
i

Course Notes for:

Learn Visual Basic 6.0

© Lou Tylee, 1998

E-Mail: KIDware@jetcity.com
http://www.jetcity.com/~kidware

15600 NE 8th, Suite B1-314

Bellevue, WA 98008
(206) 721-2556

FAX (425) 746-4655

mailto:KIDware@jetcity.com
http://www.jetcity.com/~kidware

ii Learn Visual Basic 6.0

Notice

These notes were developed for the course, 
earn Visual Basic 6.0” They are not intended to
be a complete reference to Visual Basic. Consult
the Microsoft Visual Basic Programmer 
Guide and Microsoft Visual Basic Language
Reference Manual for detailed reference
information.

The notes refer to several software and hardware
products by their trade names. These references
are for informational purposes only and all
trademarks are the property of their respective
companies.

 Lou Tylee
 Course
Instructor

 Contents iii

Learn Visual Basic 6.0

Contents

1. Introduction to the Visual Basic Language and
Environment

 Preview ... 1-1
 Course Objectives... 1-1
 What is Visual Basic? ... 1-2
 Visual Basic 6.0 versus Other Versions of Visual Basic............................ 1-3
 16 Bits versus 32 Bits.. 1-3
 Structure of a Visual Basic Application ... 1-4
 Steps in Developing Application.. 1-4
 Drawing the User Interface and Setting Properties 1-5
 Example 1-1: Stopwatch Application - Drawing Controls 1-9
 Setting Properties of Objects at Design Time ... 1-10
 Setting Properties at Run Time ... 1-11
 How Names Are Used in Object Events.. 1-11
 Example 1-2: Stopwatch Application - Setting Properties 1-12
 Variables ... 1-14
 Visual Basic Data Types ... 1-14
 Variable Declaration.. 1-14
 Example 1-3: Stopwatch Application - Attaching Code 1-18
 Quick Primer on Saving Visual Basic Applications.................................. 1-20
 Exercise 1: Calendar/Time Display ... 1-21

iv Learn Visual Basic 6.0

2. The Visual Basic Language

 Review and Preview.. 2-1
 A Brief History of Basic ... 2-1
 Visual Basic Statements and Expressions.. 2-2
 Visual Basic Operators.. 2-3
 Visual Basic Functions .. 2-4
 A Closer Look at the Rnd Function ... 2-5
 Example 2-1: Savings Account ... 2-6
 Visual Basic Symbolic Constants.. 2-10
 Defining Your Own Constants... 2-10
 Visual Basic Branching - If Statements ... 2-11
 Key Trapping... 2-12
 Example 2-2: Savings Account - Key Trapping....................................... 2-14
 Select Case - Another Way to Branch .. 2-16
 The GoTo Statement .. 2-17
 Visual Basic Looping... 2-17
 Visual Basic Counting ... 2-19
 Example 2-3: Savings Account - Decisions... 2-20
 Exercise 2-1: Computing a Mean and Standard Deviation 2-23
 Exercise 2-2: Flash Card Addition Problems... 2-28

3. Exploring the Visual Basic Toolbox

 Review and Preview.. 3-1
 The Message Box ... 3-1
 Object Methods... 3-3
 The Form Object ... 3-4
 Command Buttons .. 3-5
 Label Boxes .. 3-5
 Text Boxes .. 3-6
 Example 3-1: Password Validation ... 3-8
 Check Boxes ... 3-11
 Option Buttons .. 3-11
 Arrays.. 3-12
 Control Arrays ... 3-13
 Frames.. 3-14
 Example 3-2: Pizza Order ... 3-15
 List Boxes.. 3-20
 Combo Boxes.. 3-21
 Example 3-3: Flight Planner.. 3-23
 Exercise 3: Customer Database Input Screen .. 3-27

 Contents v

4. More Exploration of the Visual Basic Toolbox

 Review and Preview.. 4-1
 Display Layers... 4-1
 Line Tool ... 4-2
 Shape Tool.. 4-3
 Horizontal and Vertical Scroll Bars.. 4-4
 Example 4-1: Temperature Conversion .. 4-7
 Picture Boxes .. 4-12
 Image Boxes ... 4-14
 Quick Example: Picture and Image Boxes.. 4-14
 Drive List Box .. 4-15
 Directory List Box .. 4-15
 File List Box... 4-16
 Synchronizing the Drive, Directory, and File List Boxes.......................... 4-17
 Example 4-2: Image Viewer .. 4-18
 Common Dialog Boxes ... 4-23
 Open Common Dialog Box ... 4-24
 Quick Example: The Open Dialog Box.. 4-25
 Save As Common Dialog Box... 4-27
 Quick Example: The Save As Dialog Box ... 4-28
 Exercise 4: Student Database Input Screen ... 4-29

5. Creating a Stand-Alone Visual Basic Application

 Review and Preview.. 5-1
 Designing an Application... 5-1
 Using General Sub Procedures in Applications .. 5-2
 Creating a Code Module ... 5-5
 Using General Function Procedures in Applications 5-5
 Quick Example: Temperature Conversion .. 5-7
 Quick Example: Image Viewer (Optional) ... 5-8
 Adding Menus to an Application.. 5-8
 Example 5-1: Note Editor .. 5-12
 Using Pop-Up Menus .. 5-16
 Assigning Icons to Forms.. 5-17
 Designing Your Own Icon with IconEdit .. 5-17
 Creating Visual Basic Executable Files... 5-19
 Example 5-2: Note Editor - Building an Executable and Attaching an Icon 5-21
 Using the Visual Basic Package & Deployment Wizard.......................... 5-22
 Example 5-3: Note Editor - Creating a Distribution Disk 5-25
 Exercise 5: US Capitals Quiz .. 5-27

vi Learn Visual Basic 6.0

6. Error-Handling, Debugging and File Input/Output

 Review and Preview.. 6-1
 Error Types ... 6-1
 Run-Time Error Trapping and Handling .. 6-2
 General Error Handling Procedure.. 6-4
 Example 6-1: Simple Error Trapping... 6-7
 Debugging Visual Basic Programs.. 6-9
 Example 6-2: Debugging Example.. 6-10
 Using the Debugging Tools... 6-11
 Debugging Strategies.. 6-16
 Sequential Files... 6-17
 Sequential File Output (Variables) .. 6-17
 Quick Example: Writing Variables to Sequential Files 6-19
 Sequential File Input (Variables) ... 6-20
 Quick Example: Reading Variables from Sequential Files 6-21
 Writing and Reading Text Using Sequential Files................................... 6-22
 Random Access Files ... 6-24
 User-Defined Variables ... 6-25
 Writing and Reading Random Access Files.. 6-26
 Using the Open and Save Common Dialog Boxes 6-29
 Example 6-3: Note Editor - Reading and Saving Text Files 6-31
 Exercise 6-1: Information Tracking ... 6-35
 Exercise 6-2: ecent Files’ Menu Option ... 6-41

7. Graphics Techniques with Visual Basic

 Review and Preview.. 7-1
 Graphics Methods ... 7-1
 Using Colors.. 7-8
 Mouse Events ... 7-10
 Example 7-1: Blackboard .. 7-13
 Drag and Drop Events... 7-18
 Example 7-2: Letter Disposal .. 7-20
 Timer Tool and Delays .. 7-23
 Animation Techniques... 7-24
 Quick Example: Simple Animation .. 7-25
 Quick Example: Animation with the Timer Tool 7-26
 Random Numbers (Revisited) and Games ... 7-28
 Randomly Sorting N Integers .. 7-29
 Example 7-3: One-Buttoned Bandit .. 7-30
 User-Defined Coordinates... 7-35
 Simple Function Plotting (Line Charts).. 7-36
 Simple Bar Charts ... 7-38

 Contents vii

7. Graphics Techniques with Visual Basic (continued)

 Example 7-4: Line Chart and Bar Chart Application................................ 7-40
 Exercise 7-1: Blackjack ... 7-43
 Exercise 7-2: Information Tracking Plotting... 7-54

8. Database Access and Management

 Review and Preview.. 8-1
 Database Structure and Terminology ... 8-1
 ADO Data Control ... 8-5
 Bound Data Tools ... 8-7
 Example 8-1: Accessing the Books Database .. 8-9
 Creating a Virtual Table .. 8-11
 Quick Example: Forming a Virtual Table... 8-11
 Finding Specific Records .. 8-13
 Example 8-2: olodex’ Searching of the Books Database..................... 8-14
 Data Manager ... 8-17
 Example 8-3: Phone Directory - Creating the Database 8-18
 Database Management... 8-20
 Example 8-4: Phone Directory - Managing the Database 8-23
 Custom Data Aware Controls.. 8-28
 Using the Crystal Reports Writer... 8-30
 Quick Example: Tabular Phone Directory Listing.................................... 8-31
 Using the Crystal Reports Custom Control ... 8-32
 Exercise 8: Home Inventory Database.. 8-35

9. Dynamic Link Libraries and the Windows API

 Review and Preview.. 9-1
 Dynamic Link Libraries (DLL).. 9-1
 Accessing the Windows API With DLL ... 9-2

Timing with DLL Calls ... 9-4
Quick Example 1: Using GetTickCount to Build a Stopwatch 9-5
Quick Example 2: Using GetTickCount to Implement a Delay 9-6
Drawing Ellipses.. 9-7
Quick Example 3: Drawing Ellipses... 9-7
Drawing Lines ... 9-8
Quick Example 4: Drawing Lines .. 9-9

 Drawing Polygons ... 9-10
 Quick Example 5: Drawing Polygons .. 9-11
 Sounds with DLL Calls - Other Beeps... 9-14

Quick Example 6: Adding Beeps to Message Box Displays.................... 9-15

viii Learn Visual Basic 6.0

9. Dynamic Link Libraries and the Windows API (continued)

More Elaborate Sounds .. 9-16
Quick Example 7: Playing WAV Files ... 9-16
Playing Sounds Quickly .. 9-17
Quick Example 8: Playing Sounds Quickly ... 9-18

 Fun With Graphics .. 9-19
Quick Example 9: Bouncing Ball With Sound! .. 9-20

 Flicker Free Animation .. 9-22
 Quick Example 10: Flicker Free Animation ... 9-23
 Quick Example 11: Horizontally Scrolling Background............................ 9-24
 A Bit of Multimedia .. 9-26
 Quick Example 12: Multimedia Sound and Video 9-26
 Exercise 9: The Original Video Game - Pong! .. 9-27

10. Other Visual Basic Topics

 Review and Preview.. 10-1
 Custom Controls ... 10-1
 Masked Edit Control.. 10-3
 Chart Control... 10-4
 Multimedia Control .. 10-6
 Rich Textbox Control... 10-8
 Slider Control .. 10-9
 Tabbed Dialog Control .. 10-12
 UpDown Control.. 10-13
 Toolbar Control ... 10-14
 Using the Windows Clipboard ... 10-17
 Printing with Visual Basic .. 10-18
 Multiple Form Visual Basic Applications.. 10-21
 Visual Basic Multiple Document Interface (MDI) 10-25
 Creating a Help File .. 10-29
 Class Summary... 10-36
 Exercise 10: The Ultimate Application .. 10-37

Appendix I: Visual Basic Symbolic Constants.................................. I-1

Appendix II: Common Dialog Box Constants................................... II-1

 Contents ix

Learn Visual Basic 6.0

1. Introduction to the Visual Basic Language and

Environment

Preview

• In this first class, we will do a quick overview of how to build an

application in Visual Basic. Youl learn a new vocabulary, a new
approach to programming, and ways to move around in the Visual Basic
environment. You will leave having written your first Visual Basic
program.

Course Objectives

� Understand the benefits of using Microsoft Visual Basic 6.0 for

Windows as an application tool
� Understand the Visual Basic event-driven programming concepts,

terminology, and available tools
� Learn the fundamentals of designing, implementing, and

distributing a Visual Basic application
� Learn to use the Visual Basic toolbox
� Learn to modify object properties
� Learn object methods
� Use the menu design window
� Understand proper debugging and error-handling procedures
� Gain a basic understanding of database access and management

using databound controls
� Obtain an introduction to ActiveX controls and the Windows

Application Programming Interface (API)

x Learn Visual Basic 6.0

What is Visual Basic?

• Visual Basic is a tool that allows you to develop Windows (Graphic User

Interface - GUI) applications. The applications have a familiar
appearance to the user.

• Visual Basic is event-driven; meaning code remains idle until called upon

to respond to some event (button pressing, menu selection,). An event
processor governs Visual Basic. Nothing happens until an event is
detected. Once an event is detected, the code corresponding to that
event (event procedure) is executed. Program control is then returned to
the event processor.

 Event
 Procedures

• Some Features of Visual Basic

� Full set of objects - you 'draw' the application
� Lots of icons and pictures for your use
� Response to mouse and keyboard actions
� Clipboard and printer access
� Full array of mathematical, string handling, and graphics functions
� Can handle fixed and dynamic variable and control arrays
� Sequential and random access file support
� Useful debugger and error-handling facilities
� Powerful database access tools
� ActiveX support
� Package & Deployment Wizard makes distributing your applications

simple

Event? Event processor

Basic
Code

Basic
Code

Basic
Code

 Contents xi

Visual Basic 6.0 versus Other Versions of Visual Basic

• The original Visual Basic for DOS and Visual Basic For Windows were

introduced in 1991.

• Visual Basic 3.0 (a vast improvement over previous versions) was

released in 1993.

• Visual Basic 4.0 released in late 1995 (added 32-bit application support).
•
• Visual Basic 5.0 released in late 1996. New environment, supported

creation of ActiveX controls, deleted 16-bit application support.

• And, now Visual Basic 6.0 - some identified new features of Visual Basic

6.0:

� Faster compiler
� New ActiveX data control object
� Allows database integration with wide variety of

applications
� New data report designer
� New Package & Deployment Wizard
� Additional internet capabilities

16 Bits versus 32 Bits

• Applications built using the Visual Basic 3.0 and the 16 bit version

of Visual Basic 4.0 will run under Windows 3.1, Windows for
Workgroups, Windows NT, or Windows 95

• Applications built using the 32-bit version of Visual Basic 4.0,

Visual Basic 5.0 and Visual Basic 6.0 will only run with Windows 95
or Windows NT (Version 3.5.1 or higher).

• In this class, we will use Visual Basic 6.0 under Windows 95,

recognizing such applications will not operate in 16 bit
environments.

xii Learn Visual Basic 6.0

Control

Control

Control

Form 2 (.FRM)

Control

Control

Control

Form 3 (.FRM) Module 1 (.BAS)

Structure of a Visual Basic Application

Project (.VBP, .MAK)

Application (Project) is made up of:

� Forms - Windows that you create for user interface
� Controls - Graphical features drawn on forms to allow user

interaction (text boxes, labels, scroll bars, command buttons, etc.)
(Forms and Controls are objects.)

� Properties - Every characteristic of a form or control is specified
by a property. Example properties include names, captions, size,
color, position, and contents. Visual Basic applies default
properties. You can change properties at design time or run time.

� Methods - Built-in procedure that can be invoked to impart some
action to a particular object.

� Event Procedures - Code related to some object. This is the code
that is executed when a certain event occurs.

� General Procedures - Code not related to objects. This code
must be invoked by the application.

� Modules - Collection of general procedures, variable declarations,
and constant definitions used by application.

Steps in Developing Application

• There are three primary steps involved in building a Visual Basic

application:

1. Draw the user interface
2. Assign properties to controls
3. Attach code to controls

Wel look at each step.

Control

Control

Control

Form 1 (.FRM)

 Contents xiii

Drawing the User Interface and Setting Properties

• Visual Basic operates in three modes.

� Design mode - used to build application
� Run mode - used to run the application
� Break mode - application halted and debugger is available

We focus here on the design mode.

• Six windows appear when you start Visual Basic.

� The Main Window consists of the title bar, menu bar, and
toolbar. The title bar indicates the project name, the current
Visual Basic operating mode, and the current form. The menu
bar has drop-down menus from which you control the operation
of the Visual Basic environment. The toolbar has buttons that
provide shortcuts to some of the menu options. The main
window also shows the location of the current form relative to
the upper left corner of the screen (measured in twips) and the
width and length of the current form.

New
form

Add
projec

Open
project

Save
project

Menu
editor

Propertie
s window

Code Editor

Form
Layout

Run
Pause

Stop

Project
Explorer

Object
Browser

Toolbox

Form position

Form

xiv Learn Visual Basic 6.0

� The Form Window is central to developing Visual Basic
applications. It is where you draw your application.

� The Toolbox is the selection menu for controls used in your
application.

Pointer
Label

Frame
Check Box
Combo Box

Horizontal Scroll
Timer

Directory List Box
Shapes

Image Box
Object Linking

Picture Box
Text Box

Command Button

Option Button

List Box
Vertical Scroll Bar

Drive List Box

File List Box

Lines
Data Tool

 Contents xv

� The Properties Window is used to establish initial property
values for objects. The drop-down box at the top of the window
lists all objects in the current form. Two views are available:
Alphabetic and Categorized. Under this box are the available
properties for the currently selected object.

� The Form Layout Window shows where (upon program
execution) your form will be displayed relative to your monitor
screen:

xvi Learn Visual Basic 6.0

� The Project Window displays a list of all forms and modules
making up your application. You can also obtain a view of the
Form or Code windows (window containing the actual Basic
coding) from the Project window.

• As mentioned, the user interface is rawn’ in the form window. There

are two ways to place controls on a form:

1. Double-click the tool in the toolbox and it is created with a default
size on the form. You can then move it or resize it.

2. Click the tool in the toolbox, then move the mouse pointer to the

form window. The cursor changes to a crosshair. Place the
crosshair at the upper left corner of where you want the control to
be, press the left mouse button and hold it down while dragging the
cursor toward the lower right corner. When you release the mouse
button, the control is drawn.

• To move a control you have drawn, click the object in the form window

and drag it to the new location. Release the mouse button.

• To resize a control, click the object so that it is select and sizing handles

appear. Use these handles to resize the object.

Click here
to move

Use sizing
handles to
resize

 Contents xvii

Example 1-1

Stopwatch Application - Drawing Controls

1. Start a new project. The idea of this project is to start a timer, then stop

the timer and compute the elapsed time (in seconds).

2. Place three command buttons and six labels on the form. Move and size

the controls and form so it looks something like this:

xviii Learn Visual Basic 6.0

Setting Properties of Objects at Design Time

• Each form and control has properties assigned to it by default when you

start up a new project. There are two ways to display the properties of an
object. The first way is to click on the object (form or control) in the form
window. Then, click on the Properties Window or the Properties Window
button in the tool bar. The second way is to first click on the Properties
Window. Then, select the object from the Object box in the Properties
Window. Shown is the Properties Window for the stopwatch application:

The drop-down box at the top of the
Properties Window is the Object box. It
displays the name of each object in the
application as well as its type. This
display shows the Form object. The
Properties list is directly below this box.
In this list, you can scroll through the list
of properties for the selected object. You
may select a property by clicking on it.
Properties can be changed by typing a
new value or choosing from a list of
predefined settings (available as a drop
down list). Properties can be viewed in
two ways: Alphabetic and Categorized.

A very important property for each object
is its name. The name is used by Visual
Basic to refer to a particular object in
code.

• A convention has been established for naming Visual Basic objects. This

convention is to use a three-letter prefix (depending on the object)
followed by a name you assign. A few of the prefixes are (wel see
more as we progress in the class):

Object Prefix Example
Form frm frmWatch
Command Button cmd, btn cmdExit, btnStart
Label lbl lblStart, lblEnd
Text Box txt txtTime, txtName
Menu mnu mnuExit, mnuSave
Check box chk chkChoice

 Contents xix

• Object names can be up to 40 characters long, must start with a letter,
must contain only letters, numbers, and the underscore (_) character.
Names are used in setting properties at run time and also in establishing
procedure names for object events.

Setting Properties at Run Time

• You can also set or modify properties while your application is running.

To do this, you must write some code. The code format is:

ObjectName.Property = NewValue

Such a format is referred to as dot notation. For example, to change the
BackColor property of a form name frmStart, we'd type:

frmStart.BackColor = BLUE

How Names are Used in Object Events

• The names you assign to objects are used by Visual Basic to set up a

framework of event-driven procedures for you to add code to. The format
for each of these subroutines (all object procedures in Visual Basic are
subroutines) is:

Sub ObjectName_Event (Optional Arguments)
 .
 .
End Sub

• Visual Basic provides the Sub line with its arguments (if any) and the End

Sub statement. You provide any needed code.

xx Learn Visual Basic 6.0

Example 1-2

Stopwatch Application - Setting Properties

1. Set properties of the form, three buttons, and six labels:

Form1:
 BorderStyle 1-Fixed Single
 Caption Stopwatch Application
 Name frmStopWatch
Command1:
 Caption &Start Timing
 Name cmdStart
Command2:
 Caption &End Timing
 Name cmdEnd
Command3:
 Caption E&xit
 Name cmdExit
Label1:
 Caption Start Time
Label2:
 Caption End Time
Label3:
 Caption Elapsed Time
Label4:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblStart
Label5:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblEnd
Label6:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblElapsed

In the Caption properties of the three command buttons, notice the
ampersand (&). The ampersand precedes a button's access key.
That is, in addition to clicking on a button to invoke its event, you can
also press its access key (no need for a mouse). The access key is
pressed in conjunction with the Alt key. Hence, to invoke 'Begin
Timing', you can either click the button or press Alt+B. Note in the

 Contents xxi

button captions on the form, the access keys appear with an
underscore (_).

2. Your form should now look something like this:

xxii Learn Visual Basic 6.0

Variables

• Wee now ready to attach code to our application. As objects are added

to the form, Visual Basic automatically builds a framework of all event
procedures. We simply add code to the event procedures we want our
application to respond to. But before we do this, we need to discuss
variables.

• Variables are used by Visual Basic to hold information needed by your

application. Rules used in naming variables:

� No more than 40 characters
� They may include letters, numbers, and underscore (_)
� The first character must be a letter
� You cannot use a reserved word (word needed by Visual Basic)

Visual Basic Data Types

Data Type Suffix
Boolean None
Integer %
Long (Integer) &
Single (Floating) !
Double (Floating) #
Currency @
Date None
Object None
String $
Variant None

Variable Declaration

• There are three ways for a variable to be typed (declared):

1. Default
2. Implicit
3. Explicit

• If variables are not implicitly or explicitly typed, they are assigned the

variant type by default. The variant data type is a special type used by
Visual Basic that can contain numeric, string, or date data.

 Contents xxiii

• To implicitly type a variable, use the corresponding suffix shown above
in the data type table. For example,

TextValue$ = "This is a string"

creates a string variable, while

Amount% = 300

creates an integer variable.

• There are many advantages to explicitly typing variables. Primarily, we
insure all computations are properly done, mistyped variable names are
easily spotted, and Visual Basic will take care of insuring consistency in
upper and lower case letters used in variable names. Because of these
advantages, and because it is good programming practice, we will
explicitly type all variables.

• To explicitly type a variable, you must first determine its scope. There
are four levels of scope:

� Procedure level
� Procedure level, static
� Form and module level
� Global level

• Within a procedure, variables are declared using the Dim statement:

Dim MyInt as Integer
Dim MyDouble as Double
Dim MyString, YourString as String

Procedure level variables declared in this manner do not retain their value
once a procedure terminates.

• To make a procedure level variable retain its value upon exiting the

procedure, replace the Dim keyword with Static:

Static MyInt as Integer
Static MyDouble as Double

xxiv Learn Visual Basic 6.0

• Form (module) level variables retain their value and are available to all
procedures within that form (module). Form (module) level variables are
declared in the declarations part of the general object in the form's
(module's) code window. The Dim keyword is used:

Dim MyInt as Integer
Dim MyDate as Date

• Global level variables retain their value and are available to all procedures

within an application. Module level variables are declared in the
declarations part of the general object of a module's code window. (It is
advisable to keep all global variables in one module.) Use the Global
keyword:

Global MyInt as Integer
Global MyDate as Date

• What happens if you declare a variable with the same name in two or

more places? More local variables shadow (are accessed in preference
to) less local variables. For example, if a variable MyInt is defined as
Global in a module and declared local in a routine MyRoutine, while in
MyRoutine, the local value of MyInt is accessed. Outside MyRoutine, the
global value of MyInt is accessed.

 Contents xxv

• Example of Variable Scope:

 Module1
Global X as Integer

Form1 Form2
Dim Y as Integer Dim Z as Single

Sub Routine1() Sub Routine3()
 Dim A as Double Dim C as String
 . .
 . .
End Sub End Sub

Sub Routine2()
 Static B as Double
 .
 .
End Sub

Procedure Routine1 has access to X, Y, and A (loses value
upon termination)
Procedure Routine2 has access to X, Y, and B (retains value)
Procedure Routine3 has access to X, Z, and C (loses value)

xxvi Learn Visual Basic 6.0

Example 1-3

Stopwatch Application - Attaching Code

All that left to do is attach code to the application. We write code for every
event a response is needed for. In this application, there are three such
events: clicking on each of the command buttons.

1. Double-click anywhere on the form to open the code window. Or, select

iew Code’ from the project window.

2. Click the down arrow in the Object box and select the object named

(general). The Procedure box will show (declarations). Here, you
declare three form level variables:

Option Explicit
Dim StartTime As Variant
Dim EndTime As Variant
Dim ElapsedTime As Variant

The Option Explicit statement forces us to declare all variables. The other

lines establish StartTime, EndTime, and ElapsedTime as variables
global within the form.

3. Select the cmdStart object in the Object box. If the procedure that

appears is not the Click procedure, choose Click from the procedure box.
Type the following code which begins the timing procedure. Note the Sub
and End Sub statements are provided for you:

Sub cmdStart_Click ()
stablish and print starting time
StartTime = Now
lblStart.Caption = Format(StartTime, "hh:mm:ss")
lblEnd.Caption = ""
lblElapsed.Caption = ""
End Sub

In this procedure, once the Start Timing button is clicked, we read the

current time and print it in a label box. We also blank out the other label
boxes. In the code above (and in all code in these notes), any line
beginning with a single quote (‘) is a comment. You decide whether you
want to type these lines or not. They are not needed for proper
application operation.

 Contents xxvii

4. Now, code the cmdEnd button.

Sub cmdEnd_Click ()
ind the ending time, compute the elapsed time
ut both values in label boxes
EndTime = Now
ElapsedTime = EndTime - StartTime
lblEnd.Caption = Format(EndTime, "hh:mm:ss")
lblElapsed.Caption = Format(ElapsedTime, "hh:mm:ss")
End Sub

Here, when the End Timing button is clicked, we read the current time (End

Time), compute the elapsed time, and put both values in their
corresponding label boxes.

5. And, finally the cmdExit button.

Sub cmdExit_Click ()
End
End Sub

This routine simply ends the application once the Exit button is clicked.

6. Did you notice that as you typed in the code, Visual Basic does automatic

syntax checking on what you type (if you made any mistakes, that is)?

7. Run your application by clicking the Run button on the toolbar, or by

pressing <f5>. Pretty easy, wasn’t it?

8. Save your application - see the Primer on the next page. Use the Save

Project As option under the File menu. Make sure you save both the
form and the project files.

xxviii Learn Visual Basic 6.0

9. If you have the time, some other things you may try with the Stopwatch
Application:

A. Try changing the form color and the fonts used in the label

boxes and command buttons.

B. Notice you can press the nd Timing’ button before the tart

Timing’ button. This shouldn’t be so. Change the application
so you can do this. And make it such that you can press
the tart Timing’ until nd Timing’ has been pressed. Hint:
Look at the command button Enabled property.

C. Can you think of how you can continuously display the nd

Time’ and lapsed Time’? This is a little tricky because of the
event-driven nature of Visual Basic. Look at the Timer tool.
Ask me for help on this one.

Quick Primer on Saving Visual Basic Applications:

When saving Visual Basic applications, you need to be concerned with
saving both the forms (.FRM) and modules (.BAS) and the project file (.VBP).
In either case, make sure you are saving in the desired directory. The
current directory is always displayed in the Save window. Use standard
Windows techniques to change the current directory.

There are four Save commands available under the File menu in Visual
Basic:

Save [Form Name] Save the currently selected form or module
with the current name. The selected file is
identified in the Project window.

Save [Form Name] As Like Save File, however you have the option
to change the file name

Save Project Saves all forms and modules in the current
project using their current names and also
saves the project file.

Save Project As Like Save Project, however you have the
option to change file names. When you
choose this option, if you have not saved
your forms or modules, you will also be
prompted to save those files. I always use
this for new projects.

 Contents xxix

xxx Learn Visual Basic 6.0

Exercise 1

Calendar/Time Display

Design a window that displays the current month, day, and year. Also,
display the current time, updating it every second (look into the Timer
control). Make the window look something like a calendar page. Play with
object properties to make it pretty.

My Solution:

Form:

Properties:

Form frmCalendar:
 Caption = My Calendar
 BorderStyle = 1 - Fixed Single

Timer timDisplay:
 Interval = 1000

Label lblDay:
 Caption = Sunday
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

lblDay

lblTime

timDispl

lblMonth

lblNumb

lblYear

 Contents xxxi

Label lblTime:
 Caption = 00:00:00 PM
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

Label lblYear:
 Alignment = 2 - Center
 Caption = 1998
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

Label lblNumber:
 Alignment = 2 - Center
 Caption = 31
 FontName = Arial
 FontBold = True
 FontSize = 72

Label lblMonth:
 Alignment = 2 - Center
 Caption = March
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

Code:

General Declarations:

Option Explicit

timDisplay Timer Event:

Private Sub timDisplay_Timer()
Dim Today As Variant
Today = Now
lblDay.Caption = Format(Today, "dddd")
lblMonth.Caption = Format(Today, "mmmm")
lblYear.Caption = Format(Today, "yyyy")
lblnumber.Caption = Format(Today, "d")
lblTime.Caption = Format(Today, "h:mm:ss ampm")
End Sub

xxxii Learn Visual Basic 6.0

Learn Visual Basic 6.0

2. The Visual Basic Language

Review and Preview

• Last week, we found there were three primary steps involved in

developing an application using Visual Basic:

1. Draw the user interface
2. Assign properties to controls
3. Attach code to events

This week, we are primarily concerned with Step 3, attaching code. We will

become more familiar with moving around in the Code window and learn
some of the elements of the Basic language.

A Brief History of Basic

• Language developed in early 1960's at Dartmouth College:

B (eginner's)
A (All-Purpose)
S (Symbolic)
I (Instruction)
C (Code)

• Answer to complicated programming languages (FORTRAN, Algol,

Cobol ...). First timeshare language.

• In the mid-1970's, two college students write first Basic for a

microcomputer (Altair) - cost $350 on cassette tape. You may have
heard of them: Bill Gates and Paul Allen!

• Every Basic since then essentially based on that early version. Examples

include: GW-Basic, QBasic, QuickBasic.

• Visual Basic was introduced in 1991.

 Contents xxxiii

Visual Basic Statements and Expressions

• The simplest statement is the assignment statement. It consists of a

variable name, followed by the assignment operator (=), followed by some
sort of expression.

 Examples:

 StartTime = Now
 Explorer.Caption = "Captain Spaulding"
 BitCount = ByteCount * 8
 Energy = Mass * LIGHTSPEED ^ 2
 NetWorth = Assets - Liabilities

The assignment statement stores information.

• Statements normally take up a single line with no terminator. Statements

can be stacked by using a colon (:) to separate them. Example:

StartTime = Now : EndTime = StartTime + 10

(Be careful stacking statements, especially with If/End If structures. You
may not get the response you desire.)

• If a statement is very long, it may be continued to the next line using the

continuation character, an underscore (_). Example:

Months = Log(Final * IntRate / Deposit + 1) _
/ Log(1 + IntRate)

• Comment statements begin with the keyword Rem or a single quote (').

For example:

Rem This is a remark
' This is also a remark
x = 2 * y ' another way to write a remark or comment

You, as a programmer, should decide how much to comment your code.
Consider such factors as reuse, your audience, and the legacy of your
code.

xxxiv Learn Visual Basic 6.0

Visual Basic Operators

• The simplest operators carry out arithmetic operations. These

operators in their order of precedence are:

Operator Operation
^ Exponentiation
* / Multiplication and division
\ Integer division (truncates)
Mod Modulus
+ - Addition and subutraction

• Parentheses around expressions can change precedence.

• To concatentate two strings, use the & symbol or the + symbol:

lblTime.Caption = "The current time is" & Format(Now, h:mm”)
txtSample.Text = "Hook this “ + o this”

• There are six comparison operators in Visual Basic:

Operator Comparison
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
= Equal to
<> Not equal to

• The result of a comparison operation is a Boolean value (True or False).

 Contents xxxv

• We will use three logical operators

Operator Operation
Not Logical not
And Logical and
Or Logical or

• The Not operator simply negates an operand.

• The And operator returns a True if both operands are True. Else, it

returns a False.

• The Or operator returns a True if either of its operands is True, else it

returns a False.

• Logical operators follow arithmetic operators in precedence.

Visual Basic Functions

• Visual Basic offers a rich assortment of built-in functions. The on-line

help utility will give you information on any or all of these functions and
their use. Some examples are:

Function Value Returned
Abs Absolute value of a number
Asc ASCII or ANSI code of a character
Chr Character corresponding to a given ASCII or ANSI

code
Cos Cosine of an angle
Date Current date as a text string
Format Date or number converted to a text string
Left Selected left side of a text string
Len Number of characters in a text string
Mid Selected portion of a text string
Now Current time and date
Right Selected right end of a text string
Rnd Random number
Sin Sine of an angle
Sqr Square root of a number
Str Number converted to a text string
Time Current time as a text string
Timer Number of seconds elapsed since midnight
Val Numeric value of a given text string

xxxvi Learn Visual Basic 6.0

A Closer Look at the Rnd Function

• In writing games and learning software, we use the Rnd function to

introduce randomness. This insures different results each time you try a
program. The Visual Basic function Rnd returns a single precision,
random number between 0 and 1 (actually greater than or equal to 0 and
less than 1). To produce random integers (I) between Imin and Imax, use
the formula:

I = Int((Imax - Imin + 1) * Rnd) + Imin

• The random number generator in Visual Basic must be seeded. A Seed

value initializes the generator. The Randomize statement is used to do
this:

Randomize Seed

 If you use the same Seed each time you run your application, the same

sequence of random numbers will be generated. To insure you get
different numbers every time you use your application (preferred for
games), use the Timer function to seed the generator:

Randomize Timer

 Place this statement in the Form_Load event procedure.

• Examples:

 To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

 To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

 Contents xxxvii

Example 2-1

Savings Account

1. Start a new project. The idea of this project is to determine how much

you save by making monthly deposits into a savings account. For those
interested, the mathematical formula used is:

F = D [(1 + I)M - 1] / I

where

 F - Final amount
 D - Monthly deposit amount
 I - Monthly interest rate
 M - Number of months

2. Place 4 label boxes, 4 text boxes, and 2 command buttons on the form. It

should look something like this:

xxxviii Learn Visual Basic 6.0

3. Set the properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Savings Account
 Name frmSavings

Label1:
 Caption Monthly Deposit

Label2:
 Caption Yearly Interest

Label3:
 Caption Number of Months

Label4:
 Caption Final Balance

Text1:
 Text [Blank]
 Name txtDeposit

Text2:
 Text [Blank]
 Name txtInterest

Text3:
 Text [Blank]
 Name txtMonths

Text4:
 Text [Blank]
 Name txtFinal

Command1:
 Caption &Calculate
 Name cmdCalculate

Command2:
 Caption E&xit
 Name cmdExit

 Contents xxxix

Now, your form should look like this:

4. Declare four variables in the general declarations area of your form.

This makes them available to all the form procedures:

 Option Explicit

Dim Deposit As Single
Dim Interest As Single
Dim Months As Single
Dim Final As Single

 The Option Explicit statement forces us to declare all variables.

5. Attach code to the cmdCalculate command button Click event.

 Private Sub cmdCalculate_Click ()

Dim IntRate As Single
ead values from text boxes
Deposit = Val(txtDeposit.Text)
Interest = Val(txtInterest.Text)
IntRate = Interest / 1200
Months = Val(txtMonths.Text)
ompute final value and put in text box
Final = Deposit * ((1 + IntRate) ^ Months - 1) /
IntRate
txtFinal.Text = Format(Final, "#####0.00")
End Sub

xl Learn Visual Basic 6.0

This code reads the three input values (monthly deposit, interest rate,
number of months) from the text boxes, computes the final balance using
the provided formula, and puts that result in a text box.

6. Attach code to the cmdExit command button Click event.

Private Sub cmdExit_Click ()
End
End Sub

7. Play with the program. Make sure it works properly. Save the project.

 Contents xli

Visual Basic Symbolic Constants

• Many times in Visual Basic, functions and objects require data arguments

that affect their operation and return values you want to read and
interpret. These arguments and values are constant numerical data and
difficult to interpret based on just the numerical value. To make these
constants more understandable, Visual Basic assigns names to the most
widely used values - these are called symbolic constants. Appendix I
lists many of these constants.

• As an example, to set the background color of a form named

frmExample to blue, we could type:

frmExample.BackColor = 0xFF0000

or, we could use the symbolic constant for the blue color (vbBlue):

frmExample.BackColor = vbBlue

• It is strongly suggested that the symbolic constants be used instead of the

numeric values, when possible. You should agree that vbBlue means
more than the value 0xFF0000 when selecting the background color in
the above example. You do not need to do anything to define the
symbolic constants - they are built into Visual Basic.

Defining Your Own Constants

• You can also define your own constants for use in Visual Basic. The

format for defining a constant named PI with a value 3.14159 is:

Const PI = 3.14159

• User-defined constants should be written in all upper case letters to

distinguish them from variables. The scope of constants is established
the same way a variables’ scope is. That is, if defined within a procedure,
they are local to the procedure. If defined in the general declarations of a
form, they are global to the form. To make constants global to an
application, use the format:

Global Const PI = 3.14159

within the general declarations area of a module.

xlii Learn Visual Basic 6.0

Visual Basic Branching - If Statements

• Branching statements are used to cause certain actions within a program

if a certain condition is met.

• The simplest is the If/Then statement:

 If Balance - Check < 0 Then Print "You are overdrawn"

Here, if and only if Balance - Check is less than zero, the statement you
are overdrawn” is printed.

• You can also have If/Then/End If blocks to allow multiple statements:

 If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified"
 End If

 In this case, if Balance - Check is less than zero, two lines of information

are printed.

• Or, If/Then/Else/End If blocks:

 If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified"
 Else
 Balance = Balance - Check
 End If

Here, the same two lines are printed if you are overdrawn (Balance -
Check < 0), but, if you are not overdrawn (Else), your new Balance is
computed.

 Contents xliii

• Or, we can add the ElseIf statement:

 If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified"
 ElseIf Balance - Check = 0 Then
 Print "Whew! You barely made it"
 Balance = 0
 Else
 Balance = Balance - Check
 End If

Now, one more condition is added. If your Balance equals the Check
amount (ElseIf Balance - Check = 0), a different message appears.

• In using branching statements, make sure you consider all viable
possibilities in the If/Else/End If structure. Also, be aware that each If and
ElseIf in a block is tested sequentially. The first time an If test is met, the
code associated with that condition is executed and the If block is exited.
If a later condition is also True, it will never be considered.

Key Trapping

• Note in the previous example, there is nothing to prevent the user from

typing in meaningless characters (for example, letters) into the text boxes
expecting numerical data. Whenever getting input from a user, we want
to limit the available keys they can press. The process of intercepting
unacceptable keystrokes is key trapping.

• Key trapping is done in the KeyPress procedure of an object. Such a

procedure has the form (for a text box named txtText):

Sub txtText_KeyPress (KeyAscii as Integer)
 .
 .
 .
End Sub

What happens in this procedure is that every time a key is pressed in the
corresponding text box, the ASCII code for the pressed key is passed to
this procedure in the argument list (i.e. KeyAscii). If KeyAscii is an
acceptable value, we would do nothing. However, if KeyAscii is not
acceptable, we would set KeyAscii equal to zero and exit the procedure.
Doing this has the same result of not pressing a key at all. ASCII values
for all keys are available via the on-line help in Visual Basic. And some

xliv Learn Visual Basic 6.0

keys are also defined by symbolic constants. Where possible, we will use
symbolic constants; else, we will use the ASCII values.

• As an example, say we have a text box (named txtExample) and we only

want to be able to enter upper case letters (ASCII codes 65 through 90,
or, correspondingly, symbolic constants vbKeyA through vbKeyZ). The
key press procedure would look like (the Beep causes an audible tone if
an incorrect key is pressed):

Sub txtExample_KeyPress(KeyAscii as Integer)
 If KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ Then
 Exit Sub
 Else
 KeyAscii = 0
 Beep
 End If
End Sub

• In key trapping, it's advisable to always allow the backspace key (ASCII
code 8; symbolic constant vbKeyBack) to pass through the key press
event. Else, you will not be able to edit the text box properly.

 Contents xlv

Example 2-2

Savings Account - Key Trapping

1. Note the acceptable ASCII codes are 48 through 57 (numbers), 46 (the

decimal point), and 8 (the backspace key). In the code, we use symbolic
constants for the numbers and backspace key. Such a constant does not
exist for the decimal point, so we will define one with the following line in
the general declaration area:

 Const vbKeyDecPt = 46

2. Add the following code to the three procedures: txtDeposit_KeyPress,

txtInterest_KeyPress, and txtMonths_KeyPress.

 Private Sub txtDeposit_KeyPress (KeyAscii As Integer)

nly allow number keys, decimal point, or backspace
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or
KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
Exit Sub

Else
KeyAscii = 0
Beep
End If
End Sub

Private Sub txtInterest_KeyPress (KeyAscii As Integer)
nly allow number keys, decimal point, or backspace
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or
KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
Exit Sub

Else
KeyAscii = 0
Beep
End If
End Sub

xlvi Learn Visual Basic 6.0

Private Sub txtMonths_KeyPress (KeyAscii As Integer)
nly allow number keys, decimal point, or backspace
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or
KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
Exit Sub

Else
KeyAscii = 0
Beep
End If
End Sub

(In the If statements above, note the word processor causes a line
break where there really shouldn be one. That is, there is no line
break between the words Or KeyAscii and = vbKeyDecPt. One
appears due to page margins. In all code in these notes, always look
for such things.)

3. Rerun the application and test the key trapping performance.

 Contents xlvii

Select Case - Another Way to Branch

• In addition to If/Then/Else type statements, the Select Case format can

be used when there are multiple selection possibilities.

• Say we've written this code using the If statement:

 If Age = 5 Then
 Category = "Five Year Old"
 ElseIf Age >= 13 and Age <= 19 Then
 Category = "Teenager"
 ElseIf (Age >= 20 and Age <= 35) Or Age = 50 Or (Age >= 60 and Age

<= 65) Then
 Category = "Special Adult"
 ElseIf Age > 65 Then
 Category = "Senior Citizen"
 Else
 Category = "Everyone Else"
 End If

The corresponding code with Select Case would be:

 Select Case Age
 Case 5
 Category = "Five Year Old"
 Case 13 To 19
 Category = "Teenager"
 Case 20 To 35, 50, 60 To 65
 Category = "Special Adult"
 Case Is > 65
 Category = "Senior Citizen"
 Case Else
 Category = "Everyone Else"
 End Select

Notice there are several formats for the Case statement. Consult on-line
help for discussions of these formats.

xlviii Learn Visual Basic 6.0

The GoTo Statement

• Another branching statement, and perhaps the most hated statement in

programming, is the GoTo statement. However, we will need this to do
Run-Time error trapping. The format is GoTo Label, where Label is a
labeled line. Typing the Label followed by a colon forms labeled lines.

• GoTo Example:

Line10:
 .
 .
GoTo Line10

When the code reaches the GoTo statement, program control transfers to
the line labeled Line10.

Visual Basic Looping

• Looping is done with the Do/Loop format. Loops are used for operations

are to be repeated some number of times. The loop repeats until some
specified condition at the beginning or end of the loop is met.

• Do While/Loop Example:

Counter = 1
Do While Counter <= 1000
 Debug.Print Counter
 Counter = Counter + 1
Loop

This loop repeats as long as (While) the variable Counter is less than or
equal to 1000. Note a Do While/Loop structure will not execute even
once if the While condition is violated (False) the first time through. Also
note the Debug.Print statement. What this does is print the value
Counter in the Visual Basic Debug window. We'll learn more about this
window later in the course.

 Contents xlix

• Do Until/Loop Example:

Counter = 1
Do Until Counter > 1000
 Debug.Print Counter
 Counter = Counter + 1
Loop

This loop repeats Until the Counter variable exceeds 1000. Note a Do
Until/Loop structure will not be entered if the Until condition is already
True on the first encounter.

• Do/Loop While Example:

Sum = 1
Do
 Debug.Print Sum
 Sum = Sum + 3
Loop While Sum <= 50

This loop repeats While the Variable Sum is less than or equal to 50.
Note, since the While check is at the end of the loop, a Do/Loop While
structure is always executed at least once.

• Do/Loop Until Example:

Sum = 1
Do
 Debug.Print Sum
 Sum = Sum + 3
Loop Until Sum > 50

This loop repeats Until Sum is greater than 50. And, like the previous
example, a Do/Loop Until structure always executes at least once.

• Make sure you can always get out of a loop! Infinite loops are never nice.
If you get into one, try Ctrl+Break. That sometimes works - other times
the only way out is rebooting your machine!

• The statement Exit Do will get you out of a loop and transfer program

control to the statement following the Loop statement.

l Learn Visual Basic 6.0

Visual Basic Counting

• Counting is accomplished using the For/Next loop.

Example

For I = 1 to 50 Step 2
 A = I * 2
 Debug.Print A
Next I

In this example, the variable I initializes at 1 and, with each iteration of the
For/Next loop, is incremented by 2 (Step). This looping continues until I
becomes greater than or equal to its final value (50). If Step is not
included, the default value is 1. Negative values of Step are allowed.

• You may exit a For/Next loop using an Exit For statement. This will

transfer program control to the statement following the Next statement.

 Contents li

Example 2-3

Savings Account - Decisions

1. Here, we modify the Savings Account project to allow entering any three

values and computing the fourth. First, add a third command button that
will clear all of the text boxes. Assign the following properties:

 Command3:

Caption Clear &Boxes
Name cmdClear

 The form should look something like this when youe done:

2. Code the cmdClear button Click event:

 Private Sub cmdClear_Click ()

lank out the text boxes
txtDeposit.Text = ""
txtInterest.Text = ""
txtMonths.Text = ""
txtFinal.Text = ""
End Sub

This code simply blanks out the four text boxes when the Clear button is
clicked.

lii Learn Visual Basic 6.0

3. Code the KeyPress event for the txtFinal object:

Private Sub txtFinal_KeyPress (KeyAscii As Integer)
nly allow number keys, decimal point, or backspace
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or
KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then

Exit Sub
Else
KeyAscii = 0
Beep

End If
End Sub

We need this code because we can now enter information into the Final
Value text box.

4. The modified code for the Click event of the cmdCalculate button is:

Private Sub cmdCalculate_Click()
Dim IntRate As Single
Dim IntNew As Single
Dim Fcn As Single, FcnD As Single
ead the four text boxes
Deposit = Val(txtDeposit.Text)
Interest = Val(txtInterest.Text)
IntRate = Interest / 1200
Months = Val(txtMonths.Text)
Final = Val(txtFinal.Text)
etermine which box is blank
ompute that missing value and put in text box
If txtDeposit.Text = "" Then
eposit missing
Deposit = Final / (((1 + IntRate) ^ Months - 1) /
IntRate)
txtDeposit.Text = Format(Deposit, "#####0.00")

ElseIf txtInterest.Text = "" Then
nterest missing - requires iterative solution
IntNew = (Final / (0.5* Months * Deposit) - 1) / Months
Do

IntRate = IntNew
Fcn = (1 + IntRate) ^ Months - Final * IntRate /

Deposit - 1
FcnD = Months * (1 + IntRate) ^ (Months - 1) - Final

/ Deposit
IntNew = IntRate - Fcn / FcnD

Loop Until Abs(IntNew - IntRate) < 0.00001 / 12

 Contents liii

Interest = IntNew * 1200
txtInterest.Text = Format(Interest, "##0.00")

ElseIf txtMonths.Text = "" Then
onths missing
Months = Log(Final * IntRate / Deposit + 1) / Log(1 +
IntRate)
txtMonths.Text = Format(Months, "###.0")

ElseIf txtFinal.Text = "" Then
inal value missing
Final = Deposit * ((1 + IntRate) ^ Months - 1) /
IntRate
txtFinal.Text = Format(Final, "#####0.00")

End If
End Sub

In this code. we first read the text information from all four text boxes and

based on which one is blank, compute the missing information and
display it in the corresponding text box. Solving for missing Deposit,
Months, or Final information is a straightforward manipulation of the
equation given in Example 2-2.

If the Interest value is missing, we have to solve an Mth-order polynomial

using something called Newton-Raphson iteration - a good example of
using a Do loop. Finding the Interest value is straightforward. What we
do is guess at what the interest is, compute a better guess (using
Newton-Raphson iteration), and repeat the process (loop) until the old
guess and the new guess are close to each other. You can see each
step in the code.

5. Test and save your application. Go home and relax.

liv Learn Visual Basic 6.0

Exercise 2-1

Computing a Mean and Standard Deviation

Develop an application that allows the user to input a sequence of numbers.
When done inputting the numbers, the program should compute the mean of
that sequence and the standard deviation. If N numbers are input, with the
ith number represented by xi, the formula for the mean (x) is:

x = (xi
i

N

=
�

1

)/ N

and to compute the standard deviation (s), take the square root of this
equation:

s2 = [N xi
i

N
2

1=
� - (xi

i

N

=
�

1

)2]/[N(N - 1)]

The Greek sigmas in the above equations simply indicate that you add up all
the corresponding elements next to the sigma.

My Solution:

Form:

Label1

Label2

cmdAccep

cmdNew

Label6

Label4

lblNumber

txtInput

cmdComput

cmdExit

lblMean

lblStdDev

 Contents lv

Properties:

Form frmStats:
 Caption = Mean and Standard Deviation

CommandButton cmdExit:
 Caption = E&xit

CommandButton cmdAccept:
 Caption = &Accept Number

CommandButton cmdCompute:
 Caption = &Compute

CommandButton cmdNew:
 Caption = &New Sequence

TextBox txtInput:
 FontName = MS Sans Serif
 FontSize = 12

Label lblStdDev:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 12

Label Label6:
 Caption = Standard Deviation

Label lblMean:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 12

Label Label4:
 Caption = Mean

lvi Learn Visual Basic 6.0

Label lblNumber:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 12

Label Label2:
 Caption = Enter Number

Label Label1:
 Caption = Number of Values

Code:

General Declarations:

Option Explicit
Dim NumValues As Integer
Dim SumX As Single
Dim SumX2 As Single
Const vbKeyMinus = 45
Const vbKeyDecPt = 46

cmdAccept Click Event:

Private Sub cmdAccept_Click()
Dim Value As Single
txtInput.SetFocus
NumValues = NumValues + 1
lblNumber.Caption = Str(NumValues)
et number and sum number and number-squared
Value = Val(txtInput.Text)
SumX = SumX + Value
SumX2 = SumX2 + Value ^ 2
txtInput.Text = ""
End Sub

 Contents lvii

cmdCompute Click Event:

Private Sub cmdCompute_Click()
Dim Mean As Single
Dim StdDev As Single
txtInput.SetFocus
ake sure there are at least two values
If NumValues < 2 Then
Beep
Exit Sub

End If
ompute mean
Mean = SumX / NumValues
lblMean.Caption = Str(Mean)
ompute standard deviation
StdDev = Sqr((NumValues * SumX2 - SumX ^ 2) / (NumValues
* (NumValues - 1)))
lblStdDev.Caption = Str(StdDev)
End Sub

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Initialize all variables
txtInput.SetFocus
NumValues = 0
lblNumber.Caption = "0"
txtInput.Text = ""
lblMean.Caption = ""
lblStdDev.Caption = ""
SumX = 0
SumX2 = 0
End Sub

lviii Learn Visual Basic 6.0

txtInput KeyPress Event:

Private Sub txtInput_KeyPress(KeyAscii As Integer)
'Only allow numbers, minus sign, decimal point,
backspace, return keys
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or
KeyAscii = vbKeyMinus Or KeyAscii = vbKeyDecPt Or
KeyAscii = vbKeyBack Then

Exit Sub
ElseIf KeyAscii = vbKeyReturn Then

Call cmdAccept_Click
Else

KeyAscii = 0
End If
End Sub

 Contents lix

Exercise 2-2

Flash Card Addition Problems

Write an application that generates random addition problems. Provide
some kind of feedback and scoring system as the problems are answered.

My Solution:

Form:

Properties:

Form frmAdd:
 BorderStyle = 1 - Fixed Single
 Caption = Flash Card Addition

CommandButton cmdNext:
 Caption = &Next Problem
 Enabled = False

CommandButton cmdExit:
 Caption = E&xit

TextBox txtAnswer:
 FontName = Arial
 FontSize = 48
 MaxLength = 2

lblNum1

Label2

lblNum2 Label4

txtAnswer

Label1

lblScore

lblMessag

cmdNex cmdExit

lx Learn Visual Basic 6.0

Label lblMessage:
 Alignment = 2 - Center
 BackColor = &H00FFFF00& (Cyan)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 24
 FontItalic = True

Label lblScore:
 Alignment = 2 - Center
 BackColor = &H0000FFFF& (Yellow)
 BorderStyle = 1 - Fixed Single
 Caption = 0
 FontName = Times New Roman
 FontBold = True
 FontSize = 36

Label Label1:
 Alignment = 2 - Center
 Caption = Score:
 FontName = MS Sans Serif
 FontSize = 18

Label Label4:
 Alignment = 2 - Center
 Caption = =
 FontName = Arial
 FontSize = 48

Label lblNum2:
 Alignment = 2 - Center
 FontName = Arial
 FontSize = 48

Label Label2:
 Alignment = 2 - Center
 Caption = +
 FontName = Arial
 FontSize = 48

Label lblNum1:
 Alignment = 2 - Center
 FontName = Arial
 FontSize = 48

 Contents lxi

Code:

General Declarations:

Option Explicit
Dim Sum As Integer
Dim NumProb As Integer, NumRight As Integer

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNext Click Event:

Private Sub cmdNext_Click()
'Generate next addition problem
Dim Number1 As Integer
Dim Number2 As Integer
txtAnswer.Text = ""
lblMessage.Caption = ""
NumProb = NumProb + 1
'Generate random numbers for addends
Number1 = Int(Rnd * 21)
Number2 = Int(Rnd * 21)
lblNum1.Caption = Format(Number1, "#0")
lblNum2.Caption = Format(Number2, "#0")
'Find sum
Sum = Number1 + Number2
cmdNext.Enabled = False
txtAnswer.SetFocus
End Sub

Form Activate Event:

Private Sub Form_Activate()
Call cmdNext_Click
End Sub

lxii Learn Visual Basic 6.0

Form Load Event:

Private Sub Form_Load()
Randomize Timer
NumProb = 0
NumRight = 0
End Sub

txtAnswer KeyPress Event:

Private Sub txtAnswer_KeyPress(KeyAscii As Integer)
Dim Ans As Integer
'Check for number only input and for return key
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or
KeyAscii = vbKeyBack Then

Exit Sub
ElseIf KeyAscii = vbKeyReturn Then
'Check answer

Ans = Val(txtAnswer.Text)
If Ans = Sum Then

NumRight = NumRight + 1
lblMessage.Caption = "That's correct!"

Else
lblMessage.Caption = "Answer is " + Format(Sum, "#0")

End If
lblScore.Caption = Format(100 * NumRight / NumProb,

"##0")
cmdNext.Enabled = True
cmdNext.SetFocus

Else
KeyAscii = 0

End If
End Sub

 Contents lxiii

This page intentionally not left blank.

lxiv Learn Visual Basic 6.0

Learn Visual Basic 6.0

3. Exploring the Visual Basic Toolbox

Review and Preview

• In this class, we begin a journey where we look at each tool in the Visual

Basic toolbox. We will revisit some tools we already know and learn a lot
of new tools. First, though, we look at an important Visual Basic
functions.

The Message Box

• One of the best functions in Visual Basic is the message box. The

message box displays a message, optional icon, and selected set of
command buttons. The user responds by clicking a button.

• The statement form of the message box returns no value (it simply

displays the box):

MsgBox Message, Type, Title

where

Message Text message to be displayed
Type Type of message box (discussed in a bit)
Title Text in title bar of message box

You have no control over where the message box appears on the screen.

• The function form of the message box returns an integer value
(corresponding to the button clicked by the user). Example of use
(Response is returned value):

Dim Response as Integer
Response = MsgBox(Message, Type, Title)

 Contents lxv

• The Type argument is formed by summing four values corresponding to
the buttons to display, any icon to show, which button is the default
response, and the modality of the message box.

• The first component of the Type value specifies the buttons to display:

Value Meaning Symbolic Constant
0 OK button only vbOKOnly
1 OK/Cancel buttons vbOKCancel
2 Abort/Retry/Ignore buttons vbAbortRetryIgnore
3 Yes/No/Cancel buttons vbYesNoCancel
4 Yes/No buttons vbYesNo
5 Retry/Cancel buttons vbRetryCancel

• The second component of Type specifies the icon to display in the

message box:

Value Meaning Symbolic Constant
0 No icon (None)
16 Critical icon vbCritical
32 Question mark vbQuestion
48 Exclamation point vbExclamation
64 Information icon vbInformation

• The third component of Type specifies which button is default (i.e.

pressing Enter is the same as clicking the default button):

Value Meaning Symbolic Constant
0 First button default vbDefaultButton1
256 Second button default vbDefaultButton2
512 Third button default vbDefaultButton3

• The fourth and final component of Type specifies the modality:

Value Meaning Symbolic Constant
0 Application modal vbApplicationModal
4096 System modal vbSystemModal

If the box is Application Modal, the user must respond to the box before
continuing work in the current application. If the box is System Modal, all
applications are suspended until the user responds to the message box.

• Note for each option in Type, there are numeric values listed and

symbolic constants. Recall, it is strongly suggested that the symbolic
constants be used instead of the numeric values. You should agree that
vbOKOnly means more than the number 0 when selecting the button
type.

lxvi Learn Visual Basic 6.0

 Contents lxvii

• The value returned by the function form of the message box is related to
the button clicked:

Value Meaning Symbolic Constant
1 OK button selected vbOK
2 Cancel button selected vbCancel
3 Abort button selected vbAbort
4 Retry button selected vbRetry
5 Ignore button selected vbIgnore
6 Yes button selected vbYes
7 No button selected vbNo

• Message Box Example:

MsgBox his is an example of a message box”, vbOKCancel +
vbInformation, message Box Example”

• You've seen message boxes if you've ever used a Windows application.
Think of all the examples you've seen. For example, message boxes are
used to ask you if you wish to save a file before exiting and to warn you if
a disk drive is not ready.

Object Methods

• In previous work, we have seen that each object has properties and

events associated with it. A third concept associated with objects is the
method. A method is a procedure or function that imparts some action to
an object.

• As we move through the toolbox, when appropriate, we'll discuss object

methods. Methods are always enacted at run-time in code. The format
for invoking a method is:

ObjectName.Method {optional arguments}

Note this is another use of the dot notation.

lxviii Learn Visual Basic 6.0

The Form Object

• The Form is where the user interface is drawn. It is central to the

development of Visual Basic applications.

• Form Properties:

Appearance Selects 3-D or flat appearance.
BackColor Sets the form background color.
BorderStyle Sets the form border to be fixed or

sizeable.
Caption Sets the form window title.
Enabled If True, allows the form to respond to

mouse and keyboard events; if False,
disables form.

Font Sets font type, style, size.
ForeColor Sets color of text or graphics.
Picture Places a bitmap picture in the form.
Visible If False, hides the form.

• Form Events:

Activate Form_Activate event is triggered when form
becomes the active window.

Click Form_Click event is triggered when user clicks
on form.

DblClick Form_DblClick event is triggered when user
double-clicks on form.

Load Form_Load event occurs when form is loaded.
This is a good place to initialize variables and
set any run-time properties.

• Form Methods:

Cls Clears all graphics and text from form. Does not
clear any objects.

Print Prints text string on the form.

Examples

frmExample.Cls ' clears the form
frmExample.Print "This will print on the form"

 Contents lxix

Command Buttons

• We've seen the command button before. It is probably the most widely

used control. It is used to begin, interrupt, or end a particular process.

• Command Button Properties:

Appearance Selects 3-D or flat appearance.
Cancel Allows selection of button with Esc key (only one

button on a form can have this property True).
Caption String to be displayed on button.
Default Allows selection of button with Enter key (only

one button on a form can have this property
True).

Font Sets font type, style, size.

• Command Button Events:

Click Event triggered when button is selected
either by clicking on it or by pressing the
access key.

Label Boxes

• A label box is a control you use to display text that a user can't edit

directly. We've seen, though, in previous examples, that the text of a
label box can be changed at run-time in response to events.

• Label Properties:

Alignment Aligns caption within border.
Appearance Selects 3-D or flat appearance.
AutoSize If True, the label is resized to fit the text specified

by the caption property. If False, the label will
remain the size defined at design time and the
text may be clipped.

BorderStyle Determines type of border.
Caption String to be displayed in box.
Font Sets font type, style, size.
word-wrap Works in conjunction with AutoSize property. If

AutoSize = True, word-wrap = True, then the text

lxx Learn Visual Basic 6.0

will wrap and label will expand vertically to fit the
Caption. If AutoSize = True, word-wrap = False,
then the text will not wrap and the label expands
horizontally to fit the Caption. If AutoSize = False,
the text will not wrap regardless of word-wrap
value.

• Label Events:

Click Event triggered when user clicks on a label.
DblClick Event triggered when user double-clicks on a label.

Text Boxes

• A text box is used to display information entered at design time, by a

user at run-time, or assigned within code. The displayed text may be
edited.

• Text Box Properties:

Appearance Selects 3-D or flat appearance.
BorderStyle Determines type of border.
Font Sets font type, style, size.
MaxLength Limits the length of displayed text (0 value

indicates unlimited length).
MultiLine Specifies whether text box displays single line

or multiple lines.
PasswordChar Hides text with a single character.
ScrollBars Specifies type of displayed scroll bar(s).
SelLength Length of selected text (run-time only).
SelStart Starting position of selected text (run-time

only).
SelText Selected text (run-time only).
Tag Stores a string expression.
Text Displayed text.

 Contents lxxi

• Text Box Events:

Change Triggered every time the Text property changes.
LostFocus Triggered when the user leaves the text box. This

is a good place to examine the contents of a text
box after editing.

KeyPress Triggered whenever a key is pressed. Used for
key trapping, as seen in last class.

• Text Box Methods:

SetFocus Places the cursor in a specified text box.

Example

txtExample.SetFocus ' moves cursor to box named txtExample

lxxii Learn Visual Basic 6.0

Example 3-1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a

password. If correct, a message box appears to validate the user. If
incorrect, other options are provided.

2. Place a two command buttons, a label box, and a text box on your form

so it looks something like this:

3. Set the properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Password Validation
 Name frmPassword
Label1:
 Alignment 2-Center
 BorderStyle 1-Fixed Single
 Caption Please Enter Your Password:
 FontSize 10
 FontStyle Bold
Text1:
 FontSize 14
 FontStyle Regular
 Name txtPassword
 PasswordChar *
 Tag [Whatever you choose as a password]
 Text [Blank]
Command1:
 Caption &Validate
 Default True
 Name cmdValid

 Contents lxxiii

Command2:
 Cancel True
 Caption E&xit
 Name cmdExit

Your form should now look like this:

4. Attach the following code to the cmdValid_Click event.

Private Sub cmdValid_Click()
'This procedure checks the input password
Dim Response As Integer
If txtPassword.Text = txtPassword.Tag Then
'If correct, display message box

MsgBox "You've passed security!", vbOKOnly +
vbExclamation, "Access Granted"

Else
'If incorrect, give option to try again

Response = MsgBox("Incorrect password", vbRetryCancel +
vbCritical, "Access Denied")
If Response = vbRetry Then

txtPassword.SelStart = 0
txtPassword.SelLength = Len(txtPassword.Text)

Else
End

End If
End If
txtPassword.SetFocus
End Sub

lxxiv Learn Visual Basic 6.0

This code checks the input password to see if it matches the stored value. If
so, it prints an acceptance message. If incorrect, it displays a message
box to that effect and asks the user if they want to try again. If Yes
(Retry), another try is granted. If No (Cancel), the program is ended.
Notice the use of SelLength and SelStart to highlight an incorrect entry.
This allows the user to type right over the incorrect response.

5. Attach the following code to the Form_Activate event.

Private Sub Form_Activate()
txtPassword.SetFocus
End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_Click()
End
End Sub

7. Try running the program. Try both options: input correct password (note

it is case sensitive) and input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the
code to allow the user to have just TRYMAX attempts to get the
correct password. After the final try, inform the user you are logging
him/her off. Youl also need a variable that counts the number of
tries (make it a Static variable).

 Contents lxxv

Check Boxes

• Check boxes provide a way to make choices from a list of potential

candidates. Some, all, or none of the choices in a group may be
selected.

• Check Box Properties:

Caption Identifying text next to box.
Font Sets font type, style, size.
Value Indicates if unchecked (0, vbUnchecked), checked

(1, vbChecked), or grayed out (2, vbGrayed).

• Check Box Events:

Click Triggered when a box is clicked. Value property is
automatically changed by Visual Basic.

Option Buttons

• Option buttons provide the capability to make a mutually exclusive

choice among a group of potential candidate choices. Hence, option
buttons work as a group, only one of which can have a True (or selected)
value.

• Option Button Properties:

Caption Identifying text next to button.
Font Sets font type, style, size.
Value Indicates if selected (True) or not (False). Only one option button

in a group can be True. One button in each group of option
buttons should always be initialized to True at design time.

• Option Button Events:

Click Triggered when a button is clicked. Value
property is automatically changed by Visual
Basic.

lxxvi Learn Visual Basic 6.0

Arrays

• Up to now, we've only worked with regular variables, each having its own

unique name. Visual Basic has powerful facilities for handling multi-
dimensional variables, or arrays. For now, we'll only use single, fixed-
dimension arrays.

• Arrays are declared in a manner identical to that used for regular

variables. For example, to declare an integer array named 'Items', with
dimension 9, at the procedure level, we use:

Dim Items(9) as Integer

If we want the array variables to retain their value upon leaving a
procedure, we use the keyword Static:

Static Items(9) as Integer

At the form or module level, in the general declaration area of the Code
window, use:

Dim Items(9) as Integer

And, at the module level, for a global declaration, use:

Global Items(9) as Integer

• The index on an array variable begins at 0 and ends at the dimensioned

value. For example, the Items array in the above examples has ten
elements, ranging from Items(0) to Items(9). You use array variables just
like any other variable - just remember to include its name and its index.
For example, to set Item(5) equal to 7, you simply write:

 Item(5) = 7

 Contents lxxvii

Control Arrays

• With some controls, it is very useful to define control arrays - it depends

on the application. For example, option buttons are almost always
grouped in control arrays.

• Control arrays are a convenient way to handle groups of controls that

perform a similar function. All of the events available to the single control
are still available to the array of controls, the only difference being an
argument indicating the index of the selected array element is passed to
the event. Hence, instead of writing individual procedures for each
control (i.e. not using control arrays), you only have to write one
procedure for each array.

• Another advantage to control arrays is that you can add or delete array

elements at run-time. You cannot do that with controls (objects) not in
arrays. Refer to the Load and Unload statements in on-line help for the
proper way to add and delete control array elements at run-time.

• Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the
control using the editor, then paste it on the form. Visual Basic will
pop-up a dialog box that will ask you if you wish to create a control
array. Respond yes and the array is created.

2. Create all the controls you wish to have in the array. Assign the

desired control array name to the first control. Then, try to name the
second control with the same name. Visual Basic will prompt you,
asking if you want to create a control array. Answer yes. Once the
array is created, rename all remaining controls with that name.

• Once a control array has been created and named, their name and index

refer to elements of the array. For example, to set the Caption property
of element 6 of a label box array named lblExample, we would use:

lblExample(6).Caption = his is an example”

We'll use control arrays in the next example.

lxxviii Learn Visual Basic 6.0

Frames

• We've seen that both option buttons and check boxes work as a group.

Frames provide a way of grouping related controls on a form. And, in the
case of option buttons, frames affect how such buttons operate.

• To group controls in a frame, you first draw the frame. Then, the

associated controls must be drawn in the frame. This allows you to move
the frame and controls together. And, once a control is drawn within a
frame, it can be copied and pasted to create a control array within that
frame. To do this, first click on the object you want to copy. Copy the
object. Then, click on the frame. Paste the object. You will be asked if
you want to create a control array. Answer Yes.

•
• Drawing the controls outside the frame and dragging them in, copying

them into a frame, or drawing the frame around existing controls will not
result in a proper grouping. It is perfectly acceptable to draw frames
within other frames.

• As mentioned, frames affect how option buttons work. Option buttons

within a frame work as a group, independently of option buttons in other
frames. Option buttons on the form, and not in frames, work as another
independent group. That is, the form is itself a frame by default. We'll see
this in the next example.

• It is important to note that an independent group of option buttons is

defined by physical location within frames, not according to naming
convention. That is, a control array of option buttons does not work as an
independent group just because it is a control array. It would only work
as a group if it were the only group of option buttons within a frame or on
the form. So, remember physical location, and physical location only,
dictates independent operation of option button groups.

• Frame Properties:

Caption Title information at top of frame.
Font Sets font type, style, size.

 Contents lxxix

Example 3-2

Pizza Order

1. Start a new project. We'll build a form where a pizza order can be
entered by simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the second,

draw two option buttons, and in the third, draw six check boxes. Draw two
option buttons on the form. Add two command buttons. Make things look
something like this.

3. Set the properties of the form and each control.

Form1:
 BorderStyle 1-Fixed Single
 Caption Pizza Order
 Name frmPizza

Frame1:
 Caption Size

Frame2:
 Caption Crust Type

Frame3
 Caption Toppings

lxxx Learn Visual Basic 6.0

Option1:
 Caption Small
 Name optSize
 Value True

Option2:
 Caption Medium
 Name optSize (yes, create a control array)

Option3:
 Caption Large
 Name optSize

Option4:
 Caption Thin Crust
 Name optCrust
 Value True

Option5:
 Caption Thick Crust
 Name optCrust (yes, create a control array)

Option6:
 Caption Eat In
 Name optWhere
 Value True

Option7:
 Caption Take Out
 Name optWhere (yes, create a control array)

Check1:
 Caption Extra Cheese
 Name chkTop

Check2:
 Caption Mushrooms
 Name chkTop (yes, create a control array)

Check3:
 Caption Black Olives
 Name chkTop

 Contents lxxxi

Check4:
 Caption Onions
 Name chkTop

Check5:
 Caption Green Peppers
 Name chkTop

Check6:
 Caption Tomatoes
 Name chkTop

Command1:
 Caption &Build Pizza
 Name cmdBuild

Command2:
 Caption E&xit
 Name cmdExit

The form should look like this now:

4. Declare the following variables in the general declarations area:

Option Explicit
Dim PizzaSize As String
Dim PizzaCrust As String
Dim PizzaWhere As String

This makes the size, crust, and location variables global to the form.

lxxxii Learn Visual Basic 6.0

5. Attach this code to the Form_Load procedure. This initializes the pizza
size, crust, and eating location.

Private Sub Form_Load()
'Initialize pizza parameters
PizzaSize = "Small"
PizzaCrust = "Thin Crust"
PizzaWhere = "Eat In"
End Sub

Here, the global variables are initialized to their default values, corresponding

to the default option buttons.

6. Attach this code to the three option button array Click events. Note the

use of the Index variable:

Private Sub optSize_Click(Index As Integer)
ead pizza size
PizzaSize = optSize(Index).Caption
End Sub

Private Sub optCrust_Click(Index As Integer)
ead crust type
PizzaCrust = optCrust(Index).Caption
End Sub

Private Sub optWhere_Click(Index As Integer)
ead pizza eating location
PizzaWhere = optWhere(Index).Caption
End Sub

In each of these routines, when an option button is clicked, the value of the
corresponding button caption is loaded into the respective variable.

 Contents lxxxiii

7. Attach this code to the cmdBuild_Click event.

Private Sub cmdBuild_Click()
'This procedure builds a message box that displays your

pizza type
Dim Message As String
Dim I As Integer
Message = PizzaWhere + vbCr
Message = Message + PizzaSize + " Pizza" + vbCr
Message = Message + PizzaCrust + vbCr
For I = 0 To 5

If chkTop(I).Value = vbChecked Then Message = Message +
chkTop(I).Caption + vbCr

Next I
MsgBox Message, vbOKOnly, "Your Pizza"
End Sub

This code forms the first part of a message for a message box by

concatenating the pizza size, crust type, and eating location (vbCr is a
symbolic constant representing a arriage return’ that puts each piece of
ordering information on a separate line). Next, the code cycles through
the six topping check boxes and adds any checked information to the
message. The code then displays the pizza order in a message box.

8. Attach this code to the cmdExit_Click event.

Private Sub cmdExit_Click()
End
End Sub

9. Get the application working. Notice how the different selection buttons

work in their individual groups. Save your project.

10. If you have time, try these modifications:

A. Add a new program button that resets the order form to the initial

default values. Youl have to reinitialize the three global
variables, reset all check boxes to unchecked, and reset all three
option button groups to their default values.

B. Modify the code so that if no toppings are selected, the message

heese Only” appears on the order form. Youl need to figure
out a way to see if no check boxes were checked.

lxxxiv Learn Visual Basic 6.0

List Boxes

• A list box displays a list of items from which the user can select one or

more items. If the number of items exceeds the number that can be
displayed, a scroll bar is automatically added.

• List Box Properties:

Appearance Selects 3-D or flat appearance.
List Array of items in list box.
ListCount Number of items in list.
ListIndex The number of the most recently selected item in

list. If no item is selected, ListIndex = -1.
MultiSelect Controls how items may be selected (0-no

multiple selection allowed, 1-multiple selection
allowed, 2-group selection allowed).

Selected Array with elements set equal to True or False,
depending on whether corresponding list item is
selected.

Sorted True means items are sorted in 'ASCII' order, else
items appear in order added.

Text Text of most recently selected item.

• List Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

• List Box Methods:

AddItem Allows you to insert item in list.
Clear Removes all items from list box.
RemoveItem Removes item from list box, as identified by index

of item to remove.

Examples

lstExample.AddItem "This is an added item" ' adds text string to list
lstExample.Clear ' clears the list box
lstExample.RemoveItem 4 ' removes lstExample.List(4) from list box

 Contents lxxxv

• Items in a list box are usually initialized in a Form_Load procedure. It's
always a good idea to Clear a list box before initializing it.

• You've seen list boxes before. In the standard 'Open File' window, the

Directory box is a list box with MultiSelect equal to zero.

Combo Boxes

• The combo box is similar to the list box. The differences are a combo

box includes a text box on top of a list box and only allows selection of
one item. In some cases, the user can type in an alternate response.

• Combo Box Properties:

Combo box properties are nearly identical to those of the list box, with the
deletion of the MultiSelect property and the addition of a Style property.

Appearance Selects 3-D or flat appearance.
List Array of items in list box portion.
ListCount Number of items in list.
ListIndex The number of the most recently selected item

in list. If no item is selected, ListIndex = -1.
Sorted True means items are sorted in 'Ascii' order,

else items appear in order added.
Style Selects the combo box form.
 Style = 0, Dropdown combo; user can change

selection.
 Style = 1, Simple combo; user can change

selection.
 Style = 2, Dropdown combo; user cannot

change selection.
Text Text of most recently selected item.

• Combo Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-

clicked. Primary way used to process selection.

lxxxvi Learn Visual Basic 6.0

• Combo Box Methods:

AddItem Allows you to insert item in list.
Clear Removes all items from list box.
RemoveItem Removes item from list box, as identified by

index of item to remove.

Examples

cboExample.AddItem "This is an added item" ' adds text string to list
cboExample.Clear ' clears the combo box
cboExample.RemoveItem 4 ' removes cboExample.List(4) from list

box

• You've seen combo boxes before. In the standard 'Open File' window,

the File Name box is a combo box of Style 2, while the Drive box is a
combo box of Style 3.

 Contents lxxxvii

Example 3-3

Flight Planner

1. Start a new project. In this example, you select a destination city, a seat

location, and a meal preference for airline passengers.

2. Place a list box, two combo boxes, three label boxes and two command

buttons on the form. The form should appear similar to this:

3. Set the form and object properties:

Form1:
 BorderStyle 1-Fixed Single
 Caption Flight Planner
 Name frmFlight

List1:
 Name lstCities
 Sorted True

Combo1:
 Name cboSeat
 Style 2-Dropdown List

lxxxviii Learn Visual Basic 6.0

Combo2:
 Name cboMeal
 Style 1-Simple
 Text [Blank]

(After setting properties for this combo box, resize it until it is large

enough to hold 4 to 5 entries.)

Label1:
 Caption Destination City

Label2:
 Caption Seat Location

Label3:
 Caption Meal Preference

Command1:
 Caption &Assign
 Name cmdAssign

Command2:
 Caption E&xit
 Name cmdExit

Now, the form should look like this:

 Contents lxxxix

4. Attach this code to the Form_Load procedure:

Private Sub Form_Load()
dd city names to list box
lstCities.Clear
lstCities.AddItem "San Diego"
lstCities.AddItem "Los Angeles"
lstCities.AddItem "Orange County"
lstCities.AddItem "Ontario"
lstCities.AddItem "Bakersfield"
lstCities.AddItem "Oakland"
lstCities.AddItem "Sacramento"
lstCities.AddItem "San Jose"
lstCities.AddItem "San Francisco"
lstCities.AddItem "Eureka"
lstCities.AddItem "Eugene"
lstCities.AddItem "Portland"
lstCities.AddItem "Spokane"
lstCities.AddItem "Seattle"
lstCities.ListIndex = 0

dd seat types to first combo box
cboSeat.AddItem "Aisle"
cboSeat.AddItem "Middle"
cboSeat.AddItem "Window"
cboSeat.ListIndex = 0

dd meal types to second combo box
cboMeal.AddItem "Chicken"
cboMeal.AddItem "Mystery Meat"
cboMeal.AddItem "Kosher"
cboMeal.AddItem "Vegetarian"
cboMeal.AddItem "Fruit Plate"
cboMeal.Text = "No Preference"
End Sub

This code simply initializes the list box and the list box portions of the two

combo boxes.

xc Learn Visual Basic 6.0

5. Attach this code to the cmdAssign_Click event:

Private Sub cmdAssign_Click()
vaild message box that gives your assignment
Dim Message As String
Message = "Destination: " + lstCities.Text + vbCr
Message = Message + "Seat Location: " + cboSeat.Text +

vbCr
Message = Message + "Meal: " + cboMeal.Text + vbCr
MsgBox Message, vbOKOnly + vbInformation, "Your

Assignment"
End Sub

When the Assign button is clicked, this code forms a message box message
by concatenating the selected city (from the list box lstCities), seat
choice (from cboSeat), and the meal preference (from cboMeal).

6. Attach this code to the cmdExit_Click event:

Private Sub cmdExit_Click()
End
End Sub

7. Run the application. Save the project.

 Contents xci

Exercise 3

Customer Database Input Screen

A new sports store wants you to develop an input screen for its customer
database. The required input information is:

1. Name
2. Age
3. City of Residence
4. Sex (Male or Female)
5. Activities (Running, Walking, Biking, Swimming, Skiing and/or In-

Line Skating)
6. Athletic Level (Extreme, Advanced, Intermediate, or Beginner)

Set up the screen so that only the Name and Age (use text boxes) and,
perhaps, City (use a combo box) need to be typed; all other inputs should be
set with check boxes and option buttons. When a screen of information is
complete, display the summarized profile in a message box. This profile
message box should resemble this:

xcii Learn Visual Basic 6.0

My Solution:

Form:

Properties:

Form frmCustomer:
 BorderStyle = 1 - Fixed Single
 Caption = Customer Profile

CommandButton cmdExit:
 Caption = E&xit

Frame Frame3:
 Caption = City of Residence
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

ComboBox cboCity:
 Sorted = True
 Style = 1 - Simple Combo

cmdShow

cmdExit

cboCity

txtAge

Frame4 optLevelchkActFrame2

Frame1

optSex

Frame3

Label1

txtName

cmdNew

Label2

 Contents xciii

CommandButton cmdNew:
 Caption = &New Profile

CommandButton cmdShow:
 Caption = &Show Profile

Frame Frame4:
 Caption = Athletic Level
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optLevel:
 Caption = Beginner
 Index = 3

OptionButton optLevel:
 Caption = Intermediate
 Index = 2
 Value = True

OptionButton optLevel:
 Caption = Advanced
 Index = 1

OptionButton optLevel:
 Caption = Extreme
 Index = 0

Frame Frame1:
 Caption = Sex
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optSex:
 Caption = Female
 Index = 1

OptionButton optSex:
 Caption = Male
 Index = 0
 Value = True

xciv Learn Visual Basic 6.0

Frame Frame2:
 Caption = Activities
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

CheckBox chkAct:
 Caption = In-Line Skating
 Index = 5

CheckBox chkAct:
 Caption = Skiing
 Index = 4

CheckBox chkAct:
 Caption = Swimming
 Index = 3

CheckBox chkAct:
 Caption = Biking
 Index = 2

CheckBox chkAct:
 Caption = Walking
 Index = 1

CheckBox chkAct:
 Caption = Running
 Index = 0

TextBox txtName:
 FontName = MS Sans Serif
 FontSize = 12

Label Label1:
 Caption = Name
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

TextBox txtAge:
 FontName = MS Sans Serif
 FontSize = 12

 Contents xcv

Label Label2:
 Caption = Age
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

Code:

General Declarations:

Option Explicit
Dim Activity As String

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Blank out name and reset check boxes
Dim I As Integer
txtName.Text = ""
txtAge.Text = ""
For I = 0 To 5

chkAct(I).Value = vbUnchecked
Next I
End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()
Dim NoAct As Integer, I As Integer
Dim Msg As String, Pronoun As String

'Check to make sure name entered
If txtName.Text = "" Then

MsgBox "The profile requires a name.", vbOKOnly +
vbCritical, "No Name Entered"

Exit Sub
End If

xcvi Learn Visual Basic 6.0

'Check to make sure age entered
If txtAge.Text = "" Then

MsgBox "The profile requires an age.", vbOKOnly +
vbCritical, "No Age Entered"

Exit Sub
End If

'Put together customer profile message
Msg = txtName.Text + " is" + Str$(txtAge.Text) + " years
old." + vbCr
If optSex(0).Value = True Then Pronoun = "He " Else
Pronoun = "She "
Msg = Msg + Pronoun + "lives in " + cboCity.Text + "." +
vbCr
Msg = Msg + Pronoun + "is a"
If optLevel(3).Value = False Then Msg = Msg + "n " Else
Msg = Msg + " "
Msg = Msg + Activity + " level athlete." + vbCr
NoAct = 0
For I = 0 To 5

If chkAct(I).Value = vbChecked Then NoAct = NoAct + 1
Next I
If NoAct > 0 Then
Msg = Msg + "Activities include:" + vbCr
For I = 0 To 5
If chkAct(I).Value = vbChecked Then Msg = Msg +

String$(10, 32) + chkAct(I).Caption + vbCr
Next I

Else
Msg = Msg + vbCr

End If
MsgBox Msg, vbOKOnly, "Customer Profile"
End Sub

Form Load Event:

Private Sub Form_Load()
'Load combo box with potential city names
cboCity.AddItem "Seattle"
cboCity.Text = "Seattle"
cboCity.AddItem "Bellevue"
cboCity.AddItem "Kirkland"
cboCity.AddItem "Everett"
cboCity.AddItem "Mercer Island"
cboCity.AddItem "Renton"
cboCity.AddItem "Issaquah"
cboCity.AddItem "Kent"
cboCity.AddItem "Bothell"
cboCity.AddItem "Tukwila"

 Contents xcvii

cboCity.AddItem "West Seattle"
cboCity.AddItem "Edmonds"
cboCity.AddItem "Tacoma"
cboCity.AddItem "Federal Way"
cboCity.AddItem "Burien"
cboCity.AddItem "SeaTac"
cboCity.AddItem "Woodinville"
Activity = "intermediate"
End Sub

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)
etermine activity level
Select Case Index
Case 0

Activity = "extreme"
Case 1

Activity = "advanced"
Case 2

Activity = "intermediate"
Case 3

Activity = "beginner"
End Select
End Sub

txtAge KeyPress Event:

Private Sub txtAge_KeyPress(KeyAscii As Integer)
'Only allow numbers for age
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or
KeyAscii = vbKeyBack Then

Exit Sub
Else

KeyAscii = 0
End If
End Sub

xcviii Learn Visual Basic 6.0

This page intentionally not left blank.

 Contents xcix

Learn Visual Basic 6.0

4. More Exploration of the Visual Basic Toolbox

Review and Preview

• In this class, we continue looking at tools in the Visual Basic toolbox. We will

look at some drawing tools, scroll bars, and tools that allow direct interaction
with drives, directories, and files. In the examples, try to do as much of the
building and programming of the applications you can with minimal reference to
the notes. This will help you build your programming skills.

Display Layers

• In this class, we will look at our first graphic type controls: line tools, shape

tools, picture boxes, and image boxes. And, with this introduction, we need to
discuss the idea of display layers.

• Items shown on a form are not necessarily all on the same layer of display. A

form's display is actually made up of three layers as sketched below. All
information displayed directly on the form (by printing or drawing with graphics
methods) appears on the bottom-layer. Information from label boxes, image
boxes, line tools, and shape tools, appears on the middle-layer. And, all other
objects are displayed on the top-layer.

Bottom-layer: form
Middle-layer: label,
image, shape, line

Top-layer: other controls
and objects

c Learn Visual Basic 6.0

• What this means is you have to be careful where you put things on a form or
something could be covered up. For example, a command button placed on top
of it would hide text printed on the form. Things drawn with the shape tool are
covered by all controls except the image box.

• The next question then is what establishes the relative location of objects in the

same layer. That is, say two command buttons are in the same area of a form -
which one lies on top of which one? The order in which objects in the same layer
overlay each other is called the Z-order. This order is first established when you
draw the form. Items drawn last lie over items drawn earlier. Once drawn,
however, clicking on the desired object and choosing Bring to Front from Visual
Basic’s Edit menu can modify the Z-order. The Send to Back command has the
opposite effect. Note these two commands only work within a layer; middle-layer
objects will always appear behind top-layer objects and lower layer objects will
always appear behind middle-layer objects.

Line Tool

• The line tool creates simple straight line segments of various width and color.

Together with the shape tool discussed next, you can use this tool to 'dress up'
your application.

• Line Tool Properties:

BorderColor Determines the line color.
BorderStyle Determines the line 'shape'. Lines can be transparent,

solid, dashed, dotted, and combinations.
BorderWidth Determines line width.

• There are no events or methods associated with the line tool.

• Since the line tool lies in the middle-layer of the form display, any lines drawn

will be obscured by all controls except the shape tool or image box.

 Contents ci

Shape Tool

• The shape tool can create circles, ovals, squares, rectangles, and rounded squares

and rectangles. Colors can be used and various fill patterns are available.

• Shape Tool Properties:

BackColor Determines the background color of the shape (only
used when FillStyle not Solid.

BackStyle Determines whether the background is transparent or
opaque.

BorderColor Determines the color of the shape's outline.
BorderStyle Determines the style of the shape's outline. The

border can be transparent, solid, dashed, dotted, and
combinations.

BorderWidth Determines the width of the shape border line.
FillColor Defines the interior color of the shape.
FillStyle Determines the interior pattern of a shape. Some

choices are: solid, transparent, cross, etc.
Shape Determines whether the shape is a square, rectangle,

circle, or some other choice.

• Like the line tool, events and methods are not used with the shape tool.

• Shapes are covered by all objects except perhaps line tools and image boxes

(depends on their Z-order) and printed or drawn information. This is a good
feature in that you usually use shapes to contain a group of control objects and
you'd want them to lie on top of the shape.

cii Learn Visual Basic 6.0

Horizontal and Vertical Scroll Bars

• Horizontal and vertical scroll bars are widely used in Windows applications.

Scroll bars provide an intuitive way to move through a list of information and
make great input devices.

• Both type of scroll bars are comprised of three areas that can be clicked, or

dragged, to change the scroll bar value. Those areas are:

Clicking an end arrow increments the scroll box a small amount, clicking the
bar area increments the scroll box a large amount, and dragging the scroll box
(thumb) provides continuous motion. Using the properties of scroll bars, we can
completely specify how one works. The scroll box position is the only output
information from a scroll bar.

• Scroll Bar Properties:

LargeChange Increment added to or subtracted from the scroll bar
Value property when the bar area is clicked.

Max The value of the horizontal scroll bar at the far right
and the value of the vertical scroll bar at the bottom.
Can range from -32,768 to 32,767.

Min The other extreme value - the horizontal scroll bar at
the left and the vertical scroll bar at the top. Can
range from -32,768 to 32,767.

SmallChange The increment added to or subtracted from the scroll
bar Value property when either of the scroll arrows is
clicked.

Value The current position of the scroll box (thumb) within
the scroll bar. If you set this in code, Visual Basic
moves the scroll box to the proper position.

End arrow

Scroll box (thumb) Bar area

 Contents ciii

Properties for horizontal scroll bar:

Properties for vertical scroll bar:

• A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and Max, they do not
necessarily represent minimum and maximum values. There is nothing to
keep the Min value from being greater than the Max value. In fact, with
vertical scroll bars, this is the usual case. Visual Basic automatically adjusts
the sign on the SmallChange and LargeChange properties to insure proper
movement of the scroll box from one extreme to the other.

2. If you ever change the Value, Min, or Max properties in code, make sure

Value is at all times between Min and Max or and the program will stop with
an error message.

SmallChange

SmallChange

LargeChange

LargeChange

Value

Max

Min

Min

SmallChange

SmallChange LargeChange

LargeChange Value

Max

civ Learn Visual Basic 6.0

• Scroll Bar Events:

Change Event is triggered after the scroll box's position has been
modified. Use this event to retrieve the Value property after
any changes in the scroll bar.

Scroll Event triggered continuously whenever the scroll box is
being moved.

 Contents cv

Example 4-1

Temperature Conversion

Start a new project. In this project, we convert temperatures in degrees Fahrenheit
(set using a scroll bar) to degrees Celsius. As mentioned in the Review and Preview
section, you should try to build this application with minimal reference to the notes.
To that end, let's look at the project specifications.

Temperature Conversion Application Specifications

The application should have a scroll bar which adjusts temperature in
degrees Fahrenheit from some reasonable minimum to some
maximum. As the user changes the scroll bar value, both the
Fahrenheit temperature and Celsius temperature (you have to calculate
this) in integer format should be displayed. The formula for
converting Fahrenheit (F) to Celsius (C) is:

C = (F - 32)*5/9

To convert this number to a rounded integer, use the Visual Basic
CInt() function. To change numeric information to strings for display
in label or text boxes, use the Str() or Format() function. Try to build
as much of the application as possible before looking at my approach.
Try incorporating lines and shapes into your application if you can.

cvi Learn Visual Basic 6.0

One Possible Approach to Temperature Conversion Application:

1. Place a shape, a vertical scroll bar, four labels, and a command button on the

form. Put the scroll bar within the shape - since it is in the top-layer of the form,
it will lie in the shape. It should resemble this:

2. Set the properties of the form and each object:

Form1:
BorderStyle 1-Fixed Single
Caption Temperature Conversion
Name frmTemp

Shape1:

BackColor White
BackStyle 1-Opaque
FillColor Red
FillStyle 7-Diagonal Cross
Shape 4-Rounded Rectangle

VScroll1:

LargeChange 10
Max -60
Min 120
Name vsbTemp
SmallChange 1
Value 32

Shape1

 Contents cvii

Label1:
Alignment 2-Center
Caption Fahrenheit
FontSize 10
FontStyle Bold

Label2:

Alignment 2-Center
AutoSize True
BackColor White
BorderStyle 1-Fixed Single
Caption 32
FontSize 14
FontStyle Bold
Name lblTempF

Label3:

Alignment 2-Center
Caption Celsius
FontSize 10
FontStyle Bold

Label4:

Alignment 2-Center
AutoSize True
BackColor White
BorderStyle 1-Fixed Single
Caption 0
FontSize 14
FontStyle Bold
Name lblTempC

Command1:

Cancel True
Caption E&xit
Name cmdExit

Note the temperatures are initialized at 32F and 0C, known values.

cviii Learn Visual Basic 6.0

When done, the form should look like this:

3. Put this code in the general declarations of your code window.

Option Explicit
Dim TempF As Integer
Dim TempC As Integer

This makes the two temperature variables global.

4. Attach the following code to the scroll bar Scroll event.

Private Sub vsbTemp_Scroll()
'Read F and convert to C
TempF = vsbTemp.Value
lblTempF.Caption = Str(TempF)
TempC = CInt((TempF - 32) * 5 / 9)
lblTempC.Caption = Str(TempC)
End Sub

This code determines the scroll bar Value as it scrolls, takes that value as Fahrenheit

temperature, computes Celsius temperature, and displays both values.

 Contents cix

5. Attach the following code to the scroll bar Change event.

Private Sub vsbTemp_Change()
'Read F and convert to C
TempF = vsbTemp.Value
lblTempF.Caption = Str(TempF)
TempC = CInt((TempF - 32) * 5 / 9)
lblTempC.Caption = Str(TempC)
End Sub

Note this code is identical to that used in the Scroll event. This is almost always the

case when using scroll bars.

6. Attach the following code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()
End
End Sub

7. Give the program a try. Make sure it provides correct information at obvious

points. For example, 32 F better always be the same as 0 C! Save the project -
wel return to it briefly in Class 5.

Other things to try:

A. Can you find a point where Fahrenheit temperature equals Celsius

temperature? If you don't know this off the top of your head, it's obvious
you've never lived in extremely cold climates. I've actually witnessed one of
those bank temperature signs flashing degrees F and degrees C and seeing the
same number!

B. Ever wonder why body temperature is that odd figure of 98.6 degrees F? Can

your new application give you some insight to an answer to this question?

C. It might be interesting to determine how wind affects perceived temperature -

the wind chill. Add a second scroll bar to input wind speed and display both
the actual and wind adjusted temperatures. You would have to do some
research to find the mathematics behind wind chill computations. This is not
a trivial extension of the application.

cx Learn Visual Basic 6.0

Picture Boxes

• The picture box allows you to place graphics information on a form. It is best

suited for dynamic environments - for example, when doing animation.

• Picture boxes lie in the top layer of the form display. They behave very much like

small forms within a form, possessing most of the same properties as a form.

• Picture Box Properties:

AutoSize If True, box adjusts its size to fit the displayed graphic.
Font Sets the font size, style, and size of any printing done in

the picture box.
Picture Establishes the graphics file to display in the picture box.

• Picture Box Events:

Click Triggered when a picture box is clicked.
DblClick Triggered when a picture box is double-clicked.

• Picture Box Methods:

Cls Clears the picture box.
Print Prints information to the picture box.

Examples

picExample.Cls ' clears the box picExample
picExample.Print "a picture box" ' prints text string to picture box

 Contents cxi

• Picture Box LoadPicture Procedure:

An important function when using picture boxes is the LoadPicture procedure.
It is used to set the Picture property of a picture box at run-time.

Example

 picExample.Picture = LoadPicture("c:\pix\sample.bmp")

This command loads the graphics file c:\pix\sample.bmp into the Picture property
of the picExample picture box. The argument in the LoadPicture function must
be a legal, complete path and file name, else your program will stop with an error
message.

• Five types of graphics files can be loaded into a picture box:

Bitmap An image represented by pixels and stored as a collection of
bits in which each bit corresponds to one pixel. Usually has
a .bmp extension. Appears in original size.

Icon A special type of bitmap file of maximum 32 x 32 size. Has
a .ico extension. Wel create icon files in Class 5. Appears
in original size.

Metafile A file that stores an image as a collection of graphical objects
(lines, circles, polygons) rather than pixels. Metafiles
preserve an image more accurately than bitmaps when
resized. Has a .wmf extension. Resizes itself to fit the
picture box area.

JPEG JPEG (Joint Photographic Experts Group) is a compressed
bitmap format which supports 8 and 24 bit color. It is
popular on the Internet. Has a .jpg extension and scales
nicely.

GIF GIF (Graphic Interchange Format) is a compressed bitmap
format originally developed by CompuServe. It supports up
to 256 colors and is popular on the Internet. Has a .gif
extension and scales nicely.

cxii Learn Visual Basic 6.0

Image Boxes

• An image box is very similar to a picture box in that it allows you to place

graphics information on a form. Image boxes are more suited for static situations
- that is, cases where no modifications will be done to the displayed graphics.

• Image boxes appear in the middle-layer of form display, hence picture boxes and

other objects could obscure them. Image box graphics can be resized by using the
Stretch property.

• Image Box Properties:

Picture Establishes the graphics file to display in the image box.
Stretch If False, the image box resizes itself to fit the graphic. If

True, the graphic resizes to fit the control area.

• Image Box Events:

Click Triggered when a image box is clicked.
DblClick Triggered when a image box is double-clicked.

• The image box does not support any methods, however it does use the

LoadPicture function. It is used in exactly the same manner as the picture box
uses it. And image boxes can load the same file types: bitmap (.bmp), icon
(.ico), metafiles (.wmf), GIF files (.gif), and JPEG files (.jpg). With Stretch =
True, all three graphic types will expand to fit the image box area.

Quick Example: Picture and Image Boxes

1. Start a new project. Draw one picture box and one image box.

2. Set the Picture property of the picture and image box to the same file. If you

have graphics files installed with Visual Basic, bitmap files can be found in the
bitmaps folder, icon files in the icon folder, and metafiles are in the metafile
folder.

3. Notice what happens as you resize the two boxes. Notice the layer effect when

you move one box on top of the other. Notice the effect of the image box Stretch
property. Play around with different file types - what differences do you see?

 Contents cxiii

Drive List Box

• The drive list box control allows a user to select a valid disk drive at run-time. It

displays the available drives in a drop-down combo box. No code is needed to
load a drive list box; Visual Basic does this for us. We use the box to get the
current drive identification.

• Drive List Box Properties:

Drive Contains the name of the currently selected drive.

• Drive List Box Events:

Change Triggered whenever the user or program changes
the drive selection.

Directory List Box

• The directory list box displays an ordered, hierarchical list of the user's disk

directories and subdirectories. The directory structure is displayed in a list box.
Like, the drive list box, little coding is needed to use the directory list box -
Visual Basic does most of the work for us.

• Directory List Box Properties:

Path Contains the current directory path.

• Directory List Box Events:

Change Triggered when the directory selection is changed.

cxiv Learn Visual Basic 6.0

File List Box

• The file list box locates and lists files in the directory specified by its Path

property at run-time. You may select the types of files you want to display in the
file list box.

• File List Box Properties:

FileName Contains the currently selected file name.
Path Contains the current path directory.
Pattern Contains a string that determines which files will be

displayed. It supports the use of * and ? wildcard
characters. For example, using *.dat only displays files
with the .dat extension.

• File List Box Events:

DblClick Triggered whenever a file name is double-clicked.
PathChange Triggered whenever the path changes in a file list box.

• You can also use the MultiSelect property of the file list box to allow multiple

file selection.

 Contents cxv

Synchronizing the Drive, Directory, and File List Boxes

• The drive, directory, and file list boxes are almost always used together to obtain

a file name. As such, it is important that their operation be synchronized to insure
the displayed information is always consistent.

• When the drive selection is changed (drive box Change event), you should

update the directory path. For example, if the drive box is named drvExample
and the directory box is dirExample, use the code:

dirExample.Path = drvExample.Drive

• When the directory selection is changed (directory box Change event), you

should update the displayed file names. With a file box named filExample, this
code is:

filExample.Path = dirExample.Path

• Once all of the selections have been made and you want the file name, you need

to form a text string that correctly and completely specifies the file identifier.
This string concatenates the drive, directory, and file name information. This
should be an easy task, except for one problem. The problem involves the
backslash (\) character. If you are at the root directory of your drive, the path
name ends with a backslash. If you are not at the root directory, there is no
backslash at the end of the path name and you have to add one before tacking on
the file name.

• Example code for concatenating the available information into a proper file name

and then loading it into an image box is:

Dim YourFile as String

If Right(filExample.Path,1) = "\" Then
 YourFile = filExample.Path + filExample.FileName
Else
 YourFile = filExample.Path + "\" + filExample.FileName
End If
imgExample.Picture = LoadPicture(YourFile)

Note we only use properties of the file list box. The drive and directory box

properties are only used to create changes in the file list box via code.

cxvi Learn Visual Basic 6.0

Example 4-2

Image Viewer

Start a new project. In this application, we search our computer's file structure for
graphics files and display the results of our search in an image box.

Image Viewer Application Specifications

Develop an application where the user can search and find graphics
files (*.ico, *.bmp, *.wmf) on his/her computer. Once a file is
selected, print the corresponding file name on the form and display the
graphic file in an image box using the LoadPicture() function.

 Contents cxvii

One possible solution to the Image Viewer Application:

1. Place a drive list box, directory list box, file list box, four label boxes, a line (use

the line tool) and a command button on the form. We also want to add an image
box, but make it look like it's in some kind of frame. Build this display area in
these steps: draw a 'large shape', draw another shape within this first shape that is
the size of the image display area, and lastly, draw an image box right on top of
this last shape. Since the two shapes and image box are in the same display layer,
the image box is on top of the second shape which is on top of the first shape,
providing the desired effect of a kind of picture frame. The form should look like
this:

Note the second shape is directly beneath the image box.

2. Set properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Image Viewer
 Name frmImage

Drive1:
 Name drvImage

Dir1:
 Name dirImage

Line1

Image1

Shape1

Shape2

cxviii Learn Visual Basic 6.0

File1:
 Name filImage
 Pattern *.bmp;*.ico;*.wmf;*gif;*jpg
 [type this line with no spaces]

Label1:
 Caption [Blank]
 BackColor Yellow
 BorderStyle 1-Fixed Single
 Name lblImage

Label2:
 Caption Files:

Label3:
 Caption Directories:

Label4:
 Caption Drives:

Command1:
 Caption &Show Image
 Default True
 Name cmdShow

Command2:
 Cancel True
 Caption E&xit
 Name cmdExit

Line1:
 BorderWidth 3

Shape1:
 BackColor Cyan
 BackStyle 1-Opaque
 FillColor Blue
 FillStyle 4-Upward Diagonal
 Shape 4-Rounded Rectangle

Shape2:
 BackColor White
 BackStyle 1-Opaque

 Contents cxix

Image1:
 BorderStyle 1-Fixed Single
 Name imgImage
 Stretch True

3. Attach the following code to the drvImage_Change procedure.

Private Sub drvImage_Change()
'If drive changes, update directory
dirImage.Path = drvImage.Drive
End Sub

When a new drive is selected, this code forces the directory list box to display

directories on that drive.

4. Attach this code to the dirImage_Change procedure.

Private Sub dirImage_Change()
'If directory changes, update file path
filImage.Path = dirImage.Path
End Sub

Likewise, when a new directory is chosen, we want to see the files on that directory.

5. Attach this code to the cmdShow_Click event.

Private Sub cmdShow_Click()
'Put image file name together and
'load image into image box
Dim ImageName As String
'Check to see if at root directory
If Right(filImage.Path, 1) = "\" Then

ImageName = filImage.Path + filImage.filename
Else

ImageName = filImage.Path + "\" + filImage.filename
End If
lblImage.Caption = ImageName
imgImage.Picture = LoadPicture(ImageName)
End Sub

This code forms the file name (ImageName) by concatenating the directory path with

the file name. It then displays the complete name and loads the picture into the
image box.

cxx Learn Visual Basic 6.0

6. Copy the code from the cmdShow_Click procedure and paste it into the
filImage_DblClick procedure. The code is identical because we want to display
the image either by double-clicking on the filename or clicking the command
button once a file is selected. Those of you who know how to call routines in
Visual Basic should note that this duplication of code is unnecessary - we could
simply have the filImage_DblClick procedure call the cmdShow_Click
procedure. Wel learn more about this next class.

7. Attach this code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()
End
End Sub

8. Save your project. Run and try the application. Find bitmaps, icons, and

metafiles. Notice how the image box Stretch property affects the different
graphics file types. Here how the form should look when displaying one
example metafile:

 Contents cxxi

Common Dialog Boxes

• The primary use for the drive, directory, and file name list boxes is to develop

custom file access routines. Two common file access routines in Windows-based
applications are the Open File and Save File operations. Fortunately, you don
have to build these routines.

• To give the user a standard interface for common operations in Windows-based

applications, Visual Basic provides a set of common dialog boxes, two of which
are the Open and Save As dialog boxes. Such boxes are familiar to any
Windows user and give your application a professional look. And, with Windows
95, some context-sensitive help is available while the box is displayed. Appendix
II lists many symbolic constants used with common dialog boxes.

• The Common Dialog control is a custom control’ which means we have to make

sure some other files are present to use it. In normal setup configurations, Visual
Basic does this automatically. If the common dialog box does not appear in the
Visual Basic toolbox, you need to add it. Selecting Components under the
Project menu does this. When the selection box appears, click on Microsoft
Common Dialog Control, then click OK.

• The common dialog tool, although it appears on your form, is invisible at run-

time. You cannot control where the common dialog box appears on your screen.
The tool is invoked at run-time using one of five how’ methods. These
methods are:

Method Common Dialog Box
ShowOpen Open dialog box
ShowSave Save As dialog box
ShowColor Color dialog box
ShowFont Font dialog box
ShowPrinter Printer dialog box

• The format for establishing a common dialog box named cdlExample so that an

Open box appears is:

cdlExample.ShowOpen

Control to the program returns to the line immediately following this line, once the

dialog box is closed in some manner. Common dialog boxes are system modal.

cxxii Learn Visual Basic 6.0

• Learning proper use of all the common dialog boxes would require an extensive
amount of time. In this class, wel limit ourselves to learning the basics of
getting file names from the Open and Save As boxes in their default form.

Open Common Dialog Box

• The Open common dialog box provides the user a mechanism for specifying the

name of a file to open. Wel worry about how to open a file in Class 6. The box
is displayed by using the ShowOpen method. Here an example of an Open
common dialog box:

• Open Dialog Box Properties:

CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Open. In the example, the DialogTitle is
Open Example.

FileName Sets the initial file name that appears in the File name
box. After the dialog box is closed, this property can
be read to determine the name of the selected file.

Filter Used to restrict the filenames that appear in the file list
box. Complete filter specifications for forming a Filter
can be found using on-line help. In the example, the
Filter was set to allow Bitmap (*.bmp), Icon (*.ico),
Metafile (*.wmf), GIF (*.gif), and JPEG (*.jpg) types
(only the Bitmap choice is seen).

 Contents cxxiii

FilterIndex Indicates which filter component is default. The
example uses a 1 for the FilterIndex (the default value).

Flags Values that control special features of the Open dialog
box (see Appendix II). The example uses no Flags
value.

• When the user closes the Open File box, you should check the returned file name

to make sure it meets the specifications your application requires before you try to
open the file.

Quick Example: The Open Dialog Box

1. Start a new project. Place a common dialog control, a label box, and a command

button on the form. Set the following properties:

Form1:
 Caption Common Dialog Examples
 Name frmCommon

CommonDialog1:
 DialogTitle Open Example
 Filter Bitmaps (*.bmp)|*.bmp|
 Icons (*.ico)|*.ico|Metafiles (*.wmf)|*.wmf
 GIF Files (*.gif)|*.gif|JPEG Files (*,jpg)|*.jpg
 (all on one line)
 Name cdlExample

Label1:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblExample

Command1:
 Caption &Display Box
 Name cmdDisplay

cxxiv Learn Visual Basic 6.0

When done, the form should look like this (make sure your label box is very long):

2. Attach this code to the cmdDisplay_Click procedure.

Private Sub cmdDisplay_Click()
cdlExample.ShowOpen
lblExample.Caption = cdlExample.filename
End Sub

This code brings up the Open dialog box when the button is clicked and shows
the file name selected by the user once it is closed.

3. Save the application. Run it and try selecting file names and typing file names.

Notice names can be selected by highlighting and clicking the OK button or just
by double-clicking the file name. In this example, clicking the Cancel button is
not trapped, so it has the same effect as clicking OK.

4. Notice once you select a file name, the next time you open the dialog box, that

selected name appears as default, since the FileName property is not affected in
code.

 Contents cxxv

Save As Common Dialog Box

• The Save As common dialog box provides the user a mechanism for specifying

the name of a file to save. Wel worry about how to save a file in Class 6. The
box is displayed by using the ShowSave method.. Here an example of a Save
As common dialog box:

• Save As Dialog Box Properties (mostly the same as those for the Open box):

CancelError If True, generates an error if the Cancel button is clicked.

Allows you to use error-handling procedures to recognize
that Cancel was clicked.

DefaultExt Sets the default extension of a file name if a file is listed
without an extension.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Save As. In the example, the DialogTitle is Save
As Example.

FileName Sets the initial file name that appears in the File name box.
After the dialog box is closed, this property can be read to
determine the name of the selected file.

Filter Used to restrict the filenames that appear in the file list box.
FilterIndex Indicates which filter component is default.
Flags Values that control special features of the dialog box (see

Appendix II).

cxxvi Learn Visual Basic 6.0

• The Save File box is commonly configured in one of two ways. If a file is being
saved for the first time, the Save As configuration, with some default name in the
FileName property, is used. In the Save configuration, we assume a file has been
previously opened with some name. Hence, when saving the file again, that same
name should appear in the FileName property. Youe seen both configuration
types before.

• When the user closes the Save File box, you should check the returned file name

to make sure it meets the specifications your application requires before you try to
save the file. Be especially aware of whether the user changed the file extension
to something your application does not allow.

Quick Example: The Save As Dialog Box

1. Wel just modify the Open example a bit. Change the DialogTitle property of

the common dialog control to save As Example” and set the DefaultExt property
equal to bmp”.

2. In the cmdDisplay_Click procedure, change the method to ShowSave (opens

Save As box).

3. Save the application and run it. Try typing names without extensions and note

how .bmp is added to them. Notice you can also select file names by double-
clicking them or using the OK button. Again, the Cancel button is not trapped,
so it has the same effect as clicking OK.

 Contents cxxvii

Exercise 4

Student Database Input Screen

You did so well with last week assignment that, now, a school wants you to
develop the beginning structure of an input screen for its students. The required input
information is:

1. Student Name
2. Student Grade (1 through 6)
3. Student Sex (Male or Female)
4. Student Date of Birth (Month, Day, Year)
5. Student Picture (Assume they can be loaded as bitmap files)

Set up the screen so that only the Name needs to be typed; all other inputs should be
set with option buttons, scroll bars, and common dialog boxes. When a screen of
information is complete, display the summarized profile in a message box. This
profile message box should resemble this:

Note the student age must be computed from the input birth date - watch out for
pitfalls in doing the computation. The student picture does not appear in the
profile, only on the input screen.

cxxviii Learn Visual Basic 6.0

My Solution:

Form:

Properties:

Form frmStudent:
 BorderStyle = 1- Fixed Single
 Caption = Student Profile

CommandButton cmdLoad:
 Caption = &Load Picture

Frame Frame3:
 Caption = Picture
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

txtName

Label1

optLevel Frame4

Frame2

optSex

lblMonth lblDay lblYear Frame1

Frame3

imgStudent

cmdLoad

vsbMonth

vsbDay

vsbYear

cmdShow cmdNew cmdExit

cdlBox

 Contents cxxix

Image imgStudent:
 BorderStyle = 1 - Fixed Single
 Stretch = True

CommandButton cmdExit:
 Caption = E&xit

CommandButton cmdNew:
 Caption = &New Profile

CommandButton cmdShow:
 Caption = &Show Profile

Frame Frame4:
 Caption = Grade Level
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optLevel:
 Caption = Grade 6
 Index = 5

OptionButton optLevel:
 Caption = Grade 5
 Index = 4

OptionButton optLevel:
 Caption = Grade 4
 Index = 3

OptionButton optLevel:
 Caption = Grade 3
 Index = 2

OptionButton optLevel:
 Caption = Grade 2
 Index = 1

OptionButton optLevel:
 Caption = Grade 1
 Index = 0

cxxx Learn Visual Basic 6.0

Frame Frame2:
 Caption = Sex
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optSex:
 Caption = Female
 Index = 1

OptionButton optSex:
 Caption = Male
 Index = 0

Frame Frame1:
 Caption = Date of Birth
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

VScrollBar vsbYear:
 Max = 1800
 Min = 2100
 Value = 1960

VScrollBar vsbDay:
 Max = 1
 Min = 31
 Value = 1

VScrollBar vsbMonth:
 Max = 1
 Min = 12
 Value = 1

Label lblYear:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 10.8

 Contents cxxxi

Label lblDay:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 10.8

Label lblMonth:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 10.8

TextBox txtName:
 FontName = MS Sans Serif
 FontSize = 10.8

CommonDialog cdlBox:
 Filter = Bitmaps (*.bmp)|*.bmp

Label Label1:
 Caption = Name
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

Code:

General Declarations:

Option Explicit
Dim Months(12) As String
Dim Days(12) As Integer
Dim Grade As String

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cxxxii Learn Visual Basic 6.0

cmdLoad Click Event:

Private Sub cmdLoad_Click()
cdlbox.ShowOpen
imgStudent.Picture = LoadPicture(cdlbox.filename)
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Blank out name and picture
txtName.Text = ""
imgStudent.Picture = LoadPicture("")
End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()
Dim Is_Leap As Integer
Dim Msg As String, Age As Integer, Pronoun As String
Dim M As Integer, D As Integer, Y As Integer

'Check for leap year and if February is current month
If vsbMonth.Value = 2 And ((vsbYear.Value Mod 4 = 0 And
vsbYear.Value Mod 100 <> 0) Or vsbYear.Value Mod 400 = 0)
Then

Is_Leap = 1
Else

Is_Leap = 0
End If
'Check to make sure current day doesn't exceed number of
days in month
If vsbDay.Value > Days(vsbMonth.Value) + Is_Leap Then

MsgBox "Only" + Str(Days(vsbMonth.Value) + Is_Leap) + "
days in " + Months(vsbMonth.Value), vbOKOnly +
vbCritical, "Invalid Birth Date"

Exit Sub
End If
'Get current date to compute age
M = Val(Format(Now, "mm"))
D = Val(Format(Now, "dd"))
Y = Val(Format(Now, "yyyy"))
Age = Y - vsbYear
If vsbMonth.Value > M Or (vsbMonth.Value = M And vsbDay >
D) Then Age = Age - 1
'Check for valid age
If Age < 0 Then

 Contents cxxxiii

MsgBox "Birth date is before current date.", vbOKOnly +
vbCritical, "Invalid Birth Date"

Exit Sub
End If

'Check to make sure name entered
If txtName.Text = "" Then

MsgBox "The profile requires a name.", vbOKOnly +
vbCritical, "No Name Entered"

Exit Sub
End If

'Put together student profile message
Msg = txtName.Text + " is a student in the " + Grade + "
grade." + vbCr
If optSex(0).Value = True Then Pronoun = "He " Else
Pronoun = "She "
Msg = Msg + Pronoun + " is" + Str(Age) + " years old." +
vbCr
MsgBox Msg, vbOKOnly, "Student Profile"
End Sub

Form Load Event:

Private Sub Form_Load()
'Set arrays for dates and initialize labels
Months(1) = "January": Days(1) = 31
Months(2) = "February": Days(2) = 28
Months(3) = "March": Days(3) = 31
Months(4) = "April": Days(4) = 30
Months(5) = "May": Days(5) = 31
Months(6) = "June": Days(6) = 30
Months(7) = "July": Days(7) = 31
Months(8) = "August": Days(8) = 31
Months(9) = "September": Days(9) = 30
Months(10) = "October": Days(10) = 31
Months(11) = "November": Days(11) = 30
Months(12) = "December": Days(12) = 31
lblMonth.Caption = Months(vsbMonth.Value)
lblDay.Caption = Str(vsbDay.Value)
lblYear.Caption = Str(vsbYear.Value)
Grade = "first"
End Sub

cxxxiv Learn Visual Basic 6.0

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)
Select Case Index
Case 0

Grade = "first"
Case 1

Grade = "second"
Case 2

Grade = "third"
Case 3

Grade = "fourth"
Case 4

Grade = "fifth"
Case 5

Grade = "sixth"
End Select
End Sub

vsbDay Change Event:

Private Sub vsbDay_Change()
lblDay.Caption = Str(vsbDay.Value)
End Sub

vsbMonth Change Event:

Private Sub vsbMonth_Change()
lblMonth.Caption = Months(vsbMonth.Value)
End Sub

vsbYear Change Event:

Private Sub vsbYear_Change()
lblYear.Caption = Str(vsbYear.Value)
End Sub

 Contents cxxxv

Learn Visual Basic 6.0

Appendix II. Common Dialog Box Constants

CommonDialog Control Constants

File Open/Save Dialog Box Flags
Constant Value Description
cdlOFNReadOnly 0x1 Checks Read-Only check box for Open and

Save As dialog boxes.
cdlOFNOverwritePrompt 0x2 Causes the Save As dialog box to generate

a message box if the selected file already
exists.

cdlOFNHideReadOnly 0x4 Hides the Read-Only check box.
cdlOFNNoChangeDir 0x8 Sets the current directory to what it was

when the dialog box was invoked.
cdlOFNHelpButton 0x10 Causes the dialog box to display the Help

button.
cdlOFNNoValidate 0x100 Allows invalid characters in the returned

filename.
cdlOFNAllowMultiselect 0x200 Allows the File Name list box to have

multiple selections.
cdlOFNExtensionDifferent 0x400 The extension of the returned filename is

different from the extension set by the
DefaultExt property.

cdlOFNPathMustExist 0x800 User can enter only valid path names.
cdlOFNFileMustExist 0x1000 User can enter only names of existing files.
cdlOFNCreatePrompt 0x2000 Sets the dialog box to ask if the user wants

to create a file that doesn't currently exist.

cxxxvi Learn Visual Basic 6.0

File Open/Save Dialog Box Flags (continued)
Constant Value Description
cdlOFNShareAware 0x4000 Sharing violation errors will be

ignored.
cdlOFNNoReadOnlyReturn 0x8000 The returned file doesn't have the

Read-Only attribute set and won't be
in a write-protected directory.

cdlOFNExplorer 0x0008000 Use the Explorer-like Open A File
dialog box template. (Windows 95
only.)

cdlOFNNoDereferenceLinks 0x00100000 Do not dereference shortcuts (shell
links) default, choosing a shortcut
causes it to be dereferenced by the
shell. (Windows 95 only.)

cdlOFNLongNames 0x00200000 Use Long filenames. (Windows 95
only.)

Color Dialog Box Flags
Constant Value Description
cdlCCRGBInit 0x1 Sets initial color value for the dialog box.
cdlCCFullOpen 0x2 Entire dialog box is displayed, including the

Define Custom Colors section.
cdlCCPreventFullOpen 0x4 Disables the Define Custom Colors section of

the dialog box.
cdlCCHelpButton 0x8 Dialog box displays a Help button.

Fonts Dialog Box Flags
Constant Value Description
cdlCFScreenFonts 0x1 Dialog box lists only screen fonts supported by

the system.
cdlCFPrinterFonts 0x2 Dialog box lists only fonts supported by the

printer.
cdlCFBoth 0x3 Dialog box lists available screen and printer

fonts.
cdlCFHelpButton 0x4 Dialog box displays a Help button.
cdlCFEffects 0x100 Dialog box enables strikeout, underline, and

color effects.
cdlCFApply 0x200 Dialog box enables the Apply button.
cdlCFANSIOnly 0x400 Dialog box allows only a selection of fonts that

use the Windows character set.
cdlCFNoVectorFonts 0x800 Dialog box should not allow vector-font

selections.

 Contents cxxxvii

Fonts Dialog Box Flags (continued)
Constant Value Description
cdlCFNoSimulations 0x1000 Dialog box should not allow graphic device

interface (GDI)
cdlCFLimitSize 0x2000 Dialog box should select only font sizes within

the range specified by the Min and Max
properties.

cdlCFFixedPitchOnly 0x4000 Dialog box should select only fixed-pitch
fonts.

cdlCFWYSIWYG 0x8000 Dialog box should allow only the selection of
fonts available to both the screen and printer.

cdlCFForceFontExist 0x10000 An error dialog box is displayed if a user
selects a font or style that doesn't exist.

cdlCFScalableOnly 0x20000 Dialog box should allow only the selection of
scalable fonts.

cdlCFTTOnly 0x40000 Dialog box should allow only the selection of
TrueType fonts.

cdlCFNoFaceSel 0x80000 No font name selected.
cdlCFNoStyleSel 0x100000 No font style selected.
cdlCFNoSizeSel 0x200000 No font size selected.

Printer Dialog Box Flags
Constant Value Description
cdlPDAllPages 0x0 Returns or sets state of All Pages option

button.
cdlPDCollate 0x10 Returns or sets state of Collate check box.
cdlPDDisablePrintToFile 0x80000 Disables the Print To File check box.
cdlPDHidePrintToFile 0x100000 The Print To File check box isn't displayed.
cdlPDNoPageNums 0x8 Returns or sets the state of the Pages option

button.
cdlPDNoSelection 0x4 Disables the Selection option button.
cdlPDNoWarning 0x80 Prevents a warning message when there is

no default printer.
cdlPDPageNums 0x2 Returns or sets the state of the Pages option

button.
cdlPDPrintSetup 0x40 Displays the Print Setup dialog box rather

than the Print dialog box.

cxxxviii Learn Visual Basic 6.0

Printer Dialog Box Flags (continued)
Constant Value Description
cdlPDPrintToFile 0x20 Returns or sets the state of the Print To

File check box.
cdlPDReturnDC 0x100 Returns a device context for the printer

selection value returned in the hDC
property of the dialog box.

cdlPDReturnDefault 0x400 Returns default printer name.
cdlPDReturnIC 0x200 Returns an information context for the

printer selection value returned in the
hDC property of the dialog box.

cdlPDSelection 0x1 Returns or sets the state of the Selection
option button.

cdlPDHelpButton 0x800 Dialog box displays the Help button.
cdlPDUseDevModeCopies 0x40000 Sets support for multiple copies action;

depends upon whether or not printer
supports multiple copies.

 Contents cxxxix

CommonDialog Error Constants

Constant Value Description
cdlAlloc &H7FF0& Couldn't allocate memory for FileName or Filter

property.
cdlCancel &H7FF3& Cancel was selected.
cdlDialogFailure &H8000& The function failed to load the dialog box.
cdlFindResFailure &H7FF9& The function failed to load a specified resource.
cdlHelp &H7FEF& Call to Windows Help failed.
cdlInitialization &H7FFD& The function failed during initialization.
cdlLoadResFailure &H7FF8& The function failed to load a specified string.
cdlLockResFailure &H7FF7& The function failed to lock a specified resource.
cdlMemAllocFailure &H7FF6& The function was unable to allocate memory for

internal data structures.
cdlMemLockFailure &H7FF5& The function was unable to lock the memory

associated with a handle.
cdlNoFonts &H5FFE& No fonts exist.
cdlBufferTooSmall &H4FFC& The buffer at which the member lpstrFile points

is too small.
cdlInvalidFileName &H4FFD& Filename is invalid.
cdlSubclassFailure &H4FFE& An attempt to subclass a list box failed due to

insufficient memory.
cdlCreateICFailure &H6FF5& The PrintDlg function failed when it attempted to

create an information context.
cdlDndmMismatch &H6FF6& Data in the DevMode and DevNames data

structures describe two different printers.
cdlGetDevModeFail &H6FFA& The printer device driver failed to initialize a

DevMode data structure.
cdlInitFailure &H6FF9& The PrintDlg function failed during initialization.
cdlLoadDrvFailure &H6FFB& The PrintDlg function failed to load the specified

printer's device driver.

cxl Learn Visual Basic 6.0

CommonDialog Error Constants (continued)
Constant Value Description
cdlNoDefaultPrn &H6FF7& A default printer doesn't exist.
cdlNoDevices &H6FF8& No printer device drivers were

found.
cdlParseFailure &H6FFD& The CommonDialog function failed

to parse the strings in the [devices]
section of WIN.INI.

cdlPrinterCodes &H6FFF& The PDReturnDefault flag was set,
but either the hDevMode or
hDevNames field was nonzero.

cdlPrinterNotFound &H6FF4& The [devices] section of WIN.INI
doesn't contain an entry for the
requested printer.

cdlRetDefFailure &H6FFC& The PDReturnDefault flag was set,
but either the hDevMode or
hDevNames field was nonzero.

cdlSetupFailure &H6FFE& Failed to load required resources.

 Contents cxli

Learn Visual Basic 6.0

Appendix I. Visual Basic Symbolic Constants

Contents

Alignment Constants .. I-4
 Align Property ... I-4
 Alignment Property ... I-4
Border Property Constants... I-4
 BorderStyle Property (Form)... I-4
 BorderStyle Property (Shape and Line) .. I-4
Clipboard Object Constants ... I-5
Color Constants ... I-5
 Colors ... I-5
 System Colors .. I-5
Control Constants .. I-6
 ComboBox Control ... I-6
 ListBox Control ... I-6
 ScrollBar Control... I-6
 Shape Control... I-7
Data Control Constants.. I-7
 Error Event Constants .. I-7
 EditMode Property Constants ... I-7
 Options Property Constants.. I-7
 Validate Event Action Constants .. I-8
 Beginning-of-File Constants.. I-8
 End-of-File Constants ... I-8
 Recordset-Type Constants ... I-8
Date Constants .. I-9
 firstdayofweek Argument Values .. I-9
 firstweekofyear Argument Values .. I-9
 Return Values ... I-9

cxlii Learn Visual Basic 6.0

DBGrid Control Constants.. I-9
 Alignment Constants... I-9
 BorderStyle Constants.. I-10
 DataMode Constants .. I-10
 DividerStyle Constants.. I-10
 RowDividerStyle Constants .. I-10
 Scroll Bar Constants ... I-20
DDE Constants .. I-11
 linkerr (LinkError Event) .. I-11
 LinkMode Property (Forms and Controls)... I-11
Dir, GetAttr, and SetAttr Constants .. I-11
Drag-and-Drop Constants .. I-12
 DragOver Event .. I-12
 Drag Method (Controls) .. I-12
 DragMode Property... I-12
Drawing Constants... I-12
 DrawMode Property .. I-12
 DrawStyle Property ... I-13
Form Constants.. I-13
 Show Parameters ... I-13
 Arrange Method for MDI Forms .. I-13
 WindowState Property .. I-13
Graphics Constants.. I-14
 FillStyle Property... I-14
 ScaleMode Property ... I-14
Grid Control Constants... I-14
 ColAlignment, FixedAlignment Properties .. I-14
 FillStyle Property... I-14
Help Constants... I-15
Key Code Constants .. I-15
 Key Codes .. I-15
 KeyA Through KeyZ ... I-16
 Key0 Through Key9 .. I-17
 Keys on the Numeric Keypad ... I-17
 Function Keys ... I-18
Menu Accelerator Constants.. I-18
Menu Control Constants .. I-22
 PopupMenu Method Alignment .. I-22
 PopupMenu Mouse Button Recognition ... I-22

 Contents cxliii

Miscellaneous Constants ... I-22
 ZOrder Method ... I-22
 QueryUnload Method.. I-22
 Shift Parameter Masks ... I-22
 Button Parameter Masks .. I-23
 Application Start Mode.. I-23
 LoadResPicture Method ... I-23
 Check Value ... I-23
Mouse Pointer Constants... I-24
MsgBox Constants ... I-25
 MsgBox Arguments... I-25
 MsgBox Return Values ... I-25
OLE Container Control Constants.. I-25
 OLEType Property .. I-25
 OLETypeAllowed Property.. I-26
 UpdateOptions Property ... I-26
 AutoActivate Property ... I-26
 SizeMode Property ... I-26
 DisplayType Property.. I-27
 Updated Event Constants... I-27
 Special Verb Values ... I-27
 Verb Flag Bit Masks.. I-28
 VBTranslateColor/OLETranslateColor Constants....................................... I-28
Picture Object Constants ... I-28
Printer Object Constants .. I-29
 Printer Color Mode.. I-29
 Duplex Printing ... I-29
 Printer Orientation... I-29
 Print Quality .. I-29
 PaperBin Property .. I-29
 PaperSize Property... I-30
RasterOp Constants... I-31
Shell Constants .. I-32
StrConv Constants ... I-33
Variant Type Constants.. I-33
VarType Constants .. I-34

cxliv Learn Visual Basic 6.0

Alignment Constants

Align Property
Constant Value Description
vbAlignNone 0 Size and location set at design

time or in code.
vbAlignTop 1 Picture box at top of form.
vbAlignBottom 2 Picture box at bottom of form.
vbAlignLeft 3 Picture box at left of form.
vbAlignRight 4 Picture box at right of form.

Alignment Property
Constant Value Description
vbLeftJustify 0 Left align.
vbRightJustify 1 Right align.
vbCenter 2 Center.

Border Property Constants

BorderStyle Property (Form)
Constant Value Description
vbBSNone 0 No border.
vbFixedSingle 1 Fixed single.
vbSizable 2 Sizable (forms only)
vbFixedDouble 3 Fixed double (forms only)

BorderStyle Property (Shape and Line)
Constant Value Description
vbTransparent 0 Transparent.
vbBSSolid 1 Solid.
vbBSDash 2 Dash.
vbBSDot 3 Dot.
vbBSDashDot 4 Dash-dot.
vbBSDashDotDot 5 Dash-dot-dot.
vbBSInsideSolid 6 Inside solid.

 Contents cxlv

Clipboard Object Constants

Constant Value Description
vbCFLink 0xBF00 DDE conversation information.
vbCFRTF 0xBF01 Rich Text Format (.RTF file)
vbCFText 1 Text (.TXT file)
vbCFBitmap 2 Bitmap (.BMP file)
vbCFMetafile 3 Metafile (.WMF file)
vbCFDIB 8 Device-independent bitmap.
vbCFPalette 9 Color palette.

Color Constants

Colors
Constant Value Description
vbBlack 0x0 Black.
vbRed 0xFF Red.
vbGreen 0xFF00 Green.
vbYellow 0xFFFF Yellow.
vbBlue 0xFF0000 Blue.
vbMagenta 0xFF00FF Magenta.
vbCyan 0xFFFF00 Cyan.
vbWhite 0xFFFFFF White.

System Colors
Constant Value Description
vbScrollBars 0x80000000 Scroll bar color.
vbDesktop 0x80000001 Desktop color.
vbActiveTitleBar 0x80000002 Color of the title bar for the

active window.
vbInactiveTitleBar 0x80000003 Color of the title bar for the

inactive window.
vbMenuBar 0x80000004 Menu background color.
vbWindowBackground 0x80000005 Window background color.
vbWindowFrame 0x80000006 Window frame color.
vbMenuText 0x80000007 Color of text on menus.
vbWindowText 0x80000008 Color of text in windows.
vbTitleBarText 0x80000009 Color of text in caption, size

box, and scroll arrow.
vbActiveBorder 0x8000000A Border color of active window.
vbInactiveBorder 0x8000000B Border color of inactive

window.
vbApplicationWorkspace 0x8000000C Background color of multiple-

document interface (MDI)

cxlvi Learn Visual Basic 6.0

System Colors (continued)
Constant Value Description
vbHighlight 0x8000000D Background color of items

selected in a control.
vbHighlightText 0x8000000E Text color of items selected in

a control.
vbButtonFace 0x8000000F Color of shading on the face of

command buttons.
vbButtonShadow 0x80000010 Color of shading on the edge of

command buttons.
vbGrayText 0x80000011 Grayed (disabled)
vbButtonText 0x80000012 Text color on push buttons.
vbInactiveCaptionText 0x80000013 Color of text in an inactive

caption.
vb3DHighlight 0x80000014 Highlight color for 3D display

elements.
vb3DDKShadow 0x80000015 Darkest shadow color for 3D

display elements.
vb3DLight 0x80000016 Second lightest of the 3D

colors after vb3DHighlight.
vbInfoText 0x80000017 Color of text in ToolTips.
vbInfoBackground 0x80000018 Background color of ToolTips.

Control Constants

ComboBox Control
Constant Value Description
vbComboDropdown 0 Dropdown Combo.
vbComboSimple 1 Simple Combo.
vbComboDropdownList 2 Dropdown List.

ListBox Control
Constant Value Description
vbMultiSelectNone 0 None.
vbMultiSelectSimple 1 Simple.
vbMultiSelectExtended 2 Extended.

ScrollBar Control
Constant Value Description
vbSBNone 0 None.
vbHorizontal 1 Horizontal.
vbVertical 2 Vertical.
vbBoth 3 Both.

 Contents cxlvii

Shape Control
Constant Value Description
vbShapeRectangle 0 Rectangle.
vbShapeSquare 1 Square.
vbShapeOval 2 Oval.
vbShapeCircle 3 Circle.
vbShapeRoundedRectangle 4 Rounded rectangle.
vbShapeRoundedSquare 5 Rounded square.

Data Control Constants

Error Event Constants
Constant Value Description
vbDataErrContinue 0 Continue.
vbDataErrDisplay 1 (Default)

EditMode Property Constants
Constant Value Description
vbDataEditNone 0 No editing operation in

progress.
vbDataEditMode 1 Edit method invoked; current

record in copy buffer.
vbDataEditAdd 2 AddNew method invoked;

current record hasn't been
saved.

Options Property Constants
Constant Value Description
vbDataDenyWrite 1 Other users can't change

records in recordset.
vbDataDenyRead 2 Other users can't read records

in recordset.
vbDataReadOnly 4 No user can change records in

recordset.
vbDataAppendOnly 8 New records can be added to

the recordset, but existing
records can't be read.

vbDataInconsistent 16 Updates can apply to all fields
of the recordset.

vbDataConsistent 32 Updates apply only to those
fields that will not affect other
records in the recordset.

vbDataSQLPassThrough 64 Sends an SQL statement to an
ODBC database.

cxlviii Learn Visual Basic 6.0

Validate Event Action Constants
Constant Value Description
vbDataActionCancel 0 Cancel the operation when the

Sub exits.
vbDataActionMoveFirst 1 MoveFirst method.
vbDataActionMovePrevious 2 MovePrevious method.
vbDataActionMoveNext 3 MoveNext method.
vbDataActionMoveLast 4 MoveLast method.
vbDataActionAddNew 5 AddNew method.
vbDataActionUpdate 6 Update operation (not

UpdateRecord)
vbDataActionDelete 7 Delete method.
vbDataActionFind 8 Find method.
vbDataActionBookmark 9 The Bookmark property is set.
vbDataActionClose 10 Close method.
vbDataActionUnload 11 The form is being unloaded.

Beginning-of-File Constants
Constant Value Description
vbMoveFirst 0 Move to first record.
vbBOF 1 Move to beginning of file.

End-of-File Constants
Constant Value Description
vbMoveLast 0 Move to last record.
vbEOF 1 Move to end of file.
vbAddNew 2 Add new record to end of file.

Recordset-Type Constants
Constant Value Description
vbRSTypeTable 0 Table-type recordset.
vbRSTypeDynaset 1 Dynaset-type recordset.
vbRSTypeSnapShot 2 Snapshot-type recordset.

 Contents cxlix

Date Constants

firstdayofweek Argument Values
Constant Value Description
vbUseSystem 0 Use NLS API setting.
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

firstweekofyear Argument Values
Constant Value Description
vbUseSystem 0 Use application setting if one exists; otherwise use

NLS API setting.
vbFirstJan1 1 Start with week in which January 1 occurs (default)
vbFirstFourDays 2 Start with the first week that has at least four days in

the new year.
vbFirstFullWeek 3 Start with the first full week of the year.

Return Values
Constant Value Description
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

DBGrid Control Constants

Alignment Constants
Constant Value Description
dbgLeft 0 Left.
dbgRight 1 Right.
dbgCenter 2 Center.
dbgGeneral 3 General.

cl Learn Visual Basic 6.0

BorderStyle Constants
Constant Value Description
dbgNone 0 None.
dbgFixedSingle 1 FixedSingle.

DataMode Constants
Constant Value Description
dbgBound 0 Bound.
dbgUnbound 1 Unbound.

DividerStyle Constants
Constant Value Description
dbgNoDividers 0 NoDividers.
dbgBlackLine 1 BlackLine.
dbgDarkGrayLine 2 DarkGrayLine.
dbgRaised 3 Raised.
dbgInset 4 Inset.
dbgUseForeColor 5 UseForeColor.

RowDividerStyle Constants
Constant Value Description
dbgNoDividers 0 NoDividers.
dbgBlackLine 1 BlackLine.
dbgDarkGrayLine 2 DarkGrayLine.
dbgRaised 3 Raised.
dbgInset 4 Inset.
dbgUseForeColor 5 UseForeColor.

Scroll Bar Constants
Constant Value Description
dbgNone 0 None.
dbgHorizontal 1 Horizontal.
dbgVertical 2 Vertical.
dbgBoth 3 Both.
dbgAutomatic 4 Automatic.

 Contents cli

DDE Constants

linkerr (LinkError Event)
Constant Value Description
vbWrongFormat 1 Another application requested data in wrong

format.
vbDDESourceClosed 6 Destination application attempted to continue

after source closed.
vbTooManyLinks 7 All source links are in use.
vbDataTransferFailed 8 Failure to update data in destination.

LinkMode Property (Forms and Controls)
Constant Value Description
vbLinkNone 0 None.
vbLinkSource 1 Source (forms only)
vbLinkAutomatic 1 Automatic (controls only)
vbLinkManual 2 Manual (controls only)
vbLinkNotify 3 Notify (controls only)

Dir, GetAttr, and SetAttr Constants

Constant Value Description
vbNormal 0 Normal (default for Dir and SetAttr)
vbReadOnly 1 Read-only.
vbHidden 2 Hidden.
vbSystem 4 System file.
vbVolume 8 Volume label.
vbDirectory 16 Directory.
vbArchive 32 File has changed since last backup.

clii Learn Visual Basic 6.0

Drag-and-Drop Constants

DragOver Event
Constant Value Description
vbEnter 0 Source control dragged into target.
vbLeave 1 Source control dragged out of target.
vbOver 2 Source control dragged from one position in target to

another.

Drag Method (Controls)
Constant Value Description
vbCancel 0 Cancel drag operation.
vbBeginDrag 1 Begin dragging control.
vbEndDrag 2 Drop control.

DragMode Property
Constant Value Description
vbManual 0 Manual.
vbAutomatic 1 Automatic.

Drawing Constants

DrawMode Property
Constant Value Description
vbBlackness 1 Black.
vbNotMergePen 2 Not Merge pen.
vbMaskNotPen 3 Mask Not pen.
vbNotCopyPen 4 Not Copy pen.
vbMaskPenNot 5 Mask pen Not.
vbInvert 6 Invert.
vbXorPen 7 Xor pen.
vbNotMaskPen 8 Not Mask pen.
vbMaskPen 9 Mask pen.
vbNotXorPen 10 Not Xor pen.
vbNop 11 No operation; output remains

unchanged.
vbMergeNotPen 12 Merge Not pen.
vbCopyPen 13 Copy pen.
vbMergePenNot 14 Merge pen Not.
vbMergePen 15 Merge pen.
vbWhiteness 16 White.

 Contents cliii

DrawStyle Property
Constant Value Description
vbSolid 0 Solid.
vbDash 1 Dash.
vbDot 2 Dot.
vbDashDot 3 Dash-dot.
vbDashDotDot 4 Dash-dot-dot.
vbInvisible 5 Invisible.
vbInsideSolid 6 Inside solid.

Form Constants

Show Parameters
Constant Value Description
vbModal 1 Modal form.
vbModeless 0 Modeless form.

Arrange Method for MDI Forms
Constant Value Description
vbCascade 0 Cascade all nonminimized MDI

child forms.
vbTileHorizontal 1 Horizontally tile all

nonminimized MDI child forms.
vbTileVertical 2 Vertically tile all nonminimized

MDI child forms.
vbArrangeIcons 3 Arrange icons for minimized

MDI child forms.

WindowState Property
Constant Value Description
vbNormal 0 Normal.
vbMinimized 1 Minimized.
vbMaximized 2 Maximized.

cliv Learn Visual Basic 6.0

Graphics Constants

FillStyle Property
Constant Value Description
vbFSSolid 0 Solid.
vbFSTransparent 1 Transparent.
vbHorizontalLine 2 Horizontal line.
vbVerticalLine 3 Vertical line.
vbUpwardDiagonal 4 Upward diagonal.
vbDownwardDiagonal 5 Downward diagonal.
vbCross 6 Cross.
vbDiagonalCross 7 Diagonal cross.

ScaleMode Property
Constant Value Description
vbUser 0 User.
vbTwips 1 Twips.
vbPoints 2 Points.
vbPixels 3 Pixels.
vbCharacters 4 Characters.
vbInches 5 Inches.
vbMillimeters 6 Millimeters.
vbCentimeters 7 Centimeters.

Grid Control Constants

ColAlignment, FixedAlignment Properties
Constant Value Description
grdAlignCenter 2 Center data in column.
grdAlignLeft 0 Left-align data in column.
grdAlignRight 1 Right-align data in column.

FillStyle Property
Constant Value Description
grdSingle 0 Changing Text property setting

affects only active cell.
grdRepeat 1 Changing Text property setting

affects all selected cells.

 Contents clv

Help Constants

Constant Value Description
cdlHelpContext 0x1 Displays Help for a particular topic.
cdlHelpQuit 0x2 Notifies the Help application that the

specified Help file is no longer in use.
cdlHelpIndex 0x3 Displays the index of the specified

Help file.
cdlHelpContents 0x3 Displays the contents topic in the

current Help file.
cdlHelpHelpOnHelp 0x4 Displays Help for using the Help

application itself.
cdlHelpSetIndex 0x5 Sets the current index for multi-index

Help.
cdlHelpSetContents 0x5 Designates a specific topic as the

contents topic.
cdlHelpContextPopup 0x8 Displays a topic identified by a

context number.
cdlHelpForceFile 0x9 Creates a Help file that displays text

in only one font.
cdlHelpKey 0x101 Displays Help for a particular

keyword.
cdlHelpCommandHelp 0x102 Displays Help for a particular

command.
cdlHelpPartialKey 0x105 Calls the search engine in Windows

Help.

Key Code Constants

Key Codes
Constant Value Description
vbKeyLButton 0x1 Left mouse button.
vbKeyRButton 0x2 Right mouse button.
vbKeyCancel 0x3 CANCEL key.
vbKeyMButton 0x4 Middle mouse button.
vbKeyBack 0x8 BACKSPACE key.
vbKeyTab 0x9 TAB key.
vbKeyClear 0xC CLEAR key.
vbKeyReturn 0xD ENTER key.
vbKeyShift 0x10 SHIFT key.
vbKeyControl 0x11 CTRL key.
vbKeyMenu 0x12 MENU key.

clvi Learn Visual Basic 6.0

Key Codes (continued)
Constant Value Description
vbKeyPause 0x13 PAUSE key.
vbKeyCapital 0x14 CAPS LOCK key.
vbKeyEscape 0x1B ESC key.
vbKeySpace 0x20 SPACEBAR key.
vbKeyPageUp 0x21 PAGE UP key.
vbKeyPageDown 0x22 PAGE DOWN key.
vbKeyEnd 0x23 END key.
vbKeyHome 0x24 HOME key.
vbKeyLeft 0x25 LEFT ARROW key.
vbKeyUp 0x26 UP ARROW key.
vbKeyRight 0x27 RIGHT ARROW key.
vbKeyDown 0x28 DOWN ARROW key.
vbKeySelect 0x29 SELECT key.
vbKeyPrint 0x2A PRINT SCREEN key.
vbKeyExecute 0x2B EXECUTE key.
vbKeySnapshot 0x2C SNAPSHOT key.
vbKeyInsert 0x2D INS key.
vbKeyDelete 0x2E DEL key.
vbKeyHelp 0x2F HELP key.
vbKeyNumlock 0x90 NUM LOCK key.

KeyA Through KeyZ Are the Same as Their ASCII Equivalents: 'A'
Through 'Z'
Constant Value Description
vbKeyA 65 A key.
vbKeyB 66 B key.
vbKeyC 67 C key.
vbKeyD 68 D key.
vbKeyE 69 E key.
vbKeyF 70 F key.
vbKeyG 71 G key.
vbKeyH 72 H key.
vbKeyI 73 I key.
vbKeyJ 74 J key.
vbKeyK 75 K key.
vbKeyL 76 L key.
vbKeyM 77 M key.
vbKeyN 78 N key.
vbKeyO 79 O key.
vbKeyP 80 P key.
vbKeyQ 81 Q key.
vbKeyR 82 R key.
vbKeyS 83 S key.

 Contents clvii

vbKeyT 84 T key.

clviii Learn Visual Basic 6.0

KeyA Through KeyZ (continued)
Constant Value Description
vbKeyU 85 U key.
vbKeyV 86 V key.
vbKeyW 87 W key.
vbKeyX 88 X key.
vbKeyY 89 Y key.
vbKeyZ 90 Z key.

Key0 Through Key9 Are the Same as Their ASCII Equivalents: '0'
Through '9'
Constant Value Description
vbKey0 48 0 key.
vbKey1 49 1 key.
vbKey2 50 2 key.
vbKey3 51 3 key.
vbKey4 52 4 key.
vbKey5 53 5 key.
vbKey6 54 6 key.
vbKey7 55 7 key.
vbKey8 56 8 key.
vbKey9 57 9 key.

Keys on the Numeric Keypad
Constant Value Description
vbKeyNumpad0 0x60 0 key.
vbKeyNumpad1 0x61 1 key.
vbKeyNumpad2 0x62 2 key.
vbKeyNumpad3 0x63 3 key.
vbKeyNumpad4 0x64 4 key.
vbKeyNumpad5 0x65 5 key.
vbKeyNumpad6 0x66 6 key.
vbKeyNumpad7 0x67 7 key.
vbKeyNumpad8 0x68 8 key.
vbKeyNumpad9 0x69 9 key.
vbKeyMultiply 0x6A MULTIPLICATION SIGN (*)
vbKeyAdd 0x6B PLUS SIGN (+)
vbKeySeparator 0x6C ENTER key.
vbKeySubtract 0x6D MINUS SIGN (-)
vbKeyDecimal 0x6E DECIMAL POINT (.)
vbKeyDivide 0x6F DIVISION SIGN (/)

 Contents clix

Function Keys
Constant Value Description
vbKeyF1 0x70 F1 key.
vbKeyF2 0x71 F2 key.
vbKeyF3 0x72 F3 key.
vbKeyF4 0x73 F4 key.
vbKeyF5 0x74 F5 key.
vbKeyF6 0x75 F6 key.
vbKeyF7 0x76 F7 key.
vbKeyF8 0x77 F8 key.
vbKeyF9 0x78 F9 key.
vbKeyF10 0x79 F10 key.
vbKeyF11 0x7A F11 key.
vbKeyF12 0x7B F12 key.
vbKeyF13 0x7C F13 key.
vbKeyF14 0x7D F14 key.
vbKeyF15 0x7E F15 key.
vbKeyF16 0x7F F16 key.

Menu Accelerator Constants

Constant Value Description
vbMenuAccelCtrlA 1 User-defined shortcut

keystrokes.
vbMenuAccelCtrlB 2 User-defined shortcut

keystrokes.
vbMenuAccelCtrlC 3 User-defined shortcut

keystrokes.
vbMenuAccelCtrlD 4 User-defined shortcut

keystrokes.
vbMenuAccelCtrlE 5 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF 6 User-defined shortcut

keystrokes.
vbMenuAccelCtrlG 7 User-defined shortcut

keystrokes.
vbMenuAccelCtrlH 8 User-defined shortcut

keystrokes.
vbMenuAccelCtrlI 9 User-defined shortcut

keystrokes.
vbMenuAccelCtrlJ 10 User-defined shortcut

keystrokes.
vbMenuAccelCtrlK 11 User-defined shortcut

keystrokes.

clx Learn Visual Basic 6.0

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelCtrlL 12 User-defined shortcut

keystrokes.
vbMenuAccelCtrlM 13 User-defined shortcut

keystrokes.
vbMenuAccelCtrlN 14 User-defined shortcut

keystrokes.
vbMenuAccelCtrlO 15 User-defined shortcut

keystrokes.
vbMenuAccelCtrlP 16 User-defined shortcut

keystrokes.
vbMenuAccelCtrlQ 17 User-defined shortcut

keystrokes.
vbMenuAccelCtrlR 18 User-defined shortcut

keystrokes.
vbMenuAccelCtrlS 19 User-defined shortcut

keystrokes.
vbMenuAccelCtrlT 20 User-defined shortcut

keystrokes.
vbMenuAccelCtrlU 21 User-defined shortcut

keystrokes.
vbMenuAccelCtrlV 22 User-defined shortcut

keystrokes.
vbMenuAccelCtrlW 23 User-defined shortcut

keystrokes.
vbMenuAccelCtrlX 24 User-defined shortcut

keystrokes.
vbMenuAccelCtrlY 25 User-defined shortcut

keystrokes.
vbMenuAccelCtrlZ 26 User-defined shortcut

keystrokes.
vbMenuAccelF1 27 User-defined shortcut

keystrokes.
vbMenuAccelF2 28 User-defined shortcut

keystrokes.
vbMenuAccelF3 29 User-defined shortcut

keystrokes.
vbMenuAccelF4 30 User-defined shortcut

keystrokes.
vbMenuAccelF5 31 User-defined shortcut

keystrokes.
vbMenuAccelF6 32 User-defined shortcut

keystrokes.
vbMenuAccelF7 33 User-defined shortcut

keystrokes.

 Contents clxi

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelF8 34 User-defined shortcut

keystrokes.
vbMenuAccelF9 35 User-defined shortcut

keystrokes.
vbMenuAccelF11 36 User-defined shortcut

keystrokes.
vbMenuAccelF12 37 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF1 38 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF2 39 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF3 40 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF4 41 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF5 42 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF6 43 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF7 44 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF8 45 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF9 46 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF11 47 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF12 48 User-defined shortcut

keystrokes.
vbMenuAccelShiftF1 49 User-defined shortcut

keystrokes.
vbMenuAccelShiftF2 50 User-defined shortcut

keystrokes.
vbMenuAccelShiftF3 51 User-defined shortcut

keystrokes.
vbMenuAccelShiftF4 52 User-defined shortcut

keystrokes.
vbMenuAccelShiftF5 53 User-defined shortcut

keystrokes.
vbMenuAccelShiftF6 54 User-defined shortcut

keystrokes.
vbMenuAccelShiftF7 55 User-defined shortcut

keystrokes.

clxii Learn Visual Basic 6.0

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelShiftF8 56 User-defined shortcut

keystrokes.
vbMenuAccelShiftF9 57 User-defined shortcut

keystrokes.
vbMenuAccelShiftF11 58 User-defined shortcut

keystrokes.
vbMenuAccelShiftF12 59 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF1 60 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF2 61 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF3 62 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF4 63 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF5 64 ser-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF6 65 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF7 66 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF8 67 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF9 68 ser-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF11 69 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF12 70 User-defined shortcut

keystrokes.
vbMenuAccelCtrlIns 71 User-defined shortcut

keystrokes.
vbMenuAccelShiftIns 72 User-defined shortcut

keystrokes.
vbMenuAccelDel 73 User-defined shortcut

keystrokes.
vbMenuAccelShiftDel 74 User-defined shortcut

keystrokes.
vbMenuAccelAltBksp 75 User-defined shortcut

keystrokes.

 Contents clxiii

Menu Control Constants

PopupMenu Method Alignment
Constant Value Description
vbPopupMenuLeftAlign 0 Pop-up menu left-aligned.
vbPopupMenuCenterAlign 4 Pop-up menu centered.
vbPopupMenuRightAlign 8 Pop-up menu right-aligned.

PopupMenu Mouse Button Recognition
Constant Value Description
vbPopupMenuLeftButton 0 Pop-up menu recognizes left

mouse button only.
vbPopupMenuRightButton 2 Pop-up menu recognizes right

and left mouse buttons.

Miscellaneous Constants

ZOrder Method
Constant Value Description
vbBringToFront 0 Bring to front.
vbSendToBack 1 Send to back.

QueryUnload Method
Constant Value Description
vbAppWindows 2 Current Windows session

ending.
vbFormMDIForm 4 MDI child form is closing

because the MDI form is
closing.

vbFormCode 1 Unload method invoked from
code.

vbFormControlMenu 0 User has chosen Close
command from the Control-
menu box on a form.

vbAppTaskManager 3 Windows Task Manager is
closing the application.

Shift Parameter Masks
Constant Value Description
vbShiftMask 1 SHIFT key bit mask.
vbCtrlMask 2 CTRL key bit mask.
vbAltMask 4 ALT key bit mask.

clxiv Learn Visual Basic 6.0

Button Parameter Masks
Constant Value Description
vbLeftButton 1 Left mouse button.
vbRightButton 2 Right mouse button.
vbMiddleButton 4 Middle mouse button.

Application Start Mode
Constant Value Description
vbSModeStandalone 0 Stand-alone application.
vbSModeAutomation 1 OLE automation server.

LoadResPicture Method
Constant Value Description
vbResBitmap 0 Bitmap resource.
vbResIcon 1 Icon resource.
vbResCursor 2 Cursor resource.

Check Value
Constant Value Description
vbUnchecked 0 Unchecked.
vbChecked 1 Checked.
vbGrayed 2 Grayed.

 Contents clxv

Mouse Pointer Constants

Constant Value Description
vbDefault 0 Default.
vbArrow 1 Arrow.
vbCrosshair 2 Cross.
vbIbeam 3 I beam.
vbIconPointer 4 Icon.
vbSizePointer 5 Size.
vbSizeNESW 6 Size NE, SW.
vbSizeNS 7 Size N, S.
vbSizeNWSE 8 Size NW, SE.
vbSizeWE 9 Size W, E.
vbUpArrow 10 Up arrow.
vbHourglass 11 Hourglass.
vbNoDrop 12 No drop.
vbArrowHourglass 13 Arrow and hourglass. (Only

available in 32-bit Visual Basic
4.0.)

vbArrowQuestion 14 Arrow and question mark. (Only
available in 32-bit Visual Basic
4.0.)

vbSizeAll 15 Size all. (Only available in 32-
bit Visual Basic 4.0.)

vbCustom 99 Custom icon specified by the
MouseIcon property.

clxvi Learn Visual Basic 6.0

MsgBox Constants

MsgBox Arguments
Constant Value Description
vbOKOnly 0 OK button only (default)
vbOKCancel 1 OK and Cancel buttons.
vbAbortRetryIgnore 2 Abort, Retry, and Ignore

buttons.
vbYesNoCancel 3 Yes, No, and Cancel buttons.
vbYesNo 4 Yes and No buttons.
vbRetryCancel 5 Retry and Cancel buttons.
vbCritical 16 Critical message.
vbQuestion 32 Warning query.
vbExclamation 48 Warning message.
vbInformation 64 Information message.
vbDefaultButton1 0 First button is default (default)
vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbApplicationModal 0 Application modal message

box (default)
vbSystemModal 4096 System modal message box.

MsgBox Return Values
Constant Value Description
vbOK 1 OK button pressed.
vbCancel 2 Cancel button pressed.
vbAbort 3 Abort button pressed.
vbRetry 4 Retry button pressed.
vbIgnore 5 Ignore button pressed.
vbYes 6 Yes button pressed.
vbNo 7 No button pressed.

OLE Container Control Constants

OLEType Property
Constant Value Description
vbOLELinked 0 OLE container control contains

a linked object.
vbOLEEmbedded 1 OLE container control contains

an embedded object.
vbOLENone 3 OLE container control doesn't

contain an object.

 Contents clxvii

OLETypeAllowed Property
Constant Value Description
vbOLEEither 2 OLE container control can

contain either a linked or an
embedded object.

UpdateOptions Property
Constant Value Description
vbOLEAutomatic 0 Object is updated each time

the linked data changes.
vbOLEFrozen 1 Object is updated whenever

the user saves the linked
document from within the
application in which it was
created.

vbOLEManual 2 Object is updated only when
the Action property is set to 6
(Update)

AutoActivate Property
Constant Value Description
vbOLEActivateManual 0 OLE object isn't automatically

activated.
vbOLEActivateGetFocus 1 Object is activated when the

OLE container control gets the
focus.

vbOLEActivateDoubleclick 2 Object is activated when the
OLE container control is
double-clicked.

vbOLEActivateAuto 3 Object is activated based on
the object's default method of
activation.

SizeMode Property
Constant Value Description
vbOLESizeClip 0 Object's image is clipped by the

OLE container control's
borders.

vbOLESizeStretch 1 Object's image is sized to fill
the OLE container control.

vbOLESizeAutoSize 2 OLE container control is
automatically resized to display
the entire object.

vbOLESizeZoom 3 Object's image is stretched but
in proportion.

clxviii Learn Visual Basic 6.0

DisplayType Property
Constant Value Description
vbOLEDisplayContent 0 Object's data is displayed in the

OLE container control.
vbOLEDisplayIcon 1 Object's icon is displayed in the

OLE container control.
Updated Event Constants
Constant Value Description
vbOLEChanged 0 Object's data has changed.
vbOLESaved 1 Object's data has been saved

by the application that created
the object.

vbOLEClosed 2 Application file containing the
linked object's data has been
closed.

vbOLERenamed 3 Application file containing the
linked object's data has been
renamed.

Special Verb Values
Constant Value Description
vbOLEPrimary 0 Default action for the object.
vbOLEShow -1 Activates the object for editing.
vbOLEOpen -2 Opens the object in a separate

application window.
vbOLEHide -3 For embedded objects, hides

the application that created the
object.

vbOLEInPlaceUIActivate -4 All UI's associated with the
object are visible and ready for
use.

vbOLEInPlaceActivate -5 Object is ready for the user to
click inside it and start working
with it.

vbOLEDiscardUndoState -6 For discarding all record of
changes that the object's
application can undo.

 Contents clxix

Verb Flag Bit Masks
Constant Value Description
vbOLEFlagEnabled 0x0 Enabled menu item.
vbOLEFlagGrayed 0x1 Grayed menu item.
vbOLEFlagDisabled 0x2 Disabled menu item.
vbOLEFlagChecked 0x8 Checked menu item.
vbOLEFlagSeparator 0x800 Separator bar in menu item list.
vbOLEMiscFlagMemStorage 0x1 Causes control to use memory

to store the object while it's
loaded.

vbOLEMiscFlagDisableInPlace 0x2 Forces OLE container control
to activate objects in a
separate window.

VBTranslateColor/OLETranslateColor Constants
Constant Value Description
vbInactiveCaptionText 0x80000013 Color of text in an inactive

caption.
vb3DHighlight 0x80000014 Highlight color for 3-D display

elements.
vb3DFace 0x8000000F Dark shadow color for 3-D

display elements.
vbMsgBox 0x80000017 Background color for message

boxes and system dialog
boxes.

vbMsgBoxText 0x80000018 Color of text displayed in
message boxes and system
dialog boxes.

vb3DShadow 0x80000010 Color of automatic window
shadows.

vb3DDKShadow 0x80000015 Darkest shadow.
vb3DLight 0x80000016 Second lightest of the 3-D

colors (after vb3DHighlight)

Picture Object Constants

Constant Value Description
vbPicTypeBitmap 1 Bitmap type of Picture object.
vbPicTypeMetafile 2 Metafile type of Picture object.
vbPicTypeIcon 3 Icon type of Picture object.

clxx Learn Visual Basic 6.0

Printer Object Constants

Printer Color Mode
Constant Value Description
vbPRCMMonochrome 1 Monochrome output.
vbPRCMColor 2 Color output.

Duplex Printing
Constant Value Description
vbPRDPSimplex 1 Single-sided printing.
vbPRDPHorizontal 2 Double-sided horizontal

printing.
vbPRDPVertical 3 Double-sided vertical printing.

Printer Orientation
Constant Value Description
vbPRORPortrait 1 Documents print with the top at

the narrow side of the paper.
vbPRORLandscape 2 Documents print with the top at

the wide side of the paper.

Print Quality
Constant Value Description
vbPRPQDraft -1 Draft print quality.
vbPRPQLow -2 Low print quality.
vbPRPQMedium -3 Medium print quality.
vbPRPQHigh -4 High print quality.

PaperBin Property
Constant Value Description
vbPRBNUpper 1 Use paper from the upper bin.
vbPRBNLower 2 Use paper from the lower bin.
vbPRBNMiddle 3 Use paper from the middle bin.
vbPRBNManual 4 Wait for manual insertion of

each sheet of paper.
vbPRBNEnvelope 5 Use envelopes from the

envelope feeder.
vbPRBNEnvManual 6 Use envelopes from the

envelope feeder, but wait for
manual insertion.

vbPRBNAuto 7 (Default)
vbPRBNTractor 8 Use paper fed from the tractor

feeder.

 Contents clxxi

PaperBin Property (continued)
Constant Value Description
vbPRBNSmallFmt 9 Use paper from the small paper

feeder.
vbPRBNLargeFmt 10 Use paper from the large paper

bin.
vbPRBNLargeCapacity 11 Use paper from the large

capacity feeder.
vbPRBNCassette 14 Use paper from the attached

cassette cartridge.
PaperSize Property
Constant Value Description
vbPRPSLetter 1 Letter, 8 1/2 x 11 in.
vbPRPSLetterSmall 2 +A611Letter Small, 8 1/2 x 11

in.
vbPRPSTabloid 3 Tabloid, 11 x 17 in.
vbPRPSLedger 4 Ledger, 17 x 11 in.
vbPRPSLegal 5 Legal, 8 1/2 x 14 in.
vbPRPSStatement 6 Statement, 5 1/2 x 8 1/2 in.
vbPRPSExecutive 7 Executive, 7 1/2 x 10 1/2 in.
vbPRPSA3 8 A3, 297 x 420 mm.
vbPRPSA4 9 A4, 210 x 297 mm.
vbPRPSA4Small 10 A4 Small, 210 x 297 mm.
vbPRPSA5 11 A5, 148 x 210 mm.
vbPRPSB4 12 B4, 250 x 354 mm.
vbPRPSB5 13 B5, 182 x 257 mm.
vbPRPSFolio 14 Folio, 8 1/2 x 13 in.
vbPRPSQuarto 15 Quarto, 215 x 275 mm.
vbPRPS10x14 16 10 x 14 in.
vbPRPS11x17 17 11 x 17 in.
vbPRPSNote 18 Note, 8 1/2 x 11 in.
vbPRPSEnv9 19 Envelope #9, 3 7/8 x 8 7/8 in.
vbPRPSEnv10 20 Envelope #10, 4 1/8 x 9 1/2 in.
vbPRPSEnv11 21 Envelope #11, 4 1/2 x 10 3/8

in.
vbPRPSEnv12 22 Envelope #12, 4 1/2 x 11 in.
vbPRPSEnv14 23 Envelope #14, 5 x 11 1/2 in.
vbPRPSCSheet 24 C size sheet.
vbPRPSDSheet 25 D size sheet.
vbPRPSESheet 26 E size sheet.
vbPRPSEnvDL 27 Envelope DL, 110 x 220 mm.
vbPRPSEnvC3 29 Envelope C3, 324 x 458 mm.
vbPRPSEnvC4 30 Envelope C4, 229 x 324 mm.
vbPRPSEnvC5 28 Envelope C5, 162 x 229 mm.
vbPRPSEnvC6 31 Envelope C6, 114 x 162 mm.

clxxii Learn Visual Basic 6.0

vbPRPSEnvC65 32 Envelope C65, 114 x 229 mm.

 Contents clxxiii

PaperSize Property (continued)
Constant Value Description
vbPRPSEnvB4 33 Envelope B4, 250 x 353 mm.
vbPRPSEnvB5 34 Envelope B5, 176 x 250 mm.
vbPRPSEnvB6 35 Envelope B6, 176 x 125 mm.
vbPRPSEnvItaly 36 Envelope, 110 x 230 mm.
vbPRPSEnvMonarch 37 Envelope Monarch, 3 7/8 x 7

1/2 in.
vbPRPSEnvPersonal 38 Envelope, 3 5/8 x 6 1/2 in.
vbPRPSFanfoldUS 39 U.S. Standard Fanfold, 14 7/8 x

11 in.
vbPRPSFanfoldStdGerman 40 German Standard Fanfold, 8

1/2 x 12 in.
vbPRPSFanfoldLglGerman 41 German Legal Fanfold, 8 1/2 x

13 in.
vbPRPSUser 256 User-defined.

RasterOp Constants

Constant Value Description
vbDstInvert 0x00550009 Inverts the destination bitmap.
vbMergeCopy 0x00C000CA Combines the pattern and the

source bitmap.
vbMergePaint 0x00BB0226 Combines the inverted source

bitmap with the destination
bitmap by using Or.

vbNotSrcCopy 0x00330008 Copies the inverted source
bitmap to the destination.

vbNotSrcErase 0x001100A6 Inverts the result of combining
the destination and source
bitmaps by using Or.

vbPatCopy 0x00F00021L Copies the pattern to the
destination bitmap.

vbPatInvert 0x005A0049L Combines the destination
bitmap with the pattern by
using Xor.

vbPatPaint 0x00FB0A09L Combines the inverted source
bitmap with the pattern by
using Or. Combines the result
of this operation with the
destination bitmap by using Or.

vbSrcAnd 0x008800C6 Combines pixels of the
destination and source bitmaps
by using And.

clxxiv Learn Visual Basic 6.0

RasterOp Constants (continued)
Constant Value Description
vbSrcCopy 0x00CC0020 Copies the source bitmap to

the destination bitmap.
vbSrcErase 0x00440328 Inverts the destination bitmap

and combines the result with
the source bitmap by using
And.

vbSrcInvert 0x00660046 Combines pixels of the
destination and source bitmaps
by using Xor.

vbSrcPaint 0x00EE0086 Combines pixels of the
destination and source bitmaps
by using Or.

Shell Constants

Constant Value Description
vbHide 0 Window is hidden and focus is

passed to the hidden window.
vbNormalFocus 1 Window has focus and is

restored to its original size and
position.

vbMinimizedFocus 2 Window is displayed as an icon
with focus.

vbMaximizedFocus 3 Window is maximized with
focus.

vbNormalNoFocus 4 Window is restored to its most
recent size and position. The
currently active window
remains active.

vbMinimizedNoFocus 6 Window is displayed as an
icon. The currently active
window remains active.

 Contents clxxv

StrConv Constants

Constant Value Description
vbUpperCase 1 Uppercases the string.
vbLowerCase 2 Lowercases the string.
vbProperCase 3 Uppercases first letter of every

word in string.
vbWide* 4* Converts narrow (single-

byte)(double-byte)
vbNarrow* 8* Converts wide (double-

byte)(single-byte)
vbKatakana** 16** Converts Hiragana characters

in string to Katakana
characters.

vbHiragana** 32** Converts Katakana characters
in string to Hiragana
characters.

vbUnicode*** 64*** Converts the string to Unicode
using the default code page of
the system.

vbFromUnicode*** 128*** Converts the string from
Unicode to the default code
page of the system.

*Applies to Far East locales
**Applies to Japan only.
***Specifying this bit on 16-bit systems causes a run-time error
.

Variant Type Constants

Constant Value Description
vbVEmpty 0 Empty (uninitialized)
vbVNull 1 Null (no valid data)
vbVInteger 2 Integer data type.
vbVLong 3 Long integer data type.
vbVSingle 4 Single-precision floating-point

data type.
vbVDouble 5 Double-precision floating-point

data type.
vbVCurrency 6 Currency (scaled integer)
vbVDate 7 Date data type.
vbVString 8 String data type.

clxxvi Learn Visual Basic 6.0

VarType Constants

Constant Value Description
vbEmpty 0 Uninitialized (default)
vbNull 1 Contains no valid data.
vbInteger 2 Integer.
vbLong 3 Long integer.
vbSingle 4 Single-precision floating-point

number.
vbDouble 5 Double-precision floating-point

number.
vbCurrency 6 Currency.
vbDate 7 Date.
vbString 8 String.
vbObject 9 OLE Automation object.
vbError 10 Error.
vbBoolean 11 Boolean.
vbVariant 12 Variant (used only for arrays of

Variants)
vbDataObject 13 Non-OLE Automation object.
vbByte 17 Byte
vbArray 8192 Array.

