NOT LIKE 'S%';

ENAME JOB

-------------------- -----------

SMITH CLERK

JONES MANAGER

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (7 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

BLAKE MANAGER

CLARK MANAGER

SCOTT ANALYST

KING PRESIDENT

ADAMS CLERK

JAMES CLERK

FORD ANALYST

MILLER CLERK

10 rows selected.

NOT can also be used with the operator IS when applied to NULL.

Operator:3 Set Operators

The following sections examine set operators.

UNION and UNION ALL

UNION returns the results of two queries minus the duplicate rows.
The following two tables represent the rosters of teams:

INPUT:

SQL> SELECT ename, deptno FROM emp UNION SELECT dname,
deptno FROM dept;

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (8 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

OUTPUT:

ENAME DEPTNO

------------------- ----------------

ACCOUNTING 10

ADAMS 20

ALLEN 30

BLAKE 30

CLARK 10

FORM 20

JAMES 30

JONES 20

KING 10

MARTIN 30

MILLER 10

OPERATIONS 40

RESEARCH 20

SALES 30

SCOTT 20

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (9 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

SMITH 20

TURNER 30

WARD 30

18 rows selected.

ANALYSIS:

The combined list--courtesy of the UNION ALL statement--has 18
names. UNION ALL works just like UNION except it does not eliminate
duplicates.

INTERSECT

INTERSECT returns only the rows found by both queries. The next
SELECT statement shows the list of deptno who are available on both
tables:

INPUT:

SQL> SELECT deptno FROM emp INTERSECT SELECT deptno FROM
dept;

OUTPUT:

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (10 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

DEPTNO

10

20

30

ANALYSIS:

In this example INTERSECT returns only those record which are
available in both the tables. Graphical representation is shown below.

MINUS (Difference)

Minus returns the rows from the first query that were not present in
the second. For example:

INPUT:

SQL> SELECT deptno FROM dept MINUS SELECT deptno FROM emp;

OUTPUT:

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (11 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

DEPTNO

40

The preceding examples shows department no available in DEPT table
but not available in table EMP. Graphical representation is shown
below.

Operators:4 IN and BETWEEN

The two operators IN and BETWEEN provide a shorthand for functions
you already know how to do. If you wanted to find employee having
job any from ANALYST, MANAGER or PRESIDENT then rather using
two or more OR statement, one should use IN clause.

INPUT:

SQL> SELECT ename, job FROM emp WHERE job = 'ANALYST' OR job
= 'MANAGER' OR job = 'PRESIDENT' ;

or

SQL> SELECT ename, job FROM emp WHERE job IN ('ANALYST',
'MANAGER', 'PRESIDENT');

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (12 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

OUTPUT:

ENAME JOB

--------------- ---------------

JONES MANAGER

BLAKE MANAGER

CLARK MANAGER

SCOTT ANALYST

KING PRESIDENT

FORD ANALYST

6 rows selected.

ANALYSIS:

The second example is shorter and more readable than the first. You
never know when you might have to go back and work on something
you wrote months ago.

INPUT:

SQL> SELECT ename, sal FROM emp WHERE sal >= 2000 AND sal
<= 3000;

or

SQL> SELECT ename, sal FROM emp WHERE sal BETWEEN 2000

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (13 of 14) [6/26/02 12:12:27 PM]

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm

AND 3000;

OUTPUT:

ENAME SAL

------------- ---------------

JONES 2975

BLAKE 2850

CLARK 2450

SCOTT 3000

FORD 3000

file:///D|/JigneshDhol/Oracle/0305.%20Special%20Operator.htm (14 of 14) [6/26/02 12:12:27 PM]

0306. Join, Subquery, Built in functions

TOP:6 Join, Subquery

Join

Today you will learn about joins. This information will enable you to
gather and manipulate data across several tables. You will understand
and be able to do the following:

• Perform an equi-join

• Join a table to itself (self join)

• Perform an outer join

• Perform a Between Join

Introduction

One of the most powerful features of SQL is its capability to gather
and manipulate data from across several tables. Without this feature
you would have to store all the data elements necessary for each
application in one table. Without common tables you would need to
store the same data in several tables. Imagine having to redesign,
rebuild, and repopulate your tables and databases every time your
user needed a query with a new piece of information. The JOIN
statement of SQL enables you to design smaller, more specific tables
that are easier to maintain than larger tables.

A Few Join Considerations

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (1 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

1. You may join up to 15 tables in one SELECT, But this limit
would have to be considered a bit impractical. Four tables is more
sensible - especially if you are using medium to large sized tables
(10000 rows or more).

2. If there are identical column names referred to in the join,
those column names must be predefined by a table name (or
alias) to ensure uniqueness.

3. A join will retrieve all possible combinations of rows that
satisfy the join condition. The datatypes for the columns in the
join condition should be compatible (either both numeric or both
character). Note that NULL values never satisfy a join condition.
Even if both rows from both tables match with NULL values in
them, the rows will not be selected.

4. The condition after the WHERE creates the vital link between
the tables, that is necessary to restrict the selection to useful
rows.

5. The WHERE clause may specify multiple selection criteria.

6. You must have authority to access the tables that you are
going to join.

Multiple Tables in a Single SELECT Statement (Equi-join)

INPUT:

SQL> SELECT emp.empno, emp.ename, emp.deptno, dept.dname
FROM emp, dept WHERE emp.deptno=dept.deptno;

OUTPUT:

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (2 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

EMPNO ENAME DEPTNO DNAME

------------ ------------- -------------- ------------

7369 SMITH 20 RESEARCH

7499 ALLEN 30 SALES

7521 WARD 30 SALES

7566 JONES 20 RESEARCH

7654 MARTIN 30 SALES

7698 BLAKE 30 SALES

7782 CLARK 10 ACCOUNTING

7788 SCOTT 10 ACCOUNTING

7839 KING 10 ACCOUNTING

7844 TURNER 30 SALES

7876 ADAMS 20 RESEARCH

7900 JAMES 30 SALES

7902 FORD 20 RESEARCH

7934 MILLER 10 ACCOUNTING

ANALYSIS:

Check the query, in that table name is used to refer column before all
the column. Now say dept table have 4 rows and emp table have 14

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (3 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

rows. If you omit WHERE clause in query then you will get 14 * 4 = 56
records as a result. So it is compulsory to use WHERE clause in join
query. This way equi join example. In place of table name as a
reference of column you can generate table alias, so you need not to
write long name of tables. To generate alias of table one need to write
alias name in FROM clause. Example of the same is given here.

SQL> SELECT e.empno, e.ename, e.deptno, d.dname FROM emp e,
dept d WHERE e.deptno=d.deptno;

Self Join (Join to it self)

A self join is the most powerful illustrator of the complex queries that
can be written using the simple SELECT statement. A self join is a join
of a table with itself. This query is executed by logically making two
copies of the same table. To do this the same table has to be given
two aliases, which can then be compared to one another. Suppose you
need to find employee name along with name of manager instead of
MGR (manager code), one must use self join query as :

SQL> SELECT e1.empno, e1.ename, e1.mgr, e2.ename FROM emp
e1, emp e2 WHERE e1.mgr=e2.empno;

EMP NO ENAME MGR ENAME

----------- ---------- ------ ----------

7369 SMITH 7902 FORD

7499 ALLEN 7698 BLAKE

7521 WARD 7698 BLAKE

7566 JONES 7839 KING

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (4 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

7654 MARTIN 7698 BLAKE

7698 BLAKE 7839 KING

7782 CLARK 7839 KING

7788 SCOTT 7566 JONES

7844 TURNER 7698 BLAKE

7876 ADAMS 7788 SCOTT

7900 JAMES 7698 BLAKE

7902 FORD 7566 JONES

7934 MILLER 7782 CLARK

13 rows selected.

ANALYSIS:

Here, one can mark that KING is not available as employee but
available in list of managers. That is because of KING does not have
MGR value, and what we perform is equality concept as
e1.mgr=e2.empno.

Outer Join

An outer join is a join similar to a simple join. A simple join is a join of
two based on a common column. A special kind of simple join is the
equi join. We have already discussed this type of join. An outer join is
different from all other types of joins as it returns:

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (5 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

All the rows that are returned by a simple join and

All those rows of one table that do not match with the rows in the
other table.

An outer join is used to join unmatched rows of a table. A table can be
outer joined to at the most one table.

SQL> SELECT c.client_no FROM client_master c, sales_order s WHERE
s.client_no(+)=c.client_no;

CLIENT

C00001

C00001

C00002

C00003

C00004

C00005

C00006

As you can see there is a small '+' sign after the sales_order table.
This sign is used to indicate an outer join. It can be put on either side
of WHERE clause. It is however, append to that table which does not
have matching rows. Here all customer may not available in
sales_order table, but you are getting that record also because of
outer join applies on client_master table.

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (6 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

Between Joins

SQL has a special join that allows you to match column values in one
table with a range of values in another table. A 'between join' is used
to match rows of one table to rows in a second table by specifying that
a column value in one table falls into a range of values specified in the
other table.

If you want to display the employee number, emp name, basic salary,
grade and the salary limits for each employee, you will have to write
the following query:

SQL> SELECT empno, ename, sal, grade, losal, hisal FROM emp,
salgrade WHERE sal BETWEEN losal AND hisal;

EMP NO ENAME SAL GRADE LOSAL HISAL

------- -------- ------- ------- -------- --------

7369 SMITH 800 1 700 1200

7499 ALLEN 1600 1 700 1200

7521 WARD 1250 1 700 1200

7566 JONES 2975 2 1201 1400

7654 MARTIN 1250 2 1201 1400

7698 BLAKE 2850 2 1201 1400

7782 CLARK 2450 3 1401 2000

7788 SCOTT 3000 3 1401 2000

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (7 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

7839 KING 5000 4 2001 3000

7844 TURNER 1500 4 2001 3000

7876 ADAMS 1100 4 2001 3000

7900 JAMES 950 4 2001 3000

7902 FORD 3000 4 2001 3000

7934 MILLER 1300 5 3001 9999

Subquery

A subquery is a query whose results are passed as the argument for
another query. Subqueries enable you to bind several queries
together. You will understand and be able to use the keywords
EXISTS, ANY, and ALL with your subqueries

Building a Subquery

Simply put, a subquery lets you tie the result set of one query to
another. The general syntax is as follows:

SYNTAX:

SQL> SELECT * FROM TABLE1 WHERE TABLE1.SOMECOLUMN =
(SELECT SOMEOTHERCOLUMN FROM TABLE2 WHERE
SOMEOTHERCOLUMN = SOMEVALUE)

Notice how the second query is nested inside the first.

INPUT:

SQL> SELECT client_no, name FROM client_master WHERE

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (8 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

client_no=(SELECT client_no FROM sales_order WHERE
s_order_no='O19001');

OUTPUT:

CLIENT NAME

------ --------------------

C00001 Ivan Bayross

ANALYSIS:

Above query can be explain in a way, Find the customer no, name for
the client who has placed order no 'O19001'. This query can be
evaluated with the use of joins also as,

SQL> select c.client_no, c.name from client_master c, sales_order s
where c.client_no=s.client_no and s.s_order_no='O19001';

The difference between join query and subquery is nothing but some
time it is compulsory to use sub query. This can be evaluated from
material given below.

Nested SubQuery

Nesting is the act of embedding a subquery within another subquery.
For example:

Select * FROM SOMETHING WHERE (SUBQUERY (SUBQUERY
(SUBQUERY)));

Find the department no which does not have any employee..

SQL> SELECT deptno FROM dept WHERE deptno NOT IN (SELECT
DISTINCT(deptno) from emp);

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (9 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

DEPTNO

40

IN clause provides multiple records available in EMP table. And NOT
clause makes result and returns value to DEPT table. Here deptno 40
is not available in EMP table, so result is 40.

In nested subquery there can be used more than one nesting or more
than one table to evaluate appropriate result. Example: Find out the
products which has been sold to 'Ivan Bayross'.

INPUT:

SQL> SELECT sod.product_no, p.description FROM sales_order_details
sod, product_master p WHERE sod.product_no=p.product_no AND
sod.s_order_no IN (SELECT so.s_order_no FROM sales_order so,
client_master c WHERE so.client_no=c.client_no AND c.client_no IN
(SELECT client_no FROM client_master WHERE name LIKE 'Ivan
Bayross'));

OUTPUT:

PRODUC DESCRIPTION

------------ ---------------------

P00001 1.44 Floppies

P07885 CD Drive

P07965 540 HDD

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (10 of 11) [6/26/02 12:12:31 PM]

0306. Join, Subquery, Built in functions

P03453 Monitors

P06734 Mouse

5 rows selected.

Example:2 Find the product_no and description of moving product

SQL> SELECT product_no, description FROM product_master WHERE
product_no IN (SELECT DISTINCT(product_no) FROM
sales_order_details);

Example:3 Find the product_no and description of non-moving
product

SQL> SELECT product_no, description FROM product_master WHERE
product_no NOT IN (SELECT DISTINCT(product_no) FROM
sales_order_details);

file:///D|/JigneshDhol/Oracle/0306.%20Join,%20Subquery,%20Built%20in%20functions.htm (11 of 11) [6/26/02 12:12:31 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

Top:1 Creating and Altering Tables (with
constraints)

Creating Tables

A) Simple Create Table Command Syntax:

CREATE TABLE tablename (ColumnName DataType(Size)
Column Level Constraint, ColumnName DataType(Size), Table
level Constraints);

Example:1

Column Name Data Type Size

client_No Varchar2 6

name Varchar2 20

address1 Varchar2 30

address2 Varchar2 30

city Varchar2 15

state Varchar2 15

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (1 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

pincode Number 6

remarks Varchar2 60

bal_due Number 10,2

CREATE TABLE client_master (client_no varchar2(6), name
varchar2(20), address1 varchar2(30), address2 varchar2(30),
city varchar2(15), state varchar2(15), pincode Number(6),
remarks varchar2(60), bal_due number(10,2));

B) Creating Table from existing Table Command Syntax:

CREATE TABLE tablename [(columnname, columnname)] AS
SELECT columnname, columnname FROM tablename;

Example:2

Create table supplier_master from table client_master, select all fields
and rename client_no with supplier_no and name with supplier_name.

CREATE TABLE supplier_master (supplier_no, supplier_name,
address1, address2, city, state, pincode, remarks) AS SELECT
client_no, name, address1, address2, city, state, pincode,
remarks FROM client_master;

NOTE: If the Source table from which the Target table is being
created, has records in it then the Target table is populated with these
records as well. To eliminate this use where condition which is false in
its sense, that will create structure of table only. Below is a example of
that, (Where 1=2 is false condition)

CREATE TABLE supplier_master (supplier_no, supplier_name,

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (2 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

address1, address2, city, state, pincode, remarks) AS SELECT
client_no, name, address1, address2, city, state, pincode,
remarks FROM client_master WHERE 1=2;

Constraints in Create Tables

The Create table statement enforce you several different kinds of
constraints on a table: candidate key, primary key, foreign key, check
conditions. A constraint clause can contain a single column or a group
of columns in a table. It maintains integrity on your database. The
more constraint you add on table less you work in application. On
other hand more constraint on a table, slower data to update in table.
There are two ways to define constraints: as part of column definition
(a column constraint) , at the end of Create Table command (a table
level constraint)

CANDIDATE KEY

Candidate key is a combination of one or more columns, the value of
which uniquely identify each row of a table. The following listing shows
the creation of a UNIQUE constraint for the BILL table.

CREATE TABLE bill (bill_no number(6), bill_date date, client_no
varchar2(6), remarks varchar2(60), Constraint uq_bill UNIQUE
(bill_no, bill_date));

The key of this table is the combination of bill_no and bill_date. Notice
that both the column are declared as NOT NULL. This feature allows
you to prevent data from being entered into the table without certain
columns having data into them.

PRIMARY KEY

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (3 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

You can have only one primary key and a primary key column does
not contain NULL values,

CREATE TABLE bill (bill_no number(6), bill_date date, client_no
varchar2(6), remarks varchar2(60), Constraint pk_bill
PRIMARY KEY (bill_no, bill_date));

Above create table has the same effect as the previous one, except
the you can have several UNIQUE constraint but only one PRIMARY
KEY constraint.

For, Single-column primary or candidate keys, you can define the key
on the column with a column name constraint instead of a table
constraint:

CREATE TABLE client_master (client_no varchar2(6) PRIMARY
KEY, name varchar2(20), address1 varchar2(20));

In this case client_no is primary key, and oracle will generate name
for the PRIMARY KEY constraint.

FOREIGN KEY

A foreign key is a combination of columns with values based on the
primary key values from another table. A Foreign key constraint, also
known as a referential integrity constraint, specifies that the value of
foreign key correspond to actual value of the primary key in the other
table.

Example: Create table Sales_Order_Details with primary key as
s_order_no and product_no and foreign key as s_order_no referencing
column s_order_no in the sales_order table.

FOREIGN KEY as a column constraint

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (4 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

CREATE TABLE sales_order_details (s_order_no varchar2(6)
REFERENCES sales_order, product_no varchar2(6), qty_ordered
number(8), qty_disp number(8), product_rate number(8,2), PRIMARY
KEY (s_order_no, product_no));

FOREIGN KEY as a table constraint

CREATE TABLE sales_order_details (s_order_no varchar2(6),
product_no varchar2(6), qty_ordered number(8), qty_disp number(8),
product_rate number(8,2), PRIMARY KEY (s_order_no, product_no),
FOREIGN KEY (s_order_no) REFERENCES sales_order);

You can refer to a primary key or unique key, even in a same table.
However, you can not refer to a table in a remote database in the
reference clause. You can use table form instead of the column form
to specify foreign keys with multiple columns.

CHECK CONSTRAINT

Many column must have values that are within a certain range or that
satisfy certain conditions. With a CHECK constraint, you can specify
an expression that must always be true for every row in a table. Never
use CHECK constraint if the constraint can be defined using the not
null, primary key or foreign key constraint.

following are a few examples of appropriate CHECK constraints:

• a CHECK constraint on the client_no column of the
client_master so that no client_no value starts with 'C'.

• a CHECK constant on name column of the client_master so
that the name is entered in upper case.

• a CHECK constraint on the city column of the client_master so
that only the cities "BOMBAY", "NEWDELHI", "MADRAS", and

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (5 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

"CULCATTA" are allowed.

CREATE TABLE client_master (client_no varchar2(6)
CONSTRAINT ck_clientno CHECK (client_no like 'C%'), name
varchar2(20) CONSTRAINT ck_cname CHECK
(name=upper(name)), address1 varchar2(30), address2
varchar2(30), city varchar2(15) CONSTRAINT ck_city CHECK
(city IN ('NEWDELHI', 'BOMBAY', 'MADRAS', 'CULCATTA')),
state varchar2(15), pincode number(6), remarks varchar2(60),
bal_due number(10,2));

Restriction on CHECK Constraint:

A CHECK integrity constraint requires that a condition be true or
unknown for every row of the table. If a statement causes the
condition to evaluate to false; the statement is rolled back. The
condition of a CHECK constraint has the following limitations;

• The condition must be a Boolean expression that can be
evaluated using the values in the row being inserted or updated.

• The condition can not contain subqueries or sequences.

• The condition can not include the SYSDATE, UID, USER or
USERENV SQL functions.

NOT NULL CONSTRAINT

NOT NULL constraint can be used to restrict field for having no data.
This means field having NOT NULL constraint must be entered by the
user. Example of the same is given below.

CREATE TABLE sales_order_details (s_order_no varchar2(6),
product_no varchar2(6), qty_ordered number(8) NOT NULL, qty_disp
number(8), product_rate number(8,2) NOT NULL, PRIMARY KEY

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (6 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

(s_order_no, product_no));

Altering Tables

Tables can be altered in one of three ways : By adding a column to an
existing table - by changing column definition - or by dropping column
of table. Adding a column is straightforward, and similar to creating
table.

• ALTER TABLE supplier_master ADD (state varchar2(20),
country varchar2(20));

You can drop column in Oracle 8i, for the you have to type simple
command like,

• ALTER TABLE supplier_master DROP column state;

To modify column several way are defined as under,

• ALTER TABLE supplier_master ADD PRIMARY KEY
(supplier_no);

• ALTER TABLE supplier_master MODIFY (state varchar2(30));

Some other examples for alter table commands are given under, that
can be used alternatively as an when required.

• ALTER TABLE supplier_master DROP PRIMARY KEY; (this
command drops the primary key constraint from supplier_master)

• ALTER TABLE sales_order_details DROP CONSTRAINT
product_fkey; (this command drop foreign key constraint on
column product_no in table sales_order_details)

• ALTER TABLE sales_order_details ADD CONSTRAINT

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (7 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

order_fkey FOREIGN KEY (s_order_no) REFERENCES sales_order
MODIFY (qty_ordered number(8) NOT NULL);

RULES for Adding or Modifying a Column

These are rules for adding a column to table

1. You may add a column at any time if NOT NULL isn't specified.

2. You may add a NOT NULL column in three steps:

o Add a column without NOT NULL specified.

o Fill every row in that column with data.

o Modify the column to be NOT NULL.

These are rules for modifying a column to table

1. You can increase a character column's width at any time.

2. You can increase the number of digits in a NUMBER column at
any time.

3. You can increase or decrease the number of decimal places in
a NUMBER column at any time.

In case only if whole column to be modify is NULL, you can

1. You can change the Column's DataType.

2. You can decrease a character column's width.

3. You can decrease the number of digits in a NUMBER column.

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (8 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

Disabling Constraints:

Constraints can be temporarily removed by using the following
statement:

ALTER TABLE <tablename> DISABLE CONSTRAINT
<constraintname>;

Example:

alter table emp disable constraint pk_en;

After disabling a primary key constraint if you try to add a duplicate
row in the table, it will allow you to, since the primary key constraint
has been disabled.

Enabling Constraints:

To enable the constraint again the following statement can be coded:

ALTER TABLE <tablename> ENABLE CONSTRAINT <constraintname>;

example:

alter table emp enable constraint pk_en;

Removing Constraints:

Constraints can be permanently removed if not required by coding the

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (9 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

following statement:

ALTER TABLE <tablename> DROP CONSTRAINT <constraintname>;

example:

alter table emp DROP CONSTRAINT pk_en;

Note: A primary key constraint can not be removed if some foreign
keys are referencing that primary key, but you can forcefully drop the
primary key with the cascade option as shown below.

ALTER TABLE <tablename> DROP PRIMARY KEY CASCADE;

The above statement will drop the primary key as well as all the
foreign keys that reference it.

Another way to enable, disable and drop primary key constraints:

ALTER TABLE <tablename> DISABLE PRIMARY KEY;

ALTER TABLE <tablename> ENABLE PRIMARY KEY;

ALTER TABLE <tablename> DROP PRIMARY KEY;

Here the name of the constraint is not mentioned. But if you are
enabling, disabling and dropping any other constraint the name of the
constraint is required.

Rename Table

SQL *Plus Data Definition Language allows us to easily rename the
existing tables. Only the owner of the table can rename the table. The

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (10 of 11) [6/26/02 12:13:56 PM]

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm

RENAME statement is very easy to code. As you can see in syntax:

RENAME <tablename> TO <newtablename>;

Example:

RENAME book TO books;

file:///D|/JigneshDhol/Oracle/0302.%20Creating%20and%20Altering%20tables.htm (11 of 11) [6/26/02 12:13:56 PM]

0319. Data Definition Language

Top:2 Data Definition Language

Data Definition Language Comprises of these commands:

DDL (Data Definition Language)

CREATE to create table or objects

ALTER to alter existing database

DROP to drop existing objects

TRUNCATE to remove whole data at a time

CREATE COMMAND

ALTER COMMAND

DROP COMMAND

DROP is the SQL verb used to delete tables from the database. It is
easy to understand, and almost too easy to use. All that is necessary
to delete entire tables is execute the DROP TABLE statement. The
DROP TABLE statement is very easy to code. As you can see from
figure,

DROP TABLE <tablename>

1. DROP TABLE - This keyword tells the DBMS that it has to
delete the table.

file:///D|/JigneshDhol/Oracle/0319.%20Data%20Definition%20Language.htm (1 of 4) [6/26/02 12:13:58 PM]

0319. Data Definition Language

2. <tablename> - The table name of the table you wish to
delete.

3. A semicolon must be the last item in the statement. A
semicolon tells SQL that statement is complete and it should now
be executed.

For, Example, to drop a table temp, you would code:

DROP TABLE dept;

Once executed, the table is gone - all rows, any INDEXes associated
with the table, and any VIEWs associated with the table. The system
does not give you a 'last chance to bail out' prompt. Your data is gone
for good. The table definition is removed from the system and your
table does not exist anymore. Similarly, you can also drop primary
keys, constraints, and other database objects, using the DROP
command.

SQL, however, does ensure that you have the authority to DROP
tables (usually only the ones that you are created), before it execute
the statement. However this is a dangerously powerful verb. It is
particularly important to check and recheck the spelling of the table
name to be deleted. You might inadvertently delete the wrong one.

If you are faint of heart, you might want to delete all the rows from a
table instead of dropping the table. The DELETE command can be
undone with the ROLLBACK command, whereas the DROP command
can not be undone. (The DELETE and ROLLBACK commands are
covered later during the course.)

For example, to delete all the rows in the member table, you would
code:

DELETE FROM member;

file:///D|/JigneshDhol/Oracle/0319.%20Data%20Definition%20Language.htm (2 of 4) [6/26/02 12:13:58 PM]

0319. Data Definition Language

TRUNCATE COMMAND

Truncate command is useful to empty table records, Which can be
state as

TRUNCATE TABLE <tablename>

On one click of ENTER key you will find your table with no data. For
example,

SQL> TRUNCATE TABLE emp;

Now to check records for emp table, let us use.....

SQL> SELECT * FROM emp;

no rows selected.

RENAME COMMAND

SQL * Plus Data Definition Language allows us to easily rename the
existing tables. Only the owner of the table can rename the table. The
RENAME statement is very easy to code. As you can see from figure,

RENAME <oldtablename> TO <newtablename>;

1. RENAME - This tells the RDBMS that it has to rename the
table.

2. <oldtablename> - The table name of the table you wish to
rename.

3. TO - The keyword to

file:///D|/JigneshDhol/Oracle/0319.%20Data%20Definition%20Language.htm (3 of 4) [6/26/02 12:13:58 PM]

0319. Data Definition Language

4. <newtablename> - The new table name that you wish the
table to have.

5. A semicolon must be the last item in the statement. A
semicolon tells SQL that the statement is complete and it should
now be executed.

To rename the emp table to employee we can give the following
statement:

SQL> RENAME emp TO employee;

file:///D|/JigneshDhol/Oracle/0319.%20Data%20Definition%20Language.htm (4 of 4) [6/26/02 12:13:58 PM]

0303. Data Manipulation Commands

TOP:3 Data Manipulation Commands

You may have used a PC-based product such as Access, dBASE IV, or
FoxPro to enter your data in the past. These products come packaged
with excellent tools to enter, edit, and delete records from databases.
One reason that SQL provides data manipulation statements is that it
is primarily used within application programs that enable the user to
edit the data using the application's own tools. The SQL programmer
needs to be able to return the data to the database using SQL. In
addition, most large-scale database systems are not designed with the
database designer or programmer in mind. Because these systems are
designed to be used in high-volume, multiuser environments, the
primary design emphasis is placed on the query optimizer and data
retrieval engines.

DML command have 4 category commands like, are explained
below

INSERT Command

UPDATE Command

DELETE Command

SELECT Command

INSERT Command

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (1 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

The SQL Command INSERT lets you place a row of information directly
into a table. Here three possible way of writing INSERT statement is
shown below,

INSERT INTO <table name> values <values for all column>

INSERT INTO <table name> (column names) values (values
for column)

INSERT INTO <table name> as SELECT (column name) from
<table name>

IN Detail:

The INSERT statement enables you to enter data into the database. It
can be broken down into two statements:

INSERT...VALUES

and

INSERT...SELECT

The INSERT...VALUES Statement

The INSERT...VALUES statement enters data into a table one record at
a time. It is useful for small operations that deal with just a few
records. The syntax of this statement is as follows:

SYNTAX:

INSERT INTO table_name (col1, col2...) VALUES (value1, value2...);

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (2 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

The basic format of the INSERT...VALUES statement adds a record to
a table using the columns you give it and the corresponding values
you instruct it to add. You must follow three rules when inserting data
into a table with the INSERT...VALUES statement:

The values used must be the same data type as the fields they are
being added to.

The data's size must be within the column's size. For instance, you
cannot add an 80-character string to a 40-character column.

The data's location in the VALUES list must correspond to the location
in the column list of the column it is being added to. (That is, the first
value must be entered into the first column, the second value into the
second column, and so on.)

Example : 1 If you wanted to add a new record to EMP table, you
would write

INPUT:

SQL> INSERT INTO emp (empno, ename, job, mgr, hiredate, sal,
comm, deptno)

VALUES (1111, 'JIGNESH', 'DIRECTOR', 1112, '26-JUN-75', 6000,
4000, 10);

OUTPUT:

1 row created.

You can execute a simple SELECT statement to verify the insertion:

INPUT:

SQL> SELECT * FROM EMP;

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (3 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

ANALYSIS:

The INSERT statement does not require column names. If the column
names are not entered, SQL lines up the values with their
corresponding column numbers. In other words, SQL inserts the first
value into the first column, the second value into the second column,
and so on.

Example : 2 The following statement inserts the values from Example
1 into the table:

INPUT:

SQL> INSERT INTO emp VALUES (1111, 'JIGNESH', 'DIRECTOR',
1112, '26-JUN-75', 6000, 4000, 10);

1 row created.

ANALYSIS:

By issuing the same SELECT statement as you did in Example 1, you
can verify that the insertion worked as expected:

Inserting NULL Values

For now, all you need to know is that when a column is created, it can
have several different limitations placed upon it. One of these
limitations is that the column should (or should not) be allowed to
contain NULL values. A NULL value means that the value is empty. It
is neither a zero, in the case of an integer, nor a space, in the case of
a string. Instead, no data at all exists for that record's column. If a
column is defined as NOT NULL (that column is not allowed to contain
a NULL value), you must insert a value for that column when using the
INSERT statement. The INSERT is canceled if this rule is broken, and
you should receive a descriptive error message concerning your error.
In case, if you require to keep some column empty then you must
specify columns to which you want to add data and can omit rest

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (4 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

column where you are not intended to add data.

INPUT:

SQL> INSERT INTO emp (empno, ename, job, sal, deptno)

VALUES (1112, 'NAMRATA', 'CEO', 6000, 20);

OUTPUT:

1 row created.

ANALYSIS:

Data will be added to specified columns only and rest will be NULL.

Inserting Unique Values

Database management systems also allow you to create a UNIQUE
column attribute. This attribute means that within the current table,
the values within this column must be completely unique and cannot
appear more than once. This limitation can cause problems when
inserting or updating values into an existing table, as the following
exchange demonstrates:

INPUT:

SQL> INSERT INTO emp VALUES (1111, 'JIGNESH', 'DIRECTOR',
1112, '26-JUN-75', 6000, 4000, 10);

OUTPUT:

INSERT INTO emp VALUES (1111, 'JIGNESH', 'DIRECTOR', 1112, '26-
JUN-75', 6000, 4000, 10)

 *

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (5 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

ERROR at line 1:

ORA-00001: unique constraint (SCOTT.UNQ_EMP_ITEM) violated

ANALYSIS:

In this example you tried to insert another EMPNO called 1111 into the
EMP table. Because this table was created with EMPNO as a unique
value, it returned the appropriate error. A properly normalized table
should have a unique, or key, field. This field is useful for joining data
between tables, and it often improves the speed of your queries when
using indexes.

The INSERT...SELECT Statement

The INSERT...VALUES statement is useful when adding single records
to a database table, but it obviously has limitations. Would you like to
use it to add 25,000 records to a table? In situations like this, the
INSERT...SELECT statement is much more beneficial. It enables the
programmer to copy information from a table or group of tables into
another table. You will want to use this statement in several
situations. Lookup tables are often created for performance gains.
Lookup tables can contain data that is spread out across multiple
tables in multiple databases. Because multiple-table joins are slower
to process than simple queries, it is much quicker to execute a SELECT
query against a lookup table than to execute a long, complicated
joined query. Lookup tables are often stored on the client machines in
client/server environments to reduce network traffic.

The INSERT...SELECT statement can take the output of a SELECT
statement and insert these values into a table. Here is an example:

INPUT:

SQL> INSERT INTO EMP1 select * from EMP;

OUTPUT:

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (6 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

14 rows inserted.

ANALYSIS:

You are selecting all the rows that are in table and inserting them into
EMP.

The syntax of the INSERT...SELECT statement is as follows:

SYNTAX:

INSERT INTO table_name (col1, col2...) SELECT col1, col2... FROM
tablename WHERE search_condition;

Essentially, the output of a standard SELECT query is then input into a
database table. The same rules that applied to the INSERT...VALUES
statement apply to the INSERT...SELECT statement.

The INSERT...SELECT statement requires you to follow several new
rules:

• The SELECT statement cannot select rows from the table that
is being inserted into.

• The number of columns in the INSERT INTO statement must
equal the number of columns returned from the SELECT
statement.

• The data types of the columns in the INSERT INTO statement
must be the same as the data types of the columns returned from
the SELECT statement.

Another use of the INSERT...SELECT statement is to back up a table
that you are going to drop, truncate for repopulation, or rebuild. The
process requires you to create a temporary table and insert data that
is contained in your original table into the temporary table by selecting

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (7 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

everything from the original table.

UPDATE Command

The SQL Command UPDATE modify existing database values. Below is
a list of way, you deal with database.

Update <table name> set (column name) = (value)

Update <table name> set (column name) = (value) where
(condition)

IN Detail:

The purpose of the UPDATE statement is to change the values of
existing records. The syntax is

SYNTAX:

UPDATE table_name SET columnname1 = value1 [, columname2 =
value2]... WHERE search_condition;

This statement checks the WHERE clause first. For all records in the
given table in which the WHERE clause evaluates to TRUE, the
corresponding value is updated.

Example : 4 This example illustrates the use of the UPDATE
statement:

INPUT:

SQL> UPDATE emp SET sal=7000 WHERE empno=1111;

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (8 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

OUTPUT:

1 row updated.

To confirm the change, the query

INPUT:

SQL> SELECT * FROM emp;

Here is a multiple-column update:

INPUT:

SQL> UPDATE emp SET sal=sal+100, comm=comm-100;

14 row updated.

ANALYSIS:

If you omit WHERE clause, all the record will be updated.

DELETE Command

TO delete existing data in your table, you can use these syntax

Delete from <table name>

Delete from <table name> where (condition)

IN Detail:

In addition to adding data to a database, you will also need to delete
data from a database. The syntax for the DELETE statement is

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (9 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

SYNTAX:

DELETE FROM tablename WHERE condition

The first thing you will probably notice about the DELETE command is
that it doesn't have a prompt. Users are accustomed to being
prompted for assurance when, for instance, a directory or file is
deleted at the operating system level. Are you sure? (Y/N) is a
common question asked before the operation is performed. Using SQL,
when you instruct the DBMS to delete a group of records from a table,
it obeys your command without asking. That is, when you tell SQL to
delete a group of records, it will really do it!

Depending on the use of the DELETE statement's WHERE clause, SQL
can do the following:

• Delete single rows

• Delete multiple rows

• Delete all rows

• Delete no rows

Here are several points to remember when using the DELETE
statement:

• The DELETE statement cannot delete an individual field's
values (use UPDATE instead). The DELETE statement deletes
entire records from a single table.

• Like INSERT and UPDATE, deleting records from one table can
cause referential integrity problems within other tables. Keep this
potential problem area in mind when modifying data within a
database.

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (10 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

• Using the DELETE statement deletes only records, not the
table itself. Use the DROP TABLE statement to remove an entire
table.

Example :

This example shows you how to delete all the records from EMP where
SAL is less than 2750.

INPUT:

SQL> DELETE FROM emp WHERE sal < 2750;

OUTPUT:

6 row deleted.

INPUT:

SQL> DELETE FROM emp;

OUTPUT:

14 row deleted.

ANALYSIS:

First input delete searched records on basis of where condition and
Second input delete all the records available in table because on
where condition is applied. It is advisable to use delete command very
carefully.

SELECT Command

To Display database records in your expected way, you need to write

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (11 of 12) [6/26/02 12:14:01 PM]

0303. Data Manipulation Commands

any of your required way which are shown below.

Select * from <table name>

Select (column name) from <table name>

Select (column name) from <table name> where (condition)

Select (column name) from <table name> where (condition)
Group by (column name) Order by (column name)

NOTE: This section is discussed in detail in previous top. To switch
there CLICK ME.

file:///D|/JigneshDhol/Oracle/0303.%20Data%20Manipulation%20Commands.htm (12 of 12) [6/26/02 12:14:01 PM]

file:///D|/JigneshDhol/Oracle/..\Ch2\0304.%20SELECT%20statement.htm

0310. Built in Functions

Top:4 Built in Functions

Now we talk about functions. Functions in SQL enable you to perform
feats such as determining the sum of a column or converting all the
characters of a string to uppercase. By the end of the day, you will
understand and be able to use all the following:

• Aggregate functions

• Date and time functions

• Arithmetic functions

• Character functions

• Conversion functions

• Miscellaneous functions

These functions greatly increase your ability to manipulate the
information you retrieved using the basic functions of SQL.

file:///D|/JigneshDhol/Oracle/0310.%20Built%20in%20Functions.htm [6/26/02 12:14:03 PM]

file:///D|/JigneshDhol/Oracle/0311.%20Aggrigate%20Functions.htm
file:///D|/JigneshDhol/Oracle/0312.%20Date%20and%20Time%20Functions.htm
file:///D|/JigneshDhol/Oracle/0313.%20Arithmatic%20Functions.htm
file:///D|/JigneshDhol/Oracle/0314.%20Character%20Functions.htm
file:///D|/JigneshDhol/Oracle/0315.%20Conversion%20Functions.htm
file:///D|/JigneshDhol/Oracle/0316.%20Miscellenious%20Functions.htm

0307. Intro. to SQL * Plus

Top:5A Introduction to SQL *Plus

Objectives

By the end topic, you will understand the following elements of
SQL*Plus:

• How to use the SQL*Plus buffer

• How to format reports attractively

• How to manipulate dates

• How to make interactive queries

• How to construct advanced reports

• How to use the powerful DECODE function

Introduction

We are presenting SQL*Plus today because of Oracle's dominance in
the relational database market and because of the power and
flexibility SQL*Plus offers to the database user.

SQL*Plus commands can enhance an SQL session and improve the
format of queries from the database. SQL*Plus can also format
reports, much like a dedicated report writer. SQL*Plus supplements
both standard SQL and PL/SQL and helps relational database
programmers gather data that is in a desirable format.

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (1 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

The SQL*Plus Buffer

The SQL*Plus buffer is an area that stores commands that are specific
to your particular SQL session. These commands include the most
recently executed SQL statement and commands that you have used
to customize your SQL session, such as formatting commands and
variable assignments. This buffer is like a short-term memory. Here
are some of the most common SQL buffer commands:

1. LIST line_number--Lists a line from the statement in the buffer
and designates it as the current line.

2. CHANGE/old_value/new_value--Changes old_value to
new_value on the current line in the buffer.

3. APPEND text--Appends text to the current line in the buffer.

4. DEL-- Deletes the current line in the buffer.

5. SAVE newfile--Saves the SQL statement in the buffer to a file.

6. GET filename--Gets an SQL file and places it into the buffer.

7. /--Executes the SQL statement in the buffer.

1. LIST

INPUT:

SQL> SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3* WHERE cost_price > 1525;

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (2 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

OUTPUT:

PRODUC DESCRIPTION COST_PRICE SELL_PRICE

----------- ----------------- ---------------- ---------------

P03453 Monitors 11280 12000

P07868 Keyboards 3050 3150

P07885 CD Drive 5100 5250

P07965 540 HDD 8000 8400

The LIST command lists the most recently executed SQL statement in
the buffer. The output will simply be the displayed statement.

SQL> LIST

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3* WHERE cost_price > 1525;

ANALYSIS:

Notice that each line is numbered. Line numbers are important in the
buffer; they act as pointers that enable you to modify specific lines of
your statement using the SQL*PLUS buffer. The SQL*Plus buffer is not
a full screen editor; after you hit Enter, you cannot use the cursor to
move up a line. NOTE: As with SQL commands, you may issue
SQL*Plus commands in either uppercase or lowercase.

TIP: You can abbreviate most SQL*Plus commands; for example, LIST
can be abbreviated as l. You can move to a specific line from the

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (3 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

buffer by placing a line number after the L:

INPUT:

SQL> L3;

3* WHERE cost_price > 1525;

ANALYSIS:

Notice the asterisk after the line number 3. This asterisk denotes the
current line number. Pay close attention to the placement of the
asterisk in examples. Whenever a line is marked by the asterisk, you
can make changes to that line. Because you know that your current
line is 3, you are free to make changes.

2. CHANGE

You can change your old values to new values with the use of change
command, so you need not to work hard in changing queries. Simple
rules for that, you go to line no you want to change with the use of
LIST (L) command say L3 goes to line 3, then apply change command.
The syntax for the CHANGE command is as follows:

SYNTAX:

CHANGE/old_value/new_value or C/old_value/new_value

INPUT:

SQL> CHANGE/1525/3525

OUTPUT:

3* WHERE cost_price > 3525

INPUT:

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (4 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

SQL> L

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3* WHERE cost_price > 3525;

ANALYSIS:

The cost_price 1525 has been changed to 3525 on line 3. Notice after
the change was made that the newly modified line was displayed. If
you issue the LIST command or L, you can see the full statement.

3. / (SLASH)

Now execute the statement:

INPUT:

SQL> /

OUTPUT:

PRODUC DESCRIPTION COST_PRICE SELL_PRICE

----------- ----------------- ---------------- ---------------

P03453 Monitors 11280 12000

P07885 CD Drive 5100 5250

P07965 540 HDD 8000 8400

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (5 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

ANALYSIS:

The forward slash at the SQL> prompt executes any statement that is
in the buffer.

INPUT:

SQL> L

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3* WHERE cost_price > 3525;

Now, you can add a line to your statement by typing a new line
number at the SQL> prompt and entering text. After you make the
addition, get a full statement listing. Here's an example:

INPUT:

SQL> 4 order by cost_price

SQL> L

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3 WHERE cost_price > 3525

4* order by cost_price

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (6 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

ANALYSIS:

Deleting a line is easier than adding a line. Simply type DEL 4 at the
SQL> prompt to delete line 4. Now get another statement listing to
verify that the line is gone.

4. DEL

INPUT:

SQL> DEL4

SQL> L

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3* WHERE cost_price > 3525

Another way to add one or more lines to your statement is to use the
INPUT command. As you can see in the preceding list, the current line
number is 3. At the prompt type input and then press Enter. Now you
can begin typing text. Each time you press Enter, another line will be
created. If you press Enter twice, you will obtain another SQL>
prompt. Now if you display a statement listing, as in the following
example, you can see that line 4 has been added.

5. INPUT

INPUT:

SQL> INPUT

 4 and sell_price<12000

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (7 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

 5 order by cost_price

 6

SQL> L

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3 WHERE cost_price > 3525

4 AND sell_price < 12000

5* ORDER BY cost_price

To append text to the current line, issue the APPEND command
followed by the text. Compare the output in the preceding example--
the current line number is 5--to the following example.

6. APPEND

INPUT:

SQL> APPEND desc

OUTPUT:

5* ORDER BY cost_price desc

Now get a full listing of your statement:

INPUT:

SQL> l

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (8 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3 WHERE cost_price > 3525

4 AND sell_price < 12000

5* ORDER BY cost_price desc

Suppose you want to wipe the slate clean. You can clear the contents
of the SQL*Plus buffer by issuing the command CLEAR BUFFER. As
you will see later, you can also use the CLEAR command to clear
specific settings from the buffer, such as column formatting
information and computes on a report.

7. CLEAR

INPUT:

SQL> CLEAR BUFFER

OUTPUT:

buffer cleared

INPUT:

SQL> L

OUTPUT:

No lines in SQL buffer.

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (9 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

ANALYSIS:

Obviously, you won't be able to retrieve anything from an empty
buffer.

8. The DESCRIBE Command

The handy DESCRIBE command enables you to view the structure of a
table quickly without having to create a query against the data
dictionary.

SYNTAX:

DESC[RIBE] table_name

INPUT:

SQL> DESCRIBE dept

Name Null? Type

--------- --------- ---------

DEPTNO NOT NULL NUMBER(2)

DNAME VARCHAR2(14)

LOC VARCHAR2(13)

ANALYSIS:

DESC displays each column name, which columns must contain data
(NULL/NOT NULL), and the data type for each column. If you are
writing many queries, you will find that few days go by without using
this command. Over a long time, this command can save you many
hours of programming time. Without DESCRIBE you would have to

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (10 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

search through project documentation or even database manuals
containing lists of data dictionary tables to get this information.

9. The SHOW Command

The SHOW command displays the session's current settings, from
formatting commands to who you are. SHOW ALL displays all settings.
This discussion covers some of the most common settings.

INPUT:

SQL> show all

OUTPUT:

appinfo is ON and set to "SQL*Plus"

arraysize 15

autocommit OFF

autoprint OFF

autotrace OFF

shiftinout INVISIBLE

blockterminator "." (hex 2e)

btitle OFF and is the 1st few characters of the next SELECT statement

cmdsep OFF

colsep " "

compatibility version NATIVE

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (11 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

concat "." (hex 2e)

copycommit 0

COPYTYPECHECK is ON

define "&" (hex 26)

echo OFF

editfile "afiedt.buf"

embedded OFF

escape OFF

FEEDBACK ON for 6 or more rows

flagger OFF

flush ON

heading ON

headsep "|" (hex 7c)

linesize 100

lno 6

loboffset 1

long 80

longchunksize 80

newpage 1

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (12 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

null ""

numformat ""

numwidth 9

pagesize 24

PAUSE is OFF

pno 1

recsep WRAP

recsepchar " " (hex 20)

release 800040000

repfooter OFF and is NULL

repheader OFF and is NULL

serveroutput OFF

showmode OFF

spool OFF

sqlcase MIXED

sqlcode 904

sqlcontinue "> "

sqlnumber ON

sqlprefix "#" (hex 23)

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (13 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

sqlprompt "SQL> "

sqlterminator ";" (hex 3b)

suffix "SQL"

tab ON

termout ON

time OFF

timing OFF

trimout ON

trimspool OFF

ttitle OFF and is the 1st few characters of the next SELECT statement

underline "-" (hex 2d)

USER is "SCOTT"

verify ON

wrap : lines will be wrapped

The SHOW command displays a specific setting entered by the user.
Suppose you have access to multiple database user IDs and you want
to see how you are logged on. You can issue the following command:

INPUT:

SQL> show user

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (14 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

OUTPUT:

user is "SCOTT"

To see the current line size of output, you would type:

INPUT:

SQL> show linesize

OUTPUT:

linesize 100

10. File Commands

Various commands enable you to manipulate files in SQL*Plus. These
commands include creating a file, editing the file using a full-screen
editor as opposed to using the SQL*Plus buffer, and redirecting output
to a file. You also need to know how to execute an SQL file after it is
created.

The SAVE, GET, START and EDIT Commands

The SAVE command saves the contents of the SQL statement in the
buffer to a file whose name you specify. For example:

INPUT:

SQL> SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3 WHERE cost_price > 3525

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (15 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

SQL> save query1.sql

OUTPUT:

Created file query1.sql

ANALYSIS:

After a file has been saved, you can use the GET command to list the
file. GET is very similar to the LIST command. Just remember that
GET deals with statements that have been saved to files, whereas
LIST deals with the statement that is stored in the buffer.

INPUT:

SQL> get query1

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3* WHERE cost_price > 3525

You can use the EDIT command either to create a new file or to edit
an existing file. When issuing this command, you are taken into a full-
screen editor, more than likely Notepad in Windows. You will find that
it is usually easier to modify a file with EDIT than through the buffer,
particularly if you are dealing with a large or complex statement.

INPUT:

SQL> edit query1.sql

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (16 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

Starting a File, Now that you know how to create and edit an SQL file,
the command to execute it is simple. It can take one of the following
forms: (Note: Commands are not case sensitive.)

SYNTAX:

START filename or STA filename or @filename

INPUT:

SQL> start query1.sql

OUTPUT:

PRODUC DESCRIPTION COST_PRICE SELL_PRICE

----------- ----------------- ---------------- ---------------

P03453 Monitors 11280 12000

P07885 CD Drive 5100 5250

P07965 540 HDD 8000 8400

NOTE: You do not have to specify the file extension .sql to start a file
from SQL*Plus. The database assumes that the file you are executing
has this extension. Similarly, when you are creating a file from the
SQL> prompt or use SAVE, GET, or EDIT, you do not have to include
the extension if it is .sql.

Other similar INPUTs:

SQL> @ query1

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (17 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

SQL> sta query1

INPUT:

SQL> run query1

OUTPUT:

1 SELECT product_no, description, cost_price, sell_price

2 FROM product_master

3* WHERE cost_price > 3525

PRODUC DESCRIPTION COST_PRICE SELL_PRICE

----------- ----------------- ---------------- ---------------

P03453 Monitors 11280 12000

P07885 CD Drive 5100 5250

P07965 540 HDD 8000 8400

Notice that when you use RUN to execute a query, the statement is
echoed, or displayed on the screen.

11. Spooling Query Output

Viewing the output of your query on the screen is very convenient, but
what if you want to save the results for future reference or you want
to print the file? The SPOOL command allows you to send your output

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (18 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

to a specified file. If the file does not exist, it will be created. If the file
exists, it will be overwritten.

INPUT:

SQL> SPOOL department.lst

SQL> SELECT * FROM dept;

DEPTNO DNAME LOC

----------------------- ----------

10 ACCOUNING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

4 rows selected.

INPUT:

SQL> SPOOL OFF

SQL> EDIT department.lst

ANALYSIS:

The output in this case is an SQL*Plus file. You must use the SPOOL
OFF command to stop spooling to a file. When you exit SQL*Plus,
SPOOL OFF is automatic. But if you do not exit and you continue to
work in SQL*Plus, everything you do will be spooled to your file until
you issue the command SPOOL OFF.

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (19 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

12. SET Commands

SET commands in Oracle change SQL*Plus session settings. By using
these commands, you can customize your SQL working environment
and invoke options to make your output results more presentable. You
can control many of the SET commands by turning an option on or off.

To see how the SET commands work, perform a simple select:

INPUT:

SQL> SELECT * FROM dept;

OUTPUT:

DEPTNO DNAME LOC

----------------------- ----------

10 ACCOUNING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

4 rows selected.

ANALYSIS:

The last line of output

4 rows selected.

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (20 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

is called feedback, which is an SQL setting that can be modified. The
settings have defaults, and in this case the default for FEEDBACK is
on. If you wanted, you could type

SET FEEDBACK ON

before issuing your select statement. Now suppose that you do not
want to see the feedback, as happens to be the case with some
reports, particularly summarized reports with computations.

INPUT:

SQL> SET FEEDBACK OFF

SQL> SELECT * FROM dept;

OUTPUT:

DEPTNO DNAME LOC

----------------------- ----------

10 ACCOUNING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

ANALYSIS:

SET FEEDBACK OFF turns off the feedback display.

In some cases you may want to suppress the column headings from

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (21 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

being displayed on a report. This setting is called HEADING, which can
also be set ON or OFF.

INPUT:

SQL> SET HEADING OFF

SQL> SELECT * FROM dept;

OUTPUT:

10 ACCOUNING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

ANALYSIS:

The column headings have been eliminated from the output. Only the
actual data is displayed.

You can change a wide array of settings to manipulate how your
output is displayed. One option, LINESIZE, allows you to specify the
length of each line of your output. A small line size will more than
likely cause your output to wrap; increasing the line size may be
necessary to suppress wrapping of a line that exceeds the default 80
characters. Unless you are using wide computer paper (11 x 14), you
may want to landscape print your report if you are using a line size
greater than 80. The following example shows the use of LINESIZE.

INPUT:

SQL> SET LINESIZE 20

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (22 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

SQL> SELECT * FROM dept;

OUTPUT:

 10

ACCOUNTING

NEW YORK

 20

RESEARCH

DALLAS

 30

SALES

CHICAGO

 40

OPERATIONS

BOSTON

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (23 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

You can also adjust the size of each page of your output by using the
setting PAGESIZE. If you are simply viewing your output on screen,
the best setting for PAGESIZE is 23, which eliminates multiple page
breaks per screen. In the following example PAGESIZE is set to a low
number to show you what happens on each page break.

INPUT:

SQL> set linesize 80

SQL> set heading on

SQL> set pagesize 5

SQL> /

OUTPUT:

DEPTNO DNAME LOC

----------------------- ----------

10 ACCOUNING NEW YORK

20 RESEARCH DALLAS

DEPTNO DNAME LOC

----------------------- ----------

30 SALES CHICAGO

40 OPERATIONS BOSTON

ANALYSIS:

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (24 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

Using the setting of PAGESIZE 5, the maximum number of lines that
may appear on a single page is FIVE. New column headings will print
automatically at the start of each new page.

The TIME setting displays the current time as part of your SQL>
prompt.

INPUT:

SQL> SET TIME ON

OUTPUT:

08:52:02 SQL>

These were just a few of the SET options, but they are all manipulated
in basically the same way. As you saw from the vast list of SET
commands in the earlier output from the SHOW ALL statement, you
have many options when customizing your SQL*Plus session.
Experiment with each option and see what you like best. You will
probably keep the default for many options, but you may find yourself
changing other options frequently based on different scenarios.

13. LOGIN.SQL File

When you log out of SQL*Plus, all of your session settings are cleared.
When you log back in, your settings will have to be reinitialized if they
are not the defaults unless you are using a login.sql file. This file is
automatically executed when you sign on to SQL*Plus. This
initialization file is similar to the autoexec.bat file on your PC. In
Personal Oracle8 you can use the EDIT command to create your
Login.sql file. Type this in Login.sql file:

SET TIME ON

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (25 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

SELECT "HELLO!" FROM dual;

When you log on to SQL*Plus, here is what you will see:

SQL*Plus: Release 8.0.4.0.0 - Production on Tue Sep 4 18:55:13 2001

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Enter password: ****

Connected to:

Oracle8 Personal Edition Release 8.0.4.0.0 - Production

PL/SQL Release 8.0.4.0.0 - Production

With the distributed and replication options

PL/SQL Release 2.3.2.0.0 - Production

'HELLO!

HELLO !

20:38:02 SQL>

14. CLEAR Commands

In SQL*Plus, settings are cleared by logging off, or exiting SQL*Plus.
Some of your settings may also be cleared by using the CLEAR
command, as shown in the following examples.

INPUT:

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (26 of 27) [6/26/02 12:14:07 PM]

0307. Intro. to SQL * Plus

SQL> clear col

OUTPUT:

columns cleared

INPUT:

SQL> clear break

OUTPUT:

breaks cleared

INPUT:

SQL> clear compute

OUTPUT:

computes cleared

file:///D|/JigneshDhol/Oracle/0307.%20Intro.%20to%20SQL%20Plus.htm (27 of 27) [6/26/02 12:14:07 PM]

0402. View

Top:1 Creating VIEW

In this chapter the focus shifts to two features of SQL that enable you
to view or present data in a different format than it appears on the
disk. This feature is the view. By the end this chapter, you will know
the following:

• How to create views

• How to modify data using views

A view is often referred to as a virtual table. Views are created by
using the CREATE VIEW statement. After the view has been created,
you can use the following SQL commands to refer to that view:

SELECT - INSERT - INPUT - UPDATE - DELETE

Using Views

You can use views, or virtual tables, to encapsulate complex queries.
After a view on a set of data has been created, you can treat that view
as another table. However, special restrictions are placed on modifying
the data within views. When data in a table changes, what you see
when you query the view also changes. Views do not take up physical
space in the database as tables do.

The syntax for the CREATE VIEW statement is

SYNTAX:

CREATE VIEW <view_name> [(column1, column2...)] AS SELECT

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (1 of 11) [6/26/02 12:15:24 PM]

0402. View

<table_name column_names> FROM <table_name>;

As usual, this syntax may not be clear at first glance, but material
contains many examples that illustrate the uses and advantages of
views. This command tells SQL to create a view (with the name of
your choice) that comprises columns (with the names of your choice if
you like). An SQL SELECT statement determines the fields in these
columns and their data types. Yes, this is the same SELECT statement
that you have used repeatedly.

Before you can do anything useful with views, you need to populate
the EMP and DEPT database with a little more data.

A Simple View

Let's begin with the simplest of all views. Suppose, for some unknown
reason, you want to make a view on the DEPT table that looks
identical to the table but has a different name. (We call it
DEPARTMENT.) Here's the statement:

INPUT:

SQL> CREATE VIEW department AS SELECT * FROM dept;

OUTPUT:

view created.

To confirm that this operation did what it should, you can treat the
view just like a table:

INPUT/OUTPUT:

SQL> SELECT * FROM department;

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (2 of 11) [6/26/02 12:15:24 PM]

0402. View

DEPTNO DNAME LOC

-------------- -------------------------- ------------------

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

You can even create new views from existing views. Be careful when
creating views of views. Although this practice is acceptable, it
complicates maintenance. Suppose you have a view three levels down
from a table, such as a view of a view of a view of a table. What do
you think will happen if the first view on the table is dropped? The
other two views will still exist, but they will be useless because they
get part of their information from the first view. Remember, after the
view has been created, it functions as a virtual table.

INPUT:

SQL> CREATE VIEW salesman AS SELECT * FROM emp WHERE job =
'SALESMAN';

view created.

SQL> SELECT * FROM salesman;

OUTPUT:

EMPNO ENAME JOB MGR HIREDATESAL COMM DEPTNO

---------------------------- --------------------- ------- ---------- ----------

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (3 of 11) [6/26/02 12:15:24 PM]

0402. View

7499 ALLEN SALESMAN7698 20-FEB-81 1700 300 30

7521 WARD SALESMAN7698 22-FEB-81 1350 500 30

7654 MARTINSALESMAN7698 28-SEP-81 1350 1400 30

7844 TURNERSALESMAN7698 08-FEB-81 1600 0 30

4 row selected.

The CREATE VIEW also enables you to select individual columns from a
table and place them in a view. The following example: selects the
ENAME and JOB fields from the EMP table.

INPUT:

SQL> CREATE VIEW EMP_INFO (ename, job) AS SELECT ename, job
FROM EMP;

view created.

Now, let us check out work....

SQL> SELECT * FROM emp_info;

OUTPUT:

ENAME JOB

---------------- ------------------

SMITH CLERK

ALLEN SALESMAN

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (4 of 11) [6/26/02 12:15:24 PM]

0402. View

WARD SALESMAN

JONES MANAGER

MARTIN SALESMAN

BLAKE MANAGER

CLARK MANAGER

SCOTT ANALYST

KING PRESIDENT

TURNER SALESMAN

ADAMS CLERK

JAMES CLERK

FORD ANALYST

MILLER CLERK

14 rows selected.

NOTE: Users may create views to query specific data. Say you have a
table with 50 columns and hundreds of thousands of rows, but you
need to see data in only 2 columns. You can create a view on these
two columns, and then by querying from the view, you should see a
remarkable difference in the amount of time it takes for your query
results to be returned.

Renaming Columns

Views simplify the representation of data. In addition to naming the

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (5 of 11) [6/26/02 12:15:24 PM]

0402. View

view, the SQL syntax for the CREATE VIEW statement enables you to
rename selected columns. Like in EMP table you have MGR column for
Manager and you want to show user as MANAGER, and also you want
to add COMM to SAL and want to display column as TOTAL_AMT then
you most use the SQL + operator to combine the fields into one.

INPUT:

SQL> CREATE VIEW emp_sal (empno, ename, manager, tot_sal) AS
SELECT empno, ename, mgr, comm+sal FROM emp WHERE job like
'SALESMAN';

view created.

INPUT:

SQL> SELECT * FROM emp_sal;

EMPNO ENAME MANAGER TOT_SAL

------------- ---------------- ------------------- --------------

7499 ALLEN 7698 2000

7521 WARD 7698 1850

7654 MARTIN 7698 2750

7844 TURNER 7698 1600

ANALYSIS:

The SQL syntax requires you to supply a virtual field name whenever
the view's virtual field is created using a calculation or SQL function.
This procedure makes sense because you wouldn't want a view's
column name to be SUM(*) or AVG(PAYMENT).

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (6 of 11) [6/26/02 12:15:24 PM]

0402. View

SQL View Processing

Views can represent data within tables in a more convenient fashion
than what actually exists in the database's table structure. Views can
also be extremely convenient when performing several complex
queries in a series (such as within a stored procedure or application
program).

Restrictions on Using SELECT

SQL places certain restrictions on using the SELECT statement to
formulate a view. The following two rules apply when using the
SELECT statement:

• You cannot use the UNION operator.

• You cannot use the ORDER BY clause. However, you can use
the GROUP BY clause in a view to perform the same functions as
the ORDER BY clause.

Modifying Data in a View

As you have learned, by creating a view on one or more physical
tables within a database, you can create a virtual table for use
throughout an SQL script or a database application. After the view has
been created using the CREATE VIEW...SELECT statement, you can
update, insert, or delete view data using the UPDATE, INSERT, and
DELETE commands you learned about. We discuss the limitations on
modifying a view's data in greater detail later. The next group of
examples illustrates how to manipulate data that is in a view.

INPUT/OUTPUT:

SQL> UPDATE emp_sal SET manager = 9754;

4 rows updated.

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (7 of 11) [6/26/02 12:15:24 PM]

0402. View

To check whether UPDATE on VIEW (emp_sal) updates to base table
or not, use

SQL> SELECT * FROM emp;

you will find all the related record to emp_sal view are updated now. It
means update on view updates base table.

Problems with Modifying Data Using Views

Because what you see through a view can be some set of a group of
tables, modifying the data in the underlying tables is not always as
straightforward as the previous examples. Following is a list of the
most common restrictions you will encounter while working with
views:

• You cannot use DELETE statements on multiple table views.

• You cannot use the INSERT statement unless all NOT NULL
columns used in the underlying table are included in the view.

• This restriction applies because the SQL processor does not
know which values to insert into the NOT NULL columns.

• If you do insert or update records through a join view, all
records that are updated must belong to the same physical table.

• If you use the DISTINCT clause to create a view, you cannot
update or insert records within that view.

• You cannot update a virtual column (a column that is the
result of an expression or function or multiple column).

Common Applications of Views

• Here are a few of the tasks that views can perform:

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (8 of 11) [6/26/02 12:15:24 PM]

0402. View

• Providing user security functions

• Converting between units

• Creating a new virtual table format

• Simplifying the construction of complex queries

• Views and Security

All relational database systems in use today include a full suite of built-
in security features. Users of the database system are generally
divided into groups based on their use of the database. Common
group types are database administrators, database developers, data
entry personnel, and public users. These groups of users have varying
degrees of privileges when using the database. The database
administrator will probably have complete control of the system,
including UPDATE, INSERT, DELETE, and ALTER database privileges.
The public group may be granted only SELECT privileges and perhaps
may be allowed to SELECT only from certain tables within certain
databases. Views are commonly used in this situation to control the
information that the database user has access to. For instance, if you
wanted users to have access only to the ENAME field of the EMP table,
you could simply create a view called EMP_NAME:

INPUT/OUTPUT:

SQL> CREATE VIEW EMP_NAME AS SELECT ENAME FROM EMP;

View created.

Someone with system administrator-level privileges could grant the
public group SELECT privileges on the EMP_NAME view. This group
would not have any privileges on the underlying EMP table. As you
might guess, SQL has provided data security statements for your use
also. Keep in mind that views are very useful for implementing
database security.

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (9 of 11) [6/26/02 12:15:24 PM]

0402. View

Using Views to Convert Units

Views are also useful in situations in which you need to present the
user with data that is different from the data that actually exists within
the database. For instance, if the SAL field is actually stored in Rupees
and you don't want Canadian users to have to continually do mental
calculations to see the SAL total in Canadian dollars, you could create
a simple view called

CANADIAN_SAL:

INPUT/OUTPUT:

SQL> CREATE VIEW CANADIAN_SAL (name, can_sal) AS SELECT
ename, sal/25 FROM emp;

view created.

The DROP VIEW Statement

In common with every other SQL CREATE... command, CREATE VIEW
has a corresponding DROP... command. The syntax is as follows:

SYNTAX:

SQL> DROP VIEW view_name;

The only thing to remember when using the DROP VIEW command is
that all other views that reference that view are now invalid.

INPUT/OUTPUT:

SQL> DROP VIEW emp_sal;

View dropped.

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (10 of 11) [6/26/02 12:15:25 PM]

0402. View

file:///D|/JigneshDhol/Oracle/0402.%20View.htm (11 of 11) [6/26/02 12:15:25 PM]

0403. Sequence

Top:2 Sequence

Sequences are a great way to have the database automatically
generate unique integer primary keys. The CREATE SEQUENCE system
privilege is needed to execute this command. The DBA is responsible
for administering these privileges. The syntax to create a sequence is:

CREATE SEQUENCE schema.name

INCREMENT BY x

START WITH x

MAXVALUE x NOMAXVALUE

MINVALUE x NOMINVALUE

CYCLE NOCYCLE

CACHE x NOCACHE

ORDER NOORDER

In this syntax, SCHEMA is an optional parameter that identifies which
database schema to place this sequence in. The default is your own.

NAME is mandatory because it is the name of the sequence.

INCREMENT BY is optional. The default is one. Zero is not allowed. If
a negative integer is specified, the sequence will descend in order. A
positive integer will make the sequence ascend (the default).

file:///D|/JigneshDhol/Oracle/0403.%20Sequence.htm (1 of 5) [6/26/02 12:15:27 PM]

0403. Sequence

START WITH is an optional integer that enables the sequence to
begin anywhere.

MAXVALUE is an optional integer that places a limit on the sequence.

NOMAXVALUE is optional. It causes the maximum ascending limit to
be 10 27 and -1 for descending sequences. This is the default.

MINVALUE is an optional integer that determines the minimum a
sequence can be.

NOMINVALUE is optional. It causes the minimum ascending limit to
be 1 and -(10 26) for descending sequences. This is the default.

CYCLE is an option that enables the sequence to continue even when
the maximum has been reached. If the maximum is reached, the next
sequence that will be generated is whatever the minimum value is.

NOCYCLE is an option that does not enable the sequence to generate
values beyond the defined maximum or minimum. This is the default.

CACHE is an option that enables sequence numbers to be preallocated
that will be stored in memory for faster access. The minimum value is
2.

NOCACHE is an option that will not enable the preallocation of
sequence numbers.

ORDER is an option that ensures the sequence numbers are
generated in order of request.

NOORDER is an option that does not ensure that sequence numbers
are generated in the order they are requested.

If you want to create a sequence for your deptno column in the DEPT
table, it could look like the following example:

file:///D|/JigneshDhol/Oracle/0403.%20Sequence.htm (2 of 5) [6/26/02 12:15:27 PM]

0403. Sequence

CREATE SEQUENCE seq_deptno

INCREMENT BY 10

START WITH 10;

To generate a new sequence number, use the pseudo column
NEXTVAL. This needs to be preceded with your sequence name. For
example, seq_deptno.nextval would return 10 for the first access
and 20 for the second. If determining the current sequence number is
necessary, use CURRVAL. Therefore, seq_deptno.currval will return
the current value of the sequence.

Example:

INPUT:

SQL> SELECT seq_deptno.nextval FROM dual;

OUTPUT:

NEXTVAL

 10

INPUT:

SQL> SELECT seq_deptno.currval FROM dual;

OUTPUT:

CURRVAL

file:///D|/JigneshDhol/Oracle/0403.%20Sequence.htm (3 of 5) [6/26/02 12:15:27 PM]

0403. Sequence

 10

Modifying Sequences

You can modify the sequence when you want to:

• Set or eliminate the minimum or maximum value

• Change the increment value

• Change the number of cached sequence numbers

You can use the following format to modify a sequence:

ALTER SEQUENCE <sequence name>

INCREMENT BY n

[MAXVALUE n] [MINVALUE n]

[CYCLE|NOCYCLE]

[CACHE n|NOCACHE];

The statement below modifies the sequence 'seq_deptno', and sets the
maximum value to 990.

ALTER SEQUENCE seq_deptno

INCREMENT BY 10

MAXVALUE 990

MINVALUE 10;

However, if you need to reset a sequence to a starting number higher
than the current value of the sequence, you must delete the sequence

file:///D|/JigneshDhol/Oracle/0403.%20Sequence.htm (4 of 5) [6/26/02 12:15:27 PM]

0403. Sequence

and recreate it.

Deleting Sequence

You can delete a sequence just as you delete other database objects.
The format of the statement is as follows:

DROP SEQUENCE <sequence name>;

The statement below deletes the sequence 'seq_deptno' created
earlier.

DROP SEQUENCE seq_deptno;

file:///D|/JigneshDhol/Oracle/0403.%20Sequence.htm (5 of 5) [6/26/02 12:15:27 PM]

0404. Synonyms, Database Links

Top:3 Synonyms

The main reasons for creating synonyms are:

1. The true name of the owner or table needs to be hidden

2. The original location of the table needs to be hidden. This is in
case the database is a large one with many installations at
different places.

3. Users have to be provided with a simple and easily
remembered tablename.

The format of the statement of creating a synonyms is as follows:

CREATE SYNONYM <synonyms name> FOR
<tablename/viewname>;

For example if you want to access the 'emp' table created by a user
'Scott', you can create a synonym 'employee' to refer to the 'emp'
table created by Scott. To do this you would code the following
statement.

CREATE SYNONYM employee FOR scott.emp;

you can see all the database objects (including synonyms) that you
have created, give the following command;

SELECT * FROM tab;

Similarly, synonyms can also be deleted, if no longer required by using

file:///D|/JigneshDhol/Oracle/0404.%20Synonyms,%20Database%20Links.htm (1 of 2) [6/26/02 12:15:28 PM]

0404. Synonyms, Database Links

the DROP command. The format of the statement is as follows;

DROP SYNONYM <synonyms name>;

The following command drops the synonym 'employee' created earlier.

DROP SYNONYM employee;

file:///D|/JigneshDhol/Oracle/0404.%20Synonyms,%20Database%20Links.htm (2 of 2) [6/26/02 12:15:28 PM]

0405. Index

Top:4 Index

One of the physical storage structure that are provided by most SQL
based RDBMS systems is an Index. An index is a structure that
provides rapid access to the rows of a table based on the values of
one or more columns.

A database index is like an index to a book. If you want to lookup
every reference to a work that appears in a book, you would turn to
the alphabetically arranged index at the back of the book and look up
the term along with the page numbers on which the command is
referred to. If however, there were no index, of if your chosen term
was not indexed, you would have to scan the entire book to find the
piece of information you want.

In the same way, a database index is a listing of keywords
accompanied by the location of information on a subject.

While indexes are not strictly necessary to running a RDBMS, they do
speed up the process of data retrieval. Indexing enables an RDBMS to
locate rows in a large table more quickly than it otherwise would.

In several situations, indexes can dramatically improve database
performance. Tow of these situations are: primary keys and foreign
keys in joined tables.

Primary keys

Perhaps the most important index is on the table's primary key.
Because tables should have identified, unique primary keys, each row
of any given table can be identified uniquely. Thus, indexing the

file:///D|/JigneshDhol/Oracle/0405.%20Index.htm (1 of 5) [6/26/02 12:15:30 PM]

0405. Index

primary key using the UNIQUE option guarantees that the key is
unique within a table. For example, the primary key in the
'client_master' table is the key 'client_no'. 'client_no' is the client's
identifier and is unique for each row of the table. The other columns,
such as 'name', 'address' are not unique and cannot be used to select
a single client.

Foreign Keys in Joined tables

Performance can also be improved by indexing the join columns of
tables. For example, the 'client_master' table and 'sales_order" table
are joined on the common column (primary key/ foreign key)
'client_no'. The 'sales_order' table and 'sales_order_details' are joined
on the common column 's_order_no'. You will be frequently joining
pairs of these tables with SELECT statements. Indexing the
'sales_order' table on the 's_order_no' and 'client_no' columns
separately will, speed the join operations.

The real power of indexing is apparent only when the table is large. It
will do little to speed up search of a smaller table. However, in the
case of a very small table, indexing might even slow you down. The
computer must first search the index file for the address of the term
you seek, then find that address in the main table. As your tables
grow, the time needed for this two step search will become much less
than the time needed to scan the entire table without the benefit of an
index.

The advantage of having an index is that it greatly speeds the
execution of SQL statements with search conditions that refer to the
indexed column(s). One disadvantage of having an index is that it
consumes additional disk space. Another disadvantage is that the
index must be updated every time a row is added to the table and
every time the indexed column is updated in an existing row. This
imposes additional overheads on INSERT and UPDATE statements for
the table.

Oracle automatically determines whether or not to use existing

file:///D|/JigneshDhol/Oracle/0405.%20Index.htm (2 of 5) [6/26/02 12:15:30 PM]

0405. Index

indexes to boost performance. The way you write SELECT statements
can affect that determination. Indexes are used to precess a SELECT
statement only if a WHERE clause is part of the SELECT statement and
only if the predicates reference one or more indexed columns.

Therefore, in general it is a good idea to create an index for columns
that are used frequently in search conditions. Indexing is also more
appropriate when queries against a table are more frequent than
inserts and updates.

Guidelines for INDEX usage

The following are some guidelines for creating and using indexes in
your database:

• If a table has more than a few hundred rows, index it: Indexes
are most useful on larger tables. The larger a table, the more an
index will improve response time. Additionally, the more indexes
available, the better are the RDBMS's chances of finding a "short
cut" to the requested information.

• Try not to create more than two or three indexes on a table.
Creating too many indexes on a table is not a good idea. This is
because first, indexes take up disk storage space; second,
although indexes speed up queries, they may slow down data
manipulation operations. This is because when you insert or
delete a row in an indexed table, or change the value of an
indexed column, all the indexes have to be updated.

• Index frequently used columns: Index the columns you use
most often in the WHERE clauses. There is no need to index the
columns you use only to display values. Moreover, indexes are
most useful on columns with a significant amount of variety in
their data.

Creating an index on object and relational tables

file:///D|/JigneshDhol/Oracle/0405.%20Index.htm (3 of 5) [6/26/02 12:15:30 PM]

0405. Index

The indexes can also be defined on the attributes of a type. Let us see
how indexes can be created on object and relational tables.

On object tables

An index is created on an object table n the same way as it is created
for a normal table. The format of the statement is as follows:

CREATE [UNIQUE] INDEX <indexname> ON
<objectname>(attributename [ASC|DESC];

The optional keyword UNIQUE ensures that the values in the indexed
columns for all the rows will be distinct. Indexes can also be created
on more than one column. Using the optional keyword ASC or DESC
created an index on the column in the specified sort order (i.e.
Ascending or Descending).

The statement below creates an index 'idx_client' on the object table
'client_master' for the attribute 'client_no'

CREATE INDEX idx_client ON client_master(client_no);

On relational tables

To index a relational table on the attributes of a type the following
format is used.

CREATE [UNIQUE] INDEX <indexname> ON
<tablename>(columnname [ASC|DESC]);

The following statement creates an index 'idx_product' on the table
'product_master' on the column 'product_no' in descending way.

CREATE INDEX idx_product ON product_master(product_no DESC);

Validating an Index

file:///D|/JigneshDhol/Oracle/0405.%20Index.htm (4 of 5) [6/26/02 12:15:30 PM]

0405. Index

You can check a specified index to determine whether or not it is
accurate and consistent. The format of the statement is as follows.

VALIDATE INDEX <indexname> [ON <tablename>];

If the index is valid, oracle displays a message "Index analyzed.". If
you receive any message other than this, it means that the index is
corrupt and should be discarded. You can delete and recreate the
index in this case.

For example, to check if the index "idx_product' is valid, you can code
the following statement.

VALIDATE INDEX idx_product;

Deleting an Index

To remove an index from the database, the format is as follows:

DROP INDEX <indexname> [ON <tablename>];

Only the creator of an index can drop the index. The ON <tablename>
is optional and need not be specified. The statement below removes
the index 'idx_product' created earlier.

DROP INDEX idx_product;

file:///D|/JigneshDhol/Oracle/0405.%20Index.htm (5 of 5) [6/26/02 12:15:30 PM]

0406. Database Link

Top:5 Database Links

As your database grow in size and number, you will very likely need to
share data among them. Sharing data requires a method of locating
and accessing the data. In Oracle, remote data accesses such as
queries and updates are enabled through the use of database links. As
described in this chapter, database links allow users to treat a group
of distributed databases as if they were a single, integrated database.
In this chapter, you will also find information about direct connections
to remote databases, such as those used in client-server applications.

Database Links

Database links tell oracle how to get from one database to another. If
you will frequently use the same connection to a remote database,
then a database link is appropriate.

How a Database Link Works

A database link requires that Net8 (the current version of the SQL*Net
product) be running on each of the machines (hosts) involved in the
remote database access. Net8 is usually started by the database
administrator (DBA) or the system manager. A sample architecture for
a remote access using a database link is shown in Figure 1. This figure
shows two hosts, each running Net8. There is a database on each of
the hosts. A database link establishes a connection from the first
database (named LOCAL, on the Branch host) to the second database
(named REMOTE, on the Headquarters host). The database link shown
in Figure 1 is software that is located in the local database.

Database links specify the following connection information:

file:///D|/JigneshDhol/Oracle/0406.%20Database%20Link.htm (1 of 6) [6/26/02 12:15:32 PM]

0406. Database Link

• The communications protocol (such as TCP/IP) to use during
the connection

• The host on which the remote database resides

• The name of the database on the remote host

• The name of a valid account in the remote database

• The password for that account

When used, a database link actually logs in as a user in the remote
database, and then logs out when the remote data access is complete.
A database link can be private, owned by a single user, or public, in
which case all users in the local database can use the link.

Syntax for database links

You can create a database link with the following command:

create [public] database link REMOTE_CONNECT connect to
[current_user | username identified by password] using 'connect
string';

The specific syntax to use when creating a database link depends upon
two criteria:

file:///D|/JigneshDhol/Oracle/0406.%20Database%20Link.htm (2 of 6) [6/26/02 12:15:32 PM]

0406. Database Link

• The "public" or "private" status of the database link

• The use of default or explicit logins for the remote database

Using a Database Link for Remote Queries

If you are a user in the local database shown in figure 1, you can
access objects in the Remote database via a database link. To do this,
simply append the database link name to the name of any table or
view that is accessible to the remote account. When appending the
database link name to a table or view name, you must precede the
database link name with an @ sign.

For local tables, you reference the table name in the from clause;

select * from WORKER;

For remote tables, use a database link named REMOTE_CONNECT. In
the from clause, reference the table name followed by
@REMOTE_CONNECT:

select * from WORKER@REMOTE_CONNECT;

When the database link in the preceding query is used, Oracle will log
in to the database specified by the database link, using the username
and password provided by the link. It will then query the WORKER
table in that account and return the data to the user who initiated the
query. This is shown graphically in figure 2. The REMOTE_CONNECT
database link shown in figure 2 is located in the local database.

file:///D|/JigneshDhol/Oracle/0406.%20Database%20Link.htm (3 of 6) [6/26/02 12:15:32 PM]

0406. Database Link

As shown in figure 2, logging into the Local database and using the
REMOTE_CONNECT database link in your from clause returns the
same results as logging in directly to the remote database and
executing the query without the database link. It makes the remote
database seem local.

NOTE: The maximum number of database links that can be used in a
single query is set via the OPEN_LINKS parameter in the database's
init.ora initialization file. This parameter usually defaults to four.

There are restrictions to the queries that are executed using database
links. You should avoid using database links in queries that use the
connect by, start with, and prior keywords. Some queries using these
keywords will work (for example, if prior is not used outside of the
connect by clause, and start with does not use a subquery), but most
uses of tree-structured queries will fail when using database links.

Using a Database Link for Synonyms and Views

You may create local synonyms and views that reference remote
objects. To do this reference the database link name, preceded by an
@ sign, wherever you refer to a remote table. The following example
shows how to do this for synonyms. The create synonym command in
this example is executed from an account in the local database.

create synonym WORKER_SYN for WORKER@REMOTE_CONNECT;

file:///D|/JigneshDhol/Oracle/0406.%20Database%20Link.htm (4 of 6) [6/26/02 12:15:32 PM]

0406. Database Link

In this example, a synonym called WORKER_SYN is created for the
WORKER table accessed via the REMOTE_CONNECT database link.
Every time this synonym is used in a from clause of a query, the
remote database will be queried. This is very similar to the remote
queries shown earlier; the only real change is that the database link is
now defined as part of a local object (in this case a synonym).

What if the remote account that is accessed by the database link does
not own the table being referenced? In that event, any synonym that
exist for a table that the remote account has been granted access to,
then you must specify the table owner's name in the query, as shown
in the following example:

create synonym WORKERSKILL_SYN from Talbot.
WORKERSKILL@REMOTE_CONNECT;

In this example, the remote account used by the database link does
not own the WORKERSKILL table, nor does the remote account have a
synonym called WORKERSKILL. It does, however, have privileges on
the WORKERSKILL table owned by the remote user Talbot in the
Remote database. Therefore, the owner and table name are specified;
both are interpreted in the remote database. The syntax for these
queries and synonyms is almost the same as if everything were in the
local database; the only addition is the database link name.

To use a database link in a view, simply add it as a suffix to table
names in the create view command. The following example creates a
view in the local database of a remote table using the
REMOTE_CONNECT database link:

create view LOCAL_EMPLOYEE_VIEW as select * from
WORKER@REMOTE_CONNECT where lodging = 'ROSE HILL';

The from clause in this example refers to
WORKER@REMOTE_CONNECT. Therefore, the base table for this view
is not in the same database as the view. Also note that a where clause

file:///D|/JigneshDhol/Oracle/0406.%20Database%20Link.htm (5 of 6) [6/26/02 12:15:32 PM]

0406. Database Link

is placed on the query, to limit the number of records returned by it
for the view.

This view may now be treated the same as any other view in the local
database. Access to this view can be granted to other users, provided
those users also have access to the REMOTE_CONNECT database link.

file:///D|/JigneshDhol/Oracle/0406.%20Database%20Link.htm (6 of 6) [6/26/02 12:15:32 PM]

0503. What is transaction ?

Top:1 What is Transaction?

You have spent time learning virtually everything that you can do with
data within a relational database. For example, you know how to use
the SQL SELECT statement to retrieve data from one or more tables
based on a number of conditions supplied by the user. You have also
had a chance to use data modification statements such as INSERT,
UPDATE, and DELETE. As of today, you have become an intermediate-
level SQL and database user. If required, you could build a database
with its associated tables, each of which would contain several fields of
different data types. Using proper design techniques, you could
leverage the information contained within this database into a
powerful application.

Objectives

If you intend to (or are currently required to) develop a professional
application using any type of relational database, the advanced topics
like transaction control, security, embedded SQL programming, and
database procedures--will help you a great deal. We begin with
transaction control. By the end of the couple of topics, you will know
the following:

• The basics of transaction control

• How to finalize and or cancel a transaction

Transaction Control

Transaction control, or transaction management, refers to the
capability of a relational database management system to perform

file:///D|/JigneshDhol/Oracle/0503.%20What%20is%20transaction.htm (1 of 2) [6/26/02 12:16:52 PM]

0503. What is transaction ?

database transactions. Transactions are units of work that must be
done in a logical order and successfully as a group or not at all. The
term unit of work means that a transaction has a beginning and an
end. If anything goes wrong during the transaction, the entire unit of
work can be canceled if desired. If everything looks good, the entire
unit of work can be saved to the database.

Client/server environments are designed specifically for this purpose.
Traditionally, a server (in this case, a database server) supports
multiple network connections to it. As often happens with technology,
this newfound flexibility adds a new degree of complexity to the
environment.

file:///D|/JigneshDhol/Oracle/0503.%20What%20is%20transaction.htm (2 of 2) [6/26/02 12:16:52 PM]

0504. Starting and Ending of Transaction

Top:2 Starting and Ending of Transaction?

Let us consider one case of manufacturing organization. Say company
have departments as store, sales, marketing and administration. One
database is being maintains by these all departments. Tables for these
are :

Client_master, Product_master, Sales_order, Sales_order_details,
Salesman_master, Challan_Header, Challan_Details.

As being employee of Sales department you are doing transaction on
sales bill and data are being send to table sales_order,
sales_order_Details as well you are retrieving data from
product_master table for sales_rate of product and client_master table
for information of clients. In such case you will not allow any other
user to disturb your transaction. And this is the problem, how to work
efficiently on single database by many user on network on an
organization. For this reason one has to develop transaction area so
that no other user disturb your work.

Let us first check tables available to us, CLICK ME.

On say you make on sales bill with product information out from
product_master for sell_price of product. Parallel some user change
product_master table and even sell_price of the same product you are
accessing as:

SQL> UPDATE product_master SET sell_price=1200 WHERE
description='Mouse';

As you can see, the information you retrieved earlier could be invalid if

file:///D|/JigneshDhol/Oracle/0504.%20Starting%20and%20Ending%20of%20Transaction.htm (1 of 4) [6/26/02 12:16:54 PM]

file:///D|/JigneshDhol/Oracle/..\Appendix\Table%20and%20Query%202.htm

0504. Starting and Ending of Transaction

the update occurred during the middle of your SELECT. If your
application fired off a letter to be sent to Mr. user, the sell_price it
used would be wrong. Obviously, if the letter has already been sent,
you won't be able to change the sell_price. However, if you had used a
transaction, this data change could have been detected, and all your
other operations could have been rolled back.

Beginning a Transaction

Transactions are quite simple to implement. You will examine the
syntax used to perform transactions using the Oracle RDBMS SQL
syntax. All database systems that support transactions must have a
way to explicitly tell the system that a transaction is beginning.
(Remember that a transaction is a logical grouping of work that has a
beginning and an end.) Using Personal Oracle8, the syntax looks like
this:

SYNTAX:

SET TRANSACTION {READ ONLY | USE ROLLBACK SEGMENT
segment}

The SQL standard specifies that each database's SQL implementation
must support statement-level read consistency; that is, data must
stay consistent while one statement is executing. However, in many
situations data must remain valid across a single unit of work, not just
within a single statement. Oracle enables the user to specify when the
transaction will begin by using the SET TRANSACTION statement. If
you wanted to examine other user's information and make sure that
the data was not changed, you could do the following:

INPUT:

SQL> SET TRANSACTION READ ONLY;

SQL> SELECT * FROM product_master WHERE description = 'Mouse';

file:///D|/JigneshDhol/Oracle/0504.%20Starting%20and%20Ending%20of%20Transaction.htm (2 of 4) [6/26/02 12:16:54 PM]

0504. Starting and Ending of Transaction

---Do Other Operations---

SQL> COMMIT;

We discuss the COMMIT statement in next topic. The SET
TRANSACTION READ ONLY option enables you to effectively lock a set
of records until the transaction ends. You can use the READ ONLY
option with the following commands:

SELECT

LOCK TABLE

SET ROLE

ALTER SESSION

ALTER SYSTEM

The option USE ROLLBACK SEGMENT tells Oracle which database
segment to use for rollback storage space. SQL Server's Transact-SQL
language implements the BEGIN TRANSACTION command with the
following syntax:

SYNTAX:

begin {transaction | tran} [transaction_name]

Finishing a Transaction

The Oracle syntax to end a transaction is as follows:

SYNTAX:

COMMIT [WORK];

The COMMIT command saves all changes made during a transaction.

file:///D|/JigneshDhol/Oracle/0504.%20Starting%20and%20Ending%20of%20Transaction.htm (3 of 4) [6/26/02 12:16:54 PM]

0504. Starting and Ending of Transaction

Executing a COMMIT statement before beginning a transaction ensures
that no errors were made and no previous transactions are left
hanging.

file:///D|/JigneshDhol/Oracle/0504.%20Starting%20and%20Ending%20of%20Transaction.htm (4 of 4) [6/26/02 12:16:54 PM]

0505. Commit, Rollback, Save Point

Top:3 Commit, Rollback, Save Point (TCL -
Transaction Control Language)

1. COMMIT

A COMMIT statement is used to end a transaction. It makes any
changes made to the database permanent. This statement also erases
any savepoints in the transaction. The format of the statement is as
follows:

COMMIT [WORK];

A COMMIT statement indicates the following:

All SQL statements have been executed

The successful end of a transaction

The database is in a consistent state

For example, after entering the details of a customer, the user wants
to make the change in the database permanent, one can code the
following:

SQL> INSERT INTO client_master(client_no, name, bal_due) VALUES
('C00008', 'Jignesh', 0);

1 row inserted.

SQL> COMMIT;

file:///D|/JigneshDhol/Oracle/0505.%20Commit,%20Rollback,%20Save%20Point.htm (1 of 4) [6/26/02 12:16:56 PM]

0505. Commit, Rollback, Save Point

commit complete.

2. ROLLBACK

A ROLLBACK statement is used to undo the work done in the current
transaction. You are either rollback the entire transaction so that all
changes made by the SQL statement are ignored or rollback a
transaction to a savepoint so that SQL statement after the savepoint
are ignored. The format of the statement is as follows.

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint];

To rollback to a particular stage in a transaction (a savepoint) the
format is as follows:

ROLLBACK TO SAVEPOINT A;

The above statement rolls back the current transaction to the specified
savepoint A. If you omit this clause, the ROLLBACK statement rolls
back the entire transaction.

A ROLLBACK statement does the following:

• Discard changes made to the database

• Indicates the unsuccessful end of the transaction

• Restores the database to the state before the transaction

For example, if after entering the details of a client, the user realizes
that the person does not want to be a client, user can rollback the
transaction that just made as follows:

SQL> INSERT INTO client_master(client_no, name, bal_due) VALUES
('C00008', 'Jignesh', 0);

file:///D|/JigneshDhol/Oracle/0505.%20Commit,%20Rollback,%20Save%20Point.htm (2 of 4) [6/26/02 12:16:56 PM]

0505. Commit, Rollback, Save Point

1 row inserted.

SQL> ROLLBACK;

3. SAVEPOINT

A SAVEPOINT is like a marker to divide a lengthy transaction into
smaller ones. It is used to identify a point in a transaction to which we
can later rollback. It is used in conjunction with rollback, to rollback
portions of the current transaction. The format of the statement is as
follows:

SAVEPOINT <savepoint name>;

For example, what could happen in the earlier case is, if the user had
already entered two records and after entering the third, realizes that
the person does not want to become a client, then the rollback
statement would rollback the entire transaction the he just made,
including the first two records that are actually required. To overcome
this problem he can use savepoint as follows:

SQL> INSERT INTO client_master(client_no, name, bal_due) VALUES
('C00008', 'Jignesh', 0);

1 row inserted.

SQL> SAVEPOINT client1;

SQL> INSERT INTO client_master(client_no, name, bal_due) VALUES
('C00008', 'Namrata', 0);

1 row inserted.

SQL> SAVEPOINT client2;

file:///D|/JigneshDhol/Oracle/0505.%20Commit,%20Rollback,%20Save%20Point.htm (3 of 4) [6/26/02 12:16:56 PM]

0505. Commit, Rollback, Save Point

SQL> INSERT INTO client_master(client_no, name, bal_due) VALUES
('C00008', 'Amit', 0);

1 row inserted.

SQL> ROLLBACK TO SAVEPOINT client2;

rollback completed.

This will only rollback the last transaction (i.e. the third record.). User
will still have the first tow records and can use a COMMIT to make the
changes to the database permanent. Even user can rollback two
transaction with the use of ROLLBACK TO SAVEPOINT client1.

file:///D|/JigneshDhol/Oracle/0505.%20Commit,%20Rollback,%20Save%20Point.htm (4 of 4) [6/26/02 12:16:56 PM]

0502. Grant, Revoke, Role, Creating Users

Top:4 Grant, Revoke (DCL - Data Control
Language)

Anything as important as business data has to be well protected. SQL
provides protection of data be allocating rights and privileges to
authorized users. Their login identification and passwords identify
authorized users. Users can be allocated rights and privileges on
various database objects. They can have rights like:

• Rights of selecting data (SELECT)

• Rights of adding data (INSERT)

• Rights of updating data (UPDATE)

• Rights of deleting data (DELETE)

These privileges, once granted to a user, can also be revoked. Certain
privileges will grant utilities when given to another user and also make
him eligible to pass on these privileges to other users. Depending
upon the nature of work assigned to a user they can be given the
required privileges and rights. These commands come in the category
of Data Control Language (DCL). Let us discuss two of these
commands.

1. GRANT Privilege Command

The creator of a table automatically becomes the owner of the table.
For example, after you create the client_master table, you become the
owner of the 'client_master' table. These is no need to be granted any
privilege to use the 'client_master' table. In case, you want to share a

file:///D|/JigneshDhol/Oracle/0502.%20Grant,%20Revoke,%20Role,%20Creating%20Users.htm (1 of 3) [6/26/02 12:16:57 PM]

0502. Grant, Revoke, Role, Creating Users

database objects, that you have created, with others, the appropriate
privileges can be granted on that particular database object to the
others. Objects privileges can be granted, to others, using the SQL
command GRANT. The format of the statement is as follows:

GRANT <privilege(s)> ON <objectname> TO <username>
[WITH GRANT OPTION];

The 'WITH GRANT OPTION' allows that user to pass on the privileges
on that database objects to other users. By default, users who have
been granted a privilege on a database object, can only use the
privilege themselves; they cannot grant any privileges on that
database object to other users.

For example, to grant a user 'Scott' the privilege of select and insert
on your 'client_master' table, you would code the following statement.

GRANT SELECT, INSERT ON client_master TO Scott;

This will allow Scott to view the data in your 'client_master' table and
also insert data into your 'client_master' table. But Scott will not be
able to update or delete any rows from your 'client_master' table, as
he has not been granted those privileges.

Now if you want to grant Scott all the privileges of select, insert,
update and delete, you would have to code the following statement.

GRANT SELECT, INSERT, UPDATE, DELETE ON client_master TO Scott;

Or instead of typing out all the privileges (SELECT, INSERT, UPDATE
and DELETE), since you want to grant Scott all the privileges you can
code the following statement.

GRANT ALL ON client_master TO Scott;

This will grant all the privileges to Scott. But Scott will not be able to
grant any privileges on your 'client_master' table to any of the other

file:///D|/JigneshDhol/Oracle/0502.%20Grant,%20Revoke,%20Role,%20Creating%20Users.htm (2 of 3) [6/26/02 12:16:57 PM]

0502. Grant, Revoke, Role, Creating Users

users.

If you want Scott to be able to grant some or all of the privileges on
your 'client_master' table to another user, code the following:

Scott will now be able to grant any of the privileges on your
'client_master' table to any other user that he wants to.

2. REVOKE Privilege command

To withdraw the privilege(s) which have been granted to a user, you
can use the REVOKE command. The format, similar to that of the
GRANT command, is as follows:

REVOKE <privilege(s)> ON <objectname> FROM <username>;

To revoke only the update and delete privileges on the 'client_master'
table, that you have given Scott, code the following:

REVOKE UPDATE, DELETE ON client_master FROM Scott;

To revoke all the privileges on the 'client_master' table, that you have
given Scott, code the following:

REVOKE ALL ON client_master FROM Scott;

file:///D|/JigneshDhol/Oracle/0502.%20Grant,%20Revoke,%20Role,%20Creating%20Users.htm (3 of 3) [6/26/02 12:16:57 PM]

0506. Role, Creating Users, Change Password

Top:5 Role and Creating Users, Change Password

Database Security

Today we discuss database security. We specifically look at various
SQL statements and constructs that enable you to administer and
effectively manage a relational database. We will discuss the
following:

• Create users

• Change passwords

• Create roles

Wanted: Database Administrator

Security is an often-overlooked aspect of database design. Most
computer professionals enter the computer world with some
knowledge of computer programming or hardware, and they tend to
concentrate on those areas. For instance, if your boss asked you to
work on a brand-new project that obviously required some type of
relational database design, what would be your first step? After
choosing some type of hardware and software baseline, you would
probably begin by designing the basic database for the project. This
phase would gradually be split up among several people--one of them
a graphical user interface designer, another a low-level component
builder. Perhaps you, after reading this book, might be asked to code
the SQL queries to provide the guts of the application. Along with this
task comes the responsibility of actually administering and maintaining
the database.

Many times, little thought or planning goes into the actual production
phase of the application. What happens when many users are allowed

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (1 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

to use the application across a wide area network (WAN)? With today's
powerful personal computer software and with technologies such as
Microsoft's Open Database Connectivity (ODBC), any user with access
to your network can find a way to get at your database. (We won't
even bring up the complexities involved when your company decides
to hook your LAN to the Internet or some other wide-ranging
computer network!) Are you prepared to face this situation?

Fortunately for you, software manufacturers provide most of the tools
you need to handle this security problem. Every new release of a
network operating system faces more stringent security requirements
than its predecessors. In addition, most major database vendors build
some degree of security into their products, which exists
independently of your operating system or network security.
Implementation of these security features varies widely from product
to product. Oracle8 relational database management system supports
nearly the full SQL standard. In addition, Oracle has added its own
extension to SQL, called PL*SQL. It contains full security features,
including the capability to create roles and assign permissions and
privileges on objects in the database.

How Does a Database Become Secure?

Has it occurred to you that you might not want other users to come in
and tamper with the database information you have so carefully
entered? What would your reaction be if you logged on to the server
one morning and discovered that the database you had slaved over
had been dropped (remember how silent the DROP DATABASE
command is)? We examine in some detail how one popular database
management system (Personal Oracle8) enables you to set up a
secure database. Keep the following questions in mind as you plan
your security system:

Who gets the DBA role?

How many users will need access to the database?

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (2 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

Which users will need which privileges and which roles?

How will you remove users who no longer need access to the
database?

Personal Oracle8 implements security by using three constructs:

• Users

• Roles

• Privileges

Creating Users

Users are account names that are allowed to log on to the Oracle
database. The SQL syntax used to create a new user follows.

SYNTAX:

CREATE USER user IDENTIFIED {BY password | EXTERNALLY}

[DEFAULT TABLESPACE tablespace]

[TEMPORARY TABLESPACE tablespace]

[QUOTA {integer [K|M] | UNLIMITED} ON tablespace]

[PROFILE profile]

If the BY password option is chosen, the system prompts the user to
enter a password each time he or she logs on. As an example, create
a username for yourself:

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (3 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

INPUT/OUTPUT:

SQL> CREATE USER jignesh IDENTIFIED BY dhol;

User created.

Each time I log on with my username jignesh, I am prompted to enter
my password: dhol.

If the EXTERNALLY option is chosen, Oracle relies on your computer
system login name and password. When you log on to your system,
you have essentially logged on to Oracle. As you can see from looking
at the rest of the CREATE USER syntax, Oracle also allows you to set
up default tablespaces and quotas. You can learn more about these
topics by examining the Oracle documentation. As with every other
CREATE command you have learned about in this book, there is also
an ALTER USER command. It looks like this:

SYNTAX:

ALTER USER user [IDENTIFIED {BY password | EXTERNALLY}]

[DEFAULT TABLESPACE tablespace]

[TEMPORARY TABLESPACE tablespace]

[QUOTA {integer [K|M] | UNLIMITED} ON tablespace]

[PROFILE profile]

[DEFAULT ROLE { role [, role] ..| ALL [EXCEPT role [, role] ...] |
NONE}]

You can use this command to change all the user's options, including
the password and profile. For example, to change the user jignesh's
password, you type this:

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (4 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

INPUT/OUTPUT:

SQL> ALTER USER jignesh IDENTIFIED BY jd;

User altered.

To change the default tablespace, type this:

INPUT/OUTPUT:

SQL> ALTER USER jignesh DEFAULT TABLESPACE USERS;

User altered.

To remove a user, simply issue the DROP USER command, which
removes the user's entry in the system database. Here's the syntax
for this command:

SYNTAX:

DROP USER user_name [CASCADE];

If the CASCADE option is used, all objects owned by username are
dropped along with the user's account. If CASCADE is not used and
the user denoted by user_name still owns objects, that user is not
dropped. This feature is somewhat confusing, but it is useful if you
ever want to drop users.

Creating Roles

A role is a privilege or set of privileges that allows a user to perform
certain functions in the database. To grant a role to a user, use the
following syntax:

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (5 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

SYNTAX:

GRANT role TO user [WITH ADMIN OPTION];

If WITH ADMIN OPTION is used, that user can then grant roles to
other users. Isn't power exhilarating?

To remove a role, use the REVOKE command:

SYNTAX:

REVOKE role FROM user;

When you log on to the system using the account you created earlier,
you have exhausted the limits of your permissions. You can log on,
but that is about all you can do. Oracle lets you register as one of
three roles:

Connect

Resource

DBA (or database administrator)

These three roles have varying degrees of privileges. If you have the
appropriate privileges, you can create your own role, grant privileges
to your role, and then grant your role to a user for further security.

The Connect Role

The Connect role can be thought of as the entry-level role. A user who
has been granted Connect role access can be granted various
privileges that allow him or her to do something with a database.

INPUT/OUTPUT:

SQL> GRANT CONNECT TO jignesh;

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (6 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

Grant succeeded.

The Connect role enables the user to select, insert, update, and delete
records from tables belonging to other users (after the appropriate
permissions have been granted). The user can also create tables,
views, sequences, clusters, and synonyms.

The Resource Role

The Resource role gives the user more access to Oracle databases. In
addition to the permissions that can be granted to the Connect role,
Resource roles can also be granted permission to create procedures,
triggers, and indexes.

INPUT/OUTPUT:

SQL> GRANT RESOURCE TO jignesh;

Grant succeeded.

The DBA Role

The DBA role includes all privileges. Users with this role are able to do
essentially anything they want to the database system. You should
keep the number of users with this role to a minimum to ensure
system integrity.

INPUT/OUTPUT:

SQL> GRANT DBA TO jignesh;

Grant succeeded.

After the three preceding steps, user jignesh was granted the
Connect, Resource, and DBA roles. This is somewhat redundant
because the DBA role encompasses the other two roles, so you can

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (7 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

drop them now:

INPUT/OUTPUT:

SQL> REVOKE CONNECT FROM jignesh;

Revoke succeeded.

SQL> REVOKE RESOURCE FROM jignesh;

Revoke succeeded.

jignesh can do everything he needs to do with the DBA role.

User Privileges

After you decide which roles to grant your users, your next step is
deciding which permissions these users will have on database objects.
(Oracle8 calls these permissions privileges.) The types of privileges
vary, depending on what role you have been granted. If you actually
create an object, you can grant privileges on that object to other users
as long as their role permits access to that privilege. Oracle defines
two types of privileges that can be granted to users: system privileges
and object privileges. (See Tables two tables given below.)

System privileges apply systemwide. The syntax used to grant a
system privilege is as follows:

SYNTAX:

GRANT system_privilege TO {user_name | role | PUBLIC}[WITH
ADMIN OPTION];

WITH ADMIN OPTION enables the grantee to grant this privilege to
someone else.

User Access to Views

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (8 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

The following command permits all users of the system to have
CREATE VIEW access within their own schema.

INPUT:

SQL> GRANT CREATE VIEW TO PUBLIC;

OUTPUT:

Grant succeeded.

ANALYSIS:

The public keyword means that everyone has CREATE VIEW privileges.
Obviously, these system privileges enable the grantee to have a lot of
access to nearly all the system settings. System privileges should be
granted only to special users or to users who have a need to use these
privileges. Table 1 shows the system privileges you will find in the help
files included with Personal Oracle8.

Table 1. System privileges in Oracle8.

System Privilege Operations Permitted

ALTER ANY INDEX Allows the grantees to alter any index in any
schema

ALTER ANY PROCEDURE Allows the grantees to alter any stored
procedure, function, or package in any
schema.

ALTER ANY ROLE Allows the grantees to alter any role in the
database.

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (9 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

ALTER ANY TABLE Allows the grantees to alter any table or view
in the schema.

ALTER ANY TRIGGER Allows the grantees to enable, disable, or
compile any database trigger in any schema.

ALTER DATABASE Allows the grantees to alter the database.

ALTER USER Allows the grantees to alter any user. This
privilege authorizes the grantee to change
another user's password or authentication
method, assign quotas on any tablespace,
set default and temporary tablespaces, and
assign a profile and default roles.

CREATE ANY INDEX Allows the grantees to create an index on
any table in any schema.

CREATE ANY
PROCEDURE

Allows the grantees to create stored
procedures, functions, and packages in any
schema.

CREATE ANY TABLE Allows the grantees to create tables in any
schema. The owner of the schema containing
the table must have space quota on the
tablespace to contain the table.

CREATE ANY TRIGGER Allows the grantees to create a database
trigger in any schema associated with a table
in any schema.

CREATE ANY VIEW Allows the grantees to create views in any
schema.

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (10 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

CREATE PROCEDURE Allows the grantees to create stored
procedures, functions, and packages in their
own schema.

CREATE PROFILE Allows the grantees to create profiles.

CREATE ROLE Allows the grantees to create roles.

CREATE SYNONYM Allows the grantees to create synonyms in
their own schemas.

CREATE TABLE Allows the grantees to create tables in their
own schemas. To create a table, the
grantees must also have space quota on the
tablespace to contain the table.

CREATE TRIGGER Allows the grantees to create a database
trigger in their own schemas.

CREATE USER Allows the grantees to create users. This
privilege also allows the creator to assign
quotas on any tablespace, set default and
temporary tablespaces, and assign a profile
as part of a CREATE USER statement.

CREATE VIEW Allows the grantees to create views in their
own schemas.

DELETE ANY TABLE Allows the grantees to delete rows from
tables or views in any schema or truncate
tables in any schema.

DROP ANY INDEX Allows the grantees to drop indexes in any
schema.

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (11 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

DROP ANY PROCEDURE Allows the grantees to drop stored
procedures, functions, or packages in any
schema.

DROP ANY ROLE Allows the grantees to drop roles.

DROP ANY SYNONYM Allows the grantees to drop private
synonyms in any schema.

DROP ANY TABLE Allows the grantees to drop tables in any
schema.

DROP ANY TRIGGER Allows the grantees to drop database
triggers in any schema.

DROP ANY VIEW Allows the grantees to drop views in any
schema.

DROP USER Allows the grantees to drop users.

EXECUTE ANY
PROCEDURE

Allows the grantees to execute procedures or
functions (standalone or packaged) or
reference public package variables in any
schema.

GRANT ANY PRIVILEGE Allows the grantees to grant any system
privilege.

GRANT ANY ROLE Allows the grantees to grant any role in the
database.

INSERT ANY TABLE Allows the grantees to insert rows into tables
and views in any schema.

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (12 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

LOCK ANY TABLE Allows the grantees to lock tables and views
in any schema.

SELECT ANY SEQUENCE Allows the grantees to reference sequences
in any schema.

SELECT ANY TABLE Allows the grantees to query tables, views,
or snapshots in any schema.

UPDATE ANY ROWS Allows the grantees to update rows in tables.

Object privileges are privileges that can be used against specific
database objects. Table 2 lists the object privileges in Oracle8.

Table 2. Object privileges enabled under Oracle8.

ALL

ALTER

DELETE

EXECUTE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

You can use the following form of the GRANT statement to give other

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (13 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

users access to your tables:

SYNTAX:

GRANT {object_priv | ALL [PRIVILEGES]} [(column [, column]...)] [,
{object_priv | ALL [PRIVILEGES]} [(column [, column] ...)]] ... ON
[schema.]object TO {user | role | PUBLIC} [, {user | role | PUBLIC}]
... [WITH GRANT OPTION]

To remove the object privileges you have granted to someone, use the
REVOKE command with the following syntax.

SYNTAX:

REVOKE {object_priv | ALL [PRIVILEGES]} [, {object_priv | ALL
[PRIVILEGES]}] ON [schema.]object FROM {user | role | PUBLIC} [,
{user | role | PUBLIC}] [CASCADE CONSTRAINTS]

From Creating a Table to Granting Roles Create a table named
SALARIES with the following structure:

INPUT/OUTPUT:

SQL> CREATE TABLE SALARIES (NAME CHAR(30), SALARY NUMBER,
AGE NUMBER);

Table created.

Now, create two users--Jack and Jill:

INPUT/OUTPUT:

SQL> create user Jack identified by Jack;

User created.

SQL> create user Jill identified by Jill;

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (14 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

User created.

SQL> grant connect to Jack;

Grant succeeded.

SQL> grant resource to Jill;

Grant succeeded.

ANALYSIS:

So far, you have created two users and granted each a different role.
Therefore, they will have different capabilities when working with the
database. First create the SALARIES table with the following
information:

INPUT/OUTPUT:

SQL> SELECT * FROM SALARIES;

NAME SALARY AGE

----------- ------------ --------

JACK 35000 29

JILL 48000 42

JOHN 61000 55

You could then grant various privileges to this table based on some
arbitrary reasons for this example. We are assuming that you
currently have DBA privileges and can grant any system privilege.
Even if you do not have DBA privileges, you can still grant object

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (15 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

privileges on the SALARIES table because you own it (assuming you
just created it). Because Jack belongs only to the Connect role, you
want him to have only SELECT privileges.

INPUT/OUTPUT:

SQL> GRANT SELECT ON SALARIES TO JACK;

Grant succeeded.

Because Jill belongs to the Resource role, you allow her to select and
insert some data into the table. To liven things up a bit, allow Jill to
update values only in the SALARY field of the SALARIES table.

INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY) ON SALARIES TO Jill;

Grant succeeded.

Now that this table and these users have been created, you need to
look at how a user accesses a table that was created by another user.
Both Jack and Jill have been granted SELECT access on the SALARIES
table. However, if Jack tries to access the SALARIES table, he will be
told that it does not exist because Oracle requires the username or
schema that owns the table to precede the table name.

Qualifying a Table

Make a note of the username you used to create the SALARIES table
(mine was Bryan). For Jack to select data out of the SALARIES table,
he must address the SALARIES table with that username.

INPUT:

SQL> SELECT * FROM SALARIES;

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (16 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

SELECT * FROM SALARIES

 *

OUTPUT:

ERROR at line 1:

ORA-00942: table or view does not exist

Here Jack was warned that the table did not exist. Now use the
owner's username to identify the table:

INPUT/OUTPUT:

SQL> SELECT * FROM jignesh.SALARIES;

NAME SALARY AGE

----------- ------------ --------

JACK 35000 29

JILL 48000 42

JOHN 61000 55

ANALYSIS:

You can see that now the query worked. Now test out Jill's access
privileges. First log out of Jack's logon and log on again as Jill (using
the password Jill).

INPUT/OUTPUT:

SQL> SELECT * FROM jignesh.SALARIES;

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (17 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

NAME SALARY AGE

----------- ------------ --------

JACK 35000 29

JILL 48000 42

JOHN 61000 55

That worked just fine. Now try to insert a new record into the table.

INPUT/OUTPUT:

SQL> INSERT INTO jignesh.SALARIES VALUES('JOE',85000,38);

INSERT INTO jignesh.SALARIES

 *

ERROR at line 1:

ORA-01031: insufficient privileges

ANALYSIS:

This operation did not work because Jill does not have INSERT
privileges on the SALARIES table.

INPUT/OUTPUT:

SQL> UPDATE jignesh.SALARIES SET AGE = 42 WHERE NAME =
'JOHN';

UPDATE jignesh.SALARIES

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (18 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

 *

ERROR at line 1:

ORA-01031: insufficient privileges

ANALYSIS:

Once again, Jill tried to go around the privileges that she had been
given. Naturally, Oracle caught this error and corrected his quickly.

INPUT/OUTPUT:

SQL> UPDATE jignesh.SALARIES SET SALARY = 35000 WHERE NAME
= 'JOHN';

1 row updated.

SQL> SELECT * FROM jignesh.SALARIES;

NAME SALARY AGE

----------- ------------ --------

JACK 35000 29

JILL 48000 42

JOHN 61000 55

ANALYSIS:

You can see now that the update works as long as Jill abides by the

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (19 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

privileges she has been given.

Using the WITH GRANT OPTION Clause

What do you think would happen if Jill attempted to pass his UPDATE
privilege on to Jack? At first glance you might think that Jill, because
he was entrusted with the UPDATE privilege, should be able to pass it
on to other users who are allowed that privilege. However, using the
GRANT statement as you did earlier, Jill cannot pass his privileges on
to others:

SQL> GRANT SELECT, UPDATE(SALARY) ON jignesh.SALARIES TO Jill;

Here is the syntax for the GRANT statement that was introduced
earlier today:

SYNTAX:

GRANT {object_priv | ALL [PRIVILEGES]} [(column [, column]...)] [,
{object_priv | ALL [PRIVILEGES]} [(column [, column] ...)]] ... ON
[schema.]object TO {user | role | PUBLIC} [, {user | role | PUBLIC}]
... [WITH GRANT OPTION]

What you are looking for is the WITH GRANT OPTION clause at the
end of the GRANT statement. When object privileges are granted and
WITH GRANT OPTION is used, these privileges can be passed on to
others. So if you want to allow Jill to pass on this privilege to Jack, you
would do the following:

INPUT:

SQL> GRANT SELECT, UPDATE(SALARY) ON jignesh.SALARIES TO JILL
WITH GRANT OPTION;

OUTPUT:

Grant succeeded.

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (20 of 21) [6/26/02 12:17:01 PM]

0506. Role, Creating Users, Change Password

Jill could then log on and issue the following command:

INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY) ON Bryan.SALARIES TO
JACK;

Grant succeeded.

Changing User Passwords

One of the most common tasks users ask administrators (DBA or
system administrator) is to reset user passwords. Quite often, a user
of the HelpDesk contacts the DBA with this request. You accomplish
this task using the ALTER USER command:

SQL> alter user scott identified by lion;

User altered.

Users can reset their own personal passwords, but they often forget
how to access the account and ask the DBA to do it.

file:///D|/JigneshDhol/Oracle/0506.%20Role,%20Creating%20Users,%20Change%20Password.htm (21 of 21) [6/26/02 12:17:01 PM]

0602. SQL v/s PL/SQL

TOP:1 SQL v/s PL/SQL

SQL PL/SQL

SQL stands for Structured Query
Language, which does not have
procedural programming
capability.

PL/SQL stands for Procedural
Structured Query Language.
Which have advantage over SQL.

SQL is the language that enables
relational database users to
communicate with the database in
a straightforward manner.

PL/SQL is Oracle's procedural
language; it comprises the
standard language of SQL and a
wide array of commands that
enable you to control the
execution of SQL statements
according to different conditions.

You can use SQL commands to
query the database and modify
tables within the database.

PL/SQL can also handle runtime
errors.

If you send a series of SQL
statements to the server in
standard SQL, the server executes
them one at a time in
chronological order.

PL/SQL allows you to write
interactive, user-friendly programs
that can pass values into
variables. SQL statements can be
processed simultaneously for
better overall performance.

file:///D|/JigneshDhol/Oracle/0602.%20SQL%20vs%20PL-SQL.htm (1 of 2) [6/26/02 12:17:19 PM]

0602. SQL v/s PL/SQL

No Programming flexibility
available with SQL.

Programmers can divide functions
into logical blocks of code. Modular
programming techniques support
flexibility during the application
development.

file:///D|/JigneshDhol/Oracle/0602.%20SQL%20vs%20PL-SQL.htm (2 of 2) [6/26/02 12:17:19 PM]

0603. PL/SQL Block Structure

TOP:2 PL/SQL Block Structure

PL/SQL is a block-structured language, meaning that PL/SQL programs
are divided and written in logical blocks of code. Within a PL/SQL block
of code, processes such as data manipulation or queries can occur.
The following parts of a PL/SQL block are discussed in this section:

• The DECLARE section contains the definitions of variables and
other objects such as constants and cursors. This section is an
optional part of a PL/SQL block.

• The PROCEDURE section contains conditional commands and
SQL statements and is where the block is controlled. This section
is the only mandatory part of a PL/SQL block.

• The EXCEPTION section tells the PL/SQL block how to handle
specified errors and user-defined exceptions. This section is an
optional part of a PL/SQL block.

Here is the basic structure of a PL/SQL block:

SYNTAX:

BEGIN -- optional, denotes beginning of block

 DECLARE -- optional, variable definitions

 BEGIN -- mandatory, denotes beginning of
procedure section

 EXCEPTION -- optional, denotes beginning of
exception section

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (1 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

 END -- mandatory, denotes ending of procedure
section

END -- optional, denotes ending of block

Notice that the only mandatory parts of a PL/SQL block are the second
BEGIN and the first END, which make up the PROCEDURE section. Of
course, you will have statements in between. If you use the first
BEGIN, then you must use the second END, and vice versa.

COMMENTS

What would a program be without comments? Programming languages
provide commands that allow you to place comments within your
code, and PL/SQL is no exception. The comments after each line in the
preceding sample block structure describe each command. The
accepted comments in PL/SQL are as follows:

SYNTAX:

-- This is a one-line comment.

/* This is a

multiple-line comment.*/

The DECLARE Section

The DECLARE section of a block of PL/SQL code consists of variables,
constants, cursor definitions, and special data types. As a PL/SQL
programmer, you can declare all types of variables within your blocks
of code. However, you must assign a data type, which must conform
to Oracle's rules of that particular data type, to every variable that you
define. Variables must also conform to naming standards.

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (2 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

Variable Assignment

Variables are values that are subject to change within a PL/SQL block.
PL/SQL variables must be assigned a valid data type upon declaration
and can be initialized if necessary. The following example defines a set
of variables in the DECLARE portion of a block:

DECLARE

 owner char(10);

 tablename char(30);

 bytes number(10);

 today date;

Notice that each variable declaration ends with a semicolon. Variables
may also be initialized in the DECLARE section. For example:

DECLARE

 customer char(30);

 fiscal_year number(2) := '97';

You can use the symbol := to initialize, or assign an initial value, to
variables in the DECLARE section. You must initialize a variable that is
defined as NOT NULL.

DECLARE

 customer char(30);

 fiscal_year number(2) NOT NULL := '97';

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (3 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

The PROCEDURE Section

The PROCEDURE section is the only mandatory part of a PL/SQL block.
This part of the block calls variables and uses cursors to manipulate
data in the database. The PROCEDURE section is the main part of a
block, containing conditional statements and SQL commands.

BEGIN...END

In a block, the BEGIN statement denotes the beginning of a
procedure. Similarly, the END statement marks the end of a
procedure. The following example shows the basic structure of the
PROCEDURE section:

SYNTAX:

BEGIN

 condition1;

 statement1;

 condition2;

 statement2;

.........

END

The EXCEPTION Section

The EXCEPTION section is an optional part of any PL/SQL block. If this
section is omitted and errors are encountered, the block will be

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (4 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

terminated. Some errors that are encountered may not justify the
immediate termination of a block, so the EXCEPTION section can be
used to handle specified errors or user-defined exceptions in an
orderly manner. Exceptions can be user-defined, although many
exceptions are predefined by Oracle.

Raising Exceptions

Exceptions are raised in a block by using the command RAISE.
Exceptions can be raised explicitly by the programmer, whereas
internal database errors are automatically, or implicitly, raised by the
database server.

SYNTAX:

DECLARE

 exception_name EXCEPTION;

 BEGIN

 IF condition THEN

 RAISE exception_name;

 END IF;

 EXCEPTION

 WHEN exception_name THEN

 statement;

END;

This block shows the fundamentals of explicitly raising an exception.
First exception_name is declared using the EXCEPTION statement. In

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (5 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

the PROCEDURE section, the exception is raised using RAISE if a given
condition is met. The RAISE then references the EXCEPTION section of
the block, where the appropriate action is taken.

Handling Exceptions

The preceding example handled an exception in the EXCEPTION
section of the block. Errors are easily handled in PL/SQL, and by using
exceptions, the PL/SQL block can continue to run with errors or
terminate gracefully.

SYNTAX:

EXCEPTION

 WHEN exception1 THEN

 statement1;

 WHEN exception2 THEN

 statement2;

 WHEN OTHERS THEN

 statement3;

This example shows how the EXCEPTION section might look if you
have more than one exception. This example expects two exceptions
(exception1 and exception2) when running this block. WHEN OTHERS
tells statement3 to execute if any other exceptions occur while the
block is being processed. WHEN OTHERS gives you control over any
errors that may occur within the block.

Executing a PL/SQL Block

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (6 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

PL/SQL statements are normally created using editor and are executed
like normal SQL script files. PL/SQL uses semicolons to terminate each
statement in a block--from variable assignments to data manipulation
commands. The forward slash (/) is mainly associated with SQL script
files, but PL/SQL also uses the forward slash to terminate a block in a
script file. The easiest way to start a PL/SQL block is by issuing the
START command, abbreviated as STA or @. Your PL/SQL script file
might look like this:

SYNTAX:

/* This file is called proc1.sql */

DECLARE

 ...

 BEGIN

 ...

 statements;

 ...

 EXCEPTION

 ...

END;

/

You execute your PL/SQL script file as follows:

SQL> start proc1 or

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (7 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

SQL> sta proc1 or

SQL> @proc1

Displaying Output to the User

Particularly when handling exceptions, you may want to display output
to keep users informed about what is taking place. You can display
output to convey information, and you can display your own
customized error messages, which will probably make more sense to
the user than an error number. Perhaps you want the user to contact
the database administrator if an error occurs during processing, rather
than to see the exact message.

PL/SQL does not provide a direct method for displaying output as a
part of its syntax, but it does allow you to call a package that serves
this function from within the block. The package is called
DBMS_OUTPUT.

EXCEPTION

 WHEN zero_divide THEN

 DBMS_OUTPUT.put_line('ERROR: DIVISOR IS
ZERO. SEE YOUR DBA.');

ZERO_DIVIDE is an Oracle predefined exception. Most of the common
errors that occur during program processing will be predefined as
exceptions and are raised implicitly (which means that you don't have
to raise the error in the PROCEDURE section of the block).

If this exception is encountered during block processing, the user will
see:

INPUT:

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (8 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

SQL> @block1

ERROR: DIVISOR IS ZERO. SEE YOUR DBA.

PL/SQL procedure successfully completed.

Doesn't that message look friendly than:

INPUT/OUTPUT:

SQL> @block1

begin

*

ERROR at line 1:

ORA-01476: divisor is equal to zero

ORA-06512: at line 20

Example:1 of PL/SQL

Declare

Pi constant NUMBER (9,7) := 3.1415926;

Radius number(5);

Area number(14,2);

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (9 of 10) [6/26/02 12:17:22 PM]

0603. PL/SQL Block Structure

Begin

Radius := 3;

Area := pi*power(radius,2);

Insert into areas values (radius, area);

End;

/

file:///D|/JigneshDhol/Oracle/0603.%20PL-SQL%20Block%20Structure.htm (10 of 10) [6/26/02 12:17:22 PM]

0604. Language construct of PL/SQL

TOP:3 Language Construct of PL/SQL

Data Types in PL/SQL

Most data types are obviously similar, but each implementation has
unique storage and internal-processing requirements. When writing
PL/SQL blocks, you will be declaring variables, which must be valid
data types. The following subsections briefly describe the data types
available in PL/SQL.

In PL/SQL Oracle provides subtypes of data types. For example, the
data type NUMBER has a subtype called INTEGER. You can use
subtypes in your PL/SQL program to make the data types compatible
with data types in other programs, such as a COBOL program,
particularly if you are embedding PL/SQL code in another program.
Subtypes are simply alternative names for Oracle data types and
therefore must follow the rules of their associated data type.

Note: To check available Data Types CLICK ME. Rest of the data types
are explain in brief here with.

Binary Data Types

Binary data types store data that is in a binary format, such as
graphics or photographs. These data types include RAW and
LONGRAW.

BOOLEAN

BOOLEAN stores the following values: TRUE, FALSE, and NULL. Like
DATE, BOOLEAN requires no parameters when defining it as a

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (1 of 12) [6/26/02 12:17:25 PM]

file:///D|/JigneshDhol/Oracle/..\Ch2\0203.%20SQL%20Commands%20and%20Datatypes.htm

0604. Language construct of PL/SQL

column's or variable's data type.

ROWID

ROWID is a pseudo column that exists in every table in an Oracle
database. The ROWID is stored in binary format and identifies each
row in a table. Indexes use ROWIDs as pointers to data.

Conditional Statements

Now we are getting to the good stuff--the conditional statements that
give you control over how your SQL statements are processed. The
conditional statements in PL/SQL resemble those in most third-
generation languages.

IF...THEN

The IF...THEN statement is probably the most familiar conditional
statement to most programmers. The IF...THEN statement dictates
the performance of certain actions if certain conditions are met. The
structure of an IF...THEN statement is as follows:

SYNTAX:

IF condition1 THEN

statement1;

END IF;

If you are checking for two conditions, you can write your statement
as follows:

SYNTAX:

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (2 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

IF condition1 THEN

statement1;

ELSE

statement2;

END IF;

If you are checking for more than two conditions, you can write your
statement as follows:

SYNTAX:

IF condition1 THEN

statement1;

ELSIF condition2 THEN

statement2;

ELSE

statement3;

END IF;

ANALYSIS:

The final example states: If condition1 is met, then perform
statement1; if condition2 is met, then perform statement2; otherwise,
perform statement3. IF...THEN statements may also be nested within
other statements and/or loops.

Declare

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (3 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

Pi constant NUMBER (9,7) := 3.1415926;

Radius number(5);

Area number(14,2);

Begin

Radius := 3;

Area := pi*power(radius,2);

If Area > 3 then

Insert into areas values (radius, 3);

Else

Insert into areas values (radius, 2);

End If;

End;

/

LOOPS

Loops in a PL/SQL block allow statements in the block to be processed
continuously for as long as the specified condition exists. There are
three types of loops.

Simple loops A loop that keeps repeating until an exit or exit
when statement is reached within the loop

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (4 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

FOR loops A loop that repeats a specified number of times

WHILE loops A loop that repeats until a condition is met

In the following sections, you will see examples of each type of loop.
The loop examples will use as their starting point the PL/SQL blocks
used previously in this chapter.

Simple Loops

In the following listing, a simple loop is used to generate multiple rows
in the AREAS table. The loop is started by the loop keyword, and the
exist when clause determines when the loop should be exited. An end
loop clause signals the end of the loop.

Declare

Pi constant NUMBER (9,7) := 3.1415926;

Radius number(5);

Area number(14,2);

Begin

Radius := 3;

loop

Area := pi*power(radius,2);

Insert into areas values (radius, area);

radius := radius+1;

exit when area > 100;

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (5 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

end loop;

End;

/

The loop section of the example establishes the flow control for the
commands in the executable commands section of the PL./SQL block.
The steps within the loop are described in the following commented
version of the loop commands:

loop

/* Calculate the area, based on the radius value. */

Area := pi*power(radius,2);

/* Insert the current values into the AREAS table. */

Insert into areas values (radius, area);

/* Increment the radius value by 1 */

radius := radius+1;

/* Evaluate the last calculated area. If the value exceeds 100,
then exit. Otherwise, repeat the loop using the new radius
value. */

exit when area > 100;

/* Signal the end of the loop. */

end loop;

The loop should generate multiple entries in the AREAS table. The first

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (6 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

record will be the record generated by a Radius value of 3. Once an
area value exceeds 100, no more records will be inserted into the
AREAS table.

Sample output following the execution of the PL/SQL block is shown in
the following listing:

SQL> SELECT * FROM areas ORDER BY Radius;

RADIUS AREA

------------ ------------

3 28.27

4 50.27

5 78.54

6 113.1

Since the area value for a Radius value of 6 exceeds 100, no further
Radius values are processed and the PL/SQL block completes.

FOR Loops

In simple loops, the loop executes until an exit condition is met. in a
FOR loop, the loop executes a specified number of times. An example
of a FOR loop is shown in the following listing. The FOR loop's start is
indicated by the keyword for, followed by the criteria used to
determine when the processing should exit the loop. Since the number
of times the loop is executed is set when the loop is begun, an exit
command isn't needed within the loop.

In the following example, the areas of circles are calculated based on
Radius values ranging from 1 through 7, inclusive:

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (7 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

Declare

Pi constant NUMBER (9,7) := 3.1415926;

Radius number(5);

Area number(14,2);

Begin

for Radius in 1..7 loop

Area := pi*power(radius,2);

Insert into AREAS values (radius, area);

end loop;

End;

/

The steps involved in processing the loop are shown in the following
commented listing:

/* Specify the criteria for the number of loop executions */

for radius in 1..7 loop

/* Calculate the area using the current Radius value. */

Area := pi*power(radius,2);

/* Insert the area and radius values into the AREAS table. */

Insert into AREAS values (radius, area);

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (8 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

/* Signal the end of the loop */

end loop;

Note that there is no line that says

radius := radius+1;

in the FOR loop. Since the specification of the loop specifies

for radius in 1..7 loop

the radius values are already specified. For each value, all of the
commands within the loop are executed (these commands can include
other conditional logic, such as if conditions). Once the loop has
completed processing a Radius value, the limits on the for clause are
checked, and either the next Radius value is used or the loop
execution is complete.

SQL> SELECT * FROM areas ORDER BY Radius;

RADIUS AREA

---------- ---------

1 3.14

2 12.57

3 28.27

4 50.27

5 78.54

6 113.1

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (9 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

7 153.94

7 rows selected.

WHILE Loops

In a WHILE loop, the loop is processed until an exit condition is met.
Instead of specifying the exit condition via an exit command within the
loop, the exit condition is specified in the While command that initiates
the loop.

In the following listing, a WHILE loop is created so that multiple Radius
values will be procesed. If the current value of the Radius variable
meets the while condition in the loop's specification, then the loop's
commands are processed. Once a Radius value fails the while
condition in the loop's specification, the loop's execution is terminated.

Declare

Pi constant NUMBER (9,7) := 3.1415926;

Radius number(5);

Area number(14,2);

Begin

radius := 3;

While radius<=7

loop

Area := pi*power(radius,2);

Insert into AREAS values (radius, area);

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (10 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

radius := radius+1;

end loop;

End;

/

The WHILE loop is similar in structure to the simple loop, since it
terminates the loop based on a variable's value. The following listing
shows the steps involved in the loop, with embedded comments:

/* Set an initial value for the Radius variable */

radius := 3;

/* Establish the criteria for the termination of the loop. if the
condition is met, execute the commands within the loop. if
the condition is not met, then terminate the loop. */

While radius<=7

/* Begin the commands to be executed. */

loop

/* Calculate the area based on the current radius value and
insert a record in the AREAS table. */

Area := pi*power(radius,2);

Insert into AREAS values (radius, area);

/* Set a new value for the Radius variable. The new
value of Radius will be evaluated against the
termination criteria and the loop commands will be
executed for the new radius value or the loop will

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (11 of 12) [6/26/02 12:17:25 PM]

0604. Language construct of PL/SQL

terminate. */

radius := radius+1;

/* Signal the end of the commands within the loop.
*/

end loop;

When executed, the PL/SQL block in the previous listing will generate
records in the AREAS table. The output of the PL/SQL block is shown
in the following listing:

SQL> SELECT * FROM areas ORDER BY Radius;

RADIUS AREA

--------- ----------

3 28.27

4 50.27

5 78.54

6 113.1

7 153.94

Because of the value assigned to the Radius variable prior to the loop,
the loop is forced to executed at least once. You should verify that
your variable assignments meet the conditions used to limit the loop
executions.

file:///D|/JigneshDhol/Oracle/0604.%20Language%20construct%20of%20PL-SQL.htm (12 of 12) [6/26/02 12:17:25 PM]

0605. %TYPE and %ROWTYPE

TOP:4 %TYPE and %ROWTYPE

The %TYPE Attribute

%TYPE is a variable attribute that returns the value of a given column
of a table. Instead of hard-coding the data type in your PL/SQL block,
you can use %TYPE to maintain data type consistency within your
blocks of code.

INPUT:

DECLARE

CURSOR cur_emp IS SELECT empno, ename from emp;

xempno emp.empno%TYPE;

xename emp.ename%TYPE;

ANALYSIS:

The variable xempno is declared to have the same data type as empno
in the EMP table. %TYPE declares the variable name to have the same
data type as the column ename in the EMP table.

DECLARE

cursor cur_emp is select empno, ename from emp;

xempno emp.empno%TYPE;

xename emp.ename%TYPE;

file:///D|/JigneshDhol/Oracle/0605.%20TYPE%20and%20ROWTYPE.htm (1 of 3) [6/26/02 12:17:26 PM]

0605. %TYPE and %ROWTYPE

BEGIN

open cur_emp;

loop

fetch cur_emp into xempno, xename;

end loop;

close cur_emp;

END;

/

NOTE: Attend this topic after you complete next topic say 'Using
Cursor'

The %ROWTYPE Attribute

Variables are not limited to single values. If you declare a variable that
is associated with a defined cursor, you can use the %ROWTYPE
attribute to declare the data type of that variable to be the same as
each column in one entire row of data from the cursor. In Oracle's
lexicon the %ROWTYPE attribute creates a record variable.

INPUT:

DECLARE

CURSOR cur_emp IS SELECT empno, ename from emp;

employee_record cur_emp%ROWTYPE;

file:///D|/JigneshDhol/Oracle/0605.%20TYPE%20and%20ROWTYPE.htm (2 of 3) [6/26/02 12:17:26 PM]

0605. %TYPE and %ROWTYPE

ANALYSIS:

This example declares a variable called employee_record. The
%ROWTYPE attribute defines this variable as having the same data
type as an entire row of data in the cur_emp. Variables declared using
the %ROWTYPE attribute are also called aggregate variables.

DECLARE

cursor cur_emp is select empno, ename from emp;

employee_record employee_cursor%ROWTYPE;

BEGIN

open cur_emp;

loop

fetch cur_emp into employee_record;

update emp set sal = 1000 where
empno=employee_record.empno;

commit;

end loop;

close employee_cursor;

END;

/

file:///D|/JigneshDhol/Oracle/0605.%20TYPE%20and%20ROWTYPE.htm (3 of 3) [6/26/02 12:17:26 PM]

0606. Using Cursor

TOP:5 Using Cursors

Database cursors enable you to select a group of data, scroll through
the group of records (often called a recordset), and examine each
individual line of data as the cursor points to it. You can use a
combination of local variables and a cursor to individually examine
each record and perform any external operation needed before moving
on to the next record.

One other common use of cursors is to save a query's results for later
use. A cursor's result set is created from the result set of a SELECT
query. If your application or procedure requires the repeated use of a
set of records, it is faster to create a cursor once and reuse it several
times than to repeatedly query the database.

Follow these steps to create, use, and close a database explicit cursor:

1. Create the cursor.

2. Open the cursor for use within the procedure or application.

3. Fetch a record's data one row at a time until you have reached
the end of the cursor's records.

4. Close the cursor when you are finished with it.

Creating a Cursor

The Oracle8 SQL syntax used to create a cursor looks like this:

SYNTAX:

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (1 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

CURSOR cursor_name IS SELECT_statement;

By executing this statement, you have defined the cursor result set
that will be used for all your cursor operations. A cursor has two
important parts: the cursor result set and the cursor position.

Opening a Cursor

The simple command to open a cursor for use is

SYNTAX:

OPEN cursor_name;

Where cursor_name identifies a cursor that has previously been
declared. When a cursor is opened, the following things happen:

• The values of the bind variables are examined.

• Based on the values of the bind variables, the active set is
determined.

• The active set pointer is set to the first row.

Now you can use the cursor to scroll through the result set.

Fetching from a Cursor

The INTO clause for the query is part of the FETCH statement. The
FETCH statement has two forms,

SYNTAX:

FETCH cursor_name INTO list_of_variables;

and

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (2 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

FETCH cursor_name INTO PL/SQL_record;

Each time the FETCH command is executed, the cursor pointer
advances through the result set one row at a time. If desired, data
from each row can be fetched into the fetch_target_list variables.

Closing a Cursor

Closing a cursor is a very simple matter. The statement to close a
cursor is as follows:

SYNTAX:

CLOSE cursor_name;

When all of the active set has been retrieved, the cursor should be
closed. This tells PL/SQL that the program is finished with the cursor,
and the resources associated with it can be freed. These resources
include the storage used to hold the active set, as well as any
temporary space used for determining the active set. Where
cursor_name identifies a previous opened cursor, Once a cursor is
closed, it is illegal to fetch from it.

There are two type of cursors in ORACLE. They are Implicit and
Explicit cursor. Now let us check individually.

Explicit Cursor

You can explicitly declare a cursor to process the rows individually. A
cursor declared by the user is called Explicit Cursor. For queries that
return more than one row, you must declare a cursor explicitly.

DECLARE

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (3 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

/* Declare cursor */

CURSOR cur_emp IS SELECT empno, sal FROM emp WHERE
deptno=10;

/* Declaration of memory variables that holds data fetched
from the cursor */

xempno emp.empno%TYPE;

xsal emp.sal%TYPE;

BEGIN

/* Open cursor */

OPEN cur_emp;

/* Infinite loop to fetch data from cursor cur_emp one row at
a time */

Loop

/* Fetch records from cursor one by one */

FETCH cur_emp INTO xempno, xsal;

/* Update emp table with new data with the use of
variables */

UPDATE emp SET sal = sal + (sal * 0.10) WHERE
empno=xempno;

End Loop;

Commit;

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (4 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

/* Close cursor, now job is over. */

CLOSE cur_emp;

END;

ANALYSIS:

Above mentioned example fetches records one by one for emp table
where department no is 10. Then it updates one by one records with
increment of salary to 10 percent. After all the records are over, we
close the cursor.

Oracle provides cursor variables to control the execution of the cursor
by default. Whenever any cursor is opened and used Oracle creates a
set of four system variables via which Oracle keeps track of the
'Current' status of the cursor. You can access these cursor variables.
They are:

%FOUND A record can be fetched from the cursor

%NOTFOUND No more records can be fetched from the
cursor

%ISOPEN The cursor has been opened

%ROWCOUNT The number of rows fetched from the cursor so
far

The %FOUND, %NOTFOUND, and %ISOPEN cursor attributes are
Boolean; they are set to either TRUE or FALSE. Because they are
boolean attributes, you can evaluate their setting without explicitly
matching them to values of TRUE or FALSE.

Syntax: cursorname%NOTFOUND

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (5 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

DECLARE

CURSOR cur_emp IS SELECT empno, sal FROM emp WHERE
deptno=10;

xempno emp.empno%TYPE;

xsal emp.sal%TYPE;

BEGIN

OPEN cur_emp;

Loop

FETCH cur_emp INTO xempno, xsal;

/* If no. of records retrieved is 0 or if all the records
are fetched then exit the loop. */

EXIT when cur_emp%NOTFOUND;

UPDATE emp SET sal = sal + (sal * 0.10) WHERE
empno=xempno;

End Loop;

Commit;

CLOSE cur_emp;

END;

Syntax: cursorname%FOUND

DECLARE

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (6 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

CURSOR cur_emp IS SELECT empno, sal FROM emp WHERE
deptno=10;

xempno emp.empno%TYPE;

xsal emp.sal%TYPE;

BEGIN

OPEN cur_emp;

Loop

FETCH cur_emp INTO xempno, xsal;

/* If no of records received > 0 then process the
data else exit the loop */

IF cur_emp%FOUND THEN

UPDATE emp SET sal = sal + (sal * 0.10)
WHERE empno=xempno;

ELSE

exit;

END IF;

End Loop;

Commit;

CLOSE cur_emp;

END;

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (7 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

Syntax: cursorname%ISOPEN

DECLARE

CURSOR cur_emp IS SELECT empno, sal FROM emp WHERE
deptno=10;

xempno emp.empno%TYPE;

xsal emp.sal%TYPE;

BEGIN

OPEN cur_emp;

/* If the cursor is open continue with the data processing else
display an appropriate error message */

IF cur_emp%ISOPEN THEN

Loop

FETCH cur_emp INTO xempno, xsal;

UPDATE emp SET sal = sal + (sal *
0.10) WHERE empno=xempno;

ELSE

exit;

END IF;

End Loop;

ELSE

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (8 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

dbms_output.put_line('Unable to open cursor');

END IF;

Commit;

CLOSE cur_emp;

END;

Syntax: cursorname%ROWCOUNT

DECLARE

CURSOR cur_emp IS SELECT empno, sal FROM emp WHERE
deptno=10;

xempno emp.empno%TYPE;

xsal emp.sal%TYPE;

BEGIN

OPEN cur_emp;

Loop

FETCH cur_emp INTO xempno, xsal;

UPDATE emp SET sal = sal + (sal * 0.10)
WHERE empno=xempno;

ELSE

exit;

END IF;

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (9 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

exit when cur_emp%ROWCOUNT=3;

End Loop;

Commit;

CLOSE cur_emp;

END;

ANALYSIS:

%ROWCOUNT returns the number of rows fetched from the active set.
It is set to zero when the cursor is opened. No if we want to increment
salary for first 3 employee, above cursor statement can be used.

In most situations that require an explicit cursor, you can simplify
coding by using a cursor for loop instead of the open, fetch and close
statement. A cursor for loop implicitly declares its loop index as a
%ROWTYPE record, opens a cursor repeatedly fetches rows of values
from the active set into items in the record, and closes the cursor
when all rows have been processed. As example,

DECLARE

CURSOR cur_emp IS SELECT empno, sal FROM emp WHERE
deptno=10;

BEGIN

for emp_rec in cur_emp

loop

update emp set sal = sal + (sal * 0.10) where
empno=emp_rec.empno;

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (10 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

end loop;

commit;

END;

Notice here that when you leave the loop, the cursor is closed
automatically. This is true even if you use an exit or goto statement to
leave the loop prematurely, or if an exception is raised inside the loop.

Implicit Cursor

Oracle implicitly opens a cursor to process each SQL statement not
associated with an explicitly declared cursor. PL/SQL lets you refer to
the most recent implicit cursor as the SQL cursor. So, although you
can not use the open, fetch and close statements to control an implicit
cursor, you can still use cursor attributes to access information about
the most recently executed SQL statement. The variables are same
with implicit cursor as explicit have, that we discussed earlier. The
SQL cursor has four attributes as described below. When appended to
the cursor name, these attributes let you access information about the
execution of insert, update, delete and single row select statement.
Implicit cursor attributes return the boolean null value, until they are
set by a cursor operation. The value of the cursor attributes always
refer to the most recently executed SQL statement whenever the
statement appears. It might be in a different scope (in a sub-block).
So, if you want to save an attribute value for later use, assign it a
boolean variable immediately.

%NOTFOUND: evaluates to true, if an insert, update or delete
affected no rows, or a single row select returns no rows, Otherwise, it
evaluates to false.

SYNTAX: SQL%NOTFOUND

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (11 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

BEGIN

UPDATE emp SET sal = sal + (sal * 0.10) WHERE
empno=&xempno;

IF sql%NOTFOUND THEN

dbms_output.put_line('Employee no does not exist');

ELSE

dbms_output.put_line('Employee record modified
successfully');

END IF;

END;

%FOUND: is the logical opposite of %NOTFOUND. %FOUND
evaluates to true if an insert, update or delete affected one or more
rows, or a single-row select statement returned one or more rows.
Otherwise, it evaluates to false.

SYNTAX: SQL%FOUND

BEGIN

UPDATE emp SET sal = sal + (sal * 0.10) WHERE
empno=&xempno;

IF sql%FOUND THEN

dbms_output.put_line('Employee record modified
successfully');

ELSE

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (12 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

dbms_output.put_line('Employee no does not exist');

END IF;

END;

%ROWCOUNT: returns the number of rows affected by an insert,
update or delete, or select into statement.

DECLARE

rows_affected char(4);

BEGIN

UPDATE emp SET sal = sal + (sal * 0.10) WHERE
empno=&xempno;

rows_affected := to_char(sql%ROWCOUNT)

IF sql%ROWCOUNT>0 THEN

dbms_output.put_line(rows_affected || 'Employee
record modified successfully');

ELSE

dbms_output.put_line('Employee no. does not
exist');

END IF;

END;

%ISOPEN: Oracle automatically closes the SQL cursor after executing
its associated SQL statement. As a result, sql%isopen always
evaluates to false.

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (13 of 14) [6/26/02 12:17:29 PM]

0606. Using Cursor

Cursor Parameters

You can specify parameters for cursors in the same way you do for
subprograms. The following example illustrates the syntax for
declaring parameter cursors:

CURSOR cur_emp (xempno IN NUMBER) IS SELECT empno, sal FROM
emp WHERE deptno = 10;

The parameter mode is always IN for cursor parameters, but the data
type can be any valid data type. You can reference a cursor
parameter, whose value is set when the cursor opens, only during the
cursor's declared SQL query.

Flexibility within cursor parameters enables the developer to pass
different numbers of parameters to a cursor by using the parameter
default mechanism. This is illustrated in the following example:

CURSOR cur_emp (xempno IN NUMBER, job IN VARCHAR2(20)) IS
SELECT empno, sal FROM emp WHERE deptno = 10;

By using the INTEGER DEFAULT declaration, you can pass all, one, or
none of the parameters to this cursor depending on the logic flow of
your code.

file:///D|/JigneshDhol/Oracle/0606.%20Using%20Cursor.htm (14 of 14) [6/26/02 12:17:29 PM]

0702. Procedure

Top:1 Procedure

The concept of stored procedures is an important one for the
professional database programmer to master. Stored procedures are
functions that contain potentially large groupings of SQL statements.
These functions are called and executed just as C, FORTRAN, or Visual
Basic functions would be called. A stored procedure should
encapsulate a logical set of commands that are often executed (such
as a complex set of queries, updates, or inserts). Stored procedures
enable the programmer to simply call the stored procedure as a
function instead of repeatedly executing the statements inside the
stored procedure. However, stored procedures have additional
advantages.

These procedures are created and then stored as part of a database,
just as tables and indexes are stored inside a database. One of the
biggest advantages to stored procedures lies in the design of their
execution. When executing a large batch of SQL statements to a
database server over a network, your application is in constant
communication with the server, which can create an extremely heavy
load on the network very quickly. As multiple users become engaged
in this communication, the performance of the network and the
database server becomes increasingly slower. The use of stored
procedures enables the programmer to greatly reduce this
communication load.

After the stored procedure is executed, the SQL statements run
sequentially on the database server. Some message or data is
returned to the user's computer only when the procedure is finished.
This approach improves performance and offers other benefits as well.
Stored procedures are actually compiled by database engines the first

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (1 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

time they are used. The compiled map is stored on the server with the
procedure. Therefore, you do not have to optimize SQL statements
each time you execute them, which also improves performance.

Procedures are named PL/SQL blocks that can take parameters an
action and can be invoked. A procedure is generally used to perform
an action and to pass values. Procedure are made up of:

• Declarative Part: The declarative part may contain declaration
of cursors, constants, variables, exception and subprograms.

• Executable Part: The executable part contains a PL/SQL block
consisting of statements that assign values, control execution and
manipulate ORACLE data. The action to be performed is coded
here and data that is to be returned back to the calling
environment. Variables declared are put to use in this block.

• Exception Handling Part: This part contains code that performs
an action to deal with exceptions raised during the execution of
the executable part. This block can be used to handle oracle's own
exceptions or the exceptions that are declared in the declarative
part. One can not transfer the flow of execution from the
exception handling part to the executable part or vice versa.

When a procedure is created, ORACLE automatically performs the
following steps:

1. Compiles the procedure

2. Stores the compiled code

3. Stores the procedure in the database

Oracle performs the following steps to execute a procedure :

1. Verify user access

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (2 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

2. Verifies procedure validity

3. Executes the procedure

Advantages of procedures:

1. Security: Stored procedures can help enforce data security.
For e.g. you can grant users access to a procedure that can query
a table, but not grant them access to the table itself.

2. Performance: It improves database performance in the
following ways:

o Amount of information sent over a network is less.

o No compilation step is required to execute the code.

o As procedure is present in the shared pool of SGA retrieval
from the disk is not required.

3. Memory Allocation: Reduction in memory as stored procedures
have shared memory capabilities so only one copy of procedure
needs to be loaded for execution by multiple users.

4. Productivity: Increases development productivity, by writing a
single procedure we can avoid redundant coding and increase
productivity.

5. Integrity: Improves integrity, a procedure needs to be tested
only once to guarantee that it returns an accurate result. Hence
coding errors can be reduced.

Procedure Syntax:

CREATE OR REPLACE PROCEDURE [schema.]procedurename

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (3 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

(argument {IN, OUT, IN OUT}
datatype,........) {IS, AS}

variable declaration;

constant declaration;

BEGIN

PL/SQL subprogram body;

EXCEPTION

exception PL/SQL block;

END;

Keywords and Parameters:

REPLACE recreates the procedure if it already exists. You can use
this option to change the definition of an existing
procedure without dropping, recreating and regranting
object priviledges previously granted on it. If you
redefine a procedure ORACLE recompiles it.

schema is the schema to contain the procedure. ORACLE takes
the default schema to be the current schema, if it is
ommited.

procedure is the name of the procedure to be created.

argument is the name of an argument to the procedure.
Parentheses can be omitted if no arguments are present.

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (4 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

IN specifies that you must specify a value for the argument
when calling the procedure.

OUT specifies that the procedure passes a value for this
argument back to its calling environment after execution.

IN OUT specifies that you must specify a value for the argument
when calling the procedure and that the procedure
passes a value for this argument back to its calling
environment after execution. By default it takes IN.

datatype is the datatype of an argument. It supports any datatype
supported by PL/SQL.

PL/SQL subprogrambody is the definition of procedure consisting
of PL/SQL statements.

Example:1

Write a procedure to accept the ticket_no as input and display an error
message if the total_fare is null otherwise display the ticket_header.

CREATE OR REPLACE PROCEDURE ticket (t_no char) IS

a ticket_header.ticket_no%type;

b ticket_header.origin%type;

c ticket_header.destination%type;

d ticket_header.dot%type;

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (5 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

e ticket_header.total_fare%type;

total exception;

BEGIN

SELECT ticket_no, origin, destination, dot, total_fare

INTO a, b, c, d, e FROM ticket_header WHERE ticket_no =
t_no;

if e is null then

raise total;

else

dbms_output.put_line(a||' '||b||' '||c||' '||d||' '||e);

end if;

EXCEPTION

when total then

dbms_output.put_line('The total fare is null');

END;

Example:2

Write a procedure to accept the route_id as input and update the
capacity to be 25 if the cat_code is 1 and 50 if the cat_code is 2.

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (6 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

CREATE OR REPLACE PROCEDURE route(r_id number) IS

c_code number;

BEGIN

SELECT category_code INTO c_code FROM route_header
WHERE route_id = r_id;

if c_code = '1' then

update route_header set capacity = 25 where
route_id = r_id;

elsif c_code = '2' then

update route_header set capacity = 50 where
route_id = r_id;

end if;

dbms_output.put_line('table updated');

END;

Example:3

Similar to variable declarations, the formal parameters to a procedure
or function can have default values.

CREATE OR REPLACE PROCEDURE AddNewStudent (

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (7 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

p_FirstName students.first_name%TYPE,

p_LastName students.Last_name%TYPE,

p_Major students.majot%TYPE DEFAULT 'Computer') AS

BEGIN

/* Insert a new row in the students table. Use
student_sequence to generate the new student ID, and 0 for
current_credits */

INSERT INTO students VALUES (student_sequence.nextval,
p_firstName, p_LastName, p_major, 0);

COMMIT;

END;

Example:4

To create a procedure to perform an item id check operation.
p_itemidchk is the name of the procedure which accepts a variable
itemid and returns a variable valexists to the host environment. The
value of valexists changes from 0 (itemid does not exist) to 1 (itemid
exists) depending on the records retrieved.

CREATE PROCEDURE p_itemidchk (vitemidno IN number, valexists
OUT NUMBER) AS

/* variable that hold data from the itemmast table */

dummyitem NUMBER(4);

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (8 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

BEGIN

select itemid into dummyitem from itemmast where itemid =
vitemidno;

/* if the select statement retrieves data, valexists is set to 1
*/

valexists := 1;

EXCEPTION

/* if the select statement does not retrieve data, valexists is
set to 0 */

when no_data_found then

valexists := 0;

END;

Any PL/SQL block can be used to call this procedure to perform the
check. To do this the contents of the variable vitemidno is passed on
as an argument to the procedure p_itemidchk. The return value is
then checked and appropriate action is taken. The following PL/SQL
code takes care of what needs to be done as expressed in above
example:

DECLARE

/* Cursor scantable retrieves all the records of table itemtran
*/

cursor scantable is select itemid, operation, qty, description

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (9 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

from itemtran;

/* variables that hold data from the cursor scantable */

vitemidno number(4);

descrip varchar2(30);

oper char(1);

quantity number(3);

/* variable that stores 1 or 0. It is set in the procedure
p_itemidchk */

valexists number(1);

BEGIN

open scantable;

loop

fetch scantable into vitemidno, oper, quantity,
descrip;

/* call procedure p_itemidchk to check if item_id is
present in itemmast table */

p_itemidchk(vitemidno, valexists);

/* if itemid does not exists */

if valexists=0 then

/* if mode is insert then insert a record in
itemmast table and set the status in the

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (10 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

itemtran table to 'SUCCESSFUL' */

if oper = 'I' then

insert into itemmast(itemid,
bal_stock, description) values
(vitemidno, quantity, descrip);

update itemtran set
itemtran.status='SUCCESSFUL'
where itemid = vitemidno;

end if;

else

/* if the record is found and the operation is
insert then set the status to 'item already
exists' */

if oper = 'I' then

update itemtran set itemtran.status
= 'ITEM EXIST' where itemid =
vitemidno;

end if;

endif;

exit when scantable%NOTFOUND;

end loop;

close scantable;

commit;

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (11 of 12) [6/26/02 12:17:48 PM]

0702. Procedure

END;

DELETING a stored PROCEDURE

A procedure can be deleted from the database by using the following
command:

DROP PROCEDURE <procedureName>;

Example: DROP PROCEDURE p_itemidchk;

file:///D|/JigneshDhol/Oracle/0702.%20Procedure.htm (12 of 12) [6/26/02 12:17:48 PM]

0703. Functions

Top:2 Functions

Unlike procedures, functions can return a value to the caller
(procedures cannot return values). This value is returned through the
use of the return keyword within the function. One or other way
procedure and functions are same except one difference that is
mentioned above. Functions can be executed explicitily like
procedures. It has the same benifits like procedures as :

Functions are named PL/SQL blocks that can take parameters an
action and can be invoked. A functions is generally used to perform an
action and to pass values. Functions are made up of:

• Declarative Part

• Executable Part

• Exception Handling Part

When a function is created, ORACLE automatically performs the
following steps:

1. Compiles the functions

2. Stores the compiled code

3. Stores the function in the database

Oracle performs the following steps to execute a functions :

1. Verify user access

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (1 of 13) [6/26/02 12:17:51 PM]

0703. Functions

2. Verifies function validity

3. Executes the function

Advantages of functions:

1. Security

2. Performance

3. Memory Allocation

4. Productivity

5. Integrity

Function Syntax:

CREATE OR REPLACE FUNCTION [schema.]functionname

(argument IN datatype,........)

RETURN datatype {IS, AS}

variable declaration;

constant declaration;

BEGIN

PL/SQL subprogram body;

EXCEPTION

exception PL/SQL block;

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (2 of 13) [6/26/02 12:17:51 PM]

0703. Functions

END;

Keywords and Parameters:

REPLACE recreates the function if it already exists. If you redefine
a function ORACLE recompiles it.

schema is the schema to contain the function. ORACLE takes the
default schema to be the current schema, if it is omitted.

function is the name of the function to be created.

argument is the name of an argument to the function. Parentheses
can be omitted if no arguments are present.

IN specifies that you must specify a value for the argument
when calling the function.

RETURN
datatype

is the datatype of the function's return value. Because
every function must return a value, this clause is
required. It supports any datatype supported by PL/SQL.

PL/SQL subprogram body is the definition of function consisting
of PL/SQL statements.

Example:1

Write function, which will accept the ticket_no as the input and return
total_fare as the output. [hint: use ticket_header]

CREATE OR REPLACE FUNCTION fun1 (t_no number) RETURN number

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (3 of 13) [6/26/02 12:17:51 PM]

0703. Functions

IS

t_fare ticket_header.total_fare%type;

BEGIN

select total_fare into t_fare from ticket_header where
ticket_no = t_no;

return(t_fare);

END;

To execute the function the following program is used...

SQL> declare

tot number;

begin

tot := fun1('04');

dbms_output.put_line(to_char(tot));

END;

Example:2

Write function which will accept the fleet_id as the input and return
the day as the output. [hint: use fleet_header]

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (4 of 13) [6/26/02 12:17:51 PM]

0703. Functions

CREATE OR REPLACE FUNCTION fun2 (f_no number) return date IS

dayt fleet.day%type;

BEGIN

select day into dayt from fleet_header where fleet_id = r_no;

return(dayt);

END;

TO execute the above function the following program is used...

SQL> declare

a fleet_header.day%type;

BEGIN

a:=fun2('01');

dbms_output.put_line(a);

END;

Example:3

The following function returns TRUE if the specified class is more than
90 percent full and FALSE otherwise:

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (5 of 13) [6/26/02 12:17:51 PM]

0703. Functions

CREATE OR REPLACE FUNCTION AlmostFull (p_Department
classes.department%TYPE, p_Course classes.course%TYPE)

RETURN BOOLEAN IS

v_CurrentStudents NUMBER;

v_MaxStudents NUMBER;

v_ReturnValue BOOLEAN;

v_FullPercent CONSTANT NUMBER := 90;

BEGIN

/* Get the current and maximum students for the requeste
course. */

SELECT current_students, max_students INTO
v_CurrentStudents, v_MaxStudents FROM classes WHERE
department = p_Department AND course = p_Course;

/* If the class is more full than the percentage given by
v_FullPercent, return TRUE. Otherwise, return FALSE. */

IF (v_CurrentStudents / v_MaxStudents * 100) >
v_FullPercent THEN

v_ReturnValue := TRUE;

ELSE

v_ReturnValue := FALSE;

END IF;

RETURN v_ReturnValue;

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (6 of 13) [6/26/02 12:17:51 PM]

0703. Functions

END AlmostFull;

This pl/sql block illustrates how to call a function, as described in
above example

DECLARE

CURSOR c_Classes IS SELECT department, course FROM
classes;

BEGIN

FOR v_ClassRecord IN c_Classes LOOP

/* Record all classes which don't have very much
room left in temp_table. */

IF AlmostFull(v_ClassRecord.department,
v_ClassRecord.course) THEN

INSERT INTO temp_table (char_col) VALUES
(v_ClassRecord.department || ' ' ||
v_ClassRecord.course || ' is almost full!');

END IF;

END LOOP;

END;

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (7 of 13) [6/26/02 12:17:51 PM]

0703. Functions

Example:4

Example shows five different return statements in the function, only
one of them is executed. which one is executed depends on how full
the class specified by p_Department and p_Course is.

CREATE OR REPLACE FUNCTION ClassInfo (

/* Returns 'Full' if the class is completely full, 'Some Room' if the class
is over 80% full, 'More Room' if the class is over 60% full, 'Lots of
Room' if the class is less than 60% full, and 'Empty' if there are no
students registered. */

p_Department classes.department%TYPE,

p_Course classes.course%TYPE)

RETURN VARCHAR2 IS

v_CurrentStudents NUMBER;

v_MaxStudents NUMBER;

v_PercentFull NUMBER;

BEGIN

/* Get the current and maximum students for the requested
course. */

SELECT current_students, max_students INTO
v_CurrentStudents, v_MaxStudents FROM classes WHERE
department = p_Department AND course = p_Course;

-- Calculate the current percentage.

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (8 of 13) [6/26/02 12:17:51 PM]

0703. Functions

v_PercentFull := v_CurrentStudents / v_MaxStudents * 100;

IF v_PercentFull = 100 THEN

RETURN 'Full';

ELSIF v_PercentFull > 80 THEN

RETURN 'Some Room';

ELSIF v_PercentFull > 60 THEN

RETURN 'More Room';

ELSIF v_PercentFull > 0 THEN

RETURN 'Lots of Room';

ELSE

RETURN 'Empty';

END IF;

END ClassInfo;

Example:5

f_itemidchk is the name of the function which accepts a variable
itemid and returns a variable valexists to the host environment. The
value of valexists changes from 0 (itemid does not exist) to 1 (itemid
exists) depending on the records retrieved.

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (9 of 13) [6/26/02 12:17:51 PM]

0703. Functions

CREATE FUNCTION f_itemidchk (vitemidno IN number) RETURN
number IS

/* variable that hold data from the itemmast table */

dummyitem NUMBER(4);

BEGIN

select itemid into dummyitem from itemmast where itemid =
vitemidno;

/* if the select statement retrieves data, valexists is set to 1
*/

return 1;

EXCEPTION

/* if the select statement does not retrieve data, valexists is
set to 0 */

when no_data_found then

return 0;

END;

Any PL/SQL block can be used to call this function to perform the
check. To do this the contents of the variable vitemidno is passed on
as an argument to the function p_itemidchk. The return value is then
checked and appropriate action is taken. The following PL/SQL code
takes care of what needs to be done as expressed in above example:

DECLARE

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (10 of 13) [6/26/02 12:17:51 PM]

0703. Functions

/* Cursor scantable retrieves all the records of table itemtran
*/

cursor scantable is select itemid, operation, qty, description
from itemtran;

/* variables that hold data from the cursor scantable */

vitemidno number(4);

descrip varchar2(30);

oper char(1);

quantity number(3);

/* variable that stores 1 or 0. It is set in the procedure
p_itemidchk */

valexists number(1);

BEGIN

open scantable;

loop

fetch scantable into vitemidno, oper, quantity,
descrip;

/* call function f_itemidchk to check if item_id is
present in itemmast table */

valexists := f_itemidchk(vitemidno);

/* if itemid does not exists */

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (11 of 13) [6/26/02 12:17:51 PM]

0703. Functions

if valexists=0 then

/* if mode is insert then insert a record in
itemmast table and set the status in the
itemtran table to 'SUCCESSFUL' */

if oper = 'I' then

insert into itemmast(itemid,
bal_stock, description) values
(vitemidno, quantity, descrip);

update itemtran set
itemtran.status='SUCCESSFUL'
where itemid = vitemidno;

end if;

else

/* if the record is found and the operation is
insert then set the status to 'item already
exists' */

if oper = 'I' then

update itemtran set itemtran.status
= 'ITEM EXIST' where itemid =
vitemidno;

end if;

endif;

exit when scantable%NOTFOUND;

end loop;

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (12 of 13) [6/26/02 12:17:51 PM]

0703. Functions

close scantable;

commit;

END;

DELETING a stored FUNCTION

A function can be deleted from the database by using the following
command:

DROP FUNCTION <functionName>;

Example: DROP FUNCTION f_itemidchk;

file:///D|/JigneshDhol/Oracle/0703.%20Functions.htm (13 of 13) [6/26/02 12:17:51 PM]

0704. Package

Top:3 Package

Packages are groups of procedures, functions, variables and SQL
statements grouped together into a single unit. To execute a
procedure within a package, you must first list the package name, and
then list the procedure name, as shown in the following example:

execute Client_Package.New_Client('Jignesh Dhol');

Here, the New_client procedure within the Client_Package package
was executed. Packages allow multiple procedures to use the same
variables and cursors. Procedures within packages may be either
available to the public or private, in which case they are only
accessible via commands from within the package (such as calls from
other procedures). Package may also include commands that are to be
executed each time the package is called, regardless of the procedure
or function called within the package. Thus, packages not only group
procedures but also give you the ability to execute commands that are
not procedure-specific.

Create package syntax

When creating packages, the package specification and the package
body are created separately. Thus, there are two commands to use:
create package for the package specification, and create package body
for the package body. Both of these commands require that you have
the CREATE PROCEDURE system privilege. If the package is to be
created in a schema other than your own, then you must have the
CREATE ANY PROCEDURE system package. The following is the syntax
for creating package specifications:

file:///D|/JigneshDhol/Oracle/0704.%20Package.htm (1 of 5) [6/26/02 12:17:53 PM]

0704. Package

CREATE OR REPLACE PACKAGE packagename

AS

 (package specifications)

END packagename;

CREATE OR REPLACE PACKAGE BODY packagename

AS

 (package body specifications)

END packagename;

Example:

CREATE OR REPLACE PACKAGE order_total

AS

 (package specifications)

END order_total;

CREATE OR REPLACE PACKAGE BODY order_total

AS

 (package body specifications)

END order_total;

CREATE OR REPLACE PACKAGE name is the command that starts the
procedure build in the database. Declarations of objects and
subroutines within the package area are visible to your applications.

file:///D|/JigneshDhol/Oracle/0704.%20Package.htm (2 of 5) [6/26/02 12:17:53 PM]

0704. Package

Think of this area as the application interface to your PL/SQL code; at
the very least, you must define the procedure entry routine here.
Modifications to any specifications in this area require rebuilding your
applications. The END statement signifies the end of the package
specification area.

Next is the CREATE OR REPLACE PACKAGE BODY name statement that
begins the specification area for declarations of PL/SQL objects and
subroutines that only the procedure can "see." This area is invisible to
your application but is not required in designing package procedures.
However, designing procedures in this manner enables you to modify
package body specifications without altering the application interface.
As a result, applications do not require recompilation when these
internal specifications change. Once again, the END statement marks
the end of package body specifications.

The name order_total was selected for both the package and package
body names in this example, but these names need not be the same.

Creating Package Subprograms

Creating subprograms within a package is the next step in developing
a packaged procedure. You must decide which routines will be
application-interface routines and which routines will be available only
within the package. This determines where the subprogram
specification will reside—in the package or in the package body.

7.3.1 Example of Package:

Definition:

Write a package containing (a) A procedure, which will accept the
route_id as input and update the stop to be 'n'. [hint: use
route_detail] (b) A procedure, which will accept the route_id as the
input and delete that particular row. [hint: use route_details]

Answer:

file:///D|/JigneshDhol/Oracle/0704.%20Package.htm (3 of 5) [6/26/02 12:17:53 PM]

0704. Package

SQL> CREATE OR REPLACE PACKAGE jack is

 2> procedure first (routes char);

 3> procedure second (route char);

 4> END jack;

SQL> CREATE OR REPLACE PACKAGE BODY jack AS

procedure first (routes char) is

nstop char;

BEGIN

select nonstop into nstop from route_detail
where

route_id = routes;

If nstop = 's' then

update route_detail set nonstop =
'n'

where route_id = routes;

else

dbms_output.put_line('No updation
required');

end if;

file:///D|/JigneshDhol/Oracle/0704.%20Package.htm (4 of 5) [6/26/02 12:17:53 PM]

0704. Package

end first;

procedure second (route char) is

BEGIN

delete from route_details where route_id =
route;

dbms_output.put_line('Deletion Complete');

END second;

END jack;

Execute the body and the specification of the procedure separately. To
execute the procedure give "exec procedure name" at the SQL
prompt. Give "exec jack.first('101');" and exec jack.second(105); at
the SQL prompt to execute the procedures first and second.

file:///D|/JigneshDhol/Oracle/0704.%20Package.htm (5 of 5) [6/26/02 12:17:53 PM]

0705. Trigger

Top:4 Trigger

Database triggers are procedures that are stored in the database and
are implicitly executed (fired) when the contents of a table are
changed. Triggers are executed when an insert, update or delete is
issued against a table from SQL * Plus or through an application. The
major point that make these triggers stand alone is that they are fired
implicitly (i.e. internally) by Oracle itself and not explicityly called by
the user, as done in normal procedures.

Benifits of Triggers:

Database triggers support oracle to provide a highly customized
database management system. Some of the uses to which the
database triggers can be put to customize management information in
Oracle are as follows:

• A trigger can permit DML statements against a table only if
they are issued during regular business hours or on
predetermined weekdays.

• A trigger can also be used to keep an audit trail of a table (i.e.
store the modified and deleted records of the table) along with the
operation performed and the time on which the operation was
performed.

• It can be used to prevent invalid transactions.

• Enforce complex security authorizations.

Precaution for triggers:

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (1 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

• When a trigger is fired, a SQL statement inside the trigger can
also fired the same or some other trigger, called cascading, which
must be considered.

• Excessive use of triggers for customizing the database can
result in complex interdependecies between the triggers, which
may be difficult to maintain in a large applications.

Some differences are between procedure and trigger which have to be
considered first. In procedures its possible to pass parameters which is
not the case with triggers. A trigger is executed implicitly by the
Oracle itself upon modification of an associated table whereas to
execute a procedure, it has to be explicitly called by the user. Triggers
as well as declarative integrity constraints can be used to constraint
data input. However both have significant difference as mentioned
below:

• A declarative integrity constraint is a statement about a
database that is always true. A constraint applies to existing data
in the table and any statement that manipulate the table. Triggers
constraint what transaction can do. A trigger does not apply to
data loaded before the trigger was created, so it does not
guarantee all data in table conforms to the rules established by an
associated trigger.

• Also a trigger enforces transitional constraint which can not be
enforced by a declarative integrity constraint.

A trigger has three basic parts:

• A triggering event or statement

It is a SQL statement that causes a trigger to be
fired. It can INSERT, UPDATE or DELETE statement
for a specific table. A triggering statement can also

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (2 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

specify multiple DML statements.

• A trigger restriction

A trigger restriction specifies a Boolean expression
that must be TRUE for the trigger to fire. It is an
option available for triggers that are fired for each
row. Its function is to conditinally control the
execution of a trigger. A trigger restriction is
specified using a WHEN clause.

• A trigger action

A trigger action is the procedure that containts the
SQL statements and PL/SQL code to be executed
when a triggering statement is issued and the trigger
restriction evaluated to TRUE. It can contain SQL and
PL/SQL statements; can define PL/SQL language
constructs and can call stored procedures.
Additionally, for row triggers, the statements in a
trigger action have access to column values (new and
old) of the current row being processed.

Types of triggers:

When you define a trigger, you can specify the number of times the
trigger action is to be executed; once for every row affected by the
triggering statement (such as might be fired by an UPDATE statement
that updates many rows), or once for the triggering statement, no
matter how many rows it affects. The types of triggers are explained
below.

Row triggers:

A row triggers is fired each time the table is affected by the triggering
statement. For example, if an UPDATE statement updates multiple
rows of a table, a row trigger is fired once for each row affected by the

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (3 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

UPDATE statement. If the triggering statement affects the rows, the
trigger is not executed at all. Row trigger should be used when all the
trigger action code depends on the data provided by the triggering
statement or rows that are affected. e.g. if the trigger is keeping the
track of the affected records.

Statement triggers:

A row trigger is fired once on behalf of the triggering statement,
independent of the number of rows the triggering statement affects
(even if no rows are affected). Statement triggers are useful if the
code in the trigger action does not depend on the data provided by the
triggering statement or the rows affected. e.g. if the trigger makes the
security check on the time or the user.

Before Vs. After triggers:

When defining a trigger you can specify the triggering timing, i.e. you
can specify when the triggering action is to be executed in relation to
the triggering statement. BEFORE and AFTER apply to both row and
the statement triggers.

Before triggers:

BEFORE triggers execute the trigger action before the triggering
statement. These types of triggers are commonly used in the following
situation:

• BEFORE triggers are used when the trigger action should
determine whether or not the triggering statement should be
allowed to complete. By using a BEFORE trigger, you can
eliminate unnecessary processing of the triggering statement.

• BEFORE triggers are used to derive specific column values
before completing a triggering INSERT or UPDATE statement.

After triggers:

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (4 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

AFTER trigger execute the trigger action after the triggering statement
is executed. These types of triggers are commonly used in the
following situation:

• AFTER triggers are used when you want the triggering
statement to complete before executing the trigger action.

• If a BEFORE trigger is already present, an AFTER trigger can
perform different actions on the same triggering statement.

Combinations of triggers can be created as:

• BEFORE stament trigger:

Before executing the triggering statement, the
trigger action is executed.

• BEFORE row trigger:

Before modifying each row affected by the triggering
statement and before appropriate integrity
constraints, the trigger is executed if the trigger
restriction either evaluated to TRUE or was not
included.

• AFTER statement trigger:

After executing the triggering statement and applying
any deferred integrity constraints, the trigger action
is executed.

• AFTER row trigger:

After modifying each row affected by the triggering
statement and possibly applying appropriate integrity
constraints, the trigger action is executed for the

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (5 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

current row if the trigger restiction either evaluates
to TRUE or was not included. Unlike BEFORE row
triggers, AFTER row triggers have rows locked.

Syntax for creating trigger:

CREATE OR REPLACE TRIGGER [schema.]triggername

{BEFORE, AFTER}

{DELETE, INSERT, UPDATE [OF column,.....]}

ON [schema.]tablename

[FOR EACH ROW [WHEN condition]]

DECLARE

variable declaration;

constant declaration;

BEGIN

PL/SQL subprogram body;

EXCEPTION

exception PL/SQL block;

END;

Keywords and parameters:

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (6 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

OR REPLACE recreates the trigger if it already exists. You can use
this option to change the definition of an existing
trigger without dropping it.

schema is the schema to contain the trigger. If you omit the
schema, Oracle creates the trigger in your own
schema.

triggername is the name of the trigger to be created.

BEFORE indicates that Oracle fires the trigger before executing
the triggering statement.

AFTER indicates that Oracle fires the trigger after executing
the triggering statement.

DELETE indicates that Oracle fires the trigger whenever a
DELETE statement removes a row from the table.

INSERT indicates that Oracle fires the trigger whenever a
INSERT statement adds a row to the table.

UPDATE indicates that Oracle fires the trigger whenever an
UPDATE statement changes a value in one of the
columns specified in the OF clause. If you omit the OF
clause, Oracle fires the trigger whenever an UPDATE
statement changes a value in any column of the table.

ON Specifies the schema and name of the table on which
the trigger is to be created. If you omit schema, Oracle
assumes the table is in your own schema. You cannot
create a trigger on a table in the schema SYS.

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (7 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

REFERENCINGspecifies correlation names. You can use correlation
names in the PL/SQL block and WHEN clause of a row
trigger to refer specifically to old and new values of the
current row. The default correlation names are OLD
and NEW. If your row trigger is associated with a table
named OLD or NEW, you can use this clause to specify
different correlation names to avoid confusion between
table name and the correlation name.

FOR EACH
ROW

designates the trigger to be a row trigger. Oracle fires
a row trigger once for each row that is affected by the
triggering statement and meets the optional trigger
constraint defined in the when clause. If you omit this
clause, the trigger is a statement trigger.

WHEN Specifies the trigger restriction. The trigger restriction
containts a SQL condtion that must be satisfied for
Oracle to fire the trigger. This condition must contain
correlation names and cannot contain a query. You can
specify trigger restriction only for the row triggers.
Oracle evaluates this conditions for each row affected
by the triggering statement.

PL/SQL_block is the PL/SQL block that oracle executes to fire the
trigger.

Example:1

Write a database trigger before insert for each row on the table
route_detail not allowing transaction on Saturday and Sundays.

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (8 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

CREATE OR REPLACE TRIGGER sun_trig

before insert or update or delete on order_info

DECLARE

shipping_date char;

BEGIN

shipping_date := to_char(sysdate, 'dy');

if shipping_date in ('sat', 'sun') then

raise_application_error(-20001, 'try on any
weekdays');

end if;

END;

Example:2

Write a database trigger after update for each row giving the date and
day on which the update has been performed on the table
fleet_header.

CREATE OR REPLACE TRIGGER fleet_trig after update on fleet_header
for each row

DECLARE

sydate char(3);

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (9 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

date1 date;

BEGIN

sydate:= to_char(sysdate, 'dy');

date:= sysdate;

dbms_output.put_line(' the day and date of updation is ' ||
sydate || ' ' || to_char(date1));

END;

Example:3

Write a database trigger before delete for each row not allowing
deletion and give the appropriate message on the table route_detail.

CREATE OR REPLACE TRIGGER route_trig before delete on
route_detail for each row

BEGIN

raise_application_error(-20003, 'deletion not allowed');

END;

Example:4

Write a database trigger before insert/update/delete for each

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (10 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

statement not allowing any of these operations on the table
route_header on Mondays, Tuesdays and Wednesdays.

CREATE OR REPLACE TRIGGER header_trig before insert or update or
delete on route_header

DECLARE

sydate char(3);

BEGIN

sydate:= to_char(sydate, 'dy');

if sydate in ('mon', 'tue', 'wed') then

raise_application_error(-20005, 'no
insertion/updation/deletion allowed');

end if;

END;

Example:5

Write a database trigger before insert on the item table for each row.
If the itemid is 1000 and is also the value is entered by the user while
inserting then raise an error using the raise_application_error and
display a corresponding message.

CREATE OR REPLACE TRIGGER trig before insert on item for each row

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (11 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

DECLARE

item_ident item.itemid%type;

BEGIN

select itemid into item_ident from item where qty=4543;

If item_ident = 1000 then

raise_application_error (-20001, 'enter some other
number');

end if;

END;

Example:6

This trigger illustrates that :old and :new

CREATE OR REPLACE TRIGGER TempDelete BEFORE DELETE ON
temp_table FOR EACH ROW

DECLARE

v_TempRec temp_table%ROWTYPE;

BEGIN

/* This is not a legal assignment, since :old is not truly a
record. */

v_TempRec := :old;

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (12 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

/* We can accomplish the same thing, however, by assigning
the fields individually. */

v_TempRec.char_col := :old.char_col;

v_TempRec.num_col := :old.num_col;

END TempDelete;

Example:7

Create a transparent audit system for a table client_master. The
system must keep track of the records that are being deleted or
modified and when they have been deleted or modified. This trigger is
fired when an update or delete is fired on the table employee. It first
checks for the operation being performed on the table. Then
depending on the operation being performed, a variable is assigned
the value 'update' or 'delete'. The previous values of the modified
record of the table client_master are stored into variables. The
contents of these variables are then inserted into the audit table
auditclient.

CREATE TRIGGER audit_trail AFTER UPDATE OR DELETE ON
client_master FOR EACH ROW

DECLARE

/* the value in the oper variable will be used to insert a value
for the operation field in the auditemployee table /*

oper varchar2(8);

/* These variables hold the previous value of client_no, name
and bal_due */

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (13 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

client_no number(4);

name varchar2(20);

bal_due number(2);

BEGIN

/* if the records are updated in client_master table then oper
is set to 'update' */

if updating then

oper:='update';

end if;

/* if the records are declared in client_master table then oper
is set to 'delete' */

if deleting then

oper:='delete';

end if;

/* store the previous values of client_no, name and bal_due
in the variables. These variables can be used to insert data in
auditclient table*/

client_no:= :old.client_no;

name := :old.name;

bal_due := :old:bal_due;

insert into auditclient values (client_no, name, bal_due, oper,

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (14 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

sysdate);

END;

Example:8

For every row updated on product_master we need to check that
qty_on_hand must not be less than 0. Thus we need to write a
database trigger before an update is fired on qty_on_hand.

CREATE TRIGGER check_qty_on_hand BEFORE UPDATE OF
qty_on_hand ON product_master FOR EACH ROW

DECLARE

/* A variable that hold the new value of qty_on_hand */

new_qty number(8);

BEGIN

/*Assigning the new qty_on_hand to a variable */

new_qty := :new.qty_on_hand;

/* If new qty_on_hand is less than 0 then it should abort the
operation and display an error message */

If new_qty <0 then

raise_application_error(-20001, 'Quantity on Hand
cannot be less than 0');

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (15 of 16) [6/26/02 12:17:56 PM]

0705. Trigger

end if;

END;

DELETING a TRIGGER:

A trigger can be deleted from the database by using the following
command:

DROP TRIGGER <triggername>;

Example: DROP TRIGGER t_itemid;

file:///D|/JigneshDhol/Oracle/0705.%20Trigger.htm (16 of 16) [6/26/02 12:17:56 PM]

0706. Creating Objects

Top:5 Creating Objects

Abstract Datatypes

Abstract datatypes are user defined datatypes that consist of one or
more subtypes. These datatypes can be used to describe the user data
more conveniently. For example an abstract datatype for addresses
may consist of the following columns:

Street VARCHAR2(20)

City VARCHAR2(20)

State VARCHAR2(20)

Pincode VARCHAR2(6)

so during the creation of the employee table we can create a column
that uses the abstract datatypes for addresses and thus constraints
the street, city and pincode columns that are a part of that datatype.
The result of the abstract datatype enforces a standard representation
of data.

Object Tables

In oracle 8, it is possible to create table which are based only on an
abstract datatype. Such tables are referred to as object tables and
their contents are known as row objects.

Object Views

Object views allows to add object oriented concepts on existing

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (1 of 8) [6/26/02 12:17:59 PM]

0706. Creating Objects

relational tables. In the oracle object relational database, object views
allows to retrieve, update, insert and delete relational data as if they
were stored as object types. You can also define views that have
columns which are object datatypes, such as objects, and collections
(nested tables and varrays).

A common object example

Syntax:

CREATE OR REPLACE TYPE [Schema.]Type_name AS OBJECT
(column1 datatype,......);

Where type_name is the name of the abstract datatype, and schema
is the owner. The attributes of the object type are listed first in the
form.

Example:

SQL> CREATE TYPE ADDRESS_TY as object (Street VARCHAR2(20),
City VARCHAR2(20), State VARCHAR2(20), Pincode VARCHAR2(6));

The create type command creates the abstract datatype ADDRESS_TY.
This abstract datatype can be used when creating column in a table.
The table with such a column is a column object table. Now the table
EMP can be created as follows:

SQL> Create table EMP (EMPNo number(4), Name VARCHAR2(20),
Address ADDRESS_TY, Fax VARCHAR2(10), Remarks
VARCHAR2(100));

table created.

When the user describes the EMP table, the output will be

SQL> DESC EMP;

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (2 of 8) [6/26/02 12:17:59 PM]

0706. Creating Objects

Name Null Type

--------------------- -------------- ----------------------

EMPNO NUMBER(3)

NAME VARCHAR2(20)

ADDRESS ADDRESS_TY

FAX VARCHAR2(10)

REMARKS VARCHAR2(100)

When we query from the data dictionary tables directly to check table
structure then...

SQL> select Column_name, Data_type from USER_TAB_COLUMNS
where table_name='EMP';

Column_Name Data_Type

--------------------- ----------------------

EMPNO NUMBER

NAME VARCHAR2

ADDRESS ADDRESS_TY

FAX VARCHAR2

REMARKS VARCHAR2

In the above case we find that the datatype of address is the abstract

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (3 of 8) [6/26/02 12:17:59 PM]

0706. Creating Objects

datatype ADDRESS_TY.

To get details on the ADDRESS_TY. We will have to query the data
dictionary table USER_TYPE_ATTRS.

SQL> select Attr_name, Length, Attr_Type_Name from
USER_TYPE_ATTRS Where type_name='ADDRESS_TY';

ATTR_NAME LENGTH ATTR_TYPE_NAME

--------------------- -------------- ----------------------

STREET 20 VARCHAR2

CITY 20 VARCHAR2

STATE 20 VARCHAR2

PINCODE 6 VARCHAR2

Dropping Abstract Data type:

syntax:

DROP TYPE type_name;

example:

DROP TYPE address_ty;

DML on abstract data type columns:

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (4 of 8) [6/26/02 12:17:59 PM]

0706. Creating Objects

To insert rows into the emp table we cannot use the ordinary syntax.
Oracle solves this problem be creating a method of function known as
constructor method.

To insert record in emp table:

SQL> insert into EMP values (1, 'SMITH', ADDRESS_TY ('tagore road',
'rajkot', 'gujarat', '360002'), '123456', 'Good');

1 row created.

The constructor method is automatically created by Oracle.

To update record in emp table:

SQL> update EMP P set P..ADDRESS.CITY='gondal' where empno=1;

1 row updated.

Querying the values from abstract datatypes:

SQL> select * from EMP;

EMPNO NAME

ADDRESS(STREET,CITY,STATE,PINCODE)

FAX

REMARKS

1, SMITH, ADDRESS_TY ('tagore road', 'gondal', 'gujarat', '360002'),

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (5 of 8) [6/26/02 12:17:59 PM]

0706. Creating Objects

'123456', 'Good'

To query particular column (attribute) from the abstract datatype

SQL> select Empno, P.Address.City from EMP P;

EMPNO ADDRESS.CITY

1 gondal

To query from the abstract datatype, we will user alias for the table.
We use alias because if we refer the attribute as address.city then
oracle will misinterpret as table.columnname. So we use alias from
specifying tablename.columnname.attributename

In a table an object can be stored as --> Row --> Column.

There are two types of objects:

ROW object:

A table is referred to as row object table, if every row in the table is a
object and does not contain any other columns.

COLUMN object:

A table is referred to as column object table, if one of the column in
the table is stored as an object. Till now we discussed column objects.

ROW object tables:

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (6 of 8) [6/26/02 12:17:59 PM]

0706. Creating Objects

To create a row object table the syntax is:

CREATE TABLE table_name OF object_type;

Example:

SQL> CREATE TYPE EMP_TY AS object (empno NUMBER(3), Name
VARCHAR2(20), address ADDRESS_TY);

type created.

To create a table of this type the syntax is:

SQL> create table EMP_OBJ_TAB of EMP_TY;

table created.

Now EMP_OBJ_TAB is a row object in which every row belongs to an
object of type EMP_TY.

inserting into row object table:

SQL> insert into EMP_OBJ_TAB values (EMP_TY (1, 'JAMES',
ADDRESS_TY('tagore road', 'rajkot', 'gujarat', '360002'));

selecting from Row object table:

In order to see this information we have to make use of the VALUE
operator. The VALUE operator returns the object, rather than a list of
the attributes.

SQL> select value(M) from EMP_OBJ_TAB M;

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (7 of 8) [6/26/02 12:17:59 PM]

0706. Creating Objects

VALUE(M) (EMPNO,NAME,ADDRESS(STREET,CITY,STATE,PINCODE)

EMP_TY(1, 'JAMES', ADDRESS_TY('tagore
road','rajkot','gujarat','360002'))

file:///D|/JigneshDhol/Oracle/0706.%20Creating%20Objects.htm (8 of 8) [6/26/02 12:17:59 PM]

0707. PL/SQL Tables

Top:8 PL/SQL Tables

PL/SQL tables are similar to arrays in C. Sentacitcally, they are treated
like arrays. However, they are implimented differently. In order to
declare a PL/SQL table, we first need to define the table type, and
then you declare a variable of these type, as the following declarative
section illustates,

DECLARE

/* Define the table type. variables of these type can hold the character
strings with a max of 10 characters each. */

TYPE t_charactertable IS TABLE OF VARCHAR2(10)

INDEX BY BINARY_INTEGER;

/* Declare a variable of these type. this is what actually allocates the
storage */

V_characters t_charactertable;

The general syntax for defining a table type is

TYPE tabletype IS TABLE OF type INDEX BY BINARY_INTEGER;

Where tabletype is the name of the new type being defined, and type
is a predifined scalar type, or a reference to a scalar type via % type.

file:///D|/JigneshDhol/Oracle/0707.%20PL-SQL%20Tables.htm (1 of 3) [6/26/02 12:18:00 PM]

0707. PL/SQL Tables

In the previous example tabletype is t_charactertable and type is
varchar2(10). The following declarative section illustrates several
different PL/SQL table types and variable declarations.

DECLARE

TYPE t_NameTable IS TABLE OF students.first_name%TYPE

INDEX BY BINARY_INTEGER;

TYPE t_datetable IS TABLE OF DATE INDEX BY BINARY_INTEGER;

v_name t_nametable;

v_dates t_datetable;

Note:

PL/SQL version 2 requires the INDEX BY BINARY_INTEGER clause
as part of the table definition. This clause is not necessary for a
version 8 table.

Once the type and variables are declared, we can refer to an individual
element in a PL/SQL table by using the syntax:

tablename(index)

Where tablename is the name of table and index is either a variable if
type BINARY_INTEGER or a variable or expression that can be
converted to BINARY_INTEGER. Given the declaration for the different
table types, we could continue the PL/SQL block with

BEGIN

v_names(1) := 'Scott';

file:///D|/JigneshDhol/Oracle/0707.%20PL-SQL%20Tables.htm (2 of 3) [6/26/02 12:18:00 PM]

0707. PL/SQL Tables

v_Dates(-4) := SYSDATE - 1; /* SYSDATE -1 evaluates the time 24
hours ago*/

END;

Note that a table reference, like a record variable reference, is an
lvalue since it points to storage that has been allocated by the PL/SQL
engine.

file:///D|/JigneshDhol/Oracle/0707.%20PL-SQL%20Tables.htm (3 of 3) [6/26/02 12:18:00 PM]

0708. Nestead Tables

Top:6 Nested Tables

A nested table is, as its name implies, a table within a table. In this
case, it is a table that is represented as a column within a another
table. You can have multiple rows in the nested table for each row in
the main table. For example, we can have all the details of the
employee details in a dept as a column called emp_det..

Create or replace type EMP_TY as object (No NUMBER(3), name
VARCHAR2(25), Sal NUMBER(10,2));

The EMP_TY datatype contains a record for each employee - empno,
name and salary. To use this datatype as the basis for a nested table,
you need to create a new abstract datatype:

Create Type EMP_NT as table of EMP_TY;

The as table of clause of this create type command tell oracle that
you will be using this type as the basis for a nested table. The name of
the type, EMP_TY has a plurazed root to indicate that it stores multiple
rows and has the suffix 'NT' to indicate that it will be a nested table.

Now create the dept table as follows:

create table dept (deptno NUMBER(2), dname VARCHAR2(20),
EMP_DET EMP_NT) Nested table EMP_DET store as EMP_NT_TAB;

When creating a table that includes a nested table, you must specify
the name of the table that will be used to store the nested table's
data. That is, the data for the nested table is not stored "in-line" with
the rest of the table's data. Instead, it is stored apart from the main
table. Thus, the data in the emp_det column will be stored in one

file:///D|/JigneshDhol/Oracle/0708.%20Nestead%20Tables.htm (1 of 5) [6/26/02 12:18:02 PM]

0708. Nestead Tables

table, and the data in the name column will be stored in a separate
table. Oracle will maintain pointers between tables. In this example,
the "out-of-line" data for the nested table is stored in a table named
EMP_NT_TAB:

nested table emp_det store as EMP_NT_TAB;

inserting records in Nested tables:

You can insert records into a nested table by using the constructor
methods for its datatype. For the EMP_DET column, the datatype is
EMP_NT; thus, you will use the EMP_NT; constructor method. The
EMP_NT type, in turn, uses the EMP_TY datatype. As shown in the
following example, inserting a record into a dept table requires you to
use both the EMP_NT and EMP_TY constructor methods. In the
example, three EMP_DET are listed for the dept named accts:

insert into DEPT values (10, 'Accts', EMP_NT(

EMP_TY(1, 'SMITH', 2000),

EMP_TY(2, 'JOHN', 2500),

EMP_TY(3, 'PHILIPS', 3000)));

Deleting records from the nested table:

delete from the (select emp_det from dept where deptno=10) where
empno=1;

If you do not already know the datatype structure of the table, you
will need to query the data dictionary before you can query the table.
First, query USER_TAB_COLUMNS to see the definitions of the

file:///D|/JigneshDhol/Oracle/0708.%20Nestead%20Tables.htm (2 of 5) [6/26/02 12:18:02 PM]

0708. Nestead Tables

columns:

select column_name, data_type from USER_TAB_COLUMNS where
table_name='DEPT';

COLUMN_NAME DATA_TYPE

DEPTNO NUMBER

DNAME VARCHAR2

EMP_DET EMP_NT

To see the datatype used as the basis for the nested table, query
USER_COL_TYPES:

select col_type, elem_type_owner, elem_type_name, upper_bound,
length from USER_COL_TYPES where type_name='EMP_NT';

The output from USER_COL_TYPES shows the EMP_NT nested table is
based on the EMP_TY abstract datatype. You can query
USER_TYPE_ATTRS to see the attributes of EMP_TY:

select attr_name, length, attr_type_name from USER_TYPE_ATTRS
where TYPE_NAME='EMP_TY';

ATTR_NAME LENGTH ATTR_TYPE_NAME

NO 25 NUMBER

NAME 25 VARCHAR2

SAL 12 NUMBER

file:///D|/JigneshDhol/Oracle/0708.%20Nestead%20Tables.htm (3 of 5) [6/26/02 12:18:02 PM]

0708. Nestead Tables

Querying nested tables:

Nested tables support a great variety of queries. However, you need
to consider the nature of the table during your queries. A nested table
is column within a table. To support queries of the columns and rows
of a nested table, Oracle provides a new keywords, THE.

select NT.sal from THE(select EMP_DET from DEPT where
dname='Accts') NT;

In the example of the use of the THE function, the purpose of the
queries and DML operations was to manipulate the data within the
nested table. If you are trying to deal with the main table, then you
need to take a slightly different approach in your queries.

For example, what if you need to perform an insert as select involving
only the nested table portion of the DEPT table? That is, you will be
inserting a new record into DEPT, but the nested table values will be
based on values already entered for another record.

To solve this problem, oracle introduced two keywords: cast and
multiset. The cast keyword allows you to "cast" the result of a query
as a nested table. The multiset keyword allows the cast query to
contain multiple records. You use cast and multiset together, as shown
in the following example. Here's the inserted dept record, corrected to
use the cast and multiset keywords:

insert into dept values (12, 'EDP',

cast(multiset(select * from THE(select EMP_DET from DEPT where
dname='Accts')) as EMP_NT));

file:///D|/JigneshDhol/Oracle/0708.%20Nestead%20Tables.htm (4 of 5) [6/26/02 12:18:02 PM]

0708. Nestead Tables

Dropping the nested table:

to drop the nested table...

DROP the type EMP_TY;

DROP the type EMP_NT;

DROP the table DEPT;

file:///D|/JigneshDhol/Oracle/0708.%20Nestead%20Tables.htm (5 of 5) [6/26/02 12:18:02 PM]

0709. Varrays

Top:7 Varrays

A varying array allows you to repeating attributes of a record in a
single row.

Creating a varying array

you can create a varying array based on either an abstract datatype or
one of oracle's standard datatypes such as NUMBER. For example, you
could create a varying array for storing the marks of the student called
MARKS_VA.

Create or replace type MARKS_VA as varray(5) of number(3);

When this create type command is executed, a type named
MARKS_VA is created. The as varray(5) clause tells oracle that a
varying array is being created, and it will hold a maximum of five
entries per record..

Now that you have created the varying array MARKS_VA, you can use
that as part of the creation of either a table or an abstract datatype.
To create a table with this varray..

Create table STUDENT (studno NUMBER(2) PRIMARY KEY, name
VARCHAR2(25), marks MARKS_VA);

Describing the varying array:

The student table will contain one record for each STUDENT, even if
that STUDENT has multiple marks. The multiple marks will be stored

file:///D|/JigneshDhol/Oracle/0709.%20Varrays.htm (1 of 6) [6/26/02 12:18:04 PM]

0709. Varrays

in the marks column, using the MARKS_VA varying array. If you
describe the student table, you will see that oracle internally stores
varying array data using the RAW datatype:

SQL> desc STUDENT

Name Null? Type

StudNo NOTNULL NUMBER(2)

NAME NOTNULL VARCHAR2(25)

 ROW(200)

You can use the USER_TAB_COLUMNS data dictionary view to see
information about the structure of the marks column:

select column_Name, Data_type from USER_TAB_COLUMNS where
table_name='STUDENT';

COLUMN_NAME DATA_TYPE

STUDNO NUMBER

NAME VARCHAR2

MARKS MARKS_VA

from the USER_TAB_COLUMNS output, you can see that the marks
column uses the marks_va varying array as its datatype. What kind of
datatype is marks_va? you can query the USER_TYPES data dictionary
view to see what kind of datatype MARKS_VA is:

file:///D|/JigneshDhol/Oracle/0709.%20Varrays.htm (2 of 6) [6/26/02 12:18:04 PM]

0709. Varrays

select typecode, attribute from USER_TYPES where
type_name='MARKS_VA';

TYPECODE ATTRIBUTE

COLLECTION 0

Inserting record into the varying array:

When a datatype is created, the database automatically creates a
methods called a constructor method of the datatype. You need to use
the constructor method when inserting records into columns that use
as abstract datatype. Since a varying array is an abstract datatype,
you will need to use constructor methods in order to insert records
into tables that use varying arrays. Furthermore, since the varying
array is itself an abstract datatype, you may need to nest calls to
multiple constructor methods in order to insert a record into a table
that uses a varying array.

The columns of the STUDENT table are studno, name and marks, the
last of which is a varying array using the MARKS_VA datatype. The
following command will insert a single record into the STUDENT table.
In this example, the record will have a single name and studno column
value and three marks values.

insert into STUDENT values (1, 'SMITH', MARKS_VA(78,33,56));

Selecting record from varying array:

When you insert records into a varying array, you need to make sure
that the number of entries you insert into the varying array does not
exceed its maximum. The maximum number of entries in the varying

file:///D|/JigneshDhol/Oracle/0709.%20Varrays.htm (3 of 6) [6/26/02 12:18:04 PM]

0709. Varrays

array is specified when the varying array is created and can be
queried from USER_COL_TYPES. You can also query the varying array
directly to determine its maximum number of entries per row, called
its LIMIT, and the current number of entries per row, called is COUNT.

You cannot, however, query the varying array directly via a select
command. In order to retrieve the COUNT, LIMIT and data from a
varying array, you need to use PL/SQL. To query the data from a
varying array, you can use a set of nested cursor FOR loop, as shown
in the example:

set serveroutput on

DECLARE

cursor STUDENT_CURSOR is select * from STUDENT;

STUDENT_rec STUDENT_CURSOR%rowtype;

BEGIN

FOR STUDENT_rec IN STUDENT_CURSOR

LOOP

dbms_output.put_line('Stud Name:' ||
STUDENT_rec.name);

FOR I IN 1..STUDENT.rec.marks.count

loop

dbms_output.put_line(STUDENT_rec.marks(i));

end loop;

END LOOP;

file:///D|/JigneshDhol/Oracle/0709.%20Varrays.htm (4 of 6) [6/26/02 12:18:04 PM]

0709. Varrays

end;

/

The output of this PL/SQL script is

Stud Name: SMITH

78

33

56

PL/SQL procedure successfully completed.

VARRAY V/S NESTED TABLE

When storing data that is related to as table, you can choose one of
three methods: a varying array, a nested table, or a separate table. If
you have a limited number of rows, a varying array may be
appropriate. As the number of rows increases, however, you may
begin to encounter performance problems during the access of the
varying array. The performance problems may be caused by
characteristic of varying array; they cannot be indexed. Nested table,
although they do a better job than varying arrays of supporting
multiple columns, cannot be indexed either. Relational tables,
however, can indexed. As a result, the performance of a collector may

file:///D|/JigneshDhol/Oracle/0709.%20Varrays.htm (5 of 6) [6/26/02 12:18:04 PM]

0709. Varrays

worsen as it grows in size.

Varying array are further burdened by the difficult involved in querying
data from them (via PL/SQL blocks instead of SQL extension). If
varying arrays are not a good solution for a large set of related
records, then should you use a nested table or a separate relational
table? it depends. Nested tables and relational tables serve different
purpose, so your answer depends on what you are trying to do with
the data. The key differences are as follows:

Nested tables are abstract datatypes, crested via the create type
command. Therefore, they can have methods associated with them. If
you plan to attach methods to the data, then you should use nested
tables instead of relational tables. Alternatively, you could consider
using object views with methods.

Relational tables are easily related to other tables. If the data is
possibly related to many other tables, then it may be best not to nest
the data within one table. Storing it in its own table will give you the
greatest flexibility in managing the data relations.

file:///D|/JigneshDhol/Oracle/0709.%20Varrays.htm (6 of 6) [6/26/02 12:18:04 PM]

0802. Initialization Parameter

Top:1 Initialization Parameter

The initialization parameter file is used to establish specific database
features each time an Oracle8 instance is started. By changing
initialization parameter values, you can specify features such as:

• The amount of memory the database uses

• Whether to archive full online redo log files

• Which control files currently exist for the database

Where is the Initialization Parameter File Located?

The initialization parameter file is located in INIT%ORACLE_SID%.ORA
file located in the \ORAWIN95\DATABASE directory. The computer that
starts the instance must have access to the appropriate initialization
parameter file. The Starter database in Personal Oracle8 uses the
initialization parameter file located in \ORAWIN95\DATABASE.,

Initialization Parameter File: Definition

An initialization parameter file is an ASCII text file containing a list of
parameters. Every database instance has a corresponding initialization
parameter file and ORACLE_SID parameter. To allow initialization
parameters to be unique to a particular database, each database
normally has its own initialization parameter file.

The Sample Initialization Parameter File: Definition

file:///D|/JigneshDhol/Oracle/0802.%20Initialization%20Parameter.htm (1 of 4) [6/26/02 12:18:30 PM]

0802. Initialization Parameter

The sample initialization parameter file is the initialization parameter
file (INITORCL.ORA) used by the Starter Database in
\ORAWIN95\DATABASE. Use this file as a model for creating a new
Personal Oracle7 database.

Initialization Parameters to Check When Creating a New Database

Check the initialization parameters described in this section carefully if
you decide to create a new database; they cannot be modified after
database creation.

DB_NAME

Specifies the name of the database to be created. The database name
is a string of eight characters or less. You cannot change the name of
a database once it has been created.

CHARACTER_SET

Specifies the database NLS character set to use. This parameter can
be set only when you create the database.

CONTROL_FILES

Designates the names and locations of all control files to be created
and maintained. By default, Personal Oracle8 installs a single control
file for the Starter Database, CTL1ORCL.ORA, in
\ORAWIN95\DATABASE.

If you create your database with the CREATE DATABASE command,
Personal Oracle8 creates the control file, CTL1sid.ORA, where sid is
the SID of that database. To reduce the risk of losing the control file
due to disk drive failure, use at least two control files, each located on
a separate storage device. The size of Personal Oracle8 control files
varies according to the complexity of your database structure. The

file:///D|/JigneshDhol/Oracle/0802.%20Initialization%20Parameter.htm (2 of 4) [6/26/02 12:18:30 PM]

0802. Initialization Parameter

maximum size of a Personal Oracle8 control file is 2500 database
blocks.

To edit the sample initialization parameter file

You edit the initialization parameter file so that you can customize
Personal Oracle8 database functions.

• Open the sample initialization parameter file in any ASCII text
editor.

The sample initialization parameter file contains alternative values for
the initialization parameters. These values and the annotations are
preceded by comment signs (#), which prevent them from being
processed.

• To activate a particular parameter, remove the preceding #
sign.

• De-activate a particular parameter by adding a # sign

Example:

• DB_BLOCK_BUFFERS is an initialization parameter that can be
used to create small, medium, or large System Global Areas
(SGAs), respectively. By default, the parameter to create a small
SGA is activated:

db_block_buffers = 200___# SMALL

db_block_buffers = 550__# MEDIUM

db_block_buffers = 3200__# LARGE

file:///D|/JigneshDhol/Oracle/0802.%20Initialization%20Parameter.htm (3 of 4) [6/26/02 12:18:30 PM]

0802. Initialization Parameter

• To create a medium-sized SGA, deactivate the small
parameter definition and activate the medium:

db_block_buffers = 200__# SMALL

db_block_buffers = 550___# MEDIUM

db_block_buffers = 3200__# LARGE

file:///D|/JigneshDhol/Oracle/0802.%20Initialization%20Parameter.htm (4 of 4) [6/26/02 12:18:30 PM]

0803. Control Files, Redo Logs files

Top:2 Oracle files

There are three major sets of files on disk that compose a database.

• Database files

• Control files

• Redo logs

The most important of these are the database files where the actual data resides.
The control files and the redo logs support the functioning of the architecture
itself.

All three sets of files must be present, open, and available to Oracle for any data
on the database to be useable. Without these files, you cannot access the
database.

System and User Processes

For the database files to be useable, you must have the Oracle system processes
and one or more user processes running on the machine. The Oracle system
processes, also known as Oracle background processes, provide functions for the
user processes—functions that would otherwise be done by the user processes
themselves. There are many background processes that you can initiate, but as a
minimum, only the PMON, SMON, DBWR, and LGWR must be up and running for
the database to be useable. Other background processes support optional
additions to the way the database runs.

In addition to the Oracle background processes, there is one user process per
connection to the database in its simplest setup. The user must make a connection
to the database before he can access any of the objects. If one user logs into
Oracle using SQL*Plus, another user chooses Oracle Forms, and yet another user
employs the Excel spreadsheet, then you have three user processes against the
database—one for each connection.

Memory: Oracle uses the memory (either real or virtual) of the system to run the
user processes and the system software itself and to cache data objects. There are

file:///D|/JigneshDhol/Oracle/0803.%20Control%20Files,%20Redo%20Logs%20files.htm (1 of 5) [6/26/02 12:18:32 PM]

0803. Control Files, Redo Logs files

two major memory areas used by Oracle: memory that is shared and used by all
processes running against the database and memory that is local to each
individual user process.

System Memory: Oracle database-wide system memory is known as the SGA,
the system global area or shared global area. The data and control structures in
the SGA are shareable, and all the Oracle background processes and user
processes can use them. The combination of the SGA and the Oracle background
processes is known as an Oracle instance, a term that you'll encounter often
with Oracle. Although there is typically one instance for each database, it is
common to find many instances (running on different processors or even on
different machines) all running against the same set of database files.

User Process Memory: For each connection to the database, Oracle allocates a
PGA (process global area or program global area) in the machine's memory.
Oracle also allocates a PGA for the background processes. This memory area
contains data and control information for one process and is not shareable
between processes.

Network Software and SQL*Net

A simple configuration for an Oracle database has the database files, memory
structures, and Oracle background and user processes all running on the same
machine without any networking involved. However, much more common is the
configuration that implements the database on a server machine and the Oracle
tools on a different machine (such as a PC with Microsoft Windows). For this type
of client/server configuration, the machines are connected with some non-Oracle
networking software that enables the two machines to communicate. Also, you
might want two databases running on different machines to talk to each
other—perhaps you're accessing tables from both databases in the same
transaction or even in the same SQL statements. Again, the two machines need
some non-Oracle networking software to communicate.

Whatever type of networking software and protocols you use to connect the
machines (such as TCP/IP) for either the client/server or server-server setup
mentioned previously, you must have the Oracle SQL*Net product to enable
Oracle to interface with the networking protocol. SQL*Net supports most of the
major networking protocols for both PC LANs (such as IPX/SPX) and the largest
mainframes (such as SNA). Essentially, SQL*Net provides the software layer
between Oracle and the networking software, providing seamless communication
between an Oracle client machine (running SQL*Plus) and the database server or
from one database server to another.

file:///D|/JigneshDhol/Oracle/0803.%20Control%20Files,%20Redo%20Logs%20files.htm (2 of 5) [6/26/02 12:18:32 PM]

0803. Control Files, Redo Logs files

You must install the SQL*Net software on both machines on top of the underlying
networking software for both sides to talk to each other. SQL*Net software options
enable a client machine supporting one networking protocol to communicate with
another supporting a different protocol.

Figure shows the role of SQL*Net in a client/server environment with two server
database machines.

Oracle Files

In this part, I discuss the different types of files that Oracle uses on the hard disk
drive of any machine.

Database Files

The database files hold the actual data and are typically the largest in size (from a
few megabytes to many gigabytes). The other files (control files and redo logs)
support the rest of the architecture. Depending on their sizes, the tables (and
other objects) for all the user accounts can obviously go in one database file—but

file:///D|/JigneshDhol/Oracle/0803.%20Control%20Files,%20Redo%20Logs%20files.htm (3 of 5) [6/26/02 12:18:32 PM]

0803. Control Files, Redo Logs files

that's not an ideal situation because it does not make the database structure very
flexible for controlling access to storage for different Oracle users, putting the
database on different disk drives, or backing up and restoring just part of the
database.

You must have at least one database file (adequate for a small or testing
database), but usually, you have many more than one. In terms of accessing and
using the data in the tables and other objects, the number (or location) of the files
is immaterial.

The database files are fixed in size and never grow bigger than the size at which
they were created.

Control Files

Any database must have at least one control file, although you typically have more
than one to guard against loss. The control file records the name of the database,
the date and time it was created, the location of the database and redo logs, and
the synchronization information to ensure that all three sets of files are always in
step. Every time you add a new database or redo log file to the database, the
information is recorded in the control files.

Redo Logs

Any database must have at least two redo logs. These are the journals for the
database; the redo logs record all changes to the user objects or system objects.
If any type of failure occurs, such as loss of one or more database files, you can
use the changes recorded in the redo logs to bring the database to a consistent
state without losing any committed transactions. In the case of non-data loss
failure, such as a machine crash, Oracle can apply the information in the redo logs
automatically without intervention from the database administrator (DBA). The
SMON background process automatically reapplies the committed changes in the
redo logs to the database files.

Like the other files used by Oracle, the redo log files are fixed in size and never
grow dynamically from the size at which they were created.

Online Redo Logs

The online redo logs are the two or more redo log files that are always in use while
the Oracle instance is up and running. Changes you make are recorded to each of
the redo logs in turn. When one is full, the other is written to; when that becomes
full, the first is overwritten, and the cycle continues.

file:///D|/JigneshDhol/Oracle/0803.%20Control%20Files,%20Redo%20Logs%20files.htm (4 of 5) [6/26/02 12:18:32 PM]

0803. Control Files, Redo Logs files

Offline/Archived Redo Logs

The offline or archived redo logs are exact copies of the online redo logs that have
been filled; it is optional whether you ask Oracle to create these. Oracle only
creates them when the database is running in ARCHIVELOG mode. If the database
is running in ARCHIVELOG mode, the ARCH background process wakes up and
copies the online redo log to the offline destination (typically another disk drive)
once it becomes full. While this copying is in progress, Oracle uses the other online
redo log. If you have a complete set of offline redo logs since the database was
last backed up, you have a complete record of changes that have been made. You
could then use this record to reapply the changes to the backup copy of the
database files if one or more online database files are lost.

Other Supporting Files

When you start an Oracle instance (in other words, when the Oracle background
processes are initiated and the memory structures allocated), the instance
parameter file determines the sizes and modes of the database. This parameter
file is known as the INIT.ORA file (the actual name of the file has the Oracle
instance identifier appended to the filename). This is an ordinary text file
containing parameters for which you can override the default settings. The DBA is
responsible for creating and modifying the contents of this parameter file. On
some Oracle platforms, a SGAPAD file is also created, which contains the starting
memory address of the Oracle SGA.

file:///D|/JigneshDhol/Oracle/0803.%20Control%20Files,%20Redo%20Logs%20files.htm (5 of 5) [6/26/02 12:18:32 PM]

0809. Processes

Top:3 Processes

We have defined a database as being "a bunch of programs that
manipulate datafiles." it's now time to discuss the programs; we prefer
to call them processes since every time a program starts against the
database, it communicate with oracle via a process. Later in this
chapter we talk about support processes required to run the oracle
database. There are two types of oracle processes you should know
about: user and server.

User (client) processes:

User processes work on your behalf, requesting information from the
server processes. Example of user processes are oracle forms. These
are common tools any user of the data within the database uses to
communicate with the database.

SERVER processes:

Server processes take requests from user processes and communicate
with the database. Through this communication, user processes work
with the data in the database.

A good way to think of the client/server process is to imagine yourself
in a restaurant. You, the customer, communicate to the waiter who
take your order. That person then communicates the request to the
kitchen. The kitchen staff's job is to prepare the food, let the waiter
know when it is ready, and stock inventory. The waiter then delivers
the meal back to you. In this analogy, the waiter represents the client
process, and the kitchen staff represents the server processes.

file:///D|/JigneshDhol/Oracle/0809.%20Processes.htm (1 of 7) [6/26/02 12:18:34 PM]

0809. Processes

DATABASE SUPPORT PROCESSES

As we started before, server processes take requests from the user
(client) preocesses; they communicate with the database on behalf of
user processes. Let's take a look at a special set of server processes
that help the database operate.

Database Writer (DBWR):

The database writter is mandatory process that writes changed data
blocks back to the database files. It is one of the only two processes
that are allowed to write to the datafiles that make up your oracle
database. On certain operating system, oracle allows you to have
multiple database writers. This is done for performance reasons.

Checkpoint (CKPT):

Checkpoint is an optional process. When users are working with an
oracle database, they make requests to look at data. That data is read
from the database files and put into an area of memory where users
can look at it. Some of these users eventually make changes to the
data that must be recorded back onto the original datafiles. Earlier in
the chapter, we talked about redo logs and how they record all
transactions. When the redo logs switch, a checkpoint occurs. When
this switch happens, oracle goes into memory and writes any dirty
data blocks information back to disk. In addition, it notifies the control
file of the redo log switch. These tasks are normally performed by the
log writer (lgwr) discussed in the next section. For performance
reasons, the DBA can make changes to the database to enable the
checkpoint process. This process's sole job is to take the checkpoint
responsibility away from the log writer.

Log Writer (LGWR):

file:///D|/JigneshDhol/Oracle/0809.%20Processes.htm (2 of 7) [6/26/02 12:18:34 PM]

0809. Processes

The log writer is a mandatory process that writes redo entries to the
redo logs. Remember, the redo logs are a copy of every transaction
that occurs in the database. This is done so that oracle is able to
recover from various types of failure. In addition, since a copy every
transaction is written in the redo log, Oracle does not have to spend
its resources constantly writing data changes back to the datafiles
immediately. This results in improved performance. The log writer is
the only process that writes to the redo logs. It is also the only
process in an oracle database that reads the redo logs.

System Monitor (SMON):

System monitor is a mandatory process that performs any recovery
that is needed at startup. In the parallel server mode it can also
perform recovery for a failed database on another computer.
Remember, the two databases share the same datafiles.

Process Monitor (PMON):

Process monitor is a mandatory process that performs recovery for a
failed user of the database. It assumes the identity of the failed user,
releasing all the database resources that user was holding, and it rolls
back the aborted transaction.

Archiver (ARCH):

Archiver is an optional process. As we discussed earlier in the "Redo
logs" section, the redo logs are written to in a sequential manner.
When a log fills up, there is a log switch to the next available redo log.
When you are running the database in ARCHIVELOG mode, the

file:///D|/JigneshDhol/Oracle/0809.%20Processes.htm (3 of 7) [6/26/02 12:18:34 PM]

0809. Processes

database goes out and makes a copy of the redo log. This is done so
that when the database switches back to this redo log, there is a copy
of the contents of this file for recovery purpose. This is the job of the
Archiver process. Similar to a copy machine, it makes a copy of the
file.

Lock (LCKn):

Lock is an optional process. When you are running the oracle database
in the parallel server mode, you will see multiple lck processes. In
parallel server mode these locks help the database communicate.

Recoverer (RECO):

You only see this optional process when the database is running the
oracle-distributed option. The distributed transaction is one where two
or more locations of the data must be kept in synch. For example, you
might have one copy of data in Boston and another copy of the data in
Mexico City. Let's say that while updating the data, the phone line to
Mexico goes down due to a severe rainstorm, and a mudslide washes
the phone line away. It is the job of the reco process to resolve
transaction that may have completed in Boston but not in Mexico City.
These transaction are referred to as in-doubt until they are resolved
by this reco process.

Dispatcher (Dnnn):

Dispatcher are optional background processes, present only when a
multithreaded server configuration is used. At least one dispatcher
process is created for every communication protocol (i.e. TCP/IP, SNA)
in use (D000,&ldots;.,Dnnn). Each dispatcher process is responsible

file:///D|/JigneshDhol/Oracle/0809.%20Processes.htm (4 of 7) [6/26/02 12:18:34 PM]

0809. Processes

for routing requests from connected user processes to available
shared server processes and returning the responses back to the
appropriate user processes.

Memory Structure

Now let us talk about how the client and server processes
communicate to each other and themselves through memory
structures. Just as the name implies, this is an area of memory set
aside where processes can talk to themselves or to other processes.

Oracle uses two types of memory structures: the system global area,
or SGA (think of it as an old - fashioned telephone line or the
conference calling option on your phone) and program global area, or
PGA (think of this as intercom system).

SYSTEM GLOBAL AREA

SGA is a place in memory where the Oracle database stores pertinent
information about itself. If does this in memory, since memory is the
quickest and most efficient way to allow processes to communicate.
This memory structure is then accessible to all the user processes and
server processes. Figure shows this clearly&ldots;

Since the SGA is the mechanism by which the various client and
server processes communicate, it is important that you understand its
various components. The oracle server SGA is broken into the
following key components.

file:///D|/JigneshDhol/Oracle/0809.%20Processes.htm (5 of 7) [6/26/02 12:18:34 PM]

0809. Processes

Data Buffer Cache:

The data buffer cache is where oracle stores the most recently used
blocks of database data. In other words, this is your data cache. When
you put information into database, it is stored in data blocks. The data
buffer cache is an area of memory in which oracles places these data
blocks so that a user process can look at them. Before any user
process can look at a piece of data, the data must first reside in the
data cache. There is a physical limit on the size of the data buffer
cache. Thus, as oracle fills it up, it leaves the hottest blocks in the
cache and moves out the cold blocks. It does this via the least recently
used (LRU) algorithm.

An important point to clarify: if a client process needs information that
is not in the cache, the database goes out to the physical disk drive,
reads the needed data blocks, then places them in the data buffer
cache. It does this so that all other client and server processes get the
benefit of the physical disk read.

Dictionary Cache (Row Cache):

A dictionary cache contains rows out of the data dictionary. The data
dictionary contains all the information oracle needs to manage itself,
such as what users have access to the oracle database, what database
objects they own, and where those objects are located.

Redo log buffer:

Remember that another common name for the online redo logs is the
transaction log. So, before any transaction can be recorded into the
redo log, it must first reside in the redo log buffer. This is an area of

file:///D|/JigneshDhol/Oracle/0809.%20Processes.htm (6 of 7) [6/26/02 12:18:34 PM]

0809. Processes

memory set aside for this event. Then the database periodically
flushes this buffer to the online redo logs.

Shared SQL pool:

Think of the shared SQL pool as your program cache. This is where all
your programs are stored. Programs within an oracle database are
based on a standard language called SQL. This cache contains all the
parsed SQL statements that are ready to run.

To summarize, the SGA is the great communicator. It is the place in
memory where information is placed so that client and server
processes can access it. It is broken up into major areas: the data
cache, the redo log cache, the dictionary cache, and the shared SQL
cache. We call SQL cache the sqlarea; these two terms can be used
synonymously.

PROGRAM GLOBAL AREA

PGA is an area of memory that is used by a single oracle process. The
program global area is not shared; It contains data and control
information for a single process. It contains information such as
process session variables and internal arrays. Like an intercom system
in your home, the various parts of the process can communicate to
each other but not to the outside world.

file:///D|/JigneshDhol/Oracle/0809.%20Processes.htm (7 of 7) [6/26/02 12:18:34 PM]

0805. Tablespace

Top:4 Tablespace

For management, security, and performance reasons, the database is
logically divided into one or more tablespaces that each comprise one
or more database files. A database file is always associated with only
one tablespace.

A tablespace is a logical division of a database comprising one or more
physical database files.

Every Oracle database has a tablespace named SYSTEM that has the
very first file of the database allocated to it. The SYSTEM tablespace is
the default location of all objects when a database is first created. The
simplest database setup is one database file in the SYSTEM tablespace
(simple, but not recommended).

Typically, you create many tablespaces to partition the different parts
of the database. For example, you might have one tablespace for
tables, another to hold indexes, and so on, and each of these
tablespaces would have one or more database files associated to
them.

When you create objects that use storage in the database (such as
tables), you should specify the tablespace location of the object as
part of the CREATE statement for the object. Only system tables
should occupy storage in the SYSTEM tablespace. The system tables
are tables such as tab$, col$, ind$, fet$, and other internal tables.

Objects such as synonyms and views do not take up storage within
the database other than the storage in the data dictionary table for
their definitions, along with the definitions for all other types of
objects.

file:///D|/JigneshDhol/Oracle/0805.%20Tablespace.htm (1 of 6) [6/26/02 12:18:36 PM]

0805. Tablespace

Tablespaces can be added, dropped, taken offline and online, and
associated with additional database files. By adding another file to a
tablespace, you increase the size of the tablespace and therefore the
database itself.

You cannot drop the SYSTEM tablespace; this would destroy the
database because the system tables are there. You also cannot take
the SYSTEM tablespace offline.

The create tablespace command allows one or more files to be
assigned immediately to the tablespace. It also specifies a default
space for any tables created without an explicit storage clause
mentioned in the create table statement. This is the basic format for
the create tablespace command:

CREATE TABLESPACE talbot datafile '/db01/oracle/GBT/talbot.dbf' size
1000k

default storage (initial 1M next 1M minextents 1 maxextents 100
pctincrease 0)

permanent;

Note: The permanent keyword in the create tablespace command tells
oracle that you will be storing permanent objects (such as tables) in
the tablespace. If the tablespace is only used for temporary segments,
then you can specify the temporary keyword instead. The default
value is permanent.

The initial file assigned to this tablespace is included in the command,
as well as its size in the bytes, not blocks. The number of bytes is an
integer and can be followed by a K (to multiply by 1024- about a
thousand) or an M (to be multiply by 1048576- about a million).
Default storage sets up the storage that a table will get if storage is

file:///D|/JigneshDhol/Oracle/0805.%20Tablespace.htm (2 of 6) [6/26/02 12:18:36 PM]

0805. Tablespace

not specified in the create table statement. Here, the initial default
extent is 1M bytes (not blocks) and the next (incremental) extent is
1M bytes.

Minextents allows you to set aside additional extents beyond the first
at the time a table is created. These additional extents will not
necessarily be contiguous (physically adjacent) with the initial extent,
or with each other, but the space will at least be reserved.

Maxextents is the limit of additional extents allowed. You can specify
maxextents unlimited, in which case there is no limit to the number of
extents allowed for the table or index.

pctincrease is a growth factor for extents. When set to a non-zero
value, each incremental extent will be the specified precentage larger
than the one before it. This has the effect of reducing the number of
extents, and noncontiguous space, used by a table that grows large.
However, it causes the space allocated to the table to grow
exponentially. If the data volume in the table grows at a constant rate,
you should set pctincrease to 0.

The default values for storage are operating-system-specific. The
minimum and maximum values for each of these options are available
in the alphabetical reference under create table and "storage". These
options may be changed with the alter tablespace command. The
create table command for the LEDGER table looks like this:

CREATE TABLE Ledger (ActionDate Date, Action varchar2(8), Item
varchar2(30), Quantity Number, QuantityType varchar2(10), Rate
Number, Amount number(9,2), Person varchar(25)) tablespace
TALBOT;

In this form, the Ledger table will inherit the default storage
definitions of the TALBOT tablespace. To override these default, the
storage clause is used in the create table command:

CREATE TABLE Ledger (ActionDate Date, Action varchar2(8), Item

file:///D|/JigneshDhol/Oracle/0805.%20Tablespace.htm (3 of 6) [6/26/02 12:18:36 PM]

0805. Tablespace

varchar2(30), Quantity Number, QuantityType varchar2(10), Rate
Number, Amount number(9,2), Person varchar(25))

tablespace TALBOT

storage (intial 512K next 512K minextents 2 maxextents 50
pctincrease 0) ;

If you use temporary tables, you can create a tablespace dedicated to
their storage needs. use the create temporary tablespace command to
support this special type of table.

Example:

To create new tablespace named Trans_tab

CREATE TABLESPACE Trans_tab

DATAFILE 'data1' SIZE 50M

DEFAULT STORAGE (

INITIAL 50K

NEXT 50K

MINEXTENTS 2

MAXEXTENTS 50

PCTINCREASE 0)

OFFLINE;

file:///D|/JigneshDhol/Oracle/0805.%20Tablespace.htm (4 of 6) [6/26/02 12:18:36 PM]

0805. Tablespace

To add datafile of tablespace named Trans_tab

ALTER TABLESPACE Trans_tab ADD DATAFILE 'data2' SIZE 1M;

To Enlarge Datafile size

ALTER DATABASE DATAFILE 'data2' RESIZE 100M;

TYPES OF TABLESPACE:

SYSTEM tablespace:

The system tablespace is a required part of every Oracle database.
This is where oracle stores all the information it needs to manage
itself, such as names of tablespaces and what datafiles each
tablespace contains.

TEMP tablespace:

The temp tablespace is where oracle stores all its temporary tables.
This is the database's whiteboard or scratch paper. Just as you
sometimes need a place to jot down some numbers so you can add
them up, Oracle also has a need for some periodic disk space. In the
case of a very active database, you might have more than one temp
tablespace; for example, TEMP01, TEMP02 and TEMP03.

TOOLS tablespace:

The tools tablespace is where you store the database objects needed
to support tools that you use with your database, such as oracle
reports, with its own set of tables. Like any oracle application, oracle
reports needs to store tables in the database. Most DBAs place the

file:///D|/JigneshDhol/Oracle/0805.%20Tablespace.htm (5 of 6) [6/26/02 12:18:36 PM]

0805. Tablespace

tables needed to support tools in this tablespace.

USERS tablespace:

The users tablespace holds users' personal information. For example,
when you are learning how to use oracle, you might want to create
some database object. This is where the DBA will typically let you
place your database object. Another example is you might keep
different database for your individual clients.

DATA and INDEX tablespace:

In some installation, you see tablespace names such as DATA01,
DATA02 ... which represent different places to hold data. In other
sites, you might see DATA-1, INDEX01 etc. Think of a database index
as the index in a book: to find a particular reference in the book, you
look in the index for its location, rather than reading the whole book
from page one. Indexes are a special database object that enable
oracle to quickly find data stored within a table.

In oracle, looking at every row in a database is called a full table scan.
Using an index search is called an index scan. Many other shops name
their tablespace after the application data they hold. For example, in a
hospital, the tablespace names might be lab_system or research.

ROLLBACK tablespace:

All oracle database need a location to store undo information. This
tablespace, which holds your rollback segments, is typically called
rollback or rbs. One of the primary reasons you use a database
management system such as oracle is for its ability to recover from
incomplete or aborted transaction as part of the core functionality.

file:///D|/JigneshDhol/Oracle/0805.%20Tablespace.htm (6 of 6) [6/26/02 12:18:36 PM]

0806. Oracle Blocks

Top:5 Oracle Blocks

Oracle "formats" the database files into a number of Oracle blocks
when they're first created—making it easier for the RDBMS software to
manage the files and easier to read data into the memory areas.

These blocks are usually 1 KB (the default for PC-DOS systems), 2 KB
(the default for most UNIX machines and VAX VMS), 4 KB (the default
for IBM mainframes), or larger. For a 50MB database file, there would
be 25,600 Oracle blocks assuming a block size of 2 KB (50 MB/2 KB).

The block size should be a multiple of the operating system block size.
Regardless of the block size, not all of the block is available for holding
data; Oracle takes up some space to manage the contents of the
block. This block header has a minimum size, but it can grow.

These Oracle blocks are the smallest unit of storage. Increasing the
Oracle block size can improve performance, but you should do this
only when the database is first created.

When you first create a database, it uses some of the blocks within
the first file, and the rest of the blocks are free. In the data dictionary,
Oracle maintains a list of the free blocks for each data file in each
tablespace.

Each Oracle block is numbered sequentially for each database file
starting at 1. Two blocks can have the same block address if they are
in different database files.

Do not modify the Oracle block size once you've created the database.

ROWID

file:///D|/JigneshDhol/Oracle/0806.%20Oracle%20Blocks.htm (1 of 3) [6/26/02 12:18:38 PM]

0806. Oracle Blocks

The ROWID is a unique database-wide physical address for every row
on every table. Once assigned (when the row is first inserted into the
database), it never changes until the row is deleted or the table is
dropped.

The ROWID consists of the following three components, the
combination of which uniquely identifies the physical storage location
of the row.

• Oracle database file number, which contains the block with the
row

• Oracle block address, which contains the row

• The row within the block (because each block can hold many
rows)

The ROWID is used internally in indexes as a quick means of retrieving
rows with a particular key value. Application developers also use it in
SQL statements as a quick way to access a row once they know the
ROWID.

Free Space and Automatic Compaction

When a database file is first created or added to a tablespace, all the
blocks within that file are empty blocks that have never been used. As
time goes by, the blocks within a database file are used by a segment
(table), or they remain free blocks. Oracle tracks the file's free blocks
in a list in the data dictionary. As you create and drop tables, the free
space becomes fragmented, with free space in different parts of the
database file. When the free blocks are scattered in this way, Oracle
has no way to automatically bring the free storage together.

When two fragments of free space are physically next to each other in
the database file, the two smaller fragments can be compacted
together into one larger fragment, which is recorded in the free space

file:///D|/JigneshDhol/Oracle/0806.%20Oracle%20Blocks.htm (2 of 3) [6/26/02 12:18:38 PM]

0806. Oracle Blocks

list. This compacting reduces the overhead when Oracle actually needs
the free space (when a table wants to allocate another extent of a
certain size, for example). The SMON background process performs
this automatic compaction.

file:///D|/JigneshDhol/Oracle/0806.%20Oracle%20Blocks.htm (3 of 3) [6/26/02 12:18:38 PM]

0808. Import, Export and SQL * Loader

Top:6 Import, Export

Export and import empower the DBA and application developers to
make dependable and quick copies of Oracle data. Export (invoked
using the command exp80) makes a copy of data and data structures
in an operating system file. Import (invoked using the command
imp80) reads files created by export and places data and data
structures in Oracle database files. These two handy utilities are used
primarily for the following reasons:

• As part of backup and recovery procedures

• For moving data between different instances of Oracle. You
may export data from your production database and use import to
move all or part of the data in the export file into your
development database.

• To move all or part of a user's data from one tablespace to
another. Suppose userA has data residing in two tablespaces,
tablespaceA and tablespaceB. You could move all of the data out
of tablespaceB and place it in tablespaceA using export and
import. There must be enough space in tablespaceA to
accommodate the data being moved from tablespaceB. Import
itself will not always add additional disk space to tablespaceA if it
is not already there.

• When the need arises to rebuild an existing database, export
and import are the only way to preserve the current database
data before it is recreated.

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (1 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

Similarities between Export and Import

Export and import behave in the same way, and learning one of the
two will put you more than 80 percent of the way to mastering both
products. These two tools are similar in the following ways:

• Both can be run interactively or can read run-time parameters
from a file.

• Both accept keywords (parameters started with
keyword_value=) or positional parameters (those that mean
something based on their order on the command line).

• Both work with oracle read only copies of data and data
structures.

• Both are used to move data among different oracle accounts
and hardware platforms.

Difference between Export and Import

Even though export and import are similar, there are some
differences. Some parameters are used only with export, others only
with import. For example, the fromuser and touser parameters are
only used with import. Likewise, the compress parameter is only
coded when using export.

• Import may report on a wide assortment of oracle errors,
since it is creating and loading data into oracle database file.

• Export is sensitive to the amount of free space on a disk drive
to which the export file is being written.

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (2 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

Even though these differences exist, export and import methods and
modes of operation are the same.

Methods Of Operation

The methods we are about to discuss apply to export and import.
Learning and experimenting with different methods is part of your job
as a DBA. In this section, we will discuss:

• Invoking interactive export with no parameters

• Invoking interactive import with no parameters

When running export and import interactively, Oracle presents you
with a list of questions. With export, the answers you give to those
questions affect what is written to the export file. With import, these
answers affect what data is retrieved from the export file. When
export and import are parameter driven, you instruct oracle what you
want written to or read from the export file based on values supplied
with these parameters.

Interactive Export: Invoking with No Parameters

The next listing shows an example of the dialog between export and
the user when export is invoked without any parameters.

D:\ORANT\BIN> exp80

Export: Release 8.0.3.0.1 - Production on Tue Nov 19 11:32:25 1998

Copyright © Oracle Corporation 1979, 1994. All rights reserved.

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (3 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

Username: scott/tiger

Connected to: oracle8 server release 8.0.3.0.1 - Production release

With the distributed, heterogeneous, replication, objects and parallel
query options

PL/SQL release 3.0.3.1 - Production

Enter array fetch buffer size: 4096 > 102400

Export file: EXPDAT.DMP >

(2) U (sers), or (3) T(ables): 2(U) > 3

Export table data (yes/no): yes > Y

Compress extents (yes/no): yes > Y

Export done in WE8ISO8859P1 character set and WE8ISO8859P1 N
CHAR character set

About to export specified tables via conventional path &ldots;

Table (T) or Partition (T:P) to be exported: (return to quit) > emp

..exporting table emp 14 rows exported

Table to be exported: (return to quit) >

Export terminated successfully without warnings.

You are asked to supply the information in the meaning and response
column of table 1 before oracle commences the export.

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (4 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

Prompt received from
oracle

Meaning and response

Username The user name and password of the
person running export.

Enter array fetch buffer
size

The size of the chunk of memory to use as
a work area enters values between 10240
and 10M.

Export file The name of the export file. Default to
expdat.dmp but can be changed.

(2) U(sers) or (3) T(ables) Oracle wants to know which method you
wish to run. You will be asked for names
of one or more users if you choose 2 or
the names of one or more of your own
tables if you answer 3.

Export table data

(yes/no)

Instructions on what to write to the export
file. Oracle always writes SQL statements
necessary to create exported objects to
the export file. Answering yes to this
prompt tells oracle to export the data in
the objects as well.

Compress extents

(yes/no)

Oracle wants to know if the create table
statements written to the export file
should include an initial space request
capable of holding all the existing table
data.

Table(T) or Partition(T:P)
to be exported

The name of the table or partition name of
a partitioned table to be exported.

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (5 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

Table:1 Dialog when exp is invoked with no parameters

Interactive Import: Invoking with No Parameters

To give you a flavor of Oracle7 and Oracle8 import, the next listing
illustrates an Oracle7 dialog and figure 2 shows invoking import with
Oracle8 without any parameters.

D:\ORANT\BIN> imp80

Export: Release 7.1.4.0.0 - Production on Tue Nov 19 11:32:25 1998

Copyright © Oracle Corporation 1979, 1994. All rights reserved.

Username: scott/tiger

Connected to: oracle7 server release 7.1.4.0.0 - Production release

With the distributed, heterogeneous, replication, objects and parallel
query options

PL/SQL release 3.0.3.1 - Production

Import file: EXPDAT.DMP >

Enter insert buffer size (minimum is 4096) 30720 >

Export file created by EXPORT:V07.01.04

List contents of import file only (yes/no): no>

Ignore create error due to object existence (yes/no): yes> Yes

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (6 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

Import grants (yes/no): yes> Yes

Import table data (yes/no): yes> Yes

Import entire export file (yes/no): yes> Yes

.importing scott's objects into scott

..importing table "emp" 14 rows imported

Import terminated successfully without warnings.

You are asked to supply the information in the meaning and response
column of table 2 before oracle commences the import. If you answer
no to the ignore create errors due to object existence prompt, then
Oracle will not bring the table data in for tables that exist. Nearly all
the time, you will answer yes to this prompt.

Prompt received from
oracle

Meaning and response

Username The user name and password of the
person running import.

Import file The name of the file you want import to
read. Default to expdat.dmp but can be
changed.

Enter insert buffer size

(minimum is 4096)

The size of the chunk of memory to use
as a work area enters values between
10240 and 10M.

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (7 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

Export file The name of the export file. Default to
expdat.dmp but can be changed.

List contents of import file
only

(yes/no)

Oracle will list the SQL statements
written to the import file if you answer
yes. If you answer no, import will bring
the data and data definitions into the
database.

Ignore create error due to
object existence

(yes/no)

Oracle wants to know what it should do
when it encounters an object in the
import file that already exists. If you
answer yes, oracle ignores the fact that
an object exists and brings in its data
anyway. Answering no causes oracle to
report an error and then move on to the
next object when it encounters an
object that already exists.

Import grants

(yes/no)

Oracle wants to know whether to run
the grant statements written to the
import file after an object is imported.

Import table data

(yes/no)

Oracle wants to know if it should bring
in the table data (yes) or just run the
SQL statements to create objects (no).

Import entire export file

(yes/no)

Oracle wants to know if the complete
file or only specified portions should be
imported. If you answer yes, the import
starts at once. If you answer no, Oracle
will ask questions about what you wish
to import.

Table:2 Dialog when imp is invoked with no parameters

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (8 of 9) [6/26/02 12:18:41 PM]

0808. Import, Export and SQL * Loader

file:///D|/JigneshDhol/Oracle/0808.%20Import,%20Export%20and%20SQL%20Loader.htm (9 of 9) [6/26/02 12:18:41 PM]

0810. SQL * Loader

Top:7 SQL * Loader

Oracle Loader reads files and places the data in the Oracle database
based on the instructions it receives from a control file. The control file
tells Oracle loader where to place data, and it describes the kinds of
data being loaded into Oracle. It can filter records (i.e. not load
records that do not conform), load data into multiple tables at the
same time, and generate a unique key or manipulate data before
placing it in an Oracle table.

Moving data out of your existing system into Oracle is a two-step
process. First, you create a text file copy of your existing data using
your current software, then you load the data from the text file into
Oracle using Oracle Loader.

Sometimes Oracle Loader is called SQL *Loader; we use the two
product names synonymously. Over the past few years, oracle has
taken the "SQL*" prefix off most of its products and replaced it with
the company name. Since you may use oracle loader to move data
into one or more tables, throughout this chapter we will also use the
words "table" and "tables" interchangeably.

RUNNING ORACLE LOADER - ORACLE8

By the end of this section, you will know how to invoke Oracle Loader
and the most common parameters supplied when oracle loader is
invoked.

To invoke Oracle Loader, enter the command sqlldr80. If you do not

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (1 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

include any parameter, you are given online help.

There is a long list of parameters; however, most sessions will be
started with commands similar to sqlldr80 username control=cfile.ctl.
In the following section, we will discuss userid and control plus a few
more keywords from the previous listing which, if used, influence how
oracle loader runs. Afterwards, we will present a few examples and
show the command lines to accomplish the desired results. You can
provide keywords and values on the command line, in any order.

USERID

Userid must be the username and password for an account that owns
the table being loaded or that has access to someone else's table for
loading. If you omit the password, Oracle will prompt you for it as the
session begins. Along with the control parameter, this is one of the
two required inputs to oracle loader.

Normally, rather than include the keyword userid on the command
line, you include an oracle user name and let oracle loader prompt for
the password. Thus the command sqlldr80 username is the same as
sqlldr80 userid=username; in both cases, you are prompted for the
control filename, then the account password.

CONTROL

Control names a file that maps the format of the input datafile to the
oracle table. The format of the control file discussed in the "Oracle
Loader Control File" section later in this chapter. If you do not include
the control keyword when calling oracle loader, you are prompted, as
in the following;

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (2 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

Sqlload scott

Control = cfile

Password:

Sql*loader: Release 8.0.3.1 - Production on Sat Mar 11 13:21:54
2000

Copyright © oracle corporation 1994, 1996. All rights reserved.

PARALLEL

Running Oracle loader in parallel can speed up the time oracle loader
takes to complete and, in situations where there are large amounts of
input data, shrink runtimes dramatically. Invoking Oracle Loader with
parallel=true runs multiple sessions, loading data simultaneously into
the same table. When using this option, the target tables must have
no indexes.

The parallel sessions data is merged by oracle in a number of
temporary tables, then inserted as a single unit of data. This
parameter defaults to false; a parallel session is started by coding
parallel=true as loader is invoked.

DIRECT

When using a direct load, data is assembled in memory in the same
format as oracle data block, and the data block is copied directly into
data blocks in the target datafile. This parameter defaults to false; to
run a direct load, code direct=true. The direct load runs faster than
conventional loads, especially when accompanied by parallel=true. If

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (3 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

you choose direct=true for an oracle loader session, and for some
reason the load aborts, any indexes on the target table will be left in
direct load state and will have to be dropped and recreated.

SKIP

This parameter defaults to 0. If you code a positive integer value,
Oracle Loader skips over the specified number of rows and starts
loading with the record immediately after the specified number. This
may prove useful in large loads. For example, you might browse the
log file for a load that was supposed to move 1,000,000 rows into
oracle and find that the table has run out of space and received only
275,000 rows. Rather than redo the load from scratch, for the next
session you could include the parameter skip=275000.

LOAD

This parameter defaults to all. If you code a positive integer value,
Oracle will load that exact number of rows, then quit. You may want to
use this if you want a subset of a very large amount of data moved
into a development or test database for a system on its way to
production.

LOG and BAD

These two parameters are not normally mentioned on the command
line. They inherit their filenames from the name of the control file used
for the session. The command sqlldr80 control=cfile.ctl would log the
session to cfile.log and write records that contain bad data into the file
cfile.bad.

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (4 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

DISCARD

Sometimes you place one or more conditions on the input data; in this
case, records that do not pass the condition(s) are discarded. If you
include this parameter followed by a filename, these discarded records
are written to the specified file.

Let us put it all together with examples,

Example #1

Pretend you want to invoke an Oracle Loader session using the
parameters and parameter values from the following table. Say it's a
large load, and you want to run multiple load sessions at the same
time.

Component Value

UserName scott

Password tiger

Control File cfile.ctl

Load All records

Parallel yes

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (5 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

Direct No

The command to accomplish the load as described in the previous
table would be sqlldr80 scott/tiger control=cfile paralled=true. Note
that there is no filename extension on the file cfile, so Oracle loader
assumes the control filename is cfile.ctl. By excluding the parameters
load and direct, they assume their defaults.

Example #2

This time we want to load an additional 1,000 records into a table.
Records number 1 to 499 were loaded in a previous session. To speed
things up, we wish to use the direct load path with parallel sessions.

Component Value

UserName scott

Password tiger

Control File cfile.ctl

Skip 500

Direct Yes

Load 1000

Parallel yes

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (6 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

The command to accomplish the load described in the previous table
would be sqlldr80 scott/tiger control=cfile.crl parallel=true direct=true
skip=500 load=1000. Note the filename extension on the file cfile
since it is not the oracle loader .ctl default.

Example #3

For this example, suppose you wanted to load records number 501 to
520 using the direct path load mechanism. This also illustrates how
oracle loader prompts for missing components of a parameter (i.e.
oracle loader expects a user name and password after the userid
parameter, but we only supply the user name).

Component Value

UserName scott

Control File cfile.ctl

Skip 500

Direct No

Load 20

Notice in this example that we will not supply a password or the name
of the control file when invoking Oracle Loader. The command would
be sqlldr80 scott direct=true load=20 skip=500. Oracle will prompt for
the missing parameters, as shown in the following listing:

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (7 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

Control=cfile

Password:

SQL* Loader: Release 8.0.3.1 - Production on Thu Dec 29 18:08:43
2001

Copyright © Oracle corporation 1994, 1996. All rights reserved.

Notice that we enter cfile for the control filename, and oracle loader
assumes its extension will be .ctl.

ORACLE LOADER CONTROL FILE

We will now move on to building the control file. The control file sets
up the environment for a loader session: it tells loader where to find
the input datafile, which Oracle table the data should be loaded into,
what, if any, restriction to place on which data is loaded, and how to
match the input data to the columns in the target table. When you're
just getting started with Oracle Loader, the control file is the area that
can cause the most problems. If the control file has errors, the Oracle
Loader session stops immediately. Let's look at the four main parts of
an Oracle Loader Control file, as shown below:

-- Notice comment operator

load data -- part 1

infile 'MyData.dat' -- part 2

into table Stud -- part 3

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (8 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

(First_name position(01:14) char, -- part 4

 surname position(15:28) char,

 clssn position(29:36) char,

 d_date position(37:42) date 'YYMMDD')

We will now discuss the four parts shown in above example, focusing
on the format and the instructions each part gives to oracle loader.

Part:1 Load Data

The keywords load data start most oracle loader control files,
regardless of the contents of the rest of the control file. They serve as
a starting point for the rest of the control file, and nothing else. Think
of these two keywords as the title page of a book.

Part:2 Infile

This line names the input file. Notice in above example how the input
filename is enclosed in single quotes. Through the quotes are not
mandatory here, they are required in some situations. For example, in
UNIX, let's say the input file description line is infile
$HOME/Mydata.dat. The dollor sign causes the errors to be raised.

Part:3 Into Table

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (9 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

This line instructs Oracle Loader where to place the data as it is loaded
into Oracle. There are four modifiers to the into table portion of the
control file:

1. Insert is the default and expects the table to be empty when the
load begins.

2. Append adds new rows to the table's existing contents.

3. Replace deletes the rows in the table and loads the new rows.

4. Truncate behaves the same as replace.

Normally, you will not code the insert qualifier with oracle loader,
since it is the default. The most common error you may encounter is
when you try to load data into a table that contains rows, and you
have not included append, replace, or truncate on the into table line.
If this happens, Oracle Loader returns the following error:

SQL* Loader: Release 8.0.3.1 - Production on Thu Dec 19 22:17:50
1999

Copyright © Oracle corporation 1994, 1996. All rights reserved.

SQL * Loader - 601: For INSERT option, table must be empty. Error
on MyData.

Part:4 Column and Field Specifications

This section of the control file matches characters in the input file to
the database columns of the target table. There are four parts to each

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (10 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

line in this specification: the column name in the target table, the
keyword position, the start and end character positions, and the data
type of those characters in the input file.

Loading date fields into oracle deserves special mention. Oracle dates
default to the format DD-MON-YY. If the data in the input file is not in
this format, you must tell Oracle how the dates appear in that file.

ORACLE LOADER OUTPUTS

As oracle loader runs, it writes a number of files that are used to
figure out how successful the load was. By default, Oracle Loader
writes a log file and based on the success or failure of the load and the
parameters used when it is invoked, may write a bad and a discard
file. Unless specified otherwise, these two extra files have the same
name as the control file with the extensions .bad and .dsc
respectively.

Log File - shows complete statistic of loader, if incomplete load then
gives rejected row explanation, and also load statistics like&ldots;

Table Authors:

2903 Rows successfully loaded.

3 Rows not loaded due to data errors.

0 Rows not loaded because all WHEN clauses were failed.

0 Rows not loaded because all fields were null.

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (11 of 12) [6/26/02 12:18:43 PM]

0810. SQL * Loader

You should verify that all the records in the input file were read by
summing the numbers in the load statistics section of the log file. The
result should equal the number of lines in the input file.

Bad File - This file is only written when one or more rows from the
input file are rejected.

Discard File - The discard file is not created unless the discard=
parameter is used when invoking oracle loader.

file:///D|/JigneshDhol/Oracle/0810.%20SQL%20Loader.htm (12 of 12) [6/26/02 12:18:43 PM]

0807. Instance Architecture

Top:8 Instance Architecture

INTRODUCTION

When someone refers to the Oracle database, they are most likely
referring to the entire Oracle database management system(DBMS).
But as an Oracle professionals, you must recognize the difference
between the database and the Instance - a distinction often confusing
to non-Oracle administrators. In this chapter you explore the structure
and configuration of the Oracle instance, and continue your
exploration of the internals of the oracle Relational Database
Management System (RDBMS) in the next chapter by looking in-depth
at the oracle database. (To avoid confusion, the term RDBMS is used
to describe the entire data Management server consisting of the
Oracle database and instance).The creation of The instance is
automatic and behind the scenes. The details of how and when this
happens are also discussed.

DEFINING THE INSTANCE

To provide the degree of service, flexibility and performance that
Oracle clients expect, much of the work done by the database is
handled by a complex set of memory structures and operating system
processes called the instance. Every Oracle database has an instance
associated with it, and unless oracle Parallel Server option is
implemented, a database is mounted by only one instance. The
organization of the instance allows the RDBMS to service many types
of transactions from multiple users simultaneously, while at the same
time providing first class performance, fault tolerance, data integrity

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (1 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

and security.

The instance structure is loosely styled after UNIX's implementation of
the multitasking operating system. Discrete processes perform
specialized tasks within the RDBMS that work together to accomplish
the goals of the instance. Each process has a separate memory block
that it uses to store private variables, address stacks and other
runtime information. The processes use a common shared memory
area in which to do their work-a section of memory that can be written
to and read from at the same time by many different programs and
processes. This memory block is called the system global area (SGA).

NOTE

Because the SGA resides in a memory segment, it is also often
referred to as the Shared Global Area.

You might think of the background processes as the hands of the
database, handling its components directly; and you might think of
the SGA as the brain, indirectly coordinating the hands in their
information and storage retrieval as necessary. The SGA takes part in
all information and server processing that occurs in the database.

NOTE

Single Oracle configuration, such as Personal Oracle Lite; do not use
multiple process to perform database functions. Instead, all database
functions are contained within one Oracle process. For this reason,
single user it also known as single process Oracle.

CREATING THE INSTANCE

Opening an Oracle database involves three steps:

1. Creating the Oracle instance (nomount stage).

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (2 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

2. Mounting the database by the instance (mount stage).

3. Opening the database (open stage).

The Oracle instance is created during the nomount stage of database
startup. When the database passes through the nomount phase, the
init.ora file is read, the background processes are started, and the
SGA is initialized. The init.ora file defines the configuration of the
instance, including such things as the size of the memory structures
and the number and type of background processes started. The
instance name is set according to the value of the ORACLE_SID
environment variable and does not have to be the same as the
database name being opened (but for convenience,it usually is). The
next stage the database passes through is called the mount stage. The
value of the control file parameter of the init.ora file determines the
database the instance mounts. In the mount stage, the control file is
read and accessible, and queries and modifications to the data stored
within the control file can be performed. The final stage of the
database is when it is opened. In this stage the database files whose
names are stored in the control file are locked for exclusive use by the
instance, and the database is made accessible to normal users. Open
is the normal operating state of the database. Untill a database is
open, only the DBA is capable of accessing the database, and only
through the Server Manager utilities.

In order to change the operating state of the database, you must be
connected to the database as internal, or with SYSDBA privileges.
When you go from a shutdown state to an open state you can step
through each operating state explicitly, but when you shut down the
database you can only go from the current operating state to a
complete shutdown. For example, you can issue the STARTUP
NOMOUNT command instance the Server Manager utility. This will put
your database into the nomount stage. Next, you can issue ALTER
DATABASE MOUNT or ALTER DATABASE OPEN to step through the
operating stages. At any operating state, if you issue a SHOUTDOWN
command you will completely shutdown the database. For example,

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (3 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

you can't go from an open state to a mount state.

An instance that does not have a database mounted is referrede to as
idle-it uses memory but does not do any work. An instance can only
attach to one database, and unless Parallel Server is being used, a
database only has one instance assigned to it. The instance is the
brain of the data management system-it does all the work while the
database stores all the data.

THE COMPONENTS OF THE ORACLE INSTANCE

Figure - 1 is a visual representation of the Oracle instance.
Explanations of the different components follow.

FIGURE-1 The Oracle Instance is a complex interaction of memory and

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (4 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

back ground processes.

Many parameters and techniques exist to help you configure the
instance to best support your applications and requirements.
Configuring the instance objects for peak performance is, in most
cases, a trial and error procedure-you can start with likely parameters
values, but only time and monitoring give you the best possible mix of
all settings and variables.

Configuring instance parameters involves changing the necessary
init.ora parameter and bouncing (stopping and starting) the database.
There are numerous init.ora parameters, and many of these are
undocumented. Although you should not change or add unfamiliar
initialization parameter, you can reference the internal x$ksppi table
to view all the possible initialization parameters for a database. The
ksppinm and ksppdesc columns give you the parameter name and a
brief description of the parameter, respectively.

NOTE

Manipulating initialization file parameters without a clear
understanding of the possible consequences is dangeraous! There are
many parameters that exist for pure diagnostic reasons, which can
leave your database instance an unsynchronized or corrupted state.
Undocumented parameters are named with a leading underscore. Do
not add or change keys or values instance the init.ora file unless you
are confident instance what you are doing!

For the most part, instance configuration is primarily concerned with
the objects instance the SGA, and you find most of your database
configuration and tuning time spent with these structures. However,
there are issues and configuration options with the background
process that also need to be addressed, and you explore those parts
of the instance as well.

THE SYSTEM GLOBLE AREA(SGA)

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (5 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

The SGA is the primary component of the instance. It holds all the
memory structures necessary for data manipulation, SQL statement
parsing, and redo caching. The SGA is shared, which means that
multiple processes can access and modify the data contained within it
at the same time. All database operations use structures contained
instance the SGA at one point or another. As mentioned instance the
previous section, the SGA is when the instance is created, during the
nomount stage of the database, and is deallocated when the instance
is shut down.

The SGA consists of the following:

• Shared pool

• Database buffer cache

• Redo log buffer

• Multithreaded server(MTS) structures

These are explained instance the following sections.

THE SHARED POOL

The shared pool (see figure 2) contains the library cache, the
dictionary cache and server control structures (such as database
character set). The library cache stores the text, parsed format, and
execution plan of SQL statements that have been submitted to the
RDBMS, as well as the headers of PL/SQL packages and procedures
that have been executed. The dictionary cache stores data dictionary
rows that have been used to parse SQL statements.

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (6 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

 FIGURE-2 The shared pool caches information used when parsing
and executing SQL statements.

The Oracle serever uses the library cache to improve the performance
of SQL statements. When a SQL statement is submitted, the server
first checks the library cache to see if an identical statement has
already been submitted and cached. If it has, Oracle uses the stored
parse tree and execution path for the statement, rather than
rebuilding these structures from scratch. Although this might not
affect the Performance of ad hoc queries, applications using stored
code can gain significant performance improvements by utilizing this
feature.

NOTE

For a SQL statement to use a previously cached version, it must be
identical instance all respects to the cached version, including
punctuation and letter case-upper versus lower. Oracle identifies the
statements by applying a hashing algorithm to the text of the
statement-the hash value generated must be identical for both the
current and cached statements instance order for the cached version
to be used.

The library cache contains both shared and private SQL areas. The
shared SQL area contains the parse tree and execution path for SQL
statements, whereas the private SQL area contains session specific

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (7 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

information, such as bind variables, environment and session
parameters, runtime stacks and buffers, and so on. A private SQL area
is created for each transaction initiated, and it is deallocated after the
cursor corresponding to that private area is closed. The number of
private SQL areas a user session can have open at one time is limited
by the value of the OPEN_CURSORS init.ora parameter. Using these
two structures, The Oracle server can reuse the information common
across all executions of an SQL statement, while session specific
information to the execution can be retrieved from the private SQL
area. It is important to note however, that the session-specific
information contained within the User Global Area (UGA) of a user's
Process Global Area (PGA), including the private SQL areas, is held
instance the SGA only with a Multithreaded Server (MTS) instance.
Otherwise, it is held instance the dedicated server.

NOTE

An application that does not close cursors as they are used continues
to allocate more and more memory for the application, instance part
because of the private SQL areas allocated for each open cursor.

The private SQL area of the library cache is further divided into
persistent and runtime areas. Persistent areas contain information that
is valid and applicable through multiple executions of the SQL
statement, whereas the runtime area contains data that is used only
while the SQL statement is being executed.

The dictionary cache holds data dictionary information used by the
RDBMS engine to parse SQL statements. Information such as segment
information, security and access privileges, and available free storage
space is held instance this area.

The size of shared pool is determined by the init.ora parameter
SHARED_POOL_SIZE. This value is specified in bytes. You must set
this value high enough to ensure that enough space is available to
load and store PL/SQL blocks and SQL statements. The shared pool
becomes fragmented over time from the loading and unloading of data

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (8 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

objects, and errors can occur if there is not enough contiguous free
space in the pool to load an object. You can solve this problem in the
sort term by issuing the SQL command ALTER SYSTEM FLUSH
SHARED_POOL, but if you are regularly encountering shared pool
errors during database operation, you have to increase the shared
pool size.

THE DATABASE BUFFER CACHE

The operation of the database buffer cache is one of the biggest
factors affecting overall database performance. The buffer cache is
made up of memory blocks the same size as the Oracle blocks. All
data manipulated by Oracle is first loaded into the buffer cache before
being used. Any data updates are performed on the blocks in memory.
For this reason, it is obviously very important to size the buffer cache
correctly. Memory access is hundreds of time faster than disk access,
and in at OLTP environment, most of your data operations should take
place completely in memory, using database blocks already loaded
into the cache.

The Oracle RDBMS swaps data out of the buffer cache according to a
Least Recently used (LRU) list. The LRU list keeps track of what data
blocks are accessed and how often. When a block is accessed or
retrieved into the buffer cache, it is placed on the Most Recently Used
(MRU) end of the list. When the Oracle server needs more space in the
buffer cache to read a data block from area disk, it accesses the LRU
list to decide which blocks to swap out. Those blocks at the far end of
the MRU side are removed first. This way, blocks that are frequently
accessed are kept in memory.

NOTE

The exception to the LRU loading rule is that data is accessed through
area full table scan it automatically placed at the bottom of the LRU
list. This behavior can be overridden by specifying the table as CACHE.

Buffer blocks that have been modified are called dirty and are placed

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (9 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

on the dirty list. The dirty list keeps track of all data modifications
made to the cache that have not been flushed to disk. When Oracle
receives a request to change data, the data change is made to the
blocks in the buffer cache and written to the redo log, and then the
block is put on the dirty list. Subsequent access to this data reads the
new value from the changed data in the buffer cache.

The Oracle server used deferred, multiblock writes to lessen the
impact of disk I/O on database performance. This means that an
update to a piece of data does not immediately update the data in the
data files. The RDBMS waits to flush changed data to the data files
until a predetermined number of blocks have been changed, space
needs to be reclaimed from the cache to load new data, a checkpoint
occurs, or DBWR times out. When DBWR is signaled to perform a
buffer cache write, it moves a group of blocks to the data files.

The key to configuring the buffer cache is to ensure that the correct
amount of memory is allocated for optimal caching of data. This
doesn't necessarily mean allocating all possible memory resources to
the buffer cache; however, as in most computer application, there is a
point of diminishing returns with increased memory allocation. There
is a point of diminishing returns in adding memory to obtain an
increasingly better cache hit ratio. The memory you are allocating to
the buffer cache could be better used in other places, such as other
oracle memory structures.

Two initialization parameters determine the size of the buffer cache-
DB_BLOCK_SIZE and DB_BLOCK_BUFFERS. The DB_BLOCK_SIZE
parameter is used during database creation to set the size of the
Oracle block, which is explained in chapter 7, "Exploring the Oracle
Environment." The DB_BLOCK_BUFFERS parameter determines the
number of blocks to allocate to the buffer cache. Multiplying
DB_BLOCK_SIZE * DB_BLOCK_BUFFERS gives you the total amount
of memory (in bytes) of the buffer cache.

THE REDO LOG BUFFER

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (10 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

The redo log buffer is used to store redo information in memory before
it is flushed to the online redo log files. It is a circular buffer, which
means that it fills from top to bottom and than returns to the
beginning of the buffer. As the redo log buffer fills, its contents are
written to the online redo log files.

The redo log buffer is sized by means of the LOG_BUFFER initialization
parameter. The value is specified in bytes and determines how much
space is reserved in memory to cache redo log entries. If this value is
set too low, process contend with each other and the Log Writer
(LGWR) (explained later in this chapter) process reading and writing to
the buffer, possibly causing performance problems. This is, however, a
rarity in all but the most active of databases and can be monitored
using the V$SYSSTAT view. Query V$SYSSTAT$ for the value field
with the field name equal to redo log space requests. This indicates
the time user processes spent waiting for the redo log buffer.

To enforce the sequential nature of the redo log writes, the Oracle
server controls access to the buffer using a latch. A latch a lock by an
Oracle process on a memory structure-similar in concept to a file or
row lock. A process must hold the redo allocation latch to be capable
of writing to the redo log buffer. While one process holds the allocation
latch, no other process can write to the redo log buffer using the
allocation latch.

The Oracle server limits the amount of redo that can be written at one
time using the value of the initialization parameter
LOG_SMALL_ENTRY_MAX_SIZE. This parameter is specified in bytes,
and the default value varies depending on OS and hardware. For
server with multiple CPUs, the Oracle server does not allow redo
entries needing space greater than the value of the
LOG_SMALL_ENTRY_MAX_SIZE parameter to be written using the
redo allocation latch. Instead, processes must hold a redo copy latch.
The number of redo copy latches available is equal to the
LOG_SIMALTANEOUS_COPIES initialization parameter. The default for
LOG_SIMALTANEOUS_COPIES is the number of CPUs in the system.
Using redo copy latches, multiple processes can simultaneously write

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (11 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

to the redo log buffer.

You can monitor the redo allocation and copy latches using the
V$LATCH dynamic performance view. (See Chapter 18, "Tuning
Memory," for more information on tuning the redo latches.)

THE ORACLE BACKGROUND PROCESS

Within any given second, an Oracle database can be processing many
rows of information, handling hundreds of simultaneous user requests,
and performing complex data manipulations, all while providing the
highest level of performance and data integrity. To accomplish these
tasks, the Oracle database divides the grunt work between a number
of programs, each of which operates in large part independently of
one another and has a specific role to play. These programs are
referred to as the Oracle background processes, and are the key to
effectively handling the many operational stresses placed upon the
database. A complete understanding of the background processes and
the tasks they perform helps you analyze performance problems,
pinpoint bottlenecks, and diagnose trouble spots in your database.

NOTE

On NT servers, the background processes are implemented as multiple
threads to the Oracle Service. This allows the Oracle process to use
shared memory address space more efficiently and results in less
context changes by the NT OS to handle Oracle operations.

The Oracle background processes are as follows:

• SMON and PMON

• DBWR

• LGWR

• Dnnn

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (12 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

• ARCH

• CKPT RECO SNPn

• LCKn

• Pnnn

• Snnn

Also of interest are the user and server processes, which handle user
transactions against the database, and the Parallel Query (Pnnn)
processes, which performs parallel query operations for the database.
Although these are not classified as Oracle background processes, it is
important to understand the role they play in the Oracle environment.
A discussion of each of these processes follows.

SMON AND PMON

For one reason or another, connections into the Oracle database might
crash, hang or otherwise abnormally terminate. End users might shut
down their client machine without logging out of the database
application, or a network or system failure unrelated to the database
might cause an automated database job to fail. Oracle server must be
capable of transparently resolving the problems resulting from these
kinds of failures.

Together SMON and PMON are the background processes responsible
for automatically resolving database system problems. PMON, the
Process Monitor, performs automatic cleanup of terminated or failed
processes, including clearing the orphaned sessions left from an
abnormally terminated process, rolling back uncommitted
transactions, releasing the locks held by disconnected processes, and
freeing SGA resources held by failed processes. It also monitors the
server and dispatcher processes, automatically restarting them if they
fail.

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (13 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

SMON, the System Monitor, plays a smaller but nonetheless very
important role. Upon database startup, SMON is the process that
performs automatic instance recovery. If the last database shutdown
was not clean, SMON automatically rolls forward the operations that
were in progress, and rolls back the uncommitted transactions. SMON
is also the process that manages certain database segments,
reclaiming temporary segment space no loner in use, and
automatically combining contiguous of free space in data files.

NOTE

SMON only combines free space in tablespaces where the default
storage parameter-used when creating tablespaces or tables-
pctincrease is not 0. Set the pctincrease to at least 1 if you want
SMON to automatically handle this operation.

SMON and PMON are two of the required background processes. The
database does not start if either of these two processes fail on startup.

DBWR

DBWR, or the mandatory Database Writer process, is responsible for
writing the dirty blocks from the database buffer cache to the data
files. Rather than write out each block as it is modified, DBWR waits
until certain are met, and instance batch reads dirty list and flushes all
the blocks found in it to the data files. This provides a high level of
performance and minimizes the extent to which the database is I/O
bound.

DBWR flushes the dirty blocks when

• A checkpoint occurs,

• The dirty list reaches a specified length, determined by half of
the value for the init.ora parameter DB_BLOCK_WRITE_BATCH,

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (14 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

• The number of used buffers reaches the value of the init.ora
parameter DB_BLOCK_MAX_SCAN, or

• A DBWR timeout occurs (about every three seconds).

Configuring the DBWR background process is fairly straightforward,
and the default values for settings are in many cases sufficient for a
small- or medium-sized database. Larger, more active or specialized
databases often have special needs, however, that force the manual
configuration of some of the DBWR parameters.

In most installations, there is one DBWR process to handle all the
write activity of the database. You can, however, start more than one
DBWR process if you find DBWR is incapable of keeping up with the
demands of the database. The init.ora parameter DB_WRITERS, which
defaults to 1, sets the number DBWR processes that are created at
startup. In most cases, the decision to use more than one DBWR
process is only made when the OS on which Oracle server is being run
does not support a synchronous I/O. If this is the case, multiple DBWR
processes should be created. Some suggest that you should use as
many DBWR processes as physical disks used to store data files on;
other suggest setting the number to be equal to the number of data
files in the database. Experiment with adding and subtracting DBWR
processes until your best performer is reached.

The database buffer cache also uses latches to control access to the
memory structure. The LRU latch controls the replacement of buffers
in the buffer cache. In

Very active servers with multiple CPUs, there might be contention for
these latches. If this happens, set the parameter
DB_BLOCK_LRU_LATCHES to a number equal to the number of latches
to create for the buffer cache. This number cannot be greater than
twice the number of CPUs and is automatically set to the number of
CPUs in the system.

Another init.ora parameter that affects DBWR behavior is

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (15 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

DB_BLOCK_CHECKPOINT_BATCH. This parameter sets the maximum
number of blocks DBWR writes with each checkpoint (see the section
below on the checkpoint process, CKPT, for more information). By
increasing this number, you can decrease the number of times DBWR
must flush the buffer cache. Increasing this number too much,
however, might cause an unacceptable delay when DBWR finally does
flush the buffer.

A third parameter to keep in mind is DB_BLOCK_CHECKSUM. This is a
Boolean parameter that, when enabled, causes each database block to
be written with a checksum value attached. When the block is
subsequently read, the checksum is computed and compared with that
stored in the database. If the values are different, an error is raised.
This is a valuable parameter when troubleshooting data corruption
problems, but should not be enabled all the time because of the
performance hit taken from calculating and storing the checksum for
each I/O operation.

LGWR

LGWR, or Log Writer, is the fourth and final mandatory background
processes. Log Writer is the process that writes redo log entries from
the buffer in the SGA to the online redo log files. LGWR performs this
write when commit occurs, the inactivity timeout for LGWR is reached,
the redo log buffer becomes one-third full, or DBWR completes a flush
of the data buffer blocks at a checkpoints. LGWR also handles multiple
user commits simultaneously, if one or more users issue a commit
before LGWR has completed flushing the buffer on behalf of another
user's commit.

It is important to note that Oracle does not regard a transaction as
being complete until LGWR has flushed the redo information from the
redo buffer to the online redo logs. It is LGWR's successful writing of
the redo log entries into the online redo logs, and not the changing of
the data files, which returns a success code to the server process.

The LGWR process is rarely a source of performance problems for the

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (16 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

database. In addition, few options are available for custom
configuration of LGWR. Most of the configuration necessary involves
the redo log buffer and memory structures supporting that buffer,
rather than the LGWR process itself.

The exception to this, however, deals with the secondary task of the
LGWR process, performing the operations necessary to conduct a
database checkpoint. The LGWR performs this task unless the CKPT
process is activated. A checkpoint causes process and I/O time to be
spent by both LGWR and DBWR. More frequent checkpoint decrease
the recovery time necessary if database failure occurs, as well as
reducing the work necessary to perform each individual checkpoint.
You must weigh both of these factors when deciding on the correct
checkpoint interval. Several parameters govern the occurrence of
database checkpoints.

LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_TIMEOUT are
two parameters that can change the chechpoint interval-that is, the
time or situation necessary for a database checkpoint to be triggered.
LOG_CHECKPOINT_INTERVAL, when set, causes a checkpoint to be
triggered when a number of OS blocks (not Oracle blocks) is written to
redo. LOG_CHECKPOINT_TIMEOUT, when set, causes a checkpoint to
occur after interval (in second) specified for the parameter.

These parameter should be used with care. If
LOG_CHECKPOINT_INTERVAL is used, it should be set to that the
number of OS blocks that trigger a checkpoint are relative to the size
of the redo log group. Remember that when a redo log group fills, a
checkpoint is triggered. Be careful that you do not set a
LOG_CHECKPOINT_INTERVAL value that causes more checkpoints to
occur than necessary or forces checkpoints when they are not needed.
For example, consider a redo log group of 3 MB, and a
LOG_CHECKPOINT_INTERVAL set to 2.5 MB. When 2.5 MB are written
to the redo logs, the LOG_CHECKPOINT_INTERVAL value causes a
checkpoint to occur. In addition, when the redo log group fills (after
only 0.5 MB have been written), another checkpoint occurs. In
essence, two checkpoints will occur right after each other.

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (17 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

You can also control the frequency of checkpoints by sizing your redo
log groups accordingly. If you size your logs so that a log switch
occurs every hour, you only have one checkpoint an hour from redo
log group switches. However, if your groups are sized so that
checkpoints occur every five minutes, you waste a lot of process and
I/O time performing the related checkpoints.

A final parameter that is of use is the Boolean
LOG_CHECKPOINTS_TO_ALERT. This places a stamp in the alert.log
file for the database whenever a checkpoint occurs and is valuable
when trying to pinpoint the exact checkpoint interval.

DISPATCHER PROCESS (Dnnn)

As mentioned previously, server processes can be either dedicated to
a user process or shared among user processes. Using shared servers
requires configuring the Multithreaded Server (MTS), as discussed in
Chapter 37, "Installing and Configuring the OAS". When using shared
server processes, at least one dispatcher process must be present,
and more can be present depending on the needs of the environment.
The dispatcher process passes user requests to the SGA request
queue and returns the server responses back to the correct user
process.

The number of dispatcher processes is controlled using a number of
init.ora parameters. The MTS_DISPATCHERS parameter specifies the
protocol the dispatcher uses as well as the number of dispatchers to
start that use protocol. Multiple protocol groups can be configured
using multiple MTS_DISPATCHERS lines. A typical MTS_DISPATCHER
line might look like this:

MTS_DISPATCHERS = "tcp, 4"

MTS_DISPATCHERS = "spx, 2"

Multiple protocol groups can also be configured within the same

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (18 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

MTS_DISPATCHERS parameter, like so

MTS_DISPATCHERS = ("tcp, 4", "spx, 2")

The MTS_MAX_DISPATCHERS parameter controls the maximum
number of dispatcher processes allowed for the RDBMS. (See Chapter
34, "The Advanced Security Option," for more details on configuring
the MTS services.)

ARCH

The archiver process is responsible for copying full online redo logs to
the archived redo log files. This only occurs when the database is
operating in ARCHVELOG mode. Archivelog mode is required for point-
in-time recovery. It also permits "hot" backups. While the archiver is
copying the redo log, no other processes can write to the log. This is
important to keep in mind, because of the circular nature of the redo
logs. If the database needs to switch redo logs but the archiver is still
copying the next log in the sequence, all database activity halts until
archiver finishes. Also note that if ARCH is for some reason unable to
finish copying the log, it wait until the error stopping it from finishing
the write is resolved.

It is important to note that the ARCHIVE_LOG_START parameter in
the init.ora file must be set to TRUE for ARCH to automatically start
when a database opens. Placing the database in archivelog mode and
don't automatically start the ARCH process, the database hangs when
all online redo logs fill, waiting for you to manually archive the online
logs.

CKPT

CKPT, the checkpoint process, is an optional background process that
performs the checkpoint tasks that LGWR would normally perform-
namely updating the data file and control file headers with the current
version information. Enable this process to reduce the amount of work
on LGWR when there are frequent checkpoints occurring, frequent log

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (19 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

switches, or many data files in the database.

Setting the CHECKPOINT_PROCESS parameter to TRUE enables the
CKPT process. All other parameters related to checkpoints that are
described also hold true when the CKPT process is running.

CAUTION

With Oracle 8.x, the CHECKPOINT_PROCESS parameter is obsolete
because it is already integrated into the RDBMS with a setting of
TRUE. If you include it in Oracle 8.x init.ora file, your instance will fail
to start.

RECO

RECO, the recovery process, is responsible for recovering failed
transactions in distributed database systems. It is automatically
started when the database is configured for distributed transactions
(that is, when the DISTRIBUTED_TRANSACTIONS init.ora parameter is
set to a value greater than zero.) The RECO process operates with
little or no DBA intervention when an in-doubt transaction occurs in a
distributed system. The RECO process attempts to connect to the
remote database and resolves the in-doubt transaction when a
database connection is successful. (See Chapter 40, "Distributed
Database Management," for more information on RECO and the two
phase commit.)

SNPs

SNPs, the snapshot process, handle the automatic refreshing of
database snapshots and runs the database procedures scheduled
through the DBMS_JOB package. The init.ora parameter
JOB_QUEUE_PROCESS sets how many snapshot processes are started,
and JOB_QUEUE_INTERVAL determines how long (in seconds) the
snapshot processes sleep before waking to process any pending jobs
or transactions.

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (20 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

LCKn

In a parallel server environment, multiple instances mount one
database. The lock process is responsible for managing and
coordinating the locks held by the individual instances. Each instance
in parallel server installation has 1-10 lock processes assigned, and
each instance must have the same number. This process has no
purpose in a non-parallel server environment. See Chapter 39,
"Parallel Server Management," for more information on the Lock
background process.

Pnnn

Parallel query processes are named Pnnn. The Oracle server starts and
stops query processes depending on database activity and your
configuration of the parallel query option. These processes are
involved in parallel index creations, table creations, and queries. These
are always as many processes started as specified in the
PARALLEL_MIN_SERVERS parameter; and there are never more than
as specified by PARALLEL_MAX_SERVERS.

For more information on configuring the parallel query processes, see
Chapter 38, "parallel Query Management."

USER AND SERVER PROCESSES (Snnn)

Applications and utilities access the RDBMS through a use process.
The user process connects to a server process, which can be dedicated
to one user process or shared (with MTS) among many. The server
process parses and executes SQL statements that are submitted to it
and returns the result sets back to the user process. It is also the
process that reads data blocks from the data files into the database
buffer cache.

Each user process is allocated a section of memory referred to as the
Process Global Area (PGA). The contents of the PGA differ depending
on what type of connection is made tom the database. When a user

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (21 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

process connects to the database via a dedicated server process, user
session data, stack space, and cursor state information is stored in the
PGA. The user session data consists of security and resource usage
information; the stack space contains local variables specific to the
user session; and the cursor state area contains runtime information
for the cursor, including rows returned and return codes. If, however,
the user process connects through a shared server process, the
session and cursor state information is stored within the SGA.
Although this does not increase the memory requirements for the
database as a whole, it does require a larger SGA to hold the extra
session information.

ANATOMY OF A TRANSACTION

To gain a better understanding of how all the preceding components of
the instance interact, look at a typical transaction as it moves through
the instance structures.

A transaction begins when a user session connects to a server session
using an SQL*Net driver. This connection can be dedicated connection
with its own server process or a shared connection handled through a
dispatcher process. The server session hashes the SQL statement
passed to it and compares that hash number with the hash numbers
of statements already saved in the shared SQL area. If an exact
duplicate of the statement is found in the shared pool, the parsed form
of the statement and the execution plan that are already stored are
used. If a match is not found in the shared pool, the server session
parses the statement.

Next, the server session checks to see whether the data blocks
necessary to complete the transaction are already stored in the
database buffer cache. If the blocks are not in the cache, the server
session reads the necessary blocks from the data files and copies
them into the cache. If the transaction is a query, the server session
returns the result of the query to the user session (performing the
data block read and copy as many times as necessary to return all
data).

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (22 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

For a transaction that modifies data, there are more steps involved.
For this example, assume the transaction is an update. After the
necessary data blocks are read into the buffer cache, the blocks in
memory are modified. Modifying cached blocks marks them as dirty,
and they are placed on the dirty list. Redo information is also
generated, and is stored in the redo log cache.

The transaction continues until one of several things happens. If the
transaction is relatively short lived (for example, an update to one row
of sales data), it finishes and the user commits, which signals LGWR to
flush the redo log buffer to the online redo log files. If the transaction
is fairly long and complex, any of the following can happen:

• The redo generated causes the redo log buffer to become one-
third full. This triggers a redo log buffer flush by LGWR.

• The number of blocks placed on the dirty list reaches a
threshold length. This triggers DBWR to flush all the dirty blocks
in the database buffer cache to the data files, which in turn also
causes LGWR to flush the redo log buffer cache to disk.

• A database checkpoint occurs. This triggers a database buffer
cache flush, as well as a redo log cache flush.

• The number of available free buffers in the buffer cache drops
below the threshold value. This also causes a database buffer
cache flush.

• An unrecoverable database error occurs. This forces the
transaction to be terminated and rolled back and an error
reported back to the server session.

While the transaction is processing with redo being generated to the
redo cache and flushed, the online redo logs gradually fill. When the
current log fills, LGWR begins writing to the next log group, while
ARCH copies the redo log to disk or tape. Because the transaction

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (23 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

never records as successful until all redo log information is written
from the redo log buffer to the online redo logs, both LGWR and ARCH
must be capable of completing their respective tasks without error.

MONITORING THE INSTANCE

For the majority of the time, the SGA and Oracle background
processes operate without administrator intervention. However, there
are times when problems must be diagnosed and fixed. There are
several methods available to the DBA to monitor and track the
behavior of the instance and its associate structures.

USING THE TRACE FILES

The best place to find information about instance problems is in the
trace files of the processes themselves. These trace files are written to
the location defined in the USER_DUMP_DEST or
BACKGROUND_DUMP_DEST, depending on the specific process and
the error encountered. When a background processes is terminated or
abnormally aborts an operation, it usually produces a trace file
containing the error message(s) causing the failure, dumps of the
current process stacks, currently executing cursors, and any other
information pertinent to the problem. Although some of this
information is useful to you as a DBA, it is more important to collect
and forward these trace files to Oracle worldwide customer support
consultants who might be able to help you diagnose your problems.
They have tools available to pinpoint exactly where the problem
occurs. Background process failures also usually write an entry into
the alert.log file for the database or to their own separate trace files
located in the directory specified by the init.ora parameter
background_dump_dest.

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (24 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

TRACKING THROUGH THE OPERATING SYSTEM

Background processes can also be tracked through the OS using
system commands. In a UNIX environment, each background process
is a separate task and can therefore be tracked separately. It is often
very valuable to look at OS memory and CPU utilization of processes
(using such tools as sar, ps, vmstat, and top) to identify performance
problems or runway queries. Sometimes the only way to resolve a
hung or broken server or user processes is by terminating them at the
OS level. Use caution, however, when attempting to modify or
terminate any other Oracle background process. Most background
processes will crash the entire database if abnormally terminated.

In an NT server environment, tracking the background processes is a
little trickier. This is because the entire Oracle instance is implemented
on the NT OS as a single background process called a service. The
individual background processes are implemented as threads
belonging to the service. Although there are plenty of utilities available
on NT to track and monitor the behavior of processes, thread
administration tools are fairly uncommon. One solution is to use the
Performance Monitor utility that ships with the NT OS to monitor,
among other things, the memory consumption and context switches of
all the threads belonging to the service. By converting the SPID
column from the following query from decimal to hexadecimal, you
can match the NT thread ID with the background process from the
Oracle side.

SELECT spid, name FROM V$process, V$bgprocess WHERE addr=
paddr;

USING THE V$ TABLES TO MONITOR INSTANCE STRUCTURES

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (25 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

Numerous dynamic performance views are available to the DBA to
display instance information. These views are invaluable when
attempting to discover the current state of the database instance and
troubleshoot problems related to the instance.

MONITORING DATABASE CONNECTIONS

Both user and background processes that are connected to the
instance can be monitored using the V$ views. The V$process view
displays information about all processes that are connected to the
database, including background process and user processes.
V$bgprocess contains a list of all possible background processes, with
an addition column, PADDR, which contains the hexadecimal address
of running background processes (or 00 for those that are not
running).

The columns of interest to you from the V$process table are as shown
in Table 1

Table 1 V$process Table Columns

Column Usage

ADDR Oracle address of the process

PID Oracle process ID

SPID OS system process ID

USERNAME OS process owner

SERIAL# Oracle process serial #

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (26 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

TERMINAL OS terminal identifier

PROGRAM OS program connection

BACKGROUND 1 for background process, NULL for process

The columns interest to you from the V$bgprocess table are as shown
in Table 2.

Table 2 V$process Table Columns

Column Usage

PADDR Oracle process address (same ad
ADDR column of V$process)

NAME Name of the background process

DESCRIPTION Description of the background
process

ERROR Error state code (0 for no error)

You can display the address and names of all running background
processes by joining the V$process and V$bgprocess table, as in the
following query:

 SELECT spid, name

 FROM V$process, V$bgprocess

 WHERE padr(+) = addr;

Information about user sessions that are connected to the database

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (27 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

are stored in the V$session view. The V$session view contains many
fields, and a great deal of valuable information can be accessed from
this view.

The columns of interest from the V$session view are as shown in Table
3:

TABLE 3 V$session COLUMN

Column usage

SID Session identifier

SERIAL# Session serial #

PADDR Address of parent session

USER# Oracle user identifier (from the SYS.USER$ table)

USERNAME Oracle username

COMMAND Current command in progress for this session. For
number to command translations, see the
sys.audit_actions table.

STATUS Status of the session (ACTIVE, INACTIVE, KILLED)

SERVER Type of server connection the session has
(DEDICATED, SHARED, PSEDUO or NONE)

OSUSER OS Username and connection has been made
from

PROGRAM OS Program making the connection into the
database

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (28 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

TERMINAL Type of terminal the connection is made from

TYPE Type of session (BACKGROUND or USER)
SQL_HASH_VALUE and SQL_ADDRESS. Used to
uniquely identify the currently executing SQL
statement

The following query displays important information on connected
processes. It also demonstrates the manner in which the process
views relate to each other:

 col bgproc format a6 heading 'BGProc'

 col action format a10 heading 'DB Action'

 col program format a10

 col username format a8

 col terminal format a10

SELECT

 b.name bgproc, p.said, s.sid, p.serial#, s.osuser,

 s.username, s.terminal,

 DECODE (a.name, 'UNKNOWN', '&ldots;&ldots;..', a.name) action

FROM

 V$process p, V$session s, V$bgprosess b,

 Sys.audit_actions a

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (29 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

WHERE

 p.addr = s.paddr (+) AND b.paddr (+) = s.paddr AND

 a.action = NVL(s.action, 0)

ORDER BY Sid;

By querying the V$access view, you can display information on what
database objects users are currently accessing. This is useful when
trying to figure out what a third-party application or undocumented
procedure is doing and can also be useful to resolve security
problems. By using a DBA account to run an application or procedure
that is giving you security problems, you can determine the exact
objects to which security should be granted.

Finally, the V$mts view contains tracking information for shared server
processes. This view contains columns for maximum connections,
server started, servers terminated, and servers highwater.

MONITORING THE SHARED SQL AREA

Often it is useful to be able to look into the RDBMS engine and see
what SQL statements are being executed. This V$sqlarea view
contains information on SQL statements in the shared SQL area,
including the text of SQL statements executed, the number of users
accessing the statements, disk blocks and memory blocks accessed
while executing the statement, and other information.

NOTE

The disk_reads and buffer_gets columns that are found in V$sqlarea

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (30 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

track the number of blocks that are read from the buffer cache. These
two columns are quick and easy ways to find queries that are utilizing
large amounts of database resources.

The V$open_cursor view is also useful to investigate cursors that have
not yet been closed. The following query displays all open cursors for a
given user's SID:

SELECT b.piece, a.sql_text

FROM V$open_cursor a, V$sqltext b

WHERE

 a.sid = & SID and

 a.address = b.address and

 a.hash_value = b.hash_value

ORDER BY

 b.address, b.hash_value, b.piece asc ;

The V$sqltext view can also be used to determine what SQL
statements are passed to the database engine. Unlike V$sqlarea,
which only stores the first 80 characters of the SQL statements, this
view holds the entire SQL statement. The V$sqltext_with_newlines
view is identical to V$sqltext, that the newline characters ion the SQL
statements have been left in place.

NOTE

The SQL statements stored in V$sqltext are split into pieces. To
retrieve the entire statement, you have to retrieve all the parts of the

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (31 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

SQL statement and order by the PIECE column.

MONITORING THE SGA

There are two V$ views available that provide information about the
operation of the SGA. The V$sga view displays the size (in bytes) of
each major component of the SGA, including the redo log cache, the
database buffer cache, and the shared pool. The V$sgastat contains
much more interesting information. Within this view you find the
specific size for each individual memory structure contained in the
SGA, including the memory set aside for stack space and PL/SQL
variables and stacks. You can also query this view to find the amount
of free memory available in the SGA:

SELECT bytes FROM V$sgastat WHERE name = 'free memory';

MONITORING THE LIBRARY AND DICTIONARY CACHE

Two views exist that contain information regarding the library and
data dictionary cache. V$librarycache contains library cache
performance information for each type of object in the library cache.
The V$rowcache view contains performance information for the data
dictionary cache.

MONITORING THE PARALLEL QUERY PROCESS

The V$pq_sysstat and V$pq_tqstat views contain information on the
parallel server processes and their behavior. Query V$pq_sysstat to
display current runtime information on parallel query servers such as
the number of query servers busy and idle and dynamic server
creation and termination statistics. The V$pq_tqstat view contains

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (32 of 33) [6/26/02 12:18:49 PM]

0807. Instance Architecture

information on queries that have previously run that used parallel
query servers.

MONITORING THE ARCHIVER PROCESSES

Archiver activity is stored in the V$archive view. You can retrieve
information on the archived logs written by ARCH from this view.

MONITORING THE MULTITHREADED SERVER
PROCESSES

The Vmts, Vdispatcher, and V$shared_server views contain
information on the status of the MTS processes and memory
structures. V$mts contains tracking information on the shared server
processes such as the number of servers started, terminated, and the
highwater value for running servers. V$dispatcher contains
information on the dispatcher processes running. From this view you
can query the name, supported protocol, number of bytes processed,
number of messages processed, current status, and other runtime
information relating to the dispatcher processes. The V$shared_server
view provides the same type of information for the shared server
processes running.

file:///D|/JigneshDhol/Oracle/0807.%20Instance%20Architecture.htm (33 of 33) [6/26/02 12:18:49 PM]

	Oracle
	Index
	Ch:1 Introduction to RDBMS
	0101. Contents
	0102. What is DBMS
	0103. Database Models
	0104. What is RDBMS
	0105. Difference DBMS vs RDBMS
	0106. E - R Diagram
	0107. Types of Relationship
	0108. Normalization
	0109. Codd's Rules

	Ch:2 SQL, SQL *Plus
	0201. Contents
	0202. Introduction to SQL
	0203. SQL Commands and Datatypes
	0206. Operators and Expression
	0304. SELECT statement
	0305. Special Operator
	0306. Join, Subquery, Built in functions

	Ch:3 Managin Tables and Data
	0301. Contents
	0302. Creating and Altering tables
	0319. Data Definition Language
	0303. Data Manipulation Commands
	0310. Built in Functions
	0307. Intro. to SQL * Plus

	Ch:4 Oracle Database Objects
	0401. Contents
	0402. View
	0403. Sequence
	0404. Synonyms, Database Links
	0405. Index
	0406. Database Link

	Ch:5 TCL and DCL
	0501. Contents
	0503. What is transaction ?
	0504. Starting and Ending of Transaction
	0505. Commit, Rollback, Save Point
	0502. Grant, Revoke, Role, Creating Users
	0506. Role, Creating Users, Change Password

	Ch:6 Introduction to PL/SQL
	0601. Contents
	0602. SQL v/s PL/SQL
	0603. PL/SQL Block Structure
	0604. Language construct of PL/SQL
	0605. %TYPE and %ROWTYPE
	0606. Using Cursor

	Ch:7 Advanced PL/SQL
	0701. Contents
	0702. Procedure
	0703. Functions
	0704. Package
	0705. Trigger
	0706. Creating Objects
	0707. PL/SQL Tables
	0708. Nestead Tables
	0709. Varrays

	Ch:8 Oracle Database Structure
	0801. Contents
	0802. Initialization Parameter
	0803. Control Files, Redo Logs files
	0809. Processes
	0805. Tablespace
	0806. Oracle Blocks
	0808. Import, Export and SQL * Loader
	0810. SQL * Loader
	0807. Instance Architecture

	Untitled

