< Day Day Up > MET

. Table of Contents
. Index

. Reviews

. Examples

- Reader Reviews

- Errata

- Academic

Mastering Oracle SQL, 2nd Edition

By Alan Beaulieu, Sanjay Mishra

Publisher: O'Reilly

Pub Date: June 2004
ISBN: 0-596-00632-2
Pages: 492

Updated to cover Oracle 10g, this new edition of the highly regarded Mastering Oracle SQL has
a stronger focus on practical, expert best-practices and on Oracle-specific SQL technique than
any other book on the market. For those who want to harness the untapped (and often
overlooked) power of Oracle SQL, this essential guide for putting Oracle SQL to work will prove
invaluable.

< Day Day Up > | NEXT W |

< Day Day Up >

- Table of Contents
. Index

- Reviews

- Examples

- Reader Reviews

- Errata

- Academic

Mastering Oracle SQL, 2nd Edition

By Alan Beaulieu, Sanjay Mishra

Publisher: O'Reilly

Pub Date: June 2004
ISBN: 0-596-00632-2
Pages: 492

Copyright
Preface

Why We Wrote This Book
What's New in Oracle SOL?
Objectives of This Book

Audience for This Book

Platform and Version

Structure of This Book

Conventions Used in This Book

Using Code Examples

Comments and Questions
Acknowledgments

Chapter 1. Introduction to SOL
Section 1.1. What Is SOQL?
Section 1.2. A Brief History of SOL

Section 1.3. A Simple Database

Section 1.4. DML Statements

Section 1.5. So Why Are There 17 More Chapters?
Chapter 2. The WHERE Clause

Section 2.1. Life Without WHERE

Section 2.2. WHERE to the Rescue

Section 2.3. WHERE Clause Evaluation

Section 2.4. Conditions and Expressions

Section 2.5.

WHERE to Go from Here

Chapter 3. Joins

Section 3.1.

What Is a Join Query?

Section 3.2.

Join Conditions

Section 3.3.

Types of Joins

Section 3.4.

Joins and Subqueries

Section 3.5.

DML Statements on a Join View

Chapter 4. Group Operations

Section 4.1.

Aggregate Functions

Section 4.2.

The GROUP BY Clause

Section 4.3.

The HAVING Clause

Section 4.4.

Nested Group Operations

Chapter 5. Subqueries

Section 5.1.

What Is a Subquery?

Section 5.2.

Noncorrelated Subqueries

Section 5.3.

Correlated Subqueries

Section 5.4.

Inline Views

Section 5.5.

Subquery Case Study: The Top N Performers

Chapter 6. Handling Temporal Data

Section 6.1.

Time Zones

Section 6.2.

Temporal Data Types in Oracle

Section 6.3.

Literals of Temporal Types

Section 6.4.

Getting Temporal Data In and Out of a Database

Section 6.5.

Date and Time Formats

Section 6.6.

Manipulating Temporal Data

Chapter 7. Set Operations

Section 7.1.

Set Operators

Section 7.2.

Precedence of Set Operators

Section 7.3.

Comparing Two Tables

Section 7.4.

Using NULLs in Compound Queries

Section 7.5.

Rules and Restrictions on Set Operations

Chapter 8. Hierarchical Queries

Section 8.1.

Representing Hierarchical Information

Section 8.2.

Simple Hierarchy Operations

Section 8.3.

Oracle SQL Extensions

Section 8.4.

Complex Hierarchy Operations

Section 8.5.

Restrictions on Hierarchical Queries

Section 8.6.

Enhancements in Oracle Database 10g

Chapter 9. DECODE and CASE

Section 9.1. DECODE, NULLIF, NVL, and NVL2
Section 9.2. The Case for CASE
Section 9.3. DECODE and CASE Examples

Chapter 10. Partitioning

Section 10.1.

Partitioning Concepts

Section 10.2.

Partitioning Tables

Section 10.3.

Partitioning Indexes

Section 10.4.

Partitioning Methods

Section 10.5.

Specifying Partitions

Section 10.6.

Partition Pruning

Chapter 11. PL/SOL

Section 11.1. What Is PL/SQL?

Section 11.2. Procedures, Functions, and Packages

Section 11.3. Calling Stored Functions from Queries
Section 11.4. Restrictions on Calling PL/SQL from SQL

Section 11.5. Stored Functions in DML Statements
Section 11.6. The SQL Inside Your PL/SQL

Chapter 12. Objects and Collections
Section 12.1. Object Types

Section 12.2. Collection Types

Section 12.3. Collection Instantiation

Section 12.4. Querying Collections

Section 12.5. Collection Unnesting

Section 12.6. Collection Functions

Section 12.7. Comparing Collections

Section 12.8. Manipulating Collections

Section 12.9. Multilevel Collections

Chapter 13. Advanced Group Operations

Section 13.1. Multiple Summary Levels

Section 13.2. Pushing the GROUPING Envelope

Section 13.3. The GROUPING ID and GROUP_ID Functions
Chapter 14. Advanced Analytic SOL

Section 14.1. Analytic SOL Overview

Section 14.2. Ranking Functions

Section 14.3. Windowing Functions

Section 14.4. Reporting Functions

Section 14.5. Summary
Chapter 15. SOL Best Practices

Section 15.1. Know When to Use Specific Constructs

Section 15.2. Avoid Unnecessary Parsing

Section 15.3. Consider Literal SQL for Decision-Support Systems
Chapter 16. XML

Section 16.1. What Is XML?

Section 16.2. Storing XML Data

Section 16.3. Generating XML Documents

Section 16.4. Summary

Chapter 17. Reqular Expressions

Section 17.1. Elementary Regular Expression Syntax

Section 17.2. Advanced Function Options

Section 17.3. Advanced Regular Expression Syntax
Chapter 18. Model Queries

Section 18.1. Basic Elements of a Model Query

Section 18.2. Cell References
Section 18.3. Rules

Section 18.4. lIterative Models

Section 18.5. Reference Models

Appendix A. Oracle's Old Join Syntax

Section A.1. Old Inner Join Syntax
Section A.2. Old Quter Join Syntax

Section A.3. Advantages of the New Join Syntax

Colophon

Index

| 4 PREV < Day Day Up > MEXT o

| 4 PREV < Day Day Up > MEXT o

Copyright © 2004, 2002 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O'Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly Media, Inc. Mastering Oracle SQL, the image of lantern flies, and related
trade dress are trademarks of O'Reilly Media, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the United States and other countries. O'Reilly Media, Inc., is independent
of Oracle Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and

authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

| 4@ PREV < Day Day Up > MEXT mp

http://safari.oreilly.com

| 4 PREV < Day Day Up > MEXT o

Preface

SQL is the language for accessing a relational database. SQL provides a set of statements for
storing and retrieving data to and from a relational database. It has gained steadily in
popularity ever since the first relational database was unleashed upon the world. Other
languages have been put forth, but SQL is now accepted as the standard language for almost all
relational database implementations, including Oracle.

SQL is different from other programming languages because it is nonprocedural. Unlike
programs in other languages, where you specify the sequence of steps to be performed, a SQL
program (more appropriately called a SQL statement) only expresses the desired result. The
responsibility for determining how the data will be processed to generate the desired result is
left to the database management system. The nonprocedural nature of SQL makes it easier to
access data in application programs.

If you are using an Oracle database, SQL is the interface you use to access the data stored in
your database. SQL allows you to create database structures such as tables (to store your
data), views, and indexes. SQL allows you to insert data into the database, and to retrieve that
stored data in a desired format (for example, you might sort it). Finally, SQL allows you to
modify, delete, and otherwise manipulate your stored data. SQL is the key to everything you do
with the database. It's important to know how to get the most out of that interface. Mastery
over the SQL language is one of the most vital requirements of a database developer or
database administrator.

| 4 FREV < Day Day Up > MEXT mp

| 4 PREV < Day Day Up > MEXT o

Why We Wrote This Book

Our motivation for writing this book stems from our own experiences learning how to use the
Oracle database and Oracle's implementation of the SQL language. Oracle's SQL documentation
consists of a reference manual that doesn't go into details about the practical usefulness of the
various SQL features that Oracle supports. Nor does the manual present complex, real-life
examples.

When we looked for help with SQL in the computer book market, we found that there are really
two types of SQL books available. Most are the reference type that describe features and
syntax, but that don't tell you how to apply that knowledge to real-life problems. The other type
of book, very few-in-number, discusses the application of SQL in a dry and theoretical style
without using any particular vendor's implementation. Since every database vendor implements
their own variation of SQL, we find books based on "standard™ SQL to be of limited usefulness.

In writing this book, we decided to write a practical book focused squarely on Oracle's version
of SQL. Oracle is the market-leading database, and it's also the database on which we've honed
our SQL expertise. In this book, we not only cover the most important and useful of Oracle's
SQL features, but we show ways to apply them to solve specific problems.

| 4 FREV < Day Day Up > MEXT mp

| 4 PREV < Day Day Up > MEXT o

What's New in Oracle SQL?

When we wrote the first edition of this book, Oracle9i had just come out, and we managed to
cover some of the interesting and new features in that release of the database. Now, Oracle
Database 10g has just been released, and there are even more new features to talk about:

e A new, MODEL clause has been added to the SELECT statement, enabling you to write
queries that perform spreadsheet-like calculations against multidimensional arrays created
from data you select from the database.

e Oracle has added support for using regular expressions from SQL, and with a vengeance.
Not only can you use regular expressions to select data, but also to manipulate data in
various, useful ways. For example, you can perform regular expression search-and-replace
operations. No other database vendor that we know of offers such powerful, regular
expression functionality.

e XML is everywhere these days, and that hasn't gone unnoticed in the world of SQL. The
ANSI/ISO folk have created the SQL/XML standard, which defines mechanisms for
selecting relational data and presenting it in XML form. Oracle supports this standard,
which involves several, new SQL functions. Oracle also now supports XML as a native data

type.

These are just the big features, which, of course, we cover in this second edition. In addition,
we cover many small updates to Oracle SQL, such as the multiset union operators that enable
you to perform set operations involving nested table collections.

Finally, we've worked carefully together as a team, not only with each other, but also with our
editor, to ensure that all examples in this book are drawn from a single data set. You'll be able
to download that data set from this book's catalog page. You can then use it to follow along
with our examples.

| 4 FREV < Day Day Up > MEXT mp

| 4 PREV < Day Day Up > MEXT o

Objectives of This Book

The single most important objective of this book is to help you harness the power of Oracle SQL
to the maximum extent possible. You will learn to:

Understand the features and capabilities of the SQL language, as implemented by Oracle.

Use complex SQL features, such as outer joins, correlated subqueries, hierarchical queries,
grouping operations, and analytical queries.

Use DECODE and CASE to implement conditional logic in your SQL queries.

Write SQL statements that operate against partitions, objects, and collections, such as
nested tables and variable arrays.

Use the new SQL features introduced in Oracle Database 10g, such as regular expressions
and interrow calculations.

Use best-practices to write efficient, maintainable SQL queries.

One topic that is important to us and many of our readers, but which is not explicitly discussed
in this book is SQL tuning. Tuning tips are sprinkled throughout the book, but we do not include
a chapter on tuning for the following reasons:

Tuning is a large topic, and reasonable coverage of SQL tuning would easily double or
triple the size of this book.

There are already many excellent Oracle-specific and general-purpose tuning books on the
market, whereas there are very few books (in our opinion, exactly one) that thoroughly
explore the feature set of Oracle SQL.

In many ways, mastery of Oracle's SQL implementation is the most important tool in your
tuning toolkit.

With this book under your belt, you will be less likely to write SQL statements that perform
badly, and you will be able to employ multiple strategies to rework existing statements.

| dm FREV < Day Day Up > MEXT

| 4 PREV < Day Day Up > MEXT o

Audience for This Book

This book is for Oracle developers, database administrators, and anyone who needs access to
data stored in an Oracle database for reporting or ad-hoc analysis. Whether you are new to the
world of databases or a seasoned professional, if you use SQL to access an Oracle database, this
book is for you. Whether you use simple queries to access data or embed them in PL/SQL or
Java programs, SQL is the core of all data access tasks in your application. Knowing the power
and flexibility of SQL will improve your productivity, allowing you to get more done in less time,
and with increased certainty that the SQL statements you write are indeed correct.

| 4 PREV < Day Day Up > MEXT o

| 4 PREV < Day Day Up > MEXT o

Platform and Version

We used Oracle Database 10g in writing this book. We've covered many of Oracle Database
10g's important new SQL features, including regular expressions, hierarchical query features,
object and collection functionality, and interrow calculations. Most of the concepts, syntax, and
examples apply to earlier releases of Oracle as well. We specifically point out the new Oracle
Database 10g features.

| dmPREV | < Day Day Up > | NEXT o |

| 4 PREV < Day Day Up > MEXT o

Structure of This Book

This book is divided into 18 chapters and 1 appendix:

e Chapter 1, introduces the SQL language and describes its brief history. This chapter is
primarily for those readers who have little or no prior SQL experience. You'll find simple
examples of the core SQL statements (SELECT, INSERT, UPDATE, and DELETE) and of
SQL's basic features.

e Chapter 2, describes ways to filter data in your SQL statements. You'll learn to restrict the
results of a query to the rows you wish to see, and restrict the results of a data
manipulation statement to the rows you wish to modify.

e Chapter 3, describes constructs used to access data from multiple, related tables. The
important concepts of inner join and outer join are discussed in this chapter.

e Chapter 4, shows you how to generate summary information, such as totals and subtotals,
from your data. Learn how to define groups of rows, and how to apply various aggregate
functions to summarize data in those groups.

e Chapter 5, shows you how to use correlated and noncorrelated subqueries and inline views
to solve complex problems that would otherwise require procedural code together with
more than one query.

e Chapter 6, talks about handling date and time information in an Oracle database. Learn
the tricks and traps of querying time-based data.

e Chapter 7, shows you how to use UNION, INTERSECT, and MINUS to combine results from
two or more independent component queries into one.

e Chapter 8, shows you how to store and extract hierarchical information (such as in an
organizational chart) from a relational table. Oracle provides many features to facilitate
working with hierarchical data, including several new features introduced in Oracle
Database 10g.

e Chapter 9, talks about two very powerful yet simple features of Oracle SQL that enable you
to simulate conditional logic in what is otherwise a declarative language.

e Chapter 10, discusses the issues involved with creating and accessing partitioned tables
using SQL. Learn to write SQL statements that operate on specific partitions and
subpartitions.

e Chapter 11, explores the integration of SQL and PL/SQL. This chapter describes how to call
PL/SQL stored procedures and functions from SQL statements, and how to write efficient
SQL statements within PL/SQL programs.

e Chapter 12, explores the object-oriented aspects of the Oracle database server, including
object types and collections.

e Chapter 13, deals with complex grouping operations used mostly in decision support
systems. We show you how to use Oracle features such as ROLLUP, CUBE, and GROUPING

SETS to efficiently generate various levels of summary information required by decision-
support applications. We also discuss the grouping features that enable composite and
concatenated groupings, including the GROUP_ID and GROUPING_ID functions.

e Chapter 14, deals with analytical queries and analytic functions. Learn how to use ranking,
windowing, and reporting functions to generate decision-support information.

e Chapter 15, talks about best practices that you should follow to write efficient and
maintainable queries. Learn which SQL constructs are the most efficient for a given
situation. For example, we describe when it's better to use WHERE instead of HAVING to
restrict query results. We also discuss the performance implications of using bind variables
vis-a-vis literal SQL.

e Chapter 16, explores how the Oracle server can store XML documents, features used to
navigate, search, and extract content from XML documents, and functions used to
generate XML documents from ordinary tables.

e Chapter 17, shows how to write and interpret regular expressions for performing advanced
text searches and substitutions.

e Chapter 18, introduces the new, MODEL clause, which lets you manipulate relational data
as if it were a big, multidimensional, spreadsheet (Oracle prefers the term model). Model
queries enable you to solve problems using a single SQL statement that previously would
have required you to download data to a third-party, spreadsheet program such as
Microsoft Excel.

e The Appendix, describes the SQL89 join syntax, and Oracle's proprietary, outer-join
syntax. Only this syntax was available for joins until the release of Oracle9i Database,
which introduced support for the newer, and better, SQL92 join syntax.

| @aPREV | < Day Day Up > | NEMT #p |

| 4 PREV < Day Day Up > MEXT o

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Used for filenames, directory names, table names, field names, and exampl URLs. It is
also used for emphasis and for the first use of a technical term.

Constant wi dth
Used for examples and to show the contents of files and the output of commands. Also

used for column names, XML element names, regular expressions, SQL literals mentioned
in the text, and function names.

Constant width italic

Used in syntax descriptions to indicate user-defined items.

Constant wi dth bold

Indicates user input in examples showing an interaction. Also indicates emphasized code
elements to which you should pay particular attention.

Constant width bold italic

Used in code examples to emphasize aspects of the SQL statements, or results, that are
under discussion.

UPPERCASE

In syntax descriptions, indicates keywords.

lowercase

In syntax descriptions, indicates user-defined items, such as variables.

[]

In syntax descriptions, square brackets enclose optional items.

{}

In syntax descriptions, curly brackets enclose a set of items from which you must choose
only one.

In syntax descriptions, a vertical bar separates the items enclosed in curly or square
brackets, as in {TRUE | FALSE}.

In syntax descriptions, ellipses indicate repeating elements.

Indicates a tip, suggestion, or general note. For example, we use notes to
. point you to useful new features in Oracle Database 10g.

..
T

Indicates a warning or caution. For example, we'll tell you if a certain SQL
clause might have unintended consequences if not used carefully.

‘ ‘ FPREY < Day Day Up > MHE®T ‘

| 4 PREV < Day Day Up > MEXT o

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O'Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product's documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Mastering Oracle SQL, Second Edition, by Sanjay Mishra
and Alan Beaulieu. Copyright 2004 O'Reilly Media, Inc., 0-596-00632-2."

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at:

permissions@oreilly.com.

| 4 PREV < Day Day Up > MEXT o

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may
find that features have changed or that we have made mistakes. If so, please notify us by
writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

O'Reilly has a web site for this book, where you can find examples and errata (previously
reported errors and corrections are available for public view there). You can access this page at:

http://www.oreilly.com/catalog/0596006322

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

| dm FREV < Day Day Up > MEXT oy

http://www.oreilly.com/catalog/0596006322
http://www.oreilly.com

| 4 PREV < Day Day Up > MEXT o

Acknowledgments

We are indebted to a great many people who have contributed in the development and
production of this book. We owe a huge debt of gratitude to Jonathan Gennick, the editor of the
book. Jonathan's vision for this book, close attention to details, and exceptional editing skills
are the reasons this book is here today.

Our sincere thanks to our technical reviewers: Diana Lorentz, Jason Bucata, Trudy Pelzer, and
Peter Linsley, who generously gave their valuable time to read and comment on a draft copy of
this book. Their contributions have greatly improved its accuracy, readability, and value.

This book certainly would not have been possible without a lot of hard work and support from
the skillful staff at O'Reilly, including Ellie Volckhausen and Emma Colby, the cover designers;
David Futato, the interior designer; Julie Hawks, who converted the files; Matt Hutchinson, the
production editor; Rob Romano and Jessamyn Read, the illustrators; and Sarah Sherman,
Marlowe Shaeffer, and Claire Cloutier, who provided quality control.

From Sanjay

I would like to thank my coauthor Alan and my coauthor/editor Jonathan Gennick for constant
cooperation and smooth execution during the first as well as the second edition of this book.

My adventure with Oracle's database started in the Tribology Workbench project at Tata Steel,
Jamshedpur, India. Sincere thanks to my co-workers in the Tribology Workbench project for all
the experiments and explorations we did during our learning days with Oracle. Ever since,
Oracle database technology has become a way of life for me.

Special thanks the readers of the first edition whose feedback, comments, questions, and
suggestions helped improve the second edition of the book. Sincere thanks to my current and
previous co-workers for their support and encouragement.

Last, but not the least, | thank my wife, Sudipti, for her support, understanding, and constant
encouragement.

From Alan

I would like to thank my coauthor Sanjay and my coauthor/editor Jonathan Gennick for helping
to make the second edition of this book a reality. I would also like to thank the many readers of
our first edition who pointed out errors, asked questions, and made suggestions; with your
help, our second edition is a much better book.

Most of all, I would like to thank my wife, Nancy, for her support, patience, and encouragement,
and my daughters, Michelle and Nicole, for their love and inspiration.

| 4@ PREV < Day Day Up > MET

Chapter 1. Introduction to SQL

In this introductory chapter, we explore the origin and utility of the SQL language, demonstrate
some of the more useful features of the language, and define a simple database design from
which most examples in the book are derived.

4@ PREV | < Day Day Up > | NEMT #p |

| 4m PREV < Day Day Up > MET

1.1 What Is SQL?

SQL is a special-purpose language used to define, access, and manipulate data. SQL is
nonprocedural, meaning that it describes the necessary components (i.e., tables) and desired
results without dictating exactly how those results should be computed. Every SQL
implementation sits atop a database engine, whose job it is to interpret SQL statements and
determine how the various data structures in the database should be accessed to accurately and
efficiently produce the desired outcome.

The SQL language includes two distinct sets of commands: Data Definition Language (DDL) is
the subset of SQL used to define and modify various data structures, while Data Manipulation
Language (DML) is the subset of SQL used to access and manipulate data contained within the
data structures previously defined via DDL. DDL includes numerous commands for handling

such tasks as creating tables, indexes, views, and constraints, while DML is comprised of just
five statements:

INSERT

Adds data to a database.

UPDATE

Modifies data in a database.

DELETE

Removes data from a database.

MERGE

Adds and/or modifies data in a database. MERGE is part of the 2003 ANSI SQL standard.

SELECT
Retrieves data from a database.

Some people feel that DDL is the sole property of database administrators, while database
developers are responsible for writing DML statements, but the two are not so easily separated.
It is difficult to efficiently access and manipulate data without an understanding of what data
structures are available and how they are related; likewise, it is difficult to design appropriate
data structures without knowledge of how the data will be accessed. That being said, this book
deals almost exclusively with DML, except where DDL is presented to set the stage for one or

more DML examples. The reasons for focusing on just the DML portion of SQL include:
e DDL is well represented in various books on database design and administration as well as
in SQL reference guides.
e Most database performance issues are the result of inefficient DML statements.

e Even with a paltry five statements, DML is a rich enough topic to warrant not just one
book, but a whole series of books.

i Anyone who writes SQL in an Oracle environment should be armed with
e the following three books: a reference guide to the SQL language, such as
. 4+ Oracle in a Nutshell (O'Reilly); a performance-tuning guide, such as

Optimizing Oracle Performance (O'Reilly); and the book you are holding,
which shows how to best utilize and combine the various features of
Oracle's SQL implementation.

So why should you care about SQL? In this age of Internet computing and n-tier architectures,
does anyone even care about data access anymore? Actually, efficient storage and retrieval of
information is more important than ever:

e Many companies now offer services via the Internet. During peak hours, these services
may need to handle thousands of concurrent requests, and unacceptable response times
equate to lost revenue. For such systems, every SQL statement must be carefully crafted
to ensure acceptable performance as data volumes increase.

e We can store a lot more data today than we could just a few years ago. A single disk array
can hold tens of terabytes of data, and the ability to store hundreds of terabytes is just
around the corner. Software used to load or analyze data in these environments must
harness the full power of SQL to process ever-increasing data volumes within constant (or
shrinking) time windows.

Hopefully, you now have an appreciation for what SQL is and why it is important. The next
section will explore the origins of the SQL language and the support for the SQL standard in
Oracle's products.

| 4 PREV < Day Day Up > MEXT o

t m < Day Day Up > m ,

1.2 A Brief History of SQL

In the early 1970s, an IBM research fellow named Dr. E. F. Codd endeavored to apply the rigors
of mathematics to the then-untamed world of data storage and retrieval. Codd's work led to the
definition of the relational data model and a language called DSL/Alpha for manipulating data in
a relational database. IBM liked what they saw, so they commissioned a project called
System/R to build a prototype based on Codd's work. Among other things, the System/R team
developed a simplified version of DSL called SQUARE, which was later renamed SEQUEL, and
finally renamed SQL.

The work done on System/R eventually led to the release of various IBM products based on the
relational model. Other companies, such as Oracle, rallied around the relational flag as well. By
the mid 1980s, SQL had gathered sufficient momentum in the marketplace to warrant oversight
by the American National Standards Institute (ANSI). ANSI released its first SQL standard in
1986, followed by updates in 1989, 1992, 1999, and 2003. There will undoubtedly be further
refinements in the future.

Thirty years after the System/R team began prototyping a relational database, SQL is still going
strong. While there have been numerous attempts to dethrone relational databases in the
marketplace, well-designed relational databases coupled with well-written SQL statements
continue to succeed in handling large, complex data sets where other methods fail.

1.2.1 Oracle's SQL Implementation

Given that Oracle was an early adopter of the relational model and SQL, one might think that
they would have put a great deal of effort into conforming with the various ANSI standards. For
many years, however, the folks at Oracle seemed content that their implementation of SQL was
functionally equivalent to the ANSI standards without being overly concerned with true
compliance. Beginning with the release of Oracle8i, however, Oracle has stepped up its efforts
to conform to ANSI standards and has tackled such features as the CASE statement and the
left/right/full outer join syntax.

Ironically, the business community seems to be moving in the opposite direction. A few years
ago, people were much more concerned with portability and would limit their developers to
ANSI-compliant SQL so that they could implement their systems on various database engines.
Today, companies tend to pick a database engine to use across the enterprise and allow their
developers to use the full range of available options without concern for ANSI-compliance. One
reason for this change in attitude is the advent of n-tier architectures, where all database access
can be contained within a single tier instead of being scattered throughout an application.
Another possible reason might be the emergence of clear leaders in the DBMS market over the
last decade, such that managers perceive less risk in which database engine they choose.

1.2.2 Theoretical Versus Practical Terminology

If you were to peruse the various writings on the relational model, you would come across
terminology that you will not find used in this book (such as relations and tuples). Instead, we
use practical terms such as tables and rows, and we refer to the various parts of a SQL

statement by name rather than by function (i.e., "SELECT clause” instead of projection). With
all due respect to Dr. Codd, you will never hear the word tuple used in a business setting, and,
since this book is targeted toward people who use Oracle products to solve business problems,
you won't find it here either.

| 4m PREV < Day Day Up > NEST o

< Day Day Up >

1.3 A Simple Database

Because this is a practical book, it contains numerous examples. Rather than fabricating
different sets of tables and columns for every chapter or section in the book, we have decided to
draw from a single, simple schema for most examples. The subject area that we chose to model
is a parts distributor, such as an auto-parts wholesaler or medical device distributor, in which
the business fills customer orders for one or more parts that are supplied by external suppliers.
Figure 1-1 shows the entity-relationship model for this business.

Figure 1-1. The parts distributor model

MTD_ORDERS
SALESPERSON MONTHS T ORDE:
SALESPERSON,_ID YEAR ALL_ORDERS TOT SALE ERICE
HAME MINTH IE_EEIT@”F'I'E MAK SALE pRICE
EURGPE_TOT_ORDERS
PRIMARY_REGION_ID SALESPERSON_ID ELSOPE TOT SALE. PRICE
YEAR EURDPE_MAX_SALE_PRICE
MUKTH WORTHAMERICA_TOT_ORDERS
ORDERS 0T GRDEE HORTHAMERICA TOT SALE PRICE
ﬁgéﬂr"ﬁﬁ % 10T SALES NDRTHAMERICA_MAX_SALE_PRICE
li]
SALESPERSON_ 10 (FK) REGION
YEAR (FK) REGION_ID
MONTH {FK) NAME EMPLOYEE_COMMENT
T0T_ORDERS SUPER_ REGION_ID EMP_ID (FK)
TOT_SALES ; T j ASSEMBLY
Y oe ASSEMELY TYPE
oo o
FUNCTION PERENT ASSEMBLY TYPEFE) [
K CUST_ORDER -+ FARENT_ASSEMBLY IO (FK)
CUSTOMER DRDER_NER : EMPLOYEE g
(UST_WER CUST_NER [FK) b g EMEID
HAME SALES EMP_IDFK) - FNAME ;
REGION_ID (FK) SALE_ PRICE TTemememeees
INACTIVE_DT | - <l DROER_OT B - -1 At)
INACTIVE WD EXPECTED_SHIP_DT IMARAGER_EMP_ID (FK)
TOT_ORDERS CANCELLED_OT CALARY - Ly -
LAST_ORDER_OT SHIF 0T HIRE DATE :
STATUS JOB_ID (FK) :
PART g g :
PART_MER LINE_ITEM DEPARTMENT L 70T
NAME ORDER_NEA (F) DEPT_ID RETAILER
SUFBLIER_ID (FK) BRAT. e (Y
STATUS = ! MAME RTLRE_MER
INVENTORY _OTY qry LDCATION. 10 (F¥) =
UNIT_£0sT FILLED_GTY HAME
RESUPPLY DATE ADDRESS
= - (Y
g ' STATE
. 2IP_COnE
! : ARER_CODE
SUPPLIER INVENTORY_CLASS - Locamion - PHﬂpr:lE HUMEER
SUFPLIER_ID INV_CLASS LOCATION_ID SALESPERSON_ID
HAME L0 _CosT REGKIMAL GROUF CREDH. LT
HIGH_ COST = COMENTS

If you are unfamiliar with entity-relationship models, here is a brief description of how they

work. Each box in the model represents an entity, which correlates to a database table.[1l The
lines between the entities represent the relationships between tables, which correlate to foreign
keys. For example, the cust _or der table holds a foreign key to the enpl oyee table, which
signifies the salesperson responsible for a particular order. Physically, this means that the

cust _order table contains a column holding employee ID numbers, and that, for any given
order, the employee ID number indicates the employee who sold that order. If you find this
confusing, simply use the diagram as an illustration of the tables and columns found within our
database. As you work your way through the SQL examples in this book, return occasionally to
the diagram, and you should find that the relationships start making sense.

[11 Depending on the purpose of the model, entities may or may not correlate to database tables. For
example, a logical model depicts business entities and their relationships, whereas a physical model illustrates
tables and their primary/foreign keys. The model in Figure 1-1 is a physical model.

< Day Day Up >

| 4m PREV < Day Day Up > MET

1.4 DML Statements

In this section, we will introduce the five statements that comprise the DML portion of SQL. The
information presented in this section should be enough to allow you to start writing DML
statements. As is discussed at the end of the section, however, DML can look deceptively
simple, so keep in mind while reading the section that there are many more facets to DML than
are discussed here.

1.4.1 The SELECT Statement

The SELECT statement is used to retrieve data from a database. The set of data retrieved via a
SELECT statement is referred to as a result set. Like a table, a result set is comprised of rows
and columns, making it possible to populate a table using the result set of a SELECT statement.
The SELECT statement can be summarized as follows:

SELECT <one or nore things>

FROM <one or nore places>

WHERE <zero, one, or nore conditions apply>

While the SELECT and FROM clauses are required, the WHERE clause is optional (although you

will seldom see it omitted). We will therefore begin with a simple example that retrieves three
columns from every row of the cust oner table:

SELECT cust_nbr, name, region_id

FROM cust oner;

CUST_NBR NAME REG ON_I D
1 Cooper Industries 5
2 Enbl azon Corp. 5
3 Ditech Corp. 5
4 Fl owtech Inc. 5
5 Centech Industries 5
6 Spartan |ndustries 6

7 Wal |l ace Labs 6

8 Zantech Inc. 6

9 Cardinal Technol ogi es 6
10 Flowite Corp. 6
11 d aven Technol ogi es 7
12 Johnson Labs 7
13 Kinbal | Corp. 7
14 Madden Industries 7
15 Turntech Inc. 7
16 Paul son Labs 8
17 Evans Supply Corp. 8
18 Spal di ng Medical Inc. 8
19 Kendal | - Tayl or Cor p. 8
20 Mal den Labs 8
21 Crinson Medical Inc. 9
22 Nichols Industries 9
23 Owens- Baxter Corp. 9
24 Jackson Medical Inc. 9
25 Worcester Technol ogi es 9
26 Al pha Technol ogi es 10
27 Phillips Labs 10
28 Jaztech Corp. 10
29 Madden- Tayl or I nc. 10
30 wallace Industries 10

Since we neglected to impose any conditions via a WHERE clause, the query returns every row
from the customer table. If you want to restrict the set of data returned by the query, you can
include a WHERE clause with a single condition:

SELECT cust_nbr, nane, region_id

FROM cust omer

WHERE region_id = 8;

CUST_NBR NAME REG ONLI D
16 Paul son Labs 8
17 Evans Supply Corp. 8
18 Spal di ng Medi cal Inc. 8
19 Kendal | - Tayl or Corp. 8
20 Mal den Labs 8

The result set now includes only those customers residing in the region with a regi on_i d of 8.
But what if you want to specify a region by name instead of r egi on_i d? You could query the
regi on table for a particular name and then query the cust oner table using the retrieved
regi on_i d. Instead of issuing two different queries, however, you can produce the same
outcome using a single query by introducing a join, as in:

SELECT custoner.cust_nbr, custoner.nane, region.nanme

FROM custoner | NNER JO N region

ON region.region_id = custoner.region_id

WHERE regi on. namre = ' New Engl and';
CUST_NBR NAME NAMVE
1 Cooper Industries New Engl and
2 Enbl azon Corp. New Engl and
3 Ditech Corp. New Engl and
4 Fl owtech Inc. New Engl and
5 Gentech Industries New Engl and

The FROM clause now contains two tables instead of one and includes a join condition that
specifies that the cust oner and r egi on tables are to be joined using the regi on_i d column
found in both tables. Joins and join conditions will be explored in detail in Chapter 3.

Since both the cust oner and r egi on tables contain a column called name, you must specify
which table's nanme column you are interested in. This is done in the previous example by using

dot-notation to append the table name in front of each column name. If you would rather not
type full table names, you can assign table aliases to each table in the FROM clause and use
those aliases instead of the table names in the SELECT and WHERE clauses, as in:

SELECT c.cust_nbr, c.nanme, r.nane

FROM custonmer ¢ INNER JON region r

ON r.region_id = c.region_id

WHERE r.nanme = 'New Engl and';

In this example, we assigned the alias ¢ to the customer table and the alias r to the region

table. Thus, we can use c. and r . instead of cust oner. and r egi on. in the SELECT and WHERE
clauses.

1.4.1.1 SELECT clause elements

In the examples thus far, the result sets generated by our queries have contained columns from
one or more tables. While most elements in your SELECT clauses will typically be simple column
references, a SELECT clause may also include:

Literal values, such as numbers (27) or strings (" abc")

Expressions, such as shape.diameter * 3.1415927

Function calls, such as TO_DATE(" 01-JAN-2004'," DD-MON-YYYY")
e Pseudocolumns, such as ROWID, ROWNUM, or LEVEL

While the first three items in this list are fairly straightforward, the last item merits further
discussion. Oracle makes available several phantom columns, known as pseudocolumns, that do
not exist in any tables. Rather, they are values visible during query execution that can be
helpful in certain situations.

For example, the pseudocolumn ROWID represents the physical location of a row. This
information represents the fastest possible access mechanism. It can be useful if you plan to
delete or update a row retrieved via a query. However, you should never store ROWID values in
the database, nor should you reference them outside of the transaction in which they are
retrieved, since a row's ROWID can change in certain situations, and ROWIDs can be reused
after a row has been deleted.

The next example demonstrates each of the different element types from the previous list:

SELECT ROWNUM
cust _nbr,
1 multiplier,
‘cust # ' || cust_nbr cust_nbr_str,

"hell o' greeting,

TO CHAR(| ast _order _dt,

FROM cust oner;

ROMNUM CUST_NBR MJLTI PLI ER

10

11

12

13

14

15

16

17

18

19

20

21

22

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

' DD- MON- YYYY')

| ast _order

CUST_NBR_STR GREETI NG LAST_ORDER

cust # 1
cust # 2
cust # 3
cust # 4
cust # 5
cust # 6
cust # 7
cust # 8
cust # 9
cust # 10
cust # 11
cust # 12
cust # 13
cust # 14
cust # 15
cust # 16
cust # 17
cust # 18
cust # 19
cust # 20
cust # 21
cust # 22

cust # 23

hel |l o

hel |l o

hel |l o

hel |l o

hel |l o

hel |l o

hel |l o

hel |l o

hel |l o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

hell o

15- JUN- 2000

27- JUN- 2000

07-JUL-2000

15-JUL- 2000

01- JUN- 2000

10- JUN- 2000

17- JUN- 2000

22- JUN- 2000

25- JUN- 2000

01- JUN- 2000

05- JUN- 2000

07- JUN- 2000

07- JUN- 2000

05- JUN- 2000

01- JUN- 2000

31- MVAY- 2000

28- MAY- 2000

23- MAY- 2000

16- MAY- 2000

01- JUN- 2000

26- MAY- 2000

18- MAY- 2000

08- VAY- 2000

24 24 1 cust # 24 hel |l o 26- APR- 2000

25 25 1 cust # 25 hel |l o 01- JUN- 2000
26 26 1 cust # 26 hel |l o 21- MAY- 2000
27 27 1 cust # 27 hel |l o 08- VAY- 2000
28 28 1 cust # 28 hel |l o 23- APR- 2000
29 29 1 cust # 29 hel |l o 06- APR- 2000
30 30 1 cust # 30 hel |l o 01- JUN- 2000

Note that the third through sixth columns have been given column aliases,
F which are names that you assign to a column. If you are going to refer to
the columns in your query by name instead of by position, you will want to
assign each column a name that makes sense to you.

=
Th g

Interestingly, a SELECT clause is not required to reference columns from any of the tables in the
FROM clause. For example, the next query's result set is composed entirely of literals:

SELECT 1 num 'abc' str

FROM cust oner;

NUM STR

1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc

1 abc

1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc
1 abc

Since there are 30 rows in the cust onmrer table, the query's result set includes 30 identical rows
of data.

1.4.1.2 Ordering your results

In general, there is no guarantee that the result set generated by your query will be in any
particular order. If you want your results to be sorted by one or more columns, you can add an
ORDER BY clause after the WHERE clause. The following example sorts the results from the New
England query by customer name:

SELECT c.cust_nbr, c.nane, r.nane
FROM custoner ¢ INNER JO N region r

ON r.region_id = c.region_id

WHERE r.nanme = 'New Engl and’

ORDER BY c. nane;

CUST_NBR NAME NANVE
1 Cooper Industries New Engl and
3 Ditech Corp. New Engl and
2 Enbl azon Corp. New Engl and
4 Fl owtech Inc. New Engl and
5 Gentech Industries New Engl and

You may also designate the sort column(s) by their position in the SELECT clause. To sort the
previous query by customer number, which is the first column in the SELECT clause, you could
issue the following statement:

SELECT c.cust_nbr, c.nane, r.nane
FROM custoner ¢ INNER JON region r

ON r.region_id = c.region_id

WHERE r.nane = 'New Engl and’
ORDER BY 1;
CUST_NBR NAMVE NAMVE

1 Cooper Industries New Engl and
2 Enbl azon Corp. New Engl and
3 Ditech Corp. New Engl and
4 Flowt ech Inc. New Engl and
5 Gentech Industries New Engl and

Specifying sort keys by position will certainly save you some typing, but it can often lead to
errors if you later change the order of the columns in your SELECT clause.

1.4.1.3 Removing duplicates

In some cases, your result set may contain duplicate data. For example, if you are compiling a
list of parts that were included in last month's orders, the same part number would appear
multiple times if more than one order included that part. If you want duplicates removed from
your result set, you can include the DISTINCT keyword in your SELECT clause, as in:

SELECT DI STINCT Ii.part_nbr

FROM cust _order co INNER JON line_itemli

ON co.order_nbr = li.order_nbr

VWHERE co.order _dt >= TO DATE(' 01-JUL-2001',"' DD- MON- YYYY')

AND co.order_dt < TO _DATE(' 01- AUG 2001',"' DD- MON- YYYY') ;

This query returns the distinct set of parts ordered during July 2001. Without the DISTINCT
keyword, the result set would contain one row for every line-item of every order, and the same
part would appear multiple times if it was included in multiple orders. When deciding whether
to include DISTINCT in your SELECT clause, keep in mind that finding and removing duplicates
necessitates a sort operation, which can greatly increase the execution time of your query.

1.4.2 The INSERT Statement

The INSERT statement is the mechanism for loading data into your database. This section will
introduce the traditional single-table INSERT statement, as well as the new multitable INSERT
ALL statement introduced in Oracle 9i.

1.4.2.1 Single-table inserts

With the traditional INSERT statement, data can be inserted into only one table at a time,
although the data being loaded into the table can be pulled from one or more additional tables.
When inserting data into a table, you do not need to provide values for every column in the
table; however, you need to be aware of the columns that require non-NULLI2] values and the
ones that do not. Here's the definition of the enpl oyee table:

[2] NULL indicates the absence of a value. The use of NULL is covered in Chapter 2.

descri be enpl oyee

Nanme Nul | ? Type
EMP_I D NOT NULL NUMBER(5)
FNAVE VARCHAR2(20)

LNAVE VARCHAR2(20)

DEPT I D NOT NULL NUVBER(5)

MANAGER EMP_| D NUVBER(5)
SALARY NUVBER(5)
H RE_DATE DATE

JOB_ID NUVBER(3)

The NOT NULL designation for the enp_i d and dept _i d columns indicates that values are
required for these two columns. Therefore, you must be sure to provide values for at least these
two columns in your INSERT statements, as demonstrated by the following:

I NSERT | NTO enpl oyee (enp_id, dept_id)

VALUES (101, 20);

Any inserts into enpl oyee may optionally include any or all of the remaining six columns, which
are described as nullable since they may be left undefined. Thus, you could decide to add the
employee’s last name to the previous statement:

I NSERT | NTO enpl oyee (enp_id, |nanme, dept_id)

VALUES (101, 'Smith', 20);

The VALUES clause must contain the same number of elements as the column list, and the data
types must match the column definitions. In this example, enp_i d and dept _i d hold numeric
values while | nanme holds character data, so the INSERT statement will execute without error.
Oracle always tries to convert data from one type to another automatically, however, so the
following statement will also run without error:

I NSERT | NTO enpl oyee (enp_id, |nanme, dept_id)

VALUES ('101', 'Smith', '20');

Sometimes, the data to be inserted needs to be retrieved from one or more tables. Since the
SELECT statement generates a result set consisting of rows and columns of data, you can feed
the result set from a SELECT statement directly into an INSERT statement, as in:

I NSERT | NTO enpl oyee (enp_id, fnane, |nane, dept_id, hire_date)

SELECT 101, 'Dave', 'Snmith', d.dept_id, SYSDATE

FROM department d
VWHERE d. name = ' ACCOUNTI NG ;
In this example, the purpose of the SELECT statement is to retrieve the department ID for the

Accounting department. The other four columns in the SELECT clause are either literals (101,
‘Dave’, 'Sm t h*) or function calls (SYSDATE).

1.4.2.2 Multitable inserts

While inserting data into a single table is the norm, there are situations where data from a
single source must be inserted either into multiple tables or into the same table multiple times.
Such tasks would normally be handled programatically using PL/SQL, but Oracle9i introduced
the concept of a multitable insert to allow complex data insertion via a single INSERT
statement. For example, let's say that one of Mary Turner's customers wants to set up a
recurring order on the last day of each month for the next six months. The following statement
adds six rows to the cust _or der table using a SELECT statement that returns exactly one row:

| NSERT ALL
I NTO cust _order (order_nbr, cust_nbr, sales_enp_id,
order _dt, expected ship_dt, status)
VALUES (ord_nbr, cust_nbr, enp_id,
ord _dt, ord dt + 7, status)
I NTO cust _order (order_nbr, cust_nbr, sales_enp_id,
order _dt, expected ship_dt, status)
VALUES (ord_nbr + 1, cust_nbr, enp_id,
add_nont hs(ord_dt, 1), add _nmonths(ord _dt, 1) + 7, status)
I NTO cust _order (order_nbr, cust_nbr, sales_enp_id,
order _dt, expected ship_dt, status)
VALUES (ord_nbr + 2, cust_nbr, enp_id,
add_nont hs(ord_dt, 2), add _nmonths(ord _dt, 2) + 7, status)
I NTO cust _order (order_nbr, cust_nbr, sales_enp_id,
order _dt, expected ship_dt, status)
VALUES (ord_nbr + 3, cust_nbr, enp_id,
add_nont hs(ord_dt, 3), add _nmonths(ord _dt, 3) + 7, status)
I NTO cust _order (order_nbr, cust_nbr, sales_enp_id,
order _dt, expected ship_dt, status)
VALUES (ord_nbr + 4, cust_nbr, enp_id,
add_nont hs(ord_dt, 4), add _nmonths(ord _dt, 4) + 7, status)

I NTO cust _order (order_nbr, cust_nbr, sales_enp_id,

order _dt, expected_ship_dt, status)
VALUES (ord_nbr + 5, cust_nbr, enp_id,
add_rnonths(ord_dt, 5), add_nonths(ord_dt, 5) + 7, status)
SELECT 99990 ord_nbr, c.cust_nbr cust_nbr, e.enp_id enp_id,
| ast _day(SYSDATE) ord_dt, 'PENDING status
FROM custoner ¢ CROSS JO N enpl oyee e
VWHERE e.fnanme = 'MARY' and e.lnane = ' TURNER
and c.name = 'Gentech Industries';

The SELECT statement returns the data necessary for this month's order, and the INSERT
statement modifies the or der _nbr, order _dt, and expect ed_shi p_dt columns for the next five
months' orders. You are not obligated to insert all rows into the same table, nor must your
SELECT statement return only one row, making the multitable insert statement quite flexible
and powerful. The next example shows how data about a new salesperson can be entered into
both the enpl oyee and sal esper son tables:

I NSERT ALL
I NTO enpl oyee (enp_id, fnane, |nane, dept_id, hire_date)
VALUES (eid, fnm Inm did, TRUNC(SYSDATE))
I NTO sal esperson (sal esperson_id, name, prinmary_region_id)
VALUES (eid, fnm || " " || Inm rid)
SELECT 1001 eid, '"JAMES fnm 'GOULD |nm
d.dept _id did, r.region_id rid
FROM departnent d, region r
VWHERE d.nanme = 'SALES and r.nanme = 'Southeast US';
So far, you have seen how multiple rows can be inserted into the same table and how the same
rows can be inserted into multiple tables. The next, and final, example of multitable inserts

demonstrates how a conditional clause can be used to direct each row of data generated by the
SELECT statement into zero, one, or many tables:

| NSERT FI RST
WHEN order _dt < TO _DATE('2001-01-01', 'YYYY-MVWDD) THEN
| NTO cust _order_ 2000 (order_nbr, cust_nbr, sales_enp_id,

sal e_price, order_dt)

VALUES (order_nbr, cust_nbr, sales_enp_id, sale_price, order_dt)
WHEN order _dt < TO DATE('2002-01-01', 'YYYY-MVDD) THEN
I NTO cust _order_2001 (order_nbr, cust_nbr, sales_enp_id,
sal e_price, order_dt)
VALUES (order_nbr, cust_nbr, sales_enp_id, sale_price, order_dt)
WHEN order _dt < TO DATE('2003-01-01', 'YYYY-MVDD) THEN
I NTO cust _order_2002 (order_nbr, cust_nbr, sales_enp_id,
sal e_price, order_dt)
VALUES (order_nbr, cust_nbr, sales_enp_id, sale_price, order_dt)
SELECT co.order_nbr, co.cust_nbr, co.sales_enp_id,
co.sal e_price, co.order_dt
FROM cust _order co
WHERE co. cancelled _dt 1S NULL
AND co. ship_dt 1I'S NOT NULL;

This statement copies all customer orders prior to January 1, 2003, to one of three tables
depending on the value of the or der _dt column. The keyword FIRST specifies that once one of
the conditions evaluates to TRUE, the statement should skip the remaining conditions and move
on to the next row. If you specify ALL instead of FIRST, all conditions will be evaluated, and
each row might be inserted into multiple tables if more than one condition evaluates to TRUE.

1.4.3 The DELETE Statement

The DELETE statement facilitates the removal of data from the database. Like the SELECT
statement, the DELETE statement contains a WHERE clause that specifies the conditions used to
identify rows to be deleted. If you neglect to add a WHERE clause to your DELETE statement, all
rows will be deleted from the target table. The following statement will delete all employees
with the last name of Hooper from the employee table:

DELETE FROM enpl oyee
WHERE | name = ' HOOPER ;
In some cases, the values needed for one or more of the conditions in your WHERE clause exist

in another table. For example, your company may decide to outsource its accounting functions,
thereby necessitating the removal of all accounting personnel from the enpl oyee table:

DELETE FROM enpl oyee

WHERE dept _id =

(SELECT dept _id
FROM depart nent

WHERE nanme = ' ACCOUNTI NG) ;

The use of the SELECT statement in this example is known as a subquery and will be studied in
detail in Chapter 5.

In certain cases, you may want to restrict the number of rows that are to be deleted from a
table. For example, you may want to remove all data from a table, but you want to limit your
transactions to no more than 100,000 rows. If the cust _or der table contained 527,365
records, you would need to find a way to restrict your DELETE statement to 100,000 rows and
then run the statement six times until all the data has been purged. The following example
demonstrates how the ROWNUM pseudocolumn may be used in a DELETE statement to achieve
the desired effect:

DELETE FROM cust _order
VWHERE ROMNUM <= 100000;

COW T,

1.4.4 The UPDATE Statement

Modifications to existing data are handled by the UPDATE statement. Like the DELETE
statement, the UPDATE statement includes a WHERE clause to specify which rows should be
targeted. The following example shows how you might give a 10% raise to everyone making
less than $40,000:

UPDATE enpl oyee

SET salary = salary * 1.1

WHERE sal ary < 40000;

If you want to modify more than one column in the table, you have two choices: provide a set of
column/value pairs separated by commas, or provide a set of columns and a subquery. The

following two UPDATE statements modify the i nacti ve_dt and i nactive_i nd columns in the
cust omer table for any customer who hasn't placed an order in the past year:

UPDATE cust oner
SET inactive_dt = SYSDATE, inactive_ ind = "'Y'

WHERE | ast _order_dt < SYSDATE -- 365;

UPDATE cust oner

SET (inactive_dt, inactive_ind) =

(SELECT SYSDATE, 'Y FROM dual)

WHERE | ast _order_dt < SYSDATE -- 365;

The subquery in the second example is a bit forced, since it uses a query against the dual table
to build a result set containing two literals, but it should give you an idea of how you would use
a subquery in an UPDATE statement. In later chapters, you will see far more interesting uses for
subqueries.

dual is an Oracle-provided table containing exactly one row with one
s column. It comes in handy when you need to construct a query that
. 4. returns exactly one row.

1.4.5 The MERGE Statement

There are certain situations, especially within Data Warehouse applications, where you may
want to either insert a new row into a table or update an existing row depending on whether or
not the data already exists in the table. For example, you may receive a nightly feed of parts
data that contains both parts that are known to the system along with parts just introduced by
your suppliers. If a part number exists in the part table, you will need to update the unit _cost
and st at us columns; otherwise, you will need to insert a new row.

While you could write code that reads each record from the feed, determines whether or not the
part number exists in the part table, and issues either an INSERT or UPDATE statement, you

could instead issue a single MERGE statement.[3]l Assuming that your data feed has been loaded
into the part _st g staging table, your MERGE statement would look something like the
following:

[31 MERGE was introduced in Oracle9i.

MERGE | NTO part p_dest
USING part_stg p_src
ON (p_dest.part_nbr = p_src.part_nbr)
WHEN NMATCHED THEN UPDATE
SET p_dest.unit_cost = p_src.unit_cost, p_dest.status = p_src.status
WHEN NOT MATCHED THEN | NSERT (p_dest.part_nbr, p_dest. nane,
p_dest.supplier_id, p_dest.status, p_dest.inventory qty,
p_dest.unit_cost, p_dest.resupply_date)
VALUES (p_src.part_nbr, p_src.nang,

p_src.supplier_id, p_src.status, 0, p_src.unit_cost, null);

This statement looks fairly complex, so here is a description of what it is doing:

Lines 1-3

For each row in the part _st g table, see if the part _nbr column exists in the part table.

Lines 4-5

If it does, then update the matching row in the part table using data from the part_stg
table.

Lines 6-10

Otherwise, insert a new row into the part table using the data from the part _st g table.

| dm FREV < Day Day Up > MEXT

| 4 PREV < Day Day Up > MEXT o

1.5 So Why Are There 17 More Chapters?

After reading this chapter, you might think that SQL looks pretty simple (at least the DML
portion). At a high level, it is fairly simple, and you now know enough about the language to go
write some code. However, you will learn over time that there are numerous ways to arrive at
the same end point, and some are more efficient and elegant than others. The true test of SQL
mastery is when you no longer have the desire to return to what you were working on the
previous year, rip out all the SQL, and recode it. For one of us, it took about nine years to reach
that point. Hopefully, this book will help you reach that point in far less time.

While you are reading the rest of the book, you might notice that the majority of examples use
SELECT statements, with the remainder somewhat evenly distributed across INSERT, UPDATE,
and DELETE statements. This disparity is not indicative of the relative importance of SELECT
statements over the other three DML statements; rather, SELECT statements are favored
because we can show a query's result set, which should help you to better understand the
query, and because many of the points being made using SELECT statements can be applied to
UPDATE and DELETE statements as well.

| dm FREV < Day Day Up > MEXT

| 4 PREV < Day Day Up > MEXT o

Chapter 2. The WHERE Clause

Whether you are querying, modifying, or deleting data, the WHERE clause is the mechanism for
identifying what data you want to work with. This chapter explores the role of the WHERE
clause in SQL statements, as well as the various options available when building a WHERE
clause.

| dmPREV | < Day Day Up > | NEXT o |

| 4m PREV < Day Day Up > MET

2.1 Life Without WHERE

Before delving into the WHERE clause, let's imagine life without it. Say that you are interested
in doing some maintenance on the data in the part table. To inspect the data in the table, you

issue the following query:

SELECT part_nbr, name, supplier_id, status, inventory qty

FROM part;

If the part table contains 10,000 items, the result set returned by the query would consist of
10,000 rows, each with 5 columns. You would then load the 10,000 rows into memory and
make your modifications.

Once you have made the required modifications to your data in memory, it is time to apply the
changes to the part table. Without the ability to specify the rows to modify, you have no choice
but to delete all rows in the table and re-insert all 10,000 rows:

DELETE FROM part;

I NSERT | NTO part (part_nbr, nanme, supplier_id, status, inventory qty)

VALUES (' XY5-1002', 'Wbnder Wdget', 1, 'INSTOCK , 1);

/* 9,999 nore INSERTs on the wall, 9,999 nore |INSERTS . . . */

While this approach works in theory, it wreaks havoc on performance, concurrency (the ability
for more than one user to modify data simultaneously), and scalability (the ability to perform
predictably as load increases).

Now imagine that you want to modify data in the part table only for those parts supplied by
Acme Industries. Since the supplier's name is stored in the suppl i er table, you must include
both the part and suppli er tables in the FROM clause:

SELECT p.part_nbr, p.nanme, p.supplier_id, p.status, p.inventory_qty,
s.supplier_id, s.nane

FROM part p, supplier s;

If 100 companies supply the 10,000 parts in the part table, this query will return 1,000,000

rows. Known as the Cartesian product, this number equates to every possible combination of all

rows from the two tables. As you sift through the million rows, you would keep only those
where the values of p. supplier_id ands. supplier_id are identical and where the s. nane

column matches ‘Acne | ndustries'. If Acme Industries supplies only 50 of the 10,000 parts in
your database, you will end up discarding 999,950 of the 1,000,000 rows returned by your
query.

| 4m FREV < Day Day Up > MET m

| 4 PREV < Day Day Up > MEXT o

2.2 WHERE to the Rescue

Hopefully, the scenarios in the previous section give you some insight into the utility of the
WHERE clause, including the ability to:

e Filter out unwanted data from a query's result set.

e Isolate one or more rows of a table for modification.

e Conditionally join two or more data sets together.

To see how these things are accomplished, let's add a WHERE clause to the previous SELECT
statement, which strives to locate all parts supplied by Acme Industries. Here's the query with
the new WHERE clause:

SELECT p.part_nbr, p.nane, p.supplier_id, p.status, p.inventory_qty,
s.supplier_id, s.nane

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

AND s.name = 'Acne Industries';

The WHERE clause here is comprised of two parts, known as conditions, which are evaluated
separately. Conditions always evaluate to either TRUE or FALSE; if there are multiple conditions
in a WHERE clause, they all must evaluate to TRUE for a given row to be included in the result
set. Actually, that's a bit of an oversimplification. As you will see later, using the OR and NOT
operators allows the WHERE clause to evaluate to TRUE even if individual conditions evaluate to
FALSE.

For this example, a row created by combining data from the part and suppl i er tables will only
be included in the final result set if both tables share a common value for the supplier_id
column, and if the value of the name column in the suppl i er table matches 'Acne | ndustri es'.
Any other permutation of data from the two tables would evaluate to FALSE and be discarded.

e For this chapter only, we'll use the older style of join syntax in which you
s specify join conditions in the WHERE clause. We do this to explore the full
. 4+ functionality of the WHERE clause.

With the addition of the WHERE clause to the previous example, therefore, Oracle will take on
the work of discarding undesired rows from the result set, and only 50 rows would be returned
by the query, rather than 1,000,000. Now that you have retrieved the 50 rows of interest from
the database, you can begin the process of modifying the data. Keep in mind, however, that
with the WHERE clause at your disposal you will no longer need to delete and re-insert your
modified data; instead, you can use the UPDATE statement to modify specific rows based on the

part _nbr column, which is the unique identifier for the table:

UPDATE part

SET status = ' DI SCONTI NUED

WHERE part _nbr = 'Al5-4557";

While this is certainly an improvement, you can do even better. If your intent is to modify the

status for all 50 parts supplied by Acme Industries, there is no need to execute a separate query
at all. Simply execute a single UPDATE statement that finds and modifies all 50 records:

UPDATE part
SET status = ' DI SCONTI NUED
WHERE supplier_id =
(SELECT supplier_id

FROM suppl i er

WHERE nanme = 'Acne |ndustries');
The WHERE clause in this statement consists of a single condition that equates the supplier_id
column to the value returned by the subquery against the suppl i er table. Subqueries are

covered extensively in Chapter 5, so don't worry if this looks a bit intimidating. The net result is
that the condition will be rewritten to use the value returned by the subquery, as in:

UPDATE part
SET status = ' DI SCONTI NUED
WHERE supplier_id = 1;

When executed, the condition evaluates to TRUE for exactly 50 of the 10,000 rows in the part
table, and the status of those 50 rows changes to DISCONTINUED.

| dm FREV < Day Day Up > MEXT oy

| 4m PREV < Day Day Up > MET

2.3 WHERE Clause Evaluation

Now that you have seen the WHERE clause in action, let's take a look at how it is evaluated. As
previously mentioned, the WHERE clause consists of one or more conditions that evaluate
independently to TRUE or FALSE. If your WHERE clause consists of multiple conditions, the
conditions are separated by the logical operators AND and OR. Depending on the outcome of
the individual conditions and the placement of these logical operators, Oracle will assign a final
value of TRUE or FALSE to each candidate row, thereby determining whether a row will be
included in the final result set.

Here's another look at the Acme Industries query:

SELECT p.part_nbr, p.nane, p.supplier_id, p.status, p.inventory_qty,
s.supplier_id, s.nane

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id
AND s.name = 'Acne Industries';

The WHERE clause consists of two conditions separated by AND. Thus, a row will only be

included if both conditions evaluate to TRUE. Table 2-1 shows the possible scenarios when
conditions are replaced by their possible outcomes.

Table 2-1. Multiple-condition evaluation using AND

Intermediate result Final result
WHERE TRUE AND TRUE TRUE
WHERE FALSE AND FALSE FALSE
WHERE FALSE AND TRUE FALSE
WHERE TRUE AND FALSE FALSE

Using basic logic rules, you can see that the only combination of outcomes that results in a final
value of TRUE being assigned to a candidate row is where both conditions evaluate to TRUE.
Table 2-2 demonstrates the possible outcomes if the conditions had been separated by OR
rather than AND.

Table 2-2. Multiple-condition evaluation using OR

Intermediate result Final result
WHERE TRUE OR TRUE TRUE
WHERE FALSE OR FALSE FALSE
WHERE FALSE OR TRUE TRUE
WHERE TRUE OR FALSE TRUE

Next, let's spice the query up a bit by including parts supplied by either Acme Industries or
Tilton Enterprises:

SELECT p.part_nbr, p.nane, p.supplier_id, p.status, p.inventory_qty,
s.supplier_id, s.nane
FROM part p, supplier s
VWHERE s.supplier_id = p.supplier_id
AND (s.nanme = 'Acne |ndustries'
OR s.nane = '"Tilton Enterprises');

There are now three separate conditions separated by AND and OR with parentheses
surrounding two of the conditions. Table 2-3 illustrates the possible outcomes.

Table 2-3. Multiple-condition evaluation using AND and OR

Intermediate result Final result
WHERE TRUE AND (TRUE OR FALSE) TRUE
WHERE TRUE AND (FALSE OR TRUE) TRUE
WHERE TRUE AND (FALSE OR FALSE) FALSE
WHERE FALSE AND (TRUE OR FALSE) FALSE
WHERE FALSE AND (FALSE OR TRUE) FALSE
WHERE FALSE AND (FALSE OR FALSE) FALSE

Since a particular part cannot be supplied by both Acme Industries and Tilton Enterprises, the
intermediate results TRUE AND (TRUE AND TRUE) and FALSE AND (TRUE AND TRUE) were not
included in Table 2-3.

To liven things up even more, here's an example using the NOT operator. The following query
returns data for parts supplied by anyone other than Acme Industries or Tilton Enterprises:

SELECT p.part_nbr, p.nanme, p.supplier_id, p.status, p.inventory_qty,

s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id
AND NOT (s.nanme = 'Acne |ndustries’

OR s.nane = '"Tilton Enterprises');

Table 2-4 demonstrates how the addition of the NOT operator changes the outcome.

Table 2-4. Multiple-condition evaluation using AND, OR, and NOT

Intermediate result Final result
WHERE TRUE AND NOT (TRUE OR FALSE) FALSE
WHERE TRUE AND NOT (FALSE OR TRUE) FALSE
WHERE TRUE AND NOT (FALSE OR FALSE) TRUE
WHERE FALSE AND NOT (TRUE OR FALSE) FALSE
WHERE FALSE AND NOT (FALSE OR TRUE) FALSE
WHERE FALSE AND NOT (FALSE OR FALSE) FALSE

The use of the NOT operator in the previous example is a bit forced; later examples will
demonstrate more natural ways of expressing the same logic.

< Day Day Up >

| 4 PREV < Day Day Up > MEXT o

2.4 Conditions and Expressions

Now that you understand how conditions are grouped together and evaluated, it's time to take
a look at the different elements that make up a condition. A condition is comprised of one or
more expressions along with one or more operators. Examples of expressions include:

e Numbers

e Columns, such as s.supplier_id

e Literals, such as ~Acme Industries'

e Functions, such as UPPER("abcd")

e Lists of simple expressions, such as (1, 2, 3)

e Subqueries

Examples of operators include:

e Arithmetic operators, such as +, -, *, and /
e Comparison operators, such as =, <, >=, I=, LIKE, and IN

The following sections explore many of the common condition types that use different
combinations of the preceeding expression and operator types.

2.4.1 Equality/Inequality Conditions

Most of the conditions found in a WHERE clause will be equality conditions used to join data sets
together or to isolate specific values. You have already encountered these types of conditions
numerous times in previous examples, including:

s.supplier_id = p.supplier_id
s.name = 'Acne Industries'
supplier_id = (SELECT supplier_id

FROM suppl i er

WHERE narme = 'Acne |ndustries')

All three conditions are comprised of a column expression followed by a comparison operator
(=) followed by another expression. The conditions differ in the type of expression on the right
side of the comparison operator. The first example compares one column to another, the second
example compares a column to a literal, and the third example compares a column to the value
returned by a subquery.

You can also build conditions that use the inequality comparison operator (!=). In a previous
example, the NOT operator was used to find information about parts supplied by every supplier

other than Acme Industries and Tilton Enterprises. Using the != operator rather than using NOT
makes the query easier to understand and removes the need for the OR operator:

SELECT p.part_nbr, p.nane, p.supplier_id, p.status, p.inventory qty,
s.supplier_id, s.nane

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id
AND s.name != 'Acne Industries'
AND s.nanme != '"Tilton Enterprises';

While this is an improvement over the previous version, the next section shows an even cleaner
way to represent the same logic.

2.4.2 Membership Conditions

Along with determining whether two expressions are identical, it is often useful to determine
whether one expression can be found within a set of expressions. Using the IN operator, you
can build conditions that will evaluate to TRUE if a given expression exists in a set of
expressions:

s.nane IN ('Acne Industries', 'Tilton Enterprises')

You may also use the NOT IN operator to determine whether an expression does not exist in a
set of expressions:

s.nane NOT IN ('Acne Industries', "Tilton Enterprises')

Most people prefer to use a single condition with IN or NOT IN instead of writing multiple
conditions using = or !=, so, with that in mind, here's one last stab at the Acme/Tilton query:

SELECT p.part_nbr, p.nane, p.supplier_id, p.status, p.inventory_qty,
s.supplier_id, s.nane

FROM part p, supplier s

VWHERE s.supplier_id = p.supplier_id

AND s.nane NOT IN ('Acne Industries', "Tilton Enterprises');

Along with prefabricated sets of expressions, subqueries may be employed to generate sets on
the fly. If a subquery returns exactly one row, you may use a comparison operator; if a
subquery returns more than one row, or if you're not sure whether the subquery might return
more than one row, use the IN operator. The following example updates all orders that contain
parts supplied by Eastern Importers:

UPDATE cust _order
SET sale price = sale_price * 1.1
WHERE cancelled_dt |I'S NULL
AND ship_dt 1S NULL
AND order_nbr IN
(SELECT 1i.order_nbr
FROM line_item|li, part p, supplier s
VWHERE s. nane = 'Eastern |nporters'
AND s.supplier_id = p.supplier_id
AND p.part_nbr = li.part_nbr);

The subquery evaluates to a (potentially empty) set of order numbers. All orders whose order
number exists in that set are then modified by the UPDATE statement.

2.4.3 Range Conditions

If you are dealing with dates or numeric data, you may be interested in whether a value falls
within a specified range rather than whether it matches a specific value or exists in a finite set.
For such cases, you may use the BETWEEN operator, as in:

DELETE FROM cust _order
WHERE order_dt BETWEEN '01-JUL-2001'" AND '31-JUL-2001";

To determine whether a value lies outside a specific range, you can use the NOT BETWEEN
operator:

SELECT order_nbr, cust_nbr, sale_price
FROM cust _order
WHERE sal e_price NOT BETWEEN 1000 AND 10000;

When using BETWEEN, make sure the first value is the lesser of the two values provided. While
"BETWEEN 01-JUL-2001 AND 31-JUL-2001" and "BETWEEN 31-JUL-2001 AND 01-JUL-2001"

might seem logically equivalent, specifying the higher value first guarantees that your condition
will always evaluate to FALSE. Keep in mind that X BETWEEN Y AND Z is evaluated as X >=Y
AND X <= Z.

Ranges may also be specified using the operators <, >, <=, and >=, although doing so
requires writing two conditions rather than one. The previous query can also be expressed as:

SELECT order_nbr, cust_nbr, sale_price
FROM cust _order

WHERE sal e _price < 1000 OR sale_price > 10000;

2.4.4 Matching Conditions

When dealing with character data, there are some situations where you are looking for an exact
string match, and others where a partial match is sufficient. For the latter case, you can use the
LIKE operator along with one or more pattern-matching characters, as in:

DELETE FROM part

VWHERE part_nbr LIKE ' ABC% ;

The pattern-matching character % matches strings of any length, so all of the following part
numbers would be deleted: 'ABC, 'ABC- 123", 'ABC9999999". If you need finer control, you can
use the underscore () pattern-matching character to match single characters, as in:

DELETE FROM part

WHERE part_nbr LIKE ' B ';

For this pattern, any part number composed of exactly three characters with a B in the middle
would be deleted. Both pattern-matching characters may be utilized in numerous combinations
to find the desired data. Additionally, the NOT LIKE operator may be employed to find strings
that don't match a specified pattern. The following example deletes all parts whose name does
not contain a Z in the third position followed later by the string "T1J":

DELETE FROM part

WHERE part_nbr NOT LIKE ' _Z%1J% ;

Oracle provides a slew of built-in functions for handling character data that can be used to build
matching conditions. For example, the condition part _nbr LI KE ' ABC% could be rewritten
using the SUBSTR function as SUBSTR(part_nbr, 1, 3) = 'ABC. For definitions and examples
for all of Oracle's built-in functions, see Oracle in a Nutshell (O'Reilly).

You may come across data that include the characters %and _ and need to include them in your
patterns. For example, you might have a column called i nst ructi ons in the cust _or der table

that may have a value such as:

Cancel order if more than 25% of parts are unavailable

If you want to find strings containing the %character, you will need to escape the % character
within your pattern so that it isn't treated as a wildcard. To do so, you will need to use the
ESCAPE clause to let Oracle know which character you have chosen as the escape character:

SELECT instructions
FROM cust _order
VWHERE instructions LIKE '% %% ESCAPE '\';

This query would return all rows where the instructions column contains the % character
anywhere in the string.

2.4.5 Regular Expressions

Beginning with the Oracle Database 10g release, you can use regular expressions within your
conditions. Regular expressions allow for much more complex pattern matching without the
need for multiple conditions. For example, if you wanted to find all customers whose name
begins with W, ends in "ies" and does not include L anywhere in the string, you could use
multiple conditions with the LIKE and NOT LIKE operators:

SELECT name
FROM cust oner
VWHERE nane LIKE ' W es'

AND name NOT LIKE ' %% ;

Wor cest er Technol ogi es
Wal | ace Industries

You can achieve the same result more succinctly, in a single expression, with the new
REGEXP_LIKE function:

SELECT name
FROM cust oner

WHERE REGEXP_ LI KE(nane, '~W[AL]*)ies$');

Wor cest er Technol ogi es

Wal | ace | ndustries

If that second argument to REGEXP_LIKE looks like gibberish, fear not: we cover regular
expressions in detail in Chapter 17.

2.4.6 Handling NULL

The NULL expression represents the absence of a value. If, when entering an order into the
database, you are uncertain when the order will be shipped, it is better to leave the ship date
undefined than to fabricate a value. Until the ship date has been determined, therefore, it is
best to leave the shi p_dt column NULL. NULL is also useful for cases where data is not

applicable. For example, a cancelled order's shipping date is no longer applicable and should be
set to NULL.

When working with NULL, the concept of equality does not apply; a column may be NULL, but it
will never equal NULL. Therefore, you will need to use the special operator IS NULL when
looking for NULL data, as in:

UPDATE cust _order
SET expected_ship_dt = SYSDATE + 1

WHERE ship_dt 1S NULL;

In this example, all orders whose shipping date hasn't been specified will have their expected
shipping date set to tomorrow.

You may also use the IS NOT NULL operator to locate non-NULL data:

UPDATE cust _order
SET expected_ship_dt = NULL

WHERE ship_dt 1S NOT NULL;

This example sets the expected shipping date to NULL for all orders that have already shipped.
Notice that the SET clause uses the equality operator (=) with NULL, whereas the WHERE clause
uses the IS NOT NULL operator. The equality operator is used to set a column to NULL, whereas
the IS NOT NULL operator is used to evaluate whether a column is NULL. A great many
mistakes might have been avoided had the designers of SQL chosen a special operator to be
utilized when setting a column to NULL (i.e., SET expected_shi p_dt TO NULL), but this is not
the case. To make matters worse, Oracle doesn't complain if you mistakenly use the equality
operator when evaluating for NULL. The following query will parse and execute but will never
return rows:

SELECT order_nbr, cust_nbr, sale_price, order_dt

FROM cust _order

WHERE ship_dt = NULL;

Hopefully, you would quickly recognize that the previous query never returns data and replace
the equality operator with IS NULL. However, there is a more subtle mistake involving NULL
that is harder to spot. Say you are looking for all employees who are not managed by Marion
Blake, whose employee ID is 7698. Your first instinct may be to run the following query:

SELECT fnane, |nanme, manager_enp_id
FROM enpl oyee

WHERE manager _enp_id != 7698;

FNANVE LNANVE MANAGER _EMP_I D
JOHN SM TH 7902
TERRY JONES 7839
MARI ON BLAKE 7839
CARCL CLARK 7839
DONALD SCOTT 7566
DI ANE ADAMS 7788
JENNI FER FORD 7566
BARBARA M LLER 7782

While this query returns rows, it leaves out those employees who are top-level managers and,
thus, are not managed by anyone. Since NULL is neither equal nor not equal to 7698, this set of
employees is absent from the result set. To ensure that all employees are considered, you will
need to explicitly handle NULL, as in:

SELECT fnane, |nanme, manager_enp_id
FROM enpl oyee

WHERE manager _enp_id IS NULL OR manager _enp_id != 7698;

FNAME LNAME MANAGER_EMP_I D

TERRY JONES 7839

MARI ON BLAKE 7839
CARCL CLARK 7839
DONALD SCOTT 7566
FRANCI S Kl NG

DI ANE ADANVS 7788
JENNI FER FORD 7566
BARBARA M LLER 7782

Including two conditions for every nullable column in your WHERE clause can get a bit tiresome.
Instead, you can use Oracle's built-in function NVL, which substitutes a specified value for
columns that are NULL, as in:

SELECT fnane, |nanme, manager_enp_id

FROM enpl oyee

WHERE NVL(nanager_enp_id, -999) != 7698;

FNAVE LNAME MANAGER_EMP_I D
JOHN SM TH 7902
TERRY JONES 7839
MARI ON BLAKE 7839
CAROL CLARK 7839
DONALD SCOrT 7566
FRANCI S KI NG

DI ANE ADANVS 7788
JENNI FER FORD 7566
BARBARA M LLER 7782

In this example, the value - 999 is substituted for all NULL values, which, since - 999 is never
equal to 7698, guarantees that all rows whose manager _enp_i d column is NULL will be included
in the result set. Thus, all employees whose manager _enp_i d column is NULL or is not NULL and
has a value other than 7698 will be retrieved by the query.

2.4.7 Placement of Join Conditions

Throughout this chapter, all examples that join multiple tables have had their join conditions
included in the WHERE clause along with various filter conditions. Beginning with the Oracle9i
release, you have the option of using the ANSI join syntax, which specifies that all join
conditions be included in the FROM clause, as illustrated by the following:

SELECT p.part_nbr, p.nane, p.supplier_id, p.status, p.inventory qty,
s.supplier_id, s.nane

FROM part p INNER JO N supplier s

ON s.supplier_id = p.supplier_id

WHERE s.nane NOT IN ('Acne Industries', 'Tilton Enterprises');

As you can see, the join condition s. supplier_id = p.supplier_id has been moved to the ON
subclause, and the FROM clause specifies that the part and suppl i er tables be joined via an
inner join. This syntax may look a bit strange at first, but it greatly improves the readability and
maintainability of your queries. Therefore, for the remainder of this book, all examples will
employ the ANSI join syntax.

| 4@ FREV < Day Day Up > MEXT mp

| 4 PREV < Day Day Up > MEXT o

2.5 WHERE to Go from Here

This chapter has introduced the role of the WHERE clause in different types of SQL statements
as well as the various components used to build a WHERE clause. Because the WHERE clause
plays such an important role in many SQL statements, however, the topic is far from exhausted.
Additional coverage of WHERE clause topics may be found in:

e Chapter 3, in which various flavors of join conditions are studied in detail

e Chapter 5, which probes the different types of subqueries along with the appropriate
operators for evaluating their results

e Chapter 6, in which various methods of handling date/time data are explored

e Chapter 15, which explores certainaspects of the WHERE clause from the standpoint of
performance andefficiency

Additionally, here are a few tips to help you make the most of your WHERE clauses:

e Check your join conditions carefully. Make sure that each data set in the FROM clause
is properly joined. Keep in mind that some joins require multiple conditions. See Chapter 3
for more information.

e Avoid unnecessary joins. Just because two data sets in your FROM clause contain the
same column does not necessitate a join condition be added to your FROM/WHERE clause.
In some designs, redundant data has been propagated to multiple tables through a
process called denormalization. Take the time to understand the database design, and ask
your DBA or database designer for a current data model.

e Use parentheses. Oracle maintains both operator precedence and condition precedence,
meaning there are clearly defined rules for the order in which things will be evaluated, but
the safest route for you and for those who will later maintain your code is to dictate
evaluation order using parentheses. For operators, specifying (5 * p.inventory_qty) +
2 rather than 5 * p.inventory_qty + 2 makes the order in which the operations should
be performed clear. For conditions, use parentheses any time the OR operator is
employed.

e Use consistent indentation. For example, if the previous line contains a left parenthesis
without a matching right parenthesis, indent the current line to show that it is a
continuation of the previous line.

e Handle NULLs properly. After writing your WHERE clause, inspect each condition with
respect to its ability to properly handle NULL values. Take the time to understand the table
definitions in your database so that you know which columns allow NULLs.

e Pick up introductory books on logic and set theory at your local library. While
understanding these two topics won't necessarily get you invited to more cocktail parties,
it will certainly make you a better SQL programmer.

| dm FREV < Day Day Up > MEXT

| 4 PREV < Day Day Up > MEXT o

Chapter 3. Joins

Most things in life are not self-contained. There is not one shop where you will find all your
requirements. This is valid for database tables as well. Quite often, you need information from
more than one table. The SQL construct that combines data from two or more tables is called a
join. This chapter takes you into the details of joins, their types, and their usage.

| dmPREV | < Day Day Up > | NEXT o |

| 4 PREV < Day Day Up > MEXT o

3.1 What Is a Join Query?

A join query extracts information from two or more tables or views. A join query differs from a
regular query in at least the following two ways:
e The FROM clause of a join query refers to two or more tables or views.

e A condition is specified in the join query (known as join condition) that relates the rows of
one table to the rows of another table.

The following example illustrates a simple join query:

SELECT departnent.location_id, departnent.nanme, |ocation.regional_group

FROM departnment JO N | ocation

ON departnent.location_id = location.location_id;
LOCATI ON_| D NAME REG ONAL_GROUP
122 ACCOUNTI NG NEW YORK
124 RESEARCH DALLAS
167 OPERATI ONS BOSTON

This example queries two tables. The department name is stored in the depart nent table,
whereas each department’s region is stored in the | ocat i on table. Notice the JOIN keyword
between the two tables names in the FROM clause. The SELECT list may include columns from
any of the tables specified in the FROM clause. The clause starting with the keyword ON
specifies the join condition.

The syntax shown in the preceding example is the standard SQL join

}.. syntax supported from Oracle9i onwards. The Appendix A describes an
N - - - .
‘. 4. older syntax that you should avoid using, but will often encounter in older
" code.

| 4 FREV < Day Day Up > MEXT mp

3.2 Join Conditions

Usually, when you write a join query, you specify a condition that conveys a relationship
between the tables specified in the FROM clause. This condition is referred to as the join
condition. The join condition specifies how the rows from one table will be combined with the

rows of another table. This join condition is usually applied to the foreign key columns
table and the primary or unique key columns of another table. In the previous exampl

of one
e, the ON

clause specifies the join condition by which the | ocati on_i d column of the depart nent table is

equated with the | ocati on_i d column of the | ocati on table:

ON departnent.location_id = location.location_id;

To perform the join, Oracle picks up one combination of rows from the two tables, and checks to

see whether the join condition is true. If the join condition is true, Oracle includes this

combination of rows in the result set. This process is repeated for all combinations of rows from
the two tables. Some of the things that you should know about join conditions are discussed in

the following list:

e The columns specified in a join condition need not be specified in the SELECT list
following example, the join condition involves the | ocati on_i d column from the

. In the

department and | ocati on tables; however, the | ocati on_i d column is not selected:

SELECT d.dept_id, d.nane, |.regional_group
FROM departnment d JON |ocation |

ON d.location_id = |.location_id;

Table Aliases

It is a common practice to use table aliases when selecting data from multiple
tables. Whenever there is an ambiguity in the column names, you must use a table
alias (or the table name) to qualify any ambiguous column name. For example:

SELECT d.dept _id, d.nanme, |.regional_group
FROM departnent d JON location |

ON d.location_id = I.location_id;

In this example, the column name | ocati on_i d appears in both the tables.
Therefore, the table aliases d and | are used in the ON clause to ask Oracle to
equate the | ocati on_i d column from the depart nent table with the | ocation_id
column from the | ocat i on table. The table aliases have been used with the columns
in the SELECT clause as well, even though those column names are unambiguous. It

is a good practice to use table aliases everywhere in a query if you are using them
at all.

e Usually a join condition is specified on the foreign key columns of one table and the
primary key or unique key columns of another table. However, you can join on other
columns as well. A join condition involves columns that relate two tables in some logical
way.

e A join condition may involve more than one column. This is usually the case when a
foreign key constraint consists of multiple columns.

e The total number of join conditions in a query is always equal to the total number of tables
less one.

e The data types of the columns involved in a join condition need to be compatible, but not
necessarily the same. Oracle performs implicit data type conversion between the join
columns, if required.

e It is not necessary that a join condition involve the equal-to (=) operator. A join condition
may contain other operators as well. Joins involving other operators are discussed later in
this chapter in Section 3.3.4.

3.2.1 The USING Clause

In this chapter's first example, the join condition was specified in the ON clause, which
contained an expression defining the relationship between the two tables. Specifying the join
condition can be simplified if the following conditions hold true:

e The join depends on an equality condition between two columns, or between sets of two
columns, to relate the rows from the two tables.
e The names of the join columns are identical in both the tables.

If these two conditions are satisfied, you can apply the USING clause to specify the join
condition. Earlier, you saw the following example of a join query:

SELECT departnent.location_id, departnent.nane, |ocation.regional_group
FROM departnment JO N | ocation
ON departnent.location_id = location.location_id;

The column involved in the join condition (I ocati on_i d) is named identically in both the tables,
and its value must be the same in both tables. Therefore, this join query can be rewritten as:

SELECT location_id, departnent.nane, |ocation.regional _group
FROM departnment JO N | ocation

USI NG (Il ocation_id);

The USING clause affects the semantics of the SELECT clause. The USING clause tells Oracle
that the tables in the join have identical names for the column in the USING clause. Oracle then
merges those two columns, and recognizes only one such column with the given name. If you
include a join column in the SELECT list, Oracle doesn't allow you to qualify that column with a
table name (or table alias). If you attempt to qualify a join column name in the SELECT list
using either an alias or a table name, you will get an error:

SELECT departnent.location_id, departnent.nanme, |ocation.regional_group

FROM departnment JO N | ocation

USING (location_id);

SELECT departnent.location_id, departnent.nanme, |ocation.regional_group
*

ERROR at line 1:

ORA-25154: colum part of USING clause cannot have qualifier

This is why our USING query did not alias the | ocati on_i d column in the SELECT list.

3.2.2 Conditions Involving Multiple Columns

Quite often you will encounter a join condition that involves multiple columns from each table. If
a join condition consists of multiple columns, you need to specify all the predicates in the ON
clause. For example, if tables A and B are joined based on columns c1 and c2, the join condition
would be:

SELECT

FROM A JON B

ON A.cl = B.cl AND A c2 = B.c2;

If the column names are identical in the two tables, you can use the USING clause and specify

all the columns in one USING clause, separated by commas. The previous join condition can be
rewritten as:

SELECT
FROM A JON B

USING (cl, c2);

3.2.3 The Natural Join Clause

A natural join between two tables relates the rows from the two tables based on all pairs of
columns, one column from each table, with matching names. You don't specify a join condition.
The following example illustrates a natural join:

SELECT departnent.nane, |ocation.regional _group

FROM departnment NATURAL JO N | ocation;

NAVE REG ONAL_ GROUP
ACCOUNTI NG NEW YORK
RESEARCH DALLAS

OPERATI ONS BOSTON

In this example, the two tables—depart nent and | ocat i on—have the same name for the
column | ocati on_i d. Therefore, the join takes place by equating the | ocati on_i d from the
depart nent table to the | ocation_i d from the | ocati on table. The preceding query is
equivalent to the following queries:

SELECT departnent.nane, |ocation.regional _group
FROM departnment JO N | ocation

ON departnent.location_id = location.location_id;

SELECT departnent.nane, |ocation.regional _group

FROM departnment JO N | ocation

USING (location_id);

While using a natural join, you are not allowed to qualify the common columns with table

names or aliases (similar to the effect of the USING clause). For example, if you want to include
the | ocation_i d column in the SELECT list, and you specify depart nment. | ocati on_i d, you will

get an error:

SELECT departnent.location_id, departnent.nanme, |ocation.regional_group

FROM departnment NATURAL JO N | ocation;

SELECT departnent.location_id, departnent.nanme, |ocation.regional_group
*

ERROR at line 1:

ORA-25155: colum used in NATURAL join cannot have qualifier

You need to remove the depar t ment qualifier so the | ocati on_i d column can include it in the
SELECT list:

SELECT location_id, departnent.nane, |ocation.regional _group

FROM departnment NATURAL JO N | ocation;

LOCATI ON_| D NAMVE REG ONAL_GROUP

122 ACCOUNTI NG NEW YORK
124 RESEARCH DALLAS
167 OPERATI ONS BOSTON

Implicit specification of join conditions can have some unwanted side affects. Let's take the
example of join between the supplier and part tables to illustrate this:

DESC supplier

RESUPPLY_DATE

Nare Nul | ? Type

SUPPLI ER_I D NOT NULL NUMBER(5)
NAVE NOT NULL VARCHAR2(30)
DESC part

Narme Nul | ? Type
PART_NBR NOT NULL VARCHAR2(20)
NAVE NOT NULL VARCHAR2(30)
SUPPLI ER_I D NOT NULL NUMBER(5)
STATUS NOT NULL VARCHAR2(20)
| NVENTORY_QTY NUMBER(6)

UNI T_COST NUMBER(8, 2)

DATE

An inner join between these two tables, generates the following result:

SELECT supplier.supplier_id, part.part_nbr
FROM supplier JON part

ON supplier.supplier_id = part.supplier_id;

SUPPLI ER | D PART_NBR
1 Al 5-4557
2 TZ50828

3 El-T5-001

The following example illustrates a natural join between these two tables:

SELECT supplier_id, part.part_nbr

FROM supplier NATURAL JO N part;

no rows sel ected

No output. What happened? The reason lies in the fact that, aside from suppl i er _i d, these two
tables have another pair of columns with a common name. That column is nanme. So, when you
ask for a natural join between the suppl i er and the part tables, the join takes place not only
by equating the supplier _i d column of the two tables, but the name column from the two
tables is equated as well. Since, no supplier name is the same as a part name from that same
supplier, no rows are returned by the query. The equivalent inner join of the preceding natural
join is:

SELECT supplier.supplier_id, part.part_nbr
FROM supplier JON part
ON supplier.supplier_id = part.supplier_id

AND supplier.name = part.nang;

or, expressed via the USING clause:

SELECT supplier_id, part.part_nbr
FROM supplier JON part

USI NG (supplier_id, name);

By looking at the inner join queries we've just presented, you can very well understand why the
natural join between the suppl i er and part tables didn't return any rows. You must be aware

of this potential for error when using natural joins. To avoid such problems, we recommend
explicitly specifying join conditions, using either the ON or the USING clauses.

| 4m PREV < Day Day Up > NEST o

| 4 PREV < Day Day Up > MEXT o

3.3 Types of Joins

There are several types of joins to be aware of:

Cross joins

Cross joins are joins without a join condition. Each row of one table is combined with each
row of another table. The result is referred to as a Cartesian product.

Inner joins

Inner joins are the regular joins. An inner join returns the rows that satisfy the join
condition. Each row returned by an inner join contains data from all the tables involved in
the join.

Outer joins

Outer joins are an extension to inner joins. An outer join returns the rows that satisfy the
join condition and also the rows from one table for which no corresponding rows (i.e.,
that satisfy the join condition) exist in the other table.

Equi- and non-equi-joins

An equi-join is a join where the join condition uses the equal to (=) operator to relate the
rows of two tables. When a join condition uses any other operator to relate the rows of
two tables, the join is called a non-equi-join.

Self joins

A self join is a join of a table to itself.

Partition outer joins

A new type of join introduced in Oracle Database 10g that is slated to be part of the next
ANSI/1SO SQL standard after SQL:2003. A partition outer join divides your result set into
groups, or partitions, and repeats the same outer join for each of these groups. Such joins
are extremely handy for generating missing rows.

The following sections discuss each of these joins in detail, and with examples.

3.3.1 Cross Joins/Cartesian Products

If you don't specify a join condition when joining two tables, Oracle combines each row from the
first table with each row from the second table. This type of result set is called a cross join or a
Cartesian product; either term is acceptable. The number of rows in a cross join is the product
of the number of rows in each table. Here's an example of a cross join:

SELECT e. | nane, d.nane

FROM enpl oyee e CROSS JO N departnent d;

LNAME NAME

SM TH ACCOUNTI NG
ALLEN ACCOUNTI NG
WARD ACCOUNTI NG
JONES ACCOUNTI NG
MARTI N ACCOUNTI NG
BLAKE ACCOUNTI NG
SCOTT OPERATI ONS
KI NG OPERATI ONS
TURNER OPERATI ONS
ADAMS OPERATI ONS
JAMES OPERATI ONS
FORD OPERATI ONS
M LLER OPERATI ONS

56 rows sel ected.

Since the query didn't specify a join condition, each row from the enpl oyee table is combined

with each row from the depart nent table. Needless to say, this result set is of little use. More
often than not, a cross join produces a result set containing misleading rows. Therefore, unless
you are sure that you want a Cartesian product, don't use a cross join.

Notice the use of the keyword CROSS before the JOIN keyword in the previous example. If you
omit the CROSS keyword, and don't specify a join condition, Oracle will throw an error, because
it thinks that you are attempting a regular join and have inadvertently omitted the join
condition. For example:

SELECT e. | nane, d.nane

FROM enmpl oyee e JO N departnment d;

FROM enpl oyee e JO N departnent d

*
ERRCR at line 2:
ORA- 00905: m ssing keyword
What happens when you specify the CROSS keyword as well as a join condition through an ON

or USING clause? Oracle rejects your query with an error, and rightly so, because cross joins
are joins without join conditions. For example:

SELECT e.lnane, d.nane
FROM empl oyee e CROSS JO N departnment d

ON e.dept_id = d.dept_id,

ON e.dept_id d.dept _id

*

ERROR at line 3:

ORA- 00933: SQ. conmand not properly ended

Be aware that it's easily possible to inadvertently specify a cross join when using the old join
syntax described in the Appendix A. Using that syntax, a cross join occurs when you list two
tables in the FROM clause separated by commas, and you forget to write a join condition into
the query's WHERE clause.

3.3.2 Inner Joins

Inner joins are the most commonly used joins. When people refer simply to a "join," they most
likely mean an "inner join." An inner join relates the rows from the source tables based on the
join condition, and returns the rows that satisfy it. For example, to list the name and
department for each employee, you would use the following SQL statement:

SELECT e. | nane, d.nane

FROM enpl oyee e JO N department d

ON e.dept _id = d.dept_id;

LNANVE NANVE

CLARK ACCOUNTI NG
Kl NG ACCOUNTI NG
M LLER ACCOUNTI NG
SM TH RESEARCH
ADANVS RESEARCH
FORD RESEARCH
SCOTT RESEARCH
JONES RESEARCH
ALLEN SALES
BLAKE SALES

MARTI N SALES
JAMES SALES
TURNER SALES

WARD SALES

14 rows sel ected.

In this example, each row of the enpl oyee table is combined with each row of the depart nent
table, and if the combination satisfies the join condition (dept _i d in the enpl oyee table
matches the dept _i d in the depart nent table), then it is included in the result set.

The JOIN keyword, unless prefixed with another keyword, means an inner join. Optionally, you

can use the INNER keyword before the JOIN keyword to explicitly indicate an inner join, as in
the following example:

SELECT e. | nane, d.nane
FROM enpl oyee e INNER JO N departnent d

ON e.dept_id = d.dept_id,

Let's look at another example to go a bit deeper in the concept behind an inner join:

SELECT * FROM departnent;

DEPT_| D NAVE LOCATI ON_I D
10 ACCOUNTI NG 122
20 RESEARCH 124
30 SALES
40 OPERATI ONS 167

SELECT * FROM | ocation;

LOCATI ON_| D REG ONAL_GROUP
122 NEW YORK
124 DALLAS
123 CHI CAGO
167 BOSTON

144 SAN FRANCI SCO

SELECT d. nane, |.regional _group
FROM departnent d JON location |

ON d.location_id = |.location_id;

NAVE REG ONAL_ GROUP

RESEARCH DALLAS

OPERATI ONS BOSTON

Our depart nment table has four rows, and our | ocat i on table has five rows. However, the inner
join returns only three rows. The inner join returns only those rows from the two tables that
satisfy the join condition. What this means, with respect to this example, is that only those
departments that have a corresponding location, and only those locations that have a
corresponding department, are returned by the inner join query. The "SALES" department
doesn't have al ocati on_i d, and therefore has no corresponding entry in the | ocati on table,
so it is not included in the result set of the inner join. Similarly, the locations "CHICAGO" and
"SAN FRANCISCO" don't have corresponding entries in the depart nent table, and are not
included in the result set of the inner join.

"'_—‘~ The concept of an inner join is easier to understand in terms of the
. Cartesian product (or cross join). While performing a join of the
W #: department and | ocati on tables, a Cartesian product is first formed

(conceptually, Oracle doesn't physically materialize this Cartesian
product), and then the join conditions in the ON (or USING) clause restrict
the results to only those rows for which the | ocati on_i d values match.

The most important concept to understand about joins, and especially about inner joins, is that
a join is all about matching rows from one table with corresponding rows in another table.

3.3.3 Outer Joins

Sometimes, while performing a join between two tables, you need to return all the rows from
one table even when there are no corresponding rows in the other table. For example, you may
want to see all the departments even if they are not related to any particular location. Oracle
provides a special type of join to include rows from one table that don't have matching rows
from the other table. This type of join is known as an outer join.

The syntax of an outer join is:

FROM tablel { LEFT | RIGHT | FULL } [OUTER] JO N table2

The syntax elements are:

tabl el, tabl e2

Specifies the tables between which you are performing the outer join.

LEFT

Specifies that the results be generated using all rows from t abl el. For those rows in
tabl el that don't have corresponding rows in t abl e2, NULLs are returned in the result

set for the t abl e2 columns.

RIGHT

Specifies that the results be generated using all rows from t abl e2. For those rows in
t abl e2 that don't have corresponding rows in t abl el, NULLs are returned in the result
set for the t abl el columns.

FULL

Specifies that the results be generated using all rows from t abl el and t abl e2. For those
rows in t abl el that don't have corresponding rows in t abl e2, NULLs are returned in the
result set for the t abl e2 columns. Additionally, for those rows in t abl e2 that don't have
corresponding rows in t abl el, NULLs are returned in the result set for the t abl el
columns.

OUTER
Specifies that you are performing an OUTER join. This keyword is optional. If you use

LEFT, RIGHT, or FULL, Oracle automatically assumes an outer join. The OUTER keyword is
for completeness' sake, and complements the INNER keyword.

3.3.3.1 Left outer joins

To list all departments even if they are not related to any particular location, you can perform a
LEFT OUTER JOIN between the depart nent and the | ocati on tables. For example:

SELECT d.dept_id, d.nane, |.regional_group

FROM departnent d LEFT OUTER JO N | ocation |

ON d.location_id = |.location_id;
DEPT_| D NAMVE REG ONAL_ GROUP
10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS
30 SALES
40 OPERATI ONS BOSTON

This query lists all the rows from the depart nent table together with their corresponding

locations from the | ocat i on table. For the rows from depart nent with no corresponding rows
inl ocati on, NULLs are returned for the | . r egi onal _gr oup column in the result set.

3.3.3.2 Right outer joins

Likewise, to list all the locations even if they are not related to any particular department, you
can perform a RIGHT OUTER JOIN between the | ocati on and the depart nent tables. For
example:

SELECT d.dept_id, d.nanme, |.regional_group

FROM departnent d R GHT OUTER JO N | ocation |

ON d.location_id = |.location_id;
DEPT_| D NAVE REG ONAL_ GROUP
10 ACCOUNTI NG NEW YORK
CHI CAGO
20 RESEARCH DALLAS

SAN FRANCI SCO
40 OPERATI ONS BOSTON
This query lists all the rows from the | ocat i on table, and their corresponding departments from
the depart nent table. For the rows from | ocati on that don't have corresponding rows in
depart nent, NULLs are returned for the d. dept _i d and d. nanme columns in the result set.
The LEFT and RIGHT keywords in an outer join query are relative to the position of the tables in
the FROM clause. The same result can be achieved using either a LEFT OUTER JOIN or a RIGHT

OUTER JOIN, by switching the position of the tables. For example, the following two queries are
equivalent:

SELECT d.dept_id, d.name, |.regional_group
FROM departnment d LEFT OUTER JO N | ocation |

ON d.location_id = |.location_id;

SELECT d.dept_id, d.name, |.regional_group
FROM | ocation | R GHT OQUTER JO N departnent d

ON d.location_id = |.location_id;

In each case, the directional word, either LEFT or RIGHT, points toward the anchor table, the
table that is required. The other table is then the optional table in the join.

3.3.3.3 Full outer joins

Ocassionally, you may need the effect of an outer join in both directions, which you can think of
as a combination of LEFT and RIGHT outer joins. For example, you may need to list all the
departments (with or without a location), as well as all the locations (with or without a
department). Use a FULL OUTER JOIN to generate such a result set:

SELECT d.dept_id, d.nane, |.regional_group

FROM departnment d FULL OQUTER JO N | ocation |

ON d.location_id = |.location_id,
DEPT_I D NAME REG ONAL_GROUP
10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS
30 SALES
40 OPERATI ONS BOSTON
CH CAGO

SAN FRANCI SCO

6 rows sel ected.

This query performs a FULL OUTER JOIN between the two tables, and lists:

e All the rows that satisfy the join condition
e The rows in the depart ment table that don't have a corresponding location
e The rows in the | ocat i on table that don't have a corresponding department
A full outer join is bidirectional in the sense that the result is the same irrespective of the

position of the tables in the FROM clause. In mathematical terms, you would consider the FULL
OUTER JOIN operator to be "commutative."

3.3.4 Equi-Joins Versus Non-Equi-Joins

The join condition determines whether a join is an equi-join or a non-equi-join. When a join
condition relates two tables by equating the columns from the tables, it is an equi-join. When a
join condition relates two tables by an operator other than equality, it is a non-equi-join. A
query may contain equi-joins as well as non-equi-joins.

Equi-joins are the most common join type. For example, if you want to list all the parts supplied
by all the suppliers, you can join the suppl i er table with the part table by equating the
suppl i er _i d from one table to that of the other:

SELECT s.nane supplier_nane, p.name part_nane

FROM supplier s JON part p

ON s.supplier_id p. supplier_id;

SUPPLI ER_NAME PART_NAME

Acne | ndustries Acne Part Al 5-4557
Tilton Enterprises Tilton Part TZ50828
Eastern | nporters Eastern Part EI-T5-001

However, there are situations in which you need non-equi-joins to get the required information.
For example, if you want to list the i nvent ory_cl ass of each part, and the i nventory_cl ass

is based on a range of unit costs, you need to execute the following query:

SELECT p.nane part_nanme, c.inv_class inv_class
FROM part p JON inventory_class c¢

ON p.unit_cost BETWEEN c.|ow cost AND c. hi gh_cost;

PART _NAME I NV
Acne Part Al 5-4557 A
Tilton Part TZ50828 B
Eastern Part ElI-T5-001 B

The use of the BETWEEN operator to relate the unit _cost column from the part table to the

| ow_cost and hi gh_cost columns of the i nvent ory_cl ass table makes this query a non-equi-
join. (You can achieve the same result by using the combination of >= and <= operators instead
of BETWEEN. Try this as an exercise.)

3.3.5 Self Joins

There are situations in which one row of a table is related to another row of the same table. The
enpl oyee table is a good example. The manager of one employee is also an employee. The
rows for both are in the same enpl oyee table. This relationship is indicated in the

manager _enp_i d column:

CREATE TABLE enpl oyee (

enp_id NUMBER (5) NOT NULL PRI MARY KEY,
f nane VARCHAR2 (20),

| name VARCHAR2 (20),

dept _id NUMBER (5),

manager _enp_id NUMBER (5) REFERENCES enpl oyee(enp_id),

sal ary NUMBER (5),
hire_date DATE,
job_id NUMBER (3));

To get information about an employee and his manager, you have to join the enpl oyee table
with itself. You can do that by specifying the enpl oyee table twice in the FROM clause and using
two different table aliases, thereby treating enpl oyee as if it were two separate tables. The
following example lists the name of each employee and his manager:

SELECT e.lname enployee, mlnane manager
FROM enpl oyee e JO N enpl oyee m

ON e.manager _enp_id = menp_id;

EMPLOYEE MANAGER
SCOrT JONES
FORD JONES
ALLEN BLAKE
WARD BLAKE
JAMES BLAKE

TURNER BLAKE

MARTI N BLAKE

M LLER CLARK
ADANVS SCOTIT
JONES KI NG
CLARK KI NG
BLAKE KI NG
SM TH FORD

13 rows sel ected.

Note that the enpl oyee table is used twice in the FROM clause with two different aliases. Also
note the join condition that reads as: "Where the employee's nanager _enp_i d is the same as
his manager's enp_i d."

3.3.5.1 Self outer joins

Even though the enpl oyee table has 14 rows, the previous query returned only 13 rows. This is
because there is an employee without a manager _enp_i d. Oracle excludes that employee's row
from the result set while performing the self inner join. To include employees without

manager _enp_i d values, in other words, without managers, you need an outer join:

SELECT e.lnanme enployee, mlnane manager

FROM enpl oyee e LEFT OUTER JO N enpl oyee m

ON e.nmanager _enp_id = menp_id;

EMPLOYEE MANAGER
FORD JONES
SCOTT JONES
JAMES BLAKE
TURNER BLAKE
MARTI N BLAKE
WARD BLAKE

ALLEN BLAKE

M LLER CLARK

ADAMS SCOTT
CLARK KI NG

BLAKE KI NG

JONES KI NG

SM TH FORD

Kl NG

14 rows sel ected.

Be careful when using a LEFT or RIGHT outer join to join a table to itself. If you choose the
wrong direction, you may get an absurd result set that makes no sense. In this case, we want to
list all the employees irrespective of whether they have a manager or not. Therefore, the

enpl oyee table we need to make optional is the one from which we are drawing manager
names.

3.3.5.2 Self non-equi-joins

The previous example showed self equi-joins. However, there are situations when you need to
perform self non-equi-joins. We will illustrate this by an example. Let's assume that you are in
charge of organizing interdepartmental basketball competition within your organization. It is

your responsibility to draw the teams and schedule the competition. You query the depart nent

table and get the following result:

SELECT nane FROM depart nment;

ACCOUNTI NG

RESEARCH

SALES

OPERATI ONS

You find that there are four departments, and to make a fair competition, you decide that each
department plays against the other three departments once, and at the end, the department

with the maximum wins is declared the winner. You have been to an Oracle SQL training class
recently, and decide to apply the concept of self join you learned there. You execute the

following query:

SELECT d1l1.nane teaml, d2.name tean?

FROM departnent dl1 CROSS JO N departnent d2;

TEAML TEAM
ACCOUNTI NG ACCOUNTI NG
ACCOUNTI NG RESEARCH
ACCOUNTI NG SALES
ACCOUNTI NG OPERATI ONS
RESEARCH ACCOUNTI NG
RESEARCH RESEARCH
RESEARCH SALES
RESEARCH OPERATI ONS
SALES ACCOUNTI NG
SALES RESEARCH
SALES SALES
SALES OPERATI ONS
OPERATI ONS ACCOUNTI NG
OPERATI ONS RESEARCH
OPERATI ONS SALES
OPERATI ONS OPERATI ONS

16 rows sel ected.

Disappointing results. From your knowledge of high school mathematics, you know that four
teams each playing once with the other three makes six combinations. However, your SQL
query returned 16 rows. Now you realize that since you used a cross join (or didn't specify any
join condition), you got a Cartesian product from your query. You put in a join condition, and
your query and results now look as follows:

SELECT d1l1.nane teaml, d2.name tean?

FROM departnent dl1 JO N departnment d2

ON dl.dept_id = d2.dept_id;

TEAML TEAMR
ACCOUNTI NG ACCOUNTI NG
RESEARCH RESEARCH
SALES SALES
OPERATI ONS OPERATI ONS

Oops! The equi-join returned a very unwanted result. A team can't play against itself. You
realize your mistake, and this sparks the idea that you can use non-equi-joins in this situation.
You rewrite the query as a non-equi-join. You don't want a team to play against itself, and
therefore replace the = operator in the join condition with ! =. Let's look at the results:

SELECT d1.nane teaml, d2.nane tean®
FROM departnent d1 JO N departnment d2

ON dl.dept_id != d2.dept_id;

TEAML TEAMR
RESEARCH ACCOUNTI NG
SALES ACCOUNTI NG
OPERATI ONS ACCOUNTI NG
ACCOUNTI NG RESEARCH
SALES RESEARCH
OPERATI ONS RESEARCH
ACCOUNTI NG SALES
RESEARCH SALES
OPERATI ONS SALES

ACCOUNTI NG

OPERATI ONS

RESEARCH OPERATI ONS

SALES OPERATI ONS

12 rows sel ected.

Still not done. In this result set, you have permutations such as (RESEARCH, ACCOUNTI NG) and
(ACCOUNTI NG, RESEARCH), and so on. Therefore, each team plays against the others twice. You

need to remove these permutations, which you rightly consider to be duplicates. You think
about using DISTINCT. DISTINCT will not help here, because the row (RESEARCH, ACCOUNTI NG)
is different from the row (ACCOUNTI NG, RESEARCH) from the viewpoint of DISTINCT; but not

from the viewpoint of your requirement. After some thought, you want to try out an inequality
operator other than ! =. You decide to go with the less-than (<) operator. Here are the results
you get:

SELECT d1.name teanl, d2.nane tean?

FROM departnent dl1 JO N departnent d2

ON D1.DEPT_ID < D2.DEPT ID;

TEAML TEAM
ACCOUNTI NG RESEARCH
ACCOUNTI NG SALES
ACCOUNTI NG OPERATI ONS
RESEARCH SALES
RESEARCH OPERATI ONS
SALES OPERATI ONS

6 rows sel ected.

That's it! Now you have six combinations: each team plays against the other three just once.
Let's examine why this version of the query works. Conceptually, when Oracle executes this
query, a Cartesian product is first formed with 16 rows. Then the less-than (<) operator in the
join condition restricts the result set to those rows in which the dept _i d of Team 1 is less than
the dept _i d of Team 2. The less-than (<) operator eliminates the duplicates, because for any
given permutation of two departments this condition is satisfied for only one. Using greater-
than (>) instead of less-than (<) will also give you the required result, but the t eaml and t ean®
values will be reversed:

SELECT dl1. nane teaml, d2.name tean?
FROM departnent dl JO N departnent d2

ON dl.dept_id > d2.dept_id;

TEAML TEAMR
OPERATI ONS SALES
OPERATI ONS RESEARCH
OPERATI ONS ACCOUNTI NG
SALES RESEARCH
SALES ACCOUNTI NG
RESEARCH ACCOUNTI NG

6 rows sel ected.

Don't be disheartened by the painful process you had to go through to get this result.
Sometimes you have to go through an agonizing experience to get simple results such as these.
That's life. Now that you have the team combinations right, go a bit further and assign a date
for each match. Use "tomorrow" as the starting date:

SELECT d1.nane teaml, d2.nane teanR, SYSDATE + ROMNNUM nmtch_date
FROM departnent dl1 JO N departnent d2

ON dil.dept _id < d2.dept _id;

TEAML TEAM2 MATCH_DAT
ACCOUNTI NG RESEARCH 10- NOV- 03
ACCOUNTI NG SALES 11- NOV- 03
ACCOUNTI NG OPERATI ONS 12- NOV- 03
RESEARCH SALES 13- NOV- 03

RESEARCH

OPERATI ONS

14- NOV- 03

SALES OPERATI ONS 15- NOv- 03

6 rows sel ected.

Now publish these results on the corporate intranet along with the rules and regulations for the
competition, and you are done.

3.3.6 Partition Outer Joins

Partition outer joins are an interesting new feature in Oracle Database 10g. They're useful for
data densification, which is a fancy way of saying that they are useful for filling in rows that do
not exist. This is a common requirement for data warehousing queries.

Part of our example database is an enpl oyee_expense table with summary information from
employee expense reports. The data in that table looks as follows:

SELECT * FROM enpl oyee_expense;

EMP_I D YEAR MONTH EXPENSE_CLAI M APPROVED_AMT PAI D_DATE
7369 2002 2 3072. 43 3072. 43 03- MAR-02
7369 2002 4 30 30 01-JUN-02
7369 2002 5 235. 03 35.03 01-JUN-02
7369 2002 9 5095. 98 5095. 08 31- OCT-02
7369 2002 12 1001. 01 1001. 01 O1-FEB-03
7782 2002 1 111.09 111. 09 01-FEB-02
7782 2002 3 9. 85 9. 85 01- APR-02
7782 2002 7 3987. 32 3987. 32 01- AUG 02
7782 2002 9 1200 1200 01-OCT-02

Management wants to review expenses, and you've been asked to generate a data extract of
employee expense claims for the year 2002. Furthermore, to facilitate some analysis that
management wishes to do using Excel, you've been asked to ensure that your extract contains
one row per month per employee, but only for those employees who actively submit expense
reports. Most do not.

You think about these requirements for a while, and realize that you have a nont hs table
containing one row for each month in 2002:

SELECT *
FROV nont hs

VWHERE year = 2002;

YEAR MONTH
2002 1
2002 2
2002 3
2002 4
2002 5
2002 6
2002 7
2002 8
2002 9
2002 10
2002 11
2002 12

You can use this nont hs table in an outer join to generate 12 rows for each employee. For
example, to generate one row per month for employee 7782, you can write the following query:

SELECT NVL(ee.enp_id, 7782), myear, mnonth, NVL(ee.expense_claimQO0)
FROM (SELECT * FROM nonths WHERE year = 2002) m
LEFT OQUTER JO N (SELECT *
FROM enpl oyee_expense
WHERE enp_id = 7782) ee
ON myear = ee.year AND mnonth = ee.nonth

ORDER BY m nont h;

NVL(EE. EMP_I D, 7782) YEAR MONTH NVL(EE. EXPENSE_CLAI M 0)

7782 2002 1 111. 09
7782 2002 2 0
7782 2002 3 9.85
7782 2002 4 0
7782 2002 5 0
7782 2002 6 0
7782 2002 7 3987. 32
7782 2002 8 0
7782 2002 9 1200
7782 2002 10 0
7782 2002 11 0
NVL(EE. EMP_I D, 7782) YEAR MONTH NVL(EE. EXPENSE_CLAI M 0)
7782 2002 12 0

The query in this example is a bit intense. It performs a join of two nested SELECT statements,
called subqueries. The first subquery returns the 12 rows from months for the year 2002. Those
12 rows are the mandatory rows in the outer join. The second subquery returns the actual
expense rows for employee #7782. The outer join ensures that 12 rows are returned, and the
two NVL functions ensure that each of those 12 rows has a value for the potentially NULL

enpl oyee_expense fields. Expense claims for months in which no report was filed are simply set
to zero.

Subqueries are discussed in detail in Chapter 5. We hated to have to bring

o them up now, but we felt the preceding example was necessary to help you
% age - . .

. 4+ understand what a partition outer join is all about.

The previous query is all well and good, but to generate your report you'd need to execute the
preceding query many times, once for each employee who has submitted at least one expense
report in the year 2002. This is where partition outer joins come into play. They make it trivial
to do the equivalent of executing the preceding query once per employee. Here's how:

SELECT ee.enp_id, myear, mnonth, NVL(ee.expense_claimO0)

FROM (SELECT *

FROM nont hs WHERE year = 2002) m

LEFT OUTER JO N enpl oyee_expense ee

PARTI TI ON BY (ee.enp_id)

ON m year = ee.year

ORDER BY ee.enp_id,

7369

7369

7369

7369

7369

7369

7369

7369

7369

7369

7369

7369

7782

7782

7782

7782

7782

7782

7782

7782

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

2002

m nont h;

AND m nmonth = ee. nonth

MONTH NVL(EE. EXPENSE_CLAI M 0)

10

11

12

3072.

235.

5095.

1001.

111.

3987.

30

03

01

09

.85

32

7782 2002 9 1200

7782 2002 10 0
7782 2002 11 0
7782 2002 12 0

Notice the PARTITION BY clause in this query. That clause is new in Oracle Database 10g, and
in this example it causes the database engine to conceptually perform the following steps:

1. Divide the rows from enpl oyee_expense into groups based on their enp_i d values, one
group per value.

2. Outer join each group to the nont hs table as a separate operation.
The key here is that rather than one outer join, you are getting the equivalent of many outer

joins, but with a much simpler syntax, and from one query. The preceding query is logically
equivalent to the following UNION ALL query:

SELECT NVL(ee.enp_id, 7369), myear, mnonth, NVL(ee.expense_claimDO0)
FROM (SELECT * FROM nonths WHERE year = 2002) m
LEFT OQUTER JO N (SELECT *
FROM enpl oyee_expense
WHERE enp_id = 7369) ee
ON myear = ee.year AND mnonth = ee.nonth
ORDER BY m nont h
UNI ON ALL
SELECT NVL(ee.enp_id, 7782), myear, mnonth, NVL(ee.expense_claimQO0)
FROM (SELECT * FROM nonths WHERE year = 2002) m
LEFT OQUTER JO N (SELECT *
FROM enpl oyee_expense
WHERE enp_id = 7782) ee
ON myear = ee.year AND mnonth = ee.nonth
ORDER BY m nont h;
You'll learn more about UNION queries in Chapter 7, so don't worry if you don't fully understand

this example now. Our point here is to illustrate that, given the two employees represented in
our example enpl oyee_expense table, our partition outer join query performs the equivalent of

two outer joins, one for each employee.

Unlike the case with our UNION ALL code, you do not need to apply NVL to
the partition columns when doing a partition outer join. The correct enp_i d
values were filled in automatically, for all new rows generated in each
partition.

=0y -t
Fha 1+
=y
e

Because they make it easy to fill in gaps in your data, partition outer joins are particularly
helpful when writing lag and lead queries, which are a type of query particularly sensitive to
gaps in data. You'll learn more about lag and lead queries in Chapter 14.

| dm FREV < Day Day Up > MEXT oy

| 4 PREV < Day Day Up > MEXT o

3.4 Joins and Subqueries

Joins can sometimes be used to good advantage in reformulating SELECT statements that would
otherwise contain subqueries. Consider the problem of obtaining a list of suppliers of parts for
which your inventory has dropped below 10 units. You might begin by writing a query such as
the following:

SELECT supplier_id, name
FROM supplier s
WHERE EXI STS (SELECT *

FROM part p

VWHERE p.inventory_qty < 10

AND p.supplier_id = s.supplier_id);

The subquery in this SELECT statement is a correlated subquery, which means that it will be
executed once for each row in the supplier table. Assuming that you have no indexes on the
inventory_qty and supplier_id columns of the part table, this query could result in multiple,
full-table scans of the part table. It's possible to restate the query using a join. For example:
SELECT s.supplier_id, s.nanme
FROM supplier s JON part p
ON p.supplier_id = s.supplier_id
WHERE p.inventory _qty < 10;
Whether the join version or the subquery version of a query is more efficient depends on the

specific situation. It may be worth your while to test both approaches to see which query runs
faster.

‘ . PREY < Day Day Up > ME=ST ‘

| 4m PREV < Day Day Up > MET

3.5 DML Statements on a Join View

A join view is a view based on a join. Special considerations apply when you issue a DML
(INSERT, UPDATE, or DELETE) statement against a join view. Ever thought about what happens
when you insert a row into a join view—which table does the row go into? And what happens
when you delete a row from a join view—from which table is it deleted? This section deals with
these questions.

To be modifiable (also referred to as updatable), a join view must not contain any of the
following:

e Hierarchical query clauses, such as START WITH or CONNECT BY

e GROUP BY or ORDER BY clauses

e MODEL query

e Set operations, such as UNION, UNION ALL, INTERSECT, MINUS

e Aggregate functions, such as AVG, COUNT, MAX, MIN, SUM, and so on

e Analytical functions, such as CUME_DIST, and so on

e A subquery or a collection expression in the SELECT list

e The DISTINCT operator

e WITH READ ONLY option

e The ROWNUM pseudocolumn

A DML statement on a join view can modify only one base table of the view. Thus, to be
modifiable, a join view must also preserve a key from at least one of its tables.

3.5.1 Key-Preserved Tables

A key-preserved table is the most important requirement for a join view to be modifiable. In a
join, a table is called a key-preserved table if its keys are preserved through the join—every key
of the table can also be a key of the resultant join result set. Every primary key or unique key
value in the base table must also be unique in the result set of the join. Here's an example that
better demonstrates the concept of key preserved tables:

DESC enpl oyee

EMP_I D NOT NULL NUNMBER(5)

FNAME

LNAME

DEPT_I D NOT NULL

MANAGER EMP_| D
SALARY
H RE_DATE

JOB ID

DESC retail er

RTLR_NBR NOT NULL

NAVE

ADDRESS

a Ty

STATE

ZI P_CODE
AREA_CODE
PHONE_NUVBER
SALESPERSON_| D
CREDIT_LIMT

COMMENTS

CREATE OR REPLACE VIEW Vv rtlr_enp AS

SELECT c.rtlr_nbr, c.name, c.city, e.enp_id,
c.sal esperson_id, e.lname sales_rep

FROM retailer ¢ JON enpl oyee e

ON c.sal esperson_id = e.enp_id;

VARCHAR2(20)
VARCHAR2(20)
NUVBER(5)
NUVBER(5)
NUMBER(5)
DATE

NUMBER(3)

NUNVBER(6)
VARCHAR? (45)
VARCHAR2(40)
VARCHAR?(30)
VARCHAR2 (2)
VARCHAR?2(9)
NUVBER(3)
NUNBER(7)
NUMBER(4)
NUMBER(9, 2)

LONG

Vi ew creat ed.

SELECT *

RTLR _NBR
104
107
201
203
207
216
223
227
218
211
206
205
202
101
228
226
106
103
102
208

204

FROM v_rtlr_enp;

EVERY MOUNTAI N

WOVENS SPORTS

STADI UM SPORTS

REBOUND SPORTS

FAST BREAK

THE ALL AMERI CAN

VELO SPORTS

THE TOUR

THE OUTFI ELD

AT BAT

THE COLI SEUM

PO NT GUARD

HOOPS

TKB SPORT SHOP

FI TNESS FI RST

CENTURY SHOP

SHAPE UP

JUST TENNI S

VOLLYRI TE

AL AND BOB' S SPORTS

THE POANER FORWARD

CUPERTI NO

SUNNYVALE

NEW YORK

NEW YORK

CONCORD

CHEL SEA

MALDEN

SOVERVI LLE

FLUSHI NG

BROOKLI NE

SCARSDALE

YONKERS

LEI CESTER

REDWOOD CI TY

JACKSON HEI GHTS

HUNTI NGTON

PALO ALTO

BURLI NGAME

BURLI NGAME

AUSTI N

DALLAS

EMP_| D SALES_REP

7499

7499

7499

7499

7499

7499

7499

7499

7499

7499

7499

7499

7499

7521

7521

7521

7521

7521

7654

7654

7654

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

ALLEN

WARD

WARD

WARD

WARD

WARD

MARTI N

MARTI N

MARTI N

215 BOB'S FAM LY SPORTS HOUSTON 7654 MARTI N
217 H'T name, THROW addr, AND RUN GRAPEVI NE 7654 MARTI N
214 AL'S PRO SHOP SPRI NG 7654 MARTI N
100 JOCKSPORTS BELMONT 7844 TURNER
212 ALL SPORT BROOKLYN 7844 TURNER
221 WHEELS AND DEALS HOUSTON 7844 TURNER
224 JCE' S BI KE SHOP GRAND PRAI RI E 7844 TURNER
225 BOB'S SWM CYCLE AND RUN I RVI NG 7844 TURNER
222 JUST BI KES DALLAS 7844 TURNER
213 GOOD SPORT SUNNYSI DE 7844 TURNER
105 K + T SPORTS SANTA CLARA 7844 TURNER

32 rows sel ected.

The view v_rtlr_enpis ajoin of retail er and enpl oyee tables on the

retail er.sal esperson_i d and enpl oyee. enp_i d columns. Is there a key-preserved table in
this join view? Which one—or is it both? If you observe the relationship between the two tables
and the join query, you will notice that rt| r _nbr is the key of the ret ai | er table, as well as
the key of the result of the join. This is because there is only one row in the ret ai | er table for
every row in the join view v_rtlr_enp, and every row in the view has a uniquertlr_nbr.
Therefore, the table ret ai | er is a key-preserved table in this join view. How about the

enpl oyee table? The key of the enpl oyee table is not preserved through the join because
enp_i d is not unique in the view, consequently enp_i d can't be a key for the result of the join.
Therefore, the table enpl oyee is not a key-preserved table in this view.

You must remember the following important points regarding key-preserved tables:

e Key-preservation is a property of the table inside the join view, not the table itself
independently. A table may be key-preserved in one join view, and may not be key-
preserved in another join view. For example, if we create a join view by joining the
enpl oyee table with the depart ment table on the dept _i d column, then in the resulting
view the enpl oyee table will be key-preserved, but the depart nent table will not be a
key-preserved table.

e It is not necessary for the key column(s) of a table to be SELECTed in the join view for the
table to be key-preserved. For example, in thev_rtlr_enp view discussed previously, the
retail er table would have been the key-preserved table even if we had not included the
rtlr_nbr column in the SELECT list.

e On the other hand, if you select the key column(s) of a table in the view definition, your
doing so doesn't make that table key-preserved. In the v_rtlr_enp view, even though we

have included enp_i d in the SELECT list, the enpl oyee table is not key-preserved.

e The key-preserved property of a table in a join view doesn't depend on the data inside the
table. It depends on the schema design and the relationship between the tables.

A join view may SELECT data from many tables. However, any DML operation can modify the

data from only one underlying table. The following sections discuss how you can use INSERT,
UPDATE, and DELETE statements on a join view.

3.5.2 INSERT Statements on a Join View

Let's issue an INSERT statement against the join view v_rtlr_enp, that attempts to insert a
record into the ret ai |l er table:

INSERT INTO v_rtlr_enp (rtlr_nbr, nane, sal esperson_id)

VALUES (345, 'X-MART STORES , 7820);

1 row created.

That worked. Now let's try the following INSERT statement, which also supplies a value for a
column from the enpl oyee table:

INSERT INTO v_rtlr_enp (rtlr_nbr, nane, salesperson_id, sales_rep)
VALUES (456, 'LEE PARK RECREATI ON CENTER , 7599, 'JAMES');
INSERT INTO v_rtlr_enp (rtlr_nbr, nane, salesperson_id, sales_rep)
*
ERROR at line 1:
ORA-01776: cannot nodify nore than one base table through a join view
This INSERT statement attempts to insert values into two tables (retail er and enpl oyee),

which is not allowed. You can't refer to the columns of a non-key-preserved table in an INSERT
statement.

3.5.3 DELETE Statements on a Join View

DELETE operations can be performed on a join view if the join view has one and only one key-
preserved table. The view v_rt| r_enp discussed previously has only one key-preserved table,
retail er; therefore, you can delete from this join view as in the following example:

DELETE FROM v_rtlr_enp

WHERE rtlr_nbr = 214,

1 row del et ed.
But wait! The view joined two tables? What row then, did we just delete? The answer is that we
deleted a row from the key-preserved table, in this case from the ret ai | er table.

Let's take another example where there is more than one key-preserved table. We will create a
join view that involves two key-preserved tables, and then attempt to delete from that view.

CREATE VIEW v_cust _di sputed_ord AS
SELECT d.order_nbr, d.cust_nbr, c.cancelled_dt
FROM di sputed_orders d JON cust_order c

ON d.order_nbr = c.order_nbr;

Vi ew created.

In the view v_cust _di sput ed_or d both the tables are key-preserved, because the key of each
of the tables is also a key of the result set of the join. Now try deleting a row from this view:

DELETE FROM v_cust _di sputed_ord

WHERE order _nbr = 1003;

1 row del et ed.

Since there are two key-preserved tables, which table did the row get deleted from? After
querying the individual tables, you will find that a row has been deleted from the

di sput ed_or der s table. Why? This is a bit tricky. The rule is that if you attempt to delete a row
from a join view having more than one key-preserved table, the row will be deleted from the
first table in the join. If you reverse the order of the tables in the join, and then issue a delete,
you will find that the row will be deleted from the cust _order table. This is strange, but it's the
rule. Keep this unexpected behavior in mind when you write applications that need to delete
from a join view with multiple key-preserved tables.

3.5.4 UPDATE Statements on a Join View

An UPDATE operation can be performed on a join view if it attempts to update a column in the
key-preserved table. For example:

UPDATE v_rtlr_enp
SET nanme = 'PRO SPORTS

WHERE rtlr_nbr = 215;

1 row updat ed.

This UPDATE is successful since it updated the name column of the r et ai | er table, which is key-
preserved. However, the following UPDATE statement will fail because it attempts to modify the

sal es_rep column that maps to the enpl oyee table, which is non-key-preserved:
UPDATE v_rtlr_enp

" ANDREW

SET sales_rep

WHERE rtlr_nbr = 214,

SET sales_rep = ' ANDREW
*

ERROR at |ine 2:

ORA- 01779: cannot nodify a columm which naps to a non-key-preserved table

3.5.5 Data Dictionary Views to Find Updatable Columns

Oracle provides the data dictionary view USER_UPDATABLE_COLUMNS that shows all modifiable
columns in all tables and views in a user's schema. This can be helpful if you have a view that
you wish to update, but aren't sure whether it's updatable. USER_UPDATABLE_COLUMNS has
the following definition:

DESC USER_UPDATABLE_CCOLUMNS

Name Nul | ? Type
OMNER NOT NULL VARCHARZ2(30)
TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)
UPDATABLE VARCHAR2(3)
| NSERTABLE VARCHAR2(3)

DELETABLE VARCHAR2(3)

el ALL_UPDATABLE_COLUMNS shows modifiable columns from all the views
F you can access (as opposed to just those you own), and
DBA_UPDATABLE_COLUMNS (for DBAs only) shows such columns for all
the views in the database.

=
Th g

The following example shows USER_UPDATABLE_COLUMNS being queried for a list of updatable
columnsinthev_rtlr_enp view:

SELECT * FROM USER_UPDATABLE_COLUWNS

WHERE TABLE_NAME = 'V _RTLR EMP ;

OMNER TABLE_NAME COLUWN_NANE UPD I NS DEL
DEMO V_RTLR EWP RTLR_NBR YES YES YES
DEMO V_RTLR EMP NAVE YES YES YES
DEMO V.RTLREMP CTY YES YES YES
DEMO V_RTLR EMP EMP_I D NO NO NO

DEMO V_RTLR_EMP SALESPERSON_| D YES YES YES

DEMO V_RTLR EWP SALES REP NO NO NO

3.5.6 Impact of WITH CHECK OPTION

WITH CHECK OPTION is an optional clause in the CREATE VIEW statement that prevents any
changes to the data in the view that could cause rows to be not included in the view. For
example, you have a view with the following definition:

CREATE VI EW enp_20 AS
SELECT * FROM enpl oyee
VWHERE dept_id = 20
W TH CHECK OPTI ON;

Using this view you can't insert a row that has dept _i d = 30, or update the existing rows to
have dept _i d = 30, as shown in the following example:

I NSERT | NTO enp_20 VALUES
(8765, 'SANJAY',' M SHRA', 30, 7656, 4000, 'O01-JAN-88', 765);

I NSERT | NTO enp_20 VALUES

ERROR at |ine 1:

ORA- 01402: view WTH CHECK OPTI ON where-cl ause viol ation

UPDATE enp_20 SET dept_id = 30;

UPDATE enp_20 SET dept _id 30

*

ERROR at line 1:

ORA-01402: view WTH CHECK OPTI ON where-cl ause violation

Since the WHERE clause of the view definition restricts the data in the view to dept _i d = 20,
and the view is defined with the clause WITH CHECK OPTION, you are not allowed to insert or

update rows that could cause the rows not to be included in this view.

The purpose of WITH CHECK OPTION is to prevent DML operations as shown in the preceding
example. However, this clause has some side effects on the updatability of join views in general.

If a join view is created using the WITH CHECK OPTION clause, INSERT statements are not
allowed on the view at all, even if you are attempting to insert into the key-preserved table
only. For example:

CREATE VIEW v_rtlr_enp_wco AS

SELECT c.rtlr_nbr, c.name, c.city, c.salesperson_id, e.lnane sales_rep
FROM retailer ¢ JON enpl oyee e

ON c.sal esperson_id = e.enp_id

W TH CHECK OPTI CON,

Vi ew creat ed.

INSERT INTO v_rtlr_enp_wco (rtlr_nbr, name, sal esperson_id)
VALUES (345, 'X-MART STORES', 7820);
INSERT INTO v_rtlr_enp_wco (rtlr_nbr, name, sal esperson_id)

*

ERROR at line 1:

ORA-01733: virtual colum not allowed here

The error message "ORA-01733: virtual column not allowed here” may not be very
comprehensible, but it indicates that you are not allowed to insert into this join view.

WITH CHECK OPTION as such doesn't prevent you from deleting rows from a join view, as
shown in the following example:

DELETE FROM v_rtlr_enp_wco

WHERE rtlr_nbr = 215;

1 row del et ed.

However, WITH CHECK OPTION prevents deletion if the join view involves a self join of the key-
preserved table. For example, the view enp_ngr _wco involves a self join of the table enpl oyee

(which is the key-preserved table in this view definition).

CREATE VI EW enp_ngr_wco AS

SELECT e.lnane enployee, e.salary salary, mlnanme mnanager
FROM enpl oyee e, enployee m

WHERE e. manager _enp_id = menp_id

W TH CHECK OPTI ON;

Vi ew creat ed.

DELETE FROM enp_ngr_wco WHERE enpl oyee

" JONES' ;
DELETE FROM enp_ngr_wco WHERE enpl oyee = ' JONES

*

ERROR at line 1:

ORA-01752: cannot delete from view w thout exactly one key-preserved table

You get an error while trying to delete a row from the view enp_ngr _wco, as it involves a self
join of the key-preserved table.

Furthermore, the WITH CHECK OPTION restricts your ability to modify a join view. If a join view
is created using the WITH CHECK OPTION clause, you can't modify any of the join columns, nor
any of the columns from the tables involved in a self join. The following example illustrates the
error you get when trying to update the join column of such a view.

UPDATE v_rtlr_enp_wco
SET sal esperson_id = 7784
WHERE rtlr_nbr = 215;
SET sal esperson_id = 7784
*
ERROR at |ine 2:
ORA-01733: virtual colum not allowed here
The error message "ORA-01733: virtual column not allowed here" indicates that you are not

allowed to update the indicated column. Since the view is created with the WITH CHECK
OPTION clause, and the column sal esperson_i d is a join column, you are not allowed to

update it. You will get a similar error if you try to update a column of a table involved in a self
join, as illustrated in the following example:

UPDATE enp_ngr_wco
SET salary = 4800
WHERE enpl oyee = ' JONES';
SET salary = 4800
*
ERROR at |ine 2:
ORA-01733: virtual columm not allowed here
In this example, since the view definition involves a self join of the enpl oyee table, and the

view is created with the WITH CHECK OPTION clause, you are not allowed to update any
columns of the enpl oyee table.

| 4 PREV < Day Day Up > MEXT o

Chapter 4. Group Operations

Group operations are quite common in the day-to-day life of a SQL programmer. When you use
SQL to access a database, it is quite common to expect questions such as:

What is the maximum salary in this department?

How many managers are there in each department?

What is the number of customers for each product?

Can you print the monthly aggregate sales for each region?

You need group operations to answer these questions. Oracle provides a rich set of features to
handle group operations. These features include aggregate functions, the GROUP BY clause, the
HAVING clause, and the extensions to the GROUP BY clause—ROLLUP, CUBE, and GROUPING
SETS.

o This chapter deals with simple group operations involving the aggregate
a functions, the GROUP BY and HAVING clauses. Advanced group operations
. 4+ such as ROLLUP, CUBE, and GROUPING SETS are discussed in Chapter 13.

< Day Day Up >

| 4 PREV < Day Day Up > MEXT o

4.1 Aggregate Functions

An aggregate function summarizes the results of an expression over a number of rows,
returning a single value. The general syntax for most of the aggregate functions is as follows:

aggregate_function([DI STINCT | ALL] expression)

The syntax elements are:

aggregate_function

Gives the name of the function—e.g., SUM, COUNT, AVG, MAX, MIN

DISTINCT

Specifies that the aggregate function should consider only distinct values of the argument
expression.

ALL

Specifies that the aggregate function should consider all values, including all duplicate
values, of the argument expression. The default is ALL.

expressi on

Specifies a column, or any other expression, on which you want to perform the
aggregation.

Let's look at a simple example. The following SQL uses the MAX function to find the maximum
salary of all employees:

SELECT MAX(sal ary) FROM enpl oyee;

MAX(SALARY)

In subsequent sections, we use a series of slightly more involved examples that illustrate
various aspects of aggregate function behavior. For those examples, we use the following

cust _order table:

DESC cust _order

ORDER_NBR
CUST_NBR

SALES EMP_I D
SALE_PRI CE
ORDER_DT
EXPECTED_SHI P_DT
CANCELLED DT

SHI P_DT

STATUS

SELECT order_nbr,
order _dt,

FROM cust _order;

cust _nbr,

expect ed_shi p_dt

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

sal es_enp_id,

NUVBER(7)
NUVBER(5)

NUNVBER(5)

NUVBER(9, 2)

DATE

DATE

DATE

DATE

VARCHAR2(20)

sal e_price,

ORDER NBR CUST_NBR SALES EMP_| D SALE_PRI CE ORDER DT

1001

1000

1002

1003

1004

1005

7354

7354

7368

7654

7654

7654

56

34

99

22-JUL-01

19-JUL-01

12-JUL-01

16-JUL-01

18-JUL-01

22-JUL-01

EXPECTED_
23-JUL- 01
24-JUL- 01
25-JUL- 01
26-JUL- 01
27-JUL- 01

24-JUL-01

1006 1 7354 22-JUL-01 28-JUL-01
1007 5 7368 25 20-JUL-01 22-JUL-01
1008 5 7368 25 21-JUL-01 23-JUL-01
1009 1 7354 56 18-JUL-01 22-JUL-01
1012 1 7354 99 22-JUL-01 23-JUL-01
1011 1 7354 19-JUL-01 24-JUL-01
1015 5 7368 12-JUL-01 25-JUL-01
1017 4 7654 56 16-JUL-01 26-JUL-01
1019 4 7654 34 18-JUL-01 27-JUL-01
1021 8 7654 99 22-JUL-01 24-JUL-01
1023 1 7354 22-JUL-01 28-JUL-01
1025 5 7368 25 20-JUL-01 22-JUL-01
1027 5 7368 25 21-JUL-01 23-JUL-01
1029 1 7354 56 18-JUL-01 22-JUL-01

20 rows sel ected.

4.1.1 NULLs and Aggregate Functions

Notice that the column sal e_pri ce in the cust _or der table is nullable, and that it contains
NULL values for some rows. To examine the effect of NULLs in an aggregate function, execute

the following SQL:

SELECT COUNT(*),

COUNT(*)

COUNT(SALE_PRI CE)

COUNT(sal e_price) FROM cust_order;

Notice the difference in the output of COUNT(*) and COUNT(sal e_price) . This is because
COUNT(sal e_price) ignores NULLs, whereas COUNT(*) doesn't. The reason COUNT(*) doesn't

ignore NULLs is because it counts rows, not column values. The concept of NULL doesn't apply
to a row as a whole. Other than COUNT(*), there is only one other aggregate function that

doesn't ignore NULLs, and that is GROUPING. All other aggregate functions ignore NULLs. We

will discuss GROUPING in Chapter 13. For now, let's examine the effect of NULLs when they are
ignored.

SUM, MAX, MIN, AVG, etc., all ignore NULLs. Therefore, if you are trying to find a value such as
the average sale price in the cust _or der table, the average will be of the 14 rows that have a

value for that column. The following example shows the count of all rows, the total of all sale
prices, and the average of all sale prices:

SELECT COUNT(*), SUMsale price), AVE sale price)

FROM cust _order;

COUNT(*) SUM SALE_PRI CE) AVG(SALE_PRI CE)

20 788 56. 2857143

Note that AV@(sal e_price) is not equal to SUM sal e_price) / COUNT(*). If it were, the result
of AVE sal e_pri ce) would have been 788 / 20 = 39.4. But, since the AVG function ignores
NULLS, it divides the total sale price by 14, and not by 20. AVE sal e_pri ce) is equal to

SUM sal e_price) / COUNT(sale _price) (788 / 14 = 56.2857143).

There may be situations where you want an average to be taken over all the rows in a table, not
just the rows with non-NULL values for the column in question. In those situations you have to
use the NVL function within the AVG function call to assign O (or some other useful value) to the
column in place of any NULL values. (DECODE, CASE, or the COALESCE function can be used in
place of NVL. See Chapter 9 for details.) Here's an example:

SELECT AVGE NVL(sal e _price,0)) FROM cust_order;

AVG(NVL(SALE_PRI CE, 0))

Notice that the use of NVL causes all 20 rows to be considered for average computation, and the
rows with NULL values for sal e_pri ce are assumed to have a 0 value for that column.

4.1.2 Use of DISTINCT and ALL

Most aggregate functions allow the use of DISTINCT or ALL along with the expression
argument. DISTINCT allows you to disregard duplicate expression values, while ALL causes
duplicate expression values to be included in the result. Notice that the column cust _nbr has

duplicate values. Observe the result of the following SQL:

SELECT COUNT(cust_nbr), COUNT(DI STINCT cust_nbr), COUNT(ALL cust_nbr)

FROM cust _order;

COUNT(CUST_NBR) COUNT(DI STI NCTCUST_NBR) COUNT(ALLCUST _NBR)

There are four distinct values in the cust _nbr column. Therefore, COUNT(DI STI NCT cust _nbr)
returns 4, whereas COUNT(cust _nbr) and COUNT(ALL cust _nbr) both return 20. ALL is the
default, which means that if you don't specify either DISTINCT or ALL before the expression
argument in an aggregate function, the function will consider all the rows that have a non-NULL
value for the expression.

An important thing to note here is that ALL doesn't cause an aggregate function to consider
NULL values. For example, COUNT(ALL SALE_ PRI CE) in the following example still returns 14,
and not 20:

SELECT COUNT(ALL sale_price) FROM cust_order;

COUNT(ALLSALE_PRI CE)

Since ALL is the default, you can explicitly use ALL with every aggregate function. However, the
aggregate functions that take more than one argument as input don't allow the use of
DISTINCT. These include CORR, COVAR_POP, COVAR_SAMP, and all the linear regression
functions.

In addition, some functions that take only one argument as input don't allow the use of
DISTINCT. This category includes STTDEV_POP, STDDEV_SAMP, VAR_POP, VAR_SAMP, and
GROUPING.

If you try to use DISTINCT with an aggregate function that doesn't allow it, you will get an
error. For example:

SELECT STDDEV_POP(DI STI NCT sal e_price)

FROM cust _order;

SELECT STDDEV_POP(DI STI NCT sal e_price)
*
ERROR at |ine 1:

ORA- 30482: DI STINCT option not allowed for this function

However, using ALL with such a function doesn't cause any error. For example:

SELECT STDDEV_POP(ALL sal e_price)

FROM cust _order;

STDDEV_POP(ALLSALE_PRI CE)

29. 5282639

< Day Day Up >

| 4m PREV < Day Day Up > MET

4.2 The GROUP BY Clause

The GROUP BY clause, along with the aggregate functions, groups a result set into multiple
groups, and then produces a single row of summary information for each group. For example, if
you want to find the total number of orders for each customer, execute the following query:

SELECT cust_nbr, COUNT(order_nbr)
FROM cust _order

GROUP BY cust _nbr;

CUST_NBR COUNT(ORDER_NBR)

1 8
4 4
5 6
8 2

This query produces one summary line of output for each customer. This is the essence of a
GROUP BY query. You asked Oracle to GROUP the results BY cust _nbr ; therefore, it produced
one output row for each distinct value of cust _nbr. Each data value for a given customer
represents a summary based on all rows for that customer.

4.2.1 Correspondence Between SELECT and GROUP BY

When you write a query with a GROUP BY clause, there are a number of rules you need to be
aware of that govern the correspondence between the columns in the SELECT and GROUP BY
clauses. Generally speaking, any nonaggregate expression in your SELECT clause must also be
reflected in your GROUP BY clause.

4.2.1.1 Aggregate expressions generally require a GROUP BY clause

The nonaggregate expression cust _nbr in the SELECT list of the query in our most recent
example also appears in the GROUP BY clause. If you have a mix of aggregate and
nonaggregate expressions in the SELECT list, SQL expects that you are trying to perform a
GROUP BY operation, and you must also include a GROUP BY clause in your query. Oracle
returns an error if you fail to do so. For example, if you omit the GROUP BY clause, the following
error is returned:

SELECT cust_nbr, sales_enp_id, COUNT(order_nbr)

FROM cust _order;

SELECT cust_nbr, sales_enp_id, COUNT(order_nbr)

*
ERROR at line 1:
ORA-00937: not a single-group group function
There is one case in which you can write aggregate expressions in a SELECT list without also
writing a GROUP BY clause and that is when you wish those aggregate expressions to apply to
the entire result set. In such a case, your SELECT list must consist only of aggregate

expressions. The queries earlier in this chapter, introducing the aggregate functions, are good
examples of this case.

4.2.1.2 GROUP BY clause must include all nonaggregate expressions

If you forget to include all nonaggregate expressions from the SELECT list in the GROUP BY
clause, SQL returns the following error:

SELECT cust_nbr, sales_enp_id, COUNT(order_nbr)
FROM cust _order

GROUP BY cust _nbr;

SELECT cust_nbr, sales_enp_id, COUNT(order_nbr)
*
ERROR at line 1:

ORA-00979: not a GROUP BY expression

4.2.1.3 Aggregate functions not allowed in GROUP BY clause

You can't use a group function (aggregate function) in the GROUP BY clause. You will get an
error if you attempt to do so, as in the following example:

SELECT cust_nbr, COUNT(order_nbr)
FROM cust _order

GROUP BY cust_nbr, COUNT(order_nbr);

GROUP BY cust_nbr, COUNT(order_nbr)
*
ERROR at line 3:

ORA- 00934: group function is not allowed here

4.2.1.4 Constants can be omitted from the GROUP BY clause

If you have a constant in your SELECT list, you don't need to include it in the GROUP BY clause.
However, including the constant in the GROUP BY clause doesn't alter the result. Therefore,
both the following statements will produce the same output:

SELECT ' CUSTOMER , cust_nbr, COUNT(order_nbr)
FROM cust _order

GROUP BY cust _nbr;

SELECT ' CUSTOMER , cust_nbr, COUNT(order_nbr)
FROM cust _order

GROUP BY ' CUSTOVER , cust_nbr;

' CUSTOVER CUST_NBR COUNT(ORDER_NBR)

CUSTOVER 1 8
CUSTOVER 4 4
CUSTOVER 5 6
CUSTOVER 8 2

4.2.1.5 Scalar functions may be grouped by their underlying column

If a scalar function has been applied to a column in the SELECT list, the syntax doesn't force you
to include the scalar function in the GROUP BY clause. For example:

SELECT SUBSTR(I nane, 1, 1), COUNT(*)

FROM enpl oyee

GROUP BY | nane;

S COUNT(*)
A 1
A 1
B 1
C 1
F 1
J 1
J 1
K 1
M 1
M 1
s 1
s 1
T 1
W 1

14 rows sel ected.

In this example, the SELECT list has SUBSTR(| nane, 1, 1) ; however, the GROUP BY clause
contains just | name, without the SUBSTR function on it. Though this query is syntactically
correct, if you look at the result set, you will notice that there are multiple rows with the same
value for SUBSTR(| nane, 1, 1) . This means that the GROUP BY operation takes place for the
entire | name, but only the substring is displayed. If you really want the result set to be grouped
by the substring expression, you should include that expression in the GROUP BY clause, as
shown in the following example:

SELECT SUBSTR(I| nane, 1, 1), COUNT(*)
FROM enpl oyee

GROUP BY SUBSTR(I nane, 1, 1);

A 2
B 1
C 1
F 1
J 2
K 1
M 2
S 2
T 1
W 1

10 rows sel ect ed.

Notice the difference. This time, there is only one row in the result set for each value returned
by SUBSTR(| nane, 1, 1) . The rows have been grouped on the exact same expression as is
displayed.

4.2.1.6 Concatenated columns may be grouped in either of two ways

If an expression in a SELECT list concatenates two columns, you can specify the GROUP BY
clause in one of the following two ways—both giving the same result:

SELECT manager _enp_id || job_id, COUNT(*)
FROM enpl oyee

GROUP BY manager_enp_id || job_id;

SELECT manager _enp_id || job_id, COUNT(*)
FROM enpl oyee

GROUP BY nmnager _enp_id, job_id;

MANAGER EMVP_| D| | JOB_I D COUNT(*)

672 1
7566669 2
7698 1
7698667 1
7698670 3
7782667 1
7788 1
7839671 3
7902667 1

4.2.1.7 You can sometimes exclude a nonaggregate expression from the GROUP BY
clause

There are certain situations in which you want an expression in the SELECT list, but don't want
to group by the same. For example, you might want to display a line number along with
summary information for each customer. Attempt to do so using the following query, and you
will get an error:

SELECT ROWNUM cust _nbr, COUNT(order_nbr)
FROM cust _order

GROUP BY cust _nbr;

SELECT ROWNUM cust _nbr, COUNT(order_nbr)
*
ERROR at |ine 1:

ORA- 00979: not a GROUP BY expression

If you include ROWNUM in the GROUP BY clause, you'll get the following, unexpected result:

SELECT ROWNUM cust _nbr, COUNT(order_nbr)
FROM cust _order

GROUP BY ROMNUM cust _nbr;

ROANUM CUST_NBR COUNT(ORDER NBR)

1 1 1
2 1 1
3 5 1
4 4 1
5 4 1
6 8 1
7 1 1
8 5 1
9 5 1

10 1 1

11 1 1

12 1 1

13 5 1

14 4 1

15 4 1

16 8 1

17 1 1

18 5 1

19 5 1

20 1 1

20 rows sel ected.

You certainly didn't want this result, did you? You wanted to receive one summary row for each
customer, and then to display ROWNUM for those lines. But when you include ROWNUM in the
GROUP BY clause, it produces one summary row for each row selected from the table

cust _order. To get the expected result, you should use the following SQL:

SELECT ROMNUM v. *
FROM (SELECT cust_nbr, COUNT(order_nbr)

FROM cust _order GROUP BY cust_nbr) v;

ROAUM CUST_NBR COUNT(ORDER_NBR)

1 1 8
2 4 4
3 5 6
4 8 2

The construct in the FROM clause is called an inline view. Read more about inline views in
Chapter 5.

4.2.1.8 You are not required to show your GROUP BY columns

Syntactically, it is not mandatory to include all the expressions of the GROUP BY clause in the
SELECT list. However, those expressions not in the SELECT list will not be represented in the
output; therefore, the output may not make much sense. For example:

SELECT COUNT(or der _nbr)
FROM cust _order

GROUP BY cust _nbr;

COUNT(ORDER_NBR)

This query produces a count of orders for each customer (by grouping based on cust _nbr), but
without the cust _nbr in the output you can't associate the counts with the customers.
Extending the previous example, you can see that without a consistent SELECT list and GROUP
BY clause, the output may be a bit confusing. The following example produces output that at

first glance seems useful:

SELECT cust_nbr, COUNT(order _nbr)
FROM cust _order

GROUP BY cust_nbr, order_dt;

CUST_NBR COUNT(ORDER_NBR)

1 2
1 2
1 4
4 2
4 2
5 2
5 2
5 2
8 2

9 rows sel ected.

From the output, it appears that you are trying to obtain a count of orders for each customer.
However, there are multiple rows in the output for some cust _nbr values. The fact that you
have included or der _dt in the GROUP BY clause, and therefore generated a summary result for
each combination of cust _nbr and or der _dt, is missing from the output. You can't make sense
of the output unless the output and the SQL statement are looked at together. You can't expect
all readers of SQL output to understand SQL syntax, can you? Therefore, we always recommend
maintaining consistency between the nonaggregate expressions in the SELECT list and the
expressions in the GROUP BY clause. A more meaningful version of the previous SQL statement
would be as follows:

SELECT cust_nbr, order_dt, COUNT(order_nbr)
FROM cust _order

GROUP BY cust_nbr, order_dt;

CUST_NBR ORDER DT COUNT(ORDER_NBR)

1 18-JUL-01 2

1 19-JUL-01 2
1 22-JUL-01 4
4 16-JUL-01 2
4 18-JUL-01 2
5 12-JUL-01 2
5 20-JUL-01 2
5 21-JUL-01 2
8 22-JUL-01 2

9 rows sel ected.

This output is consistent with the GROUP BY clause in the query. Readers of the report are more
likely to make the correct assumption about what this output represents.

4.2.2 GROUP BY Clause and NULL Values

When you GROUP BY a column that contains NULL values for some rows, all the rows with NULL
values are placed into a single group and presented as one summary row in the output. For
example:

SELECT sal e_price, COUNT(order_nbr)
FROM cust _order

GROUP BY sal e_pri ce;

SALE_PRI CE COUNT(ORDER_NBR)

25 4
34 2
56 4

99 4

Notice that the last row in the output consists of a NULL value for the column sal e_pri ce. If

you want the row containing the NULL value to be the first row in the output, you can perform
an ORDER BY on sal e_pri ce in descending order:

SELECT sal e_price, COUNT(order_nbr)
FROM cust _order
GROUP BY sal e_price

ORDER BY sal e _price DESC,

SALE_PRI CE COUNT(ORDER_NBR)

6
99 4
56 4
34 2
25 4

Whether you are using a GROUP BY or not, the ORDER BY clause can have an optional NULLS
FIRST or NULLS LAST option to put the NULLs either at the beginning or at the end of the result
set, respectively. For example, to sort NULLs first:

SELECT sal e_price, COUNT(order_nbr)
FROM cust _order
GROUP BY sale_price

ORDER BY sale _price NULLS Fl RST;

SALE_PRI CE COUNT(ORDER_NBR)

34 2

56 4

99 4

Or, to sort NULLs last:

SELECT sal e_price, COUNT(order_nbr)
FROM cust _order
GROUP BY sal e_price

ORDER BY sale _price NULLS LAST;

SALE_PRI CE COUNT(ORDER_NBR)

25 4
34 2
56 4
99 4

6

4.2.3 GROUP BY Clause with WHERE Clause

While producing summary results using the GROUP BY clause, you can filter records from the
table based on a WHERE clause, as in the following example, which produces a count of orders
in which the sale price exceeds $25 for each customer:

SELECT cust_nbr, COUNT(order_nbr)
FROM cust _order
VWHERE sal e_price > 25

GROUP BY cust _nbr;

CUST_NBR COUNT(ORDER_NBR)

While executing a SQL statement with a WHERE clause and a GROUP BY clause, Oracle first
applies the WHERE clause and filters out the rows that don't satisfy the WHERE condition. The
rows that satisfy the WHERE clause are then grouped using the GROUP BY clause.

SQL syntax requires that the WHERE clause must come before the GROUP BY clause. Otherwise,
the following error is returned:

SELECT cust _nbr, COUNT(order _nbr)
FROM cust _order
GROUP BY cust _nbr

WHERE sal e_price > 25;

VWHERE sal e price > 25

*

ERROR at |ine 4:

ORA-00933: SQ. command not properly ended

| dm PREV < Day Day Up > MEXT mp

| 4m PREV < Day Day Up > MET

4.3 The HAVING Clause

The HAVING clause is closely associated with the GROUP BY clause. The HAVING clause is used
to put a filter on the groups created by the GROUP BY clause. If a query has a HAVING clause
along with a GROUP BY clause, the result set will include only the groups that satisfy the
condition specified in the HAVING clause. Let's look at some examples that illustrate this. The
following query returns the number of orders per customer:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust _order

GROUP BY cust _nbr

HAVI NG cust _nbr < 6;

CUST_NBR COUNT(ORDER_NBR)

1 8
4 4
5 6

Notice that the output only includes customers with numbers below 6. That's because the
HAVING clause specified cust _nbr < 6 as a condition. Orders for all customers were counted,

but only those groups that matched the specified HAVING condition were returned as the result.
The previous example is a poor use of the HAVING clause, because that clause references only
unsummarized data. It's more efficient to use WHERE cust _nbr < 6 instead of HAVI NG

cust _nbr < 6, because the WHERE clause eliminates rows prior to summarization, whereas

HAVING eliminates groups post-summarization. A better version of the previous query would
be:

SELECT cust_nbr, COUNT(order _nbr)
FROM cust _order
WHERE cust _nbr < 6

GROUP BY cust _nbr;

The next example shows a more appropriate use of the HAVING clause:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust _order
GROUP BY cust _nbr

HAVI NG COUNT(order _nbr) > 2;

CUST_NBR COUNT(ORDER_NBR)

1 8
4 4
5 6

See the use of the aggregate function COUNT in the HAVING clause? This is an appropriate use
for HAVING, because the results of the aggregate function cannot be determined until after the
grouping takes place.

The syntax for the HAVING clause is similar to that of the WHERE clause. However, there is one
restriction on the conditions you can write in the HAVING clause. A HAVING condition can refer
only to an expression in the SELECT list, or to an expression involving an aggregate function. If
you specify an expression in the HAVING clause that isn't in the SELECT list, or that isn't an
aggregate expression, you will get an error. For example:

SELECT cust_nbr, COUNT(order _nbr)

FROM cust _order

GROUP BY cust _nbr

HAVI NG order _dt < SYSDATE;

HAVI NG order_dt < SYSDATE
*
ERROR at |ine 4:
ORA-00979: not a CGROUP BY expression

However, you can use an aggregate expression in the HAVING clause, even if it doesn't appear
in the SELECT list, as illustrated in the following example:

SELECT cust _nbr
FROM cust _order

GROUP BY cust _nbr

HAVI NG COUNT(order _nbr) < b5;

In the preceding example, the HAVING clause refers to COUNT(or der _nbr), which is not in the
SELECT list. You are not required to show in your result set all the columns or expressions that
determine which rows end up in that result set.

The order of the GROUP BY clause and the HAVING clause in a SELECT statement is not
important. You can specify the GROUP BY clause before the HAVING clause, or vice versa.
Therefore, the following two queries are the same and produce the same result:

SELECT cust_nbr, COUNT(order_nbr)
FROM cust _order
GROUP BY cust _nbr

HAVI NG COUNT(order_nbr) > 2;

SELECT cust_nbr, COUNT(order_nbr)
FROM cust _order
HAVI NG COUNT(order_nbr) > 2

GROUP BY cust _nbr;

CUST_NBR COUNT(ORDER_NBR)

1 8
4 4
5 6

Even though Oracle doesn't care whether the HAVING clause comes before the GROUP BY clause
or after, the HAVING clause is applied to the groups created by the GROUP BY clause, so it is a
good programming practice to always put the HAVING clause after the GROUP BY clause.

Another reason for placing HAVING after GROUP BY is that SQL Standard requires that
particular order. Thus, putting HAVING after GROUP BY makes your code more portable.

You can use a WHERE clause and a HAVING clause together in a query. When you do, it is
important to understand the impact of the two clauses. The WHERE clause is executed first, and
the rows that don't satisfy the WHERE condition are not passed to the GROUP BY clause. The
GROUP BY clause summarizes the filtered data into groups, and then the HAVING clause is

applied to the groups to eliminate the groups that don't satisfy the HAVING condition. The
following example illustrates this:

SELECT cust_nbr, COUNT(order_nbr)
FROM cust _order

WHERE sal e _price > 25

GROUP BY cust _nbr

HAVI NG COUNT(order _nbr) > 1;

CUST_NBR COUNT(ORDER_NBR)

1 4
4 4
8 2

In this example, the WHERE clause first eliminates all the orders that don't satisfy the condition
sal e_price > 25. The rest of the rows are grouped on cust _nbr. The HAVING clause

eliminates the customers that don't have more than one order.

| 4 PREV < Day Day Up > MEXT o

| 4m PREV < Day Day Up > MET

4.4 Nested Group Operations

The examples discussed in this chapter so far all involved one group operation on a column of a
table. SQL also allows you to nest group functions, which means that one group function can
enclose an expression that is itself a group operation on another expression or column. Let's
consider the following example:

An economic slowdown has resulted in budget constraints for many employers, especially
in the IT industry. Budget constraints have forced companies to take a second look at the
money spent on employee compensation. Some companies have had to downsize their
workforce, others have had to cut down employee bonuses, while still others have cut the
employee base salaries. Your company is no exception, and is also under financial
pressure. Your CEO must take a serious look at the compensation structure of the
employees at various levels in various departments in the company.

Your CEO calls on you to query the Human Resources database and help him collect data.
By this time, you've already heard the rumors of upcoming "reductions in force" (RIFs) and
compensation cuts. This is your golden opportunity to impress your CEO with your skills,
to make sure you are not affected by the RIFs. Mess up now, and you can be pretty sure
that you have to start looking for another job in this increasingly competitive job market.

Here's your CEQO's first question: What is the maximum amount of money spent by any
department on employee salaries?

To answer this question, you know that you need to compute the sum of the salaries of all the
employees in each department, and then find the maximum of those individual sums. Now that
you know about the GROUP BY clause, finding the sum of salaries for all the employees in each
department is easy:

SELECT dept_id, SUMsalary)
FROM enpl oyee

GROUP BY dept i d:

DEPT_| D SUM SALARY)

10 8750
20 9900
30 9400

However, your task is half done. You next need to find the maximum of the SUM sal ary) values
returned by this query. One way to do that is to use the preceding query as an inline view.
(Inline views are discussed in detail in Chapter 5.) The following SELECT takes the results from

the earlier query, which is now a nested query, and applies the MAX function to retrieve the
highest SUM sal ary) value:

SELECT MAX(sal) FROM
(SELECT dept _id, SUMsal ary) sal
FROM enpl oyee

GROUP BY dept _id);

MAX(SAL)

However, you don't even need to write a subquery. Another, simpler way of writing the query
you need is:

SELECT MAX(SUM sal ary))
FROM enpl oyee

GROUP BY dept _id;

MAX(SUM SALARY))

The MAX(SUM sal ary)) in this query is a nested group operation. When the query executes, the
rows are aggregated by department. The innermost group function, in this case the SUM
function, is used to generate one sal ary value per department. This is no different than in
previous examples, but this time you have a MAX function seemingly left over. That MAX
function is applied to the entire collection of SUM sal ary) values produced by the initial
aggregation. The result is a single value, the maximum amount of money that any one
department spends on employee salaries, which is just what your CEO wanted.

It never makes sense to use more than one level of nested group function.

s MAX(SUM sal ary)) returns a single value. One group function enclosing
w #: another will always return a single value. No further aggregation is
" possible.

Knowing only the maximum of the total salaries paid by a department isn't going to help much.
So, your CEO's next question is to ask about the minimum and average amounts of money
spent by any department on employee salaries. That should be an easy one to answer now. Just
apply the same pattern as used in the previous query:

SELECT M N(SUMsal ary)), AVG SUMsal ary))
FROM enpl oyee

GROUP BY dept _id;

M N(SUM SALARY)) AVG(SUM SALARY))

Observing that the maximum (9900) is not too large compared to the minimum (8750) and the
average (9350), your CEO realizes that all the departments spend pretty much uniformly on
employee salaries. He next asks: What is the maximum, minimum, and average number of
employees in any department? Use the following query to answer that question:

SELECT MAX(COUNT(*)), M N(COUNT(*)), AVGE COUNT(*))
FROM enpl oyee

GROUP BY dept _id;

MAX(COUNT(*)) M N(COUNT(*)) AVG COUNT(*))

6 3 4. 66666667

The information that some departments have double the number of employees than some
others may give your CEO some ideas about how he wants to reorganize the company and
reduce cost. Hopefully, you have impressed your CEO with your SQL skKills to the point that you
are sleeping better at nights now, secure that you, at least, will still be employed in the
morning.

| 4 PREV < Day Day Up > MEXT o

| 4 PREV < Day Day Up > MEXT o

Chapter 5. Subqueries

Some endeavors require a certain level of preparation before the main activity can commence.
Cooking, for example, often involves pre-mixing sets of ingredients before they are combined.
Similarly, certain types of SQL statements benefit from the creation of intermediate result sets
to aid in statement execution. The structure responsible for generating intermediate result sets
is the subquery. This chapter will define and illustrate the use of subqueries in SQL statements.

| dmPREV | < Day Day Up > | NEXT o |

| 4 PREV < Day Day Up > MEXT o

5.1 What Is a Subquery?

As we mentioned in Chapter 1, a subquery is a SELECT statement that is nested within another
SQL statement. For the purpose of this discussion, we will call the SQL statement that contains
a subquery the containing statement. Subqueries are executed prior to execution of their
containing SQL statement (see Section 5.3 later in this chapter for the exception to this rule),
and the result set generated by a subquery is discarded after its containing SQL statement has
finished execution. Thus, a subquery can be thought of as a temporary table with statement
scope.

Syntactically, subqueries are enclosed within parentheses. For example, the following SELECT
statement contains a simple subquery in its WHERE clause:

SELECT * FROM cust omer

WHERE cust _nbr = (SELECT 123 FROM dual);

The subquery in this statement is absurdly simple, and completely unnecessary, but it does
serve to illustrate a point. When this statement is executed, the subquery is evaluated first. The
result of that subquery then becomes a value in the WHERE clause expression:

SELECT * FROM cust oner

WHERE cust _nbr = 123;

With the subquery out of the way, the containing query can now be evaluated. In this case, it
would bring back information about customer number 123.

Subqueries are most often found in the WHERE clause of a SELECT, UPDATE, or DELETE
statement, as well as in the SET clause of an UPDATE statement. A subquery may either be
correlated with its containing SQL statement, meaning that it references one or more columns
from the containing statement, or it might reference nothing outside itself, in which case it is
called a noncorrelated subquery. A less commonly used but powerful variety of subquery, called
the inline view, occurs in the FROM clause of a SELECT statement. Inline views are always
noncorrelated; they are evaluated first and behave like unindexed tables cached in memory for
the remainder of the query.

| 4 PREV < Day Day Up > MEXT o

| 4m PREV < Day Day Up > MET

5.2 Noncorrelated Subqueries

Noncorrelated subqueries allow each row from the containing SQL statement to be compared to
a set of values. You can divide noncorrelated subqueries into the following three categories,
depending on the number of rows and columns returned in their result set:

e Single-row, single-column subqueries

e Multiple-row, single-column subqueries

e Multiple-column subqueries

Depending on the category, different sets of operators may be employed by the containing SQL
statement to interact with the subquery.

5.2.1 Single-Row, Single-Column Subqueries

A subquery that returns a single row with a single column is treated like a scalar by the
containing statement; not surprisingly, these types of subqueries are known as scalar
subqueries. Such a subquery may appear on either side of a condition, and the usual
comparison operators (=, <, >, ! =, <=, >=) are employed. The following query illustrates the
utility of single-row, single-column subqueries by finding all employees earning an above-
average salary. The subquery returns the average salary, and the containing query then returns
all employees who earn more than that amount:

SELECT | nane
FROM enpl oyee
VWHERE sal ary > (SELECT AV sal ary)

FROM enpl oyee) ;

BLAKE
CLARK
SCOTT
KI NG

FORD

As this query demonstrates, it can be perfectly reasonable for a subquery to reference the same
tables as the containing query. In fact, subqueries are frequently used to isolate a subset of
records within a table. For example, many applications include maintenance routines that clean
up operational data, such as exception or load logs. Every week, a script might delete all but
the latest day's activity. For example:

DELETE FROM | oad_I og
WHERE | oad_dt < (SELECT MAX(TRUNC(| oad_dt))

FROM | oad_|I og) ;

Noncorrelated subqueries are also commonly found outside the WHERE clause, as illustrated by
the following query, which identifies the salesperson responsible for the most orders:

SELECT sales _enp_id, COUNT(*)

FROM cust _order

GROUP BY sales_enp_id

HAVI NG COUNT(*) = (SELECT MAX(COUNT(*))
FROM cust _order

GROUP BY sales_enp_id);

SALES EMP_ID COUNT(*)

This subquery calculates the number of orders attributable to each salesperson, and then
applies the MAX function to return only the highest number of orders. The containing query
performs the same aggregation as the subquery and then keeps only those salespeople whose
total sales count matches the maximum value returned by the subquery. Interestingly, the
containing query can return more than one row if multiple salespeople tie for the maximum
sales count, while the subquery is guaranteed to return a single row and column. If it seems
wasteful that the subquery and containing query both perform the same aggregation, it is; see
Chapter 14 for more efficient ways to handle these types of queries.

So far, you have seen scalar subqueries in the WHERE and HAVING clauses of SELECT
statements, along with the WHERE clause of a DELETE statement. Before delving deeper into
the different types of subqueries, let's explore where else subqueries can and can't be utilized in
SQL statements:

e The FROM clause may contain any type of noncorrelated subquery.

e The SELECT and ORDER BY clauses may contain scalar subqueries.

e The GROUP BY clause may not contain subqueries.

e The START WITH and CONNECT BY clauses, used for querying hierarchical data, may
contain subqueries and will be examined in detail in Chapter 8.

e The WITH clause contains a named noncorrelated subquery that can be referenced
multiple times within the containing query but executes only once (see the examples later
in this chapter).

e The USING clause of a MERGE statement may contain noncorrelated subqueries.

e The SET clause of UPDATE statements may contain scalar or single-row, multiple-column
subqueries.

e INSERT statements may contain scalar subqueries in the VALUES clause.

5.2.2 Multiple-Row, Single-Column Subqueries

Now that you know how to use single-row, single-column subqueries, let's explore how to use
subqueries that return multiple rows. When a subquery returns more than one row, it is not
possible to use only comparison operators, since a single value cannot be directly compared to
a set of values. However, a single value can be compared to each value in a set. To accomplish
this, the special keywords ANY and ALL are used with comparison operators to determine if a
value is equal to (or less than, greater than, etc.) any member of the set or all members of the
set. Consider the following query:

SELECT fnane, | nane

FROM enpl oyee

VWHERE dept_id = 30 AND salary >= ALL
(SELECT sal ary
FROM enpl oyee

VWHERE dept _id = 30);

The subquery returns the set of salaries for department 30, and the containing query checks
each employee in the department to see if her salary is greater or equal to every salary
returned by the subquery. Thus, this query retrieves the name of the highest paid person in
department 30. While every employee has a salary >= any of the salaries in the department,
only the highest paid employee has a salary >= all of the salaries in the department. If multiple
employees tie for the highest salary in the department, multiple names will be returned.

Another way to phrase the previous query is to find the employee whose salary is not less than

any other salary in her department. You can do this using the ANY operator:
SELECT fnanme, | nane
FROM enpl oyee
WHERE dept _id = 30 AND NOT sal ary < ANY
(SELECT sal ary

FROM enpl oyee

VWHERE dept id = 30);
There are almost always multiple ways to phrase the same query. One of the challenges of

writing SQL is striking the right balance between efficiency and readability. In this case, we
might prefer using AND sal ary >= ALL over AND NOT sal ary < ANY because the first variation
is easier to understand; however, the latter form might prove more efficient, since each
evaluation of the subquery results requires from 1 to N comparisons when using ANY versus
exactly N comparisons when using ALL.

"_—‘~ If there are 100 people in the department, each of the 100 salaries needs
ar to be compared to the entire set of 100. When using ANY, the comparison
. 4+ can be suspended as soon as a larger salary is identified in the set,

whereas using ALL requires 100 comparisons to ensure that there are no
smaller salaries in the set.

The next query uses the ANY operator to find all employees who have been with the company
longer than any top-level manager:

SELECT fnane, | nane

FROM enpl oyee

WHERE nanager _enp_id IS NOT NULL
AND hire_date < ANY
(SELECT hire_date
FROM enpl oyee

WHERE nmnager _enp_id IS NULL);

JOHN SM TH

KEVI N ALLEN

CYNTHI A WARD

TERRY JONES
KENNETH MARTI N
MARI ON BLAKE
CARCL CLARK
MARY TURNER

The subquery returns the set of hire dates for all top-level managers, and the containing query
returns the names of non-top-level managers whose hire date is previous to any returned by
the subquery.

For the previous three queries, failure to include either the ANY or ALL operators may result in
the following error:

ORA- 01427: single-row subquery returns nore than one row

The wording of this error message is a bit confusing. After all, how can a single-row subquery
return multiple rows? What the error message is trying to convey is that a multiple-row
subquery has been identified where only a single-row subquery is allowed. If you are not
absolutely certain that your subquery will return exactly one row, you must include ANY or ALL
to ensure your code doesn't fail in the future.

Along with ANY and ALL, you may also use the IN operator for working with multi-row
subqueries. Using IN with a subquery is functionally equivalent to using = ANY, and returns

TRUE if a match is found in the set returned by the subquery. The following query uses IN to
postpone shipment of all orders containing parts that are not currently in stock:

UPDATE cust _order
SET expected_ship_dt = TRUNC(SYSDATE) + 1
VWHERE ship_dt 1S NULL
AND order _nbr IN
(SELECT | . order _nbr
FROM line_item | INNER JON part p
ON | .part_nbr = p.part_nbr
WHERE p.inventory qty = 0);
The subquery returns the set of orders requesting out-of-stock parts, and the containing
UPDATE statement modifies the expected ship date of all orders in the set. We think you wiill
agree that IN is more intuitive than = ANY, which is why IN is almost always used in such

situations. Similarly, you can use NOT IN instead of using ! = ALL as demonstrated by the next
query, which deletes all customers who haven't placed an order in the past five years:

DELETE FROM cust oner
WHERE cust _nbr NOT IN
(SELECT cust _nbr
FROM cust _order

WHERE order_dt >= TRUNC(SYSDATE) -- (365 * 5)):

The subquery returns the set of customers that have placed an order in the past five years, and
the containing DELETE statement removes all customers that are not in the set returned by the
subquery.

Finding members of one set that do not exist in another set is referred to as an anti-join. As the
name implies, an anti-join is the opposite of a join; rows from table A are returned if the
specified data is not found in table B. The Oracle optimizer can employ multiple strategies for
formulating execution plans for such queries, including a merge anti-join or a hash anti-join.

Since this is not explicitly a tuning book (in our opinion, mastering the SQL
s implementation is the best tuning tool available), we will refrain from
delving into the inner workings of the Oracle optimizer and how the
optimizer can be influenced via hints. For more information, see Oracle
SQL Tuning Pocket Reference (O'Reilly).

-
e

5.2.3 Multiple-Column Subqueries

While all of the previous examples compare a single column from the containing SQL statement
to the result set returned by the subquery, it is also possible to issue a subquery against
multiple columns. Consider the following UPDATE statement, which rolls up data from an
operational table into an aggregate table:

UPDATE nonthly _orders SET
tot _orders = (SELECT COUNT(*)
FROM cust _order
VWHERE order _dt >= TO DATE(' 01-JUL-2001',' DD- MON YYYY')
AND order _dt < TO DATE(' 01- AUG 2001',' DD- MON YYYY')
AND cancel l ed_dt 1S NULL),
max_order_ant = (SELECT MAX(sal e price)
FROM cust _order
VWHERE order dt >= TO DATE(' 01-JUL-2001',' DD- MON YYYY')
AND order _dt < TO DATE(' 01- AUG 2001',' DD- MON- YYYY')

AND cancel l ed_dt 1S NULL),

mn_order_ant = (SELECT M N(sal e _price)
FROM cust _order
VWHERE order dt >= TO DATE(' 01-JUL-2001',' DD- MON- YYYY')
AND order _dt < TO DATE(' 01- AUG 2001',' DD- MON- YYYY')
AND cancel l ed_dt 1S NULL),
tot _amt = (SELECT SUM sal e_price)
FROM cust _order
VWHERE order dt >= TO DATE(' 01-JUL-2001',' DD- MON- YYYY')
AND order _dt < TO DATE(' 01- AUG 2001',' DD- MON YYYY')
AND cancel |l ed_dt IS NULL)
WHERE month = 7 and year = 2001;
The UPDATE statement modifies four columns in the nont hl y_or der s table, and values for each
of the four columns are calculated by aggregating data in the cust _or der table. Looking
closely, you can see that the WHERE clauses for all four subqueries are identical; only the
aggregation function differs in the four queries. The next query demonstrates how all four

columns can be populated with a single trip through the cust _or der table by using a single
subquery that returns four columns:

UPDATE nonthly_orders
SET (tot_orders, nax_order_ant, mn_order_ant, tot_ant) =
(SELECT COUNT(*), MAX(sale_price), MN(sale price), SUMsale price)
FROM cust _or der
VWHERE order dt >= TO DATE(' 01-JUL-2001',' DD- MON- YYYY')
AND order _dt < TO DATE(' 01- AUG 2001',' DD- MON- YYYY')
AND cancel |l ed_dt IS NULL)
WHERE nmonth = 7 and year = 2001;
This second statement achieves the same result more efficiently than the first by performing
four aggregations during one trip through the cust _or der table, rather than one aggregation
during each of four separate trips.
Whereas the previous example demonstrates the use of a multiple-column subquery in the SET
clause of an UPDATE statement, such subqueries may also be utilized in the WHERE clause of a

SELECT, UPDATE, or DELETE statement. The next statement deletes all items from open orders
that include discontinued parts:

DELETE FROM line_item
VWHERE (order_nbr, part_nbr) IN
(SELECT c.order_nbr, p.part_nbr

FROM cust _order ¢ INNER JON line_itemli

ON c.order_nbr = 1i.order_nbr

INNER JO N part p

ON |i.part_nbr = p.part_nbr

VWHERE c.ship_dt IS NULL AND c.cancel led_dt IS NULL

AND p.status = ' DI SCONTI NUED) ;

Note the use of the IN operator in the WHERE clause. Two columns are listed together in
parentheses prior to the IN keyword. Values in these two columns are compared to the set of

two values returned by each row of the subquery. If a match is found, the row is removed from
the I i ne_i t emtable.

5.2.4 The WITH Clause

You may find yourself in a situation where you need to reference the same noncorrelated
subquery multiple times in the same query. For example, let's say you want to show all
employees making more than the average salary, and you want to show how much above the
average each employee makes. You can formulate this using the same subquery in both the
FROM and WHERE clauses:

SELECT e.enp_id, e.lnane, e.fnaneg,
ROUND(e. sal ary - (SELECT AV sal ary) FROM enpl oyee)) above_avg
FROM enpl oyee e

WHERE e.salary > (SELECT AV sal ary) FROM enpl oyee);

EMP_I D LNAMVE FNANVE ABOVE_AVG
7698 BLAKE MARI ON 846
7782 CLARK CARCL 446
7788 SCOTT DONALD 996

7839 KI NG FRANCI S 2996

7902 FORD JENNI FER

To eliminate the inefficiency of executing the same subquery multiple times, Oracle introduced
the WITH clause in the Oracle9i release. Using the WITH clause, you can place the subquery
that calculates the average salary at the top of the query and reference it throughout the query:

W TH avg_sal AS (SELECT AVE sal ary) val FROM enpl oyee)
SELECT e.enp_id, e.lnane, e.fnane,

(SELECT ROUND(e.salary - val) FROM avg_sal) above_avg
FROM enpl oyee e

WHERE e.salary > (SELECT val FROM avg sal);

996

EMP_| D LNAVE FNAVE ABOVE_AVG
7698 BLAKE MARI ON 846
7782 CLARK CAROL 446
7788 SCOTT DONALD 996
7839 KI NG FRANC S 2996
7902 FORD JENNI FER 996

The WITH clause creates a temporary data set called, in this case, avg_sal , which, in this case,
consists of a single row of data having a single column, val . This data set is generated once and
can be referenced throughout the containing query. To access the data in avg_sal , you query it
as if it were a table. In this regard, it acts like a temporary table with statement scope. As you
will see shortly, the WITH clause acts in many ways like another type of subquery called the

inline view.

| 4 PREV < Day Day Up > MEXT o

5.3 Correlated Subqueries

A subquery that references one or more columns from its containing SQL statement is called a
correlated subquery. Unlike noncorrelated subqueries, which are executed exactly once prior to
execution of the containing statement, a correlated subquery is executed once for each
candidate row in the intermediate result set of the containing query. For example, consider the
following query, which locates all parts supplied by Acme Industries that have been purchased
10 or more times since July 2001:

SELECT p.part_nbr, p.nane
FROM supplier s INNER JON part p
ON s.supplier_id = p.supplier_id
VWHERE s.name = 'Acne Industries’
AND 10 <=
(SELECT COUNT(*)

FROM cust _order co INNER JON line_itemli

ON |i.order_nbr = co.order_nbr

VWHERE | i.part_nbr = p.part_nbr

AND co.order_dt >= TO DATE(' 01-JUL-2001',"' DD- MON- YYYY'));

The reference to p. part _nbr is what makes the subquery correlated; values for p. part _nbr
must be supplied by the containing query before the subquery can execute. If there are 10,000
parts in the part table, but only 100 are supplied by Acme Industries, the subquery will be

executed once for each of the 100 rows in the intermediate result set created by joining the
part and suppli er tables.

"’_-"~ It is possible to ask for the subquery to be evaluated earlier in the
. execution plan using the PUSH_SUBQ hint; once again, we suggest you
‘. 4 pick up a good book on Oracle tuning if you are interested in learning more

about how Oracle actually executes subqueries.

Correlated subqueries are often used to test whether relationships exist without regard to
cardinality. We might, for example, want to find all parts that have shipped at least once since
January 2002. The EXISTS operator is used for these types of queries, as illustrated by the
following query:

SELECT p.part_nbr, p.nane, p.unit_cost

FROM part p

VWHERE EXI STS

(SELECT 1
FROM line_item |li INNER JO N cust_order co
ON |i.order_nbr = co.order_nbr

VWHERE |i.part_nbr = p.part_nbr
AND co. ship_dt >= TO DATE(' 01- JAN-2002' , ' DD- MON- YYYY')) ;
As long as the subquery returns one or more rows, the EXISTS condition is satisfied without
regard for how many rows were actually returned by the subquery. Since the EXISTS operator
returns TRUE or FALSE depending on the number of rows returned by the subquery, the actual
columns returned by the subquery are irrelevant. The SELECT clause requires at least one
column, however, so it is common practice to use either the literal "1" or the wildcard "*".

Conversely, you can test whether a relationship does not exist:
UPDATE custoner c
SET c.inactive_ind = "Y', c.inactive_dt = TRUNC(SYSDATE)
WHERE c.inactive_dt IS NULL
AND NOT EXI STS (SELECT 1 FROM cust_order co
WHERE co. cust_nbr = c.cust_nbr
AND co. order_dt > TRUNC(SYSDATE) -- 365);
This statement makes all customer records inactive for those customers who haven't placed an
order in the past year. Such queries are commonly found in maintenance routines. For example,
foreign key constraints might prevent child records from referring to a nonexistent parent, but it

is possible to have parent records without children. If business rules prohibit this situation, you
might run a utility each week that removes these records, as in:

DELETE FROM cust _order co
WHERE co. order_dt > TRUNC(SYSDATE) -- 7
AND co. cancelled_dt IS NULL
AND NOT EXI STS
(SELECT 1 FROM line_item Ii
WHERE | i.order_nbr = co.order_nbr);
A query that includes a correlated subquery using the EXISTS operator is referred to as a semi-

join. A semi-join includes rows in table A for which corresponding data is found one or more
times in table B. Thus, the size of the final result set is unaffected by the number of matches

found in table B. Similar to the anti-join discussed earlier, the Oracle optimizer can employ
multiple strategies for formulating execution plans for such queries, including a merge semi-join
or a hash semi-join.

Although they are very often used together, the use of correlated subqueries does not require

the EXISTS operator. If your database design includes denormalized columns, for example, you
might run nightly routines to recalculate the denormalized data, as in:

UPDATE custoner c
SET (c.tot_orders, c.last_order_dt) =
(SELECT COUNT(*), MAX(co.order_dt)
FROM cust _order co
VWHERE co. cust_nbr = c.cust_nbr
AND co. cancel led_dt IS NULL);

Because a SET clause assigns values to columns in the table, the only operator allowed is =. The
subquery returns exactly one row (thanks to the aggregation functions), so the results may be

safely assigned to the target columns. Rather than recalculating the entire sum each day, a
more efficient method might be to update only those customers who placed orders today:

UPDATE custoner ¢ SET (c.tot_orders, c.last_order_dt) =
(SELECT c.tot_orders + COUNT(*), MAX(co.order_dt)
FROM cust order co
WHERE co. cust _nbr = c.cust_nbr
AND co. cancel l ed _dt |I'S NULL
AND co. order_dt >= TRUNC(SYSDATE))
WHERE c. cust_nbr IN
(SELECT co. cust _nbr
FROM cust order co
VWHERE co. order_dt >= TRUNC(SYSDATE)
AND co. cancelled_dt IS NULL);
As the previous statement shows, data from the containing query can be used for other
purposes in the correlated subquery than just join conditions in the WHERE clause. In this
example, the SELECT clause of the correlated subquery adds today's sales totals to the previous
value of t ot _orders in the cust oner table to arrive at the new value.
Along with the WHERE clause of SELECT, UPDATE, and DELETE statements, and the SET clause

of UPDATE statements, another potent use of correlated subqueries is in the SELECT clause, as
illustrated by the following:

SELECT d.dept_id, d.nane,
(SELECT COUNT(*) FROM enpl oyee e
WHERE e.dept _id = d.dept_id) enpl_cnt

FROM departnent d;

DEPT_| D NAVE EMPL_CNT
10 ACCOUNTI NG 3
20 RESEARCH 5
30 SALES 6
40 OPERATI ONS 0

The enpl _cnt column returned from this query is derived from a correlated subquery that
returns the number of employees assigned to each department. Note that the OPERATIONS
department has no assigned employees, so the subquery returns O.

To appreciate the value of subqueries in the SELECT clause, let's compare the previous query to
a more traditional method using GROUP BY:

SELECT d.dept_id, d.name, COUNT(e.enp_id) enpl_cnt
FROM departnent d LEFT OUTER JO N enpl oyee e
ON d.dept_id = e.dept_id

GROUP BY d.dept _id, d.nane;

DEPT_I D NAMVE EMPL_CNT
10 ACCOUNTI NG 3
20 RESEARCH 5
30 SALES 6
40 OPERATI ONS 0

To include every department in the result set, and not just those with assigned employees, you
must perform an outer join from depart nment to enpl oyee. The results are sorted by

department ID and name, and the number of employees are counted within each department.
In our opinion, the previous query employing the scalar correlated subquery is easier to
understand. It does not need an outer join (or any join at all), and does not necessitate a sort
operation, making it an attractive alternative to the GROUP BY version.

| 4m PREV < Day Day Up > NEST o

| 4m PREV < Day Day Up > MET

5.4 Inline Views

Most texts covering SQL define the FROM clause of a SELECT statement as containing a list of
tables and/or views. Please abandon this definition and replace it with the following:

The FROM clause contains a list of data sets.

In this light, it is easy to see how the FROM clause can contain tables (permanent data sets),
views (virtual data sets), and SELECT statements (temporary data sets). SELECT statements, or
inline views as mentioned earlier, are one of the most powerful, yet underutilized features of
Oracle SQL.

"';-f‘~ In our opinion, the name "inline view" is confusing and tends to intimidate
o, people. Since it is a subquery that executes prior to the containing query, a
[0

- #: more palatable name might have been "pre-query."

Here's a simple example of an inline view:

SELECT d.dept_id, d.name, enp_cnt.tot
FROM departnent d INNER JO N
(SELECT dept _id, COUNT(*) tot
FROM enpl oyee
GROUP BY dept _id) enp_cnt

ON d.dept _id = enp_cnt.dept _id;

DEPT_I D NAMVE TOT
10 ACCOUNTI NG 3
20 RESEARCH 5
30 SALES 6

In this example, the FROM clause references the depart nent table and an inline view called
enp_cnt , which calculates the number of employees in each department. The two sets are
joined using dept _i d and the ID, name, and employee count are returned for each department.
While this example is fairly simple, inline views allow you to do things in a single query that
might otherwise require multiple select statements or a procedural language to accomplish.

5.4.1 Inline View Basics

Because the result set from an inline view is referenced by other elements of the containing
query, you must give your inline view a name and provide aliases for all ambiguous columns. In
the previous example, the inline view was given the name "emp_cnt", and the alias "tot" was
assigned to the COUNT(*) column. Similar to other types of subqueries, inline views may join
multiple tables, call built-in and user-defined functions, specify optimizer hints, and include
GROUP BY, HAVING, and CONNECT BY clauses. Unlike other types of subqueries, an inline view
may also contain an ORDER BY clause, which opens several interesting possibilities (see Section
5.5 later in the chapter for an example using ORDER BY in a subquery).

Inline views are particularly useful when you need to combine data at different levels of
aggregation. In the previous example, we needed to retrieve all rows from the depart nment
table and include aggregated data from the enpl oyee table, so we chose to do the aggregation
within an inline view and join the results to the depart ment table. Anyone involved in report
generation or data warehouse extraction, transformation, and load (ETL) applications has
doubtless encountered situations where data from various levels of aggregation needs to be
combined; with inline views, you should be able to produce the desired results in a single SQL
statement rather than having to break the logic into multiple pieces or write code in a
procedural language.

When considering using an inline view, ask yourself the following questions:
e What value does the inline view add to the readability and, more importantly, the
performance of the containing query?
e How large will the result set generated by the inline view be?
e How often, if ever, will I have need of this particular data set?

Generally, using an inline view should enhance the readability and performance of the query,
and it should generate a manageable data set that is of no value to other statements or
sessions; otherwise, you may want to consider building a permanent or temporary table so that
you can share the data between sessions and build additional indexes as needed.

5.4.2 Query Execution

Inline views are always executed prior to the containing query and, thus, may not reference
columns from other tables or inline views from the same query. After execution, the containing
query interacts with an inline view as if it were an unindexed, in-memory table. If inline views
are nested, the innermost inline view is executed first, followed by the next-innermost inline
view, and so on. Consider the following query:

SELECT d.dept_id dept_id, d.nane dept_nane,
dept _orders.tot_orders tot_orders
FROM departnment d INNER JO N
(SELECT e.dept_id dept_id, SUMenp_orders.tot_orders) tot_orders

FROM enpl oyee e INNER JO N

(SELECT sales_enp_id, COUNT(*) tot_orders
FROM cust _order
WHERE order_dt >= TO DATE(' 01- JAN-2001',' DD- MON- YYYY')
AND cancel l ed_dt 1S NULL
GROUP BY sales_enp_id
) enp_orders
ON e.enp_id = enp_orders.sales_enp_id
CGROUP BY e.dept _id
) dept _orders

ON d.dept_id = dept_orders.dept_id;

DEPT_| D DEPT_NAMVE TOT_ORDERS

30 SALES 6

If you're new to inline views, this query might be intimidating. Start with the innermost query,
understand the result set generated by that query, and move outward to the next level. Since
inline views must be noncorrelated, you can run each inline view's SELECT statement
individually and look at the results. (From the standpoint of the inline view, this would
constitute an "out-of-query experience.") For the previous query, executing the enp_or ders
inline view generates the following result set:
SELECT sales_enp_id, COUNT(*) tot_orders
FROM cust _order
VWHERE order_dt >= TO DATE(' 01- JAN-2001',"' DD- MON- YYYY')

AND cancel l ed_dt IS NULL

GROUP BY sales_enp_id;

SALES_EMP_I D TOT_ORDERS

7654 6

The enp_or der s set contains all salespeople who booked orders since 2001, along with the total
number of orders booked. The next level up is the dept _or der s inline view, which joins the
enp_or der s data set to the enpl oyee table and aggregates the number of orders up to the
department level. The resulting data set looks as follows:

SELECT e.dept_id dept_id, SUMenp_orders.tot_orders) tot_orders
FROM enpl oyee e INNER JO N
(SELECT sales_enp_id, COUNT(*) tot_orders
FROM cust _order
VWHERE order _dt >= TO DATE(' 01- JAN-2001',' DD- MON- YYYY')
AND cancel l ed_dt 1S NULL
GROUP BY sales_enp_id
) enp_orders
ON e.enp_id = enp_orders.sales_enp_id

GROUP BY e.dept _id;

DEPT_I D TOT_ORDERS

Finally, the dept _orders set is joined to the depart nent table, and the final result set is:

DEPT_| D DEPT_NANE TOT_ORDERS

30 SALES 6

After query execution completes, the enp_orders and dept _or der s result sets are discarded.

5.4.3 Data Set Fabrication

Along with querying existing tables, inline views may be used to fabricate special-purpose data
sets that don't exist in the database. For example, you might want to aggregate orders over the
past year by small, medium, and large orders, but the concept of order sizes may not have

been defined in your database. You could build a table with three records to define the different
sizes and their boundaries, but you only need this information for a single query, and you don't

want to clutter the database with dozens of small, special-purpose tables. One solution is to use
the UNION set operator to combine individual sets of data into a single set. (Set operators will
be covered in detail in Chapter 7.) For example:

SELECT ' SMALL' nane, O |ower_bound, 29 upper_bound from dual
UNI ON ALL

SELECT ' MEDI UM nane, 30 |ower_bound, 79 upper_bound from dual
UNI ON ALL

SELECT ' LARCGE' nane, 80 |ower_bound, 9999999 upper_bound from dual;

NAVE LOVNER _BOUND UPPER_BOUND

SVALL 0 29
VEDI UM 30 79
LARCE 80 9999999

You can then wrap this query in an inline view and use it to do your aggregations:

SELECT sizes.nane order_size, SUMco.sale price) tot_dollars
FROM cust _order co INNER JO N
(SELECT ' SMALL' nane, O |ower_bound, 29 upper_bound from dual
UNI ON ALL
SELECT ' MEDIUM nane, 30 |ower_bound, 79 upper_bound from dual
UNI ON ALL
SELECT ' LARGE' nane, 80 |ower_bound, 9999999 upper_bound from dual
) sizes
ON co.sale_price BETWEEN sizes. | ower_bound AND si zes. upper_bound
WHERE co. cancel led_dt IS NULL
AND co.order_dt >= TO DATE(' 01-JAN-2001',"' DD- MON- YYYY')
AND co.order_dt < TO DATE(' 01-JAN-2002',"' DD- MON- YYYY')
GROUP BY si zes. nane

ORDER BY si zes. nane DESC,

ORDER_ TOT_DOLLARS

SVALL 100
MEDI UM 292
LARCE 396

One word of caution: when constructing a set of ranges, make sure there are no gaps through
which data may slip. For example, an order totaling $29.50 would not appear in either the small
or medium categories, since $29.50 is neither between $0 and $29 nor between $30 and $79.
One solution is to overlap the region boundaries so that there is no gap through which data can
slip. Note that you can no longer use BETWEEN with this approach:

SELECT sizes.nane order_size, SUMco.sale price) tot_dollars
FROM cust _order co INNER JO N
(SELECT ' SMALL' nanme, O |ower_bound, 30 upper_bound from dual
UNI ON ALL
SELECT ' MEDI UM nane, 30 | ower_bound, 80 upper_bound from dual
UNI ON ALL
SELECT ' LARGE' nane, 80 |ower_bound, 9999999 upper_bound from dual
) sizes
ON co.sale price >= sizes.|ower_bound
AND co. sal e_price < sizes. upper_bound
WHERE co.cancelled dt 1S NULL
AND co.order_dt >= TO DATE(' 01- JAN-2001', ' DD MON- YYYY')
AND co.order_dt < TO DATE(' 01-JAN 2002', ' DD MON-YYYY')
GROUP BY sizes. nane

ORDER BY si zes. nane DESC;

ORDER TOT_DOLLARS

VEDI UM 292

LARGE 396

Now that you have neither an overlap nor a gap between the buckets, you can be sure that no
data will be left out of the aggregations.

Fabricated data sets can also be useful for determining what data is not stored in a database.
For example, your manager might ask for a report listing the aggregate sales for each day of
the year 2001, including days with no sales. Although the cust _or der table contains records for

every day that had orders, there is no table in the database containing a record for every day of
the year. To provide your manager with an answer, you will need to fabricate a driving table
containing a record for every day in 2001, and then outer join it to the set of aggregated sales
for the same period.

Since a year contains either 365 or 366 days, we will build the set {0, 1, 2, ..., 399}, add each
member of the set to the start date of 01-JAN-2001, and let Oracle throw away the rows that
don't belong in 2001. To build the set {0, 1, 2, ..., 399}, we will create the sets {0, 1, 2, ...,

103}, {0, 10, 20, 30, ..., 90}, and {0, 100, 200, 300} and add members of the three sets across
the Cartesian product:

SELECT ones.x + tens.x + hundreds.x tot

FROM

(SELECT 0 x FROM dual UNION ALL
SELECT 1 x FROM dual UNI ON ALL
SELECT 2 x FROM dual UNI ON ALL
SELECT 3 x FROM dual UNI ON ALL
SELECT 4 x FROM dual UNI ON ALL
SELECT 5 x FROM dual UNI ON ALL
SELECT 6 x FROM dual UNI ON ALL
SELECT 7 x FROM dual UNI ON ALL
SELECT 8 x FROM dual UNI ON ALL
SELECT 9 x FROM dual) ones

CRCSS JAN

(SELECT 0 x FROM dual UNION ALL
SELECT 10 x FROM dual UNI ON ALL
SELECT 20 x FROM dual UNI ON ALL

SELECT 30 x FROM dual UNION ALL

SELECT 40 x FROM dual UNION ALL
SELECT 50 x FROM dual UNION ALL
SELECT 60 x FROM dual UNION ALL
SELECT 70 x FROM dual UNION ALL
SELECT 80 x FROM dual UNION ALL
SELECT 90 x FROM dual) tens

CRCSS JAON

(SELECT 0 x FROM dual UNION ALL
SELECT 100 x FROM dual UNION ALL
SELECT 200 x FROM dual UNION ALL

SELECT 300 x FROM dual) hundreds;

10

390

391

392

393

394

395

396

397

398

399
Since this query has no join conditions, every combination of the rows in the ones, t ens, and
hundr eds sets will be generated, and the sum of the three numbers in each row will produce the

set {0, 1, 2, ..., 399}. The next query generates the set of days in 2001 by adding each number
in the set to the base date and then discarding days that fall in 2002:

SELECT days. dt
FROM
(SELECT TO DATE(' 01- JAN-2001', ' DD MON-YYYY') +
ones.x + tens.x + hundreds.x dt
FROM
(SELECT 0 x FROM dual UN ON ALL
SELECT 1 x FROM dual UNI ON ALL
SELECT 2 x FROM dual UNI ON ALL
SELECT 3 x FROM dual UNI ON ALL
SELECT 4 x FROM dual UNI ON ALL
SELECT 5 x FROM dual UNI ON ALL
SELECT 6 x FROM dual UNI ON ALL
SELECT 7 x FROM dual UNI ON ALL
SELECT 8 x FROM dual UNI ON ALL
SELECT 9 x FROM dual) ones
CRCSS JAN

(SELECT 0 x FROM dual UNI ON ALL

SELECT 10 x FROM dual UNI ON ALL
SELECT 20 x FROM dual UNI ON ALL
SELECT 30 x FROM dual UNION ALL
SELECT 40 x FROM dual UNION ALL
SELECT 50 x FROM dual UNION ALL
SELECT 60 x FROM dual UNION ALL
SELECT 70 x FROM dual UNI ON ALL
SELECT 80 x FROM dual UNION ALL
SELECT 90 x FROM dual) tens

CRGCSS JAON

(SELECT 0 x FROM dual UNI ON ALL
SELECT 100 x FROM dual UNI ON ALL
SELECT 200 x FROM dual UNI ON ALL
SELECT 300 x FROM dual) hundreds) days

VWHERE days.dt < TO _DATE(' 01-JAN-2002', ' DD- MON-YYYY');

01-JAN-01
02-JAN-01
03-JAN-01
04- JAN-01
05-JAN-01
06- JAN-01
07-JAN-01
08-JAN-01
09-JAN-01

10- JAN- 01

20- DEC- 01

21- DEC- 01

22- DEC- 01

23- DEC- 01

24- DEC- 01

25- DEC- 01

26- DEC- 01

27- DEC- 01

28- DEC- 01

29- DEC- 01

30- DEC- 01

31-DEC- 01

Since 2001 is not a leap year, the result set will contain 365 rows, one for each day of 2001.
This query can then be wrapped in another inline view and used as the driving table for

generating the report. Whether you would actually want to use such a strategy in your code is
up to you; the main purpose of this example is to help get the creative juices flowing.

5.4.4 Overcoming SQL Restrictions

The use of certain features of Oracle SQL can impose restrictions on our SQL statements. When
these features are isolated from the rest of the query inside an inline view, however, these
restrictions can be sidestepped. This section explores how inline views can overcome limitations
with hierarchical and aggregation queries.

5.4.4.1 Hierarchical queries

Hierarchical queries allow recursive relationships to be traversed. As an example of a recursive

relationship, consider a table called r egi on that holds data about sales territories. Regions are

arranged in a hierarchy, and each record in the r egi on table references the region in which it is
contained, as illustrated by the following data:

SELECT * FROM regi on;

REG ON_| D NAMVE SUPER_REG ON_I D

1 North Anerica

2 Canada 1
3 United States 1
4 Mexico 1
5 New Engl and 3
6 Md-Atlantic 3
7 Sout heast US 3
8 Sout hwest US 3
9 Northwest US 3
10 Central US 3
11 Europe

12 France 11
13 Ger many 11
14 Spain 11

Each record in the cust oner table references the smallest of its applicable regions. Given a
particular region, it is possible to construct a query that traverses up or down the hierarchy by
utilizing the START WITH and CONNECT BY clauses:

SELECT region_id, nane, super_region_id
FROM r egi on
START WTH nanme = 'North Anerica'

CONNECT BY PRIOR region_id = super_region_id;

REG ON_| D NAMVE SUPER_REG ON_I D

1 North Anerica

2 Canada 1
3 United States 1
5 New Engl and 3

6 Md-Atlantic 3

7 Sout heast US 3

8 Sout hwest US 3
9 Northwest US 3
10 Central US 3
4 Mexi co 1

The query just shown traverses the region hierarchy starting with the North America region and
working down the tree. Looking carefully at the results, you can see that the Canada, United
States, and Mexico regions all point to the North America region via the super _regi on_i d field.
The remainder of the rows all point to the United States region. Thus, we have identified a
three-level hierarchy with one node at the top, three nodes in the second level, and six nodes in
the third level underneath the United States node. For a detailed look at hierarchical queries,

see Chapter 8.

Imagine that you have been asked to generate a report showing total sales in 2001 for each
subregion of North America. However, hierarchical queries have the restriction that the table
being traversed cannot be joined to other tables within the same query, so it might seem
impossible to generate the report from a single query. Using an inline view, however, you can
isolate the hierarchical query on the r egi on table from the cust onmer and cust _or der tables, as
in:

SELECT na_regi ons. nane regi on_nane,
SUM co. sal e_price) total _sales
FROM cust _order co INNER JO N custoner c
ON co. cust_nbr = c.cust_nbr
I NNER JO N
(SELECT region_id, name
FROM r egi on
START WTH nanme = 'North Anerica’
CONNECT BY PRIOR region_id = super_region_id) na_regions
ON c.region_id = na_regions.region_id
WHERE co. cancelled_dt IS NULL
AND co.order_dt >= TO DATE(' 01- JAN-2001',' DD- MON- YYYY')
AND co.order_dt < TO DATE(' 01- JAN-2002' ,' DD- MON- YYYY')

GROUP BY na_regi ons. nane;

REG ON_NAME TOTAL_SALES

Md-Atlantic 198
New Engl and 590
Even though the na_r egi ons set includes the North America and United States regions,

customer records always point to the smallest applicable region, which is why these particular
regions do not show up in the final result set.

By placing the hierarchical query within an inline view, you are able to temporarily flatten the
region hierarchy to suit the purposes of the query, which allows you to bypass the restriction on
hierarchical queries without resorting to splitting the logic into multiple pieces. The next section
will demonstrate a similar strategy for working with aggregate queries.

5.4.4.2 Aggregate queries

Queries that perform aggregations have the following restriction: all nonaggregate columns in
the SELECT clause must be included in the GROUP BY clause. Consider the following query,
which aggregates sales data by customer and salesperson, and then adds supporting data from
the cust oner, regi on, enpl oyee, and depar t ment tables:
SELECT c.nane custoner, r.name region,

e.fname || ' ' || e.lnane sal esperson, d.nane departnent,

SUM co. sal e_price) total _sales
FROM cust _order co INNER JO N custoner c¢

ON co.cust_nbr = c.cust_nbr

INNER JON region r

ON c.region_id = r.region_id

I NNER JO N enpl oyee e

ON co.sales enp_id = e.enp_id

INNER JO N departnment d

ON e.dept _id = d.dept_id
WHERE co. cancelled_dt IS NULL

AND co.order_dt >= TO DATE(' 01- JAN-2001',' DD- MON- YYYY')

GROUP BY c.nane, r.nane, e.fname || ' ' || e.lnane, d.nane;

CUSTOVER REG ON SALESPERSON DEPARTMENT TOTAL_SALES

Zantech Inc. M d-Atlantic KENNETH MARTIN SALES 198

Fl owt ech I nc. New Engl and KENNETH MARTI N SALES 180

Since every nonaggregate in the SELECT clause must be included in the GROUP BY clause, you
are forced to sort on five columns, since a sort is needed to generate the groupings. Because
every customer is in one and only one region and every employee is in one and only one
department, you really only need to sort on the cust oner and enpl oyee columns to produce
the desired results. So the Oracle engine is wasting its time sorting on the region and

department names.

However, by isolating the aggregation from the supporting tables, you can create a more
efficient and more understandable query:

SELECT c.nane customer, r.name region,
e.fname || ' ' || e.lnanme sal esperson, d.nanme departnent,
cust _enp_orders.total total _sales
FROM
(SELECT cust_nbr, sales_enp_id, SUMsale _price) total
FROM cust _order
WHERE cancel led_dt IS NULL
AND order_dt >= TO DATE(' 01-JAN-2001',"' DD- MON- YYYY')
GROUP BY cust_nbr, sales_enp_id) cust_enp_orders
I NNER JO N custoner c
ON cust _enp_orders. cust_nbr = c.cust_nbr
INNER JO N region r
ON c.region_id = r.region_id
I NNER JO N enpl oyee e
ON cust_enp_orders.sales_enp_id = e.enp_id
I NNER JO N departnment d

ON e.dept _id = d.dept_id;

CUSTOVER REG ON SALESPERSON DEPARTMENT TOTAL_SALES

Fl owt ech Inc. New Engl and KENNETH MARTI N SALES 180

Zantech |nc. M d-Atlantic KENNETH MARTI N SALES 198

Since the cust _or der table includes the customer number and salesperson ID, you can perform
the aggregation against these two columns without the need to include the other four tables.
Not only are you sorting on fewer columns, you are sorting on numeric fields (customer number
and employee ID) rather than potentially lengthy strings (customer name, region name,
employee name, and department name). The containing query uses the cust _nbr and

sal es_enp_i d columns from the inline view to join to the cust oner and enpl oyee tables, which
in turn are used to join to the regi on and depart nent tables.

By performing the aggregation within an inline view, you have sidestepped the restriction that
all nonaggregates be included in the GROUP BY clause. You have also shortened execution time
by eliminating unnecessary sorts and minimized the number of joins to the cust oner, r egi on,

enpl oyee, and depart nent tables. Depending on the amount of data in the tables, these
improvements could yield significant performance gains.

5.45Inline Views in DML Statements

Now that you are comfortable with inline views, it's time to add another wrinkle: inline views
may also be used in INSERT, UPDATE, and DELETE statements. In most cases, using an inline
view in a DML statement improves readability but otherwise adds little value to statement
execution. To illustrate, we'll begin with a fairly simple UPDATE statement and then show the
equivalent statement using an inline view:

UPDATE cust_order co
SET co. expected_ship_dt = co.expected_ship_dt + 7
VWHERE co. cancelled_dt IS NULL AND co.ship_dt IS NULL
AND EXI STS (SELECT 1
FROM line_item |li INNER JON part p
ON li.part_nbr = p.part_nbr
VWHERE | i . order_nbr = co. order_nbr
AND p.inventory qty = 0);

This statement uses an EXISTS condition to locate orders that include out-of-stock parts. The
next version uses an inline view called suspended_or der s to identify the same set of orders:

UPDATE (SELECT co. expected_ship_dt exp_ship_dt
FROM cust _order co

WHERE co. cancelled_dt IS NULL AND co.ship_dt IS NULL

AND EXI STS (SELECT 1
FROM line_item|i INNER JON part p
ON |i.part_nbr = p.part_nbr
VWHERE | i.order_nbr = co.order_nbr
AND p.inventory_qty = 0)) suspended_orders

SET suspended_orders. exp_ship_dt = suspended_orders.exp_ship_dt + 7;

In the first statement, the WHERE clause of the UPDATE statement determines the set of rows to
be updated, whereas in the second statement, the result set returned by the SELECT statement
determines the target rows. Otherwise, the two statements are identical. For the inline view to
add extra value to the statement, it must be able to do something that the simple update
statement cannot do: join multiple tables. The following version attempts to do just that by
replacing the subquery with a three-table join:

UPDATE (SELECT co. expected_ship_dt exp_ship_dt
FROM cust _order co INNER JON line_itemli
ON co.order_nbr = Ii.order_nbr
INNER JO N part p
ON |i.part_nbr = p.part_nbr
WHERE co.cancelled dt IS NULL AND co.ship_dt IS NULL
AND p.inventory qty = 0) suspended_orders

SET suspended_orders. exp_ship_dt = suspended_orders.exp_ship_dt + 7;

However, statement execution results in the following error:

ORA- 01779: cannot nodify a colum which maps to a non key-preserved table

As is often the case in life, we can't get something for nothing. To take advantage of the ability
to join multiple tables within a DML statement, we must abide by the following rules:

e Only one of the joined tables in an inline view may be modified by the containing DML
statement.

e To be modifiable, the target table's key must be preserved in the result set of the inline
view.

Although the previous UPDATE statement attempts to modify only one table (cust _or der), that
table's key (or der _nbr) is not preserved in the result set, since an order has multiple line
items. In other words, rows in the result set generated by the three-table join cannot be
uniquely identified using just the or der _nbr field, so it is not possible to update the cust _order
table via this particular three-table join. However, it is possible to update or delete from the

I'i ne_i t emtable using the same join, since the key of the | i ne_i t emtable matches the key of
the result set returned from the inline view (order _nbr and part _nbr). The next statement
deletes rows from the | i ne_i t emtable using an inline view nearly identical to the one that
failed for the previous UPDATE attempt:

DELETE FROM (SELECT li.order_nbr order_nbr, li.part_nbr part_nbr
FROM cust _order co INNER JON line_itemli
ON co.order_nbr = |i.order_nbr
INNER JO N part p
ON |i.part_nbr = p.part_nbr
WHERE co.cancelled dt IS NULL AND co.ship_dt IS NULL
AND p.inventory gty = 0) suspended_orders;

The column(s) referenced in the SELECT clause of the inline view are actually irrelevant. Since
the | i ne_i t emtable is the only key-preserved table of the three tables listed in the FROM
clause, this is the table on which the DELETE statement operates. Although utilizing an inline
view in a DELETE statement can be more efficient, it's somewhat disturbing that it is not
immediately obvious which table is the focus of the DELETE statement. A reasonable convention
when writing such statements would be to always select the key columns from the target table.

5.4.6 Restricting Access Using WITH CHECK OPTION

Another way in which inline views can add value to DML statements is by restricting both the
rows and columns that may be modified. For example, most companies only allow members of
Human Resources to see or modify salary information. By restricting the columns visible to a
DML statement, we can effectively hide the salary column:

UPDATE (SELECT enp_id, fname, |nane, dept_id, nmanager_enp_id
FROM enpl oyee) enp

SET enp. nmanager _enp_id = 11

WHERE enp.dept _id = 4;

Although this statement executes cleanly, attempting to add the salary column to the SET
clause would yield the following error:

UPDATE (SELECT enp_id, fname, |nane, dept_id, manager_enp_id
FROM enpl oyee) enp
SET enp. manager _enp_id = 11, enp.salary = 1000000000

WHERE enp.dept _id = 4;

ORA-00904: "EMP"."SALARY": invalid identifier

Of course, the person writing the UPDATE statement has full access to the table; the intent here
is to protect against unauthorized modifications by the users. This might prove useful in an n-
tier environment, where the interface layer interacts with a business-logic layer.

Although this mechanism is useful for restricting access to particular columns, it does not limit
access to particular rows in the target table. To restrict the rows that may be modified using a
DML statement, you can add a WHERE clause to the inline view and specify WITH CHECK

OPTION. For example, you may want to restrict the users from modifying data for any employee
in the Accounting department:

UPDATE (SELECT enp_id, fname, |name, dept_id, manager_enp_id

FROM enpl oyee

VWHERE dept_id !=

(SELECT dept_id FROM departnent WHERE nane = ' ACCOUNTI NG)

W TH CHECK OPTION) enp
SET enp. manager _enp_id = 7698
VWHERE enp.dept_id = 30;
The addition of WITH CHECK OPTION to the inline view protects against any data modifications
that would not be visible via the inline view. For example, attempting to modify an employee's

department assignment from Sales to Accounting would generate an error, since the data would
no longer be visible via the inline view:

UPDATE (SELECT enp_id, fname, |nane, dept_id, nmanager_enp_id
FROM enpl oyee
WHERE dept _id !=
(SELECT dept _id FROM departnent WHERE nane = ' ACCOUNTI NG)
W TH CHECK OPTION) enp
SET dept _id = (SELECT dept_id FROM departnent WHERE nane = ' ACCOUNTI NG)

WHERE enp_id = 7900;

ORA- 01402: view WTH CHECK OPTI ON wher e-cl ause

vi ol ati on

5.4.7 Global Inline Views

Earlier in the chapter, you saw how the WITH clause can be used to allow the same subquery to
be referenced multiple times within the same query. Another way to utilize the WITH clause is
as an inline view with global scope. To illustrate, we will rework one of the previous inline view
examples to show how the subquery can be moved from the FROM clause to the WITH clause.
Here's the original example, which comes from Section 5.4.4.1:

SELECT na_regi ons. name regi on_nane,
SUM co. sal e_price) total _sales
FROM cust _order co INNER JO N custoner c
ON co. cust_nbr = c.cust_nbr
I NNER JO N
(SELECT region_id, name
FROM r egi on
START WTH nane = 'North America'
CONNECT BY PRIOR region_id = super_region_id) na_regions
ON c.region_id = na_regions.region_id
WHERE co. cancel led_dt IS NULL
AND co.order_dt >= TO DATE(' 01-JAN-2001',"' DD- MON- YYYY")
AND co.order_dt < TO DATE(' 01-JAN-2002',"' DD- MON- YYYY')

GROUP BY na_regi ons. nane;

REG ON_NAME TOTAL_SALES
Md-Atlantic 198
New Engl and 590

Here's the same query with the na_r egi ons subquery moved to the WITH clause:
W TH na_regi ons AS (SELECT region_id, nanme
FROM r egi on

START WTH nane = 'North Anerica'

CONNECT BY PRIOR region_id = super_region_id)
SELECT na_regi ons. nanme region_naneg,
SUM co. sal e_price) total _sales
FROM cust_order co INNER JO N custoner c
ON co.cust_nbr = c.cust_nbr
INNER JO N na_regions
ON c.region_id = na_regions.region_id
WHERE co. cancelled_dt 1S NULL
AND co.order_dt >= TO DATE(' 01- JAN-2001',' DD- MON- YYYY")
AND co.order_dt < TO DATE(' 01-JAN-2002',' DD- MON- YYYY')

GROUP BY na_regi ons. nane;

REG ON_NAVME TOTAL_SALES
M d-Atl antic 198
New Engl and 590

Note that the FROM clause must include the inline view alias for you to reference the inline
view's columns in the SELECT, WHERE, GROUP BY, or ORDER BY clauses.

To show how the na_r egi ons subquery has global scope, the join between the na_r egi ons
inline view and the cust oner table has been moved to another inline view (called cust) in the
FROM clause:

W TH na_regi ons AS (SELECT region_id, nane
FROM r egi on
START WTH nane = 'North America'
CONNECT BY PRIOR region_id = super_region_id)
SELECT cust.regi on_name region_nane,
SUM co. sal e_price) total _sales
FROM cust _order co INNER JO N

(SELECT c.cust_nbr cust_nbr, na_regi ons.nane regi on_nane

FROM custoner ¢ INNER JO N na_regi ons
ON c.region_id = na_regions.region_id) cust
ON co. cust_nbr = cust.cust_nbr
WHERE co. cancelled_dt 1S NULL
AND co.order_dt >= TO DATE(' 01- JAN-2001',' DD- MON- YYYY')
AND co.order_dt < TO DATE(' 01-JAN-2002',' DD- MON- YYYY')

GROUP BY cust.regi on_naneg;

REG ON_NAVME TOTAL_SALES
M d-Atl antic 198
New Engl and 590

Earlier in this section, we stated that inline views "are always executed prior to the containing
query and, thus, may not reference columns from other tables or inline views from the same
query."” Using the WITH clause, however, you are able to break this rule, since the na_r egi ons
inline view is visible everywhere within the query. This makes the na_r egi ons inline view act
more like a temporary table than a true inline view.

| 4 FREV < Day Day Up > MEXT mp

| 4m PREV < Day Day Up > MET

5.5 Subquery Case Study: The Top N Performers

Certain queries that are easily described in English have traditionally been difficult to formulate
in SQL. One common example is the "Find the top five salespeople” query. The complexity
stems from the fact that data from a table must first be aggregated, and then the aggregated
values must be sorted and compared to one another to identify the top or bottom performers.
In this section, you will see how subqueries may be used to answer such questions. At the end
of the section, we introduce ranking functions, a feature of Oracle SQL that was specifically
designed for these types of queries.

5.5.1 A Look at the Data

Consider the problem of finding the top five salespeople. Let's assume that we are basing our
evaluation on the amount of revenue each salesperson brought in during the previous year. The
first task, then, would be to sum the dollar amount of all orders booked by each salesperson
during the year in question. To do so, we will dip into our data warehouse, in which orders have
been aggregated by salesperson, year, month, customer, and region. The following query
generates total sales per salesperson for the year 2001:

SELECT s.nanme enployee, SUMo.tot_sales) total _sales
FROM orders o INNER JO N sal esperson s

ON o.sal esperson_id = s.sal esperson_id

WHERE o0.year = 2001

GROUP BY s. nane

ORDER BY 2 DESC,

EMPLOYEE TOTAL_SALES
Jef f Bl ake 1927580
Sam Housenan 1814327
Mar k Russel | 1784596
John Boor nman 1768813
Carl |saacs 1761814

Ti m McGowan 1761814

Chri s Anderson 1757883

Bill Evans 1737093
Jim Fl etcher 1735575
Mary Dunn 1723305
Dave Jacobs 1710831
Chuck Thomnas 1695124
Greg Powers 1688252
Don Walters 1672522
Al ex Fox 1645204
Bar bara Ki ng 1625456
Lynn Nichol s 1542152
Karen Young 1516776
Bob G ossman 1501039
Eric lverson 1468316
Tom Freeman 1461898
Andy Levitz 1458053
Laura Peters 1443837
Susan Jones 1392648

It appears that Isaacs and McGowan have tied for fifth place, which, as you will see, adds an
interesting wrinkle to the problem.

5.5.2 Your Assignment

It seems that the boss was so tickled with this year's sales that she has asked you, the IT
manager, to see that each of the top five salespeople receive a bonus equal to 1% of their
yearly sales. No problem, you say. You quickly throw together the following report using your
favorite feature, the inline view, and send it off to the boss:
SELECT s.nanme enpl oyee, top5 enp_orders.tot_sales total _sales,

ROUND(t op5_enp_orders.tot_sales * 0.01) bonus
FROM

(SELECT all _enp_orders. sal esperson_id enp_id,

all _enmp_orders.tot_sales tot_sales
FROM
(SELECT sal esperson_id, SUMtot_sales) tot_sales
FROM or ders
VWHERE year = 2001
GROUP BY sal esperson_id
CRDER BY 2 DESC
) all _enp_orders
WHERE ROWNUM <= 5
) top5_enp_orders INNER JO N sal esperson s
ON top5_enp_orders.enp_id = s.salesperson_id

ORDER BY 2 DESC,

EMPLOYEE TOTAL_SALES BONUS
Jeff Bl ake 1927580 19276
Sam Housenan 1814327 18143
Mar k Russel | 1784596 17846
John Boor man 1768813 17688
Ti m McGowan 1761814 17618

The howl emitted by Isaacs can be heard for five square blocks. The boss, looking a bit harried,
asks you to take another stab at it. Upon reviewing your query, the problem becomes
immediately evident; the inline view aggregates the sales data and sorts the results, and the
containing query grabs the first five sorted rows and discards the rest. Although it could easily
have been McGowan, since there is no second sort column, Isaacs was arbitrarily omitted from
the result set.

5.5.3 Second Attempt

You console yourself with the fact that you gave the boss exactly what she asked for: the top
five salespeople. However, you realize that part of your job as IT manager is to give people
what they need, not necessarily what they ask for, so you rephrase the boss's request as
follows: give a bonus to all salespeople whose total sales ranked in the top five last year. This

will require two steps: find the fifth highest sales total last year, and then find all salespeople
whose total sales meet or exceed that figure. You write a new query as follows:

SELECT s.nane enpl oyee, top5 enp_orders.tot_sales total _sales,
ROUND(t op5_enp_orders.tot_sales * 0.01) bonus
FROM sal esperson s |INNER JO N
(SELECT sal esperson_id, SUMtot _sales) tot_sales
FROM or ders
WHERE year = 2001
GROUP BY sal esperson_id
HAVI NG SUMtot _sales) IN
(SELECT all _enp_orders.tot_sal es
FROM
(SELECT SUMtot sal es) tot_sales
FROM or ders
WHERE year = 2001
GROUP BY sal esperson_id
ORDER BY 1 DESC
) all _enp_orders
VWHERE ROWNUM <= 5)
) top5_enp_orders
ON top5_enp_orders. sal esperson_id = s.sal esperson_id

ORDER BY 2 DESC;

EVMPLOYEE TOTAL_SALES BONUS
Jeff Bl ake 1927580 19276
Sam Housenan 1814327 18143
Mar k Russel | 1784596 17846

John Boor man 1768813 17688

Ti m McGowan 1761814 17618

Carl |saacs 1761814 17618

Thus, there are actually six top five salespeople. The main difference between your first attempt
and the second is the addition of the HAVING clause in the inline view. The subquery in the
HAVING clause returns the five highest sales totals, and the inline view then returns all
salespeople (potentially more than five) whose total sales exist in the set returned by the
subquery.

Although you are confident in your latest results, there are several aspects of the query that
bother you:

e The aggregation of sales data is performed twice.

e The query will never contend for Most Elegant Query of the Year.

e You could've sworn you read about some sort of feature just for handling these types of
queries . . .

In fact, there is a feature, an analytic SQL feature, for performing ranking queries that became
available with Oracle8i. That feature is the RANK function.

5.5.4 Final Answer

The RANK function is specifically designed to help you write queries to answer questions like the
one posed in this case study. Part of a set of analytic functions (all of which will be explored in
Chapter 14), the RANK function may be used to assign a ranking to each element of a set. The
RANK function understands that there may be ties in the set of values being ranked and leaves
gaps in the ranking to compensate. The following query illustrates how rankings would be
assigned to the entire set of salespeople; notice how the RANK function leaves a gap between
the fifth and seventh rankings to compensate for the fact that two rows share the fifth spot in
the ranking:

SELECT sal esperson_id, SUMtot_sales) tot_sales,

RANK() OVER (ORDER BY SUMtot_sal es) DESC) sal es_rank
FROM orders
WHERE year = 2001

GROUP BY sal esperson_id;

SALESPERSON | D TOT_SALES SALES RANK

1 1927580 1

14 1814327 2

24 1784596 3

8 1768813 4
15 1761814 5
16 1761814 5
20 1757883 7
11 1737093 8

9 1735575 9
10 1723305 10
17 1710831 11

4 1695124 12

5 1688252 13
12 1672522 14
19 1645204 15
18 1625456 16
21 1542152 17
13 1516776 18

3 1501039 19
22 1468316 20

2 1461898 21

7 1458053 22
23 1443837 23

6 1392648 24

Leaving gaps in the rankings whenever ties are encountered is critical for properly handling
these types of queries. (If you do not wish to have gaps in the ranking, you can use the
DENSE_RANK function intead.) Table 5-1 shows the number of rows that would be returned for
this data set for various top-N queries.

Table 5-1. Rows returned for N = {1,2,3,...,9%}

Top-N salespeople Rows returned

© 00 N o oA~ W NP
© 00 N o o b~ WN P

As you can see, the result sets would be identical for both the "top five" and "top six" versions
of this query for this particular data set.

By wrapping the previous RANK query in an inline view, you can retrieve the salespeople with a
ranking of five or less and join the results to the salesperson table to generate the final result
set:

SELECT s.nane enpl oyee, top5 enp_orders.tot_sales total _sales,
ROUND(t op5_enp_orders.tot_sales * 0.01) bonus
FROM
(SELECT all _enp_orders. sal esperson_id enp_id,
all _enp_orders.tot_sales tot_sales
FROM
(SELECT sal esperson_id, SUMtot_sales) tot_sales,
RANK() OVER (ORDER BY SUMtot_sal es) DESC) sal es_rank
FROM or ders
WHERE year = 2001
GROUP BY sal esperson_id
) all _enp_orders
WHERE al | _enp_orders.sales_rank <= 5
) top5_enp_orders INNER JO N sal esperson s
ON top5_enp_orders.enp_id = s.sal esperson_id

CRDER BY 2 DESC,

EMPLOYEE

Jeff Bl ake

Sam Housenan

Mar k Russel |

John Boor man

Ti m McGowan

Carl |saacs

TOTAL_SALES

1927580

1814327

1784596

1768813

1761814

1761814

19276

18143

17846

17688

17618

17618

If this query looks familiar, that's because it's almost identical to the first attempt, except that
the RANK function is used instead of the pseudocolumn ROWNUM to determine where to draw

the line between the top five salespeople and the rest of the pack.

Now that you are happy with your query and confident in your results, you show your findings
to your boss. "Nice work," she says. "Why don't you give yourself a bonus as well? In fact, you

can have lIsaacs's bonus, since he quit this morning." Salespeople can be so touchy.

< Day Day Up >

| 4@ PREV < Day Day Up > MET

Chapter 6. Handling Temporal Data

As the old saying goes, "Time and tide wait for no man." As database developers, we may not
deal with tide-related information every day, but we deal with time-related information almost
every single day. The hire date of an employee, your pay day, the rent or mortgage payment
date, the time duration required for a financial investment to mature, and the start date and
time of your new car insurance are all examples of temporal data that we deal with every single
day.

The need for effective management of temporal information became critical at the turn of the
century, when most of us had to devise ways to handle the two-digit year correctly as it
increased from 99 to 00, and then to O1. In this age of global e-business, the concepts of time
are even more involved than ever before, because business is carried out around the clock
across time zone boundaries.

A database needs to effectively and efficiently handle the storage, retrieval, and manipulation of
the following types of temporal data:

e Dates

e Times

e Date and time intervals

e Time zones

Oracle's support for temporal data is mature and efficient. Oracle8i supports convenient
manipulation of date and time data. Oracle9i enhanced this support by introducing a new set of
features including support for fractional seconds, date and time intervals, and time zones.

| 4@ PREV < Day Day Up > MET

| 4 PREV < Day Day Up > MEXT o

6.1 Time Zones

In the global economy, business is carried out across geographical boundaries and time zones.
It is common for a customer in Los Angeles to order an item through a supplier's web site, and
the supplier's database could be located in New York. A manufacturer in China could update the
status of an order of one of its U.S. customers. Conducting business across the globe is a
requirement in today's global economy, and the evolution of the Internet and related
technologies have made it simple. Databases can't be far behind, can they?

Oracle facilitates global business through its support for time zones. With Oracle 9i Database
and higher, a database and a session can be associated with time zones. Having database and
session time zones enables users in geographically distant regions to exchange temporal data
with the database without having to bother about the time differences between the location of
their clients and the location of the database server.

"’_-"~ The list of valid time zone region names is provided in the data dictionary
o, view V$TIMEZONE_NAMES.
":-q". N a
[N

6.1.1 Database Time Zone

The time zone of a database is usually set at the time of creation of the database. Alternatively,
a database administrator can change the time zone using the ALTER DATABASE command, after
a database is created. Both CREATE DATABASE and ALTER DATABASE commands take an
optional SET TIME_ZONE clause:

SET TIME ZONE = "+ | - HHHM' | 'tinme_zone_region'

You can specify a time zone in one of two ways:

e By specifying a displacement from Coordinated Universal Time (UTC) in hours and
minutes. For example, United States Eastern Standard Time is UTC -05:00.

e By specifying a time zone name or time zone abbreviation (columns TZNAME and
TZABBREV in VSTIMEZONE_NAMES, respectively). Every time zone is given a name and
abbreviation. For example, "U.S./Eastern” is the time zone name, and EST is the time zone
abbreviation for Eastern Standard Time. You can use either the time zone name or the
abbreviation to set the time zone of a database.

The following examples use the SET TIME_ZONE clause to set the time zone of a database:

CREATE DATABASE . . . SET TIME_ZONE = '-05:00";

ALTER DATABASE . . . SET TIME_ZONE = 'EST';

Both of these examples set the time zone to Eastern Standard Time. The first example uses a
displacement (-05:00) from UTC. The second example uses the time zone abbreviation (EST).
EST is 5 hours behind UTC, and is therefore equivalent to "-5:00".

"';-f‘~ If you do not explicitly set the database time zone, Oracle defaults to the
o, operating system time zone. If the operating system time zone is not a
% . - . -
. 4+ valid Oracle time zone, UTC is used as the default time zone.

6.1.2 Session Time Zone

Each session can have a time zone as well. You can set the time zone of a session by using the
ALTER SESSION SET TIME_ZONE statement. The syntax for the SET TIME_ZONE clause in the
ALTER SESSION statement is the same as that in the CREATE DATABASE and ALTER DATABASE
statements.

The following example shows two ways to set the time zone of a session to Pacific Standard
Time:

ALTER SESSI ON SET TI ME_ZONE '-08:00'";

ALTER SESSI ON SET Tl ME_ZONE " PST';

To set the session time zone to the local operating system time zone (e.g., the time zone of a
PC initiating a remote user session), you can use the LOCAL keyword in the SET TIME_ZONE
clause, as in the following example:

ALTER SESSI ON SET TI ME_ZONE = LOCAL;

To set the session time zone to the database time zone, use the DBTIMEZONE keyword in the
SET TIME_ZONE clause, as in the following example:

ALTER SESSI ON SET Tl ME_ZONE = DBTI MEZONE;

If you do not explicitly set the session time zone, Oracle defaults to the

l-l;. local operating system time zone. If the local operating system time zone
. & is not a valid Oracle time zone, UTC is used as the default session time
zone.

| dm PREV < Day Day Up > NEXT oy

| 4 PREV < Day Day Up > MEXT o

6.2 Temporal Data Types in Oracle

Oracle provides the following categories of data types to represent temporal data inside an
Oracle database:
e The DATE data type

e The TIMESTAMP data types:

o TIMESTAMP
o TIMESTAMP WITH TIME ZONE
o TIMESTAMP WITH LOCAL TIME ZONE

e The INTERVAL data types:

o INTERVAL YEAR TO MONTH
o INTERVAL DAY TO SECOND

Up to release Oracle8i, Oracle had only one temporal data type: DATE, which held date as well
as time information. Oracle9i introduced several new data types—three TIMESTAMP data types
to hold time data with fractional seconds, and two INTERVAL data types to hold time intervals.
The following sections discuss all these data types in detail.

6.2.1 The DATE Data Type

Oracle's DATE data type holds date as well as time information. Regardless of the date format
you use for display purposes, Oracle stores dates internally in one standard format. Internal to
the database, a date is a fixed-length, 7-byte field. The seven bytes represent the following
pieces of information:

e The Century

e The Year

e The Month

e The Day

e The Hour

e The Minute

e The Second

Even though the data type is called a DATE, it also stores the time. You choose the components
to display (the date, the time, the date and the time, etc.) when you retrieve a DATE value from
the database. Or, if you are putting a DATE value into a program (e.g., a Java program) you
might choose to extract the components of interest after transferring the entire date/time value
to that program.

6.2.2 The TIMESTAMP Data Types

To provide support for fractional seconds along with date and time data, and also to provide
support for time zones, Oracle9i introduced the following temporal data types:

e TIMESTAMP

e TIMESTAMP WITH TIME ZONE

e TIMESTAMP WITH LOCAL TIME ZONE

6.2.2.1 TIMESTAMP

The TIMESTAMP data type extends the DATE type to support more precise time values. A
TIMESTAMP includes all the components of the DATE data type (century, year, month, day,
hour, minute, second) plus fractional seconds. A TIMESTAMP data type is specified as:

TI MESTAMP [(precision for fractional seconds)]

The precision for fractional seconds is optional and is specified in parentheses. You can
specify integer values between 0 and 9 for fractional precision. A precision of 9 means that you
can have 9 digits to the right of the decimal—i.e., up to nanoseconds precision. If you don't

specify the precision, it defaults to 6 (microseconds precision)—i.e., TIMESTAMP is the same as
TIMESTAMP(6).

The following example creates a table with a column of type TIMESTAMP:

CREATE TABLE transaction (
transaction_id NUVBER(10),
transaction_tinestanp TI MESTAWP,
status VARCHAR2(12));

Tabl e created.

DESC transacti on

Nane Nul | ? Type

TRANSACTI ON_I D NUMBER(10)
TRANSACTI ON_TI MESTAMP TI MESTAMP(6)
STATUS VARCHAR2(12)
Since we don't specify a precision in this example for the column transacti on_ti nest anp,

Oracle uses the default precision for the TIMESTAMP data type, and it appears as
TIMESTAMP(6) when we describe the table.

6.2.2.2 TIMESTAMP WITH TIME ZONE

The TIMESTAMP WITH TIME ZONE data type further extends the TIMESTAMP type to include a
time zone displacement. A TIMESTAMP WITH TIME ZONE data type is specified as:

TI MESTAMP [(precision for fractional seconds)] WTH TIME ZONE

The precision for fractional seconds is the same as that for the TIMESTAMP data type.
The time zone displacement is the time difference in hours and minutes between the local time
and UTC. You supply such displacements when you store values in the column, and the

database retains the displacements so that those values can later be translated into any target
time zone desired by your system's users.

The following example creates a table with a column of type TIMESTAMP WITH TIME ZONE:

CREATE TABLE transaction_tine_zone (
transaction_id NUVBER(10),
transaction_tinestanp TIMESTAMP(3) W TH Tl ME ZONE,

status VARCHAR2(12));

Tabl e created.

DESC transaction_tinme_zone

TRANSACTI ON_I D NUVBER(10)

TRANSACTI ON_TI MESTAMP TI MESTAMP(3) WTH TI ME ZONE

STATUS VARCHAR2(12)

6.2.2.3 TIMESTAMP WITH LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE data type is a variant of the TIMESTAMP WITH TIME
ZONE data type. A TIMESTAMP WITH LOCAL TIME ZONE data type is specified as:

TI MESTAMP [(precision for fractional seconds)] WTH LOCAL TIME ZONE

The precision for fractional seconds is the same as that in the TIMESTAMP data type.
TIMESTAMP WITH LOCAL TIME ZONE differs from TIMESTAMP WITH TIME ZONE in the following
ways:
e The time zone displacement is not stored as part of the column data.
e The data stored in the database is normalized to the time zone of the database. To
normalize an input value to the database time zone, the input time is converted to a time
in the database time zone. The original time zone is not preserved.

¢ When the data is retrieved, Oracle returns the data in the time zone of the user session.

The following example creates a table with a column of type TIMESTAMP WITH LOCAL TIME
ZONE:

CREATE TABLE transaction_local _tine_zone (
transaction_id NUVBER(10),
transaction_tinestanp TIMESTAMP(3) WTH LOCAL TI ME ZONE,

status VARCHAR2(12));

Tabl e created.

DESC transaction_l ocal _tinme_zone

Nane Nul | ? Type
TRANSACTI ONLI D NUMBER(10)
TRANSACTI ON_TI MESTAMP TI MESTAMP(3) W TH LOCAL TI ME ZONE

STATUS VARCHAR2(12)

6.2.3 The INTERVAL Data Types

Date and time interval data are an integral part of our day-to-day life. Common examples of
interval data are the age of a person, the maturity period of a bond or certificate of deposit, and
the warranty period of your car. Prior to Oracle9i Database, we all used the NUMBER data type
to represent such data, and the logic needed to deal with interval data had to be coded at the
application level. Oracle9i Database introduced two new data types to handle interval data:

e INTERVAL YEAR TO MONTH
e INTERVAL DAY TO SECOND

The following sections discuss the use of these data types.

6.2.3.1 INTERVAL YEAR TO MONTH

The INTERVAL YEAR TO MONTH type stores a period of time expressed as a number of years
and months. An INTERVAL YEAR TO MONTH data type is specified as:

| NTERVAL YEAR [(precision for year)] TO MONTH

The preci sion for year specifies the number of digits in the year field. The precision can
range from O to 9, and the default value is 2. The default precision of two allows for a maximum
interval of 99 years, 11 months.

The following example creates a table with a column of type INTERVAL YEAR TO MONTH:

CREATE TABLE event _history (
event _id NUVMBER(10),

event _duration | NTERVAL YEAR TO MONTH);

Tabl e created.

DESC event _history

EVENT_I D NUVBER(10)

EVENT_DURATI ON | NTERVAL YEAR(2) TO MONTH

The next example uses the NUMTOYMINTERVAL (NUMBER-TO-YEAR-MONTH INTERVAL) function
to insert data into a database column of type INTERVAL YEAR TO MONTH. This function converts
a NUMBER value into a value of type INTERVAL YEAR TO MONTH, using the units specified by
the second argument:

I NSERT | NTO event history VALUES (5001, NUMIOYM NTERVAL(2,' YEAR)):

1 row created.

I NSERT | NTO event_history VALUES (5002, NUMIOYM NTERVAL(2.5,' MONTH));

1 row created.

SELECT * FROM event _history;

EVENT_| D EVENT_DURATI ON

5001 +02-00

5002 +00-02

The second argument to the NUMTOYMINTERVAL function specifies the unit of the first
argument. Therefore, in the first example, the number 2 is treated as 2 years, and in the second
example, the number 2.5 is treated as 2 months. Any fractional part of a month is ignored. An
INTERVAL YEAR TO MONTH value is only in terms of years and months, not fractional months.

6.2.3.2 INTERVAL DAY TO SECOND

The INTERVAL DAY TO SECOND type stores a period of time expressed as a number of days,
hours, minutes, seconds, and fractions of a second. An INTERVAL DAY TO SECOND data type is
specified as:

I NTERVAL DAY [(precision for day)]

TO SECOND [(precision for fractional seconds)]

The preci sion for day specifies the number of digits in the day field. This precision can range
from O to 9, and the default value is 2. The preci sion for fractional seconds is the number
of digits in the fractional part of a second. It can range from O to 9, and the default value is 6.

The following example creates a table with an INTERVAL DAY TO SECOND column:

CREATE TABLE batch_job_history (

job_id NUVBER(6),

job_duration | NTERVAL DAY(3) TO SECOND(6));

Tabl e created.

DESC batch_j ob_hi story

Nane Nul | ? Type
JOB_ID NUMBER(6)
JOB_DURATI ON | NTERVAL DAY(3) TO SECOND 6)

Here's how to insert data into a table with an INTERVAL DAY TO SECOND column:

I NSERT | NTO batch_j ob_history VALUES

(6001, NUMIODSI NTERVAL(5369. 2589, "' SECOND)) ;

1 row created.

SELECT * FROM batch_j ob_hi story;

JOB_ I D JOB_DURATI ON

6001 +00 01:29:29. 258900

For the INSERT in this example we used the function NUMTODSINTERVAL (NUMBER-TO-DAY-
SECOND-INTERVAL). This function converts a NUMBER value into a value of type INTERVAL DAY
TO SECOND, using the units specified in the second argument. It's analogous to
NUMTOYMINTERVAL discussed in the previous section.

| dm FREV < Day Day Up > MEXT oy

| 4 PREV < Day Day Up > MEXT o

6.3 Literals of Temporal Types

Using literals of character and number types is pretty simple, because they don't involve any
special formatting. However, when using literals of temporal type, you need to pay special
attention to the formats in which they are specified. The following sections describe date,
timestamp, and interval literals.

6.3.1 DATE Literals

DATE literals are specified in the format specified by SQL Standard, and take the following form:

DATE ' YYYY- MMt DD

Unlike Oracle's DATE data type, a DATE literal doesn't specify any time information. You also
can't specify a format. If you want to specify a date literal, you must always use the YYYY-MV-DD
date format. The following example illustrates the use of a DATE literal in a SQL statement:

I NSERT | NTO enpl oyee
(enp_id, fnanme, |nanme, dept_id, nanager_enp_id, salary, hire_date)
VALUES

(2304, 'John', 'Smith', 20, 1258, 20000, DATE '1999-10-22');

1 row created.

SELECT * FROM enpl oyee;

EMP_I D FNAME LNANVE DEPT_| D MANAGER EMP_| D SALARY H RE_DATE

2304 John Smith 20 1258 20000 22- OCT-99

In this example, the date literal DATE ' 1999- 10- 22" is interpreted as 22-OCT-99.

ISO Standard for Date and Time Notation

The International Standard 1SO 8601 specifies date and time notation. The date is
specified by four-digit year, two-digit month, and two-digit day of the month:

YYYY- MM+ DD

The time of the day is specified by two-digit hour, two-digit minute, and two-digit
second:

hh: m : ss

For detailed information on ISO Standard 8601, refer to the following documents on
the Internet:

http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html

http://www.cl.cam.ac.uk/—mgk25/iso-time.html

http://www.sagqgara.demon.co.uk/datefmt.htm

http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/1SO8601.html

6.3.2 TIMESTAMP Literals

A TIMESTAMP literal takes the following format:

TI MESTAMP ' YYYY- MM DD HH: M : SS. XXXXXXXXX'

A TIMESTAMP literal can have up to nine digits of fractional seconds. The fractional part is
optional, but the date and time elements are mandatory and must be provided in the given
format. Here's an example in which data is inserted into a table with a TIMESTAMP column:

I NSERT | NTO transaction

VALUES (1001, TIMESTAMP '1998-12-31 08:23:46.368', 'OPEN);

1 row created.

SELECT * FROM transaction;

TRANSACTI ON_I D TRANSACTI ON_TI MESTAMP STATUS

http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.saqqara.demon.co.uk/datefmt.htm
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html

1001 31-DEC-98 08. 23. 46. 368000 AM OPEN

A TIMESTAMP literal with a time zone displacement can be used to represent a literal of type
TIMESTAMP WITH TIME ZONE. It takes the following form:

TI MESTAMP " YYYY- Mt DD HH: M : SS. XXXXXXXXX {+|-} HH M

Here is an example that shows how to insert data into a table with a TIMESTAMP WITH TIME
ZONE column:

I NSERT | NTO transaction_tine_zone

VALUES (1002, TIMESTAMP '1998-12-31 08:23:46.368 -10:30", 'NEW);

1 row created.

SELECT * FROM transaction_tine_zone;

TRANSACTI ON_I D TRANSACTI ON_TI MESTAMP STATUS

1002 31-DEC-98 08. 23. 46. 368 AM -10: 30 NEW

Even though the data type is called TIMESTAMP WITH TIME ZONE, the literal still uses just the
TIMESTAMP keyword. However, the literal also specifies a date/time displacement for time zone
using the {+| -} HH:M notation.

If you are specifying a time zone displacement in a TIMESTAMP literal, you must specify the
sign of the displacement (i.e., + or -). The range of the hour in a time zone displacement is -12
to +13, and the range of a minute is 0 to 59. A displacement outside these ranges will generate
an error.

o1} The valid range of time zone displacement in Oracle differs from that

o specified by the SQL Standard. The SQL Standard requires the valid range
to be from -12:59 to +13:00. However, Oracle enforces the range on the
hour (-12 to +13) and minute (O to 59) components separately. Therefore,
the valid range of time zone displacement in Oracle is from -12:00 to
+13:59.

-
Thy

When you don't specify a time zone displacement, the displacement is not assumed to be zero;
instead, the timestamp is assumed to be in your session time zone, and the value of the
displacement defaults to the displacement of that time zone. For example, the TIMESTAMP

literal in the following INSERT specifies no time zone displacement, yet the SELECT statement
proves that a time zone is, in fact, assumed:

I NSERT | NTO transaction_tine_zone

VALUES (1003, TIMESTAMP '1999-12-31 08:23:46.368, 'NEW);

1 row created.

SELECT * FROM transaction_tine_zone;

TRANSACTI ONLI D TRANSACTI ON_TI MESTAMP STATUS

1003 31-DEC- 99 08. 23.46. 368 AM -05:00 NEW

There is no literal specifically for the TIMESTAMP WITH LOCAL TIME ZONE data type. To insert
data into a column of this type, you use a TIMESTAMP literal with a time zone displacement. For
example:

I NSERT | NTO transaction_|local _tine_zone

VALUES (2001, TIMESTAMP '1998-12-31 10:00:00 -3:00", 'NEW);

1 row created.

SELECT * FROM transaction_|local _tine_zone;

TRANSACTI ON_I D TRANSACTI ON_TI MESTAMP STATUS

2001 31-DEC-98 08.00.00 AM NEW

In a case like this, the time zone displacement is not stored in the database. The data is stored
in the database in normalized form with respect to the database time zone. By "normalized
form" we mean the input time is converted into a time in the database time zone before being
stored in the database. The database time zone in this example is -5:00. Therefore, -3:00 is 2
hours ahead of the database time zone, and 10:00:00 - 3:00 is the same as 08:00:00 - 5:00.
Since the time is normalized with respect to the database time zone, the displacement doesn't
need to be stored in the database.

o When TIMESTAMP WITH LOCAL TIME ZONE data is normalized to the
o database time zone, the time zone of the original data is not preserved.

-
g

6.3.3 INTERVAL Literals

Just as Oracle supports DATE and TIMESTAMP literals, it supports INTERVAL literals, too. There
are two interval data types, and two types of corresponding interval literals: YEAR TO MONTH
and DAY TO SECOND.

6.3.3.1 YEAR TO MONTH interval literals

A YEAR TO MONTH interval literal represents a time period in terms of years and months. A
YEAR TO MONTH interval literal takes one of the following two forms:

INTERVAL 'y [-m" YEAR[(precision)] [TO MONTH]|

I NTERVAL 'm MONTH (precision)]

The syntax elements are:

y
An integer value specifying the years.

m
An integer value specifying the months. You must include the TO MONTH keywords if you
specify a month value.

preci sion

Specifies the number of digits to allow for the year or month. The default is 2. The valid
range is from O to 9.

The default precision for the year value is 2. If the literal represents a time period greater than
99 years, then you must specify a high-enough precision to accommodate the number of years
in question. The integer value for the month, as well as the MONTH keyword, are optional. If
you specify a month value, it must be between 0 and 11. You do need to use the MONTH
keyword when you specify a month value.

The following example inserts a YEAR TO MONTH interval literal into an INTERVAL YEAR TO
MONTH column:

I NSERT | NTO event _history

VALUES (6001, |INTERVAL '5-2' YEAR TO MONTH);

1 row created.

SELECT * FROM event _history;

EVENT_| D EVENT_DURATI ON

6001 +05-02

The following example uses a YEAR TO MONTH interval literal to specify a time period of exactly
four years. No value for months is included:

SELECT I NTERVAL '4' YEAR FROM DUAL,;

I NTERVAL' 4' YEAR

A YEAR TO MONTH interval literal can also be used to represent months only:

SELECT I NTERVAL '3'" MONTH FROM DUAL;

I NTERVAL" 3" MONTH

SELECT | NTERVAL '30' MONTH FROM DUAL;

| NTERVAL' 30" MONTH

+02- 06

Notice that when you use a YEAR TO MONTH interval literal to represent only months, you can
actually specify a month value larger than 11. In such a situation, Oracle normalizes the value
into an appropriate number of years and months. This is the only situation in which the number
of months can be greater than 11.

6.3.3.2 DAY TO SECOND interval literals

A DAY TO SECOND interval literal represents a time period in terms of days, hours, minutes,
seconds, and fractions of seconds. DAY TO SECOND interval literals take on the following form:

INTERVAL 'd [h[:n]:s]]]" unitl[(precisionl)] TO unit2[(frac_precision)]

The syntax elements are:

d
An integer value specifying the days.
h
An integer value specifying the hours.
m
An integer value specifying the minutes.
s

A number value specifying the seconds and fractional seconds.

unitl, unit2

Can be DAY, HOUR, MINUTE, or SECOND. The leading unit (uni t 1) must always be
greater than the trailing unit (uni t 2). For example, INTERVAL HOUR TO MINUTE is valid,
but INTERVAL HOUR TO DAY is not valid.

preci sionl

The number of digits to allow for the leading unit. The default is 2. The valid range is from

O to 9.

frac_precision

The number of digits to allow for fractional seconds. The default is 6. The valid range is
from O to 9.

By default, two digits are allowed for the number of days. If a literal represents a time period of
greater than 99 days, then you must specify a precision high enough to accommodate the
number of digits that you need. There's no need to specify the precision for the hour and minute
values. The value for hours can be between O and 23, and the value for the minutes can be
between 0 and 59. While specifying fractional seconds, you can specify a precision for the
fractional seconds as well. The precision for the fractional seconds can be between 0 and 9
(default 6), and the seconds value can be between 0 and 59.999999999.

The following example inserts a DAY TO SECOND interval literal into a column of data type
INTERVAL DAY TO SECOND. The time period being represented is O days, 3 hours, 16 minutes,
23.45 seconds.

I NSERT | NTO batch_job_history

VALUES (2001, |INTERVAL 'O 3:16:23.45" DAY TO SECOND);

1 row created.

SELECT * FROM batch_j ob_hi story;

JOB_ | D JOB_DURATI ON

2001 +00 03:16:23. 450000

The previous example uses all elements of the DAY TO SECOND interval literal. However, you
can use fewer elements if that's all you need. The following example shows several valid
permutations:

SELECT | NTERVAL ' 400" DAY(3) FROM DUAL;

| NTERVAL' 400" DAY(3)

+400 00:00: 00

SELECT I NTERVAL '11:23'" HOUR TO M NUTE FROM DUAL;

I NTERVAL' 11: 23" HOURTOM NUTE

+00 11:23:00

SELECT I NTERVAL '11:23'" M NUTE TO SECOND FROM DUAL;

| NTERVAL' 11: 23" M NUTETOSECOND

+00 00:11: 23. 000000

SELECT | NTERVAL '20' M NUTE FROM DUAL;

| NTERVAL' 20" M NUTE

+00 00:20: 00

The only requirement is that you must use a range of contiguous elements. You cannot, for
example, specify an interval in terms of only hours and seconds, because you can't omit the
intervening minutes value. An interval of 4 hours, 36 seconds would need to be expressed as 4
hours, O minutes, 36 seconds.

< Day Day Up >

| 4m PREV < Day Day Up > MET

6.4 Getting Temporal Data In and Out of a Database

In the real world, temporal data are not always represented using Oracle's DATE, TIMESTAMP,
and INTERVAL data types. At various times, you'll need to convert temporal values to other data
types, especially to character types, and vice versa. This is particularly true when you interface
an Oracle database with an external system, for example when you are accepting date input
from an external system in which dates are represented as strings of characters (or even as
numbers), or when you are sending output from an Oracle database to another application that
doesn't understand Oracle's native temporal data types. You also need to convert DATE and
TIMESTAMP values to text when you display them on a screen or generate a printed report.

Oracle provides some extremely useful functions to enable such conversions:

e TO_DATE

e TO_TIMESTAMP

e TO_TIMESTAMP_TZ
e TO_YMINTERVAL

e TO_DSINTERVAL

e NUMTOYMINTERVAL
e NUMTODSINTERVAL
e TO_CHAR

The purpose of each of these functions is more or less self-explanatory. The following sections
discuss each of these functions in detail.

6.4.1TO_DATE, TO_TIMESTAMP,and TO_TIMESTAMP_TZ

TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ are built-in SQL functions that convert,
respectively, a character string into a DATE, a TIMESTAMP, and a TIMESTAMP WITH TIME
ZONE. Input to these functions can be string literals, PL/SQL variables, and database columns
of the CHAR and VARCHAR?2 data types.

These three conversion functions are similar in operation. The difference is only in the data type
of the return value. You call them as follows:

TO DATE(string [,format])
TO TI MESTAMP (string [,format])

TO_TI MESTAMP_TZ (string [,format])

The syntax elements are:

string

Specifies a string literal, a PL/SQL variable, or a database column containing character
data (or even numeric data) convertible to a date or timestamp.

f or mat

Specifies the format of the input string. The format must be a valid combination of format
codes shown in Table 6-1, which you'll find later in Section 6.5.

Through the f or mat argument, Oracle provides a great deal of flexibility when it comes to
converting between date and time values and text. Oracle provides far more flexibility, at least
in our experience, than do competing platforms, such as DB2 and SQL Server.

Specifying a format is optional. When you don't specify a format, the input string is assumed to
be in a default format as specified by the NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or
NLS_TIMESTAMP_TZ parameter settings.

"_-‘~ You can view your current NLS parameter settings by querying the view
i named NLS_ SESSION_PARAMETERS.
[
v

6.4.1.1 Using the default formats

Every Oracle session has a set of default formats to use in converting date and timestamp
values to and from their textual representations. You can query the

NLS_ SESSION_PARAMETERS view as follows to see the default formats currently in effect:
SELECT paraneter, value

FROM nl s_sessi on_paraneters

WHERE paraneter LIKE ' %ORVAT ;

PARAMVETER VALUE

NLS DATE_FORVAT DD- MON- RR

NLS TI ME_FORVAT HH M . SSXFF AM

NLS_ Tl MESTAMP_FORVAT DD- MON- RR HH. M . SSXFF AM

NLS TI ME_TZ_FORNAT HH M . SSXFF AM TZR

NLS Tl MESTAMP_TZ_FORVAT DD- MON- RR HH. M . SSXFF AM TZR

Session-specific formats derive from settings for language and territory. If you connect without
specifying a language and territory, your session will inherit the default conversion formats
established for the database. You can query NLS DATABASE_PARAMETERS for those.

When you invoke one of the TO_ conversion functions, say TO_DATE, without explicitly
specifying a format, Oracle expects your input string to be in the default format for the target
data type. The following INSERT statement converts a string in the default date format into a
DATE, which is then inserted into the enpl oyee table:

I NSERT | NTO enpl oyee

(enp_id, fname, |nanme, dept_id, nanager_enp_id, salary, hire_date)

VALUES

(2304, 'John', 'Smith', 20, 1258, 20000, TO DATE('22-OCT-99'));

1 row created.

SELECT * FROM enpl oyee;

EMP_I D FNAME LNANME DEPT_I D MANAGER_EMP_I D SALARY HI RE_DATE

The hi r e_dat e column, into which our date was inserted, is of type DATE. Because the input
character string of '22- OCT- 99" matched Oracle's default date format, the string could be
converted without reference to a format string. In fact, since the supplied string is in the default
date format, you don't even need the TO_DATE function. Oracle automatically performs an
implicit type conversion, as in this example:

I NSERT | NTO enpl oyee
(enp_id, fnane, |name, dept_id, nanager_enp_id, salary, hire_date)
VALUES

(2304, 'John', 'Smth', 20, 1258, 20000, '22-QOCT-99');

1 row created.

Even though Oracle provides means for implicit data type conversions, we recommend always
using explicit conversions, because implicit conversions are not obvious and may lead to
confusion. They may also suddenly fail should a DBA change the database’s default date format.

6.4.1.2 Specifying a format

If you wish to specify a format to use in converting from text to one of the temporal data types,
there are at least two approaches you can take:

e Specify the format at the session level, in which case it applies to all implicit conversions,
and to all TO_DATE, TO_TIMESTAMP, or TO_TIMESTAMP_TZ conversions for which you do
not explicitly specify some other format.

e Specify the format as a parameter in a TO_X function call.

The following example changes the default date format for the session, and then uses TO_DATE
to convert a number to date:

ALTER SESSI ON SET NLS_DATE_FORVAT = ' MVDDYY' ;

Session altered.

I NSERT | NTO enpl oyee
(enp_id, fnanme, |name, dept_id, nanager_enp_id, salary, hire_date)
VALUES

(2304, 'John', 'Smith', 20, 1258, 20000, TO DATE(102299));

1 row created.

Since the default date format has been changed prior to the conversion, the conversion function
TO_DATE doesn't need the date format as an input parameter.

Although it is possible to pass a number such as 102299 to the TO_DATE

function, relying on Oracle's implicit conversion to change the number to a
string, and then into a date, it's probably best to pass a string as input to
the TO_DATE function.

If you do not wish to change your session’s default date format, you must specify the date
format as the second input parameter to whichever of the three functions you are using. For
example, the following SELECT specifies a format as the second input parameter to the
TO_TIMESTAMP_TZ function:

SELECT

TO_TI MESTAMP_TZ(' 12/ 10/ 01 08:15:00.50 EST',' MM DD/ YY HH: M : SSXFF TZR')

FROM DUAL;

TO_TI MESTAMP_TZ(' 12/ 10/ 0108: 15: 00. 50EST' , ' MM DD/ YYHH: M : SSXFFTZR')

10- DEC-01 08. 15. 00. 500000000 AM EST

Let's look at one more example to see how a database character column can be converted to a
TIMESTAMP. Let's assume that the report _i d column in the report table actually stores the

date on which the report was generated, and that the date is in the format "MMDDYYYY." Now,
you can use TO_TIMESTAMP on that column to convert that date into a TIMESTAMP, which is
then displayed using the default timestamp format:

SELECT sent _to, report_id,

TO Tl MESTAMP(report _id," MVDDYYYY') date_generated

FROM report;

SENT_TO REPORT_| DATE_GENERATED

Manager 01011999 01-JAN-99 12.00.00. 000000000 AM
Di rector 01121999 12- JAN-99 12.00. 00. 000000000 AM
Vi ce President 01231999 23-JAN-99 12.00.00. 000000000 AM

In this example, the TO_TIMESTAMP function converts the MMDDYYYY data in the column to a
TIMESTAMP. That TIMESTAMP value is then implicitly converted into a character string for
display purposes, using the default timestamp format.

- Later, in the section on the TO_CHAR function, you'll learn how you can
s use formats to exercise great control over the textual representation of
. 4. date and timestamp values.

6.4.1.3 Converting to TIMESTAMP WITH LOCAL TIME ZONE

Interestingly, Oracle provides no function specifically to convert a text value into the
TIMESTAMP WITH LOCAL TIME ZONE data type. To convert a value to TIMESTAMP WITH LOCAL
TIME ZONE, you must use the CAST function, as in the following example:

SELECT CAST(' 10-DEC-01' AS Tl MESTAMP W TH LOCAL TIME ZONE) FROM DUAL;

CAST(' 10- DEC- 01" ASTI MESTAMPW THLOCALTI MEZONE)

10-DEC-01 12.00.00 AM

In this example, the input string is in the default date format. Therefore, no date format is
required for conversion. Indeed, CAST does not support date formats.

What then do you do if you wish to convert to TIMESTAMP WITH LOCAL TIME ZONE and you
also need to specify a format? One solution here is to use a conversion function along with a
format to convert the string into a value TIMESTAMP WITH TIME ZONE, which you can then cast
to a TIMESTAMP WITH LOCAL TIME ZONE:

SELECT CAST(TO_TI MESTAMP_TZ(' 12/ 10/01',' MM DY YY)
AS TI MESTAMP W TH LOCAL TI ME ZONE)

FROM DUAL,

CAST(TO_TI MESTAMP_TZ("' 12/10/01"," MM DD/ YY") ASTI MESTAMPW THLOCALTI MEZONE)

10- DEC-01 12.00.00 AM

The CAST function used in these examples is not a SQL function in the truest sense. CAST is
actually a SQL expression like DECODE and CASE. The CAST expression converts a value in one
data type to a value in another data type. You can generally CAST between any two, compatible
data types.

6.4.2 TO_YMINTERVAL and TO_DSINTERVAL

The TO_YMINTERVAL and TO_DSINTERVAL functions are similar in purpose to the TO_DATE
family of functions, and serve to convert character strings to the INTERVAL YEAR TO MONTH
and INTERVAL DAY TO SECOND data types. You can pass literals, PL/SQL variables, and
database columns of CHAR or VARCHARZ2 data type to these functions, which you invoke as
follows:

TO _YM NTERVAL (string)

TO DSI NTERVAL (string)

In these invocations, stri ng must contain character data convertible to an INTERVAL YEAR TO
MONTH or INTERVAL DAY TO SECOND value, and in one of the following formats:

TO_YMINTERVAL

The input string must be in Y- Mformat—i.e., the year and month values must be
separated by a dash (-). All components (year, month, and -) must be present in the
string.

TO_DSINTERVAL

The input string must be in D HH:M :SS format. The day value of the interval is separated
by a space from the time value, which is expressed in hours, minutes, and seconds, and is
delimited by ":". All components must be present in the string for it to be converted to an
INTERVAL DAY TO SECOND value.

The following two INSERT statements demonstrate the use of these functions:

I NSERT | NTO event_history VALUES (5001, TO_YM NTERVAL(' 02-04'));

I NSERT | NTO batch_job_history VALUES (6001, TO DSI NTERVAL(' 0 2:30:43'));

In this example, the string '02- 04' represents an interval of 2 years and 4 months, while the
string '0 2: 30: 43" represents an interval of O days, 2 hours, 30 minutes, and 43 seconds.

6.4.3NUMTOYMINTERVAL and NUMTODSINTERVAL

The NUMTOYMINTERVAL (NUMBER-TO-YEAR-MONTH-INTERVAL) and NUMTODSINTERVAL
(NUMBER-TO-DAY-SECOND-INTERVAL) functions convert numeric values into INTERVAL YEAR
TO MONTH and INTERVAL DAY TO SECOND values, respectively. You invoke these functions as
follows:

NUMIOYM NTERVAL (n, unit)

NUMTODSI NTERVAL (n, unit)

The syntax elements are:

Specifies a numeric value, or a value that is convertible to a numeric type.

uni t

Specifies the unit of time that n represents. When converting to an INTERVAL YEAR TO

MONTH, uni t may be either 'YEAR or 'MONTH'. When converting to an INTERVAL DAY TO
SECOND, uni t may be any of 'DAY’, 'HOUR', ‘"M NUTE’, or 'SECOND'. Case does not matter.
Upper, lower, or mixed-case are all the same.

The following example demonstrates the use of these two functions. The first INSERT specifies
an interval of two years, while the second specifies an interval of 5369.2589 seconds:

I NSERT | NTO event _history VALUES

(5001, NUMTOYM NTERVAL(2,' YEAR));

I NSERT | NTO batch_j ob_history VALUES
(6001, NUMTODSI NTERVAL(5369. 2589, "' SECOND)) ;
Unlike the case with TO_YMINTERVAL and TO_DSINTERVAL, you cannot pass mixed units to

these NUMTOXXINTERVAL functions. However, you can build up values from mixed units as
follows:

I NSERT | NTO event _history VALUES

(7001, NUMIOYM NTERVAL(2,' YEAR) + NUMIOYM NTERVAL (4, ' MONTH)):

This INSERT creates a two-year and four-month interval by adding a two-year interval to a
four-month interval.

_ Remember, that there is a "break” in the interval model between days and
o months. You cannot add an INTERVAL DAY TO SECOND value to an
w4 5 INTERVAL YEAR TO MONTH value.

6.4.4 TO_CHAR

The TO_CHAR function is the opposite of the TO_DATE and TO_TIMESTAMP functions, and
converts a DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME
ZONE value into a string of characters. Call TO_CHAR as follows:

TO CHAR(t enporal _data [,fornat])

The syntax elements are:

tenporal _data

Specifies a literal, PL/SQL variable, or a database column of type DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME ZONE.

f or mat

Specifies the format of the output string. The format must be a valid combination of date
or timestamp format elements as described later in Section 6.5.

The format is optional. When the format is not specified, the format of the output depends upon
the type of the input data:

DATE

The output string takes the format specified by the parameter NLS_DATE_FORMAT.

TIMESTAMP

The output string takes the format specified by the parameter NLS_TIMESTAMP_FORMAT.

TIMESTAMP WITH TIME ZONE

The output string takes the format specified by the parameter
NLS_TIMESTAMP_TZ FORMAT.

TIMESTAMP WITH LOCAL TIME ZONE
The output string takes the format specified by the parameter NLS_TIMESTAMP_FORMAT.

The database parameters NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and
NLS_TIMESTAMP_TZ_FORMAT are discussed in Section 6.5.6.

The following example uses TO_CHAR to convert an input date into a string using the default
date format:

SELECT fnanme, TO CHAR(hire_date) FROM enpl oyee;

FNAVE TO_CHAR(H

The following example uses TO_CHAR to convert a timestamp into a string, and explicitly
specifies a timestamp format:

SELECT TO_CHAR(SYSTI MESTAMP, ' MM DDY YYYY HH24: M : SS. FF') FROM DUAL;

TO_CHAR(SYSTI MESTAMP, ' MM DD/ Y

12/ 12/ 2003 10:18: 36. 070000

The format element FF in the preceding example represents fractional seconds. Timestamp-
specific formats are discussed in Section 6.5.

There are situations when you may need to combine TO_CHAR with TO_DATE. For example, if
you want to know on what day of the week January 1, 2000, fell, you can use the following

query:
SELECT TO CHAR(TO DATE(' 01- JAN- 2000’ ,' DD- MON- YYYY'), 'Day') FROM DUAL;

TO CHAR(T

Sat ur day

In this example, the input string '01- JAN- 2000" is first converted into a date and then the
TO_CHAR function is used to convert this date into a string representing the day of the week.

Printing Numeric Amounts in Words

By using the date formats and the functions innovatively, you can generate very
interesting and useful outputs. For example, say that you are writing a check-printing
application, and you need to print each check amount in words. You can do that using
an expression such as in the following SELECT statement:

SELECT TO CHAR(TO DATE(TRUNC(3456.34),'J'),'Jsp'") || ' Dollars and ' |]
TO_CHAR(TO_DATE(ROUND(MOD(3456. 34, 1) *100),'J"),"Jsp') || ' Cents'
"Check Anmount"

FROM DUAL;

Check Anmount

Three Thousand Four Hundred Fifty-Six Dollars and Thirty-Four Cents

This example splits the input number into two components - the first consisting of the

whole number and the second consisting of the fractional number. The whole number
component is converted to words using the Jsp format. The fractional component is
multiplied by 100 and rounded to extract the two digit cents, and then the same
technique is applied to convert that number to words.

| dm PREV < Day Day Up > NEXT oy

| 4m PREV < Day Day Up > MET

6.5 Date and Time Formats

You can display dates and times in a number of ways. Every country, every industry has its own
standard for representing temporal data. Oracle provides you with date and time format codes
so that you can interpret and display dates and timestamps in a wide variety of formats.

A simple example of displaying a date is:

SELECT SYSDATE FROM DUAL,;

SYSDATE

By default, the date is displayed using the DD-MON-RR format. This format uses two digits for
the date (zero padded on the left), three characters for the month (the first three characters of
the English, or your local language, name of the month in uppercase), and two digits for the
year of the century (zero padded on the left). The default date format for the database is
controlled by the NLS_DATE_FORMAT initialization parameter. You can use ALTER SYSTEM or
ALTER SESSION commands to change the default date format for the instance or the session,
respectively. You can also use the TO_CHAR function to specify a format on a per-call basis:

SELECT TO_CHAR(SYSDATE, ' MM DDJ YYYY') FROM DUAL;

TO_CHAR(SY

10/ 03/ 2001

This example converts the current date into the format MM DD/ YYYY using the TO_CHAR
function. The second argument is a format string specifying how we want the date to be
presented. Table 6-1 describes the various date format elements at your disposal. Most of the
examples in Table 6-1 are based on 03-OCT-2001 03:34:48 P.M. Those that involve B.C. dates
use the year 2105 B.C. Those that specifically demonstrate A.M. times are based on 03-OCT-
2001 11:00:00 AM.

Table 6-1. Oracle date, timestamp, and time zone format elements

Component Options Description Format Output
punctuation L/ F- Simplyreproduced in i pn 6N vy 03-0CT-01
* the output
Space OMPly reproduced in - bh g vyyy 03 10 2001
the output
"Text" Simply reproduced in DD "of" Month 03 of October
the output
Day DD Day of the month MM/DD/YY 10/03/01
Day of the year; starts
DDD with 15t January as 1 DDD/YY 276/01
D D_ay of the week; starts D MM/YY 4 10/01
with Sunday as 1
DAY Name of the day, in DAY MM/YY WEDNESDAY 10/01
uppercase
Day Na_lme of the day, in Day MM/YY Wednesday 10/01
mixed case
DY Abbreviated name of 5y vy WED 10/01
the day, in uppercase
Abbreviated name of
Dy the day, in mixed case Dy MM/YY Wed 10/01
Month MM Two-digit month MM/DD/YY 10/03/01
MONTH Name of the month, in iy vy OCTOBER 0
uppercase
Month Na_lme of the month, in Month YY October O
mixed case
MON Abbrewated_name of MON YY OCT O
the month, in uppercase
Mon Na_lme of the month, in Mon YY Oct 01
mixed case
RM Roman-numeral month | DD-RM-YY 03-X-01
Year Y Last one digit of year MM Y 101
YY Last two digits of year MM YY 10 01
YYY Last three digits of year MM YYY 10 001
YYYY Four digits of year MM YYYY 10 2001
Y,YYY Year with comma MM Y,YYY 10 2,001
YEAR Year spelled out, in MM YEAR 10 TWO THOUSAND
uppercase ONE
Year Year spelled out, in MM Year 10 Two Thousand

mixed case

One

Component Options Description Format Output
SYYYY fo"ur_dlglts of year with SYYYY 22105
-" sign for BC
RR Round year depending 1, /0N RR 03-0CT-01
on the current year
RRRR Round year depending | 1, \,o\N_RRRR 03-OCT-2001
on the current year
Last one digit of the ISO
: Standard year MM I 101
Last two digits of the
1Y ISO Standard year MM TY 1001
Last three digits of the
Iy ISO Standard year MM IYY 10 001
Yy Four digits of the 1SO MM 1YYY 10 2001
Standard year
Century CcC Century CcC 21
sce Century with "-" sign for sce 22
BC
Wtdeek W Week of the month W 1
WW Week of the year WW 40
W Week of the year in 1ISO W 40
standard
Quarter Q Quarter of the year Q 4
Hour HH Hour of the day 1-12 HH 03
HH12 Hour of the day 1-12 HH12 03
HH24 Hour of the day 0-23 HH24 15
Minute MI Minute of hour 0-59 MI 34
Second SS Second of minute 0-59 SS 48
SSSSS Seconds past midnight SSSSS 42098
AM/PM AM Meridian indicator HH:MI AM 11:00 AM
AM. Meridian indicator with HH-MI AM. 11:00 A.M.
dots
PM Meridian indicator HH:MI PM 03:34 PM
P.M. Meridian indicator with 1, .\ b . 03:34 P.M.
dots
AD/BC AD AD indicator YY AD 01 AD
A.D. AD indicator with dots YY A.D. 01 A.D.
BC BC indicator YY BC 05 BC

Component Options Description Format Output

B.C. BC indicator with dots YY B.C. 05 B.C.

Julian day J g\l:nrsgf; ;’f i?{; Sl'airc'ce J 2452186

Suffix TH or th | Ordinal number DDTH or DDth O3RD
SP or sp | Spelled number MMSP or MMsp TEN
SPTH Spelled ordinal number DDSPTH THIRD
THSP Spelled ordinal number DD THSP THIRD

Time zone TZH Time zone hour HH:MI:SS.FF TZH 08:23:46.368 -10
17 Time zone minute HH:MI:SS:FF 08:23:46.368 -

TZH:TZM 10:30

6.5.1 AD/BC Indicators

Oracle provides two formats, AD and BC (two more with dots—A.D., B.C.), to characterize a
year with respect to the year 0. However, they both serve the same purpose, and you can use
either of them with equivalent results. If you have used the format BC in a query, and the date
you are applying this format to comes out to be an AD year, Oracle is intelligent enough to print
AD instead of BC, and vice versa. For example:

SELECT TO_CHAR(SYSDATE, 'YYYY AD),

TO_CHAR(SYSDATE, ' YYYY BC) FROM DUAL;

TO CHAR(TO CHAR(

2001 AD 2001 AD
SELECT TO_CHAR(ADD_MONTHS(SYSDATE, - 50000), ' YYYY AD),
TO_CHAR(ADD_MONTHS(SYSDATE, - 50000), ' YYYY BC) FROM DUAL;
TO CHAR(TO CHAR(

2165 BC 2165 BC

In the first example, even though we supplied the BC format with the SYSDATE, it printed 2001
AD in the output, and in the second example, even though we supplied AD with a date 50,000
months earlier (in the BC), it printed BC in the output. The function ADD_MONTHS is discussed
later in the chapter.

The Year O

At our graduation party in 1990, all of our classmates agreed to meet after 10 years
on January 1, 2000. Some even suggested that since it would be the start of the
new Millennium, it would be a great idea to have a millennium get-together.

Ten years passed by. Some of us, who had kept in touch after graduation,
remembered our millennium plan and decided to have a get-together on January 1,
2000. The party was well organized, and everyone was having a great time, untill
someone came up with the thought that our party wasn't actually a millennium
party. It was one year earlier than the actual start of the millennium. There was no
year "0," and therefore, the year 2000 was the last year of the then current
millennium. The new millennium actually began a year later January 1, 2001.
Debate over this issue continued till the wee hours in the morning, and four years
later we still debate it.

When the millennium began is an interesting topic for discussion, and the basis for
that discussion lies in the convention we use in numbering our years. The common
convention is the BC/AD convention, in which the sequence of yearsis ..., 2 BC, 1
BC, 1 AD, 2 AD, In this convention, there is no year 0—1 AD comes right after 1
BC. However, the convention used by astronomers includes a year 0. And, instead of
representing BC and AD, astronomers prefer using the "-" and "+" notation. In the
astronomical convention, the sequence of years is ..., -1, 0, +1, +2,

Oracle uses the BC/AD convention, and doesn't allow the year 0, as shown in the
following example:

SELECT TO DATE(' 0000-12-10',"' YYYY-MV DD) FROM DUAL;
SELECT TO _DATE(' 0000-12-10',"' YYYY-MVW DD) FROM DUAL

*
ERROR at l|ine 1:
ORA-01841: (full) year nust be between -4713 and +9999, and not be 0
Since there is no year O in the Oracle calendar, the year after 1 BC must be the year
1 AD. Therefore, the difference between the date "January 1, 0001 AD" and the date

"December 31, 0001 BC" should be 1 day. However, the following example is in
complete contrast to this:

SELECT TO _DATE(' 0001-01-01 AD ,'YYYY-MV DD AD)

- TO _DATE(' 0001-12-31 BC , ' YYYY- MV DD BC)

FROM DUAL;

TO_DATE(' 0001-01-01AD , ' YYYY-

Where does 367 come from? You were expecting 1, right? 367 is the result of 366
(the number of days in the year O, being a leap year) plus 1. The existence of year O
indicates that Oracle's date arithmetic uses the astronomical convention. This
contradiction is known as Oracle's year-zero bug.

Refer to an enlightening article by Peter Gulutzan and Trudy Pelzer at
http://www.orafaqg.net/papers/dates o.doc for details on this and other interesting
facts involving Oracle's calendar.

6.5.2 AM/PM Indicators

The AM/PM indicators (as well as A.M. and P.M.) behave exactly the same as the AD/BC
indicators. If you have used the AM format in a query, and the time you are applying this
format to comes out to be a PM time, Oracle is intelligent enough to print PM instead of AM, and
vice versa. For example:

SELECT TO CHAR(SYSDATE, 'HH M :SS AM),
TO_CHAR(SYSDATE, 'HH M :SS PM),
TO_CHAR(SYSDATE - 8/24, '"HH M :SS AM),
TO _CHAR(SYSDATE - 8/24, 'HH M :SS PM)

FROM DUAL,;

TO CHAR(SYS TO CHAR(SYS TO CHAR(SYS TO CHAR(SYS

06:58: 07 PM 06:58: 07 PM 10:58:07 AM 10:58: 07 AM

6.5.3 Case-Sensitivity of Formats

Some date formats are case-sensitive while others aren't. The formats that represent numbers
are not case-sensitive. For example:

SELECT TO CHAR(SYSDATE, 'HH. M') UPPER

http://www.orafaq.net/papers/dates_o.doc

TO CHAR(SYSDATE, 'hh:mi') LOWAER
TO CHAR(SYSDATE, 'Hh:m') M XED

FROM DUAL;

UPPER LOWER M XED

03:17 03:17 03:17

You can see that the format HH:M is case-insensitive—no matter which case you use for the
format, the output is the same. The same applies to all other format elements that represent
numbers, for example, DD, MM, YY, etc.

Date formats that represent textual date components are case-sensitive. For example, the
format DAY is different from day. The following rules apply for determining the case of the

output when a textual date format is used:

e If the first character of the format is lowercase, then the output will be lowercase,
regardless of the case of the other characters in the format:
SELECT TO CHAR(SYSDATE, 'nonth'),
TO CHAR(SYSDATE, ' nONTH),
TO CHAR(SYSDATE, ' nobNTh')

FROM DUAL,;

TO CHAR(S TO CHAR(S TO CHAR(S

oct ober oct ober oct ober

e If the first character of the format element is uppercase and the second character is also
uppercase, then the output will be uppercase, regardless of the case of the other
characters in the format:

SELECT TO CHAR(SYSDATE, 'MOnth'),
TO CHAR(SYSDATE, ' MONTH)

FROM DUAL,;

TO CHAR(S TO CHAR(S

¢ If the first character of the format element is uppercase and the second character is
lowercase, then the output will have an uppercase first character and all other characters
lowercase, regardless of the case of the other characters in the format:
SELECT TO CHAR(SYSDATE, 'MNTH), TO CHAR(SYSDATE, 'Month")

FROM DUAL;

TO CHAR(S TO CHAR(S

Cct ober Cct ober

MINUTES: Ml or MM

Many SQL beginners assume that since HH represents hours and SS represents
seconds, MM would represent minutes, and try to write the following SQL queries to
print the current time:

SELECT TO_CHAR(SYSDATE, 'HH MM SS') FROM DUAL;

TO_CHAR(

02:10: 32

However, this is wrong. MM represents months and not minutes. The format for
minutes is MI. Therefore, remember to use MI instead of MM when attempting to get
the minutes part of the date. The correct query is:

SELECT TO_CHAR(SYSDATE, 'HH M :SS') FROM DUAL;

TO_CHAR(

02:57: 21

It becomes extremely difficult to debug an application if the MM format is embedded
in the code instead of MI.

These rules apply to all text elements, such as those used to represent month names, day
names, and so forth.

6.5.4 Two-Digit Years

Even though Oracle stores the century of the year internally, it allows you to use two-digit
years. Therefore, it is important to know how the century is handled when you use a two-digit
year. Oracle provides two two-digit year formats that you can use: YY and RR.

With the YY year format, the century is assumed to be the current century:

ALTER SESSI ON SET NLS_DATE_FORVAT = ' DD- MON-YY';

Session altered.

SELECT SYSDATE, TO CHAR(SYSDATE, ' DD- MON- YYYY') FROM DUAL;

SYSDATE TO CHAR(SYS

06- OCT-01 06- CCT-2001

SELECT TO CHAR(TO DATE(' 10- DEC-99'), ' DD- MON- YYYY'),

TO_CHAR(TO DATE(' 10- DEC-01'), ' DD- MON- YYYY') FROM DUAL;

TO CHAR(TO_ TO CHAR(TO_

10- DEC- 2099 10- DEC- 2001

Since the current date was 06-OCT-2001 when these examples were executed, the first two
digits of the years (the century component) in this example are assumed to be 20.

With the RR year format, the first two digits of the specified year are determined based upon
the last two digits of the current year and the last two digits of year specified. The following
rules apply:

e If the specified year is less than 50, and the last two digits of the current year are less
than 50, then the first two digits of the return date are the same as the first two digits of
the current date.

o If the specified year is less than 50, and the last two digits of the current year are greater
than or equal to 50, then first two digits of the return date are one greater than the first
two digits of the current date.

e If the specified year is greater than or equal to 50, and the last two digits of the current
year are less than 50, then first two digits of the return date are one less than the first two
digits of the current date.

e If the specified year is greater than or equal to 50, and the last two digits of the current
year are greater than or equal to 50, then the first two digits of the return date are the
same as the first two digits of the current date.

The following example demonstrates these rules:

ALTER SESSI ON SET NLS_DATE_FORVAT = 'DD- MON-RR';

Session altered.

SELECT SYSDATE, TO CHAR(SYSDATE, ' DD- MON- YYYY') FROM DUAL;

SYSDATE TO CHAR(SYS

06- OCT-01 06- CCT-2001

SELECT TO CHAR(TO DATE(' 10- DEC-99'), ' DD- MON- YYYY'),

TO_CHAR(TO DATE(' 10- DEC-01'), ' DD- MON- YYYY') FROM DUAL;

TO CHAR(TO_ TO CHAR(TO_

10- DEC- 1999 10- DEC- 2001

The ALTER SESSION command sets the default date format to DD-MON-RR. The next SELECT
uses SYSDATE to show the current date at the time the example was executed. The final
SELECT demonstrates the use of the RR date format (both TO_DATE calls rely on the default
format set earlier). Note that the DD-MON-RR date format treats 10-DEC-99 as 10-DEC-1999,
whereas it treats 10-DEC-01 as 10-DEC-2001. Compare this output to the rules we just listed.

The year format RRRR (four Rs) allows you to enter either a two-digit year or a four- digit year.
If you enter a four-digit year, Oracle behaves as if the year format was YYYY. If you enter a
two-digit year, Oracle behaves as if the year format is RR. The RRRR format is rarely used. Most
SQL programmers prefer to use either YYYY, or to explicitly specify RR.

6.5.51SO Standard Issues

The 1SO 8601 standard determines the start date of the first week of the year based upon
whether most of the days in the week belong to the new year or to the previous year. If January
1 is a Monday, Tuesday, Wednesday, or a Thursday, then January 1 belongs to the first week of
the new ISO year. The first day of the ISO year is either January 1 (if it is a Monday) or the
previous Monday (which actually goes back to the last calendar year). For example, if January 1
is a Tuesday, then the first day of the ISO year is Monday, December 31, of the prior calendar
year.

If January 1 is a Friday, Saturday, or a Sunday, then January 1 belongs to the last week of the
previous ISO year. The first day of the first week of the new ISO year is then considered to be
the Monday following January 1. For example, if January 1 falls on a Saturday, then the first
day of the ISO year is considered to be Monday, January 3.

If you need to work with ISO dates, Oracle provides date formats that treat 1SO years
differently from calendar years. These 1SO formats are:

Represents the week of the year in ISO standard.

I, 1Y, 1YY, and IYYY
Represents the ISO year.

The following sections describe 1SO weeks and years with examples.

6.5.5.1 ISO standard weeks

In the ISO standard, weeks of the year are counted differently than regular calendar weeks. In
a regular calendar, the first week of the year starts on January 1. 01-JAN is the first date of the
first week. However, in the ISO standard, a week always starts on a Monday and ends on a
Sunday. Therefore, the first date of the first week is considered to be the date of the nearest
Monday. This date could be a couple of days later than 01-JAN, or it could be a couple of days
earlier (in the previous year).

The format WW returns the week of the year in terms of the regular calendar, and the format
IW returns the week of the year in terms of the I1SO standard. Since 01- JAN-2001 was a
Monday, it was considered the start date of the first week in terms of the regular calendar as
well as in terms of the ISO standard. Therefore, if you compute the week number of any date in
the year 2001, the results will be the same whether you use the regular calendar or the 1SO
calendar. For example:

SELECT TO_CHAR(TO DATE(' 10- DEC-01'),"' WV),
TO_CHAR(TO DATE(' 10-DEC-01'),"' I W)

FROM DUAL;

However, the year 1999 didn't start on a Monday. Therefore, for some dates, the week number
in the 1SO standard could be different from that of the regular calendar. For example:

SELECT TO CHAR(TO DATE(' 10- DEC-99'),"' WV),
TO_CHAR(TO DATE(' 10- DEC-99'),"' I W)

FROM DUAL,;

The ISO Standard can cause a year to have 53 weeks. Here's an example:

SELECT TO CHAR(TO DATE(' 01-JAN-99'),' W),
TO CHAR(TO DATE(' 01-JAN- 99'),' Day')

FROM DUAL,

TO TO CHAR(T

53 Friday

Note that the ISO standard treats January 1, 1999 to be in the 53rd week of 1998, because it
falls on a Friday. The first week of 1999 starts on the subsequent Monday, which is January 4,
as per the I1SO standard.

6.5.5.2 ISO standard year

The year formats I, 1Y, 1YY, and IYYY represent the ISO year. 1YYY represents the four-digit 1ISO
year, 1YY represents the last three digits of the 1SO year, IY represents the last two digits of the
ISO year, and | represents the last digit of the ISO year. Remember that the start date of an
ISO year is not necessarily January 1. The following example returns the ISO and calendar
years for January 1, 1999:

SELECT TO CHAR(TO DATE(' 01-JAN-99'),'1YYY"),

TO _CHAR(TO_DATE("' 01- JAN-99'), ' YYYY') FROM DUAL;

ToC TOC

1998 1999

Notice that even though the calendar year is 1999, the ISO year is considered to be 1998.
That's because 01-Jan-1999 fell on a Friday—late in the week, which causes the week to be
considered part of the previous ISO year. The following example demonstrates the opposite
situation:

SELECT TO_CHAR(TO DATE(' 31-DEC-90'),"'1YYY'),

TO_CHAR(TO DATE(' 31-DEC-90'), "' YYYY') FROM DUAL;

TOC TOC

1991 1990

This time, the calendar year is 1990, but the date 31-Dec-1990 is considered to be in ISO year
1991. This is because 01-Jan-1991 fell on a Tuesday, early enough in the week for the entire
week to be considered part of the next ISO year.

6.5.6 Database Parameters

The default formats to use when converting temporal data to character form are determined by
database parameters. The key parameters are:

NLS_DATE_FORMAT

Specifies the default format used by TO_DATE and TO_CHAR functions when converting
character data into data of type DATE or vice versa.

NLS_TIMESTAMP_FORMAT

Specifies the default format used by TO_TIMESTAMP and TO_CHAR functions when
converting character data into data of type TIMESTAMP and TIMESTAMP WITH LOCAL
TIME ZONE or vice versa.

NLS_TIMESTAMP_TZ_FORMAT

Specifies the default format used by TO_TIMESTAMP_TZ and TO_CHAR when converting
character data into data of type TIMESTAMP WITH TIME ZONE or vice versa.

If any of these parameters are not set explicitly, its default value is derived from the setting for
the NLS_TERRITORY parameter. The NLS_TERRITORY parameter specifies the territory, such as
"AMERICA" or "CZECH REPUBLIC." For more details on the NLS parameters, refer to Oracle's
Globalization Support Guide.

You or your DBA can specify values for these default date format parameters in one of the

following three ways:

e By specifying a value in the instance's initialization parameter file. For example:
NLS DATE_FORVAT = ' YYYY- MM DD

A format string specified using this approach becomes the instance-wide default.

e By issuing an ALTER SESSION command to change the default for your current session:
ALTER SESSI ON SET NLS TI MESTAMP_FORMAT = ' YYYY- MW DD HH24: M : SS. FF' ;

e By setting an environment variable on your client, to change the default value for all
sessions initiated from your client:
setenv NLS_DATE FORMVAT ' YYYY- MV DD

e The NLS_LANG environment variable must be set for any other NLS
e environment variable setting to take effect. Unless NLS_LANG is set, all
. 4s settings for other NLS_ environment variables are ignored.

The session-level setting overrides the environment variable setting, and the environment
variable setting overrides the initialization parameter setting.

[_ﬁ PREY j
< Day Day Up >

=y

6.6 Manipulating Temporal Data

Date arithmetic is an important aspect of our day-to-day life. We find the age of a person by
subtracting his date of birth from today's date. We compute the date a warranty expires by
adding the warranty period to the purchase date. Drivers' license expirations, bank interest
calculation, and a host of other things all depend on date arithmetic. It is extremely important
for any database to support such common date arithmetic operations.

6.6.1 Using the Built-in Temporal Functions

Oracle provides a number of helpful functions, some of which you've seen used earlier in this
chapter, that you can use to manipulate temporal values:

ADD_MONTHS(dat e_val ue , nont hs)
Adds months to a date. Add negative values to subtract months. If the initial date

represents the last day of a month, the result is forced to the final day of the result
month. Section 6.6.2 discusses this function in detail.

CURRENT_DATE

Returns the current date in the session time zone, as a DATE value.

CURRENT_TI MESTAMP

Returns the current date and time in the session time zone, as a TIMESTAMP WITH TIME
ZONE value.

DBTI MEZONE

Returns the database time zone.

EXTRACT(el enent FROMt enporal _val ue)

Returns the specified element from a date, timestamp, or interval. Valid elements, which
are SQL keywords and not string values, are: YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_REGION, and
TIMEZONE_ABBR. The temporal value may be any of Oracle's date, timestamp, or interval

types.

FROM TZ(ti mestanp ,tinme_zone)
Converts a TIMESTAMP into a TIMESTAMP WITH TIME ZONE, essentially merging the two

values you provide into one. The ti ne_zone argument must be a string in the form [+]| -
] hh m

LAST_DAY(dat e_val ue)

Computes the last day of the month in which the given DATE value falls.

LOCALTI MESTAMP

Returns the current date and time in the session timezone, as a TIMESTAMP value.

MONTHS_BETWEEN(| ater _date ,earlier_date)
Determines the number of months between two dates. The calculation is performed as:

| ater _date -earlier_date . Iflater_date is actually earlier, than you'll get a
negative result. See Section 6.6.3 for a detailed look at this function.

NEW TI ME(date , source_tinme_zone ,target_tine_zone)

Translates the time component of dat e from the source_ti nme_zone to the

target _time_zone . The time zone arguments must be strings containing time zone
abbreviations such as PST, EST, CST. The list of time zones supported for use with
NEW_TIME is shorter, and distinct from, the list of time zones supported for the
timestamp types.

NEXT_DAY(dat e , weekday)
Returns the date of the next specified weekday following the given dat e . The weekday

argument must be a valid weekday name or abbreviation in the current language—e.g.,
"Monday," "Tuesday," "Wed," "Thu."

ROUND(t enpor al _val ue , format _el enent)

Rounds a date or timestamp value to the specified element. See Section 6.6.5 .

SESSI ONTI MEZONE

Returns the session timezone.

SYSDATE

Returns the current date and time for the operating system on which the database
resides.

SYSTI MESTAMP

Returns the current date and timestamp time for the operating system on which the
database resides as a TIMESTAMP WITH TIME ZONE value.

SYS EXTRACT_UTC (tinestanp_ with tinmezone_val ue)

Returns the UTC data and time value with respect to the input TIMESTAMP WITH TIME
ZONE value.

TRUNC(t enporal _val ue , format_el enent)

Truncates a date/time value to a specific element. See Section 6.6.5 .

TZ_OFFSET([tz_name | tz_offset])

Returns the time zone offset with respect to UTC. Input may be a time zone name from
V$TIMEZONE_NAMES or a time zone offset in the form [+| -] hh :m

SYSDATE is one of the most commonly used functions, and returns the current date and time as
a DATE value:

ALTER SESSI ON SET NLS_DATE_FORVAT = 'DD-MON-RR HH M :SS';

Session altered.

SELECT SYSDATE FROM DUAL;

SYSDATE

11-NOv-01 01:00: 10

The following is an example of a function that takes arguments. The FROM_TZ function is used
to add time zone information to the timestamp returned by a call to SYSTIMESTAMP. You can

see that LOCALTIMESTAMP by itself returns no time zone information. FROM_TZ combines the
TIMESTAMP with the time zone we specified, and returns a TIMESTAMP WITH TIME ZONE:

SELECT LOCALTI MESTAMP FROM dual ;

LOCALTI MESTAVP

18- DEC- 03 03. 31.24. 974000 PM

SELECT FROM TZ(LOCALTI MESTAMP, ' -5:00') FROM dual ;

FROM TZ(LOCALTI MESTAMP, ' - 5: 00")

18- DEC- 03 03. 31. 25. 024000 PM -05:00

The EXTRACT function is unusual in that its first argument is actually a SQL keyword, and the
delimiter between arguments is also a keyword:

SELECT EXTRACT(YEAR FROM SYSDATE) FROM dual ;

EXTRACT(YEARFROMSYSDATE)

A more useful and interesting example of EXTRACT is shown at the end of Section 6.6.3 .

Many of Oracle's temporal functions take only DATE values as inputs. This harks back to the day
when DATE was the only temporal type. You have to be careful about this, because Oracle will
implicitly convert timestamp types to DATEs, leading you to inadvertently write erroneous code.
For example:

SELECT ADD_MONTHS(SYSTI MESTAMP, 1) FROM dual ;

18- JAN- 04

The problem here isn't terribly obvious, but what's happened is that SYSTIMESTAMP has
returned a TIMESTAMP WITH TIME ZONE value, which has been implicitly cast to a DATE, and
thus both fractional seconds and the time zone have been lost. The results are the same as if
you'd executed:

SELECT ADD_MONTHS(CAST(SYSTI MESTAMP AS DATE), 1) FROM dual ;

Be careful about passing TIMESTAMP values to functions that expect DATEs. If your code
depends on fractional seconds or time zone information, you'll lose that information, and your
code won't work as you expect.

-
e

We rather wish Oracle had overloaded all the existing DATE functions, such as ADD_MONTHS,
to also accept the various TIMESTAMP data types.

6.6.2 Addition

Adding two datetime values doesn't make sense. However, you can add days, months, years,
hours, minutes, and seconds to a datetime to generate a future date and time. How you go
about adding time intervals to datetime values depends on whether you are working with a
DATE or one of the TIMESTAMP values.

6.6.2.1 Adding numbers to a DATE

The + operator allows you to add numbers to a DATE. The unit of a number added to a DATE is
assumed to be days. Therefore, to find tomorrow's date, you can add 1 to SYSDATE:

SELECT SYSDATE, SYSDATE+1 FROM DUAL,;

SYSDATE SYSDATE+1

05-OCT-01 06-CCT-01

Any time you add a number to a DATE, Oracle assumes that the number represents a number of
days. Therefore, if you want to add multiples of a day (week, month, year, etc.) to a DATE, you

first need to multiply by a conversion factor. For example, to add one week to today's date, you

add 7 (7 days in a week times 1 day) to SYSDATE:

SELECT SYSDATE+7 FROM DUAL;

SYSDATE+7

Similarly, if you want to add fractions of a day (hour, minute, second) to a DATE, you first need
to convert such fractions into a fractional number of days. Do this by dividing by a conversion
factor. For example, to add 20 minutes to the current date and time, you need to add (20
minutes/1,440 minutes in a day) to SYSDATE:

SELECT TO_CHAR(SYSDATE, ' DD- MON-YY HH: M : SS'),
TO_CHAR(SYSDATE+(20/ 1440) ,' DD- MON-YY HH M : SS')

FROM DUAL,;

TO_CHAR(SYSDATE, ' D TO_CHAR(SYSDATE+(2

05-OCT-01 01:22: 03 05-0OCT-01 01:42:083

=

Oracle allows you to use the + operator to add a number (number of days) to a TIMESTAMP
value. However, when you do that, the TIMESTAMP value will be implicitly converted to a DATE
value, with consequent loss of information.

6.6.2.2 Adding months to a DATE

Adding months to a DATE is not as easy as adding weeks, because all months don't have the
same number of days—some have 30, some 31, some 28, and at times even 29. To add one
month to a DATE, you need to know how many days that calendar month will have. Therefore,
adding months to a DATE by converting those months to a number of days involves lots of
homework, which is error-prone. Fortunately, Oracle does all the homework for us, and
provides a built-in SQL function to add months to DATE values. This function is called
ADD_MONTHS, and you call it as follows:

SELECT fname, hire_date, ADD MONTHS(hire_date, 6) review date

FROM enpl oyee;

FNANVE Hl RE_DATE REVI EW DA

John 22-CCT-99 22- APR-00

This example shows the computation of an employee's biannual review date by using
ADD_MONTHS to add six months to the employee’'s hi re_dat e . The input DATE and the result
DATE both fall on the 22nd of the month. This would not have happened if we had added 180
days to the input DATE. ADD_MONTHS is "smart" in one other way, too. The following example
adds 6 months to 31 December 1999:

SELECT ADD_MONTHS(' 31- DEC- 99' , 6) FROM DUAL;

30- JUN- 00

The ADD_MONTHS function is intelligent enough to know that adding 6 months to 31 December
should result in the last day of June. And since the last day of June is the 30th (not 31st), it
returns 30 June, 2000.

-
e

ADD_MONTHS does not work for TIMESTAMP values. Any such values passed to ADD_MONTHS
will be implicitly converted to DATE values, with consequent loss of information.

6.6.2.3 Adding true INTERVAL values rather than numbers

You can use the + operator to add INTERVALs to DATE or TIMESTAMP values. For example,
assume the flight time between New York and Los Angeles is 6 hours and 27 minutes. To find
the arrival time of the flight, leaving New York now (3:39 PM in the example), at Los Angeles,
you add the flight time to the current time:

sel ect sysdate, sysdate + INTERVAL 'O 6:27:00" DAY TO SECOND

from dual ;

SYSDATE SYSDATE+| NTERVAL' 06

12/ 29/ 2003 15:39: 00 12/29/2003 22:06:00

The preceding example adds an interval literal | NTERVAL '0 6:27:00" DAY TO SECOND (6
hours and 27 minutes) to the DATE value returned by SYSDATE. The result of the addition is a
DATE value and is in the New York (EST) time zone. However, since the destination is Los

Angeles, you would like the output to be in the local time zone of the destination (PST). To
achieve this, you can use the NEW_TIME function, as shown in the following example:

sel ect sysdate,
new time(sysdate + INTERVAL 'O 6:27:00" DAY TO SECOND, 'EST','PST')

from dual ;

SYSDATE NEW TI ME(SYSDATE+| N

12/ 29/ 2003 15:39: 00 12/29/2003 19:06:00

Therefore, a flight with flight time of 6 hours and 27 minutes that leaves New York at 3:39 PM
will reach Los Angeles at 7:06 PM local time.

Similarly to adding intervals to DATE values, you can add intervals to TIMESTAMP values. For
example:

SELECT LOCALTI MESTAMP, LOCALTI MESTAMP + |INTERVAL 'O 3:16:23" DAY TO SECOND

FROM DUAL,;

LOCALTI MESTAMP

28- MAR- 04 04. 30. 19. 208000 PM

28- MAR- 04 07. 46. 42. 208000000 PM

If you need to add some number of days to a TIMESTAMP value, you shouldn't just directly add
the number to the TIMESTAMP. In doing so, the TIMESTAMP will be implicitly converted to a
DATE, which results in the loss of information. Specifically, you'll lose your fractional seconds.
Rather, you should convert the number to an interval, and then add the interval to the
TIMESTAMP. The result will be a TIMESTAMP value, and no information will be lost. For
example:

SELECT LOCALTI MESTAMP + | NTERVAL '1 0:00: 00" DAY TO SECOND

FROM DUAL;

LOCALTI MESTAMP+I NTERVAL' 10: 00: 00" DAYTOSECOND

29- MAR- 04 04. 36. 46. 211000000 PM

As an alternative to using an INTERVAL literal as in the preceding example, you can use the
NUMTODSINTERVAL function to convert a number to an interval, as shown in the following
example:

SELECT LOCALTI MESTAMP + NUMICODSI NTERVAL(1, ' DAY')

FROM DUAL,;

LOCALTI MESTAMP+NUMIODSI NTERVAL(1, ' DAY")

29- MVAR- 04 04. 37.16. 077000000 PM

6.6.3 Subtraction

Even though no other arithmetic operation (addition, multiplication, division) between two
DATEs makes any sense, subtracting one DATE from another DATE is a very common and useful
operation. The - operator allows you to subtract a DATE from a DATE, or a number from a
DATE, a TIMESTAMP from a TIMESTAMP, an interval from a DATE and an interval from a
TIMESTAMP.

6.6.3.1 Subtracting one DATE from another

Subtracting one DATE from another DATE returns the number of days between those two
DATEs. The following example displays the lead time of a set of orders by subtracting the date
on which the order was placed (or der _dt) from the expected ship date (expect ed_shi p_dt):

SELECT order_nbr, expected ship_dt - order_dt lead tine

FROM cust _order;

ORDER NBR LEAD TI ME

1001 1
1000 5
1002 13

1003 10

1004 9

1005 2
1006 6
1007 2
1008 2
1009 4
1012 1
1011 5
1015 13
1017 10
1019 9
1021 2
1023 6
1025 2
1027 2
1029 4

6.6.3.2 Subtracting one TIMESTAMP from another

Subtracting one TIMESTAMP from another TIMESTAMP returns an interval of type INTERVAL
DAY TO SECOND. For example:

SELECT LOCALTI MESTAMP - transaction_timestanp FROM transacti on;

SYSTI MESTAMP- TRANSACTI ON_TI MESTAMP

+000000453 07:04: 39. 086000

6.6.3.3 Subtracting a number from a DATE

Along with subtracting one DATE from another, you can also subtract a number from a DATE.
Subtracting a number from a DATE returns a DATE that number of days in the past. For
example, subtracting 1 from SYSDATE gives yesterday, and subtracting 7 from SYSDATE yields
the same day last week:

SELECT SYSDATE, SYSDATE - 1, SYSDATE - 7 FROM DUAL,

SYSDATE SYSDATE-1 SYSDATE-7

05-OCT-01 04-CCT-01 28-SEP-01

=

Oracle lets you use the - operator to subtract a number (of days) from a TIMESTAMP value.
However, when you do that, the TIMESTAMP value will be implicitly converted to a DATE value,
with consequent loss of information.

6.6.3.4 Subtracting months from a DATE

Unlike ADD_MONTHS, Oracle doesn't provide a SUBTRACT_MONTHS function. To subtract
months from a DATE, use the ADD_MONTHS function, and pass a negative number as the
second parameter:

SELECT SYSDATE, ADD_MONTHS(SYSDATE, -6) FROM DUAL;

SYSDATE ADD_MONTH

05-OCT-01 05-APR-01

6.6.3.5 Number of months between two DATES

Earlier in this section you saw that subtracting a DATE from another DATE returns the number
of days between the two dates. There are times when you may want to know the number of
months between two DATEs. Consider that subtracting an employee's hi r e_dat e from SYSDATE

yields the number of days of experience the employee has with her employer:

SELECT SYSDATE-hire_date FROM enpl oyee;

SYSDATE- H RE_DATE

714. 0786

It's better, in most cases, to find the number of months of experience rather than the number of
days. You know that dividing the number of days between two DATEs by 30 won't accurately
calculate the number of months between those two DATEs. Therefore, Oracle provides the built-
in SQL function MONTHS_BETWEEN for finding the number of months between two DATEs.
MONTHS_BETWEEN is called as follows:

SELECT MONTHS_BETWEEN(SYSDATE, hi re_dat €) ,
MONTHS_BETWEEN(hi re_date, SYSDATE)

FROM enpl oyee;

MONTHS_BETWEEN(SYSDATE, H RE_DATE) MONTHS_BETWEEN(HI RE_DATE, SYSDATE)

267. 83499 -267. 83499

MONTHS_BETWEEN subtracts the second DATE from the first. So, if the second DATE comes
later than the first, then MONTHS_BETWEEN will return a negative value. You can see that
behavior in this example. Both calls use the same two DATESs, but in different orders, and the
difference in results is that one result is negative while the other is positive.

There is no YEARS_BETWEEN function. To find the number of years between two DATEs, you
can either subtract the two DATEs to find the number of days and then divide by 365, or use
MONTHS_BETWEEN to find the number of months and then divide by 12. All years don't have
the same number of days—some have 365 days and others have 366 days. Therefore, it is not
accurate to divide the number of days by 365 to get the number of years. On the other hand, all
years have 12 months, whether a leap year or not. Therefore, the most accurate way to
calculate the number of years between two DATEs is to use the MONTHS_BETWEEN function to
find the number of months and then divide by 12 to get the number of years.

6.6.3.6 Time interval between two DATES

As you saw in the preceding examples, subtracting one DATE from another returns the number
of days. However, at times, if the difference is a fractional day, you would like to find the
number of hours, minutes, and seconds between two points in time. In the next example, a
pizza delivery center keeps track of the order _recei ve_ti ne and the del i very_ti ne of the
orders it receives:

CREATE TABLE pizza_delivery (

order _id NUVBER(10) ,
order _receive_tine DATE,
delivery tinme DATE) ;

Tabl e created.

I NSERT | NTO pizza_delivery VALUES
(1, TO_DATE('12/20/03 08:47:53','" MDD YY HH M:SS),

TO _DATE ('12/20/03 10:30:34',"MMDDYY HHM:SS));

1 row created.

COW T,

Conmit conpl ete.

The manager of the pizza delivery center wants to know the time difference between the
order _receive_tinme and the delivery_tinme . You can use the date subtraction operation as

in the following query:

SELECT delivery tinme - order_receive_tinme FROM pizza_delivery;

DELI VERY_TI ME- ORDER_RECEI VE_TI ME

. 07130787

The fractional days returned by the preceding query doesn't make much sense. The manager
wants to know the time difference in hours, minutes, and seconds. One way to find this would
be to convert the number returned by the date subtraction into an interval using the
NUMTODSINTERVAL function, and then extract the hour, minute, and second components of
this interval using the EXTRACT function:

SELECT EXTRACT(HOUR FROM
NUMIODSI NTERVAL (del i very_time - order_receive_tinme, 'DAY))
R N
EXTRACT(M NUTE FROM
NUMIODSI NTERVAL(del i very_time - order_receive_tinme, 'DAY))
R N
EXTRACT(SECOND FROM

NUMIODSI NTERVAL (del i very _time - order_receive_tinme, 'DAY))

"Lead Ti nme"

FROM pi zza_delivery;

This example uses three expressions to extract hour, minute, and second, respectively, and
then concatenates those values using the : delimiter to return the result in the HH:MI:SS
format, which is much easier to comprehend compared to a fractional day.

6.6.3.7 Subtracting an INTERVAL from a DATE or TIMESTAMP

You can use the - operator to subtract an INTERVAL from a DATE or TIMESTAMP value. For
example, if you need to reach your office at 8:00 AM, and it takes 30 minutes to reach from
your home to office, you can use the following example to back calculate the start time:

SELECT TO _DATE(' 12/29/2003 08:00:00") - INTERVAL 'O 0:30: 00" DAY TO SECOND

FROM DUAL;

TO_DATE(' 12/ 29/ 2003

12/ 29/ 2003 07:30: 00

The preceding example subtracts an interval literal (I NTERVAL '0 0: 30: 00" DAY TO SECOND)
from a DATE value, and returns a DATE value. Similarly, you can subtract an interval from a
TIMESTAMP value, using the "-" operator, as shown in the following example:

SELECT LOCALTI MESTAMP - | NTERVAL 'O 0:30:00" DAY TO SECOND

FROM DUAL,;

LOCALTI MESTAMP- | NTERVAL' 00: 30: 00' DAYTOSECOND

28- MAR- 04 03. 42.59. 819000000 PM

The preceding example subtracts an interval literal (I NTERVAL 'O 0:30: 00" DAY TO SECOND)
from a TIMESTAMP value, and returns a TIMESTAMP value.

If you need to subtract some number of days from a TIMESTAMP value, you shouldn't just
directly subtract the number from the TIMESTAMP. In doing so, the TIMESTAMP will be
implicitly converted to a DATE and result in loss of information. Rather, you should convert the
number to an interval, and then subtract the interval from the TIMESTAMP. This way, the result
will be a TIMESTAMP value, and no information will be lost, as illustrated in the following
example:

SELECT LOCALTI MESTAMP - | NTERVAL '1 0:00: 00" DAY TO SECOND

FROM DUAL,;

LOCALTI MESTAMP- | NTERVAL' 10: 00: 00" DAYTOSECOND

27- VAR- 04 04. 23. 09. 248000000 PM

As an alternative to the preceding example, you can use the NUMTODSINTERVAL function to
convert a number to an interval, as shown in the following example:

SELECT LOCALTI MESTAMP - NUMICDSI NTERVAL(1, ' DAY)

FROM DUAL;

LOCALTI MESTAMP- NUMTCDSI NTERVAL(1, ' DAY")

27- MAR- 04 04. 27. 41. 052000000 PM

6.6.4 Determining the First Day of the Month

Oracle provides a built-in function to get the last day of a month. The function returns the last
day of the month containing the input date. For example, to find the last date of the current
month, you can use the following SQL statement:

SELECT LAST_DAY(SYSDATE) "Next Paynent Date" FROM DUAL;

Sometimes it's useful to be able to determine the first day of a given month; it would be nice if
Oracle would provide a FIRST_DAY function. One approach to getting the first day of the month

for a given date is to use the TRUNC function:

TRUNC(SYSDATE, ' MM)

A side-effect of this approach is that any time-of-day component of the input value is
eliminated; the result will always have a time of midnight at the beginning of the day. Such a
truncation of time may be good, especially if you are doing a range comparison. For example,
to find all employees hired in the current month, without applying any sort of function to the
hi re_dat e column:

SELECT * FROM enpl oyee
VWHERE hire_date >= TRUNC(SYSDATE,' MM)

AND hire_date < TRUNC(LAST DAY(SYSDATE) +1);

This SELECT statement works because TRUNC(SYSDATE, ' MM) sets the time-of-day to the very
beginning of the first day of the month. The second TRUNC expression resolves to the very
beginning of the first day of the following month, which is why less-than rather than less-than-
or-equal-to is used when comparing hi r e_dat e to that value.

In many cases, TRUNC(date ,' MM) will work just fine for getting to the first day of a month.
However, if you need to determine the first day of the month in which a given DATE value falls
while also preserving the time-of-day, you can use the following expression:

ADD_NMONTHS((LAST DAY(SYSDATE) +1), - 1)

This expression finds the last day of the month represented by date. It then adds 1 to get to the
first day of the subsequent month, and finally uses ADD_MONTHS with an argument of -1 to go
back to the beginning of the month in which you started. The result is the first day of the month
in which the given date falls. Other approaches to this problem are possible; this is just one that
works well for us. This approach has the advantage of preserving the time component of the
date in question.

6.6.5 Rounding and Truncating Dates

Rounding and truncating dates is similar in concept to the rounding and truncating of numbers,
but more involved because an Oracle DATE contains date as well as time information. Use the
ROUND function to round a date/time value to a specific element; use the TRUNC function to
truncate a date/time value to a specific element.

=

Take care when using ROUND and TRUNC on TIMESTAMP values. Such values are implicitly
converted to type DATE before being passed to ROUND or TRUNC, and you'll lose any
information, such as time zone and fractional seconds, that a DATE value cannot hold.

The return value from ROUND or TRUNC depends upon the specified format, which is an
optional parameter. If you don't specify a format in the call to ROUND, the function returns a
date by rounding the input to the nearest day. If you don't specify a format in the call to

TRUNC, that function returns the input date by setting the time component to the beginning of
the day.

When using ROUND and TRUNC to round to the nearest day, or to truncate a date, the functions
set the time fields of the return value to the beginning of the returned day—i.e., 12:00:00 AM
(00:00:00 in HH24 format). For example:

SELECT TO CHAR(SYSDATE, 'DD-MON-YY HH: M:SS AM),
TO_CHAR(ROUND(SYSDATE), ' DD-MON-YY HH: M :SS AM),
TO_CHAR(TRUNC(SYSDATE), ' DD- MON-YY HH M : SS AM)

FROM DUAL,

TO_CHAR(SYSDATE, ' DD-M TO_CHAR(ROUND(SYSDATE TO_CHAR(TRUNC(SYSDATE

06-OCT-01 07:35:48 AM 06-OCT-01 12:00: 00 AM 06-CCT-01 12:00: 00 AM

Notice that since the input time (SYSDATE) is before 12 noon, the output of ROUND and TRUNC
are the same. However, if the input time were after 12 noon, the output of ROUND and TRUNC
would be different, as in the following example:

SELECT TO _CHAR(SYSDATE, 'DD-MON-YY HHM:SS AM),
TO_CHAR(ROUND(SYSDATE), 'DD-MON-YY HH M :SS AM),
TO_CHAR(TRUNC(SYSDATE), 'DD-MON-YY HH: M :SS AM)

FROM DUAL,;

TO_CHAR(SYSDATE, ' DD-M TO_CHAR(ROUND(SYSDATE TO_CHAR(TRUNC(SYSDATE

06-OCT-01 05:35:48 PM 07-0OCT-01 12:00: 00 AM 06-COCT-01 12:00: 00 AM

Since the input time is past 12 noon, ROUND returns the beginning of the next day. However,
TRUNC still returns the beginning of the input date. This is similar to the rounding and
truncating of numbers.

When you specify a format as an input to the ROUND and TRUNC functions, things become a bit
more involved, but the concepts of rounding and truncating still remain the same. The
difference is that the rounding and truncating are now based on the format you specify. For
example, if you specify the format as YYYY, the input date will be truncated or rounded based
on the year, which means that if the input date is before the middle of the year (July 1), both
ROUND and TRUNC will return the first day of the year. If the input date is after July 1, ROUND
will return the first day of the next year, whereas TRUNC will return the first day of the input
year. For example:

SELECT TO CHAR(SYSDATE- 180, ' DD- MON- YYYY HH24: M :SS'),
TO_CHAR(ROUND(SYSDATE- 180, ' YYYY'), ' DD- MON- YYYY HH24: M : SS'),
TO_CHAR(TRUNC(SYSDATE- 180, ' YYYY'), ' DD- MON- YYYY HH24: M : SS')

FROM DUAL,;

TO_CHAR(SYSDATE- 180, TO_CHAR(ROUND(SYSDAT TO CHAR(TRUNC(SYSDAT

09- APR- 2001 20:58:33 01-JAN-2001 00:00:00 01-JAN-2001 00:00:00

SELECT TO CHAR(SYSDATE, ' DD MON YYYY HH24:M:SS'),
TO_CHAR(ROUND(SYSDATE, ' YYYY'), ' DD- MON- YYYY HH24: M : SS'),
TO_CHAR(TRUNC(SYSDATE, ' YYYY'), ' DD- MON- YYYY HH24: M : SS')

FROM DUAL,;

TO_CHAR(SYSDATE, ' DD- TO_CHAR(ROUND(SYSDAT TO_CHAR(TRUNC(SYSDAT

06- OCT- 2001 20:58:49 01-JAN-2002 00:00:00 01-JAN-2001 00:00:00

Similarly, you can round or truncate a date to a specific month, quarter, week, century, hour,
minute, and so forth by using the appropriate format. Table 6-2 lists the formats (and their
meanings) that can be used with the ROUND and TRUNC functions.

Century

CcC

TRUNC returns the first date of the century.

SCC

ROUND returns the first date of the century if the input date is before the middle of the century
(01-JAN-xx51); otherwise, ROUND returns the first date of the next century.

Year

SYYYY

TRUNC returns the first date of the year.

YYYY
YEAR
SYEAR
YYY

YY

Y

ROUND returns the first date of the year if the input date is before the middle of the year (01-
JUL); otherwise, ROUND returns the first date of the next year.

1ISO
1YYY

TRUNC returns the first date of the 1SO year.

1Yy
Y
|

ROUND returns the first date of the I1SO year if the input date is before the middle of the I1SO
year; otherwise, ROUND returns the first date of the next I1SO year.

Quarter
Q
TRUNC returns the first date of the quarter.

ROUND returns the first date of the quarter if the input date is before the middle of the quarter
(the 16th day of the second month of the quarter); otherwise, ROUND returns the first date of
the next quarter.

Month
MONTH

TRUNC returns the first date of the month.

MON
MM

RM

ROUND returns the first date of the month if the input date is before the middle of the month
(the 16th day of the month); otherwise, ROUND returns the first date of the next month.

Week
Ww
TRUNC returns the first date of the week.

ROUND returns the first date of the week if the input date is on or before the middle of the week
(based on the first day of the year); otherwise, the first date of the next week.

1ISO Week

w

TRUNC returns the first date of the ISO week.

ROUND returns the first date of the week if the input date is before the middle of the week
(based on the first day of the 1SO year); otherwise, ROUND returns the first date of the next
week.

Week

wW

TRUNC returns the first date of the week.

ROUND returns the first date of the week if the input date is before the middle of the week
(based on the first day of the month); otherwise, ROUND returns the first date of the next week.

Day
DDD

TRUNC returns the beginning of the day.

DD
J

ROUND returns the beginning of the day if the input time is before the middle of the day (12:00
noon); otherwise, ROUND returns the beginning of the next day.

Day of the week
DAY

TRUNC returns the first date of the week.

DY

ROUND returns the first date of the week if the input date is before the middle of the week
(based on the first day of the month); otherwise, ROUND returns the first date of the next week.

Hour
HH

TRUNC returns the beginning of the hour.

HH12
HH24

ROUND returns the beginning of the hour if the input time is before the middle of the hour
(00:30); otherwise, ROUND returns the beginning of the next hour.

Minute
MI
TRUNC returns the beginning of the minute.

ROUND returns the beginning of the minute if the input time is before the middle of the minute
(00:00:30); otherwise, ROUND returns the beginning of the next minute.

Table 6-2. Date formats for use with ROUND and TRUNC

Rounding unit Format Remarks

6.6.6 SELECTing Data Based on Date Ranges

There are times when you need to SELECT data from a table based on a given date range. Let's
say you have been asked to print all disputed orders placed on a given date, say 22-JUL-01.
Most likely, your immediate response would be a query such as the following:

SELECT * FROM di sputed_orders

WHERE order _dt = '22-JUL-01";

no rows selected

There's no output. Surprised? Although you know there are orders on 22-JUL-01, this query
didn't return any rows. The reason is that or der _dt is a DATE column, and contains time as
well as date information. On the other hand, the date literal '22- JUL- 01 ' doesn't contain any
time information. When you don't specify the time portion in a date literal, the time portion is
assumed to be beginning of the day—i.e., 12:00:00 A.M. (or 00:00:00 in 24 hour format). In
the di sput ed_or der s table, the time components in the or der _dt column are other than
12:00:00 A.M. In this case, the correct query to print orders placed on 22-JUL-01 is:

SELECT order_nbr, cust_nbr, order_dt, expected_ship_dt
FROM di sput ed_orders

WHERE order_dt BETWEEN

TO DATE(' 22-JUL-01 00: 00: 00", ' DD- MON- YY HH24: M : SS') AND

TO_DATE(' 22-JUL-01 23:59:59',' DD- MON- YY HH24: M : SS');

ORDER_NBR CUST_NBR CORDER DT EXPECTED_
1001 22-JUL-01 23-JUL-01
1005 22-JUL-01 24-JUL-01
1006 22-JUL-01 28-JUL-01
1012 22-JUL-01 23-JUL-01
1021 22-JUL-01 24-JUL-01
1023 22-JUL-01 28-JUL-01

The query treats the one day as a range: 22-JUL-01 00:00:00 through 22-JUL-01 23:59:59.
Thus, the query returns any order placed at any time during 22-JUL-01.

Another way to solve this problem of needing to ignore the time components in a DATE column
is to truncate the date, and then compare the truncated result with the input literal:

SELECT order_nbr, cust_nbr, order_dt, expected_ship_dt
FROM di sput ed_orders
VWHERE TRUNC(order _dt) = '22-JUL-01';

ORDER NBR CUST_NBR ORDER DT EXPECTED_
1001 22-JUL-01 23-JUL-01
1005 8 22-JUL-01 24-JUL-01
1006 22-JUL-01 28-JUL-01
1012 22-JUL-01 23-JUL-01
1021 8 22-JUL-01 24-JUL-01

1023 1 22-JUL-01 28-JUL-01

The TRUNC function sets the time portion to the beginning of the day. Therefore, the equality
comparison with the date literal '22- JUL- 01 ' returns the expected output. The same result can
be achieved by converting or der _dt to a character string in a format matching that of the input
data:

SELECT * FROM di sputed_orders

WHERE TO CHAR(order _dt,' DD-MON-YY') = '22-JUL-01';

The downside to the approach of using the TRUNC and TO_CHAR functions is that the resulting
query cannot make use of any index that happens to be on the or der _dt column. This can have
significant performance implications. On the other hand, the date range solution, while more
complex to code, does not preclude the use of any index on the column in question.

e

Oracle8i and higher support the use of function-based indexes, which, if created correctly, allow
for the use of indexes even when functions are applied to columns in query predicates.

You can use the same techniques shown in this section to SELECT data based on any given date
range, even if that range spans more than just one day.

6.6.7 Creating a Date Pivot Table

For certain types of queries, it's helpful to have a table with one row for each date over a period
of time. For example, you might wish to have one row for each date in the current year. You can
use the TRUNC function in conjunction with some PL/SQL code to create such a table:

CREATE TABLE dates_of year (one_day DATE);

Tabl e created.

DECLARE
i NUMBER;
start _day DATE := TRUNC(SYSDATE, "' YY');
BEG N
FOR i IN O .. (TRUNC(ADD MONTHS(SYSDATE, 12),'YY') - 1) - (TRUNC(SYSDATE, ' YY'))

LooP

I NSERT | NTO dat es_of year VALUES (start_day+i);
END LOOP;
END;

/

PL/ SQL procedure successfully conpleted.

SELECT COUNT(*) FROM dates_of year;

The dat es_of _year table is now populated with the 365 days of the year 2001. You can now
use this table to generate various useful lists of dates.

Let's say there are two paydays where you work—the 15th of each month and the last day of
each month. Use the following query against the dat es_of _year table to generate a list of all

paydays in the year 2001:

SELECT one_day payday FROM dates_of year
WHERE TO CHAR(one_day,'DD') = '15'

OR one_day = LAST_DAY(one_day);

PAYDAY

15-JAN-01
31-JAN-01
15- FEB- 01
28- FEB-01
15- MAR- 01

31- MVAR- 01

15- APR- 01
30- APR-01
15- MAY- 01
31- MAY-01
15-JUN-01
30-JUN-01
15-JUL-01
31-JUL-01
15- AUG 01
31- AUG 01
15- SEP- 01
30- SEP-01
15- OCT-01
31-OCT-01
15- NOV- 01
30- NOv-01
15- DEC- 01

31-DEC-01

24 rows sel ected.

Quite often you are told by a government organization that the processing of a document will
take "x" number of days. When someone says something like that, they usually mean "x"
number of working days. Therefore, to calculate the expected completion date, you need to
count "x" days from the current date, skipping Saturdays and Sundays. Obviously, you can't use
simple date arithmetic, because simple date subtraction doesn't exclude weekend days. What

you can do is use the dat es_of _year table. For example:

SELECT COUNT(*) FROM dates_of year
VWHERE RTRI M TO CHAR(one_day,' DAY')) NOT IN ('SATURDAY', ' SUNDAY')

AND one_day BETWEEN ' &d1' AND ' &d2';

Enter value for dl: 18-FEB-01
Enter value for d2: 15- MAR-01
old 3: AND one_day BETVEEN ' &d1' AND ' &d2'

new 3: AND one_day BETWEEN ' 18-FEB-01' AND ' 15- MAR-O1'

This query counts the number of days between the two dates you enter, excluding Saturdays
and the Sundays. The TO_CHAR function with the “DAY' format converts each candidate date
(from the dat es_of _year table) to a day of the week, and the NOT IN operator excludes the
days that are Saturdays and Sundays. Notice the use of the RTRIM function with TO_CHAR. We
used RTRIM because TO_CHAR produces the DAY as a nine-character string, blank padded to
the right. RTRIM eliminates those extra spaces.

There could be holidays between two dates, and the queries shown in this section don't deal
with that possibility. To take holidays into account, you need another table (perhaps named

hol i days) that lists all the holidays in the year. You can then modify the previous query to
exclude days listed in the hol i days table. Try this as an exercise.

6.6.8 Summarizing by a Date/Time Element

Let's say you want to print a quarterly summary of all your orders. You want to print the total
number of orders and total sale price for each quarter. The order table is as follows:

SELECT * FROM cust _order;

ORDER CUST SALES PRICE ORDER DT EXPECTED CANCELLED SHI P STATUS

1001 1 7354 99 22-JUL-01 23-JUL-01 DELI VERED
1000 1 7354 19-JUL-01 24-JUL-01 21-JUL-01 CANCELLED
1002 5 7368 12-JUL-01 25-JUL-01 14-JUL-01 CANCELLED
1003 4 7654 56 16-JUL-01 26-JUL-01 DELI VERED
1004 4 7654 34 18-JUL-01 27-JUL-01 PENDI NG

1005 8 7654 99 22-JUL-01 24-JUL-01 DELI VERED

1006 1 7354 22-JUL-01 28-JUL-01 24-JUL-01 CANCELLED

1007 5 7368 25 20-JUL-01 22-JUL-01 PENDI NG
1008 5 7368 25 21-JUL-01 23-JUL-01 PENDI NG
1009 1 7354 56 18-JUL-01 22-JUL-01 DELI VERED
1012 1 7354 99 22-JUL-01 23-JUL-01 DELI VERED
1011 1 7354 19-JUL-01 24-JUL-01 21-JUL-01 CANCELLED
1015 5 7368 12-JUL-01 25-JUL-01 14-JUL-01 CANCELLED
1017 4 7654 56 16-JUL-01 26-JUL-01 DELI VERED
1019 4 7654 34 18-JUL-01 27-JUL-01 PENDI NG
1021 8 7654 99 22-JUL-01 24-JUL-01 DELI VERED
1023 1 7354 22-JUL-01 28-JUL-01 24-JUL-01 CANCELLED
1025 5 7368 25 20-JUL-01 22-JUL-01 PENDI NG
1027 5 7368 25 21-JUL-01 23-JUL-01 PENDI NG
1029 1 7354 56 18-JUL-01 22-JUL-01 DELI VERED

20 rows sel ected.

There is no quarter column in the cust _or der table. You have to manipulate the or der _dt
column to generate the quarter. The following SQL statement does this using the TO_CHAR
function along with a date format. In addition to being used in the SELECT list, notice that
TO_CHAR is used in the GROUP BY clause to group the results by quarter:

SELECT 'Q || TO CHAR(order _dt, 'Q) quarter, COUNT(*),
SUM NVL(sal e _price, 0))

FROM cust _order

GROUP BY 'Q || TO CHAR(order _dt, 'Q);

QU COUNT(*) SUM NVL(SALE_ PRI CE, 0))

Using this same technique, you can summarize data by week, month, year, hour, minute, or
any other date/time unit that you choose.

48 FREV

< Day Day Up >
NEXT s |

| 4m PREV < Day Day Up > MET

Chapter 7. Set Operations

There are situations when we need to combine the results from two or more SELECT
statements. SQL enables us to handle these requirements by using set operations. The result of
each SELECT statement can be treated as a set, and SQL set operations can be applied on those
sets to arrive at a final result. Oracle SQL supports the following four set operations:

UNION ALL

UNION

MINUS

INTERSECT

SQL statements containing these set operators are referred to as compound queries, and each
SELECT statement in a compound query is referred to as a component query. Two SELECTs can
be combined into a compound query by a set operation only if they satisfy the following two
conditions:

e The result sets of both the queries must have the same number of columns.

e The data type of each column in the second result set must match the data type of its
corresponding column in the first result set.

These conditions are also referred to as union compatibility conditions. The term union
compatibility is used even though these conditions apply to other set operations as well. Set
operations are often called vertical joins, because the result combines data from two or more
SELECTS based on columns instead of rows. The generic syntax of a query involving a set
operation is:

conponent _query

{UNFON | UNION ALL | M NUS | | NTERSECT}

conponent _query

The keywords UNION, UNION ALL, MINUS, and INTERSECT are set operators. You can have
more than two component queries in a composite query; you will always use one less set
operator than the number of component queries.

There is an exception to the second union compatibility condition. Two data types do not need
to be the same if they are in the same data type group. By data type group, we mean the
general categories such as numbers, strings, and datetimes. For example, it is ok to have a
column in the first component query of data type CHAR, that corresponds to a VARCHAR2
column in the second component query (or vice versa). Oracle performs implicit type conversion
in such a case.

However, Oracle will not perform implicit type conversion if corresponding columns in the
component queries belong to different data type groups. For example, if a column in the first
component query is of data type DATE, and the corresponding column in the second component
query is of data type CHAR, Oracle will not perform implicit conversion, and you will get an
error as a result of violation of data type compatibility. This is illustrated in the following
example:

SELECT TO DATE(' 12- OCT-03') FROM DUAL
UNI ON

SELECT ' 13-0CT-03' FROM DUAL,

SELECT TO DATE(' 12-OCT-03') FROM DUAL
*
ERROR at |ine 1:
ORA-01790: expression nust have sane datatype as correspondi ng expression

The following sections discuss syntax, examples, rules, and restrictions for the four set
operations.

ALY

| 4 PREV < Day Day Up > MEXT o

7.1 Set Operators

The following list briefly describes the four set operations supported by Oracle SQL:

UNION ALL

Combines the results of two SELECT statements into one result set.

UNION

Combines the results of two SELECT statements into one result set, and then eliminates
any duplicate rows from that result set.

MINUS

Takes the result set of one SELECT statement, and removes those rows that are also
returned by a second SELECT statement. Duplicate rows are eliminated.

INTERSECT

Returns only those rows that are returned by each of two SELECT statements. Duplicate
rows are eliminated.

Before moving on to the details on these set operators, let's look at the following two queries,
which we'll use as component queries in our subsequent examples. The first query retrieves all
the customers in region 5:

SELECT cust_nbr, nane

FROM cust oner

WHERE region_id = 5;

CUST_NBR NAME

1 Cooper Industries

2 Enbl azon Corp.

3 Ditech Corp.
4 Flowm ech Inc.

5 Gentech Industries

The second query retrieves all the customers with the sales representative "MARTI N' :

SELECT c.cust_nbr, c.nane

FROM cust oner c

WHERE c.cust_nbr IN (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales_enp_id = e.enp_id

AND e. |l nane = ' MARTIN);

CUST_NBR NAME
4 Fl owtech Inc.
8 Zantech Inc.
If you look at the results returned by these two queries, you will notice that there is one

common row (for Flowtech Inc.). The following sections discuss the effects of the various set
operations between these two result sets.

7.1.1 UNION ALL

The UNION ALL operator merges the result sets of two component queries. This operation
returns rows retrieved by either of the component queries, without eliminating duplicates. The
following example illustrates the UNION ALL operation:

SELECT cust_nbr, nane
FROM cust oner

WHERE region_id = 5

UNI ON ALL

SELECT c.cust_nbr, c.nane
FROM cust oner c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

FROM cust _order o, enployee e
WHERE o0.sales _enp id = e.enp_id

AND e.lnane = ' MARTIN);

1 Cooper Industries
2 Enbl azon Corp.

3 Ditech Corp.

4 Fl owt ech Inc.

5 Gentech Industries
4 Fl owt ech Inc.

8 Zantech Inc.

7 rows sel ected.

As you can see from the result set, there is one customer, which is retrieved by both the
SELECTs, and therefore appears twice in the result set. The UNION ALL operator simply merges
the output of its component queries, without caring about any duplicates in the final result set.

7.1.2 UNION

The UNION operator returns all distinct rows retrieved by two component queries. The UNION
operation eliminates duplicates while merging rows retrieved by either of the component
queries. The following example illustrates the UNION operation:

SELECT cust _nbr, name
FROM cust onmer

WHERE region_id = 5

UNI ON

SELECT c.cust_nbr, c.nane
FROM custoner c

WHERE c. cust_nbr IN (SELECT o.cust_nbr

FROM cust _order o, enployee e
WHERE o0.sales _enp_id = e.enp_id

AND e. |l nane = ' MARTIN);

1 Cooper Industries
2 Enbl azon Corp.

3 Ditech Corp.

4 Fl owt ech Inc.

5 Gentech Industries

8 Zantech Inc.

6 rows sel ected.

This query is a modification of the query from the preceding section; the keywords UNION ALL
have been replaced with UNION. Now, the result set contains only distinct rows (no duplicates).
To eliminate duplicate rows, a UNION operation needs to do some extra tasks as compared to
the UNION ALL operation. These extra tasks include sorting and filtering the result set. If you
observe carefully, you will notice that the result set of the UNION ALL operation is not sorted,
whereas the result set of the UNION operation is sorted. (The result set of a UNION is sorted on
the combination of all the columns in the SELECT list. In the preceeding example, the UNION
result set will be sorted on the combination cust _nbr and name.) These extra tasks introduce a
performance overhead to the UNION operation. A query involving UNION will take more time
than the same query with UNION ALL, even if there are no duplicates to remove.

"'_—‘~ Unless you have a valid need to retrieve only distinct rows, use UNION ALL
_n instead of UNION for better performance.
[0
v

7.1.3INTERSECT

INTERSECT returns only the rows retrieved by both component queries. Compare this with
UNION, which returns the rows retrieved by any of the component queries. If UNION acts like
"OR," INTERSECT acts like "AND." For example:

SELECT cust_nbr, nane

FROM cust onmer

WHERE region_id = 5

| NTERSECT

SELECT c.cust_nbr, c.nane

FROM custoner c

WHERE c. cust_nbr I N (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales_enp_id = e.enp_id

AND e. |l nane = ' MARTIN);

CUST_NBR NANME

4 Flowmt ech Inc.

As you saw earlier, "Flowtech Inc.” was the only customer retrieved by both SELECT
statements. Therefore, the INTERSECT operator returns just that one row.

7.1.4 MINUS

MINUS returns all rows from the first SELECT that are not also returned by the second SELECT.

o Oracle's use of MINUS does not follow the ANSI/ISO SQL standard. The
- corresponding ANSI/ISO SQL keyword is EXCEPT.

g

The following example illustrates how MINUS works:

SELECT cust_nbr, namne
FROM cust oner

WHERE region_id = 5

M NUS

SELECT c.cust_nbr, c.nane

FROM customer c

WHERE c. cust_nbr IN (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales_enp_id = e.enp_id

AND e. |l nane = ' MARTIN);

1 Cooper Industries

2 Enbl azon Corp.

3 Ditech Corp.

5 Gentech Industries
You might wonder why you don't see "Zantech Inc.” in the output. An important thing to note
here is that the execution order of component queries in a set operation is from top to bottom.
The results of UNION, UNION ALL, and INTERSECT will not change if you alter the ordering of
component queries. However, the result of MINUS will be different if you alter the order of the

component queries. If you rewrite the previous query by switching the positions of the two
SELECTSs, you get a completely different result:

SELECT c.cust_nbr, c.nane

FROM cust oner c

WHERE c. cust_nbr IN (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales_enp_id = e.enp_id
AND e. |l nane = ' MARTIN)

M NUS

SELECT cust_nbr, nane

FROM cust oner

WHERE region_id = 5;

CUST_NBR NAME

8 Zantech Inc.

In the second MINUS example, the first component query adds "Flowtech Inc.” and "Zantech
Inc.” to the result set while the second component query removes "Flowtech Inc.”, leaving "
startref="ch07-idx-1000003842-2"/>"Zantech Inc." as the sole remaining row.

"';-?~ In a MINUS operation, rows may be returned by the second SELECT that
are not also returned by the first. These rows are not included in the

-
. 4. output.

L]]
&

< Day Day Up >

| 4@ PREV < Day Day Up > MET

7.2 Precedence of Set Operators

If more than two component queries are combined using set operators, then Oracle evaluates
the set operators from left to right. In the following example, the UNION is evaluated before the
INTERSECT:

SELECT cust _nbr, name

FROM cust oner

VWHERE region_id = 5

UNI ON

SELECT c.cust_nbr, c.nane

FROM custoner c

WHERE c. cust_nbr IN (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales_enp_id = e.enp_id
AND e. |l name = ' MARTIN)

| NTERSECT

SELECT cust_nbr, name

FROM cust oner

VWHERE region_id = 6;

8 Zantech Inc.

To influence a particular order of evaluation of the set operators, you can use parentheses.
Looking at the preceding example, if you want the INTERSECT to be evaluated before the

UNION, you should introduce parentheses into the query such that the component queries
involving the INTERSECT are enclosed in parentheses, as shown in the following example:

SELECT cust_nbr, name

FROM cust omrer

WHERE region_id = 5

UNI ON

(

SELECT c.cust_nbr, c.nane

FROM custoner c

WHERE c. cust_nbr I N (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales_enp_id = e.enp_id
AND e. |l nane = ' MARTIN)

| NTERSECT

SELECT cust_nbr, name

FROM cust onmer

WHERE region_id = 6

1 Cooper Industries
2 Enbl azon Corp.

3 Ditech Corp.

4 Fl owt ech Inc.

5 Gentech Industries
8 Zantech Inc.

The operation within the parentheses is evaluated first. The result is then combined with the
component queries outside the parentheses.

"-;~ The ANSI/ISO SQL standard gives higher precedence to the INTERSECT

. operator. However, Oracle, at least through Oracle Database 10g, doesn't
N . . -
. 4. implement that higher precedence. All set operations currently have equal
" precedence.

In the future, Oracle may change the precedence of INTERSECT to comply
with the standard. To prepare for that possibility, we recommend using
parentheses to control the order of evaluation of set operators whenever
you use INTERSECT in a query with any other set operator.

< Day Day Up >

| 4m PREV < Day Day Up > MET

7.3 Comparing Two Tables

Developers, and even DBAs, occasionally need to compare the contents of two tables to
determine whether the tables contain the same data. The need to do this is especially common
in test environments, as developers may want to compare a set of data generated by a program
under test with a set of "known good" data. Comparison of tables is also useful for automated
testing purposes, when you have to compare actual results with a given set of expected results.
SQL's set operations provide an interesting solution to this problem of comparing two tables.

The following query uses both MINUS and UNION ALL to compare two tables for equality. The
query depends on each table having either a primary key or at least one unique index.

(SELECT * FROM cust omer _known_good
M NUS

SELECT * FROM custoner _test)

UNI ON ALL

(SELECT * FROM cust omer _t est

M NUS

SELECT * FROM cust onmer _known_good) ;

You can look at this query as the union of two compound queries. The parentheses ensure that
both MINUS operations take place first before the UNION ALL operation is performed. The result
of the first MINUS query will be those rows in cust omer _known_good that are not also in

cust oner _t est. The result of the second MINUS query will be those rows in cust omer _t est
that are not also in cust omer _known_good. The UNION ALL operator simply combines these two
result sets for convenience. If no rows are returned by this query, then we know that both
tables have identical rows. Any rows returned by this query represent differences between the
custoner _t est and cust oner _known_good tables.

If the possibility exists for one or both tables to contain duplicate rows, you must use a more

general form of this query to test the two tables for equality. This more general form uses row
counts to detect duplicates:

(SELECT c1.*, COUNT(*)

FROM cust ormer _known_good

GROUP BY cl.cust_nbr, cl.nane .
M NUS

SELECT c2.*, COUNT(*)

FROM cust omer _test c2

GROUP BY c2.cust_nbr, c2.name . . .)
UNI ON ALL
(SELECT c3.*, COUNT(*)

FROM customer _test c3

GROUP BY c3.cust_nbr, c¢3.nane .
M NUS

SELECT c4.*, COUNT(*)

FROM cust oner _known_good c4

GROUP BY c4.cust_nbr, c4.name . . .)
This query is getting complex! The GROUP BY clause (see Chapter 4) for each SELECT must list
all columns for the table being selected. Any duplicate rows will be grouped together, and the
count will reflect the number of duplicates. If the number of duplicates is the same in both

tables, the MINUS operations will cancel those rows out. If any rows are different, or if any
occurrence counts are different, the resulting rows will be reported by the query.

Let's look at an example to illustrate how this query works. We'll start with the following tables
and data:

DESC cust onmer _known_good

Nane Nul | ? Type
CUST_NBR NOT NULL NUVBER(5)
NANVE NOT NULL VARCHAR2(30)

SELECT * FROM custonmer _known_good;

CUST_NBR NAME

3 Panasoni c

3 Panasoni c

3 Panasoni c

6 rows sel ected.

DESC custoner _test

Nane Nul I ? Type
CUST_NBR NOT NULL NUVBER(5)
NANVE NOT NULL VARCHAR2(30)

SELECT * FROM custoner_test;

CUST_NBR NAME

1 Sony
1 Sony
2 Sanmsung
2 Sanmsung

3 Panasoni c

As you can see the cust oner _known_good and cust oner _t est tables have the same structure,
but different data. Also notice that none of these tables has a primary or unique key; there are
duplicate records in both. The following SQL will compare these two tables effectively:

(SELECT c1.*, COUNT(*)
FROM cust omer _known_good cl
GROUP BY cl.cust_nbr, ci.nane

M NUS

SELECT c2.*, COUNT(*)

FROM custoner _test c2

GROUP BY c2.cust_nbr, c2.nane)
UNI ON ALL

(SELECT c¢3.*, COUNT(*)

FROM custoner _test c3

GROUP BY c3.cust_nbr, c3.nane
M NUS

SELECT c4.*, COUNT(*)

FROM cust omer _known_good c4

GROUP BY c4.cust_nbr, c4.nane);

CUST_NBR NAME COUNT(*)
2 Sansung 1
3 Panasoni c 3
2 Sansung 2
3 Panasoni c 1

These results indicate that one table (cust oner _known_good) has one record for "Samsung,"
whereas the second table (cust oner _t est) has two records for the same customer. Also, one
table (cust oner _known_good) has three records for "Panasonic,” whereas the second table
(cust oner _t est) has one record for the same customer. Both the tables have the same number
of rows (two) for "Sony," and therefore "Sony" doesn't appear in the output.

"'_-?~ Duplicate rows are not possible in tables that have a primary key or at
o, least one unique index. Use the short form of the table comparison query
[0

- @3 for such tables.

| 4m FREV < Day Day Up > MEXT mp

7.4 Using NULLs in Compound Queries

We discussed union compatibility conditions at the beginning of this chapter. The union
compatibility issue gets interesting when NULLs are involved. As you know, NULL doesn't have a
data type, and NULL can be used in place of a value of any data type. If you purposely select
NULL as a column value in a component query, Oracle no longer has two data types to compare
to see whether the two component queries are compatible. This is particularly an issue with
older Oracle releases. Oracle9i Database, and also later releases of Oracle, are "smart enough”
to know which flavor of NULL to use in a compound query. The following examples, generated

from an Oracle9i database, demonstrate this:

SELECT 1 num 'DEFINTE string FROM DUAL

UNI ON

SELECT NULL num ' UNKNOWN string FROM DUAL;

NUM STRI NG
1 DEFINITE

UNKNOWN

SELECT 1 num SYSDATE dates FROM DUAL
UNI ON

SELECT 2 num NULL dates FROM DUAL;

NUM DATES

1 06-JAN-02

2

If you are using Oracle8i or prior, these queries may cause errors. The examples in the rest of
this section are executed against an Oracle8i database.

When your set operation includes a character column that corresponds to a NULL literal, you
won't have any problems from the use of NULL. All releases of Oracle handle this case. For

example, from an Oracle8i installation:

SELECT 1 num 'DEFINTE string FROM DUAL
UNI ON

SELECT 2 num NULL string FROM DUAL;

NUM STRI NG
1 DEFINTE
2
Notice that Oracle8i considers the character string 'DEFI NI TE' from the first component query to

be compatible with the NULL value supplied for the corresponding column in the second
component query.

However, if a NUMBER or a DATE column of a component query is set to NULL, you must
explicitly tell Oracle what "flavor" of NULL to use. Otherwise, you'll encounter errors. For
example:

SELECT 1 num 'DEFINTE string FROM DUAL
UNI ON
SELECT NULL num ' UNKNOWN string FROM DUAL;
SELECT 1 num 'DEFINTE string FROM DUAL
*
ERROR at line 1:
ORA- 01790: expression must have sane datatype as correspondi ng expression
Note that the use of NULL in the second component query causes a data type mismatch between

the first column of the first component query, and the first column of the second component
query. Using NULL for a DATE column causes the same problem, as in the following example:

SELECT 1 num SYSDATE dates FROM DUAL
UNI ON

SELECT 2 num NULL dates FROM DUAL;
SELECT 1 num SYSDATE dates FROM DUAL

*

ERROR at line 1:

ORA-01790: expression nust have sane datatype as correspondi ng expression

In these cases, you need to cast the NULL to a suitable data type to fix the problem, as in the
following examples:

SELECT 1 num 'DEFINTE string FROM DUAL
UNI ON

SELECT TO NUMBER(NULL) NUM ' UNKNOAN string FROM DUAL;

NUM STRI NG
1 DEFINTE

UNKNOWN

SELECT 1 num SYSDATE dates FROM DUAL
UNI ON

SELECT 2 num TO DATE(NULL) dates FROM DUAL;

NUM DATES
1 06-JAN-02
2
Remember, you'll only encounter these problems of union compatibility when using literal NULL

values in Oracle8i and earlier releases. The problems go away beginning with the Oracle9i
Database release.

ALY

| 4 PREV < Day Day Up > MEXT o

7.5 Rules and Restrictions on Set Operations

Other than the union compatibility conditions discussed at the beginning of the chapter, there
are some other rules and restrictions that apply to the set operations. These rules and
restrictions are described in this section.

Column names for the result set are derived from the first SELECT:

SELECT cust_nbr "Custoner |D', name "Custonmer Nane"

FROM cust onmer

WHERE region_id = 5

UNI ON

SELECT c.cust_nbr "ID', c.nane "Nane"

FROM custoner c

WHERE c. cust_nbr I N (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales _enp_id = e.enp_id

AND e. |l nane = ' MARTIN);

Custoner | D Custoner Nanme
1 Cooper Industries
2 Enbl azon Cor p.
3 Ditech Corp.
4 Fl owt ech I nc.
5 Gentech Industries

8 Zantech Inc.

6 rows sel ected.

Although both SELECTs use column aliases, the result set takes the column names from the first
SELECT. The same thing happens when you create a view based on a set operation. The column
names in the view are taken from the first SELECT:

CREATE VI EW v_test_cust AS

SELECT cust_nbr "Custoner _|ID', nane "Custoner_Nane"

FROM cust oner

WHERE region_id = 5

UNI ON

SELECT c.cust_nbr "ID', c.nane "Nane"

FROM cust oner c

WHERE c.cust_nbr IN (SELECT o.cust_nbr
FROM cust _order o, enployee e
WHERE o0.sales_enp_id = e.enp_id

AND e. |l nane = ' MARTIN);

Vi ew created.

DESC v_test_cust

Narme Nul | ? Type
Custoner _I D NUMBER
Cust oner _Name VARCHAR2(45)

If you want to use ORDER BY in a query involving set operations, you must place the ORDER BY
at the end of the entire statement. The ORDER BY clause can appear only once at the end of the
compound query. The component queries can't have individual ORDER BY clauses. For example:

SELECT cust_nbr, nane
FROM cust oner
WHERE region_id = 5

UNI ON

SELECT enp_id, |nane
FROM enpl oyee
VWHERE | name = ' MARTI N

ORDER BY cust _nbr;

CUST_NBR NAME
1 Cooper Industries
2 Enbl azon Corp.
3 Ditech Corp.
4 Fl owt ech Inc.
5 CGentech Industries

7654 MARTI N

6 rows sel ected.

Note that the column name used in the ORDER BY clause of this query is taken from the first
SELECT. You couldn't order these results by enp_i d. If you attempt to ORDER BY enp_i d, you
will get an error, as in the following example:

SELECT cust_nbr, name
FROM cust oner

VWHERE region_id = 5
UNI ON

SELECT enp_id, |nane
FROM enpl oyee

WHERE | nane = ' MARTIN
ORDER BY enp_id;
ORDER BY EMP_I D

*

ERROR at |ine 8:

ORA-00904: invalid colum nane

The ORDER BY clause doesn't recognize the column names of the second SELECT. To avoid
confusion over column names, it is a common practice to ORDER BY column positions:

SELECT cust_nbr, name
FROM cust onmer

WHERE region_id = 5
UNI ON

SELECT enp_id, | nane
FROM enpl oyee

VWHERE | name = ' MARTI N

ORDER BY 1;

1 Cooper Industries
2 Enbl azon Corp.

3 Ditech Corp.

4 Fl owt ech Inc.

5 Gentech Industries

7654 MARTI N

6 rows sel ected.

For better readability and maintainability of your queries, we recommend that you explicitly use
identical column aliases in all the component queries, and then use these column aliases in the
ORDER BY clause.

i Unlike ORDER BY, you can use GROUP BY and HAVING clauses in
' component queries.

=
Ty

The following list summarizes some simple rules, restrictions, and notes that don't require
examples:

e Set operations are not permitted on columns of type BLOB, CLOB, BFILE, and VARRAY, nor
are set operations permitted on nested table columns.

e Since UNION, INTERSECT, and MINUS operators involve sort operations, they are not
allowed on LONG columns. However, UNION ALL is allowed on LONG columns.

e Set operations are not allowed on SELECT statements containing TABLE collection
expressions.

e SELECT statements involved in set operations can't use the FOR UPDATE clause.
e The number and size of columns in the SELECT list of component queries are limited by the

block size of the database. The total bytes of the columns SELECTed can't exceed one
database block.

| 4 PREV < Day Day Up > MEXT o

| 4 PREV < Day Day Up > MEXT o

Chapter 8. Hierarchical Queries

A relational database is based upon sets, with each table representing a set. However, there are
some types of information that are not directly amenable to the set data structure. Think, for
example, of an organization chart, a bill of material in a manufacturing and assembly plant, or
a family tree. These types of information are hierarchical in nature, and most conveniently
represented in a tree structure. In this chapter we discuss how to represent such hierarchical
information in a relational table. We also discuss in detail various SQL constructs that you can
use to extract hierarchical information from a relational table.

| 4 PREV < Day Day Up > MEXT o

| 4m PREV < Day Day Up > MET

8.1 Representing Hierarchical Information

Let's look at an example to understand how we can represent hierarchical information in a
relational database. As a basis for the example, we'll use an organization chart showing how
one employee reports to another within a large organization, as shown in Figure 8-1.

Figure 8-1. An organization chart

Kim

[Jones | ke Clark

|
| Satt] [Fisrd | | Mlen i [Ward | |Mart|r|i | Turner] |James| | Miller]

[adams | | smirh |

Figure 8-1 represents a hierarchy of employees. The information regarding an employee, his
manager, and the reporting relationship need to be represented in one table, enpl oyee, as

shown in the Entity Relationship Diagram in Figure 8-2.

Figure 8-2. The reporting relationship

EMPLOYEE
EMP_ID (PRIMARY KEY)

FHAME

LHAME

DEPT_ID
MAMAGER_EMP_ID
CALARY

HIRE_DATE
JOB_ID

In Figure 8-2, the enpl oyee table refers to itself. The column manager _enp_i d refers to the
enp_i d column of the same table. To represent hierarchical data, you need to make use of a
relationship such as when one column of a table references another column of the same table.
When such a relationship is implemented using a database constraint, it is known as self-
referential integrity constraint. The corresponding CREATE TABLE statement will look as follows:

CREATE TABLE enpl oyee (
enp_id NUMBER (4) CONSTRAI NT enp_pk PRI MARY KEY,

f nane VARCHAR2 (15) NOT NULL,

| name VARCHAR2 (15) NOT NULL,
dept _id NUMBER (2) NOT NULL,

manager _enp_id NUMBER (4) CONSTRAINT enp_fk REFERENCES enpl oyee(enp_id),

sal ary NUMBER (7,2) NOT NULL,
hire_date DATE NOT NULL,
job_id NUMBER (3));

As a basis for the examples in this chapter, we’ll use the following sample data:

SELECT enp_id, |nanme, dept_id, manager_enp_id, salary, hire_date

FROM enpl oyee;

EMP_| D LNANE DEPT | D MANAGER EMP_I D SALARY H RE_DATE
7369 SM TH 20 7902 800 17- DEC- 80
7499 ALLEN 30 7698 1600 20- FEB- 81
7521 WARD 30 7698 1250 22- FEB-81
7566 JONES 20 7839 2000 02- APR- 81
7654 MARTI N 30 7698 1250 28- SEP-81
7698 BLAKE 30 7839 2850 01- MAY- 80
7782 CLARK 10 7839 2450 09- JUN- 81
7788 SCOTT 20 7566 3000 19- APR- 87
7839 KI NG 10 5000 17- NOV-81
7844 TURNER 30 7698 1500 08- SEP- 81
7876 ADANG 20 7788 1100 23- MAY- 87
7900 JAMES 30 7698 950 03- DEC- 81
7902 FORD 20 7566 3000 03- DEC- 81
7934 M LLER 10 7782 1300 23- JAN- 82

The enpl oyee table has two important aspects:

e The column manager _enp_id
e The enp_f k constraint

The column manager _enp_i d stores the enp_i d of the employee's manager. For example, the
manager _enp_i d for Smith is 7902, which means that Ford is Smith's manager. The employee
King doesn't have a nanager _enp_i d, which indicates that King is the uppermost employee. To
be able to represent the uppermost employee, the manager _enp_i d column must be nullable.

There is a foreign key constraint on the manager _enp_i d column. This enforces the rule that any
value put in the manager _enp_i d column must be the enp_i d of a valid employee. Such a
constraint is not mandatory when representing hierarchical information. However, it is a good
practice to define database constraints to enforce such business rules.

Before moving on to the following sections on manipulating hierarchies, we will introduce some
hierarchy terminology. The following list defines terms that we'll use often when working with
hierarchical data:

Node

A row in a table that represents a specific entry in a hierarchical tree structure. For
example, in Figure 8-1 each employee is considered to be a node.

Parent

A node that is one level up in a tree. In Figure 8-1, King is the parent of Blake, and Blake
is the parent of Martin. The term parent node is sometimes used in place of just parent.

Child

A node that is one level down in a tree. In Figure 8-1, Blake is a child of King. Blake, in
turn, has five children: Allen, Ward, Martin, Turner, and James. The term child node is
sometimes used in place of just child.

Root

The uppermost node in a hierarchical structure. The definition of a root is that it has no
parent. In Figure 8-1, King is the root. You can have only one root in any given tree, but
it's worth noting that you can have multiple trees in a hierarchical table. If our employee
table stored information on employees from multiple companies, we would have one root
per company. The term root node is sometimes used in place of root.

Leaf

A node with no children, and sometimes called a leaf node. Leaf nodes are the antitheses
of root nodes, and represent the lowest levels of a tree structure. The leaf nodes in Figure
8-1 are Adams, Smith, Allen, Ward, Martin, Turner, James, and Miller. Leaf nodes do not

all need to be at the same level, but they do need to be without children.

Level

A layer of nodes. In Figure 8-1, King constitutes one level. Jones, Blake, and Clark
constitute the next level down, and so forth.

| dm FREV < Day Day Up > MEXT

| 4m PREV < Day Day Up > MET

8.2 Simple Hierarchy Operations

The processes for extracting some types of information from a table storing hierarchical data
are relatively simple, and can be performed using the techniques that we have discussed so far
in this book. Extracting more complex information requires using some new SQL constructs,
which we'll discuss in Section 8.3. In this section, we'll discuss the hierarchy operations that can
be performed using what you've learned so far.

8.2.1 Finding Root Nodes

Finding the root nodes of a hierarchy tree is easy; look for the nodes with no parents. You may
have more than one hierarchy in a table, and consequently more than one root node. In the
enpl oyee table we discussed earlier, the value for nanager _enp_i d is NULL for the uppermost

employee, and only for the uppermost employee. The following query searches for cases where
manager _enp_i d is NULL, thereby returning the root node:

SELECT enp_id, |nanme, dept_id, manager_enp_id, salary, hire_date
FROM enpl oyee

WHERE manager _enp_id |S NULL;

EMP_I D LNAVE DEPT_| D MANAGER EMP_| D SALARY HI RE_DATE

7839 KI NG 10 5000 17-NOv-81

Because the manager _enp_i d column defines the hierarchy, it's important that it always contain
correct data. While populating data in this table, we must make sure to specify a

manager _enp_i d for every row other than the row for the uppermost employee. The uppermost
employee doesn't report to anyone (doesn't have a manager), and hence nanager _enp_id is
not applicable for him. If we leave out manager _enp_i d values for employees that do have
managers, those employees will erroneously show up as root nodes.

8.2.2 Finding a Node's Immediate Parent

You may wish to link nodes to their immediate parents. For example, you might want to print a
report showing each employee's manager. The name of each employee's manager can be
derived by joining the enpl oyee table to itself. This type of join is a self join (discussed in

Chapter 3). The following query returns the desired result:

SELECT e. | nane "Enployee", mlnanme "Manager"

FROM enpl oyee e, enployee m

WHERE e. nanager_enp_id = menp_id;

SM TH FORD
ALLEN BLAKE
WARD BLAKE
JONES KI NG
MARTI N BLAKE
BLAKE Kl NG
CLARK Kl NG
SCOTT JONES
TURNER BLAKE
ADANVS SCOTT
JAMES BLAKE
FORD JONES
M LLER CLARK

13 rows sel ected.

Note this query results in only 13 rows, although the enpl oyee table has 14 rows:

SELECT COUNT(*) FROM enpl oyee;

The reason that only 13 rows are returned from the self join is simple. Our query lists
employees and their managers. But since the uppermost employee KING doesn't have any

manager, that row is not produced in the output. If you want all the employees to be produced
in the result, you need an outer join, as in the following example:

SELECT e. | nane "Enployee", mlnanme "Manager"
FROM enpl oyee e LEFT OUTER JO N enpl oyee m

ON e. manager_enp_id = menp_id ;

Enpl oyee Manager
SM TH FORD
ALLEN BLAKE
WARD BLAKE
JONES KI NG
MARTI N BLAKE
BLAKE KI NG
CLARK KI NG
SCOrT JONES
KI NG

TURNER BLAKE
ADANS SCOTIT
JAMES BLAKE
FORD JONES
M LLER CLARK

14 rows sel ected.

Outer joins were discussed in detail in Chapter 3.

8.2.3 Finding Leaf Nodes

The opposite problem from finding root nodes, which have no parents, is to find leaf nodes,
which have no children. Employees who do not manage anyone are the leaf nodes in the

hierarchy tree shown in Figure 8-1. At first glance, the following query seems like it should list
all employees from the enpl oyee table who are not managers of any other employee:

SELECT * FROM enpl oyee
WHERE enp_id NOT IN (SELECT nanager_enp_id FROM enpl oyee);

However, when you execute this statement, you will see "No rows selected.” Why? It is because
the manager _enp_i d column contains a NULL value in one row (for the uppermost employee),

and NULLs can't be compared to any data value. Therefore, to get the employees who don't
manage anyone, you need to rewrite the query as follows:

SELECT enp_id, |name, dept_id, manager_enp_id, salary, hire_date
FROM enpl oyee e

WHERE enp_id NOT IN

(SELECT nmnager _enp_id FROM enpl oyee

WHERE manager _enp_id IS NOT NULL);

EVMP_I D LNAME DEPT_I D MANAGER_EMP_I D SALARY HI RE_DATE
7369 SM TH 20 7902 800 17-DEC-80
7499 ALLEN 30 7698 1600 20- FEB-81
7521 WARD 30 7698 1250 22-FEB-81
7654 MARTI N 30 7698 1250 28- SEP-81
7844 TURNER 30 7698 1500 08- SEP-81
7876 ADAMS 20 7788 1100 23- NAY- 87
7900 JAMES 30 7698 950 03-DEC-81
7934 M LLER 10 7782 1300 23-JAN-82

8 rows sel ected.

In this example, the subquery returns the enp_i d's of all the managers. The outer query then
returns all the employees, except the ones returned by the subquery. This query can also be
written as a correlated subquery using EXISTS instead of IN:

SELECT enp_id, |name, dept_id, manager_enp_id, salary, hire_date

FROM enpl oyee e

WHERE NOT EXI STS

(SELECT enp_id FROM enpl oyee el WHERE e.enp_id

7369

7499

7521

7654

7844

7876

7900

7934

SM TH

ALLEN

WARD

MARTI N

TURNER

ADANMS

JAMES

M LLER

8 rows sel ected.

DEPT_| D MANAGER EMP_| D

20

30

30

30

30

20

30

10

7902

7698

7698

7698

7698

7788

7698

7782

= el. manager _enp_id);

800

1600

1250

1250

1500

1100

950

1300

H RE_DATE
17- DEC- 80
20- FEB- 81
22- FEB- 81
28- SEP- 81
08- SEP- 81
23- MAY- 87
03- DEC- 81

23- JAN- 82

The correlated subquery checks each employee to see whether he is the manager of any other
employee. If not, then that particular employee is included in the result set.

o

=
A
[T

Oracle Database 10g introduces a pseudocolumn, CONNECT_BY_ISLEAF,

which you can also use to identify leaf nodes. We discuss this

i pseudocolumn in Section 8.6.

< Day Day Up >

| 4m PREV < Day Day Up > MET

8.3 Oracle SQL Extensions

In the previous section, you saw how to perform some operations on a hierarchical tree by
using simple SQL techniques. Operations such as traversing a tree, finding levels, etc., require
more complex SQL statements, and also require the use of features designed specifically for
working with hierarchical data. Oracle provides some extensions to ANSI SQL to facilitate these
operations. But before looking at the Oracle SQL extensions, let's look at how you can traverse
a tree using ANSI SQL, and at the problems you'll encounter when doing that.

8.3.1 Tree Traversal Using ANSI SQL

Say you want to list each employee with his manager. Using regular Oracle SQL, you can
perform self outer-joins on the enpl oyee table, as shown here:

SELECT e_top.lnane, e_2.lnane, e_3.lnane, e_4.lnane
FROM enpl oyee e _top LEFT QUTER JO N enpl oyee e 2
ON e_top.enp_id = e_2. manager_enp_id
LEFT OUTER JO N enpl oyee e_3
ON e 2.enp_id = e_3. manager_enp_id
LEFT OUTER JO N enpl oyee e_4

ON e 3.enmp_id

e_4. manager _enp_id

WHERE e_top. nanager_enp_id IS NULL;

LNAME LNAME LNAME LNAME
KI NG JONES FORD SM TH
KI NG JONES SCOTT ADANMS
KI NG BLAKE TURNER

KI NG BLAKE ALLEN

KI NG BLAKE WARD

KI NG CLARK M LLER

KI NG BLAKE MARTI N

KI NG BLAKE JAMES

8 rows sel ected.

The query returns eight rows, corresponding to the eight branches of the tree. To get those
results, the query performs a self join on four instances of the enpl oyee table. Four enpl oyee

table instances are needed in this statement because there are four levels to the hierarchy. Each
level is represented by one copy of the enpl oyee table. The outer join is required because one
employee (KING) has a NULL value in the manager _enp_i d column.

This type of query has several drawbacks. First of all, you need to know the number of levels in
an organization chart when you write the query, and it's not realistic to assume that you will
know that information. It's even less realistic to think that the number of levels will remain
stable over time. Moreover, you need to join four instances of the enpl oyee table together for a

four-level hierarchy. Imagine an organization with 20 levels—you'd need to join 20 instances of
the table! Such a join would cause a huge performance problem.

To circumvent problems such as these, Oracle has provided some extensions to ANSI SQL.
Oracle provides the following three constructs to effectively and efficiently perform hierarchical
queries:

e The START WITH . . . CONNECT BY clause

e The PRIOR operator

e The LEVEL pseudocolumn

The following sections discuss these three Oracle extensions in detail.

8.3.2 START WITH ... CONNECT BY and PRIOR

You can extract information in hierarchical form from a table containing hierarchical data by
using the SELECT statement’'s START WITH . . . CONNECT BY clause. The syntax for this clause
is:

[[START W TH conditionl] CONNECT BY condition2]

The syntax elements are:

START WITH condi ti onl

Specifies the root row(s) of the hierarchy. All rows that satisfy condi ti onl are considered
root rows. If you don't specify the START WITH clause, all rows are considered root rows,
which is usually not desirable. You can include a subquery in condi ti onl.

CONNECT BY condi ti on2

Specifies the relationship between parent rows and child rows in the hierarchy. The
relationship is expressed as a comparison expression, where columns from the current
row are compared to corresponding parent columns. condi ti on2 must contain the PRIOR
operator, which is used to identify columns from the parent row. condi ti on2 cannot
contain a subquery.

PRIOR is a built-in Oracle SQL operator that is used with hierarchical queries only. In a
hierarchical query, the CONNECT BY clause specifies the relationship between parent and child
rows. When you use the PRIOR operator in an expression in the CONNECT BY condition, the
expression following the PRIOR keyword is evaluated for the parent row of the current row in
the query. In the following example, PRIOR is used to connect each row to its parent by
connecting nanager _enp_i d in the child to enp_i d in the parent:

SELECT | nane, enp_id, nanager_enp_id
FROM enpl oyee
START W TH nanager_enp_id |I'S NULL

CONNECT BY PRIOR enp_id = nmnager_enp_id;

LNAVE EMP_I D MANAGER EMP_I D
KI NG 7839

JONES 7566 7839
SCOTT 7788 7566
ADANS 7876 7788
FORD 7902 7566
SM TH 7369 7902
BLAKE 7698 7839
ALLEN 7499 7698
WARD 7521 7698
MARTI N 7654 7698
TURNER 7844 7698
JAMES 7900 7698
CLARK 7782 7839

M LLER 7934 7782

14 rows sel ected.

The PRIOR column does not need to be listed first. The previous query could be restated as:
SELECT | nane, enp_id, nanager_enp_id

FROM enpl oyee

START W TH nanager _enp_id |I'S NULL

CONNECT BY nmnager _enp_id = PRIOR enp_id;

The preceding two PRIOR examples list all the employees in the organization, because each
query uses the START WITH clause to begin with the top-most employee (with NULL

manager _enp_i d). Instead of reporting out the whole organization chart, you may want to list

only the subtree under a given employee, JONES for example. To do this, you can modify the
START WITH condition so that it specifies JONES as the root of the query. For example:

SELECT | nane, enp_id, nanager_enp_id
FROM enpl oyee
START WTH | name = " JONES'

CONNECT BY nmnager _enp_id = PRIOR enp_id,;

LNAVE EMP_I D MANAGER EMP_I D
JONES 7566 7839
ScoTT 7788 7566
ADANB 7876 7788
FORD 7902 7566
SM TH 7369 7902

Since this query considers JONES as the root of the hierarchy, only the employees that belong
to the organization tree under JONES (including JONES himself) are returned by the query. Be
careful while using conditions such as | nane = 'JONES' in hierarchical queries. In this case, if we
have two JONES in our organization, the result returned by the hierarchy may be wrong. It is
better to use primary or unique key columns, such as enp_i d, as the condition in such
situations.

In the previous example, we listed the portion of our organization chart headed by the specific
employee named "JONES." There can be situations when you may need to print the organization

chart headed by any employee that meets a specific condition. For example, you may want to
list all employees under the employee who has been working in the company for the longest
time. In this case, the starting point of the query (the root) is dependent on a condition.
Therefore, you have to use a subquery to generate the information needed to evaluate the
condition and pass that information to the main query, as in the following example:

SELECT | nane, enp_id, nanager_enp_id
FROM enpl oyee
START WTH hire_date = (SELECT M N(hire_date) FROM enpl oyee)

CONNECT BY nmnager _enp_id = PRIOR enp_id;

LNAVE EMP_I D MANAGER EMP_I D
BLAKE 7698 7839
ALLEN 7499 7698
WARD 7521 7698
MARTI N 7654 7698
TURNER 7844 7698
JAMES 7900 7698

6 rows sel ected.

Note the START WITH clause in this example. The subquery in the START WITH clause returns
the minimum hi r e_dat e in the table, which represents the hi r e_dat e of the employee with the

longest service. The main query uses this information as the starting point of the hierarchy and
lists the organization structure under this employee.

While using a subquery in the START WITH clause, be aware of how many rows will be returned
by the subquery. If more than one row is returned when you are expecting just one row
(indicated by the = sign), the query will generate an error. You can get around this by replacing
= with the IN operator, but be warned that the hierarchical query may then end up dealing with
multiple roots.

Since the CONNECT BY condition specifies the parent-child relationship, it cannot contain a loop
(also known as a cycle). If a row is both parent (direct ancestor) and child (direct descendent)
of another row, then you have a loop. For example, if the enpl oyee table had the following two
rows, they would represent a loop:

EMP_I D LNAME DEPT_I D MANAGER EMP_I D SALARY HI RE_DATE

9001 SM TH 20 9002 1800 15- NOv-61

9002 ALLEN 30 9001 11600 16- NOV-61
"_-‘~ The pseudocolumn CONNECT_BY_ISCYCLE and the keyword NOCYCLE,
o, both introduced in Oracle Database 10g, help identify and ignore cycles.

! 4. These are discussed later in the chapter.

When a parent-child relationship involves two or more columns, you need to use the PRIOR
operator before each parent column. Let's take as an example an assembly in a manufacturing

plant. An assembly may consist of several subassemblies, and a given subassembly may further
contain one or more subassemblies. All of these are stored in a table, assenbl y:

DESC assenbly

Nanme Nul | ? Type
assenbly_type NOT NULL VARCHARZ2(4)
assenbly_id NOT NULL NUMBER(6)
description NOT NULL VARCHAR2(20)
parent _assenbly_type VARCHAR2(4)
parent _assenbly id NUVBER(6)

Column assenbl y_t ype and assenbl y_i d constitute the primary key of this table, and the
columns parent _assenbl y_type and parent _assenbl y_i d together constitute the self-
referential foreign key. Therefore, if you want to perform a hierarchical query on this table, you
need to include both columns in the START WITH and the CONNECT BY clauses. You also need
to use the PRIOR operator before each parent column, as shown in the following example:

SELECT * FROM assenbly

START W TH parent _assenbly type |I'S NULL

AND parent _assenbly id IS NULL

CONNECT BY parent _assenbly type = PRIOR assenbly_type

AND parent_assenbly id = PRIOR assenbly id;

ASSE ASSEMBLY_| D DESCRI PTI ON PARE PARENT_ASSEMBLY_I D

A 1234 Assenbly A#1234

A 1256 Assenbly A#1256 A 1234
B 6543 Part Unit #6543 A 1234
A 1675 Part Unit #1675 B 6543
X 9943 Repair Zone 1

X 5438 Repair Unit #5438 X 9943
X 1675 Readynade Unit #1675 X 5438

7 rows sel ected.

8.3.3The LEVEL Pseudocolumn

As we explained earlier, the term level refers to one layer of nodes. For example, in Figure 8-1,
the root node (consisting of employee KING) is level 1. The next layer (employees JONES,
BLAKE, CLARK) is level 2, and so forth. Oracle provides a pseudocolumn, LEVEL, to represent
these levels in a hierarchy tree. Whenever you use the START WITH . . . CONNECT BY clauses in
a hierarchical query, you can use the pseudocolumn LEVEL to return the level number for each
row returned by the query. The following example illustrates the use of the LEVEL
pseudocolumn:

SELECT level, I|nane, enp_id, nanager_enp_id
FROM enpl oyee
START W TH nanager_enp_id IS NULL

CONNECT BY nmnager _enp_id = PRIOR enp_id;

LEVEL LNANE EMP_I D MANAGER EMP_I D
1 KING 7839
2 JONES 7566 7839
3 SCOTT 7788 7566
4 ADANS 7876 7788
3 FORD 7902 7566

4 SM TH 7369 7902

2 BLAKE 7698 7839

3 ALLEN 7499 7698
3 WARD 7521 7698
3 MARTI N 7654 7698
3 TURNER 7844 7698
3 JAMES 7900 7698
2 CLARK 7782 7839
3 MLLER 7934 7782

14 rows sel ected.

Note that each employee is now associated with a number, represented by the pseudocolumn
LEVEL, that corresponds to that employee's level in the organization chart (see Figure 8-1).

| 4m FREV < Day Day Up > MET m

| 4 PREV < Day Day Up > MEXT o

8.4 Complex Hierarchy Operations

Using Oracle's hierarchical SQL extensions, you can perform complex, hierarchical queries much
more easily than you would be able to do using standard, ANSI SQL.

8.4.1 Finding the Number of Levels

Previously we showed how the LEVEL pseudocolumn generates a level number for each record
when we use the START WITH . . . CONNECT BY clause. You can use the following query to
determine the number of levels in the hierarchy by finding the maximum level number returned
by the LEVEL pseudocolumn:

SELECT MAX(LEVEL)
FROM enpl oyee
START W TH nanager_enp_id IS NULL

CONNECT BY PRIOR enp_id = nmnager_enp_id;

MAX(LEVEL)

To determine the number of employees at each level, group the results by LEVEL and count the
number of employees in each distinct group. For example:

SELECT LEVEL, COUNT(enp_id)

FROM enpl oyee

START W TH nmanager_enp_id |I'S NULL
CONNECT BY PRIOR enp_id = nanager_enp_id

GROUP BY LEVEL;

LEVEL COUNT(EMP_I D)

8.4.2 Listing Records in Hierarchical Order

One of the very common programming challenges SQL programmers face is to list records in a
hierarchy in their proper hierarchical order. For example, you might wish to list employees with
their subordinates underneath them, as in the following query:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || |name "Enployee",
enp_id, manager_enp_id

FROM enpl oyee

START WTH manager _enp_id IS NULL

CONNECT BY PRIOR enp_id = nanager_enp_id;

LEVEL Enpl oyee EMP_I D MANAGER EVP_| D
1 KI NG 7839
2 JONES 7566 7839
3 SCOTT 7788 7566
4 ADANB 7876 7788
3 FORD 7902 7566
4 SM TH 7369 7902
2 BLAKE 7698 7839
3 ALLEN 7499 7698
3 WARD 7521 7698
3 MARTI N 7654 7698
3 TURNER 7844 7698
3 JAMES 7900 7698

2 CLARK 7782 7839

3 M LLER 7934 7782

14 rows sel ected.

Notice that by using the expression LPAD(' ', 2*(LEVEL - 1)), we are able to align employee
names in a manner that corresponds to their level. As the level number increases, the number
of spaces returned by the expression increases, and the employee name is further indented.

The previous query lists all the employees in the enpl oyee table. If you want to filter out certain
employees based on some condition, then you can use a WHERE clause in your hierarchical
query. Here is an example:

SELECT LEVEL, LPAD(' ",2*(LEVEL - 1)) || Inane "Enpl oyee",
enp_id, nanager_enp_id, salary

FROM enpl oyee

WHERE sal ary > 2000

START W TH nanager_enp_id |I'S NULL

CONNECT BY nmnager _enp_id = PRIOR enp_id;

LEVEL Enpl oyee EMP_I D MANAGER EMP_I D SALARY
1 KI NG 7839 5000
3 ScorT 7788 7566 3000
3 FORD 7902 7566 3000
2 BLAKE 7698 7839 2850
2 CLARK 7782 7839 2450

This query lists records with sal ary > 2000. The WHERE clause restricts the rows returned by
the query without affecting other rows in the hierarchy. In our example, the WHERE condition
filtered JONES out of the result, but the employees below JONES in the hierarchy (SCOTT and
FORD) are not filtered out, and are still indented as they were when JONES was present. The
WHERE clause must come before the START WITH . . . CONNECT BY clause in a hierarchical
query; otherwise, you'll get a syntax error.

nd Though the WHERE clause comes before the START WITH . . . CONNECT BY
- construct, the filtering happens after the complete hierarchy tree is built.

g

As discussed earlier, the START WITH clause is optional—i.e., you can have a CONNECT BY
without a START WITH. When the START WITH clause is missing, effectively the query doesn't
specify where to start building the hierarchy. In that situation, each row of the table is
considered a root, and a hierarchy is built for each row. For example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || I|nane "Enployee",
enp_id, nanager_enp_id, salary
FROM enpl oyee

CONNECT BY nmnager _enp_id = PRIOR enp_id;

LEVEL Enpl oyee EMP_I D MANAGER EMP_I D SALARY
1 SCOTT 7788 7566 3000
2 ADAMVB 7876 7788 1100
1 FORD 7902 7566 3000
2 SMTH 7369 7902 800
1 ALLEN 7499 7698 1600
1 WARD 7521 7698 1250
1 JAMVES 7900 7698 950
1 TURNER 7844 7698 1500
1 MARTI N 7654 7698 1250
1 MLLER 7934 7782 1300
1 ADAVB 7876 7788 1100
1 JONES 7566 7839 2000
2 SCOTT 7788 7566 3000
3 ADAVB 7876 7788 1100
2 FORD 7902 7566 3000
3 SM TH 7369 7902 800
1 CLARK 7782 7839 2450
2 MLLER 7934 7782 1300

1 BLAKE 7698 7839 2850

2 ALLEN 7499 7698 1600

2 WARD 7521 7698 1250
2 JAVES 7900 7698 950
2 TURNER 7844 7698 1500
2 MARTI N 7654 7698 1250
1 SMTH 7369 7902 800
1 KING 7839 5000
2 JONES 7566 7839 2000
3 SCOTT 7788 7566 3000
4 ADAMS 7876 7788 1100
3 FORD 7902 7566 3000
4 SM TH 7369 7902 800
2 CLARK 7782 7839 2450
3 M LLER 7934 7782 1300
2 BLAKE 7698 7839 2850
3 ALLEN 7499 7698 1600
3 WARD 7521 7698 1250
3 JAMES 7900 7698 950
3 TURNER 7844 7698 1500
3 MARTI N 7654 7698 1250

39 rows sel ected.

This example returns the hierarchy tree for each row in the table. In the organization tree under
KING, SCOTT is at level 3; however, in the organization tree under JONES, SCOTT is at level 2,
and under the organization tree headed by himself, SCOTT is at level 1.

8.4.3 Checking for Ascendancy

Another common operation on hierarchical data is to check for ascendancy. In an organization
chart, you may ask whether one employee has authority over another. For example: "Does
JONES have any authority over BLAKE?" To find out, you need to search for BLAKE in the

subtree headed by JONES. If you find BLAKE in the subtree, then you know that BLAKE either
directly or indirectly reports to JONES. If you don't find BLAKE in the subtree, then you know

that JONES doesn't have any authority over BLAKE. The following query searches for BLAKE in
the subtree headed by JONES:

SELECT *

FROM enpl oyee

WHERE | nane = ' BLAKE

START WTH | name = ' JONES

CONNECT BY nmnager _enp_id = PRIOR enp_id;

no rows sel ected

The START WITH . . . CONNECT BY clause in this example generates the subtree headed by
JONES, and the WHERE clause filters this subtree to find BLAKE. As you can see, no rows are
returned. This means that BLAKE was not found in JONES's subtree, so you know that JONES
has no authority over BLAKE. Let's take a look at another example that produces positive
results. This time we'll check to see whether JONES has any authority over SMITH:

SELECT enp_id, |name, dept_id, manager_enp_id, salary, hire_date
FROM enpl oyee

WHERE | nane = 'SM TH

START WTH | nane = ' JONES

CONNECT BY nmnager _enp_id = PRIOR enp_id;

EVMP_I D LNAME DEPT_I D MANAGER_EMP_I D SALARY HI RE_DATE

7369 SM TH 20 7902 800 17-DEC- 80

This time, SMITH was found in the list of employees in JONES's subtree, so you know that at
some level JONES has management authority over SMITH.

8.4.4 Deleting a Subtree

Let's assume that the organization we are dealing with splits, and JONES and all his
subordinates form a new company. Therefore, we don't need to maintain JONES and his
subordinates in our enpl oyee table. Furthermore, we need to delete the entire subtree headed
by JONES, as shown in Figure 8-1, from our table. We can do this by using a subquery as in the
following example:

DELETE FROM enpl oyee

WHERE enp_id IN

(SELECT enp_id FROM enpl oyee
START WTH | namre = ' JONES

CONNECT BY nanager _enp_id = PRIOR enp_id);

5 rows del et ed.

In this example, the subquery generates the subtree headed by JONES, and returns the
enp_i ds of the employees in that subtree, including JONES's. The outer query then deletes the
records with these enp_i d values from the enpl oyee table.

8.4.5 Listing Multiple Root Nodes

An interesting variation on the problem of listing the root node of a hierarchy is to find and list
the root nodes from several hierarchies that are all stored in the same table. For example, you
might consider department managers to represent root nodes, and you might further wish to
list all department managers found in the enpl oyee table.

There are no constraints on the employees belonging to any department. However, you can
assume that if A reports to B and B reports to C, and A and C belong to the same department,

then B also belongs to the same department. If an employee's manager belongs to another
department, then that employee is the uppermost employee, or manager, of his department.

Therefore, to find the uppermost employee in each department, you need to search the tree for
those employees whose managers belong to a different department than their own. You can do
that using the following query:

SELECT enp_id, |name, dept_id, manager_enp_id, salary, hire_date
FROM enpl oyee

START W TH manager_enp_id IS NULL

CONNECT BY nmnager _enp_id = PRIOR enp_id

AND dept _id !'= PRIOR dept _id;

7839 KI NG 10 5000 17-NOv-81

7566 JONES 20 7839 2000 02-APR-81

7698 BLAKE 30 7839 2850 01- MAY-80

In this example, the extra condition (dept _id != PRI OR dept_id) added to the CONNECT BY
clause restricts the output to only those employees whose managers belong to a different
department than their own.

8.4.6 Listing the Top Few Levels of a Hierarchy

Another common task in dealing with hierarchical data is listing the top few levels of a hierarchy
tree. For example, you may want to list top management employees in an organization. Let's
assume that the top two levels in our organization chart constitute top management. You can
then use the LEVEL pseudocolumn to identify those employees, as in the following example:

SELECT enp_id, |name, dept_id, manager_enp_id, salary, hire_date
FROM enpl oyee

WHERE LEVEL <= 2

START W TH nmanager_enp_id |I'S NULL

CONNECT BY nmnager _enp_id = PRIOR enp_id;

EVMP_I D LNAVE DEPT_I D MANAGER EMP_I D SALARY HI RE_DATE
7839 KI NG 10 5000 17-NOv-81
7566 JONES 20 7839 2000 02- APR-81
7698 BLAKE 30 7839 2850 01- MAY-80
7782 CLARK 10 7839 2450 09-JUN-81

In this example, the LEVEL <= 2 condition in the WHERE clause restricts the results to only
those employees in the top two levels of the organization chart.

8.4.7 Aggregating a Hierarchy

Another challenging requirement is to aggregate a hierarchy. For example, you may want to
sum the salaries of all employees reporting to a specific employee. Or, you may want to
consider each employee as a root, and for each employee print out the sum of the salaries of all
subordinate employees.

The first problem is relatively simple. Earlier we described how to select a subtree headed by an
employee. You can easily sum the salaries of all employees in such a subtree. For example:

SELECT SUM sal ary)
FROM enpl oyee
START WTH | name = ' JONES

CONNECT BY nmanager _enp_id = PRIOR enp_id;

SUM SALARY)

The START WTH | nane = ' JONES' clause generates the subtree headed by JONES, and the
SUM sal ary) expression sums the salary of employees in this subtree.

The second problem, a seemingly simple extension of the first, is relatively complex. You want
to consider each employee as a root, and for each employee you want to sum the salaries of all

employees in its subtree. In essence, you want to repeat the previous query for each employee
in the table. The following SQL uses an inline view to achieve this:

SELECT t2.lnane, t2.salary,

(SELECT SUMt1.salary) FROM enployee t1

START WTH t1.lnane = t2.]nane

CONNECT BY tl.manager _enp_id = PRIOR tl.enp_id) sumsalary

FROM enpl oyee t2;

LNAME SALARY SUM SALARY
SM TH 800 800
ALLEN 1600 1600
WARD 1250 1250
JONES 2000 9900
MARTI N 1250 1250
BLAKE 2850 9400
CLARK 2450 3750

SCOTT 3000 4100

Kl NG 5000 28050

TURNER 1500 1500
ADAMS 1100 1100
JAMES 950 950
FORD 3000 3800
M LLER 1300 1300

14 rows sel ected.

In this example, the START WTH . . . CONNECT BY clause in the inline view generates a
subtree for each employee. The inline view executes once for every row in the outer enpl oyee
table. For each row in the outer enpl oyee table, the inline view generates a subtree headed by
this employee, and returns the sum of salaries for all the employees in this subtree to the main

query.

The result set provides two numbers for each employee. The first number, sal ary, is the
employee's own salary. The second number, sum sal ary, is the sum of the salaries of all
employees under him (including himself/herself). Often programmers resort to PL/SQL to solve
this type of problem. However, this query, which combines the power of hierarchical queries
with that of inline views, solves the problem in a much more concise and elegant way.

8.4.8 Ordering Hierarchical Data

Sorting the results from a hierarchical query is a more interesting problem than it first may
sound. A hierarchical query with a START WITH . . . CONNECT BY . . . construct displays the
results in an arbitrary order, as shown in the following example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || |nane "EMPLOYEE",
enp_id, nanager_enp_id

FROM enpl oyee

START W TH nmanager_enp_id |I'S NULL

CONNECT BY PRIOR enp_id = nanager_enp_id;

LEVEL EMPLOYEE EMP_I D MANAGER_EMP_I D

2 JONES 7566 7839

3 SCOTT 7788 7566

4 ADANS 7876 7788
3 FORD 7902 7566
4 SM TH 7369 7902
2 BLAKE 7698 7839
3 ALLEN 7499 7698
3 WARD 7521 7698
3 MARTI N 7654 7698
3 TURNER 7844 7698
3 JAMES 7900 7698
2 CLARK 7782 7839
3 M LLER 7934 7782

As always, you can use an ORDER BY clause to order the result rows in the way you want.
However, in the case of a hierarchical query, an ORDER BY clause can destroy the hierarchical
nature of the data returned by the query. This is shown in the following example, which orders
the results by last name:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || |name "EMPLOYEE",
enp_id, nmanager_enp_id

FROM enpl oyee

START W TH manager _enp_id IS NULL

CONNECT BY PRIOR enp_id = nmmnager_enp_id

ORDER BY | nane;

LEVEL EMPLOYEE EMP_I D MANAGER_EMP_I D
4 ADANS 7876 7788
3 ALLEN 7499 7698
2 BLAKE 7698 7839

2 CLARK 7782 7839

3 FORD 7902 7566

3 JAMES 7900 7698
2 JONES 7566 7839
1 KING 7839

3 MARTI N 7654 7698
3 M LLER 7934 7782
3 SCOTIT 7788 7566
4 SM TH 7369 7902
3 TURNER 7844 7698
3 WARD 7521 7698

As you can see from this output, it is impossible to identify the hierarchical relationship between
the rows. To resolve this problem, you can use the SIBLINGS (in Oracle9i and later) keyword in
the ORDER BY clause, to order the hierarchical data while at the same time preserving the
hierarchy. Oracle does this by sorting at each level while ensuring that child nodes remain
underneath their parents. For example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || |nane "EMPLOYEE",
enp_id, nanager_enp_id

FROM enpl oyee

START W TH nanager_enp_id IS NULL

CONNECT BY PRIOR enmp_id = nanager_enp_id

ORDER SI BLI NGS BY | nane;

LEVEL EVMPLOYEE EMP_I D MANAGER _EMP_I D
1 KING 7839
2 BLAKE 7698 7839
3 ALLEN 7499 7698
3 JAMVES 7900 7698
3 MARTI N 7654 7698

3 TURNER 7844 7698

3 WARD 7521 7698

2 CLARK 7782 7839
3 M LLER 7934 7782
2 JONES 7566 7839
3 FORD 7902 7566
4 SM TH 7369 7902
3 SCOTT 7788 7566
4 ADANMS 7876 7788

In this example's output, BLAKE, CLARK, and JONES are siblings, and they are displayed in
ascending order. So are BLAKE's children: ALLEN, JAMES, MARTIN, TURNER, and WARD.

8.4.9 Finding the Path to a Node

You can list the entire path of a given node starting from the root node using the
SYS_CONNECT_BY_PATH function (in Oracle9i and later). This function takes two arguments: a
column name and a character string. The function then returns a list containing each value of
the column from the root node to the current node, separating values by the character string
you provide. For example:

SELECT SYS _CONNECT_BY_PATH(| nane, '#')
FROM enpl oyee
START W TH nanager_enp_id IS NULL

CONNECT BY PRIOR enp_id = nmnager_enp_id;

SYS_CONNECT_BY_PATH(LNAME, ' #')
#KI NG

#KI NG#J ONES

#KI NG#J ONES#SCOTT

#KI NG#J ONES#SCOT T#ADANVS

#KI NG#J ONES#FORD

#KI NG#J ONES#FORD#SM TH

#KI NG#BLAKE

#KI NG#BLAKE#ALLEN

#KI NG#BLAKE#WARD

#KI NG#BLAKE#MARTI N

#KI NG#BLAKE#TURNER

#KI NG#BLAKE#JAVES

#KI NG#CLARK

#KI NG#CLARK#M LLER

The preceding query lists the full organizational path for each employee starting at the top. For
example, #KI NG#JONES#FORD#SM TH shows the complete reporting relation of SMITH in the
organization.

To understand the usefulness of the SYS_CONNECT_BY_PATH function, think of a trail in a park.
The branches of such a trail are illustrated in Figure 8-3.

Figure 8-3. Trails

The various points in the trail, and the distance between them is stored in a table, trail :

CREATE TABLE trail (
start_poi nt CHAR,
end_poi nt CHAR,

di st ance NUVBER

)

INSERT INTO trail VALUES ('A,'B, 3);
I NSERT INTO trail VALUES ("A,'C, 2.5);

INSERT INTO trail VALUES (‘B ,'D, 2);

INSERT INTO trail VALUES ('B,'E, 1.5);

I NSERT INTO trail VALUES ('C,'F, 2.5);

I NSERT INTO trail VALUES ('C,'G, 2.5);

I NSERT INTO trail VALUES ('G,'H, 3.5);

I NSERT INTO trail VALUES ('E,'J', 1.5);

COWM T,

You need to find the total distance of each point in the trail from the starting point "A." The

following query uses SYS_CONNECT_BY_PATH to print the distance of each point concatenated
with the distances of each of its ancestors in the tree:

SELECT end_poi nt,

SUBSTR(SYS_CONNECT_BY_PATH(di st ance,' +'),2) total _distance
FROM trail
START WTH start_point = 'A

CONNECT BY start_point

PRI OR end_poi nt;

E TOTAL_DI STANCE

D 3+2

E 3+1.5

J 3+1.5+1.5

C 2.5

F 2.542.5

G 2.5+2.5

H 2.5+2.5+43.5

The SUBSTR function takes out the first "+" in the query's output. Now, each of the

tot al _di st ance expressions, one for each point, can be evaluated to compute the total

distance. One way to evaluate such expressions is to write an eval function, as shown in the
following code:

CREATE OR REPLACE FUNCTI ON eval (exp IN VARCHAR2) RETURN NUMBER | S
result NUMBER;
BEG N
EXECUTE | MVEDI ATE ' SELECT ' || exp || ' FROM DUAL' INTO result;
RETURN resul t;
EXCEPTI ON
WHEN OTHERS THEN
RETURN NULL;

END;

The following example uses the eval function to compute the total distance of each point in the
trail from the starting point A:

SELECT end_poi nt,

eval (SUBSTR(SYS_CONNECT_BY_PATH(di st ance, ' +'),2)) total distance
FROM trail
START WTH start_point = 'A

CONNECT BY start_point

PRI OR end_poi nt;

E TOTAL_DI STANCE

B 3
D 5
E 4.5
J 6
C 2.5
F 5
G 5

From this output, it is easy to figure out how far each point is in the trail from the starting point
N

< Day Day Up >

| 4 PREV < Day Day Up > MEXT o

8.5 Restrictions on Hierarchical Queries

Through Oracle8i, the following restrictions apply to hierarchical queries.

e A hierarchical query can't use a join.
e A hierarchical query cannot select data from a view that involves a join.

These restrictions were removed with the release of Oracle9i.

| 4 PREV < Day Day Up > MEXT o

| 4 PREV < Day Day Up > MEXT o

8.6 Enhancements in Oracle Database 10g

Oracle Database 10g introduces some new features for hierarchical queries. The new features
include the CONNECT_BY_ROOT operator, the new CONNECT_BY_ISCYCLE and
CONNECT_BY_ISLEAF pseudocolumns, and the NOCYCLE keyword. We will discuss each of these
enhancements in the following sections.

8.6.1 Getting Data from the Root Row

Remember how you can use the PRIOR operator to retrieve a value from a node's parent row?
You can now use the CONNECT_BY_ROOT operator to retrieve a value from a node's root. For
example:

SELECT | nane "Enpl oyee", CONNECT_BY_ROOT | nane "Top Manager"
FROM enpl oyee
START W TH manager _enp_id = 7839

CONNECT BY PRIOR enp_id = nmnager_enp_id;

Enpl oyee Top Manager
JONES JONES
SCOrT JONES
ADANVS JONES
FORD JONES
SM TH JONES
BLAKE BLAKE
ALLEN BLAKE
WARD BLAKE
MARTI N BLAKE
TURNER BLAKE

JAMES BLAKE

CLARK CLARK

M LLER CLARK

In this example, the hierarchy is built by starting with the rows that meet the condition

manager _enp_id = 7839. This means that anyone whose manager is 7839 will be considered a
root for this query. Those employees will be listed in the result set of the query along with the
name of the top-most manager in their tree. The CONNECT_BY_ROOT operator returns that top-
most manager name by accessing the root row for each row returned by the query.

8.6.2 Ignoring Cycles

Cycles are not allowed in a true tree structure. But life is not perfect, and someday you're bound
to encounter hierarchical data containing cycles in which a node's child is also its parent. Such
cycles are usually not good, need to be fixed, but can be frustratingly difficult to identify. You
can try to find cycles by issuing a START WITH . . . CONNECT BY query, but such a query will
report an error if there is a cycle (also known as a loop) in the data. In Oracle Database 10g, all
this changes.

To allow the START WITH . . . CONNECT BY construct to work properly even if cycles are present
in the data, Oracle Database 10g provides the new NOCYCLE keyword. If there are cycles in
your data, you can use the NOCYCLE keyword in the CONNECT BY clause, and you will not get
an error when hierarchically querying that data.
The test data we have in the enpl oyee table doesn't have a cycle. To test the NOCYCLE feature,
you can introduce a cycle into the existing enpl oyee data by updating the manager _enp_i d
column of the top-most employee (KING with enp_i d=7839) with the nanager _enp_i d of one of
the lowest level employees (MARTIN with enp_id =7654):
UPDATE enpl oyee
SET nmanager_enp_i d

= 7654

WHERE manager _enp_id |S NULL;

Now, if you perform the following hierarchical query, you will get an ORA-01436 error:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || |nane "EMPLOYEE",
enp_id, nanager_enp_id

FROM enpl oyee

START WTH enp_id = 7839

CONNECT BY PRIOR enp_id = nanager_enp_id;

LEVEL EMPLOYEE EMP_I D MANAGER_EMP_I D

1 KING 7839 7654

2 JONES 7566 7839
3 SCOTIT 7788 7566
4 ADANS 7876 7788
3 FORD 7902 7566
4 SM TH 7369 7902
2 BLAKE 7698 7839
3 ALLEN 7499 7698
3 WARD 7521 7698
3 MARTI N 7654 7698
4 Kl NG 7839 7654
5 JONES 7566 7839
6 SCOTT 7788 7566
7 ADANS 7876 7788
6 FORD 7902 7566

ERRCOR:

ORA-01436: CONNECT BY loop in user data

15 rows sel ected.

Other than the error, notice that the whole tree starting with KING starts repeating under
MARTIN. This is erroneous and confusing. Use the NOCYCLE keyword in the CONNECT BY clause
to get rid of the error message, and to prevent the listing of erroneously cyclic data:
SELECT LEVEL, LPADX' ',2*(LEVEL - 1)) || Inane "EMPLOYEE",

enp_id, nanager_enp_id
FROM enpl oyee

START WTH enp_id = 7839

CONNECT BY NOCYCLE PRIOR enp_id = manager _enp_id;

LEVEL EVMPLOYEE EMP_I D MANAGER _EMP_I D
1 KING 7839 7654
2 JONES 7566 7839
3 SCOTT 7788 7566
4 ADANMS 7876 7788
3 FORD 7902 7566
4 SM TH 7369 7902
2 BLAKE 7698 7839
3 ALLEN 7499 7698
3 WARD 7521 7698
3 MARTI N 7654 7698
3 TURNER 7844 7698
3 JAMES 7900 7698
2 CLARK 7782 7839
3 M LLER 7934 7782

This query recognizes that there is a cycle, ignores the cycle (as an impact of the NOCYCLE
keyword), and returns the rows as if there were no cycles. Having the ability to query data
containing cycles, your next problem is to identify those cycles.

"_—‘~ You can use the NOCYCLE keyword regardless of whether you have a cycle
s in your data.
LC
(15N

8.6.3 Identifying Cycles

It is sometimes difficult to identify cycles in hierarchical data. Oracle Database 10g’'s new
pseudocolumn, CONNECT_BY_ISCYCLE, can help you identify the cycles in the data easily.
CONNECT_BY_ISCYCLE can be used only in conjunction with the NOCYCLE keyword in a
hierarchical query. The CONNECT_BY_ISCYCLE pseudocolumn returns 1 if the current row has a
child that is also its ancestor; otherwise, it returns 0. For example:

SELECT | nane, CONNECT_BY_I| SCYCLE
FROM enpl oyee
START WTH enp_id = 7839

CONNECT BY NOCYCLE PRICOR enp_id = manager _enp_id;

LNANVE CONNECT_BY_I SCYCLE
Kl NG 0
JONES 0
SCOTT 0
ADANVS 0
FORD 0
SM TH 0
BLAKE 0
ALLEN 0
WARD 0
MARTI N 1
TURNER 0
JAMES 0
CLARK 0
M LLER 0

Since MARTIN is KING's manager in this data set, and MARTIN also comes under KING in the
organization tree, the row for MARTIN has the value 1 for CONNECT_BY_ISCYCLE.

"'_—‘~ For correct results in subsequent queries, you should revert our example
o data back to its original state by rolling back the earlier change that forced
% . . .
. 4. a cycle in the data. If you have already committed the previous UPDATE,

you should update the enpl oyee table again to set the nanager _enp_i d
column to NULL for KING.

8.6.4 Identifying Leaf Nodes

In a tree structure, the nodes at the lowest level of the tree are referred to as leaf nodes. Leaf
nodes have no children. CONNECT_BY_ISLEAF is a pseudocolumn that returns 1 if the current
row is a leaf, and returns O if the current row is not a leaf. For example:

SELECT | name, CONNECT_BY_| SLEAF
FROM enpl oyee
START W TH manager_enp_id IS NULL

CONNECT BY PRIOR enp_id = manager_enp_id;

LNANVE CONNECT_BY_| SLEAF
Kl NG 0
JONES 0
SCOrT 0
ADANVS 1
FORD 0
SM TH 1
BLAKE 0
ALLEN 1
WARD 1
MARTI N 1
TURNER 1
JAMES 1
CLARK 0
M LLER 1

This new feature can help simplify SQL statements that need to identify all the leaf nodes in a
hierarchy. Without this pseudocolumn, to identify the leaf nodes, you would write a query like
the following:

SELECT enp_id, |nane, salary, hire_date
FROM enpl oyee e

VWHERE NOT EXI STS

(SELECT enp_id FROM enpl oyee el WHERE e.enp_id = el.nanager_enp_id);

EMP_I D LNAMVE SALARY HI RE_DATE
7369 SM TH 800 17- DEC- 80
7499 ALLEN 1600 20- FEB-81
7521 WARD 1250 22-FEB-81
7654 MARTI N 1250 28- SEP-81
7844 TURNER 1500 08- SEP-81
7876 ADANMS 1100 23- NAY- 87
7900 JAMES 950 03-DEC-81
7934 M LLER 1300 23-JAN-82

However, you can make this query much simpler by using the new pseudocolumn
CONNECT_BY_ISLEAF, as shown here:

SELECT enp_id, |nane, salary, hire_date
FROM enpl oyee e

WHERE CONNECT_BY_ | SLEAF = 1

START W TH nanager_enp_id IS NULL

CONNECT BY PRIOR enp_id = nmnager_enp_id;

EVMP_I D LNAME SALARY HI RE_DATE
7876 ADANMS 1100 23- NAY- 87
7369 SM TH 800 17- DEC-80
7499 ALLEN 1600 20- FEB-81
7521 WARD 1250 22-FEB-81
7654 MARTI N 1250 28- SEP-81

7844 TURNER 1500 08- SEP-81

7900 JAMES 950 03-DEC-81

7934 M LLER 1300 23-JAN-82

This query builds the complete organization tree, and filters out only the leaf nodes by
performing the check CONNECT_BY_ISLEAF = 1.

| ¢m PREV < Day Day Up > NEST o

| 4 PREV < Day Day Up > MEXT o

Chapter 9. DECODE and CASE

Whether it is for user presentation, report formatting, or data feed extraction, data is seldom
presented exactly as it is stored in the database. Instead, data is generally combined,
translated, or formatted in some way. Although procedural languages such as PL/SQL and Java
provide many tools for manipulating data, it is often desirable to perform these manipulations
as the data is extracted from the database. Similarly, when updating data, it is far easier to
modify the data in place rather than to extract it, modify it, and apply the modified data back to
the database. This chapter will focus on two powerful features of Oracle SQL that facilitate
various data manipulations: the CASE expression and the DECODE function. Along the way we'll
also demonstrate the use of several other functions (such as NVL and NVL2).

| 4 PREV < Day Day Up > MEXT o

| 4m PREV < Day Day Up > MET

9.1 DECODE, NULLIF, NVL, and NVL2

Most of Oracle's built-in functions are designed to solve a specific problem. If you need to find
the last day of the month containing a particular date, for example, the LAST_DAY function is
just the ticket. The DECODE, NULLIF, NVL, and NVL2 functions, however, do not solve a specific
problem; rather, they are best described as inline if-then-else statements. These functions are
used to make decisions based on data values within a SQL statement without resorting to a
procedural language like PL/SQL. Table 9-1 shows the syntax and logic equivalent for each of
the four functions.

Table 9-1. If-then-else function logic

Function syntax Logic equivalent
DECODE(E1, E2, E3, E4) IF E1 = E2 THEN E3 ELSE E4
NULLIF(EL, E2) IF E1 = E2 THEN NULL ELSE E1
NVL(E1, E2) IF E1 IS NULL THEN E2 ELSE E1
NVL2(E1, E2, E3) IF E1 IS NULL THEN E3 ELSE E2

9.1.1 DECODE

The DECODE function can be thought of as an inline IF statement. DECODE takes three or more
expressions as arguments. Each expression can be a column, a literal, a function, or even a
subquery. Let's look at a simple example using DECODE:
SELECT | nane,

DECCDE(manager _enp_i d, NULL, 'HEAD HONCHO , 'WORKER BEE') enp_type

FROM enpl oyee;

LNANVE EMP_TYPE

SM TH WORKER BEE
ALLEN WORKER BEE
WARD WORKER BEE

JONES WORKER BEE

MARTI N WORKER BEE

BLAKE WORKER BEE
CLARK WORKER BEE
SCOrT WORKER BEE
Kl NG HEAD HONCHO
TURNER WORKER BEE
ADANVS WORKER BEE
JAMES WORKER BEE
FORD WORKER BEE
M LLER WORKER BEE

In this example, the first expression is a column, the second is NULL, and the third and fourth
expressions are character literals. The intent is to determine whether each employee has a
manager by checking whether an employee's nanager _enp_i d column is NULL. The DECODE
function in this example compares each row's manager _enp_i d column (the first expression) to
NULL (the second expression). If the result of the comparison is true, DECODE returns 'HEAD
HONCHO' (the third expression); otherwise, "WORKER BEE' (the last expression) is returned.

Since the DECODE function compares two expressions and returns one of two expressions to the
caller, it is important that the expression types are identical or that they can at least be
translated to be the same type. This example works because E1 can be compared to E2, and E3
and E4 have the same type. If this were not the case, Oracle would raise an exception, as
illustrated by the following example:

SELECT | nane,
DECODE(menager _enp_i d, SYSDATE, 'HEAD HONCHO , 'WORKER BEE') enp_type

FROM enpl oyee;

ERROR at |ine 1:

ORA- 00932: inconsistent datatypes: expected DATE got NUVBER

Since the manager _enp_i d column, which is numeric, cannot be converted to a DATE type, the
Oracle server cannot perform the comparison and must throw an exception. The same exception
would be thrown if the two return expressions (E3 and E4) did not have comparable types.

The previous example demonstrates the use of a DECODE function with the minimum number of
parameters (four). The next example demonstrates how additional sets of parameters may be
utilized for more complex logic:

SELECT p.part_nbr part_nbr, p.name part_nane, s.nanme supplier,

DECODE(p. st at us,
"INSTOCK', 'In Stock',
"DISC, 'Discontinued,
' BACKCRD , ' Backordered',
"ENRQUTE', 'Arriving Shortly',
"UNAVAI L', '"No Shipnent Schedul ed',
"Unknown') part_status
FROM part p INNER JO N supplier s

ON p.supplier_id = s.supplier_id;

PART_NBR PART_NAME SUPPLI ER PART_STATUS
Al 5- 4557 Acme Part Al 5-4557 Acre | ndustries In Stock
TZ50828 Tilton Part TZ50828 Tilton Enterprises In Stock
El - T5- 001 Eastern Part ElI-T5-001 Eastern |Inporters In Stock

This example compares the value of a part's st at us column to each of five values, and, if a

match is found, returns the corresponding string. If a match is not found, then the string
‘Unknown' is returned. Although the 12 parameters in this example are a great deal more than

the 4 parameters of the earlier example, we are still a long way from the maximum allowable
parameters, which is 255.

9.1.2 NULLIF

The NULLIF function compares two expressions and returns NULL if the expressions are
equivalent, or the first expression otherwise. The equivalent logic using DECODE looks as
follows:

DECCDE(E1, E2, NULL, E1)

NULLIF is useful if you want to substitute NULL for a column's value, as demonstrated by the
next query, which shows salary information for only those employees making less than $2000:

SELECT fnane, | nane,
NULLI F(sal ary, GREATEST(2000, salary)) salary

FROM enpl oyee;

FNANVE LNAVE SALARY

JOHN SM TH 800
KEVI N ALLEN 1600
CYNTHI A WARD 1250
TERRY JONES

KENNETH MARTI N 1250
MARI ON BLAKE

CARCL CLARK

DONALD SCOTIT

FRANCI S Kl NG

MARY TURNER 1500
DI ANE ADANVS 1100
FRED JAMES 950
JENNI FER FORD

BARBARA M LLER 1300

In this example, the GREATEST function returns either the employee's salary or 2000,
whichever is greater. The NULLIF function compares this value to the employee's salary and
returns NULL if they are the same.

9.1.3 NVL and NVL2

The NVL and NVL2 functions allow you to test an expression to see whether it is NULL. If an
expression is NULL, you can return an alternate, non-NULL value, to use in its place. Since any
of the expressions in a DECODE statement can be NULL, the NVL and NVL2 functions are
actually specialized versions of DECODE. The following example uses NVL2 to produce the same
results as the DECODE example shown in a previous section:

SELECT | nane,
NVL2(manager _enp_id, 'WORKER BEE', 'HEAD HONCHO) enp_type

FROM enpl oyee;

LNANVE EMP_TYPE

SM TH WORKER BEE
ALLEN WORKER BEE
WARD WORKER BEE
JONES WORKER BEE
MARTI N WORKER BEE
BLAKE WORKER BEE
CLARK WORKER BEE
SCOrT WORKER BEE
Kl NG HEAD HONCHO
TURNER WORKER BEE
ADANVS WORKER BEE
JAMES WORKER BEE
FORD WORKER BEE
M LLER WORKER BEE

NVL2 looks at the first expression, manager _enp_i d in this case. If that expression evaluates to
NULL, NVL2 returns the third expression. If the first expression is not NULL, NVL2 returns the
second expression. Use NVL2 when you wish to specify alternate values to be returned for the
case when an expression is NULL, and also for the case when an expression is not NULL.

The NVL function is most commonly used to substitute a default value when a column is NULL.
Otherwise, the column value itself is returned. The next example shows the ID of each
employee's manager, but substitutes the word 'NONE' when no manager has been assigned (i.e.,
when manager _enp_i d is NULL):
SELECT enp. | nanme enpl oyee,

NVL(ngr. | nane, 'NONE') manager
FROM enpl oyee enp LEFT OUTER JO N enpl oyee nyr

ON enp. manager _enp_id = ngr.enp_id,

EMPLOYEE MANAGER

FORD JONES

SCOTT JONES
JAMES BLAKE
TURNER BLAKE
MARTI N BLAKE
WARD BLAKE
ALLEN BLAKE
M LLER CLARK
ADAMS SCOTT
CLARK KI NG
BLAKE KI NG
JONES KI NG
SM TH FORD
KI NG NONE

Even though DECODE may be substituted for any NVL or NVL2 function, most people prefer to
use NVL or NVL2 when checking to see if an expresssion is NULL, presumably because the intent
is clearer. Hopefully, the next section will convince you to use CASE expressions whenever you
are in need of if-then-else functionality. Then you won't need to worry about which built-in
function to use.

< Day Day Up >

| 4m PREV < Day Day Up > MET

9.2 The Case for CASE

The CASE expression made its SQL debut in the SQL-92 specification in 1992. Eight years later,
Oracle included the CASE expression in the Oracle8i release. Like the DECODE function, the
CASE expression enables conditional logic within a SQL statement, which might explain why
Oracle took so much time implementing this particular feature. If you have been using Oracle
for a number of years, you might wonder why you should care about the CASE expression, since
DECODE does the job nicely. Here are several reasons why you should make the switch:

CASE expressions can be used everywhere that DECODE functions are permitted.

CASE expressions are more readable than DECODE expressions.

e CASE expressions execute faster than DECODE expressions.[11

[1] Since CASE is built into Oracle's SQL grammar, there is no need to call a function in order to
evaluate the if-then-else logic. Although the difference in execution time is miniscule for a single call,
the aggregate time savings from not calling a function should become noticeable when working with
large result sets.

CASE expressions handle complex logic more gracefully than DECODE expressions.

e CASE is ANSI-compliant, whereas DECODE is proprietary.
The only downside to using CASE over DECODE is that CASE expressions are not supported in
Oracle8i's PL/SQL language. If you are using Oracle9i Database or Oracle Database 109,
however, any SQL statements executed from PL/SQL may include CASE expressions.
The SQL-92 specification defines two distinct flavors of the CASE expression: searched and

simple. Searched CASE expressions are the only type supported in the Oracle8i release. If you
are using a later release, you may also use simple CASE expressions.

9.2.1 Searched CASE Expressions

A searched CASE expression evaluates a number of conditions and returns a result determined
by which condition is true. The syntax for the searched CASE expression is as follows:

CASE
WHEN C1 THEN R1

WHEN C2 THEN R2

WHEN CN THEN RN

ELSE RD

END

In the syntax definition, C1, C2 . . . OCn represent conditions, and Rl, R2 . . . RN
represent results. You can use up to 127 WHEN clauses in each CASE expression, so the logic
can be quite robust. Conditions are evaluated in order. When a condition is found that evaluates
to TRUE, the corresponding result is returned, and execution of the CASE logic ends. Therefore,
carefully order WHEN clauses to ensure that your desired results are achieved. The following
example illustrates the use of the CASE statement by determining the proper string to show on
an order status report:

SELECT co. order_nbr, co.cust_nbr,

CASE WHEN co. expected_ship_dt 1S NULL THEN ' NOT YET SCHEDULED
WHEN co. expected_shi p_dt <= SYSDATE THEN ' SH PPI NG DELAYED
WHEN co. expected_ship_dt <= SYSDATE + 2 THEN ' SHI PPI NG SOON
ELSE ' BACKORDERED

END shi p_status

FROM cust _order co

WHERE co.ship_dt IS NULL AND co.cancelled_dt IS NULL;

ORDER NBR CUST_NBR SHI P_STATUS

1001 1 SHI PPI NG DELAYED
1003 4 SHI PPl NG DELAYED
1004 4 SHI PPl NG DELAYED
1005 8 SHI PPI NG DELAYED
1007 5 SHI PPI NG DELAYED
1008 5 SHI PPI NG DELAYED
1009 1 SH PPI NG DELAYED
1012 1 SH PPI NG DELAYED
1017 4 SHI PPl NG DELAYED
1019 4 SHI PPl NG DELAYED
1021 8 SHI PPI NG DELAYED

1025 5 SHI PPI NG DELAYED

1027 5 SHI PPI NG DELAYED

1029 1 SHI PPI NG DELAYED
Similar to DECODE, all results in a CASE expression must have comparable types; otherwise,
ORA-00932 will be thrown. Each condition in each WHEN clause is independent of the others,

however, so your conditions can include various data types, as demonstrated in the next
example:

SELECT co. order_nbr, co.cust_nbr,
CASE
WHEN co. sale_price > 10000 THEN ' BI G ORDER
WHEN co. cust_nbr IN
(SELECT cust _nbr FROM custonmer WHERE tot_orders > 100)
THEN ' ORDER FROM FREQUENT CUSTOMER
WHEN co. order_dt < TRUNC(SYSDATE) -- 7 THEN ' OLD ORDER
ELSE ' UNI NTERESTI NG ORDER
END order_type
FROM cust _order co

WHERE co.ship_dt IS NULL AND co. cancelled_dt IS NULL;

ORDER_NBR CUST_NBR CRDER_TYPE

1001 1 OLD ORDER
1003 4 OLD ORDER
1004 4 OLD ORDER
1005 8 OLD ORDER
1007 5 OLD ORDER
1008 5 OLD ORDER
1009 1 OLD ORDER
1012 1 OLD ORDER

1017 4 OLD ORDER

1019 4 OLD ORDER

1021 8 OLD ORDER
1025 5 OLD ORDER
1027 5 OLD ORDER
1029 1 OLD ORDER

9.2.2 Simple CASE Expressions

Simple CASE expressions are structured differently than searched CASE expressions in that the
WHEN clauses contain expressions instead of conditions, and a single expression to be
compared to the expressions in each WHEN clause is placed in the CASE clause. Here's the
syntax:

CASE EO
WHEN E1 THEN R1

WHEN E2 THEN R2

WHEN EN THEN RN
ELSE RD

END

Each of the expressions E1...EN are compared to expression EO. If a match is found, the
corresponding result is returned; otherwise, the default result (RD) is returned. All of the
expressions must be of the same type, since they all must be compared to EO, making simple
CASE expressions less flexible than searched CASE expressions. The next example illustrates
the use of a simple CASE expression to translate the status code stored in the part table:

SELECT p.part_nbr part_nbr, p.name part_nane, s.nanme supplier,
CASE p. status
WHEN ' I NSTOCK' THEN 'In Stock'
WHEN ' DI SC THEN ' Di sconti nued'
VWHEN ' BACKORD THEN ' Backor der ed’
WHEN ' ENROUTE' THEN ' Arriving Shortly’
WHEN ' UNAVAI L' THEN ' No Shi pnent Schedul ed

ELSE ' Unknown'

END part_status
FROM part p INNER JO N supplier s

ON p.supplier_id = s.supplier_id;

PART_NBR PART_NANME SUPPLI ER PART_STATUS
Al 5- 4557 Acme Part Al 5-4557 Acre | ndustries In Stock
TZ50828 Tilton Part TZzZ50828 Tilton Enterprises |In Stock
El - T5- 001 Eastern Part ElI-T5-001 Eastern Inporters In Stock

A searched CASE can do everything that a simple CASE can do, which is probably the reason
Oracle only implemented searched CASE expressions the first time around. For certain uses,
such as translating values for a column, a simple expression may prove more efficient if the

expression being evaluated is computed via a function call.

| 4 FREV < Day Day Up > MEXT mp

| 4m PREV < Day Day Up > MET

9.3 DECODE and CASE Examples

The following sections present a variety of examples illustrating the uses of conditional logic in
SQL statements. Although we recommend that you use the CASE expression rather than the
DECODE function, where feasible we provide both DECODE and CASE versions of each example
to help illustrate the differences between the two approaches.

9.3.1 Result Set Transformations

You may have run into a situation where you are performing aggregations over a finite set of
values, such as days of the week or months of the year, but you want the result set to contain
one row with N columns rather than N rows with two columns. Consider the following query,
which aggregates sales data for each day of the week:

SELECT TO CHAR(order_dt, 'DAY') day_of week,
SUM sal e_price) tot_sales

FROM cust _order

WHERE sal e price |'S NOT NULL

GROUP BY TO CHAR(order_dt, 'DAY")

ORDER BY 2 DESC,

DAY_OF WEEK TOT_SALES

SUNDAY 396
VEDNESDAY 180
MONDAY 112
FRI DAY 50
SATURDAY 50

In order to transform this result set into a single row with seven columns (one for each day in
the week), you will need to fabricate a column for each day of the week and, within each
column, sum only those records whose order date falls in the desired day. You can do that with
DECODE:

SELECT

SUM DECODE(TO_CHAR (order _dt, 'DAY'), ' SUNDAY ", sale_price, 0)) SUN,
SUM DECODE(TO_CHAR (order _dt, 'DAY'), ' MONDAY ', sale_price, 0)) MON,
SUM DECODE(TO_CHAR (order _dt, 'DAY'), 'TUESDAY ', sale price, 0)) TUE
SUM DECODE(TO_CHAR (order _dt, 'DAY'), 'VWEDNESDAY', sale price, 0)) WED,
SUM DECODE(TO_CHAR (order _dt, 'DAY'), 'THURSDAY ', sale_ price, 0)) THU,
SUM DECODE(TO_CHAR (order dt, 'DAY'), 'FRIDAY ', sale price, 0)) FRI,
SUM DECODE(TO_CHAR (order _dt, 'DAY'), 'SATURDAY ', sale price, 0)) SAT
FROM cust _order

WHERE sal e _price |I'S NOT NULL;

Each of the seven columns in the previous query are identical, except for the day being checked
by the DECODE function. For the SUN column, for example, a value of 0 is returned unless an
order was booked on a Sunday, in which case the sal e_pri ce column is returned. When the
values from all orders are summed, only Sunday orders are added to the total, which has the
effect of summing all Sunday orders while ignoring orders for all other days of the week. The
same logic is used for Monday, Tuesday, etc., to sum orders for each of the other days.
The CASE version of this query is as follows:
SELECT
SUM CASE WHEN TO CHAR(order_dt, 'DAY') = ' SUNDAY '
THEN sal e_price ELSE O END) SUN,
SUM CASE WHEN TO CHAR(order_dt, 'DAY') = ' MONDAY '
THEN sal e _price ELSE O END) MON,
SUM CASE WHEN TO CHAR(order_dt, 'DAY') = 'TUESDAY

THEN sal e _price ELSE 0 END) TUE,

SUM CASE WHEN TO CHAR(order _dt, 'DAY') = '\WEDNESDAY'
THEN sal e _price ELSE O END) WED,
SUM CASE WHEN TO CHAR(order _dt, 'DAY') = ' THURSDAY '

THEN sal e_price ELSE 0O END) THU,
SUM CASE WHEN TO CHAR(order_dt, 'DAY') = 'FRI DAY '
THEN sal e_price ELSE 0 END) FRI,
SUM CASE WHEN TO CHAR(order _dt, 'DAY') = 'SATURDAY '
THEN sal e_price ELSE O END) SAT
FROM cust _order

WHERE sale price I'S NOT NULL;

Obviously, such transformations are only practical when the number of values is relatively
small. Aggregating sales for each weekday or month works fine, but expanding the query to
aggregate sales for each week, with a column for each week, would quickly become tedious.

9.3.2 Selective Function Execution

Imagine you're generating an inventory report. Most of the information resides in your local
database, but a trip across a gateway to an external, non-Oracle database is required to gather
information for parts supplied by Acme Industries. The round trip from your database through
the gateway to the external server and back takes 1.5 seconds on average. There are 10,000
parts in your database, but only 100 require information via the gateway. You create a user-
defined function called get _resuppl y_dat e to retrieve the resupply date for parts supplied by
ACME, and include it in your query:

SELECT s.nane supplier_nane, p.nane part_name, p.part_nbr part_nunber
p.inventory _qty in_stock, p.resupply_date resupply_date,
my_pkg. get _resupply_date(p. part_nbr) acnme_resupply_date

FROM part p INNER JO N supplier s

ON p.supplier_id = s.supplier_id;

You then include logic in your reporting tool to use the acne_r esuppl y_dat e instead of the

resuppl y_dat e column if the supplier's name is Acme Industries. You kick off the report, sit
back, and wait for the results. And wait. And wait...

Unfortunately, the server is forced to make 10,000 trips across the gateway when only 100 are
required. In these types of situations, it is far more efficient to call the function only when
necessary, instead of always calling the function and discarding the results when not needed:

SELECT s.nane supplier_nane, p.nane part_nanme, p.part_nbr part_nunber,
p.inventory _qty in_stock,
DECODE(s. nane, 'Acne Industries',
ny_pkg. get _resupply_dat e(p. part _nbr),
p.resupply_date) resupply_date
FROM part p INNER JO N supplier s
ON p.supplier_id = s.supplier_id;
The DECODE function checks if the supplier name is 'Acne | ndustri es'. If so, it calls the

function to retrieve the resupply date via the gateway; otherwise, it returns the resupply date
from the local part table. The CASE version of this query looks as follows:

SELECT s.nane supplier_nane, p.nane part_name, p.part_nbr part_nunber,
p.inventory _qty in_stock,
CASE WHEN s.name = 'Acne |ndustries'
THEN ny_pkg. get _resuppl y_dat e(p. part _nbr)
ELSE p.resupply_date
END resupply_date
FROM part p INNER JO N supplier s
ON p.supplier_id = s.supplier_id;

Now the user-defined function is only executed if the supplier is Acme, reducing the query's
execution time drastically. For more information on calling user-defined functions from SQL, see

Chapter 11.

9.3.3 Conditional Update

If your database design includes denormalizations, you may run nightly routines to populate the
denormalized columns. For example, the part table contains the denormalized column st at us,

the value for which is derived from the i nventory_qty and resuppl y_dat e columns. To update
the st at us column, you could run four separate UPDATE statements each night, one for each of
the four possible values for the status column. For example:

UPDATE part SET status = '1NSTOCK

WHERE i nventory qty > O;

UPDATE part SET status = ' ENROUTE'

WHERE inventory qty = O AND resupply_date < SYSDATE + 5;

UPDATE part SET status = ' BACKORD

WHERE inventory qty = O AND resupply_date > SYSDATE + 5;

UPDATE part SET status = ' UNAVAIL'

WHERE inventory qty = 0 and resupply_date IS NULL;

Given that columns such asi nventory_qgty and resuppl y_dat e are unlikely to be indexed,
each of the four UPDATE statements would require a full table-scan of the part table. By adding

conditional expressions to the statement, however, the four UPDATE statements can be
combined, resulting in a single scan of the part table:

UPDATE part SET status =
DECODE(i nventory_qty, O,
DECODE(r esuppl y_date, NULL, 'UNAVAIL',
DECODE(LEAST(resuppl y_date, SYSDATE + 5), resupply_date,
' ENROUTE', ' BACKORD)),

' I NSTOCK') ;

The CASE version of this UPDATE is as follows:

UPDATE part SET status =
CASE WHEN inventory gty > 0 THEN ' I NSTOCK
WHEN resupply_date IS NULL THEN ' UNAVAI L'
WHEN resupply_date < SYSDATE + 5 THEN ' ENROUTE'
WHEN resupply_date > SYSDATE + 5 THEN ' BACKORD
ELSE ' UNKNOAN END;
The readability advantage of the CASE expression is especially apparent here, since the

DECODE version requires three nested levels to implement the same conditional logic handled
by a single CASE expression.

9.3.4 Optional Update

In some situations, you may need to modify data only if certain conditions exist. For example,
you have a table that records information such as the total number of orders and the largest
order booked during the current month. Here's the table definition:[21

[2]1 For this example, we will ignore the European and North American totals.

describe ntd_orders;

Nane Nul | ? Type
TOT_ORDERS NOT NULL NUMBER(7)
TOT_SALE_PRI CE NOT NULL NUMBER(11, 2)
MAX_SALE PRI CE NOT NULL NUMBER(9, 2)
EUROPE_TOT_ORDERS NOT NULL NUMBER(7)
EUROPE_TOT_SALE_PRI CE NOT NULL NUMBER(11, 2)
EUROPE_MAX_SALE_PRI CE NOT NULL NUMBER(9, 2)
NORTHAMERI CA TOT_ORDERS NOT NULL NUMBER(7)
NORTHAMERI CA_TOT_SALE_PRI CE NOT NULL NUMBER(11, 2)
NORTHAMERI CA_MAX_SALE_PRI CE NOT NULL NUMBER(9, 2)

Each night, the table is updated with that day's order information. While most of the columns
will be modified each night, the column for the largest order, which is called max_sal e_pri ce,

will only change if one of the day's orders exceeds the current value of the column. The
following PL/SQL block shows how this might be accomplished using a procedural language:

DECLARE
tot _ord NUMBER;
tot _price NUMBER;
max_pri ce NUVBER,
prev_nmax_pri ce NUVBER,
BEG N
SELECT COUNT(*), SUMsale price), MAX(sale_price)
INTO tot _ord, tot_price, max_price

FROM cust _order

WHERE cancel |l ed_dt IS NULL

AND order dt >= TRUNC(SYSDATE):

UPDATE nmtd_orders
SET tot_orders = tot_orders + tot_ord,
tot_sale price = tot_sale price + tot_price

RETURNI NG max_sal e_price |INTO prev_max_price;

IF max_price > prev_nmax_price THEN
UPDATE ntd_orders
SET max_sal e _price = max_price;
END | F;

END;

After calculating the total number of orders, the aggregate order price, and the maximum order
price for the current day, the t ot _orders andtot_sal e_pri ce columns of the ntd_orders

table are modified with today's sales data. After the update is complete, the maximum sale
price is returned from nt d_or der s so that it can be compared with today's maximum sale price.
If today's max_sal e_pri ce exceeds that stored in the nt d_or der s table, a second UPDATE
statement is executed to update the field.

Using DECODE or CASE, however, you can update thet ot _orders andtot_sal e _price
columns and optionally update the max_sal e_pri ce column in the same UPDATE statement.

Additionally, since you now have a single UPDATE statement, you can aggregate the data from
the cust _or der table within a subquery and eliminate the need for PL/SQL:

UPDATE ntd_orders ntdo
SET (mtdo.tot_orders, ntdo.tot_sale price, mtdo.nmax_sale price) =
(SELECT ntdo.tot_orders + day_tot.tot_orders,
mdo.tot_sale price + NVL(day_ tot.tot_sale_price, 0),
DECODE(GREATEST(nt do. max_sal e_pri ce,
NVL(day_tot.max_sale_price, 0)), ntdo.nmax_sale_price,
nt do. max_sal e_price, day_tot.nmax_sale_price)
FROM

(SELECT COUNT(*) tot_orders, SUMsale price) tot_sale price,

MAX(sal e_price) nmax_sale_price
FROM cust _order
WHERE cancel l ed_dt IS NULL
AND order_dt >= TRUNC(SYSDATE)) day_tot);
In this statement, the max_sal e_pri ce column is set equal to itself unless the value returned
from the subquery is greater than the current column value, in which case the column is set to

the value returned from the subquery. The next statement uses CASE to perform the same
optional update:

UPDATE md_orders ntdo
SET (mtdo.tot_orders, ntdo.tot_sale_price, mtdo.max_sale _price) =
(SELECT ntdo.tot_orders + day_tot.tot_orders,
ntdo.tot_sale price + day_tot.tot_sale price,
CASE VWHEN day_tot.max_sale_price > ntdo.nmax_sale_price
THEN day_tot.max_sal e_price
ELSE ntdo. max_sal e_price END
FROM
(SELECT COUNT(*) tot_orders, SUMsale price) tot_sale price,
MAX(sal e_price) max_sale_price
FROM cust _order
WHERE cancelled dt IS NULL
AND order_dt >= TRUNC(SYSDATE)) day_tot);
One thing to keep in mind when using this approach is that setting a value equal to itself is still

seen as a modification by the database and may trigger an audit record, a new value for the
| ast _nodi fi ed_dat e column, etc.

9.3.5 Selective Aggregation

To expand on the nt d_or der s example in the previous section, imagine that you also want to
store total sales for particular regions such as Europe and North America. For the additional six
columns, individual orders will affect one set of columns or the other, but not both. An order will
either be for a European or North American customer, but not for both at the same time. To
populate these columns, you could generate two more update statements, each targeted to a
particular region, as in:

/* Europe buckets */
UPDATE mtd_orders ntdo
SET (nmtdo.europe_tot_orders, ntdo.europe_tot_sale_price,
nt do. europe_nax_sal e_price) =
(SELECT mt do.europe_tot_orders + eur_day_tot.tot_orders,
nt do. europe_tot_sale _price + nvl(eur_day tot.tot_sale price, 0),

CASE WHEN eur _day_tot.max_sal e_price > ntdo.europe_nmax_sale price
THEN eur _day_tot.nmax_sale_price
ELSE nt do. europe_max_sal e_price END
FROM
(SELECT COUNT(*) tot_orders, SUMco.sale price) tot_sale_price,
MAX(co. sal e_price) max_sal e _price
FROM cust _order co INNER JO N customer c
ON co. cust_nbr = c.cust_nbr
WHERE co. cancelled_dt IS NULL
AND co. order _dt >= TRUNC(SYSDATE)
AND c.region_id IN
(SELECT region_id FROM region
START WTH nane = ' Europe'

CONNECT BY PRIOR region_id = super_region_id)) eur_day tot);

/* North America buckets */

UPDATE mtd_orders ntdo

SET (mdo.northanmerica_tot_orders, ntdo.northanerica_tot_sale_price,

nt do. nort hanmeri ca_nax_sale_price) =
(SELECT ntdo.northamerica_tot_orders + na_day_tot.tot_orders,
nt do. northanerica_tot_sale price + nvl(na_day_tot.tot_sale price, 0),

CASE WHEN na_day tot.nmax_sale price > ntdo.northanerica_nmax_sale _price

THEN na_day_tot.max_sal e_price
ELSE mt do. northanerica_max_sal e_price END
FROM
(SELECT COUNT(*) tot_orders, SUMco.sale price) tot_sale_price,
MAX(co. sal e_price) max_sal e _price
FROM cust _order co INNER JO N customer c
ON co. cust_nbr = c.cust_nbr
WHERE co. cancelled_dt IS NULL
AND co. order_dt >= TRUNC(SYSDATE) - 60
AND c.region_id IN
(SELECT region_id FROM region
START WTH nane = 'North America’
CONNECT BY PRIOR region_id = super_region_id)) na_day_tot);
However, why not save yourself a trip through the cust _or der table and aggregate the North
American and European totals at the same time? The trick here is to put conditional logic within
the aggregation functions so that only the appropriate rows influence each calculation. This

approach is similar to the example from Section 9.3.1. in that it selectively aggregates data
based on data stored in the table:

UPDATE mntd_orders ntdo
SET (ntdo.northanerica_tot _orders, ntdo.northanerica_tot_sale price,
nt do. nort haneri ca_max_sal e_price, ntdo.europe_tot_orders,
nt do. europe_tot_sale price, ntdo.europe_nax_sale price) =
(SELECT ntdo.northanerica _tot_orders + nvl(day_tot.na_tot_orders, 0),
nt do. nort hanerica_tot_sale _price + nvl(day_tot.na_tot_sale price, 0),
CASE WHEN day_tot.na_nax_sale price > ntdo.northanerica_nmax_sal e _price
THEN day_tot.na_nex_sal e _price
ELSE ntdo. northamerica_nax_sal e_price END,
nt do. europe_tot_orders + nvl(day_tot.eur_tot_orders, 0),
nt do. europe_tot_sale price + nvl(day_tot.eur_tot_sale price, 0),

CASE WHEN day_tot.eur_nax_sale_price > ntdo. europe_nax_sal e _price

THEN day_tot.eur_max_sal e_price
ELSE nt do. europe_nax_sal e_price END
FROM
(SELECT SUM CASE WHEN na_regions.region_id IS NOT NULL THEN 1
ELSE 0 END) na_tot_orders,
SUM CASE WHEN na_regions.region_id IS NOT NULL THEN co. sal e price
ELSE O END) na_tot_sal e price,
MAX(CASE WHEN na_regions.region_id IS NOT NULL THEN co.sale_price
ELSE 0 END) na_nmx_sal e_price,
SUM CASE WHEN eur _regions.region_id IS NOT NULL THEN 1
ELSE 0 END) eur_tot_orders,
SUM CASE WHEN eur regions.region_id IS NOT NULL THEN co.sal e_price
ELSE O END) eur_tot_sale_price,
MAX(CASE WHEN eur _regions.region_id IS NOT NULL THEN co.sal e_price
ELSE O END) eur_nmx_sal e_price
FROM cust _order co INNER JO N custoner c
ON co.cust_nbr = c.cust_nbr
LEFT OUTER JO N (SELECT regi on_id FROM region
START WTH nanme = 'North Anerica'
CONNECT BY PRIOR region_id = super_region_id) na_regions
ON c.region_id = na_regions.region_id
LEFT OUTER JO N (SELECT regi on_id FROM region
START WTH nane = ' Europe'
CONNECT BY PRIOR region_id = super_region_id) eur_regions
ON c.region_id = eur_regions.region_id
WHERE co. cancel l ed_dt 1S NULL

AND co. order _dt >= TRUNC(SYSDATE)) day_tot);

This is a fairly robust statement, so let's break it down. Within the day_t ot inline view, you are

joining the cust _or der table to the cust oner table, and then outer-joining from
custoner.regi on_id to each of two inline views (na_r egi ons and eur _r egi ons) that perform
hierarchical queries on the r egi on table. Thus, orders from European customers will have a
non-null value for eur _regi ons. regi on_i d, since the outer join would find a matching row in
the eur _regi ons inline view. Six aggregations are performed on this result set; three check for
a join against the na_r egi ons inline view (North American orders), and three check for a join
against the eur _regi ons inline view (European orders). The six aggregations are then used to
modify the six columns in nt d_or ders.

This statement could (and should) be combined with the statement from the previous example

(which updated the first three columns) to create an UPDATE statement that touches every
column in the nt d_or der s table via one pass through the cust _or der table. For data

warehouse applications, where large data sets must be manipulated each night within tight time
constraints, such an approach can often make the difference between success and failure.

9.3.6 Checking for Existence

When evaluating optional one-to-many relationships, there are certain cases where you want to
know whether the relationship is zero or greater than zero without regard for the actual data.
For example, you want to write a report showing each customer along with a flag showing
whether the customer has had any orders in the past five years. Using conditional logic, you can
include a correlated subquery on the cust _or der table, check to see if the number of orders
exceeds zero, and then assign either a 'Y' or a 'N' to the column:
SELECT c.cust_nbr cust_nbr, c.name nane,
DECODE(0, (SELECT COUNT(*) FROM cust_order co
WHERE co. cust _nbr = c.cust_nbr AND co.cancelled dt IS NULL
AND co. order_dt > TRUNC(SYSDATE) - (5 * 365)),

"N, 'Y') has_recent_orders

FROM custoner c;

CUST_NBR NAME H
1 Cooper Industries Y
2 Enbl azon Corp. N
3 Ditech Corp. N
4 Fl owt ech Inc. Y
5 Gentech Industries Y
6 Spartan Industries N

7 Wal | ace Labs N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Zantech I nc.

Car di nal Technol ogi es
Flowite Corp.

d aven Technol ogi es
Johnson Labs

Ki mbal | Corp.

Madden | ndustries
Turntech Inc.

Paul son Labs

Evans Supply Corp.
Spal di ng Medical Inc.
Kendal | - Tayl or Corp
Mal den Labs

Crimson Medical Inc.
Ni chol s I ndustries
Owens- Baxter Corp
Jackson Medical Inc.
Wor cest er Technol ogi es
Al pha Technol ogi es
Phillips Labs

Jaztech Corp

Madden- Tayl or | nc.

WVl | ace I ndustries

Here is the CASE version of the query:

SELECT c.cust_nbr cust_nbr, c.name nane,

CASE WHEN EXI STS (SELECT 1 FROM cust _order co

WHERE co. cust _nbr = c.cust_nbr

AND co. cancel | ed_dt

'S NULL

AND co. order _dt > TRUNC(SYSDATE) - (5 * 365))
THEN "Y' ELSE 'N END has_recent _orders

FROM cust omer c;

9.3.7 Division by Zero Errors

As a general rule, you should write your code so that unexpected data values are handled
gracefully. One of the more common arithmetic errors is ORA-01476: divisor is equal to zero.
Whether the value is retrieved from a column, passed in via a bind variable, or returned by a
function call, always wrap divisors with DECODE or CASE, as illustrated by the following
example:

SELECT p.part_nbr, SYSDATE + (p.inventory qty /
DECODE(ny_pkg. get _daily_part _usage(p. part_nbr), NULL, 1,
0, 1, ny_pkg.get_daily_part_usage(p.part_nbr))) anticipated_shortage_dt
FROM part p
WHERE p.inventory qty > O;

The DECODE function ensures that the divisor is something other than zero. Here is the CASE
version of the statement:

SELECT p.part_nbr, SYSDATE + (p.inventory qty /
CASE VWHEN ny_pkg.get _daily_part_usage(p.part_nbr) > 0
THEN ny_pkg. get _daily_part_usage(p. part_nbr)
ELSE 1 END) antici pated_shortage_dt
FROM part p
WHERE p.inventory qty > O;
Of course, if you are bothered by the fact that the get _dai |l y_part _usage function is called a
second time for each part that yields a positive response, simply wrap the function call in an
inline view, as in:
SELECT parts.part_nbr, SYSDATE + (parts.inventory_qty /
CASE WHEN parts.daily_part_usage > 0
THEN parts.daily_part_usage
ELSE 1 END) anti ci pated_shortage_dt

FROM

(SELECT p.part_nbr part_nbr, p.inventory_qty inventory_qty,
ny_pkg. get_daily_part_usage(p. part_nbr) daily_part_usage
FROM part p

VWHERE p.inventory_qty > 0) parts;

9.3.8 State Transitions

In certain cases, the order in which the values may be changed is constrained as well as the
allowable values for a column. Consider the diagram shown in Figure 9-1, which shows the
allowable state transitions for an order.

Figure 9-1. Order processing state transitions

|.ﬁwai:ing Paj.lmentll -

1
'.'_" ¥ [Delayed | Cancelled |
_..__' Froczssing
[red F—w| shipped |

As you can see, an order currently in the Processing state should only be allowed to move to
either Delayed or Filled. Rather than allowing each application to implement logic to change the
state of an order, write a user-defined function that returns the appropriate state depending on
the current state of the order and the transition type. In this example, two transition types are
defined: positive (POS) and negative (NEG). For example, an order in the Delayed state can
make a positive transition to Processing or a negative transition to Cancelled. If an order is in
one of the final states (Rejected, Cancelled, Shipped), the same state is returned. Here is the
DECODE version of the PL/SQL function:

FUNCTI ON get _next _order_state(ord_nbr in NUVBER
trans_type in VARCHAR2 DEFAULT ' PCS')
RETURN VARCHAR2 i s
next state VARCHAR2(20) := 'UNKNOW ;
BEG N
SELECT DECODE(st at us,
"REJECTED , status,
" CANCELLED , status,
" SHI PPED , status,

*NEW, DECODE(trans_type, 'NEG, 'AWAIT_PAYMENT', ' PROCESSING),

" AWAI T_PAYMENT', DECODE(trans_type, 'NEG, 'REJECTED , 'PROCESSING),
' PROCESSI NG, DECCDE(trans_type, 'NEG, 'DELAYED , 'FILLED),
' DELAYED , DECODE(trans_type, 'NEG, 'CANCELLED , 'PROCESSING),
"FILLED , DECODE(trans_type, 'POS, 'SH PPED , 'UNKNOMW),
" UNKNOWN')

I NTO next _state

FROM cust _order

WHERE order_nbr = ord_nbr;

RETURN next _state;
EXCEPTI ON
VWHEN NO _DATA FOUND THEN
RETURN next _st at e;

END get _next _order_state;

As of Oracle8i, the PL/SQL language does not include the CASE expression in its grammar, so
you would need to be running Oracle9i or later to use the CASE version of the function:

FUNCTI ON get _next _order_state(ord_nbr in NUVBER
trans_type in VARCHAR2 DEFAULT ' PCS')

RETURN VARCHARZ2 is

next state VARCHAR2(20) := 'UNKNOW ;
BEG N

SELECT CASE
WHEN status = 'REJECTED THEN status
WHEN status = ' CANCELLED THEN st at us
WHEN status = 'SH PPED THEN st at us
WHEN status = "NEW AND trans_type = 'NEG THEN ' AWAI T_PAYMENT'
WHEN status = '"NEW AND trans_type = 'POS THEN ' PROCESSI NG
WHEN status = ' AWAI T_PAYMENT' AND trans_type = 'NEG THEN ' REJECTED

WHEN status = ' AWAI T_PAYMENT' AND trans_type = 'POS THEN ' PROCESSI NG
WHEN status = 'PROCESSING AND trans_type = 'NEG THEN ' DELAYED

WHEN status = 'PROCESSING AND trans_type = 'POS THEN 'FI LLED

WHEN status = 'DELAYED AND trans_type = 'NEG THEN ' CANCELLED

WHEN status = 'DELAYED AND trans_type = 'POS THEN ' PROCESSI NG

WHEN status = 'FILLED AND trans_type = 'POS THEN ' SH PPED
ELSE ' UNKNOWN

END

I NTO next _state

FROM cust _order

WHERE order _nbr = ord_nbr;

RETURN next st at e;
EXCEPTI ON
VWHEN NO DATA FOUND THEN
RETURN next st ate;
END get _next _order_state;
This example handles only the simple case in which there are just two paths out of each state,
but it does demonstrate one strategy for managing state transitions in your database. To

demonstrate how the previous function could be used, here is the UPDATE statement used to
change the status of an order once it has made a successful state transition:

UPDATE cust _order
SET status = my_pkg. get _next_order_state(order_nbr, 'PCS)

WHERE order_nbr = 1107,

| dm FREV < Day Day Up > MEXT

| 4 PREV < Day Day Up > MEXT o

Chapter 10. Partitioning

Over the past 15 years, hard disk capacities have evolved from around 10 MB to over 100 GB,
and capacities are still growing. Disk arrays are fast approaching the 100 terabyte range. No
matter how much storage is available, however, there is always a way to exhaust it. As
databases grow in size, day-to-day operations become more and more challenging. For
example, finding the time and resources to rebuild an index containing 100 million entries can
prove quite demanding. Prior to Oracle8, database administrators would meet this challenge by
manually breaking a large table into several smaller tables. Although the pieces could be hidden
behind a special type of view (called a partition view) during a query, all DML statements had to
be performed against the individual tables, thereby exposing the partitioning scheme to the
database developers and users.

Starting with Version 8.0, Oracle provided a means for breaking a table into multiple pieces
while preserving the look and feel of a single table. Each piece is called a partition, and,
although every partition must share the same columns, constraints, indexes, and triggers, each
partition can have its own unique storage parameters. While administrators generally deal with
individual partitions when allocating storage and performing backups, developers may choose
to deal with either the entire table or with individual partitions.

| dm FREV < Day Day Up > MEXT oy

| 4@ PREV < Day Day Up > MET

10.1 Partitioning Concepts

Database designers and administrators have been partitioning tables since long before Oracle8
hit the scene. Generally, table partitioning within a single database is done to improve
performance and simplify administration tasks, while table partitioning between databases is
meant to facilitate data distribution. For example, sales data might be partitioned by region and
each partition hosted in a database housed at its respective regional sales office. Whereas a
central data warehouse might gather sales data from each office for reporting and decision-
support queries, it might be perfectly reasonable for the operational sales data to be distributed
across multiple sites.

Partitioning by sets of rows such as in the sales data example, in which the value of the sales
office column determines where the data resides, is known as horizontal partitioning.
Partitioning may also be accomplished by splitting up sets of columns, in which case it is called
vertical partitioning. For example, sensitive data such as salary information and social security
numbers may be split off from the employee table into a separate table with restricted access.
When partitioning vertically, primary key columns must be included in the set of columns for
every partition. Therefore, unlike horizontal partitioning, where each partition contains
nonoverlapping subsets of data, vertical partitioning mandates that some data be duplicated in
each partition.

While both vertical and horizontal partitioning may be accomplished manually within and

between Oracle databases, the Partitioning Option introduced in Oracle8 specifically deals with
horizontal partitioning within a single database.

| 4@ FREV < Day Day Up > NEST o

| 4 PREV < Day Day Up > MEXT o

10.2 Partitioning Tables

When partitioning is employed, a table changes from a physical object to a virtual concept.
There isn't really a table anymore, just a set of partitions. Since all of the partitions must share
the same attribute and constraint definitions, however, it is possible to deal with the set of
partitions as if they were a single table. The storage parameters, such as extent sizes and
tablespace placement, are the only attributes that may differ among the partitions. This
situation can facilitate some interesting storage scenarios, such as hosting infrequently accessed
partitions on a CD jukebox while the heavily-hit data partitions reside on disk. You can also take
advantage of Oracle's segmented buffer cache to keep the most active partitions in the keep
buffer so they are always in memory, while the rest of the partitions can be targeted for the
recycle or default buffers. Additionally, individual partitions may be taken offline without
affecting the availability of the rest of the partitions, giving administrators a great deal of
flexibility.

Depending on the partitioning scheme employed, you must choose one or more columns of a
table to be the partition key. The values of the columns in the partition key determine the
partition that hosts a particular row. Oracle also uses the partition key information in concert
with your WHERE clauses to determine which partitions to search during SELECT, UPDATE, and
DELETE operations (see Section 10.6 later in the chapter for more information).

| dm FREV < Day Day Up > MEXT oy

| 4 PREV < Day Day Up > MEXT o

10.3 Partitioning Indexes

So what, you may wonder, happens to the indexes on partitioned tables? The answer is that you
have to choose whether each index will stay intact (referred to as a global index), or be split
into pieces corresponding to the table partitions (referred to as a local index). Furthermore,
with a global index, you can choose to partition the index in a different manner than the table
was partitioned. When you throw the fact that you can partition both b-tree and bit-map
indexes into the mix, things can become overwhelming. When you issue a SELECT, UPDATE, or
DELETE statement against a partitioned table, the optimizer can take several routes to locate
the target rows:

e Use a global index, if one is available and its columns are referenced in the SQL statement,
to find the target rows across one or more partitions.

e Search a local index on every partition to identify whether any particular partition contains
target rows.

e Define a subset of the partitions that might contain target rows, and then access local
indexes on those partitions.

"_-"~ Although global indexes might seem to be the simplest solution, they can
e be problematic. Because global indexes span all of the partitions of a table,
. 4s they are adversely affected by partition maintenance operations. For

example, if a partition is split into multiple pieces, or if two partitions are
merged into one, all global indexes on the partitioned table are marked as
UNUSABLE and must be rebuilt before they can be used again. When
modifying a partitioning scheme, you have your choice of rebuilding the
global indexes manually, or of using the UPDATE GLOBAL INDEXES clause.

| dm FREV < Day Day Up > MEXT oy

| 4 PREV < Day Day Up > MEXT o

10.4 Partitioning Methods

To horizontally partition a table (or index), you must specify a set of rules so that Oracle can
determine in which partition a given row should reside. The following sections explore the five
types of partitioning available in Oracle Database 10g.

10.4.1 Range Partitioning

The first partitioning scheme, introduced in Oracle8 and known as range partitioning, allows a
table to be partitioned over ranges of values for one or more columns of the table. The simplest
and most widely implemented form of range partitioning is to partition using a single date
column. Consider the following DDL statement:

CREATE TABLE cust_order (
order _nbr NUMBER(7) NOT NULL,
cust _nbr NUMBER(5) NOT NULL,
order _dt DATE NOT NULL,
sal es_enp_id NUMBER(5) NOT NULL,
sal e_price NUMBER(9, 2),
expect ed_shi p_dt DATE,
cancel | ed_dt DATE,
shi p_dt DATE,
status VARCHARZ2(20)
)
PARTI TI ON BY RANGE (order_dt)
(PARTI TI ON orders_2000
VALUES LESS THAN (TO DATE(' 01- JAN-2001',' DD- MON- YYYY'))
TABLESPACE ordl,
PARTI TI ON orders_2001
VALUES LESS THAN (TO DATE(' 01- JAN-2002',' DD- MON- YYYY'))

TABLESPACE or d2,

PARTI TI ON orders_2002
VALUES LESS THAN (TO DATE(' 01- JAN-2003',' DD- MON- YYYY'))
TABLESPACE ord3);
Using this partitioning scheme, all orders prior to 2001 will reside in the orders_2000 partition;

orders from 2001 will reside in the orders_2001 partition; and orders for the year 2002 will
reside in the orders_2002 partition.

10.4.2 Hash Partitioning

In some cases, you may wish to partition a large table, but there are no columns for which
range partitioning is suitable. Available in Oracle8i, hash partitioning allows you to specify the
number of partitions and the partition columns (the partition key), but leaves the allocation of
rows to partitions up to Oracle. As rows are inserted into the partitioned table, Oracle attempts
to evenly spread the data across the partitions by applying a hashing function to the data in the
partition key; the value returned by the hashing function determines the partition that hosts the
row. If the partition columns are included in the WHERE clause of a SELECT, DELETE, or
UPDATE statement, Oracle can apply the hash function to determine which partition to search.
The following DDL statement demonstrates how the part table might be partitioned by hashing
the part _nbr column:
CREATE TABLE part (

part _nbr VARCHAR2(20) NOT NULL,

name VARCHAR2(50) NOT NULL,

supplier_id NUVBER(6) NOT NULL,

inventory_qty NUMBER(6) NOT NULL,

status VARCHAR2(10) NOT NULL,

uni t _cost NUMBER(S, 2),

resuppl y_date DATE

)
PARTI TI ON BY HASH (part_nbr)

(PARTI TION partl TABLESPACE pl,
PARTI TI ON part2 TABLESPACE p2,
PARTI TI ON part3 TABLESPACE p3,

PARTI TI ON part4 TABLESPACE p4);

For the data to be evenly distributed across the partitions, it is important to choose columns

with high cardinality as partition keys. A set of columns is said to have high cardinality if the
number of distinct values is large compared to the size of the table. Choosing a high cardinality
column for your partition key ensures an even distribution across your partitions; otherwise, the
partitions can become unbalanced, causing performance to be unpredictable and making
administration more difficult.

o A unique key has the highest cardinality, since every row in the table has a
o distinct value. An example of a low cardinality column might be the

% . . appe -
. 4+ country column in a customer table with millions of entries.

10.4.3 Composite Range-Hash Partitioning

If you are torn between whether to apply range or hash partitioning to your table, you can do
some of each. Composite partitioning, also unveiled with Oracle8i, allows you to create multiple
range partitions, each of which contains two or more hash subpartitions. There are two types of
composite partitioning, range-hash partitioning, which was unveiled in Oracle8i, and range-list
partitioning, which we'll talk about later in this chapter.

Composite partitioning is often useful when range partitioning is appropriate for the type of

data stored in the table, but you want a finer granularity of partitioning than is practical using
range partitioning alone. For example, it might make sense to partition your or der table by
year based on the types of queries against the table. If a year's worth of data proves too
cumbersome for a single partition, however, you could subpartition each year by hashing the
customer number across four buckets. The following example expands on the range-partitioning
example shown earlier by generating subpartitions based on a hash of the customer number:

CREATE TABLE cust_order (
order _nbr NUMBER(7) NOT NULL,
cust _nbr NUMBER(5) NOT NULL,
order _dt DATE NOT NULL,
sal es_enp_id NUMBER(5) NOT NULL,
sal e_price NUMBER(9, 2),
expect ed_shi p_dt DATE,
cancel | ed_dt DATE,
shi p_dt DATE,
status VARCHARZ2(20)
)
PARTI