
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

• Academic

Mastering Oracle SQL, 2nd Edition

By Alan Beaulieu, Sanjay Mishra

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00632-2

Pages: 492

Updated to cover Oracle 10g, this new edition of the highly regarded Mastering Oracle SQL has
a stronger focus on practical, expert best-practices and on Oracle-specific SQL technique than
any other book on the market. For those who want to harness the untapped (and often
overlooked) power of Oracle SQL, this essential guide for putting Oracle SQL to work will prove
invaluable.

 < Day Day Up >

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

• Academic

Mastering Oracle SQL, 2nd Edition

By Alan Beaulieu, Sanjay Mishra

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00632-2

Pages: 492

Updated to cover Oracle 10g, this new edition of the highly regarded Mastering Oracle SQL has
a stronger focus on practical, expert best-practices and on Oracle-specific SQL technique than
any other book on the market. For those who want to harness the untapped (and often
overlooked) power of Oracle SQL, this essential guide for putting Oracle SQL to work will prove
invaluable.

 < Day Day Up >

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

• Academic

Mastering Oracle SQL, 2nd Edition

By Alan Beaulieu, Sanjay Mishra

Publisher: O'Reilly

Pub Date: June 2004

ISBN: 0-596-00632-2

Pages: 492

 Copyright

 Preface

 Why We Wrote This Book

 What's New in Oracle SQL?

 Objectives of This Book

 Audience for This Book

 Platform and Version

 Structure of This Book

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction to SQL

 Section 1.1. What Is SQL?

 Section 1.2. A Brief History of SQL

 Section 1.3. A Simple Database

 Section 1.4. DML Statements

 Section 1.5. So Why Are There 17 More Chapters?

 Chapter 2. The WHERE Clause

 Section 2.1. Life Without WHERE

 Section 2.2. WHERE to the Rescue

 Section 2.3. WHERE Clause Evaluation

 Section 2.4. Conditions and Expressions

 Section 2.5. WHERE to Go from Here

 Chapter 3. Joins

 Section 3.1. What Is a Join Query?

 Section 3.2. Join Conditions

 Section 3.3. Types of Joins

 Section 3.4. Joins and Subqueries

 Section 3.5. DML Statements on a Join View

 Chapter 4. Group Operations

 Section 4.1. Aggregate Functions

 Section 4.2. The GROUP BY Clause

 Section 4.3. The HAVING Clause

 Section 4.4. Nested Group Operations

 Chapter 5. Subqueries

 Section 5.1. What Is a Subquery?

 Section 5.2. Noncorrelated Subqueries

 Section 5.3. Correlated Subqueries

 Section 5.4. Inline Views

 Section 5.5. Subquery Case Study: The Top N Performers

 Chapter 6. Handling Temporal Data

 Section 6.1. Time Zones

 Section 6.2. Temporal Data Types in Oracle

 Section 6.3. Literals of Temporal Types

 Section 6.4. Getting Temporal Data In and Out of a Database

 Section 6.5. Date and Time Formats

 Section 6.6. Manipulating Temporal Data

 Chapter 7. Set Operations

 Section 7.1. Set Operators

 Section 7.2. Precedence of Set Operators

 Section 7.3. Comparing Two Tables

 Section 7.4. Using NULLs in Compound Queries

 Section 7.5. Rules and Restrictions on Set Operations

 Chapter 8. Hierarchical Queries

 Section 8.1. Representing Hierarchical Information

 Section 8.2. Simple Hierarchy Operations

 Section 8.3. Oracle SQL Extensions

 Section 8.4. Complex Hierarchy Operations

 Section 8.5. Restrictions on Hierarchical Queries

 Section 8.6. Enhancements in Oracle Database 10g

 Chapter 9. DECODE and CASE

 Section 9.1. DECODE, NULLIF, NVL, and NVL2

 Section 9.2. The Case for CASE

 Section 9.3. DECODE and CASE Examples

 Chapter 10. Partitioning

 Section 10.1. Partitioning Concepts

 Section 10.2. Partitioning Tables

 Section 10.3. Partitioning Indexes

 Section 10.4. Partitioning Methods

 Section 10.5. Specifying Partitions

 Section 10.6. Partition Pruning

 Chapter 11. PL/SQL

 Section 11.1. What Is PL/SQL?

 Section 11.2. Procedures, Functions, and Packages

 Section 11.3. Calling Stored Functions from Queries

 Section 11.4. Restrictions on Calling PL/SQL from SQL

 Section 11.5. Stored Functions in DML Statements

 Section 11.6. The SQL Inside Your PL/SQL

 Chapter 12. Objects and Collections

 Section 12.1. Object Types

 Section 12.2. Collection Types

 Section 12.3. Collection Instantiation

 Section 12.4. Querying Collections

 Section 12.5. Collection Unnesting

 Section 12.6. Collection Functions

 Section 12.7. Comparing Collections

 Section 12.8. Manipulating Collections

 Section 12.9. Multilevel Collections

 Chapter 13. Advanced Group Operations

 Section 13.1. Multiple Summary Levels

 Section 13.2. Pushing the GROUPING Envelope

 Section 13.3. The GROUPING_ID and GROUP_ID Functions

 Chapter 14. Advanced Analytic SQL

 Section 14.1. Analytic SQL Overview

 Section 14.2. Ranking Functions

 Section 14.3. Windowing Functions

 Section 14.4. Reporting Functions

 Section 14.5. Summary

 Chapter 15. SQL Best Practices

 Section 15.1. Know When to Use Specific Constructs

 Section 15.2. Avoid Unnecessary Parsing

 Section 15.3. Consider Literal SQL for Decision-Support Systems

 Chapter 16. XML

 Section 16.1. What Is XML?

 Section 16.2. Storing XML Data

 Section 16.3. Generating XML Documents

 Section 16.4. Summary

 Chapter 17. Regular Expressions

 Section 17.1. Elementary Regular Expression Syntax

 Section 17.2. Advanced Function Options

 Section 17.3. Advanced Regular Expression Syntax

 Chapter 18. Model Queries

 Section 18.1. Basic Elements of a Model Query

 Section 18.2. Cell References

 Section 18.3. Rules

 Section 18.4. Iterative Models

 Section 18.5. Reference Models

 Appendix A. Oracle's Old Join Syntax

 Section A.1. Old Inner Join Syntax

 Section A.2. Old Outer Join Syntax

 Section A.3. Advantages of the New Join Syntax

 Colophon

 Index

 < Day Day Up >

 < Day Day Up >

Copyright © 2004, 2002 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly Media, Inc. Mastering Oracle SQL, the image of lantern flies, and related
trade dress are trademarks of O'Reilly Media, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the United States and other countries. O'Reilly Media, Inc., is independent
of Oracle Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

 < Day Day Up >

http://safari.oreilly.com

 < Day Day Up >

Preface
SQL is the language for accessing a relational database. SQL provides a set of statements for
storing and retrieving data to and from a relational database. It has gained steadily in
popularity ever since the first relational database was unleashed upon the world. Other
languages have been put forth, but SQL is now accepted as the standard language for almost all
relational database implementations, including Oracle.

SQL is different from other programming languages because it is nonprocedural. Unlike
programs in other languages, where you specify the sequence of steps to be performed, a SQL
program (more appropriately called a SQL statement) only expresses the desired result. The
responsibility for determining how the data will be processed to generate the desired result is
left to the database management system. The nonprocedural nature of SQL makes it easier to
access data in application programs.

If you are using an Oracle database, SQL is the interface you use to access the data stored in
your database. SQL allows you to create database structures such as tables (to store your
data), views, and indexes. SQL allows you to insert data into the database, and to retrieve that
stored data in a desired format (for example, you might sort it). Finally, SQL allows you to
modify, delete, and otherwise manipulate your stored data. SQL is the key to everything you do
with the database. It's important to know how to get the most out of that interface. Mastery
over the SQL language is one of the most vital requirements of a database developer or
database administrator.

 < Day Day Up >

 < Day Day Up >

Why We Wrote This Book

Our motivation for writing this book stems from our own experiences learning how to use the
Oracle database and Oracle's implementation of the SQL language. Oracle's SQL documentation
consists of a reference manual that doesn't go into details about the practical usefulness of the
various SQL features that Oracle supports. Nor does the manual present complex, real-life
examples.

When we looked for help with SQL in the computer book market, we found that there are really
two types of SQL books available. Most are the reference type that describe features and
syntax, but that don't tell you how to apply that knowledge to real-life problems. The other type
of book, very few-in-number, discusses the application of SQL in a dry and theoretical style
without using any particular vendor's implementation. Since every database vendor implements
their own variation of SQL, we find books based on "standard" SQL to be of limited usefulness.

In writing this book, we decided to write a practical book focused squarely on Oracle's version
of SQL. Oracle is the market-leading database, and it's also the database on which we've honed
our SQL expertise. In this book, we not only cover the most important and useful of Oracle's
SQL features, but we show ways to apply them to solve specific problems.

 < Day Day Up >

 < Day Day Up >

What's New in Oracle SQL?

When we wrote the first edition of this book, Oracle9i had just come out, and we managed to
cover some of the interesting and new features in that release of the database. Now, Oracle
Database 10g has just been released, and there are even more new features to talk about:

A new, MODEL clause has been added to the SELECT statement, enabling you to write
queries that perform spreadsheet-like calculations against multidimensional arrays created
from data you select from the database.

Oracle has added support for using regular expressions from SQL, and with a vengeance.
Not only can you use regular expressions to select data, but also to manipulate data in
various, useful ways. For example, you can perform regular expression search-and-replace
operations. No other database vendor that we know of offers such powerful, regular
expression functionality.

XML is everywhere these days, and that hasn't gone unnoticed in the world of SQL. The
ANSI/ISO folk have created the SQL/XML standard, which defines mechanisms for
selecting relational data and presenting it in XML form. Oracle supports this standard,
which involves several, new SQL functions. Oracle also now supports XML as a native data
type.

These are just the big features, which, of course, we cover in this second edition. In addition,
we cover many small updates to Oracle SQL, such as the multiset union operators that enable
you to perform set operations involving nested table collections.

Finally, we've worked carefully together as a team, not only with each other, but also with our
editor, to ensure that all examples in this book are drawn from a single data set. You'll be able
to download that data set from this book's catalog page. You can then use it to follow along
with our examples.

 < Day Day Up >

 < Day Day Up >

Objectives of This Book

The single most important objective of this book is to help you harness the power of Oracle SQL
to the maximum extent possible. You will learn to:

Understand the features and capabilities of the SQL language, as implemented by Oracle.

Use complex SQL features, such as outer joins, correlated subqueries, hierarchical queries,
grouping operations, and analytical queries.

Use DECODE and CASE to implement conditional logic in your SQL queries.

Write SQL statements that operate against partitions, objects, and collections, such as
nested tables and variable arrays.

Use the new SQL features introduced in Oracle Database 10g, such as regular expressions
and interrow calculations.

Use best-practices to write efficient, maintainable SQL queries.

One topic that is important to us and many of our readers, but which is not explicitly discussed
in this book is SQL tuning. Tuning tips are sprinkled throughout the book, but we do not include
a chapter on tuning for the following reasons:

Tuning is a large topic, and reasonable coverage of SQL tuning would easily double or
triple the size of this book.

There are already many excellent Oracle-specific and general-purpose tuning books on the
market, whereas there are very few books (in our opinion, exactly one) that thoroughly
explore the feature set of Oracle SQL.

In many ways, mastery of Oracle's SQL implementation is the most important tool in your
tuning toolkit.

With this book under your belt, you will be less likely to write SQL statements that perform
badly, and you will be able to employ multiple strategies to rework existing statements.

 < Day Day Up >

 < Day Day Up >

Audience for This Book

This book is for Oracle developers, database administrators, and anyone who needs access to
data stored in an Oracle database for reporting or ad-hoc analysis. Whether you are new to the
world of databases or a seasoned professional, if you use SQL to access an Oracle database, this
book is for you. Whether you use simple queries to access data or embed them in PL/SQL or
Java programs, SQL is the core of all data access tasks in your application. Knowing the power
and flexibility of SQL will improve your productivity, allowing you to get more done in less time,
and with increased certainty that the SQL statements you write are indeed correct.

 < Day Day Up >

 < Day Day Up >

Platform and Version

We used Oracle Database 10g in writing this book. We've covered many of Oracle Database
10g's important new SQL features, including regular expressions, hierarchical query features,
object and collection functionality, and interrow calculations. Most of the concepts, syntax, and
examples apply to earlier releases of Oracle as well. We specifically point out the new Oracle
Database 10g features.

 < Day Day Up >

 < Day Day Up >

Structure of This Book

This book is divided into 18 chapters and 1 appendix:

Chapter 1, introduces the SQL language and describes its brief history. This chapter is
primarily for those readers who have little or no prior SQL experience. You'll find simple
examples of the core SQL statements (SELECT, INSERT, UPDATE, and DELETE) and of
SQL's basic features.

Chapter 2, describes ways to filter data in your SQL statements. You'll learn to restrict the
results of a query to the rows you wish to see, and restrict the results of a data
manipulation statement to the rows you wish to modify.

Chapter 3, describes constructs used to access data from multiple, related tables. The
important concepts of inner join and outer join are discussed in this chapter.

Chapter 4, shows you how to generate summary information, such as totals and subtotals,
from your data. Learn how to define groups of rows, and how to apply various aggregate
functions to summarize data in those groups.

Chapter 5, shows you how to use correlated and noncorrelated subqueries and inline views
to solve complex problems that would otherwise require procedural code together with
more than one query.

Chapter 6, talks about handling date and time information in an Oracle database. Learn
the tricks and traps of querying time-based data.

Chapter 7, shows you how to use UNION, INTERSECT, and MINUS to combine results from
two or more independent component queries into one.

Chapter 8, shows you how to store and extract hierarchical information (such as in an
organizational chart) from a relational table. Oracle provides many features to facilitate
working with hierarchical data, including several new features introduced in Oracle
Database 10g.

Chapter 9, talks about two very powerful yet simple features of Oracle SQL that enable you
to simulate conditional logic in what is otherwise a declarative language.

Chapter 10, discusses the issues involved with creating and accessing partitioned tables
using SQL. Learn to write SQL statements that operate on specific partitions and
subpartitions.

Chapter 11, explores the integration of SQL and PL/SQL. This chapter describes how to call
PL/SQL stored procedures and functions from SQL statements, and how to write efficient
SQL statements within PL/SQL programs.

Chapter 12, explores the object-oriented aspects of the Oracle database server, including
object types and collections.

Chapter 13, deals with complex grouping operations used mostly in decision support
systems. We show you how to use Oracle features such as ROLLUP, CUBE, and GROUPING

SETS to efficiently generate various levels of summary information required by decision-
support applications. We also discuss the grouping features that enable composite and
concatenated groupings, including the GROUP_ID and GROUPING_ID functions.

Chapter 14, deals with analytical queries and analytic functions. Learn how to use ranking,
windowing, and reporting functions to generate decision-support information.

Chapter 15, talks about best practices that you should follow to write efficient and
maintainable queries. Learn which SQL constructs are the most efficient for a given
situation. For example, we describe when it's better to use WHERE instead of HAVING to
restrict query results. We also discuss the performance implications of using bind variables
vis-à-vis literal SQL.

Chapter 16, explores how the Oracle server can store XML documents, features used to
navigate, search, and extract content from XML documents, and functions used to
generate XML documents from ordinary tables.

Chapter 17, shows how to write and interpret regular expressions for performing advanced
text searches and substitutions.

Chapter 18, introduces the new, MODEL clause, which lets you manipulate relational data
as if it were a big, multidimensional, spreadsheet (Oracle prefers the term model). Model
queries enable you to solve problems using a single SQL statement that previously would
have required you to download data to a third-party, spreadsheet program such as
Microsoft Excel.

The Appendix, describes the SQL89 join syntax, and Oracle's proprietary, outer-join
syntax. Only this syntax was available for joins until the release of Oracle9i Database,
which introduced support for the newer, and better, SQL92 join syntax.

 < Day Day Up >

 < Day Day Up >

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Used for filenames, directory names, table names, field names, and exampl URLs. It is
also used for emphasis and for the first use of a technical term.

Constant width

Used for examples and to show the contents of files and the output of commands. Also
used for column names, XML element names, regular expressions, SQL literals mentioned
in the text, and function names.

Constant width italic

Used in syntax descriptions to indicate user-defined items.

Constant width bold

Indicates user input in examples showing an interaction. Also indicates emphasized code
elements to which you should pay particular attention.

Constant width bold italic

Used in code examples to emphasize aspects of the SQL statements, or results, that are
under discussion.

UPPERCASE

In syntax descriptions, indicates keywords.

lowercase

In syntax descriptions, indicates user-defined items, such as variables.

[]

In syntax descriptions, square brackets enclose optional items.

{ }

In syntax descriptions, curly brackets enclose a set of items from which you must choose
only one.

|

In syntax descriptions, a vertical bar separates the items enclosed in curly or square
brackets, as in {TRUE | FALSE}.

. . .

In syntax descriptions, ellipses indicate repeating elements.

Indicates a tip, suggestion, or general note. For example, we use notes to
point you to useful new features in Oracle Database 10g.

Indicates a warning or caution. For example, we'll tell you if a certain SQL
clause might have unintended consequences if not used carefully.

 < Day Day Up >

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O'Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product's documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Mastering Oracle SQL, Second Edition, by Sanjay Mishra
and Alan Beaulieu. Copyright 2004 O'Reilly Media, Inc., 0-596-00632-2."

If you feel your use of code examples falls outside fair use or the permission given above, feel
free to contact us at:

permissions@oreilly.com.

 < Day Day Up >

 < Day Day Up >

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may
find that features have changed or that we have made mistakes. If so, please notify us by
writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

O'Reilly has a web site for this book, where you can find examples and errata (previously
reported errors and corrections are available for public view there). You can access this page at:

http://www.oreilly.com/catalog/0596006322

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

http://www.oreilly.com/catalog/0596006322
http://www.oreilly.com

 < Day Day Up >

Acknowledgments

We are indebted to a great many people who have contributed in the development and
production of this book. We owe a huge debt of gratitude to Jonathan Gennick, the editor of the
book. Jonathan's vision for this book, close attention to details, and exceptional editing skills
are the reasons this book is here today.

Our sincere thanks to our technical reviewers: Diana Lorentz, Jason Bucata, Trudy Pelzer, and
Peter Linsley, who generously gave their valuable time to read and comment on a draft copy of
this book. Their contributions have greatly improved its accuracy, readability, and value.

This book certainly would not have been possible without a lot of hard work and support from
the skillful staff at O'Reilly, including Ellie Volckhausen and Emma Colby, the cover designers;
David Futato, the interior designer; Julie Hawks, who converted the files; Matt Hutchinson, the
production editor; Rob Romano and Jessamyn Read, the illustrators; and Sarah Sherman,
Marlowe Shaeffer, and Claire Cloutier, who provided quality control.

From Sanjay

I would like to thank my coauthor Alan and my coauthor/editor Jonathan Gennick for constant
cooperation and smooth execution during the first as well as the second edition of this book.

My adventure with Oracle's database started in the Tribology Workbench project at Tata Steel,
Jamshedpur, India. Sincere thanks to my co-workers in the Tribology Workbench project for all
the experiments and explorations we did during our learning days with Oracle. Ever since,
Oracle database technology has become a way of life for me.

Special thanks the readers of the first edition whose feedback, comments, questions, and
suggestions helped improve the second edition of the book. Sincere thanks to my current and
previous co-workers for their support and encouragement.

Last, but not the least, I thank my wife, Sudipti, for her support, understanding, and constant
encouragement.

From Alan

I would like to thank my coauthor Sanjay and my coauthor/editor Jonathan Gennick for helping
to make the second edition of this book a reality. I would also like to thank the many readers of
our first edition who pointed out errors, asked questions, and made suggestions; with your
help, our second edition is a much better book.

Most of all, I would like to thank my wife, Nancy, for her support, patience, and encouragement,
and my daughters, Michelle and Nicole, for their love and inspiration.

 < Day Day Up >

 < Day Day Up >

Chapter 1. Introduction to SQL
In this introductory chapter, we explore the origin and utility of the SQL language, demonstrate
some of the more useful features of the language, and define a simple database design from
which most examples in the book are derived.

 < Day Day Up >

 < Day Day Up >

1.1 What Is SQL?

SQL is a special-purpose language used to define, access, and manipulate data. SQL is
nonprocedural, meaning that it describes the necessary components (i.e., tables) and desired
results without dictating exactly how those results should be computed. Every SQL
implementation sits atop a database engine, whose job it is to interpret SQL statements and
determine how the various data structures in the database should be accessed to accurately and
efficiently produce the desired outcome.

The SQL language includes two distinct sets of commands: Data Definition Language (DDL) is
the subset of SQL used to define and modify various data structures, while Data Manipulation
Language (DML) is the subset of SQL used to access and manipulate data contained within the
data structures previously defined via DDL. DDL includes numerous commands for handling
such tasks as creating tables, indexes, views, and constraints, while DML is comprised of just
five statements:

INSERT

Adds data to a database.

UPDATE

Modifies data in a database.

DELETE

Removes data from a database.

MERGE

Adds and/or modifies data in a database. MERGE is part of the 2003 ANSI SQL standard.

SELECT

Retrieves data from a database.

Some people feel that DDL is the sole property of database administrators, while database
developers are responsible for writing DML statements, but the two are not so easily separated.
It is difficult to efficiently access and manipulate data without an understanding of what data
structures are available and how they are related; likewise, it is difficult to design appropriate
data structures without knowledge of how the data will be accessed. That being said, this book
deals almost exclusively with DML, except where DDL is presented to set the stage for one or

more DML examples. The reasons for focusing on just the DML portion of SQL include:

DDL is well represented in various books on database design and administration as well as
in SQL reference guides.

Most database performance issues are the result of inefficient DML statements.

Even with a paltry five statements, DML is a rich enough topic to warrant not just one
book, but a whole series of books.

Anyone who writes SQL in an Oracle environment should be armed with
the following three books: a reference guide to the SQL language, such as
Oracle in a Nutshell (O'Reilly); a performance-tuning guide, such as
Optimizing Oracle Performance (O'Reilly); and the book you are holding,
which shows how to best utilize and combine the various features of
Oracle's SQL implementation.

So why should you care about SQL? In this age of Internet computing and n-tier architectures,
does anyone even care about data access anymore? Actually, efficient storage and retrieval of
information is more important than ever:

Many companies now offer services via the Internet. During peak hours, these services
may need to handle thousands of concurrent requests, and unacceptable response times
equate to lost revenue. For such systems, every SQL statement must be carefully crafted
to ensure acceptable performance as data volumes increase.

We can store a lot more data today than we could just a few years ago. A single disk array
can hold tens of terabytes of data, and the ability to store hundreds of terabytes is just
around the corner. Software used to load or analyze data in these environments must
harness the full power of SQL to process ever-increasing data volumes within constant (or
shrinking) time windows.

Hopefully, you now have an appreciation for what SQL is and why it is important. The next
section will explore the origins of the SQL language and the support for the SQL standard in
Oracle's products.

 < Day Day Up >

 < Day Day Up >

1.2 A Brief History of SQL

In the early 1970s, an IBM research fellow named Dr. E. F. Codd endeavored to apply the rigors
of mathematics to the then-untamed world of data storage and retrieval. Codd's work led to the
definition of the relational data model and a language called DSL/Alpha for manipulating data in
a relational database. IBM liked what they saw, so they commissioned a project called
System/R to build a prototype based on Codd's work. Among other things, the System/R team
developed a simplified version of DSL called SQUARE, which was later renamed SEQUEL, and
finally renamed SQL.

The work done on System/R eventually led to the release of various IBM products based on the
relational model. Other companies, such as Oracle, rallied around the relational flag as well. By
the mid 1980s, SQL had gathered sufficient momentum in the marketplace to warrant oversight
by the American National Standards Institute (ANSI). ANSI released its first SQL standard in
1986, followed by updates in 1989, 1992, 1999, and 2003. There will undoubtedly be further
refinements in the future.

Thirty years after the System/R team began prototyping a relational database, SQL is still going
strong. While there have been numerous attempts to dethrone relational databases in the
marketplace, well-designed relational databases coupled with well-written SQL statements
continue to succeed in handling large, complex data sets where other methods fail.

1.2.1 Oracle's SQL Implementation

Given that Oracle was an early adopter of the relational model and SQL, one might think that
they would have put a great deal of effort into conforming with the various ANSI standards. For
many years, however, the folks at Oracle seemed content that their implementation of SQL was
functionally equivalent to the ANSI standards without being overly concerned with true
compliance. Beginning with the release of Oracle8i, however, Oracle has stepped up its efforts
to conform to ANSI standards and has tackled such features as the CASE statement and the
left/right/full outer join syntax.

Ironically, the business community seems to be moving in the opposite direction. A few years
ago, people were much more concerned with portability and would limit their developers to
ANSI-compliant SQL so that they could implement their systems on various database engines.
Today, companies tend to pick a database engine to use across the enterprise and allow their
developers to use the full range of available options without concern for ANSI-compliance. One
reason for this change in attitude is the advent of n-tier architectures, where all database access
can be contained within a single tier instead of being scattered throughout an application.
Another possible reason might be the emergence of clear leaders in the DBMS market over the
last decade, such that managers perceive less risk in which database engine they choose.

1.2.2 Theoretical Versus Practical Terminology

If you were to peruse the various writings on the relational model, you would come across
terminology that you will not find used in this book (such as relations and tuples). Instead, we
use practical terms such as tables and rows, and we refer to the various parts of a SQL

statement by name rather than by function (i.e., "SELECT clause" instead of projection). With
all due respect to Dr. Codd, you will never hear the word tuple used in a business setting, and,
since this book is targeted toward people who use Oracle products to solve business problems,
you won't find it here either.

 < Day Day Up >

 < Day Day Up >

1.3 A Simple Database

Because this is a practical book, it contains numerous examples. Rather than fabricating
different sets of tables and columns for every chapter or section in the book, we have decided to
draw from a single, simple schema for most examples. The subject area that we chose to model
is a parts distributor, such as an auto-parts wholesaler or medical device distributor, in which
the business fills customer orders for one or more parts that are supplied by external suppliers.
Figure 1-1 shows the entity-relationship model for this business.

Figure 1-1. The parts distributor model

If you are unfamiliar with entity-relationship models, here is a brief description of how they

work. Each box in the model represents an entity, which correlates to a database table.[1] The
lines between the entities represent the relationships between tables, which correlate to foreign
keys. For example, the cust_order table holds a foreign key to the employee table, which

signifies the salesperson responsible for a particular order. Physically, this means that the
cust_order table contains a column holding employee ID numbers, and that, for any given

order, the employee ID number indicates the employee who sold that order. If you find this
confusing, simply use the diagram as an illustration of the tables and columns found within our
database. As you work your way through the SQL examples in this book, return occasionally to
the diagram, and you should find that the relationships start making sense.

[1] Depending on the purpose of the model, entities may or may not correlate to database tables. For
example, a logical model depicts business entities and their relationships, whereas a physical model illustrates
tables and their primary/foreign keys. The model in Figure 1-1 is a physical model.

 < Day Day Up >

 < Day Day Up >

1.4 DML Statements

In this section, we will introduce the five statements that comprise the DML portion of SQL. The
information presented in this section should be enough to allow you to start writing DML
statements. As is discussed at the end of the section, however, DML can look deceptively
simple, so keep in mind while reading the section that there are many more facets to DML than
are discussed here.

1.4.1 The SELECT Statement

The SELECT statement is used to retrieve data from a database. The set of data retrieved via a
SELECT statement is referred to as a result set. Like a table, a result set is comprised of rows
and columns, making it possible to populate a table using the result set of a SELECT statement.
The SELECT statement can be summarized as follows:

SELECT <one or more things>

FROM <one or more places>

WHERE <zero, one, or more conditions apply>

While the SELECT and FROM clauses are required, the WHERE clause is optional (although you
will seldom see it omitted). We will therefore begin with a simple example that retrieves three
columns from every row of the customer table:

SELECT cust_nbr, name, region_id

FROM customer;

 CUST_NBR NAME REGION_ID

---------- ------------------------------ ----------

 1 Cooper Industries 5

 2 Emblazon Corp. 5

 3 Ditech Corp. 5

 4 Flowtech Inc. 5

 5 Gentech Industries 5

 6 Spartan Industries 6

 7 Wallace Labs 6

 8 Zantech Inc. 6

 9 Cardinal Technologies 6

 10 Flowrite Corp. 6

 11 Glaven Technologies 7

 12 Johnson Labs 7

 13 Kimball Corp. 7

 14 Madden Industries 7

 15 Turntech Inc. 7

 16 Paulson Labs 8

 17 Evans Supply Corp. 8

 18 Spalding Medical Inc. 8

 19 Kendall-Taylor Corp. 8

 20 Malden Labs 8

 21 Crimson Medical Inc. 9

 22 Nichols Industries 9

 23 Owens-Baxter Corp. 9

 24 Jackson Medical Inc. 9

 25 Worcester Technologies 9

 26 Alpha Technologies 10

 27 Phillips Labs 10

 28 Jaztech Corp. 10

 29 Madden-Taylor Inc. 10

 30 Wallace Industries 10

Since we neglected to impose any conditions via a WHERE clause, the query returns every row
from the customer table. If you want to restrict the set of data returned by the query, you can
include a WHERE clause with a single condition:

SELECT cust_nbr, name, region_id

FROM customer

WHERE region_id = 8;

 CUST_NBR NAME REGION_ID

---------- ------------------------------ ----------

 16 Paulson Labs 8

 17 Evans Supply Corp. 8

 18 Spalding Medical Inc. 8

 19 Kendall-Taylor Corp. 8

 20 Malden Labs 8

The result set now includes only those customers residing in the region with a region_id of 8.
But what if you want to specify a region by name instead of region_id? You could query the
region table for a particular name and then query the customer table using the retrieved
region_id. Instead of issuing two different queries, however, you can produce the same

outcome using a single query by introducing a join, as in:

SELECT customer.cust_nbr, customer.name, region.name

FROM customer INNER JOIN region

 ON region.region_id = customer.region_id

WHERE region.name = 'New England';

 CUST_NBR NAME NAME

---------- ------------------------------ -----------

 1 Cooper Industries New England

 2 Emblazon Corp. New England

 3 Ditech Corp. New England

 4 Flowtech Inc. New England

 5 Gentech Industries New England

The FROM clause now contains two tables instead of one and includes a join condition that
specifies that the customer and region tables are to be joined using the region_id column

found in both tables. Joins and join conditions will be explored in detail in Chapter 3.

Since both the customer and region tables contain a column called name, you must specify
which table's name column you are interested in. This is done in the previous example by using

dot-notation to append the table name in front of each column name. If you would rather not
type full table names, you can assign table aliases to each table in the FROM clause and use
those aliases instead of the table names in the SELECT and WHERE clauses, as in:

SELECT c.cust_nbr, c.name, r.name

FROM customer c INNER JOIN region r

ON r.region_id = c.region_id

WHERE r.name = 'New England';

In this example, we assigned the alias c to the customer table and the alias r to the region
table. Thus, we can use c. and r. instead of customer. and region. in the SELECT and WHERE

clauses.

1.4.1.1 SELECT clause elements

In the examples thus far, the result sets generated by our queries have contained columns from
one or more tables. While most elements in your SELECT clauses will typically be simple column
references, a SELECT clause may also include:

Literal values, such as numbers (27) or strings (`abc')

Expressions, such as shape.diameter * 3.1415927

Function calls, such as TO_DATE(`01-JAN-2004',`DD-MON-YYYY')

Pseudocolumns, such as ROWID, ROWNUM, or LEVEL

While the first three items in this list are fairly straightforward, the last item merits further
discussion. Oracle makes available several phantom columns, known as pseudocolumns, that do
not exist in any tables. Rather, they are values visible during query execution that can be
helpful in certain situations.

For example, the pseudocolumn ROWID represents the physical location of a row. This
information represents the fastest possible access mechanism. It can be useful if you plan to
delete or update a row retrieved via a query. However, you should never store ROWID values in
the database, nor should you reference them outside of the transaction in which they are
retrieved, since a row's ROWID can change in certain situations, and ROWIDs can be reused
after a row has been deleted.

The next example demonstrates each of the different element types from the previous list:

SELECT ROWNUM,

 cust_nbr,

 1 multiplier,

 'cust # ' || cust_nbr cust_nbr_str,

 'hello' greeting,

 TO_CHAR(last_order_dt, 'DD-MON-YYYY') last_order

FROM customer;

ROWNUM CUST_NBR MULTIPLIER CUST_NBR_STR GREETING LAST_ORDER

------ -------- ---------- ------------ -------- -----------

 1 1 1 cust # 1 hello 15-JUN-2000

 2 2 1 cust # 2 hello 27-JUN-2000

 3 3 1 cust # 3 hello 07-JUL-2000

 4 4 1 cust # 4 hello 15-JUL-2000

 5 5 1 cust # 5 hello 01-JUN-2000

 6 6 1 cust # 6 hello 10-JUN-2000

 7 7 1 cust # 7 hello 17-JUN-2000

 8 8 1 cust # 8 hello 22-JUN-2000

 9 9 1 cust # 9 hello 25-JUN-2000

 10 10 1 cust # 10 hello 01-JUN-2000

 11 11 1 cust # 11 hello 05-JUN-2000

 12 12 1 cust # 12 hello 07-JUN-2000

 13 13 1 cust # 13 hello 07-JUN-2000

 14 14 1 cust # 14 hello 05-JUN-2000

 15 15 1 cust # 15 hello 01-JUN-2000

 16 16 1 cust # 16 hello 31-MAY-2000

 17 17 1 cust # 17 hello 28-MAY-2000

 18 18 1 cust # 18 hello 23-MAY-2000

 19 19 1 cust # 19 hello 16-MAY-2000

 20 20 1 cust # 20 hello 01-JUN-2000

 21 21 1 cust # 21 hello 26-MAY-2000

 22 22 1 cust # 22 hello 18-MAY-2000

 23 23 1 cust # 23 hello 08-MAY-2000

 24 24 1 cust # 24 hello 26-APR-2000

 25 25 1 cust # 25 hello 01-JUN-2000

 26 26 1 cust # 26 hello 21-MAY-2000

 27 27 1 cust # 27 hello 08-MAY-2000

 28 28 1 cust # 28 hello 23-APR-2000

 29 29 1 cust # 29 hello 06-APR-2000

 30 30 1 cust # 30 hello 01-JUN-2000

Note that the third through sixth columns have been given column aliases,
which are names that you assign to a column. If you are going to refer to
the columns in your query by name instead of by position, you will want to
assign each column a name that makes sense to you.

Interestingly, a SELECT clause is not required to reference columns from any of the tables in the
FROM clause. For example, the next query's result set is composed entirely of literals:

SELECT 1 num, 'abc' str

FROM customer;

 NUM STR

---------- ---

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

Since there are 30 rows in the customer table, the query's result set includes 30 identical rows

of data.

1.4.1.2 Ordering your results

In general, there is no guarantee that the result set generated by your query will be in any
particular order. If you want your results to be sorted by one or more columns, you can add an
ORDER BY clause after the WHERE clause. The following example sorts the results from the New
England query by customer name:

SELECT c.cust_nbr, c.name, r.name

FROM customer c INNER JOIN region r

ON r.region_id = c.region_id

WHERE r.name = 'New England'

ORDER BY c.name;

CUST_NBR NAME NAME

-------- ------------------------------ -----------

 1 Cooper Industries New England

 3 Ditech Corp. New England

 2 Emblazon Corp. New England

 4 Flowtech Inc. New England

 5 Gentech Industries New England

You may also designate the sort column(s) by their position in the SELECT clause. To sort the
previous query by customer number, which is the first column in the SELECT clause, you could
issue the following statement:

SELECT c.cust_nbr, c.name, r.name

FROM customer c INNER JOIN region r

ON r.region_id = c.region_id

WHERE r.name = 'New England'

ORDER BY 1;

 CUST_NBR NAME NAME

---------- ------------------------------ -----------

 1 Cooper Industries New England

 2 Emblazon Corp. New England

 3 Ditech Corp. New England

 4 Flowtech Inc. New England

 5 Gentech Industries New England

Specifying sort keys by position will certainly save you some typing, but it can often lead to
errors if you later change the order of the columns in your SELECT clause.

1.4.1.3 Removing duplicates

In some cases, your result set may contain duplicate data. For example, if you are compiling a
list of parts that were included in last month's orders, the same part number would appear
multiple times if more than one order included that part. If you want duplicates removed from
your result set, you can include the DISTINCT keyword in your SELECT clause, as in:

SELECT DISTINCT li.part_nbr

FROM cust_order co INNER JOIN line_item li

ON co.order_nbr = li.order_nbr

WHERE co.order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-AUG-2001','DD-MON-YYYY');

This query returns the distinct set of parts ordered during July 2001. Without the DISTINCT
keyword, the result set would contain one row for every line-item of every order, and the same
part would appear multiple times if it was included in multiple orders. When deciding whether
to include DISTINCT in your SELECT clause, keep in mind that finding and removing duplicates
necessitates a sort operation, which can greatly increase the execution time of your query.

1.4.2 The INSERT Statement

The INSERT statement is the mechanism for loading data into your database. This section will
introduce the traditional single-table INSERT statement, as well as the new multitable INSERT
ALL statement introduced in Oracle 9i.

1.4.2.1 Single-table inserts

With the traditional INSERT statement, data can be inserted into only one table at a time,
although the data being loaded into the table can be pulled from one or more additional tables.
When inserting data into a table, you do not need to provide values for every column in the
table; however, you need to be aware of the columns that require non-NULL[2] values and the
ones that do not. Here's the definition of the employee table:

[2] NULL indicates the absence of a value. The use of NULL is covered in Chapter 2.

describe employee

Name Null? Type

--- -------- ------------

EMP_ID NOT NULL NUMBER(5)

FNAME VARCHAR2(20)

LNAME VARCHAR2(20)

DEPT_ID NOT NULL NUMBER(5)

MANAGER_EMP_ID NUMBER(5)

SALARY NUMBER(5)

HIRE_DATE DATE

JOB_ID NUMBER(3)

The NOT NULL designation for the emp_id and dept_id columns indicates that values are

required for these two columns. Therefore, you must be sure to provide values for at least these
two columns in your INSERT statements, as demonstrated by the following:

INSERT INTO employee (emp_id, dept_id)

VALUES (101, 20);

Any inserts into employee may optionally include any or all of the remaining six columns, which

are described as nullable since they may be left undefined. Thus, you could decide to add the
employee's last name to the previous statement:

INSERT INTO employee (emp_id, lname, dept_id)

VALUES (101, 'Smith', 20);

The VALUES clause must contain the same number of elements as the column list, and the data
types must match the column definitions. In this example, emp_id and dept_id hold numeric
values while lname holds character data, so the INSERT statement will execute without error.

Oracle always tries to convert data from one type to another automatically, however, so the
following statement will also run without error:

INSERT INTO employee (emp_id, lname, dept_id)

VALUES ('101', 'Smith', '20');

Sometimes, the data to be inserted needs to be retrieved from one or more tables. Since the
SELECT statement generates a result set consisting of rows and columns of data, you can feed
the result set from a SELECT statement directly into an INSERT statement, as in:

INSERT INTO employee (emp_id, fname, lname, dept_id, hire_date)

SELECT 101, 'Dave', 'Smith', d.dept_id, SYSDATE

FROM department d

WHERE d.name = 'ACCOUNTING';

In this example, the purpose of the SELECT statement is to retrieve the department ID for the
Accounting department. The other four columns in the SELECT clause are either literals (101,
'Dave', 'Smith') or function calls (SYSDATE).

1.4.2.2 Multitable inserts

While inserting data into a single table is the norm, there are situations where data from a
single source must be inserted either into multiple tables or into the same table multiple times.
Such tasks would normally be handled programatically using PL/SQL, but Oracle9i introduced
the concept of a multitable insert to allow complex data insertion via a single INSERT
statement. For example, let's say that one of Mary Turner's customers wants to set up a
recurring order on the last day of each month for the next six months. The following statement
adds six rows to the cust_order table using a SELECT statement that returns exactly one row:

INSERT ALL

INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

VALUES (ord_nbr, cust_nbr, emp_id,

 ord_dt, ord_dt + 7, status)

INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

VALUES (ord_nbr + 1, cust_nbr, emp_id,

 add_months(ord_dt, 1), add_months(ord_dt, 1) + 7, status)

INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

VALUES (ord_nbr + 2, cust_nbr, emp_id,

 add_months(ord_dt, 2), add_months(ord_dt, 2) + 7, status)

INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

VALUES (ord_nbr + 3, cust_nbr, emp_id,

 add_months(ord_dt, 3), add_months(ord_dt, 3) + 7, status)

INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

VALUES (ord_nbr + 4, cust_nbr, emp_id,

 add_months(ord_dt, 4), add_months(ord_dt, 4) + 7, status)

INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

VALUES (ord_nbr + 5, cust_nbr, emp_id,

 add_months(ord_dt, 5), add_months(ord_dt, 5) + 7, status)

SELECT 99990 ord_nbr, c.cust_nbr cust_nbr, e.emp_id emp_id,

 last_day(SYSDATE) ord_dt, 'PENDING' status

FROM customer c CROSS JOIN employee e

WHERE e.fname = 'MARY' and e.lname = 'TURNER'

 and c.name = 'Gentech Industries';

The SELECT statement returns the data necessary for this month's order, and the INSERT
statement modifies the order_nbr, order_dt, and expected_ship_dt columns for the next five

months' orders. You are not obligated to insert all rows into the same table, nor must your
SELECT statement return only one row, making the multitable insert statement quite flexible
and powerful. The next example shows how data about a new salesperson can be entered into
both the employee and salesperson tables:

INSERT ALL

INTO employee (emp_id, fname, lname, dept_id, hire_date)

VALUES (eid, fnm, lnm, did, TRUNC(SYSDATE))

INTO salesperson (salesperson_id, name, primary_region_id)

VALUES (eid, fnm || ' ' || lnm, rid)

SELECT 1001 eid, 'JAMES' fnm, 'GOULD' lnm,

 d.dept_id did, r.region_id rid

FROM department d, region r

WHERE d.name = 'SALES' and r.name = 'Southeast US';

So far, you have seen how multiple rows can be inserted into the same table and how the same
rows can be inserted into multiple tables. The next, and final, example of multitable inserts
demonstrates how a conditional clause can be used to direct each row of data generated by the
SELECT statement into zero, one, or many tables:

INSERT FIRST

 WHEN order_dt < TO_DATE('2001-01-01', 'YYYY-MM-DD') THEN

 INTO cust_order_2000 (order_nbr, cust_nbr, sales_emp_id,

 sale_price, order_dt)

 VALUES (order_nbr, cust_nbr, sales_emp_id, sale_price, order_dt)

 WHEN order_dt < TO_DATE('2002-01-01', 'YYYY-MM-DD') THEN

 INTO cust_order_2001 (order_nbr, cust_nbr, sales_emp_id,

 sale_price, order_dt)

 VALUES (order_nbr, cust_nbr, sales_emp_id, sale_price, order_dt)

 WHEN order_dt < TO_DATE('2003-01-01', 'YYYY-MM-DD') THEN

 INTO cust_order_2002 (order_nbr, cust_nbr, sales_emp_id,

 sale_price, order_dt)

 VALUES (order_nbr, cust_nbr, sales_emp_id, sale_price, order_dt)

SELECT co.order_nbr, co.cust_nbr, co.sales_emp_id,

 co.sale_price, co.order_dt

FROM cust_order co

WHERE co.cancelled_dt IS NULL

 AND co.ship_dt IS NOT NULL;

This statement copies all customer orders prior to January 1, 2003, to one of three tables
depending on the value of the order_dt column. The keyword FIRST specifies that once one of

the conditions evaluates to TRUE, the statement should skip the remaining conditions and move
on to the next row. If you specify ALL instead of FIRST, all conditions will be evaluated, and
each row might be inserted into multiple tables if more than one condition evaluates to TRUE.

1.4.3 The DELETE Statement

The DELETE statement facilitates the removal of data from the database. Like the SELECT
statement, the DELETE statement contains a WHERE clause that specifies the conditions used to
identify rows to be deleted. If you neglect to add a WHERE clause to your DELETE statement, all
rows will be deleted from the target table. The following statement will delete all employees
with the last name of Hooper from the employee table:

DELETE FROM employee

WHERE lname = 'HOOPER';

In some cases, the values needed for one or more of the conditions in your WHERE clause exist
in another table. For example, your company may decide to outsource its accounting functions,
thereby necessitating the removal of all accounting personnel from the employee table:

DELETE FROM employee

WHERE dept_id =

 (SELECT dept_id

 FROM department

 WHERE name = 'ACCOUNTING');

The use of the SELECT statement in this example is known as a subquery and will be studied in
detail in Chapter 5.

In certain cases, you may want to restrict the number of rows that are to be deleted from a
table. For example, you may want to remove all data from a table, but you want to limit your
transactions to no more than 100,000 rows. If the cust_order table contained 527,365

records, you would need to find a way to restrict your DELETE statement to 100,000 rows and
then run the statement six times until all the data has been purged. The following example
demonstrates how the ROWNUM pseudocolumn may be used in a DELETE statement to achieve
the desired effect:

DELETE FROM cust_order

WHERE ROWNUM <= 100000;

COMMIT;

1.4.4 The UPDATE Statement

Modifications to existing data are handled by the UPDATE statement. Like the DELETE
statement, the UPDATE statement includes a WHERE clause to specify which rows should be
targeted. The following example shows how you might give a 10% raise to everyone making
less than $40,000:

UPDATE employee

SET salary = salary * 1.1

WHERE salary < 40000;

If you want to modify more than one column in the table, you have two choices: provide a set of
column/value pairs separated by commas, or provide a set of columns and a subquery. The
following two UPDATE statements modify the inactive_dt and inactive_ind columns in the
customer table for any customer who hasn't placed an order in the past year:

UPDATE customer

SET inactive_dt = SYSDATE, inactive_ind = 'Y'

WHERE last_order_dt < SYSDATE -- 365;

UPDATE customer

SET (inactive_dt, inactive_ind) =

 (SELECT SYSDATE, 'Y' FROM dual)

WHERE last_order_dt < SYSDATE -- 365;

The subquery in the second example is a bit forced, since it uses a query against the dual table

to build a result set containing two literals, but it should give you an idea of how you would use
a subquery in an UPDATE statement. In later chapters, you will see far more interesting uses for
subqueries.

dual is an Oracle-provided table containing exactly one row with one

column. It comes in handy when you need to construct a query that
returns exactly one row.

1.4.5 The MERGE Statement

There are certain situations, especially within Data Warehouse applications, where you may
want to either insert a new row into a table or update an existing row depending on whether or
not the data already exists in the table. For example, you may receive a nightly feed of parts
data that contains both parts that are known to the system along with parts just introduced by
your suppliers. If a part number exists in the part table, you will need to update the unit_cost
and status columns; otherwise, you will need to insert a new row.

While you could write code that reads each record from the feed, determines whether or not the
part number exists in the part table, and issues either an INSERT or UPDATE statement, you

could instead issue a single MERGE statement.[3] Assuming that your data feed has been loaded
into the part_stg staging table, your MERGE statement would look something like the

following:

[3] MERGE was introduced in Oracle9i.

MERGE INTO part p_dest

USING part_stg p_src

ON (p_dest.part_nbr = p_src.part_nbr)

WHEN MATCHED THEN UPDATE

 SET p_dest.unit_cost = p_src.unit_cost, p_dest.status = p_src.status

WHEN NOT MATCHED THEN INSERT (p_dest.part_nbr, p_dest.name,

 p_dest.supplier_id, p_dest.status, p_dest.inventory_qty,

 p_dest.unit_cost, p_dest.resupply_date)

 VALUES (p_src.part_nbr, p_src.name,

 p_src.supplier_id, p_src.status, 0, p_src.unit_cost, null);

This statement looks fairly complex, so here is a description of what it is doing:

Lines 1-3

For each row in the part_stg table, see if the part_nbr column exists in the part table.

Lines 4-5

If it does, then update the matching row in the part table using data from the part_stg

table.

Lines 6-10

Otherwise, insert a new row into the part table using the data from the part_stg table.

 < Day Day Up >

 < Day Day Up >

1.5 So Why Are There 17 More Chapters?

After reading this chapter, you might think that SQL looks pretty simple (at least the DML
portion). At a high level, it is fairly simple, and you now know enough about the language to go
write some code. However, you will learn over time that there are numerous ways to arrive at
the same end point, and some are more efficient and elegant than others. The true test of SQL
mastery is when you no longer have the desire to return to what you were working on the
previous year, rip out all the SQL, and recode it. For one of us, it took about nine years to reach
that point. Hopefully, this book will help you reach that point in far less time.

While you are reading the rest of the book, you might notice that the majority of examples use
SELECT statements, with the remainder somewhat evenly distributed across INSERT, UPDATE,
and DELETE statements. This disparity is not indicative of the relative importance of SELECT
statements over the other three DML statements; rather, SELECT statements are favored
because we can show a query's result set, which should help you to better understand the
query, and because many of the points being made using SELECT statements can be applied to
UPDATE and DELETE statements as well.

 < Day Day Up >

 < Day Day Up >

Chapter 2. The WHERE Clause
Whether you are querying, modifying, or deleting data, the WHERE clause is the mechanism for
identifying what data you want to work with. This chapter explores the role of the WHERE
clause in SQL statements, as well as the various options available when building a WHERE
clause.

 < Day Day Up >

 < Day Day Up >

2.1 Life Without WHERE

Before delving into the WHERE clause, let's imagine life without it. Say that you are interested
in doing some maintenance on the data in the part table. To inspect the data in the table, you

issue the following query:

SELECT part_nbr, name, supplier_id, status, inventory_qty

FROM part;

If the part table contains 10,000 items, the result set returned by the query would consist of

10,000 rows, each with 5 columns. You would then load the 10,000 rows into memory and
make your modifications.

Once you have made the required modifications to your data in memory, it is time to apply the
changes to the part table. Without the ability to specify the rows to modify, you have no choice

but to delete all rows in the table and re-insert all 10,000 rows:

DELETE FROM part;

INSERT INTO part (part_nbr, name, supplier_id, status, inventory_qty)

VALUES ('XY5-1002', 'Wonder Widget', 1, 'IN-STOCK', 1);

/* 9,999 more INSERTs on the wall, 9,999 more INSERTS . . . */

While this approach works in theory, it wreaks havoc on performance, concurrency (the ability
for more than one user to modify data simultaneously), and scalability (the ability to perform
predictably as load increases).

Now imagine that you want to modify data in the part table only for those parts supplied by
Acme Industries. Since the supplier's name is stored in the supplier table, you must include
both the part and supplier tables in the FROM clause:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s;

If 100 companies supply the 10,000 parts in the part table, this query will return 1,000,000
rows. Known as the Cartesian product, this number equates to every possible combination of all
rows from the two tables. As you sift through the million rows, you would keep only those
where the values of p.supplier_id and s.supplier_id are identical and where the s.name

column matches 'Acme Industries'. If Acme Industries supplies only 50 of the 10,000 parts in

your database, you will end up discarding 999,950 of the 1,000,000 rows returned by your
query.

 < Day Day Up >

 < Day Day Up >

2.2 WHERE to the Rescue

Hopefully, the scenarios in the previous section give you some insight into the utility of the
WHERE clause, including the ability to:

Filter out unwanted data from a query's result set.

Isolate one or more rows of a table for modification.

Conditionally join two or more data sets together.

To see how these things are accomplished, let's add a WHERE clause to the previous SELECT
statement, which strives to locate all parts supplied by Acme Industries. Here's the query with
the new WHERE clause:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name = 'Acme Industries';

The WHERE clause here is comprised of two parts, known as conditions, which are evaluated
separately. Conditions always evaluate to either TRUE or FALSE; if there are multiple conditions
in a WHERE clause, they all must evaluate to TRUE for a given row to be included in the result
set. Actually, that's a bit of an oversimplification. As you will see later, using the OR and NOT
operators allows the WHERE clause to evaluate to TRUE even if individual conditions evaluate to
FALSE.

For this example, a row created by combining data from the part and supplier tables will only
be included in the final result set if both tables share a common value for the supplier_id
column, and if the value of the name column in the supplier table matches 'Acme Industries'.

Any other permutation of data from the two tables would evaluate to FALSE and be discarded.

For this chapter only, we'll use the older style of join syntax in which you
specify join conditions in the WHERE clause. We do this to explore the full
functionality of the WHERE clause.

With the addition of the WHERE clause to the previous example, therefore, Oracle will take on
the work of discarding undesired rows from the result set, and only 50 rows would be returned
by the query, rather than 1,000,000. Now that you have retrieved the 50 rows of interest from
the database, you can begin the process of modifying the data. Keep in mind, however, that
with the WHERE clause at your disposal you will no longer need to delete and re-insert your
modified data; instead, you can use the UPDATE statement to modify specific rows based on the

part_nbr column, which is the unique identifier for the table:

UPDATE part

SET status = 'DISCONTINUED'

WHERE part_nbr = 'AI5-4557';

While this is certainly an improvement, you can do even better. If your intent is to modify the
status for all 50 parts supplied by Acme Industries, there is no need to execute a separate query
at all. Simply execute a single UPDATE statement that finds and modifies all 50 records:

UPDATE part

SET status = 'DISCONTINUED'

WHERE supplier_id =

 (SELECT supplier_id

 FROM supplier

 WHERE name = 'Acme Industries');

The WHERE clause in this statement consists of a single condition that equates the supplier_id
column to the value returned by the subquery against the supplier table. Subqueries are

covered extensively in Chapter 5, so don't worry if this looks a bit intimidating. The net result is
that the condition will be rewritten to use the value returned by the subquery, as in:

UPDATE part

SET status = 'DISCONTINUED'

WHERE supplier_id = 1;

When executed, the condition evaluates to TRUE for exactly 50 of the 10,000 rows in the part

table, and the status of those 50 rows changes to DISCONTINUED.

 < Day Day Up >

 < Day Day Up >

2.3 WHERE Clause Evaluation

Now that you have seen the WHERE clause in action, let's take a look at how it is evaluated. As
previously mentioned, the WHERE clause consists of one or more conditions that evaluate
independently to TRUE or FALSE. If your WHERE clause consists of multiple conditions, the
conditions are separated by the logical operators AND and OR. Depending on the outcome of
the individual conditions and the placement of these logical operators, Oracle will assign a final
value of TRUE or FALSE to each candidate row, thereby determining whether a row will be
included in the final result set.

Here's another look at the Acme Industries query:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name = 'Acme Industries';

The WHERE clause consists of two conditions separated by AND. Thus, a row will only be
included if both conditions evaluate to TRUE. Table 2-1 shows the possible scenarios when
conditions are replaced by their possible outcomes.

Table 2-1. Multiple-condition evaluation using AND

Intermediate result Final result

WHERE TRUE AND TRUE TRUE

WHERE FALSE AND FALSE FALSE

WHERE FALSE AND TRUE FALSE

WHERE TRUE AND FALSE FALSE

Using basic logic rules, you can see that the only combination of outcomes that results in a final
value of TRUE being assigned to a candidate row is where both conditions evaluate to TRUE.
Table 2-2 demonstrates the possible outcomes if the conditions had been separated by OR
rather than AND.

Table 2-2. Multiple-condition evaluation using OR

Intermediate result Final result

WHERE TRUE OR TRUE TRUE

WHERE FALSE OR FALSE FALSE

WHERE FALSE OR TRUE TRUE

WHERE TRUE OR FALSE TRUE

Next, let's spice the query up a bit by including parts supplied by either Acme Industries or
Tilton Enterprises:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND (s.name = 'Acme Industries'

 OR s.name = 'Tilton Enterprises');

There are now three separate conditions separated by AND and OR with parentheses
surrounding two of the conditions. Table 2-3 illustrates the possible outcomes.

Table 2-3. Multiple-condition evaluation using AND and OR

Intermediate result Final result

WHERE TRUE AND (TRUE OR FALSE) TRUE

WHERE TRUE AND (FALSE OR TRUE) TRUE

WHERE TRUE AND (FALSE OR FALSE) FALSE

WHERE FALSE AND (TRUE OR FALSE) FALSE

WHERE FALSE AND (FALSE OR TRUE) FALSE

WHERE FALSE AND (FALSE OR FALSE) FALSE

Since a particular part cannot be supplied by both Acme Industries and Tilton Enterprises, the
intermediate results TRUE AND (TRUE AND TRUE) and FALSE AND (TRUE AND TRUE) were not
included in Table 2-3.

To liven things up even more, here's an example using the NOT operator. The following query
returns data for parts supplied by anyone other than Acme Industries or Tilton Enterprises:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND NOT (s.name = 'Acme Industries'

 OR s.name = 'Tilton Enterprises');

Table 2-4 demonstrates how the addition of the NOT operator changes the outcome.

Table 2-4. Multiple-condition evaluation using AND, OR, and NOT

Intermediate result Final result

WHERE TRUE AND NOT (TRUE OR FALSE) FALSE

WHERE TRUE AND NOT (FALSE OR TRUE) FALSE

WHERE TRUE AND NOT (FALSE OR FALSE) TRUE

WHERE FALSE AND NOT (TRUE OR FALSE) FALSE

WHERE FALSE AND NOT (FALSE OR TRUE) FALSE

WHERE FALSE AND NOT (FALSE OR FALSE) FALSE

The use of the NOT operator in the previous example is a bit forced; later examples will
demonstrate more natural ways of expressing the same logic.

 < Day Day Up >

 < Day Day Up >

2.4 Conditions and Expressions

Now that you understand how conditions are grouped together and evaluated, it's time to take
a look at the different elements that make up a condition. A condition is comprised of one or
more expressions along with one or more operators. Examples of expressions include:

Numbers

Columns, such as s.supplier_id

Literals, such as `Acme Industries'

Functions, such as UPPER(`abcd')

Lists of simple expressions, such as (1, 2, 3)

Subqueries

Examples of operators include:

Arithmetic operators, such as +, -, *, and /

Comparison operators, such as =, <, >=, !=, LIKE, and IN

The following sections explore many of the common condition types that use different
combinations of the preceeding expression and operator types.

2.4.1 Equality/Inequality Conditions

Most of the conditions found in a WHERE clause will be equality conditions used to join data sets
together or to isolate specific values. You have already encountered these types of conditions
numerous times in previous examples, including:

s.supplier_id = p.supplier_id

s.name = 'Acme Industries'

supplier_id = (SELECT supplier_id

 FROM supplier

 WHERE name = 'Acme Industries')

All three conditions are comprised of a column expression followed by a comparison operator
(=) followed by another expression. The conditions differ in the type of expression on the right
side of the comparison operator. The first example compares one column to another, the second
example compares a column to a literal, and the third example compares a column to the value
returned by a subquery.

You can also build conditions that use the inequality comparison operator (!=). In a previous
example, the NOT operator was used to find information about parts supplied by every supplier
other than Acme Industries and Tilton Enterprises. Using the != operator rather than using NOT
makes the query easier to understand and removes the need for the OR operator:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name != 'Acme Industries'

 AND s.name != 'Tilton Enterprises';

While this is an improvement over the previous version, the next section shows an even cleaner
way to represent the same logic.

2.4.2 Membership Conditions

Along with determining whether two expressions are identical, it is often useful to determine
whether one expression can be found within a set of expressions. Using the IN operator, you
can build conditions that will evaluate to TRUE if a given expression exists in a set of
expressions:

s.name IN ('Acme Industries', 'Tilton Enterprises')

You may also use the NOT IN operator to determine whether an expression does not exist in a
set of expressions:

s.name NOT IN ('Acme Industries', 'Tilton Enterprises')

Most people prefer to use a single condition with IN or NOT IN instead of writing multiple
conditions using = or !=, so, with that in mind, here's one last stab at the Acme/Tilton query:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name NOT IN ('Acme Industries', 'Tilton Enterprises');

Along with prefabricated sets of expressions, subqueries may be employed to generate sets on
the fly. If a subquery returns exactly one row, you may use a comparison operator; if a
subquery returns more than one row, or if you're not sure whether the subquery might return
more than one row, use the IN operator. The following example updates all orders that contain
parts supplied by Eastern Importers:

UPDATE cust_order

SET sale_price = sale_price * 1.1

WHERE cancelled_dt IS NULL

 AND ship_dt IS NULL

 AND order_nbr IN

 (SELECT li.order_nbr

 FROM line_item li, part p, supplier s

 WHERE s.name = 'Eastern Importers'

 AND s.supplier_id = p.supplier_id

 AND p.part_nbr = li.part_nbr);

The subquery evaluates to a (potentially empty) set of order numbers. All orders whose order
number exists in that set are then modified by the UPDATE statement.

2.4.3 Range Conditions

If you are dealing with dates or numeric data, you may be interested in whether a value falls
within a specified range rather than whether it matches a specific value or exists in a finite set.
For such cases, you may use the BETWEEN operator, as in:

DELETE FROM cust_order

WHERE order_dt BETWEEN '01-JUL-2001' AND '31-JUL-2001';

To determine whether a value lies outside a specific range, you can use the NOT BETWEEN
operator:

SELECT order_nbr, cust_nbr, sale_price

FROM cust_order

WHERE sale_price NOT BETWEEN 1000 AND 10000;

When using BETWEEN, make sure the first value is the lesser of the two values provided. While
"BETWEEN 01-JUL-2001 AND 31-JUL-2001" and "BETWEEN 31-JUL-2001 AND 01-JUL-2001"

might seem logically equivalent, specifying the higher value first guarantees that your condition
will always evaluate to FALSE. Keep in mind that X BETWEEN Y AND Z is evaluated as X >= Y
AND X <= Z.

Ranges may also be specified using the operators <, >, <=, and >=, although doing so
requires writing two conditions rather than one. The previous query can also be expressed as:

SELECT order_nbr, cust_nbr, sale_price

FROM cust_order

WHERE sale_price < 1000 OR sale_price > 10000;

2.4.4 Matching Conditions

When dealing with character data, there are some situations where you are looking for an exact
string match, and others where a partial match is sufficient. For the latter case, you can use the
LIKE operator along with one or more pattern-matching characters, as in:

DELETE FROM part

WHERE part_nbr LIKE 'ABC%';

The pattern-matching character % matches strings of any length, so all of the following part
numbers would be deleted: 'ABC', 'ABC-123', 'ABC9999999'. If you need finer control, you can
use the underscore (_) pattern-matching character to match single characters, as in:

DELETE FROM part

WHERE part_nbr LIKE '_B_';

For this pattern, any part number composed of exactly three characters with a B in the middle
would be deleted. Both pattern-matching characters may be utilized in numerous combinations
to find the desired data. Additionally, the NOT LIKE operator may be employed to find strings
that don't match a specified pattern. The following example deletes all parts whose name does
not contain a Z in the third position followed later by the string "T1J":

DELETE FROM part

WHERE part_nbr NOT LIKE '_ _Z%T1J%';

Oracle provides a slew of built-in functions for handling character data that can be used to build
matching conditions. For example, the condition part_nbr LIKE 'ABC%' could be rewritten
using the SUBSTR function as SUBSTR(part_nbr, 1, 3) = 'ABC'. For definitions and examples

for all of Oracle's built-in functions, see Oracle in a Nutshell (O'Reilly).

You may come across data that include the characters % and _ and need to include them in your
patterns. For example, you might have a column called instructions in the cust_order table

that may have a value such as:

Cancel order if more than 25% of parts are unavailable

If you want to find strings containing the % character, you will need to escape the % character

within your pattern so that it isn't treated as a wildcard. To do so, you will need to use the
ESCAPE clause to let Oracle know which character you have chosen as the escape character:

SELECT instructions

FROM cust_order

WHERE instructions LIKE '%\%%' ESCAPE '\';

This query would return all rows where the instructions column contains the % character

anywhere in the string.

2.4.5 Regular Expressions

Beginning with the Oracle Database 10g release, you can use regular expressions within your
conditions. Regular expressions allow for much more complex pattern matching without the
need for multiple conditions. For example, if you wanted to find all customers whose name
begins with W, ends in "ies" and does not include L anywhere in the string, you could use
multiple conditions with the LIKE and NOT LIKE operators:

SELECT name

FROM customer

WHERE name LIKE 'W%ies'

 AND name NOT LIKE '%L%';

NAME

Worcester Technologies

Wallace Industries

You can achieve the same result more succinctly, in a single expression, with the new
REGEXP_LIKE function:

SELECT name

FROM customer

WHERE REGEXP_LIKE(name, '^W([^L]*)ies$');

NAME

Worcester Technologies

Wallace Industries

If that second argument to REGEXP_LIKE looks like gibberish, fear not: we cover regular
expressions in detail in Chapter 17.

2.4.6 Handling NULL

The NULL expression represents the absence of a value. If, when entering an order into the
database, you are uncertain when the order will be shipped, it is better to leave the ship date
undefined than to fabricate a value. Until the ship date has been determined, therefore, it is
best to leave the ship_dt column NULL. NULL is also useful for cases where data is not

applicable. For example, a cancelled order's shipping date is no longer applicable and should be
set to NULL.

When working with NULL, the concept of equality does not apply; a column may be NULL, but it
will never equal NULL. Therefore, you will need to use the special operator IS NULL when
looking for NULL data, as in:

UPDATE cust_order

SET expected_ship_dt = SYSDATE + 1

WHERE ship_dt IS NULL;

In this example, all orders whose shipping date hasn't been specified will have their expected
shipping date set to tomorrow.

You may also use the IS NOT NULL operator to locate non-NULL data:

UPDATE cust_order

SET expected_ship_dt = NULL

WHERE ship_dt IS NOT NULL;

This example sets the expected shipping date to NULL for all orders that have already shipped.
Notice that the SET clause uses the equality operator (=) with NULL, whereas the WHERE clause
uses the IS NOT NULL operator. The equality operator is used to set a column to NULL, whereas
the IS NOT NULL operator is used to evaluate whether a column is NULL. A great many
mistakes might have been avoided had the designers of SQL chosen a special operator to be
utilized when setting a column to NULL (i.e., SET expected_ship_dt TO NULL), but this is not

the case. To make matters worse, Oracle doesn't complain if you mistakenly use the equality
operator when evaluating for NULL. The following query will parse and execute but will never
return rows:

SELECT order_nbr, cust_nbr, sale_price, order_dt

FROM cust_order

WHERE ship_dt = NULL;

Hopefully, you would quickly recognize that the previous query never returns data and replace
the equality operator with IS NULL. However, there is a more subtle mistake involving NULL
that is harder to spot. Say you are looking for all employees who are not managed by Marion
Blake, whose employee ID is 7698. Your first instinct may be to run the following query:

SELECT fname, lname, manager_emp_id

FROM employee

WHERE manager_emp_id != 7698;

FNAME LNAME MANAGER_EMP_ID

-------------------- -------------------- --------------

JOHN SMITH 7902

TERRY JONES 7839

MARION BLAKE 7839

CAROL CLARK 7839

DONALD SCOTT 7566

DIANE ADAMS 7788

JENNIFER FORD 7566

BARBARA MILLER 7782

While this query returns rows, it leaves out those employees who are top-level managers and,
thus, are not managed by anyone. Since NULL is neither equal nor not equal to 7698, this set of
employees is absent from the result set. To ensure that all employees are considered, you will
need to explicitly handle NULL, as in:

SELECT fname, lname, manager_emp_id

FROM employee

WHERE manager_emp_id IS NULL OR manager_emp_id != 7698;

FNAME LNAME MANAGER_EMP_ID

-------------------- -------------------- --------------

JOHN SMITH 7902

TERRY JONES 7839

MARION BLAKE 7839

CAROL CLARK 7839

DONALD SCOTT 7566

FRANCIS KING

DIANE ADAMS 7788

JENNIFER FORD 7566

BARBARA MILLER 7782

Including two conditions for every nullable column in your WHERE clause can get a bit tiresome.
Instead, you can use Oracle's built-in function NVL, which substitutes a specified value for
columns that are NULL, as in:

SELECT fname, lname, manager_emp_id

FROM employee

WHERE NVL(manager_emp_id, -999) != 7698;

FNAME LNAME MANAGER_EMP_ID

-------------------- -------------------- --------------

JOHN SMITH 7902

TERRY JONES 7839

MARION BLAKE 7839

CAROL CLARK 7839

DONALD SCOTT 7566

FRANCIS KING

DIANE ADAMS 7788

JENNIFER FORD 7566

BARBARA MILLER 7782

In this example, the value -999 is substituted for all NULL values, which, since -999 is never
equal to 7698, guarantees that all rows whose manager_emp_id column is NULL will be included
in the result set. Thus, all employees whose manager_emp_id column is NULL or is not NULL and

has a value other than 7698 will be retrieved by the query.

2.4.7 Placement of Join Conditions

Throughout this chapter, all examples that join multiple tables have had their join conditions
included in the WHERE clause along with various filter conditions. Beginning with the Oracle9i
release, you have the option of using the ANSI join syntax, which specifies that all join
conditions be included in the FROM clause, as illustrated by the following:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p INNER JOIN supplier s

ON s.supplier_id = p.supplier_id

WHERE s.name NOT IN ('Acme Industries', 'Tilton Enterprises');

As you can see, the join condition s.supplier_id = p.supplier_id has been moved to the ON
subclause, and the FROM clause specifies that the part and supplier tables be joined via an

inner join. This syntax may look a bit strange at first, but it greatly improves the readability and
maintainability of your queries. Therefore, for the remainder of this book, all examples will
employ the ANSI join syntax.

 < Day Day Up >

 < Day Day Up >

2.5 WHERE to Go from Here

This chapter has introduced the role of the WHERE clause in different types of SQL statements
as well as the various components used to build a WHERE clause. Because the WHERE clause
plays such an important role in many SQL statements, however, the topic is far from exhausted.
Additional coverage of WHERE clause topics may be found in:

Chapter 3, in which various flavors of join conditions are studied in detail

Chapter 5, which probes the different types of subqueries along with the appropriate
operators for evaluating their results

Chapter 6, in which various methods of handling date/time data are explored

Chapter 15, which explores certainaspects of the WHERE clause from the standpoint of
performance andefficiency

Additionally, here are a few tips to help you make the most of your WHERE clauses:

Check your join conditions carefully. Make sure that each data set in the FROM clause
is properly joined. Keep in mind that some joins require multiple conditions. See Chapter 3
for more information.

Avoid unnecessary joins. Just because two data sets in your FROM clause contain the
same column does not necessitate a join condition be added to your FROM/WHERE clause.
In some designs, redundant data has been propagated to multiple tables through a
process called denormalization. Take the time to understand the database design, and ask
your DBA or database designer for a current data model.

Use parentheses. Oracle maintains both operator precedence and condition precedence,
meaning there are clearly defined rules for the order in which things will be evaluated, but
the safest route for you and for those who will later maintain your code is to dictate
evaluation order using parentheses. For operators, specifying (5 * p.inventory_qty) +
2 rather than 5 * p.inventory_qty + 2 makes the order in which the operations should

be performed clear. For conditions, use parentheses any time the OR operator is
employed.

Use consistent indentation. For example, if the previous line contains a left parenthesis
without a matching right parenthesis, indent the current line to show that it is a
continuation of the previous line.

Handle NULLs properly. After writing your WHERE clause, inspect each condition with
respect to its ability to properly handle NULL values. Take the time to understand the table
definitions in your database so that you know which columns allow NULLs.

Pick up introductory books on logic and set theory at your local library. While
understanding these two topics won't necessarily get you invited to more cocktail parties,
it will certainly make you a better SQL programmer.

 < Day Day Up >

 < Day Day Up >

Chapter 3. Joins
Most things in life are not self-contained. There is not one shop where you will find all your
requirements. This is valid for database tables as well. Quite often, you need information from
more than one table. The SQL construct that combines data from two or more tables is called a
join. This chapter takes you into the details of joins, their types, and their usage.

 < Day Day Up >

 < Day Day Up >

3.1 What Is a Join Query?

A join query extracts information from two or more tables or views. A join query differs from a
regular query in at least the following two ways:

The FROM clause of a join query refers to two or more tables or views.

A condition is specified in the join query (known as join condition) that relates the rows of
one table to the rows of another table.

The following example illustrates a simple join query:

SELECT department.location_id, department.name, location.regional_group

FROM department JOIN location

ON department.location_id = location.location_id;

LOCATION_ID NAME REGIONAL_GROUP

----------- -------------------- ---------------

 122 ACCOUNTING NEW YORK

 124 RESEARCH DALLAS

 167 OPERATIONS BOSTON

This example queries two tables. The department name is stored in the department table,
whereas each department's region is stored in the location table. Notice the JOIN keyword

between the two tables names in the FROM clause. The SELECT list may include columns from
any of the tables specified in the FROM clause. The clause starting with the keyword ON
specifies the join condition.

The syntax shown in the preceding example is the standard SQL join
syntax supported from Oracle9i onwards. The Appendix A describes an
older syntax that you should avoid using, but will often encounter in older
code.

 < Day Day Up >

 < Day Day Up >

3.2 Join Conditions

Usually, when you write a join query, you specify a condition that conveys a relationship
between the tables specified in the FROM clause. This condition is referred to as the join
condition. The join condition specifies how the rows from one table will be combined with the
rows of another table. This join condition is usually applied to the foreign key columns of one
table and the primary or unique key columns of another table. In the previous example, the ON
clause specifies the join condition by which the location_id column of the department table is
equated with the location_id column of the location table:

ON department.location_id = location.location_id;

To perform the join, Oracle picks up one combination of rows from the two tables, and checks to
see whether the join condition is true. If the join condition is true, Oracle includes this
combination of rows in the result set. This process is repeated for all combinations of rows from
the two tables. Some of the things that you should know about join conditions are discussed in
the following list:

The columns specified in a join condition need not be specified in the SELECT list. In the
following example, the join condition involves the location_id column from the
department and location tables; however, the location_id column is not selected:
SELECT d.dept_id, d.name, l.regional_group

FROM department d JOIN location l

ON d.location_id = l.location_id;

Table Aliases

It is a common practice to use table aliases when selecting data from multiple
tables. Whenever there is an ambiguity in the column names, you must use a table
alias (or the table name) to qualify any ambiguous column name. For example:

SELECT d.dept_id, d.name, l.regional_group

FROM department d JOIN location l

ON d.location_id = l.location_id;

In this example, the column name location_id appears in both the tables.
Therefore, the table aliases d and l are used in the ON clause to ask Oracle to
equate the location_id column from the department table with the location_id
column from the location table. The table aliases have been used with the columns

in the SELECT clause as well, even though those column names are unambiguous. It

is a good practice to use table aliases everywhere in a query if you are using them
at all.

Usually a join condition is specified on the foreign key columns of one table and the
primary key or unique key columns of another table. However, you can join on other
columns as well. A join condition involves columns that relate two tables in some logical
way.

A join condition may involve more than one column. This is usually the case when a
foreign key constraint consists of multiple columns.

The total number of join conditions in a query is always equal to the total number of tables
less one.

The data types of the columns involved in a join condition need to be compatible, but not
necessarily the same. Oracle performs implicit data type conversion between the join
columns, if required.

It is not necessary that a join condition involve the equal-to (=) operator. A join condition
may contain other operators as well. Joins involving other operators are discussed later in
this chapter in Section 3.3.4.

3.2.1 The USING Clause

In this chapter's first example, the join condition was specified in the ON clause, which
contained an expression defining the relationship between the two tables. Specifying the join
condition can be simplified if the following conditions hold true:

The join depends on an equality condition between two columns, or between sets of two
columns, to relate the rows from the two tables.

The names of the join columns are identical in both the tables.

If these two conditions are satisfied, you can apply the USING clause to specify the join
condition. Earlier, you saw the following example of a join query:

SELECT department.location_id, department.name, location.regional_group

FROM department JOIN location

ON department.location_id = location.location_id;

The column involved in the join condition (location_id) is named identically in both the tables,

and its value must be the same in both tables. Therefore, this join query can be rewritten as:

SELECT location_id, department.name, location.regional_group

FROM department JOIN location

USING (location_id);

The USING clause affects the semantics of the SELECT clause. The USING clause tells Oracle
that the tables in the join have identical names for the column in the USING clause. Oracle then
merges those two columns, and recognizes only one such column with the given name. If you
include a join column in the SELECT list, Oracle doesn't allow you to qualify that column with a
table name (or table alias). If you attempt to qualify a join column name in the SELECT list
using either an alias or a table name, you will get an error:

SELECT department.location_id, department.name, location.regional_group

FROM department JOIN location

USING (location_id);

SELECT department.location_id, department.name, location.regional_group

 *

ERROR at line 1:

ORA-25154: column part of USING clause cannot have qualifier

This is why our USING query did not alias the location_id column in the SELECT list.

3.2.2 Conditions Involving Multiple Columns

Quite often you will encounter a join condition that involves multiple columns from each table. If
a join condition consists of multiple columns, you need to specify all the predicates in the ON
clause. For example, if tables A and B are joined based on columns c1 and c2, the join condition
would be:

SELECT . . .

FROM A JOIN B

ON A.c1 = B.c1 AND A.c2 = B.c2;

If the column names are identical in the two tables, you can use the USING clause and specify
all the columns in one USING clause, separated by commas. The previous join condition can be
rewritten as:

SELECT . . .

FROM A JOIN B

USING (c1, c2);

3.2.3 The Natural Join Clause

A natural join between two tables relates the rows from the two tables based on all pairs of
columns, one column from each table, with matching names. You don't specify a join condition.
The following example illustrates a natural join:

SELECT department.name, location.regional_group

FROM department NATURAL JOIN location;

NAME REGIONAL_GROUP

-------------------- ---------------

ACCOUNTING NEW YORK

RESEARCH DALLAS

OPERATIONS BOSTON

In this example, the two tables—department and location—have the same name for the
column location_id. Therefore, the join takes place by equating the location_id from the
department table to the location_id from the location table. The preceding query is

equivalent to the following queries:

SELECT department.name, location.regional_group

FROM department JOIN location

ON department.location_id = location.location_id;

SELECT department.name, location.regional_group

FROM department JOIN location

USING (location_id);

While using a natural join, you are not allowed to qualify the common columns with table
names or aliases (similar to the effect of the USING clause). For example, if you want to include
the location_id column in the SELECT list, and you specify department.location_id, you will

get an error:

SELECT department.location_id, department.name, location.regional_group

FROM department NATURAL JOIN location;

SELECT department.location_id, department.name, location.regional_group

 *

ERROR at line 1:

ORA-25155: column used in NATURAL join cannot have qualifier

You need to remove the department qualifier so the location_id column can include it in the

SELECT list:

SELECT location_id, department.name, location.regional_group

FROM department NATURAL JOIN location;

LOCATION_ID NAME REGIONAL_GROUP

----------- -------------------- ---------------

 122 ACCOUNTING NEW YORK

 124 RESEARCH DALLAS

 167 OPERATIONS BOSTON

Implicit specification of join conditions can have some unwanted side affects. Let's take the
example of join between the supplier and part tables to illustrate this:

DESC supplier

 Name Null? Type

 --- -------- --------------

 SUPPLIER_ID NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(30)

DESC part

 Name Null? Type

 --- -------- --------------

 PART_NBR NOT NULL VARCHAR2(20)

 NAME NOT NULL VARCHAR2(30)

 SUPPLIER_ID NOT NULL NUMBER(5)

 STATUS NOT NULL VARCHAR2(20)

 INVENTORY_QTY NUMBER(6)

 UNIT_COST NUMBER(8,2)

 RESUPPLY_DATE DATE

An inner join between these two tables, generates the following result:

SELECT supplier.supplier_id, part.part_nbr

FROM supplier JOIN part

ON supplier.supplier_id = part.supplier_id;

SUPPLIER_ID PART_NBR

----------- -----------

 1 AI5-4557

 2 TZ50828

 3 EI-T5-001

The following example illustrates a natural join between these two tables:

SELECT supplier_id, part.part_nbr

FROM supplier NATURAL JOIN part;

no rows selected

No output. What happened? The reason lies in the fact that, aside from supplier_id, these two
tables have another pair of columns with a common name. That column is name. So, when you
ask for a natural join between the supplier and the part tables, the join takes place not only
by equating the supplier_id column of the two tables, but the name column from the two

tables is equated as well. Since, no supplier name is the same as a part name from that same
supplier, no rows are returned by the query. The equivalent inner join of the preceding natural
join is:

SELECT supplier.supplier_id, part.part_nbr

FROM supplier JOIN part

ON supplier.supplier_id = part.supplier_id

AND supplier.name = part.name;

or, expressed via the USING clause:

SELECT supplier_id, part.part_nbr

FROM supplier JOIN part

USING (supplier_id, name);

By looking at the inner join queries we've just presented, you can very well understand why the
natural join between the supplier and part tables didn't return any rows. You must be aware

of this potential for error when using natural joins. To avoid such problems, we recommend
explicitly specifying join conditions, using either the ON or the USING clauses.

 < Day Day Up >

 < Day Day Up >

3.3 Types of Joins

There are several types of joins to be aware of:

Cross joins

Cross joins are joins without a join condition. Each row of one table is combined with each
row of another table. The result is referred to as a Cartesian product.

Inner joins

Inner joins are the regular joins. An inner join returns the rows that satisfy the join
condition. Each row returned by an inner join contains data from all the tables involved in
the join.

Outer joins

Outer joins are an extension to inner joins. An outer join returns the rows that satisfy the
join condition and also the rows from one table for which no corresponding rows (i.e.,
that satisfy the join condition) exist in the other table.

Equi- and non-equi-joins

An equi-join is a join where the join condition uses the equal to (=) operator to relate the
rows of two tables. When a join condition uses any other operator to relate the rows of
two tables, the join is called a non-equi-join.

Self joins

A self join is a join of a table to itself.

Partition outer joins

A new type of join introduced in Oracle Database 10g that is slated to be part of the next
ANSI/ISO SQL standard after SQL:2003. A partition outer join divides your result set into
groups, or partitions, and repeats the same outer join for each of these groups. Such joins
are extremely handy for generating missing rows.

The following sections discuss each of these joins in detail, and with examples.

3.3.1 Cross Joins/Cartesian Products

If you don't specify a join condition when joining two tables, Oracle combines each row from the
first table with each row from the second table. This type of result set is called a cross join or a
Cartesian product; either term is acceptable. The number of rows in a cross join is the product
of the number of rows in each table. Here's an example of a cross join:

SELECT e.lname, d.name

FROM employee e CROSS JOIN department d;

LNAME NAME

---------- --------------

SMITH ACCOUNTING

ALLEN ACCOUNTING

WARD ACCOUNTING

JONES ACCOUNTING

MARTIN ACCOUNTING

BLAKE ACCOUNTING

 . . .

 . . .

 . . .

SCOTT OPERATIONS

KING OPERATIONS

TURNER OPERATIONS

ADAMS OPERATIONS

JAMES OPERATIONS

FORD OPERATIONS

MILLER OPERATIONS

56 rows selected.

Since the query didn't specify a join condition, each row from the employee table is combined

with each row from the department table. Needless to say, this result set is of little use. More

often than not, a cross join produces a result set containing misleading rows. Therefore, unless
you are sure that you want a Cartesian product, don't use a cross join.

Notice the use of the keyword CROSS before the JOIN keyword in the previous example. If you
omit the CROSS keyword, and don't specify a join condition, Oracle will throw an error, because
it thinks that you are attempting a regular join and have inadvertently omitted the join
condition. For example:

SELECT e.lname, d.name

FROM employee e JOIN department d;

FROM employee e JOIN department d

 *

ERROR at line 2:

ORA-00905: missing keyword

What happens when you specify the CROSS keyword as well as a join condition through an ON
or USING clause? Oracle rejects your query with an error, and rightly so, because cross joins
are joins without join conditions. For example:

SELECT e.lname, d.name

FROM employee e CROSS JOIN department d

ON e.dept_id = d.dept_id;

ON e.dept_id = d.dept_id

*

ERROR at line 3:

ORA-00933: SQL command not properly ended

Be aware that it's easily possible to inadvertently specify a cross join when using the old join
syntax described in the Appendix A. Using that syntax, a cross join occurs when you list two
tables in the FROM clause separated by commas, and you forget to write a join condition into
the query's WHERE clause.

3.3.2 Inner Joins

Inner joins are the most commonly used joins. When people refer simply to a "join," they most
likely mean an "inner join." An inner join relates the rows from the source tables based on the
join condition, and returns the rows that satisfy it. For example, to list the name and
department for each employee, you would use the following SQL statement:

SELECT e.lname, d.name

FROM employee e JOIN department d

ON e.dept_id = d.dept_id;

LNAME NAME

-------------------- --------------------

CLARK ACCOUNTING

KING ACCOUNTING

MILLER ACCOUNTING

SMITH RESEARCH

ADAMS RESEARCH

FORD RESEARCH

SCOTT RESEARCH

JONES RESEARCH

ALLEN SALES

BLAKE SALES

MARTIN SALES

JAMES SALES

TURNER SALES

WARD SALES

14 rows selected.

In this example, each row of the employee table is combined with each row of the department
table, and if the combination satisfies the join condition (dept_id in the employee table
matches the dept_id in the department table), then it is included in the result set.

The JOIN keyword, unless prefixed with another keyword, means an inner join. Optionally, you
can use the INNER keyword before the JOIN keyword to explicitly indicate an inner join, as in
the following example:

SELECT e.lname, d.name

FROM employee e INNER JOIN department d

ON e.dept_id = d.dept_id;

Let's look at another example to go a bit deeper in the concept behind an inner join:

SELECT * FROM department;

 DEPT_ID NAME LOCATION_ID

---------- -------------------- -----------

 10 ACCOUNTING 122

 20 RESEARCH 124

 30 SALES

 40 OPERATIONS 167

SELECT * FROM location;

LOCATION_ID REGIONAL_GROUP

----------- --------------------

 122 NEW YORK

 124 DALLAS

 123 CHICAGO

 167 BOSTON

 144 SAN FRANCISCO

SELECT d.name, l.regional_group

FROM department d JOIN location l

ON d.location_id = l.location_id;

NAME REGIONAL_GROUP

-------------------- --------------------

ACCOUNTING NEW YORK

RESEARCH DALLAS

OPERATIONS BOSTON

Our department table has four rows, and our location table has five rows. However, the inner

join returns only three rows. The inner join returns only those rows from the two tables that
satisfy the join condition. What this means, with respect to this example, is that only those
departments that have a corresponding location, and only those locations that have a
corresponding department, are returned by the inner join query. The "SALES" department
doesn't have a location_id, and therefore has no corresponding entry in the location table,

so it is not included in the result set of the inner join. Similarly, the locations "CHICAGO" and
"SAN FRANCISCO" don't have corresponding entries in the department table, and are not

included in the result set of the inner join.

The concept of an inner join is easier to understand in terms of the
Cartesian product (or cross join). While performing a join of the
department and location tables, a Cartesian product is first formed

(conceptually, Oracle doesn't physically materialize this Cartesian
product), and then the join conditions in the ON (or USING) clause restrict
the results to only those rows for which the location_id values match.

The most important concept to understand about joins, and especially about inner joins, is that
a join is all about matching rows from one table with corresponding rows in another table.

3.3.3 Outer Joins

Sometimes, while performing a join between two tables, you need to return all the rows from
one table even when there are no corresponding rows in the other table. For example, you may
want to see all the departments even if they are not related to any particular location. Oracle
provides a special type of join to include rows from one table that don't have matching rows
from the other table. This type of join is known as an outer join.

The syntax of an outer join is:

FROM table1 { LEFT | RIGHT | FULL } [OUTER] JOIN table2

The syntax elements are:

table1, table2

Specifies the tables between which you are performing the outer join.

LEFT

Specifies that the results be generated using all rows from table1. For those rows in

table1 that don't have corresponding rows in table2, NULLs are returned in the result

set for the table2 columns.

RIGHT

Specifies that the results be generated using all rows from table2. For those rows in

table2 that don't have corresponding rows in table1, NULLs are returned in the result

set for the table1 columns.

FULL

Specifies that the results be generated using all rows from table1 and table2. For those

rows in table1 that don't have corresponding rows in table2, NULLs are returned in the

result set for the table2 columns. Additionally, for those rows in table2 that don't have

corresponding rows in table1, NULLs are returned in the result set for the table1

columns.

OUTER

Specifies that you are performing an OUTER join. This keyword is optional. If you use
LEFT, RIGHT, or FULL, Oracle automatically assumes an outer join. The OUTER keyword is
for completeness' sake, and complements the INNER keyword.

3.3.3.1 Left outer joins

To list all departments even if they are not related to any particular location, you can perform a
LEFT OUTER JOIN between the department and the location tables. For example:

SELECT d.dept_id, d.name, l.regional_group

FROM department d LEFT OUTER JOIN location l

ON d.location_id = l.location_id;

 DEPT_ID NAME REGIONAL_GROUP

---------- -------------------- --------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES

 40 OPERATIONS BOSTON

This query lists all the rows from the department table together with their corresponding

locations from the location table. For the rows from department with no corresponding rows
in location, NULLs are returned for the l.regional_group column in the result set.

3.3.3.2 Right outer joins

Likewise, to list all the locations even if they are not related to any particular department, you
can perform a RIGHT OUTER JOIN between the location and the department tables. For

example:

SELECT d.dept_id, d.name, l.regional_group

FROM department d RIGHT OUTER JOIN location l

ON d.location_id = l.location_id;

 DEPT_ID NAME REGIONAL_GROUP

---------- -------------------- ---------------

 10 ACCOUNTING NEW YORK

 CHICAGO

 20 RESEARCH DALLAS

 SAN FRANCISCO

 40 OPERATIONS BOSTON

This query lists all the rows from the location table, and their corresponding departments from
the department table. For the rows from location that don't have corresponding rows in
department, NULLs are returned for the d.dept_id and d.name columns in the result set.

The LEFT and RIGHT keywords in an outer join query are relative to the position of the tables in
the FROM clause. The same result can be achieved using either a LEFT OUTER JOIN or a RIGHT
OUTER JOIN, by switching the position of the tables. For example, the following two queries are
equivalent:

SELECT d.dept_id, d.name, l.regional_group

FROM department d LEFT OUTER JOIN location l

ON d.location_id = l.location_id;

SELECT d.dept_id, d.name, l.regional_group

FROM location l RIGHT OUTER JOIN department d

ON d.location_id = l.location_id;

In each case, the directional word, either LEFT or RIGHT, points toward the anchor table, the
table that is required. The other table is then the optional table in the join.

3.3.3.3 Full outer joins

Ocassionally, you may need the effect of an outer join in both directions, which you can think of
as a combination of LEFT and RIGHT outer joins. For example, you may need to list all the
departments (with or without a location), as well as all the locations (with or without a
department). Use a FULL OUTER JOIN to generate such a result set:

SELECT d.dept_id, d.name, l.regional_group

FROM department d FULL OUTER JOIN location l

ON d.location_id = l.location_id;

 DEPT_ID NAME REGIONAL_GROUP

---------- -------------------- ----------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES

 40 OPERATIONS BOSTON

 CHICAGO

 SAN FRANCISCO

6 rows selected.

This query performs a FULL OUTER JOIN between the two tables, and lists:

All the rows that satisfy the join condition

The rows in the department table that don't have a corresponding location

The rows in the location table that don't have a corresponding department

A full outer join is bidirectional in the sense that the result is the same irrespective of the
position of the tables in the FROM clause. In mathematical terms, you would consider the FULL
OUTER JOIN operator to be "commutative."

3.3.4 Equi-Joins Versus Non-Equi-Joins

The join condition determines whether a join is an equi-join or a non-equi-join. When a join
condition relates two tables by equating the columns from the tables, it is an equi-join. When a
join condition relates two tables by an operator other than equality, it is a non-equi-join. A
query may contain equi-joins as well as non-equi-joins.

Equi-joins are the most common join type. For example, if you want to list all the parts supplied
by all the suppliers, you can join the supplier table with the part table by equating the
supplier_id from one table to that of the other:

SELECT s.name supplier_name, p.name part_name

FROM supplier s JOIN part p

ON s.supplier_id = p.supplier_id;

SUPPLIER_NAME PART_NAME

------------------------------ -----------------------

Acme Industries Acme Part AI5-4557

Tilton Enterprises Tilton Part TZ50828

Eastern Importers Eastern Part EI-T5-001

However, there are situations in which you need non-equi-joins to get the required information.
For example, if you want to list the inventory_class of each part, and the inventory_class

is based on a range of unit costs, you need to execute the following query:

SELECT p.name part_name, c.inv_class inv_class

FROM part p JOIN inventory_class c

ON p.unit_cost BETWEEN c.low_cost AND c.high_cost;

PART_NAME INV

------------------------------ ---

Acme Part AI5-4557 A

Tilton Part TZ50828 B

Eastern Part EI-T5-001 B

The use of the BETWEEN operator to relate the unit_cost column from the part table to the
low_cost and high_cost columns of the inventory_class table makes this query a non-equi-
join. (You can achieve the same result by using the combination of >= and <= operators instead

of BETWEEN. Try this as an exercise.)

3.3.5 Self Joins

There are situations in which one row of a table is related to another row of the same table. The
employee table is a good example. The manager of one employee is also an employee. The
rows for both are in the same employee table. This relationship is indicated in the
manager_emp_id column:

CREATE TABLE employee (

emp_id NUMBER (5) NOT NULL PRIMARY KEY,

fname VARCHAR2 (20),

lname VARCHAR2 (20),

dept_id NUMBER (5),

manager_emp_id NUMBER (5) REFERENCES employee(emp_id),

salary NUMBER (5),

hire_date DATE,

job_id NUMBER (3));

To get information about an employee and his manager, you have to join the employee table
with itself. You can do that by specifying the employee table twice in the FROM clause and using
two different table aliases, thereby treating employee as if it were two separate tables. The

following example lists the name of each employee and his manager:

SELECT e.lname employee, m.lname manager

FROM employee e JOIN employee m

ON e.manager_emp_id = m.emp_id;

EMPLOYEE MANAGER

-------------------- --------------------

SCOTT JONES

FORD JONES

ALLEN BLAKE

WARD BLAKE

JAMES BLAKE

TURNER BLAKE

MARTIN BLAKE

MILLER CLARK

ADAMS SCOTT

JONES KING

CLARK KING

BLAKE KING

SMITH FORD

13 rows selected.

Note that the employee table is used twice in the FROM clause with two different aliases. Also
note the join condition that reads as: "Where the employee's manager_emp_id is the same as
his manager's emp_id."

3.3.5.1 Self outer joins

Even though the employee table has 14 rows, the previous query returned only 13 rows. This is
because there is an employee without a manager_emp_id. Oracle excludes that employee's row

from the result set while performing the self inner join. To include employees without
manager_emp_id values, in other words, without managers, you need an outer join:

SELECT e.lname employee, m.lname manager

FROM employee e LEFT OUTER JOIN employee m

ON e.manager_emp_id = m.emp_id;

EMPLOYEE MANAGER

-------------------- --------------------

FORD JONES

SCOTT JONES

JAMES BLAKE

TURNER BLAKE

MARTIN BLAKE

WARD BLAKE

ALLEN BLAKE

MILLER CLARK

ADAMS SCOTT

CLARK KING

BLAKE KING

JONES KING

SMITH FORD

KING

14 rows selected.

Be careful when using a LEFT or RIGHT outer join to join a table to itself. If you choose the
wrong direction, you may get an absurd result set that makes no sense. In this case, we want to
list all the employees irrespective of whether they have a manager or not. Therefore, the
employee table we need to make optional is the one from which we are drawing manager

names.

3.3.5.2 Self non-equi-joins

The previous example showed self equi-joins. However, there are situations when you need to
perform self non-equi-joins. We will illustrate this by an example. Let's assume that you are in
charge of organizing interdepartmental basketball competition within your organization. It is
your responsibility to draw the teams and schedule the competition. You query the department

table and get the following result:

SELECT name FROM department;

NAME

ACCOUNTING

RESEARCH

SALES

OPERATIONS

You find that there are four departments, and to make a fair competition, you decide that each
department plays against the other three departments once, and at the end, the department
with the maximum wins is declared the winner. You have been to an Oracle SQL training class
recently, and decide to apply the concept of self join you learned there. You execute the

following query:

SELECT d1.name team1, d2.name team2

FROM department d1 CROSS JOIN department d2;

TEAM1 TEAM2

-------------------- --------------------

ACCOUNTING ACCOUNTING

ACCOUNTING RESEARCH

ACCOUNTING SALES

ACCOUNTING OPERATIONS

RESEARCH ACCOUNTING

RESEARCH RESEARCH

RESEARCH SALES

RESEARCH OPERATIONS

SALES ACCOUNTING

SALES RESEARCH

SALES SALES

SALES OPERATIONS

OPERATIONS ACCOUNTING

OPERATIONS RESEARCH

OPERATIONS SALES

OPERATIONS OPERATIONS

16 rows selected.

Disappointing results. From your knowledge of high school mathematics, you know that four
teams each playing once with the other three makes six combinations. However, your SQL
query returned 16 rows. Now you realize that since you used a cross join (or didn't specify any
join condition), you got a Cartesian product from your query. You put in a join condition, and
your query and results now look as follows:

SELECT d1.name team1, d2.name team2

FROM department d1 JOIN department d2

ON d1.dept_id = d2.dept_id;

TEAM1 TEAM2

-------------- --------------

ACCOUNTING ACCOUNTING

RESEARCH RESEARCH

SALES SALES

OPERATIONS OPERATIONS

Oops! The equi-join returned a very unwanted result. A team can't play against itself. You
realize your mistake, and this sparks the idea that you can use non-equi-joins in this situation.
You rewrite the query as a non-equi-join. You don't want a team to play against itself, and
therefore replace the = operator in the join condition with !=. Let's look at the results:

SELECT d1.name team1, d2.name team2

FROM department d1 JOIN department d2

ON d1.dept_id != d2.dept_id;

TEAM1 TEAM2

-------------- --------------

RESEARCH ACCOUNTING

SALES ACCOUNTING

OPERATIONS ACCOUNTING

ACCOUNTING RESEARCH

SALES RESEARCH

OPERATIONS RESEARCH

ACCOUNTING SALES

RESEARCH SALES

OPERATIONS SALES

ACCOUNTING OPERATIONS

RESEARCH OPERATIONS

SALES OPERATIONS

12 rows selected.

Still not done. In this result set, you have permutations such as (RESEARCH, ACCOUNTING) and
(ACCOUNTING, RESEARCH), and so on. Therefore, each team plays against the others twice. You

need to remove these permutations, which you rightly consider to be duplicates. You think
about using DISTINCT. DISTINCT will not help here, because the row (RESEARCH, ACCOUNTING)
is different from the row (ACCOUNTING, RESEARCH) from the viewpoint of DISTINCT; but not

from the viewpoint of your requirement. After some thought, you want to try out an inequality
operator other than !=. You decide to go with the less-than (<) operator. Here are the results

you get:

SELECT d1.name team1, d2.name team2

FROM department d1 JOIN department d2

ON D1.DEPT_ID < D2.DEPT_ID;

TEAM1 TEAM2

-------------------- -----------

ACCOUNTING RESEARCH

ACCOUNTING SALES

ACCOUNTING OPERATIONS

RESEARCH SALES

RESEARCH OPERATIONS

SALES OPERATIONS

6 rows selected.

That's it! Now you have six combinations: each team plays against the other three just once.
Let's examine why this version of the query works. Conceptually, when Oracle executes this
query, a Cartesian product is first formed with 16 rows. Then the less-than (<) operator in the
join condition restricts the result set to those rows in which the dept_id of Team 1 is less than
the dept_id of Team 2. The less-than (<) operator eliminates the duplicates, because for any

given permutation of two departments this condition is satisfied for only one. Using greater-
than (>) instead of less-than (<) will also give you the required result, but the team1 and team2

values will be reversed:

SELECT d1.name team1, d2.name team2

FROM department d1 JOIN department d2

ON d1.dept_id > d2.dept_id;

TEAM1 TEAM2

-------------------- -----------

OPERATIONS SALES

OPERATIONS RESEARCH

OPERATIONS ACCOUNTING

SALES RESEARCH

SALES ACCOUNTING

RESEARCH ACCOUNTING

6 rows selected.

Don't be disheartened by the painful process you had to go through to get this result.
Sometimes you have to go through an agonizing experience to get simple results such as these.
That's life. Now that you have the team combinations right, go a bit further and assign a date
for each match. Use "tomorrow" as the starting date:

SELECT d1.name team1, d2.name team2, SYSDATE + ROWNUM match_date

FROM department d1 JOIN department d2

ON d1.dept_id < d2.dept_id;

TEAM1 TEAM2 MATCH_DAT

-------------------- -------------------- ---------

ACCOUNTING RESEARCH 10-NOV-03

ACCOUNTING SALES 11-NOV-03

ACCOUNTING OPERATIONS 12-NOV-03

RESEARCH SALES 13-NOV-03

RESEARCH OPERATIONS 14-NOV-03

SALES OPERATIONS 15-NOV-03

6 rows selected.

Now publish these results on the corporate intranet along with the rules and regulations for the
competition, and you are done.

3.3.6 Partition Outer Joins

Partition outer joins are an interesting new feature in Oracle Database 10g. They're useful for
data densification, which is a fancy way of saying that they are useful for filling in rows that do
not exist. This is a common requirement for data warehousing queries.

Part of our example database is an employee_expense table with summary information from

employee expense reports. The data in that table looks as follows:

SELECT * FROM employee_expense;

 EMP_ID YEAR MONTH EXPENSE_CLAIM APPROVED_AMT PAID_DATE

---------- ---------- ---------- ------------- ------------ ---------

 7369 2002 2 3072.43 3072.43 03-MAR-02

 7369 2002 4 30 30 01-JUN-02

 7369 2002 5 235.03 35.03 01-JUN-02

 7369 2002 9 5095.98 5095.08 31-OCT-02

 7369 2002 12 1001.01 1001.01 01-FEB-03

 7782 2002 1 111.09 111.09 01-FEB-02

 7782 2002 3 9.85 9.85 01-APR-02

 7782 2002 7 3987.32 3987.32 01-AUG-02

 7782 2002 9 1200 1200 01-OCT-02

Management wants to review expenses, and you've been asked to generate a data extract of
employee expense claims for the year 2002. Furthermore, to facilitate some analysis that
management wishes to do using Excel, you've been asked to ensure that your extract contains
one row per month per employee, but only for those employees who actively submit expense
reports. Most do not.

You think about these requirements for a while, and realize that you have a months table

containing one row for each month in 2002:

SELECT *

FROM months

WHERE year = 2002;

 YEAR MONTH

---------- ----------

 2002 1

 2002 2

 2002 3

 2002 4

 2002 5

 2002 6

 2002 7

 2002 8

 2002 9

 2002 10

 2002 11

 2002 12

You can use this months table in an outer join to generate 12 rows for each employee. For

example, to generate one row per month for employee 7782, you can write the following query:

SELECT NVL(ee.emp_id, 7782), m.year, m.month, NVL(ee.expense_claim,0)

FROM (SELECT * FROM months WHERE year = 2002) m

 LEFT OUTER JOIN (SELECT *

 FROM employee_expense

 WHERE emp_id = 7782) ee

 ON m.year = ee.year AND m.month = ee.month

ORDER BY m.month;

NVL(EE.EMP_ID,7782) YEAR MONTH NVL(EE.EXPENSE_CLAIM,0)

------------------- ---------- ---------- -----------------------

 7782 2002 1 111.09

 7782 2002 2 0

 7782 2002 3 9.85

 7782 2002 4 0

 7782 2002 5 0

 7782 2002 6 0

 7782 2002 7 3987.32

 7782 2002 8 0

 7782 2002 9 1200

 7782 2002 10 0

 7782 2002 11 0

NVL(EE.EMP_ID,7782) YEAR MONTH NVL(EE.EXPENSE_CLAIM,0)

------------------- ---------- ---------- -----------------------

 7782 2002 12 0

The query in this example is a bit intense. It performs a join of two nested SELECT statements,
called subqueries. The first subquery returns the 12 rows from months for the year 2002. Those
12 rows are the mandatory rows in the outer join. The second subquery returns the actual
expense rows for employee #7782. The outer join ensures that 12 rows are returned, and the
two NVL functions ensure that each of those 12 rows has a value for the potentially NULL
employee_expense fields. Expense claims for months in which no report was filed are simply set

to zero.

Subqueries are discussed in detail in Chapter 5. We hated to have to bring
them up now, but we felt the preceding example was necessary to help you
understand what a partition outer join is all about.

The previous query is all well and good, but to generate your report you'd need to execute the
preceding query many times, once for each employee who has submitted at least one expense
report in the year 2002. This is where partition outer joins come into play. They make it trivial
to do the equivalent of executing the preceding query once per employee. Here's how:

SELECT ee.emp_id, m.year, m.month, NVL(ee.expense_claim,0)

FROM (SELECT * FROM months WHERE year = 2002) m

 LEFT OUTER JOIN employee_expense ee

 PARTITION BY (ee.emp_id)

 ON m.year = ee.year AND m.month = ee.month

ORDER BY ee.emp_id, m.month;

 EMP_ID YEAR MONTH NVL(EE.EXPENSE_CLAIM,0)

---------- ---------- ---------- -----------------------

 7369 2002 1 0

 7369 2002 2 3072.43

 7369 2002 3 0

 7369 2002 4 30

 7369 2002 5 235.03

 7369 2002 6 0

 7369 2002 7 0

 7369 2002 8 0

 7369 2002 9 5095.98

 7369 2002 10 0

 7369 2002 11 0

 7369 2002 12 1001.01

 7782 2002 1 111.09

 7782 2002 2 0

 7782 2002 3 9.85

 7782 2002 4 0

 7782 2002 5 0

 7782 2002 6 0

 7782 2002 7 3987.32

 7782 2002 8 0

 7782 2002 9 1200

 7782 2002 10 0

 7782 2002 11 0

 7782 2002 12 0

Notice the PARTITION BY clause in this query. That clause is new in Oracle Database 10g, and
in this example it causes the database engine to conceptually perform the following steps:

Divide the rows from employee_expense into groups based on their emp_id values, one

group per value.

1.

Outer join each group to the months table as a separate operation.2.

The key here is that rather than one outer join, you are getting the equivalent of many outer
joins, but with a much simpler syntax, and from one query. The preceding query is logically
equivalent to the following UNION ALL query:

SELECT NVL(ee.emp_id, 7369), m.year, m.month, NVL(ee.expense_claim,0)

FROM (SELECT * FROM months WHERE year = 2002) m

 LEFT OUTER JOIN (SELECT *

 FROM employee_expense

 WHERE emp_id = 7369) ee

 ON m.year = ee.year AND m.month = ee.month

ORDER BY m.month

UNION ALL

SELECT NVL(ee.emp_id, 7782), m.year, m.month, NVL(ee.expense_claim,0)

FROM (SELECT * FROM months WHERE year = 2002) m

 LEFT OUTER JOIN (SELECT *

 FROM employee_expense

 WHERE emp_id = 7782) ee

 ON m.year = ee.year AND m.month = ee.month

ORDER BY m.month;

You'll learn more about UNION queries in Chapter 7, so don't worry if you don't fully understand
this example now. Our point here is to illustrate that, given the two employees represented in
our example employee_expense table, our partition outer join query performs the equivalent of

two outer joins, one for each employee.

Unlike the case with our UNION ALL code, you do not need to apply NVL to
the partition columns when doing a partition outer join. The correct emp_id

values were filled in automatically, for all new rows generated in each
partition.

Because they make it easy to fill in gaps in your data, partition outer joins are particularly
helpful when writing lag and lead queries, which are a type of query particularly sensitive to
gaps in data. You'll learn more about lag and lead queries in Chapter 14.

 < Day Day Up >

 < Day Day Up >

3.4 Joins and Subqueries

Joins can sometimes be used to good advantage in reformulating SELECT statements that would
otherwise contain subqueries. Consider the problem of obtaining a list of suppliers of parts for
which your inventory has dropped below 10 units. You might begin by writing a query such as
the following:

SELECT supplier_id, name

FROM supplier s

WHERE EXISTS (SELECT *

 FROM part p

 WHERE p.inventory_qty < 10

 AND p.supplier_id = s.supplier_id);

The subquery in this SELECT statement is a correlated subquery, which means that it will be
executed once for each row in the supplier table. Assuming that you have no indexes on the
inventory_qty and supplier_id columns of the part table, this query could result in multiple,
full-table scans of the part table. It's possible to restate the query using a join. For example:

SELECT s.supplier_id, s.name

FROM supplier s JOIN part p

ON p.supplier_id = s.supplier_id

WHERE p.inventory_qty < 10;

Whether the join version or the subquery version of a query is more efficient depends on the
specific situation. It may be worth your while to test both approaches to see which query runs
faster.

 < Day Day Up >

 < Day Day Up >

3.5 DML Statements on a Join View

A join view is a view based on a join. Special considerations apply when you issue a DML
(INSERT, UPDATE, or DELETE) statement against a join view. Ever thought about what happens
when you insert a row into a join view—which table does the row go into? And what happens
when you delete a row from a join view—from which table is it deleted? This section deals with
these questions.

To be modifiable (also referred to as updatable), a join view must not contain any of the
following:

Hierarchical query clauses, such as START WITH or CONNECT BY

GROUP BY or ORDER BY clauses

MODEL query

Set operations, such as UNION, UNION ALL, INTERSECT, MINUS

Aggregate functions, such as AVG, COUNT, MAX, MIN, SUM, and so on

Analytical functions, such as CUME_DIST, and so on

A subquery or a collection expression in the SELECT list

The DISTINCT operator

WITH READ ONLY option

The ROWNUM pseudocolumn

A DML statement on a join view can modify only one base table of the view. Thus, to be
modifiable, a join view must also preserve a key from at least one of its tables.

3.5.1 Key-Preserved Tables

A key-preserved table is the most important requirement for a join view to be modifiable. In a
join, a table is called a key-preserved table if its keys are preserved through the join—every key
of the table can also be a key of the resultant join result set. Every primary key or unique key
value in the base table must also be unique in the result set of the join. Here's an example that
better demonstrates the concept of key preserved tables:

DESC employee

Name Null? Type

--- -------- -------------

EMP_ID NOT NULL NUMBER(5)

FNAME VARCHAR2(20)

LNAME VARCHAR2(20)

DEPT_ID NOT NULL NUMBER(5)

MANAGER_EMP_ID NUMBER(5)

SALARY NUMBER(5)

HIRE_DATE DATE

JOB_ID NUMBER(3)

DESC retailer

Name Null? Type

--- -------- --------------

RTLR_NBR NOT NULL NUMBER(6)

NAME VARCHAR2(45)

ADDRESS VARCHAR2(40)

CITY VARCHAR2(30)

STATE VARCHAR2(2)

ZIP_CODE VARCHAR2(9)

AREA_CODE NUMBER(3)

PHONE_NUMBER NUMBER(7)

SALESPERSON_ID NUMBER(4)

CREDIT_LIMIT NUMBER(9,2)

COMMENTS LONG

CREATE OR REPLACE VIEW v_rtlr_emp AS

SELECT c.rtlr_nbr, c.name, c.city, e.emp_id,

 c.salesperson_id, e.lname sales_rep

FROM retailer c JOIN employee e

ON c.salesperson_id = e.emp_id;

View created.

SELECT * FROM v_rtlr_emp;

RTLR_NBR NAME CITY EMP_ID SALES_REP

-------- ------------------------------- --------------- ------ -

 104 EVERY MOUNTAIN CUPERTINO 7499 ALLEN

 107 WOMENS SPORTS SUNNYVALE 7499 ALLEN

 201 STADIUM SPORTS NEW YORK 7499 ALLEN

 203 REBOUND SPORTS NEW YORK 7499 ALLEN

 207 FAST BREAK CONCORD 7499 ALLEN

 216 THE ALL AMERICAN CHELSEA 7499 ALLEN

 223 VELO SPORTS MALDEN 7499 ALLEN

 227 THE TOUR SOMERVILLE 7499 ALLEN

 218 THE OUTFIELD FLUSHING 7499 ALLEN

 211 AT BAT BROOKLINE 7499 ALLEN

 206 THE COLISEUM SCARSDALE 7499 ALLEN

 205 POINT GUARD YONKERS 7499 ALLEN

 202 HOOPS LEICESTER 7499 ALLEN

 101 TKB SPORT SHOP REDWOOD CITY 7521 WARD

 228 FITNESS FIRST JACKSON HEIGHTS 7521 WARD

 226 CENTURY SHOP HUNTINGTON 7521 WARD

 106 SHAPE UP PALO ALTO 7521 WARD

 103 JUST TENNIS BURLINGAME 7521 WARD

 102 VOLLYRITE BURLINGAME 7654 MARTIN

 208 AL AND BOB'S SPORTS AUSTIN 7654 MARTIN

 204 THE POWER FORWARD DALLAS 7654 MARTIN

 215 BOB'S FAMILY SPORTS HOUSTON 7654 MARTIN

 217 HIT name, THROW addr, AND RUN GRAPEVINE 7654 MARTIN

 214 AL'S PRO SHOP SPRING 7654 MARTIN

 100 JOCKSPORTS BELMONT 7844 TURNER

 212 ALL SPORT BROOKLYN 7844 TURNER

 221 WHEELS AND DEALS HOUSTON 7844 TURNER

 224 JOE'S BIKE SHOP GRAND PRAIRIE 7844 TURNER

 225 BOB'S SWIM, CYCLE AND RUN IRVING 7844 TURNER

 222 JUST BIKES DALLAS 7844 TURNER

 213 GOOD SPORT SUNNYSIDE 7844 TURNER

 105 K + T SPORTS SANTA CLARA 7844 TURNER

32 rows selected.

The view v_rtlr_emp is a join of retailer and employee tables on the
retailer.salesperson_id and employee.emp_id columns. Is there a key-preserved table in

this join view? Which one—or is it both? If you observe the relationship between the two tables
and the join query, you will notice that rtlr_nbr is the key of the retailer table, as well as
the key of the result of the join. This is because there is only one row in the retailer table for
every row in the join view v_rtlr_emp, and every row in the view has a unique rtlr_nbr.
Therefore, the table retailer is a key-preserved table in this join view. How about the
employee table? The key of the employee table is not preserved through the join because
emp_id is not unique in the view, consequently emp_id can't be a key for the result of the join.
Therefore, the table employee is not a key-preserved table in this view.

You must remember the following important points regarding key-preserved tables:

Key-preservation is a property of the table inside the join view, not the table itself
independently. A table may be key-preserved in one join view, and may not be key-
preserved in another join view. For example, if we create a join view by joining the
employee table with the department table on the dept_id column, then in the resulting
view the employee table will be key-preserved, but the department table will not be a

key-preserved table.

It is not necessary for the key column(s) of a table to be SELECTed in the join view for the
table to be key-preserved. For example, in the v_rtlr_emp view discussed previously, the
retailer table would have been the key-preserved table even if we had not included the
rtlr_nbr column in the SELECT list.

On the other hand, if you select the key column(s) of a table in the view definition, your
doing so doesn't make that table key-preserved. In the v_rtlr_emp view, even though we

have included emp_id in the SELECT list, the employee table is not key-preserved.

The key-preserved property of a table in a join view doesn't depend on the data inside the
table. It depends on the schema design and the relationship between the tables.

A join view may SELECT data from many tables. However, any DML operation can modify the
data from only one underlying table. The following sections discuss how you can use INSERT,
UPDATE, and DELETE statements on a join view.

3.5.2 INSERT Statements on a Join View

Let's issue an INSERT statement against the join view v_rtlr_emp, that attempts to insert a
record into the retailer table:

INSERT INTO v_rtlr_emp (rtlr_nbr, name, salesperson_id)

VALUES (345, 'X-MART STORES', 7820);

1 row created.

That worked. Now let's try the following INSERT statement, which also supplies a value for a
column from the employee table:

INSERT INTO v_rtlr_emp (rtlr_nbr, name, salesperson_id, sales_rep)

VALUES (456, 'LEE PARK RECREATION CENTER', 7599, 'JAMES');

INSERT INTO v_rtlr_emp (rtlr_nbr, name, salesperson_id, sales_rep)

 *

ERROR at line 1:

ORA-01776: cannot modify more than one base table through a join view

This INSERT statement attempts to insert values into two tables (retailer and employee),

which is not allowed. You can't refer to the columns of a non-key-preserved table in an INSERT
statement.

3.5.3 DELETE Statements on a Join View

DELETE operations can be performed on a join view if the join view has one and only one key-
preserved table. The view v_rtlr_emp discussed previously has only one key-preserved table,
retailer; therefore, you can delete from this join view as in the following example:

DELETE FROM v_rtlr_emp

WHERE rtlr_nbr = 214;

1 row deleted.

But wait! The view joined two tables? What row then, did we just delete? The answer is that we
deleted a row from the key-preserved table, in this case from the retailer table.

Let's take another example where there is more than one key-preserved table. We will create a
join view that involves two key-preserved tables, and then attempt to delete from that view.

CREATE VIEW v_cust_disputed_ord AS

SELECT d.order_nbr, d.cust_nbr, c.cancelled_dt

FROM disputed_orders d JOIN cust_order c

ON d.order_nbr = c.order_nbr;

View created.

In the view v_cust_disputed_ord both the tables are key-preserved, because the key of each

of the tables is also a key of the result set of the join. Now try deleting a row from this view:

DELETE FROM v_cust_disputed_ord

WHERE order_nbr = 1003;

1 row deleted.

Since there are two key-preserved tables, which table did the row get deleted from? After
querying the individual tables, you will find that a row has been deleted from the
disputed_orders table. Why? This is a bit tricky. The rule is that if you attempt to delete a row

from a join view having more than one key-preserved table, the row will be deleted from the
first table in the join. If you reverse the order of the tables in the join, and then issue a delete,
you will find that the row will be deleted from the cust_order table. This is strange, but it's the

rule. Keep this unexpected behavior in mind when you write applications that need to delete
from a join view with multiple key-preserved tables.

3.5.4 UPDATE Statements on a Join View

An UPDATE operation can be performed on a join view if it attempts to update a column in the
key-preserved table. For example:

UPDATE v_rtlr_emp

SET name = 'PRO SPORTS'

WHERE rtlr_nbr = 215;

1 row updated.

This UPDATE is successful since it updated the name column of the retailer table, which is key-

preserved. However, the following UPDATE statement will fail because it attempts to modify the
sales_rep column that maps to the employee table, which is non-key-preserved:

UPDATE v_rtlr_emp

SET sales_rep = 'ANDREW'

WHERE rtlr_nbr = 214;

SET sales_rep = 'ANDREW'

 *

ERROR at line 2:

ORA-01779: cannot modify a column which maps to a non-key-preserved table

3.5.5 Data Dictionary Views to Find Updatable Columns

Oracle provides the data dictionary view USER_UPDATABLE_COLUMNS that shows all modifiable
columns in all tables and views in a user's schema. This can be helpful if you have a view that
you wish to update, but aren't sure whether it's updatable. USER_UPDATABLE_COLUMNS has
the following definition:

DESC USER_UPDATABLE_COLUMNS

 Name Null? Type

 -------------- -------- -------------

 OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 COLUMN_NAME NOT NULL VARCHAR2(30)

 UPDATABLE VARCHAR2(3)

 INSERTABLE VARCHAR2(3)

 DELETABLE VARCHAR2(3)

ALL_UPDATABLE_COLUMNS shows modifiable columns from all the views
you can access (as opposed to just those you own), and
DBA_UPDATABLE_COLUMNS (for DBAs only) shows such columns for all
the views in the database.

The following example shows USER_UPDATABLE_COLUMNS being queried for a list of updatable
columns in the v_rtlr_emp view:

SELECT * FROM USER_UPDATABLE_COLUMNS

WHERE TABLE_NAME = 'V_RTLR_EMP';

OWNER TABLE_NAME COLUMN_NAME UPD INS DEL

------- ------------- ---------------- --- ---

DEMO V_RTLR_EMP RTLR_NBR YES YES YES

DEMO V_RTLR_EMP NAME YES YES YES

DEMO V_RTLR_EMP CITY YES YES YES

DEMO V_RTLR_EMP EMP_ID NO NO NO

DEMO V_RTLR_EMP SALESPERSON_ID YES YES YES

DEMO V_RTLR_EMP SALES_REP NO NO NO

3.5.6 Impact of WITH CHECK OPTION

WITH CHECK OPTION is an optional clause in the CREATE VIEW statement that prevents any
changes to the data in the view that could cause rows to be not included in the view. For
example, you have a view with the following definition:

CREATE VIEW emp_20 AS

SELECT * FROM employee

WHERE dept_id = 20

WITH CHECK OPTION;

Using this view you can't insert a row that has dept_id = 30, or update the existing rows to
have dept_id = 30, as shown in the following example:

INSERT INTO emp_20 VALUES

(8765, 'SANJAY','MISHRA', 30, 7656, 4000, '01-JAN-88', 765);

INSERT INTO emp_20 VALUES

 *

ERROR at line 1:

ORA-01402: view WITH CHECK OPTION where-clause violation

UPDATE emp_20 SET dept_id = 30;

UPDATE emp_20 SET dept_id = 30

 *

ERROR at line 1:

ORA-01402: view WITH CHECK OPTION where-clause violation

Since the WHERE clause of the view definition restricts the data in the view to dept_id = 20,

and the view is defined with the clause WITH CHECK OPTION, you are not allowed to insert or
update rows that could cause the rows not to be included in this view.

The purpose of WITH CHECK OPTION is to prevent DML operations as shown in the preceding
example. However, this clause has some side effects on the updatability of join views in general.

If a join view is created using the WITH CHECK OPTION clause, INSERT statements are not
allowed on the view at all, even if you are attempting to insert into the key-preserved table
only. For example:

CREATE VIEW v_rtlr_emp_wco AS

SELECT c.rtlr_nbr, c.name, c.city, c.salesperson_id, e.lname sales_rep

FROM retailer c JOIN employee e

ON c.salesperson_id = e.emp_id

WITH CHECK OPTION;

View created.

INSERT INTO v_rtlr_emp_wco (rtlr_nbr, name, salesperson_id)

VALUES (345, 'X-MART STORES', 7820);

INSERT INTO v_rtlr_emp_wco (rtlr_nbr, name, salesperson_id)

 *

ERROR at line 1:

ORA-01733: virtual column not allowed here

The error message "ORA-01733: virtual column not allowed here" may not be very
comprehensible, but it indicates that you are not allowed to insert into this join view.

WITH CHECK OPTION as such doesn't prevent you from deleting rows from a join view, as
shown in the following example:

DELETE FROM v_rtlr_emp_wco

WHERE rtlr_nbr = 215;

1 row deleted.

However, WITH CHECK OPTION prevents deletion if the join view involves a self join of the key-
preserved table. For example, the view emp_mgr_wco involves a self join of the table employee

(which is the key-preserved table in this view definition).

CREATE VIEW emp_mgr_wco AS

SELECT e.lname employee, e.salary salary, m.lname manager

FROM employee e, employee m

WHERE e.manager_emp_id = m.emp_id

WITH CHECK OPTION;

View created.

DELETE FROM emp_mgr_wco WHERE employee = 'JONES';

DELETE FROM emp_mgr_wco WHERE employee = 'JONES'

 *

ERROR at line 1:

ORA-01752: cannot delete from view without exactly one key-preserved table

You get an error while trying to delete a row from the view emp_mgr_wco, as it involves a self

join of the key-preserved table.

Furthermore, the WITH CHECK OPTION restricts your ability to modify a join view. If a join view
is created using the WITH CHECK OPTION clause, you can't modify any of the join columns, nor
any of the columns from the tables involved in a self join. The following example illustrates the
error you get when trying to update the join column of such a view.

UPDATE v_rtlr_emp_wco

SET salesperson_id = 7784

WHERE rtlr_nbr = 215;

SET salesperson_id = 7784

 *

ERROR at line 2:

ORA-01733: virtual column not allowed here

The error message "ORA-01733: virtual column not allowed here" indicates that you are not
allowed to update the indicated column. Since the view is created with the WITH CHECK
OPTION clause, and the column salesperson_id is a join column, you are not allowed to

update it. You will get a similar error if you try to update a column of a table involved in a self
join, as illustrated in the following example:

UPDATE emp_mgr_wco

SET salary = 4800

WHERE employee = 'JONES';

SET salary = 4800

 *

ERROR at line 2:

ORA-01733: virtual column not allowed here

In this example, since the view definition involves a self join of the employee table, and the

view is created with the WITH CHECK OPTION clause, you are not allowed to update any
columns of the employee table.

 < Day Day Up >

 < Day Day Up >

Chapter 4. Group Operations
Group operations are quite common in the day-to-day life of a SQL programmer. When you use
SQL to access a database, it is quite common to expect questions such as:

What is the maximum salary in this department?

How many managers are there in each department?

What is the number of customers for each product?

Can you print the monthly aggregate sales for each region?

You need group operations to answer these questions. Oracle provides a rich set of features to
handle group operations. These features include aggregate functions, the GROUP BY clause, the
HAVING clause, and the extensions to the GROUP BY clause—ROLLUP, CUBE, and GROUPING
SETS.

This chapter deals with simple group operations involving the aggregate
functions, the GROUP BY and HAVING clauses. Advanced group operations
such as ROLLUP, CUBE, and GROUPING SETS are discussed in Chapter 13.

 < Day Day Up >

 < Day Day Up >

4.1 Aggregate Functions

An aggregate function summarizes the results of an expression over a number of rows,
returning a single value. The general syntax for most of the aggregate functions is as follows:

aggregate_function([DISTINCT | ALL] expression)

The syntax elements are:

aggregate_function

Gives the name of the function—e.g., SUM, COUNT, AVG, MAX, MIN

DISTINCT

Specifies that the aggregate function should consider only distinct values of the argument
expression.

ALL

Specifies that the aggregate function should consider all values, including all duplicate
values, of the argument expression. The default is ALL.

expression

Specifies a column, or any other expression, on which you want to perform the
aggregation.

Let's look at a simple example. The following SQL uses the MAX function to find the maximum
salary of all employees:

SELECT MAX(salary) FROM employee;

MAX(SALARY)

 5000

In subsequent sections, we use a series of slightly more involved examples that illustrate
various aspects of aggregate function behavior. For those examples, we use the following
cust_order table:

DESC cust_order

 Name Null? Type

 -------------------------------- -------- --------------

 ORDER_NBR NOT NULL NUMBER(7)

 CUST_NBR NOT NULL NUMBER(5)

 SALES_EMP_ID NOT NULL NUMBER(5)

 SALE_PRICE NUMBER(9,2)

 ORDER_DT NOT NULL DATE

 EXPECTED_SHIP_DT NOT NULL DATE

 CANCELLED_DT DATE

 SHIP_DT DATE

 STATUS VARCHAR2(20)

SELECT order_nbr, cust_nbr, sales_emp_id, sale_price,

order_dt, expected_ship_dt

FROM cust_order;

ORDER_NBR CUST_NBR SALES_EMP_ID SALE_PRICE ORDER_DT EXPECTED_

--------- -------- ------------ ---------- --------- ---------

 1001 1 7354 99 22-JUL-01 23-JUL-01

 1000 1 7354 19-JUL-01 24-JUL-01

 1002 5 7368 12-JUL-01 25-JUL-01

 1003 4 7654 56 16-JUL-01 26-JUL-01

 1004 4 7654 34 18-JUL-01 27-JUL-01

 1005 8 7654 99 22-JUL-01 24-JUL-01

 1006 1 7354 22-JUL-01 28-JUL-01

 1007 5 7368 25 20-JUL-01 22-JUL-01

 1008 5 7368 25 21-JUL-01 23-JUL-01

 1009 1 7354 56 18-JUL-01 22-JUL-01

 1012 1 7354 99 22-JUL-01 23-JUL-01

 1011 1 7354 19-JUL-01 24-JUL-01

 1015 5 7368 12-JUL-01 25-JUL-01

 1017 4 7654 56 16-JUL-01 26-JUL-01

 1019 4 7654 34 18-JUL-01 27-JUL-01

 1021 8 7654 99 22-JUL-01 24-JUL-01

 1023 1 7354 22-JUL-01 28-JUL-01

 1025 5 7368 25 20-JUL-01 22-JUL-01

 1027 5 7368 25 21-JUL-01 23-JUL-01

 1029 1 7354 56 18-JUL-01 22-JUL-01

20 rows selected.

4.1.1 NULLs and Aggregate Functions

Notice that the column sale_price in the cust_order table is nullable, and that it contains

NULL values for some rows. To examine the effect of NULLs in an aggregate function, execute
the following SQL:

SELECT COUNT(*), COUNT(sale_price) FROM cust_order;

COUNT(*) COUNT(SALE_PRICE)

-------- -----------------

 20 14

Notice the difference in the output of COUNT(*) and COUNT(sale_price). This is because
COUNT(sale_price) ignores NULLs, whereas COUNT(*) doesn't. The reason COUNT(*) doesn't

ignore NULLs is because it counts rows, not column values. The concept of NULL doesn't apply
to a row as a whole. Other than COUNT(*), there is only one other aggregate function that

doesn't ignore NULLs, and that is GROUPING. All other aggregate functions ignore NULLs. We

will discuss GROUPING in Chapter 13. For now, let's examine the effect of NULLs when they are
ignored.

SUM, MAX, MIN, AVG, etc., all ignore NULLs. Therefore, if you are trying to find a value such as
the average sale price in the cust_order table, the average will be of the 14 rows that have a

value for that column. The following example shows the count of all rows, the total of all sale
prices, and the average of all sale prices:

SELECT COUNT(*), SUM(sale_price), AVG(sale_price)

FROM cust_order;

 COUNT(*) SUM(SALE_PRICE) AVG(SALE_PRICE)

--------------- --------------- ---------------

 20 788 56.2857143

Note that AVG(sale_price) is not equal to SUM(sale_price) / COUNT(*). If it were, the result
of AVG(sale_price) would have been 788 / 20 = 39.4. But, since the AVG function ignores
NULLS, it divides the total sale price by 14, and not by 20. AVG(sale_price) is equal to
SUM(sale_price) / COUNT(sale_price) (788 / 14 = 56.2857143).

There may be situations where you want an average to be taken over all the rows in a table, not
just the rows with non-NULL values for the column in question. In those situations you have to
use the NVL function within the AVG function call to assign 0 (or some other useful value) to the
column in place of any NULL values. (DECODE, CASE, or the COALESCE function can be used in
place of NVL. See Chapter 9 for details.) Here's an example:

SELECT AVG(NVL(sale_price,0)) FROM cust_order;

AVG(NVL(SALE_PRICE,0))

 39.4

Notice that the use of NVL causes all 20 rows to be considered for average computation, and the
rows with NULL values for sale_price are assumed to have a 0 value for that column.

4.1.2 Use of DISTINCT and ALL

Most aggregate functions allow the use of DISTINCT or ALL along with the expression
argument. DISTINCT allows you to disregard duplicate expression values, while ALL causes
duplicate expression values to be included in the result. Notice that the column cust_nbr has

duplicate values. Observe the result of the following SQL:

SELECT COUNT(cust_nbr), COUNT(DISTINCT cust_nbr), COUNT(ALL cust_nbr)

FROM cust_order;

COUNT(CUST_NBR) COUNT(DISTINCTCUST_NBR) COUNT(ALLCUST_NBR)

--------------- ----------------------- ------------------

 20 4 20

There are four distinct values in the cust_nbr column. Therefore, COUNT(DISTINCT cust_nbr)
returns 4, whereas COUNT(cust_nbr) and COUNT(ALL cust_nbr) both return 20. ALL is the

default, which means that if you don't specify either DISTINCT or ALL before the expression
argument in an aggregate function, the function will consider all the rows that have a non-NULL
value for the expression.

An important thing to note here is that ALL doesn't cause an aggregate function to consider
NULL values. For example, COUNT(ALL SALE_PRICE) in the following example still returns 14,

and not 20:

SELECT COUNT(ALL sale_price) FROM cust_order;

COUNT(ALLSALE_PRICE)

 14

Since ALL is the default, you can explicitly use ALL with every aggregate function. However, the
aggregate functions that take more than one argument as input don't allow the use of
DISTINCT. These include CORR, COVAR_POP, COVAR_SAMP, and all the linear regression
functions.

In addition, some functions that take only one argument as input don't allow the use of
DISTINCT. This category includes STTDEV_POP, STDDEV_SAMP, VAR_POP, VAR_SAMP, and
GROUPING.

If you try to use DISTINCT with an aggregate function that doesn't allow it, you will get an
error. For example:

SELECT STDDEV_POP(DISTINCT sale_price)

FROM cust_order;

SELECT STDDEV_POP(DISTINCT sale_price)

 *

ERROR at line 1:

ORA-30482: DISTINCT option not allowed for this function

However, using ALL with such a function doesn't cause any error. For example:

SELECT STDDEV_POP(ALL sale_price)

FROM cust_order;

STDDEV_POP(ALLSALE_PRICE)

 29.5282639

 < Day Day Up >

 < Day Day Up >

4.2 The GROUP BY Clause

The GROUP BY clause, along with the aggregate functions, groups a result set into multiple
groups, and then produces a single row of summary information for each group. For example, if
you want to find the total number of orders for each customer, execute the following query:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 1 8

 4 4

 5 6

 8 2

This query produces one summary line of output for each customer. This is the essence of a
GROUP BY query. You asked Oracle to GROUP the results BY cust_nbr; therefore, it produced
one output row for each distinct value of cust_nbr. Each data value for a given customer

represents a summary based on all rows for that customer.

4.2.1 Correspondence Between SELECT and GROUP BY

When you write a query with a GROUP BY clause, there are a number of rules you need to be
aware of that govern the correspondence between the columns in the SELECT and GROUP BY
clauses. Generally speaking, any nonaggregate expression in your SELECT clause must also be
reflected in your GROUP BY clause.

4.2.1.1 Aggregate expressions generally require a GROUP BY clause

The nonaggregate expression cust_nbr in the SELECT list of the query in our most recent

example also appears in the GROUP BY clause. If you have a mix of aggregate and
nonaggregate expressions in the SELECT list, SQL expects that you are trying to perform a
GROUP BY operation, and you must also include a GROUP BY clause in your query. Oracle
returns an error if you fail to do so. For example, if you omit the GROUP BY clause, the following
error is returned:

SELECT cust_nbr, sales_emp_id, COUNT(order_nbr)

FROM cust_order;

SELECT cust_nbr, sales_emp_id, COUNT(order_nbr)

 *

ERROR at line 1:

ORA-00937: not a single-group group function

There is one case in which you can write aggregate expressions in a SELECT list without also
writing a GROUP BY clause and that is when you wish those aggregate expressions to apply to
the entire result set. In such a case, your SELECT list must consist only of aggregate
expressions. The queries earlier in this chapter, introducing the aggregate functions, are good
examples of this case.

4.2.1.2 GROUP BY clause must include all nonaggregate expressions

If you forget to include all nonaggregate expressions from the SELECT list in the GROUP BY
clause, SQL returns the following error:

SELECT cust_nbr, sales_emp_id, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr;

SELECT cust_nbr, sales_emp_id, COUNT(order_nbr)

 *

ERROR at line 1:

ORA-00979: not a GROUP BY expression

4.2.1.3 Aggregate functions not allowed in GROUP BY clause

You can't use a group function (aggregate function) in the GROUP BY clause. You will get an
error if you attempt to do so, as in the following example:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr, COUNT(order_nbr);

GROUP BY cust_nbr, COUNT(order_nbr)

 *

ERROR at line 3:

ORA-00934: group function is not allowed here

4.2.1.4 Constants can be omitted from the GROUP BY clause

If you have a constant in your SELECT list, you don't need to include it in the GROUP BY clause.
However, including the constant in the GROUP BY clause doesn't alter the result. Therefore,
both the following statements will produce the same output:

SELECT 'CUSTOMER', cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr;

SELECT 'CUSTOMER', cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY 'CUSTOMER', cust_nbr;

'CUSTOMER' CUST_NBR COUNT(ORDER_NBR)

---------- ---------- ----------------

CUSTOMER 1 8

CUSTOMER 4 4

CUSTOMER 5 6

CUSTOMER 8 2

4.2.1.5 Scalar functions may be grouped by their underlying column

If a scalar function has been applied to a column in the SELECT list, the syntax doesn't force you
to include the scalar function in the GROUP BY clause. For example:

SELECT SUBSTR(lname,1,1), COUNT(*)

FROM employee

GROUP BY lname;

S COUNT(*)

- ----------

A 1

A 1

B 1

C 1

F 1

J 1

J 1

K 1

M 1

M 1

S 1

S 1

T 1

W 1

14 rows selected.

In this example, the SELECT list has SUBSTR(lname,1,1); however, the GROUP BY clause
contains just lname, without the SUBSTR function on it. Though this query is syntactically

correct, if you look at the result set, you will notice that there are multiple rows with the same
value for SUBSTR(lname,1,1). This means that the GROUP BY operation takes place for the
entire lname, but only the substring is displayed. If you really want the result set to be grouped

by the substring expression, you should include that expression in the GROUP BY clause, as
shown in the following example:

SELECT SUBSTR(lname,1,1), COUNT(*)

FROM employee

GROUP BY SUBSTR(lname,1,1);

S COUNT(*)

- ----------

A 2

B 1

C 1

F 1

J 2

K 1

M 2

S 2

T 1

W 1

10 rows selected.

Notice the difference. This time, there is only one row in the result set for each value returned
by SUBSTR(lname,1,1). The rows have been grouped on the exact same expression as is

displayed.

4.2.1.6 Concatenated columns may be grouped in either of two ways

If an expression in a SELECT list concatenates two columns, you can specify the GROUP BY
clause in one of the following two ways—both giving the same result:

SELECT manager_emp_id || job_id, COUNT(*)

FROM employee

GROUP BY manager_emp_id || job_id;

SELECT manager_emp_id || job_id, COUNT(*)

FROM employee

GROUP BY manager_emp_id, job_id;

MANAGER_EMP_ID||JOB_ID COUNT(*)

------------------------- ----------

672 1

7566669 2

7698 1

7698667 1

7698670 3

7782667 1

7788 1

7839671 3

7902667 1

4.2.1.7 You can sometimes exclude a nonaggregate expression from the GROUP BY
clause

There are certain situations in which you want an expression in the SELECT list, but don't want
to group by the same. For example, you might want to display a line number along with
summary information for each customer. Attempt to do so using the following query, and you
will get an error:

SELECT ROWNUM, cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr;

SELECT ROWNUM, cust_nbr, COUNT(order_nbr)

 *

ERROR at line 1:

ORA-00979: not a GROUP BY expression

If you include ROWNUM in the GROUP BY clause, you'll get the following, unexpected result:

SELECT ROWNUM, cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY ROWNUM, cust_nbr;

 ROWNUM CUST_NBR COUNT(ORDER_NBR)

---------- ---------- ----------------

 1 1 1

 2 1 1

 3 5 1

 4 4 1

 5 4 1

 6 8 1

 7 1 1

 8 5 1

 9 5 1

 10 1 1

 11 1 1

 12 1 1

 13 5 1

 14 4 1

 15 4 1

 16 8 1

 17 1 1

 18 5 1

 19 5 1

 20 1 1

20 rows selected.

You certainly didn't want this result, did you? You wanted to receive one summary row for each
customer, and then to display ROWNUM for those lines. But when you include ROWNUM in the
GROUP BY clause, it produces one summary row for each row selected from the table
cust_order. To get the expected result, you should use the following SQL:

SELECT ROWNUM, v.*

FROM (SELECT cust_nbr, COUNT(order_nbr)

 FROM cust_order GROUP BY cust_nbr) v;

 ROWNUM CUST_NBR COUNT(ORDER_NBR)

---------- ---------- ----------------

 1 1 8

 2 4 4

 3 5 6

 4 8 2

The construct in the FROM clause is called an inline view. Read more about inline views in
Chapter 5.

4.2.1.8 You are not required to show your GROUP BY columns

Syntactically, it is not mandatory to include all the expressions of the GROUP BY clause in the
SELECT list. However, those expressions not in the SELECT list will not be represented in the
output; therefore, the output may not make much sense. For example:

SELECT COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr;

COUNT(ORDER_NBR)

 8

 4

 6

 2

This query produces a count of orders for each customer (by grouping based on cust_nbr), but
without the cust_nbr in the output you can't associate the counts with the customers.

Extending the previous example, you can see that without a consistent SELECT list and GROUP
BY clause, the output may be a bit confusing. The following example produces output that at

first glance seems useful:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr, order_dt;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 1 2

 1 2

 1 4

 4 2

 4 2

 5 2

 5 2

 5 2

 8 2

9 rows selected.

From the output, it appears that you are trying to obtain a count of orders for each customer.
However, there are multiple rows in the output for some cust_nbr values. The fact that you
have included order_dt in the GROUP BY clause, and therefore generated a summary result for
each combination of cust_nbr and order_dt, is missing from the output. You can't make sense

of the output unless the output and the SQL statement are looked at together. You can't expect
all readers of SQL output to understand SQL syntax, can you? Therefore, we always recommend
maintaining consistency between the nonaggregate expressions in the SELECT list and the
expressions in the GROUP BY clause. A more meaningful version of the previous SQL statement
would be as follows:

SELECT cust_nbr, order_dt, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr, order_dt;

 CUST_NBR ORDER_DT COUNT(ORDER_NBR)

---------- --------- ----------------

 1 18-JUL-01 2

 1 19-JUL-01 2

 1 22-JUL-01 4

 4 16-JUL-01 2

 4 18-JUL-01 2

 5 12-JUL-01 2

 5 20-JUL-01 2

 5 21-JUL-01 2

 8 22-JUL-01 2

9 rows selected.

This output is consistent with the GROUP BY clause in the query. Readers of the report are more
likely to make the correct assumption about what this output represents.

4.2.2 GROUP BY Clause and NULL Values

When you GROUP BY a column that contains NULL values for some rows, all the rows with NULL
values are placed into a single group and presented as one summary row in the output. For
example:

SELECT sale_price, COUNT(order_nbr)

FROM cust_order

GROUP BY sale_price;

SALE_PRICE COUNT(ORDER_NBR)

---------- ----------------

 25 4

 34 2

 56 4

 99 4

 6

Notice that the last row in the output consists of a NULL value for the column sale_price. If

you want the row containing the NULL value to be the first row in the output, you can perform
an ORDER BY on sale_price in descending order:

SELECT sale_price, COUNT(order_nbr)

FROM cust_order

GROUP BY sale_price

ORDER BY sale_price DESC;

SALE_PRICE COUNT(ORDER_NBR)

---------- ----------------

 6

 99 4

 56 4

 34 2

 25 4

Whether you are using a GROUP BY or not, the ORDER BY clause can have an optional NULLS
FIRST or NULLS LAST option to put the NULLs either at the beginning or at the end of the result
set, respectively. For example, to sort NULLs first:

SELECT sale_price, COUNT(order_nbr)

FROM cust_order

GROUP BY sale_price

ORDER BY sale_price NULLS FIRST;

SALE_PRICE COUNT(ORDER_NBR)

---------- ----------------

 6

 25 4

 34 2

 56 4

 99 4

Or, to sort NULLs last:

SELECT sale_price, COUNT(order_nbr)

FROM cust_order

GROUP BY sale_price

ORDER BY sale_price NULLS LAST;

SALE_PRICE COUNT(ORDER_NBR)

---------- ----------------

 25 4

 34 2

 56 4

 99 4

 6

4.2.3 GROUP BY Clause with WHERE Clause

While producing summary results using the GROUP BY clause, you can filter records from the
table based on a WHERE clause, as in the following example, which produces a count of orders
in which the sale price exceeds $25 for each customer:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

WHERE sale_price > 25

GROUP BY cust_nbr;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 1 4

 4 4

 8 2

While executing a SQL statement with a WHERE clause and a GROUP BY clause, Oracle first
applies the WHERE clause and filters out the rows that don't satisfy the WHERE condition. The
rows that satisfy the WHERE clause are then grouped using the GROUP BY clause.

SQL syntax requires that the WHERE clause must come before the GROUP BY clause. Otherwise,
the following error is returned:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr

WHERE sale_price > 25;

WHERE sale_price > 25

*

ERROR at line 4:

ORA-00933: SQL command not properly ended

 < Day Day Up >

 < Day Day Up >

4.3 The HAVING Clause

The HAVING clause is closely associated with the GROUP BY clause. The HAVING clause is used
to put a filter on the groups created by the GROUP BY clause. If a query has a HAVING clause
along with a GROUP BY clause, the result set will include only the groups that satisfy the
condition specified in the HAVING clause. Let's look at some examples that illustrate this. The
following query returns the number of orders per customer:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr

HAVING cust_nbr < 6;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 1 8

 4 4

 5 6

Notice that the output only includes customers with numbers below 6. That's because the
HAVING clause specified cust_nbr < 6 as a condition. Orders for all customers were counted,

but only those groups that matched the specified HAVING condition were returned as the result.

The previous example is a poor use of the HAVING clause, because that clause references only
unsummarized data. It's more efficient to use WHERE cust_nbr < 6 instead of HAVING
cust_nbr < 6, because the WHERE clause eliminates rows prior to summarization, whereas

HAVING eliminates groups post-summarization. A better version of the previous query would
be:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

WHERE cust_nbr < 6

GROUP BY cust_nbr;

The next example shows a more appropriate use of the HAVING clause:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr

HAVING COUNT(order_nbr) > 2;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 1 8

 4 4

 5 6

See the use of the aggregate function COUNT in the HAVING clause? This is an appropriate use
for HAVING, because the results of the aggregate function cannot be determined until after the
grouping takes place.

The syntax for the HAVING clause is similar to that of the WHERE clause. However, there is one
restriction on the conditions you can write in the HAVING clause. A HAVING condition can refer
only to an expression in the SELECT list, or to an expression involving an aggregate function. If
you specify an expression in the HAVING clause that isn't in the SELECT list, or that isn't an
aggregate expression, you will get an error. For example:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr

HAVING order_dt < SYSDATE;

HAVING order_dt < SYSDATE

 *

ERROR at line 4:

ORA-00979: not a GROUP BY expression

However, you can use an aggregate expression in the HAVING clause, even if it doesn't appear
in the SELECT list, as illustrated in the following example:

SELECT cust_nbr

FROM cust_order

GROUP BY cust_nbr

HAVING COUNT(order_nbr) < 5;

 CUST_NBR

 4

 8

In the preceding example, the HAVING clause refers to COUNT(order_nbr), which is not in the

SELECT list. You are not required to show in your result set all the columns or expressions that
determine which rows end up in that result set.

The order of the GROUP BY clause and the HAVING clause in a SELECT statement is not
important. You can specify the GROUP BY clause before the HAVING clause, or vice versa.
Therefore, the following two queries are the same and produce the same result:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

GROUP BY cust_nbr

HAVING COUNT(order_nbr) > 2;

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

HAVING COUNT(order_nbr) > 2

GROUP BY cust_nbr;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 1 8

 4 4

 5 6

Even though Oracle doesn't care whether the HAVING clause comes before the GROUP BY clause
or after, the HAVING clause is applied to the groups created by the GROUP BY clause, so it is a
good programming practice to always put the HAVING clause after the GROUP BY clause.

Another reason for placing HAVING after GROUP BY is that SQL Standard requires that
particular order. Thus, putting HAVING after GROUP BY makes your code more portable.

You can use a WHERE clause and a HAVING clause together in a query. When you do, it is
important to understand the impact of the two clauses. The WHERE clause is executed first, and
the rows that don't satisfy the WHERE condition are not passed to the GROUP BY clause. The
GROUP BY clause summarizes the filtered data into groups, and then the HAVING clause is
applied to the groups to eliminate the groups that don't satisfy the HAVING condition. The
following example illustrates this:

SELECT cust_nbr, COUNT(order_nbr)

FROM cust_order

WHERE sale_price > 25

GROUP BY cust_nbr

HAVING COUNT(order_nbr) > 1;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 1 4

 4 4

 8 2

In this example, the WHERE clause first eliminates all the orders that don't satisfy the condition
sale_price > 25. The rest of the rows are grouped on cust_nbr. The HAVING clause

eliminates the customers that don't have more than one order.

 < Day Day Up >

 < Day Day Up >

4.4 Nested Group Operations

The examples discussed in this chapter so far all involved one group operation on a column of a
table. SQL also allows you to nest group functions, which means that one group function can
enclose an expression that is itself a group operation on another expression or column. Let's
consider the following example:

An economic slowdown has resulted in budget constraints for many employers, especially
in the IT industry. Budget constraints have forced companies to take a second look at the
money spent on employee compensation. Some companies have had to downsize their
workforce, others have had to cut down employee bonuses, while still others have cut the
employee base salaries. Your company is no exception, and is also under financial
pressure. Your CEO must take a serious look at the compensation structure of the
employees at various levels in various departments in the company.

Your CEO calls on you to query the Human Resources database and help him collect data.
By this time, you've already heard the rumors of upcoming "reductions in force" (RIFs) and
compensation cuts. This is your golden opportunity to impress your CEO with your skills,
to make sure you are not affected by the RIFs. Mess up now, and you can be pretty sure
that you have to start looking for another job in this increasingly competitive job market.

Here's your CEO's first question: What is the maximum amount of money spent by any
department on employee salaries?

To answer this question, you know that you need to compute the sum of the salaries of all the
employees in each department, and then find the maximum of those individual sums. Now that
you know about the GROUP BY clause, finding the sum of salaries for all the employees in each
department is easy:

SELECT dept_id, SUM(salary)

FROM employee

GROUP BY dept_id;

 DEPT_ID SUM(SALARY)

---------- -----------

 10 8750

 20 9900

 30 9400

However, your task is half done. You next need to find the maximum of the SUM(salary) values

returned by this query. One way to do that is to use the preceding query as an inline view.
(Inline views are discussed in detail in Chapter 5.) The following SELECT takes the results from

the earlier query, which is now a nested query, and applies the MAX function to retrieve the
highest SUM(salary) value:

SELECT MAX(sal) FROM

(SELECT dept_id, SUM(salary) sal

FROM employee

GROUP BY dept_id);

 MAX(SAL)

 9900

However, you don't even need to write a subquery. Another, simpler way of writing the query
you need is:

SELECT MAX(SUM(salary))

FROM employee

GROUP BY dept_id;

MAX(SUM(SALARY))

 9900

The MAX(SUM(salary)) in this query is a nested group operation. When the query executes, the

rows are aggregated by department. The innermost group function, in this case the SUM
function, is used to generate one salary value per department. This is no different than in

previous examples, but this time you have a MAX function seemingly left over. That MAX
function is applied to the entire collection of SUM(salary) values produced by the initial

aggregation. The result is a single value, the maximum amount of money that any one
department spends on employee salaries, which is just what your CEO wanted.

It never makes sense to use more than one level of nested group function.
MAX(SUM(salary)) returns a single value. One group function enclosing

another will always return a single value. No further aggregation is
possible.

Knowing only the maximum of the total salaries paid by a department isn't going to help much.
So, your CEO's next question is to ask about the minimum and average amounts of money
spent by any department on employee salaries. That should be an easy one to answer now. Just
apply the same pattern as used in the previous query:

SELECT MIN(SUM(salary)), AVG(SUM(salary))

FROM employee

GROUP BY dept_id;

MIN(SUM(SALARY)) AVG(SUM(SALARY))

---------------- ----------------

 8750 9350

Observing that the maximum (9900) is not too large compared to the minimum (8750) and the
average (9350), your CEO realizes that all the departments spend pretty much uniformly on
employee salaries. He next asks: What is the maximum, minimum, and average number of
employees in any department? Use the following query to answer that question:

SELECT MAX(COUNT(*)), MIN(COUNT(*)), AVG(COUNT(*))

FROM employee

GROUP BY dept_id;

MAX(COUNT(*)) MIN(COUNT(*)) AVG(COUNT(*))

------------- ------------- -------------

 6 3 4.66666667

The information that some departments have double the number of employees than some
others may give your CEO some ideas about how he wants to reorganize the company and
reduce cost. Hopefully, you have impressed your CEO with your SQL skills to the point that you
are sleeping better at nights now, secure that you, at least, will still be employed in the
morning.

 < Day Day Up >

 < Day Day Up >

Chapter 5. Subqueries
Some endeavors require a certain level of preparation before the main activity can commence.
Cooking, for example, often involves pre-mixing sets of ingredients before they are combined.
Similarly, certain types of SQL statements benefit from the creation of intermediate result sets
to aid in statement execution. The structure responsible for generating intermediate result sets
is the subquery. This chapter will define and illustrate the use of subqueries in SQL statements.

 < Day Day Up >

 < Day Day Up >

5.1 What Is a Subquery?

As we mentioned in Chapter 1, a subquery is a SELECT statement that is nested within another
SQL statement. For the purpose of this discussion, we will call the SQL statement that contains
a subquery the containing statement. Subqueries are executed prior to execution of their
containing SQL statement (see Section 5.3 later in this chapter for the exception to this rule),
and the result set generated by a subquery is discarded after its containing SQL statement has
finished execution. Thus, a subquery can be thought of as a temporary table with statement
scope.

Syntactically, subqueries are enclosed within parentheses. For example, the following SELECT
statement contains a simple subquery in its WHERE clause:

SELECT * FROM customer

WHERE cust_nbr = (SELECT 123 FROM dual);

The subquery in this statement is absurdly simple, and completely unnecessary, but it does
serve to illustrate a point. When this statement is executed, the subquery is evaluated first. The
result of that subquery then becomes a value in the WHERE clause expression:

SELECT * FROM customer

WHERE cust_nbr = 123;

With the subquery out of the way, the containing query can now be evaluated. In this case, it
would bring back information about customer number 123.

Subqueries are most often found in the WHERE clause of a SELECT, UPDATE, or DELETE
statement, as well as in the SET clause of an UPDATE statement. A subquery may either be
correlated with its containing SQL statement, meaning that it references one or more columns
from the containing statement, or it might reference nothing outside itself, in which case it is
called a noncorrelated subquery. A less commonly used but powerful variety of subquery, called
the inline view, occurs in the FROM clause of a SELECT statement. Inline views are always
noncorrelated; they are evaluated first and behave like unindexed tables cached in memory for
the remainder of the query.

 < Day Day Up >

 < Day Day Up >

5.2 Noncorrelated Subqueries

Noncorrelated subqueries allow each row from the containing SQL statement to be compared to
a set of values. You can divide noncorrelated subqueries into the following three categories,
depending on the number of rows and columns returned in their result set:

Single-row, single-column subqueries

Multiple-row, single-column subqueries

Multiple-column subqueries

Depending on the category, different sets of operators may be employed by the containing SQL
statement to interact with the subquery.

5.2.1 Single-Row, Single-Column Subqueries

A subquery that returns a single row with a single column is treated like a scalar by the
containing statement; not surprisingly, these types of subqueries are known as scalar
subqueries. Such a subquery may appear on either side of a condition, and the usual
comparison operators (=, <, >, !=, <=, >=) are employed. The following query illustrates the

utility of single-row, single-column subqueries by finding all employees earning an above-
average salary. The subquery returns the average salary, and the containing query then returns
all employees who earn more than that amount:

SELECT lname

FROM employee

WHERE salary > (SELECT AVG(salary)

 FROM employee);

LNAME

BLAKE

CLARK

SCOTT

KING

FORD

As this query demonstrates, it can be perfectly reasonable for a subquery to reference the same
tables as the containing query. In fact, subqueries are frequently used to isolate a subset of
records within a table. For example, many applications include maintenance routines that clean
up operational data, such as exception or load logs. Every week, a script might delete all but
the latest day's activity. For example:

DELETE FROM load_log

WHERE load_dt < (SELECT MAX(TRUNC(load_dt))

 FROM load_log);

Noncorrelated subqueries are also commonly found outside the WHERE clause, as illustrated by
the following query, which identifies the salesperson responsible for the most orders:

SELECT sales_emp_id, COUNT(*)

FROM cust_order

GROUP BY sales_emp_id

HAVING COUNT(*) = (SELECT MAX(COUNT(*))

 FROM cust_order

 GROUP BY sales_emp_id);

SALES_EMP_ID COUNT(*)

------------ ----------

 7354 8

This subquery calculates the number of orders attributable to each salesperson, and then
applies the MAX function to return only the highest number of orders. The containing query
performs the same aggregation as the subquery and then keeps only those salespeople whose
total sales count matches the maximum value returned by the subquery. Interestingly, the
containing query can return more than one row if multiple salespeople tie for the maximum
sales count, while the subquery is guaranteed to return a single row and column. If it seems
wasteful that the subquery and containing query both perform the same aggregation, it is; see
Chapter 14 for more efficient ways to handle these types of queries.

So far, you have seen scalar subqueries in the WHERE and HAVING clauses of SELECT
statements, along with the WHERE clause of a DELETE statement. Before delving deeper into
the different types of subqueries, let's explore where else subqueries can and can't be utilized in
SQL statements:

The FROM clause may contain any type of noncorrelated subquery.

The SELECT and ORDER BY clauses may contain scalar subqueries.

The GROUP BY clause may not contain subqueries.

The START WITH and CONNECT BY clauses, used for querying hierarchical data, may
contain subqueries and will be examined in detail in Chapter 8.

The WITH clause contains a named noncorrelated subquery that can be referenced
multiple times within the containing query but executes only once (see the examples later
in this chapter).

The USING clause of a MERGE statement may contain noncorrelated subqueries.

The SET clause of UPDATE statements may contain scalar or single-row, multiple-column
subqueries.

INSERT statements may contain scalar subqueries in the VALUES clause.

5.2.2 Multiple-Row, Single-Column Subqueries

Now that you know how to use single-row, single-column subqueries, let's explore how to use
subqueries that return multiple rows. When a subquery returns more than one row, it is not
possible to use only comparison operators, since a single value cannot be directly compared to
a set of values. However, a single value can be compared to each value in a set. To accomplish
this, the special keywords ANY and ALL are used with comparison operators to determine if a
value is equal to (or less than, greater than, etc.) any member of the set or all members of the
set. Consider the following query:

SELECT fname, lname

FROM employee

WHERE dept_id = 30 AND salary >= ALL

 (SELECT salary

 FROM employee

 WHERE dept_id = 30);

FNAME LNAME

-------------------- --------------------

MARION BLAKE

The subquery returns the set of salaries for department 30, and the containing query checks
each employee in the department to see if her salary is greater or equal to every salary
returned by the subquery. Thus, this query retrieves the name of the highest paid person in
department 30. While every employee has a salary >= any of the salaries in the department,
only the highest paid employee has a salary >= all of the salaries in the department. If multiple
employees tie for the highest salary in the department, multiple names will be returned.

Another way to phrase the previous query is to find the employee whose salary is not less than

any other salary in her department. You can do this using the ANY operator:

SELECT fname, lname

FROM employee

WHERE dept_id = 30 AND NOT salary < ANY

 (SELECT salary

 FROM employee

 WHERE dept_id = 30);

There are almost always multiple ways to phrase the same query. One of the challenges of
writing SQL is striking the right balance between efficiency and readability. In this case, we
might prefer using AND salary >= ALL over AND NOT salary < ANY because the first variation

is easier to understand; however, the latter form might prove more efficient, since each
evaluation of the subquery results requires from 1 to N comparisons when using ANY versus
exactly N comparisons when using ALL.

If there are 100 people in the department, each of the 100 salaries needs
to be compared to the entire set of 100. When using ANY, the comparison
can be suspended as soon as a larger salary is identified in the set,
whereas using ALL requires 100 comparisons to ensure that there are no
smaller salaries in the set.

The next query uses the ANY operator to find all employees who have been with the company
longer than any top-level manager:

SELECT fname, lname

FROM employee

WHERE manager_emp_id IS NOT NULL

 AND hire_date < ANY

 (SELECT hire_date

 FROM employee

 WHERE manager_emp_id IS NULL);

FNAME LNAME

-------------------- --------------------

JOHN SMITH

KEVIN ALLEN

CYNTHIA WARD

TERRY JONES

KENNETH MARTIN

MARION BLAKE

CAROL CLARK

MARY TURNER

The subquery returns the set of hire dates for all top-level managers, and the containing query
returns the names of non-top-level managers whose hire date is previous to any returned by
the subquery.

For the previous three queries, failure to include either the ANY or ALL operators may result in
the following error:

ORA-01427: single-row subquery returns more than one row

The wording of this error message is a bit confusing. After all, how can a single-row subquery
return multiple rows? What the error message is trying to convey is that a multiple-row
subquery has been identified where only a single-row subquery is allowed. If you are not
absolutely certain that your subquery will return exactly one row, you must include ANY or ALL
to ensure your code doesn't fail in the future.

Along with ANY and ALL, you may also use the IN operator for working with multi-row
subqueries. Using IN with a subquery is functionally equivalent to using = ANY, and returns

TRUE if a match is found in the set returned by the subquery. The following query uses IN to
postpone shipment of all orders containing parts that are not currently in stock:

UPDATE cust_order

SET expected_ship_dt = TRUNC(SYSDATE) + 1

WHERE ship_dt IS NULL

 AND order_nbr IN

 (SELECT l.order_nbr

 FROM line_item l INNER JOIN part p

 ON l.part_nbr = p.part_nbr

 WHERE p.inventory_qty = 0);

The subquery returns the set of orders requesting out-of-stock parts, and the containing
UPDATE statement modifies the expected ship date of all orders in the set. We think you will
agree that IN is more intuitive than = ANY, which is why IN is almost always used in such
situations. Similarly, you can use NOT IN instead of using != ALL as demonstrated by the next

query, which deletes all customers who haven't placed an order in the past five years:

DELETE FROM customer

WHERE cust_nbr NOT IN

 (SELECT cust_nbr

 FROM cust_order

 WHERE order_dt >= TRUNC(SYSDATE) -- (365 * 5));

The subquery returns the set of customers that have placed an order in the past five years, and
the containing DELETE statement removes all customers that are not in the set returned by the
subquery.

Finding members of one set that do not exist in another set is referred to as an anti-join. As the
name implies, an anti-join is the opposite of a join; rows from table A are returned if the
specified data is not found in table B. The Oracle optimizer can employ multiple strategies for
formulating execution plans for such queries, including a merge anti-join or a hash anti-join.

Since this is not explicitly a tuning book (in our opinion, mastering the SQL
implementation is the best tuning tool available), we will refrain from
delving into the inner workings of the Oracle optimizer and how the
optimizer can be influenced via hints. For more information, see Oracle
SQL Tuning Pocket Reference (O'Reilly).

5.2.3 Multiple-Column Subqueries

While all of the previous examples compare a single column from the containing SQL statement
to the result set returned by the subquery, it is also possible to issue a subquery against
multiple columns. Consider the following UPDATE statement, which rolls up data from an
operational table into an aggregate table:

UPDATE monthly_orders SET

 tot_orders = (SELECT COUNT(*)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-AUG-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL),

 max_order_amt = (SELECT MAX(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-AUG-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL),

 min_order_amt = (SELECT MIN(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-AUG-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL),

 tot_amt = (SELECT SUM(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-AUG-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL)

WHERE month = 7 and year = 2001;

The UPDATE statement modifies four columns in the monthly_orders table, and values for each
of the four columns are calculated by aggregating data in the cust_order table. Looking

closely, you can see that the WHERE clauses for all four subqueries are identical; only the
aggregation function differs in the four queries. The next query demonstrates how all four
columns can be populated with a single trip through the cust_order table by using a single

subquery that returns four columns:

UPDATE monthly_orders

SET (tot_orders, max_order_amt, min_order_amt, tot_amt) =

 (SELECT COUNT(*), MAX(sale_price), MIN(sale_price), SUM(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-AUG-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL)

WHERE month = 7 and year = 2001;

This second statement achieves the same result more efficiently than the first by performing
four aggregations during one trip through the cust_order table, rather than one aggregation

during each of four separate trips.

Whereas the previous example demonstrates the use of a multiple-column subquery in the SET
clause of an UPDATE statement, such subqueries may also be utilized in the WHERE clause of a
SELECT, UPDATE, or DELETE statement. The next statement deletes all items from open orders
that include discontinued parts:

DELETE FROM line_item

WHERE (order_nbr, part_nbr) IN

 (SELECT c.order_nbr, p.part_nbr

 FROM cust_order c INNER JOIN line_item li

 ON c.order_nbr = li.order_nbr

 INNER JOIN part p

 ON li.part_nbr = p.part_nbr

 WHERE c.ship_dt IS NULL AND c.cancelled_dt IS NULL

 AND p.status = 'DISCONTINUED');

Note the use of the IN operator in the WHERE clause. Two columns are listed together in
parentheses prior to the IN keyword. Values in these two columns are compared to the set of
two values returned by each row of the subquery. If a match is found, the row is removed from
the line_item table.

5.2.4 The WITH Clause

You may find yourself in a situation where you need to reference the same noncorrelated
subquery multiple times in the same query. For example, let's say you want to show all
employees making more than the average salary, and you want to show how much above the
average each employee makes. You can formulate this using the same subquery in both the
FROM and WHERE clauses:

SELECT e.emp_id, e.lname, e.fname,

 ROUND(e.salary - (SELECT AVG(salary) FROM employee)) above_avg

FROM employee e

WHERE e.salary > (SELECT AVG(salary) FROM employee);

 EMP_ID LNAME FNAME ABOVE_AVG

---------- -------------------- -------------------- ----------

 7698 BLAKE MARION 846

 7782 CLARK CAROL 446

 7788 SCOTT DONALD 996

 7839 KING FRANCIS 2996

 7902 FORD JENNIFER 996

To eliminate the inefficiency of executing the same subquery multiple times, Oracle introduced
the WITH clause in the Oracle9i release. Using the WITH clause, you can place the subquery
that calculates the average salary at the top of the query and reference it throughout the query:

WITH avg_sal AS (SELECT AVG(salary) val FROM employee)

SELECT e.emp_id, e.lname, e.fname,

 (SELECT ROUND(e.salary - val) FROM avg_sal) above_avg

FROM employee e

WHERE e.salary > (SELECT val FROM avg_sal);

 EMP_ID LNAME FNAME ABOVE_AVG

---------- -------------------- -------------------- ----------

 7698 BLAKE MARION 846

 7782 CLARK CAROL 446

 7788 SCOTT DONALD 996

 7839 KING FRANCIS 2996

 7902 FORD JENNIFER 996

The WITH clause creates a temporary data set called, in this case, avg_sal, which, in this case,
consists of a single row of data having a single column, val. This data set is generated once and
can be referenced throughout the containing query. To access the data in avg_sal, you query it

as if it were a table. In this regard, it acts like a temporary table with statement scope. As you
will see shortly, the WITH clause acts in many ways like another type of subquery called the
inline view.

 < Day Day Up >

 < Day Day Up >

5.3 Correlated Subqueries

A subquery that references one or more columns from its containing SQL statement is called a
correlated subquery. Unlike noncorrelated subqueries, which are executed exactly once prior to
execution of the containing statement, a correlated subquery is executed once for each
candidate row in the intermediate result set of the containing query. For example, consider the
following query, which locates all parts supplied by Acme Industries that have been purchased
10 or more times since July 2001:

SELECT p.part_nbr, p.name

FROM supplier s INNER JOIN part p

ON s.supplier_id = p.supplier_id

WHERE s.name = 'Acme Industries'

 AND 10 <=

 (SELECT COUNT(*)

 FROM cust_order co INNER JOIN line_item li

 ON li.order_nbr = co.order_nbr

 WHERE li.part_nbr = p.part_nbr

 AND co.order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY'));

The reference to p.part_nbr is what makes the subquery correlated; values for p.part_nbr

must be supplied by the containing query before the subquery can execute. If there are 10,000
parts in the part table, but only 100 are supplied by Acme Industries, the subquery will be
executed once for each of the 100 rows in the intermediate result set created by joining the
part and supplier tables.

It is possible to ask for the subquery to be evaluated earlier in the
execution plan using the PUSH_SUBQ hint; once again, we suggest you
pick up a good book on Oracle tuning if you are interested in learning more
about how Oracle actually executes subqueries.

Correlated subqueries are often used to test whether relationships exist without regard to
cardinality. We might, for example, want to find all parts that have shipped at least once since
January 2002. The EXISTS operator is used for these types of queries, as illustrated by the
following query:

SELECT p.part_nbr, p.name, p.unit_cost

FROM part p

WHERE EXISTS

 (SELECT 1

 FROM line_item li INNER JOIN cust_order co

 ON li.order_nbr = co.order_nbr

 WHERE li.part_nbr = p.part_nbr

 AND co.ship_dt >= TO_DATE('01-JAN-2002','DD-MON-YYYY'));

As long as the subquery returns one or more rows, the EXISTS condition is satisfied without
regard for how many rows were actually returned by the subquery. Since the EXISTS operator
returns TRUE or FALSE depending on the number of rows returned by the subquery, the actual
columns returned by the subquery are irrelevant. The SELECT clause requires at least one
column, however, so it is common practice to use either the literal "1" or the wildcard "*".

Conversely, you can test whether a relationship does not exist:

UPDATE customer c

SET c.inactive_ind = 'Y', c.inactive_dt = TRUNC(SYSDATE)

WHERE c.inactive_dt IS NULL

 AND NOT EXISTS (SELECT 1 FROM cust_order co

 WHERE co.cust_nbr = c.cust_nbr

 AND co.order_dt > TRUNC(SYSDATE) -- 365);

This statement makes all customer records inactive for those customers who haven't placed an
order in the past year. Such queries are commonly found in maintenance routines. For example,
foreign key constraints might prevent child records from referring to a nonexistent parent, but it
is possible to have parent records without children. If business rules prohibit this situation, you
might run a utility each week that removes these records, as in:

DELETE FROM cust_order co

WHERE co.order_dt > TRUNC(SYSDATE) -- 7

 AND co.cancelled_dt IS NULL

 AND NOT EXISTS

 (SELECT 1 FROM line_item li

 WHERE li.order_nbr = co.order_nbr);

A query that includes a correlated subquery using the EXISTS operator is referred to as a semi-
join. A semi-join includes rows in table A for which corresponding data is found one or more
times in table B. Thus, the size of the final result set is unaffected by the number of matches

found in table B. Similar to the anti-join discussed earlier, the Oracle optimizer can employ
multiple strategies for formulating execution plans for such queries, including a merge semi-join
or a hash semi-join.

Although they are very often used together, the use of correlated subqueries does not require
the EXISTS operator. If your database design includes denormalized columns, for example, you
might run nightly routines to recalculate the denormalized data, as in:

UPDATE customer c

SET (c.tot_orders, c.last_order_dt) =

 (SELECT COUNT(*), MAX(co.order_dt)

 FROM cust_order co

 WHERE co.cust_nbr = c.cust_nbr

 AND co.cancelled_dt IS NULL);

Because a SET clause assigns values to columns in the table, the only operator allowed is =. The

subquery returns exactly one row (thanks to the aggregation functions), so the results may be
safely assigned to the target columns. Rather than recalculating the entire sum each day, a
more efficient method might be to update only those customers who placed orders today:

UPDATE customer c SET (c.tot_orders, c.last_order_dt) =

 (SELECT c.tot_orders + COUNT(*), MAX(co.order_dt)

 FROM cust_order co

 WHERE co.cust_nbr = c.cust_nbr

 AND co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE))

WHERE c.cust_nbr IN

 (SELECT co.cust_nbr

 FROM cust_order co

 WHERE co.order_dt >= TRUNC(SYSDATE)

 AND co.cancelled_dt IS NULL);

As the previous statement shows, data from the containing query can be used for other
purposes in the correlated subquery than just join conditions in the WHERE clause. In this
example, the SELECT clause of the correlated subquery adds today's sales totals to the previous
value of tot_orders in the customer table to arrive at the new value.

Along with the WHERE clause of SELECT, UPDATE, and DELETE statements, and the SET clause
of UPDATE statements, another potent use of correlated subqueries is in the SELECT clause, as
illustrated by the following:

SELECT d.dept_id, d.name,

 (SELECT COUNT(*) FROM employee e

 WHERE e.dept_id = d.dept_id) empl_cnt

FROM department d;

 DEPT_ID NAME EMPL_CNT

---------- -------------------- ----------

 10 ACCOUNTING 3

 20 RESEARCH 5

 30 SALES 6

 40 OPERATIONS 0

The empl_cnt column returned from this query is derived from a correlated subquery that

returns the number of employees assigned to each department. Note that the OPERATIONS
department has no assigned employees, so the subquery returns 0.

To appreciate the value of subqueries in the SELECT clause, let's compare the previous query to
a more traditional method using GROUP BY:

SELECT d.dept_id, d.name, COUNT(e.emp_id) empl_cnt

FROM department d LEFT OUTER JOIN employee e

 ON d.dept_id = e.dept_id

GROUP BY d.dept_id, d.name;

 DEPT_ID NAME EMPL_CNT

---------- -------------------- ----------

 10 ACCOUNTING 3

 20 RESEARCH 5

 30 SALES 6

 40 OPERATIONS 0

To include every department in the result set, and not just those with assigned employees, you
must perform an outer join from department to employee. The results are sorted by

department ID and name, and the number of employees are counted within each department.
In our opinion, the previous query employing the scalar correlated subquery is easier to
understand. It does not need an outer join (or any join at all), and does not necessitate a sort
operation, making it an attractive alternative to the GROUP BY version.

 < Day Day Up >

 < Day Day Up >

5.4 Inline Views

Most texts covering SQL define the FROM clause of a SELECT statement as containing a list of
tables and/or views. Please abandon this definition and replace it with the following:

The FROM clause contains a list of data sets.

In this light, it is easy to see how the FROM clause can contain tables (permanent data sets),
views (virtual data sets), and SELECT statements (temporary data sets). SELECT statements, or
inline views as mentioned earlier, are one of the most powerful, yet underutilized features of
Oracle SQL.

In our opinion, the name "inline view" is confusing and tends to intimidate
people. Since it is a subquery that executes prior to the containing query, a
more palatable name might have been "pre-query."

Here's a simple example of an inline view:

SELECT d.dept_id, d.name, emp_cnt.tot

FROM department d INNER JOIN

 (SELECT dept_id, COUNT(*) tot

 FROM employee

 GROUP BY dept_id) emp_cnt

 ON d.dept_id = emp_cnt.dept_id;

 DEPT_ID NAME TOT

---------- -------------------- ----------

 10 ACCOUNTING 3

 20 RESEARCH 5

 30 SALES 6

In this example, the FROM clause references the department table and an inline view called
emp_cnt, which calculates the number of employees in each department. The two sets are
joined using dept_id and the ID, name, and employee count are returned for each department.

While this example is fairly simple, inline views allow you to do things in a single query that
might otherwise require multiple select statements or a procedural language to accomplish.

5.4.1 Inline View Basics

Because the result set from an inline view is referenced by other elements of the containing
query, you must give your inline view a name and provide aliases for all ambiguous columns. In
the previous example, the inline view was given the name "emp_cnt", and the alias "tot" was
assigned to the COUNT(*) column. Similar to other types of subqueries, inline views may join

multiple tables, call built-in and user-defined functions, specify optimizer hints, and include
GROUP BY, HAVING, and CONNECT BY clauses. Unlike other types of subqueries, an inline view
may also contain an ORDER BY clause, which opens several interesting possibilities (see Section
5.5 later in the chapter for an example using ORDER BY in a subquery).

Inline views are particularly useful when you need to combine data at different levels of
aggregation. In the previous example, we needed to retrieve all rows from the department
table and include aggregated data from the employee table, so we chose to do the aggregation
within an inline view and join the results to the department table. Anyone involved in report

generation or data warehouse extraction, transformation, and load (ETL) applications has
doubtless encountered situations where data from various levels of aggregation needs to be
combined; with inline views, you should be able to produce the desired results in a single SQL
statement rather than having to break the logic into multiple pieces or write code in a
procedural language.

When considering using an inline view, ask yourself the following questions:

What value does the inline view add to the readability and, more importantly, the
performance of the containing query?

How large will the result set generated by the inline view be?

How often, if ever, will I have need of this particular data set?

Generally, using an inline view should enhance the readability and performance of the query,
and it should generate a manageable data set that is of no value to other statements or
sessions; otherwise, you may want to consider building a permanent or temporary table so that
you can share the data between sessions and build additional indexes as needed.

5.4.2 Query Execution

Inline views are always executed prior to the containing query and, thus, may not reference
columns from other tables or inline views from the same query. After execution, the containing
query interacts with an inline view as if it were an unindexed, in-memory table. If inline views
are nested, the innermost inline view is executed first, followed by the next-innermost inline
view, and so on. Consider the following query:

SELECT d.dept_id dept_id, d.name dept_name,

 dept_orders.tot_orders tot_orders

FROM department d INNER JOIN

 (SELECT e.dept_id dept_id, SUM(emp_orders.tot_orders) tot_orders

 FROM employee e INNER JOIN

 (SELECT sales_emp_id, COUNT(*) tot_orders

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL

 GROUP BY sales_emp_id

) emp_orders

 ON e.emp_id = emp_orders.sales_emp_id

 GROUP BY e.dept_id

) dept_orders

ON d.dept_id = dept_orders.dept_id;

 DEPT_ID DEPT_NAME TOT_ORDERS

---------- -------------------- ----------

 30 SALES 6

If you're new to inline views, this query might be intimidating. Start with the innermost query,
understand the result set generated by that query, and move outward to the next level. Since
inline views must be noncorrelated, you can run each inline view's SELECT statement
individually and look at the results. (From the standpoint of the inline view, this would
constitute an "out-of-query experience.") For the previous query, executing the emp_orders

inline view generates the following result set:

SELECT sales_emp_id, COUNT(*) tot_orders

FROM cust_order

WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL

GROUP BY sales_emp_id;

SALES_EMP_ID TOT_ORDERS

------------ ----------

 7354 4

 7368 4

 7654 6

The emp_orders set contains all salespeople who booked orders since 2001, along with the total
number of orders booked. The next level up is the dept_orders inline view, which joins the
emp_orders data set to the employee table and aggregates the number of orders up to the

department level. The resulting data set looks as follows:

SELECT e.dept_id dept_id, SUM(emp_orders.tot_orders) tot_orders

FROM employee e INNER JOIN

 (SELECT sales_emp_id, COUNT(*) tot_orders

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL

 GROUP BY sales_emp_id

) emp_orders

ON e.emp_id = emp_orders.sales_emp_id

GROUP BY e.dept_id;

 DEPT_ID TOT_ORDERS

---------- ----------

 30 6

Finally, the dept_orders set is joined to the department table, and the final result set is:

 DEPT_ID DEPT_NAME TOT_ORDERS

---------- -------------------- ----------

 30 SALES 6

After query execution completes, the emp_orders and dept_orders result sets are discarded.

5.4.3 Data Set Fabrication

Along with querying existing tables, inline views may be used to fabricate special-purpose data
sets that don't exist in the database. For example, you might want to aggregate orders over the
past year by small, medium, and large orders, but the concept of order sizes may not have
been defined in your database. You could build a table with three records to define the different
sizes and their boundaries, but you only need this information for a single query, and you don't

want to clutter the database with dozens of small, special-purpose tables. One solution is to use
the UNION set operator to combine individual sets of data into a single set. (Set operators will
be covered in detail in Chapter 7.) For example:

SELECT 'SMALL' name, 0 lower_bound, 29 upper_bound from dual

UNION ALL

SELECT 'MEDIUM' name, 30 lower_bound, 79 upper_bound from dual

UNION ALL

SELECT 'LARGE' name, 80 lower_bound, 9999999 upper_bound from dual;

NAME LOWER_BOUND UPPER_BOUND

------ ----------- -----------

SMALL 0 29

MEDIUM 30 79

LARGE 80 9999999

You can then wrap this query in an inline view and use it to do your aggregations:

SELECT sizes.name order_size, SUM(co.sale_price) tot_dollars

FROM cust_order co INNER JOIN

 (SELECT 'SMALL' name, 0 lower_bound, 29 upper_bound from dual

 UNION ALL

 SELECT 'MEDIUM' name, 30 lower_bound, 79 upper_bound from dual

 UNION ALL

 SELECT 'LARGE' name, 80 lower_bound, 9999999 upper_bound from dual

) sizes

ON co.sale_price BETWEEN sizes.lower_bound AND sizes.upper_bound

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')

GROUP BY sizes.name

ORDER BY sizes.name DESC;

ORDER_ TOT_DOLLARS

------ -----------

SMALL 100

MEDIUM 292

LARGE 396

One word of caution: when constructing a set of ranges, make sure there are no gaps through
which data may slip. For example, an order totaling $29.50 would not appear in either the small
or medium categories, since $29.50 is neither between $0 and $29 nor between $30 and $79.
One solution is to overlap the region boundaries so that there is no gap through which data can
slip. Note that you can no longer use BETWEEN with this approach:

SELECT sizes.name order_size, SUM(co.sale_price) tot_dollars

FROM cust_order co INNER JOIN

(SELECT 'SMALL' name, 0 lower_bound, 30 upper_bound from dual

 UNION ALL

 SELECT 'MEDIUM' name, 30 lower_bound, 80 upper_bound from dual

 UNION ALL

 SELECT 'LARGE' name, 80 lower_bound, 9999999 upper_bound from dual

) sizes

ON co.sale_price >= sizes.lower_bound

 AND co.sale_price < sizes.upper_bound

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001', 'DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-JAN-2002', 'DD-MON-YYYY')

GROUP BY sizes.name

ORDER BY sizes.name DESC;

ORDER_ TOT_DOLLARS

------ -----------

SMALL 100

MEDIUM 292

LARGE 396

Now that you have neither an overlap nor a gap between the buckets, you can be sure that no
data will be left out of the aggregations.

Fabricated data sets can also be useful for determining what data is not stored in a database.
For example, your manager might ask for a report listing the aggregate sales for each day of
the year 2001, including days with no sales. Although the cust_order table contains records for

every day that had orders, there is no table in the database containing a record for every day of
the year. To provide your manager with an answer, you will need to fabricate a driving table
containing a record for every day in 2001, and then outer join it to the set of aggregated sales
for the same period.

Since a year contains either 365 or 366 days, we will build the set {0, 1, 2, ..., 399}, add each
member of the set to the start date of 01-JAN-2001, and let Oracle throw away the rows that
don't belong in 2001. To build the set {0, 1, 2, ..., 399}, we will create the sets {0, 1, 2, ...,
10}, {0, 10, 20, 30, ..., 90}, and {0, 100, 200, 300} and add members of the three sets across
the Cartesian product:

SELECT ones.x + tens.x + hundreds.x tot

FROM

 (SELECT 0 x FROM dual UNION ALL

 SELECT 1 x FROM dual UNION ALL

 SELECT 2 x FROM dual UNION ALL

 SELECT 3 x FROM dual UNION ALL

 SELECT 4 x FROM dual UNION ALL

 SELECT 5 x FROM dual UNION ALL

 SELECT 6 x FROM dual UNION ALL

 SELECT 7 x FROM dual UNION ALL

 SELECT 8 x FROM dual UNION ALL

 SELECT 9 x FROM dual) ones

CROSS JOIN

 (SELECT 0 x FROM dual UNION ALL

 SELECT 10 x FROM dual UNION ALL

 SELECT 20 x FROM dual UNION ALL

 SELECT 30 x FROM dual UNION ALL

 SELECT 40 x FROM dual UNION ALL

 SELECT 50 x FROM dual UNION ALL

 SELECT 60 x FROM dual UNION ALL

 SELECT 70 x FROM dual UNION ALL

 SELECT 80 x FROM dual UNION ALL

 SELECT 90 x FROM dual) tens

CROSS JOIN

 (SELECT 0 x FROM dual UNION ALL

 SELECT 100 x FROM dual UNION ALL

 SELECT 200 x FROM dual UNION ALL

 SELECT 300 x FROM dual) hundreds;

 TOT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 . . .

 390

 391

 392

 393

 394

 395

 396

 397

 398

 399

Since this query has no join conditions, every combination of the rows in the ones, tens, and
hundreds sets will be generated, and the sum of the three numbers in each row will produce the

set {0, 1, 2, ..., 399}. The next query generates the set of days in 2001 by adding each number
in the set to the base date and then discarding days that fall in 2002:

SELECT days.dt

FROM

 (SELECT TO_DATE('01-JAN-2001', 'DD-MON-YYYY') +

 ones.x + tens.x + hundreds.x dt

 FROM

 (SELECT 0 x FROM dual UNION ALL

 SELECT 1 x FROM dual UNION ALL

 SELECT 2 x FROM dual UNION ALL

 SELECT 3 x FROM dual UNION ALL

 SELECT 4 x FROM dual UNION ALL

 SELECT 5 x FROM dual UNION ALL

 SELECT 6 x FROM dual UNION ALL

 SELECT 7 x FROM dual UNION ALL

 SELECT 8 x FROM dual UNION ALL

 SELECT 9 x FROM dual) ones

 CROSS JOIN

 (SELECT 0 x FROM dual UNION ALL

 SELECT 10 x FROM dual UNION ALL

 SELECT 20 x FROM dual UNION ALL

 SELECT 30 x FROM dual UNION ALL

 SELECT 40 x FROM dual UNION ALL

 SELECT 50 x FROM dual UNION ALL

 SELECT 60 x FROM dual UNION ALL

 SELECT 70 x FROM dual UNION ALL

 SELECT 80 x FROM dual UNION ALL

 SELECT 90 x FROM dual) tens

 CROSS JOIN

 (SELECT 0 x FROM dual UNION ALL

 SELECT 100 x FROM dual UNION ALL

 SELECT 200 x FROM dual UNION ALL

 SELECT 300 x FROM dual) hundreds) days

WHERE days.dt < TO_DATE('01-JAN-2002', 'DD-MON-YYYY');

DT

01-JAN-01

02-JAN-01

03-JAN-01

04-JAN-01

05-JAN-01

06-JAN-01

07-JAN-01

08-JAN-01

09-JAN-01

10-JAN-01

 . . .

20-DEC-01

21-DEC-01

22-DEC-01

23-DEC-01

24-DEC-01

25-DEC-01

26-DEC-01

27-DEC-01

28-DEC-01

29-DEC-01

30-DEC-01

31-DEC-01

Since 2001 is not a leap year, the result set will contain 365 rows, one for each day of 2001.
This query can then be wrapped in another inline view and used as the driving table for
generating the report. Whether you would actually want to use such a strategy in your code is
up to you; the main purpose of this example is to help get the creative juices flowing.

5.4.4 Overcoming SQL Restrictions

The use of certain features of Oracle SQL can impose restrictions on our SQL statements. When
these features are isolated from the rest of the query inside an inline view, however, these
restrictions can be sidestepped. This section explores how inline views can overcome limitations
with hierarchical and aggregation queries.

5.4.4.1 Hierarchical queries

Hierarchical queries allow recursive relationships to be traversed. As an example of a recursive
relationship, consider a table called region that holds data about sales territories. Regions are
arranged in a hierarchy, and each record in the region table references the region in which it is

contained, as illustrated by the following data:

SELECT * FROM region;

REGION_ID NAME SUPER_REGION_ID

---------- -------------------- ---------------

 1 North America

 2 Canada 1

 3 United States 1

 4 Mexico 1

 5 New England 3

 6 Mid-Atlantic 3

 7 Southeast US 3

 8 Southwest US 3

 9 Northwest US 3

 10 Central US 3

 11 Europe

 12 France 11

 13 Germany 11

 14 Spain 11

Each record in the customer table references the smallest of its applicable regions. Given a

particular region, it is possible to construct a query that traverses up or down the hierarchy by
utilizing the START WITH and CONNECT BY clauses:

SELECT region_id, name, super_region_id

 FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id;

REGION_ID NAME SUPER_REGION_ID

---------- -------------------- ---------------

 1 North America

 2 Canada 1

 3 United States 1

 5 New England 3

 6 Mid-Atlantic 3

 7 Southeast US 3

 8 Southwest US 3

 9 Northwest US 3

 10 Central US 3

 4 Mexico 1

The query just shown traverses the region hierarchy starting with the North America region and
working down the tree. Looking carefully at the results, you can see that the Canada, United
States, and Mexico regions all point to the North America region via the super_region_id field.

The remainder of the rows all point to the United States region. Thus, we have identified a
three-level hierarchy with one node at the top, three nodes in the second level, and six nodes in
the third level underneath the United States node. For a detailed look at hierarchical queries,
see Chapter 8.

Imagine that you have been asked to generate a report showing total sales in 2001 for each
subregion of North America. However, hierarchical queries have the restriction that the table
being traversed cannot be joined to other tables within the same query, so it might seem
impossible to generate the report from a single query. Using an inline view, however, you can
isolate the hierarchical query on the region table from the customer and cust_order tables, as

in:

SELECT na_regions.name region_name,

 SUM(co.sale_price) total_sales

FROM cust_order co INNER JOIN customer c

 ON co.cust_nbr = c.cust_nbr

INNER JOIN

 (SELECT region_id, name

 FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id) na_regions

 ON c.region_id = na_regions.region_id

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')

GROUP BY na_regions.name;

REGION_NAME TOTAL_SALES

-------------------- -----------

Mid-Atlantic 198

New England 590

Even though the na_regions set includes the North America and United States regions,

customer records always point to the smallest applicable region, which is why these particular
regions do not show up in the final result set.

By placing the hierarchical query within an inline view, you are able to temporarily flatten the
region hierarchy to suit the purposes of the query, which allows you to bypass the restriction on
hierarchical queries without resorting to splitting the logic into multiple pieces. The next section
will demonstrate a similar strategy for working with aggregate queries.

5.4.4.2 Aggregate queries

Queries that perform aggregations have the following restriction: all nonaggregate columns in
the SELECT clause must be included in the GROUP BY clause. Consider the following query,
which aggregates sales data by customer and salesperson, and then adds supporting data from
the customer, region, employee, and department tables:

SELECT c.name customer, r.name region,

 e.fname || ' ' || e.lname salesperson, d.name department,

 SUM(co.sale_price) total_sales

FROM cust_order co INNER JOIN customer c

 ON co.cust_nbr = c.cust_nbr

 INNER JOIN region r

 ON c.region_id = r.region_id

 INNER JOIN employee e

 ON co.sales_emp_id = e.emp_id

 INNER JOIN department d

 ON e.dept_id = d.dept_id

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

GROUP BY c.name, r.name, e.fname || ' ' || e.lname, d.name;

CUSTOMER REGION SALESPERSON DEPARTMENT TOTAL_SALES

---------------- ------------- --------------- ------------ -----------

Zantech Inc. Mid-Atlantic KENNETH MARTIN SALES 198

Flowtech Inc. New England KENNETH MARTIN SALES 180

Since every nonaggregate in the SELECT clause must be included in the GROUP BY clause, you
are forced to sort on five columns, since a sort is needed to generate the groupings. Because
every customer is in one and only one region and every employee is in one and only one
department, you really only need to sort on the customer and employee columns to produce

the desired results. So the Oracle engine is wasting its time sorting on the region and
department names.

However, by isolating the aggregation from the supporting tables, you can create a more
efficient and more understandable query:

SELECT c.name customer, r.name region,

 e.fname || ' ' || e.lname salesperson, d.name department,

 cust_emp_orders.total total_sales

FROM

 (SELECT cust_nbr, sales_emp_id, SUM(sale_price) total

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 GROUP BY cust_nbr, sales_emp_id) cust_emp_orders

 INNER JOIN customer c

 ON cust_emp_orders.cust_nbr = c.cust_nbr

 INNER JOIN region r

 ON c.region_id = r.region_id

 INNER JOIN employee e

 ON cust_emp_orders.sales_emp_id = e.emp_id

 INNER JOIN department d

 ON e.dept_id = d.dept_id;

CUSTOMER REGION SALESPERSON DEPARTMENT TOTAL_SALES

---------------- ------------- --------------- ------------ -----------

Flowtech Inc. New England KENNETH MARTIN SALES 180

Zantech Inc. Mid-Atlantic KENNETH MARTIN SALES 198

Since the cust_order table includes the customer number and salesperson ID, you can perform

the aggregation against these two columns without the need to include the other four tables.
Not only are you sorting on fewer columns, you are sorting on numeric fields (customer number
and employee ID) rather than potentially lengthy strings (customer name, region name,
employee name, and department name). The containing query uses the cust_nbr and
sales_emp_id columns from the inline view to join to the customer and employee tables, which
in turn are used to join to the region and department tables.

By performing the aggregation within an inline view, you have sidestepped the restriction that
all nonaggregates be included in the GROUP BY clause. You have also shortened execution time
by eliminating unnecessary sorts and minimized the number of joins to the customer, region,
employee, and department tables. Depending on the amount of data in the tables, these

improvements could yield significant performance gains.

5.4.5 Inline Views in DML Statements

Now that you are comfortable with inline views, it's time to add another wrinkle: inline views
may also be used in INSERT, UPDATE, and DELETE statements. In most cases, using an inline
view in a DML statement improves readability but otherwise adds little value to statement
execution. To illustrate, we'll begin with a fairly simple UPDATE statement and then show the
equivalent statement using an inline view:

UPDATE cust_order co

SET co.expected_ship_dt = co.expected_ship_dt + 7

WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND EXISTS (SELECT 1

 FROM line_item li INNER JOIN part p

 ON li.part_nbr = p.part_nbr

 WHERE li.order_nbr = co.order_nbr

 AND p.inventory_qty = 0);

This statement uses an EXISTS condition to locate orders that include out-of-stock parts. The
next version uses an inline view called suspended_orders to identify the same set of orders:

UPDATE (SELECT co.expected_ship_dt exp_ship_dt

 FROM cust_order co

 WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND EXISTS (SELECT 1

 FROM line_item li INNER JOIN part p

 ON li.part_nbr = p.part_nbr

 WHERE li.order_nbr = co.order_nbr

 AND p.inventory_qty = 0)) suspended_orders

SET suspended_orders.exp_ship_dt = suspended_orders.exp_ship_dt + 7;

In the first statement, the WHERE clause of the UPDATE statement determines the set of rows to
be updated, whereas in the second statement, the result set returned by the SELECT statement
determines the target rows. Otherwise, the two statements are identical. For the inline view to
add extra value to the statement, it must be able to do something that the simple update
statement cannot do: join multiple tables. The following version attempts to do just that by
replacing the subquery with a three-table join:

UPDATE (SELECT co.expected_ship_dt exp_ship_dt

 FROM cust_order co INNER JOIN line_item li

 ON co.order_nbr = li.order_nbr

 INNER JOIN part p

 ON li.part_nbr = p.part_nbr

 WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND p.inventory_qty = 0) suspended_orders

SET suspended_orders.exp_ship_dt = suspended_orders.exp_ship_dt + 7;

However, statement execution results in the following error:

ORA-01779: cannot modify a column which maps to a non key-preserved table

As is often the case in life, we can't get something for nothing. To take advantage of the ability
to join multiple tables within a DML statement, we must abide by the following rules:

Only one of the joined tables in an inline view may be modified by the containing DML
statement.

To be modifiable, the target table's key must be preserved in the result set of the inline
view.

Although the previous UPDATE statement attempts to modify only one table (cust_order), that
table's key (order_nbr) is not preserved in the result set, since an order has multiple line

items. In other words, rows in the result set generated by the three-table join cannot be
uniquely identified using just the order_nbr field, so it is not possible to update the cust_order

table via this particular three-table join. However, it is possible to update or delete from the

line_item table using the same join, since the key of the line_item table matches the key of
the result set returned from the inline view (order_nbr and part_nbr). The next statement
deletes rows from the line_item table using an inline view nearly identical to the one that

failed for the previous UPDATE attempt:

DELETE FROM (SELECT li.order_nbr order_nbr, li.part_nbr part_nbr

 FROM cust_order co INNER JOIN line_item li

 ON co.order_nbr = li.order_nbr

 INNER JOIN part p

 ON li.part_nbr = p.part_nbr

 WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND p.inventory_qty = 0) suspended_orders;

The column(s) referenced in the SELECT clause of the inline view are actually irrelevant. Since
the line_item table is the only key-preserved table of the three tables listed in the FROM

clause, this is the table on which the DELETE statement operates. Although utilizing an inline
view in a DELETE statement can be more efficient, it's somewhat disturbing that it is not
immediately obvious which table is the focus of the DELETE statement. A reasonable convention
when writing such statements would be to always select the key columns from the target table.

5.4.6 Restricting Access Using WITH CHECK OPTION

Another way in which inline views can add value to DML statements is by restricting both the
rows and columns that may be modified. For example, most companies only allow members of
Human Resources to see or modify salary information. By restricting the columns visible to a
DML statement, we can effectively hide the salary column:

UPDATE (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee) emp

SET emp.manager_emp_id = 11

WHERE emp.dept_id = 4;

Although this statement executes cleanly, attempting to add the salary column to the SET
clause would yield the following error:

UPDATE (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee) emp

SET emp.manager_emp_id = 11, emp.salary = 1000000000

WHERE emp.dept_id = 4;

ORA-00904: "EMP"."SALARY": invalid identifier

Of course, the person writing the UPDATE statement has full access to the table; the intent here
is to protect against unauthorized modifications by the users. This might prove useful in an n-
tier environment, where the interface layer interacts with a business-logic layer.

Although this mechanism is useful for restricting access to particular columns, it does not limit
access to particular rows in the target table. To restrict the rows that may be modified using a
DML statement, you can add a WHERE clause to the inline view and specify WITH CHECK
OPTION. For example, you may want to restrict the users from modifying data for any employee
in the Accounting department:

UPDATE (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee

 WHERE dept_id !=

 (SELECT dept_id FROM department WHERE name = 'ACCOUNTING')

 WITH CHECK OPTION) emp

SET emp.manager_emp_id = 7698

WHERE emp.dept_id = 30;

The addition of WITH CHECK OPTION to the inline view protects against any data modifications
that would not be visible via the inline view. For example, attempting to modify an employee's
department assignment from Sales to Accounting would generate an error, since the data would
no longer be visible via the inline view:

UPDATE (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee

 WHERE dept_id !=

 (SELECT dept_id FROM department WHERE name = 'ACCOUNTING')

 WITH CHECK OPTION) emp

SET dept_id = (SELECT dept_id FROM department WHERE name = 'ACCOUNTING')

WHERE emp_id = 7900;

ORA-01402: view WITH CHECK OPTION where-clause

violation

5.4.7 Global Inline Views

Earlier in the chapter, you saw how the WITH clause can be used to allow the same subquery to
be referenced multiple times within the same query. Another way to utilize the WITH clause is
as an inline view with global scope. To illustrate, we will rework one of the previous inline view
examples to show how the subquery can be moved from the FROM clause to the WITH clause.
Here's the original example, which comes from Section 5.4.4.1:

SELECT na_regions.name region_name,

 SUM(co.sale_price) total_sales

FROM cust_order co INNER JOIN customer c

ON co.cust_nbr = c.cust_nbr

INNER JOIN

 (SELECT region_id, name

 FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id) na_regions

ON c.region_id = na_regions.region_id

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')

GROUP BY na_regions.name;

REGION_NAME TOTAL_SALES

-------------------- -----------

Mid-Atlantic 198

New England 590

Here's the same query with the na_regions subquery moved to the WITH clause:

WITH na_regions AS (SELECT region_id, name

 FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id)

SELECT na_regions.name region_name,

 SUM(co.sale_price) total_sales

FROM cust_order co INNER JOIN customer c

ON co.cust_nbr = c.cust_nbr

INNER JOIN na_regions

ON c.region_id = na_regions.region_id

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')

GROUP BY na_regions.name;

REGION_NAME TOTAL_SALES

-------------------- -----------

Mid-Atlantic 198

New England 590

Note that the FROM clause must include the inline view alias for you to reference the inline
view's columns in the SELECT, WHERE, GROUP BY, or ORDER BY clauses.

To show how the na_regions subquery has global scope, the join between the na_regions
inline view and the customer table has been moved to another inline view (called cust) in the

FROM clause:

WITH na_regions AS (SELECT region_id, name

 FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id)

SELECT cust.region_name region_name,

 SUM(co.sale_price) total_sales

FROM cust_order co INNER JOIN

 (SELECT c.cust_nbr cust_nbr, na_regions.name region_name

 FROM customer c INNER JOIN na_regions

 ON c.region_id = na_regions.region_id) cust

ON co.cust_nbr = cust.cust_nbr

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')

GROUP BY cust.region_name;

REGION_NAME TOTAL_SALES

-------------------- -----------

Mid-Atlantic 198

New England 590

Earlier in this section, we stated that inline views "are always executed prior to the containing
query and, thus, may not reference columns from other tables or inline views from the same
query." Using the WITH clause, however, you are able to break this rule, since the na_regions
inline view is visible everywhere within the query. This makes the na_regions inline view act

more like a temporary table than a true inline view.

 < Day Day Up >

 < Day Day Up >

5.5 Subquery Case Study: The Top N Performers

Certain queries that are easily described in English have traditionally been difficult to formulate
in SQL. One common example is the "Find the top five salespeople" query. The complexity
stems from the fact that data from a table must first be aggregated, and then the aggregated
values must be sorted and compared to one another to identify the top or bottom performers.
In this section, you will see how subqueries may be used to answer such questions. At the end
of the section, we introduce ranking functions, a feature of Oracle SQL that was specifically
designed for these types of queries.

5.5.1 A Look at the Data

Consider the problem of finding the top five salespeople. Let's assume that we are basing our
evaluation on the amount of revenue each salesperson brought in during the previous year. The
first task, then, would be to sum the dollar amount of all orders booked by each salesperson
during the year in question. To do so, we will dip into our data warehouse, in which orders have
been aggregated by salesperson, year, month, customer, and region. The following query
generates total sales per salesperson for the year 2001:

SELECT s.name employee, SUM(o.tot_sales) total_sales

FROM orders o INNER JOIN salesperson s

ON o.salesperson_id = s.salesperson_id

WHERE o.year = 2001

GROUP BY s.name

ORDER BY 2 DESC;

EMPLOYEE TOTAL_SALES

------------------------------ -----------

Jeff Blake 1927580

Sam Houseman 1814327

Mark Russell 1784596

John Boorman 1768813

Carl Isaacs 1761814

Tim McGowan 1761814

Chris Anderson 1757883

Bill Evans 1737093

Jim Fletcher 1735575

Mary Dunn 1723305

Dave Jacobs 1710831

Chuck Thomas 1695124

Greg Powers 1688252

Don Walters 1672522

Alex Fox 1645204

Barbara King 1625456

Lynn Nichols 1542152

Karen Young 1516776

Bob Grossman 1501039

Eric Iverson 1468316

Tom Freeman 1461898

Andy Levitz 1458053

Laura Peters 1443837

Susan Jones 1392648

It appears that Isaacs and McGowan have tied for fifth place, which, as you will see, adds an
interesting wrinkle to the problem.

5.5.2 Your Assignment

It seems that the boss was so tickled with this year's sales that she has asked you, the IT
manager, to see that each of the top five salespeople receive a bonus equal to 1% of their
yearly sales. No problem, you say. You quickly throw together the following report using your
favorite feature, the inline view, and send it off to the boss:

SELECT s.name employee, top5_emp_orders.tot_sales total_sales,

 ROUND(top5_emp_orders.tot_sales * 0.01) bonus

FROM

 (SELECT all_emp_orders.salesperson_id emp_id,

 all_emp_orders.tot_sales tot_sales

 FROM

 (SELECT salesperson_id, SUM(tot_sales) tot_sales

 FROM orders

 WHERE year = 2001

 GROUP BY salesperson_id

 ORDER BY 2 DESC

) all_emp_orders

 WHERE ROWNUM <= 5

) top5_emp_orders INNER JOIN salesperson s

ON top5_emp_orders.emp_id = s.salesperson_id

ORDER BY 2 DESC;

EMPLOYEE TOTAL_SALES BONUS

------------------------------ ----------- ----------

Jeff Blake 1927580 19276

Sam Houseman 1814327 18143

Mark Russell 1784596 17846

John Boorman 1768813 17688

Tim McGowan 1761814 17618

The howl emitted by Isaacs can be heard for five square blocks. The boss, looking a bit harried,
asks you to take another stab at it. Upon reviewing your query, the problem becomes
immediately evident; the inline view aggregates the sales data and sorts the results, and the
containing query grabs the first five sorted rows and discards the rest. Although it could easily
have been McGowan, since there is no second sort column, Isaacs was arbitrarily omitted from
the result set.

5.5.3 Second Attempt

You console yourself with the fact that you gave the boss exactly what she asked for: the top
five salespeople. However, you realize that part of your job as IT manager is to give people
what they need, not necessarily what they ask for, so you rephrase the boss's request as
follows: give a bonus to all salespeople whose total sales ranked in the top five last year. This

will require two steps: find the fifth highest sales total last year, and then find all salespeople
whose total sales meet or exceed that figure. You write a new query as follows:

SELECT s.name employee, top5_emp_orders.tot_sales total_sales,

 ROUND(top5_emp_orders.tot_sales * 0.01) bonus

FROM salesperson s INNER JOIN

 (SELECT salesperson_id, SUM(tot_sales) tot_sales

 FROM orders

 WHERE year = 2001

 GROUP BY salesperson_id

 HAVING SUM(tot_sales) IN

 (SELECT all_emp_orders.tot_sales

 FROM

 (SELECT SUM(tot_sales) tot_sales

 FROM orders

 WHERE year = 2001

 GROUP BY salesperson_id

 ORDER BY 1 DESC

) all_emp_orders

 WHERE ROWNUM <= 5)

) top5_emp_orders

ON top5_emp_orders.salesperson_id = s.salesperson_id

ORDER BY 2 DESC;

EMPLOYEE TOTAL_SALES BONUS

------------------------------ ----------- ----------

Jeff Blake 1927580 19276

Sam Houseman 1814327 18143

Mark Russell 1784596 17846

John Boorman 1768813 17688

Tim McGowan 1761814 17618

Carl Isaacs 1761814 17618

Thus, there are actually six top five salespeople. The main difference between your first attempt
and the second is the addition of the HAVING clause in the inline view. The subquery in the
HAVING clause returns the five highest sales totals, and the inline view then returns all
salespeople (potentially more than five) whose total sales exist in the set returned by the
subquery.

Although you are confident in your latest results, there are several aspects of the query that
bother you:

The aggregation of sales data is performed twice.

The query will never contend for Most Elegant Query of the Year.

You could've sworn you read about some sort of feature just for handling these types of
queries . . .

In fact, there is a feature, an analytic SQL feature, for performing ranking queries that became
available with Oracle8i. That feature is the RANK function.

5.5.4 Final Answer

The RANK function is specifically designed to help you write queries to answer questions like the
one posed in this case study. Part of a set of analytic functions (all of which will be explored in
Chapter 14), the RANK function may be used to assign a ranking to each element of a set. The
RANK function understands that there may be ties in the set of values being ranked and leaves
gaps in the ranking to compensate. The following query illustrates how rankings would be
assigned to the entire set of salespeople; notice how the RANK function leaves a gap between
the fifth and seventh rankings to compensate for the fact that two rows share the fifth spot in
the ranking:

SELECT salesperson_id, SUM(tot_sales) tot_sales,

 RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_rank

FROM orders

WHERE year = 2001

GROUP BY salesperson_id;

SALESPERSON_ID TOT_SALES SALES_RANK

-------------- ---------- ----------

 1 1927580 1

 14 1814327 2

 24 1784596 3

 8 1768813 4

 15 1761814 5

 16 1761814 5

 20 1757883 7

 11 1737093 8

 9 1735575 9

 10 1723305 10

 17 1710831 11

 4 1695124 12

 5 1688252 13

 12 1672522 14

 19 1645204 15

 18 1625456 16

 21 1542152 17

 13 1516776 18

 3 1501039 19

 22 1468316 20

 2 1461898 21

 7 1458053 22

 23 1443837 23

 6 1392648 24

Leaving gaps in the rankings whenever ties are encountered is critical for properly handling
these types of queries. (If you do not wish to have gaps in the ranking, you can use the
DENSE_RANK function intead.) Table 5-1 shows the number of rows that would be returned for
this data set for various top-N queries.

Table 5-1. Rows returned for N = {1,2,3,...,9}

Top-N salespeople Rows returned

1 1

2 2

3 3

4 4

5 6

6 6

7 7

8 8

9 9

As you can see, the result sets would be identical for both the "top five" and "top six" versions
of this query for this particular data set.

By wrapping the previous RANK query in an inline view, you can retrieve the salespeople with a
ranking of five or less and join the results to the salesperson table to generate the final result
set:

SELECT s.name employee, top5_emp_orders.tot_sales total_sales,

 ROUND(top5_emp_orders.tot_sales * 0.01) bonus

FROM

 (SELECT all_emp_orders.salesperson_id emp_id,

 all_emp_orders.tot_sales tot_sales

 FROM

 (SELECT salesperson_id, SUM(tot_sales) tot_sales,

 RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_rank

 FROM orders

 WHERE year = 2001

 GROUP BY salesperson_id

) all_emp_orders

 WHERE all_emp_orders.sales_rank <= 5

) top5_emp_orders INNER JOIN salesperson s

ON top5_emp_orders.emp_id = s.salesperson_id

ORDER BY 2 DESC;

EMPLOYEE TOTAL_SALES BONUS

------------------------------ ----------- ----------

Jeff Blake 1927580 19276

Sam Houseman 1814327 18143

Mark Russell 1784596 17846

John Boorman 1768813 17688

Tim McGowan 1761814 17618

Carl Isaacs 1761814 17618

If this query looks familiar, that's because it's almost identical to the first attempt, except that
the RANK function is used instead of the pseudocolumn ROWNUM to determine where to draw
the line between the top five salespeople and the rest of the pack.

Now that you are happy with your query and confident in your results, you show your findings
to your boss. "Nice work," she says. "Why don't you give yourself a bonus as well? In fact, you
can have Isaacs's bonus, since he quit this morning." Salespeople can be so touchy.

 < Day Day Up >

 < Day Day Up >

Chapter 6. Handling Temporal Data
As the old saying goes, "Time and tide wait for no man." As database developers, we may not
deal with tide-related information every day, but we deal with time-related information almost
every single day. The hire date of an employee, your pay day, the rent or mortgage payment
date, the time duration required for a financial investment to mature, and the start date and
time of your new car insurance are all examples of temporal data that we deal with every single
day.

The need for effective management of temporal information became critical at the turn of the
century, when most of us had to devise ways to handle the two-digit year correctly as it
increased from 99 to 00, and then to 01. In this age of global e-business, the concepts of time
are even more involved than ever before, because business is carried out around the clock
across time zone boundaries.

A database needs to effectively and efficiently handle the storage, retrieval, and manipulation of
the following types of temporal data:

Dates

Times

Date and time intervals

Time zones

Oracle's support for temporal data is mature and efficient. Oracle8i supports convenient
manipulation of date and time data. Oracle9i enhanced this support by introducing a new set of
features including support for fractional seconds, date and time intervals, and time zones.

 < Day Day Up >

 < Day Day Up >

6.1 Time Zones

In the global economy, business is carried out across geographical boundaries and time zones.
It is common for a customer in Los Angeles to order an item through a supplier's web site, and
the supplier's database could be located in New York. A manufacturer in China could update the
status of an order of one of its U.S. customers. Conducting business across the globe is a
requirement in today's global economy, and the evolution of the Internet and related
technologies have made it simple. Databases can't be far behind, can they?

Oracle facilitates global business through its support for time zones. With Oracle 9i Database
and higher, a database and a session can be associated with time zones. Having database and
session time zones enables users in geographically distant regions to exchange temporal data
with the database without having to bother about the time differences between the location of
their clients and the location of the database server.

The list of valid time zone region names is provided in the data dictionary
view V$TIMEZONE_NAMES.

6.1.1 Database Time Zone

The time zone of a database is usually set at the time of creation of the database. Alternatively,
a database administrator can change the time zone using the ALTER DATABASE command, after
a database is created. Both CREATE DATABASE and ALTER DATABASE commands take an
optional SET TIME_ZONE clause:

SET TIME_ZONE = '+ | - HH:MI' | 'time_zone_region'

You can specify a time zone in one of two ways:

By specifying a displacement from Coordinated Universal Time (UTC) in hours and
minutes. For example, United States Eastern Standard Time is UTC -05:00.

By specifying a time zone name or time zone abbreviation (columns TZNAME and
TZABBREV in V$TIMEZONE_NAMES, respectively). Every time zone is given a name and
abbreviation. For example, "U.S./Eastern" is the time zone name, and EST is the time zone
abbreviation for Eastern Standard Time. You can use either the time zone name or the
abbreviation to set the time zone of a database.

The following examples use the SET TIME_ZONE clause to set the time zone of a database:

CREATE DATABASE . . . SET TIME_ZONE = '-05:00';

ALTER DATABASE . . . SET TIME_ZONE = 'EST';

Both of these examples set the time zone to Eastern Standard Time. The first example uses a
displacement (-05:00) from UTC. The second example uses the time zone abbreviation (EST).
EST is 5 hours behind UTC, and is therefore equivalent to "-5:00".

If you do not explicitly set the database time zone, Oracle defaults to the
operating system time zone. If the operating system time zone is not a
valid Oracle time zone, UTC is used as the default time zone.

6.1.2 Session Time Zone

Each session can have a time zone as well. You can set the time zone of a session by using the
ALTER SESSION SET TIME_ZONE statement. The syntax for the SET TIME_ZONE clause in the
ALTER SESSION statement is the same as that in the CREATE DATABASE and ALTER DATABASE
statements.

The following example shows two ways to set the time zone of a session to Pacific Standard
Time:

ALTER SESSION SET TIME_ZONE = '-08:00';

ALTER SESSION SET TIME_ZONE = 'PST';

To set the session time zone to the local operating system time zone (e.g., the time zone of a
PC initiating a remote user session), you can use the LOCAL keyword in the SET TIME_ZONE
clause, as in the following example:

ALTER SESSION SET TIME_ZONE = LOCAL;

To set the session time zone to the database time zone, use the DBTIMEZONE keyword in the
SET TIME_ZONE clause, as in the following example:

ALTER SESSION SET TIME_ZONE = DBTIMEZONE;

If you do not explicitly set the session time zone, Oracle defaults to the
local operating system time zone. If the local operating system time zone
is not a valid Oracle time zone, UTC is used as the default session time
zone.

 < Day Day Up >

 < Day Day Up >

6.2 Temporal Data Types in Oracle

Oracle provides the following categories of data types to represent temporal data inside an
Oracle database:

The DATE data type

The TIMESTAMP data types:

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE

The INTERVAL data types:

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

Up to release Oracle8i, Oracle had only one temporal data type: DATE, which held date as well
as time information. Oracle9i introduced several new data types—three TIMESTAMP data types
to hold time data with fractional seconds, and two INTERVAL data types to hold time intervals.
The following sections discuss all these data types in detail.

6.2.1 The DATE Data Type

Oracle's DATE data type holds date as well as time information. Regardless of the date format
you use for display purposes, Oracle stores dates internally in one standard format. Internal to
the database, a date is a fixed-length, 7-byte field. The seven bytes represent the following
pieces of information:

The Century

The Year

The Month

The Day

The Hour

The Minute

The Second

Even though the data type is called a DATE, it also stores the time. You choose the components
to display (the date, the time, the date and the time, etc.) when you retrieve a DATE value from
the database. Or, if you are putting a DATE value into a program (e.g., a Java program) you
might choose to extract the components of interest after transferring the entire date/time value
to that program.

6.2.2 The TIMESTAMP Data Types

To provide support for fractional seconds along with date and time data, and also to provide
support for time zones, Oracle9i introduced the following temporal data types:

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE

6.2.2.1 TIMESTAMP

The TIMESTAMP data type extends the DATE type to support more precise time values. A
TIMESTAMP includes all the components of the DATE data type (century, year, month, day,
hour, minute, second) plus fractional seconds. A TIMESTAMP data type is specified as:

TIMESTAMP [(precision for fractional seconds)]

The precision for fractional seconds is optional and is specified in parentheses. You can

specify integer values between 0 and 9 for fractional precision. A precision of 9 means that you
can have 9 digits to the right of the decimal—i.e., up to nanoseconds precision. If you don't
specify the precision, it defaults to 6 (microseconds precision)—i.e., TIMESTAMP is the same as
TIMESTAMP(6).

The following example creates a table with a column of type TIMESTAMP:

CREATE TABLE transaction (

transaction_id NUMBER(10),

transaction_timestamp TIMESTAMP,

status VARCHAR2(12));

Table created.

DESC transaction

 Name Null? Type

 --------------------------- -------- ---------------

 TRANSACTION_ID NUMBER(10)

 TRANSACTION_TIMESTAMP TIMESTAMP(6)

 STATUS VARCHAR2(12)

Since we don't specify a precision in this example for the column transaction_timestamp,

Oracle uses the default precision for the TIMESTAMP data type, and it appears as
TIMESTAMP(6) when we describe the table.

6.2.2.2 TIMESTAMP WITH TIME ZONE

The TIMESTAMP WITH TIME ZONE data type further extends the TIMESTAMP type to include a
time zone displacement. A TIMESTAMP WITH TIME ZONE data type is specified as:

TIMESTAMP [(precision for fractional seconds)] WITH TIME ZONE

The precision for fractional seconds is the same as that for the TIMESTAMP data type.

The time zone displacement is the time difference in hours and minutes between the local time
and UTC. You supply such displacements when you store values in the column, and the
database retains the displacements so that those values can later be translated into any target
time zone desired by your system's users.

The following example creates a table with a column of type TIMESTAMP WITH TIME ZONE:

CREATE TABLE transaction_time_zone (

transaction_id NUMBER(10),

transaction_timestamp TIMESTAMP(3) WITH TIME ZONE,

status VARCHAR2(12));

Table created.

DESC transaction_time_zone

 Name Null? Type

 ------------------------------- -------- ------------------------

 TRANSACTION_ID NUMBER(10)

 TRANSACTION_TIMESTAMP TIMESTAMP(3) WITH TIME ZONE

 STATUS VARCHAR2(12)

6.2.2.3 TIMESTAMP WITH LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE data type is a variant of the TIMESTAMP WITH TIME
ZONE data type. A TIMESTAMP WITH LOCAL TIME ZONE data type is specified as:

TIMESTAMP [(precision for fractional seconds)] WITH LOCAL TIME ZONE

The precision for fractional seconds is the same as that in the TIMESTAMP data type.

TIMESTAMP WITH LOCAL TIME ZONE differs from TIMESTAMP WITH TIME ZONE in the following
ways:

The time zone displacement is not stored as part of the column data.

The data stored in the database is normalized to the time zone of the database. To
normalize an input value to the database time zone, the input time is converted to a time
in the database time zone. The original time zone is not preserved.

When the data is retrieved, Oracle returns the data in the time zone of the user session.

The following example creates a table with a column of type TIMESTAMP WITH LOCAL TIME
ZONE:

CREATE TABLE transaction_local_time_zone (

transaction_id NUMBER(10),

transaction_timestamp TIMESTAMP(3) WITH LOCAL TIME ZONE,

status VARCHAR2(12));

Table created.

DESC transaction_local_time_zone

 Name Null? Type

 ------------------------ -------- ------------------------

 TRANSACTION_ID NUMBER(10)

 TRANSACTION_TIMESTAMP TIMESTAMP(3) WITH LOCAL TIME ZONE

 STATUS VARCHAR2(12)

6.2.3 The INTERVAL Data Types

Date and time interval data are an integral part of our day-to-day life. Common examples of
interval data are the age of a person, the maturity period of a bond or certificate of deposit, and
the warranty period of your car. Prior to Oracle9i Database, we all used the NUMBER data type
to represent such data, and the logic needed to deal with interval data had to be coded at the
application level. Oracle9i Database introduced two new data types to handle interval data:

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

The following sections discuss the use of these data types.

6.2.3.1 INTERVAL YEAR TO MONTH

The INTERVAL YEAR TO MONTH type stores a period of time expressed as a number of years
and months. An INTERVAL YEAR TO MONTH data type is specified as:

INTERVAL YEAR [(precision for year)] TO MONTH

The precision for year specifies the number of digits in the year field. The precision can

range from 0 to 9, and the default value is 2. The default precision of two allows for a maximum
interval of 99 years, 11 months.

The following example creates a table with a column of type INTERVAL YEAR TO MONTH:

CREATE TABLE event_history (

event_id NUMBER(10),

event_duration INTERVAL YEAR TO MONTH);

Table created.

DESC event_history

 Name Null? Type

 ---------------------------- -------- ------------------------

 EVENT_ID NUMBER(10)

 EVENT_DURATION INTERVAL YEAR(2) TO MONTH

The next example uses the NUMTOYMINTERVAL (NUMBER-TO-YEAR-MONTH INTERVAL) function
to insert data into a database column of type INTERVAL YEAR TO MONTH. This function converts
a NUMBER value into a value of type INTERVAL YEAR TO MONTH, using the units specified by
the second argument:

INSERT INTO event_history VALUES (5001, NUMTOYMINTERVAL(2,'YEAR'));

1 row created.

INSERT INTO event_history VALUES (5002, NUMTOYMINTERVAL(2.5,'MONTH'));

1 row created.

SELECT * FROM event_history;

 EVENT_ID EVENT_DURATION

---------- ------------------

 5001 +02-00

 5002 +00-02

The second argument to the NUMTOYMINTERVAL function specifies the unit of the first
argument. Therefore, in the first example, the number 2 is treated as 2 years, and in the second
example, the number 2.5 is treated as 2 months. Any fractional part of a month is ignored. An
INTERVAL YEAR TO MONTH value is only in terms of years and months, not fractional months.

6.2.3.2 INTERVAL DAY TO SECOND

The INTERVAL DAY TO SECOND type stores a period of time expressed as a number of days,
hours, minutes, seconds, and fractions of a second. An INTERVAL DAY TO SECOND data type is
specified as:

INTERVAL DAY [(precision for day)]

TO SECOND [(precision for fractional seconds)]

The precision for day specifies the number of digits in the day field. This precision can range

from 0 to 9, and the default value is 2. The precision for fractional seconds is the number

of digits in the fractional part of a second. It can range from 0 to 9, and the default value is 6.

The following example creates a table with an INTERVAL DAY TO SECOND column:

CREATE TABLE batch_job_history (

job_id NUMBER(6),

job_duration INTERVAL DAY(3) TO SECOND(6));

Table created.

DESC batch_job_history

 Name Null? Type

 ----------------------- -------- -----------------------------

 JOB_ID NUMBER(6)

 JOB_DURATION INTERVAL DAY(3) TO SECOND(6)

Here's how to insert data into a table with an INTERVAL DAY TO SECOND column:

INSERT INTO batch_job_history VALUES

(6001, NUMTODSINTERVAL(5369.2589,'SECOND'));

1 row created.

SELECT * FROM batch_job_history;

 JOB_ID JOB_DURATION

---------- --

 6001 +00 01:29:29.258900

For the INSERT in this example we used the function NUMTODSINTERVAL (NUMBER-TO-DAY-
SECOND-INTERVAL). This function converts a NUMBER value into a value of type INTERVAL DAY
TO SECOND, using the units specified in the second argument. It's analogous to
NUMTOYMINTERVAL discussed in the previous section.

 < Day Day Up >

 < Day Day Up >

6.3 Literals of Temporal Types

Using literals of character and number types is pretty simple, because they don't involve any
special formatting. However, when using literals of temporal type, you need to pay special
attention to the formats in which they are specified. The following sections describe date,
timestamp, and interval literals.

6.3.1 DATE Literals

DATE literals are specified in the format specified by SQL Standard, and take the following form:

DATE 'YYYY-MM-DD'

Unlike Oracle's DATE data type, a DATE literal doesn't specify any time information. You also
can't specify a format. If you want to specify a date literal, you must always use the YYYY-MM-DD

date format. The following example illustrates the use of a DATE literal in a SQL statement:

INSERT INTO employee

(emp_id, fname, lname, dept_id, manager_emp_id, salary, hire_date)

VALUES

(2304, 'John', 'Smith', 20, 1258, 20000, DATE '1999-10-22');

1 row created.

SELECT * FROM employee;

 EMP_ID FNAME LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------- -------- ------- ---------- -------------- ---------- ---------

 2304 John Smith 20 1258 20000 22-OCT-99

In this example, the date literal DATE '1999-10-22' is interpreted as 22-OCT-99.

ISO Standard for Date and Time Notation

The International Standard ISO 8601 specifies date and time notation. The date is
specified by four-digit year, two-digit month, and two-digit day of the month:

YYYY-MM-DD

The time of the day is specified by two-digit hour, two-digit minute, and two-digit
second:

hh:mi:ss

For detailed information on ISO Standard 8601, refer to the following documents on
the Internet:

http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

http://www.saqqara.demon.co.uk/datefmt.htm

http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html

6.3.2 TIMESTAMP Literals

A TIMESTAMP literal takes the following format:

TIMESTAMP 'YYYY-MM-DD HH:MI:SS.xxxxxxxxx'

A TIMESTAMP literal can have up to nine digits of fractional seconds. The fractional part is
optional, but the date and time elements are mandatory and must be provided in the given
format. Here's an example in which data is inserted into a table with a TIMESTAMP column:

INSERT INTO transaction

VALUES (1001, TIMESTAMP '1998-12-31 08:23:46.368', 'OPEN');

1 row created.

SELECT * FROM transaction;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.saqqara.demon.co.uk/datefmt.htm
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html

-------------- --------------------------------- ---------

 1001 31-DEC-98 08.23.46.368000 AM OPEN

A TIMESTAMP literal with a time zone displacement can be used to represent a literal of type
TIMESTAMP WITH TIME ZONE. It takes the following form:

TIMESTAMP 'YYYY-MM-DD HH:MI:SS.xxxxxxxxx {+|-} HH:MI'

Here is an example that shows how to insert data into a table with a TIMESTAMP WITH TIME
ZONE column:

INSERT INTO transaction_time_zone

VALUES (1002, TIMESTAMP '1998-12-31 08:23:46.368 -10:30', 'NEW');

1 row created.

SELECT * FROM transaction_time_zone;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

-------------- ----------------------------------- -------

 1002 31-DEC-98 08.23.46.368 AM -10:30 NEW

Even though the data type is called TIMESTAMP WITH TIME ZONE, the literal still uses just the
TIMESTAMP keyword. However, the literal also specifies a date/time displacement for time zone
using the {+|-} HH:MI notation.

If you are specifying a time zone displacement in a TIMESTAMP literal, you must specify the
sign of the displacement (i.e., + or -). The range of the hour in a time zone displacement is -12
to +13, and the range of a minute is 0 to 59. A displacement outside these ranges will generate
an error.

The valid range of time zone displacement in Oracle differs from that
specified by the SQL Standard. The SQL Standard requires the valid range
to be from -12:59 to +13:00. However, Oracle enforces the range on the
hour (-12 to +13) and minute (0 to 59) components separately. Therefore,
the valid range of time zone displacement in Oracle is from -12:00 to
+13:59.

When you don't specify a time zone displacement, the displacement is not assumed to be zero;
instead, the timestamp is assumed to be in your session time zone, and the value of the
displacement defaults to the displacement of that time zone. For example, the TIMESTAMP

literal in the following INSERT specifies no time zone displacement, yet the SELECT statement
proves that a time zone is, in fact, assumed:

INSERT INTO transaction_time_zone

VALUES (1003, TIMESTAMP '1999-12-31 08:23:46.368', 'NEW');

1 row created.

SELECT * FROM transaction_time_zone;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

-------------- ------------------------------------- -------

 1003 31-DEC-99 08.23.46.368 AM -05:00 NEW

There is no literal specifically for the TIMESTAMP WITH LOCAL TIME ZONE data type. To insert
data into a column of this type, you use a TIMESTAMP literal with a time zone displacement. For
example:

INSERT INTO transaction_local_time_zone

VALUES (2001, TIMESTAMP '1998-12-31 10:00:00 -3:00', 'NEW');

1 row created.

SELECT * FROM transaction_local_time_zone;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

-------------- -------------------------- -------

 2001 31-DEC-98 08.00.00 AM NEW

In a case like this, the time zone displacement is not stored in the database. The data is stored
in the database in normalized form with respect to the database time zone. By "normalized
form" we mean the input time is converted into a time in the database time zone before being
stored in the database. The database time zone in this example is -5:00. Therefore, -3:00 is 2
hours ahead of the database time zone, and 10:00:00 - 3:00 is the same as 08:00:00 - 5:00.
Since the time is normalized with respect to the database time zone, the displacement doesn't
need to be stored in the database.

When TIMESTAMP WITH LOCAL TIME ZONE data is normalized to the
database time zone, the time zone of the original data is not preserved.

6.3.3 INTERVAL Literals

Just as Oracle supports DATE and TIMESTAMP literals, it supports INTERVAL literals, too. There
are two interval data types, and two types of corresponding interval literals: YEAR TO MONTH
and DAY TO SECOND.

6.3.3.1 YEAR TO MONTH interval literals

A YEAR TO MONTH interval literal represents a time period in terms of years and months. A
YEAR TO MONTH interval literal takes one of the following two forms:

INTERVAL 'y [-m]' YEAR[(precision)] [TO MONTH]

INTERVAL 'm' MONTH[(precision)]

The syntax elements are:

y

An integer value specifying the years.

m

An integer value specifying the months. You must include the TO MONTH keywords if you
specify a month value.

precision

Specifies the number of digits to allow for the year or month. The default is 2. The valid
range is from 0 to 9.

The default precision for the year value is 2. If the literal represents a time period greater than
99 years, then you must specify a high-enough precision to accommodate the number of years
in question. The integer value for the month, as well as the MONTH keyword, are optional. If
you specify a month value, it must be between 0 and 11. You do need to use the MONTH
keyword when you specify a month value.

The following example inserts a YEAR TO MONTH interval literal into an INTERVAL YEAR TO
MONTH column:

INSERT INTO event_history

VALUES (6001, INTERVAL '5-2' YEAR TO MONTH);

1 row created.

SELECT * FROM event_history;

 EVENT_ID EVENT_DURATION

---------- --

 6001 +05-02

The following example uses a YEAR TO MONTH interval literal to specify a time period of exactly
four years. No value for months is included:

SELECT INTERVAL '4' YEAR FROM DUAL;

INTERVAL'4'YEAR

+04-00

A YEAR TO MONTH interval literal can also be used to represent months only:

SELECT INTERVAL '3' MONTH FROM DUAL;

INTERVAL'3'MONTH

+00-03

SELECT INTERVAL '30' MONTH FROM DUAL;

INTERVAL'30'MONTH

+02-06

Notice that when you use a YEAR TO MONTH interval literal to represent only months, you can
actually specify a month value larger than 11. In such a situation, Oracle normalizes the value
into an appropriate number of years and months. This is the only situation in which the number
of months can be greater than 11.

6.3.3.2 DAY TO SECOND interval literals

A DAY TO SECOND interval literal represents a time period in terms of days, hours, minutes,
seconds, and fractions of seconds. DAY TO SECOND interval literals take on the following form:

INTERVAL 'd [h[:m[:s]]]' unit1[(precision1)] TO unit2[(frac_precision)]

The syntax elements are:

d

An integer value specifying the days.

h

An integer value specifying the hours.

m

An integer value specifying the minutes.

s

A number value specifying the seconds and fractional seconds.

unit1, unit2

Can be DAY, HOUR, MINUTE, or SECOND. The leading unit (unit1) must always be

greater than the trailing unit (unit2). For example, INTERVAL HOUR TO MINUTE is valid,

but INTERVAL HOUR TO DAY is not valid.

precision1

The number of digits to allow for the leading unit. The default is 2. The valid range is from

0 to 9.

frac_precision

The number of digits to allow for fractional seconds. The default is 6. The valid range is
from 0 to 9.

By default, two digits are allowed for the number of days. If a literal represents a time period of
greater than 99 days, then you must specify a precision high enough to accommodate the
number of digits that you need. There's no need to specify the precision for the hour and minute
values. The value for hours can be between 0 and 23, and the value for the minutes can be
between 0 and 59. While specifying fractional seconds, you can specify a precision for the
fractional seconds as well. The precision for the fractional seconds can be between 0 and 9
(default 6), and the seconds value can be between 0 and 59.999999999.

The following example inserts a DAY TO SECOND interval literal into a column of data type
INTERVAL DAY TO SECOND. The time period being represented is 0 days, 3 hours, 16 minutes,
23.45 seconds.

INSERT INTO batch_job_history

VALUES (2001, INTERVAL '0 3:16:23.45' DAY TO SECOND);

1 row created.

SELECT * FROM batch_job_history;

 JOB_ID JOB_DURATION

---------- --

 2001 +00 03:16:23.450000

The previous example uses all elements of the DAY TO SECOND interval literal. However, you
can use fewer elements if that's all you need. The following example shows several valid
permutations:

SELECT INTERVAL '400' DAY(3) FROM DUAL;

INTERVAL'400'DAY(3)

+400 00:00:00

SELECT INTERVAL '11:23' HOUR TO MINUTE FROM DUAL;

INTERVAL'11:23'HOURTOMINUTE

+00 11:23:00

SELECT INTERVAL '11:23' MINUTE TO SECOND FROM DUAL;

INTERVAL'11:23'MINUTETOSECOND

+00 00:11:23.000000

SELECT INTERVAL '20' MINUTE FROM DUAL;

INTERVAL'20'MINUTE

+00 00:20:00

The only requirement is that you must use a range of contiguous elements. You cannot, for
example, specify an interval in terms of only hours and seconds, because you can't omit the
intervening minutes value. An interval of 4 hours, 36 seconds would need to be expressed as 4
hours, 0 minutes, 36 seconds.

 < Day Day Up >

 < Day Day Up >

6.4 Getting Temporal Data In and Out of a Database

In the real world, temporal data are not always represented using Oracle's DATE, TIMESTAMP,
and INTERVAL data types. At various times, you'll need to convert temporal values to other data
types, especially to character types, and vice versa. This is particularly true when you interface
an Oracle database with an external system, for example when you are accepting date input
from an external system in which dates are represented as strings of characters (or even as
numbers), or when you are sending output from an Oracle database to another application that
doesn't understand Oracle's native temporal data types. You also need to convert DATE and
TIMESTAMP values to text when you display them on a screen or generate a printed report.

Oracle provides some extremely useful functions to enable such conversions:

TO_DATE

TO_TIMESTAMP

TO_TIMESTAMP_TZ

TO_YMINTERVAL

TO_DSINTERVAL

NUMTOYMINTERVAL

NUMTODSINTERVAL

TO_CHAR

The purpose of each of these functions is more or less self-explanatory. The following sections
discuss each of these functions in detail.

6.4.1 TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ

TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ are built-in SQL functions that convert,
respectively, a character string into a DATE, a TIMESTAMP, and a TIMESTAMP WITH TIME
ZONE. Input to these functions can be string literals, PL/SQL variables, and database columns
of the CHAR and VARCHAR2 data types.

These three conversion functions are similar in operation. The difference is only in the data type
of the return value. You call them as follows:

TO_DATE(string [,format])

TO_TIMESTAMP (string [,format])

TO_TIMESTAMP_TZ (string [,format])

The syntax elements are:

string

Specifies a string literal, a PL/SQL variable, or a database column containing character
data (or even numeric data) convertible to a date or timestamp.

format

Specifies the format of the input string. The format must be a valid combination of format
codes shown in Table 6-1, which you'll find later in Section 6.5.

Through the format argument, Oracle provides a great deal of flexibility when it comes to

converting between date and time values and text. Oracle provides far more flexibility, at least
in our experience, than do competing platforms, such as DB2 and SQL Server.

Specifying a format is optional. When you don't specify a format, the input string is assumed to
be in a default format as specified by the NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or
NLS_TIMESTAMP_TZ parameter settings.

You can view your current NLS parameter settings by querying the view
named NLS_SESSION_PARAMETERS.

6.4.1.1 Using the default formats

Every Oracle session has a set of default formats to use in converting date and timestamp
values to and from their textual representations. You can query the
NLS_SESSION_PARAMETERS view as follows to see the default formats currently in effect:

SELECT parameter, value

FROM nls_session_parameters

WHERE parameter LIKE '%FORMAT';

PARAMETER VALUE

------------------------------ ------------------------------

NLS_DATE_FORMAT DD-MON-RR

NLS_TIME_FORMAT HH.MI.SSXFF AM

NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM

NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR

NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR

Session-specific formats derive from settings for language and territory. If you connect without
specifying a language and territory, your session will inherit the default conversion formats
established for the database. You can query NLS_DATABASE_PARAMETERS for those.

When you invoke one of the TO_ conversion functions, say TO_DATE, without explicitly
specifying a format, Oracle expects your input string to be in the default format for the target
data type. The following INSERT statement converts a string in the default date format into a
DATE, which is then inserted into the employee table:

INSERT INTO employee

(emp_id, fname, lname, dept_id, manager_emp_id, salary, hire_date)

VALUES

(2304, 'John', 'Smith', 20, 1258, 20000, TO_DATE('22-OCT-99'));

1 row created.

SELECT * FROM employee;

 EMP_ID FNAME LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------- -------- ------- ---------- -------------- ---------- ---------

 2304 John Smith 20 1258 20000 22-OCT-99

The hire_date column, into which our date was inserted, is of type DATE. Because the input
character string of '22-OCT-99' matched Oracle's default date format, the string could be

converted without reference to a format string. In fact, since the supplied string is in the default
date format, you don't even need the TO_DATE function. Oracle automatically performs an
implicit type conversion, as in this example:

INSERT INTO employee

(emp_id, fname, lname, dept_id, manager_emp_id, salary, hire_date)

VALUES

(2304, 'John', 'Smith', 20, 1258, 20000, '22-OCT-99');

1 row created.

Even though Oracle provides means for implicit data type conversions, we recommend always
using explicit conversions, because implicit conversions are not obvious and may lead to
confusion. They may also suddenly fail should a DBA change the database's default date format.

6.4.1.2 Specifying a format

If you wish to specify a format to use in converting from text to one of the temporal data types,
there are at least two approaches you can take:

Specify the format at the session level, in which case it applies to all implicit conversions,
and to all TO_DATE, TO_TIMESTAMP, or TO_TIMESTAMP_TZ conversions for which you do
not explicitly specify some other format.

Specify the format as a parameter in a TO_X function call.

The following example changes the default date format for the session, and then uses TO_DATE
to convert a number to date:

ALTER SESSION SET NLS_DATE_FORMAT = 'MMDDYY';

Session altered.

INSERT INTO employee

(emp_id, fname, lname, dept_id, manager_emp_id, salary, hire_date)

VALUES

(2304, 'John', 'Smith', 20, 1258, 20000, TO_DATE(102299));

1 row created.

Since the default date format has been changed prior to the conversion, the conversion function
TO_DATE doesn't need the date format as an input parameter.

Although it is possible to pass a number such as 102299 to the TO_DATE
function, relying on Oracle's implicit conversion to change the number to a
string, and then into a date, it's probably best to pass a string as input to
the TO_DATE function.

If you do not wish to change your session's default date format, you must specify the date
format as the second input parameter to whichever of the three functions you are using. For
example, the following SELECT specifies a format as the second input parameter to the
TO_TIMESTAMP_TZ function:

SELECT

 TO_TIMESTAMP_TZ('12/10/01 08:15:00.50 EST','MM/DD/YY HH:MI:SSXFF TZR')

FROM DUAL;

TO_TIMESTAMP_TZ('12/10/0108:15:00.50EST','MM/DD/YYHH:MI:SSXFFTZR')

10-DEC-01 08.15.00.500000000 AM EST

Let's look at one more example to see how a database character column can be converted to a
TIMESTAMP. Let's assume that the report_id column in the report table actually stores the

date on which the report was generated, and that the date is in the format "MMDDYYYY." Now,
you can use TO_TIMESTAMP on that column to convert that date into a TIMESTAMP, which is
then displayed using the default timestamp format:

SELECT sent_to, report_id,

 TO_TIMESTAMP(report_id,'MMDDYYYY') date_generated

FROM report;

SENT_TO REPORT_I DATE_GENERATED

-------------------- -------- ---------------------------------

Manager 01011999 01-JAN-99 12.00.00.000000000 AM

Director 01121999 12-JAN-99 12.00.00.000000000 AM

Vice President 01231999 23-JAN-99 12.00.00.000000000 AM

In this example, the TO_TIMESTAMP function converts the MMDDYYYY data in the column to a
TIMESTAMP. That TIMESTAMP value is then implicitly converted into a character string for
display purposes, using the default timestamp format.

Later, in the section on the TO_CHAR function, you'll learn how you can
use formats to exercise great control over the textual representation of
date and timestamp values.

6.4.1.3 Converting to TIMESTAMP WITH LOCAL TIME ZONE

Interestingly, Oracle provides no function specifically to convert a text value into the
TIMESTAMP WITH LOCAL TIME ZONE data type. To convert a value to TIMESTAMP WITH LOCAL
TIME ZONE, you must use the CAST function, as in the following example:

SELECT CAST('10-DEC-01' AS TIMESTAMP WITH LOCAL TIME ZONE) FROM DUAL;

CAST('10-DEC-01'ASTIMESTAMPWITHLOCALTIMEZONE)

10-DEC-01 12.00.00 AM

In this example, the input string is in the default date format. Therefore, no date format is
required for conversion. Indeed, CAST does not support date formats.

What then do you do if you wish to convert to TIMESTAMP WITH LOCAL TIME ZONE and you
also need to specify a format? One solution here is to use a conversion function along with a
format to convert the string into a value TIMESTAMP WITH TIME ZONE, which you can then cast
to a TIMESTAMP WITH LOCAL TIME ZONE:

SELECT CAST(TO_TIMESTAMP_TZ('12/10/01','MM/DD/YY')

 AS TIMESTAMP WITH LOCAL TIME ZONE)

FROM DUAL;

CAST(TO_TIMESTAMP_TZ('12/10/01','MM/DD/YY')ASTIMESTAMPWITHLOCALTIMEZONE)

10-DEC-01 12.00.00 AM

The CAST function used in these examples is not a SQL function in the truest sense. CAST is
actually a SQL expression like DECODE and CASE. The CAST expression converts a value in one
data type to a value in another data type. You can generally CAST between any two, compatible
data types.

6.4.2 TO_YMINTERVAL and TO_DSINTERVAL

The TO_YMINTERVAL and TO_DSINTERVAL functions are similar in purpose to the TO_DATE
family of functions, and serve to convert character strings to the INTERVAL YEAR TO MONTH
and INTERVAL DAY TO SECOND data types. You can pass literals, PL/SQL variables, and
database columns of CHAR or VARCHAR2 data type to these functions, which you invoke as
follows:

TO_YMINTERVAL (string)

TO_DSINTERVAL (string)

In these invocations, string must contain character data convertible to an INTERVAL YEAR TO

MONTH or INTERVAL DAY TO SECOND value, and in one of the following formats:

TO_YMINTERVAL

The input string must be in Y-M format—i.e., the year and month values must be

separated by a dash (-). All components (year, month, and -) must be present in the
string.

TO_DSINTERVAL

The input string must be in D HH:MI:SS format. The day value of the interval is separated

by a space from the time value, which is expressed in hours, minutes, and seconds, and is
delimited by ":". All components must be present in the string for it to be converted to an
INTERVAL DAY TO SECOND value.

The following two INSERT statements demonstrate the use of these functions:

INSERT INTO event_history VALUES (5001, TO_YMINTERVAL('02-04'));

INSERT INTO batch_job_history VALUES (6001, TO_DSINTERVAL('0 2:30:43'));

In this example, the string '02-04' represents an interval of 2 years and 4 months, while the
string '0 2:30:43' represents an interval of 0 days, 2 hours, 30 minutes, and 43 seconds.

6.4.3 NUMTOYMINTERVAL and NUMTODSINTERVAL

The NUMTOYMINTERVAL (NUMBER-TO-YEAR-MONTH-INTERVAL) and NUMTODSINTERVAL
(NUMBER-TO-DAY-SECOND-INTERVAL) functions convert numeric values into INTERVAL YEAR
TO MONTH and INTERVAL DAY TO SECOND values, respectively. You invoke these functions as
follows:

NUMTOYMINTERVAL (n, unit)

NUMTODSINTERVAL (n, unit)

The syntax elements are:

n

Specifies a numeric value, or a value that is convertible to a numeric type.

unit

Specifies the unit of time that n represents. When converting to an INTERVAL YEAR TO

MONTH, unit may be either 'YEAR' or 'MONTH'. When converting to an INTERVAL DAY TO

SECOND, unit may be any of 'DAY', 'HOUR', 'MINUTE', or 'SECOND'. Case does not matter.

Upper, lower, or mixed-case are all the same.

The following example demonstrates the use of these two functions. The first INSERT specifies
an interval of two years, while the second specifies an interval of 5369.2589 seconds:

INSERT INTO event_history VALUES

 (5001, NUMTOYMINTERVAL(2,'YEAR'));

INSERT INTO batch_job_history VALUES

 (6001, NUMTODSINTERVAL(5369.2589,'SECOND'));

Unlike the case with TO_YMINTERVAL and TO_DSINTERVAL, you cannot pass mixed units to
these NUMTOXXINTERVAL functions. However, you can build up values from mixed units as
follows:

INSERT INTO event_history VALUES

 (7001, NUMTOYMINTERVAL(2,'YEAR') + NUMTOYMINTERVAL (4, 'MONTH'));

This INSERT creates a two-year and four-month interval by adding a two-year interval to a
four-month interval.

Remember, that there is a "break" in the interval model between days and
months. You cannot add an INTERVAL DAY TO SECOND value to an
INTERVAL YEAR TO MONTH value.

6.4.4 TO_CHAR

The TO_CHAR function is the opposite of the TO_DATE and TO_TIMESTAMP functions, and
converts a DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME
ZONE value into a string of characters. Call TO_CHAR as follows:

TO_CHAR(temporal_data [,format])

The syntax elements are:

temporal_data

Specifies a literal, PL/SQL variable, or a database column of type DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME ZONE.

format

Specifies the format of the output string. The format must be a valid combination of date
or timestamp format elements as described later in Section 6.5.

The format is optional. When the format is not specified, the format of the output depends upon
the type of the input data:

DATE

The output string takes the format specified by the parameter NLS_DATE_FORMAT.

TIMESTAMP

The output string takes the format specified by the parameter NLS_TIMESTAMP_FORMAT.

TIMESTAMP WITH TIME ZONE

The output string takes the format specified by the parameter
NLS_TIMESTAMP_TZ_FORMAT.

TIMESTAMP WITH LOCAL TIME ZONE

The output string takes the format specified by the parameter NLS_TIMESTAMP_FORMAT.

The database parameters NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and
NLS_TIMESTAMP_TZ_FORMAT are discussed in Section 6.5.6.

The following example uses TO_CHAR to convert an input date into a string using the default
date format:

SELECT fname, TO_CHAR(hire_date) FROM employee;

FNAME TO_CHAR(H

-------------------- ---------

John 22-OCT-99

The following example uses TO_CHAR to convert a timestamp into a string, and explicitly
specifies a timestamp format:

SELECT TO_CHAR(SYSTIMESTAMP, 'MM/DD/YYYY HH24:MI:SS.FF') FROM DUAL;

TO_CHAR(SYSTIMESTAMP,'MM/DD/Y

12/12/2003 10:18:36.070000

The format element FF in the preceding example represents fractional seconds. Timestamp-

specific formats are discussed in Section 6.5.

There are situations when you may need to combine TO_CHAR with TO_DATE. For example, if
you want to know on what day of the week January 1, 2000, fell, you can use the following
query:

SELECT TO_CHAR(TO_DATE('01-JAN-2000','DD-MON-YYYY'),'Day') FROM DUAL;

TO_CHAR(T

Saturday

In this example, the input string '01-JAN-2000' is first converted into a date and then the

TO_CHAR function is used to convert this date into a string representing the day of the week.

Printing Numeric Amounts in Words

By using the date formats and the functions innovatively, you can generate very
interesting and useful outputs. For example, say that you are writing a check-printing
application, and you need to print each check amount in words. You can do that using
an expression such as in the following SELECT statement:

SELECT TO_CHAR(TO_DATE(TRUNC(3456.34),'J'),'Jsp') || ' Dollars and ' ||

TO_CHAR(TO_DATE(ROUND(MOD(3456.34,1)*100),'J'),'Jsp') || ' Cents'

"Check Amount"

FROM DUAL;

Check Amount

Three Thousand Four Hundred Fifty-Six Dollars and Thirty-Four Cents

This example splits the input number into two components - the first consisting of the

whole number and the second consisting of the fractional number. The whole number
component is converted to words using the Jsp format. The fractional component is

multiplied by 100 and rounded to extract the two digit cents, and then the same
technique is applied to convert that number to words.

 < Day Day Up >

 < Day Day Up >

6.5 Date and Time Formats

You can display dates and times in a number of ways. Every country, every industry has its own
standard for representing temporal data. Oracle provides you with date and time format codes
so that you can interpret and display dates and timestamps in a wide variety of formats.

A simple example of displaying a date is:

SELECT SYSDATE FROM DUAL;

SYSDATE

03-OCT-01

By default, the date is displayed using the DD-MON-RR format. This format uses two digits for
the date (zero padded on the left), three characters for the month (the first three characters of
the English, or your local language, name of the month in uppercase), and two digits for the
year of the century (zero padded on the left). The default date format for the database is
controlled by the NLS_DATE_FORMAT initialization parameter. You can use ALTER SYSTEM or
ALTER SESSION commands to change the default date format for the instance or the session,
respectively. You can also use the TO_CHAR function to specify a format on a per-call basis:

SELECT TO_CHAR(SYSDATE,'MM/DD/YYYY') FROM DUAL;

TO_CHAR(SY

10/03/2001

This example converts the current date into the format MM/DD/YYYY using the TO_CHAR

function. The second argument is a format string specifying how we want the date to be
presented. Table 6-1 describes the various date format elements at your disposal. Most of the
examples in Table 6-1 are based on 03-OCT-2001 03:34:48 P.M. Those that involve B.C. dates
use the year 2105 B.C. Those that specifically demonstrate A.M. times are based on 03-OCT-
2001 11:00:00 AM.

Table 6-1. Oracle date, timestamp, and time zone format elements

Component Options Description Format Output

Punctuation
- / , ; : .
*

Simply reproduced in
the output

DD-MON-YY 03-OCT-01

 Space
Simply reproduced in
the output

DD MM YYYY 03 10 2001

 "Text"
Simply reproduced in
the output

DD "of" Month 03 of October

Day DD Day of the month MM/DD/YY 10/03/01

 DDD
Day of the year; starts
with 1st January as 1

DDD/YY 276/01

 D
Day of the week; starts
with Sunday as 1

D MM/YY 4 10/01

 DAY
Name of the day, in
uppercase

DAY MM/YY WEDNESDAY 10/01

 Day
Name of the day, in
mixed case

Day MM/YY Wednesday 10/01

 DY
Abbreviated name of
the day, in uppercase

DY MM/YY WED 10/01

 Dy
Abbreviated name of
the day, in mixed case

Dy MM/YY Wed 10/01

Month MM Two-digit month MM/DD/YY 10/03/01

 MONTH
Name of the month, in
uppercase

MONTH YY OCTOBER 0

 Month
Name of the month, in
mixed case

Month YY October 0

 MON
Abbreviated name of
the month, in uppercase

MON YY OCT 0

 Mon
Name of the month, in
mixed case

Mon YY Oct 01

 RM Roman-numeral month DD-RM-YY 03-X-01

Year Y Last one digit of year MM Y 10 1

 YY Last two digits of year MM YY 10 01

 YYY Last three digits of year MM YYY 10 001

 YYYY Four digits of year MM YYYY 10 2001

 Y,YYY Year with comma MM Y,YYY 10 2,001

 YEAR
Year spelled out, in
uppercase

MM YEAR
10 TWO THOUSAND
ONE

 Year
Year spelled out, in
mixed case

MM Year
10 Two Thousand
One

Component Options Description Format Output

 SYYYY
Four digits of year with
"-" sign for BC

SYYYY -2105

 RR
Round year depending
on the current year

DD-MON-RR 03-OCT-01

 RRRR
Round year depending
on the current year

DD-MON-RRRR 03-OCT-2001

 I
Last one digit of the ISO
Standard year

MM I 10 1

 IY
Last two digits of the
ISO Standard year

MM IY 10 01

 IYY
Last three digits of the
ISO Standard year

MM IYY 10 001

 IYYY
Four digits of the ISO
Standard year

MM IYYY 10 2001

Century CC Century CC 21

 SCC
Century with "-" sign for
BC

SCC -22

Wtdeek W Week of the month W 1

 WW Week of the year WW 40

 IW
Week of the year in ISO
standard

IW 40

Quarter Q Quarter of the year Q 4

Hour HH Hour of the day 1-12 HH 03

 HH12 Hour of the day 1-12 HH12 03

 HH24 Hour of the day 0-23 HH24 15

Minute MI Minute of hour 0-59 MI 34

Second SS Second of minute 0-59 SS 48

 SSSSS Seconds past midnight SSSSS 42098

AM/PM AM Meridian indicator HH:MI AM 11:00 AM

 A.M.
Meridian indicator with
dots

HH:MI A.M. 11:00 A.M.

 PM Meridian indicator HH:MI PM 03:34 PM

 P.M.
Meridian indicator with
dots

HH:MI P.M. 03:34 P.M.

AD/BC AD AD indicator YY AD 01 AD

 A.D. AD indicator with dots YY A.D. 01 A.D.

 BC BC indicator YY BC 05 BC

 SYYYY
Four digits of year with
"-" sign for BC

SYYYY -2105

 RR
Round year depending
on the current year

DD-MON-RR 03-OCT-01

 RRRR
Round year depending
on the current year

DD-MON-RRRR 03-OCT-2001

 I
Last one digit of the ISO
Standard year

MM I 10 1

 IY
Last two digits of the
ISO Standard year

MM IY 10 01

 IYY
Last three digits of the
ISO Standard year

MM IYY 10 001

 IYYY
Four digits of the ISO
Standard year

MM IYYY 10 2001

Century CC Century CC 21

 SCC
Century with "-" sign for
BC

SCC -22

Wtdeek W Week of the month W 1

 WW Week of the year WW 40

 IW
Week of the year in ISO
standard

IW 40

Quarter Q Quarter of the year Q 4

Hour HH Hour of the day 1-12 HH 03

 HH12 Hour of the day 1-12 HH12 03

 HH24 Hour of the day 0-23 HH24 15

Minute MI Minute of hour 0-59 MI 34

Second SS Second of minute 0-59 SS 48

 SSSSS Seconds past midnight SSSSS 42098

AM/PM AM Meridian indicator HH:MI AM 11:00 AM

 A.M.
Meridian indicator with
dots

HH:MI A.M. 11:00 A.M.

 PM Meridian indicator HH:MI PM 03:34 PM

 P.M.
Meridian indicator with
dots

HH:MI P.M. 03:34 P.M.

AD/BC AD AD indicator YY AD 01 AD

 A.D. AD indicator with dots YY A.D. 01 A.D.

 BC BC indicator YY BC 05 BC

Component Options Description Format Output

 B.C. BC indicator with dots YY B.C. 05 B.C.

Julian day J
Number of days since
January 1, 4712 BC

J 2452186

Suffix TH or th Ordinal number DDTH or DDth 03RD

 SP or sp Spelled number MMSP or MMsp TEN

 SPTH Spelled ordinal number DDSPTH THIRD

 THSP Spelled ordinal number DD THSP THIRD

Fractional
seconds

FF
Always use FF, with two
Fs.

HH:MI:SS.FF or
HH:MI:SSXFF

11:47:26.336000

Time zone TZH Time zone hour HH:MI:SS.FF TZH 08:23:46.368 -10

 TZ Time zone minute
HH:MI:SS:FF
TZH:TZM

08:23:46.368 -
10:30

6.5.1 AD/BC Indicators

Oracle provides two formats, AD and BC (two more with dots—A.D., B.C.), to characterize a
year with respect to the year 0. However, they both serve the same purpose, and you can use
either of them with equivalent results. If you have used the format BC in a query, and the date
you are applying this format to comes out to be an AD year, Oracle is intelligent enough to print
AD instead of BC, and vice versa. For example:

SELECT TO_CHAR(SYSDATE, 'YYYY AD'),

 TO_CHAR(SYSDATE, 'YYYY BC') FROM DUAL;

TO_CHAR(TO_CHAR(

-------- --------

 2001 AD 2001 AD

SELECT TO_CHAR(ADD_MONTHS(SYSDATE,-50000), 'YYYY AD'),

 TO_CHAR(ADD_MONTHS(SYSDATE,-50000), 'YYYY BC') FROM DUAL;

TO_CHAR(TO_CHAR(

-------- --------

 2165 BC 2165 BC

 B.C. BC indicator with dots YY B.C. 05 B.C.

Julian day J
Number of days since
January 1, 4712 BC

J 2452186

Suffix TH or th Ordinal number DDTH or DDth 03RD

 SP or sp Spelled number MMSP or MMsp TEN

 SPTH Spelled ordinal number DDSPTH THIRD

 THSP Spelled ordinal number DD THSP THIRD

Fractional
seconds

FF
Always use FF, with two
Fs.

HH:MI:SS.FF or
HH:MI:SSXFF

11:47:26.336000

Time zone TZH Time zone hour HH:MI:SS.FF TZH 08:23:46.368 -10

 TZ Time zone minute
HH:MI:SS:FF
TZH:TZM

08:23:46.368 -
10:30

6.5.1 AD/BC Indicators

Oracle provides two formats, AD and BC (two more with dots—A.D., B.C.), to characterize a
year with respect to the year 0. However, they both serve the same purpose, and you can use
either of them with equivalent results. If you have used the format BC in a query, and the date
you are applying this format to comes out to be an AD year, Oracle is intelligent enough to print
AD instead of BC, and vice versa. For example:

SELECT TO_CHAR(SYSDATE, 'YYYY AD'),

 TO_CHAR(SYSDATE, 'YYYY BC') FROM DUAL;

TO_CHAR(TO_CHAR(

-------- --------

 2001 AD 2001 AD

SELECT TO_CHAR(ADD_MONTHS(SYSDATE,-50000), 'YYYY AD'),

 TO_CHAR(ADD_MONTHS(SYSDATE,-50000), 'YYYY BC') FROM DUAL;

TO_CHAR(TO_CHAR(

-------- --------

 2165 BC 2165 BC

In the first example, even though we supplied the BC format with the SYSDATE, it printed 2001
AD in the output, and in the second example, even though we supplied AD with a date 50,000
months earlier (in the BC), it printed BC in the output. The function ADD_MONTHS is discussed
later in the chapter.

The Year 0

At our graduation party in 1990, all of our classmates agreed to meet after 10 years
on January 1, 2000. Some even suggested that since it would be the start of the
new Millennium, it would be a great idea to have a millennium get-together.

Ten years passed by. Some of us, who had kept in touch after graduation,
remembered our millennium plan and decided to have a get-together on January 1,
2000. The party was well organized, and everyone was having a great time, untill
someone came up with the thought that our party wasn't actually a millennium
party. It was one year earlier than the actual start of the millennium. There was no
year "0," and therefore, the year 2000 was the last year of the then current
millennium. The new millennium actually began a year later January 1, 2001.
Debate over this issue continued till the wee hours in the morning, and four years
later we still debate it.

When the millennium began is an interesting topic for discussion, and the basis for
that discussion lies in the convention we use in numbering our years. The common
convention is the BC/AD convention, in which the sequence of years is ..., 2 BC, 1
BC, 1 AD, 2 AD, In this convention, there is no year 0—1 AD comes right after 1
BC. However, the convention used by astronomers includes a year 0. And, instead of
representing BC and AD, astronomers prefer using the "-" and "+" notation. In the
astronomical convention, the sequence of years is ..., -1, 0, +1, +2,

Oracle uses the BC/AD convention, and doesn't allow the year 0, as shown in the
following example:

SELECT TO_DATE('0000-12-10','YYYY-MM-DD') FROM DUAL;

SELECT TO_DATE('0000-12-10','YYYY-MM-DD') FROM DUAL

 *

ERROR at line 1:

ORA-01841: (full) year must be between -4713 and +9999, and not be 0

Since there is no year 0 in the Oracle calendar, the year after 1 BC must be the year
1 AD. Therefore, the difference between the date "January 1, 0001 AD" and the date
"December 31, 0001 BC" should be 1 day. However, the following example is in
complete contrast to this:

SELECT TO_DATE('0001-01-01 AD','YYYY-MM-DD AD')

 - TO_DATE('0001-12-31 BC', 'YYYY-MM-DD BC')

FROM DUAL;

TO_DATE('0001-01-01AD','YYYY-

 367

Where does 367 come from? You were expecting 1, right? 367 is the result of 366
(the number of days in the year 0, being a leap year) plus 1. The existence of year 0
indicates that Oracle's date arithmetic uses the astronomical convention. This
contradiction is known as Oracle's year-zero bug.

Refer to an enlightening article by Peter Gulutzan and Trudy Pelzer at
http://www.orafaq.net/papers/dates_o.doc for details on this and other interesting
facts involving Oracle's calendar.

6.5.2 AM/PM Indicators

The AM/PM indicators (as well as A.M. and P.M.) behave exactly the same as the AD/BC
indicators. If you have used the AM format in a query, and the time you are applying this
format to comes out to be a PM time, Oracle is intelligent enough to print PM instead of AM, and
vice versa. For example:

SELECT TO_CHAR(SYSDATE, 'HH:MI:SS AM'),

 TO_CHAR(SYSDATE, 'HH:MI:SS PM'),

 TO_CHAR(SYSDATE - 8/24, 'HH:MI:SS AM'),

 TO_CHAR(SYSDATE - 8/24, 'HH:MI:SS PM')

FROM DUAL;

TO_CHAR(SYS TO_CHAR(SYS TO_CHAR(SYS TO_CHAR(SYS

----------- ----------- ----------- -----------

06:58:07 PM 06:58:07 PM 10:58:07 AM 10:58:07 AM

6.5.3 Case-Sensitivity of Formats

Some date formats are case-sensitive while others aren't. The formats that represent numbers
are not case-sensitive. For example:

SELECT TO_CHAR(SYSDATE, 'HH:MI') UPPER,

http://www.orafaq.net/papers/dates_o.doc

TO_CHAR(SYSDATE, 'hh:mi') LOWER,

TO_CHAR(SYSDATE, 'Hh:mI') MIXED

FROM DUAL;

UPPER LOWER MIXED

----- ----- -----

03:17 03:17 03:17

You can see that the format HH:MI is case-insensitive—no matter which case you use for the

format, the output is the same. The same applies to all other format elements that represent
numbers, for example, DD, MM, YY, etc.

Date formats that represent textual date components are case-sensitive. For example, the
format DAY is different from day. The following rules apply for determining the case of the

output when a textual date format is used:

If the first character of the format is lowercase, then the output will be lowercase,
regardless of the case of the other characters in the format:
SELECT TO_CHAR(SYSDATE, 'month'),

 TO_CHAR(SYSDATE, 'mONTH'),

 TO_CHAR(SYSDATE, 'moNTh')

FROM DUAL;

TO_CHAR(S TO_CHAR(S TO_CHAR(S

--------- --------- ---------

october october october

If the first character of the format element is uppercase and the second character is also
uppercase, then the output will be uppercase, regardless of the case of the other
characters in the format:
SELECT TO_CHAR(SYSDATE, 'MOnth'),

 TO_CHAR(SYSDATE, 'MONTH')

FROM DUAL;

TO_CHAR(S TO_CHAR(S

--------- ---------

OCTOBER OCTOBER

If the first character of the format element is uppercase and the second character is
lowercase, then the output will have an uppercase first character and all other characters
lowercase, regardless of the case of the other characters in the format:
SELECT TO_CHAR(SYSDATE, 'MoNTH'), TO_CHAR(SYSDATE, 'Month')

FROM DUAL;

TO_CHAR(S TO_CHAR(S

--------- ---------

October October

MINUTES: MI or MM

Many SQL beginners assume that since HH represents hours and SS represents
seconds, MM would represent minutes, and try to write the following SQL queries to
print the current time:

SELECT TO_CHAR(SYSDATE, 'HH:MM:SS') FROM DUAL;

TO_CHAR(

02:10:32

However, this is wrong. MM represents months and not minutes. The format for
minutes is MI. Therefore, remember to use MI instead of MM when attempting to get
the minutes part of the date. The correct query is:

SELECT TO_CHAR(SYSDATE, 'HH:MI:SS') FROM DUAL;

TO_CHAR(

02:57:21

It becomes extremely difficult to debug an application if the MM format is embedded
in the code instead of MI.

These rules apply to all text elements, such as those used to represent month names, day
names, and so forth.

6.5.4 Two-Digit Years

Even though Oracle stores the century of the year internally, it allows you to use two-digit
years. Therefore, it is important to know how the century is handled when you use a two-digit
year. Oracle provides two two-digit year formats that you can use: YY and RR.

With the YY year format, the century is assumed to be the current century:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY';

Session altered.

SELECT SYSDATE, TO_CHAR(SYSDATE,'DD-MON-YYYY') FROM DUAL;

SYSDATE TO_CHAR(SYS

--------- -----------

06-OCT-01 06-OCT-2001

SELECT TO_CHAR(TO_DATE('10-DEC-99'),'DD-MON-YYYY'),

 TO_CHAR(TO_DATE('10-DEC-01'),'DD-MON-YYYY') FROM DUAL;

TO_CHAR(TO_ TO_CHAR(TO_

----------- -----------

10-DEC-2099 10-DEC-2001

Since the current date was 06-OCT-2001 when these examples were executed, the first two
digits of the years (the century component) in this example are assumed to be 20.

With the RR year format, the first two digits of the specified year are determined based upon
the last two digits of the current year and the last two digits of year specified. The following
rules apply:

If the specified year is less than 50, and the last two digits of the current year are less
than 50, then the first two digits of the return date are the same as the first two digits of
the current date.

If the specified year is less than 50, and the last two digits of the current year are greater
than or equal to 50, then first two digits of the return date are one greater than the first
two digits of the current date.

If the specified year is greater than or equal to 50, and the last two digits of the current
year are less than 50, then first two digits of the return date are one less than the first two
digits of the current date.

If the specified year is greater than or equal to 50, and the last two digits of the current
year are greater than or equal to 50, then the first two digits of the return date are the
same as the first two digits of the current date.

The following example demonstrates these rules:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-RR';

Session altered.

SELECT SYSDATE, TO_CHAR(SYSDATE,'DD-MON-YYYY') FROM DUAL;

SYSDATE TO_CHAR(SYS

--------- -----------

06-OCT-01 06-OCT-2001

SELECT TO_CHAR(TO_DATE('10-DEC-99'),'DD-MON-YYYY'),

 TO_CHAR(TO_DATE('10-DEC-01'),'DD-MON-YYYY') FROM DUAL;

TO_CHAR(TO_ TO_CHAR(TO_

----------- -----------

10-DEC-1999 10-DEC-2001

The ALTER SESSION command sets the default date format to DD-MON-RR. The next SELECT
uses SYSDATE to show the current date at the time the example was executed. The final
SELECT demonstrates the use of the RR date format (both TO_DATE calls rely on the default
format set earlier). Note that the DD-MON-RR date format treats 10-DEC-99 as 10-DEC-1999,
whereas it treats 10-DEC-01 as 10-DEC-2001. Compare this output to the rules we just listed.

The year format RRRR (four Rs) allows you to enter either a two-digit year or a four- digit year.
If you enter a four-digit year, Oracle behaves as if the year format was YYYY. If you enter a
two-digit year, Oracle behaves as if the year format is RR. The RRRR format is rarely used. Most
SQL programmers prefer to use either YYYY, or to explicitly specify RR.

6.5.5 ISO Standard Issues

The ISO 8601 standard determines the start date of the first week of the year based upon
whether most of the days in the week belong to the new year or to the previous year. If January
1 is a Monday, Tuesday, Wednesday, or a Thursday, then January 1 belongs to the first week of
the new ISO year. The first day of the ISO year is either January 1 (if it is a Monday) or the
previous Monday (which actually goes back to the last calendar year). For example, if January 1
is a Tuesday, then the first day of the ISO year is Monday, December 31, of the prior calendar
year.

If January 1 is a Friday, Saturday, or a Sunday, then January 1 belongs to the last week of the
previous ISO year. The first day of the first week of the new ISO year is then considered to be
the Monday following January 1. For example, if January 1 falls on a Saturday, then the first
day of the ISO year is considered to be Monday, January 3.

If you need to work with ISO dates, Oracle provides date formats that treat ISO years
differently from calendar years. These ISO formats are:

IW

Represents the week of the year in ISO standard.

I, IY, IYY, and IYYY

Represents the ISO year.

The following sections describe ISO weeks and years with examples.

6.5.5.1 ISO standard weeks

In the ISO standard, weeks of the year are counted differently than regular calendar weeks. In
a regular calendar, the first week of the year starts on January 1. 01-JAN is the first date of the
first week. However, in the ISO standard, a week always starts on a Monday and ends on a
Sunday. Therefore, the first date of the first week is considered to be the date of the nearest
Monday. This date could be a couple of days later than 01-JAN, or it could be a couple of days
earlier (in the previous year).

The format WW returns the week of the year in terms of the regular calendar, and the format
IW returns the week of the year in terms of the ISO standard. Since 01- JAN-2001 was a
Monday, it was considered the start date of the first week in terms of the regular calendar as
well as in terms of the ISO standard. Therefore, if you compute the week number of any date in
the year 2001, the results will be the same whether you use the regular calendar or the ISO
calendar. For example:

SELECT TO_CHAR(TO_DATE('10-DEC-01'),'WW'),

 TO_CHAR(TO_DATE('10-DEC-01'),'IW')

FROM DUAL;

TO TO

-- --

50 50

However, the year 1999 didn't start on a Monday. Therefore, for some dates, the week number
in the ISO standard could be different from that of the regular calendar. For example:

SELECT TO_CHAR(TO_DATE('10-DEC-99'),'WW'),

 TO_CHAR(TO_DATE('10-DEC-99'),'IW')

FROM DUAL;

TO TO

-- --

50 49

The ISO Standard can cause a year to have 53 weeks. Here's an example:

SELECT TO_CHAR(TO_DATE('01-JAN-99'),'IW'),

 TO_CHAR(TO_DATE('01-JAN- 99'),'Day')

FROM DUAL;

TO TO_CHAR(T

-- ---------

53 Friday

Note that the ISO standard treats January 1, 1999 to be in the 53rd week of 1998, because it
falls on a Friday. The first week of 1999 starts on the subsequent Monday, which is January 4,
as per the ISO standard.

6.5.5.2 ISO standard year

The year formats I, IY, IYY, and IYYY represent the ISO year. IYYY represents the four-digit ISO
year, IYY represents the last three digits of the ISO year, IY represents the last two digits of the
ISO year, and I represents the last digit of the ISO year. Remember that the start date of an
ISO year is not necessarily January 1. The following example returns the ISO and calendar
years for January 1, 1999:

SELECT TO_CHAR(TO_DATE('01-JAN-99'),'IYYY'),

 TO_CHAR(TO_DATE('01-JAN-99'),'YYYY') FROM DUAL;

TO_C TO_C

---- ----

1998 1999

Notice that even though the calendar year is 1999, the ISO year is considered to be 1998.
That's because 01-Jan-1999 fell on a Friday—late in the week, which causes the week to be
considered part of the previous ISO year. The following example demonstrates the opposite
situation:

SELECT TO_CHAR(TO_DATE('31-DEC-90'),'IYYY'),

 TO_CHAR(TO_DATE('31-DEC-90'),'YYYY') FROM DUAL;

TO_C TO_C

---- ----

1991 1990

This time, the calendar year is 1990, but the date 31-Dec-1990 is considered to be in ISO year
1991. This is because 01-Jan-1991 fell on a Tuesday, early enough in the week for the entire
week to be considered part of the next ISO year.

6.5.6 Database Parameters

The default formats to use when converting temporal data to character form are determined by
database parameters. The key parameters are:

NLS_DATE_FORMAT

Specifies the default format used by TO_DATE and TO_CHAR functions when converting
character data into data of type DATE or vice versa.

NLS_TIMESTAMP_FORMAT

Specifies the default format used by TO_TIMESTAMP and TO_CHAR functions when
converting character data into data of type TIMESTAMP and TIMESTAMP WITH LOCAL
TIME ZONE or vice versa.

NLS_TIMESTAMP_TZ_FORMAT

Specifies the default format used by TO_TIMESTAMP_TZ and TO_CHAR when converting
character data into data of type TIMESTAMP WITH TIME ZONE or vice versa.

If any of these parameters are not set explicitly, its default value is derived from the setting for
the NLS_TERRITORY parameter. The NLS_TERRITORY parameter specifies the territory, such as
"AMERICA" or "CZECH REPUBLIC." For more details on the NLS parameters, refer to Oracle's
Globalization Support Guide.

You or your DBA can specify values for these default date format parameters in one of the
following three ways:

By specifying a value in the instance's initialization parameter file. For example:
NLS_DATE_FORMAT = 'YYYY-MM-DD'

A format string specified using this approach becomes the instance-wide default.

By issuing an ALTER SESSION command to change the default for your current session:
ALTER SESSION SET NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH24:MI:SS.FF';

By setting an environment variable on your client, to change the default value for all
sessions initiated from your client:
setenv NLS_DATE_FORMAT 'YYYY-MM-DD'

The NLS_LANG environment variable must be set for any other NLS_
environment variable setting to take effect. Unless NLS_LANG is set, all
settings for other NLS_ environment variables are ignored.

The session-level setting overrides the environment variable setting, and the environment
variable setting overrides the initialization parameter setting.

 < Day Day Up >

 < Day Day Up >

6.6 Manipulating Temporal Data

Date arithmetic is an important aspect of our day-to-day life. We find the age of a person by
subtracting his date of birth from today's date. We compute the date a warranty expires by
adding the warranty period to the purchase date. Drivers' license expirations, bank interest
calculation, and a host of other things all depend on date arithmetic. It is extremely important
for any database to support such common date arithmetic operations.

6.6.1 Using the Built-in Temporal Functions

Oracle provides a number of helpful functions, some of which you've seen used earlier in this
chapter, that you can use to manipulate temporal values:

ADD_MONTHS(date_value , months)

Adds months to a date. Add negative values to subtract months. If the initial date
represents the last day of a month, the result is forced to the final day of the result
month. Section 6.6.2 discusses this function in detail.

CURRENT_DATE

Returns the current date in the session time zone, as a DATE value.

CURRENT_TIMESTAMP

Returns the current date and time in the session time zone, as a TIMESTAMP WITH TIME
ZONE value.

DBTIMEZONE

Returns the database time zone.

EXTRACT(element FROM temporal_value)

Returns the specified element from a date, timestamp, or interval. Valid elements, which
are SQL keywords and not string values, are: YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_REGION, and
TIMEZONE_ABBR. The temporal value may be any of Oracle's date, timestamp, or interval
types.

FROM_TZ(timestamp , time_zone)

Converts a TIMESTAMP into a TIMESTAMP WITH TIME ZONE, essentially merging the two
values you provide into one. The time_zone argument must be a string in the form [+|-

] hh :mi .

LAST_DAY(date_value)

Computes the last day of the month in which the given DATE value falls.

LOCALTIMESTAMP

Returns the current date and time in the session timezone, as a TIMESTAMP value.

MONTHS_BETWEEN(later_date , earlier_date)

Determines the number of months between two dates. The calculation is performed as:
later_date - earlier_date . If later_date is actually earlier, than you'll get a

negative result. See Section 6.6.3 for a detailed look at this function.

NEW_TIME(date , source_time_zone , target_time_zone)

Translates the time component of date from the source_time_zone to the

target_time_zone . The time zone arguments must be strings containing time zone

abbreviations such as PST, EST, CST. The list of time zones supported for use with
NEW_TIME is shorter, and distinct from, the list of time zones supported for the
timestamp types.

NEXT_DAY(date , weekday)

Returns the date of the next specified weekday following the given date . The weekday

argument must be a valid weekday name or abbreviation in the current language—e.g.,
"Monday," "Tuesday," "Wed," "Thu."

ROUND(temporal_value , format_element)

Rounds a date or timestamp value to the specified element. See Section 6.6.5 .

SESSIONTIMEZONE

Returns the session timezone.

SYSDATE

Returns the current date and time for the operating system on which the database
resides.

SYSTIMESTAMP

Returns the current date and timestamp time for the operating system on which the
database resides as a TIMESTAMP WITH TIME ZONE value.

SYS_EXTRACT_UTC (timestamp_with timezone_value)

Returns the UTC data and time value with respect to the input TIMESTAMP WITH TIME
ZONE value.

TRUNC(temporal_value , format_element)

Truncates a date/time value to a specific element. See Section 6.6.5 .

TZ_OFFSET([tz_name | tz_offset])

Returns the time zone offset with respect to UTC. Input may be a time zone name from
V$TIMEZONE_NAMES or a time zone offset in the form [+|-] hh :mi .

SYSDATE is one of the most commonly used functions, and returns the current date and time as
a DATE value:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-RR HH:MI:SS';

Session altered.

SELECT SYSDATE FROM DUAL;

SYSDATE

11-NOV-01 01:00:10

The following is an example of a function that takes arguments. The FROM_TZ function is used
to add time zone information to the timestamp returned by a call to SYSTIMESTAMP. You can

see that LOCALTIMESTAMP by itself returns no time zone information. FROM_TZ combines the
TIMESTAMP with the time zone we specified, and returns a TIMESTAMP WITH TIME ZONE:

SELECT LOCALTIMESTAMP FROM dual;

LOCALTIMESTAMP

--

18-DEC-03 03.31.24.974000 PM

SELECT FROM_TZ(LOCALTIMESTAMP,'-5:00') FROM dual;

FROM_TZ(LOCALTIMESTAMP,'-5:00')

--

18-DEC-03 03.31.25.024000 PM -05:00

The EXTRACT function is unusual in that its first argument is actually a SQL keyword, and the
delimiter between arguments is also a keyword:

SELECT EXTRACT(YEAR FROM SYSDATE) FROM dual;

EXTRACT(YEARFROMSYSDATE)

 2003

A more useful and interesting example of EXTRACT is shown at the end of Section 6.6.3 .

Many of Oracle's temporal functions take only DATE values as inputs. This harks back to the day
when DATE was the only temporal type. You have to be careful about this, because Oracle will
implicitly convert timestamp types to DATEs, leading you to inadvertently write erroneous code.
For example:

SELECT ADD_MONTHS(SYSTIMESTAMP,1) FROM dual;

ADD_MONTH

18-JAN-04

The problem here isn't terribly obvious, but what's happened is that SYSTIMESTAMP has
returned a TIMESTAMP WITH TIME ZONE value, which has been implicitly cast to a DATE, and
thus both fractional seconds and the time zone have been lost. The results are the same as if
you'd executed:

SELECT ADD_MONTHS(CAST(SYSTIMESTAMP AS DATE),1) FROM dual;

Be careful about passing TIMESTAMP values to functions that expect DATEs. If your code
depends on fractional seconds or time zone information, you'll lose that information, and your
code won't work as you expect.

We rather wish Oracle had overloaded all the existing DATE functions, such as ADD_MONTHS,
to also accept the various TIMESTAMP data types.

6.6.2 Addition

Adding two datetime values doesn't make sense. However, you can add days, months, years,
hours, minutes, and seconds to a datetime to generate a future date and time. How you go
about adding time intervals to datetime values depends on whether you are working with a
DATE or one of the TIMESTAMP values.

6.6.2.1 Adding numbers to a DATE

The + operator allows you to add numbers to a DATE. The unit of a number added to a DATE is
assumed to be days. Therefore, to find tomorrow's date, you can add 1 to SYSDATE:

SELECT SYSDATE, SYSDATE+1 FROM DUAL;

SYSDATE SYSDATE+1

--------- ---------

05-OCT-01 06-OCT-01

Any time you add a number to a DATE, Oracle assumes that the number represents a number of
days. Therefore, if you want to add multiples of a day (week, month, year, etc.) to a DATE, you
first need to multiply by a conversion factor. For example, to add one week to today's date, you
add 7 (7 days in a week times 1 day) to SYSDATE:

SELECT SYSDATE+7 FROM DUAL;

SYSDATE+7

12-OCT-01

Similarly, if you want to add fractions of a day (hour, minute, second) to a DATE, you first need
to convert such fractions into a fractional number of days. Do this by dividing by a conversion
factor. For example, to add 20 minutes to the current date and time, you need to add (20
minutes/1,440 minutes in a day) to SYSDATE:

SELECT TO_CHAR(SYSDATE,'DD-MON-YY HH:MI:SS'),

TO_CHAR(SYSDATE+(20/1440),'DD-MON-YY HH:MI:SS')

FROM DUAL;

TO_CHAR(SYSDATE,'D TO_CHAR(SYSDATE+(2

------------------ ------------------

05-OCT-01 01:22:03 05-OCT-01 01:42:03

Oracle allows you to use the + operator to add a number (number of days) to a TIMESTAMP
value. However, when you do that, the TIMESTAMP value will be implicitly converted to a DATE
value, with consequent loss of information.

6.6.2.2 Adding months to a DATE

Adding months to a DATE is not as easy as adding weeks, because all months don't have the
same number of days—some have 30, some 31, some 28, and at times even 29. To add one
month to a DATE, you need to know how many days that calendar month will have. Therefore,
adding months to a DATE by converting those months to a number of days involves lots of
homework, which is error-prone. Fortunately, Oracle does all the homework for us, and
provides a built-in SQL function to add months to DATE values. This function is called
ADD_MONTHS, and you call it as follows:

SELECT fname, hire_date, ADD_MONTHS(hire_date, 6) review_date

FROM employee;

FNAME HIRE_DATE REVIEW_DA

-------------------- --------- ---------

John 22-OCT-99 22-APR-00

This example shows the computation of an employee's biannual review date by using
ADD_MONTHS to add six months to the employee's hire_date . The input DATE and the result

DATE both fall on the 22nd of the month. This would not have happened if we had added 180
days to the input DATE. ADD_MONTHS is "smart" in one other way, too. The following example
adds 6 months to 31 December 1999:

SELECT ADD_MONTHS('31-DEC-99',6) FROM DUAL;

ADD_MONTH

30-JUN-00

The ADD_MONTHS function is intelligent enough to know that adding 6 months to 31 December
should result in the last day of June. And since the last day of June is the 30th (not 31st), it
returns 30 June, 2000.

ADD_MONTHS does not work for TIMESTAMP values. Any such values passed to ADD_MONTHS
will be implicitly converted to DATE values, with consequent loss of information.

6.6.2.3 Adding true INTERVAL values rather than numbers

You can use the + operator to add INTERVALs to DATE or TIMESTAMP values. For example,
assume the flight time between New York and Los Angeles is 6 hours and 27 minutes. To find
the arrival time of the flight, leaving New York now (3:39 PM in the example), at Los Angeles,
you add the flight time to the current time:

select sysdate, sysdate + INTERVAL '0 6:27:00' DAY TO SECOND

from dual;

SYSDATE SYSDATE+INTERVAL'06

------------------- -------------------

12/29/2003 15:39:00 12/29/2003 22:06:00

The preceding example adds an interval literal INTERVAL '0 6:27:00' DAY TO SECOND (6

hours and 27 minutes) to the DATE value returned by SYSDATE. The result of the addition is a
DATE value and is in the New York (EST) time zone. However, since the destination is Los

Angeles, you would like the output to be in the local time zone of the destination (PST). To
achieve this, you can use the NEW_TIME function, as shown in the following example:

select sysdate,

 new_time(sysdate + INTERVAL '0 6:27:00' DAY TO SECOND, 'EST','PST')

from dual;

SYSDATE NEW_TIME(SYSDATE+IN

------------------- -------------------

12/29/2003 15:39:00 12/29/2003 19:06:00

Therefore, a flight with flight time of 6 hours and 27 minutes that leaves New York at 3:39 PM
will reach Los Angeles at 7:06 PM local time.

Similarly to adding intervals to DATE values, you can add intervals to TIMESTAMP values. For
example:

SELECT LOCALTIMESTAMP, LOCALTIMESTAMP + INTERVAL '0 3:16:23' DAY TO SECOND

FROM DUAL;

LOCALTIMESTAMP

LOCALTIMESTAMP+INTERVAL'03:16:23'DAYTOSECOND

28-MAR-04 04.30.19.208000 PM

28-MAR-04 07.46.42.208000000 PM

If you need to add some number of days to a TIMESTAMP value, you shouldn't just directly add
the number to the TIMESTAMP. In doing so, the TIMESTAMP will be implicitly converted to a
DATE, which results in the loss of information. Specifically, you'll lose your fractional seconds.
Rather, you should convert the number to an interval, and then add the interval to the
TIMESTAMP. The result will be a TIMESTAMP value, and no information will be lost. For
example:

SELECT LOCALTIMESTAMP + INTERVAL '1 0:00:00' DAY TO SECOND

FROM DUAL;

LOCALTIMESTAMP+INTERVAL'10:00:00'DAYTOSECOND

29-MAR-04 04.36.46.211000000 PM

As an alternative to using an INTERVAL literal as in the preceding example, you can use the
NUMTODSINTERVAL function to convert a number to an interval, as shown in the following
example:

SELECT LOCALTIMESTAMP + NUMTODSINTERVAL(1,'DAY')

FROM DUAL;

LOCALTIMESTAMP+NUMTODSINTERVAL(1,'DAY')

29-MAR-04 04.37.16.077000000 PM

6.6.3 Subtraction

Even though no other arithmetic operation (addition, multiplication, division) between two
DATEs makes any sense, subtracting one DATE from another DATE is a very common and useful
operation. The - operator allows you to subtract a DATE from a DATE, or a number from a
DATE, a TIMESTAMP from a TIMESTAMP, an interval from a DATE and an interval from a
TIMESTAMP.

6.6.3.1 Subtracting one DATE from another

Subtracting one DATE from another DATE returns the number of days between those two
DATEs. The following example displays the lead time of a set of orders by subtracting the date
on which the order was placed (order_dt) from the expected ship date (expected_ship_dt):

SELECT order_nbr, expected_ship_dt - order_dt lead_time

FROM cust_order;

 ORDER_NBR LEAD_TIME

---------- ----------

 1001 1

 1000 5

 1002 13

 1003 10

 1004 9

 1005 2

 1006 6

 1007 2

 1008 2

 1009 4

 1012 1

 1011 5

 1015 13

 1017 10

 1019 9

 1021 2

 1023 6

 1025 2

 1027 2

 1029 4

6.6.3.2 Subtracting one TIMESTAMP from another

Subtracting one TIMESTAMP from another TIMESTAMP returns an interval of type INTERVAL
DAY TO SECOND. For example:

SELECT LOCALTIMESTAMP - transaction_timestamp FROM transaction;

SYSTIMESTAMP-TRANSACTION_TIMESTAMP

+000000453 07:04:39.086000

6.6.3.3 Subtracting a number from a DATE

Along with subtracting one DATE from another, you can also subtract a number from a DATE.
Subtracting a number from a DATE returns a DATE that number of days in the past. For
example, subtracting 1 from SYSDATE gives yesterday, and subtracting 7 from SYSDATE yields
the same day last week:

SELECT SYSDATE, SYSDATE - 1, SYSDATE - 7 FROM DUAL;

SYSDATE SYSDATE-1 SYSDATE-7

--------- --------- ---------

05-OCT-01 04-OCT-01 28-SEP-01

Oracle lets you use the - operator to subtract a number (of days) from a TIMESTAMP value.
However, when you do that, the TIMESTAMP value will be implicitly converted to a DATE value,
with consequent loss of information.

6.6.3.4 Subtracting months from a DATE

Unlike ADD_MONTHS, Oracle doesn't provide a SUBTRACT_MONTHS function. To subtract
months from a DATE, use the ADD_MONTHS function, and pass a negative number as the
second parameter:

SELECT SYSDATE, ADD_MONTHS(SYSDATE, -6) FROM DUAL;

SYSDATE ADD_MONTH

--------- ---------

05-OCT-01 05-APR-01

6.6.3.5 Number of months between two DATEs

Earlier in this section you saw that subtracting a DATE from another DATE returns the number
of days between the two dates. There are times when you may want to know the number of
months between two DATEs. Consider that subtracting an employee's hire_date from SYSDATE

yields the number of days of experience the employee has with her employer:

SELECT SYSDATE-hire_date FROM employee;

SYSDATE-HIRE_DATE

 714.0786

It's better, in most cases, to find the number of months of experience rather than the number of
days. You know that dividing the number of days between two DATEs by 30 won't accurately
calculate the number of months between those two DATEs. Therefore, Oracle provides the built-
in SQL function MONTHS_BETWEEN for finding the number of months between two DATEs.
MONTHS_BETWEEN is called as follows:

SELECT MONTHS_BETWEEN(SYSDATE,hire_date),

 MONTHS_BETWEEN(hire_date, SYSDATE)

FROM employee;

MONTHS_BETWEEN(SYSDATE,HIRE_DATE) MONTHS_BETWEEN(HIRE_DATE,SYSDATE)

--------------------------------- ---------------------------------

 267.83499 -267.83499

MONTHS_BETWEEN subtracts the second DATE from the first. So, if the second DATE comes
later than the first, then MONTHS_BETWEEN will return a negative value. You can see that
behavior in this example. Both calls use the same two DATEs, but in different orders, and the
difference in results is that one result is negative while the other is positive.

There is no YEARS_BETWEEN function. To find the number of years between two DATEs, you
can either subtract the two DATEs to find the number of days and then divide by 365, or use
MONTHS_BETWEEN to find the number of months and then divide by 12. All years don't have
the same number of days—some have 365 days and others have 366 days. Therefore, it is not
accurate to divide the number of days by 365 to get the number of years. On the other hand, all
years have 12 months, whether a leap year or not. Therefore, the most accurate way to
calculate the number of years between two DATEs is to use the MONTHS_BETWEEN function to
find the number of months and then divide by 12 to get the number of years.

6.6.3.6 Time interval between two DATEs

As you saw in the preceding examples, subtracting one DATE from another returns the number
of days. However, at times, if the difference is a fractional day, you would like to find the
number of hours, minutes, and seconds between two points in time. In the next example, a
pizza delivery center keeps track of the order_receive_time and the delivery_time of the

orders it receives:

CREATE TABLE pizza_delivery (

order_id NUMBER(10),

order_receive_time DATE,

delivery_time DATE);

Table created.

INSERT INTO pizza_delivery VALUES

(1, TO_DATE('12/20/03 08:47:53','MM/DD/YY HH:MI:SS'),

TO_DATE ('12/20/03 10:30:34','MM/DD/YY HH:MI:SS'));

1 row created.

COMMIT;

Commit complete.

The manager of the pizza delivery center wants to know the time difference between the
order_receive_time and the delivery_time . You can use the date subtraction operation as

in the following query:

SELECT delivery_time - order_receive_time FROM pizza_delivery;

DELIVERY_TIME-ORDER_RECEIVE_TIME

 .07130787

The fractional days returned by the preceding query doesn't make much sense. The manager
wants to know the time difference in hours, minutes, and seconds. One way to find this would
be to convert the number returned by the date subtraction into an interval using the
NUMTODSINTERVAL function, and then extract the hour, minute, and second components of
this interval using the EXTRACT function:

SELECT EXTRACT(HOUR FROM

 NUMTODSINTERVAL(delivery_time - order_receive_time, 'DAY'))

 ||':'||

 EXTRACT(MINUTE FROM

 NUMTODSINTERVAL(delivery_time - order_receive_time, 'DAY'))

 ||':'||

 EXTRACT(SECOND FROM

 NUMTODSINTERVAL(delivery_time - order_receive_time, 'DAY'))

 "Lead Time"

FROM pizza_delivery;

Lead Time

1:42:41

This example uses three expressions to extract hour, minute, and second, respectively, and
then concatenates those values using the : delimiter to return the result in the HH:MI:SS
format, which is much easier to comprehend compared to a fractional day.

6.6.3.7 Subtracting an INTERVAL from a DATE or TIMESTAMP

You can use the - operator to subtract an INTERVAL from a DATE or TIMESTAMP value. For
example, if you need to reach your office at 8:00 AM, and it takes 30 minutes to reach from
your home to office, you can use the following example to back calculate the start time:

SELECT TO_DATE('12/29/2003 08:00:00') - INTERVAL '0 0:30:00' DAY TO SECOND

FROM DUAL;

TO_DATE('12/29/2003

12/29/2003 07:30:00

The preceding example subtracts an interval literal (INTERVAL '0 0:30:00' DAY TO SECOND)

from a DATE value, and returns a DATE value. Similarly, you can subtract an interval from a
TIMESTAMP value, using the "-" operator, as shown in the following example:

SELECT LOCALTIMESTAMP - INTERVAL '0 0:30:00' DAY TO SECOND

FROM DUAL;

LOCALTIMESTAMP-INTERVAL'00:30:00'DAYTOSECOND

28-MAR-04 03.42.59.819000000 PM

The preceding example subtracts an interval literal (INTERVAL '0 0:30:00' DAY TO SECOND)

from a TIMESTAMP value, and returns a TIMESTAMP value.

If you need to subtract some number of days from a TIMESTAMP value, you shouldn't just
directly subtract the number from the TIMESTAMP. In doing so, the TIMESTAMP will be
implicitly converted to a DATE and result in loss of information. Rather, you should convert the
number to an interval, and then subtract the interval from the TIMESTAMP. This way, the result
will be a TIMESTAMP value, and no information will be lost, as illustrated in the following
example:

SELECT LOCALTIMESTAMP - INTERVAL '1 0:00:00' DAY TO SECOND

FROM DUAL;

LOCALTIMESTAMP-INTERVAL'10:00:00'DAYTOSECOND

--

27-MAR-04 04.23.09.248000000 PM

As an alternative to the preceding example, you can use the NUMTODSINTERVAL function to
convert a number to an interval, as shown in the following example:

SELECT LOCALTIMESTAMP - NUMTODSINTERVAL(1,'DAY')

FROM DUAL;

LOCALTIMESTAMP-NUMTODSINTERVAL(1,'DAY')

27-MAR-04 04.27.41.052000000 PM

6.6.4 Determining the First Day of the Month

Oracle provides a built-in function to get the last day of a month. The function returns the last
day of the month containing the input date. For example, to find the last date of the current
month, you can use the following SQL statement:

SELECT LAST_DAY(SYSDATE) "Next Payment Date" FROM DUAL;

Next Paym

31-OCT-01

Sometimes it's useful to be able to determine the first day of a given month; it would be nice if
Oracle would provide a FIRST_DAY function. One approach to getting the first day of the month

for a given date is to use the TRUNC function:

TRUNC(SYSDATE,'MM')

A side-effect of this approach is that any time-of-day component of the input value is
eliminated; the result will always have a time of midnight at the beginning of the day. Such a
truncation of time may be good, especially if you are doing a range comparison. For example,
to find all employees hired in the current month, without applying any sort of function to the
hire_date column:

SELECT * FROM employee

WHERE hire_date >= TRUNC(SYSDATE,'MM')

 AND hire_date < TRUNC(LAST_DAY(SYSDATE)+1);

This SELECT statement works because TRUNC(SYSDATE,'MM') sets the time-of-day to the very

beginning of the first day of the month. The second TRUNC expression resolves to the very
beginning of the first day of the following month, which is why less-than rather than less-than-
or-equal-to is used when comparing hire_date to that value.

In many cases, TRUNC(date ,'MM') will work just fine for getting to the first day of a month.

However, if you need to determine the first day of the month in which a given DATE value falls
while also preserving the time-of-day, you can use the following expression:

ADD_MONTHS((LAST_DAY(SYSDATE)+1), -1)

This expression finds the last day of the month represented by date. It then adds 1 to get to the
first day of the subsequent month, and finally uses ADD_MONTHS with an argument of -1 to go
back to the beginning of the month in which you started. The result is the first day of the month
in which the given date falls. Other approaches to this problem are possible; this is just one that
works well for us. This approach has the advantage of preserving the time component of the
date in question.

6.6.5 Rounding and Truncating Dates

Rounding and truncating dates is similar in concept to the rounding and truncating of numbers,
but more involved because an Oracle DATE contains date as well as time information. Use the
ROUND function to round a date/time value to a specific element; use the TRUNC function to
truncate a date/time value to a specific element.

Take care when using ROUND and TRUNC on TIMESTAMP values. Such values are implicitly
converted to type DATE before being passed to ROUND or TRUNC, and you'll lose any
information, such as time zone and fractional seconds, that a DATE value cannot hold.

The return value from ROUND or TRUNC depends upon the specified format, which is an
optional parameter. If you don't specify a format in the call to ROUND, the function returns a
date by rounding the input to the nearest day. If you don't specify a format in the call to

TRUNC, that function returns the input date by setting the time component to the beginning of
the day.

When using ROUND and TRUNC to round to the nearest day, or to truncate a date, the functions
set the time fields of the return value to the beginning of the returned day—i.e., 12:00:00 AM
(00:00:00 in HH24 format). For example:

SELECT TO_CHAR(SYSDATE, 'DD-MON-YY HH:MI:SS AM'),

 TO_CHAR(ROUND(SYSDATE), 'DD-MON-YY HH:MI:SS AM'),

 TO_CHAR(TRUNC(SYSDATE), 'DD-MON-YY HH:MI:SS AM')

FROM DUAL;

TO_CHAR(SYSDATE,'DD-M TO_CHAR(ROUND(SYSDATE TO_CHAR(TRUNC(SYSDATE

--------------------- --------------------- ---------------------

06-OCT-01 07:35:48 AM 06-OCT-01 12:00:00 AM 06-OCT-01 12:00:00 AM

Notice that since the input time (SYSDATE) is before 12 noon, the output of ROUND and TRUNC
are the same. However, if the input time were after 12 noon, the output of ROUND and TRUNC
would be different, as in the following example:

SELECT TO_CHAR(SYSDATE, 'DD-MON-YY HH:MI:SS AM'),

 TO_CHAR(ROUND(SYSDATE), 'DD-MON-YY HH:MI:SS AM'),

 TO_CHAR(TRUNC(SYSDATE), 'DD-MON-YY HH:MI:SS AM')

FROM DUAL;

TO_CHAR(SYSDATE,'DD-M TO_CHAR(ROUND(SYSDATE TO_CHAR(TRUNC(SYSDATE

--------------------- --------------------- ---------------------

06-OCT-01 05:35:48 PM 07-OCT-01 12:00:00 AM 06-OCT-01 12:00:00 AM

Since the input time is past 12 noon, ROUND returns the beginning of the next day. However,
TRUNC still returns the beginning of the input date. This is similar to the rounding and
truncating of numbers.

When you specify a format as an input to the ROUND and TRUNC functions, things become a bit
more involved, but the concepts of rounding and truncating still remain the same. The
difference is that the rounding and truncating are now based on the format you specify. For
example, if you specify the format as YYYY, the input date will be truncated or rounded based
on the year, which means that if the input date is before the middle of the year (July 1), both
ROUND and TRUNC will return the first day of the year. If the input date is after July 1, ROUND
will return the first day of the next year, whereas TRUNC will return the first day of the input
year. For example:

SELECT TO_CHAR(SYSDATE-180, 'DD-MON-YYYY HH24:MI:SS'),

 TO_CHAR(ROUND(SYSDATE-180,'YYYY'),'DD-MON-YYYY HH24:MI:SS'),

 TO_CHAR(TRUNC(SYSDATE-180,'YYYY'),'DD-MON-YYYY HH24:MI:SS')

FROM DUAL;

TO_CHAR(SYSDATE-180, TO_CHAR(ROUND(SYSDAT TO_CHAR(TRUNC(SYSDAT

-------------------- -------------------- --------------------

09-APR-2001 20:58:33 01-JAN-2001 00:00:00 01-JAN-2001 00:00:00

SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY HH24:MI:SS'),

 TO_CHAR(ROUND(SYSDATE,'YYYY'),'DD-MON-YYYY HH24:MI:SS'),

 TO_CHAR(TRUNC(SYSDATE,'YYYY'),'DD-MON-YYYY HH24:MI:SS')

FROM DUAL;

TO_CHAR(SYSDATE,'DD- TO_CHAR(ROUND(SYSDAT TO_CHAR(TRUNC(SYSDAT

-------------------- -------------------- --------------------

06-OCT-2001 20:58:49 01-JAN-2002 00:00:00 01-JAN-2001 00:00:00

Similarly, you can round or truncate a date to a specific month, quarter, week, century, hour,
minute, and so forth by using the appropriate format. Table 6-2 lists the formats (and their
meanings) that can be used with the ROUND and TRUNC functions.

Century

CC

TRUNC returns the first date of the century.

SCC

ROUND returns the first date of the century if the input date is before the middle of the century
(01-JAN-xx51); otherwise, ROUND returns the first date of the next century.

Year

SYYYY

TRUNC returns the first date of the year.

YYYY

YEAR

SYEAR

YYY

YY

Y

ROUND returns the first date of the year if the input date is before the middle of the year (01-
JUL); otherwise, ROUND returns the first date of the next year.

ISO

IYYY

TRUNC returns the first date of the ISO year.

IYY

IY

I

ROUND returns the first date of the ISO year if the input date is before the middle of the ISO
year; otherwise, ROUND returns the first date of the next ISO year.

Quarter

Q

TRUNC returns the first date of the quarter.

ROUND returns the first date of the quarter if the input date is before the middle of the quarter
(the 16th day of the second month of the quarter); otherwise, ROUND returns the first date of
the next quarter.

Month

MONTH

TRUNC returns the first date of the month.

MON

MM

RM

ROUND returns the first date of the month if the input date is before the middle of the month
(the 16th day of the month); otherwise, ROUND returns the first date of the next month.

Week

WW

TRUNC returns the first date of the week.

ROUND returns the first date of the week if the input date is on or before the middle of the week
(based on the first day of the year); otherwise, the first date of the next week.

ISO Week

IW

TRUNC returns the first date of the ISO week.

ROUND returns the first date of the week if the input date is before the middle of the week
(based on the first day of the ISO year); otherwise, ROUND returns the first date of the next
week.

Week

W

TRUNC returns the first date of the week.

ROUND returns the first date of the week if the input date is before the middle of the week
(based on the first day of the month); otherwise, ROUND returns the first date of the next week.

Day

DDD

TRUNC returns the beginning of the day.

DD

J

ROUND returns the beginning of the day if the input time is before the middle of the day (12:00
noon); otherwise, ROUND returns the beginning of the next day.

Day of the week

DAY

TRUNC returns the first date of the week.

DY

D

ROUND returns the first date of the week if the input date is before the middle of the week
(based on the first day of the month); otherwise, ROUND returns the first date of the next week.

Hour

HH

TRUNC returns the beginning of the hour.

HH12

HH24

ROUND returns the beginning of the hour if the input time is before the middle of the hour
(00:30); otherwise, ROUND returns the beginning of the next hour.

Minute

MI

TRUNC returns the beginning of the minute.

ROUND returns the beginning of the minute if the input time is before the middle of the minute
(00:00:30); otherwise, ROUND returns the beginning of the next minute.

Table 6-2. Date formats for use with ROUND and TRUNC

Rounding unit Format Remarks

6.6.6 SELECTing Data Based on Date Ranges

There are times when you need to SELECT data from a table based on a given date range. Let's
say you have been asked to print all disputed orders placed on a given date, say 22-JUL-01.
Most likely, your immediate response would be a query such as the following:

SELECT * FROM disputed_orders

WHERE order_dt = '22-JUL-01';

no rows selected

There's no output. Surprised? Although you know there are orders on 22-JUL-01, this query
didn't return any rows. The reason is that order_dt is a DATE column, and contains time as
well as date information. On the other hand, the date literal '22-JUL-01 ' doesn't contain any

time information. When you don't specify the time portion in a date literal, the time portion is
assumed to be beginning of the day—i.e., 12:00:00 A.M. (or 00:00:00 in 24 hour format). In
the disputed_orders table, the time components in the order_dt column are other than

12:00:00 A.M. In this case, the correct query to print orders placed on 22-JUL-01 is:

SELECT order_nbr, cust_nbr, order_dt, expected_ship_dt

FROM disputed_orders

WHERE order_dt BETWEEN

 TO_DATE('22-JUL-01 00:00:00','DD-MON-YY HH24:MI:SS') AND

 TO_DATE('22-JUL-01 23:59:59','DD-MON-YY HH24:MI:SS');

ORDER_NBR CUST_NBR ORDER_DT EXPECTED_

--------- ---------- --------- ---------

 1001 1 22-JUL-01 23-JUL-01

 1005 8 22-JUL-01 24-JUL-01

 1006 1 22-JUL-01 28-JUL-01

 1012 1 22-JUL-01 23-JUL-01

 1021 8 22-JUL-01 24-JUL-01

 1023 1 22-JUL-01 28-JUL-01

The query treats the one day as a range: 22-JUL-01 00:00:00 through 22-JUL-01 23:59:59.
Thus, the query returns any order placed at any time during 22-JUL-01.

Another way to solve this problem of needing to ignore the time components in a DATE column
is to truncate the date, and then compare the truncated result with the input literal:

SELECT order_nbr, cust_nbr, order_dt, expected_ship_dt

FROM disputed_orders

WHERE TRUNC(order_dt) = '22-JUL-01';

ORDER_NBR CUST_NBR ORDER_DT EXPECTED_

--------- ---------- --------- ---------

 1001 1 22-JUL-01 23-JUL-01

 1005 8 22-JUL-01 24-JUL-01

 1006 1 22-JUL-01 28-JUL-01

 1012 1 22-JUL-01 23-JUL-01

 1021 8 22-JUL-01 24-JUL-01

 1023 1 22-JUL-01 28-JUL-01

The TRUNC function sets the time portion to the beginning of the day. Therefore, the equality
comparison with the date literal '22-JUL-01 ' returns the expected output. The same result can
be achieved by converting order_dt to a character string in a format matching that of the input

data:

SELECT * FROM disputed_orders

WHERE TO_CHAR(order_dt,'DD-MON-YY') = '22-JUL-01';

The downside to the approach of using the TRUNC and TO_CHAR functions is that the resulting
query cannot make use of any index that happens to be on the order_dt column. This can have

significant performance implications. On the other hand, the date range solution, while more
complex to code, does not preclude the use of any index on the column in question.

Oracle8i and higher support the use of function-based indexes, which, if created correctly, allow
for the use of indexes even when functions are applied to columns in query predicates.

You can use the same techniques shown in this section to SELECT data based on any given date
range, even if that range spans more than just one day.

6.6.7 Creating a Date Pivot Table

For certain types of queries, it's helpful to have a table with one row for each date over a period
of time. For example, you might wish to have one row for each date in the current year. You can
use the TRUNC function in conjunction with some PL/SQL code to create such a table:

CREATE TABLE dates_of_year (one_day DATE);

Table created.

DECLARE

 i NUMBER;

 start_day DATE := TRUNC(SYSDATE,'YY');

BEGIN

 FOR i IN 0 .. (TRUNC(ADD_MONTHS(SYSDATE,12),'YY') - 1) - (TRUNC(SYSDATE,'YY'))

 LOOP

 INSERT INTO dates_of_year VALUES (start_day+i);

 END LOOP;

END;

/

PL/SQL procedure successfully completed.

SELECT COUNT(*) FROM dates_of_year;

 COUNT(*)

 365

The dates_of_year table is now populated with the 365 days of the year 2001. You can now

use this table to generate various useful lists of dates.

Let's say there are two paydays where you work—the 15th of each month and the last day of
each month. Use the following query against the dates_of_year table to generate a list of all

paydays in the year 2001:

SELECT one_day payday FROM dates_of_year

WHERE TO_CHAR(one_day,'DD') = '15'

OR one_day = LAST_DAY(one_day);

PAYDAY

15-JAN-01

31-JAN-01

15-FEB-01

28-FEB-01

15-MAR-01

31-MAR-01

15-APR-01

30-APR-01

15-MAY-01

31-MAY-01

15-JUN-01

30-JUN-01

15-JUL-01

31-JUL-01

15-AUG-01

31-AUG-01

15-SEP-01

30-SEP-01

15-OCT-01

31-OCT-01

15-NOV-01

30-NOV-01

15-DEC-01

31-DEC-01

24 rows selected.

Quite often you are told by a government organization that the processing of a document will
take "x" number of days. When someone says something like that, they usually mean "x"
number of working days. Therefore, to calculate the expected completion date, you need to
count "x" days from the current date, skipping Saturdays and Sundays. Obviously, you can't use
simple date arithmetic, because simple date subtraction doesn't exclude weekend days. What
you can do is use the dates_of_year table. For example:

SELECT COUNT(*) FROM dates_of_year

WHERE RTRIM(TO_CHAR(one_day,'DAY')) NOT IN ('SATURDAY', 'SUNDAY')

AND one_day BETWEEN '&d1' AND '&d2';

Enter value for d1: 18-FEB-01

Enter value for d2: 15-MAR-01

old 3: AND one_day BETWEEN '&d1' AND '&d2'

new 3: AND one_day BETWEEN '18-FEB-01' AND '15-MAR-01'

 COUNT(*)

 19

This query counts the number of days between the two dates you enter, excluding Saturdays
and the Sundays. The TO_CHAR function with the `DAY' format converts each candidate date
(from the dates_of_year table) to a day of the week, and the NOT IN operator excludes the

days that are Saturdays and Sundays. Notice the use of the RTRIM function with TO_CHAR. We
used RTRIM because TO_CHAR produces the DAY as a nine-character string, blank padded to
the right. RTRIM eliminates those extra spaces.

There could be holidays between two dates, and the queries shown in this section don't deal
with that possibility. To take holidays into account, you need another table (perhaps named
holidays) that lists all the holidays in the year. You can then modify the previous query to
exclude days listed in the holidays table. Try this as an exercise.

6.6.8 Summarizing by a Date/Time Element

Let's say you want to print a quarterly summary of all your orders. You want to print the total
number of orders and total sale price for each quarter. The order table is as follows:

SELECT * FROM cust_order;

ORDER CUST SALES PRICE ORDER_DT EXPECTED_ CANCELLED SHIP STATUS

----- ---- ------ ------ --------- --------- --------- ---- -----------

 1001 1 7354 99 22-JUL-01 23-JUL-01 DELIVERED

 1000 1 7354 19-JUL-01 24-JUL-01 21-JUL-01 CANCELLED

 1002 5 7368 12-JUL-01 25-JUL-01 14-JUL-01 CANCELLED

 1003 4 7654 56 16-JUL-01 26-JUL-01 DELIVERED

 1004 4 7654 34 18-JUL-01 27-JUL-01 PENDING

 1005 8 7654 99 22-JUL-01 24-JUL-01 DELIVERED

 1006 1 7354 22-JUL-01 28-JUL-01 24-JUL-01 CANCELLED

 1007 5 7368 25 20-JUL-01 22-JUL-01 PENDING

 1008 5 7368 25 21-JUL-01 23-JUL-01 PENDING

 1009 1 7354 56 18-JUL-01 22-JUL-01 DELIVERED

 1012 1 7354 99 22-JUL-01 23-JUL-01 DELIVERED

 1011 1 7354 19-JUL-01 24-JUL-01 21-JUL-01 CANCELLED

 1015 5 7368 12-JUL-01 25-JUL-01 14-JUL-01 CANCELLED

 1017 4 7654 56 16-JUL-01 26-JUL-01 DELIVERED

 1019 4 7654 34 18-JUL-01 27-JUL-01 PENDING

 1021 8 7654 99 22-JUL-01 24-JUL-01 DELIVERED

 1023 1 7354 22-JUL-01 28-JUL-01 24-JUL-01 CANCELLED

 1025 5 7368 25 20-JUL-01 22-JUL-01 PENDING

 1027 5 7368 25 21-JUL-01 23-JUL-01 PENDING

 1029 1 7354 56 18-JUL-01 22-JUL-01 DELIVERED

20 rows selected.

There is no quarter column in the cust_order table. You have to manipulate the order_dt

column to generate the quarter. The following SQL statement does this using the TO_CHAR
function along with a date format. In addition to being used in the SELECT list, notice that
TO_CHAR is used in the GROUP BY clause to group the results by quarter:

SELECT 'Q'||TO_CHAR(order_dt, 'Q') quarter, COUNT(*),

 SUM(NVL(sale_price,0))

FROM cust_order

GROUP BY 'Q'||TO_CHAR(order_dt, 'Q');

QU COUNT(*) SUM(NVL(SALE_PRICE,0))

-- ---------- ----------------------

Q3 20 788

Using this same technique, you can summarize data by week, month, year, hour, minute, or
any other date/time unit that you choose.

 < Day Day Up >

 < Day Day Up >

Chapter 7. Set Operations
There are situations when we need to combine the results from two or more SELECT
statements. SQL enables us to handle these requirements by using set operations. The result of
each SELECT statement can be treated as a set, and SQL set operations can be applied on those
sets to arrive at a final result. Oracle SQL supports the following four set operations:

UNION ALL

UNION

MINUS

INTERSECT

SQL statements containing these set operators are referred to as compound queries, and each
SELECT statement in a compound query is referred to as a component query. Two SELECTs can
be combined into a compound query by a set operation only if they satisfy the following two
conditions:

The result sets of both the queries must have the same number of columns.

The data type of each column in the second result set must match the data type of its
corresponding column in the first result set.

These conditions are also referred to as union compatibility conditions. The term union
compatibility is used even though these conditions apply to other set operations as well. Set
operations are often called vertical joins, because the result combines data from two or more
SELECTS based on columns instead of rows. The generic syntax of a query involving a set
operation is:

component_query

{UNION | UNION ALL | MINUS | INTERSECT}

component_query

The keywords UNION, UNION ALL, MINUS, and INTERSECT are set operators. You can have
more than two component queries in a composite query; you will always use one less set
operator than the number of component queries.

There is an exception to the second union compatibility condition. Two data types do not need
to be the same if they are in the same data type group. By data type group, we mean the
general categories such as numbers, strings, and datetimes. For example, it is ok to have a
column in the first component query of data type CHAR, that corresponds to a VARCHAR2
column in the second component query (or vice versa). Oracle performs implicit type conversion
in such a case.

However, Oracle will not perform implicit type conversion if corresponding columns in the
component queries belong to different data type groups. For example, if a column in the first
component query is of data type DATE, and the corresponding column in the second component
query is of data type CHAR, Oracle will not perform implicit conversion, and you will get an
error as a result of violation of data type compatibility. This is illustrated in the following
example:

SELECT TO_DATE('12-OCT-03') FROM DUAL

UNION

SELECT '13-OCT-03' FROM DUAL;

SELECT TO_DATE('12-OCT-03') FROM DUAL

 *

ERROR at line 1:

ORA-01790: expression must have same datatype as corresponding expression

The following sections discuss syntax, examples, rules, and restrictions for the four set
operations.

 < Day Day Up >

 < Day Day Up >

7.1 Set Operators

The following list briefly describes the four set operations supported by Oracle SQL:

UNION ALL

Combines the results of two SELECT statements into one result set.

UNION

Combines the results of two SELECT statements into one result set, and then eliminates
any duplicate rows from that result set.

MINUS

Takes the result set of one SELECT statement, and removes those rows that are also
returned by a second SELECT statement. Duplicate rows are eliminated.

INTERSECT

Returns only those rows that are returned by each of two SELECT statements. Duplicate
rows are eliminated.

Before moving on to the details on these set operators, let's look at the following two queries,
which we'll use as component queries in our subsequent examples. The first query retrieves all
the customers in region 5:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5;

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

The second query retrieves all the customers with the sales representative 'MARTIN':

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 4 Flowtech Inc.

 8 Zantech Inc.

If you look at the results returned by these two queries, you will notice that there is one
common row (for Flowtech Inc.). The following sections discuss the effects of the various set
operations between these two result sets.

7.1.1 UNION ALL

The UNION ALL operator merges the result sets of two component queries. This operation
returns rows retrieved by either of the component queries, without eliminating duplicates. The
following example illustrates the UNION ALL operation:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

UNION ALL

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 4 Flowtech Inc.

 8 Zantech Inc.

7 rows selected.

As you can see from the result set, there is one customer, which is retrieved by both the
SELECTs, and therefore appears twice in the result set. The UNION ALL operator simply merges
the output of its component queries, without caring about any duplicates in the final result set.

7.1.2 UNION

The UNION operator returns all distinct rows retrieved by two component queries. The UNION
operation eliminates duplicates while merging rows retrieved by either of the component
queries. The following example illustrates the UNION operation:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

UNION

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 8 Zantech Inc.

6 rows selected.

This query is a modification of the query from the preceding section; the keywords UNION ALL
have been replaced with UNION. Now, the result set contains only distinct rows (no duplicates).
To eliminate duplicate rows, a UNION operation needs to do some extra tasks as compared to
the UNION ALL operation. These extra tasks include sorting and filtering the result set. If you
observe carefully, you will notice that the result set of the UNION ALL operation is not sorted,
whereas the result set of the UNION operation is sorted. (The result set of a UNION is sorted on
the combination of all the columns in the SELECT list. In the preceeding example, the UNION
result set will be sorted on the combination cust_nbr and name.) These extra tasks introduce a

performance overhead to the UNION operation. A query involving UNION will take more time
than the same query with UNION ALL, even if there are no duplicates to remove.

Unless you have a valid need to retrieve only distinct rows, use UNION ALL
instead of UNION for better performance.

7.1.3 INTERSECT

INTERSECT returns only the rows retrieved by both component queries. Compare this with
UNION, which returns the rows retrieved by any of the component queries. If UNION acts like
"OR," INTERSECT acts like "AND." For example:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

INTERSECT

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 4 Flowtech Inc.

As you saw earlier, "Flowtech Inc." was the only customer retrieved by both SELECT
statements. Therefore, the INTERSECT operator returns just that one row.

7.1.4 MINUS

MINUS returns all rows from the first SELECT that are not also returned by the second SELECT.

Oracle's use of MINUS does not follow the ANSI/ISO SQL standard. The
corresponding ANSI/ISO SQL keyword is EXCEPT.

The following example illustrates how MINUS works:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

MINUS

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 5 Gentech Industries

You might wonder why you don't see "Zantech Inc." in the output. An important thing to note
here is that the execution order of component queries in a set operation is from top to bottom.
The results of UNION, UNION ALL, and INTERSECT will not change if you alter the ordering of
component queries. However, the result of MINUS will be different if you alter the order of the
component queries. If you rewrite the previous query by switching the positions of the two
SELECTs, you get a completely different result:

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN')

MINUS

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5;

 CUST_NBR NAME

---------- ------------------------------

 8 Zantech Inc.

In the second MINUS example, the first component query adds "Flowtech Inc." and "Zantech
Inc." to the result set while the second component query removes "Flowtech Inc.", leaving "
startref="ch07-idx-1000003842-2"/>"Zantech Inc." as the sole remaining row.

In a MINUS operation, rows may be returned by the second SELECT that
are not also returned by the first. These rows are not included in the
output.

 < Day Day Up >

 < Day Day Up >

7.2 Precedence of Set Operators

If more than two component queries are combined using set operators, then Oracle evaluates
the set operators from left to right. In the following example, the UNION is evaluated before the
INTERSECT:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

UNION

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN')

INTERSECT

SELECT cust_nbr, name

FROM customer

WHERE region_id = 6;

CUST_NBR NAME

-------- ------------------------------

 8 Zantech Inc.

To influence a particular order of evaluation of the set operators, you can use parentheses.
Looking at the preceding example, if you want the INTERSECT to be evaluated before the
UNION, you should introduce parentheses into the query such that the component queries
involving the INTERSECT are enclosed in parentheses, as shown in the following example:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

UNION

(

SELECT c.cust_nbr, c.name

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN')

INTERSECT

SELECT cust_nbr, name

FROM customer

WHERE region_id = 6

);

CUST_NBR NAME

-------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 8 Zantech Inc.

The operation within the parentheses is evaluated first. The result is then combined with the
component queries outside the parentheses.

The ANSI/ISO SQL standard gives higher precedence to the INTERSECT
operator. However, Oracle, at least through Oracle Database 10g, doesn't
implement that higher precedence. All set operations currently have equal
precedence.

In the future, Oracle may change the precedence of INTERSECT to comply
with the standard. To prepare for that possibility, we recommend using
parentheses to control the order of evaluation of set operators whenever
you use INTERSECT in a query with any other set operator.

 < Day Day Up >

 < Day Day Up >

7.3 Comparing Two Tables

Developers, and even DBAs, occasionally need to compare the contents of two tables to
determine whether the tables contain the same data. The need to do this is especially common
in test environments, as developers may want to compare a set of data generated by a program
under test with a set of "known good" data. Comparison of tables is also useful for automated
testing purposes, when you have to compare actual results with a given set of expected results.
SQL's set operations provide an interesting solution to this problem of comparing two tables.

The following query uses both MINUS and UNION ALL to compare two tables for equality. The
query depends on each table having either a primary key or at least one unique index.

(SELECT * FROM customer_known_good

MINUS

SELECT * FROM customer_test)

UNION ALL

(SELECT * FROM customer_test

MINUS

SELECT * FROM customer_known_good);

You can look at this query as the union of two compound queries. The parentheses ensure that
both MINUS operations take place first before the UNION ALL operation is performed. The result
of the first MINUS query will be those rows in customer_known_good that are not also in
customer_test. The result of the second MINUS query will be those rows in customer_test
that are not also in customer_known_good. The UNION ALL operator simply combines these two

result sets for convenience. If no rows are returned by this query, then we know that both
tables have identical rows. Any rows returned by this query represent differences between the
customer_test and customer_known_good tables.

If the possibility exists for one or both tables to contain duplicate rows, you must use a more
general form of this query to test the two tables for equality. This more general form uses row
counts to detect duplicates:

(SELECT c1.*,COUNT(*)

 FROM customer_known_good

 GROUP BY c1.cust_nbr, c1.name . . .

MINUS

 SELECT c2.*, COUNT(*)

 FROM customer_test c2

 GROUP BY c2.cust_nbr, c2.name . . .)

UNION ALL

(SELECT c3.*,COUNT(*)

 FROM customer_test c3

 GROUP BY c3.cust_nbr, c3.name . . .

MINUS

 SELECT c4.*, COUNT(*)

 FROM customer_known_good c4

 GROUP BY c4.cust_nbr, c4.name . . .)

This query is getting complex! The GROUP BY clause (see Chapter 4) for each SELECT must list
all columns for the table being selected. Any duplicate rows will be grouped together, and the
count will reflect the number of duplicates. If the number of duplicates is the same in both
tables, the MINUS operations will cancel those rows out. If any rows are different, or if any
occurrence counts are different, the resulting rows will be reported by the query.

Let's look at an example to illustrate how this query works. We'll start with the following tables
and data:

DESC customer_known_good

 Name Null? Type

 ---------------------------- -------- ----------------

 CUST_NBR NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(30)

SELECT * FROM customer_known_good;

 CUST_NBR NAME

----------- ------------------------------

 1 Sony

 1 Sony

 2 Samsung

 3 Panasonic

 3 Panasonic

 3 Panasonic

6 rows selected.

DESC customer_test

Name Null? Type

 ---------------------------- -------- ----------------

 CUST_NBR NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(30)

SELECT * FROM customer_test;

 CUST_NBR NAME

----------- ------------------------------

 1 Sony

 1 Sony

 2 Samsung

 2 Samsung

 3 Panasonic

As you can see the customer_known_good and customer_test tables have the same structure,

but different data. Also notice that none of these tables has a primary or unique key; there are
duplicate records in both. The following SQL will compare these two tables effectively:

(SELECT c1.*, COUNT(*)

FROM customer_known_good c1

GROUP BY c1.cust_nbr, c1.name

MINUS

SELECT c2.*, COUNT(*)

FROM customer_test c2

GROUP BY c2.cust_nbr, c2.name)

UNION ALL

(SELECT c3.*, COUNT(*)

FROM customer_test c3

GROUP BY c3.cust_nbr, c3.name

MINUS

SELECT c4.*, COUNT(*)

FROM customer_known_good c4

GROUP BY c4.cust_nbr, c4.name);

 CUST_NBR NAME COUNT(*)

----------- ------------------------------ ----------

 2 Samsung 1

 3 Panasonic 3

 2 Samsung 2

 3 Panasonic 1

These results indicate that one table (customer_known_good) has one record for "Samsung,"
whereas the second table (customer_test) has two records for the same customer. Also, one
table (customer_known_good) has three records for "Panasonic," whereas the second table
(customer_test) has one record for the same customer. Both the tables have the same number

of rows (two) for "Sony," and therefore "Sony" doesn't appear in the output.

Duplicate rows are not possible in tables that have a primary key or at
least one unique index. Use the short form of the table comparison query
for such tables.

 < Day Day Up >

 < Day Day Up >

7.4 Using NULLs in Compound Queries

We discussed union compatibility conditions at the beginning of this chapter. The union
compatibility issue gets interesting when NULLs are involved. As you know, NULL doesn't have a
data type, and NULL can be used in place of a value of any data type. If you purposely select
NULL as a column value in a component query, Oracle no longer has two data types to compare
to see whether the two component queries are compatible. This is particularly an issue with
older Oracle releases. Oracle9i Database, and also later releases of Oracle, are "smart enough"
to know which flavor of NULL to use in a compound query. The following examples, generated
from an Oracle9i database, demonstrate this:

SELECT 1 num, 'DEFINITE' string FROM DUAL

UNION

SELECT NULL num, 'UNKNOWN' string FROM DUAL;

 NUM STRING

---------- --------

 1 DEFINITE

 UNKNOWN

SELECT 1 num, SYSDATE dates FROM DUAL

UNION

SELECT 2 num, NULL dates FROM DUAL;

 NUM DATES

---------- ---------

 1 06-JAN-02

 2

If you are using Oracle8i or prior, these queries may cause errors. The examples in the rest of
this section are executed against an Oracle8i database.

When your set operation includes a character column that corresponds to a NULL literal, you
won't have any problems from the use of NULL. All releases of Oracle handle this case. For

example, from an Oracle8i installation:

SELECT 1 num, 'DEFINITE' string FROM DUAL

UNION

SELECT 2 num, NULL string FROM DUAL;

 NUM STRING

---------- --------

 1 DEFINITE

 2

Notice that Oracle8i considers the character string 'DEFINITE' from the first component query to

be compatible with the NULL value supplied for the corresponding column in the second
component query.

However, if a NUMBER or a DATE column of a component query is set to NULL, you must
explicitly tell Oracle what "flavor" of NULL to use. Otherwise, you'll encounter errors. For
example:

SELECT 1 num, 'DEFINITE' string FROM DUAL

UNION

SELECT NULL num, 'UNKNOWN' string FROM DUAL;

SELECT 1 num, 'DEFINITE' string FROM DUAL

 *

ERROR at line 1:

ORA-01790: expression must have same datatype as corresponding expression

Note that the use of NULL in the second component query causes a data type mismatch between
the first column of the first component query, and the first column of the second component
query. Using NULL for a DATE column causes the same problem, as in the following example:

SELECT 1 num, SYSDATE dates FROM DUAL

UNION

SELECT 2 num, NULL dates FROM DUAL;

SELECT 1 num, SYSDATE dates FROM DUAL

 *

ERROR at line 1:

ORA-01790: expression must have same datatype as corresponding expression

In these cases, you need to cast the NULL to a suitable data type to fix the problem, as in the
following examples:

SELECT 1 num, 'DEFINITE' string FROM DUAL

UNION

SELECT TO_NUMBER(NULL) NUM, 'UNKNOWN' string FROM DUAL;

 NUM STRING

---------- --------

 1 DEFINITE

 UNKNOWN

SELECT 1 num, SYSDATE dates FROM DUAL

UNION

SELECT 2 num, TO_DATE(NULL) dates FROM DUAL;

 NUM DATES

---------- ---------

 1 06-JAN-02

 2

Remember, you'll only encounter these problems of union compatibility when using literal NULL
values in Oracle8i and earlier releases. The problems go away beginning with the Oracle9i
Database release.

 < Day Day Up >

 < Day Day Up >

7.5 Rules and Restrictions on Set Operations

Other than the union compatibility conditions discussed at the beginning of the chapter, there
are some other rules and restrictions that apply to the set operations. These rules and
restrictions are described in this section.

Column names for the result set are derived from the first SELECT:

SELECT cust_nbr "Customer ID", name "Customer Name"

FROM customer

WHERE region_id = 5

UNION

SELECT c.cust_nbr "ID", c.name "Name"

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN');

Customer ID Customer Name

----------- ----------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 8 Zantech Inc.

6 rows selected.

Although both SELECTs use column aliases, the result set takes the column names from the first
SELECT. The same thing happens when you create a view based on a set operation. The column
names in the view are taken from the first SELECT:

CREATE VIEW v_test_cust AS

SELECT cust_nbr "Customer_ID", name "Customer_Name"

FROM customer

WHERE region_id = 5

UNION

SELECT c.cust_nbr "ID", c.name "Name"

FROM customer c

WHERE c.cust_nbr IN (SELECT o.cust_nbr

 FROM cust_order o, employee e

 WHERE o.sales_emp_id = e.emp_id

 AND e.lname = 'MARTIN');

View created.

DESC v_test_cust

 Name Null? Type

 ------------------------------- -------- ----

 Customer_ID NUMBER

 Customer_Name VARCHAR2(45)

If you want to use ORDER BY in a query involving set operations, you must place the ORDER BY
at the end of the entire statement. The ORDER BY clause can appear only once at the end of the
compound query. The component queries can't have individual ORDER BY clauses. For example:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

UNION

SELECT emp_id, lname

FROM employee

WHERE lname = 'MARTIN'

ORDER BY cust_nbr;

 CUST_NBR NAME

---------- ---------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 7654 MARTIN

6 rows selected.

Note that the column name used in the ORDER BY clause of this query is taken from the first
SELECT. You couldn't order these results by emp_id. If you attempt to ORDER BY emp_id, you

will get an error, as in the following example:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

UNION

SELECT emp_id, lname

FROM employee

WHERE lname = 'MARTIN'

ORDER BY emp_id;

ORDER BY EMP_ID

 *

ERROR at line 8:

ORA-00904: invalid column name

The ORDER BY clause doesn't recognize the column names of the second SELECT. To avoid
confusion over column names, it is a common practice to ORDER BY column positions:

SELECT cust_nbr, name

FROM customer

WHERE region_id = 5

UNION

SELECT emp_id, lname

FROM employee

WHERE lname = 'MARTIN'

ORDER BY 1;

 CUST_NBR NAME

---------- ---------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 7654 MARTIN

6 rows selected.

For better readability and maintainability of your queries, we recommend that you explicitly use
identical column aliases in all the component queries, and then use these column aliases in the
ORDER BY clause.

Unlike ORDER BY, you can use GROUP BY and HAVING clauses in
component queries.

The following list summarizes some simple rules, restrictions, and notes that don't require
examples:

Set operations are not permitted on columns of type BLOB, CLOB, BFILE, and VARRAY, nor
are set operations permitted on nested table columns.

Since UNION, INTERSECT, and MINUS operators involve sort operations, they are not
allowed on LONG columns. However, UNION ALL is allowed on LONG columns.

Set operations are not allowed on SELECT statements containing TABLE collection
expressions.

SELECT statements involved in set operations can't use the FOR UPDATE clause.

The number and size of columns in the SELECT list of component queries are limited by the
block size of the database. The total bytes of the columns SELECTed can't exceed one
database block.

 < Day Day Up >

 < Day Day Up >

Chapter 8. Hierarchical Queries
A relational database is based upon sets, with each table representing a set. However, there are
some types of information that are not directly amenable to the set data structure. Think, for
example, of an organization chart, a bill of material in a manufacturing and assembly plant, or
a family tree. These types of information are hierarchical in nature, and most conveniently
represented in a tree structure. In this chapter we discuss how to represent such hierarchical
information in a relational table. We also discuss in detail various SQL constructs that you can
use to extract hierarchical information from a relational table.

 < Day Day Up >

 < Day Day Up >

8.1 Representing Hierarchical Information

Let's look at an example to understand how we can represent hierarchical information in a
relational database. As a basis for the example, we'll use an organization chart showing how
one employee reports to another within a large organization, as shown in Figure 8-1.

Figure 8-1. An organization chart

Figure 8-1 represents a hierarchy of employees. The information regarding an employee, his
manager, and the reporting relationship need to be represented in one table, employee, as

shown in the Entity Relationship Diagram in Figure 8-2.

Figure 8-2. The reporting relationship

In Figure 8-2, the employee table refers to itself. The column manager_emp_id refers to the
emp_id column of the same table. To represent hierarchical data, you need to make use of a

relationship such as when one column of a table references another column of the same table.
When such a relationship is implemented using a database constraint, it is known as self-
referential integrity constraint. The corresponding CREATE TABLE statement will look as follows:

CREATE TABLE employee (

emp_id NUMBER (4) CONSTRAINT emp_pk PRIMARY KEY,

fname VARCHAR2 (15) NOT NULL,

lname VARCHAR2 (15) NOT NULL,

dept_id NUMBER (2) NOT NULL,

manager_emp_id NUMBER (4) CONSTRAINT emp_fk REFERENCES employee(emp_id),

salary NUMBER (7,2) NOT NULL,

hire_date DATE NOT NULL,

job_id NUMBER (3));

As a basis for the examples in this chapter, we'll use the following sample data:

SELECT emp_id, lname, dept_id, manager_emp_id, salary, hire_date

FROM employee;

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

 7499 ALLEN 30 7698 1600 20-FEB-81

 7521 WARD 30 7698 1250 22-FEB-81

 7566 JONES 20 7839 2000 02-APR-81

 7654 MARTIN 30 7698 1250 28-SEP-81

 7698 BLAKE 30 7839 2850 01-MAY-80

 7782 CLARK 10 7839 2450 09-JUN-81

 7788 SCOTT 20 7566 3000 19-APR-87

 7839 KING 10 5000 17-NOV-81

 7844 TURNER 30 7698 1500 08-SEP-81

 7876 ADAMS 20 7788 1100 23-MAY-87

 7900 JAMES 30 7698 950 03-DEC-81

 7902 FORD 20 7566 3000 03-DEC-81

 7934 MILLER 10 7782 1300 23-JAN-82

The employee table has two important aspects:

The column manager_emp_id

The emp_fk constraint

The column manager_emp_id stores the emp_id of the employee's manager. For example, the
manager_emp_id for Smith is 7902, which means that Ford is Smith's manager. The employee
King doesn't have a manager_emp_id, which indicates that King is the uppermost employee. To
be able to represent the uppermost employee, the manager_emp_id column must be nullable.

There is a foreign key constraint on the manager_emp_id column. This enforces the rule that any
value put in the manager_emp_id column must be the emp_id of a valid employee. Such a

constraint is not mandatory when representing hierarchical information. However, it is a good
practice to define database constraints to enforce such business rules.

Before moving on to the following sections on manipulating hierarchies, we will introduce some
hierarchy terminology. The following list defines terms that we'll use often when working with
hierarchical data:

Node

A row in a table that represents a specific entry in a hierarchical tree structure. For
example, in Figure 8-1 each employee is considered to be a node.

Parent

A node that is one level up in a tree. In Figure 8-1, King is the parent of Blake, and Blake
is the parent of Martin. The term parent node is sometimes used in place of just parent.

Child

A node that is one level down in a tree. In Figure 8-1, Blake is a child of King. Blake, in
turn, has five children: Allen, Ward, Martin, Turner, and James. The term child node is
sometimes used in place of just child.

Root

The uppermost node in a hierarchical structure. The definition of a root is that it has no
parent. In Figure 8-1, King is the root. You can have only one root in any given tree, but
it's worth noting that you can have multiple trees in a hierarchical table. If our employee
table stored information on employees from multiple companies, we would have one root
per company. The term root node is sometimes used in place of root.

Leaf

A node with no children, and sometimes called a leaf node. Leaf nodes are the antitheses
of root nodes, and represent the lowest levels of a tree structure. The leaf nodes in Figure
8-1 are Adams, Smith, Allen, Ward, Martin, Turner, James, and Miller. Leaf nodes do not

all need to be at the same level, but they do need to be without children.

Level

A layer of nodes. In Figure 8-1, King constitutes one level. Jones, Blake, and Clark
constitute the next level down, and so forth.

 < Day Day Up >

 < Day Day Up >

8.2 Simple Hierarchy Operations

The processes for extracting some types of information from a table storing hierarchical data
are relatively simple, and can be performed using the techniques that we have discussed so far
in this book. Extracting more complex information requires using some new SQL constructs,
which we'll discuss in Section 8.3. In this section, we'll discuss the hierarchy operations that can
be performed using what you've learned so far.

8.2.1 Finding Root Nodes

Finding the root nodes of a hierarchy tree is easy; look for the nodes with no parents. You may
have more than one hierarchy in a table, and consequently more than one root node. In the
employee table we discussed earlier, the value for manager_emp_id is NULL for the uppermost

employee, and only for the uppermost employee. The following query searches for cases where
manager_emp_id is NULL, thereby returning the root node:

SELECT emp_id, lname, dept_id, manager_emp_id, salary, hire_date

FROM employee

WHERE manager_emp_id IS NULL;

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7839 KING 10 5000 17-NOV-81

Because the manager_emp_id column defines the hierarchy, it's important that it always contain

correct data. While populating data in this table, we must make sure to specify a
manager_emp_id for every row other than the row for the uppermost employee. The uppermost
employee doesn't report to anyone (doesn't have a manager), and hence manager_emp_id is
not applicable for him. If we leave out manager_emp_id values for employees that do have

managers, those employees will erroneously show up as root nodes.

8.2.2 Finding a Node's Immediate Parent

You may wish to link nodes to their immediate parents. For example, you might want to print a
report showing each employee's manager. The name of each employee's manager can be
derived by joining the employee table to itself. This type of join is a self join (discussed in

Chapter 3). The following query returns the desired result:

SELECT e.lname "Employee", m.lname "Manager"

FROM employee e, employee m

WHERE e.manager_emp_id = m.emp_id;

Employee Manager

---------- ----------

SMITH FORD

ALLEN BLAKE

WARD BLAKE

JONES KING

MARTIN BLAKE

BLAKE KING

CLARK KING

SCOTT JONES

TURNER BLAKE

ADAMS SCOTT

JAMES BLAKE

FORD JONES

MILLER CLARK

13 rows selected.

Note this query results in only 13 rows, although the employee table has 14 rows:

SELECT COUNT(*) FROM employee;

 COUNT(*)

 14

The reason that only 13 rows are returned from the self join is simple. Our query lists
employees and their managers. But since the uppermost employee KING doesn't have any

manager, that row is not produced in the output. If you want all the employees to be produced
in the result, you need an outer join, as in the following example:

SELECT e.lname "Employee", m.lname "Manager"

FROM employee e LEFT OUTER JOIN employee m

ON e.manager_emp_id = m.emp_id ;

Employee Manager

-------------------- --------------------

SMITH FORD

ALLEN BLAKE

WARD BLAKE

JONES KING

MARTIN BLAKE

BLAKE KING

CLARK KING

SCOTT JONES

KING

TURNER BLAKE

ADAMS SCOTT

JAMES BLAKE

FORD JONES

MILLER CLARK

14 rows selected.

Outer joins were discussed in detail in Chapter 3.

8.2.3 Finding Leaf Nodes

The opposite problem from finding root nodes, which have no parents, is to find leaf nodes,
which have no children. Employees who do not manage anyone are the leaf nodes in the

hierarchy tree shown in Figure 8-1. At first glance, the following query seems like it should list
all employees from the employee table who are not managers of any other employee:

SELECT * FROM employee

WHERE emp_id NOT IN (SELECT manager_emp_id FROM employee);

However, when you execute this statement, you will see "No rows selected." Why? It is because
the manager_emp_id column contains a NULL value in one row (for the uppermost employee),

and NULLs can't be compared to any data value. Therefore, to get the employees who don't
manage anyone, you need to rewrite the query as follows:

SELECT emp_id, lname, dept_id, manager_emp_id, salary, hire_date

FROM employee e

WHERE emp_id NOT IN

(SELECT manager_emp_id FROM employee

WHERE manager_emp_id IS NOT NULL);

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

 7499 ALLEN 30 7698 1600 20-FEB-81

 7521 WARD 30 7698 1250 22-FEB-81

 7654 MARTIN 30 7698 1250 28-SEP-81

 7844 TURNER 30 7698 1500 08-SEP-81

 7876 ADAMS 20 7788 1100 23-MAY-87

 7900 JAMES 30 7698 950 03-DEC-81

 7934 MILLER 10 7782 1300 23-JAN-82

8 rows selected.

In this example, the subquery returns the emp_id's of all the managers. The outer query then

returns all the employees, except the ones returned by the subquery. This query can also be
written as a correlated subquery using EXISTS instead of IN:

SELECT emp_id, lname, dept_id, manager_emp_id, salary, hire_date

FROM employee e

WHERE NOT EXISTS

(SELECT emp_id FROM employee e1 WHERE e.emp_id = e1.manager_emp_id);

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

 7499 ALLEN 30 7698 1600 20-FEB-81

 7521 WARD 30 7698 1250 22-FEB-81

 7654 MARTIN 30 7698 1250 28-SEP-81

 7844 TURNER 30 7698 1500 08-SEP-81

 7876 ADAMS 20 7788 1100 23-MAY-87

 7900 JAMES 30 7698 950 03-DEC-81

 7934 MILLER 10 7782 1300 23-JAN-82

8 rows selected.

The correlated subquery checks each employee to see whether he is the manager of any other
employee. If not, then that particular employee is included in the result set.

Oracle Database 10g introduces a pseudocolumn, CONNECT_BY_ISLEAF,
which you can also use to identify leaf nodes. We discuss this
pseudocolumn in Section 8.6.

 < Day Day Up >

 < Day Day Up >

8.3 Oracle SQL Extensions

In the previous section, you saw how to perform some operations on a hierarchical tree by
using simple SQL techniques. Operations such as traversing a tree, finding levels, etc., require
more complex SQL statements, and also require the use of features designed specifically for
working with hierarchical data. Oracle provides some extensions to ANSI SQL to facilitate these
operations. But before looking at the Oracle SQL extensions, let's look at how you can traverse
a tree using ANSI SQL, and at the problems you'll encounter when doing that.

8.3.1 Tree Traversal Using ANSI SQL

Say you want to list each employee with his manager. Using regular Oracle SQL, you can
perform self outer-joins on the employee table, as shown here:

SELECT e_top.lname, e_2.lname, e_3.lname, e_4.lname

FROM employee e_top LEFT OUTER JOIN employee e_2

 ON e_top.emp_id = e_2.manager_emp_id

 LEFT OUTER JOIN employee e_3

 ON e_2.emp_id = e_3.manager_emp_id

 LEFT OUTER JOIN employee e_4

 ON e_3.emp_id = e_4.manager_emp_id

WHERE e_top.manager_emp_id IS NULL;

LNAME LNAME LNAME LNAME

-------------------- -------------------- -------------------- ------

KING JONES FORD SMITH

KING JONES SCOTT ADAMS

KING BLAKE TURNER

KING BLAKE ALLEN

KING BLAKE WARD

KING CLARK MILLER

KING BLAKE MARTIN

KING BLAKE JAMES

8 rows selected.

The query returns eight rows, corresponding to the eight branches of the tree. To get those
results, the query performs a self join on four instances of the employee table. Four employee

table instances are needed in this statement because there are four levels to the hierarchy. Each
level is represented by one copy of the employee table. The outer join is required because one
employee (KING) has a NULL value in the manager_emp_id column.

This type of query has several drawbacks. First of all, you need to know the number of levels in
an organization chart when you write the query, and it's not realistic to assume that you will
know that information. It's even less realistic to think that the number of levels will remain
stable over time. Moreover, you need to join four instances of the employee table together for a

four-level hierarchy. Imagine an organization with 20 levels—you'd need to join 20 instances of
the table! Such a join would cause a huge performance problem.

To circumvent problems such as these, Oracle has provided some extensions to ANSI SQL.
Oracle provides the following three constructs to effectively and efficiently perform hierarchical
queries:

The START WITH . . . CONNECT BY clause

The PRIOR operator

The LEVEL pseudocolumn

The following sections discuss these three Oracle extensions in detail.

8.3.2 START WITH . . . CONNECT BY and PRIOR

You can extract information in hierarchical form from a table containing hierarchical data by
using the SELECT statement's START WITH . . . CONNECT BY clause. The syntax for this clause
is:

[[START WITH condition1] CONNECT BY condition2]

The syntax elements are:

START WITH condition1

Specifies the root row(s) of the hierarchy. All rows that satisfy condition1 are considered

root rows. If you don't specify the START WITH clause, all rows are considered root rows,
which is usually not desirable. You can include a subquery in condition1.

CONNECT BY condition2

Specifies the relationship between parent rows and child rows in the hierarchy. The
relationship is expressed as a comparison expression, where columns from the current
row are compared to corresponding parent columns. condition2 must contain the PRIOR

operator, which is used to identify columns from the parent row. condition2 cannot

contain a subquery.

PRIOR is a built-in Oracle SQL operator that is used with hierarchical queries only. In a
hierarchical query, the CONNECT BY clause specifies the relationship between parent and child
rows. When you use the PRIOR operator in an expression in the CONNECT BY condition, the
expression following the PRIOR keyword is evaluated for the parent row of the current row in
the query. In the following example, PRIOR is used to connect each row to its parent by
connecting manager_emp_id in the child to emp_id in the parent:

SELECT lname, emp_id, manager_emp_id

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id;

LNAME EMP_ID MANAGER_EMP_ID

-------------------- ---------- --------------

KING 7839

JONES 7566 7839

SCOTT 7788 7566

ADAMS 7876 7788

FORD 7902 7566

SMITH 7369 7902

BLAKE 7698 7839

ALLEN 7499 7698

WARD 7521 7698

MARTIN 7654 7698

TURNER 7844 7698

JAMES 7900 7698

CLARK 7782 7839

MILLER 7934 7782

14 rows selected.

The PRIOR column does not need to be listed first. The previous query could be restated as:

SELECT lname, emp_id, manager_emp_id

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY manager_emp_id = PRIOR emp_id;

The preceding two PRIOR examples list all the employees in the organization, because each
query uses the START WITH clause to begin with the top-most employee (with NULL
manager_emp_id). Instead of reporting out the whole organization chart, you may want to list

only the subtree under a given employee, JONES for example. To do this, you can modify the
START WITH condition so that it specifies JONES as the root of the query. For example:

SELECT lname, emp_id, manager_emp_id

FROM employee

START WITH lname = 'JONES'

CONNECT BY manager_emp_id = PRIOR emp_id;

LNAME EMP_ID MANAGER_EMP_ID

-------------------- ---------- --------------

JONES 7566 7839

SCOTT 7788 7566

ADAMS 7876 7788

FORD 7902 7566

SMITH 7369 7902

Since this query considers JONES as the root of the hierarchy, only the employees that belong
to the organization tree under JONES (including JONES himself) are returned by the query. Be
careful while using conditions such as lname = 'JONES' in hierarchical queries. In this case, if we

have two JONES in our organization, the result returned by the hierarchy may be wrong. It is
better to use primary or unique key columns, such as emp_id, as the condition in such

situations.

In the previous example, we listed the portion of our organization chart headed by the specific
employee named "JONES." There can be situations when you may need to print the organization

chart headed by any employee that meets a specific condition. For example, you may want to
list all employees under the employee who has been working in the company for the longest
time. In this case, the starting point of the query (the root) is dependent on a condition.
Therefore, you have to use a subquery to generate the information needed to evaluate the
condition and pass that information to the main query, as in the following example:

SELECT lname, emp_id, manager_emp_id

FROM employee

START WITH hire_date = (SELECT MIN(hire_date) FROM employee)

CONNECT BY manager_emp_id = PRIOR emp_id;

LNAME EMP_ID MANAGER_EMP_ID

-------------------- ---------- --------------

BLAKE 7698 7839

ALLEN 7499 7698

WARD 7521 7698

MARTIN 7654 7698

TURNER 7844 7698

JAMES 7900 7698

6 rows selected.

Note the START WITH clause in this example. The subquery in the START WITH clause returns
the minimum hire_date in the table, which represents the hire_date of the employee with the

longest service. The main query uses this information as the starting point of the hierarchy and
lists the organization structure under this employee.

While using a subquery in the START WITH clause, be aware of how many rows will be returned
by the subquery. If more than one row is returned when you are expecting just one row
(indicated by the = sign), the query will generate an error. You can get around this by replacing
= with the IN operator, but be warned that the hierarchical query may then end up dealing with

multiple roots.

Since the CONNECT BY condition specifies the parent-child relationship, it cannot contain a loop
(also known as a cycle). If a row is both parent (direct ancestor) and child (direct descendent)
of another row, then you have a loop. For example, if the employee table had the following two

rows, they would represent a loop:

EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------ ---------- --------- -------------- --------- ---------

 9001 SMITH 20 9002 1800 15-NOV-61

 9002 ALLEN 30 9001 11600 16-NOV-61

The pseudocolumn CONNECT_BY_ISCYCLE and the keyword NOCYCLE,
both introduced in Oracle Database 10g, help identify and ignore cycles.
These are discussed later in the chapter.

When a parent-child relationship involves two or more columns, you need to use the PRIOR
operator before each parent column. Let's take as an example an assembly in a manufacturing
plant. An assembly may consist of several subassemblies, and a given subassembly may further
contain one or more subassemblies. All of these are stored in a table, assembly:

DESC assembly

 Name Null? Type

 -------------------------- -------- --------------

 assembly_type NOT NULL VARCHAR2(4)

 assembly_id NOT NULL NUMBER(6)

 description NOT NULL VARCHAR2(20)

 parent_assembly_type VARCHAR2(4)

 parent_assembly_id NUMBER(6)

Column assembly_type and assembly_id constitute the primary key of this table, and the
columns parent_assembly_type and parent_assembly_id together constitute the self-

referential foreign key. Therefore, if you want to perform a hierarchical query on this table, you
need to include both columns in the START WITH and the CONNECT BY clauses. You also need
to use the PRIOR operator before each parent column, as shown in the following example:

SELECT * FROM assembly

START WITH parent_assembly_type IS NULL

AND parent_assembly_id IS NULL

CONNECT BY parent_assembly_type = PRIOR assembly_type

AND parent_assembly_id = PRIOR assembly_id;

ASSE ASSEMBLY_ID DESCRIPTION PARE PARENT_ASSEMBLY_ID

---- ----------- -------------------- ---- ------------------

A 1234 Assembly A#1234

A 1256 Assembly A#1256 A 1234

B 6543 Part Unit#6543 A 1234

A 1675 Part Unit#1675 B 6543

X 9943 Repair Zone 1

X 5438 Repair Unit #5438 X 9943

X 1675 Readymade Unit #1675 X 5438

7 rows selected.

8.3.3 The LEVEL Pseudocolumn

As we explained earlier, the term level refers to one layer of nodes. For example, in Figure 8-1,
the root node (consisting of employee KING) is level 1. The next layer (employees JONES,
BLAKE, CLARK) is level 2, and so forth. Oracle provides a pseudocolumn, LEVEL, to represent
these levels in a hierarchy tree. Whenever you use the START WITH . . . CONNECT BY clauses in
a hierarchical query, you can use the pseudocolumn LEVEL to return the level number for each
row returned by the query. The following example illustrates the use of the LEVEL
pseudocolumn:

SELECT level, lname, emp_id, manager_emp_id

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY manager_emp_id = PRIOR emp_id;

 LEVEL LNAME EMP_ID MANAGER_EMP_ID

---------- -------------------- ---------- --------------

 1 KING 7839

 2 JONES 7566 7839

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

 3 FORD 7902 7566

 4 SMITH 7369 7902

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 WARD 7521 7698

 3 MARTIN 7654 7698

 3 TURNER 7844 7698

 3 JAMES 7900 7698

 2 CLARK 7782 7839

 3 MILLER 7934 7782

14 rows selected.

Note that each employee is now associated with a number, represented by the pseudocolumn
LEVEL, that corresponds to that employee's level in the organization chart (see Figure 8-1).

 < Day Day Up >

 < Day Day Up >

8.4 Complex Hierarchy Operations

Using Oracle's hierarchical SQL extensions, you can perform complex, hierarchical queries much
more easily than you would be able to do using standard, ANSI SQL.

8.4.1 Finding the Number of Levels

Previously we showed how the LEVEL pseudocolumn generates a level number for each record
when we use the START WITH . . . CONNECT BY clause. You can use the following query to
determine the number of levels in the hierarchy by finding the maximum level number returned
by the LEVEL pseudocolumn:

SELECT MAX(LEVEL)

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id;

MAX(LEVEL)

 4

To determine the number of employees at each level, group the results by LEVEL and count the
number of employees in each distinct group. For example:

SELECT LEVEL, COUNT(emp_id)

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id

GROUP BY LEVEL;

 LEVEL COUNT(EMP_ID)

--------- -------------

 1 1

 2 3

 3 8

 4 2

8.4.2 Listing Records in Hierarchical Order

One of the very common programming challenges SQL programmers face is to list records in a
hierarchy in their proper hierarchical order. For example, you might wish to list employees with
their subordinates underneath them, as in the following query:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "Employee",

 emp_id, manager_emp_id

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id;

 LEVEL Employee EMP_ID MANAGER_EMP_ID

--------- ------------ --------- --------------

 1 KING 7839

 2 JONES 7566 7839

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

 3 FORD 7902 7566

 4 SMITH 7369 7902

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 WARD 7521 7698

 3 MARTIN 7654 7698

 3 TURNER 7844 7698

 3 JAMES 7900 7698

 2 CLARK 7782 7839

 3 MILLER 7934 7782

14 rows selected.

Notice that by using the expression LPAD(' ',2*(LEVEL - 1)), we are able to align employee

names in a manner that corresponds to their level. As the level number increases, the number
of spaces returned by the expression increases, and the employee name is further indented.

The previous query lists all the employees in the employee table. If you want to filter out certain

employees based on some condition, then you can use a WHERE clause in your hierarchical
query. Here is an example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "Employee",

 emp_id, manager_emp_id, salary

FROM employee

WHERE salary > 2000

START WITH manager_emp_id IS NULL

CONNECT BY manager_emp_id = PRIOR emp_id;

 LEVEL Employee EMP_ID MANAGER_EMP_ID SALARY

--------- ------------ --------- -------------- ---------

 1 KING 7839 5000

 3 SCOTT 7788 7566 3000

 3 FORD 7902 7566 3000

 2 BLAKE 7698 7839 2850

 2 CLARK 7782 7839 2450

This query lists records with salary > 2000. The WHERE clause restricts the rows returned by

the query without affecting other rows in the hierarchy. In our example, the WHERE condition
filtered JONES out of the result, but the employees below JONES in the hierarchy (SCOTT and
FORD) are not filtered out, and are still indented as they were when JONES was present. The
WHERE clause must come before the START WITH . . . CONNECT BY clause in a hierarchical
query; otherwise, you'll get a syntax error.

Though the WHERE clause comes before the START WITH . . . CONNECT BY
construct, the filtering happens after the complete hierarchy tree is built.

As discussed earlier, the START WITH clause is optional—i.e., you can have a CONNECT BY
without a START WITH. When the START WITH clause is missing, effectively the query doesn't
specify where to start building the hierarchy. In that situation, each row of the table is
considered a root, and a hierarchy is built for each row. For example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "Employee",

 emp_id, manager_emp_id, salary

FROM employee

CONNECT BY manager_emp_id = PRIOR emp_id;

LEVEL Employee EMP_ID MANAGER_EMP_ID SALARY

----- -------------------- ---------- -------------- ----------

 1 SCOTT 7788 7566 3000

 2 ADAMS 7876 7788 1100

 1 FORD 7902 7566 3000

 2 SMITH 7369 7902 800

 1 ALLEN 7499 7698 1600

 1 WARD 7521 7698 1250

 1 JAMES 7900 7698 950

 1 TURNER 7844 7698 1500

 1 MARTIN 7654 7698 1250

 1 MILLER 7934 7782 1300

 1 ADAMS 7876 7788 1100

 1 JONES 7566 7839 2000

 2 SCOTT 7788 7566 3000

 3 ADAMS 7876 7788 1100

 2 FORD 7902 7566 3000

 3 SMITH 7369 7902 800

 1 CLARK 7782 7839 2450

 2 MILLER 7934 7782 1300

 1 BLAKE 7698 7839 2850

 2 ALLEN 7499 7698 1600

 2 WARD 7521 7698 1250

 2 JAMES 7900 7698 950

 2 TURNER 7844 7698 1500

 2 MARTIN 7654 7698 1250

 1 SMITH 7369 7902 800

 1 KING 7839 5000

 2 JONES 7566 7839 2000

 3 SCOTT 7788 7566 3000

 4 ADAMS 7876 7788 1100

 3 FORD 7902 7566 3000

 4 SMITH 7369 7902 800

 2 CLARK 7782 7839 2450

 3 MILLER 7934 7782 1300

 2 BLAKE 7698 7839 2850

 3 ALLEN 7499 7698 1600

 3 WARD 7521 7698 1250

 3 JAMES 7900 7698 950

 3 TURNER 7844 7698 1500

 3 MARTIN 7654 7698 1250

39 rows selected.

This example returns the hierarchy tree for each row in the table. In the organization tree under
KING, SCOTT is at level 3; however, in the organization tree under JONES, SCOTT is at level 2,
and under the organization tree headed by himself, SCOTT is at level 1.

8.4.3 Checking for Ascendancy

Another common operation on hierarchical data is to check for ascendancy. In an organization
chart, you may ask whether one employee has authority over another. For example: "Does
JONES have any authority over BLAKE?" To find out, you need to search for BLAKE in the

subtree headed by JONES. If you find BLAKE in the subtree, then you know that BLAKE either
directly or indirectly reports to JONES. If you don't find BLAKE in the subtree, then you know
that JONES doesn't have any authority over BLAKE. The following query searches for BLAKE in
the subtree headed by JONES:

SELECT *

FROM employee

WHERE lname = 'BLAKE'

START WITH lname = 'JONES'

CONNECT BY manager_emp_id = PRIOR emp_id;

no rows selected

The START WITH . . . CONNECT BY clause in this example generates the subtree headed by
JONES, and the WHERE clause filters this subtree to find BLAKE. As you can see, no rows are
returned. This means that BLAKE was not found in JONES's subtree, so you know that JONES
has no authority over BLAKE. Let's take a look at another example that produces positive
results. This time we'll check to see whether JONES has any authority over SMITH:

SELECT emp_id, lname, dept_id, manager_emp_id, salary, hire_date

FROM employee

WHERE lname = 'SMITH'

START WITH lname = 'JONES'

CONNECT BY manager_emp_id = PRIOR emp_id;

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

---------- ---------- ---------- -------------- ---------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

This time, SMITH was found in the list of employees in JONES's subtree, so you know that at
some level JONES has management authority over SMITH.

8.4.4 Deleting a Subtree

Let's assume that the organization we are dealing with splits, and JONES and all his
subordinates form a new company. Therefore, we don't need to maintain JONES and his
subordinates in our employee table. Furthermore, we need to delete the entire subtree headed

by JONES, as shown in Figure 8-1, from our table. We can do this by using a subquery as in the
following example:

DELETE FROM employee

WHERE emp_id IN

(SELECT emp_id FROM employee

START WITH lname = 'JONES'

CONNECT BY manager_emp_id = PRIOR emp_id);

5 rows deleted.

In this example, the subquery generates the subtree headed by JONES, and returns the
emp_ids of the employees in that subtree, including JONES's. The outer query then deletes the
records with these emp_id values from the employee table.

8.4.5 Listing Multiple Root Nodes

An interesting variation on the problem of listing the root node of a hierarchy is to find and list
the root nodes from several hierarchies that are all stored in the same table. For example, you
might consider department managers to represent root nodes, and you might further wish to
list all department managers found in the employee table.

There are no constraints on the employees belonging to any department. However, you can
assume that if A reports to B and B reports to C, and A and C belong to the same department,
then B also belongs to the same department. If an employee's manager belongs to another
department, then that employee is the uppermost employee, or manager, of his department.

Therefore, to find the uppermost employee in each department, you need to search the tree for
those employees whose managers belong to a different department than their own. You can do
that using the following query:

SELECT emp_id, lname, dept_id, manager_emp_id, salary, hire_date

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY manager_emp_id = PRIOR emp_id

AND dept_id != PRIOR dept_id;

EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------ -------- -------- -------------- ------ ---------

 7839 KING 10 5000 17-NOV-81

 7566 JONES 20 7839 2000 02-APR-81

 7698 BLAKE 30 7839 2850 01-MAY-80

In this example, the extra condition (dept_id != PRIOR dept_id) added to the CONNECT BY

clause restricts the output to only those employees whose managers belong to a different
department than their own.

8.4.6 Listing the Top Few Levels of a Hierarchy

Another common task in dealing with hierarchical data is listing the top few levels of a hierarchy
tree. For example, you may want to list top management employees in an organization. Let's
assume that the top two levels in our organization chart constitute top management. You can
then use the LEVEL pseudocolumn to identify those employees, as in the following example:

SELECT emp_id, lname, dept_id, manager_emp_id, salary, hire_date

FROM employee

WHERE LEVEL <= 2

START WITH manager_emp_id IS NULL

CONNECT BY manager_emp_id = PRIOR emp_id;

EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------ --------- ---------- -------------- ------ ---------

 7839 KING 10 5000 17-NOV-81

 7566 JONES 20 7839 2000 02-APR-81

 7698 BLAKE 30 7839 2850 01-MAY-80

 7782 CLARK 10 7839 2450 09-JUN-81

In this example, the LEVEL <= 2 condition in the WHERE clause restricts the results to only

those employees in the top two levels of the organization chart.

8.4.7 Aggregating a Hierarchy

Another challenging requirement is to aggregate a hierarchy. For example, you may want to
sum the salaries of all employees reporting to a specific employee. Or, you may want to
consider each employee as a root, and for each employee print out the sum of the salaries of all
subordinate employees.

The first problem is relatively simple. Earlier we described how to select a subtree headed by an
employee. You can easily sum the salaries of all employees in such a subtree. For example:

SELECT SUM(salary)

FROM employee

START WITH lname = 'JONES'

CONNECT BY manager_emp_id = PRIOR emp_id;

SUM(SALARY)

 9900

The START WITH lname = 'JONES' clause generates the subtree headed by JONES, and the
SUM(salary) expression sums the salary of employees in this subtree.

The second problem, a seemingly simple extension of the first, is relatively complex. You want
to consider each employee as a root, and for each employee you want to sum the salaries of all
employees in its subtree. In essence, you want to repeat the previous query for each employee
in the table. The following SQL uses an inline view to achieve this:

SELECT t2.lname, t2.salary,

(SELECT SUM(t1.salary) FROM employee t1

START WITH t1.lname = t2.lname

CONNECT BY t1.manager_emp_id = PRIOR t1.emp_id) sum_salary

FROM employee t2;

LNAME SALARY SUM_SALARY

-------------------- ---------- ----------

SMITH 800 800

ALLEN 1600 1600

WARD 1250 1250

JONES 2000 9900

MARTIN 1250 1250

BLAKE 2850 9400

CLARK 2450 3750

SCOTT 3000 4100

KING 5000 28050

TURNER 1500 1500

ADAMS 1100 1100

JAMES 950 950

FORD 3000 3800

MILLER 1300 1300

14 rows selected.

In this example, the START WITH . . . CONNECT BY clause in the inline view generates a
subtree for each employee. The inline view executes once for every row in the outer employee
table. For each row in the outer employee table, the inline view generates a subtree headed by

this employee, and returns the sum of salaries for all the employees in this subtree to the main
query.

The result set provides two numbers for each employee. The first number, salary, is the
employee's own salary. The second number, sum_salary, is the sum of the salaries of all

employees under him (including himself/herself). Often programmers resort to PL/SQL to solve
this type of problem. However, this query, which combines the power of hierarchical queries
with that of inline views, solves the problem in a much more concise and elegant way.

8.4.8 Ordering Hierarchical Data

Sorting the results from a hierarchical query is a more interesting problem than it first may
sound. A hierarchical query with a START WITH . . . CONNECT BY . . . construct displays the
results in an arbitrary order, as shown in the following example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "EMPLOYEE",

 emp_id, manager_emp_id

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id;

 LEVEL EMPLOYEE EMP_ID MANAGER_EMP_ID

---------- -------------------- ---------- --------------

 1 KING 7839

 2 JONES 7566 7839

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

 3 FORD 7902 7566

 4 SMITH 7369 7902

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 WARD 7521 7698

 3 MARTIN 7654 7698

 3 TURNER 7844 7698

 3 JAMES 7900 7698

 2 CLARK 7782 7839

 3 MILLER 7934 7782

As always, you can use an ORDER BY clause to order the result rows in the way you want.
However, in the case of a hierarchical query, an ORDER BY clause can destroy the hierarchical
nature of the data returned by the query. This is shown in the following example, which orders
the results by last name:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "EMPLOYEE",

 emp_id, manager_emp_id

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id

ORDER BY lname;

 LEVEL EMPLOYEE EMP_ID MANAGER_EMP_ID

---------- -------------------- ---------- --------------

 4 ADAMS 7876 7788

 3 ALLEN 7499 7698

 2 BLAKE 7698 7839

 2 CLARK 7782 7839

 3 FORD 7902 7566

 3 JAMES 7900 7698

 2 JONES 7566 7839

 1 KING 7839

 3 MARTIN 7654 7698

 3 MILLER 7934 7782

 3 SCOTT 7788 7566

 4 SMITH 7369 7902

 3 TURNER 7844 7698

 3 WARD 7521 7698

As you can see from this output, it is impossible to identify the hierarchical relationship between
the rows. To resolve this problem, you can use the SIBLINGS (in Oracle9i and later) keyword in
the ORDER BY clause, to order the hierarchical data while at the same time preserving the
hierarchy. Oracle does this by sorting at each level while ensuring that child nodes remain
underneath their parents. For example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "EMPLOYEE",

 emp_id, manager_emp_id

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id

ORDER SIBLINGS BY lname;

 LEVEL EMPLOYEE EMP_ID MANAGER_EMP_ID

---------- -------------------- ---------- --------------

 1 KING 7839

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 JAMES 7900 7698

 3 MARTIN 7654 7698

 3 TURNER 7844 7698

 3 WARD 7521 7698

 2 CLARK 7782 7839

 3 MILLER 7934 7782

 2 JONES 7566 7839

 3 FORD 7902 7566

 4 SMITH 7369 7902

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

In this example's output, BLAKE, CLARK, and JONES are siblings, and they are displayed in
ascending order. So are BLAKE's children: ALLEN, JAMES, MARTIN, TURNER, and WARD.

8.4.9 Finding the Path to a Node

You can list the entire path of a given node starting from the root node using the
SYS_CONNECT_BY_PATH function (in Oracle9i and later). This function takes two arguments: a
column name and a character string. The function then returns a list containing each value of
the column from the root node to the current node, separating values by the character string
you provide. For example:

SELECT SYS_CONNECT_BY_PATH(lname, '#')

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id;

SYS_CONNECT_BY_PATH(LNAME,'#')

#KING

#KING#JONES

#KING#JONES#SCOTT

#KING#JONES#SCOTT#ADAMS

#KING#JONES#FORD

#KING#JONES#FORD#SMITH

#KING#BLAKE

#KING#BLAKE#ALLEN

#KING#BLAKE#WARD

#KING#BLAKE#MARTIN

#KING#BLAKE#TURNER

#KING#BLAKE#JAMES

#KING#CLARK

#KING#CLARK#MILLER

The preceding query lists the full organizational path for each employee starting at the top. For
example, #KING#JONES#FORD#SMITH shows the complete reporting relation of SMITH in the

organization.

To understand the usefulness of the SYS_CONNECT_BY_PATH function, think of a trail in a park.
The branches of such a trail are illustrated in Figure 8-3.

Figure 8-3. Trails

The various points in the trail, and the distance between them is stored in a table, trail:

CREATE TABLE trail (

 start_point CHAR,

 end_point CHAR,

 distance NUMBER

);

INSERT INTO trail VALUES ('A','B', 3);

INSERT INTO trail VALUES ('A','C', 2.5);

INSERT INTO trail VALUES ('B','D', 2);

INSERT INTO trail VALUES ('B','E', 1.5);

INSERT INTO trail VALUES ('C','F', 2.5);

INSERT INTO trail VALUES ('C','G', 2.5);

INSERT INTO trail VALUES ('G','H', 3.5);

INSERT INTO trail VALUES ('E','J', 1.5);

COMMIT;

You need to find the total distance of each point in the trail from the starting point "A." The
following query uses SYS_CONNECT_BY_PATH to print the distance of each point concatenated
with the distances of each of its ancestors in the tree:

SELECT end_point,

 SUBSTR(SYS_CONNECT_BY_PATH(distance,'+'),2) total_distance

FROM trail

START WITH start_point = 'A'

CONNECT BY start_point = PRIOR end_point;

E TOTAL_DISTANCE

- --------------------

B 3

D 3+2

E 3+1.5

J 3+1.5+1.5

C 2.5

F 2.5+2.5

G 2.5+2.5

H 2.5+2.5+3.5

The SUBSTR function takes out the first "+" in the query's output. Now, each of the
total_distance expressions, one for each point, can be evaluated to compute the total
distance. One way to evaluate such expressions is to write an eval function, as shown in the

following code:

CREATE OR REPLACE FUNCTION eval (exp IN VARCHAR2) RETURN NUMBER IS

 result NUMBER;

BEGIN

 EXECUTE IMMEDIATE 'SELECT ' || exp || ' FROM DUAL' INTO result;

 RETURN result;

EXCEPTION

 WHEN OTHERS THEN

 RETURN NULL;

END;

/

The following example uses the eval function to compute the total distance of each point in the

trail from the starting point A:

SELECT end_point,

 eval(SUBSTR(SYS_CONNECT_BY_PATH(distance,'+'),2)) total_distance

FROM trail

START WITH start_point = 'A'

CONNECT BY start_point = PRIOR end_point;

E TOTAL_DISTANCE

- --------------

B 3

D 5

E 4.5

J 6

C 2.5

F 5

G 5

H 8.5

From this output, it is easy to figure out how far each point is in the trail from the starting point
"A."

 < Day Day Up >

 < Day Day Up >

8.5 Restrictions on Hierarchical Queries

Through Oracle8i, the following restrictions apply to hierarchical queries.

A hierarchical query can't use a join.

A hierarchical query cannot select data from a view that involves a join.

These restrictions were removed with the release of Oracle9i.

 < Day Day Up >

 < Day Day Up >

8.6 Enhancements in Oracle Database 10g

Oracle Database 10g introduces some new features for hierarchical queries. The new features
include the CONNECT_BY_ROOT operator, the new CONNECT_BY_ISCYCLE and
CONNECT_BY_ISLEAF pseudocolumns, and the NOCYCLE keyword. We will discuss each of these
enhancements in the following sections.

8.6.1 Getting Data from the Root Row

Remember how you can use the PRIOR operator to retrieve a value from a node's parent row?
You can now use the CONNECT_BY_ROOT operator to retrieve a value from a node's root. For
example:

SELECT lname "Employee", CONNECT_BY_ROOT lname "Top Manager"

FROM employee

START WITH manager_emp_id = 7839

CONNECT BY PRIOR emp_id = manager_emp_id;

Employee Top Manager

-------------------- ------------

JONES JONES

SCOTT JONES

ADAMS JONES

FORD JONES

SMITH JONES

BLAKE BLAKE

ALLEN BLAKE

WARD BLAKE

MARTIN BLAKE

TURNER BLAKE

JAMES BLAKE

CLARK CLARK

MILLER CLARK

In this example, the hierarchy is built by starting with the rows that meet the condition
manager_emp_id = 7839. This means that anyone whose manager is 7839 will be considered a

root for this query. Those employees will be listed in the result set of the query along with the
name of the top-most manager in their tree. The CONNECT_BY_ROOT operator returns that top-
most manager name by accessing the root row for each row returned by the query.

8.6.2 Ignoring Cycles

Cycles are not allowed in a true tree structure. But life is not perfect, and someday you're bound
to encounter hierarchical data containing cycles in which a node's child is also its parent. Such
cycles are usually not good, need to be fixed, but can be frustratingly difficult to identify. You
can try to find cycles by issuing a START WITH . . . CONNECT BY query, but such a query will
report an error if there is a cycle (also known as a loop) in the data. In Oracle Database 10g, all
this changes.

To allow the START WITH . . . CONNECT BY construct to work properly even if cycles are present
in the data, Oracle Database 10g provides the new NOCYCLE keyword. If there are cycles in
your data, you can use the NOCYCLE keyword in the CONNECT BY clause, and you will not get
an error when hierarchically querying that data.

The test data we have in the employee table doesn't have a cycle. To test the NOCYCLE feature,
you can introduce a cycle into the existing employee data by updating the manager_emp_id
column of the top-most employee (KING with emp_id=7839) with the manager_emp_id of one of
the lowest level employees (MARTIN with emp_id = 7654):

UPDATE employee

SET manager_emp_id

 = 7654

WHERE manager_emp_id IS NULL;

Now, if you perform the following hierarchical query, you will get an ORA-01436 error:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "EMPLOYEE",

 emp_id, manager_emp_id

FROM employee

START WITH emp_id = 7839

CONNECT BY PRIOR emp_id = manager_emp_id;

 LEVEL EMPLOYEE EMP_ID MANAGER_EMP_ID

---------- -------------------- ---------- --------------

 1 KING 7839 7654

 2 JONES 7566 7839

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

 3 FORD 7902 7566

 4 SMITH 7369 7902

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 WARD 7521 7698

 3 MARTIN 7654 7698

 4 KING 7839 7654

 5 JONES 7566 7839

 6 SCOTT 7788 7566

 7 ADAMS 7876 7788

 6 FORD 7902 7566

ERROR:

ORA-01436: CONNECT BY loop in user data

15 rows selected.

Other than the error, notice that the whole tree starting with KING starts repeating under
MARTIN. This is erroneous and confusing. Use the NOCYCLE keyword in the CONNECT BY clause
to get rid of the error message, and to prevent the listing of erroneously cyclic data:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || lname "EMPLOYEE",

 emp_id, manager_emp_id

FROM employee

START WITH emp_id = 7839

CONNECT BY NOCYCLE PRIOR emp_id = manager_emp_id;

 LEVEL EMPLOYEE EMP_ID MANAGER_EMP_ID

---------- -------------------- ---------- --------------

 1 KING 7839 7654

 2 JONES 7566 7839

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

 3 FORD 7902 7566

 4 SMITH 7369 7902

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 WARD 7521 7698

 3 MARTIN 7654 7698

 3 TURNER 7844 7698

 3 JAMES 7900 7698

 2 CLARK 7782 7839

 3 MILLER 7934 7782

This query recognizes that there is a cycle, ignores the cycle (as an impact of the NOCYCLE
keyword), and returns the rows as if there were no cycles. Having the ability to query data
containing cycles, your next problem is to identify those cycles.

You can use the NOCYCLE keyword regardless of whether you have a cycle
in your data.

8.6.3 Identifying Cycles

It is sometimes difficult to identify cycles in hierarchical data. Oracle Database 10g's new
pseudocolumn, CONNECT_BY_ISCYCLE, can help you identify the cycles in the data easily.
CONNECT_BY_ISCYCLE can be used only in conjunction with the NOCYCLE keyword in a
hierarchical query. The CONNECT_BY_ISCYCLE pseudocolumn returns 1 if the current row has a
child that is also its ancestor; otherwise, it returns 0. For example:

SELECT lname, CONNECT_BY_ISCYCLE

FROM employee

START WITH emp_id = 7839

CONNECT BY NOCYCLE PRIOR emp_id = manager_emp_id;

LNAME CONNECT_BY_ISCYCLE

-------------------- ------------------

KING 0

JONES 0

SCOTT 0

ADAMS 0

FORD 0

SMITH 0

BLAKE 0

ALLEN 0

WARD 0

MARTIN 1

TURNER 0

JAMES 0

CLARK 0

MILLER 0

Since MARTIN is KING's manager in this data set, and MARTIN also comes under KING in the
organization tree, the row for MARTIN has the value 1 for CONNECT_BY_ISCYCLE.

For correct results in subsequent queries, you should revert our example
data back to its original state by rolling back the earlier change that forced
a cycle in the data. If you have already committed the previous UPDATE,
you should update the employee table again to set the manager_emp_id

column to NULL for KING.

8.6.4 Identifying Leaf Nodes

In a tree structure, the nodes at the lowest level of the tree are referred to as leaf nodes. Leaf
nodes have no children. CONNECT_BY_ISLEAF is a pseudocolumn that returns 1 if the current
row is a leaf, and returns 0 if the current row is not a leaf. For example:

SELECT lname, CONNECT_BY_ISLEAF

FROM employee

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id;

LNAME CONNECT_BY_ISLEAF

--------------- -----------------

KING 0

JONES 0

SCOTT 0

ADAMS 1

FORD 0

SMITH 1

BLAKE 0

ALLEN 1

WARD 1

MARTIN 1

TURNER 1

JAMES 1

CLARK 0

MILLER 1

This new feature can help simplify SQL statements that need to identify all the leaf nodes in a
hierarchy. Without this pseudocolumn, to identify the leaf nodes, you would write a query like
the following:

SELECT emp_id, lname, salary, hire_date

FROM employee e

WHERE NOT EXISTS

(SELECT emp_id FROM employee e1 WHERE e.emp_id = e1.manager_emp_id);

 EMP_ID LNAME SALARY HIRE_DATE

------- --------------- ---------- ---------

 7369 SMITH 800 17-DEC-80

 7499 ALLEN 1600 20-FEB-81

 7521 WARD 1250 22-FEB-81

 7654 MARTIN 1250 28-SEP-81

 7844 TURNER 1500 08-SEP-81

 7876 ADAMS 1100 23-MAY-87

 7900 JAMES 950 03-DEC-81

 7934 MILLER 1300 23-JAN-82

However, you can make this query much simpler by using the new pseudocolumn
CONNECT_BY_ISLEAF, as shown here:

SELECT emp_id, lname, salary, hire_date

FROM employee e

WHERE CONNECT_BY_ISLEAF = 1

START WITH manager_emp_id IS NULL

CONNECT BY PRIOR emp_id = manager_emp_id;

EMP_ID LNAME SALARY HIRE_DATE

------- --------------- ---------- ---------

 7876 ADAMS 1100 23-MAY-87

 7369 SMITH 800 17-DEC-80

 7499 ALLEN 1600 20-FEB-81

 7521 WARD 1250 22-FEB-81

 7654 MARTIN 1250 28-SEP-81

 7844 TURNER 1500 08-SEP-81

 7900 JAMES 950 03-DEC-81

 7934 MILLER 1300 23-JAN-82

This query builds the complete organization tree, and filters out only the leaf nodes by
performing the check CONNECT_BY_ISLEAF = 1.

 < Day Day Up >

 < Day Day Up >

Chapter 9. DECODE and CASE
Whether it is for user presentation, report formatting, or data feed extraction, data is seldom
presented exactly as it is stored in the database. Instead, data is generally combined,
translated, or formatted in some way. Although procedural languages such as PL/SQL and Java
provide many tools for manipulating data, it is often desirable to perform these manipulations
as the data is extracted from the database. Similarly, when updating data, it is far easier to
modify the data in place rather than to extract it, modify it, and apply the modified data back to
the database. This chapter will focus on two powerful features of Oracle SQL that facilitate
various data manipulations: the CASE expression and the DECODE function. Along the way we'll
also demonstrate the use of several other functions (such as NVL and NVL2).

 < Day Day Up >

 < Day Day Up >

9.1 DECODE, NULLIF, NVL, and NVL2

Most of Oracle's built-in functions are designed to solve a specific problem. If you need to find
the last day of the month containing a particular date, for example, the LAST_DAY function is
just the ticket. The DECODE, NULLIF, NVL, and NVL2 functions, however, do not solve a specific
problem; rather, they are best described as inline if-then-else statements. These functions are
used to make decisions based on data values within a SQL statement without resorting to a
procedural language like PL/SQL. Table 9-1 shows the syntax and logic equivalent for each of
the four functions.

Table 9-1. If-then-else function logic

Function syntax Logic equivalent

DECODE(E1, E2, E3, E4) IF E1 = E2 THEN E3 ELSE E4

NULLIF(E1, E2) IF E1 = E2 THEN NULL ELSE E1

NVL(E1, E2) IF E1 IS NULL THEN E2 ELSE E1

NVL2(E1, E2, E3) IF E1 IS NULL THEN E3 ELSE E2

9.1.1 DECODE

The DECODE function can be thought of as an inline IF statement. DECODE takes three or more
expressions as arguments. Each expression can be a column, a literal, a function, or even a
subquery. Let's look at a simple example using DECODE:

SELECT lname,

 DECODE(manager_emp_id, NULL, 'HEAD HONCHO', 'WORKER BEE') emp_type

FROM employee;

LNAME EMP_TYPE

-------------------- -----------

SMITH WORKER BEE

ALLEN WORKER BEE

WARD WORKER BEE

JONES WORKER BEE

MARTIN WORKER BEE

BLAKE WORKER BEE

CLARK WORKER BEE

SCOTT WORKER BEE

KING HEAD HONCHO

TURNER WORKER BEE

ADAMS WORKER BEE

JAMES WORKER BEE

FORD WORKER BEE

MILLER WORKER BEE

In this example, the first expression is a column, the second is NULL, and the third and fourth
expressions are character literals. The intent is to determine whether each employee has a
manager by checking whether an employee's manager_emp_id column is NULL. The DECODE
function in this example compares each row's manager_emp_id column (the first expression) to
NULL (the second expression). If the result of the comparison is true, DECODE returns 'HEAD
HONCHO' (the third expression); otherwise, 'WORKER BEE' (the last expression) is returned.

Since the DECODE function compares two expressions and returns one of two expressions to the
caller, it is important that the expression types are identical or that they can at least be
translated to be the same type. This example works because E1 can be compared to E2, and E3
and E4 have the same type. If this were not the case, Oracle would raise an exception, as
illustrated by the following example:

SELECT lname,

 DECODE(manager_emp_id, SYSDATE, 'HEAD HONCHO', 'WORKER BEE') emp_type

FROM employee;

ERROR at line 1:

ORA-00932: inconsistent datatypes: expected DATE got NUMBER

Since the manager_emp_id column, which is numeric, cannot be converted to a DATE type, the

Oracle server cannot perform the comparison and must throw an exception. The same exception
would be thrown if the two return expressions (E3 and E4) did not have comparable types.

The previous example demonstrates the use of a DECODE function with the minimum number of
parameters (four). The next example demonstrates how additional sets of parameters may be
utilized for more complex logic:

SELECT p.part_nbr part_nbr, p.name part_name, s.name supplier,

 DECODE(p.status,

 'INSTOCK', 'In Stock',

 'DISC', 'Discontinued',

 'BACKORD', 'Backordered',

 'ENROUTE', 'Arriving Shortly',

 'UNAVAIL', 'No Shipment Scheduled',

 'Unknown') part_status

FROM part p INNER JOIN supplier s

ON p.supplier_id = s.supplier_id;

PART_NBR PART_NAME SUPPLIER PART_STATUS

---------------- ----------------------- ------------------- ----------

AI5-4557 Acme Part AI5-4557 Acme Industries In Stock

TZ50828 Tilton Part TZ50828 Tilton Enterprises In Stock

EI-T5-001 Eastern Part EI-T5-001 Eastern Importers In Stock

This example compares the value of a part's status column to each of five values, and, if a

match is found, returns the corresponding string. If a match is not found, then the string
'Unknown' is returned. Although the 12 parameters in this example are a great deal more than

the 4 parameters of the earlier example, we are still a long way from the maximum allowable
parameters, which is 255.

9.1.2 NULLIF

The NULLIF function compares two expressions and returns NULL if the expressions are
equivalent, or the first expression otherwise. The equivalent logic using DECODE looks as
follows:

DECODE(E1, E2, NULL, E1)

NULLIF is useful if you want to substitute NULL for a column's value, as demonstrated by the
next query, which shows salary information for only those employees making less than $2000:

SELECT fname, lname,

 NULLIF(salary, GREATEST(2000, salary)) salary

FROM employee;

FNAME LNAME SALARY

-------------------- -------------------- ----------

JOHN SMITH 800

KEVIN ALLEN 1600

CYNTHIA WARD 1250

TERRY JONES

KENNETH MARTIN 1250

MARION BLAKE

CAROL CLARK

DONALD SCOTT

FRANCIS KING

MARY TURNER 1500

DIANE ADAMS 1100

FRED JAMES 950

JENNIFER FORD

BARBARA MILLER 1300

In this example, the GREATEST function returns either the employee's salary or 2000,
whichever is greater. The NULLIF function compares this value to the employee's salary and
returns NULL if they are the same.

9.1.3 NVL and NVL2

The NVL and NVL2 functions allow you to test an expression to see whether it is NULL. If an
expression is NULL, you can return an alternate, non-NULL value, to use in its place. Since any
of the expressions in a DECODE statement can be NULL, the NVL and NVL2 functions are
actually specialized versions of DECODE. The following example uses NVL2 to produce the same
results as the DECODE example shown in a previous section:

SELECT lname,

 NVL2(manager_emp_id, 'WORKER BEE', 'HEAD HONCHO') emp_type

FROM employee;

LNAME EMP_TYPE

-------------------- -----------

SMITH WORKER BEE

ALLEN WORKER BEE

WARD WORKER BEE

JONES WORKER BEE

MARTIN WORKER BEE

BLAKE WORKER BEE

CLARK WORKER BEE

SCOTT WORKER BEE

KING HEAD HONCHO

TURNER WORKER BEE

ADAMS WORKER BEE

JAMES WORKER BEE

FORD WORKER BEE

MILLER WORKER BEE

NVL2 looks at the first expression, manager_emp_id in this case. If that expression evaluates to

NULL, NVL2 returns the third expression. If the first expression is not NULL, NVL2 returns the
second expression. Use NVL2 when you wish to specify alternate values to be returned for the
case when an expression is NULL, and also for the case when an expression is not NULL.

The NVL function is most commonly used to substitute a default value when a column is NULL.
Otherwise, the column value itself is returned. The next example shows the ID of each
employee's manager, but substitutes the word 'NONE' when no manager has been assigned (i.e.,
when manager_emp_id is NULL):

SELECT emp.lname employee,

 NVL(mgr.lname, 'NONE') manager

FROM employee emp LEFT OUTER JOIN employee mgr

ON emp.manager_emp_id = mgr.emp_id;

EMPLOYEE MANAGER

-------------------- --------------

FORD JONES

SCOTT JONES

JAMES BLAKE

TURNER BLAKE

MARTIN BLAKE

WARD BLAKE

ALLEN BLAKE

MILLER CLARK

ADAMS SCOTT

CLARK KING

BLAKE KING

JONES KING

SMITH FORD

KING NONE

Even though DECODE may be substituted for any NVL or NVL2 function, most people prefer to
use NVL or NVL2 when checking to see if an expresssion is NULL, presumably because the intent
is clearer. Hopefully, the next section will convince you to use CASE expressions whenever you
are in need of if-then-else functionality. Then you won't need to worry about which built-in
function to use.

 < Day Day Up >

 < Day Day Up >

9.2 The Case for CASE

The CASE expression made its SQL debut in the SQL-92 specification in 1992. Eight years later,
Oracle included the CASE expression in the Oracle8i release. Like the DECODE function, the
CASE expression enables conditional logic within a SQL statement, which might explain why
Oracle took so much time implementing this particular feature. If you have been using Oracle
for a number of years, you might wonder why you should care about the CASE expression, since
DECODE does the job nicely. Here are several reasons why you should make the switch:

CASE expressions can be used everywhere that DECODE functions are permitted.

CASE expressions are more readable than DECODE expressions.

CASE expressions execute faster than DECODE expressions.[1]

[1] Since CASE is built into Oracle's SQL grammar, there is no need to call a function in order to
evaluate the if-then-else logic. Although the difference in execution time is miniscule for a single call,
the aggregate time savings from not calling a function should become noticeable when working with
large result sets.

CASE expressions handle complex logic more gracefully than DECODE expressions.

CASE is ANSI-compliant, whereas DECODE is proprietary.

The only downside to using CASE over DECODE is that CASE expressions are not supported in
Oracle8i's PL/SQL language. If you are using Oracle9i Database or Oracle Database 10g,
however, any SQL statements executed from PL/SQL may include CASE expressions.

The SQL-92 specification defines two distinct flavors of the CASE expression: searched and
simple. Searched CASE expressions are the only type supported in the Oracle8i release. If you
are using a later release, you may also use simple CASE expressions.

9.2.1 Searched CASE Expressions

A searched CASE expression evaluates a number of conditions and returns a result determined
by which condition is true. The syntax for the searched CASE expression is as follows:

CASE

 WHEN C1 THEN R1

 WHEN C2 THEN R2

 . . .

 WHEN CN THEN RN

 ELSE RD

END

In the syntax definition, C1, C2 . . . Cn represent conditions, and R1, R2 . . . RN

represent results. You can use up to 127 WHEN clauses in each CASE expression, so the logic
can be quite robust. Conditions are evaluated in order. When a condition is found that evaluates
to TRUE, the corresponding result is returned, and execution of the CASE logic ends. Therefore,
carefully order WHEN clauses to ensure that your desired results are achieved. The following
example illustrates the use of the CASE statement by determining the proper string to show on
an order status report:

SELECT co.order_nbr, co.cust_nbr,

 CASE WHEN co.expected_ship_dt IS NULL THEN 'NOT YET SCHEDULED'

 WHEN co.expected_ship_dt <= SYSDATE THEN 'SHIPPING DELAYED'

 WHEN co.expected_ship_dt <= SYSDATE + 2 THEN 'SHIPPING SOON'

 ELSE 'BACKORDERED'

 END ship_status

FROM cust_order co

WHERE co.ship_dt IS NULL AND co.cancelled_dt IS NULL;

ORDER_NBR CUST_NBR SHIP_STATUS

---------- ---------- -----------------

 1001 1 SHIPPING DELAYED

 1003 4 SHIPPING DELAYED

 1004 4 SHIPPING DELAYED

 1005 8 SHIPPING DELAYED

 1007 5 SHIPPING DELAYED

 1008 5 SHIPPING DELAYED

 1009 1 SHIPPING DELAYED

 1012 1 SHIPPING DELAYED

 1017 4 SHIPPING DELAYED

 1019 4 SHIPPING DELAYED

 1021 8 SHIPPING DELAYED

 1025 5 SHIPPING DELAYED

 1027 5 SHIPPING DELAYED

 1029 1 SHIPPING DELAYED

Similar to DECODE, all results in a CASE expression must have comparable types; otherwise,
ORA-00932 will be thrown. Each condition in each WHEN clause is independent of the others,
however, so your conditions can include various data types, as demonstrated in the next
example:

SELECT co.order_nbr, co.cust_nbr,

 CASE

 WHEN co.sale_price > 10000 THEN 'BIG ORDER'

 WHEN co.cust_nbr IN

 (SELECT cust_nbr FROM customer WHERE tot_orders > 100)

 THEN 'ORDER FROM FREQUENT CUSTOMER'

 WHEN co.order_dt < TRUNC(SYSDATE) -- 7 THEN 'OLD ORDER'

 ELSE 'UNINTERESTING ORDER'

 END order_type

FROM cust_order co

WHERE co.ship_dt IS NULL AND co.cancelled_dt IS NULL;

ORDER_NBR CUST_NBR ORDER_TYPE

---------- ---------- ------------

 1001 1 OLD ORDER

 1003 4 OLD ORDER

 1004 4 OLD ORDER

 1005 8 OLD ORDER

 1007 5 OLD ORDER

 1008 5 OLD ORDER

 1009 1 OLD ORDER

 1012 1 OLD ORDER

 1017 4 OLD ORDER

 1019 4 OLD ORDER

 1021 8 OLD ORDER

 1025 5 OLD ORDER

 1027 5 OLD ORDER

 1029 1 OLD ORDER

9.2.2 Simple CASE Expressions

Simple CASE expressions are structured differently than searched CASE expressions in that the
WHEN clauses contain expressions instead of conditions, and a single expression to be
compared to the expressions in each WHEN clause is placed in the CASE clause. Here's the
syntax:

CASE E0

 WHEN E1 THEN R1

 WHEN E2 THEN R2

 . . .

 WHEN EN THEN RN

 ELSE RD

END

Each of the expressions E1...EN are compared to expression E0. If a match is found, the
corresponding result is returned; otherwise, the default result (RD) is returned. All of the

expressions must be of the same type, since they all must be compared to E0, making simple

CASE expressions less flexible than searched CASE expressions. The next example illustrates
the use of a simple CASE expression to translate the status code stored in the part table:

SELECT p.part_nbr part_nbr, p.name part_name, s.name supplier,

 CASE p.status

 WHEN 'INSTOCK' THEN 'In Stock'

 WHEN 'DISC' THEN 'Discontinued'

 WHEN 'BACKORD' THEN 'Backordered'

 WHEN 'ENROUTE' THEN 'Arriving Shortly'

 WHEN 'UNAVAIL' THEN 'No Shipment Scheduled'

 ELSE 'Unknown'

 END part_status

FROM part p INNER JOIN supplier s

ON p.supplier_id = s.supplier_id;

PART_NBR PART_NAME SUPPLIER PART_STATUS

---------------- ----------------------- ------------------- ------------

AI5-4557 Acme Part AI5-4557 Acme Industries In Stock

TZ50828 Tilton Part TZ50828 Tilton Enterprises In Stock

EI-T5-001 Eastern Part EI-T5-001 Eastern Importers In Stock

A searched CASE can do everything that a simple CASE can do, which is probably the reason
Oracle only implemented searched CASE expressions the first time around. For certain uses,
such as translating values for a column, a simple expression may prove more efficient if the
expression being evaluated is computed via a function call.

 < Day Day Up >

 < Day Day Up >

9.3 DECODE and CASE Examples

The following sections present a variety of examples illustrating the uses of conditional logic in
SQL statements. Although we recommend that you use the CASE expression rather than the
DECODE function, where feasible we provide both DECODE and CASE versions of each example
to help illustrate the differences between the two approaches.

9.3.1 Result Set Transformations

You may have run into a situation where you are performing aggregations over a finite set of
values, such as days of the week or months of the year, but you want the result set to contain
one row with N columns rather than N rows with two columns. Consider the following query,
which aggregates sales data for each day of the week:

SELECT TO_CHAR(order_dt, 'DAY') day_of_week,

 SUM(sale_price) tot_sales

FROM cust_order

WHERE sale_price IS NOT NULL

GROUP BY TO_CHAR(order_dt, 'DAY')

ORDER BY 2 DESC;

DAY_OF_WEEK TOT_SALES

------------ ----------

SUNDAY 396

WEDNESDAY 180

MONDAY 112

FRIDAY 50

SATURDAY 50

In order to transform this result set into a single row with seven columns (one for each day in
the week), you will need to fabricate a column for each day of the week and, within each
column, sum only those records whose order date falls in the desired day. You can do that with
DECODE:

SELECT

 SUM(DECODE(TO_CHAR (order_dt, 'DAY'), 'SUNDAY ', sale_price, 0)) SUN,

 SUM(DECODE(TO_CHAR (order_dt, 'DAY'), 'MONDAY ', sale_price, 0)) MON,

 SUM(DECODE(TO_CHAR (order_dt, 'DAY'), 'TUESDAY ', sale_price, 0)) TUE,

 SUM(DECODE(TO_CHAR (order_dt, 'DAY'), 'WEDNESDAY', sale_price, 0)) WED,

 SUM(DECODE(TO_CHAR (order_dt, 'DAY'), 'THURSDAY ', sale_price, 0)) THU,

 SUM(DECODE(TO_CHAR (order_dt, 'DAY'), 'FRIDAY ', sale_price, 0)) FRI,

 SUM(DECODE(TO_CHAR (order_dt, 'DAY'), 'SATURDAY ', sale_price, 0)) SAT

FROM cust_order

WHERE sale_price IS NOT NULL;

 SUN MON TUE WED THU FRI SAT

--------- --------- --------- --------- --------- --------- ---------

 396 112 0 180 0 50 50

Each of the seven columns in the previous query are identical, except for the day being checked
by the DECODE function. For the SUN column, for example, a value of 0 is returned unless an
order was booked on a Sunday, in which case the sale_price column is returned. When the

values from all orders are summed, only Sunday orders are added to the total, which has the
effect of summing all Sunday orders while ignoring orders for all other days of the week. The
same logic is used for Monday, Tuesday, etc., to sum orders for each of the other days.

The CASE version of this query is as follows:

SELECT

 SUM(CASE WHEN TO_CHAR(order_dt, 'DAY') = 'SUNDAY '

 THEN sale_price ELSE 0 END) SUN,

 SUM(CASE WHEN TO_CHAR(order_dt, 'DAY') = 'MONDAY '

 THEN sale_price ELSE 0 END) MON,

 SUM(CASE WHEN TO_CHAR(order_dt, 'DAY') = 'TUESDAY '

 THEN sale_price ELSE 0 END) TUE,

 SUM(CASE WHEN TO_CHAR(order_dt, 'DAY') = 'WEDNESDAY'

 THEN sale_price ELSE 0 END) WED,

 SUM(CASE WHEN TO_CHAR(order_dt, 'DAY') = 'THURSDAY '

 THEN sale_price ELSE 0 END) THU,

 SUM(CASE WHEN TO_CHAR(order_dt, 'DAY') = 'FRIDAY '

 THEN sale_price ELSE 0 END) FRI,

 SUM(CASE WHEN TO_CHAR(order_dt, 'DAY') = 'SATURDAY '

 THEN sale_price ELSE 0 END) SAT

FROM cust_order

WHERE sale_price IS NOT NULL;

 SUN MON TUE WED THU FRI SAT

--------- --------- --------- --------- --------- --------- ---------

 396 112 0 180 0 50 50

Obviously, such transformations are only practical when the number of values is relatively
small. Aggregating sales for each weekday or month works fine, but expanding the query to
aggregate sales for each week, with a column for each week, would quickly become tedious.

9.3.2 Selective Function Execution

Imagine you're generating an inventory report. Most of the information resides in your local
database, but a trip across a gateway to an external, non-Oracle database is required to gather
information for parts supplied by Acme Industries. The round trip from your database through
the gateway to the external server and back takes 1.5 seconds on average. There are 10,000
parts in your database, but only 100 require information via the gateway. You create a user-
defined function called get_resupply_date to retrieve the resupply date for parts supplied by

ACME, and include it in your query:

SELECT s.name supplier_name, p.name part_name, p.part_nbr part_number

 p.inventory_qty in_stock, p.resupply_date resupply_date,

 my_pkg.get_resupply_date(p.part_nbr) acme_resupply_date

FROM part p INNER JOIN supplier s

ON p.supplier_id = s.supplier_id;

You then include logic in your reporting tool to use the acme_resupply_date instead of the
resupply_date column if the supplier's name is Acme Industries. You kick off the report, sit

back, and wait for the results. And wait. And wait...

Unfortunately, the server is forced to make 10,000 trips across the gateway when only 100 are
required. In these types of situations, it is far more efficient to call the function only when
necessary, instead of always calling the function and discarding the results when not needed:

SELECT s.name supplier_name, p.name part_name, p.part_nbr part_number,

 p.inventory_qty in_stock,

 DECODE(s.name, 'Acme Industries',

 my_pkg.get_resupply_date(p.part_nbr),

 p.resupply_date) resupply_date

FROM part p INNER JOIN supplier s

ON p.supplier_id = s.supplier_id;

The DECODE function checks if the supplier name is 'Acme Industries'. If so, it calls the

function to retrieve the resupply date via the gateway; otherwise, it returns the resupply date
from the local part table. The CASE version of this query looks as follows:

SELECT s.name supplier_name, p.name part_name, p.part_nbr part_number,

 p.inventory_qty in_stock,

 CASE WHEN s.name = 'Acme Industries'

 THEN my_pkg.get_resupply_date(p.part_nbr)

 ELSE p.resupply_date

 END resupply_date

FROM part p INNER JOIN supplier s

ON p.supplier_id = s.supplier_id;

Now the user-defined function is only executed if the supplier is Acme, reducing the query's
execution time drastically. For more information on calling user-defined functions from SQL, see
Chapter 11.

9.3.3 Conditional Update

If your database design includes denormalizations, you may run nightly routines to populate the
denormalized columns. For example, the part table contains the denormalized column status,
the value for which is derived from the inventory_qty and resupply_date columns. To update
the status column, you could run four separate UPDATE statements each night, one for each of

the four possible values for the status column. For example:

UPDATE part SET status = 'INSTOCK'

WHERE inventory_qty > 0;

UPDATE part SET status = 'ENROUTE'

WHERE inventory_qty = 0 AND resupply_date < SYSDATE + 5;

UPDATE part SET status = 'BACKORD'

WHERE inventory_qty = 0 AND resupply_date > SYSDATE + 5;

UPDATE part SET status = 'UNAVAIL'

WHERE inventory_qty = 0 and resupply_date IS NULL;

Given that columns such as inventory_qty and resupply_date are unlikely to be indexed,
each of the four UPDATE statements would require a full table-scan of the part table. By adding

conditional expressions to the statement, however, the four UPDATE statements can be
combined, resulting in a single scan of the part table:

UPDATE part SET status =

 DECODE(inventory_qty, 0,

 DECODE(resupply_date, NULL, 'UNAVAIL',

 DECODE(LEAST(resupply_date, SYSDATE + 5), resupply_date,

 'ENROUTE', 'BACKORD')),

 'INSTOCK');

The CASE version of this UPDATE is as follows:

UPDATE part SET status =

 CASE WHEN inventory_qty > 0 THEN 'INSTOCK'

 WHEN resupply_date IS NULL THEN 'UNAVAIL'

 WHEN resupply_date < SYSDATE + 5 THEN 'ENROUTE'

 WHEN resupply_date > SYSDATE + 5 THEN 'BACKORD'

 ELSE 'UNKNOWN' END;

The readability advantage of the CASE expression is especially apparent here, since the
DECODE version requires three nested levels to implement the same conditional logic handled
by a single CASE expression.

9.3.4 Optional Update

In some situations, you may need to modify data only if certain conditions exist. For example,
you have a table that records information such as the total number of orders and the largest
order booked during the current month. Here's the table definition:[2]

[2] For this example, we will ignore the European and North American totals.

describe mtd_orders;

Name Null? Type

--- -------- ------------

TOT_ORDERS NOT NULL NUMBER(7)

TOT_SALE_PRICE NOT NULL NUMBER(11,2)

MAX_SALE_PRICE NOT NULL NUMBER(9,2)

EUROPE_TOT_ORDERS NOT NULL NUMBER(7)

EUROPE_TOT_SALE_PRICE NOT NULL NUMBER(11,2)

EUROPE_MAX_SALE_PRICE NOT NULL NUMBER(9,2)

NORTHAMERICA_TOT_ORDERS NOT NULL NUMBER(7)

NORTHAMERICA_TOT_SALE_PRICE NOT NULL NUMBER(11,2)

NORTHAMERICA_MAX_SALE_PRICE NOT NULL NUMBER(9,2)

Each night, the table is updated with that day's order information. While most of the columns
will be modified each night, the column for the largest order, which is called max_sale_price,

will only change if one of the day's orders exceeds the current value of the column. The
following PL/SQL block shows how this might be accomplished using a procedural language:

DECLARE

 tot_ord NUMBER;

 tot_price NUMBER;

 max_price NUMBER;

 prev_max_price NUMBER;

BEGIN

 SELECT COUNT(*), SUM(sale_price), MAX(sale_price)

 INTO tot_ord, tot_price, max_price

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TRUNC(SYSDATE);

 UPDATE mtd_orders

 SET tot_orders = tot_orders + tot_ord,

 tot_sale_price = tot_sale_price + tot_price

 RETURNING max_sale_price INTO prev_max_price;

 IF max_price > prev_max_price THEN

 UPDATE mtd_orders

 SET max_sale_price = max_price;

 END IF;

END;

After calculating the total number of orders, the aggregate order price, and the maximum order
price for the current day, the tot_orders and tot_sale_price columns of the mtd_orders

table are modified with today's sales data. After the update is complete, the maximum sale
price is returned from mtd_orders so that it can be compared with today's maximum sale price.
If today's max_sale_price exceeds that stored in the mtd_orders table, a second UPDATE

statement is executed to update the field.

Using DECODE or CASE, however, you can update the tot_orders and tot_sale_price
columns and optionally update the max_sale_price column in the same UPDATE statement.

Additionally, since you now have a single UPDATE statement, you can aggregate the data from
the cust_order table within a subquery and eliminate the need for PL/SQL:

UPDATE mtd_orders mtdo

SET (mtdo.tot_orders, mtdo.tot_sale_price, mtdo.max_sale_price) =

 (SELECT mtdo.tot_orders + day_tot.tot_orders,

 mtdo.tot_sale_price + NVL(day_tot.tot_sale_price, 0),

 DECODE(GREATEST(mtdo.max_sale_price,

 NVL(day_tot.max_sale_price, 0)), mtdo.max_sale_price,

 mtdo.max_sale_price, day_tot.max_sale_price)

 FROM

 (SELECT COUNT(*) tot_orders, SUM(sale_price) tot_sale_price,

 MAX(sale_price) max_sale_price

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TRUNC(SYSDATE)) day_tot);

In this statement, the max_sale_price column is set equal to itself unless the value returned

from the subquery is greater than the current column value, in which case the column is set to
the value returned from the subquery. The next statement uses CASE to perform the same
optional update:

UPDATE mtd_orders mtdo

SET (mtdo.tot_orders, mtdo.tot_sale_price, mtdo.max_sale_price) =

 (SELECT mtdo.tot_orders + day_tot.tot_orders,

 mtdo.tot_sale_price + day_tot.tot_sale_price,

 CASE WHEN day_tot.max_sale_price > mtdo.max_sale_price

 THEN day_tot.max_sale_price

 ELSE mtdo.max_sale_price END

 FROM

 (SELECT COUNT(*) tot_orders, SUM(sale_price) tot_sale_price,

 MAX(sale_price) max_sale_price

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TRUNC(SYSDATE)) day_tot);

One thing to keep in mind when using this approach is that setting a value equal to itself is still
seen as a modification by the database and may trigger an audit record, a new value for the
last_modified_date column, etc.

9.3.5 Selective Aggregation

To expand on the mtd_orders example in the previous section, imagine that you also want to

store total sales for particular regions such as Europe and North America. For the additional six
columns, individual orders will affect one set of columns or the other, but not both. An order will
either be for a European or North American customer, but not for both at the same time. To
populate these columns, you could generate two more update statements, each targeted to a
particular region, as in:

/* Europe buckets */

UPDATE mtd_orders mtdo

SET (mtdo.europe_tot_orders, mtdo.europe_tot_sale_price,

 mtdo.europe_max_sale_price) =

 (SELECT mtdo.europe_tot_orders + eur_day_tot.tot_orders,

 mtdo.europe_tot_sale_price + nvl(eur_day_tot.tot_sale_price, 0),

 CASE WHEN eur_day_tot.max_sale_price > mtdo.europe_max_sale_price

 THEN eur_day_tot.max_sale_price

 ELSE mtdo.europe_max_sale_price END

 FROM

 (SELECT COUNT(*) tot_orders, SUM(co.sale_price) tot_sale_price,

 MAX(co.sale_price) max_sale_price

 FROM cust_order co INNER JOIN customer c

 ON co.cust_nbr = c.cust_nbr

 WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE)

 AND c.region_id IN

 (SELECT region_id FROM region

 START WITH name = 'Europe'

 CONNECT BY PRIOR region_id = super_region_id)) eur_day_tot);

/* North America buckets */

UPDATE mtd_orders mtdo

SET (mtdo.northamerica_tot_orders, mtdo.northamerica_tot_sale_price,

 mtdo.northamerica_max_sale_price) =

 (SELECT mtdo.northamerica_tot_orders + na_day_tot.tot_orders,

 mtdo.northamerica_tot_sale_price + nvl(na_day_tot.tot_sale_price, 0),

 CASE WHEN na_day_tot.max_sale_price > mtdo.northamerica_max_sale_price

 THEN na_day_tot.max_sale_price

 ELSE mtdo.northamerica_max_sale_price END

 FROM

 (SELECT COUNT(*) tot_orders, SUM(co.sale_price) tot_sale_price,

 MAX(co.sale_price) max_sale_price

 FROM cust_order co INNER JOIN customer c

 ON co.cust_nbr = c.cust_nbr

 WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE) - 60

 AND c.region_id IN

 (SELECT region_id FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id)) na_day_tot);

However, why not save yourself a trip through the cust_order table and aggregate the North

American and European totals at the same time? The trick here is to put conditional logic within
the aggregation functions so that only the appropriate rows influence each calculation. This
approach is similar to the example from Section 9.3.1. in that it selectively aggregates data
based on data stored in the table:

UPDATE mtd_orders mtdo

SET (mtdo.northamerica_tot_orders, mtdo.northamerica_tot_sale_price,

 mtdo.northamerica_max_sale_price, mtdo.europe_tot_orders,

 mtdo.europe_tot_sale_price, mtdo.europe_max_sale_price) =

 (SELECT mtdo.northamerica_tot_orders + nvl(day_tot.na_tot_orders, 0),

 mtdo.northamerica_tot_sale_price + nvl(day_tot.na_tot_sale_price, 0),

 CASE WHEN day_tot.na_max_sale_price > mtdo.northamerica_max_sale_price

 THEN day_tot.na_max_sale_price

 ELSE mtdo.northamerica_max_sale_price END,

 mtdo.europe_tot_orders + nvl(day_tot.eur_tot_orders, 0),

 mtdo.europe_tot_sale_price + nvl(day_tot.eur_tot_sale_price, 0),

 CASE WHEN day_tot.eur_max_sale_price > mtdo.europe_max_sale_price

 THEN day_tot.eur_max_sale_price

 ELSE mtdo.europe_max_sale_price END

 FROM

 (SELECT SUM(CASE WHEN na_regions.region_id IS NOT NULL THEN 1

 ELSE 0 END) na_tot_orders,

 SUM(CASE WHEN na_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) na_tot_sale_price,

 MAX(CASE WHEN na_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) na_max_sale_price,

 SUM(CASE WHEN eur_regions.region_id IS NOT NULL THEN 1

 ELSE 0 END) eur_tot_orders,

 SUM(CASE WHEN eur_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) eur_tot_sale_price,

 MAX(CASE WHEN eur_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) eur_max_sale_price

 FROM cust_order co INNER JOIN customer c

 ON co.cust_nbr = c.cust_nbr

 LEFT OUTER JOIN (SELECT region_id FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id) na_regions

 ON c.region_id = na_regions.region_id

 LEFT OUTER JOIN (SELECT region_id FROM region

 START WITH name = 'Europe'

 CONNECT BY PRIOR region_id = super_region_id) eur_regions

 ON c.region_id = eur_regions.region_id

 WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE)) day_tot);

This is a fairly robust statement, so let's break it down. Within the day_tot inline view, you are

joining the cust_order table to the customer table, and then outer-joining from
customer.region_id to each of two inline views (na_regions and eur_regions) that perform
hierarchical queries on the region table. Thus, orders from European customers will have a
non-null value for eur_regions.region_id, since the outer join would find a matching row in
the eur_regions inline view. Six aggregations are performed on this result set; three check for
a join against the na_regions inline view (North American orders), and three check for a join
against the eur_regions inline view (European orders). The six aggregations are then used to
modify the six columns in mtd_orders.

This statement could (and should) be combined with the statement from the previous example
(which updated the first three columns) to create an UPDATE statement that touches every
column in the mtd_orders table via one pass through the cust_order table. For data

warehouse applications, where large data sets must be manipulated each night within tight time
constraints, such an approach can often make the difference between success and failure.

9.3.6 Checking for Existence

When evaluating optional one-to-many relationships, there are certain cases where you want to
know whether the relationship is zero or greater than zero without regard for the actual data.
For example, you want to write a report showing each customer along with a flag showing
whether the customer has had any orders in the past five years. Using conditional logic, you can
include a correlated subquery on the cust_order table, check to see if the number of orders
exceeds zero, and then assign either a 'Y' or a 'N' to the column:

SELECT c.cust_nbr cust_nbr, c.name name,

 DECODE(0, (SELECT COUNT(*) FROM cust_order co

 WHERE co.cust_nbr = c.cust_nbr AND co.cancelled_dt IS NULL

 AND co.order_dt > TRUNC(SYSDATE) - (5 * 365)),

 'N', 'Y') has_recent_orders

FROM customer c;

 CUST_NBR NAME H

---------- ------------------------------ -

 1 Cooper Industries Y

 2 Emblazon Corp. N

 3 Ditech Corp. N

 4 Flowtech Inc. Y

 5 Gentech Industries Y

 6 Spartan Industries N

 7 Wallace Labs N

 8 Zantech Inc. Y

 9 Cardinal Technologies N

 10 Flowrite Corp. N

 11 Glaven Technologies N

 12 Johnson Labs N

 13 Kimball Corp. N

 14 Madden Industries N

 15 Turntech Inc. N

 16 Paulson Labs N

 17 Evans Supply Corp. N

 18 Spalding Medical Inc. N

 19 Kendall-Taylor Corp. N

 20 Malden Labs N

 21 Crimson Medical Inc. N

 22 Nichols Industries N

 23 Owens-Baxter Corp. N

 24 Jackson Medical Inc. N

 25 Worcester Technologies N

 26 Alpha Technologies Y

 27 Phillips Labs N

 28 Jaztech Corp. N

 29 Madden-Taylor Inc. N

 30 Wallace Industries N

Here is the CASE version of the query:

SELECT c.cust_nbr cust_nbr, c.name name,

 CASE WHEN EXISTS (SELECT 1 FROM cust_order co

 WHERE co.cust_nbr = c.cust_nbr AND co.cancelled_dt IS NULL

 AND co.order_dt > TRUNC(SYSDATE) - (5 * 365))

 THEN 'Y' ELSE 'N' END has_recent_orders

FROM customer c;

9.3.7 Division by Zero Errors

As a general rule, you should write your code so that unexpected data values are handled
gracefully. One of the more common arithmetic errors is ORA-01476: divisor is equal to zero.
Whether the value is retrieved from a column, passed in via a bind variable, or returned by a
function call, always wrap divisors with DECODE or CASE, as illustrated by the following
example:

SELECT p.part_nbr, SYSDATE + (p.inventory_qty /

 DECODE(my_pkg.get_daily_part_usage(p.part_nbr), NULL, 1,

 0, 1, my_pkg.get_daily_part_usage(p.part_nbr))) anticipated_shortage_dt

FROM part p

WHERE p.inventory_qty > 0;

The DECODE function ensures that the divisor is something other than zero. Here is the CASE
version of the statement:

SELECT p.part_nbr, SYSDATE + (p.inventory_qty /

 CASE WHEN my_pkg.get_daily_part_usage(p.part_nbr) > 0

 THEN my_pkg.get_daily_part_usage(p.part_nbr)

 ELSE 1 END) anticipated_shortage_dt

FROM part p

WHERE p.inventory_qty > 0;

Of course, if you are bothered by the fact that the get_daily_part_usage function is called a

second time for each part that yields a positive response, simply wrap the function call in an
inline view, as in:

SELECT parts.part_nbr, SYSDATE + (parts.inventory_qty /

 CASE WHEN parts.daily_part_usage > 0

 THEN parts.daily_part_usage

 ELSE 1 END) anticipated_shortage_dt

FROM

 (SELECT p.part_nbr part_nbr, p.inventory_qty inventory_qty,

 my_pkg.get_daily_part_usage(p.part_nbr) daily_part_usage

 FROM part p

 WHERE p.inventory_qty > 0) parts;

9.3.8 State Transitions

In certain cases, the order in which the values may be changed is constrained as well as the
allowable values for a column. Consider the diagram shown in Figure 9-1, which shows the
allowable state transitions for an order.

Figure 9-1. Order processing state transitions

As you can see, an order currently in the Processing state should only be allowed to move to
either Delayed or Filled. Rather than allowing each application to implement logic to change the
state of an order, write a user-defined function that returns the appropriate state depending on
the current state of the order and the transition type. In this example, two transition types are
defined: positive (POS) and negative (NEG). For example, an order in the Delayed state can
make a positive transition to Processing or a negative transition to Cancelled. If an order is in
one of the final states (Rejected, Cancelled, Shipped), the same state is returned. Here is the
DECODE version of the PL/SQL function:

FUNCTION get_next_order_state(ord_nbr in NUMBER,

 trans_type in VARCHAR2 DEFAULT 'POS')

RETURN VARCHAR2 is

 next_state VARCHAR2(20) := 'UNKNOWN';

BEGIN

 SELECT DECODE(status,

 'REJECTED', status,

 'CANCELLED', status,

 'SHIPPED', status,

 'NEW', DECODE(trans_type, 'NEG', 'AWAIT_PAYMENT', 'PROCESSING'),

 'AWAIT_PAYMENT', DECODE(trans_type, 'NEG', 'REJECTED', 'PROCESSING'),

 'PROCESSING', DECODE(trans_type, 'NEG', 'DELAYED', 'FILLED'),

 'DELAYED', DECODE(trans_type, 'NEG', 'CANCELLED', 'PROCESSING'),

 'FILLED', DECODE(trans_type, 'POS', 'SHIPPED', 'UNKNOWN'),

 'UNKNOWN')

 INTO next_state

 FROM cust_order

 WHERE order_nbr = ord_nbr;

 RETURN next_state;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN next_state;

END get_next_order_state;

As of Oracle8i, the PL/SQL language does not include the CASE expression in its grammar, so
you would need to be running Oracle9i or later to use the CASE version of the function:

FUNCTION get_next_order_state(ord_nbr in NUMBER,

 trans_type in VARCHAR2 DEFAULT 'POS')

RETURN VARCHAR2 is

 next_state VARCHAR2(20) := 'UNKNOWN';

BEGIN

 SELECT CASE

 WHEN status = 'REJECTED' THEN status

 WHEN status = 'CANCELLED' THEN status

 WHEN status = 'SHIPPED' THEN status

 WHEN status = 'NEW' AND trans_type = 'NEG' THEN 'AWAIT_PAYMENT'

 WHEN status = 'NEW' AND trans_type = 'POS' THEN 'PROCESSING'

 WHEN status = 'AWAIT_PAYMENT' AND trans_type = 'NEG' THEN 'REJECTED'

 WHEN status = 'AWAIT_PAYMENT' AND trans_type = 'POS' THEN 'PROCESSING'

 WHEN status = 'PROCESSING' AND trans_type = 'NEG' THEN 'DELAYED'

 WHEN status = 'PROCESSING' AND trans_type = 'POS' THEN 'FILLED'

 WHEN status = 'DELAYED' AND trans_type = 'NEG' THEN 'CANCELLED'

 WHEN status = 'DELAYED' AND trans_type = 'POS' THEN 'PROCESSING'

 WHEN status = 'FILLED' AND trans_type = 'POS' THEN 'SHIPPED'

 ELSE 'UNKNOWN'

 END

 INTO next_state

 FROM cust_order

 WHERE order_nbr = ord_nbr;

 RETURN next_state;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN next_state;

END get_next_order_state;

This example handles only the simple case in which there are just two paths out of each state,
but it does demonstrate one strategy for managing state transitions in your database. To
demonstrate how the previous function could be used, here is the UPDATE statement used to
change the status of an order once it has made a successful state transition:

UPDATE cust_order

SET status = my_pkg.get_next_order_state(order_nbr, 'POS')

WHERE order_nbr = 1107;

 < Day Day Up >

 < Day Day Up >

Chapter 10. Partitioning
Over the past 15 years, hard disk capacities have evolved from around 10 MB to over 100 GB,
and capacities are still growing. Disk arrays are fast approaching the 100 terabyte range. No
matter how much storage is available, however, there is always a way to exhaust it. As
databases grow in size, day-to-day operations become more and more challenging. For
example, finding the time and resources to rebuild an index containing 100 million entries can
prove quite demanding. Prior to Oracle8, database administrators would meet this challenge by
manually breaking a large table into several smaller tables. Although the pieces could be hidden
behind a special type of view (called a partition view) during a query, all DML statements had to
be performed against the individual tables, thereby exposing the partitioning scheme to the
database developers and users.

Starting with Version 8.0, Oracle provided a means for breaking a table into multiple pieces
while preserving the look and feel of a single table. Each piece is called a partition, and,
although every partition must share the same columns, constraints, indexes, and triggers, each
partition can have its own unique storage parameters. While administrators generally deal with
individual partitions when allocating storage and performing backups, developers may choose
to deal with either the entire table or with individual partitions.

 < Day Day Up >

 < Day Day Up >

10.1 Partitioning Concepts

Database designers and administrators have been partitioning tables since long before Oracle8
hit the scene. Generally, table partitioning within a single database is done to improve
performance and simplify administration tasks, while table partitioning between databases is
meant to facilitate data distribution. For example, sales data might be partitioned by region and
each partition hosted in a database housed at its respective regional sales office. Whereas a
central data warehouse might gather sales data from each office for reporting and decision-
support queries, it might be perfectly reasonable for the operational sales data to be distributed
across multiple sites.

Partitioning by sets of rows such as in the sales data example, in which the value of the sales
office column determines where the data resides, is known as horizontal partitioning.
Partitioning may also be accomplished by splitting up sets of columns, in which case it is called
vertical partitioning. For example, sensitive data such as salary information and social security
numbers may be split off from the employee table into a separate table with restricted access.
When partitioning vertically, primary key columns must be included in the set of columns for
every partition. Therefore, unlike horizontal partitioning, where each partition contains
nonoverlapping subsets of data, vertical partitioning mandates that some data be duplicated in
each partition.

While both vertical and horizontal partitioning may be accomplished manually within and
between Oracle databases, the Partitioning Option introduced in Oracle8 specifically deals with
horizontal partitioning within a single database.

 < Day Day Up >

 < Day Day Up >

10.2 Partitioning Tables

When partitioning is employed, a table changes from a physical object to a virtual concept.
There isn't really a table anymore, just a set of partitions. Since all of the partitions must share
the same attribute and constraint definitions, however, it is possible to deal with the set of
partitions as if they were a single table. The storage parameters, such as extent sizes and
tablespace placement, are the only attributes that may differ among the partitions. This
situation can facilitate some interesting storage scenarios, such as hosting infrequently accessed
partitions on a CD jukebox while the heavily-hit data partitions reside on disk. You can also take
advantage of Oracle's segmented buffer cache to keep the most active partitions in the keep
buffer so they are always in memory, while the rest of the partitions can be targeted for the
recycle or default buffers. Additionally, individual partitions may be taken offline without
affecting the availability of the rest of the partitions, giving administrators a great deal of
flexibility.

Depending on the partitioning scheme employed, you must choose one or more columns of a
table to be the partition key. The values of the columns in the partition key determine the
partition that hosts a particular row. Oracle also uses the partition key information in concert
with your WHERE clauses to determine which partitions to search during SELECT, UPDATE, and
DELETE operations (see Section 10.6 later in the chapter for more information).

 < Day Day Up >

 < Day Day Up >

10.3 Partitioning Indexes

So what, you may wonder, happens to the indexes on partitioned tables? The answer is that you
have to choose whether each index will stay intact (referred to as a global index), or be split
into pieces corresponding to the table partitions (referred to as a local index). Furthermore,
with a global index, you can choose to partition the index in a different manner than the table
was partitioned. When you throw the fact that you can partition both b-tree and bit-map
indexes into the mix, things can become overwhelming. When you issue a SELECT, UPDATE, or
DELETE statement against a partitioned table, the optimizer can take several routes to locate
the target rows:

Use a global index, if one is available and its columns are referenced in the SQL statement,
to find the target rows across one or more partitions.

Search a local index on every partition to identify whether any particular partition contains
target rows.

Define a subset of the partitions that might contain target rows, and then access local
indexes on those partitions.

Although global indexes might seem to be the simplest solution, they can
be problematic. Because global indexes span all of the partitions of a table,
they are adversely affected by partition maintenance operations. For
example, if a partition is split into multiple pieces, or if two partitions are
merged into one, all global indexes on the partitioned table are marked as
UNUSABLE and must be rebuilt before they can be used again. When
modifying a partitioning scheme, you have your choice of rebuilding the
global indexes manually, or of using the UPDATE GLOBAL INDEXES clause.

 < Day Day Up >

 < Day Day Up >

10.4 Partitioning Methods

To horizontally partition a table (or index), you must specify a set of rules so that Oracle can
determine in which partition a given row should reside. The following sections explore the five
types of partitioning available in Oracle Database 10g.

10.4.1 Range Partitioning

The first partitioning scheme, introduced in Oracle8 and known as range partitioning, allows a
table to be partitioned over ranges of values for one or more columns of the table. The simplest
and most widely implemented form of range partitioning is to partition using a single date
column. Consider the following DDL statement:

CREATE TABLE cust_order (

 order_nbr NUMBER(7) NOT NULL,

 cust_nbr NUMBER(5) NOT NULL,

 order_dt DATE NOT NULL,

 sales_emp_id NUMBER(5) NOT NULL,

 sale_price NUMBER(9,2),

 expected_ship_dt DATE,

 cancelled_dt DATE,

 ship_dt DATE,

 status VARCHAR2(20)

)

PARTITION BY RANGE (order_dt)

 (PARTITION orders_2000

 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY'))

 TABLESPACE ord1,

 PARTITION orders_2001

 VALUES LESS THAN (TO_DATE('01-JAN-2002','DD-MON-YYYY'))

 TABLESPACE ord2,

 PARTITION orders_2002

 VALUES LESS THAN (TO_DATE('01-JAN-2003','DD-MON-YYYY'))

 TABLESPACE ord3);

Using this partitioning scheme, all orders prior to 2001 will reside in the orders_2000 partition;
orders from 2001 will reside in the orders_2001 partition; and orders for the year 2002 will
reside in the orders_2002 partition.

10.4.2 Hash Partitioning

In some cases, you may wish to partition a large table, but there are no columns for which
range partitioning is suitable. Available in Oracle8i, hash partitioning allows you to specify the
number of partitions and the partition columns (the partition key), but leaves the allocation of
rows to partitions up to Oracle. As rows are inserted into the partitioned table, Oracle attempts
to evenly spread the data across the partitions by applying a hashing function to the data in the
partition key; the value returned by the hashing function determines the partition that hosts the
row. If the partition columns are included in the WHERE clause of a SELECT, DELETE, or
UPDATE statement, Oracle can apply the hash function to determine which partition to search.
The following DDL statement demonstrates how the part table might be partitioned by hashing
the part_nbr column:

CREATE TABLE part (

 part_nbr VARCHAR2(20) NOT NULL,

 name VARCHAR2(50) NOT NULL,

 supplier_id NUMBER(6) NOT NULL,

 inventory_qty NUMBER(6) NOT NULL,

 status VARCHAR2(10) NOT NULL,

 unit_cost NUMBER(8,2),

 resupply_date DATE

)

PARTITION BY HASH (part_nbr)

 (PARTITION part1 TABLESPACE p1,

 PARTITION part2 TABLESPACE p2,

 PARTITION part3 TABLESPACE p3,

 PARTITION part4 TABLESPACE p4);

For the data to be evenly distributed across the partitions, it is important to choose columns

with high cardinality as partition keys. A set of columns is said to have high cardinality if the
number of distinct values is large compared to the size of the table. Choosing a high cardinality
column for your partition key ensures an even distribution across your partitions; otherwise, the
partitions can become unbalanced, causing performance to be unpredictable and making
administration more difficult.

A unique key has the highest cardinality, since every row in the table has a
distinct value. An example of a low cardinality column might be the
country column in a customer table with millions of entries.

10.4.3 Composite Range-Hash Partitioning

If you are torn between whether to apply range or hash partitioning to your table, you can do
some of each. Composite partitioning, also unveiled with Oracle8i, allows you to create multiple
range partitions, each of which contains two or more hash subpartitions. There are two types of
composite partitioning, range-hash partitioning, which was unveiled in Oracle8i, and range-list
partitioning, which we'll talk about later in this chapter.

Composite partitioning is often useful when range partitioning is appropriate for the type of
data stored in the table, but you want a finer granularity of partitioning than is practical using
range partitioning alone. For example, it might make sense to partition your order table by

year based on the types of queries against the table. If a year's worth of data proves too
cumbersome for a single partition, however, you could subpartition each year by hashing the
customer number across four buckets. The following example expands on the range-partitioning
example shown earlier by generating subpartitions based on a hash of the customer number:

CREATE TABLE cust_order (

 order_nbr NUMBER(7) NOT NULL,

 cust_nbr NUMBER(5) NOT NULL,

 order_dt DATE NOT NULL,

 sales_emp_id NUMBER(5) NOT NULL,

 sale_price NUMBER(9,2),

 expected_ship_dt DATE,

 cancelled_dt DATE,

 ship_dt DATE,

 status VARCHAR2(20)

)

PARTITION BY RANGE (order_dt)

SUBPARTITION BY HASH (cust_nbr) SUBPARTITIONS 4

STORE IN (order_sub1, order_sub2, order_sub3, order_sub4)

 (PARTITION orders_2000

 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY'))

 (SUBPARTITION orders_2000_s1 TABLESPACE order_sub1,

 SUBPARTITION orders_2000_s2 TABLESPACE order_sub2,

 SUBPARTITION orders_2000_s3 TABLESPACE order_sub3,

 SUBPARTITION orders_2000_s4 TABLESPACE order_sub4),

 PARTITION orders_2001

 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY'))

 (SUBPARTITION orders_2001_s1 TABLESPACE order_sub1,

 SUBPARTITION orders_2001_s2 TABLESPACE order_sub2,

 SUBPARTITION orders_2001_s3 TABLESPACE order_sub3,

 SUBPARTITION orders_2001_s4 TABLESPACE order_sub4),

 PARTITION orders_2002

 VALUES LESS THAN (TO_DATE('01-JAN-2002','DD-MON-YYYY'))

 (SUBPARTITION orders_2002_s1 TABLESPACE order_sub1,

 SUBPARTITION orders_2002_s2 TABLESPACE order_sub2,

 SUBPARTITION orders_2002_s3 TABLESPACE order_sub3,

 SUBPARTITION orders_2002_s4 TABLESPACE order_sub4));

Interestingly, when composite partitioning is used, all of the data is physically stored in the
subpartitions, while the partitions, just like the table, become virtual.

10.4.4 List Partitioning

Introduced in Oracle9i, list partitioning allows a table to be partitioned by one or more distinct
values of a particular column. For example, a warehouse table containing sales summary data
by product, state, and month/year could be partitioned into geographic regions, as in:

CREATE TABLE sales_fact (

 state_cd VARCHAR2(3) NOT NULL,

 month_cd NUMBER(2) NOT NULL,

 year_cd NUMBER(4) NOT NULL,

 product_cd VARCHAR2(10) NOT NULL,

 tot_sales NUMBER(9,2) NOT NULL

)

PARTITION BY LIST (state_cd)

 (PARTITION sales_newengland VALUES ('CT','RI','MA','NH','ME','VT')

 TABLESPACE s1,

 PARTITION sales_northwest VALUES ('OR','WA','MT','ID','WY','AK')

 TABLESPACE s2,

 PARTITION sales_southwest VALUES ('NV','UT','AZ','NM','CO','HI')

 TABLESPACE s3,

 PARTITION sales_southeast VALUES ('FL','GA','AL','SC','NC','TN','WV')

 TABLESPACE s4,

 PARTITION sales_east VALUES ('PA','NY','NJ','MD','DE','VA','KY','OH')

 TABLESPACE s5,

 PARTITION sales_california VALUES ('CA')

 TABLESPACE s6,

 PARTITION sales_south VALUES ('TX','OK','LA','AR','MS')

 TABLESPACE s7,

 PARTITION sales_midwest VALUES ('ND','SD','NE','KS','MN','WI','IA',

 'IL','IN','MI','MO')

 TABLESPACE s8);

List partitioning is appropriate for low cardinality data in which the number of distinct values of
a column is small relative to the number of rows. Unlike range and hash partitioning, where the
partition key may contain several columns, list partitioning is limited to a single column.

10.4.5 Composite Range-List Partitioning

Available in the Oracle Database 10g release, range-list composite partitioning allows you to
partition your data by range, and then subpartition via a list. This might be an excellent
strategy for partitioning data in a sales warehouse so that you could partition your data both on
sales periods (i.e., years, quarters, months) and on sales regions (i.e., states, countries,
districts). The following example expands on the list partitioning example by adding yearly

partitions:

CREATE TABLE sales_fact (

 state_cd VARCHAR2(3) NOT NULL,

 month_cd NUMBER(2) NOT NULL,

 year_cd NUMBER(4) NOT NULL,

 product_cd VARCHAR2(10) NOT NULL,

 tot_sales NUMBER(9,2) NOT NULL

)

PARTITION BY RANGE (year_cd)

SUBPARTITION BY LIST (state_cd)

 (PARTITION sales_2000

 VALUES LESS THAN (2001)

 (SUBPARTITION sales_2000_newengland

 VALUES ('CT','RI','MA','NH','ME','VT') TABLESPACE s1,

 SUBPARTITION sales_2000_northwest

 VALUES ('OR','WA','MT','ID','WY','AK') TABLESPACE s2,

 SUBPARTITION sales_2000_southwest

 VALUES ('NV','UT','AZ','NM','CO','HI') TABLESPACE s3,

 SUBPARTITION sales_2000_southeast

 VALUES ('FL','GA','AL','SC','NC','TN','WV') TABLESPACE s4,

 SUBPARTITION sales_2000_east

 VALUES ('PA','NY','NJ','MD','DE','VA','KY','OH') TABLESPACE s5,

 SUBPARTITION sales_2000_california

 VALUES ('CA') TABLESPACE s6,

 SUBPARTITION sales_2000_south

 VALUES ('TX','OK','LA','AR','MS') TABLESPACE s7,

 SUBPARTITION sales_2000_midwest

 VALUES ('ND','SD','NE','KS','MN','WI','IA', 'IL','IN','MI','MO')

 TABLESPACE s8

),

 PARTITION sales_2001

 VALUES LESS THAN (2002)

 (SUBPARTITION sales_2001_newengland

 VALUES ('CT','RI','MA','NH','ME','VT') TABLESPACE s1,

 SUBPARTITION sales_2001_northwest

 VALUES ('OR','WA','MT','ID','WY','AK') TABLESPACE s2,

 SUBPARTITION sales_2001_southwest

 VALUES ('NV','UT','AZ','NM','CO','HI') TABLESPACE s3,

 SUBPARTITION sales_2001_southeast

 VALUES ('FL','GA','AL','SC','NC','TN','WV') TABLESPACE s4,

 SUBPARTITION sales_2001_east

 VALUES ('PA','NY','NJ','MD','DE','VA','KY','OH') TABLESPACE s5,

 SUBPARTITION sales_2001_california

 VALUES ('CA') TABLESPACE s6,

 SUBPARTITION sales_2001_south

 VALUES ('TX','OK','LA','AR','MS') TABLESPACE s7,

 SUBPARTITION sales_2001_midwest

 VALUES ('ND','SD','NE','KS','MN','WI','IA', 'IL','IN','MI','MO')

 TABLESPACE s8

),

 PARTITION sales_2002

 VALUES LESS THAN (2003)

 (SUBPARTITION sales_2002_newengland

 VALUES ('CT','RI','MA','NH','ME','VT') TABLESPACE s1,

 SUBPARTITION sales_2002_northwest

 VALUES ('OR','WA','MT','ID','WY','AK') TABLESPACE s2,

 SUBPARTITION sales_2002_southwest

 VALUES ('NV','UT','AZ','NM','CO','HI') TABLESPACE s3,

 SUBPARTITION sales_2002_southeast

 VALUES ('FL','GA','AL','SC','NC','TN','WV') TABLESPACE s4,

 SUBPARTITION sales_2002_east

 VALUES ('PA','NY','NJ','MD','DE','VA','KY','OH') TABLESPACE s5,

 SUBPARTITION sales_2002_california

 VALUES ('CA') TABLESPACE s6,

 SUBPARTITION sales_2002_south

 VALUES ('TX','OK','LA','AR','MS') TABLESPACE s7,

 SUBPARTITION sales_2002_midwest

 VALUES ('ND','SD','NE','KS','MN','WI','IA', 'IL','IN','MI','MO')

 TABLESPACE s8

));

Rather than specifying the same list information over and over, Oracle Database 10g now allows
the use of subpartition templates so that the subpartitioning scheme can be specified just once:

CREATE TABLE sales_fact (

 state_cd VARCHAR2(3) NOT NULL,

 month_cd NUMBER(2) NOT NULL,

 year_cd NUMBER(4) NOT NULL,

 product_cd VARCHAR2(10) NOT NULL,

 tot_sales NUMBER(9,2) NOT NULL

)

PARTITION BY RANGE (year_cd)

SUBPARTITION BY LIST (state_cd)

SUBPARTITION TEMPLATE (

 SUBPARTITION newengland

 VALUES ('CT','RI','MA','NH','ME','VT') TABLESPACE s1,

 SUBPARTITION northwest

 VALUES ('OR','WA','MT','ID','WY','AK') TABLESPACE s2,

 SUBPARTITION southwest

 VALUES ('NV','UT','AZ','NM','CO','HI') TABLESPACE s3,

 SUBPARTITION southeast

 VALUES ('FL','GA','AL','SC','NC','TN','WV') TABLESPACE s4,

 SUBPARTITION east

 VALUES ('PA','NY','NJ','MD','DE','VA','KY','OH') TABLESPACE s5,

 SUBPARTITION california

 VALUES ('CA') TABLESPACE s6,

 SUBPARTITION south

 VALUES ('TX','OK','LA','AR','MS') TABLESPACE s7,

 SUBPARTITION midwest

 VALUES ('ND','SD','NE','KS','MN','WI','IA', 'IL','IN','MI','MO')

 TABLESPACE s8

)

 (PARTITION sales_2000

 VALUES LESS THAN (2001),

 PARTITION sales_2001

 VALUES LESS THAN (2002),

 PARTITION sales_2002

 VALUES LESS THAN (2003)

);

 < Day Day Up >

 < Day Day Up >

10.5 Specifying Partitions

When you are writing SQL against partitioned tables, you have the option to treat the partitions
as single, virtual tables, or to specify partition names within your SQL statements. If you write
DML against a virtual table, the Oracle optimizer determines the partition or partitions that
need to be involved. For an INSERT statement, the optimizer uses the values provided for the
partition key to determine where to put each row. For UPDATE, DELETE, and SELECT
statements, the optimizer uses the conditions from the WHERE clause along with information on
local and global indexes to determine the partition or partitions that need to be searched.

If you know that your DML statement will utilize a single partition, and you know the name of
the partition, you can use the PARTITION clause to tell the optimizer which partition to use. For
example, if you want to summarize all orders for the year 2000, and you know that the
cust_order table is range-partitioned by year, you could issue the following query:

SELECT COUNT(*) tot_orders, SUM(sale_price) tot_sales

FROM cust_order PARTITION (orders_2000)

WHERE cancelled_dt IS NULL;

This query's WHERE clause doesn't specify a date range, even though the table contains data
spanning multiple years. Because you specified the orders_2000 partition, you know that the

query will only summarize orders from 2000, so there is no need to check each order's date.

If your table is composite-partitioned, you can use the SUBPARTITION clause to focus on a
single subpartition of the table. For example, the following statement deletes all rows from the
orders_2000_s1 subpartition of the range-hash composite-partitioned version of the
cust_order table:

DELETE FROM cust_order SUBPARTITION (orders_2000_s1);

You can also use the PARTITION clause to delete the entire set of subpartitions that fall within a
given partition:

DELETE FROM cust_order PARTITION (orders_2000);

This statement would delete all rows from the orders_2000_s1, orders_2000_s2,
orders_2000_s3, and orders_2000_s4 subpartitions of the cust_order table.

Here are a few additional things to consider when working with partitioned tables:

If the optimizer determines that two or more partitions are needed to satisfy the WHERE
clause of a SELECT, UPDATE, or DELETE statement, the table and/or index partitions may
be scanned in parallel. Therefore, depending on the system resources available to Oracle,
scanning every partition of a partitioned table could be much faster than scanning an
entire unpartitioned table.

Because hash partitioning spreads data randomly across the partitions,[1] we don't believe
you would ever want to use the PARTITION clause for hash-partitioned tables or the
SUBPARTITON clause for range-hash partitioned tables, since you don't know what data
you are working on. The only reasonable scenario that comes to mind might be when you
want to modify every row in the table, but you don't have enough rollback available to
modify every row in a single transaction. In this case, you can perform an UPDATE or
DELETE on each partition or subpartition and issue a COMMIT after each statement
completes.

[1] It isn't actually random, but it will seem that way to you, since you don't have access to the hash
function.

Partitions can be merged, split, or dropped at any time by the DBA. Therefore, use caution
when explicitly naming partitions in your DML statements. Otherwise, you may find your
statements failing, or worse, your statements might work on the wrong set of data
because partitions have been merged or split without your knowledge. You may want to
check with your DBA to determine her policy concerning naming partitions in your DML
statements.

If you need to access a single partition or subpartition but don't like having partition names
sprinkled throughout your code, consider creating views to hide the partition names, as in the
following:

CREATE VIEW cust_order_2000 AS

SELECT *

FROM cust_order PARTITION (orders_2000);

You can then issue your SQL statements against such views:

SELECT order_nbr, cust_nbr, sale_price, order_dt

FROM cust_order_2000

WHERE quantity > 100;

 < Day Day Up >

 < Day Day Up >

10.6 Partition Pruning

Even when you don't name a specific partition in a SQL statement, the fact that a table is
partitioned might still influence the manner in which the statement accesses the table. When a
SQL statement accesses one or more partitioned tables, the Oracle optimizer attempts to use
the information in the WHERE clause to eliminate some of the partitions from consideration
during statement execution. This process, called partition pruning, speeds statement execution
by ignoring any partitions that cannot satisfy the statement's WHERE clause. To do so, the
optimizer uses information from the table definition combined with information from the
statement's WHERE clause. For example, given the following table definition:

CREATE TABLE tab1 (

 col1 NUMBER(5) NOT NULL,

 col2 DATE NOT NULL,

 col3 VARCHAR2(10) NOT NULL)

PARTITION BY RANGE (col2)

 (PARTITION tab1_1998

 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY'))

 TABLESPACE t1,

 PARTITION tab1_1999

 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY'))

 TABLESPACE t1,

 PARTITION tab1_2000

 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY'))

 TABLESPACE t3,

 PARTITION tab1_2001

 VALUES LESS THAN (TO_DATE('01-JAN-2002','DD-MON-YYYY'))

 TABLESPACE t4);

and the following query:

SELECT col1, col2, col3

FROM tab1

WHERE col2 > TO_DATE('01-OCT-2000','DD-MON-YYYY');

the optimizer would eliminate partitions tab1_1998 and tab1_1999 from consideration, since
neither partition could contain rows with a value for col2 greater than October 1, 2000.

Partition pruning is sometimes referred to as partition elimination.

For the optimizer to make these types of decisions, the WHERE clause must reference at least
one column from the set of columns that comprise the partition key. Although this might seem
fairly straightforward, not all queries against a partitioned table naturally include the partition
key. If a unique index exists on the col1 column of the tab1 table from the previous example,

for instance, the following query would generally offer the most efficient access:

SELECT col1, col2, col3

FROM tab1

WHERE col1 = 1578;

If the index on col1 had been defined as a local index, however, Oracle would need to visit each

partition's local index to find the one that holds the value 1578. If you also have information
about the partition key (col2 in this case), you might want to consider including it in the query

so that the optimizer can eliminate partitions, as in the following:

SELECT col1, col2, col3

FROM tab1

WHERE col1 = 1578

 AND col2 > TO_DATE('01-JAN-2001','DD-MON-YYYY');

With the additional condition, the optimizer can now eliminate the tab1_1998, tab1_1999, and
tab1_2000 partitions from consideration. Oracle will now search a single unique index on the
tab1_2001 partition instead of searching a unique index on each of the four table partitions. Of

course, you would need to know that data pertaining to the value 1578 also had a value for
col2 greater then January 1, 2001. If you can reliably provide additional information regarding

the partition keys, than you should do so; otherwise, you'll just have to let the optimizer do its
best. Running EXPLAIN PLAN on your DML statements against partitioned tables will allow you
to see which partitions the optimizer decided to utilize.

When checking the results of EXPLAIN PLAN, there are a couple of partition specific columns
that you should add to your query against plan_table to see which partitions are being
considered by the optimizer. To demonstrate, we'll explain the following query against tab1:

EXPLAIN PLAN

SET STATEMENT_ID = 'qry1' FOR

SELECT col1, col2, col3

FROM tab1

WHERE col2 BETWEEN TO_DATE('01-JUL-1999','DD-MON-YYYY')

 AND TO_DATE('01-JUL-2000','DD-MON-YYYY');

When querying the plan_table table, you should include the partition_start and
partition_end columns whenever the operation field starts with 'PARTITION':

SELECT lpad(' ',2 * level) || operation || ' ' ||

 options || ' ' || object_name ||

 DECODE(SUBSTR(operation, 1, 9), 'PARTITION',

 ' FROM ' || partition_start ||

 ' TO ' || partition_stop, ' ') "exec plan"

FROM plan_table

CONNECT BY PRIOR id = parent_id

START WITH id = 0 AND statement_id = 'qry1';

exec plan

--

 SELECT STATEMENT

 PARTITION RANGE ITERATOR FROM 2 TO 3

 TABLE ACCESS FULL TAB1

The value of PARTITION RANGE for the operation column along with the value of ITERATOR for
the options column indicates that more than one partition will be involved in the execution
plan.[2] The values of the partition_start and partition_end columns (2 and 3,

respectively) indicate that the optimizer has decided to prune partitions 1 and 4, which
correlate to the tab1_1998 and tab1_2001 partitions.[3] Given that the WHERE clause specifies

a date range of July 1, 1999 to July 1, 2000, the optimizer has correctly pruned all partitions
that cannot contribute to the result set.

[2] If the optimizer had pruned all but one partition, the options column would contain the value 'SINGLE'. If

no partitions were pruned, the options column would contain the value 'ALL'.

[3] The number shown in the partition_start and partition_end columns correlates to the

partition_position column in the user_tab_partitions table, so you can query this table to

identify the names of the partitions that are included in the execution plan.

 < Day Day Up >

 < Day Day Up >

Chapter 11. PL/SQL
There are many fine books on the market that cover the PL/SQL language in great detail.[1]

Because this is a book about Oracle SQL, the focus of this chapter is the use of PL/SQL within
SQL statements as well as the use of SQL within PL/SQL programs.

[1] For example, Oracle PL/SQL Programming by Steven Feuerstein (O'Reilly).

 < Day Day Up >

 < Day Day Up >

11.1 What Is PL/SQL?

PL/SQL is a procedural programming language from Oracle that combines the following
elements:

Logical constructs such as IF-THEN-ELSE and WHILE

SQL DML statements, built-in functions, and operators

Transaction control statements such as COMMIT and ROLLBACK

Cursor control statements

Object and collection manipulation statements

Despite its humble origins as a scripting language in Version 6.0, PL/SQL became an integral
part of the Oracle server with release 7.0. Because release 7.0 included the ability to compile
and store PL/SQL programs within the server, Oracle began using the language to provide
server functionality and to assist in database installation and configuration. With the 7.1 release
of the server, Oracle added a new feature of particular use to SQL programmers: the ability to
call PL/SQL stored functions from SQL statements (more on this later).

Along with the array of new features made available with each release of PL/SQL, Oracle began
supplying prefabricated sets of PL/SQL functionality to allow programmers to tackle more
sophisticated programming tasks and to help integrate with various Oracle product offerings.
These collections of stored procedures and functions, known as Oracle Supplied Packages, allow
you to (among other things):

Interface with and administer Oracle's Advanced Queueing feature

Schedule database tasks for periodic execution

Manipulate Oracle large objects (LOBs)

Read from and write to external files

Interface with Oracle's Advanced Replication features

Issue dynamic SQL statements

Generate and parse XML files

Issue LDAP commands

The ever-expanding feature set of the PL/SQL language combined with the wide array of
supplied packages has yielded a powerful database programming environment. Whether you
are generating reports, writing data loading scripts, or writing custom applications, there's
probably a place for PL/SQL in your project.

 < Day Day Up >

 < Day Day Up >

11.2 Procedures, Functions, and Packages

Although PL/SQL can still be used to write scripts, also known as anonymous blocks, the focus
of this chapter is PL/SQL routines stored in the Oracle Database server. PL/SQL routines stored
in the database may be one of two types: stored procedures or stored functions.[2] Stored
functions and procedures are essentially identical except for the following:

[2] Database triggers are another type of stored PL/SQL, but they are outside the scope of this discussion.

Stored functions have a return type, whereas procedures do not.

Because stored functions return a value, they can be used in expressions, whereas
procedures cannot.

Stored functions and procedures may be compiled individually, or they may be grouped
together into packages. Along with being a convenient way to group related functionality
together, packages are important for the following reasons:

Packages are loaded into memory as a whole, increasing the likelihood that a procedure or
function will be resident in memory when called.

Packages can include private elements, allowing logic to be hidden from view.

Placing functions and procedures inside packages eliminates the need to recompile all
functions and procedures that reference a newly recompiled function/procedure.

Function and procedure names may be overloaded within packages, whereas standalone
functions and procedures cannot be overloaded.

Functions and procedures inside packages can be checked for side effects at compile time
rather than at execution time.

If these reasons haven't convinced you to place your stored functions and procedures inside
packages, here's a bit of advice we can offer after working with PL/SQL since Version 7.0 of the
Oracle Database server: you will never be sorry that you bundled your PL/SQL code into
packages, but you will eventually be sorry if you don't.

Packages consist of two distinct parts: a package specification, which defines the signatures of
the package's public procedures and functions, and a package body, which contains the code for
the public procedures and functions and may also contain code for any private functions and
procedures not included in the package specification. To give you an idea of what a package
looks like, here is a simple example of a package specification:

CREATE OR REPLACE PACKAGE my_pkg AS

 PROCEDURE my_proc(arg1 IN VARCHAR2);

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2;

END my_pkg;

and its matching package body:

CREATE OR REPLACE PACKAGE BODY my_pkg AS

 FUNCTION my_private_func(arg1 IN NUMBER) RETURN VARCHAR2 IS

 return_val VARCHAR2(20);

 BEGIN

 SELECT col1 INTO return_val

 FROM tab2

 WHERE col2 = arg1;

 RETURN return_val;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN 'NOT FOUND';

 END my_private_func;

 PROCEDURE my_proc(arg1 IN VARCHAR2) IS

 BEGIN

 UPDATE tab1 SET col1 = col1 + 1

 WHERE col2 = arg1;

 END my_proc;

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2 IS

 BEGIN

 RETURN my_private_func(arg1);

 END my_func;

END my_pkg;

As you can see, the my_pkg package includes one public procedure and one public function. The

package specification includes the parameter names and types of the procedure and function,
along with the return type of the function, but does not include any implementation code. The
package body includes the implementation logic for the public function and procedure, and it
also includes a private function (my_private_func) that is only accessible from inside the

package body.

 < Day Day Up >

 < Day Day Up >

11.3 Calling Stored Functions from Queries

As mentioned earlier, stored functions may be called from within SQL statements. Since stored
functions can in turn make calls to stored procedures, it can also be said that stored procedures
may be called, albeit indirectly, from within SQL statements. Since stored functions may be
used in expressions, they may be included wherever expressions are allowed in a query,
including:

The SELECT clause

The WHERE clause

The GROUP BY and HAVING clauses

The ORDER BY clause

The START WITH/CONNECT BY clauses (for hierarchical queries)

The FROM clause (indirectly by using inline views or TABLE statements)

One of the most common uses of stored functions is to isolate commonly-used functionality to
facilitate code reuse and simplify maintenance. For example, imagine that you are working with
a large team to build a custom N-tier application. To simplify integration efforts between the
various layers, it has been decided that all dates will be passed back and forth as the number of
milliseconds since January 1, 1970. You could include the conversion logic in all of your queries,
as in:

SELECT co.order_nbr, co.cust_nbr, co.sale_price,

 ROUND((co.order_dt - TO_DATE('01011970','MMDDYYYY')) * 86400 * 1000)

FROM cust_order co

WHERE ship_dt = TRUNC(SYSDATE);

However, this would become somewhat tedious and prove problematic should you wish to
modify your logic in the future. Instead, build a utility package that includes functions for
translating between Oracle's internal date format and the desired format:

CREATE OR REPLACE PACKAGE BODY pkg_util AS

 FUNCTION translate_date(dt IN DATE) RETURN NUMBER IS

 BEGIN

 RETURN ROUND((dt - TO_DATE('01011970','MMDDYYYY')) * 86400 * 1000);

 END translate_date;

 FUNCTION translate_date(dt IN NUMBER) RETURN DATE IS

 BEGIN

 RETURN TO_DATE('01011970','MMDDYYYY') + (dt / (86400 * 1000));

 END translate_date;

END pkg_util;

If you think you're seeing double, don't worry; the package contains two identically-named
functions, one that requires a DATE parameter and returns a NUMBER, and another that
requires a NUMBER parameter and returns a DATE. This strategy, called overloading, is only
possible when your functions are contained in a package.

Your development team can now use these functions whenever they need to convert date
formats, as in:

SELECT co.order_nbr, co.cust_nbr, co.sale_price,

 pkg_util.translate_date(co.order_dt) utc_order_dt

FROM cust_order co

WHERE co.ship_dt = TRUNC(SYSDATE);

Another common use of stored functions is to simplify and hide complex IF-THEN-ELSE logic
from your SQL statements. Suppose you have to generate a report detailing all customer orders
for the past month. You want to sort the orders using the ship_dt column if an order has been
shipped, the expected_ship_dt column if a ship date has been assigned and is not in the past,
the current day if the expected_ship_dt is in the past, or the order_dt column if the order

hasn't been assigned a ship date. You could utilize a CASE statement in the ORDER BY clause:

SELECT co.order_nbr, co.cust_nbr, co.sale_price

FROM cust_order co

WHERE co.order_dt > TRUNC(SYSDATE, 'MONTH')

 AND co.cancelled_dt IS NULL

ORDER BY

 CASE

 WHEN co.ship_dt IS NOT NULL THEN co.ship_dt

 WHEN co.expected_ship_dt IS NOT NULL

 AND co.expected_ship_dt > SYSDATE

 THEN co.expected_ship_dt

 WHEN co.expected_ship_dt IS NOT NULL

 THEN GREATEST(SYSDATE, co.expected_ship_dt)

 ELSE co.order_dt

 END;

However, there are two problems with this approach:

The resulting ORDER BY clause is fairly complex.

You may wish to use this logic elsewhere, and duplicating it will create maintenance
problems.

Instead, add a stored function to the pkg_util package that returns the appropriate date for a

given order:

FUNCTION get_best_order_date(ord_dt IN DATE, exp_ship_dt IN DATE,

 ship_dt IN DATE) RETURN DATE IS

BEGIN

 IF ship_dt IS NOT NULL THEN

 RETURN ship_dt;

 ELSIF exp_ship_dt IS NOT NULL AND exp_ship_dt > SYSDATE THEN

 RETURN exp_ship_dt;

 ELSIF exp_ship_dt IS NOT NULL THEN

 RETURN SYSDATE;

 ELSE

 RETURN ord_dt;

 END IF;

END get_best_order_date;

You may then call this function from both the SELECT and ORDER BY clauses:

SELECT co.order_nbr, co.cust_nbr, co.sale_price,

 pkg_util.get_best_order_date(co.order_dt, co.expected_ship_dt,

 co.ship_dt) best_date

FROM cust_order co

WHERE co.order_dt > TRUNC(SYSDATE, 'MONTH')

 AND co.cancelled_dt IS NULL

ORDER BY pkg_util.get_best_order_date(co.order_dt, co.expected_ship_dt,

 co.ship_dt);

If you are bothered by the fact that the stored function is called twice per row with the same
parameters, you can always retrieve the data within an inline view and sort the results
afterward, as in:

SELECT orders.order_nbr, orders.cust_nbr,

 orders.sale_price, orders.best_date

FROM

 (SELECT co.order_nbr order_nbr, co.cust_nbr cust_nbr,

 co.sale_price sale_price,

 pkg_util.get_best_order_date(co.order_dt, co.expected_ship_dt,

 co.ship_dt) best_date

 FROM cust_order co

 WHERE co.order_dt > TRUNC(SYSDATE, 'MONTH')

 AND co.cancelled_dt IS NULL) orders

ORDER BY orders.best_date;

11.3.1 Stored Functions and Views

Since a view is nothing more than a stored query and stored functions can be called from the
SELECT clause of a query, columns of a view can map to stored function calls. This is an
excellent way to shield your user community from complexity, and it has another interesting
benefit as well. Consider the following view definition, which includes calls to several different
stored functions:

CREATE OR REPLACE VIEW vw_example

 (col1, col2, col3, col4, col5, col6, col7, col8)

AS SELECT t1.col1,

 t1.col2,

 t2.col3,

 t2.col4,

 pkg_example.func1(t1.col1, t2.col3),

 pkg_example.func2(t1.col2, t2.col4),

 pkg_example.func3(t1.col1, t2.col3),

 pkg_example.func4(t1.col2, t2.col4)

FROM tab1 t1 INNER JOIN tab2 t2

 ON t1.col1 = t2.col3;

Whereas the first four columns of the view map to columns of the tab1 and tab2 tables, values
for the remaining columns are generated by calling various functions in the pkg_example

package. If one of your users executes the following query:

SELECT col2, col4, col7

FROM vw_example

WHERE col1 = 1001;

Only one stored function (pkg_example.func3) is actually executed even though the view

contains four columns that map to stored function calls. This is because when a query is
executed against a view, the Oracle server constructs a new query by combining the original
query and the view definition. In this case, the query that is actually executed looks like:

SELECT t1.col2,

 t2.col4,

 pkg_example.func3(t1.col1, t2.col3)

FROM tab1 t1 INNER JOIN tab2 t2

 ON t1.col1 = t2.col3

WHERE t1.col1 = 1001;

Therefore, your view could contain dozens of stored function calls, but only those that are
explicitly referenced by queries will be executed.[3]

[3] This is one reason why you should never use SELECT * when working with a view. Always explicitly name
the columns that you need so that the server doesn't waste time generating data that you never reference.

11.3.2 Avoiding Table Joins

Imagine that you have deployed a set of views for your users to generate reports and ad-hoc
queries against, and one of your users asks that a new column be added to one of the views.
The column is from a table not yet included in the FROM clause, and the column is only needed
for a single report issued once a month. You could add the table to the FROM clause, add the
column to the SELECT clause, and add the join conditions to the ON clause. However, every

query issued against the view would include the new table, even though most queries don't
reference the new column.

An alternative strategy is to write a stored function that queries the new table and returns the
desired column. The stored function can then be added to the SELECT clause without the need
to add the new table to the FROM clause. To illustrate, let's expand on the previous simple
example. If the desired column is col6 in the tab3 table, you could add a new function to the
pkg_example package such as:

FUNCTION func5(param1 IN NUMBER) RETURN VARCHAR2 IS

 ret_val VARCHAR2(20);

BEGIN

 SELECT col6 INTO ret_val

 FROM tab3

 WHERE col5 = param1;

 RETURN ret_val;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN null;

END func5;

You can now add a column to the view that maps to the new function, as in:

CREATE OR REPLACE VIEW vw_example

 (col1, col2, col3, col4, col5, col6, col7, col8, col9)

AS SELECT t1.col1,

 t1.col2,

 t2.col3,

 t2.col4,

 pkg_example.func1(t1.col1, t2.col3),

 pkg_example.func2(t1.col2, t2.col4),

 pkg_example.func3(t1.col1, t2.col3),

 pkg_example.func4(t1.col2, t2.col4),

 pkg_example.func5(t2.col3)

FROM tab1 t1 INNER JOIN tab2 t2

 ON t1.col1 = t2.col3;

Thus, you have provided your users access to column col6 of the tab3 table without adding the
tab3 table to the view's FROM clause. Users who don't reference the new col9 column of the
view will experience no changes to the performance of their queries against vw_example.

Even though the column was originally targeted for a single report, don't be surprised if other
users decide to include the new column in their queries. As the column utilization increases, it
may be advantageous to abandon the stored function strategy and include the tab3 table in the

FROM clause. Since a view was employed, however, you would be able to make this change
without the need for any of your users to modify their queries.

11.3.3 Deterministic Functions

Earlier in this section, we created a package containing two functions to be used for translating
between a date and the number of milliseconds since January 1, 1970. Because these functions
do not depend on data stored in the database or in package variables, they will always return
the same result for any given input parameter. Any function having this property can be marked
as DETERMINISTIC in the function declaration, as in:

CREATE OR REPLACE PACKAGE BODY pkg_util AS

 FUNCTION translate_date(dt IN DATE) RETURN NUMBER DETERMINISTIC;

 FUNCTION translate_date(dt IN NUMBER) RETURN DATE DETERMINISTIC;

END pkg_util;

Marking your functions as DETERMINISTIC allows the Oracle server to perform certain
optimizations, such as storing a function's parameters and results in memory so that
subsequent calls to the same function can be handled without the need to call the function
again.

 < Day Day Up >

 < Day Day Up >

11.4 Restrictions on Calling PL/SQL from SQL

Although calling stored functions from SQL is a powerful feature, it is important to understand
how doing so might have unintended consequences. For example, imagine that one of your co-
workers has written a stored function that, given a part number, returns the number of times
that part is included in all open orders. The function is contained in a utilities package, such as
the following:

CREATE OR REPLACE PACKAGE pkg_util AS

 FUNCTION get_part_order_qty(pno IN VARCHAR2) RETURN NUMBER;

END pkg_util;

You have been tasked with generating a weekly inventory report, and you would like to make
use of the function in one of your queries, as in:

SELECT p.part_nbr, p.name, s.name, p.inventory_qty,

 pkg_util.get_part_order_qty(p.part_nbr) open_order_qty

FROM part p INNER JOIN supplier s

 ON p.supplier_id = s.supplier_id

ORDER BY s.name, p.part_nbr;

When you run the query, however, you are surprised to see the following error:

ORA-14551: cannot perform a DML operation inside a query

Upon checking the package body, you find that the get_part_order_qty function, along with

calculating the number of times a part is included in all open orders, generates a request to
restock the part by inserting a record into the part_order table if the calculated value exceeds

the number in inventory. Had Oracle allowed your statement to be executed, your query would
have resulted in changes to the database without your knowledge or consent.

11.4.1 Purity Level

To determine whether a stored function might have unintended consequences when called from
a SQL statement, Oracle assigns a purity level to the function that answers the following four
questions:

Does the function read from database tables?1.

2.

3.

1.

Does the function reference any global package variables?2.

Does the function write to any database tables?3.

Does the function modify any global package variables?4.

For each negative response to these questions, a designation is added to the purity level, as
shown in Table 11-1.

Table 11-1. Purity level designations

Question # Designation Description

1 RNDS Reads no database state

2 RNPS Reads no package state

3 WNDS Writes no database state

4 WNPS Writes no package state

Therefore, a function with a purity level of {WNPS, WNDS} is guaranteed not to write to the
database or modify package variables, but it may reference package variables and/or read from
database tables. For a function to be called from a SQL statement, its purity level must at a
minimum include the WNDS designation.

When using packaged functions in Oracle versions prior to release 8.1, it was required that the
purity level be specified prior to calling a function from a SQL statement. This is accomplished
by adding a pragma, or compiler directive, to the package specification. The
RESTRICT_REFERENCES pragma follows the function declaration in the package specification,
as demonstrated here:

CREATE OR REPLACE PACKAGE my_pkg AS

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2;

 PRAGMA RESTRICT_REFERENCES(my_func, RNPS, WNPS, WNDS);

END my_pkg;

When the package body is compiled, the code is checked against the designations listed in the
RESTRICT_REFERENCES pragma. If the code does not meet the purity level asserted in the
pragma, compilation fails with the following error:

PLS-00452: Subprogram 'MY_FUNC' violates its associated pragma

Therefore, you tell the compiler what your function will and won't do via the
RESTRICT_REFERENCES pragma, and the compiler checks to see if you are telling it the truth.

Beginning with Oracle8i, you are no longer required to specify the purity level of functions in the
package specification. All functions called from queries, whether stand-alone or within
packages, are checked at runtime to ensure that there are no side effects. Nevertheless, you

may want to consider using the RESTRICT_REFERENCES pragma so that you avoid any
surprises later on.

11.4.2 Trust Me...

One of the reasons Oracle has relaxed the requirement that the purity level be asserted at
compile time is that PL/SQL can make calls to functions written in C and Java, which have no
mechanisms similar to PL/SQL's PRAGMA for asserting purity. To allow functions written in
different languages to call each other, Oracle introduced the TRUST keyword in Oracle8i. Adding
TRUST to the RESTRICT_REFERENCES pragma for a function causes Oracle to:

Treat the function as if it satisfies the pragma without actually checking the code.

Treat any functions or procedures called from the function that have the TRUST keyword
as if they satisfy the pragma as well.

Thus, a stored function whose RESTRICT_REFERENCES pragma includes WNDS and TRUST
could make calls to other PL/SQL functions that do not specify RESTRICT_REFERENCES
pragmas and/or external C and Java functions and still be callable from SQL statements. In the
case of external C or Java calls, you will need to include the TRUST designation in your
function's RESTRICT_REFERENCES pragma if you want to call the function from SQL, since the
C or Java source code is not available to the server for inspection.

To use TRUST, simply append it to the end of the purity designation list, as in:

CREATE OR REPLACE PACKAGE my_pkg AS

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2;

 PRAGMA RESTRICT_REFERENCES(my_func, RNPS, WNPS, WNDS, TRUST);

END my_pkg;

11.4.3 Other Restrictions

In addition to the WNDS requirement, Oracle checks that each function invoked from a SQL
statement abides by the following rules:

The function can't end the current transaction using COMMIT or ROLLBACK.

The function can't alter a transaction by creating savepoints or rolling back to a previously
defined savepoint.

The function can't issue an ALTER SYSTEM or ALTER SESSION statement.

All parameter types, including the return type, must be standard SQL types such as
VARCHAR2, NUMBER, and DATE. PL/SQL types such as BOOLEAN and RECORD are not
allowed.

All parameters must be IN parameters. OUT and IN OUT parameters are not allowed.

The first three restrictions are designed to protect against changes that could alter the

operational environment of the parent query. The fourth and fifth restrictions ensure that the
data being returned from the PL/SQL function can be handled by the SQL statement.

 < Day Day Up >

 < Day Day Up >

11.5 Stored Functions in DML Statements

Stored functions may also be called from INSERT, UPDATE, and DELETE statements. Whereas
most of the restrictions outlined earlier apply equally to stored functions called from DML
statements, there is one major difference: since the parent DML statement is changing the state
of the database, stored functions invoked from DML statements do not need to abide by the
WNDS restriction. However, such stored functions may not read or modify the same table as the
parent DML statement.

Like queries, DML statements may call stored functions where expressions are allowed,
including:

The VALUES clause of an INSERT statement

The SET clause of an UPDATE statement

The WHERE clause of an INSERT, UPDATE, or DELETE statement

Any subqueries called from a DML statement may also call stored functions as well under the
same set of restrictions as the parent DML statement.

Often, sets of complementary stored functions are called from both queries and DML
statements. For example, you saw earlier how the pkg_util.translate_date function could be

called from a query to translate from the Oracle date format stored in the database to the
format needed by a Java client. Similarly, the overloaded pkg_util.translate_date function

may be used within an update statement to perform the reverse translation, as in:

UPDATE cust_order

SET expected_ship_dt = pkg_util.translate_date(:1)

WHERE order_nbr = :2;

where :1 and :2 are placeholders for the UTC timedate and order number passed in by the Java

client.

Stored functions may also be used in the WHERE clause in place of correlated subqueries, both
to simplify the DML statement and to facilitate code reuse. For example, suppose you have been
asked to push the expected ship date by five days for any order containing part number F34-
17802. You could issue an UPDATE statement against the cust_order table using a correlated

subquery, as in:

UPDATE cust_order co

SET co.expected_ship_dt = NVL(co.expected_ship_dt, SYSDATE) + 5

WHERE co.cancelled_dt IS NULL and co.ship_dt IS NULL

 AND EXISTS (SELECT 1 FROM line_item li

 WHERE li.order_nbr = co.order_nbr

 AND li.part_nbr = 'F34-17802');

After having written many subqueries against the line_item table, however, you feel it's time
to write a multipurpose function and add it to the pkg_util package:

FUNCTION get_part_count(ordno IN NUMBER,

 partno IN VARCHAR2 DEFAULT NULL, max_cnt IN NUMBER DEFAULT 9999)

 RETURN NUMBER IS

 tot_cnt NUMBER(5) := 0;

 li_part_nbr VARCHAR2(20);

 CURSOR cur_li(c_ordno IN NUMBER) IS

 SELECT part_nbr

 FROM line_item

 WHERE order_nbr = c_ordno;

BEGIN

 OPEN cur_li(ordno);

 WHILE tot_cnt < max_cnt LOOP

 FETCH cur_li INTO li_part_nbr;

 EXIT WHEN cur_li%NOTFOUND;

 IF partno IS NULL OR

 (partno IS NOT NULL AND partno = li_part_nbr) THEN

 tot_cnt := tot_cnt + 1;

 END IF;

 END LOOP;

 CLOSE cur_li;

 RETURN tot_cnt;

END get_part_count;

The function may be used for multiple purposes, including:

To count the number of line items in a given order

To count the number of line items in a given order containing a given part

To determine whether the given order has at least X occurrences of a given part

The UPDATE statement may now use the function to locate open orders that have at least one
occurrence of part F34-17802:

UPDATE cust_order co

SET co.expected_ship_dt = NVL(co.expected_ship_dt, SYSDATE) + 5

WHERE co.cancelled_dt IS NULL and co.ship_dt IS NULL

 AND 1 = pkg_util.get_part_count(co.order_nbr, 'F34-17802', 1);

 < Day Day Up >

 < Day Day Up >

11.6 The SQL Inside Your PL/SQL

Now that we've explored calling PL/SQL from SQL, let's turn the tables and explore the use of
SQL inside your PL/SQL code. SQL is great at manipulating large sets of data, but there are
situations where you need to work with data at the row level. PL/SQL, with its looping and
cursor control capabilities, allows the flexibility to work at the set level using SQL or at the row
level using cursors. However, many PL/SQL programmers forego the power of SQL and do
everything at the row level, even when it is unnecessary and time-consuming to do so.

As an analogy, imagine that you are working at a warehouse, and a large shipment of parts
arrives on the loading dock. Your job is to separate the shipment by part type and distribute the
pieces to different areas of the warehouse. To make your job easier, the warehouse owner has
procured the best forklift money can buy. There are two possible strategies to employ:

Pick up one box at a time, determine the type, and drive it to the appropriate destination.

Spend some time analyzing the situation, determine that every box on a pallet is of the
same type, and drive entire pallets to the appropriate destination.

Although this analogy might be overly simplistic, it does serve to illustrate the difference
between set operations and row operations. Allowing the Oracle server to manipulate large sets
in a single operation can often yield a performance improvement of several orders of magnitude
over manipulating one row at a time, especially on systems with multiple CPUs.

When a procedural language is used for database access (whether it is PL/SQL, C with OCI calls,
or Java using JDBC), there is a tendency to employ the first strategy. Perhaps programmers are
accustomed to coding at a low level of granularity when using a procedural language and this
spills over into their data access logic. This situation is especially prevalent in systems that need
to process and load large amounts of data from external files, such as data warehouse load
utilities.

Imagine that you are charged with building an infrastructure to accept files from multiple OLTP
systems, perform various data cleaning operations, and aggregate the data into a data
warehouse. Using PL/SQL (or C, Java, C++, Cobol, etc.), you could build functionality that:

Opens a given file.1.

Reads a line, verifies/cleans the data, and updates the appropriate row of the appropriate
fact table in the data warehouse.

2.

Repeats #2 until the file is exhausted.3.

Closes the file.4.

Although this approach might work for small files, it is not uncommon for large warehouses to
receive feeds containing hundreds of thousands or millions of items. Even if your code is
extremely efficient, processing a million-line file could take several hours.

Here's an alternate strategy that employs the power of the Oracle server to make quick work of
large data feeds:

1.

Create a staging table for each unique data feed file format.1.

At the start of the load process, truncate the staging tables.2.

Use SQL*Loader with the direct path option to quickly load the data file into the
appropriate staging table.

3.

Update all rows of the staging table to clean, verify, and transform data, marking rows as
invalid if they fail verification. Perform the operation in parallel if possible.

4.

Update the appropriate fact table using a subquery against the staging table. Again,
perform in parallel if possible.

5.

For this strategy to succeed, you need to have adequate disk space and sufficiently large
rollback and temporary tablespaces. With adequate resources and properly constructed SQL
statements, however, this strategy can yield a 10X improvement over the previous strategy.

So what role should PL/SQL play in such a scenario? In this case, PL/SQL would be an excellent
vehicle for executing steps 4 and 5 of the previous list. Although the stored procedures might
each contain only a single update statement, the SQL is likely to be complex and may contain
optimizer hints and other advanced features. Therefore, it would be advisable to isolate the SQL
from the rest of the application so that it may be independently monitored and tuned.

In general, when dealing with complex logic involving large data sets, it is advantageous to
think in terms of data sets rather than programming steps. In other words, ask yourself where
your data is, where it needs to move to, and what needs to happen to it during its journey
instead of thinking in terms of what needs to happen with each piece of data to satisfy the
business requirements. If you follow this strategy, you will find yourself writing substantial,
efficient SQL statements that employ PL/SQL where appropriate, rather than writing complex
PL/SQL routines that employ SQL when needed. In doing so, you will be providing the server
with the opportunity to split large workloads into multiple pieces that run in parallel, which can
greatly improve performance.

 < Day Day Up >

 < Day Day Up >

Chapter 12. Objects and Collections
Beginning with Version 8.0, Oracle has been adding object-oriented features to what had been a
purely relational database server. Object types and collections were introduced in Oracle8, and
both have been sufficiently refined in Oracle8i, Oracle9i Database, and Oracle Database 10g so
that they may now be considered fully-functional.[1] Oracle now considers its database engine
to be object-relational, in that a database may mix relational constructs such as tables and
constraints with object-oriented constructs such as object types, collections, and references.

[1] For example, in release 8.0, object types didn't support inheritance, and collections could not be nested
(i.e., an array of arrays), resulting in a fairly cool reception to Oracle's early attempts at object orientation.

 < Day Day Up >

 < Day Day Up >

12.1 Object Types

An object type is a user-defined data type that combines data and related methods to model
complex entities. In this regard, they are similar to class definitions in an object-oriented
language such as C++ or Java. However, unlike Java and C++, Oracle object types have a
built-in persistence mechanism, since a table can be defined to store an object type in the
database. Thus, Oracle object types can be directly manipulated via SQL.

The best way to define the syntax and features of an object type is with an example. The
following DDL statement creates an object type used to model an equity security such as a
common stock:

CREATE TYPE equity AS OBJECT (

 issuer_id NUMBER,

 ticker VARCHAR2(6),

 outstanding_shares NUMBER,

 last_close_price NUMBER(9,2),

MEMBER PROCEDURE

 apply_split(split_ratio in VARCHAR2)

)

NOT FINAL;

The equity object type has four attributes and a single member procedure. The NOT FINAL

declaration at the end of the type definition allows for subtypes to be defined in the future
(more on this later). The body of the apply_split procedure is defined within a CREATE TYPE
BODY statement. The following example illustrates how the apply_split member procedure

might be defined:

CREATE TYPE BODY equity AS

 MEMBER PROCEDURE apply_split(split_ratio in VARCHAR2) IS

 from_val NUMBER;

 to_val NUMBER;

 BEGIN

 /* parse the split ratio into its components */

 to_val := SUBSTR(split_ratio, 1, INSTR(split_ratio, ':') -- 1);

 from_val := SUBSTR(split_ratio, INSTR(split_ratio, ':') + 1);

 /* apply the split ratio to the outstanding shares */

 SELF.outstanding_shares :=

 (SELF.outstanding_shares * to_val) / from_val;

 /* apply the split ratio to the last closing price */

 SELF.last_close_price :=

 (SELF.last_close_price * from_val) / to_val;

 END apply_split;

END;

In this example, the SELF keyword is used to identify the current instance of the equity object
type. Although it is not required, we recommend using SELF in your code so that it is clear that
you are referencing or modifying the current instance's data. We will explore how to call
member functions and procedures a bit later in the chapter.

Instances of type equity are created using the default constructor, which has the same name

as the object type and expects one parameter per attribute of the object type. The following
PL/SQL block demonstrates how an instance of the equity object type can be created using the
default constructor:

DECLARE

 eq equity := NULL;

BEGIN

 eq := equity(198, 'ACMW', 1000000, 13.97);

END;

Object type constructors may also be called from within DML statements. The next example
queries the issuer table to find the issuer with the name 'ACME Wholesalers', and then uses
the retrieved issuer_id field to construct an instance of the equity type:

DECLARE

 eq equity := NULL;

BEGIN

 SELECT equity(i.issuer_id, 'ACMW', 1000000, 13.97)

 INTO eq

 FROM issuer i

 WHERE i.name = 'ACME Wholesalers';

END;

12.1.1 Subtyp es

Oracle9i introduced several notable features to the object-oriented toolset, including inheritance
(release 1) and user-defined constructors (release 2). The following type definition
demonstrates both of these features:

CREATE TYPE preferred_stock UNDER equity (

 last_dividend_date DATE,

 last_dividend_amount NUMBER(9,2),

 CONSTRUCTOR FUNCTION preferred_stock(last_div_dt DATE,

 last_div_amt NUMBER, eq equity) RETURN SELF AS RESULT

)

FINAL;

Because preferred stock is a special type of equity, you can create a subtype that includes all of
the attributes and methods of the equity type along with additional attributes to hold dividend

information. In this case, we have added two attributes to hold information about the last
dividend payment, along with a user-defined constructor for the preferred_stock type, which

is defined in the type body:

CREATE TYPE BODY preferred_stock AS

 CONSTRUCTOR FUNCTION preferred_stock(last_div_dt DATE,

 last_div_amt NUMBER, eq equity) RETURN SELF AS RESULT IS

 BEGIN

 SELF.last_dividend_date := last_div_dt;

 SELF.last_dividend_amount := last_div_amt;

 SELF.issuer_id := eq.issuer_id;

 SELF.ticker := eq.ticker;

 SELF.outstanding_shares := eq.outstanding_shares;

 SELF.last_close_price := eq.last_close_price;

 RETURN;

 END preferred_stock;

END;

For the constructor, we chose to pass in an instance of equity rather than pass in the four
equity attributes individually. The next example shows how to create an instance of
preferred_stock by creating an instance of equity and passing it into the user-defined

constructor:

DECLARE

 eq equity := NULL;

 ps preferred_stock := NULL;

BEGIN

 eq := equity(198, 'ACMW', 1000000, 13.97);

 ps := preferred_stock(SYSDATE, 0.1, eq);

END;

Because preferred_stock is a subtype of equity, an instance of preferred_stock is also an
instance of equity. The next example uses the IS OF function to demonstrate this:

SELECT equities.eq

FROM

 (SELECT equity(198, 'ACMW', 1000000, 13.97) eq FROM DUAL

 UNION ALL

 SELECT preferred_stock(SYSDATE, 0.1,

 equity(198, 'ACMW', 1000000, 13.97)) eq FROM DUAL

) equities

WHERE equities.eq IS OF (equity);

EQ(ISSUER_ID, TICKER, OUTSTANDING_SHARES, LAST_CLOSE_PRICE)

EQUITY(198, 'ACMW', 1000000, 13.97)

PREFERRED_STOCK(198, 'ACMW', 1000000, 13.97, '03-DEC-03', .1)

The equities inline view constructs an instance of equity and an instance of
preferred_stock, and the containing query returns those objects that are of type equity; as
you can see, both instances, one of equity and one of preferred_stock, are returned.
However, an instance of equity is not an instance of preferred_stock, as demonstrated in the

next example:

SELECT equities.eq

FROM

 (SELECT equity(198, 'ACMW', 1000000, 13.97) eq FROM DUAL UNION ALL

 SELECT preferred_stock(SYSDATE, 0.1,

 equity(198, 'ACMW', 1000000, 13.97)) eq FROM DUAL

) equities

WHERE equities.eq IS OF (preferred_stock);

EQ(ISSUER_ID, TICKER, OUTSTANDING_SHARES, LAST_CLOSE_PRICE)

PREFERRED_STOCK(198, 'ACMW', 1000000, 13.97, '03-DEC-03', .1)

In this case, the equity instance is not returned, since it is not of type preferred_stock. This

distinction will be important when we look at collections later in the chapter.

12.1.2 Object Attributes

So far, we have created several object types and generated several non-persistent (not stored
in a database) instances of those object types. If you want to store instances of your object
types in a database, you have two choices: create a column in a table to store instances of your
object type, or create a special type of table, called an object table, to store instances of your
object type. This section will explore how to generate object-based columns, while the following
section will explore object tables.

The following table definition shows how an equity object type may be used as an attribute of
the fund_holding table:

CREATE TABLE fund_holding (

 fund_id VARCHAR2(10) NOT NULL,

 security equity NOT NULL,

 num_shares NUMBER NOT NULL);

While the fund_id and num_shares columns are defined using standard built-in data types, the

security column is defined as type equity. When adding records to the table, you must utilize

the object type constructor, as illustrated by the following INSERT statement:

INSERT INTO fund_holding (fund_id, security, num_shares)

VALUES ('101A', equity(198, 'ACMW', 1000000, 13.97), 20000);

To see the attributes of the equity object, you must provide an alias for the table and reference

the alias, the name of the column containing the object type, and the object type's attribute.
The next query retrieves the fund_id, which is a column in the fund_holding table, and the
ticker, which is an attribute of the equity object within the fund_holding table:

SELECT fh.fund_id fund_id,

 fh.security.ticker ticker

FROM fund_holding fh;

FUND_ID TICKER

---------- ------

101A ACMW

Since preferred_stock is a subtype of equity, you can substitute an instance of
preferred_stock:

UPDATE fund_holding fh

SET fh.security = preferred_stock(SYSDATE, 0.1,

 equity(198, 'ACMW', 1000000, 13.97));

The ability to substitute a subtype for its parent type is turned on by
default. If you do not want this behavior, you can turn it off when creating
or altering your object table. For the fund_holding table, you would issue

the following statement:

ALTER TABLE fund_holding MODIFY COLUMN

 security NOT SUBSTITUTABLE AT ALL LEVELS;

However, as shown in the next example, you will not be able to query attributes of the
preferred_stock type explicitly, because the table definition specifies type equity:

SELECT fh.fund_id fund_id,

 fh.security.last_dividend_amount div_amt

FROM fund_holding fh;

ERROR at line 2:

ORA-00904: "FH"."SECURITY"."LAST_DIVIDEND_AMOUNT": invalid identifier

Even though you can substitute an instance of a subtype for an instance of a parent type, you
are limited to using the attributes and methods defined for the parent type. In the most recent
example, the SELECT statement "sees" a table of equity objects. That does not change just
because one of those objects happens to be a specific subtype of equity.

12.1.3 Object Tables

In addition to creating object type columns, you can also build an object table specifically for
holding instances of your object type. You create these tables by referencing the object type in
the CREATE TABLE statement using the OF keyword:

CREATE TABLE equities OF equity;

You can populate the equities table using the constructor for the equity object type, or you
may populate it from existing instances of the equity object type. For example, the next
statement populates the equities table using the security column of the fund_holding table,
which is defined as an equity type:

INSERT INTO equities

SELECT fh.security FROM fund_holding fh;

You can also store any subtype of the equity type in the table:

INSERT INTO equities

VALUES (preferred_stock(SYSDATE - 20, 0.05,

 equity(199, 'XYZ', 2000000, 8.87)));

When querying the equities table, you can reference the object type's attributes directly, just

as you would an ordinary table:

SELECT issuer_id, ticker

FROM equities;

ISSUER_ID TICKER

---------- ------

 198 ACMW

 199 XYZ

If you want to retrieve the data in the equities table as an instance of an equity object rather

than as a set of attributes, you can use the VALUE function to return an object. The following
query retrieves the object having a ticker equal to 'ACMW' from the equities table:

SELECT VALUE(e)

FROM equities e

WHERE e.ticker = 'ACMW';

VALUE(E)(ISSUER_ID, TICKER, OUTSTANDING_SHARES, LAST_CLOSE_PRICE)

PREFERRED_STOCK(198, 'ACMW', 1000000, 13.97, '20-MAR-04', .1)

Since you can treat an object table as either a relational table or as a set of objects, object
tables represent the best of both worlds.

You must use a table alias with the VALUE function. You cannot pass a
table name to VALUE.

Now that you have an object stored in the database, we can explore how to call the
apply_split member procedure defined earlier. Before you call the procedure, you need to find
the target object in the table and then tell the object to run its apply_split procedure. The

following PL/SQL block expands on the previous example, which finds the object in the
equities table with a ticker of 'ACMW', by finding an equity object, invoking its apply_split

method, and saving it back to the table again:

DECLARE

 eq equity := NULL;

BEGIN

 SELECT VALUE(e)

 INTO eq

 FROM equities e

 WHERE ticker = 'ACMW'

 FOR UPDATE;

 /* apply a 2:1 stock split */

 eq.apply_split('2:1');

 /* store modified object */

 UPDATE equities e

 SET e = eq

 WHERE ticker = 'ACMW';

END;

It is important to realize that the apply_split procedure is not operating directly on the data
in the equities table; rather, it is operating on a copy of the object held in memory. After the
apply_split procedure has executed against the copy, the UPDATE statement overwrites the
object in the equities table with the object referenced by the local variable eq, thus saving the

modified version of the object.

Specifying FOR UPDATE at the end of the SELECT statement signifies your
intent to modify the data being selected at some point in the future, which
causes Oracle to place a lock on the data on your behalf. If you do not
specify FOR UPDATE in this case, it is possible for another user to modify
or delete the data between when you first select the data and when you
issue the UPDATE statement.

12.1.4 Object Parameters

Regardless of whether you decide to store object types persistently in the database, you can use
them as vehicles for passing data within or between applications. Object types may be used as
input parameters and return types for PL/SQL stored procedures and functions. Additionally,
SELECT statements can instantiate and return object types even if none of the tables in the
FROM clause contain object types. Therefore, object types may be used to graft an object-
oriented veneer on top of a purely relational database design.

To illustrate how this might work, let's build an API for our example database that both accepts
and returns object types to find and build customer orders. First, we'll identify the necessary
object types:

CREATE TYPE customer_obj AS OBJECT

 (cust_nbr NUMBER,

 name VARCHAR2(30));

CREATE TYPE employee_obj AS OBJECT

 (emp_id NUMBER,

 name VARCHAR2(50));

CREATE TYPE order_obj AS OBJECT

 (order_nbr NUMBER,

 customer customer_obj,

 salesperson employee_obj,

 order_dt DATE,

 price NUMBER,

 status VARCHAR2(20));

CREATE TYPE line_item_obj AS OBJECT

 (part_nbr VARCHAR2(20),

 quantity NUMBER(8,2));

Using these object definitions, we can now define a PL/SQL package containing procedures and
functions that support the lifecycle of a customer order:

CREATE PACKAGE order_lifecycle AS

 FUNCTION create_order(v_cust_nbr IN NUMBER, v_emp_id IN NUMBER)

 RETURN order_obj;

 PROCEDURE cancel_order(v_order_nbr IN NUMBER);

 FUNCTION get_order(v_order_nbr IN NUMBER) RETURN order_obj;

 PROCEDURE add_line_item(v_order_nbr IN NUMBER,

 v_line_item IN line_item_obj);

END order_lifecycle;

CREATE PACKAGE BODY order_lifecycle AS

 FUNCTION create_order(v_cust_nbr IN NUMBER, v_emp_id IN NUMBER)

 RETURN order_obj IS

 ord_nbr NUMBER;

 BEGIN

 SELECT seq_order_nbr.NEXTVAL INTO ord_nbr FROM DUAL;

 INSERT INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

 SELECT ord_nbr, c.cust_nbr, e.emp_id,

 SYSDATE, SYSDATE + 7, 'NEW'

 FROM customer c CROSS JOIN employee e

 WHERE c.cust_nbr = v_cust_nbr

 AND e.emp_id = v_emp_id;

 RETURN order_lifecycle.get_order(ord_nbr);

 END create_order;

 PROCEDURE cancel_order(v_order_nbr IN NUMBER) IS

 BEGIN

 UPDATE cust_order SET cancelled_dt = SYSDATE,

 expected_ship_dt = NULL, status = 'CANCELED'

 WHERE order_nbr = v_order_nbr;

 END cancel_order;

 FUNCTION get_order(v_order_nbr IN NUMBER) RETURN order_obj IS

 ord order_obj := NULL;

 BEGIN

 SELECT order_obj(co.order_nbr,

 customer_obj(c.cust_nbr, c.name),

 employee_obj(e.emp_id, e.fname || ' ' || e.lname),

 co.order_dt, co.sale_price, co.status)

 INTO ord

 FROM cust_order co INNER JOIN customer c

 ON co.cust_nbr = c.cust_nbr

 INNER JOIN employee e

 ON co.sales_emp_id = e.emp_id

 WHERE co.order_nbr = v_order_nbr;

 RETURN ord;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN ord;

 END get_order;

 PROCEDURE add_line_item(v_order_nbr IN NUMBER,

 V_line_item IN line_item_obj) IS

 BEGIN

 INSERT INTO line_item (order_nbr, part_nbr, qty)

 VALUES (v_order_nbr, v_line_item.part_nbr,

 v_line_item.quantity);

 END add_line_item;

END order_lifecycle;

From the API user's standpoint, objects are being stored and retrieved from the database, even
though the database behind the API is purely relational. If you are squeamish about using
object types in your database schema, this approach can be an attractive alternative to asking
your Java coders to directly manipulate relational data.

 < Day Day Up >

 < Day Day Up >

12.2 Collection Types

During a traditional relational design process, one-to-many relationships, such as a department
having many employees or an order consisting of many line items, are resolved as separate
tables where the child table holds a foreign key to the parent table. In our example schema,
each row in the line_item table knows which order it belongs to via a foreign key, but a row in
the cust_order table does not directly know anything about line items. Beginning with Oracle8,

such relationships can be internalized within the parent table using a collection. The two
collection types available in Oracle8 and above are variable arrays, which are used for ordered,
bounded sets of data, and nested tables, which are used for unordered, unbounded data sets.

12.2.1 Variable Arrays

Variable arrays, also called varrays, are arrays stored within a table. Elements of a varray must
be of the same data type (although subtypes are permitted), are bounded by a maximum size,
and are accessed positionally. Varrays may contain either a standard Oracle data type, such as
DATE or VARCHAR2, or a user-defined object type. The following example illustrates the
creation of a varray and its use as a column of a table:

CREATE TYPE resupply_dates AS VARRAY(100) OF DATE;

CREATE TABLE part_c (

 part_nbr VARCHAR2(20) NOT NULL,

 name VARCHAR2(50) NOT NULL,

 supplier_id NUMBER(6),

 unit_cost NUMBER(8,2),

 inventory_qty NUMBER(6),

 restocks resupply_dates);

Along with descriptive information about the part, each row in the part_c table can hold up to

100 dates corresponding to when a shipment was received from the supplier.

Beginning with the Oracle Database 10g release, the maximum size of a
varray can be modified after it has been defined, so you won't need to
worry so much about how high to set the maximum size of your
collections. To change the resupply_dates varray to hold 200 dates, you

would issue the following:

ALTER TYPE resupply_dates MODIFY LIMIT 200;

12.2.2 Nested Tables

Like varrays, all elements of a nested table must be of the same data type, either a built-in data
type or a user-defined type. Unlike varrays, however, nested tables do not have a maximum
size and are not accessed positionally. The following example defines a nested table type
containing an object type:

CREATE TYPE line_item_obj AS OBJECT (

 part_nbr VARCHAR2(20),

 quantity NUMBER(8,2),

 MAP MEMBER FUNCTION to_string RETURN VARCHAR2);

CREATE TYPE line_item_tbl AS TABLE OF line_item_obj;

The to_string member function will be used later in the chapter for comparing instances of
type line_item_obj.

Now that we have created a nested table type for line_item objects, we can choose to embed
it into our cust_order table, as in the following:

CREATE TABLE cust_order_c (

 order_nbr NUMBER(8) NOT NULL,

 cust_nbr NUMBER(6) NOT NULL,

 sales_emp_id NUMBER(6) NOT NULL,

 order_dt DATE NOT NULL,

 sale_price NUMBER(9,2),

 order_items line_item_tbl)

NESTED TABLE order_items STORE AS order_items_table;

Using a nested table, we have absorbed an order's line items into the cust_order table,
eliminating the need for the line_item table. Later in the chapter, you'll see how Oracle

provides a way to detach the order_items collection when it is advantageous to do so.

 < Day Day Up >

 < Day Day Up >

12.3 Collection Instantiation

While the table definitions in the previous section look fairly straightforward, it isn't immediately
obvious how you might go about populating the resulting tables. Whenever you want to create
an instance of a collection, you need to use its constructor, which is a system-generated
function with the same name as the collection. The constructor accepts one or more elements;
for varrays, the number of elements cannot exceed the maximum size of the varray. For
example, adding a row to the part_c table, which contains a varray column, can be done using

the following:

INSERT INTO part_c (part_nbr, name, supplier_id, unit_cost,

 inventory_qty, restocks)

VALUES ('GX5-2786-A2', 'Spacely Sprocket', 157, 75, 22,

 resupply_dates(TO_DATE('03-SEP-1999','DD-MON-YYYY'),

 TO_DATE('22-APR-2000','DD-MON-YYYY'),

 TO_DATE('21-MAR-2001','DD-MON-YYYY')));

In this example, the resupply_dates constructor is called with three parameters, one for each

time a shipment of parts was received. If you are using a collection-savvy query tool such as
Oracle's SQL*Plus, you can query the collection directly, and the tool will format the results:

SELECT part_nbr, restocks

FROM part_c

WHERE name = 'Spacely Sprocket';

PART_NBR RESTOCKS

--------------- --

GX5-2786-A2 RESUPPLY_DATES('03-SEP-99', '22-APR-00', '21-MAR-01')

You deal with nested tables in a manner similar to varrays. The next example demonstrates
how you would insert a new row into the cust_order_c table, which contains a nested table

column:

INSERT INTO cust_order_c (order_nbr, cust_nbr, sales_emp_id,

 order_dt, sale_price, order_items)

VALUES (1000, 9568, 275, TO_DATE('21-MAR-2001','DD-MON-YYYY'), 15753,

 line_item_tbl(

 line_item_obj('A675-015', 25),

 line_item_obj('GX5-2786-A2', 1),

 line_item_obj('X378-9JT-2', 3)));

If you look carefully, you will notice that there are actually two different constructors called: one
to create the nested table line_item_tbl, and the other to create each of three instances of the
line_item_obj object type. Remember, the nested table is a table of line_item_obj objects.
The end result is a single row in cust_order_c containing a collection of three line items.

 < Day Day Up >

 < Day Day Up >

12.4 Querying Collections

Now that you know how to get data into a collection, you need a way to get it out. Oracle
provides a special TABLE expression just for this purpose.

Prior to release 8i, the TABLE expression was called THE. Only the TABLE
expression is used here.

The TABLE expression can be used in the FROM, WHERE, and HAVING clauses of a query to
allow a nested table or varray column to be referenced as if it were a separate table. The
following query extracts the resupply dates (from the restocks column) that were added
previously to the part_c table:

SELECT *

FROM TABLE(SELECT restocks

 FROM part_c

 WHERE part_nbr = 'GX5-2786-A2');

COLUMN_VALUE

03-SEP-99

22-APR-00

21-MAR-01

To better illustrate the function of the TABLE expression, the next query retrieves the restocks
varray directly from the part_c table:

SELECT restocks

FROM part_c

WHERE part_nbr = 'GX5-2786-A2';

RESTOCKS

--

RESUPPLY_DATES('03-SEP-99', '22-APR-00', '21-MAR-01')

As you can see, the result set consists of a single row containing an array of dates, whereas the
previous query unnests the varray so that each element is represented as a row with a single
column.

Since the varray contains a built-in data type rather than an object type, it is necessary to give
the varray name so that it may be explicitly referenced in SQL statements. Oracle assigns the
varray's contents a default alias of column_value for this purpose. The next example makes use
of the column_value alias.

Let's say that you wanted to find all parts resupplied on a particular date. Using the TABLE
expression, you can perform a correlated subquery against the restocks varray to see if the

desired date is found in the set:

SELECT p1.part_nbr, p1.name

FROM part_c p1

WHERE TO_DATE('03-SEP-1999','DD-MON-YYYY') IN

 (SELECT column_value FROM TABLE(SELECT restocks FROM part_c p2

 WHERE p2.part_nbr = p1.part_nbr));

PART_NBR NAME

-------------------- -------------------------------

GX5-2786-A2 Spacely Sprocket

 < Day Day Up >

 < Day Day Up >

12.5 Collection Unnesting

Even if your developer community is comfortable manipulating collections within your database,
it is often unrealistic to expect the various tools and applications accessing your data (data load
and extraction utilities, reporting and ad-hoc query tools, etc.) to correctly handle them. Using
a technique called collection unnesting, you can present the contents of the collection as if it
were rows of an ordinary table. For example, using the TABLE expression, you can write a query
which unnests the order_items nested table from the cust_order_c table, as in:

SELECT co.order_nbr, co.cust_nbr, co.order_dt, li.part_nbr, li.quantity

FROM cust_order_c co,

 TABLE(co.order_items) li;

ORDER_NBR CUST_NBR ORDER_DT PART_NBR QUANTITY

---------- ---------- --------- -------------------- ----------

 1000 9568 21-MAR-01 A675-015 25

 1000 9568 21-MAR-01 GX5-2786-A2 1

 1000 9568 21-MAR-01 X378-9JT-2 3

Note that the two data sets do not need to be explicitly joined, since the collection members are
already associated with a row in the cust_order_c table.

To make this unnested data set available to your users, you can wrap the previous query in a
view:

CREATE VIEW cust_order_line_items AS

SELECT co.order_nbr, co.cust_nbr, co.order_dt, li.part_nbr, li.quantity

FROM cust_order_c co,

 TABLE(co.order_items) li;

Your users can now interact with the nested table via the view using standard SQL, as in the
following:

SELECT *

FROM cust_order_line_items

WHERE part_nbr like 'X%';

 ORDER_NBR CUST_NBR ORDER_DT PART_NBR QUANTITY

---------- ---------- --------- -------------------- ----------

 1000 9568 21-MAR-01 X378-9JT-2 3

 < Day Day Up >

 < Day Day Up >

12.6 Collection Functions

Oracle Database 10g supplies a number of functions that are useful when working with nested
table collections. For example, if you are interested in the number of elements in a given
collection, you can use the CARDINALITY function:

SELECT co.order_nbr, co.cust_nbr, co.order_dt,

 CARDINALITY(co.order_items) number_of_items

FROM cust_order_c co; ORDER_NBR CUST_NBR ORDER_DT
NUMBER_OF_ITEMS ---------- ---------- --------- --------------- 1000 9568 21-
MAR-01 3

Compare this with the following query, which obtains the same results without the benefit of the
CARDINALITY function:

SELECT co.order_nbr, co.cust_nbr, co.order_dt,

 COUNT(*) number_of_items

FROM cust_order_c co, TABLE(co.order_items) oi

GROUP BY co.order_nbr, co.cust_nbr, co.order_dt;

 ORDER_NBR CUST_NBR ORDER_DT NUMBER_OF_ITEMS

---------- ---------- --------- ---------------

 1000 9568 21-MAR-01 3

If you would like to perform set operations on multiple collections, there are functions that
perform the equivalent of UNION, UNION ALL, MINUS, and INTERSECT. To illustrate these
functions, we will add another row to the cust_order_c table and then perform set operations

against the two rows in the table:

INSERT INTO cust_order_c (order_nbr, cust_nbr, sales_emp_id,

 order_dt, sale_price, order_items)

VALUES (1001, 9679, 275, TO_DATE('15-DEC-2003','DD-MON-YYYY'), 8645,

 line_item_tbl(

 line_item_obj('A675-015', 25),

 line_item_obj('TX-475-A2', 7)));

Here's a look at our two sets of line items:

ORDER_ITEMS(PART_NBR, QUANTITY)

LINE_ITEM_TBL(LINE_ITEM_OBJ('A675-015', 25),

 LINE_ITEM_OBJ('GX5-2786-A2', 1),

 LINE_ITEM_OBJ('X378-9JT-2', 3))

LINE_ITEM_TBL(LINE_ITEM_OBJ('A675-015', 25),

 LINE_ITEM_OBJ('TX-475-A2', 7))

As you can see, the two sets of line items share one common element (quantity 25 of part
number A675-015). The next query demonstrates how the MULTISET UNION DISTINCT function
can be used to build a new instance of line_item_tbl with the distinct set of line items:

SELECT co_1.order_items

 MULTISET UNION DISTINCT

 co_2.order_items distinct_items

FROM cust_order_c co_1, cust_order_c co_2

WHERE co_1.order_nbr = 1000 and co_2.order_nbr = 1001;

DISTINCT_ITEMS(PART_NBR, QUANTITY)

--

LINE_ITEM_TBL(LINE_ITEM_OBJ('A675-015', 25),

 LINE_ITEM_OBJ('GX5-2786-A2', 1),

 LINE_ITEM_OBJ('X378-9JT-2', 3),

 LINE_ITEM_OBJ('TX-475-A2', 7))

If you want the non-distinct union of line items from the two sets, simply replace the keyword
DISTINCT with ALL:

SELECT co_1.order_items

 MULTISET UNION ALL

 co_2.order_items all_items

FROM cust_order_c co_1, cust_order_c co_2

WHERE co_1.order_nbr = 1000 and co_2.order_nbr = 1001;

ALL_ITEMS(PART_NBR, QUANTITY)

--

LINE_ITEM_TBL(LINE_ITEM_OBJ('A675-015', 25),

 LINE_ITEM_OBJ('GX5-2786-A2', 1),

 LINE_ITEM_OBJ('X378-9JT-2', 3),

 LINE_ITEM_OBJ('A675-015', 25),

 LINE_ITEM_OBJ('TX-475-A2', 7))

As you would expect, the common line item now appears twice in the all_items collection.

If you want the functionality of the MINUS set operator, you can use the MULTISET EXCEPT
function. The keyword EXCEPT is used rather than MINUS, to conform to the ANSI/ISO SQL
standard:

SELECT co_1.order_items

 MULTISET EXCEPT

 co_2.order_items diff_items

FROM cust_order_c co_1, cust_order_c co_2

WHERE co_1.order_nbr = 1000 and co_2.order_nbr = 1001;

DIFF_ITEMS(PART_NBR, QUANTITY)

--

LINE_ITEM_TBL(LINE_ITEM_OBJ('GX5-2786-A2', 1),

 LINE_ITEM_OBJ('X378-9JT-2', 3))

Finally, if you desire to generate the intersection between the two sets, you can use the
MULTISET INTERSECT function:

SELECT co_1.order_items

 MULTISET INTERSECT

 co_2.order_items common_items

FROM cust_order_c co_1, cust_order_c co_2

WHERE co_1.order_nbr = 1000 and co_2.order_nbr = 1001;

COMMON_ITEMS(PART_NBR,

 QUANTITY)

--

LINE_ITEM_TBL(LINE_ITEM_OBJ('A675-015', 25))

 < Day Day Up >

 < Day Day Up >

12.7 Comparing Collections

If you are using nested tables, you can compare the structure and content of one collection to
another. If the nested tables being compared contain a built-in data type such as NUMBER or
VARCHAR2, the Oracle server will do the comparison for you; if the nested tables contain an
object type, however, you will need to write a MAP method to tell the server how to compare
multiple instance of your object type. The following code fragment demonstrates a simple
mapping function for the line_item_obj type:

CREATE TYPE BODY line_item_obj AS

 MAP MEMBER FUNCTION to_string RETURN VARCHAR2 IS

 BEGIN

 RETURN part_nbr || ':' || to_char(quantity, '00009');

 END to_string;

END;

The to_string mapping function simply returns the part number concatenated to the quantity

with a colon between. Oracle will call this function (there can only be one mapping function
defined for each of your object types) whenever two instances of the type are being compared.

Now that the mapping function is in place, you can begin comparing different collections of
line_item_obj. For example, if you want to find a customer order containing a certain set of

line items, you can use the equality operator:

SELECT co.order_nbr, co.cust_nbr, co.order_dt

FROM cust_order_c co

WHERE co.order_items =

 line_item_tbl(

 line_item_obj('A675-015', 25),

 line_item_obj('GX5-2786-A2', 1),

 line_item_obj('X378-9JT-2', 3));

ORDER_NBR CUST_NBR ORDER_DT

---------- ---------- ---------

 1000 9568 21-MAR-01

This query finds all customer orders containing the three part number/quantity pairs listed
above.

Although it is useful to use the equality operator to look for an exact match, you are more likely
to need only a partial match, especially if you are working with large collections. It might seem
intuitive to use the IN operator to look for partial matches, as in:

SELECT co.order_nbr, co.cust_nbr, co.order_dt

FROM cust_order_c co

WHERE line_item_tbl(line_item_obj('GX5-2786-A2', 1))

 IN co.order_items

no rows selected

When working with nested tables, however, you will need to use the SUBMULTISET operator
instead of using IN. The next example uses SUBMULTISET to find all customer orders that
include one quantity of part number GX5-2786-A2:

SELECT co.order_nbr, co.cust_nbr, co.order_dt

FROM cust_order_c co

WHERE line_item_tbl(line_item_obj('GX5-2786-A2', 1))

 SUBMULTISET OF co.order_items;

ORDER_NBR CUST_NBR ORDER_DT

---------- ---------- ---------

 1000 9568 21-MAR-01

Since the collection in the preceding example contains a single object, you can instead use the
MEMBER OF operator to check to see if the co.order_items collection contains a given instance
of line_item_obj:

SELECT co.order_nbr, co.cust_nbr, co.order_dt

FROM cust_order_c co

WHERE line_item_obj('GX5-2786-A2', 1)

 MEMBER OF co.order_items;

ORDER_NBR CUST_NBR ORDER_DT

---------- ---------- ---------

 1000 9568 21-MAR-01

Because MEMBER OF checks individual elements of a collection rather than the collection as a
whole, you only need to instantiate a line_item_obj instead of a collection of line_item_obj

types as you did when using SUBMULTISET.

You will need Oracle Database 10g to use the SUBMULTISET and MEMBER
OF operators.

 < Day Day Up >

 < Day Day Up >

12.8 Manipulating Collections

If you want to modify a collection's contents, you have two choices: replace the entire collection
or modify individual elements of the collection. If the collection is a varray, you have no choice
but to replace the entire collection. You can accomplish this by retrieving the contents of the
varray, modifying the data, and then updating the table with the new varray. The following
statement changes the restock dates for part number "GX5-2786-A2." Note that the varray is
entirely recreated:

UPDATE part_c

SET restocks = resupply_dates(TO_DATE('03-SEP-1999','DD-MON-YYYY'),

 TO_DATE('25-APR-2000','DD-MON-YYYY'),

 TO_DATE('21-MAR-2001','DD-MON-YYYY'))

WHERE part_nbr = 'GX5-2786-A2';

If you are using nested tables, however, you can perform DML against individual elements of a
collection. For example, the following statement adds an additional line item to the nested
cust_order_c table for order number 1000:

INSERT INTO TABLE(SELECT order_items FROM cust_order_c

 WHERE order_nbr = 1000)

VALUES (line_item_obj('T25-ASM', 1));

To update data in the same nested table, use the TABLE expression to create a data set
consisting of part numbers from order number 1000, and then modify the element with a
specified part number:

UPDATE TABLE(SELECT order_items FROM cust_order_c

 WHERE order_nbr = 1000) oi

SET oi.quantity = 2

WHERE oi.part_nbr = 'T25-ASM';

Similarly, you can use the same data set to remove elements from the collection:

DELETE FROM TABLE(SELECT order_items FROM cust_order_c

 WHERE order_nbr = 1000) oi

WHERE oi.part_nbr = 'T25-ASM';

 < Day Day Up >

 < Day Day Up >

12.9 Multilevel Collections

If you are using Oracle9i release 2 or later, you will be able to nest a collection inside of another
collection. Earlier in the chapter, we used a table called cust_order_c that contained a
collection of line items. To illustrate multilevel collections, the cust_order_c table will be
converted to a type definition and added to the customer table, so that each customer record

contains a collection of orders, and each order contains a collection of line items:

CREATE TYPE line_item_obj AS OBJECT (

 part_nbr VARCHAR2(20),

 quantity NUMBER(8,2));

CREATE TYPE line_item_tbl AS TABLE OF line_item_obj;

CREATE TYPE cust_order_obj AS OBJECT (

 order_nbr NUMBER(8),

 sales_emp_id NUMBER(6),

 order_dt DATE,

 sale_price NUMBER(9,2),

 order_items line_item_tbl);

CREATE TYPE cust_order_tbl AS TABLE OF cust_order_obj;

CREATE TABLE customer_c (

 cust_nbr NUMBER(5) NOT NULL,

 name VARCHAR2(30) NOT NULL,

 region_id NUMBER(5),

 inactive_dt DATE,

 inactive_ind CHAR(1),

 orders cust_order_tbl)

NESTED TABLE orders STORE AS orders_c

 (NESTED TABLE order_items STORE AS order_items_c);

Now that the schema is in place, let's add some data:

INSERT INTO customer_c (cust_nbr, name, region_id,

 inactive_dt, inactive_ind, orders)

VALUES (1, 'Cooper Industries', 5, NULL, 'N',

 cust_order_tbl(

 cust_order_obj(9568, 275,

 TO_DATE('21-MAR-2001','DD-MON-YYYY'), 15753,

 line_item_tbl(

 line_item_obj('A675-015', 25),

 line_item_obj('GX5-2786-A2', 1),

 line_item_obj('X378-9JT-2', 3))),

 cust_order_obj(9867, 275,

 TO_DATE('08-DEC-2003','DD-MON-YYYY'), 22575,

 line_item_tbl(

 line_item_obj('A675-015', 43),

 line_item_obj('GX5-2786-A2', 1),

 line_item_obj('X378-9JT-2', 6)))));

While the INSERT statement above creates a single row, the statement has actually created a
customer entry, two orders, and three line-items per order.

12.9.1 Querying Multilevel Collections

When querying multilevel collections, you can use the TABLE function to unnest your collections
to make the data appear relational. For instance, you can look at all of the line items associated
with Cooper Industries:

SELECT li.*

FROM customer_c c, TABLE(c.orders) o, TABLE(o.order_items) li

WHERE c.name = 'Cooper Industries';

PART_NBR QUANTITY

-------------------- ----------

A675-015 25

GX5-2786-A2 1

X378-9JT-2 3

A675-015 43

GX5-2786-A2 1

X378-9JT-2 6

Since the unnested data is treated like a normal relational table, you are free to use the full
array of available functionality in your queries. For example, you can use GROUP BY and
aggregate functions, as demonstrated by the following:

SELECT o.order_nbr, SUM(li.quantity)

FROM customer_c c, TABLE(c.orders) o, TABLE(o.order_items) li

WHERE c.name = 'Cooper Industries'

GROUP BY o.order_nbr;

ORDER_NBR SUM(LI.QUANTITY)

---------- ----------------

 9568 29

 9867 50

12.9.2 DML Operations on Multilevel Collections

To perform DML operations on a multilevel collection, you need to isolate the collection to be
modified via the TABLE function. For example, the next statement adds 1 to the quantity field

of each line item for order number 9867 under Cooper Industries:

UPDATE TABLE(

 SELECT o.order_items

 FROM TABLE(

 SELECT c.orders

 FROM customer_c c

 WHERE c.name = 'Cooper Industries') o

 WHERE o.order_nbr = 9867) li

SET li.quantity = li.quantity + 1;

The target of this update is the table returned by the outermost TABLE function.

 < Day Day Up >

 < Day Day Up >

Chapter 13. Advanced Group Operations
Group operations aggregate data over multiple rows. We discussed the GROUP BY clause and
basic group operations in Chapter 4. Decision-support systems require more complex group
operations. Data warehousing applications involve aggregation over multiple dimensions of
data. To enable effective decision support, you need to summarize transaction data at various
levels. We discuss advanced group operations used by decision-support systems in this chapter.

Oracle provides several handy SQL features to summarize data. These include the following:

A ROLLUP function to generate totals and subtotals in the summarized results.

A CUBE function to generate subtotals for all possible combinations of grouped columns.

A GROUPING SETS function to generate summary information at the level you choose
without including all the rows produced by the regular GROUP BY operation.

The GROUPING, GROUPING_ID and GROUP_ID functions to help you correctly interpret
results generated using ROLLUP, CUBE, and GROUPING SETS.

 < Day Day Up >

 < Day Day Up >

13.1 Multiple Summary Levels

In Chapter 4, you saw how the GROUP BY clause, along with the aggregate functions, can be
used to produce summary results. For example, if you want to print the monthly total sales for
each region, you would probably execute the following query:

SELECT r.name region,

 TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name, o.month;

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Southeast US January 1137063

Southeast US February 1855269

Southeast US March 1967979

Southeast US April 1830051

Southeast US May 1983282

Southeast US June 1705716

Southeast US July 1670976

Southeast US August 1436295

Southeast US September 1905633

Southeast US October 1610523

Southeast US November 1661598

Southeast US December 1841100

36 rows selected.

As expected, this report prints the total sales for each region and month combination. However,
in a more complex application, you may also want to have the subtotal for each region over all
months, along with the total for all regions, or you may want the subtotal for each month over
all regions, along with the total for all months. In short, you may need to generate subtotals
and totals at more than one level.

13.1.1 UNION

In data warehouse applications, you frequently need to generate summary information over
various dimensions, and subtotal and total across those dimensions. Generating and retrieving
this type of summary information is a core goal of almost all data warehouse applications.

By this time, you have realized that a simple GROUP BY query is not sufficient to generate the
subtotals and totals described in this section. To illustrate the complexity of the problem, let's
attempt to write a query that would return the following in a single output:

Sales for each month for every region

Subtotals over all months for every region

Total sales for all regions over all months

One way to generate multiple levels of summary (the only way prior to Oracle8i) is to write a
UNION query. For example, the following UNION query will give us the desired three levels of
subtotals:

SELECT r.name region,

 TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name, o.month

UNION ALL

SELECT r.name region, NULL, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name

UNION ALL

SELECT NULL, NULL, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id;

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Southeast US January 1137063

Southeast US February 1855269

Southeast US March 1967979

Southeast US April 1830051

Southeast US May 1983282

Southeast US June 1705716

Southeast US July 1670976

Southeast US August 1436295

Southeast US September 1905633

Southeast US October 1610523

Southeast US November 1661598

Southeast US December 1841100

Mid-Atlantic 18923298

New England 19756923

Southeast US 20605485

 59285706

40 rows selected.

This query produced 40 rows of output, 36 of which are the sales for each month for every
region. The last four rows are the subtotals and the total. The three rows with region names and
NULL values for the month are the subtotals for each region over all the months, and the last
row with NULL values for both the region and month is the total sales for all the regions over all
the months.

Now that you have the desired result, try to analyze the query a bit. You have a very small
all_orders table with only 1440 rows in this example. You wanted to have summary

information over just two dimensions—region and month. You have 3 regions and 12 months.
To get the desired summary information from this table, you have to write a query consisting of
three SELECT statements combined together using UNION ALL. The execution plan for this
query is:

PLAN_TABLE_OUTPUT

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | UNION-ALL | |

| 2 | SORT GROUP BY | |

| 3 | MERGE JOIN | |

| 4 | TABLE ACCESS BY INDEX ROWID| REGION |

| 5 | INDEX FULL SCAN | REGION_PK |

|* 6 | SORT JOIN | |

| 7 | TABLE ACCESS FULL | ALL_ORDERS |

| 8 | SORT GROUP BY | |

| 9 | MERGE JOIN | |

| 10| TABLE ACCESS BY INDEX ROWID| REGION |

| 11| INDEX FULL SCAN | REGION_PK |

|* 12| SORT JOIN | |

| 13| TABLE ACCESS FULL | ALL_ORDERS |

| 14| SORT AGGREGATE | |

| 15| NESTED LOOPS | |

| 16| TABLE ACCESS FULL | ALL_ORDERS |

|* 17| INDEX UNIQUE SCAN | REGION_PK |

As indicated by the execution plan output, Oracle needs to perform the following operations to
get the results:

Three FULL TABLE scans on all_orders

Three INDEX scan on region_pk (Primary key of table region)

Two Sort-Merge Joins

One NESTED LOOPS JOIN

Two SORT GROUP BY operations

One SORT AGGREGATE operation

One UNION ALL

In any practical application the all_orders table will consist of millions of rows, and

performing all these operations would be time-consuming. Even worse, if you have more
dimensions for which to prepare summary information than the two shown in this example, you

have to write an even more complex query. The bottom line is that such a query badly hurts
performance.

13.1.2 ROLLUP

Oracle8i introduced several new features for generating multiple levels of summary information
with one query. One such feature is a set of extensions to the GROUP BY clause. In Oracle8i, the
GROUP BY clause comes with two extensions: ROLLUP and CUBE. Oracle9i introduced another
extension: GROUPING SETS. We discuss ROLLUP in this section. CUBE and GROUPING SETS are
discussed later in this chapter.

ROLLUP is an extension to the GROUP BY clause, and therefore can only appear in a query with
a GROUP BY clause. The ROLLUP operation groups the selected rows based on the expressions
in the GROUP BY clause, and prepares a summary row for each group. The syntax of ROLLUP is:

SELECT . . .

FROM . . .

GROUP BY ROLLUP (ordered list of grouping columns)

Using ROLLUP, you can generate the summary information discussed in the previous section in
a much easier way than in our UNION ALL query. For example:

SELECT r.name region,

 TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY ROLLUP (r.name, o.month);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

New England 19756923

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Mid-Atlantic 18923298

Southeast US January 1137063

Southeast US February 1855269

Southeast US March 1967979

Southeast US April 1830051

Southeast US May 1983282

Southeast US June 1705716

Southeast US July 1670976

Southeast US August 1436295

Southeast US September 1905633

Southeast US October 1610523

Southeast US November 1661598

Southeast US December 1841100

Southeast US 20605485

 59285706

40 rows selected.

As you can see in this output, the ROLLUP operation produced subtotals across the specified
dimensions and a grand total. The argument to the ROLLUP operation is an ordered list of
grouping columns. Since the ROLLUP operation is used in conjunction with the GROUP BY
clause, it first generates aggregate values based on the GROUP BY operation on the ordered list
of columns. It then generates higher-level subtotals and finally a grand total. ROLLUP not only
simplifies the query, it results in more efficient execution. The execution plan for this ROLLUP
query is as follows:

PLAN_TABLE_OUTPUT

--

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT GROUP BY ROLLUP | |

| 2 | MERGE JOIN | |

| 3 | TABLE ACCESS BY INDEX ROWID| REGION |

| 4 | INDEX FULL SCAN | REGION_PK |

|* 5 | SORT JOIN | |

| 6 | TABLE ACCESS FULL | ALL_ORDERS |

--

Rather than the multiple table scans, joins, and other operations required by the UNION ALL
version of the query, the ROLLUP query needs just one index scan on region_pk, one full table
scan on all_orders, and one join to generate the required output.

If you want to generate subtotals for each month instead of for each region, all you need to do
is change the order of columns in the ROLLUP operation, as in the following example:

SELECT r.name region,

TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY ROLLUP (o.month, r.name);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

New England January 1527645

Mid-Atlantic January 1832091

Southeast US January 1137063

 January 4496799

New England February 1847238

Mid-Atlantic February 1286028

Southeast US February 1855269

 February 4988535

New England March 1699449

Mid-Atlantic March 1911093

Southeast US March 1967979

 March 5578521

New England April 1792866

Mid-Atlantic April 1623438

Southeast US April 1830051

 April 5246355

New England May 1698855

Mid-Atlantic May 1778805

Southeast US May 1983282

 May 5460942

New England June 1510062

Mid-Atlantic June 1504455

Southeast US June 1705716

 June 4720233

New England July 1678002

Mid-Atlantic July 1820742

Southeast US July 1670976

 July 5169720

New England August 1642968

Mid-Atlantic August 1381560

Southeast US August 1436295

 August 4460823

New England September 1726767

Mid-Atlantic September 1178694

Southeast US September 1905633

 September 4811094

New England October 1648944

Mid-Atlantic October 1530351

Southeast US October 1610523

 October 4789818

New England November 1384185

Mid-Atlantic November 1598667

Southeast US November 1661598

 November 4644450

New England December 1599942

Mid-Atlantic December 1477374

Southeast US December 1841100

 December 4918416

 59285706

49 rows selected.

Adding dimensions does not result in additional complexity. The following query rolls up
subtotals for the region, the month, and the year for the first quarter:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP (o.year, o.month, r.name);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 2000 January New England 1018430

 2000 January Mid-Atlantic 1221394

 2000 January Southeast US 758042

 2000 January 2997866

 2000 February New England 1231492

 2000 February Mid-Atlantic 857352

 2000 February Southeast US 1236846

 2000 February 3325690

 2000 March New England 1132966

 2000 March Mid-Atlantic 1274062

 2000 March Southeast US 1311986

 2000 March 3719014

 2000 10042570

 2001 January New England 509215

 2001 January Mid-Atlantic 610697

 2001 January Southeast US 379021

 2001 January 1498933

 2001 February New England 615746

 2001 February Mid-Atlantic 428676

 2001 February Southeast US 618423

 2001 February 1662845

 2001 March New England 566483

 2001 March Mid-Atlantic 637031

 2001 March Southeast US 655993

 2001 March 1859507

 2001 5021285

 15063855

27 rows selected.

13.1.3 Partial ROLLUPs

In a ROLLUP query with N dimensions, the grand total is considered the top level. The various
subtotal rows of N-1 dimensions constitute the next lower level, the subtotal rows of N-2
dimensions constitute yet another level down, and so on. In the most recent example, you have
three dimensions (year, month, and region), and the total row is the top level. The subtotal
rows for the year represent the next lower level, because these rows are subtotals across two
dimensions (month and region). The subtotal rows for the year and month combination are one
level lower, because these rows are subtotals across one dimension (region). The rest of the
rows are the result of the regular GROUP BY operation (without ROLLUP), and form the lowest
level.

If you want to exclude some subtotals and totals from the ROLLUP output, you can only move
top to bottom, i.e., exclude the top-level total first, then progressively go down to the next level
subtotals, and so on. To do this, you have to take out one or more columns from the ROLLUP
operation, and put them in the GROUP BY clause. This is called a partial ROLLUP.

As an example of a partial ROLLUP, let's see what happens when you take out the first column,
which is o.year, from the previous ROLLUP operation and move it into the GROUP BY clause.

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY o.year, ROLLUP (o.month, r.name);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 2000 January New England 1018430

 2000 January Mid-Atlantic 1221394

 2000 January Southeast US 758042

 2000 January 2997866

 2000 February New England 1231492

 2000 February Mid-Atlantic 857352

 2000 February Southeast US 1236846

 2000 February 3325690

 2000 March New England 1132966

 2000 March Mid-Atlantic 1274062

 2000 March Southeast US 1311986

 2000 March 3719014

 2000 10042570

 2001 January New England 509215

 2001 January Mid-Atlantic 610697

 2001 January Southeast US 379021

 2001 January 1498933

 2001 February New England 615746

 2001 February Mid-Atlantic 428676

 2001 February Southeast US 618423

 2001 February 1662845

 2001 March New England 566483

 2001 March Mid-Atlantic 637031

 2001 March Southeast US 655993

 2001 March 1859507

 2001 5021285

26 rows selected.

The query in this example excludes the grand-total row from the output. By taking out o.year

from the ROLLUP operation, you are asking the database not to roll up summary information
over the years. Therefore, the database rolls up summary information on region and month.
When you proceed to remove o.month from the ROLLUP operation, the query will not generate

the roll up summary for the month dimension, and only the region-level subtotals will be
printed in the output. For example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY o.year, o.month, ROLLUP (r.name);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 2000 January New England 1018430

 2000 January Mid-Atlantic 1221394

 2000 January Southeast US 758042

 2000 January 2997866

 2000 February New England 1231492

 2000 February Mid-Atlantic 857352

 2000 February Southeast US 1236846

 2000 February 3325690

 2000 March New England 1132966

 2000 March Mid-Atlantic 1274062

 2000 March Southeast US 1311986

 2000 March 3719014

 2001 January New England 509215

 2001 January Mid-Atlantic 610697

 2001 January Southeast US 379021

 2001 January 1498933

 2001 February New England 615746

 2001 February Mid-Atlantic 428676

 2001 February Southeast US 618423

 2001 February 1662845

 2001 March New England 566483

 2001 March Mid-Atlantic 637031

 2001 March Southeast US 655993

 2001 March 1859507

24 rows selected.

13.1.4 CUBE

The CUBE extension of the GROUP BY clause takes aggregation one step further than ROLLUP.
The CUBE operation generates subtotals for all possible combinations of the grouping columns.
Therefore, output of a CUBE operation will contain all subtotals produced by an equivalent
ROLLUP operation and also some additional subtotals. For example, if you are performing
ROLLUP on columns region and month, you will get subtotals for all months for each region, and
a grand total. However, if you perform the corresponding CUBE, you will get:

The regular rows produced by the GROUP BY clause

Subtotals for all months on each region

A subtotal for all regions on each month

A grand total

Like ROLLUP, CUBE is an extension of the GROUP BY clause, and can appear in a query only
along with a GROUP BY clause. The syntax of CUBE is:

SELECT . . .

FROM . . .

GROUP BY CUBE (list of grouping columns)

For example, the following query returns subtotals for all combinations of regions and months in
the all_orders table:

SELECT r.name region, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY CUBE(r.name, o.month);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

 59285706

 January 4496799

 February 4988535

 March 5578521

 April 5246355

 May 5460942

 June 4720233

 July 5169720

 August 4460823

 September 4811094

 October 4789818

 November 4644450

 December 4918416

New England 19756923

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

Mid-Atlantic 18923298

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Southeast US 20605485

Southeast US January 1137063

Southeast US February 1855269

Southeast US March 1967979

Southeast US April 1830051

Southeast US May 1983282

Southeast US June 1705716

Southeast US July 1670976

Southeast US August 1436295

Southeast US September 1905633

Southeast US October 1610523

Southeast US November 1661598

Southeast US December 1841100

52 rows selected.

Note that the output contains not only the subtotals for each region, but also the subtotals for
each month. You can get the same result from a query without the CUBE operation. However,
that query would be lengthy and complex and, of course, very inefficient. Such a query would
look like:

SELECT NULL region, NULL month, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

UNION ALL

SELECT NULL, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY o.month

UNION ALL

SELECT r.name region, NULL, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name

UNION ALL

SELECT r.name region, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name, o.month;

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

 59285706

 January 4496799

 February 4988535

 March 5578521

 April 5246355

 May 5460942

 June 4720233

 July 5169720

 August 4460823

 September 4811094

 October 4789818

 November 4644450

 December 4918416

Mid-Atlantic 18923298

New England 19756923

Southeast US 20605485

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Southeast US January 1137063

Southeast US February 1855269

Southeast US March 1967979

Southeast US April 1830051

Southeast US May 1983282

Southeast US June 1705716

Southeast US July 1670976

Southeast US August 1436295

Southeast US September 1905633

Southeast US October 1610523

Southeast US November 1661598

Southeast US December 1841100

52 rows selected.

Since a CUBE produces aggregate results for all possible combinations of the grouping columns,
the output of a query using CUBE is independent of the order of columns in the CUBE operation,
if everything else remains the same. This is not the case with ROLLUP. If everything else in the
query remains the same, ROLLUP(a,b) will produce a slightly different result set than
ROLLUP(b,a). However, the result set of CUBE(a,b) will be the same as that of CUBE(b,a). The

following example illustrates this by taking the example at the beginning of this section and
reversing the order of columns in the CUBE operation:

SELECT r.name region, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY CUBE(o.month, r.name);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

 59285706

New England 19756923

Mid-Atlantic 18923298

Southeast US 20605485

 January 4496799

New England January 1527645

Mid-Atlantic January 1832091

Southeast US January 1137063

 February 4988535

New England February 1847238

Mid-Atlantic February 1286028

Southeast US February 1855269

 March 5578521

New England March 1699449

Mid-Atlantic March 1911093

Southeast US March 1967979

 April 5246355

New England April 1792866

Mid-Atlantic April 1623438

Southeast US April 1830051

 May 5460942

New England May 1698855

Mid-Atlantic May 1778805

Southeast US May 1983282

 June 4720233

New England June 1510062

Mid-Atlantic June 1504455

Southeast US June 1705716

 July 5169720

New England July 1678002

Mid-Atlantic July 1820742

Southeast US July 1670976

 August 4460823

New England August 1642968

Mid-Atlantic August 1381560

Southeast US August 1436295

 September 4811094

New England September 1726767

Mid-Atlantic September 1178694

Southeast US September 1905633

 October 4789818

New England October 1648944

Mid-Atlantic October 1530351

Southeast US October 1610523

 November 4644450

New England November 1384185

Mid-Atlantic November 1598667

Southeast US November 1661598

 December 4918416

New England December 1599942

Mid-Atlantic December 1477374

Southeast US December 1841100

52 rows selected.

This query produced the same results as the earlier query; only the order of the rows happens
to be different.

13.1.5 Partial CUBE

To exclude some subtotals from the output, you can do a partial CUBE, (similar to a partial
ROLLUP) by taking out column(s) from the CUBE operation and putting them into the GROUP BY
clause. Here's an example:

SELECT r.name region, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name, CUBE(o.month);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

New England 19756923

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

Mid-Atlantic 18923298

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Southeast US 20605485

Southeast US January 1137063

Southeast US February 1855269

Southeast US March 1967979

Southeast US April 1830051

Southeast US May 1983282

Southeast US June 1705716

Southeast US July 1670976

Southeast US August 1436295

Southeast US September 1905633

Southeast US October 1610523

Southeast US November 1661598

Southeast US December 1841100

39 rows selected.

If you compare the results of the partial CUBE operation with that of the full CUBE operation,
discussed at the beginning of this section, you will notice that the partial CUBE has excluded the
subtotals for each month and the grand total from the output. If you want to retain the
subtotals for each month, but want to exclude the subtotals for each region, you can swap the
position of r.name and o.month in the GROUP BY . . . CUBE clause, as shown here:

SELECT r.name region, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY o.month, CUBE(r.name);

One interesting thing to note is that if you have one column in the CUBE operation, it produces
the same result as the ROLLUP operation. Therefore, the following two queries produce identical
results:

SELECT r.name region, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name, CUBE(o.month);

SELECT r.name region, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

GROUP BY r.name, ROLLUP(o.month);

13.1.6 The GROUPING Function

ROLLUP and CUBE produce extra rows in the output that contain subtotals and totals. When a
row represents a summary over a given column or set of columns, those columns will contain
NULL values. Output containing NULLs and indicating subtotals doesn't make sense to an
ordinary person who is unware of the behavior of ROLLUP and CUBE operations. Does your
corporate vice president (VP) care about whether you used ROLLUP or CUBE or any other
operation to get him the monthly total sales for each region? Obviously, he doesn't. That's
exactly why you are reading this page and not your VP.

If you know your way around the NVL function, you would probably attempt to translate each
NULL value from CUBE and ROLLUP to some descriptive value, as in the following example:

SELECT NVL(TO_CHAR(o.year), 'All Years') year,

NVL(TO_CHAR(TO_DATE(o.month, 'MM'), 'Month'), 'First Quarter') month,

NVL(r.name, 'All Regions') region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP (o.year, o.month, r.name);

YEAR MONTH REGION SUM(O.TOT_SALES)

------------ ------------- -------------- ----------------

2000 January New England 1018430

2000 January Mid-Atlantic 1221394

2000 January Southeast US 758042

2000 January All Regions 2997866

2000 February New England 1231492

2000 February Mid-Atlantic 857352

2000 February Southeast US 1236846

2000 February All Regions 3325690

2000 March New England 1132966

2000 March Mid-Atlantic 1274062

2000 March Southeast US 1311986

2000 March All Regions 3719014

2000 First Quarter All Regions 10042570

2001 January New England 509215

2001 January Mid-Atlantic 610697

2001 January Southeast US 379021

2001 January All Regions 1498933

2001 February New England 615746

2001 February Mid-Atlantic 428676

2001 February Southeast US 618423

2001 February All Regions 1662845

2001 March New England 566483

2001 March Mid-Atlantic 637031

2001 March Southeast US 655993

2001 March All Regions 1859507

2001 First Quarter All Regions 5021285

All Years First Quarter All Regions 15063855

27 rows selected.

The NVL function works pretty well for this example. However, if the data itself contains some

NULL values, it becomes impossible to distinguish whether a NULL value represents unavailable
data or a subtotal row. The NVL function will cause a problem in such a case. The following data
can be used to illustrate this problem:

SELECT * FROM disputed_orders;

ORDER_NBR CUST_NBR SALES_EMP_ID SALE_PRICE ORDER_DT EXPECTED_ STATUS

---------- ---------- ------------ ---------- --------- --------- ---------

 1001 1 7354 99 22-JUL-01 23-JUL-01 DELIVERED

 1000 1 7354 19-JUL-01 24-JUL-01

 1002 5 7368 12-JUL-01 25-JUL-01

 1003 4 7654 56 16-JUL-01 26-JUL-01 DELIVERED

 1004 4 7654 34 18-JUL-01 27-JUL-01 PENDING

 1005 8 7654 99 22-JUL-01 24-JUL-01 DELIVERED

 1006 1 7354 22-JUL-01 28-JUL-01

 1007 5 7368 25 20-JUL-01 22-JUL-01 PENDING

 1008 5 7368 25 21-JUL-01 23-JUL-01 PENDING

 1009 1 7354 56 18-JUL-01 22-JUL-01 DELIVERED

 1012 1 7354 99 22-JUL-01 23-JUL-01 DELIVERED

 1011 1 7354 19-JUL-01 24-JUL-01

 1015 5 7368 12-JUL-01 25-JUL-01

 1017 4 7654 56 16-JUL-01 26-JUL-01 DELIVERED

 1019 4 7654 34 18-JUL-01 27-JUL-01 PENDING

 1021 8 7654 99 22-JUL-01 24-JUL-01 DELIVERED

 1023 1 7354 22-JUL-01 28-JUL-01

 1025 5 7368 25 20-JUL-01 22-JUL-01 PENDING

 1027 5 7368 25 21-JUL-01 23-JUL-01 PENDING

 1029 1 7354 56 18-JUL-01 22-JUL-01 DELIVERED

20 rows selected.

Note that the column status contains NULL values. If you want the summary status of orders

for each customer, and you executed the following query (note the application of NVL to the
status column), the output might surprise you.

SELECT NVL(TO_CHAR(cust_nbr), 'All Customers') customer,

NVL(status, 'All Status') status,

COUNT(*) FROM disputed_orders

GROUP BY CUBE(cust_nbr, status);

CUSTOMER STATUS COUNT(*)

-- -------------------- ----------

All Customers All Status 6

All Customers All Status 20

All Customers PENDING 6

All Customers DELIVERED 8

1 All Status 4

1 All Status 8

1 DELIVERED 4

4 All Status 4

4 PENDING 2

4 DELIVERED 2

5 All Status 2

5 All Status 6

5 PENDING 4

8 All Status 2

8 DELIVERED 2

15 rows selected.

This output doesn't make any sense. The problem is that any time the status column

legitimately contains a NULL value, the NVL function returns the string "All Status." Obviously,
NVL isn't useful in this situation. However, don't worry—Oracle provides a solution to this

problem through the GROUPING function.

The GROUPING function is meant to be used in conjunction with either a ROLLUP or a CUBE
operation. The GROUPING function takes a grouping column name as input and returns either 1
or 0. A 1 is returned if the column's value is NULL as the result of aggregation (ROLLUP or
CUBE); otherwise, 0 is returned. The general syntax of the GROUPING function is:

SELECT . . . [GROUPING(grouping_column_name)] . . .

FROM . . .

GROUP BY . . . {ROLLUP | CUBE} (grouping_column_name)

The following example illustrates the use of GROUPING function in a simple way by returning
the GROUPING function results for the three columns passed to ROLLUP:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales),

GROUPING(o.year) y, GROUPING(o.month) m, GROUPING(r.name) r

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP (o.year, o.month, r.name);

YEAR MONTH REGION SUM(O.TOT_SALES) Y M R

----- --------- -------------------- ---------------- ---- ----- -----

 2000 January New England 1018430 0 0 0

 2000 January Mid-Atlantic 1221394 0 0 0

 2000 January Southeast US 758042 0 0 0

 2000 January 2997866 0 0 1

 2000 February New England 1231492 0 0 0

 2000 February Mid-Atlantic 857352 0 0 0

 2000 February Southeast US 1236846 0 0 0

 2000 February 3325690 0 0 1

 2000 March New England 1132966 0 0 0

 2000 March Mid-Atlantic 1274062 0 0 0

 2000 March Southeast US 1311986 0 0 0

 2000 March 3719014 0 0 1

 2000 10042570 0 1 1

 2001 January New England 509215 0 0 0

 2001 January Mid-Atlantic 610697 0 0 0

 2001 January Southeast US 379021 0 0 0

 2001 January 1498933 0 0 1

 2001 February New England 615746 0 0 0

 2001 February Mid-Atlantic 428676 0 0 0

 2001 February Southeast US 618423 0 0 0

 2001 February 1662845 0 0 1

 2001 March New England 566483 0 0 0

 2001 March Mid-Atlantic 637031 0 0 0

 2001 March Southeast US 655993 0 0 0

 2001 March 1859507 0 0 1

 2001 5021285 0 1 1

 15063855 1 1 1

27 rows selected.

Look at the y, m, and r columns in this output. Row 4 is a region-level subtotal for a particular

month and year, and therefore, the GROUPING function results in a value of 1 for the region
and a value 0 for the month and year. Row 26 (the second to last) is a subtotal for all regions
and months for a particular year, and therefore, the GROUPING function prints 1 for the month
and the region and 0 for the year. Row 27 (the grand total) contains 1 for all the GROUPING
columns.

With a combination of GROUPING and DECODE (or CASE), you can produce more readable
query output when using CUBE and ROLLUP, as in the following example:

SELECT DECODE(GROUPING(o.year), 1, 'All Years', o.year) Year,

DECODE(GROUPING(o.month), 1, 'All Months',

TO_CHAR(TO_DATE(o.month, 'MM'), 'Month')) Month,

DECODE(GROUPING(r.name), 1, 'All Regions', r.name) Region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP (o.year, o.month, r.name);

YEAR MONTH REGION SUM(O.TOT_SALES)

---------------- ---------- -------------------- ----------------

2000 January New England 1018430

2000 January Mid-Atlantic 1221394

2000 January Southeast US 758042

2000 January All Regions 2997866

2000 February New England 1231492

2000 February Mid-Atlantic 857352

2000 February Southeast US 1236846

2000 February All Regions 3325690

2000 March New England 1132966

2000 March Mid-Atlantic 1274062

2000 March Southeast US 1311986

2000 March All Regions 3719014

2000 All Months All Regions 10042570

2001 January New England 509215

2001 January Mid-Atlantic 610697

2001 January Southeast US 379021

2001 January All Regions 1498933

2001 February New England 615746

2001 February Mid-Atlantic 428676

2001 February Southeast US 618423

2001 February All Regions 1662845

2001 March New England 566483

2001 March Mid-Atlantic 637031

2001 March Southeast US 655993

2001 March All Regions 1859507

2001 All Months All Regions 5021285

All Years All Months All Regions 15063855

27 rows selected.

By using DECODE with GROUPING, we produced the same result that was produced by using
NVL at the beginning of the section. However, the risk of mistreating a NULL data value as a
summary row is eliminated by using GROUPING and DECODE. You will notice this in the
following example, in which NULL data values in subtotal and total rows are treated differently
by the GROUPING function than the NULL values in the summary rows:

SELECT DECODE(GROUPING(cust_nbr), 1, 'All Customers', cust_nbr) customer,

DECODE(GROUPING(status), 1, 'All Status', status) status, COUNT(*)

FROM disputed_orders

GROUP BY CUBE(cust_nbr, status);

CUSTOMER STATUS COUNT(*)

-- -------------------- ----------

All Customers 6

All Customers All Status 20

All Customers PENDING 6

All Customers DELIVERED 8

1 4

1 All Status 8

1 DELIVERED 4

4 All Status 4

4 PENDING 2

4 DELIVERED 2

5 2

5 All Status 6

5 PENDING 4

8 All Status 2

8 DELIVERED 2

15 rows selected.

13.1.7 GROUPING SETS

Earlier in this chapter, you saw how to generate summary information using ROLLUP and CUBE.
However, the output of ROLLUP and CUBE include the rows produced by the regular GROUP BY
operation along with the summary rows. Oracle9i introduced another extension to the GROUP
BY clause called GROUPING SETS that you can use to generate summary information at the
level you choose without including all the rows produced by the regular GROUP BY operation.

Like ROLLUP and CUBE, GROUPING SETS is also an extension of the GROUP BY clause, and can
appear in a query only along with a GROUP BY clause. The syntax of GROUPING SETS is:

SELECT . . .

FROM . . .

GROUP BY GROUPING SETS (list of grouping columns)

Let's take an example to understand the GROUPING SETS operation further:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (o.year, o.month, r.name);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 Mid-Atlantic 5029212

 New England 5074332

 Southeast US 4960311

 January 4496799

 February 4988535

 March 5578521

 2000 10042570

 2001 5021285

8 rows selected.

This output contains only the subtotals at the region, month, and year levels, but that none of
the normal, more detailed, GROUP BY data is included. The order of columns in the GROUPING
SETS operation is not critical. The operation produces the same output regardless of the order
of the columns. For example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (o.month, r.name, o.year);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 Mid-Atlantic 5029212

 New England 5074332

 Southeast US 4960311

 January 4496799

 February 4988535

 March 5578521

 2000 10042570

 2001 5021285

8 rows selected.

 < Day Day Up >

 < Day Day Up >

13.2 Pushing the GROUPING Envelope

The grouping examples you have seen so far represent simple ways of aggregating data using
Oracle's extensions of the GROUP BY clause. These simple mechanisms were introduced in
Oracle8i. In Oracle9i Database, Oracle enhanced this new functionality in some interesting and
useful ways. Oracle now allows for:

Repeating column names in the GROUP BY clause

Grouping on composite columns

Concatenated groupings

13.2.1 Repeated Column Names in the GROUP BY Clause

In Oracle8i, repeating column names are not allowed in a GROUP BY clause. If the GROUP BY
clause contains an extension (i.e., ROLLUP or CUBE), you cannot use the same column inside
the extension as well as outside the extension. The following SQL is invalid in Oracle8i:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY o.year, ROLLUP (o.year, o.month, r.name);

 *

ERROR at line 6:

ORA-30490: Ambiguous expression in GROUP BY ROLLUP or CUBE list

However, the same query works in Oracle9i Database and later:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY o.year, ROLLUP (o.year, o.month, r.name);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January Southeast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February Southeast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March Southeast US 1311986

 2000 March 3719014

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January Southeast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February Southeast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March Southeast US 655993

 2001 March 1859507

 2000 10042570

 2001 5021285

 2000 10042570

 2001 5021285

28 rows selected.

Repetition of o.year in the GROUP BY clause as well as in the ROLLUP operation repeats the

summary rows of each year in the output and suppresses the grand total. Repetition of column
names in a GROUP BY clause isn't very useful, but it's worth knowing that such constructs are
allowed in Oracle9i and later.

13.2.2 Grouping on Composite Columns

Oracle8i supports grouping on individual columns only. Oracle9i extends the grouping
operations to include grouping on composite columns. A composite column is a collection of two
or more columns, but their values are treated as one for the grouping computation. Oracle8i
allows group operations of the form ROLLUP (a,b,c), while, Oracle9i allows group operations
of the form ROLLUP (a,(b,c)) as well. In this case, (b,c) is treated as one column for the

purpose of the grouping computation. For example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP ((o.year, o.month),r.name);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January Southeast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February Southeast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March Southeast US 1311986

 2000 March 3719014

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January Southeast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February Southeast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March Southeast US 655993

 2001 March 1859507

 15063855

25 rows selected.

In this example, two columns (o.year, o.month) are treated as one composite column. This

causes Oracle to treat the combination of year and month as one dimension, and the summary
rows are computed accordingly. Although this query is not allowed in Oracle8i, you can fake
composite column groupings in Oracle8i by using the concatenation operator (||) to combine
two columns and treat the result as one composite column. Oracle8i can then produce the same
result as the previous query in Oracle 9i. For example:

SELECT TO_CHAR(o.year)||' '||TO_CHAR(TO_DATE(o.month,'MM'),'Month')

 Year_Month,

 r.name region, SUM(o.tot_sales)

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY

ROLLUP (TO_CHAR(o.year)||' '||

 TO_CHAR(TO_DATE(o.month,'MM'),'Month'), r.name);

YEAR_MONTH REGION SUM(O.TOT_SALES)

-------------------- -------------------- ----------------

2000 February Mid-Atlantic 857352

2000 February New England 1231492

2000 February Southeast US 1236846

2000 February 3325690

2000 January Mid-Atlantic 1221394

2000 January New England 1018430

2000 January Southeast US 758042

2000 January 2997866

2000 March Mid-Atlantic 1274062

2000 March New England 1132966

2000 March Southeast US 1311986

2000 March 3719014

2001 February Mid-Atlantic 428676

2001 February New England 615746

2001 February Southeast US 618423

2001 February 1662845

2001 January Mid-Atlantic 610697

2001 January New England 509215

2001 January Southeast US 379021

2001 January 1498933

2001 March Mid-Atlantic 637031

2001 March New England 566483

2001 March Southeast US 655993

2001 March 1859507

 15063855

25 rows selected.

This query converts the numeric month into the string expression of the name of the month and
concatenates it with the string representation of the year. The same expression has to be used
in the SELECT list and the ROLLUP clause. The expression TO_CHAR(o.year)||'
'||TO_CHAR(TO_DATE(o.month,'MM'),'Month') is treated as one composite column.

13.2.3 Concatenated Groupings

With Oracle9i and later, you can have multiple ROLLUP, CUBE, or GROUPING SETS operations,
or a combination of these under the GROUP BY clause in a query. This is not allowed in
Oracle8i. You will get an error message if you attempt the following query in Oracle8i:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP (o.year, o.month), ROLLUP(r.name);

 *

ERROR at line 6:

ORA-30489: Cannot have more than one rollup/cube expression list

However, the same query works in Oracle9i and later:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP (o.year, o.month), ROLLUP(r.name);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January Southeast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February Southeast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March Southeast US 1311986

 2000 March 3719014

 2000 Mid-Atlantic 3352808

 2000 New England 3382888

 2000 Southeast US 3306874

 2000 10042570

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January Southeast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February Southeast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March Southeast US 655993

 2001 March 1859507

 2001 Mid-Atlantic 1676404

 2001 New England 1691444

 2001 Southeast US 1653437

 2001 5021285

 Mid-Atlantic 5029212

 New England 5074332

 Southeast US 4960311

 15063855

36 rows selected.

When you have multiple grouping operations (ROLLUP, CUBE, or GROUPING SETS) in a GROUP
BY clause, what you have is called a concatenated grouping. The result of the concatenated
grouping is to produce a cross-product of groupings from each grouping operation. Therefore,
the query:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY ROLLUP(o.year), ROLLUP (o.month), ROLLUP (r.name);

behaves as a CUBE and produces the same result as the query:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year, o.month, r.name);

Since a CUBE contains aggregates for all possible combinations of the grouping columns, the
concatenated grouping of CUBES is no different from a regular CUBE, and all the following
queries return the same result as the query shown previously:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year, o.month), CUBE (r.name);

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year), CUBE (o.month, r.name);

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year), CUBE (o.month), CUBE (r.name);

13.2.3.1 Concatenated groupings with GROUPING SETS

Concatenated groupings come in handy while using GROUPING SETS. Since GROUPING SETS
produces only the subtotal rows, you can specify just the aggregation levels you want in your
output by using a concatenated grouping of GROUPING SETS. The concatenated grouping of
GROUPING SETS (a,b) and GROUPING SETS (c,d) will produce aggregate rows for the
aggregation levels (a,c), (a,d), (b,c), and (b,d). The concatenated grouping of GROUPING
SETS (a,b) and GROUPING SETS (c) will produce aggregate rows for the aggregation levels
(a,c) and (b,c). For example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (o.year, o.month), GROUPING SETS (r.name);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 Mid-Atlantic 3352808

 2000 New England 3382888

 2000 Southeast US 3306874

 2001 Mid-Atlantic 1676404

 2001 New England 1691444

 2001 Southeast US 1653437

 January Mid-Atlantic 1832091

 January New England 1527645

 January Southeast US 1137063

 February Mid-Atlantic 1286028

 February New England 1847238

 February Southeast US 1855269

 March Mid-Atlantic 1911093

 March New England 1699449

 March Southeast US 1967979

15 rows selected.

The concatenated grouping GROUP BY GROUPING SETS (O.YEAR, O.MONTH), GROUPING SETS
(R.NAME) in this example produces rows for aggregate levels (O.YEAR, R.NAME) and
(O.MONTH, R.NAME). Therefore, you see aggregate rows for (Year, Region) and (Month,
Region) combinations in the output. The following example extends the previous query:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (o.year, o.month), GROUPING SETS (o.year, r. name);

 YEAR MONTH REGION TOTAL

 ---------- --------- -------------------- ----------

 1: 2000 10042570

 2: 2001 5021285

 3: 2000 January 2997866

 4: 2000 February 3325690

 5: 2000 March 3719014

 6: 2001 January 1498933

 7: 2001 February 1662845

 8: 2001 March 1859507

 9: 2000 Mid-Atlantic 3352808

10: 2000 New England 3382888

11: 2000 Southeast US 3306874

12: 2001 Mid-Atlantic 1676404

13: 2001 New England 1691444

14: 2001 Southeast US 1653437

15: January Mid-Atlantic 1832091

16: January New England 1527645

17: January Southeast US 1137063

18: February Mid-Atlantic 1286028

19: February New England 1847238

20: February Southeast US 1855269

21: March Mid-Atlantic 1911093

22: March New England 1699449

23: March Southeast US 1967979

23 rows selected.

This example produces four grouping combinations. Table 13-1 describes the various grouping
combinations produced by this query and references their corresponding row numbers in the
output.

Table 13-1. Grouping combinations

Grouping combination Corresponding rows

(o.year, o.year) 1-2

(o.year, r.name) 9-14

(o.month, o.year) 3-8

(o.month, r.name) 15-23

The GROUPING SETS operation is independent of the order of columns. Therefore, the following
two queries will produce the same results as shown previously:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (o.year, r.name), GROUPING SETS (o.year, o.month);

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (o.month, o.year), GROUPING SETS (r.name, o.year);

It is permissible to have a combination of ROLLUP, CUBE, and GROUPING SETS in a single
GROUP BY clause, as in the following example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (o.month, o.year), ROLLUP(r.name), CUBE (o.year);

However, the output from such queries seldom makes any sense. You should carefully evaluate
the need for such a query if you intend to write one.

13.2.3.2 ROLLUP and CUBE as arguments to GROUPING SETS

Unlike the ROLLUP and CUBE operations, the GROUPING SETS operation can take a ROLLUP or
a CUBE as its argument. As you have seen earlier, GROUPING SETS produces only subtotal
rows. However, there are times when you may need to print the grand total along with the
subtotals. In such situations, you can perform the GROUPING SETS operation on ROLLUP
operations, as in the following example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (ROLLUP (o.year),

 ROLLUP (o.month),

 ROLLUP (r. name));

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 Mid-Atlantic 5029212

 New England 5074332

 Southeast US 4960311

 January 4496799

 February 4988535

 March 5578521

 2000 10042570

 2001 5021285

 15063855

 15063855

 15063855

11 rows selected.

This example produces the subtotals for each dimension, as expected from the regular
GROUPING SETS operations. Also, it produces the grand total across all the dimensions.
However, you get three identical grand-total rows. The grand-total rows are repeated because
they are produced by each ROLLUP operation inside the GROUPING SETS. If you insist on only
one grand-total row, you may use the DISTINCT keyword in the SELECT clause:

SELECT Distinct o.year,

 TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

 r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (ROLLUP (o.year), ROLLUP (o.month),

 ROLLUP (r. name));

 YEAR MONTH REGION TOTAL

----- --------- -------------------- ----------

 2000 10042570

 2001 5021285

 February 4988535

 January 4496799

 March 5578521

 Mid-Atlantic 5029212

 New England 5074332

 Southeast US 4960311

 15063855

9 rows selected.

In this example, the DISTINCT keyword eliminated the duplicate grand-total rows. You can also
eliminate duplicate rows by using the GROUP_ID function, as discussed later in this chapter.

If you are interested in subtotals and totals on composite dimensions, you can use composite or
concatenated ROLLUP operations within GROUPING SETS, as in the following example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY GROUPING SETS (ROLLUP (o.year, o.month), ROLLUP(r.name));

 YEAR MONTH REGION TOTAL

--------- --------- -------------------- ----------

 Mid-Atlantic 5029212

 New England 5074332

 Southeast US 4960311

 2000 January 2997866

 2000 February 3325690

 2000 March 3719014

 2000 10042570

 2001 January 1498933

 2001 February 1662845

 2001 March 1859507

 2001 5021285

 15063855

 15063855

13 rows selected.

This query generates subtotals for (year, month) combinations, subtotals for the region,
subtotals for the year, and the grand total. Note that there are duplicate grand-total rows

because of the multiple ROLLUP operations within the GROUPING SETS operation.

 < Day Day Up >

 < Day Day Up >

13.3 The GROUPING_ID and GROUP_ID Functions

Earlier in this chapter, you saw how to use the GROUPING function to distinguish between the
regular GROUP BY rows and the summary rows produced by the GROUP BY extensions. Oracle9i
extended the concept of the GROUPING function and introduced two more functions that you
can use with a GROUP BY clause:

GROUPING_ID

GROUP_ID

These functions can be used only with a GROUP BY clause. However, unlike the GROUPING
function that can only be used with a GROUP BY extension, the GROUPING_ID and GROUP_ID
functions can be used in a query, even without a GROUP BY extension.

Although it is legal to use these two functions without a GROUP BY
extension, using GROUPING_ID and GROUP_ID without ROLLUP, CUBE, or
GROUPING SETS doesn't produce any meaningful output, because
GROUPING_ID and GROUP_ID are 0 for all regular GROUP BY rows.

The following sections discuss these two functions in detail.

13.3.1 GROUPING_ID

The syntax of the GROUPING_ID function is as follows:

SELECT . . . , GROUPING_ID(ordered_list_of_grouping_columns)

FROM . . .

GROUP BY . . .

The GROUPING_ID function takes an ordered list of grouping columns as input, and computes
the output by working through the following steps:

It generates the results of the GROUPING function as applied to each of the individual
columns in the list. The result of this step is a set of ones and zeros.

1.

It puts these ones and zeros in the same order as the order of the columns in its argument
list to produce a bit vector.

2.

Treating this bit vector (a series of ones and zeros) as a binary number, it converts the bit
vector into a decimal (base 10) number.

3.

The decimal number computed in Step 3 is returned as the GROUPING_ID function's4.

3.

output.
4.

The following example illustrates this process and compares the results from GROUPING_ID
with those from GROUPING:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total,

GROUPING(o.year) y, GROUPING(o.month) m, GROUPING(r.name) r,

GROUPING_ID (o.year, o.month, r.name) gid

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year, o.month, r.name);

YEAR MONTH REGION TOTAL Y M R GID

---- --------- -------------- ---------- --- ---- --- ------

2000 January Mid-Atlantic 1221394 0 0 0 0

2000 January New England 1018430 0 0 0 0

2000 January Southeast US 758042 0 0 0 0

2000 January 2997866 0 0 1 1

2000 February Mid-Atlantic 857352 0 0 0 0

2000 February New England 1231492 0 0 0 0

2000 February Southeast US 1236846 0 0 0 0

2000 February 3325690 0 0 1 1

2000 March Mid-Atlantic 1274062 0 0 0 0

2000 March New England 1132966 0 0 0 0

2000 March Southeast US 1311986 0 0 0 0

2000 March 3719014 0 0 1 1

2000 Mid-Atlantic 3352808 0 1 0 2

2000 New England 3382888 0 1 0 2

2000 Southeast US 3306874 0 1 0 2

2000 10042570 0 1 1 3

2001 January Mid-Atlantic 610697 0 0 0 0

2001 January New England 509215 0 0 0 0

2001 January Southeast US 379021 0 0 0 0

2001 January 1498933 0 0 1 1

2001 February Mid-Atlantic 428676 0 0 0 0

2001 February New England 615746 0 0 0 0

2001 February Southeast US 618423 0 0 0 0

2001 February 1662845 0 0 1 1

2001 March Mid-Atlantic 637031 0 0 0 0

2001 March New England 566483 0 0 0 0

2001 March Southeast US 655993 0 0 0 0

2001 March 1859507 0 0 1 1

2001 Mid-Atlantic 1676404 0 1 0 2

2001 New England 1691444 0 1 0 2

2001 Southeast US 1653437 0 1 0 2

2001 5021285 0 1 1 3

 January Mid-Atlantic 1832091 1 0 0 4

 January New England 1527645 1 0 0 4

 January Southeast US 1137063 1 0 0 4

 January 4496799 1 0 1 5

 February Mid-Atlantic 1286028 1 0 0 4

 February New England 1847238 1 0 0 4

 February Southeast US 1855269 1 0 0 4

 February 4988535 1 0 1 5

 March Mid-Atlantic 1911093 1 0 0 4

 March New England 1699449 1 0 0 4

 March Southeast US 1967979 1 0 0 4

 March 5578521 1 0 1 5

 Mid-Atlantic 5029212 1 1 0 6

 New England 5074332 1 1 0 6

 Southeast US 4960311 1 1 0 6

 15063855 1 1 1 7

48 rows selected.

Note that the GROUPING_ID is the decimal equivalent of the bit vector generated by the
individual GROUPING functions. In this output, the GROUPING_ID has values 0, 1, 2, 3, 4, 5, 6,
and 7. Table 13-2 describes these aggregation levels.

Table 13-2. Result of GROUPING_ID(o.year, o.month, r.name)

Aggregation level Bit vector GROUPING_ID

Regular GROUP BY rows 0 0 0 0

Subtotal for Year-Month, aggregated at (Region) 0 0 1 1

Subtotal for Year-Region, aggregated at (Month) 0 1 0 2

Subtotal for Year, aggregated at (Month, Region) 0 1 1 3

Subtotal for Month-Region, aggregated at (Year) 1 0 0 4

Subtotal for Month, aggregated at (Year, Region) 1 0 1 5

Subtotal for Region, aggregated at (Year, Month) 1 1 0 6

Grand total for all levels, aggregated at (Year, Month, Region) 1 1 1 7

The GROUPING_ID function can be used effectively in a query to filter rows according to your
requirement. Let's say you want only the summary rows to be displayed in the output, and not
the regular GROUP BY rows. You can use the GROUPING_ID function in the HAVING clause to
do this by restricting output to only those rows that contain totals and subtotals (i.e., for which
GROUPING_ID > 0):

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year, o.month, r.name)

HAVING GROUPING_ID (o.year, o.month, r.name) > 0;

 YEAR MONTH REGION TOTAL

--------- --------- -------------------- ----------

 15063855

 New England 5074332

 Mid-Atlantic 5029212

 Southeast US 4960311

 January 4496799

 January New England 1527645

 January Mid-Atlantic 1832091

 January Southeast US 1137063

 February 4988535

 February New England 1847238

 February Mid-Atlantic 1286028

 February Southeast US 1855269

 March 5578521

 March New England 1699449

 March Mid-Atlantic 1911093

 March Southeast US 1967979

 2000 10042570

 2000 New England 3382888

 2000 Mid-Atlantic 3352808

 2000 Southeast US 3306874

 2000 January 2997866

 2000 February 3325690

 2000 March 3719014

 2001 5021285

 2001 New England 1691444

 2001 Mid-Atlantic 1676404

 2001 Southeast US 1653437

 2001 January 1498933

 2001 February 1662845

 2001 March 1859507

30 rows selected.

As you can see, GROUPING_ID makes it easier to filter the output of aggregation operations.
Without the GROUPING_ID function, you have to write a more complex query using the
GROUPING function to achieve the same result. For example, the following query uses
GROUPING rather than GROUPING_ID to display only totals and subtotals. Note the added
complexity in the HAVING clause.

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year, o.month, r.name)

HAVING GROUPING(o.year) > 0

OR GROUPING(o.month) > 0

OR GROUPING(r.name) > 0;

 YEAR MONTH REGION TOTAL

------- --------- -------------------- ----------

 15063855

 New England 5074332

 Mid-Atlantic 5029212

 Southeast US 4960311

 January 4496799

 January New England 1527645

 January Mid-Atlantic 1832091

 January Southeast US 1137063

 February 4988535

 February New England 1847238

 February Mid-Atlantic 1286028

 February Southeast US 1855269

 March 5578521

 March New England 1699449

 March Mid-Atlantic 1911093

 March Southeast US 1967979

 2000 10042570

 2000 New England 3382888

 2000 Mid-Atlantic 3352808

 2000 Southeast US 3306874

 2000 January 2997866

 2000 February 3325690

 2000 March 3719014

 2001 5021285

 2001 New England 1691444

 2001 Mid-Atlantic 1676404

 2001 Southeast US 1653437

 2001 January 1498933

 2001 February 1662845

 2001 March 1859507

30 rows selected.

13.3.2 GROUPING and GROUPING_ID in ORDER BY

The GROUPING and GROUPING_ID functions not only help you filter rows returned from queries
using CUBE and ROLLUP, they can also help you to order those rows in a meaningful way. The
order of the rows in a query's output is not guaranteed unless you use an ORDER BY clause in
the query. However, if you order the results of a CUBE or ROLLUP query by one dimension, the
order of the results may not be meaningful with respect to other dimensions. In such an
aggregate query, you may prefer to order the results based on the number of dimensions
involved rather than by individual dimensions. For example, when executing the previous
section's query, you may prefer to see the output rows in the following order:

Those rows representing an aggregate in one dimension1.

Those rows representing an aggregate in two dimensions2.

Those rows representing an aggregate in three dimensions3.

To achieve this ordering of rows, you need to use an ORDER BY clause that uses a combination
of GROUPING and GROUPING_ID functions, as shown in the following example:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total,

GROUPING_ID (o.year, o.month, r.name) gid,

GROUPING(o.year) + GROUPING(o.month) + GROUPING(r.name) sum_grouping

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY CUBE (o.year, o.month, r.name)

HAVING GROUPING(o.year) > 0

OR GROUPING(o.month) > 0

OR GROUPING(r.name) > 0

ORDER BY (GROUPING(o.year) + GROUPING(o.month) + GROUPING(r.name)),

GROUPING_ID (o.year, o.month, r.name);

 YEAR MONTH REGION TOTAL GID SUM_GROUPING

------ --------- -------------- ---------- ----- ------------

 2000 January 2997866 1 1

 2000 February 3325690 1 1

 2000 March 3719014 1 1

 2001 March 1859507 1 1

 2001 February 1662845 1 1

 2001 January 1498933 1 1

 2000 New England 3382888 2 1

 2001 Mid-Atlantic 1676404 2 1

 2001 Southeast US 1653437 2 1

 2001 New England 1691444 2 1

 2000 Mid-Atlantic 3352808 2 1

 2000 Southeast US 3306874 2 1

 January New England 1527645 4 1

 January Mid-Atlantic 1832091 4 1

 January Southeast US 1137063 4 1

 February Southeast US 1855269 4 1

 March Mid-Atlantic 1911093 4 1

 March New England 1699449 4 1

 February Mid-Atlantic 1286028 4 1

 February New England 1847238 4 1

 March Southeast US 1967979 4 1

 2000 10042570 3 2

 2001 5021285 3 2

 January 4496799 5 2

 March 5578521 5 2

 February 4988535 5 2

 New England 5074332 6 2

 Mid-Atlantic 5029212 6 2

 Southeast US 4960311 6 2

 15063855 7 3

In this output, the aggegate rows for individual dimensions, region, month, and year are shown
first. These are followed by the aggregate rows for two dimensions: month and region, year and
region, and year and month, respectively. The last row is the one aggregated over all three
dimensions.

13.3.3 GROUP_ID

As you saw in previous sections, Oracle9i Database allows you to have repeating grouping
columns and multiple grouping operations in a GROUP BY clause. Some combinations could
result in duplicate rows in the output. The GROUP_ID distinguishes between otherwise duplicate
result rows.

The syntax of the GROUP_ID function is:

SELECT . . . , GROUP_ID()

FROM . . .

GROUP BY . . .

The GROUP_ID function takes no argument, and returns 0 through n - 1, where n is the
occurrence count for duplicates. The first occurrence of a given row in the output of a query will
have a GROUP_ID of 0, the second occurrence of a given row will have a GROUP_ID of 1, and so
forth. The following example illustrates the use of the GROUP_ID function:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total, GROUP_ID()

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY o.year, ROLLUP (o.year, o.month, r.name);

 YEAR MONTH REGION TOTAL GROUP_ID()

---------- --------- -------------------- ---------- ----------

 2000 January Mid-Atlantic 1221394 0

 2000 January New England 1018430 0

 2000 January Southeast US 758042 0

 2000 January 2997866 0

 2000 February Mid-Atlantic 857352 0

 2000 February New England 1231492 0

 2000 February Southeast US 1236846 0

 2000 February 3325690 0

 2000 March Mid-Atlantic 1274062 0

 2000 March New England 1132966 0

 2000 March Southeast US 1311986 0

 2000 March 3719014 0

 2001 January Mid-Atlantic 610697 0

 2001 January New England 509215 0

 2001 January Southeast US 379021 0

 2001 January 1498933 0

 2001 February Mid-Atlantic 428676 0

 2001 February New England 615746 0

 2001 February Southeast US 618423 0

 2001 February 1662845 0

 2001 March Mid-Atlantic 637031 0

 2001 March New England 566483 0

 2001 March Southeast US 655993 0

 2001 March 1859507 0

 2000 10042570 0

 2001 5021285 0

 2000 10042570 1

 2001 5021285 1

28 rows selected.

Note that the value 1 is returned by the GROUP_ID function for the last two rows. These rows
are indeed duplicates of the previous two rows. If you don't want to see the duplicates in your
result set, restrict your query's results to GROUP_ID 0:

SELECT o.year, TO_CHAR(TO_DATE(o.month, 'MM'), 'Month') month,

r.name region, SUM(o.tot_sales) total

FROM all_orders o JOIN region r

ON r.region_id = o.region_id

WHERE o.month BETWEEN 1 AND 3

GROUP BY o.year, ROLLUP (o.year, o.month, r.name)

HAVING GROUP_ID() = 0;

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January New England 1018430

 2000 January Mid-Atlantic 1221394

 2000 January Southeast US 758042

 2000 January 2997866

 2000 February New England 1231492

 2000 February Mid-Atlantic 857352

 2000 February Southeast US 1236846

 2000 February 3325690

 2000 March New England 1132966

 2000 March Mid-Atlantic 1274062

 2000 March Southeast US 1311986

 2000 March 3719014

 2001 January New England 509215

 2001 January Mid-Atlantic 610697

 2001 January Southeast US 379021

 2001 January 1498933

 2001 February New England 615746

 2001 February Mid-Atlantic 428676

 2001 February Southeast US 618423

 2001 February 1662845

 2001 March New England 566483

 2001 March Mid-Atlantic 637031

 2001 March Southeast US 655993

 2001 March 1859507

 2000 10042570

 2001 5021285

26 rows selected.

This version of the query uses HAVING GROUP_ID() = 0 to eliminate the two duplicate totals

from the result set. GROUP_ID is only meaningful in the HAVING clause, because it applies to
summarized data. You can't use GROUP_ID in a WHERE clause, and it wouldn't make sense to
try.

 < Day Day Up >

 < Day Day Up >

Chapter 14. Advanced Analytic SQL
For years, SQL has been criticized for its inability to handle routine decision support queries.
With a host of new analytic functions introduced in Oracle8i, Oracle9i, Database, and Oracle
Database 10g, Oracle has taken giant strides toward eliminating this deficiency. In doing so,
Oracle has further blurred the distinction between its multipurpose relational database server
and other, special-purpose data warehouse and statistical analysis servers.

 < Day Day Up >

 < Day Day Up >

14.1 Analytic SQL Overview

The types of queries issued by Decision Support Systems (DSS) differ from those issued against
OLTP systems. Consider the following business queries:

Find the top 10 salespeople in each sales district last year.

Find all customers whose total orders last year exceeded 20% of the aggregate sales for
their geographic region.

Identify the region that suffered the worst quarter-to-quarter sales decline last year.

Find the best and worst selling menu items by state for each quarter last year.

Queries such as these are staples of DSS, and are used by managers, analysts, marketing
executives, etc., to spot trends, identify outliers, uncover business opportunities, and predict
future business performance. DSS systems typically sit atop data warehouses, in which large
quantities of scrubbed, aggregated data provide fertile grounds for researching and formulating
business decisions.

Although all of the previous queries can be easily expressed in English, they have historically
been difficult to formulate using SQL for the following reasons:

They may require different levels of aggregation of the same data.

They may involve intratable comparisons (comparing one or more rows in a table with
other rows in the same table).

They may require an extra filtering step after the result set has been sorted (i.e., finding
the top 10 and bottom 10 salespeople last month).

Although it is possible to generate the desired results using such SQL features as self joins,
inline views, and user-defined functions, the resulting queries can be difficult to understand and
might yield unacceptably long execution times. To illustrate the difficulty in formulating such
queries, we will walk through the construction of this query: "Find all customers whose total
orders in 2001 exceeded 20% of the aggregate sales for their geographic region."

For this and other examples in this chapter, we use a simple star schema consisting of a single
fact table (called orders) containing aggregated sales information across the following
dimensions: region , salesperson , customer , and month . There are two main facets to this

query, each requiring a different level of aggregation of the same data:

Sum all sales per region last year.

Sum all sales per customer last year.

After these two intermediate result sets have been constructed, each customer's total can be
compared to the total for their region to see if it exceeds 20%. The final result set will show the

customer names along with their total sales, region name, and the percentage of their region's
sales.

The query to aggregate sales by region looks as follows:

SELECT o.region_id region_id, SUM(o.tot_sales) tot_sales

FROM orders o

WHERE o.year = 2001

GROUP BY o.region_id;

REGION_ID TOT_SALES

---------- ----------

 5 6585641

 6 6307766

 7 6868495

 8 6854731

 9 6739374

 10 6238901

The query to aggregate sales by customer would be:

SELECT o.cust_nbr cust_nbr, o.region_id region_id,

 SUM(o.tot_sales) tot_sales

FROM orders o

WHERE o.year = 2001

GROUP BY o.cust_nbr, o.region_id;

 CUST_NBR REGION_ID TOT_SALES

---------- ---------- ----------

 1 5 1151162

 2 5 1224992

 3 5 1161286

 4 5 1878275

 5 5 1169926

 6 6 1788836

 7 6 971585

 8 6 1141638

 9 6 1208959

 10 6 1196748

 11 7 1190421

 12 7 1182275

 13 7 1310434

 14 7 1929774

 15 7 1255591

 16 8 1068467

 17 8 1944281

 18 8 1253840

 19 8 1174421

 20 8 1413722

 21 9 1020541

 22 9 1036146

 23 9 1224992

 24 9 1224992

 25 9 2232703

 26 10 1808949

 27 10 1322747

 28 10 986964

 29 10 903383

 30 10 1216858

By placing each of the two queries in an inline view and joining them on region_id , you can

identify those customers whose total sales exceeds 20% of their region, as in:

SELECT cust_sales.cust_nbr cust_nbr, cust_sales.region_id region_id,

 cust_sales.tot_sales cust_sales, region_sales.tot_sales region_sales

FROM

 (SELECT o.region_id region_id, SUM(o.tot_sales) tot_sales

 FROM orders o

 WHERE o.year = 2001

 GROUP BY o.region_id) region_sales INNER JOIN

 (SELECT o.cust_nbr cust_nbr, o.region_id region_id,

 SUM(o.tot_sales) tot_sales

 FROM orders o

 WHERE o.year = 2001

 GROUP BY o.cust_nbr, o.region_id) cust_sales

 ON cust_sales.region_id = region_sales.region_id

WHERE cust_sales.tot_sales > (region_sales.tot_sales * .2);

 CUST_NBR REGION_ID CUST_SALES REGION_SALES

---------- ---------- ---------- ------------

 4 5 1878275 6585641

 6 6 1788836 6307766

 14 7 1929774 6868495

 17 8 1944281 6854731

 20 8 1413722 6854731

 25 9 2232703 6739374

 26 10 1808949 6238901

 27 10 1322747 6238901

The final step is to join the region and customer dimensions to include the customer and

region names in the result set:

SELECT c.name cust_name,

 big_custs.cust_sales cust_sales, r.name region_name,

 100 * ROUND(big_custs.cust_sales /

 big_custs.region_sales, 2) percent_of_region

FROM

 (SELECT cust_sales.cust_nbr cust_nbr, cust_sales.region_id region_id,

 cust_sales.tot_sales cust_sales,

 region_sales.tot_sales region_sales

 FROM

 (SELECT o.region_id region_id, SUM(o.tot_sales) tot_sales

 FROM orders o

 WHERE o.year = 2001

 GROUP BY o.region_id) region_sales INNER JOIN

 (SELECT o.cust_nbr cust_nbr, o.region_id region_id,

 SUM(o.tot_sales) tot_sales

 FROM orders o

 WHERE o.year = 2001

 GROUP BY o.cust_nbr, o.region_id) cust_sales

 ON cust_sales.region_id = region_sales.region_id

 WHERE cust_sales.tot_sales > (region_sales.tot_sales * .2)) big_custs INNER JOIN

customer c

 ON big_custs.cust_nbr = c.cust_nbr

 INNER JOIN region r

 ON big_custs.region_id = r.region_id;

CUST_NAME CUST_SALES REGION_NAME PERCENT_OF_REGION

---------------------- ---------- -------------------- -----------------

Flowtech Inc. 1878275 New England 29

Spartan Industries 1788836 Mid-Atlantic 28

Madden Industries 1929774 Southeast US 28

Evans Supply Corp. 1944281 Southwest US 28

Malden Labs 1413722 Southwest US 21

Worcester Technologies 2232703 Northwest US 33

Alpha Technologies 1808949 Central US 29

Phillips Labs 1322747 Central US 21

Using nothing more exotic than inline views, therefore, it is possible to construct a single query
that generates the desired results. Such a solution, however, has the following shortcomings:

The query is fairly complex.

Two passes through the same rows of the orders table are required to generate the

different aggregation levels needed by the query.

Let's see how we can both simplify the query and perform the same work in a single pass
through the orders table using one of the new analytic functions. Rather than issuing two

separate queries to aggregate sales per region and per customer, we will create a single query
that aggregates sales over both region and customer, and then call an analytic function that
performs a second level of aggregation to generate total sales per region:

SELECT o.region_id region_id, o.cust_nbr cust_nbr,

 SUM(o.tot_sales) tot_sales,

 SUM(SUM(o.tot_sales)) OVER (PARTITION BY o.region_id) region_sales

FROM orders o

WHERE o.year = 2001

GROUP BY o.region_id, o.cust_nbr;

REGION_ID CUST_NBR TOT_SALES REGION_SALES

---------- ---------- ---------- ------------

 5 1 1151162 6585641

 5 2 1224992 6585641

 5 3 1161286 6585641

 5 4 1878275 6585641

 5 5 1169926 6585641

 6 6 1788836 6307766

 6 7 971585 6307766

 6 8 1141638 6307766

 6 9 1208959 6307766

 6 10 1196748 6307766

 7 11 1190421 6868495

 7 12 1182275 6868495

 7 13 1310434 6868495

 7 14 1929774 6868495

 7 15 1255591 6868495

 8 16 1068467 6854731

 8 17 1944281 6854731

 8 18 1253840 6854731

 8 19 1174421 6854731

 8 20 1413722 6854731

 9 21 1020541 6739374

 9 22 1036146 6739374

 9 23 1224992 6739374

 9 24 1224992 6739374

 9 25 2232703 6739374

 10 26 1808949 6238901

 10 27 1322747 6238901

 10 28 986964 6238901

 10 29 903383 6238901

 10 30 1216858 6238901

The analytic function can be found in line 3 of the previous query and the result has the alias
region_sales . The aggregate function (SUM(o.tot_sales)) in line 2 generates the total sales

per customer and region as directed by the GROUP BY clause, and the analytic function in line 3
aggregates these sums for each region, thereby computing the aggregate sales per region. The

value for the region_sales column is identical for all customers within the same region and is

equal to the sum of all customer sales within that region. We can then wrap the query in an
inline view, filter out those customers with less than 20% of their region's total sales, and join
the region and customer tables to generate the desired result set:

SELECT c.name cust_name,

 cust_sales.tot_sales cust_sales, r.name region_name,

 100 * ROUND(cust_sales.tot_sales /

 cust_sales.region_sales, 2) percent_of_region

FROM

 (SELECT o.region_id region_id, o.cust_nbr cust_nbr,

 SUM(o.tot_sales) tot_sales,

 SUM(SUM(o.tot_sales)) OVER (PARTITION BY o.region_id) region_sales

 FROM orders o

 WHERE o.year = 2001

 GROUP BY o.region_id, o.cust_nbr) cust_sales INNER JOIN region r

 ON cust_sales.region_id = r.region_id

 INNER JOIN customer c

 ON cust_sales.cust_nbr = c.cust_nbr

WHERE cust_sales.tot_sales > (cust_sales.region_sales * .2);

CUST_NAME CUST_SALES REGION_NAME PERCENT_OF_REGION

---------------------- ---------- -------------------- -----------------

Flowtech Inc. 1878275 New England 29

Spartan Industries 1788836 Mid-Atlantic 28

Madden Industries 1929774 Southeast US 28

Evans Supply Corp. 1944281 Southwest US 28

Malden Labs 1413722 Southwest US 21

Worcester Technologies 2232703 Northwest US 33

Alpha Technologies 1808949 Central US 29

Phillips Labs 1322747 Central US 21

Using an inline view saves us from having to join the region and customer tables to the orders
table; otherwise, we would have to include columns from the region and customer tables in

the GROUP BY clause.

Later in this chapter, under "Reporting Functions," we'll get into the details of how the
SUM...OVER function works. For now, you can see that Oracle is performing an aggregation of
an aggregation rather than revisiting the detail rows twice. Thus, the query runs faster and
should also prove easier to understand and maintain once the syntax is familiar.

Unlike built-in functions such as DECODE, GREATEST, and SUBSTR, Oracle's suite of analytic
functions can only be used in the SELECT and ORDER BY clauses of a query. This is because
analytic functions are only executed after the FROM, WHERE, GROUP BY, and HAVING clauses
have been evaluated. After the analytic functions have executed, the query's ORDER BY clause
is evaluated to sort the final result set, and the ORDER BY clause is allowed to reference
columns in the SELECT clause generated via analytic functions as well as specify analytic
functions not found in the SELECT clause.

The remainder of this chapter introduces the Oracle8i Database and Oracle9i Database analytic
functions, grouped by functionality.

 < Day Day Up >

 < Day Day Up >

14.2 Ranking Functions

Determining the performance of a particular business entity compared to its peers is central to a
wide variety of business decisions. Examples include:

Identifying assets with the highest utilization

Determining the worst selling products by region

Finding the best performing salespeople

Prior to the release of Oracle8i Database, you could use the ORDER BY clause to sort a result set
on one or more columns, but any further processing to calculate rankings or percentiles had to
be performed using a procedural language. Beginning with Oracle8i Database, however, you
can take advantage of several new functions to either generate rankings for each row in a result
set or to group rows into buckets for percentile calculations.

14.2.1 RANK, DENSE_RANK, and ROW_NUMBER

The RANK, DENSE_RANK, and ROW_NUMBER functions generate an integer value from 1 to N
for each row, where N is less than or equal to the number of rows in the result set. The
differences in the values returned by these functions revolves around how each one handles
ties:

ROW_NUMBER

Returns a unique number for each row starting with 1. For rows that have duplicate
values, numbers are arbitrarily assigned.

DENSE_RANK

Assigns a unique number for each row starting with 1, except for rows that have duplicate
values, in which case the same ranking is assigned.

RANK

Assigns a unique number for each row starting with 1, except for rows that have duplicate
values, in which case the same ranking is assigned and a gap appears in the sequence for
each duplicate ranking.

An example will best illustrate the differences. First, here is the query to generate the aggregate
sales data by region and customer for the year 2001:

SELECT region_id, cust_nbr,

 SUM(tot_sales) cust_sales

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr

ORDER BY region_id, cust_nbr;

REGION_ID CUST_NBR CUST_SALES

---------- ---------- ----------

 5 1 1151162

 5 2 1224992

 5 3 1161286

 5 4 1878275

 5 5 1169926

 6 6 1788836

 6 7 971585

 6 8 1141638

 6 9 1208959

 6 10 1196748

 7 11 1190421

 7 12 1182275

 7 13 1310434

 7 14 1929774

 7 15 1255591

 8 16 1068467

 8 17 1944281

 8 18 1253840

 8 19 1174421

 8 20 1413722

 9 21 1020541

 9 22 1036146

 9 23 1224992

 9 24 1224992

 9 25 2232703

 10 26 1808949

 10 27 1322747

 10 28 986964

 10 29 903383

 10 30 1216858

Notice that three of the customers (2, 23, and 24) have the same value for total sales
($1,224,992). In the next query, three function calls are added to generate rankings for each
customer across all regions, and the results are then ordered by the ROW_NUMBER function to
make the difference in rankings easier to observe:

SELECT region_id, cust_nbr,

 SUM(tot_sales) cust_sales,

 RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_rank,

 DENSE_RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_dense_rank,

 ROW_NUMBER() OVER (ORDER BY SUM(tot_sales) DESC) sales_number

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr

ORDER BY sales_number;

REGION_ID CUST_NBR CUST_SALES SALES_RANK SALES_DENSE_RANK SALES_NUMBER

---------- ---------- ---------- ---------- ---------------- ------------

 9 25 2232703 1 1 1

 8 17 1944281 2 2 2

 7 14 1929774 3 3 3

 5 4 1878275 4 4 4

 10 26 1808949 5 5 5

 6 6 1788836 6 6 6

 8 20 1413722 7 7 7

 10 27 1322747 8 8 8

 7 13 1310434 9 9 9

 7 15 1255591 10 10 10

 8 18 1253840 11 11 11

 5 2 1224992 12 12 12

 9 23 1224992 12 12 13

 9 24 1224992 12 12 14

 10 30 1216858 15 13 15

 6 9 1208959 16 14 16

 6 10 1196748 17 15 17

 7 11 1190421 18 16 18

 7 12 1182275 19 17 19

 8 19 1174421 20 18 20

 5 5 1169926 21 19 21

 5 3 1161286 22 20 22

 5 1 1151162 23 21 23

 6 8 1141638 24 22 24

 8 16 1068467 25 23 25

 9 22 1036146 26 24 26

 9 21 1020541 27 25 27

 10 28 986964 28 26 28

 6 7 971585 29 27 29

 10 29 903383 30 28 30

Don't be confused by the ORDER BY clause at the end of the query and the ORDER BY clauses
within each function call; the functions use their ORDER BY clauses internally to sort their
results for the purpose of applying a ranking. Thus, each of the three functions applies its
ranking algorithm to the sum of each customer's sales in descending order. The final ORDER BY
clause specifies the results of the ROW_NUMBER function as the sort key for the final result set,
but we could have picked any of the six columns as our sort key.

Both the RANK and DENSE_RANK functions assign the rank of 12 to the three rows with total
sales of $1,224,992, while the ROW_NUMBER function assigns the ranks 12, 13, and 14 to the
same rows. The difference between the RANK and DENSE_RANK functions manifests itself in the
ranking assigned to the next-lowest sales total; the RANK function leaves a gap in the ranking
sequence and assigns a rank of 15 to customer number 30, while the DENSE_RANK function
continues the sequence with a ranking of 13.

Deciding which of the three functions to use depends on the desired outcome. If you want to
identify the top 13 customers from this result set, you would use:

ROW_NUMBER

If you want exactly 13 rows without regard to ties. In this case, one of the customers who
might otherwise be included in the list will be excluded from the final set.

RANK

If you want at least 13 rows but don't want to include rows that would have been
excluded had there been no ties. In this case, you would retrieve 14 rows.

DENSE_RANK

If you want all customers with a ranking of 13 or less, including all duplicates. In this
case, you would retrieve 15 rows.

While the previous query generates rankings across the entire result set, it is also possible to
generate independent sets of rankings across multiple partitions of the result set. The following
query generates rankings for customer sales within each region rather than across all regions.
Note the addition of the PARTITION BY clause:

SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,

 RANK() OVER (PARTITION BY region_id

 ORDER BY SUM(tot_sales) DESC) sales_rank,

 DENSE_RANK() OVER (PARTITION BY region_id

 ORDER BY SUM(tot_sales) DESC) sales_dense_rank,

 ROW_NUMBER() OVER (PARTITION BY region_id

 ORDER BY SUM(tot_sales) DESC) sales_number

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr

ORDER BY region_id, sales_number;

REGION_ID CUST_NBR CUST_SALES SALES_RANK SALES_DENSE_RANK SALES_NUMBER

---------- ---------- ---------- ---------- ---------------- ------------

 5 4 1878275 1 1 1

 5 2 1224992 2 2 2

 5 5 1169926 3 3 3

 5 3 1161286 4 4 4

 5 1 1151162 5 5 5

 6 6 1788836 1 1 1

 6 9 1208959 2 2 2

 6 10 1196748 3 3 3

 6 8 1141638 4 4 4

 6 7 971585 5 5 5

 7 14 1929774 1 1 1

 7 13 1310434 2 2 2

 7 15 1255591 3 3 3

 7 11 1190421 4 4 4

 7 12 1182275 5 5 5

 8 17 1944281 1 1 1

 8 20 1413722 2 2 2

 8 18 1253840 3 3 3

 8 19 1174421 4 4 4

 8 16 1068467 5 5 5

 9 25 2232703 1 1 1

 9 23 1224992 2 2 2

 9 24 1224992 2 2 3

 9 22 1036146 4 3 4

 9 21 1020541 5 4 5

 10 26 1808949 1 1 1

 10 27 1322747 2 2 2

 10 30 1216858 3 3 3

 10 28 986964 4 4 4

 10 29 903383 5 5 5

Each customer receives a ranking between one and five depending on their relation to other
customers in the same region. Of the three customers with duplicate total sales, two of them
are in region 9; as before, the RANK and DENSE_RANK functions generate identical rankings for
both customers.

The PARTITION BY clause used in ranking functions is used to divide a
result set into pieces so that rankings can be applied within each subset.
This is completely different from the PARTITION BY RANGE/HASH/LIST
clauses introduced in Chapter 10 for breaking a table or index into multiple
pieces.

14.2.1.1 Handling NULLs

All ranking functions allow you to specify where in the ranking order NULL values should
appear. This is accomplished by appending either NULLS FIRST or NULLS LAST after the ORDER
BY clause of the function, as in:

SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,

 RANK() OVER (ORDER BY SUM(tot_sales) DESC NULLS LAST) sales_rank

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr;

If omitted, NULL values will either appear last in ascending rankings or first in descending
rankings.

14.2.1.2 Top/bottom N queries

One of the most common uses of a ranked data set is to identify the top N or bottom N
performers. Since you can't call analytic functions from the WHERE or HAVING clauses, you are
forced to generate the rankings for all the rows and then use an outer query to filter out the
unwanted rankings. For example, the following query uses an inline view to identify the top five
salespersons for 2001:

SELECT s.name, sp.sp_sales total_sales

FROM

 (SELECT salesperson_id, SUM(tot_sales) sp_sales,

 RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_rank

 FROM orders

 WHERE year = 2001

 GROUP BY salesperson_id) sp INNER JOIN salesperson s

 ON sp.salesperson_id = s.salesperson_id

WHERE sp.sales_rank <= 5

ORDER BY sp.sales_rank;

NAME TOTAL_SALES

--- -----------

Jeff Blake 1927580

Sam Houseman 1814327

Mark Russell 1784596

John Boorman 1768813

Carl Isaacs 1761814

Tim McGowan 1761814

14.2.1.3 FIRST/LAST

Although there is no function for returning only the top or bottom N from a ranked result set,
Oracle provides functionality for identifying the first (top 1) or last (bottom 1) records in a
ranked set. This is useful for queries such as the following: "Find the regions with the best and
worst total sales last year." Unlike the top five salespeople example from the previous section,
this query needs an additional piece of information—the size of the result set—to answer the
question.

Oracle9i provides the ability to answer such queries efficiently using functions that rank the
result set based on a specified ordering, identify the row with the top or bottom ranking, and

report on any column available in the result set. These functions are composed of three parts:

An ORDER BY clause that specifies how to rank the result set.

The keywords FIRST and LAST to specify whether to use the top or bottom-ranked row.

An aggregate function (i.e., MIN, MAX, AVG, COUNT) used as a tiebreaker in case more
than one row of the result set tie for the FIRST or LAST spot in the ranking.

The following query uses the MIN aggregate function to find the regions that rank FIRST and
LAST by total sales:

SELECT

 MIN(region_id)

 KEEP (DENSE_RANK FIRST ORDER BY SUM(tot_sales) DESC) best_region,

 MIN(region_id)

 KEEP (DENSE_RANK LAST ORDER BY SUM(tot_sales) DESC) worst_region

FROM orders

WHERE year = 2001

GROUP BY region_id;

BEST_REGION WORST_REGION

----------- ------------

 7 10

The use of the MIN function in the previous query is a bit confusing: it is used only if more than
one region ties for either first or last place in the ranking. If there were a tie, the row with the
minimum value for region_id would be chosen. To find out if a tie actually exists, you could

call each function twice using MIN for the first and MAX for the second, and see if they return
the same results:

SELECT

 MIN(region_id)

 KEEP (DENSE_RANK FIRST ORDER BY SUM(tot_sales) DESC) min_best_region,

 MAX(region_id)

 KEEP (DENSE_RANK FIRST ORDER BY SUM(tot_sales) DESC) max_best_region,

 MIN(region_id)

 KEEP (DENSE_RANK LAST ORDER BY SUM(tot_sales) DESC) min_worst_region,

 MAX(region_id)

 KEEP (DENSE_RANK LAST ORDER BY SUM(tot_sales) DESC) max_worst_region

FROM orders

WHERE year = 2001

GROUP BY region_id;

MIN_BEST_REGION MAX_BEST_REGION MIN_WORST_REGION MAX_WORST_REGION

--------------- --------------- ---------------- ----------------

 7 7 10 10

In this case, there are no ties for either first or last place. Depending on the type of data you
are working with, using an aggregate function as a tiebreaker can can be somewhat arbitrary.

14.2.2 NTILE

Another way rankings are commonly used is to generate buckets into which sets of rankings are
grouped. For example, you may want to find those customers whose total sales ranked in the
top 25%. The following query uses the NTILE function to group the customers into four buckets
(or quartiles):

SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,

 NTILE(4) OVER (ORDER BY SUM(tot_sales) DESC) sales_quartile

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr

ORDER BY sales_quartile, cust_sales DESC;

REGION_ID CUST_NBR CUST_SALES SALES_QUARTILE

---------- ---------- ---------- --------------

 9 25 2232703 1

 8 17 1944281 1

 7 14 1929774 1

 5 4 1878275 1

 10 26 1808949 1

 6 6 1788836 1

 8 20 1413722 1

 10 27 1322747 1

 7 13 1310434 2

 7 15 1255591 2

 8 18 1253840 2

 5 2 1224992 2

 9 23 1224992 2

 9 24 1224992 2

 10 30 1216858 2

 6 9 1208959 2

 6 10 1196748 3

 7 11 1190421 3

 7 12 1182275 3

 8 19 1174421 3

 5 5 1169926 3

 5 3 1161286 3

 5 1 1151162 3

 6 8 1141638 4

 8 16 1068467 4

 9 22 1036146 4

 9 21 1020541 4

 10 28 986964 4

 6 7 971585 4

 10 29 903383 4

The sales_quartile column in this query specifies NTILE(4) to create four buckets. The NTILE

function finds each row's place in the ranking, and then assigns each row to a bucket such that

every bucket contains the same number of rows. If the number of rows is not evenly divisible by
the number of buckets, then the extra rows are distributed so that the number of rows per
bucket differs by one at most. In the previous example, there are four buckets allocated for 30
rows, with buckets one and two containing eight rows each, and buckets three and four
containing seven rows each. This approach is referred to as equiheight buckets because each
bucket contains (optimally) the same number of rows.

Just like in the top N query discussed earlier, you will need to wrap the query in an inline view if
you want to filter on the NTILE result:

SELECT r.name region, c.name customer, cs.cust_sales

FROM

 (SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,

 NTILE(4) OVER (ORDER BY SUM(tot_sales) DESC) sales_quartile

 FROM orders

 WHERE year = 2001

 GROUP BY region_id, cust_nbr) cs INNER JOIN customer c

 ON cs.cust_nbr = c.cust_nbr

 INNER JOIN region r

 ON cs.region_id = r.region_id

WHERE cs.sales_quartile = 1

ORDER BY cs.cust_sales DESC;

REGION CUSTOMER CUST_SALES

-------------------- ------------------------------ ----------

Northwest US Worcester Technologies 2232703

Southwest US Evans Supply Corp. 1944281

Southeast US Madden Industries 1929774

New England Flowtech Inc. 1878275

Central US Alpha Technologies 1808949

Mid-Atlantic Spartan Industries 1788836

Southwest US Malden Labs 1413722

Central US Phillips Labs 1322747

The outer query filters on sales_quartile = 1, which removes all rows not in the top 25% of
sales, and then joins the region and customer dimensions to generate the final results.

14.2.3 WIDTH_BUCKET

Similar to the NTILE function, the WIDTH_BUCKET function groups rows of the result set into
buckets. Unlike NTILE, however, the WIDTH_BUCKET function attempts to create equiwidth
buckets, meaning that the range of values is evenly distributed across the buckets. If your data
were distributed across a bell curve, therefore, you could expect the buckets representing the
low and high ranges of the bell curve to contain few records, whereas the buckets representing
the middle ranges would contain many records.

WIDTH_BUCKET can operate on numeric or date types, and takes the following four
parameters:

The expression that generates the buckets

The value used as the start of the range for bucket #1

The value used as the end of the range for bucket #N

The number of buckets to create (N)

WIDTH_BUCKET uses the values of the second, third, and fourth parameters to generate N
buckets containing comparable ranges. If the expression yields values that fall outside the
range specified by the second and third parameters, the WIDTH_BUCKET function will generate
two additional buckets, numbered 0 and N + 1, into which the outliers are placed. If you want
to work with the entire result set, you need to make sure your values for the second and third
parameters completely enclose the range of values in the result set. However, if you only wish
to work with a subset of the data, you can specify values for the second and third parameters
that enclose the desired range, and any rows falling outside the range will be placed into
buckets 0 and N + 1.

Here's an example that uses the NTILE example from earlier to generate three buckets for the
total sales per customer:

SELECT region_id, cust_nbr,

 SUM(tot_sales) cust_sales,

 WIDTH_BUCKET(SUM(tot_sales), 1, 3000000, 3) sales_buckets

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr

ORDER BY cust_sales;

REGION_ID CUST_NBR CUST_SALES SALES_BUCKETS

---------- ---------- ---------- -------------

 10 29 903383 1

 6 7 971585 1

 10 28 986964 1

 9 21 1020541 2

 9 22 1036146 2

 8 16 1068467 2

 6 8 1141638 2

 5 1 1151162 2

 5 3 1161286 2

 5 5 1169926 2

 8 19 1174421 2

 7 12 1182275 2

 7 11 1190421 2

 6 10 1196748 2

 6 9 1208959 2

 10 30 1216858 2

 5 2 1224992 2

 9 24 1224992 2

 9 23 1224992 2

 8 18 1253840 2

 7 15 1255591 2

 7 13 1310434 2

 10 27 1322747 2

 8 20 1413722 2

 6 6 1788836 2

 10 26 1808949 2

 5 4 1878275 2

 7 14 1929774 2

 8 17 1944281 2

 9 25 2232703 3

Based on these parameters, the WIDTH_BUCKET function generates three buckets; the first
bucket starts at 1, and the third bucket has an upper range of 3,000,000. Since there are three
buckets, the ranges for each bucket will be 1 to 1,000,000, 1,000,001 to 2,000,000, and
2,000,001 to 3,000,000. When the rows are placed in the appropriate bucket, there are three
rows that fall into bucket #1, a single row that falls in bucket #3, and the remaining 26 rows
that fall into the second bucket.

The values 1 and 3,000,000 were chosen to guarantee that all rows in the result set would be
placed into one of the three buckets. If you want to generate buckets only for rows that have
aggregate sales between $1,000,000 and $2,000,000, the WIDTH_BUCKET function will place
the remaining rows in the 0th and 4th buckets:

SELECT region_id, cust_nbr,

 SUM(tot_sales) cust_sales,

 WIDTH_BUCKET(SUM(tot_sales), 1000000, 2000000, 3) sales_buckets

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr

ORDER BY cust_sales;

REGION_ID CUST_NBR CUST_SALES SALES_BUCKETS

---------- ---------- ---------- -------------

 10 29 903383 0

 6 7 971585 0

 10 28 986964 0

 9 21 1020541 1

 9 22 1036146 1

 8 16 1068467 1

 6 8 1141638 1

 5 1 1151162 1

 5 3 1161286 1

 5 5 1169926 1

 8 19 1174421 1

 7 12 1182275 1

 7 11 1190421 1

 6 10 1196748 1

 6 9 1208959 1

 10 30 1216858 1

 5 2 1224992 1

 9 24 1224992 1

 9 23 1224992 1

 8 18 1253840 1

 7 15 1255591 1

 7 13 1310434 1

 10 27 1322747 1

 8 20 1413722 2

 6 6 1788836 3

 10 26 1808949 3

 5 4 1878275 3

 7 14 1929774 3

 8 17 1944281 3

 9 25 2232703 4

Keep in mind that the WIDTH_BUCKET function does not remove rows from the result set that
do not lie within the specified range; rather, they are placed into special buckets that your
query can either utilize or ignore as needed.

14.2.4 CUME_DIST and PERCENT_RANK

The final two ranking functions, CUME_DIST and PERCENT_RANK, use the rank of a particular
row to calculate additional information. The CUME_DIST function (short for Cumulative
Distribution) calculates the ratio of the number of rows that have a lesser or equal ranking to

the total number of rows in the partition. The PERCENT_RANK function calculates the ratio of a
row's ranking to the number of rows in the partition using the formula:

(RRP -- 1) / (NRP -- 1)

where RRP is the "rank of row in partition," and NRP is the "number of rows in partition."

Both functions utilize DENSE_RANK for their rankings and can be specified to be in ascending or
descending order. The following query demonstrates the use of these two functions (both
specifying descending order) with the customer yearly sales query:

SELECT region_id, cust_nbr,

 SUM(tot_sales) cust_sales,

 CUME_DIST() OVER (ORDER BY SUM(tot_sales) DESC) sales_cume_dist,

 PERCENT_RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_percent_rank

FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr

ORDER BY cust_sales DESC;

REGION_ID CUST_NBR CUST_SALES SALES_CUME_DIST SALES_PERCENT_RANK

---------- ---------- ---------- --------------- ------------------

 9 25 2232703 .033333333 0

 8 17 1944281 .066666667 .034482759

 7 14 1929774 .1 .068965517

 5 4 1878275 .133333333 .103448276

 10 26 1808949 .166666667 .137931034

 6 6 1788836 .2 .172413793

 8 20 1413722 .233333333 .206896552

 10 27 1322747 .266666667 .24137931

 7 13 1310434 .3 .275862069

 7 15 1255591 .333333333 .310344828

 8 18 1253840 .366666667 .344827586

 5 2 1224992 .466666667 .379310345

 9 23 1224992 .466666667 .379310345

 9 24 1224992 .466666667 .379310345

 10 30 1216858 .5 .482758621

 6 9 1208959 .533333333 .517241379

 6 10 1196748 .566666667 .551724138

 7 11 1190421 .6 .586206897

 7 12 1182275 .633333333 .620689655

 8 19 1174421 .666666667 .655172414

 5 5 1169926 .7 .689655172

 5 3 1161286 .733333333 .724137931

 5 1 1151162 .766666667 .75862069

 6 8 1141638 .8 .793103448

 8 16 1068467 .833333333 .827586207

 9 22 1036146 .866666667 .862068966

 9 21 1020541 .9 .896551724

 10 28 986964 .933333333 .931034483

 6 7 971585 .966666667 .965517241

 10 29 903383 1 1

Let's walk through a couple of calculations for customer number 1 in the previous result set.
With total sales of $1,151,162, customer number 1 ranks 23rd in the set of 30 customers in
descending order of sales. Since there are a total of 30 rows, the CUME_DIST is equal to 23/30,
or .766666667. The PERCENT_RANK function yields (23 - 1) / (30 - 1) = .75862069. It should
come as no surprise that each function returns identical values for the rows that have identical
sales totals, since the calculations are based on rank, which is identical for all three rows.

14.2.5 Hypothetical Functions

For some types of analysis, determining what might have happened is more revealing than
knowing what really happened. Oracle provides special versions of RANK, DENSE_RANK,
CUME_DIST, and PERCENT_RANK that allow rankings and distributions to be calculated for
hypothetical data, allowing the user to see what would have happened if a specific value (or set
of values) was included in a data set.

To illustrate this concept, let's rank all customers by total sales for 2001, and then see where a
hypothetical sales figure would fall in the ranking. Here is the query that generates the rankings
and distributions:

SELECT cust_nbr, SUM(tot_sales) cust_sales,

 RANK() OVER (ORDER BY SUM(tot_sales) DESC) rank,

 DENSE_RANK() OVER (ORDER BY SUM(tot_sales) DESC) dense_rank,

 CUME_DIST() OVER (ORDER BY SUM(tot_sales) DESC) cume_dist,

 PERCENT_RANK() OVER (ORDER BY SUM(tot_sales) DESC) percent_rank

FROM orders

WHERE year = 2001

GROUP BY cust_nbr

ORDER BY rank;

 CUST_NBR CUST_SALES RANK DENSE_RANK CUME_DIST PERCENT_RANK

---------- ---------- ---------- ---------- ---------- ------------

 25 2232703 1 1 .033333333 0

 17 1944281 2 2 .066666667 .034482759

 14 1929774 3 3 .1 .068965517

 4 1878275 4 4 .133333333 .103448276

 26 1808949 5 5 .166666667 .137931034

 6 1788836 6 6 .2 .172413793

 20 1413722 7 7 .233333333 .206896552

 27 1322747 8 8 .266666667 .24137931

 13 1310434 9 9 .3 .275862069

 15 1255591 10 10 .333333333 .310344828

 18 1253840 11 11 .366666667 .344827586

 2 1224992 12 12 .466666667 .379310345

 23 1224992 12 12 .466666667 .379310345

 24 1224992 12 12 .466666667 .379310345

 30 1216858 15 13 .5 .482758621

 9 1208959 16 14 .533333333 .517241379

 10 1196748 17 15 .566666667 .551724138

 11 1190421 18 16 .6 .586206897

 12 1182275 19 17 .633333333 .620689655

 19 1174421 20 18 .666666667 .655172414

 5 1169926 21 19 .7 .689655172

 3 1161286 22 20 .733333333 .724137931

 1 1151162 23 21 .766666667 .75862069

 8 1141638 24 22 .8 .793103448

 16 1068467 25 23 .833333333 .827586207

 22 1036146 26 24 .866666667 .862068966

 21 1020541 27 25 .9 .896551724

 28 986964 28 26 .933333333 .931034483

 7 971585 29 27 .966666667 .965517241

 29 903383 30 28 1 1

Now let's see where a customer with an even million dollars of sales would have ranked:

SELECT

 RANK(1000000) WITHIN GROUP

 (ORDER BY SUM(tot_sales) DESC) hyp_rank,

 DENSE_RANK(1000000) WITHIN GROUP

 (ORDER BY SUM(tot_sales) DESC) hyp_dense_rank,

 CUME_DIST(1000000) WITHIN GROUP

 (ORDER BY SUM(tot_sales) DESC) hyp_cume_dist,

 PERCENT_RANK(1000000) WITHIN GROUP

 (ORDER BY SUM(tot_sales) DESC) hyp_percent_rank

FROM orders

WHERE year = 2001

GROUP BY cust_nbr;

 HYP_RANK HYP_DENSE_RANK HYP_CUME_DIST HYP_PERCENT_RANK

---------- -------------- ------------- ----------------

 28 26 .903225806 .9

The WITHIN GROUP clause has the effect of injecting a fictitious row into the result set before
determining the rankings. One possible use of this functionality would be to see how actual
sales compare to sales targets.

 < Day Day Up >

 < Day Day Up >

14.3 Windowing Functions

The ranking functions described thus far are quite useful when comparing items within a fixed
window of time, such as "last year" or "second quarter." But what if you want to perform
computations using a window that slides as you progress through the data set? Oracle's
windowing functions allow aggregates to be calculated for each row in a result set based on a
specified window. The aggregation window can be defined in one of three ways:

By specifying a set of rows: "From the current row to the end of the partition"

By specifying a time interval: "For the 30 days preceding the transaction date"

By specifying a range of values: "All rows having a transaction amount within 5% of the
current row's transaction amount"

The first set of examples will generate a window that fills the entire partition, and then show
how the window can be detached from one or both ends of the partition so that it floats with the
current row. All of the examples will be based on the following query, which calculates total
monthly sales in 2001 for the Mid-Atlantic region:

SELECT month,

 SUM(tot_sales) monthly_sales

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES

---------- -------------

 1 610697

 2 428676

 3 637031

 4 541146

 5 592935

 6 501485

 7 606914

 8 460520

 9 392898

 10 510117

 11 532889

 12 492458

The first step is to sum the monthly sales for the entire result set by specifying an "unbounded"
window. Note the ROWS BETWEEN clause in the following example:

SELECT month,

 SUM(tot_sales) monthly_sales,

 SUM(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) total_sales

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES TOTAL_SALES

---------- ------------- -----------

 1 610697 6307766

 2 428676 6307766

 3 637031 6307766

 4 541146 6307766

 5 592935 6307766

 6 501485 6307766

 7 606914 6307766

 8 460520 6307766

 9 392898 6307766

 10 510117 6307766

 11 532889 6307766

 12 492458 6307766

Each time the function executes, it sums the monthly sales from months 1 through 12; thus, the
same calculation is being performed 12 times. This is a rather inefficient way to generate the
yearly sales total (see Section 14.4 later in this chapter for a better method), but it should give
you an idea of the syntax for building an aggregation window. The next query will create a
window that spans from the top of the partition to the current row. The function identifies the
month that has the maximum sales, up to and including the current month:

SELECT month,

 SUM(tot_sales) monthly_sales,

 MAX(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) max_preceeding

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES MAX_PRECEEDING

---------- ------------- --------------

 1 610697 610697

 2 428676 610697

 3 637031 637031

 4 541146 637031

 5 592935 637031

 6 501485 637031

 7 606914 637031

 8 460520 637031

 9 392898 637031

 10 510117 637031

 11 532889 637031

 12 492458 637031

Unlike the first query, which has a window size fixed at 12 rows, this query's aggregation
window grows from a single row for month 1 to 12 rows for month 12. The keywords CURRENT
ROW are used to indicate that the window should end at the current row being inspected by the
function. If you replace MAX in the previous query with SUM, you can calculate a running total:

SELECT month,

 SUM(tot_sales) monthly_sales,

 SUM(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) running_total

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES RUNNING_TOTAL

---------- ------------- --------------

 1 610697 610697

 2 428676 1039373

 3 637031 1676404

 4 541146 2217550

 5 592935 2810485

 6 501485 3311970

 7 606914 3918884

 8 460520 4379404

 9 392898 4772302

 10 510117 5282419

 11 532889 5815308

 12 492458 6307766

You have now seen examples using windows that are fixed at one or both ends. The next query
will define a window that floats freely with each row:

SELECT month,

 SUM(tot_sales) monthly_sales,

 AVG(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) rolling_avg

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES ROLLING_AVG

---------- ------------- -----------

 1 610697 519686.5

 2 428676 558801.333

 3 637031 535617.667

 4 541146 590370.667

 5 592935 545188.667

 6 501485 567111.333

 7 606914 522973

 8 460520 486777.333

 9 392898 454511.667

 10 510117 478634.667

 11 532889 511821.333

 12 492458 512673.5

For each of the 12 rows, the function calculates the average sales of the current month, the
previous month, and the following month. The value of the ROLLING_AVG column is therefore
the average sales within a three month floating window centered on the current month, with the
exception that months 1 and 12 are calculated using a two-month window, since there is no
previous month for month 1 or following month for month 12.

14.3.1 Working with Ranges

The previous windowing examples use the ROWS BETWEEN option to specify which rows to
include in the aggregation. You may alternately specify a range and let Oracle determine which
rows lie within the range. For example, the previous query used ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING to generate a three-month rolling average; the same results can be achieved

by substituting RANGE for ROWS:

SELECT month,

 SUM(tot_sales) monthly_sales,

 AVG(SUM(tot_sales)) OVER (ORDER BY month

 RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING) rolling_avg

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES ROLLING_AVG

---------- ------------- -----------

 1 610697 519686.5

 2 428676 558801.333

 3 637031 535617.667

 4 541146 590370.667

 5 592935 545188.667

 6 501485 567111.333

 7 606914 522973

 8 460520 486777.333

 9 392898 454511.667

 10 510117 478634.667

 11 532889 511821.333

 12 492458 512673.5

This substitution works because the month column contains integer values, so adding and
subtracting 1 from the current month yields a three-month range. The next variation achieves
the same results but specifies a range of +/- 1.999:

SELECT month,

 SUM(tot_sales) monthly_sales,

 AVG(SUM(tot_sales)) OVER (ORDER BY month

 RANGE BETWEEN 1.999 PRECEDING AND 1.999 FOLLOWING) rolling_avg

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES ROLLING_AVG

---------- ------------- -----------

 1 610697 519686.5

 2 428676 558801.333

 3 637031 535617.667

 4 541146 590370.667

 5 592935 545188.667

 6 501485 567111.333

 7 606914 522973

 8 460520 486777.333

 9 392898 454511.667

 10 510117 478634.667

 11 532889 511821.333

 12 492458 512673.5

If you are generating a window based on a DATE column, you can specify a range in increments
of days, months, or years. Since the orders table has no DATE columns, the next example
shows how a date range can be specified against the order_dt column of the cust_order

table:

SELECT TRUNC(order_dt) day,

 SUM(sale_price) daily_sales,

 AVG(SUM(sale_price)) OVER (ORDER BY TRUNC(order_dt)

 RANGE BETWEEN INTERVAL '2' DAY PRECEDING

 AND INTERVAL '2' DAY FOLLOWING) five_day_avg

FROM cust_order

WHERE sale_price IS NOT NULL

 AND order_dt BETWEEN TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND TO_DATE('31-JUL-2001','DD-MON-YYYY')

GROUP BY TRUNC(order_dt);

DAY DAILY_SALES FIVE_DAY_AVG

--------- ----------- ------------

16-JUL-01 112 146

18-JUL-01 180 114

20-JUL-01 50 169

21-JUL-01 50 165.333333

22-JUL-01 396 165.333333

This query generates a five-day rolling window by specifying a range of +/- two days around
the truncated order date.

14.3.2 FIRST_VALUE and LAST_VALUE

Oracle provides two additional aggregate functions, called FIRST_VALUE and LAST_VALUE, that
can be used with windowing functions to identify the values of the first and last values in the
window. In the case of the three-month rolling average query shown previously, you could
display the values of all three months along with the average of the three, as in:

SELECT month,

 FIRST_VALUE(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) prev_month,

 SUM(tot_sales) monthly_sales,

 LAST_VALUE(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) next_month,

 AVG(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) rolling_avg

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH PREV_MONTH MONTHLY_SALES NEXT_MONTH ROLLING_AVG

---------- ---------- ------------- ---------- -----------

 1 610697 610697 428676 519686.5

 2 610697 428676 637031 558801.333

 3 428676 637031 541146 535617.667

 4 637031 541146 592935 590370.667

 5 541146 592935 501485 545188.667

 6 592935 501485 606914 567111.333

 7 501485 606914 460520 522973

 8 606914 460520 392898 486777.333

 9 460520 392898 510117 454511.667

 10 392898 510117 532889 478634.667

 11 510117 532889 492458 511821.333

 12 532889 492458 492458 512673.5

These functions are useful for queries that compare each value to the first or last value in the
period, such as: "How did each month's sales compare to the first month?"

14.3.3 LAG/LEAD Functions

Although not technically windowing functions, the LAG and LEAD functions are included here
because they allow rows to be referenced by their position relative to the current row, much like
the PRECEDING and FOLLOWING clauses within windowing functions. LAG and LEAD are useful
for comparing one row of a result set with another row of the same result set. For example, the
query "Compute the total sales per month for the Mid-Atlantic region, including the percent
change from the previous month" requires data from both the current and preceding rows to
calculate the answer. This is, in effect, a two-row window, but the offset from the current row
can be specified as one or more rows, making LAG and LEAD act like specialized windowing
functions where only the outer edges of the window are utilized.

Here is the SQL that uses the LAG function to generate the data needed to answer the question
posed in the previous paragraph:

SELECT month,

 SUM(tot_sales) monthly_sales,

 LAG(SUM(tot_sales), 1) OVER (ORDER BY month) prev_month_sales

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES PREV_MONTH_SALES

---------- ------------- ----------------

 1 610697

 2 428676 610697

 3 637031 428676

 4 541146 637031

 5 592935 541146

 6 501485 592935

 7 606914 501485

 8 460520 606914

 9 392898 460520

 10 510117 392898

 11 532889 510117

 12 492458 532889

As you might expect, the LAG value for month 1 is NULL, since there is no preceding month.
This would also be the case for the LEAD value for month 12. If you would like the LAG and
LEAD functions to return a non-NULL value for these cases, you can specify a substitute value
via the optional third parameter (see next example).

The next query utilizes the output from the previous query to generate the percentage
difference from month to month. Note how a third parameter has been specified for the LAG
function so that month 1 will use the current month's sales instead of a NULL value for the
percentage change:

SELECT months.month month, months.monthly_sales monthly_sales,

 ROUND((months.monthly_sales - months.prev_month_sales) /

 months.prev_month_sales, 3) * 100 percent_change

FROM

 (SELECT month,

 SUM(tot_sales) monthly_sales,

 LAG(SUM(tot_sales), 1, SUM(tot_sales))

 OVER (ORDER BY month) prev_month_sales

 FROM orders

 WHERE year = 2001

 AND region_id = 6

 GROUP BY month) months

ORDER BY month;

 MONTH MONTHLY_SALES PERCENT_CHANGE

---------- ------------- --------------

 1 610697 0

 2 428676 -29.8

 3 637031 48.6

 4 541146 -15.1

 5 592935 9.6

 6 501485 -15.4

 7 606914 21

 8 460520 -24.1

 9 392898 -14.7

 10 510117 29.8

 11 532889 4.5

 12 492458 -7.6

 < Day Day Up >

 < Day Day Up >

14.4 Reporting Functions

Similar to the windowing functions described earlier, reporting functions allow the execution of
various aggregate functions (MIN, MAX, SUM, COUNT, AVG, etc.) against a result set. Unlike
windowing functions, however, the reporting functions cannot specify localized windows and
thus generate the same result for each entire partition (or the entire result set, if no partitions
are specified). Therefore, anything that can be accomplished using a reporting function can also
be accomplished using a windowing function with an unbounded window, although it will
generally be more efficient to use the reporting function.

Earlier in the chapter, we used a windowing function with an unbounded reporting window to
generate the total sales for the 12 months of 2001:

SELECT month,

 SUM(tot_sales) monthly_sales,

 SUM(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) total_sales

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES TOTAL_SALES

---------- ------------- -----------

 1 610697 6307766

 2 428676 6307766

 3 637031 6307766

 4 541146 6307766

 5 592935 6307766

 6 501485 6307766

 7 606914 6307766

 8 460520 6307766

 9 392898 6307766

 10 510117 6307766

 11 532889 6307766

 12 492458 6307766

The next query adds a reporting function to generate the same results:

SELECT month,

 SUM(tot_sales) monthly_sales,

 SUM(SUM(tot_sales)) OVER (ORDER BY month

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) window_sales,

 SUM(SUM(tot_sales)) OVER () reporting_sales

FROM orders

WHERE year = 2001

 AND region_id = 6

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES WINDOW_SALES REPORTING_SALES

---------- ------------- ------------ ---------------

 1 610697 6307766 6307766

 2 428676 6307766 6307766

 3 637031 6307766 6307766

 4 541146 6307766 6307766

 5 592935 6307766 6307766

 6 501485 6307766 6307766

 7 606914 6307766 6307766

 8 460520 6307766 6307766

 9 392898 6307766 6307766

 10 510117 6307766 6307766

 11 532889 6307766 6307766

 12 492458 6307766 6307766

The empty parentheses after the OVER clause for the reporting_sales column indicate that

the entire result set should be included in the sum, which has the same effect as using an
unbounded window function. Hopefully, you will agree that the reporting function is easier to
understand than the unbounded window function.

Reporting functions are useful when you need both detail and aggregate data (or different
aggregation levels) to answer a business query. For example, the query "Show the monthly
sales totals for 2001 along with each month's percentage of yearly sales" requires the detail
rows to be aggregated first to the month level, and then to the year level to answer the
question. Rather than computing both aggregations from the detail rows, you can use the SUM
function with a GROUP BY clause to aggregate to the month level, and then use a reporting
function to aggregate the monthly totals, as in:

SELECT month,

 SUM(tot_sales) monthly_sales,

 SUM(SUM(tot_sales)) OVER () yearly_sales

FROM orders

WHERE year = 2001

GROUP BY month

ORDER BY month;

 MONTH MONTHLY_SALES YEARLY_SALES

---------- ------------- ------------

 1 3028325 39594908

 2 3289336 39594908

 3 3411024 39594908

 4 3436482 39594908

 5 3749264 39594908

 6 3204730 39594908

 7 3233532 39594908

 8 3081290 39594908

 9 3388292 39594908

 10 3279637 39594908

 11 3167858 39594908

 12 3325138 39594908

You would then simply divide MONTHLY_SALES by YEARLY_SALES to compute the requested
percentage (see Section 14.4.2 later in the chapter).

14.4.1 Report Partitions

Like ranking functions, reporting functions can include PARTITION BY clauses to split the result
set into multiple pieces, allowing multiple aggregations to be computed across different subsets
of the result set. The following query generates total sales per salesperson per region along with
the total regional sales for comparison:

SELECT region_id, salesperson_id,

 SUM(tot_sales) sp_sales,

 SUM(SUM(tot_sales)) OVER (PARTITION BY region_id) region_sales

FROM orders

WHERE year = 2001

GROUP BY region_id, salesperson_id

ORDER BY region_id, salesperson_id;

REGION_ID SALESPERSON_ID SP_SALES REGION_SALES

---------- -------------- ---------- ------------

 5 1 1927580 6585641

 5 2 1461898 6585641

 5 3 1501039 6585641

 5 4 1695124 6585641

 6 5 1688252 6307766

 6 6 1392648 6307766

 6 7 1458053 6307766

 6 8 1768813 6307766

 7 9 1735575 6868495

 7 10 1723305 6868495

 7 11 1737093 6868495

 7 12 1672522 6868495

 8 13 1516776 6854731

 8 14 1814327 6854731

 8 15 1761814 6854731

 8 16 1761814 6854731

 9 17 1710831 6739374

 9 18 1625456 6739374

 9 19 1645204 6739374

 9 20 1757883 6739374

 10 21 1542152 6238901

 10 22 1468316 6238901

 10 23 1443837 6238901

 10 24 1784596 6238901

The value for the REGION_SALES column is the same for all salespeople in the same region. In
the next section, you will see two different approaches for using this information to generate
percentage calculations.

14.4.2 RATIO_TO_REPORT

One of the more common uses of reporting functions is to generate the value of the
denominator for performance calculations. With the query from the previous section, for
example, the next logical step would be to divide each salesperson's total sales (SP_SALES) by
the total region sales (REGION_SALES) to determine what ratio of the total region sales can be

attributed to each salesperson. One option is to use the reporting function as the denominator
in the percentage calculation, as in:

SELECT region_id, salesperson_id,

 SUM(tot_sales) sp_sales,

 ROUND(SUM(tot_sales) /

 SUM(SUM(tot_sales)) OVER (PARTITION BY region_id),

 2) percent_of_region

FROM orders

WHERE year = 2001

GROUP BY region_id, salesperson_id

ORDER BY region_id, salesperson_id;

REGION_ID SALESPERSON_ID SP_SALES PERCENT_OF_REGION

---------- -------------- ---------- -----------------

 5 1 1927580 .29

 5 2 1461898 .22

 5 3 1501039 .23

 5 4 1695124 .26

 6 5 1688252 .27

 6 6 1392648 .22

 6 7 1458053 .23

 6 8 1768813 .28

 7 9 1735575 .25

 7 10 1723305 .25

 7 11 1737093 .25

 7 12 1672522 .24

 8 13 1516776 .22

 8 14 1814327 .26

 8 15 1761814 .26

 8 16 1761814 .26

 9 17 1710831 .25

 9 18 1625456 .24

 9 19 1645204 .24

 9 20 1757883 .26

 10 21 1542152 .25

 10 22 1468316 .24

 10 23 1443837 .23

 10 24 1784596 .29

Because this is such a common operation, however, Oracle has spared us the trouble by
including the RATIO_TO_REPORT function. The RATIO_TO_REPORT function allows you to
calculate each row's contribution to either the entire result set, or some subset of the result set
if the PARTITION BY clause is included. The next query uses RATIO_TO_REPORT to generate the
percentage contribution of each salesperson to her region's total sales:

SELECT region_id, salesperson_id,

 SUM(tot_sales) sp_sales,

 ROUND(RATIO_TO_REPORT(SUM(tot_sales))

 OVER (PARTITION BY region_id), 2) sp_ratio

FROM orders

WHERE year = 2001

GROUP BY region_id, salesperson_id

ORDER BY region_id, salesperson_id;

REGION_ID SALESPERSON_ID SP_SALES SP_RATIO

---------- -------------- ---------- ----------

 5 1 1927580 .29

 5 2 1461898 .22

 5 3 1501039 .23

 5 4 1695124 .26

 6 5 1688252 .27

 6 6 1392648 .22

 6 7 1458053 .23

 6 8 1768813 .28

 7 9 1735575 .25

 7 10 1723305 .25

 7 11 1737093 .25

 7 12 1672522 .24

 8 13 1516776 .22

 8 14 1814327 .26

 8 15 1761814 .26

 8 16 1761814 .26

 9 17 1710831 .25

 9 18 1625456 .24

 9 19 1645204 .24

 9 20 1757883 .26

 10 21 1542152 .25

 10 22 1468316 .24

 10 23 1443837 .23

 10 24 1784596 .29

 < Day Day Up >

 < Day Day Up >

14.5 Summary

We have covered a lot of ground in this chapter, so don't feel bad if it takes a couple of passes
to get a feel for all of the different analytic functions and how they can be applied. You'll find the
material easier to digest if you concentrate on one category at a time (Ranking, Windowing,
Reporting). If you've been working with Oracle for many years, you are probably chomping at
the bit to give these functions a try. Along with being compact and efficient, Oracle's analytic
functions keep analytical calculations where they belong—in the database server—instead of
relying on procedural languages or spreadsheet macros to finish the job.

 < Day Day Up >

 < Day Day Up >

Chapter 15. SQL Best Practices
Writing maintainable and efficient SQL statements requires a good deal of experience. You can
write a SQL query in many different ways, each giving the same result, but one can be a
hundred times slower than another, or one can be easier to understand and maintain than the
other.

 < Day Day Up >

 < Day Day Up >

15.1 Know When to Use Specific Constructs

Depending on the circumstances, certain SQL constructs are preferable to others. For example,
use of the EXISTS predicate is often preferable to DISTINCT. The next sections discuss the
usage of such constructs.

15.1.1 EXISTS Is Preferable to DISTINCT

The DISTINCT keyword used in a SELECT clause eliminates duplicate rows in the result set. To
eliminate those duplicates, Oracle performs a sort, and that sort requires time and disk space.
Therefore, avoid using DISTINCT if you can tolerate having duplicate rows returned by a query.
If you can't tolerate the duplicate rows, or your application can't handle them, use EXISTS in
place of DISTINCT.

For example, assume you are trying to find the names of customers who have orders. Your
query has to be based on two tables: customer and cust_order. Using DISTINCT, your query

would be written as follows:

SELECT DISTINCT c.cust_nbr, c.name

FROM customer c JOIN cust_order o

ON c.cust_nbr = o.cust_nbr;

The corresponding execution plan for this query is as follows. Note the SORT operation, which is
a result of DISTINCT being used.

Query Plan

SELECT STATEMENT Cost = 3056

 SORT UNIQUE

 MERGE JOIN

 INDEX FULL SCAN IND_ORD_CUST_NBR

 SORT JOIN

 TABLE ACCESS FULL CUSTOMER

To use EXISTS, the query needs to be rewritten as follows:

SELECT c.cust_nbr, c.name

FROM customer c

WHERE EXISTS (SELECT 1 FROM cust_order o WHERE c.cust_nbr = o.cust_nbr);

Here is the execution plan for the EXISTS version of the queries:

Query Plan

SELECT STATEMENT Cost = 320

 FILTER

 TABLE ACCESS FULL CUSTOMER

 INDEX RANGE SCAN IND_ORD_CUST_NBR

Notice that the second query eliminates the overhead of the sort operation, and therefore runs
faster.

15.1.2 WHERE Versus HAVING

We discussed the GROUP BY and HAVING clauses in Chapter 4. Sometimes, when writing a
GROUP BY query, you have a condition that you can specify in either the WHERE or HAVING
clause. In situations where you have a choice, you'll always get better performance if you
specify the condition in the WHERE clause. The reason is that it's less expensive to eliminate
rows before they are summarized than it is to eliminate results after summarization.

Let's look at an example illustrating the advantage of WHERE over HAVING. Here's a query with
the HAVING clause that reports the number of orders in the year 2000:

SELECT year, COUNT(*)

FROM orders

GROUP BY year

HAVING year = 2001;

 YEAR COUNT(*)

---------- ----------

 2001 1440

The execution plan for this query is as follows:

Query Plan

SELECT STATEMENT Cost = 6

 FILTER

 SORT GROUP BY

 INDEX FAST FULL SCAN ORDERS_PK

Now, look at that same query, but with the year restriction in the WHERE clause:

SELECT year, COUNT(*)

FROM orders

WHERE year = 2001

GROUP BY year;

 YEAR COUNT(*)

--------- ----------

 2001 1440

The execution plan for this version of the query is:

Query Plan

SELECT STATEMENT Cost = 2

 SORT GROUP BY NOSORT

 INDEX FAST FULL SCAN ORDERS_PK

With the HAVING clause, the query performs the group operation first, and then filters the
groups for the condition specified. The WHERE clause version of the query filters the rows before
performing the group operation. The result of filtering with the WHERE clause is that there are
fewer rows to summarize, and consequently, the query performs better.

However, you should note that not all types of filtering can be achieved using the WHERE
clause. Sometimes, you may need to summarize the data first and then filter the summarized
data based on the summarized values. In such situations, you have to filter using the HAVING
clause, because only the HAVING clause can "see" summarized values. Moreover, there are
situations when you may need to use the WHERE clause and the HAVING clause together in a
query to filter the results the way you want. For details, see Chapter 4.

15.1.3 UNION Versus UNION ALL

We discussed UNION and UNION ALL in Chapter 7. UNION ALL combines the results of two
SELECT statements. UNION combines the results of two SELECT statements, and then returns
only distinct rows from the combination; duplicates are eliminated. It is, therefore, obvious that
to remove the duplicates, UNION performs one extra step than UNION ALL. This extra step is a
sort, which is costly in terms of performance. Therefore, whenever your application can handle
duplicates or you are certain that no duplicates will result, consider using UNION ALL instead of
UNION.

Let's look an example to understand this issue better. The following query uses UNION to return
a list of orders where the sale price exceeds $50.00 or where the customer is located in region
5:

SELECT order_nbr, cust_nbr

FROM cust_order

WHERE sale_price > 50

UNION

SELECT order_nbr, cust_nbr

FROM cust_order

WHERE cust_nbr IN

(SELECT cust_nbr FROM customer WHERE region_id = 5);

 ORDER_NBR CUST_NBR

---------- ----------

 1000 1

 1001 1

 1002 5

 1003 4

 1004 4

 1005 8

 1006 1

 1007 5

 1008 5

 1009 1

 1011 1

 1012 1

 1015 5

 1017 4

 1019 4

 1021 8

 1023 1

 1025 5

 1027 5

 1029 1

20 rows selected.

The execution plan for this UNION query is:

Query Plan

SELECT STATEMENT Cost = 8

 SORT UNIQUE

 UNION-ALL

 TABLE ACCESS FULL CUST_ORDER

 HASH JOIN

 TABLE ACCESS FULL CUSTOMER

 TABLE ACCESS FULL CUST_ORDER

The following query uses UNION ALL instead of UNION to get the same information:

SELECT order_nbr, cust_nbr

FROM cust_order

WHERE sale_price > 50

UNION ALL

SELECT order_nbr, cust_nbr

FROM cust_order

WHERE cust_nbr IN

(SELECT cust_nbr FROM customer WHERE region_id = 5);

 ORDER_NBR CUST_NBR

---------- ----------

 1001 1

 1003 4

 1005 8

 1009 1

 1012 1

 1017 4

 1021 8

 1029 1

 1001 1

 1000 1

 1002 5

 1003 4

 1004 4

 1006 1

 1007 5

 1008 5

 1009 1

 1012 1

 1011 1

 1015 5

 1017 4

 1019 4

 1023 1

 1025 5

 1027 5

 1029 1

26 rows selected.

Note the duplicate rows in the output. However, note also that UNION ALL performs better than
UNION, as you can see from the following execution plan:

Query Plan

SELECT STATEMENT Cost = 4

 UNION-ALL

 TABLE ACCESS FULL CUST_ORDER

 HASH JOIN

 TABLE ACCESS FULL CUSTOMER

 TABLE ACCESS FULL CUST_ORDER

You can see that the extra operation (SORT UNIQUE) in the UNION makes it run slower than
UNION ALL.

15.1.4 LEFT Versus RIGHT OUTER JOIN

As you have seen in Chapter 3, outer joins can be of type LEFT, RIGHT, or FULL. LEFT and
RIGHT are really two ways of looking at the same operation. Mixing LEFT and RIGHT outer joins
in the same application can cause confusion, as you and other programmers must constantly
shift your point-of-view from one approach to the other. Use both LEFT and RIGHT outer joins in
the same query, and you'll find your confusion greatly magnified. For example:

SELECT e.lname, j.function, d.name

FROM job j LEFT OUTER JOIN employee e ON e.job_id = j.job_id

 RIGHT OUTER JOIN department d ON e.dept_id = d.dept_id;

LNAME FUNCTION NAME

-------------------- ------------------------------ ------------

MILLER CLERK ACCOUNTING

CLARK MANAGER ACCOUNTING

KING PRESIDENT ACCOUNTING

SMITH CLERK RESEARCH

FORD ANALYST RESEARCH

JONES MANAGER RESEARCH

SCOTT ANALYST RESEARCH

JAMES CLERK SALES

BLAKE MANAGER SALES

MARTIN SALESPERSON SALES

TURNER SALESPERSON SALES

ALLEN SALESPERSON SALES

 OPERATIONS

Such confusion is unnecessary. Since both LEFT and RIGHT outer joins represent the same
operation, but from differing points of view, you can simply pick one point of view and use it
consistently. For example, many programmers write all outer joins as either FULL or LEFT,
ignoring RIGHT.

The preceding query uses a LEFT and then a RIGHT outer join to do the following:

Connect an outer join from employee to job, with employee as the required table1.

Connect another outer join from department to the results from Step 1, with department

as the required table

2.

Using parentheses to explicitly state the above order of operations, you can rewrite the query
using all LEFT outer joins, as follows:

SELECT e.lname, j.function, d.name

FROM department d LEFT OUTER JOIN

 (job j LEFT OUTER JOIN employee e

 ON e.job_id = j.job_id)

 ON e.dept_id = d.dept_id;

LNAME FUNCTION NAME

-------------------- ------------------------------ -------------

MILLER CLERK ACCOUNTING

CLARK MANAGER ACCOUNTING

KING PRESIDENT ACCOUNTING

SMITH CLERK RESEARCH

FORD ANALYST RESEARCH

JONES MANAGER RESEARCH

SCOTT ANALYST RESEARCH

JAMES CLERK SALES

BLAKE MANAGER SALES

MARTIN SALESPERSON SALES

TURNER SALESPERSON SALES

ALLEN SALESPERSON SALES

 OPERATIONS

The tradeoff here is between using parentheses and mixing RIGHT and LEFT outer joins. This
second version of the query still joins employee to job, and then joins department to that

result. The operations are exactly the same as in the previous version. This time, the
parentheses make the order of operations clearer, and we personally find the second version of
the query a bit easier to understand.

 < Day Day Up >

 < Day Day Up >

15.2 Avoid Unnecessary Parsing

Before your SQL can be executed by Oracle, it needs to be parsed. The importance of parsing
when it comes to tuning SQL lies in the fact that no matter how many times a given SQL
statement is executed, it needs to be parsed only once. During parsing, the following steps are
performed (not necessarily in the sequence shown):

The syntax of the SQL statement is verified.

The data dictionary is searched to verify table and column definitions.

The data dictionary is searched to verify security privileges on relevant objects.

Parse locks are acquired on the relevant objects.

The optimal execution plan is determined.

The statement is loaded into the shared SQL area (also known as the library cache) in the
shared pool of the system global area (SGA). The execution plan and parse information
are saved here in case the same statement is executed once again.

If a SQL statement involves any remote objects (e.g., database links), then these steps are
repeated for the remote objects. As you can see, lots of work is performed during the parsing of
a SQL statement. However, a statement is parsed only if Oracle doesn't find an identical SQL
statement already in the shared SQL area (library cache) of the SGA.

Before parsing a SQL statement, Oracle searches the library cache for an identical SQL
statement. If Oracle finds an exact match, there is no need to parse the statement again.
However, if an identical SQL statement is not found, Oracle goes through all the aforementioned
steps to parse the statement.

The most important keyword in the previous paragraph is "identical." To share the same SQL
area, two statements need to be truly identical. Two statements that look similar, or that return
the same result, need not be identical. To be truly identical, the statements must:

Have the same uppercase and lowercase characters

Have the same whitespace and newline characters

Reference the same objects using the same names, which must in turn have the same
owners

If there is a possibility that your application executes the same (or similar) SQL statements
multiple times, by all means try to avoid unnecessary parsing. This will improve the overall
performance of your applications. The following techniques can help you reduce SQL parsing:

Use bind variables.

Use table aliases.

15.2.1 Using Bind Variables

When multiple users use an application, they actually execute the same set of SQL statements
over and over, but with different data values. For example, one customer service representative
may be executing the following statement:

SELECT * FROM customer WHERE cust_nbr = 121;

while another customer service representative will be executing:

SELECT * FROM customer WHERE cust_nbr = 328;

These two statements are similar, but not "identical"—the customer ID numbers are different;
therefore, Oracle has to parse twice.

Because the only difference between these statements is the value used for the customer
number, this application can be rewritten to use bind variables. In that case, the SQL statement
in question can be as follows:

SELECT * FROM customer WHERE cust_nbr = :x;

Oracle needs to parse this statement only once. The actual customer numbers would be
supplied after parsing for each execution of the statement. Multiple, concurrently executing
programs could share the same copy of this SQL statement while at the same time supplying
different customer number values.

In a multiuser application, situations such as the one described here are very common, and
overall performance can be significantly improved by using bind variables, thereby reducing
unnecessary parsing.

15.2.2 Using Table Aliases

The use of table aliases can help to improve the performance of your SQL statements. Before
getting into the performance aspects of table aliases, let's quickly review what table aliases are
and how they are used.

When you select data from two or more tables, you should specify which table each column
belongs to. Otherwise, if the two tables have columns with the same name, you will end up with
an error:

SELECT cust_nbr, name, order_nbr

FROM customer, cust_order;

SELECT cust_nbr, name, order_nbr

 *

ERROR at line 1:

ORA-00918: column ambiguously defined

The error in this case occurs because both the customer and cust_order tables have columns
named cust_nbr. Oracle can't tell which cust_nbr column you are referring to. To fix this

problem, you can rewrite this statement as follows:

SELECT customer.cust_nbr, customer.name, cust_order.order_nbr

FROM customer JOIN cust_order

ON customer.cust_nbr = cust_order.cust_nbr;

 CUST_NBR NAME ORDER_NBR

---------- ------------------------------ ----------

 1 Cooper Industries 1001

 1 Cooper Industries 1000

 5 Gentech Industries 1002

 4 Flowtech Inc. 1003

 4 Flowtech Inc. 1004

 8 Zantech Inc. 1005

 1 Cooper Industries 1006

 5 Gentech Industries 1007

 5 Gentech Industries 1008

 1 Cooper Industries 1009

 1 Cooper Industries 1012

 1 Cooper Industries 1011

 5 Gentech Industries 1015

 4 Flowtech Inc. 1017

 4 Flowtech Inc. 1019

 8 Zantech Inc. 1021

 1 Cooper Industries 1023

 5 Gentech Industries 1025

 5 Gentech Industries 1027

 1 Cooper Industries 1029

20 rows selected.

Note the use of the table name to qualify each column name. This eliminates any ambiguity as
to which cust_nbr column the query is referring to.

Instead of qualifying column names with full table names, you can use table aliases, as in the
following example:

SELECT c.cust_nbr, c.name, o.order_nbr

FROM customer c JOIN cust_order 0

ON c.cust_nbr = o.cust_nbr;

 CUST_NBR NAME ORDER_NBR

---------- ------------------------------ ----------

 1 Cooper Industries 1001

 1 Cooper Industries 1000

 5 Gentech Industries 1002

 4 Flowtech Inc. 1003

 4 Flowtech Inc. 1004

 8 Zantech Inc. 1005

 1 Cooper Industries 1006

 5 Gentech Industries 1007

 5 Gentech Industries 1008

 1 Cooper Industries 1009

 1 Cooper Industries 1012

 1 Cooper Industries 1011

 5 Gentech Industries 1015

 4 Flowtech Inc. 1017

 4 Flowtech Inc. 1019

 8 Zantech Inc. 1021

 1 Cooper Industries 1023

 5 Gentech Industries 1025

 5 Gentech Industries 1027

 1 Cooper Industries 1029

20 rows selected.

The letters "c" and "o" in this example are table aliases. You can specify these aliases following
their respective table names in the FROM clause, and they can be used everywhere else in the
query in place of the table name. Table aliases provide a convenient shorthand notation,
allowing your queries to be more readable and concise.

Table aliases are not limited to one character in length; they can be up to
30 characters in length.

An important thing to remember while using table aliases is that if you define aliases in the
FROM clause, you must use only those aliases, and not the actual table names, in the rest of the
query. If you alias a table, and then use the actual table name elsewhere in the query, you will
encounter errors. For example:

SELECT c.cust_nbr, c.name, o.order_nbr

FROM customer c JOIN cust_order o

ON customer.cust_nbr = cust_order.cust_nbr;

WHERE customer.cust_nbr = cust_order.cust_nbr

 *

ERROR at line 3:

ORA-00904: invalid column name

Many developers make the mistake of forgetting to use their table aliases while writing hints.
Once you define an alias, you must specify the alias instead of the actual table name in any
hints; otherwise, those hints will be silently ignored. Here's an example of this common
mistake:

SELECT /*+ USE_HASH(customer cust_order) */ c.cust_nbr, c.name, o.order_nbr

FROM customer c JOIN cust_order o

ON c.cust_nbr = o.cust_nbr;

The USE_HASH hint specifies the customer and cust_order tables. However, the FROM clause

provides aliases for both those tables. Because of the aliases, the table names have no
meaning, and the hint is ignored, possibly to the detriment of performance. Following is the
correct version of this query:

SELECT /*+ USE_HASH(c o) */ c.cust_nbr, c.name, o.order_nbr

FROM customer c JOIN cust_order o

ON c.cust_nbr = o.cust_nbr;

This time, the USE_HASH hint properly uses the table aliases that have been defined in the
FROM clause. This hint will have the desired effect.

When selecting data from multiple tables, it makes sense to qualify each column name with its
corresponding table alias. The column cust_nbr appears in both the customer and cust_order

tables. Without proper qualification, this column is said to be "ambiguously defined" in the
query. Therefore, you must qualify the cust_nbr column with a table alias (or a full table name,

if you are not using aliases). However, the other two columns used in the query are not
ambiguous. Therefore, the following statement, which only qualifies the cust_nbr column, is

valid:

SELECT c.cust_nbr, name, order_nbr

FROM customer c, cust_order o

WHERE c.cust_nbr = o.cust_nbr;

 CUST_NBR NAME ORDER_NBR

---------- ------------------------------ ----------

 1 Cooper Industries 1001

 1 Cooper Industries 1000

 5 Gentech Industries 1002

 4 Flowtech Inc. 1003

 4 Flowtech Inc. 1004

 8 Zantech Inc. 1005

 1 Cooper Industries 1006

 5 Gentech Industries 1007

 5 Gentech Industries 1008

 1 Cooper Industries 1009

 1 Cooper Industries 1012

 1 Cooper Industries 1011

 5 Gentech Industries 1015

 4 Flowtech Inc. 1017

 4 Flowtech Inc. 1019

 8 Zantech Inc. 1021

 1 Cooper Industries 1023

 5 Gentech Industries 1025

 5 Gentech Industries 1027

 1 Cooper Industries 1029

20 rows selected.

This is where the performance aspect of using table aliases comes into play. Since the query
doesn't qualify the columns NAME and ORDER_NBR, Oracle has to search both the CUSTOMER
and CUST_ORDER tables while parsing this statement to find which table each of these columns
belongs to. The time required for this search may be negligible for one query, but it does add up
if you have a number of such queries to parse. It's good programming practice to qualify all
columns in a query with table aliases, even those that are not ambiguous, so that Oracle can
avoid this extra search when parsing the statement.

 < Day Day Up >

 < Day Day Up >

15.3 Consider Literal SQL for Decision-Support
Systems

We discussed the benefits of using bind variables previously. The use of bind variables is often
beneficial in terms of performance. However, there is a downside to consider. Bind variables
hide actual values from the optimizer. This hiding of actual values can have negative
performance implications, especially in decision-support systems. For example, consider the
following statement:

SELECT * FROM customer WHERE region_id = :x

The optimizer can parse this statement, but it won't be able to take into account the specific
region being selected. If 90% of your customers were in region 5, then a full table scan would
likely be the most efficient approach when selecting those customers. An index scan would
probably be more efficient when selecting customers in other regions. When you hardcode
values into your SQL statements, the cost-based optimizer (CBO) can look at histograms (a
type of statistic) and generate an execution plan that takes into account the specific values you
are supplying. When you use bind variables, however, the optimizer generates an execution
plan without having a complete picture of the SQL statement. Such an execution plan may or
may not be the most efficient.

In Decision-Support Systems (DSS), it is very rare that multiple users use the same query over
and over. More typically, a handful of users execute complex, different queries against a large
database. Since it is very rare that the SQL statements will be repetitive, the parsing time saved
by using bind variables will be negligible. At the same time, since DSS applications run complex
queries against large databases, the time required to fetch the resulting data can be significant.
Therefore, it is important that the optimizer generate the most efficient execution plan for the
query. To help the optimizer generate the best possible plan, provide the optimizer as much
information as you can, including the actual values of the columns or variables. Therefore, in
DSS applications, use literal SQL statements with hardcoded values instead of bind variables.

Our earlier advice about using bind variables in Online Transaction Processing (OLTP)
applications is still valid. In OLTP systems, multiple users all use the same programs, and thus
issue the same queries. The amount of data returned per query is typically small. Thus, parse
time is a more significant performance factor than in DSS systems. When developing OLTP
applications, save parsing time and space in the shared SQL area by using bind variables.

 < Day Day Up >

 < Day Day Up >

Chapter 16. XML
Extensible Markup Language (XML) has become the standard mechanism for sharing data
between applications. This chapter will explore how XML documents may be stored in an Oracle
database, how the data within an XML document can be extracted and stored in relational
tables, and how an XML document can be constructed from data in relational tables.

 < Day Day Up >

 < Day Day Up >

16.1 What Is XML?

XML is a close cousin to HTML, but while HTML is primarily concerned with formatting and
displaying data, XML is concerned with the data itself. Unlike HTML, with XML you may create
your own tags, which is why XML is perfectly suited for describing data. The easiest way to
understand XML is through an example, so here is an XML document that represents a customer
purchase order:

<?xml version="1.0"?>

<purchase_order>

 <customer_name>Alpha Technologies</customer_name>

 <po_number>11257</po_number>

 <po_date>2004-01-20</po_date>

 <po_items>

 <item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

 </item>

 <item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

 </item>

 </po_items>

</purchase_order>

The first line defines that the text that follows is an XML document that adheres to Version 1.0
of the XML specification. The second line is the root node of the document and has the tag
<purchase_order>. A valid XML document must contain exactly one root node. Other nodes of

the document can appear more than once as necessary to describe the data, as illustrated by
the multiple <item> tags under the <po_items> tag. This document describes that Alpha

Technologies issued P.O. #11257 on January 20, 2004, in which 20 units of part number AI5-
4557 and 12 units of EI-T5-001 were requested. Since this document will be the basis for every
example in this chapter, it would be worthwhile to become comfortable with it before forging
ahead.

16.1.1 XML Resources

Because this book is about SQL, the focus of this chapter is how to utilize SQL to interact with
XML documents. Thus, the XML examples used in this chapter are rather simple so as not to
needlessly complicate things. If you are interested in delving deeper into XML, here are a few
excellent resources:

www.w3c.org

The World Wide Web Consortium (W3C) site, useful for history of the XML specification, as
well as the specification itself

www.xml.org

Portal for everything XML, including tutorials, FAQs, white papers, news, etc.

XML in a Nutshell (O'Reilly)

An excellent reference guide for XML and related technologies

16.1.2 Oracle and XML

Oracle first began adding support for XML in the Oracle8i Database release. This support, which
consisted largely of XML parser toolkits for Java, PL/SQL, and C/C++, allowed users to
manipulate XML data but did not offer any native support for XML within the database kernel.
The Oracle 9i Database releases raised the bar significantly by adding a new data type called
XMLType for storing XML documents in the database and by creating a mechanism for
organizing, accessing, and versioning XML documents called XML Repository. Oracle branded
this set of technologies as Oracle XML DB. Additionally, XML data can be loaded and unloaded
from a database using Oracle's import/export utilities, read from external files using
SQL*Loader, and published via Advanced Queuing, making it clear that Oracle has made the
integration of XML technologies a high priority over the past few releases.

 < Day Day Up >

 < Day Day Up >

16.2 Storing XML Data

The XMLType data type, first introduced in Oracle9i Database, allows an XML document to be
stored in a table. XMLType is actually an object type, so you have your choice of creating a
column of type XMLType within a a table or creating an object table (i.e., CREATE TABLE
purchase_order OF xmltype). Since we may want to store additional data about a purchase
order along with the XML document itself, it might be best to create a table that contains a
unique identifier, several a ttribute columns, and the XML document:

CREATE TABLE purchase_order

 (po_id NUMBER(5) NOT NULL,

 customer_po_nbr VARCHAR2(20),

 customer_inception_date DATE,

 order_nbr NUMBER(5),

 purchase_order_doc XMLTYPE,

 CONSTRAINT purchase_order_pk PRIMARY KEY (po_id)

);

By default, the purchase_order_doc column will be stored as a CLOB (Character Large Object).

Later in the chapter, you will see how the XML document can be stored as a set of objects by
defining an XML Schema for your XML documents, but we'll keep it simple now and move on to
the more complicated case later in this chapter.

16.2.1 Storing XML as a CLOB

The XMLType object type includes constructors that accept many different data types, including
VARCHAR2, CLOB, BFILE, and REF CURSOR. For example, here is the definition for the
constructor used in the remainder of the chapter:

FINAL CONSTRUCTOR FUNCTION XMLTYPE RETURNS SELF AS RESULT

Argument Name Type In/Out Default?

------------------------------ ----------------------- ------ --------

XMLDATA BINARY FILE LOB IN

CSID NUMBER IN

SCHEMA VARCHAR2 IN DEFAULT

VALIDATED NUMBER IN DEFAULT

WELLFORMED NUMBER IN DEFAULT

As you can see, the first two parameters are required, and the next three parameters are
optional. The following PL/SQL block uses this constructor without the optional parameters to
instantiate an XMLType object and insert it into the purchase_order table:

/* create directory to point to where XML docs are stored */

CREATE DIRECTORY xml_data AS 'c:\\alan\\OReilly\\2nd_Edition';

DECLARE

 bfl BFILE;

BEGIN

 /* attach XML document purch_ord.xml to bfile locator */

 bfl := BFILENAME('XML_DATA', 'purch_ord.xml');

 /* add to purchase_order table */

 INSERT INTO purchase_order (po_id, purchase_order_doc)

 VALUES (1000,

 XMLTYPE(bfl, nls_charset_id('WE8MSWIN1252')));

 COMMIT;

END;

The purchase_order table now contains a record with the contents of the purch_ord.xml file

stored as a CLOB. At this point, the file is assumed to contain a valid XML document, but the
contents have not been checked for validity (more on this later). If you would like to see the
contents of the document, you can simply select the XMLType column:

SELECT po.purchase_order_doc

FROM purchase_order po;

PURCHASE_ORDER_DOC

<?xml version="1.0"?>

<purchase_order>

 <customer_name>Alpha Technologies</customer_name>

 <po_number>11257</po_number>

 <po_date>2004-01-20</po_date>

 <po_items>

 <item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

 </item>

 <item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

 </item>

 </po_items>

</purchase_order>

16.2.2 Inspecting the XML Document

Now that the XML document has been stored in the purchase_order table, what should you do

with it? Unless your intent is to simply store the document for safe-keeping, you will probably
want to at least inspect the data inside the document, if not extract that data for storage in
relational tables. The XMLType object contains numerous methods to help with this effort.

16.2.2.1 XPath

Before you can begin inspecting XML documents, you will need to have a method for identifying
different parts of a document. Oracle has adopted the use of XPath expressions for this purpose.
XPath is a W3C recommendation used for walking a tree of nodes. Before describing how to
build an XPath expression, it might be helpful to view the purchase order document as a tree,
as shown in Figure 16-1 .

Figure 16-1. Tree view of purchase order

The root node has four children, one of which (po_items) has two children of its own. Each of

these child nodes has two children nodes as well. XPath specifies a notation for describing a
specific node or nodes in the tree, as shown in Table 16-1 .

/

Used to separate nodes or to denote the root node if first character of expression.

//

Used to denote all children of a given node.

*

Wildcard character.

[]

Used to identify a specific child if a node has more than one child (i.e., [2]). May also contain
one or more expressions used to identify nodes by their values (i.e., [customer_name="Acme"]

).

Table 16-1. Path notation elements

Element Meaning

Using this notation, the customer_name node in the purchase_order tree would be represented
as /purchase_order/customer_name , and the second item node would be represented as
/purchase_order/po_items/item[2] . To find all item nodes in the purchase order document,
you could specify /purchase_order//item or /purchase_order/*/item . Along with finding

nodes based on tag names, you may also search for nodes based on values, such as
/purchase_order[po_number=11257]/po_items , which returns the po_items for the purchase
order having a po_number of 11257. Now that you have a way of describing nodes in the XML

document, you can begin extracting data.

16.2.2.2 The extract() member function

The extract() member function takes an XMLType instance and an XPath expression and

returns an XMLType instance. The XMLType instance returned by the function represents some
fragment of the original as resolved by the XPath expression, and it does not need to be a valid
XML document. If the XPath expression does not resolve to a node of the XML document, a
NULL is returned. Here's a simple example:

SELECT extract(po.purchase_order_doc,

 '/purchase_order/customer_name') xml_fragment

FROM purchase_order po

WHERE po.po_id = 1000;

XML_FRAGMENT

<customer_name>Alpha Technologies</customer_name>

The XML fragment being returned is a perfectly valid, albeit brief, XML document consisting of
just a root node. Here's another example that returns all of the purchase order items:

SELECT extract(po.purchase_order_doc,

 '/purchase_order//item') xml_fragment

FROM purchase_order po

WHERE po.po_id = 1000;

XML_FRAGMENT

<item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

</item>

<item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

</item>

The XML fragment returned from this query is not a valid XML document, since it contains two
root nodes. If you are interested in retrieving only the first item, you can specify this using [1]

in your XPath expression, as demonstrated by the following:

SELECT extract(po.purchase_order_doc,

 '/purchase_order/po_items/item[1]') xml_fragment

FROM purchase_order po

WHERE po.po_id = 1000;

XML_FRAGMENT

--

<item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

</item>

16.2.2.3 The extractValue() member function

The extractValue() member function is similar to the extract() member function, except

that it returns a string (VARCHAR2) instead of an instance of XMLType. For example, if you
wanted to extract the customer name without the enclosing tags, you could do the following:

SELECT extractValue(po.purchase_order_doc,

 '/purchase_order/customer_name') cust_name

FROM purchase_order po

WHERE po.po_id = 1000;

CUST_NAME

--

Alpha Technologies

If you know that the value being returned is a number or date, you can wrap the call to
extractValue() with to_number or to_date as needed. Keep in mind that you cannot
substitute extractValue() for extract() in every situation; to use extractValue() , the

node resolved from the XPath expression must be a single child node. For example, the
following statement generates an error because the node resolved by the XPath expression has
child nodes beneath it:

SELECT extractValue(po.purchase_order_doc,

 '/purchase_order/po_items') cust_name

FROM purchase_order po

WHERE po.po_id = 1000;

 *

ERROR at line 3:

ORA-19025: EXTRACTVALUE returns value of only one node

16.2.2.4 The existsNode() member function

If you would like to determine whether a specific node exists in your document, you can use the
existsNode() member function. existsNode() takes an XMLType instance and an XPath

expression and returns 1 if one or more nodes are found and 0 otherwise. This method is most
often used in the WHERE clause of a query, although it is also useful in the SELECT clause
(generally within a CASE expression) or the FROM clause (generally within an inline view). The
following example uses existsNode() in the WHERE clause to ensure that the specified node

exists:

SELECT extract(po.purchase_order_doc,

 '/purchase_order/customer_name') xml_fragment

FROM purchase_order po

WHERE po.po_id = 1000

 AND 1 = existsNode(po.purchase_order_doc,

 '/purchase_order/customer_name');

XML_FRAGMENT

--

<customer_name>Alpha Technologies</customer_name>

The next example uses existsNode() in the SELECT clause to determine how many line items

are in the purchase order:

SELECT CASE

 WHEN 1 = existsNode(po.purchase_order_doc,

 '/purchase_order/po_items/item[6]') THEN '>5'

 WHEN 1 = existsNode(po.purchase_order_doc,

 '/purchase_order/po_items/item[5]') THEN '5'

 WHEN 1 = existsNode(po.purchase_order_doc,

 '/purchase_order/po_items/item[4]') THEN '4'

 WHEN 1 = existsNode(po.purchase_order_doc,

 '/purchase_order/po_items/item[3]') THEN '3'

 WHEN 1 = existsNode(po.purchase_order_doc,

 '/purchase_order/po_items/item[2]') THEN '2'

 WHEN 1 = existsNode(po.purchase_order_doc,

 '/purchase_order/po_items/item[1]') THEN '1'

 END num

FROM purchase_order po

WHERE po.po_id = 1000;

NUM

--

2

Keep in mind that existsNode() will return 1 if a node exists, regardless of whether or not the

node has a value. Let's say you received the following purchase order:

<?xml version="1.0"?>

<purchase_order>

 <customer_name>Alpha Technologies</customer_name>

 <po_number></po_number>

 <po_date>2004-01-20</po_date>

 <po_items>

 <item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

 </item>

 <item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

 </item>

 </po_items>

</purchase_order>

If you search for the existence of the <po_number> node, the existsNode() function will

return 1, even though no value has been supplied for this node. You will need to use the
extractValue() function to determine whether a valid PO number has been provided.

16.2.2.5 Moving data to relational tables

Now that you know how to navigate through and extract fragments from your XML documents,
you can build DML statements to move data from your XML documents to relational tables. The
purchase_order table created earlier contains two columns that must be populated from data

in the purchase order document. The next statement shows how this data can be populated via
a single UPDATE statement:

UPDATE purchase_order po

SET po.customer_po_nbr = extractvalue(po.purchase_order_doc,

 '/purchase_order/po_number'),

 po.customer_inception_date = to_date(extractvalue(po.purchase_order_doc,

 '/purchase_order/po_date'),'YYYY-MM-DD'),

 po.order_nbr = 7101

WHERE po.po_id = 1000;

For this set of examples, we've arbitrarily chosen to use 7101 as the primary key value for the
cust_order table, for the purchase order we're working with. Normally, this value would be

generated via a sequence.

Now that the purchase_order table has been completed, the next step is to generate data for
the cust_order and line_item tables so that the customer's order can begin processing. Here
is the INSERT statement for the cust_order table:

INSERT INTO cust_order

 (order_nbr, cust_nbr, sales_emp_id, order_dt,

 expected_ship_dt, status)

SELECT 7101,

 (SELECT c.cust_nbr FROM customer c

 WHERE c.name = ext.cust_name),

 0, SYSDATE, TRUNC(SYSDATE + 7), 'NEW'

FROM (SELECT extractValue(po.purchase_order_doc,

 '/purchase_order/customer_name') cust_name

 FROM purchase_order po

 WHERE po.po_id = 1000) ext;

1 row created.

The previous statement is fairly straightforward, in that it extracts the value of the
customer_name node from the purchase order and uses the value to look up the appropriate
cust_nbr value in the customer table. The statement for inserting the two line items, however,

is a bit more complex because there are multiple item nodes, each with two child nodes
underneath them: part_number and quantity . Before you can interact with the data in a SQL
statement, you need to transform it from a single XML fragment containing two item nodes to a
table of item nodes containing two rows. Fortunately, Oracle has included a built-in function
called xmlSequence() specifically for this task. First, here are the two line items returned as a
single XMLType instance using the extract() function:

SELECT extract(po.purchase_order_doc,

 '/purchase_order//item')

FROM purchase_order po

WHERE po.po_id = 1000;

EXTRACT(PO.PURCHASE_ORDER_DOC,'/PURCHASE_ORDER//ITEM')

--

<item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

</item>

<item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

</item>

1 row selected.

The next example uses xmlSequence() to generate a varray of two items from the XML
fragment returned by the extract() method. You can then query the output of the
xmlSequence() function by wrapping it in a TABLE expression and placing it in the FROM

clause of a containing query:

SELECT itm.*

FROM TABLE(SELECT xmlSequence(extract(po.purchase_order_doc,

 '/purchase_order//item'))

 FROM purchase_order po

 WHERE po.po_id = 1000) itm;

COLUMN_VALUE

<item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

</item>

<item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

</item>

2 rows selected.

The result set now consists of two rows, each containing a single XMLType instance. You can
then use this query to insert data into the line_item table by using the extractValue()
method to extract the text from the part_number and quantity nodes:

INSERT INTO line_item

 (order_nbr, part_nbr, qty)

SELECT 7101, extractValue(itm.column_value, '/item/part_number'),

 extractvalue(itm.column_value, '/item/quantity')

FROM TABLE(SELECT xmlSequence(extract(po.purchase_order_doc,

 '/purchase_order//item'))

 FROM purchase_order po

 WHERE po.po_id = 1000) itm;

2 rows created.

16.2.3 Storing XML as a Set of Objects

All of the previous examples have one thing in common: the user understands how the XML
document is organized, but Oracle just stores the document as a CLOB without any
understanding of what the document contains. You have the option, however, of providing
Oracle with a roadmap of the documents that will be stored in an XMLtype column by defining
an XML Schema. Once a schema has been defined, the Oracle server can check the validity of
the XML documents being stored, as well as add additional functionality to many of the member
functions of the XMLType object type.

Defining a schema for your documents allows you to specify, among other things, what
elements are required and what elements are optional, in what order your document elements
must appear, and min/max and default values for attributes. Here's a simple schema for the
purchase order documents:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0"

 elementFormDefault="unqualified">

 <xs:element name="purchase_order">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="customer_name" type="xs:string"/>

 <xs:element name="po_number" type="xs:string"/>

 <xs:element name="po_date" type="xs:date"/>

 <xs:element name="po_items">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="item" maxOccurs="9999">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="part_number" type="xs:string"/>

 <xs:element name="quantity" type="xs:integer"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Without going into great detail on how to construct XML Schema definitions, here's a brief
description of the above schema:

The first element in the document is purchase_order .

The purchase_order element contains an ordered set of elements: customer_name ,
po_number , po_date , and po_items .

The po_items element can contain up to 9,999 item elements.

The item element contains an ordered set of two elements: part_number and quantity .

This schema just brushes the surface of what can be done with XML Schema, but it is sufficient

to illustrate how a schema is used by Oracle. If you would like to explore the full power of XML
Schema, you might consider picking up XML Schema by Eric van der Vlist (O'Reilly).

16.2.3.1 Registering your schema

Now that you have defined a schema for your purchase order documents, you need to register it
with Oracle before you can assign it to XMLType columns. To register the schema, you will need
to call the dbms_xmlschema.registerSchema() built-in procedure, which requires an

identifying URL and the schema definition. The schema definition, which is stored in the
purch_ord.xsd file in the XML_DATA directory created earlier, will be loaded into a binary file
variable and passed in as the second parameter to registerSchema ():

DECLARE

 bfl BFILE;

BEGIN

 /* attach XSD document to bfile locator */

 bfl := BFILENAME('XML_DATA', 'purch_ord.xsd');

 /* register schema */

 dbms_xmlschema.registerSchema(

 'http://localhost:8080/home/xml/schemas/purch_ord.xsd',

 bfl);

END;

The registerSchema() procedure reads the schema definition and creates whatever database

objects it deems appropriate for storing the data defined in the schema definition. Although it is
beyond the scope of this book, you may annotate your schema definition to tell Oracle how to
store the data and what to call the database objects. Because we didn't annotate the
purch_ord.xsd file, Oracle created one table (purchase_order165_tab), three object types
(purchase_order161_t , po_items162_t , and item163_t), and a collection type
(item164_coll) to store the purchase order data. Keep in mind that these are Oracle-

generated names, so your results will vary.

16.2.3.2 Assigning the schema to a column

Now that the Oracle server is aware of your schema, you can assign it to a column. The
following DDL statement creates the purchase_order2 table and, at the end of the statement,

specifies that the schema associated with the URL
http://localhost:8080/home/xml/schemas/purch_ord.xsd is to be applied to the
purchase_order_doc column:

CREATE TABLE purchase_order2

 (po_id NUMBER(5) NOT NULL,

http://localhost:8080/home/xml/schemas/purch_ord.xsd

 customer_po_nbr VARCHAR2(20),

 customer_inception_date DATE,

 order_nbr NUMBER(5),

 purchase_order_doc XMLTYPE,

 CONSTRAINT purchase_order2_pk PRIMARY KEY (po_id)

)

XMLTYPE COLUMN purchase_order_doc

 XMLSCHEMA "http://localhost:8080/home/xml/schemas/purch_ord.xsd"

 ELEMENT "purchase_order";

Whenever a document is added to the purchase_order2 table, the data from the XML

document will be extracted and stored in the table that was generated when you registered your
schema using the registerSchema() procedure. Thus, the actual XML document will not be

stored in the database, so keep this in mind if your business rules require that the document be
stored intact. If you would like to assign a schema to your XMLType column, but you want to
store the XML documents intact, you can specify that the documents be stored in a CLOB. The
next example demonstrates how this is done by specifying the STORE AS CLOB phrase before
naming the schema URL:

CREATE TABLE purchase_order3

 (po_id NUMBER(5) NOT NULL,

 customer_po_nbr VARCHAR2(20),

 customer_inception_date DATE,

 order_nbr NUMBER(5),

 purchase_order_doc XMLTYPE,

 CONSTRAINT purchase_order3_pk PRIMARY KEY (po_id)

)

XMLTYPE COLUMN purchase_order_doc

 STORE AS CLOB

 XMLSCHEMA "http://localhost:8080/home/xml/schemas/purch_ord.xsd"

 ELEMENT "purchase_order";

16.2.3.3 Inserting data

To insert data into the schema-based table purchase_order2 , you will use the same
mechanism as you did for the non-schema-based purchase_order table. However, you will first

need to alter the root node of your document to include the schema URL:

<purchase_order

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://localhost:8080/home/xml/schemas/purch_ord.xsd">

With this change in place, you can insert your document as before:

DECLARE

 bfl BFILE;

BEGIN

 /* attach XML document to bfile locator */

 bfl := BFILENAME('XML_DATA', 'purch_ord.xml');

 /* add to purchase_order2 table */

 INSERT INTO purchase_order2 (po_id, purchase_order_doc)

 VALUES (2000, XMLTYPE(bfl, nls_charset_id('WE8MSWIN1252')));

 COMMIT;

END;

If the document matches the schema definition, then the data will be extracted from the
document and stored. At this point, the document has been partially validated against the
schema, meaning that Oracle has checked that all mandatory elements are present and that no
undefined elements are present. If you need to fully validate your documents against the
schema definition, you will need to call one of several XMLType member functions demonstrated
in the next section.

To illustrate what happens if the document does not match the schema definition, assume we
change the root node from <purchase_order> to <customer_invoice> and try to insert the

document:

DECLARE

 bfl BFILE;

BEGIN

 /* attach XML document to bfile locator */

 bfl := BFILENAME('XML_DATA', 'purch_ord.xml');

 /* add to purchase_order2 table */

 INSERT INTO purchase_order2 (po_id, purchase_order_doc)

 VALUES (2001, XMLTYPE(bfl, nls_charset_id('WE8MSWIN1252')));

 COMMIT;

END;

/

DECLARE

*

ERROR at line 1:

ORA-31043: Element 'customer_invoice' not globally defined in schema

'http://localhost:8080/home/xml/schemas/purch_ord.xsd'

Upon changing the root node back to <purchase_order> but adding a new child node called
<comments> , we would see the following error:

DECLARE

 bfl BFILE;

BEGIN

 /* attach XML document to bfile locator */

 bfl := BFILENAME('XML_DATA', 'purch_ord.xml');

 /* add to purchase_order2 table */

 INSERT INTO purchase_order2 (po_id, purchase_order_doc)

 VALUES (2001, XMLTYPE(bfl, nls_charset_id('WE8MSWIN1252')));

 COMMIT;

END;

/

DECLARE

*

ERROR at line 1:

ORA-30937: No schema definition for 'comments' (namespace '##local') in

parent 'purchase_order'

Depending on the needs of your application, you can make your schema fairly simple, like the
purchase order schema used here, or you can make your schema much more restrictive. If you
find yourself writing code to check the validity of an XML document, you might be better off
creating a robust schema definition and letting Oracle do the work for you.

16.2.3.4 XMLType validity functions

If you are checking your XML documents against a schema, then you will be able to make use of
several member functions of the XMLType object type. If you want to check to see if your
documents are based on a schema, and get the schema's URL, you could do the following:

SELECT CASE WHEN 1 = po.purchase_order_doc.isSchemaBased()

 THEN po.purchase_order_doc.getSchemaURL()

 ELSE 'No Schema Defined'

 END schema_name

FROM purchase_order2 po

WHERE po.po_id = 2000;

SCHEMA_NAME

http://localhost:8080/home/xml/schemas/purch_ord.xsd

This query uses two of XMLType's member functions: the isSchemaBased() function returns 1
if the XMLType column has been assigned a schema, and the getSchemaURL() function returns

the schema's URL.

If you want to check to see if a particular XMLType instance has been fully validated, you can
use the isSchemaValidated() member function:

SELECT CASE WHEN 1 = po.purchase_order_doc.isSchemaValidated()

 THEN 'VALIDATED'

http://localhost:8080/home/xml/schemas/purch_ord.xsd

 ELSE 'NOT VALIDATED' END status

FROM purchase_order2 po

WHERE po.po_id = 2000;

STATUS

NOT VALIDATED

Since the document has not been fully validated, you have your choice of calling the member
function isSchemaValid() to check for validity without changing the document's status, or
calling the member procedure schemaValidate() to check for validity and change the status.
Here's an example of calling the isSchemaValid() function:

SELECT CASE WHEN 1 = po.purchase_order_doc.isSchemaValid()

 THEN 'VALID'

 ELSE 'NOT VALID' END validity

FROM purchase_order2 po

WHERE po.po_id = 2000;

VALIDITY

VALID

Finally, here's an example of calling the member procedure schemaValidate() :

DECLARE

 doc XMLTYPE;

BEGIN

 SELECT po.purchase_order_doc

 INTO doc

 FROM purchase_order2 po

 WHERE po.po_id = 2000;

 doc.schemaValidate();

END;

Remember, isSchemaValid() returns the status without changing it, whereas
schemaValidate() potentially changes the status without returning it.

16.2.3.5 Updating document content

If you want to modify the contents of an XML document, you will need to replace the XMLType
instance stored in the table with another instance. If you would like to replace the entire
document, you can simply generate a new XMLType instance and replace the existing one:

UPDATE purchase_order po

SET po.purchase_order_doc =

 XMLTYPE(BFILENAME('XML_DATA', 'other_purch_ord.xml'),

 nls_charset_id('WE8MSWIN1252'))

WHERE po.po_id = 2000;

However, if your intent is to modify the existing document, you can do so using the member
function updateXML() , which uses a find/replace mechanism to alter the document content

and returns an XMLType instance. To specify the content to be replaced, you need to specify an
XPath expression. For example, the following UPDATE statement replaces the value of the
customer_name node with "Wallace Industries":

SELECT extract(po.purchase_order_doc,

 '/purchase_order/customer_name') xml_fragment

FROM purchase_order po

WHERE po_id = 1000;

XML_FRAGMENT

<customer_name>Alpha Technologies</customer_name>

UPDATE purchase_order po

SET po.purchase_order_doc =

 updateXML(po.purchase_order_doc,

 '/purchase_order/customer_name/text()', 'Wallace Industries')

WHERE po.po_id = 1000;

SELECT extract(po.purchase_order_doc,

 '/purchase_order/customer_name') xml_fragment

FROM purchase_order po

WHERE po_id = 1000;

XML_FRAGMENT

<customer_name>Wallace Industries</customer_name>

The XPath expression used to update the customer name in this example includes a call to the
text() function, which causes the value of the text node to be returned instead of the entire
node. Thus, an XPATH expression of /purchase_order/customer_name resolves to the XML
fragment <customer_name>Alpha Technologies</customer_name> , whereas the XPATH
expression /purchase_order/customer_name/text() resolves to the string "Alpha
Technologies". You can accomplish the same text substitution without the use of the text()
function, but your third parameter to the updateXML() function would need to be an XML

fragment rather than a string:

UPDATE purchase_order po

SET po.purchase_order_doc =

 updateXML(po.purchase_order_doc,

 '/purchase_order/customer_name',

 XMLTYPE('<customer_name>Wallace Industries</customer_name>'))

WHERE po.po_id = 1000;

If you need to make multiple changes to your document, you can specify multiple find/replace
pairs, as in the following example:

UPDATE purchase_order po

SET po.purchase_order_doc =

 updateXML(po.purchase_order_doc,

 '/purchase_order/customer_name/text()', 'Wallace Industries',

 '/purchase_order/po_number/text()', '11359')

WHERE po.po_id = 1000;

Along with replacing individual text attributes, you can also use updateXML() to replace an

item in a collection. To do so, you can use one of the XMLType constructors to generate an XML
fragment and then substitute the fragment into the document. For example, the following
example replaces the entire second line item of the purchase order:

SELECT extract(po.purchase_order_doc,

 '/purchase_order//item') xml_fragment

FROM purchase_order po

WHERE po.po_id = 1000;

XML_FRAGMENT

<item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

</item>

<item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

</item>

UPDATE purchase_order po

SET po.purchase_order_doc =

 updateXML(po.purchase_order_doc,

 '/purchase_order/po_items/item[2]',

 XMLTYPE('<item>

 <part_number>TZ50828</part_number>

 <quantity>12</quantity>

 </item>'))

WHERE po.po_id = 1000;

SELECT extract(po.purchase_order_doc,

 '/purchase_order//item') xml_fragment

FROM purchase_order po

WHERE po.po_id = 1000;

XML_FRAGMENT

<item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

</item>

<item>

 <part_number>TZ50828</part_number>

 <quantity>12</quantity>

</item>

 < Day Day Up >

 < Day Day Up >

16.3 Generating XML Documents

The first sections of this chapter focused on how to store, inspect, validate, and modify an XML
document. While this is all well and good if someone has provided you with an XML document,
what should you do if you need to construct an XML document from data in your database? For
this purpose, Oracle has included a set of built-in SQL functions that conform to the emerging
SQL/XML standard. After describing the functions individually, we will demonstrate how these
functions can be used to generate a purchase order document from the data stored in the
customer , cust_order , and line_item tables.

16.3.1 XMLElement()

The XMLElement() function is tasked with generating XML elements. It takes as arguments an

element name, a value, and an optional set of attributes. The following example generates an
XML fragment consisting of data from the supplier table:

SELECT XMLElement("supplier_id", s.supplier_id) ||

 XMLElement("name", s.name) xml_fragment

FROM supplier s;

XML_FRAGMENT

<supplier_id>1</supplier_id><name>Acme Industries</name>

<supplier_id>2</supplier_id><name>Tilton Enterprises</name>

<supplier_id>3</supplier_id><name>Eastern Importers</name>

Calls to XMLElement() can be nested to facilitate parent/child elements. The next example

builds on the previous example by wrapping the two supplier elements in a parent element
called <supplier> :

SELECT XMLElement("supplier",

 XMLElement("supplier_id", s.supplier_id) || XMLElement("name", s.name)

) xml_fragment

FROM supplier s;

XML_FRAGMENT

--

<supplier>

 <supplier_id>1</supplier_id><name>Acme Industries</name>

</supplier>

<supplier>

 <supplier_id>2</supplier_id><name>Tilton Enterprises</name>

</supplier>

<supplier>

 <supplier_id>3</supplier_id><name>Eastern Importers</name>

</supplier>

Please note that the three rows of output from the previous example would normally print as
three lines; we have taken the liberty of adding line feeds and tabs for readability and will do so
for the rest of the examples.

16.3.2 XMLAgg()

The XMLAgg() function groups together sets of elements so that they can all be children to the

same parent. This function is useful for working with collections or for wrapping a set of
elements under a parent element. The next example builds on the previous example by
wrapping the supplier elements in a root element called <supplier_list> :

SELECT XMLElement("supplier_list",

 XMLAgg(XMLElement("supplier",

 XMLElement("supplier_id", s.supplier_id) || XMLElement("name", s.name)

))) xml_document

FROM supplier s;

XML_DOCUMENT

--

<supplier_list>

 <supplier>

 <supplier_id>1</supplier_id><name>Acme Industries</name>

 </supplier>

 <supplier>

 <supplier_id>2</supplier_id><name>Tilton Enterprises</name>

 </supplier>

 <supplier>

 <supplier_id>3</supplier_id><name>Eastern Importers</name>

 </supplier>

</supplier_list>

To spice things up a bit, the next example adds the part table to the FROM clause and adds a

list of parts supplied by each supplier:

SELECT XMLElement("supplier_list",

 XMLAgg(XMLElement("supplier",

 XMLElement("supplier_id", s.supplier_id) || XMLElement("name", s.name)

 || XMLElement("part_list", XMLAgg(XMLElement("part",

 XMLElement("part_nbr", p.part_nbr) || XMLElement("name", p.name))))

))) xml_document

FROM supplier s INNER JOIN part p

 ON s.supplier_id = p.supplier_id

GROUP BY s.supplier_id, s.name;

XML_DOCUMENT

--

<supplier_list>

 <supplier>

 <supplier_id>1</supplier_id><name>Acme Industries</name>

 <part_list>

 <part><part_nbr>AI5-4557</part_nbr><name>Acme Part AI5-4557</name></part>

 </part_list>

 </supplier>

 <supplier>

 <supplier_id>2</supplier_id><name>Tilton Enterprises</name>

 <part_list>

 <part><part_nbr>TZ50828</part_nbr><name>Tilton Part TZ50828</name><part>

 </part_list>

 </supplier>

 <supplier>

 <supplier_id>3</supplier_id><name>Eastern Importers</name>

 <part_list>

 <part><part_nbr>EI-T5-001</part_nbr><name>Eastern Part EI-T5-001</name></part>

 </part_list>

 </supplier>

</supplier_list>

16.3.3 XMLForest()

The previous examples in this section have used concatenation (||) to append sibling elements
together. The XMLForest() function takes a list of values, generates elements for each one,

and concatenates them together for you:

SELECT XMLElement("supplier",

 XMLForest(s.supplier_id, s.name)

) xml_fragment

FROM supplier s;

XML_FRAGMENT

--

<supplier>

 <SUPPLIER_ID>1</SUPPLIER_ID><NAME>Acme Industries</NAME>

</supplier>

<supplier>

 <SUPPLIER_ID>2</SUPPLIER_ID><NAME>Tilton Enterprises</NAME>

</supplier>

<supplier>

 <SUPPLIER_ID>3</SUPPLIER_ID><NAME>Eastern Importers</NAME>

</supplier>

If you want to specify your own element names, you can optionally use the AS clause, as
demonstrated by the following:

SELECT XMLElement("supplier",

 XMLForest(s.supplier_id AS "sup_id", s.name AS "sup_name")

) xml_fragment

FROM supplier s;

XML_FRAGMENT

--

<supplier>

 <sup_id>1</sup_id><sup_name>Acme Industries</sup_name>

</supplier>

<supplier>

 <sup_id>2</sup_id><sup_name>Tilton Enterprises</sup_name>

</supplier>

<supplier>

 <sup_id>3</sup_id><sup_name>Eastern Importers</sup_name>

</supplier>

16.3.4 Putting It All Together

Earlier in the chapter, you saw how data from the purchase order document could be extracted
and stored in various tables. Using the three built-in SQL functions described above, we will
demonstrate how to recreate the XML document from the purchase_order , cust_order ,
line_item , and customer tables. We'll start by generating the root element and basic

purchase order data from the purchase_order , cust_order , and customer tables:

SELECT XMLElement("purchase_order",

 XMLForest(c.name AS "customer_name",

 po.customer_po_nbr AS "po_number",

 TO_CHAR(po.customer_inception_date, 'YYYY-MM-DD')

 AS "po_date")

) purchase_order

FROM purchase_order po INNER JOIN cust_order co

 ON po.order_nbr = co.order_nbr

 INNER JOIN customer c ON co.cust_nbr = c.cust_nbr

WHERE po.po_id = 1000;

PURCHASE_ORDER

<purchase_order>

 <customer_name>Alpha Technologies</customer_name>

 <po_number>11257</po_number>

 <po_date>2004-01-20</po_date>

</purchase_order>

Next, we will aggregate the line item data from the line_item table:

SELECT XMLElement("purchase_order",

 XMLForest(c.name AS "customer_name",

 po.customer_po_nbr AS "po_number",

 TO_CHAR(po.customer_inception_date, 'YYYY-MM-DD') AS "po_date",

 XMLAgg(XMLElement("item",

 XMLForest(li.part_nbr AS "part_number", li.qty AS "quantity")))

 AS "po_items")

) purchase_order

FROM purchase_order po INNER JOIN cust_order co

 ON po.order_nbr = co.order_nbr

 INNER JOIN customer c ON co.cust_nbr = c.cust_nbr

 INNER JOIN line_item li ON co.order_nbr = li.order_nbr

WHERE po.po_id = 1000

GROUP BY po.customer_po_nbr, po.customer_inception_date, c.name;

PURCHASE_ORDER

--

<purchase_order>

 <customer_name>Alpha Technologies</customer_name>

 <po_number>11257</po_number>

 <po_date>2004-01-20</po_date>

 <po_items>

 <item>

 <part_number>AI5-4557</part_number>

 <quantity>20</quantity>

 </item>

 <item>

 <part_number>EI-T5-001</part_number>

 <quantity>12</quantity>

 </item>

 </po_items>

</purchase_order>

Hopefully, this looks familiar. Although the output is satisfactory, we find the number of joins
and the GROUP BY clause to be a bit excessive, so the next version of the query uses subqueries
to retrieve the customer name and line items:

SELECT XMLElement("purchase_order",

 XMLForest((SELECT c.name

 FROM customer c INNER JOIN cust_order co ON c.cust_nbr = co.cust_nbr
 WHERE co.order_nbr = po.order_nbr) AS "customer_name",

po.customer_po_nbr AS "po_number",
TO_CHAR(po.customer_inception_date, 'YYYY-MM-DD') AS "po_date",
 (SELECT XMLAgg(XMLElement("item",
 XMLForest(li.part_nbr AS "part_number", li.qty AS "quantity")))
 FROM line_item li
 WHERE li.order_nbr = po.order_nbr) AS "po_items")

) purchase_order FROM purchase_order po WHERE po.po_id = 1000;
PURCHASE_ORDER ---
------ <purchase_order> <customer_name>Alpha
Technologies</customer_name> <po_number>11257</po_number>
<po_date>2004-01-20</po_date> <po_items> <item> <part_number>AI5-
4557</part_number> <quantity>20</quantity> </item> <item>
<part_number>EI-T5-001</part_number> <quantity>12</quantity>
</item> </po_items> </purchase_order>

 < Day Day Up >

 < Day Day Up >

16.4 Summary

This chapter has covered quite a bit of ground as far as how SQL and XML interact, including the
storage, validation, modification, and generation of XML documents, yet it has barely scratched
the surface as far as XML is concerned. There is much more to XML than has been demonstrated
here, and far more to XML Schema than was utilized in the schema definition for the purchase
order documents. Additionally, there are a large number of related technologies, such as
Document Object Model (DOM) and Extensible Stylesheet Language Transformations (XSLT),
that have not been covered in this chapter, but which are available in Oracle XML DB. It is
impossible to cover all of this territory in a single chapter, so we urge you to utilize the
resources mentioned earlier in the chapter if you are new to XML.

 < Day Day Up >

 < Day Day Up >

Chapter 17. Regular Expressions
One of the most exciting SQL features in Oracle Database 10g is support for regular
expressions. Open source databases such as MySQL and PostgreSQL have supported regular
expressions for years. Frankly, we were tired of having that thrown in our faces, of feeling one-
upped by the open source competition. In the Oracle Database 10g release, Oracle has
implemented regular expression support with a vengeance. We were surprised and delighted at
what we found. You will be, too.

 < Day Day Up >

 < Day Day Up >

17.1 Elementary Regular Expression Syntax

Regular expressions provide a syntax to describe patterns in text. Being able to describe a
passage of text gives you power, the power to manipulate that text in ways that would
otherwise be impossible. For example, regular expressions enable you to easily perform an
operation such as the following:

Find all apparent phone numbers in a free-text, comment column, and reformat those
numbers, at least the U.S. and Canadian numbers, so that all appear in the form: (999)
999-9999.

By the end of this chapter, we'll have shown you exactly how to implement this directive. For
now, we want to familiarize you with some elementary regular expression syntax.

17.1.1 Matching a Single Character

The most basic regular expression metacharacter is probably the period (.). Use it to match any
single character, except for the newline (usually chr(10)). For example, assume that users of

our book's example database have taken to entering employee address and phone number
information into a free-form text column. Further suppose that you need to identify and extract
the phone numbers from that column. All employees are in the States, so you can use the
pattern ...-... . to search for the common phone number pattern of three digits, a hyphen,

and four digits:

SELECT emp_id, text

FROM employee_comment

WHERE REGEXP_LIKE(text,'...-....');

 EMP_ID TEXT

---------- --

 7369 126 Varnum, Edmore MI 48829, 989 313-5351

 7499 1105 McConnell Court

 Cedar Lake MI 48812

 Home: 989-387-4321

 Cell: (237) 438-3333

 7521 Her address is: 12646 Bramell. Her city and state are Vestab

 urg, MI 48891

 Home phone is 387-1698

 . . .

 7900 Cares for 100-year-old aunt during the day. Schedule only fo

 r evening and night shifts.

 . . .

REGEXP_LIKE is the regular expression equivalent to the LIKE predicate. You'll notice that it
looks like a function, and if you prefer to think of it that way, that's fine, because in PL/SQL,
REGEXP_LIKE is, in fact, a function, a Boolean function. However, in SQL, Oracle refers to
REGEXP_LIKE as a predicate.

Whatever you choose to call it, REGEXP_LIKE searches the target string to see whether it
contains an occurrence of the pattern you specify. In our example, the predicate searches the
text column for the phone number pattern, and evaluates to TRUE whenever that pattern is

found.

As you can see from our query's output, our users have taken the words "free-form" to heart.
Phone numbers have been entered using a variety of formats. The expression used in our query
doesn't catch every phone number. It also matches at least one string that is not a phone
number: "100-year-old" in the comment for #7900. We'll refine the expression as we present
more of Oracle's regular expression syntax.

Before running the examples in this chapter, we used the following SQL*Plus formatting
commands: SET RECSEP OFF , COLUMN text FORMAT A60 .

When using regular expressions in Oracle, you aren't limited to detecting occurrences of a
pattern. After all, once you've determined that a string contains text matching a pattern, you're
likely to want to do something with that text. For that Oracle provides the REGEXP_SUBSTR
function. REGEXP_SUBSTR extracts text matching a regular expression:

SELECT emp_id, REGEXP_SUBSTR(text,'...-....') text

FROM employee_comment

WHERE REGEXP_LIKE(text,'...-....');

 EMP_ID TEXT

---------- ---------------

 7369 313-5351

 7499 989-387-

 7521 387-1698

Hmm . . . What's up with 989-387- ? We didn't ask for a trailing hyphen, or did we? In a way,

we did. Our pattern used a period (.) to ask for any four characters following a hyphen, and a
hyphen is itself a character. The string 989-387- comes from the combined area code and
phone number 989-387-4321 . Keep reading! We'll show you how to fix this.

Fuzziness

Fuzziness is a term some of us use to describe the fact that using regular expressions to identify
data in free-form text is not an exact science. When you query the employee table, and you
select values from the dept_id column, you can be certain of getting department ID numbers.

After all, those are what the column is defined as holding, and you have database constraints
and application logic to ensure that the column holds only the sort of values it is supposed to
hold.

When using regular expressions to extract data elements from free-form text, you always run
the risk of getting back something other than what you are looking for. Search for phone
numbers using a pattern such as ...-... ., and you might find a string such as '210-acre '

instead. No matter how well you constrain your search pattern, you can never be certain that
text matching your pattern has the meaning you expect.

17.1.2 Matching Any of a Set of Characters

Phone numbers are not made up of any characters; they are, well, numbers. Our previous
regular expression is a bit too broad in this respect, as it allows for hyphens and other
characters where we want to see only digits. Not to worry! There is a solution. You can use
square-brackets to define a matching-list consisting of only the digits 0 through 9. The pattern
[0123456789] will match any of the digits, 0 through 9, given in the list. Using this pattern, you

can write a phone number expression that more narrowly focuses in on phone numbers:

[0123456789][0123456789][0123456789]-[0123456789][0123456789][0123456789][0123456789]

This pattern is rather awful though, in that it repeats the digits from 0 through 9 seven times.
It's a good thing we aren't looking for area codes too. Maybe we should look for area codes, but
for now we'll just tell you that you can use a hyphen within square-brackets as a short-hand for
enumerating each character in a range. Rather than write [0123456789] , you can use the
much simpler [0-9] to represent the same set of values. You can now shorten the phone

number expression to:

[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]

The following query shows the change in results from using this more refined expression:

SELECT emp_id,

 REGEXP_SUBSTR(text,'[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]') text

FROM employee_comment

WHERE REGEXP_LIKE(text,'[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]');

 EMP_ID TEXT

---------- -------------

 7369 313-5351

 7499 387-4321

 7521 387-1698

This query is much better. Notice 387-4321 in the second row of output. This is the correct
phone number that was misrepresented as 989-387- by our query at the end of the preceding

section.

You're not limited to specifying a single range within square-brackets. You can specify any
combination of ranges and single characters. For example, you can generate the same matching
set as from [0-9] using the following expression:

[01-3456-9]

The matching set in this expression is composed of:

The single digit 0

The range of digits from 1 through 3

The single digits 4 and 5

The range of digits 6 through 9

Be aware that, under the default NLS_SORT=BINARY setting, any ranges you specify depend on
the underlying character set encoding. It so happens that most, if not all, ASCII- and Unicode-
based encodings map the digits 0 through 9 to contiguous code points. However, you can run
into problems in this area. For example, the range [A-Z] encompasses all the uppercase Latin

characters used in American English, but that range does not encompass other uppercase Latin
characters, such as the Croatian alphabet's LJ . You'll also find that, while the letters A-Z are
contiguous in ASCII, they are not contiguous in EBCDIC (an encoding with roots in IBM
operating systems). In EBCDIC, you'll find that the range [A-Z] encompasses not only the
letters A through Z, but also the closing curly-brace (}), the backslash (\), and some

unassigned code points.

In addition to defining a range, you can negate a matching set. Do this by writing a caret (^)

as the first character following the opening square-bracket. For example, use the expression
[^0-9] to match all characters but the digits 0 through 9. Use [^a-zA-Z] to match characters

other than the 26 letters used in American English.

Within square-brackets, the hyphen (-), caret (^), and other characters take on a special

meaning. Table 17-1 tells you a bit more about working with these characters.

^

Negates a matching set. To include the actual ^ character in a set, place it in any position but
the first. For example: [0-9^] includes the digits 0 through 9, plus the caret character.

-

Separates the first and last characters in a range. To include the hyphen as itself, use it in either
the first or last position, where it can't possibly define a range. For example: [-0-9] and [0-9-
] both include the digits 0-9 along with the hyphen. In a negation situation you can write the
hyphen immediately following the caret. The expression [^-0-9] excludes the digits 0 through

9, as well as excluding the hyphen.

[

Within a square-bracket expression, an opening square-bracket simply represents itself. For
example, [[0-9] includes the digits 0 through 9 as well as the [character.

]

Closes a matching set. To include] in a set, specify it as the first character following the
opening square-bracket (e.g., []0-9]). When negating a set, you can specify] immediately
following the caret, as in: [^]0-9] .

Table 17-1. Characters with special meaning inside square brackets

Character Usage and example

Bracket expressions seem simple at first, but can get a bit tricky to write because of the special
characters described in Table 17-1 . The treatment of those characters may seem arbitrary at
first, but there is a logic that will begin to sink in as you gain more experience writing regular
expressions.

In addition to the characters described in Table 17-1 , the sequences [:. : :] , [. .] , and [=
=] also have special meaning. We describe these in Section 17.3 .

REGEXP_LIKE Versus LIKE

There's a subtle difference in operation between REGEXP_LIKE and LIKE. The difference lies in
whether the pattern you supply must match the entire target string. LIKE evaluates to TRUE
only when a pattern matches the entire target string. Thus, to find strings containing a phone
number using LIKE, you need to write a pattern such as '%_ _ _-_ _ _ _% '. The percent signs
(%) on either end allow for other text on either side of the phone number.

REGEXP_LIKE is different from LIKE in this regard. REGEXP_LIKE evaluates to true whenever a
pattern is found anywhere within a string. That's why you can use an expression like '...-....

' to detect phone numbers without worrying about text that might precede or follow those
numbers.

This subtle difference in operation between the two predicates is something you'll want to take
into account should you ever translate a pattern from LIKE's syntax to the regular expression
syntax used with REGEXP_LIKE.

17.1.3 Matching Repeating Sequences

The period (.) matches a single character in a target string. So does a bracket expression, which
is why we had to repeat [0-9] three times, and then again four times, in our phone number

expression. Wouldn't it be nice to more easily define elements of an expression that repeat?
Sure it would, and to that end you have what are termed quantifiers. A quantifier is a special
character, or sequence of characters that specify a valid range of occurrences for the
immediately preceding element.

Getting back to our phone number example, rather than repeat each element in the phone
number expression:

[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]

you can specify each element once followed by a quantifier giving the repeat count:

[0-9]{3}-[0-9]{4}

The first element, in this case, is the bracket expression [0-9] . The quantifier for the first
element is {3} , which means that we want three repetitions of [0-9] . Similarly, the quantifier
{4} for the third element specifies four repetitions of a digit. The second element is the hyphen,

for which we didn't specify a quantifier, so the default is to look for a single occurrence.
Plugging this shorter and simpler expression into our query from the previous section gives the
following, equivalent query:

SELECT emp_id,

 REGEXP_SUBSTR(text,'[0-9]{3}-[0-9]{4}') text

FROM employee_comment

WHERE REGEXP_LIKE(text,'[0-9]{3}-[0-9]{4}');

Oracle's regular expression syntax supports the quantifiers shown in Table 17-2 .

*

Specifies that an element may occur zero or more times. For example, .* is the regular
expression equivalent to the LIKE predicate's % metacharacter.

+

Specifies that an element may occur one or more times.

?

Specifies that an element may occur zero or one times, but no more.

{ n }

Specifies that an element must occur n times.

{ n ,}

Specifies than an element must occur at least n times, but may occur more than n times.

{ n ,m }

Specifies that an element must occur anywhere between n and m times, inclusive.

{0,m}

Is the same case really, as { n ,m } , but this is a way to specify that an element occurs up to,

but not more than, m times.

Table 17-2. Regular expression quantifiers

Quantifier Description

17.1.4 Defining Alternate Possibilities

Our users have not been at all consistent in how they've entered data into our free-form
comment column. Some phone numbers have area codes. Some do not. And when it comes to
separating digit groups, our users show no end of creativity. They've used hyphens, periods,
and spaces as separators, have mixed those in a single phone number, and you'll even find a
few area codes enclosed within parentheses. What's a SQL programmer to do?

Dealing with alternate possibilities is an area in which regular expressions really shine when
compared to the rather lame LIKE predicate. Let's begin with the problem of area codes. Some
phone numbers have them, and others do not. One way to handle this is to simply write an
expression for each case, and join those two expressions with the vertical-bar (|) operator:

[0-9]{3}-[0-9]{3}-[0-9]{4}|[0-9]{3}-[0-9]{4}

This regular expression will find phone numbers in the following two forms: 999-999-9999 and
999-9999 . The vertical bar defines an alternation , or a choice between two possibilities: one

with an area code and one without.

Alternation appears to take care of the area code problem. Let's turn to the issue of separators.
You could try to take care of the different separators by adding even more alternations, with a
different expression to cover each permutation of separators:

[0-9]{3}-[0-9]{3}-[0-9]{4}|[0-9]{3}.[0-9]{3}.[0-9]{4}|[0-9]{3} [0-9]{3} [0-9]{4}|[0-

9]{3}-[0-9]{3}.[0-9]{4}|[0-9]{3}.[0-9]{3}-[0-9]{4}|[0-9]{3} [0-9]{3}.[0-9]{4}| . . .

This gets messy fast. A combined area code and phone number contains two separator
characters, and with three possible characters to choose from in each position, the number of
permutations gets quickly out of hand. Since we're dealing with single characters, a better
approach might be to define a matching set of valid separators:

[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}|[0-9]{3}[-.][0-9]{4}

This is much better. We're back to a single alternation between two patterns. The matching set
[-.] matches any of the three separator characters that we are recognizing as valid.

Because the hyphen (-) comes first in the matching set [-.] , that hyphen is treated as a
character in the set. On the other hand, in the matching set [0-9] , the hyphen, because it is
neither first nor last, is treated as a delimiter between the first (0) and last (9) characters in a

range.

The following query shows the results of using this improved expression:

SELECT emp_id,

 REGEXP_SUBSTR(

 text,

 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}|[0-9]{3}[-.][0-9]{4}')

 text

FROM employee_comment

WHERE REGEXP_LIKE(

 text,

 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}|[0-9]{3}[-.][0-9]{4}');

 EMP_ID TEXT

---------- -------------

 7369 989 313-5351

 7499 989-387-4321

 7521 387-1698

 7566 989.387.4444

 7654 231-898-9823

 7698 388-1234

 7844 989-387.5359

 7876 453-9999

Order matters with alternation. Consider the following two regular expressions:

[0-9]{3}-[0-9]{3}|[0-9]{3}-[0-9]{3}-[0-9]{4}

[0-9]{3}-[0-9]{3}-[0-9]{4}|[0-9]{3}-[0-9]{3}

Both of these expressions look for either a 999-999 or a 999-999-9999 pattern. The 999-999 is
a purposeful deviation from our phone number pattern. The difference between the expressions
lies solely in the order in which the alternation is written. Look at the difference in output:

SELECT REGEXP_SUBSTR(text,'[0-9]{3}-[0-9]{3}|[0-9]{3}-[0-9]{3}-[0-9]{4}')

FROM employee_comment

WHERE emp_id = 7499;

REGEXP_SUBSTR

989-387

SELECT REGEXP_SUBSTR(text,'[0-9]{3}-[0-9]{3}-[0-9]{4}|[0-9]{3}-[0-9]{3}')

FROM employee_comment

WHERE emp_id = 7499;

REGEXP_SUBSTR

989-387-4321

Why the difference in results? It's because Oracle's regular expression engine looks at the

alternates in left-to-right order. For reference, here's an example showing the target text:

SELECT text

FROM employee_comment

WHERE emp_id = 7499;

TEXT

1105 McConnell Court

Cedar Lake MI 48812

Home: 989-387-4321

Cell: (237) 438-3333

Both alternates begin to match at the same point in the target text. Whenever that happens, the
regular expression engine looks at the alternates from left-to-right. If the left-most alternate
matches, the regular expression engine is satisfied, and that match is returned from
REGEXP_SUBSTR. When writing alternations, if you have any preference as to which alternation
takes precedence, be sure to write that alternation first.

17.1.5 Subexpressions

We're not quite done with phone numbers yet. One last issue to deal with is that of phone
numbers with area codes enclosed in parentheses, in the form: (999) 999-9999. Here's one way
to think about this problem:

A phone number might have an area code:

The area code might be enclosed within parentheses.

The area code might not be enclosed within parentheses.

The phone number might not have an area code.

Essentially, what you have here is an alternation within an alternation. Working from the inside
out, you can write the following expression to accommodate both area code possibilities:

[0-9]{3}|\([0-9]{3}\)

The left side of this expression looks for three digits. The right side looks for three digits
enclosed within parentheses. Why the backslash (\) characters? Those are there because

otherwise the parentheses are treated as special characters, enclosing a subexpression.

A subexpression is a portion of a longer expression that you wish to treat as a discrete unit. For

example, you might wish to apply a quantifier to a subexpression. Indeed, that's a good way to
indicate that area codes are optional:

([0-9]{3}|\([0-9]{3}\))?

The parentheses, the ones not preceded by \ characters, define a subexpression defining two
alternate representations of an area code. The ? quantifier specifies that the preceding

subexpression, the area code, occurs either once or not at all.

There's one more housekeeping detail to take care of before filling out the non-optional portion
of the phone number expression. If there's an optional area code, it will be followed by some
sort of separator. That separator will be a space if the area code is enclosed by parentheses, or
it will be one of either a hyphen, period, or space:

([0-9]{3}[-.]|\([0-9]{3}\))?

Now, all that remains is to add the seven-digit phone number pattern onto the end of the
preceding expression:

([0-9]{3}[-.]|\([0-9]{3}\))?[0-9]{3}[-.][0-9]{4}

The following query shows the results of this latest iteration of the phone number pattern:

SELECT emp_id, REGEXP_SUBSTR(text,

 '([0-9]{3}[-.]|\([0-9]{3}\))?[0-9]{3}[-.][0-9]{4}')

 text

FROM employee_comment;

 EMP_ID TEXT

---------- ---------------

 7369 989 313-5351

 7499 989-387-4321

 7521 387-1698

 7566 989.387.4444

 7654 231-898-9823

 7698 (989) 388-1234

 7782

 7788

 7839

 7844 989-387.5359

 7876 (231) 453-9999

 7900

In addition to dealing with tricky alternations, subexpressions are also essential when working
with backreferences, something you'll read more about later in Section 17.3 .

Regular Expressions and Index Usage

Many of our examples in this chapter use REGEXP_LIKE in the WHERE clause of a SELECT
statement to search for patterns of text. You might rightfully wonder about index usage when
executing such queries. When you apply REGEXP_LIKE to a column, you have the same issue
that you have when you apply any other SQL function to a column: you preclude the use of any
index defined on that column.

If you always search for the same pattern, you can create a function-based index to help you
locate that pattern. However, if you always search for the same pattern, we'd argue that you
should redesign your database to store your target data in discrete columns. For example, if
you are constantly searching for phone number patterns, you should extract phone numbers
once, and place them into their own column.

If you must create a function-based index, you won't be able to base it on REGEXP_LIKE,
because that function returns a Boolean value. SQL, and by extension indexes, do not support
Boolean values. You can, however, use one of the other regular expression functions:

CREATE INDEX phone_number

ON employee_comment (

 REGEXP_SUBSTR(text,'...-....'));

You can use this index to support queries such as:

SELECT *

FROM employee_comment

WHERE REGEXP_SUBSTR(text,'...-....') = '313-5351';

Again though, we would argue that regular expressions are best reserved for ad-hoc queries. If
you issue the same regular expression query often enough to want to index for it, we think you
should consider modifying your database design to enable querying the target data without
resorting to regular expressions. More importantly, realize that you can do a lot with regular
expressions outside of the WHERE clause, where indexes, or the lack thereof, aren't a factor.

17.1.6 Anchoring an Expression

Two metacharacters allow you to anchor an expression to either the beginning or end, or both,
of the target string. When you anchor an expression to the beginning of the target string, you
are specifying that no other characters may precede the expression. Likewise, when you anchor
an expression to the end of a string, you are specifying that no characters are allowed to follow
the expression.

Use a caret (^) to anchor an expression to the beginning of a string. Use a dollar sign ($) to

anchor an expression to the end of a string. Here's an example, using REGEXP_INSTR, to
illustrate. The REGEXP_INSTR function returns the character position where a match for an
expression is found:

SELECT REGEXP_INSTR('123','[0-9]') unanchored,

 REGEXP_INSTR('123','[0-9]$') anchored_end

FROM dual;

UNANCHORED ANCHORED_END

---------- ------------

 1 3

Notice the difference in character positions returned by the two function calls. The expression in
the second function call used a $ to search for a digit at the end of the string, and that's exactly

what the function found.

The ^ and $ are anchor characters only when used outside of a bracket expression.

You can combine the use of ^ and $ to write an expression encompassing the entire target

string. The following example searches for comments containing only a phone number:

SELECT emp_id, REGEXP_SUBSTR(text,

 '^([0-9]{3}[-.]|\([0-9]{3}\))?[0-9]{3}[-.][0-9]{4}$')

 text

FROM employee_comment

WHERE REGEXP_LIKE(text,

 '^([0-9]{3}[-.]|\([0-9]{3}\))?[0-9]{3}[-.][0-9]{4}$');

 EMP_ID TEXT

---------- -------------

 7844 989-387.5359

There's one thing to be careful of when using the anchoring characters. It's possible to write
expressions that can't possibly match anything in the target text. For example, you could write
$[0-9] , which anchors the beginning of the expression to the end of the target string. You

won't find any digits after the string ends, so this expression will always fail. Watch for this sort
of thing, and be careful about where you place your anchoring metacharacters.

17.1.7 Understanding Greediness

Greediness is an important concept to understand when writing regular expressions. We don't
mean greed of the Enron sort, but rather that each quantifier in a regular expression will always
match as much text as possible. The results from this rule can sometimes be surprising.

For example, consider the following quotation:

Brighten the corner where you are.

Think about the problem of extracting the first word from this text. Many would look at the text,
see that a word is a series of letters followed by a space, and would immediately translate that
thought to an expression like '.* ', which matches any number of characters followed by space.

That seems logical, doesn't it? Yet look at the results:

SELECT REGEXP_SUBSTR('Brighten the corner where you are',

 '.* ')

FROM dual;

REGEXP_SUBSTR('BRIGHTENTHECORN

Brighten the corner where you

Is this the result you expected? If it is, then go to the head of the class and take a gold star,
because you're already way ahead of us. If this result surprises you, then think about what we
asked for:

We asked for a series of characters, of any length, followed by a space.

Faced with this requirement, how would you satisfy it? It turns out there are three possible
approaches you can take:

You could stop at the first space.

You could stop at the last space.

You could stop at some arbitrary space somewhere in between the first and the last.

Computers are not good at being arbitrary, and no one wants them to be arbitrary either, so
that last option is out. Here's how Oracle's regular expression engine conceptually matches the
expression '.* ' with our example text:

The first element of the expression is a period, representing any character. The quantifier
allows any number of occurrences, so the engine finds all the characters that it can,
stopping only when it reaches the letter e at the end of the string. At this point, the engine

has matched the entire string: "Brighten the corner where you are".

1.

The expression calls for a space. An e is not a space, so the engine backs up one character
to the r .

2.

An r is not a space, so the engine backs up another character to the a .3.

An a is not a space, so the engine backs up again, finds the space following "you", and

returns "Brighten the corner where you", including the trailing-space, as the result from
REGEXP_SUBSTR.

4.

The key point to take away from this section is that the regular expression engine doesn't look
at a pattern quite the same way you might. When you mentally apply the pattern '.* ' to a

string, your tendency is probably going to be to stop the moment you have a match. You can do
that easily, because your brain is a much better pattern-matching engine than a computer. You
see the pattern as a whole, and you'll tend to gravitate toward the interpretation that you had
in mind when you wrote the expression. Regular expression engines look at patterns and strings
a character at a time, moving back and forth, finding the longest match for each regular
expression element.

Matching a Single Word

In Section 17.1.7 , we used the expression '.* ' to match a word in a string. That expression

actually matches more than just a word. It matches a word followed by a space, and it won't
find the single word in the string 'Brighten ', because there is no trailing space at the end of

the string.

Although it worked well to illustrate greediness, the pattern '.* ' isn't at all the best way to

define a word. For one thing, you don't want to define a word in terms of what it isn't (that
trailing space), but rather in terms of what it is. Perhaps a better way to look at a word is as a
sequence of non-space characters. You can use negation inside a bracket expression to
accomplish that:

SELECT REGEXP_SUBSTR(

 'Brighten the corner where you are', '[^]*')

FROM dual;

REGEXP_S

Brighten

However, non-space characters include punctuation as well, so you might want to narrow things
down even more, by insisting that your word contain only alphabetic characters:

SELECT REGEXP_SUBSTR(

 'Brighten the corner where you are',

 '[A-Za-z]*')

FROM dual;

Depending on your application, you might or might not wish to allow for the possibility that a
word might contain digits. A password, for example, might look like My8Secret . And then you

have hyphenated words to think about. Is area-code one word or two? Sometimes the problem
is not so much writing the expression as it is defining the thing you want that expression to
match.

 < Day Day Up >

 < Day Day Up >

17.2 Advanced Function Options

By now we've introduced you to all but one of Oracle's regular expression functions. However,
you've only seen them used in their simplest form. Their full syntax is:

REGEXP_INSTR(source_string, expression

 [, position [, occurrence

 [, return_option

 [, match_parameter]]]])

REGEXP_LIKE (source_string, expression

 [, match_parameter])

REGEXP_REPLACE(source_string, expression

 [, replace_string

 [, position [, occurrence

 [, match_parameter]]]])

REGEXP_SUBSTR(source_string, expression

 [, position [, occurrence

 [, match_parameter]]])

If you're familiar with Oracle's string-manipulation functions, you'll have no trouble discerning
the purpose of the REGEXP functions:

REGEXP_INSTR

Returns the character position at which text can be found matching a regular expression
in a target string.

REGEXP_LIKE

Discerns whether a given string contains text matching an expression. This is a Boolean
function, returning TRUE or FALSE, or NULL.

REGEXP_REPLACE

Performs a regular expression search-and-replace operation, which you'll learn about in
Section 17.3.

REGEXP_SUBSTR

Extracts text matching a regular expression from a string.

The parameters to these functions are as follows:

source_string

The string to be searched.

expression

A regular expression describing the pattern of text that you seek.

replace_string

A string generating the replacement text to be used in a search-and-replace operation.

position

The character position within source_string at which to begin a search. This defaults to

1.

occurrence

The occurrence of the pattern you wish to locate. This defaults to 1, giving you the first
possible match.

return_option

Valid only for REGEXP_INSTR, and determines whether the beginning or ending character
position is returned for text matching a pattern. The default is 0, for the beginning. Use 1

to return the ending position.

match_parameter

A text string through which you may specify options to vary the behavior of the regular
expression matching engine.

The match_parameter deserves a bit of explanation. It's a character string that you build using
one or more of the following letters: i, c, n, m. One use is to specify whether matching is case-

sensitive. By default, your NLS_SORT setting drives this aspect of regular expression behavior.
You can override that default on a call-by-call basis, using i to get case-insensitive matching,
and c to get case-sensitive matching. Following is a simple demonstration that works with our
example data set. When the i option is used, the match succeeds, even though the case really

does not match:

SELECT emp_id, text

FROM employee_comment

WHERE REGEXP_LIKE(text, 'CEDAR LAKE', 'c');

no rows selected

SELECT emp_id, text

FROM employee_comment

WHERE REGEXP_LIKE(text, 'CEDAR LAKE', 'i');

 EMP_ID TEXT

---------- ---

 7499 1105 McConnell Court

 Cedar Lake MI 48812

 Home: (989) 387-4321

 Cell: (237) 438-3333

 7782 Academy Apartments, #138, Cedar Lake MI 48812

 7788 #1 Water Tower Lane

 Cedar Lake MI 48812

The n option is useful when working with data, such as ours, that contains embedded newline

(usually chr(10)) characters. By default, the period (.) does not match newlines, which is why

the following query brings back only the first line of comment text:

SELECT emp_id, REGEXP_SUBSTR(text, '.*') text

FROM employee_comment

WHERE emp_id = 7698;

 EMP_ID TEXT

---------- ---------------

 7698 Marion Blake

Using 'n' for the match parameter, you can have the period match newlines, which in the case of

this query, results in the entire comment being returned:

SELECT emp_id, REGEXP_SUBSTR(text, '.*', 1, 1, 'n') text

FROM employee_comment

WHERE emp_id = 7698;

 EMP_ID TEXT

---------- -----------------------

 7698 Marion Blake

 N1375 Lakeshore Drive

 Vestaburg MI 48891

 (989) 388-1234

This example also illustrates the important point that specifying a match parameter forces you
to also specify any preceding, optional parameters that you would otherwise skip.

The final match option is m, which changes the definition of line with respect to the ^ and $
metacharacters. By default, line means the entire target string, so an expression such as ^.*$,
together with the n option, will bring back all characters in the target string:

SELECT emp_id, REGEXP_SUBSTR(text, '^.*$', 1, 1, 'n') text

FROM employee_comment

WHERE emp_id = 7788;

 EMP_ID TEXT

---------- --------------------

 7788 #1 Water Tower Lane

 Cedar Lake MI 48812

The n option is necessary here, because otherwise the period would not match the newline. If

the period did not match the newline, the expression would fail to match at that point, and it
would be impossible to match all characters between the beginning and end of the string.

However, using the m option causes the definition of line to change from the entire target string,

to any line within that string, where lines are delimited by newline characters. The following
example removes n, replacing it with m:

SELECT emp_id, REGEXP_SUBSTR(text, '^.*$', 1, 1, 'm') text

FROM employee_comment

WHERE emp_id = 7788;

 EMP_ID TEXT

---------- --------------------

 7788 #1 Water Tower Lane

You can specify multiple match parameters in any order. For example, 'in' means the same as
'ni'. If you specify conflicting options, such as 'ic', the last option, 'c' in this case, is the one

that takes precedence.

Try our last example in this section using 'mn' as the match parameter

string. You'll get back the entire target string. Why? Because of the
greediness rule. When 'mn' is used, the first line is a match, but the entire

string is a longer match.

 < Day Day Up >

 < Day Day Up >

17.3 Advanced Regular Expression Syntax

As you delve more deeply into using regular expressions, and especially if you work with
multilingual data, there are some advanced aspects to regular expressions that you'll find
helpful.

17.3.1 Using Backreferences

You've already learned about subexpressions. A backreference is a way that you can reference
the value of text matching a preceding subexpression. Think about the problem of searching
specifically for 10-digit phone numbers that are inconsistent in their use of separator
characters:

906.387-5359

989 313-5351

Each of these numbers uses a separator between the first two digit groups that differs from that
used between the second two digit groups. What sort of expression would you write to detect
this sort of mismatch? One with backreferences.

The key issue in the mismatched separator example we've just described is that to solve the
problem, to identify phone-numbers with mismatched separators, you need the ability within an
expression to refer to characters matched by earlier parts of that expression. In this case, you
need the ability to refer to the first separator from the position of the second. Backreferences let
you do this.

The following regular expression includes parentheses around the first bracket expression,
which corresponds to the first separator. The parentheses define a subexpression:

[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}

The subexpression ([-.]) is the first subexpression, so you refer to it using the notation \1.

Later in the expression, where you would otherwise expect to see a second occurrence of the
bracket expression [-.], you see \1, which references the value matched by the first

subexpression.

The words matched by are critical here. The backreference \1 is not equivalent to [-.]. Rather,
the backreference is equivalent to that part of the text that is matched by [-.]. If the first
separator is a hyphen, then \1 will be equivalent to a hyphen. A specific value for \1 won't be

known until you execute a regular expression query, and even then it will change from row to
row, as the regular expression is applied to one phone number after another.

The following query uses REGEXP_SUBSTR to extract the first phone number from the free-text,
comment column. Only 10-digit phone numbers without parentheses around area codes are
considered. That first phone number is then tested using NOT REGEXP_LIKE, to see whether
both separators are the same.

SELECT emp_id, text

FROM employee_comment

WHERE NOT REGEXP_LIKE(

 REGEXP_SUBSTR(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}'),

 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}');

 EMP_ID TEXT

---------- --

 7369 126 Varnum, Edmore MI 48829, 989 313-5351

 7844 989-387.5359

If the separators in a given phone number differ, then REGEXP_LIKE returns FALSE, causing
NOT REGEXP_LIKE to return TRUE, with the result that the row containing the phone number is
included in the result set.

If you try using WHERE NOT REGEXP_LIKE(text, '[0-9]{3}([-.])[0-
9]{3}\1[0-9]{4}'), you'll find many comments without phone numbers

in that format. However, not all of those comments will contain phone
numbers with mismatched separators.

Oracle allows you up to nine backreferences, numbered \1 through \9. These refer to the first

up-to-nine subexpressions, counting from left to right.

Backreferences are particularly important in performing regular expression search-and-replace
operations. In fact, most of our own backreference usage falls into this category.

Remember all those phone number searches from our earlier examples in this chapter?
Remember how creative our users were when it came to formatting phone numbers? Imagine
for a moment that you want to unify the phone number format across all those free-form text
entries. You want all phone numbers to be in the form 999-9999, with a hyphen separating digit
groups. If there's an area code, you want that in parentheses, in the form (999) 999-9999. This
is a hard problem, or it would be, if you had to write PL/SQL to solve it. Using regular
expressions, it's not such a hard problem at all. You can solve it with one UPDATE statement
using a nested call to Oracle's REGEXP_REPLACE function.

Begin by resurrecting the seven-digit portion of the phone number expression from Section
17.1.5:

[0-9]{3}[-.][0-9]{4}

Enclose the pattern for each digit group within parentheses, making two subexpressions:

([0-9]{3})[-.]([0-9]{4})

You can now reference the first three digits as \1, and the last four digits as \2. What's more,

you can use these two backreferences in the replacement text that you provide to
REGEXP_REPLACE:

SELECT emp_id, REGEXP_REPLACE(

 text, '([0-9]{3})[-.]([0-9]{4})', '\1-\2') text

FROM employee_comment;

 EMP_ID TEXT

---------- --

 7369 126 Varnum, Edmore MI 48829, 989 313-5351

 7499 90 McConnell Court

 Cedar Lake MI 48812

 Home: 989-387-4321

 Cell: (237) 438-3333

 . . .

The REGEXP_REPLACE function call in this statement finds each occurrence of the pattern
matched by the second parameter, and replaces it with text from the third parameter. The
backreferences are what make this operation truly exciting. Using backreferences, you can
reference the text to be replaced from your replacement string, giving you great power to move
and reformat text.

You're not done though. Now it's time to worry about that area code. Following is the area code
pattern developed earlier in this chapter:

([0-9]{3}[-.]|\([0-9]{3}\))?

All the seven-digit phone numbers, whether following an area code or not, should fit the
following pattern, which allows only a hyphen as a separator:

[0-9]{3}-[0-9]{4}

Put the two patterns together, and you have:

([0-9]{3}[-.]|\([0-9]{3}\))?[0-9]{3}-[0-9]{4}

For this particular replacement, you want to leave seven-digit phone numbers alone, because
you've already fixed those. To this end, remove the ? to make the area code required:

([0-9]{3}[-.]|\([0-9]{3}\))[0-9]{3}-[0-9]{4}

Your next step is to put parentheses around each element of the phone number that you care
about. There already are parentheses around the area code, but that subexpression also
encompasses whatever separator character follows the area code. The following expression
factors the separator out of the area code subexpression:

([0-9]{3}|\([0-9]{3}\))[-.][0-9]{3}-[0-9]{4}

The semantics of this expression differ slightly from the previous. When the area code is
enclosed in parentheses, this expression allows not only a space to follow, but also a period or a
hyphen. We could work around this by approaching parenthetically enclosed area codes as a
completely separate problem, to be solved using a separate UPDATE statement, but we've
chosen to be flexible and loosen up our pattern just a bit to make our work easier. Sometimes
you need to do that.

Next, put parentheses around the elements in the pattern that you wish to manipulate. The
seven-digit phone number is ok as it is, so you can enclose that entire portion of the pattern,
making it one subexpression:

([0-9]{3}|\([0-9]{3}\))[-.]([0-9]{3}-[0-9]{4})

Dealing with the area code gets a bit tricky, and you'll see why in a moment. For now, look at
the expression so far, and realize that \1 refers to the area code, and \2 to the remainder of the

phone number. Following is a new SQL query that feeds the results of the earlier
REGEXP_REPLACE function, the one to fix seven-digit numbers, into a second REGEXP_REPLACE
call, this time to correctly format area codes:

SELECT emp_id,

 REGEXP_REPLACE(

 REGEXP_REPLACE(

 text, '([0-9]{3})[-.]([0-9]{4})', '\1-\2'),

 '([0-9]{3}|\([0-9]{3}\))[-.]([0-9]{3}-[0-9]{4})',

 '(\1) \2') text

FROM employee_comment;

 EMP_ID TEXT

---------- ---

 7369 126 Varnum, Edmore MI 48829, (989) 313-5351

 7499 90 McConnell Court

 Cedar Lake MI 48812

 Home: (989) 387-4321

 Cell: ((237)) 438-3333

 . . .

Finding an Anti-Pattern

Sometimes you need to find occurrences of text that match one pattern but not
another. The problem of finding phone numbers with mismatched separators is an
example of this requirement: first you need to find a phone number, and then you
need to test it, to see whether it's properly formatted. Earlier, we showed a query
that tested only the first phone number found in a comment. The following query
illustrates a technique you can use to test all phone numbers in a comment:

SELECT emp_id, text

FROM employee_comment

WHERE REGEXP_LIKE(text,

 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

AND REGEXP_LIKE(

 REGEXP_REPLACE(text,

 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),

 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}');

The first REGEXP_LIKE identifies comments containing at least one occurrence of
our phone number pattern, without regard to whether the separators match. The
nested invocation of REGEXP_REPLACE then replaces all good phone numbers, those
with matching separators, with a string of three asterisks. Any remaining phone
number patterns found by the enclosing REGEXP_LIKE must, therefore, represent
phone numbers with mismatched separators. In this way, you can find phone
numbers with mismatched separators regardless of whether they come first in their
respective comment field.

For more on this technique, which you can extend to similar problems, read
Jonathan Gennick's article "Regular Expression Anti-Patterns" at
http://gennick.com/antiregex.htm.

We realize this query is becoming difficult to follow. Please stick with us, and study this query
until you understand it. Notice the output, in particular the cell-phone number, which now reads
((237)) 438-3333. Oops! Doubled parentheses are not at all what you wanted to see around

an area code. What happened?

The reason you see doubled parentheses is because of what \1 refers to. If you carefully study

the regular expression feeding into the outermost call to REGEXP_REPLACE, you'll see that the
first subexpression includes any parentheses that may already be around an area code. The

http://gennick.com/antiregex.htm

replacement text rebuilds the area code by using (\1) to enclose it within parentheses. Take an

area code already within parentheses, enclose it again, and you end up with results such as
((237)).

We fell into the pit we've just described while writing this chapter. We're telling you the story
now for a couple reasons. One, you wouldn't otherwise easily understand why we went with the
solution we're about to show you. Two, we want you to know that the thought-process to a
successful regular expression is rarely a straight line from problem to solution. You'll often go
down a path only to encounter a problem, forcing you to backtrack a bit and try again. Indeed,
we backtracked and changed course at least three times while developing this example. Don't
be dissuaded if your first attempt at a regular expression solution doesn't quite have the effect
you're after. Expect to do a certain amount of experimenting and testing whenever you write
anything but the simplest of expressions.

The following expression is the key to resolving the doubled parentheses problem:

(([0-9]{3})|\(([0-9]{3})\))[-.]([0-9]{3}-[0-9]{4})

In this expression, we've made each of the two alternate area code possibilities into its own
subexpression. Both those subexpressions are nested within a larger subexpression.
Subexpressions are numbered, from left to right, beginning at \1, based on the order in which
each opening parenthesis is encountered. In this expression, \1 will be the area code inclusive
of any parentheses that might be present. \2 corresponds to the area code without
parentheses, if one is found. Otherwise, \2 will be NULL. Likewise, \3 corresponds to an area

code enclosed within parentheses, but does not include those parentheses. The following query
uses (\2\3) to generate the area code in the correct format. It may seem odd to use both

backreferences, but the technique works in this case, because one will always be NULL.

SELECT emp_id,

 REGEXP_REPLACE(

 REGEXP_REPLACE(

 text, '([0-9]{3})[-.]([0-9]{4})', '\1-\2'),

 '(([0-9]{3})|\(([0-9]{3})\))[-.]([0-9]{3}-[0-9]{4})',

 '(\2\3) \4') text

FROM employee_comment;

 EMP_ID TEXT

---------- ---

 7369 126 Varnum, Edmore MI 48829, (989) 313-5351

 7499 90 McConnell Court

 Cedar Lake MI 48812

 Home: (989) 387-4321

 Cell: (237) 438-3333

 . . .

Now that all the kinks have been worked out of the expression, it's a relatively simple matter to
use it in an UPDATE statement:

UPDATE employee_comment

SET text =

 REGEXP_REPLACE(

 REGEXP_REPLACE(

 text, '([0-9]{3})[-.]([0-9]{4})', '\1-\2'),

 '(([0-9]{3})|\(([0-9]{3})\))[-.]([0-9]{3}-[0-9]{4})',

 '(\2\3) \4');

And there you have it. With one statement, and a little bit of regular expression magic, you can
consistently format all those randomly formatted phone numbers in a free-format comment
column.

Before unleashing a regular expression search-and-replace, follow our
example from this section and test what you are doing by issuing a
SELECT statement, and carefully verify that your regular expression is
having the effect that you expected it to have. When everything looks
good, then unleash your UPDATE.

Coming from Perl?

If you come to Oracle with experience writing regular expressions in Perl, we want
to warn you that you won't necessarily be able to take a Perl regular expression and
drop it into Oracle. There are many differences in how the two platforms support
regular expressions.

Perl handles string literals differently than Oracle. Perl permits \x for embedding
arbitrary byte codes into a string, supports character sequences such as \n for
newline, and provides for the use of the $ to dereference variables from within a

string. Regular expressions that depend on Perl's syntax for string literals won't
translate directly to Oracle.

Perl also supports a great deal of Perl-specific regular expression syntax. You have
lazy-quantifiers, for example, enabling non-greedy, regular expressions.
Conversely, Perl does not support some of the Portable Operating System Interface
(POSIX) syntax, such as the [= =] notation used to specify equivalence classes.

For a fuller discussion of these issues, including recommendations on Oracle
equivalents to Perl-specific syntax, refer to the section "Differences Between Perl

and Oracle" in Jonathan Gennick and Peter Linsley's Oracle Regular Expressions
Pocket Reference (O'Reilly).

17.3.2 Using Named Character Classes

Earlier, in our phone number examples, we used bracket expressions such as [0123456789]
and [0-9] to create matching sets to match any of the digits, zero through nine. Oracle also

supports named, character classes, which provide you with a handy and reliable way to create
commonly used matching sets. For example, you can use [:digit:] within a bracket
expression to represent the set of all digits. Instead of using [0-9] in the following expression:

([0-9]{3}[-.]|\([0-9]{3}\))?[0-9]{3}[-.][0-9]{4}

You can use [[:digit:]] to match any character defined as a digit:

([[:digit:]]{3}[-.]|\([[:digit:]]{3}\))?[[:digit:]]{3}[-.][[:digit:]]{4}

Table 17-3 gives a list of valid, character class names, which you must always enclose within a
bracket expression. You can include other characters within the same bracket expression. For
example, you can write [[:digit:]A-F] to create a matching set of all digits plus the letters A-

F.

Table 17-3. Supported character classes

Class Description

[:alnum:] Alphanumeric characters (same as [:alpha:] + [:digit:])

[:alpha:] Alphabetic characters only

[:blank:] Blankspace characters, such as space and tab.

[:cntrl:] Nonprinting, or control characters

[:digit:] Numeric digits

[:graph:]
Graphical characters (same as [:punct:] + [:upper:] + [:lower:] +
[:digit:])

[:lower:] Lowercase letters

[:print:] Printable characters

[:punct:] Punctuation characters

[:space:]
Whitespace characters, such as space, form-feed, newline, carriage return,
horizontal tab, and vertical tab

[:upper:] Uppercase letters

[:xdigit:] Hexadecimal characters

There are pros and cons to using named character classes, but mostly pros:

You don't need to worry about the underlying code points used to represent characters in
whatever character set you are using. A matching set defined as [A-Za-z] might include
characters other than those letters. A matching set defined as [[:alpha:]] will contain

only letters.

You can easily accommodate characters from many languages. For example, [:digit:]

matches not only the English 0-9, but also the Arabic-Indic - . This is important in
multilingual environments.

You don't need to worry about inadvertently omitting a character from a matching set.
Quick! If I want to match all punctuation, and use [.,;:!], have I forgotten anything?
That worry goes away when using [[:punct:]].

You can more easily include characters that would otherwise be difficult to type from the
keyboard. The [:cntrl:] class, for example, represents nonprinting, control characters.

The only downside we can think of to using named character classes, and you could argue that
it's not even a downside, is that if you do use a class such as [:digit:], and you really do care
only about 0-9, you may prefer the results from [0-9] instead. In practice though, we have yet

to regret using a named character class whenever one fits the problem at hand.

17.3.3 Specifying Collation Elements

Oracle has always been strong in its support of multilingual data, and that strength now
extends to regular expressions. When working with languages other than English, you'll
sometimes encounter characters that appear to be two letters, because they are composed of
two glyphs. For example, Spanish, at least old-Spanish, treats ch and ll as single letters.

Dealing with letters such as ch can sometimes be problematic. The following example shows
one attempt to extract a word beginning with either the letter ch or ll from a string. We use the
XSPANISH sort, because that sort works by the old rules under which ch and ll are each treated
as one letter. We build our regular expression as follows:

(^|)

A word is preceded by either the beginning of a line, or by a space.

[chll]

We want our word to begin with either ch or ll. This bracket expression is our first attempt
to define a matching set containing those two characters.

[^[:space:][:punct:]]+

The first letter of our word must be followed by one or more non-space, non-punctuation
characters. We could use * instead + to include one-letter words in our search.

Using the expression we've just described, we specify 'i' as the match parameter to get a case-

insensitive search. Look carefully at the results:

ALTER SESSION SET NLS_SORT=XSPANISH;

SELECT TRIM(REGEXP_SUBSTR(

 'El caballo, Chico come la tortilla.',

 '(^|)[chll][^[:space:][:punct:]]+',1,1,'i'))

FROM dual;

caballo

This result isn't what we want at all. The problem here is that our use of [chll] results in a

matching set composed of three letters, c, h, and l, any of which is deemed a valid match.
Hence, our query found caballo rather than Chico. Collation element syntax lets you deal with
this situation. To treat a multicharacter collation element as a single letter, enclose it within [.
and .]. Then you must enclose that within a bracket expression. The result is that [.ch.] is
recognized as the single letter ch, and [.ll.] is recognized as the single letter ll:

ALTER SESSION SET NLS_SORT=XSPANISH;

SELECT TRIM(REGEXP_SUBSTR(

 'El caballo, Chico come la tortilla.',

 '(^|)[[.ch.][.ll.]][^[:space:][:punct:]]+',1,1,'i'))

FROM dual;

Chico

Technically, any single character is a collation element. Thus, [a] and [[.a.]] are equivalent.

In practice, you only need use collation element syntax when a collation element consists of
multiple characters that linguistically represent one character.

You cannot arbitrarily put any two letters in a collation. For example, you
cannot write [.jg.], because those are two, separate letters, which you

cannot arbitrarily treat as a single letter.

Table 17-4 provides a list of collation elements recognized by Oracle. The elements in the table
are valid only for the specified NLS_SORT settings.

Table 17-4. Collation elements

NLS_SORT Multicharacter collation elements

XDANISH aa AA Aaoe OE Oe

XSPANISH ch CH Chll LL Ll

XHUNGARIAN cs CS Csgy GY Gyly LY Lyny NY Nysz SZ Szty TY Tyzs ZS Zs

XCZECH ch CH Ch

XCZECH_PUNCTUATION ch CH Ch

XSLOVAK

dz DZ Dz

d D D

ch CH Ch

XCROATIAN

d D D

lj LJ Lj

nj Nj NJ

17.3.4 Defining Equivalence Classes

An equivalence class is a set of characters that would all be the same except for their case or
the way they are accented. You can create such a class by using [= and =] to surround a letter

when you wish to match all accented and unaccented versions of that letter. The resulting
equivalence class reference must always be within a bracket expression.

For example:

SELECT REGEXP_SUBSTR('eéëèÉËÈE' '[[=É=]]+')

FROM dual;

eéëèÉËÈE

SELECT REGEXP_SUBSTR('eéëèÉËÈE', '[[=e=]]+')

FROM dual;

eéëèÉËÈE

A Regular Expression Standard

Regular expressions are widely used, especially in the world of Unix and Linux. Perl,
for example, has probably done more than any other tool or utility to popularize
their use. Today, regular expressions are everywhere. They are supported by Perl,
Python, Java, and other programming languages. You'll find regular expression
support in database management systems such as Oracle and MySQL. You'll even
find regular expression support in popular email clients such as The Bat!, or in
programmer-oriented text editors such as MultiEdit.

As ubiquitous as regular expressions have become, you may be surprised to find that
regular expression syntax is not well-standardized. The POSIX standard defines a
regular expression syntax, which you can read about at:

http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap09.html

Oracle follows the POSIX standard quite closely. However, other implementations
may not. Perl's metacharacters and implementation is different from Python's, is
different from Java's, is different from Oracle's, is different from MySQL's.
Superficially, the syntax is very similar from one platform to the next. In practice
though, you should not blindly port, say, a Perl regular expression to Oracle. Take
the time to study, understand, and to thoroughly test any regular expression that
you decide to port to Oracle.

If you're specifically interested in porting Perl regular expressions to Oracle,
Jonathan Gennick and Peter Linsley's Oracle Regular Expressions Pocket Reference
(O'Reilly) contains a good section describing some of the differences between those
two platforms.

It doesn't matter which version of a letter you specify between the [= and =]. All equivalent

accented and unaccented letters, whether uppercase or lowercase, will match.

NLS_SORT determines which characters are considered to be equivalent.
Thus, equivalence is determined appropriately for whatever language you
are using.

 < Day Day Up >

http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap09.html

 < Day Day Up >

Chapter 18. Model Queries
Some complex calculations are not easily amenable to SQL. Tasks such as forecasting sales,
computing market share, solving simultaneous equations, analyzing time series, and so on
involve iterative calculations, often referencing interdependent rows across multiple dimensions.
It becomes extremely difficult to solve such problems in SQL, and the resultant SQL code
becomes very difficult to understand and maintain. Such SQL often involves multiple levels of
subqueries, joins, and UNIONs, and therefore performs inefficiently.

Rather than use SQL to solve problems such as we've just described, people usually download
the data to a spreadsheet and perform the computations there. Some applications move data
into specially created, external calculation engines that can perform the necessary computations
efficiently. Downloading data into spreadsheets, or moving data into special-purpose engines,
involves overhead and adversely impacts performance, scalability, manageability, and security
of the system managing the data.

Oracle Database 10g introduces a new MODEL clause that allows you to treat relational data as
a multidimensional array for the purpose of performing spreadsheet-like operations. Now you
can more easily solve such problems as we've just described, in the database, using a single
SQL statement.

 < Day Day Up >

 < Day Day Up >

18.1 Basic Elements of a Model Query

Let's take an example to understand the basic elements of a model query. The sales_history

table holds the sales data for three regions for each of the 12 months of the years 2000 and
2001. We want to forecast sales for the first three months of the year 2004, by using a simple
formula: the sales for each region for each month of 2004 will be forecasted to be the average
sales for that region and that month for years 2000 and 2001. Mathematically, our formula
looks as follows:

sales_2004 = (sales_2000 + sales_2001) / 2

Using the MODEL clause introduced in Oracle Database 10g, this forecasting model can be
written into a SQL query as follows:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 3

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, FOR m in (1,2,3)] = (s[2000,CV()] + s[2001,CV()]) / 2)

ORDER BY y, r, m;

 R Y M S

---------- ---------- ---------- ----------

 5 2004 1 763822.5

 5 2004 2 923619

 5 2004 3 849724.5

 6 2004 1 916045.5

 6 2004 2 643014

 6 2004 3 955546.5

 7 2004 1 568531.5

 7 2004 2 927634.5

 7 2004 3 983989.5

9 rows selected.

The preceding query is called a model query, and introduces some new keywords: MODEL,
PARTITION BY, DIMENSION BY, MEASURES, and RULES.

The keyword MODEL marks the start of the MODEL clause. The MODEL clause enables you to
work with the relational data as a multidimensional array, which is referred to as a model. Once
you've arranged your data into an array, you perform spreadsheet-like calculations.

The PARTITION BY clause defines logical blocks of the model. You can think of the PARTITION
BY clause as separating the data into multiple models, each model being of the same structure,
but containing a different subset of the data. This is very similar to the effect of the PARTITION
BY clause used with the analytical functions discussed in Chapter 13. If you wish to apply the
same calculations to multiple subsets of your data, and you wish each subset to be independent
of the other, then partition your data such that each partition corresponds to one of those
subsets.

The DIMENSION BY clause specifies the dimensions of the multidimensional array created by
the MODEL clause. The columns in the DIMENSION BY clause uniquely identify a cell in a
partition of the multidimensional array. The dimensions in a model query are equivalent to the
dimensions in a star schema. In the example under discussion, the columns year and month are

specified as the dimensions, which indicates that each partition will be a two-dimensional array,
and a combination of year and the month values will identify each cell.

The columns specified in the MEASURES clause are the columns on which the spreadsheet
calculations are performed. Measures in a model query are equivalent to the measures in the
fact table of a star schema. In our example in this section, the sales column is identified as the

measure, and the spreadsheet calculations (estimating future sales) are performed on that
column.

Each cell in the model contains the values specified by the MEASURES
clause. Our example here uses one value per cell, but later you'll see
examples with multiple values per cell.

The RULES keyword introduces the clause specifying the formulae for calculations that you wish
to perform. We'll talk more about rules in Section 18.3.

When you execute a MODEL query, the MODEL clause is almost the last clause to be executed.
Only SELECT and ORDER BY come later. Thus, to see the data feeding into a model, you need
only remove the MODEL clause, execute the remaining query, and look at the output.

A discussion of aliases is in order. Look carefully at the preceding query, and you'll see that
aliases are specified in both the SELECT and MODEL clauses. The SELECT and ORDER BY clauses
"see" the data that is returned from the MODEL clause. Thus, when you give a column an alias

in your MODEL clause, you must use that same alias to refer to the column in your SELECT and
ORDER BY clauses. Your SELECT clause may provide yet another alias, which will become the
column name "seen" by the user or application program executing the query.

 < Day Day Up >

 < Day Day Up >

18.2 Cell References

Referencing cells in a spreadsheet is one of the basic requirements of model queries. You
reference a cell by qualifying all the dimensions in a partition. Cells in a spreadsheet can be
referenced in one of the two ways—symbolic cell referencing and positional cell referencing.

18.2.1 Symbolic Cell References

In a symbolic cell reference, you specify each dimension using a boolean expression, such as:

s[y=2004, m=3]

An example query with a symbolic cell reference is:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 10

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[y=2004,m=3] = 200000)

ORDER BY y, r, m;

Look at the RULES clause in this example, and see that each cell is referenced symbolically by
specifying a value for each dimension. In the RULES clause, s refers to the measure sales

declared in the MEASURES clause. This measure is structured in a two-dimensional array, as
defined by the DIMENSION BY clause. The dimensions are year (y) and month (m). To reference

any cell in the two-dimensional array, you need to specify both the dimensions. In the
preceding example, the cell for March 2004 is referenced by specifying a value for the year
dimension (y=2004) and the month dimension (m=3). You need to specify the dimensions in the

same order as they appear in the DIMENSION BY clause.

18.2.2 Positional Cell References

In a positional cell reference, each dimension is implied by its position in the DIMENSION BY
clause. The example from the previous section can be rewritten using positional cell reference
as follows:

s[2004,3]

An example query with a positional cell reference is:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 10

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,3] = 200000)

ORDER BY y, r, m;

In this query's RULES clause each cell is referenced positionally by specifying a value
corresponding to each column listed in the DIMENSION BY clause. Since the DIMENSION BY
clause has two columns (year y, month m), the first value in s[2004,3] refers to the column
year, and the second value refers to the column month.

18.2.3 Combined Positional and Symbolic References

You may write queries containing both positional and symbolic cell referencing. For example:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 10

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, m=3] = (s[2000,m=3] + s[2001,m=3]) / 2)

ORDER BY y, r, m;

In this query, the RULES clause, s[2004, m=3], contains both positional and symbolic cell
referencing. The first dimension (year) is specified positionally, whereas the second dimension
(month) is specified symbolically.

18.2.4 NULL Measures and Missing Cells

SQL models may involve two types of non-available value: existing cells with a NULL value, and
non-existing cells. In the MODEL clause, any missing cells are treated as NULLs. Whether they
are missing or existing cells with NULL values, the MODEL clause allows you to treat them in
either of two ways—IGNORE or KEEP.

You can keep the NULL values by specifying KEEP NAV in the MODEL clause. KEEP NAV is the
default behavior. Alternatively, you can specify IGNORE NAV in the MODEL clause to return the
following values for NULL, depending on the data type of the measure:

0 for numeric data types

01-JAN-2000 for datetime (DATE, TIMESTAMP, etc.) data types

An empty string for character (CHAR, VARCHAR2, etc.) data types

NULL for all other data types

The following two examples illustrate the usage of KEEP NAV and IGNORE NAV. The sales
history data in the table sales_history has NULL values for the month 12. Therefore, the
following query returns NULL values for the measure s:

SELECT r, y, m, s

FROM sales_history

WHERE month = 12

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,12] = (s[2000,12] + s[2001,12]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2004 12

 6 2004 12

 7 2004 12

As you can see KEEP NAV is the default behavior. If you want zeros instead of the NULL values
for the computed measure s, you can use the IGNORE NAV option in the MODEL clause, as

shown in the following example:

SELECT r, y, m, s

FROM sales_history

WHERE month = 12

MODEL

IGNORE NAV

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,12] = (s[2000,12] + s[2001,12]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2004 12 0

 6 2004 12 0

 7 2004 12 0

Whether you choose to keep or ignore NULL values depends on your application.

18.2.5 UNIQUE DIMENSION/UNIQUE SINGLE REFERENCE

There are two ways to specify the uniqueness of the rows in a MODEL query. The default option
is to use UNIQUE DIMENSION, which means that the combination of columns in the PARTITION
BY and DIMENSION BY forms the unique key of the input data. When you don't specify any
uniqueness condition, or when you specify UNIQUE DIMENSION, the database engine performs
a check on the input data to ensure that each cell of the model has at most one row for each
combination of PARTITION BY and DIMENSION BY columns. For example:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 3

MODEL

UNIQUE DIMENSION

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, 3] = (s[2000,3] + s[2001,3]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 1 1018430

 5 2000 2 1231492

 5 2000 3 1132966

 6 2000 1 1221394

 6 2000 2 857352

 6 2000 3 1274062

 7 2000 1 758042

 7 2000 2 1236846

 7 2000 3 1311986

 5 2001 1 509215

 5 2001 2 615746

 5 2001 3 566483

 6 2001 1 610697

 6 2001 2 428676

 6 2001 3 637031

 7 2001 1 379021

 7 2001 2 618423

 7 2001 3 655993

 5 2004 3 849724.5

 6 2004 3 955546.5

 7 2004 3 983989.5

If you are sure that your input data is keyed on the PARTITION BY and DIMENSION BY columns,
you can specify UNIQUE SINGLE REFERENCE instead of UNIQUE DIMENSION. When you specify
UNIQUE SINGLE REFERENCE, the database engine will not perform the uniqueness check on the
entire input data. Rather it will check that all the cells referenced in the righthand side of the
rules each correspond to just one row of input data. The reduced checking done by the UNIQUE
SINGLE REFERENCE option may improve performance when querying large amounts of data.
The following example illustrates the usage of the UNIQUE SINGLE REFERENCE option:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 3

MODEL

UNIQUE SINGLE REFERENCE

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, 3] = (s[2000,3] + s[2001,3]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 1 1018430

 5 2000 2 1231492

 5 2000 3 1132966

 6 2000 1 1221394

 6 2000 2 857352

 6 2000 3 1274062

 7 2000 1 758042

 7 2000 2 1236846

 7 2000 3 1311986

 5 2001 1 509215

 5 2001 2 615746

 5 2001 3 566483

 6 2001 1 610697

 6 2001 2 428676

 6 2001 3 637031

 7 2001 1 379021

 7 2001 2 618423

 7 2001 3 655993

 5 2004 3 849724.5

 6 2004 3 955546.5

 7 2004 3 983989.5

If you are using UNIQUE DIMENSION, and the input data doesn't satisfy the uniqueness
condition of the PARTITION BY and DIMENSION BY columns, you will get an error, as illustrated
in the following example:

SELECT r, y, m, s

FROM sales_history

WHERE month >= 10

MODEL

UNIQUE DIMENSION

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, 10] = (s[2000,10] + s[2001,10]) / 2)

ORDER BY y, r, m;

FROM sales_history

 *

ERROR at line 2:

ORA-32638: Non unique addressing in spreadsheet dimensions

This example returns an error because, in our example data, we have deliberately created
duplicate rows for November 2000 and 2001. It doesn't matter that we aren't referencing data
from that month in our rule. The duplication causes an error, because data for that month
represents a cell somewhere in our model.

The same query with the UNIQUE SINGLE REFERENCE option will not cause any error, because
the cells referenced in the righthand side of the rules satisfy the required uniqueness condition:

SELECT r, y, m, s

FROM sales_history

WHERE month >= 10

MODEL

UNIQUE SINGLE REFERENCE

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, 10] = (s[2000,10] + s[2001,10]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 10 1099296

 5 2000 11 922790

 5 2000 11 922790

 5 2000 12

 6 2000 10 1020234

 6 2000 11 1065778

 6 2000 11 1065778

 6 2000 12

 7 2000 10 1073682

 7 2000 11 1107732

 7 2000 11 1107732

 7 2000 12

 5 2001 10 549648

 5 2001 11 461395

 5 2001 11 461395

 5 2001 12

 6 2001 10 510117

 6 2001 11 532889

 6 2001 11 532889

 6 2001 12

 7 2001 10 536841

 7 2001 11 553866

 7 2001 11 553866

 7 2001 12

 5 2004 10 824472

 6 2004 10 765175.5

 7 2004 10 805261.5

Notice the duplicate rows of data in the above output for month 11 in the years 2000 and 2001.
If our rules referenced that data, the query would have caused an error. For example:

SELECT r, y, m, s

FROM sales_history

WHERE month >= 10

MODEL

UNIQUE SINGLE REFERENCE

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, 11] = (s[2000,11] + s[2001,11]) / 2)

ORDER BY y, r, m;

FROM sales_history

 *

ERROR at line 2:

ORA-32638: Non unique addressing in spreadsheet dimensions

This query fails, because there are multiple input rows for a single cell referenced by the rule.
Which of the available rows for a given cell should the database choose to use? The answer is
that the database doesn't know the answer. That's why the database throws an error. Without
this checking for duplicate rows, the database would not be able to guarantee repeatable
results.

18.2.6 Returning Rows

The objective of all SQL queries is to return a result set. With a model query, you have two
options: you can choose to return all the rows represented in the model, or you can choose to
return only those rows updated by the rules. Returning all the rows is the default behavior. Use
the following clause to specify which behavior you desire:

RETURN [ALL | UPDATED] ROWS

The RETURN clause belongs immediately after the MODEL keyword, except when you are using
any cell reference options such as IGNORE NAV, KEEP NAV, UNIQUE DIMENSION, or UNIQUE
SINGLE REFERENCE. If you are using cell reference options, then those cell reference options
need to come before the RETURN clause.

The following example illustrates the default behavior:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,3] = (s[2000,3] + s[2001,3]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 3 1132966

 6 2000 3 1274062

 7 2000 3 1311986

 5 2001 3 566483

 6 2001 3 637031

 7 2001 3 655993

 5 2004 3 849724.5

 6 2004 3 955546.5

 7 2004 3 983989.5

The sales_history table has rows for the year 2000 and 2001. The rows for the year 2004 are

computed based on the rules. Since the query didn't specify a RETURN clause, all the rows that
satisfy the WHERE condition are returned.

To return only updated rows, use the RETURN UPDATED ROWS option, as in the following
MODEL query:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,3] = (s[2000,3] + s[2001,3]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2004 3 849724.5

 6 2004 3 955546.5

 7 2004 3 983989.5

This time, only the new rows generated by the query are returned. For the purpose of the
RETURN clause, the newly generated rows are also considered "UPDATED ROWS." If the model
query had updated some existing rows, those rows would also have been returned in the result
set.

 < Day Day Up >

 < Day Day Up >

18.3 Rules

Rules are the core of a model query. Rules specify the formulae to compute values for the cells
in the spreadsheet. Use the RULES clause to specify the rules for a model query. The RULES
clause encloses all the rules in parentheses, and each rule is separated from the next by a
comma.

18.3.1 Constructing a Rule

Each rule represents an assignment, and consists of a lefthand side and a righthand side. The
RULES clause of one of the previous examples looks like the following:

RULES (s[2004,3] = (s[2000,3] + s[2001,3]) / 2)

The lefthand side of a rule (s[2004,3] in this example) identifies the cells to be updated using

values from the righthand side of the rule. The righthand side of a rule is an expression that
represents the computation to be performed. You can use any valid SQL operator or function in
an expression. There are also some additional constructs that you can use in rules, that are
specific to the MODEL clause.

18.3.1.1 CV()

You can use the CV() function in the righthand side of a rule. It returns the current value of a

dimension column from the lefthand side of the rule. The following example illustrates:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,3] = (s[2000,CV()] + s[2001,CV()]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2004 3 849724.5

 6 2004 3 955546.5

 7 2004 3 983989.5

The CV() function evaluates to the current value of the corresponding dimension. In this
example, CV() evaluates to 3, corresponding to the month dimension specified on the lefthand
side of the rule. The CV() function comes in handy when you need to evaluate a rule multiple

times, and each time a dimension column takes a different value (such as in FOR loops,
discussed later).

Optionally, the CV() function can take a dimension column as an argument. For example, we
could have written CV(m) to access the current month value from the lefthand side of our rule.

When no argument is specified, positional referencing is used, which means that the dimension
column in the corresponding position is used.

18.3.1.2 ANY

ANY can be used as a wildcard in a rule written with positional referencing. It accepts any value
for the corresponding column (including NULL). The following example illustrates the usage of
ANY:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 3

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[ANY,3] = (s[CV(),1] + s[CV(),2]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 3 1124961

 6 2000 3 1039373

 7 2000 3 997444

 5 2001 3 562480.5

 6 2001 3 519686.5

 7 2001 3 498722

In this example, ANY is used as a wildcard for the year dimension, which translates into "all the
values for the column year in the sales_history table." This example also illustrates why CV(
) is so important. Our rule will update every cell for March (month = 3), regardless of the year.
We use CV() on the righthand side to capture the current year, so that we can reference the

values for January and February of that same year.

The use of ANY wildcard prevents cell insertion. We talk more about cell
insertion in Section 18.3.4.

18.3.1.3 FOR loops

FOR loops allow you to write a "rule" that affects a number of cells, and acts like a FOR loop in a
procedural language such as PL/SQL. FOR loops are expanded at compile-time, so what looks
like one rule to you is really seen by the database as many rules. More on this in a bit.

FOR loops are allowed only in the lefthand side of a rule. FOR loops allow multiple cells to be
inserted by a single rule. FOR loops can take one of the following three forms:

FOR d IN (subquery | list)

FOR d [LIKE pattern] FROM v1 TO v2 [INCREMENT | DECREMENT] n

FOR (d1, d2, . . .) IN (multi_column_subquery | multi_column_list)

The syntax elements are:

d

A single-dimension column.

subquery

A subquery returning value(s) for the dimension column.

list

A list of value(s) for the dimension column.

pattern

A string with a %. This pattern behaves slightly differently from the LIKE pattern used in a

WHERE clause predicate. This pattern doesn't accept underscore. Values from v1 through

v2 are substituted into the pattern at the position marked by %.

v1, v2

Two literals specifying the upper and lower bound for the dimension d.

n

A number to increment or decrement by. The value n must be positive.

d1, d2, ...

Multiple-dimension columns in a FOR loop.

multi_column_subquery

A subquery returning values for the multiple-dimension columns.

multi_column_list

A list of values for the multiple-dimension columns.

The following example illustrates a single-column FOR loop:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 6

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES

(

 s[2004,

 FOR m IN (SELECT DISTINCT month FROM sales_history WHERE month <= 6)]

 = s[2000,CV()]

)

ORDER BY y, r, m;

 R Y M S

------ ---------- ---------- ----------

 5 2004 1 1018430

 5 2004 2 1231492

 5 2004 3 1132966

 5 2004 4 1195244

 5 2004 5 1132570

 5 2004 6 1006708

 6 2004 1 1221394

 6 2004 2 857352

 6 2004 3 1274062

 6 2004 4 1082292

 6 2004 5 1185870

 6 2004 6 1002970

 7 2004 1 758042

 7 2004 2 1236846

 7 2004 3 1311986

 7 2004 4 1220034

 7 2004 5 1322188

 7 2004 6 1137144

This query copies the sales history for the year 2000 to the year 2004, for each month, for the
first six months. The following example does the same thing, but using a multiple column FOR
loop:

SELECT r, y, m, s

FROM sales_history

WHERE month <= 6

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES

(

 s[FOR (y,m)

 IN (SELECT DISTINCT 2004, month FROM sales_history WHERE month <= 6)]

 = s[2000,CV()]

)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2004 1 1018430

 5 2004 2 1231492

 5 2004 3 1132966

 5 2004 4 1195244

 5 2004 5 1132570

 5 2004 6 1006708

 6 2004 1 1221394

 6 2004 2 857352

 6 2004 3 1274062

 6 2004 4 1082292

 6 2004 5 1185870

 6 2004 6 1002970

 7 2004 1 758042

 7 2004 2 1236846

 7 2004 3 1311986

 7 2004 4 1220034

 7 2004 5 1322188

 7 2004 6 1137144

The following restrictions apply to subqueries used in FOR loops:

They cannot be correlated.

They cannot be defined using the WITH clause.

They cannot return more than 10,000 rows.

The last restriction needs more explanation. The total number of rules you can specify in the
RULES clause is 10,000. When you use a FOR loop, the RULES clause is expanded by unfolding
the FOR loop at compile-time, with the database creating one rule for each value returned by
the FOR loop. If the total number of rules, including those not generated from FOR loops,
exceeds 10,000 for a given model query, you will get an error. The following example illustrates
this error:

SELECT r, y, m, s

FROM sales_history

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES

(

 s[2004, FOR m IN (SELECT ROWNUM

 FROM orders o1 CROSS JOIN orders o2

 WHERE ROWNUM <= 10001)]

 = s[2000,CV()]

)

ORDER BY y, r, m;

SELECT r, y, m, s

*

ERROR at line 1:

ORA-32633: Spreadsheet subquery FOR cell index returns too many rows

In this example, the FOR loop is forced to execute 10,001 times, resulting in 10,001 rules being
created, which exceeds the 10,000 rule limit. Even though the error message indicates that the
limit is on the subquery of the FOR loop, the limit is actually on the total number of rules in the
model. The subquery is simply the component of the model query that caused the limit to be
exceeded. If a subquery returns less than 10,000 rows, but the total number of rules after
unfolding all the FOR loops still exceeds 10,000, you will get an error, as illustrated in the
following example:

SELECT r, y, m, s

FROM sales_history

MODEL

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES

(

 s[2004, FOR m IN (SELECT ROWNUM

 FROM orders o1 CROSS JOIN orders o2

 WHERE ROWNUM <= 5000)]

 = s[2000,CV()],

 s[2005, FOR m IN (SELECT ROWNUM

 FROM orders o1 CROSS JOIN orders o2

 WHERE ROWNUM <= 5001)]

 = s[2001,CV()]

)

ORDER BY y, r, m;

 s[2005, FOR m IN (SELECT ROWNUM

 *

ERROR at line 14:

ORA-32636: Too many rules in spreadsheet

In this example, one FOR loop results in 5000 rules, and the other FOR loop results in 5001
rules, which make a total of 10001 rules. Therefore, you get the error message that indicates
that you have too many rules.

18.3.1.4 IS ANY

IS ANY can be used as a wildcard in a rule when using symbolic referencing. It accepts any
value for the corresponding column (including NULL), and returns TRUE always. This is the
equivalent to the ANY wildcard used in positional referencing. IS ANY can be used only in the
lefthand side of a rule. The following example illustrates the usage of IS ANY:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[y IS ANY, m=3] = (s[CV(),m=3] + s[CV(),m=3]) / 2)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 3 1132966

 6 2000 3 1274062

 7 2000 3 1311986

 5 2001 3 566483

 6 2001 3 637031

 7 2001 3 655993

In this example, IS ANY is used as a wildcard for the year dimension, which translates into "all
the values for the column year in the sales_history table."

The use of the IS ANY wildcard prevents cell insertion. We talk more about
cell insertion in Section 18.3.4.

18.3.1.5 IS PRESENT

IS PRESENT returns TRUE if the cell referenced existed prior to the execution of the MODEL
clause. Otherwise, if the cell was created as a result of executing a rule, or does not exist at all,
IS PRESENT returns FALSE. The following example illustrates the usage of the IS PRESENT
condition:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, 3] = CASE WHEN s[2003,3] IS PRESENT

 THEN s[2003,3]

 ELSE 0

 END)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 3 1132966

 6 2000 3 1274062

 7 2000 3 1311986

 5 2001 3 566483

 6 2001 3 637031

 7 2001 3 655993

 5 2004 3 0

 6 2004 3 0

 7 2004 3 0

In this example the IS PRESENT condition is used from within a CASE expression to test
whether the cell s[2003,3] was present prior to execution of the MODEL clause. If the cell
s[2003,3] was present, then the value of the cell s[2003,3] is assigned to the new cell
s[2004,3]; if the cell s[2003,3] wasn't present, then the value 0 is assigned to s[2004,3]. As

you can see from the result set, the referenced cell didn't satisfy the IS PRESENT condition. You
can tell that this is the case, because each of the 2004 rows has been given a 0 value for
estimated March (m=3) sales.

18.3.1.6 PRESENTV

The PRESENTV function returns a value based on the existence of a cell prior to the execution of
the MODEL clause. PRESENTV can be used only on the righthand side of a rule and takes the
following form:

PRESENTV(cell, exp1, exp2)

The syntax elements are:

cell

A cell reference

exp1, exp2

Expressions that resolve to a value for the cell referenced

PRESENTV returns exp1 if the referenced cell existed prior to the execution of the MODEL
clause; otherwise, the function returns exp2. The following example does the same thing as the

IS PRESENT example in the previous section, but using the PRESENTV function instead of a
CASE and IS PRESENT:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,3] = PRESENTV(s[2003,3], s[2003,3], 0))

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2000 3 1132966

 6 2000 3 1274062

 7 2000 3 1311986

 5 2001 3 566483

 6 2001 3 637031

 7 2001 3 655993

 5 2004 3 0

 6 2004 3 0

 7 2004 3 0

In this example, the value for the cell s[2004,3] is determined based on whether the cell
s[2003,3] existed before the execution of the MODEL clause. If the cell s[2003,3] existed, its
value will be assigned to the cell s[2004,3]. If the cell s[2003,3] didn't exist, a value 0 will be
assigned to the cell s[2004,3]. As it appears from the result set, the cell s[2003,3] didn't exist

in any of the partitions prior to the execution of the MODEL clause. You can tell that this is the
case, because each of the 2004 rows has been given a 0 value for estimated March (m=3) sales.

18.3.1.7 PRESENTNNV

The syntax of the PRESENTNNV function is of the same form as that of the PRESENTV function,
and like PRESENTV, it can be used only on the righthand side of a rule. PRESENTNNV means
"present not null value," and returns exp1 if a cell existed prior to the execution of the MODEL
clause, and had a NOT NULL value; otherwise, the function returns exp2. The following example

illustrates the usage of PRESENTNNV function:

SELECT r, y, m, s

FROM sales_history

MODEL

UNIQUE SINGLE REFERENCE

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004,3] = PRESENTNNV(s[2000,3], s[2000,3], 0))

ORDER BY y, r, m;

 R Y M S

--------- ---------- ---------- ----------

 5 2004 3 1132966

 6 2004 3 1274062

 7 2004 3 1311986

The cell s[2000,3] existed prior to the execution of the MODEL clause, and had a NOT NULL
value. You can know this, because all occurrences of s[2004,3] are non-zero in the result set.

18.3.2 Range References on the Righthand Side

In most of the examples you have seen so far in this chapter, one cell in the righthand side of a
rule has been used to assign a value for one cell in the lefthand side. Or, if more than one cell
has been used, each cell has been explicitly referenced. However, there are situations in which
you want to use a set of cells on the righthand side to assign one value to a cell on the lefthand
side. You can do that by using an aggregate function, such as AVG, COUNT, SUM, MAX, MIN,
applied to the multiple cells on the righthand side. This is illustrated in the following example:

SELECT r, y, m, s

FROM sales_history

MODEL

UNIQUE SINGLE REFERENCE

RETURN UPDATED ROWS

PARTITION BY (region_id r)

DIMENSION BY (year y, month m)

MEASURES (sales s)

RULES (s[2004, 3] = AVG(s)[y BETWEEN 1995 AND 2003,3])

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2004 3 849724.5

 6 2004 3 955546.5

 7 2004 3 983989.5

This example uses the syntax AVG(s)[y BETWEEN 1995 AND 2003,3] to generate the average

of all March sales (month 3) between 1995 and 2003 inclusive. In our data, this range
encompases: s[1995,3], s[1996,3], s[1997,3], s[1998,3], s[1999,3], s[2000,3],
s[2001,3], s[2002,3], and s[2003,3]. When you invoke an aggregate function, be sure to

place only the measure name within the parentheses. All the dimensions go outside the
parentheses.

18.3.3 Order of Evaluation of Rules

A MODEL clause usually consists of multiple rules. Quite often, those rules are interdependent.
Cells computed by one rule are often used as input to other rules. In such cases, it is very
important that rules are evaluated in a proper order. To influence the order of rule evaluation,
you can qualify the RULES clause using two options: SEQUENTIAL ORDER and AUTOMATIC
ORDER. The syntax to use is:

RULES [[SEQUENTIAL | AUTOMATIC] ORDER]

The following sections describe the difference between these two approaches to the order in
which rules are evaluated.

18.3.3.1 SEQUENTIAL ORDER

If you don't specify the ordering option in the RULES clause, SEQUENTIAL ORDER is enforced.
The rules are evaluated in the order they appear in the RULES clause (also known as, lexical
order). The following example illustrates evaluation of the rules in sequential order:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES SEQUENTIAL ORDER

 (

 s[2002,3] = (s[2000,3] + s[2001,3])/2,

 s[2003,3] = s[2002,3] * 1.1

)

ORDER BY y, r, m;

 R Y M S

---------- ---------- ---------- ----------

 5 2002 3 849724.5

 6 2002 3 955546.5

 7 2002 3 983989.5

 5 2003 3 934696.95

 6 2003 3 1051101.15

 7 2003 3 1082388.45

In this query, the first rule computes the cell s[2002,3], and the second rule uses the resulting
value to compute the cell s[2003,3]. If you reverse the order of the rules, you won't get the

same results:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES SEQUENTIAL ORDER

 (

 s[2003,3] = s[2002,3] * 1.1,

 s[2002,3] = (s[2000,3] + s[2001,3])/2

)

ORDER BY y, r, m;

 R Y M S

---------- ---------- ---------- ----------

 5 2002 3 849724.5

 6 2002 3 955546.5

 7 2002 3 983989.5

 5 2003 3

 6 2003 3

 7 2003 3

Notice the NULL values returned by the cell s[2003,3] in all the partitions, in this example's
output. We asked for sequential ordering of the rules, and the rule to compute s[2003,3]
appears before the rule to compute s[2002,3]. The rule to compute s[2003,3] uses
s[2002,3]. Since the cell s[2002,3] doesn't exist before the second rule is evaluated, it's value
is NULL, and the value for s[2003,3] ends up being NULL as well.

18.3.3.2 AUTOMATIC ORDER

With AUTOMATIC ORDER, the evaluation order of the rules is determined using a dependency
graph. This is done automatically in a way that ensures that a rule computing a new value for a
cell is executed prior to that cell being used to supply a value to another rule. All you need to do
to get this behavior is to specify AUTOMATIC ORDER after the RULE keyword. The NULL output
of the previous example can be avoided by automatic ordering of the rules, as illustrated in the
following example:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES AUTOMATIC ORDER

 (

 s[2003,3] = s[2002,3] * 1.1,

 s[2002,3] = (s[2000,3] + s[2001,3])/2

)

ORDER BY y, r, m;

 R Y M S

--------- ---------- ---------- ----------

 5 2002 3 849724.5

 6 2002 3 955546.5

 7 2002 3 983989.5

 5 2003 3 934696.95

 6 2003 3 1051101.15

 7 2003 3 1082388.45

In this version of the query, the automatic ordering of the rules ensures that the second rule is
evaluated before the first rule.

A model with automatic ordering of rules is referred to as an automatic order model, whereas a
model with sequential ordering of rules is referred to as a sequential order model. In an
automatic order model, a cell can be assigned a value only once, because if a cell is assigned a
value more than once, the dependency graph will involve a cycle, and rule evaluation will go
into an infinite loop. If you attempt to assign a value to a given cell more than once, you will
get an error, as in the following example:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES AUTOMATIC ORDER

 (

 s[2002,3] = (s[2000,3] + s[2001,3])/2,

 s[2002,3] = 20000

)

ORDER BY y, r, m;

 s[2002,3] = 20000

 *

ERROR at line 11:

ORA-32630: multiple assignment in automatic order SPREADSHEET

However, in a sequential order spreadsheet, you can assign a value to a cell more than once.
When you do that, you should remember that the last assignment will be reflected in the final
outcome of the query, as illustrated in the following example:

SELECT r, y, m, s

FROM sales_history

WHERE month = 3

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES

 (

 s[2002,3] = (s[2000,3] + s[2001,3])/2,

 s[2002,3] = 20000

)

ORDER BY y, r, m;

 R Y M S

--------- ---------- ---------- ----------

 5 2002 3 20000

 6 2002 3 20000

 7 2002 3 20000

In this example, the initial assignment of the cell s[2002,3] is overwritten by the value 20000

assigned by the last rule in the list. One more thing to notice about this query is that it doesn't
specify an ordering option for the rules. Thus, SEQUENTIAL ORDER is used by default.

Why not use AUTOMATIC ORDER all the time? Whenever you are sure about the sequence of
rules, you should use SEQUENTIAL ORDER. By doing so, you are saving the database from the
overhead of building the dependency graph and determining the rule order every time the query
is executed. There are also cases, such as when you must assign a value to a cell, and then
later assign another value to the same cell, that preclude automatic ordering.

18.3.4 Creating and Updating Cells

The rules in the RULES clause allow you to update existing cells, and to create new cells in a

model. If the cell specified by the lefthand side of a rule is present in your model, the value for
that cell is updated. If the cell doesn't exist, a new row, corresponding to that cell, is inserted
into the result set of your model query. The necessary values for the columns other than the
measure columns in any newly inserted row will be derived from its partition and dimension
values. This is the default semantics, and is known as UPSERT (update or insert) semantics.

The alternative to UPSERT semantics is to use UPDATE semantics. You can specify which to use
in the RULES clause:

RULES [UPSERT | UPDATE] [SEQUENTIAL ORDER | AUTOMATIC ORDER]

In UPDATE semantics, if the cell specified by the lefthand side of a rule is present in the model,
it is updated. If the cell doesn't exist, the assignment is ignored.

The following example illustrates UPDATE semantics, in which existing cells are updated, and
updates to non-existent cells are ignored:

SELECT r, y, m, s

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES UPDATE

 (

 s[2001,3] = 20000,

 s[2002,3] = 20000

)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2001 3 20000

 6 2001 3 20000

 7 2001 3 20000

In this example, the model has the cell s[2001,3], and for each of three partitions, for the

regions numbered 5, 6, and 7. The first rule arbitrarily stores the value 20000 into the
s[2001,3] cell for each region. The second rule attempts to do the same for the cell s[2002,3],

but since that cell doesn't already exist in the spreadsheet, the second rule is ignored. This is
how UPDATE semantics work.

However, with UPSERT semantics, new cells will be inserted for s[2002,3], as illustrated by the

following example:

SELECT r, y, m, s

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES UPSERT

 (

 s[2001,3] = 20000,

 s[2002,3] = 20000

)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2001 3 20000

 6 2001 3 20000

 7 2001 3 20000

 5 2002 3 20000

 6 2002 3 20000

 7 2002 3 20000

With UPSERT semantics, when you specify a previously non-existent cell and assign a value to
that cell, the database inserts a new row into the result set by combining the dimension,
measure, and partition information.

New cells cannot be inserted in the following situations:

As a result of using the ANY wildcard on the lefthand side

As a result of using symbolic referencing on the lefthand side

The ANY wildcard is essentially a predicate that filters selected rows from the population of
currently existing rows. When you use a predicate in the WHERE clause of a SELECT statement,
that predicate can never generate new rows. Likewise, you can't use a predicate to generate
new rows in a model.

Symbolic referencing is also a predicate, and this is a subtle, but important point to understand.
For example, the cell reference s[y=2003, m=3] is loosely equivalent to a WHERE clause such
as WHERE y=2003 AND m=3. Such a WHERE clause can never generate new rows , and neither

can such a cell reference.

Whether using UPDATE or UPSERT semantics, realize that any insert or
update takes place only in the result set operated on by the MODEL clause,
and not in the actual data in the underlying table(s).

 < Day Day Up >

 < Day Day Up >

18.4 Iterative Models

Iteration is a powerful tool in mathematical modeling. Some applications involving approximate
calculations involve iterative computation. Usually developers resort to procedural languages to
implement iteration. The MODEL clause provides a way to write iterate code using SQL.

At times, you may need to evaluate the rules of a model repeatedly, until some sort of condition
is met. MODEL's ITERATE subclause provides the required functionality to iterate rules. The
syntax of the ITERATE subclause, which is a part of the RULES clause, is:

RULES [UPSERT | UPDATE] [SEQUENTIAL ORDER | AUTOMATIC ORDER]

ITERATE (n) [UNTIL (condition)]

The syntax elements are:

n

A positive number specifying the number of iterations.

condition

An early-termination condition.

The early-termination condition is optional. If specified, the condition is evaluated at the end of
every iteration. If you specify an early-termination condition, iteration ends when that condition
is satisfied, regardless of whatever value you specify for n.

The following example illustrates iteration of rules:

SELECT r, y, m, s

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES ITERATE (4)

 (

 s[2001,3] = s[2001,3] / 2

)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2001 3 35405.1875

 6 2001 3 39814.4375

 7 2001 3 40999.5625

In this query, the cell s[2001,3] is computed by dividing s[2001,3] by 2 four times. You can

stop the iteration before all four iterations are executed, by using the UNTIL option, as
illustrated in the following example:

SELECT r, y, m, s

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES ITERATE (4) UNTIL (s[2001,3] < 100000)

 (

 s[2001,3] = s[2001,3] / 2

)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2001 3 70810.375

 6 2001 3 79628.875

 7 2001 3 81999.125

In this latest example, after every iteration, the condition in the UNTIL clause is evaluated. If
the condition is false, the next iteration starts; if the condition is true, the iterative evaluation
stops. In this case, once the value of the cell s[2001,3] drops below 100,000, the iteration

stops. Compare the two preceding examples, and you will find that the second query didn't
perform all four iterations.

18.4.1 Knowing how many iterations have occurred

Sometimes it's useful to know how many iterations have occurred. Oracle provides a useful
function (also referred to as a system variable) called ITERATION_NUMBER to keep a count of
the number of iterations through a set of rules. The function returns the current iteration
number. It starts with 0 for the first iteration, and increments by 1 for every subsequent
iteration. So, after a query has completed four iterations, ITERATION_NUMBER will return 3
(iterations 0, 1, 2, and 3). The following example illustrates how you can get the iteration
number from a query:

SELECT r, y, m, s, i

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s, 0 i)

 RULES ITERATE (4) UNTIL (s[2001,3] < 100000)

 (

 s[2001,3] = s[2001,3] / 2,

 i[2001,3] = ITERATION_NUMBER

)

ORDER BY y, r, m;

 R Y M S I

----- ---------- ---------- ---------- ----------

 5 2001 3 70810.375 2

 6 2001 3 79628.875 2

 7 2001 3 81999.125 2

Returning the iteration number takes a bit of innovative coding. In the preceding example, a
new measure called i has been introduced to capture the iteration number. This measure is
updated by the output of the function ITERATION_NUMBER at every iteration. Since i doesn't
correspond to any column of the table, we initialized the measure i to the constant 0; we did
that in the MEASURES clause. We could have used any constant value to initialize i, and the
output would still be the same. This is because the initial value of the measure i is updated to 0

during the first iteration, and then incremented by 1 each iteration thereafter.

18.4.1.1 Referencing values from the previous iteration

Another useful feature when using iterations is the PREVIOUS function. The PREVIOUS function
takes a single cell reference as input, and returns the value of the cell as it existed after the
previous iteration, just before the current iteration began. The following example illustrates how
you can use the PREVIOUS function to get the value of a cell as it existed after the previous
iteration:

SELECT r, y, m, s, i

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s, 'a' i)

 RULES ITERATE (4)

 UNTIL ((PREVIOUS(s[2001,3]) - s[2001,3]) < 100000)

 (

 s[2001,3] = s[2001,3] / 2,

 i[2001,3] = ITERATION_NUMBER

)

ORDER BY y, r, m;

 R Y M S I

----- ---------- ---------- ---------- -

 5 2001 3 70810.375 2

 6 2001 3 79628.875 2

 7 2001 3 81999.125 2

In this example, the previous value of the cell is compared to the current value after every
iteration, and if that difference is less than 100,000, then the iteration stops. The PREVIOUS
function provides a very useful means of constructing a termination condition. For problems
requiring approximation solutions, you can use this approach to iterate till a point when the
difference between the previous value and the current value is less than a threshold. You can
then assume you have arrived at a reasonably approximate solution. For example, you could
calculate pi to a resolution of 1/1000.

Iteration works only with the sequential ordering of rules. If you attempt to use ITERATE along
with AUTOMATIC ORDER, you will get an error, as shown in the following example:

SELECT r, y, m, s

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES AUTOMATIC ORDER ITERATE (4)

 (

 s[2001,3] = 20000,

 s[2002,3] = s[2001,3] / 2

)

ORDER BY y, r, m;

 RULES AUTOMATIC ORDER ITERATE (4)

 *

ERROR at line 8:

ORA-32607: invalid ITERATE value in SPREADSHEET clause

 < Day Day Up >

 < Day Day Up >

18.5 Reference Models

Commercial spreadsheet applications, such as Microsoft Excel, allow you to link cells from one
spreadsheet to those in another spreadsheet. The same thing is possible with model queries in
the Oracle database. A given model can reference one or more read-only spreadsheets, called
reference models.

The REFERENCE clause can be used for referencing spreadsheets/models. The syntax of the
REFERENCE clause is:

REFERENCE name ON (query)

DIMENSION BY (d)

MEASURES (m)

[ref_options]

The syntax elements are:

name

A name for the reference model. You use this together with dot notation to reference
values from the model.

query

A SELECT statement that defines the reference model.

d

Dimension column(s) for the reference model.

m

Reference column(s) for the reference model.

ref_options

Cell referencing options such as IGNORE NAV, KEEP NAV.

For example, the following query uses a REFERENCE clause to create a one-dimensional
reference model containing monthly adjustment factors. Those adjustment factors are then
referenced by the rule in the main part of the MODEL clause:

SELECT r, y, m, s

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 REFERENCE ref_adj ON

 (SELECT month, factor FROM monthly_sales_adjustment)

 DIMENSION BY (month)

 MEASURES (factor)

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES

 (

 s[2004, FOR m in (1,2,3)] = AVG(s)[y BETWEEN 1995 AND 2003,CV(m)]

 * ref_adj.factor[CV(m)]

)

ORDER BY y, r, m;

 R Y M S

----- ---------- ---------- ----------

 5 2004 1 687440.25

 5 2004 2 858965.67

 5 2004 3 747757.56

 6 2004 1 824440.95

 6 2004 2 598003.02

 6 2004 3 840880.92

 7 2004 1 511678.35

 7 2004 2 862700.085

 7 2004 3 865910.76

Look at the following component in the preceding query:

 REFERENCE ref_adj ON

 (SELECT month, factor FROM monthly_sales_adjustment)

 DIMENSION BY (month)

 MEASURES (factor)

This code component defines the reference model, which has its own dimensions and measures.
In this case, the reference model is a one-dimensional array filled in with adjustment factors
from the monthly_sales_adjustment table. Those factors are dimensioned by month, making

it easy to retrieve the adjustment factor for any given month.

The cells of the reference model are referenced from the main model in the following lines:

s[2004, FOR m in (1,2,3)] = AVG(s)[y BETWEEN 1995 AND 2003,CV(m)]

 * ref_adj.factor[CV(m)]

The cells of the reference model are qualified using the name of the reference model. In this
example, we used ref_adj for our reference model name. Thus, the single measure is
ref_adj.factor. Use dot notation to qualify a measure name with the name of the reference
model containing the measure. The cell reference ref_adj.factor[CV(m)] that you see here

retrieves the adjustment factor for each month.

When a query contains more than one model, it makes sense to name each model such that it
can be distinguished easily. In the preceding example, you saw how to name a reference model.
You can actually name the main model, too, by specifying a name along with the MAIN option,
as shown in the following example:

SELECT r, y, m, s

FROM sales_history

MODEL

 UNIQUE SINGLE REFERENCE

 RETURN UPDATED ROWS

 REFERENCE ref_adj ON

 (SELECT month, factor FROM monthly_sales_adjustment)

 DIMENSION BY (month)

 MEASURES (factor)

 MAIN sales_forecast

 PARTITION BY (region_id r)

 DIMENSION BY (year y, month m)

 MEASURES (sales s)

 RULES

 (

 s[2004, FOR m in (1,2,3)] = AVG(s)[y BETWEEN 1995 AND 2003,CV(m)]

 * ref_adj.factor[CV(m)]

)

ORDER BY y, r, m;

In this example, the main spreadsheet is named sales_forecast. You can name the main

spreadsheet irrespective of whether it references other spreadsheets.

The following rules and restrictions apply to reference models:

The query defining the reference model cannot correlate to the outer (main) query.

A reference model cannot have a PARTITION BY clause.

Reference models are read-only. You can't update/upsert a cell in the reference model.

A model query can have only one main spreadsheet, but many reference spreadsheets.

 < Day Day Up >

 < Day Day Up >

Appendix A. Oracle's Old Join Syntax
The join syntax (involving the JOIN, INNER, OUTER, CROSS, LEFT, RIGHT, FULL, ON, and
USING keywords) discussed in Chapter 3 was introduced in Oracle9i Database to make Oracle's
join functionality compliant with the ANSI/ISO SQL92 standard known as SQL92. Prior to
Oracle9i Database, Oracle supported the join syntax defined in the SQL86 standard. In addition,
also prior to Oracle9i Database, Oracle supported outer joins through a proprietary outer join
operator. Even though the new SQL92 join syntax is more elegant and powerful, the old join
syntax and the proprietary outer join operator are still supported in Oracle Database 10g, for
backward compatibility.

If you are writing a new application, we highly recommend that you use the SQL92 join syntax.
However, if you have a pre-Oracle9i Database application, you need to understand both
syntaxes—the old and the new. In this appendix, we illustrate the old join syntax, and show
how it relates to the new syntax. This will help you to migrate an application from the old
syntax to the new syntax, and it will help you when you are faced with maintaining an older
application.

 < Day Day Up >

 < Day Day Up >

A.1 Old Inner Join Syntax

The following example illustrates the older inner join syntax:

SELECT d.name, l.regional_group

FROM department d, location l

WHERE d.location_id = l.location_id;

The corresponding query with the new syntax is:

SELECT d.name, l.regional_group

FROM department d JOIN location l

ON d.location_id = l.location_id;

Following are the two differences between the old and the new inner join syntax:

The old syntax separates tables in the FROM clause using a comma.

The old syntax specifies the join condition in the WHERE clause.

Since the old syntax uses the WHERE clause to specify the join condition as well as filter
conditions, it may take awhile for you to figure out which component of the WHERE clause is a
join condition, and which component is a filter condition.

 < Day Day Up >

 < Day Day Up >

A.2 Old Outer Join Syntax

The old syntax of the outer join is a bit different from that of the inner join, because it includes
a special operator called the outer join operator. The outer join operator is a plus sign enclosed
in parentheses: (+). This operator is used in a join condition in the WHERE clause following a

field name from the table that you wish to be considered the optional table.

For example, to list all the departments even if they are not related to any particular location,
you can perform an outer join between the department and the location tables as shown in

the following example:

SELECT d.dept_id, d.name, l.regional_group

FROM department d, location l

WHERE d.location_id = l.location_id (+);

 DEPT_ID NAME REGIONAL_GROUP

---------- -------------------- ------------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES

 40 OPERATIONS BOSTON

Notice the (+) operator following l.location_id. That makes location the optional table in
this join, in the sense that you want to display a row from the department table, even though

there exists no corresponding row in the LOCATION table. A corresponding query using the new
join syntax is:

SELECT d.dept_id, d.name, l.regional_group

FROM department d LEFT OUTER JOIN location l

ON d.location_id = l.location_id;

In the new outer join syntax, the LEFT (or RIGHT) keyword corresponds to the table from which
you want all the rows. This example uses LEFT to point to department, because we want all the
rows from the department table irrespective of whether there are coresponding rows in the
location table.

A.2.1 Restrictions on Old Outer Join Syntax

There are some rules and restrictions on how you can use the outer join operator in a query.
When you use the (+) operator in a query, Oracle doesn't allow you to perform certain other

operations in the same query. We discuss these restrictions and some of the workarounds in the
following list:

The outer join operator can appear on only one side of an expression in the join condition.
You get an ORA-01468 error if you attempt to use it on both sides. For example:
SELECT d.dept_id, d.name, l.regional_group

FROM department d, location l

WHERE d.location_id (+) = l.location_id(+);

WHERE d.location_id (+) = l.location_id(+)

 *

ERROR at line 3:

ORA-01468: a predicate may reference only one outer-joined table

What this means is that the outer join operation using the (+) operator is unidirectional.
You can't perform a bidirectional outer join (known as a full outer join) using the (+)

operator.

If you are attempting a full outer join by placing the (+) operator on both

sides in the join condition, please refer to Section A.2.2, which follows this
section.

If a join involves more than two tables, then one table can't be outer joined with more
than one other table in the query. Consider the following tables:
DESC employee

Name Null? Type

--- -------- --------------

EMP_ID NOT NULL NUMBER(5)

FNAME VARCHAR2(20)

LNAME VARCHAR2(20)

DEPT_ID NOT NULL NUMBER(5)

MANAGER_EMP_ID NUMBER(5)

SALARY NUMBER(5)

HIRE_DATE DATE

JOB_ID NUMBER(3)

DESC job

 Name Null? Type

 ------------------------------- -------- ----

 JOB_ID NOT NULL NUMBER(3)

 FUNCTION VARCHAR2(30)

DESC department

 Name Null? Type

 ------------------------------- -------- ----

 DEPT_ID NOT NULL NUMBER(5)

 NAME VARCHAR2(20)

 LOCATION_ID NUMBER(3)

If you want to list the job function and department name of all the employees, and you
want to include all the departments and jobs that don't have any corresponding
employees, you would probably attempt to join the employee table with the job and
department tables, and make both the joins outer joins. However, since one table can't be

outer-joined with more than one table you get the following error:

SELECT e.lname, j.function, d.name

FROM employee e, job j, department d

WHERE e.job_id (+) = j.job_id

AND e.dept_id (+) = d.dept_id;

WHERE e.job_id (+) = j.job_id

 *

ERROR at line 3:

ORA-01417: a table may be outer joined to at most one other table

As a workaround, you can create a view with an outer join between two tables, and then
outer join the view to the third table:

CREATE VIEW v_emp_job

AS SELECT e.dept_id, e.lname, j.function

FROM employee e, job j

WHERE e.job_id (+) = j.job_id;

SELECT v.lname, v.function, d.name

FROM v_emp_job v, department d

WHERE v.dept_id (+) = d.dept_id;

Instead of creating a view, you can use an inline view to achieve the same result:

SELECT v.lname, v.function, d.name

FROM (SELECT e.dept_id, e.lname, j.function

 FROM employee e, job j

 WHERE e.job_id (+) = j.job_id) v, department d

WHERE v.dept_id (+) = d.dept_id;

Inline views are discussed in Chapter 5.

A condition containing the (+) operator may not use the IN operator. For example:
SELECT e.lname, j.function

FROM employee e, job j

WHERE e.job_id (+) IN (668, 670, 667);

WHERE e.job_id (+) IN (668, 670, 667)

 *

ERROR at line 3:

ORA-01719: outer join operator (+) not allowed in operand of OR or IN

An outer join condition containing the (+) operator may not be combined with another

condition using the OR operator. For example:
SELECT e.lname, d.name

FROM employee e, department d

WHERE e.dept_id = d.dept_id (+)

OR d.dept_id = 10;

WHERE e.dept_id = d.dept_id (+)

 *

ERROR at line 3:

ORA-01719: outer join operator (+) not allowed in operand of OR or IN

A condition containing the (+) operator may not involve a subquery. For example:
SELECT e.lname

FROM employee e

WHERE e.dept_id (+) =

(SELECT dept_id FROM department WHERE name = 'ACCOUNTING');

(SELECT DEPT_ID FROM DEPARTMENT WHERE NAME = 'ACCOUNTING')

 *

ERROR at line 4:

ORA-01799: a column may not be outer-joined to a subquery

As a workaround, you can use an inline view to achieve the desired effect:

SELECT e.lname

FROM employee e,

(SELECT dept_id FROM department WHERE name = 'ACCOUNTING') V

WHERE e.dept_id (+) = v.dept_id;

A.2.2 Full Outer Join Using the Old Syntax

In the previous section, you saw that a full outer join using the (+) operator is not allowed. A

UNION of two SELECT statements is a workaround for this problem. In the following example,
the first SELECT represents an outer join in which department is the optional table. The second
SELECT has the location table as the optional table. Between the two SELECTS, you get all

locations and all departments. The UNION operation eliminates duplicate rows, and the result is
a full outer join:

SELECT d.dept_id, d.name, l.regional_group

FROM department d, location l

WHERE d.location_id (+) = l.location_id

UNION

SELECT d.dept_id, d.name, l.regional_group

FROM department d, location l

WHERE d.location_id = l.location_id (+) ;

 DEPT_ID NAME REGIONAL_GROUP

---------- -------------------- ----------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES

 40 OPERATIONS BOSTON

 CHICAGO

 SAN FRANCISCO

6 rows selected.

As you can see, this UNION query includes all the rows you would expect to see in a full outer
join. UNION queries are discussed in Chapter 7.

Using the ANSI/ISO-compatible join syntax introduced in Oracle9i
Database you can perform a full outer join in a much more straightforward
way than shown in the previous example. See Section 3.3.3 in Chapter 3.

 < Day Day Up >

 < Day Day Up >

A.3 Advantages of the New Join Syntax

The ANSI join syntax represents a bit of an adjustment to developers who are used to using
Oracle's traditional join syntax, including the outer join operator (+). However, there are

several advantages to using the syntax introduced in Oracle9i Database:

The new join syntax follows the ANSI standard, making your code more portable.

The ON and USING clauses keep join conditions away from the filter conditions in the
WHERE clause. This enhances development productivity and the maintainability of your
code.

The ANSI/ISO syntax makes it possible to perform a full outer join without having to
perform a UNION of two SELECT queries.

We recommend that while working with Oracle9i Database and later Oracle releases, you use
the new join syntax instead of the traditional join syntax.

 < Day Day Up >

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animals on the cover of Mastering Oracle SQL, Second Edition are lantern flies. The lantern
fly is mostly tropical, with a wingspan of up to six inches. The lantern fly's elongated head is an
evolutionary adaptation called automimicry, in which parts of the body are disguised or
artifically shifted to other areas to confuse predators: the lantern fly's head looks like a tail, and
its tail looks like a head. On the rear it has artificial eyes and antennae.

Matt Hutchinson was the production editor for Mastering Oracle SQL, Second Edition. Octal
Publishing, Inc. provided production services. Sarah Sherman, Marlowe Shaeffer, and Colleen
Gorman provided quality control.

Ellie Volckhausen and Emma Colby designed the cover of this book, based on a series design by
Edie Freedman. The cover image is from Johnson's Natural History. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book
was converted by Julie Hawks to FrameMaker 5.5.6 with a format conversion tool created by
Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced
by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon was written by
Colleen Gorman.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

!= (inequality) operator

% (percent sign) pattern-matching character

> (greater than) operator

>= (greater than or equal to) operator

< (less than) operator

<= (less than or equal to) operator

() (parentheses)

 subqueries

- (subtraction) operator, dates

= (equality) operator

_ (underscore) pattern-matching character

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

AD indicator (year format)

ADD_MONTHS function 2nd

 dates, subtracting

addition, dates

aggregate analytic functions

 FIRST_VALUE

 LAST_VALUE

aggregate expressions, GROUP BY clause

aggregate functions 2nd [See also group operations]

 ALL keyword

 DISTINCT keyword

 errors

 GROUP BY clause and

 NULLs

aggregate queries, limitations of, overcoming

aggregation

 CUBE query

 hierarchies

aliases

 columns, inline views

 SELECT statements

 table names

 tables

ALL keyword

 aggregate functions

 multiple-row subqueries

ALTER DATABASE command, time zones

ALTER SESSION command, formatting dates

alternate possibilities, defining

AM indicator (time format)

American National Standards Institute [See ANSI]

analytic functions

 aggregate

 FIRST_VALUE

 LAST_VALUE

 CUME_DIST

 hypothetical

 LAG 2nd

 LEAD 2nd

 NTILE

 PERCENT_RANK

 ranking

 DENSE_RANK

 overview

 RANK

 ROW_NUMBER

 reporting

 RATIO_TO_REPORT

 report partitions

 WIDTH_BUCKET

 windowing

anchoring regular expressions

AND logical operator, WHERE clause

anonymous blocks

ANSI (American National Standards Institute) 2nd

 traversing trees

anti-joins

anti-patterns, finding

ANY keyword, multiple-row subqueries

ANY wildcard

applications, OLTP (Online Transaction Processing)

apply_split procedure 2nd

 object tables

ascendancy, hierarchical queries

assignment of schemas

attributes, objects

automatic order models

AUTOMATIC ORDER option

averages

 aggregate functions

 WITH clause

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

backreferences, regular expressions

BC indicator (year format)

best practices

 constructs, usage of

 DSS

 parsing, avoiding

BETWEEN operator

bind variables

built-in functions, pattern-matching

built-in temporal functions

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

calling stored functions

 restrictions

CARDINALITY function

Cartesian products 2nd

CASE expression

 advantages

 divide by zero errors

 if-then-else functionality

 optional updates

 result sets, transforming

 searched

 selective aggregation

 selective function execution

 simple

 state, controlling

 UPDATE statement

case studies, subqueries

CAST function

cells

 creating

 iterative models

 model queries

 references

 rules

 updating

CHAR data type, TO_DATE function

Character Large Object (CLOB)

characters

 backreferences

 converting to dates

 matching 2nd

 named classes

 pattern-matching

 positioning

child, hierarchical queries

CLOB (Character Large Object)

COALESCE function

Codd, Dr. E. F.

codes

 date/time formats

 styles

collation elements, regular expressions

collection types

 creating

 relationships

 nested tables

 variable arrays

 unnesting

collections

 comparisons

 functions

 modifying

 multilevel

 querying

 unnesting

columns

 aliases, inline views

 composite, GROUP BY clause

 concatenation

 conditions

 correlated subqueries 2nd

 FOR loops

 GROUP BY clause 2nd

 GROUPING SE

 hiding, WITH CHECK OPTION

 multiple-column subqueries

 nested group operations

 object-based, generating

 pseudocolumns

 CONNECT_BY_ISCYCLE

 CONNECT_BY_ISLEAF

 LEVEL

 range partitions

 repeating names, GROUP

 scalar functions, grouping

 schemas, assigning

 set operations (names)

 updating, errors

 USER_UPDATABLE_COLUMNS

 varray

 XML

combinations, grouping

comparison operators

 equality (=)

 inequality (!=)

 subqueries

component queries

composite partitioning

compound queries

 errors

 NULL values

concatenation

 columns

 groupings

 XMLForest() function

conditional clauses

conditional logic, CASE and DECODE examples

conditional updates

conditions

 CASE expressions

 components of

 early-termination

 equality/inequality

 IS PRESENT

 joins

 matching

 membership

 multiple columns

 pattern-matching

 precedence

 range

 union compatibility

 USING clause

 WHERE clause

CONNECT BY clause 2nd

CONNECT_BY_ISCYCLE pseudocolumn

CONNECT_BY_ISLEAF pseudocolumn

CONNECT_BY_ROOT operator

constants, GROUP BY clause

constructs, usage of

containing statements

correlated subqueries 2nd

correspondence, GROUP BY/SELECT clauses

CREATE TABLE statement, object tables

CREATE TYPE BODY statement

CREATE VIEW statement

cross joins

CUBE keyword

 group operations

 partial

CUME_DIST analytic function

CURRENT ROW keywords, windowing functions

CURRENT_DATE function

CURRENT_TIMESTAMP function

customer table, SELECT statement example

CV() function

cycles

 identifying

 ignoring

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Data Definition Language (DDL)

data densification

data dictionary view, USER_UPDATABLE_COLUMNS

Data Manipulation Language [See DML]

data types

 DATE

 converting

 default format

 internal storage format

 NULL values and

 specifying format

 object types

 parameters

 tables

data warehouse applications, group operations and

Database 10g

 collections

 optimization of

 partitioning

databases

 engines

 group operations

 aggregate functions

 DISTINCT/ALL

 GROUP BY clause

 HAVING clause

 nested

 parameters

 time zones

DATE data type

 converting

 default format

 format, specifying

 internal storage format

 NULL values and

dates

 arithmetic

 addition

 overview

 subtraction

 case-sensitivity

 format codes

 formatting

 interval data

 INTERVAL DAY TO SECOND data type

 INTERVAL YEAR TO MONTH data type

 ISO standards

 overview

 weeks

 years

 literals

 pivot tables, creating

 ranges, SELECT statement

 rounding/truncating

 RTRIM function

 summarizing by

 time zones

 database

 overview

 session

 working days, calculating

 years

 AD/BC indicators

 two-digit

DAY TO SECOND interval literal

days (working), calculating

dbms_xmlschema.registerSchema() built-in procedure

DBTIMEZONE

 function

 keyword

DDL (Data Definition Language)

Decision Support Systems [See DSS]

DECODE function

 divide by zero errors

 errors

 optional updates

 result sets, transforming

 selective aggregation

 selective function execution

 state, controlling

 syntax 2nd

 UPDATE statement

default date format

definitions, objects

DELETE statement

 DML

 join views

 multiple-column subqueries

 scalar subqueries

deleting

 duplicate result sets

 subpartitions

 subtrees

denormalizations, conditional updates

DENSE_RANK function 2nd

dependency graphs

deterministic functions

DIMENSION BY clause 2nd

DISTINCT keyword

 aggregate functions

 compared to EXISTS

divide by zero errors, avoiding

DML (Data Manipulation Language)

 DELETE statement

 INSERT statement

 join views

 multilevel collections

 partitions, specifying

 SELECT statement

 clause references

 DISTINCT keyword

 ORDER BY clause

 WHERE clause

 statements (inline views)

 stored functions and

 UPDATE statement

documents (XML)

 generating

 overview of

 storing data

 updating

DSS (Decision Support Systems)

 queries compared to SQL

 SQL and

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

early-termination conditions

elements

 collation

 model queries

 path notation

 XMLAgg() function

 XMLElement() function

entities

entity-relationship models, sample database

equality conditions

equality operator (=)

equi-joins 2nd

equiheight buckets

equivalence classes, regular expressions

equiwidth buckets

errors

 aggregate functions

 compound queries

 DECODE function

 divide by zero, avoiding

 GROUP BY clause

 HAVING clause

 inline views 2nd

 multiple-row subqueries

 updating columns

evaluation, WHERE clause

 conditions

existing cells, updating

EXISTS operator

 compared to DISTINCT

 correlated subqueries

existsNode() member function

EXPLAIN PLAN, group operations

expressions 2nd 3rd

 aggregate functions 2nd

 aggregate, GROUP BY clause

 ALL keyword

 CASE

 advantages

 controlling state

 optional

 searched

 selective function execution

 simple

 transforming result sets

 UPDATE statement

 conditions

 DECODE function

 DISTINCT keyword

 GROUP BY clause

 nested group operations

 nonaggregate, GROUP BY clause

 NULL values

 regular

 backreferences

 collation elements

 equivalence classes

 functions

 named character classes

 Perl usage

 syntax

 TABLE, querying collections

 testing

 XPath, inspecting XML documents

Extensible Markup Language [See XML]

extensions

EXTRACT function

extract() member function

extractValue() member function

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

filters

 HAVING clause

 hierarchical queries, filtering

first/last queries (analytic ranking functions)

FOR loops

foreign keys

 constraints, hierarchical information

 relationships and

formatting dates

 case-sensitivity

 ISO standard

 rounding and truncating considerations

fractional seconds

 overview

 TIMESTAMP data type

 TIMESTAMP WITH LOCAL TIME ZONE data type

 TIMESTAMP WITH TIME ZONE data type

free-form text, fuzziness

FROM clause, aliases

FROM_TZ function

full outer joins

 old syntax

functions

 ADD_MONTHS 2nd

 subtracting dates

 aggregate

 ALL keyword

 DISTINCT keyword

 NULLs

 aggregate analytic

 FIRST_VALUE

 LAST_VALUE

 analytic

 CUME_DIST

 LAG

 LEAD

 NTILE

 PERCENT_RANK

 ranking

 report partitions

 reporting 2nd

 WIDTH_BUCKET

 windowing

 built-in

 pattern-matching

 temporal

 CARDINALITY

 CAST

 COALESCE

 collections

 CURRENT_DATE

 CURRENT_TIMESTAMP

 CV()

 DBTIMEZONE

 DECODE

 controlling state

 divide by zero errors

 optional updates

 selective aggregation

 selective function execution

 syntax 2nd

 transforming result sets

 UPDATE statement

 DENSE_RANK 2nd

 deterministic

 existsNode() member

 EXTRACT

 extract() member

 extractValue() member

 FROM_TZ

 GREATEST

 GROUP_ID

 overview

 GROUPING

 ordering

 GROUPING_ID

 ordering

 overview

 hypothetical analytic

 indexes

 ITERATION_NUMBER

 LAST_DAY 2nd

 LOCALTIMESTAMP

 MAX

 MONTHS_BETWEEN 2nd

 MULTISET EXCEPT

 MULTISET INTERSECT

 MULTISET UNION DISTINCT

 NEW_TIME

 NEXT_DAY

 nonaggregate, GROUP BY Clause

 NULLIF

 NUMTODSINTERVAL

 NUMTOYMINTERVAL

 NVL

 syntax 2nd

 NVL2, syntax 2nd

 overloading

 PRESENTNNV

 PRESENTV

 PREVIOUS

 ranking analytic

 DENSE_RANK

 RANK

 ROW_NUMBER

 REGEXP

 REGEXP_INSTR

 REGEXP_LIKE 2nd 3rd

 REGEXP_REPLACE 2nd

 REGEXP_SUBSTR 2nd 3rd

 regular expressions

 ROUND 2nd

 RTRIM, dates

 SESSIONTIMEZONE

 stored

 avoiding table joins

 calling 2nd

 compared

 DML statements

 purity levels

 rules

 TRUST keyword

 views

 SUBSTR

 SYS_CONNECT_BY_PATH

 SYS_EXTRACT_UTC

 SYSDATE

 SYSTIMESTAMP

 TO_CHAR, overview

 TO_DATE 2nd 3rd

 TO_DSINTERVAL

 TO_YMINTERVAL

 TRUNC 2nd

 TZ_OFFSET

 VALUE, returning objects

 XMLAgg()

 XMLElement()

 XMLForest()

fuzziness

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

generating XML documents

global indexes

global inline views

greater than (>) operator

greater than or equal to (>=) operator

GREATEST function

greediness (regular expressions)

GROUP BY clause 2nd 3rd 4th

 composite columns

 concatenated groupings

 CUBE keyword

 errors

 filters and

 GROUPING SETS keyword

 partial CUBE

 partial rollups

 repeating column names

 ROLLUP keyword

 UNION operations

group operations

 aggregate functions

 ALL keyword

 DISTINCT keyword

 NULLs

 EXPLAIN PLANs

 GROUP BY clause 2nd

 composite columns

 concatenated groupings

 CUBE keyword

 NULL values

 partial CUBE

 partial rollups

 repeating column names

 ROLLUP keyword

 WHERE clause

 GROUP_ID function

 GROUPING function

 GROUPING SETS

 concatenated groupings

 ROLLUP and CUBE as arguments

 GROUPING_ID function 2nd

 HAVING clause

 nested

 summary information, GROUPING SETS keyword

 UNION query

GROUP_ID function

 overview

grouping

 columns, concatenation

 scalar functions

 XMLAgg() function

GROUPING function

 ordering

GROUPING SETS keyword

 concatenated groupings

 ROLLUP and CUBE as arguments

GROUPING_ID function

 ordering

 overview

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hash anti-joins

hash partitions

hash semi-joins

HAVING clause

 compared to WHERE clause

 errors

 scalar subqueries

hierarchical data representations

hierarchical queries

 aggregating hierarchies

 ascendancy

 finding

 leaf, finding

 limitations of, overcoming

 listing

 parents, finding

 PRIOR, hierarchical queries

 restrictions

 root nodes, listing

 START WITH clause

 START WITH...CONNECT BY clause

 subtrees (hierarchical queries)

hierarchical trees, traversing

hierarchies

 Database 10g, optimization of

 extensions

 operations

 ordering

 paths, finding to nodes

history of SQL

horizontal partitioning 2nd

hypothetical analytic functions

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

if-then-else functionality

implicit type conversions, DATE data type

IN operator

 multiple-row subqueries

indexes

 function-based

 partitions

 regular expressions

inequality conditions

inequality operator (!=)

inheritance of object types

inline views

 aggregate queries, overcoming limitations of

 columns, hiding with WITH CHECK OPTION

 creating data sets

 DML statements

 errors 2nd

 execution

 global

 hierarchical queries, overcoming limitations of

 mimicking analytic queries with

 overview

 selective aggregation

inner joins 2nd 3rd

 syntax

INSERT statement

 DML

 join views

 partitions, specifying

 strings, converting to default date format

inserting data (XML)

instances

 storing

 XMLType

International Standard ISO 8601

INTERSECT set operator 2nd

interval data (date and time)

 INTERVAL DAY TO SECOND data type

 INTERVAL YEAR TO MONTH data type

INTERVAL DAY TO SECOND data type

INTERVAL literals

INTERVAL YEAR TO MONTH data type

IS ANY wildcard

IS PRESENT condition

ISO standards, dates

 overview

 weeks

 years

ITERATION_NUMBER function

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

joins

 anti-joins

 conditions

 conditions (WHERE clause) 2nd

 cross

 equi-joins 2nd

 hierachical query usage

 inner 2nd

 syntax

 key-preserved tables

 mimicking analytic queries with

 natural

 new syntax

 non-equi-joins 2nd

 self

 outer 2nd

 full

 left

 LEFT/RIGHT

 right

 self

 syntax

 placement of

 queries

 self 2nd

 semi-joins

 stored functions, avoiding

 subqueries

 types of

 vertical

 views, DML statements on

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

key-preserved tables

keys

 foreign, relationships and

 partitions

 primary, comparing tables

keywords 2nd

 ALL

 aggregate functions

 multiple-row subqueries

 ANY, multiple-row subqueries

 CUBE, partial

 CURRENT ROW, windowing functions

 DBTTIMEZONE

 DISTINCT

 aggregate functions

 compared to EXISTS operator

 GROUPI

 NOCYCLE

 RULES

 SELF, object types

 set operators

 TRUST, stored functions

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

LAST_DAY function 2nd

leaf nodes

 identifying

leaf nodes hierarchical queries

LEFT outer joins 2nd

less than (<) operator

less than or equal to (<=) operator

LEVEL pseudocolumn

levels

 hierarchical queries

 number of, finding

lifecycles

LIKE operator

lines, definition of

list partitioning

literals

 dates

 DAY TO SECOND interval

 INTERVAL

 TIMESTAMP

 YEAR TO MONTH interval

local indexes

LOCALTIMESTAMP function

logical models compared to physical models, entities and

logical operators, WHERE clause

loops, FOR

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

maintenance, WHERE clause

match_parameter

matching conditions

math, dates

 addition

 overview

 subtraction

MAX function

MEASURES clause 2nd

MEMBER OF operator

membership conditions

merge anti-joins

merge semi-joins

Merge statement

methods, partitioning

MINUS set operator 2nd

 comparing tables

minutes

 date math

 representations of

MODEL clause

model queries

 elements of

 iterative

 reference models

months

 date math

 first day, returning

 last day, returning

MONTHS_BETWEEN function 2nd

multilevel collections

multiple collections, executing set operations

multiple columns, conditions

multiple summary levels

multiple-condition evaluation 2nd

multiple-row subqueries, errors

MULTISET EXCEPT function

MULTISET INTERSECT function

MULTISET UNION DISTINCT function

multitable inserts

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

n option

named character classes, regular expressions

names, regions

natural joins

NEG (negative) transition types

negative (NEG) transition types

nested group operations

nested tables

NEW_TIME function

NEXT_DAY function

NOCYCLE keyword

nodes

 CONNECT_BY_ROOT operator

 existsNode() member

 hierarchical queries

 leaf, identifying

 paths, finding

 root 2nd

non-equi-joins 2nd

 self

nonaggregate expressions, GROUP BY clause

nonaggregate functions, GROUP BY clause

noncorrelated subqueries

 WITH clause

nonprocedural languages

NOT BETWEEN operator

NOT IN operator

 multiple-row subqueries

NOT operator

 pattern-matching and

 WHERE clause

notation, path elements

NTILE analytic function

NULL expression

NULL values

 aggregate functions

 analytic ranking functions

 cells, missing

 compound queries

 GROUP BY clause

 NVL function compared to GROUPING function

 testing for

NULLIF function

numbers, converting to dates

numeric amounts, printing

NUMTODSINTERVAL function

NUMTOYMINTERVAL function

NVL function

 averages

 NULL values, compared to GROUPING function

 syntax 2nd

NVL2 function, syntax 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object types

 parameters

 tables

objects

 CLOB

 XML, storing as a set of

 XMLType validity functions

occurrence of patterns

older inner join syntax

older outer join syntax

OLTP (Online Transaction Processing)

ON clause, multiple columns

one-to-many relationship evaluation

Online Transaction Processing (OLTP)

operators 2nd

 AND

 ANY

 BETWEEN

 conditions

 CONNECT_BY_ROOT

 equality (=)

 EXISTS, correlated subqueries

 greater than (>)

 greater than or equal to (>=)

 IN

 multiple-row subqueries

 inequality

 less than (<)

 less than or equal to (<=)

 LIKE

 logical, WHERE clause

 MEMBER OF

 multiple-row subqueries

 NOT 2nd

 pattern-matching and

 NOT BETWEEN

 NOT IN

 multiple-row subqueries

 OR

 outer join

 precedence

 scalar subqueries

 set

 INTERSECT 2nd

 MINUS 2nd 3rd

 UNION 2nd

 UNION ALL 2nd 3rd

 set operations

 precedence

 SUBMULTISET

 subtraction (-), dates

optimization, partition pruning

optimizer

 anti-joins

 partition keys and

 partition pruning

 semi-joins

 specifying partitions

options

 n

 return_option

OR operator

ORA-00904 error

ORA-00932 error

ORA-01402 error

ORA-01427 error

ORA-01476 error

ORA-01779 error

ORA-01790 error

Oracle Database 10g [See Database 10g]

Oracle Supplied Packages (PL/SQL)

ORDER BY clause

 analytic ranking functions

 set operations

 stored functions, calling from

order of rules

ordering

 GROUPING/GROUPING_ID functions

 hierarchical data

outer joins 2nd

 full

 left

 LEFT

 right

 RIGHT

 self

 syntax

overloading functions

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packages

 body

 specification

 stored procedures and functions

parameters

 databases

 match_parameter

 object types

parentheses [()]

 operator/condition precedence

 subqueries

parents

 hierarchical queries

 root nodes, finding

parsing, avoiding unnecessary

partial CUBE queries

partial matches (IN operator)

partial ROLLUP queries

PARTITION BY clause

 analytic ranking functions

PARTITION clause

partition outer joins 2nd

partitions

 composite

 hash

 horizontal

 indexes

 key

 hash partitioning

 optimizer and

 list

 methods

 naming considerations

 performance

 pruning

 range

 specifying

 storage considerations

 tables, overview

 vertical

 views

paths

 nodes, finding

 notation elements

pattern-matching

 built-in functions

 conditions

patterns

 anti-patterns, finding

 occurrence of

percent sign (%), pattern-matching character

PERCENT_RANK analytic function

performance

 partitioning and

 selective function exec 2nd

Perl, regular expression usage

phantom columns

pivot tables, creating dates

PL/SQL

 CASE expressions and

 date pivot tables

 deterministic functions

 DML statements, stored functions in

 including SQL

 overview

 restrictions on calling

 stored functions

 avoiding table joins

 calling from queries

 views

 stored functions compared to stored procedures

 variables, converting to DATE data type

placement of join conditions

PM indicator (time format)

populating data, XML

POS (positive) transition types

positional cell references

positioning characters

positive (POS) transition types

pragmas, adding

precedence

 operator/condition

 set operators

PRESENTNNV function

PRESENTV function

PREVIOUS function

primary keys, comparing tables

printing numeric amounts

PRIOR operator, hierarchical queries

programming languages, nonprocedural

programming, style issues

properties, key-preserved tables

pruning partitions

pseudocolumns

 CONNECT_BY_ISCYCLE

 CONNECT_BY_ISLEAF

 LEVEL

 ROWID

purch_ord.xsd file

purity levels

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

quantifiers 2nd

queries [See also regular expressions]

 CUBE

 partial

 filtering

 joins

 model

 elements of

 iterative

 reference models

 rules

 multilevel collections

 reporting functions

 ROLLUP

 partial

 UNION

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

range-hash partitioning

range-list composite partitioning

range-list partitioning

ranges

 conditions

 dates

 eliminating gaps

 partitions

 references

 windowing analytic functions

RANK analytic function

RANK function

ranking analytic functions

 DENSE_RANK

 overview

 RANK

 ROW_NUMBER

RATIO_

records, listing in hierarchical order

recursive relationships, traversing

REFERENCE clause

references

 cells

 models

 ranges

 values (PREVIOUS function)

REGEXP functions

REGEXP_INSTR function

REGEXP_LIKE function 2nd 3rd

REGEXP_REPLACE function 2nd

REGEXP_SUBSTR function 2nd 3rd

regions, joining

registration of schemas

regular expressions

 backreferences

 collation elements

 equivalence classes

 functions

 named character classes

 Perl usage

 syntax

relational tables, moving data to

relationships

 collection types

 creating

 nested tables

 unnesting

 variable arrays

 correlated subqueries

 evaluation

 recursive, traversing

 tables

repeating sequences, matching

replace_string

reporting analytic functions

 RATIO_TO_REPORT

 report partitions

representation of GROUP BY columns

RESTRICT_REFERENCES pragma

restrictions

 FOR loops

 hierarchical queries

 set operations

 WITH CHECK OPTION

result sets

 Cartesian products

 finding what data is not in database

 GROUPING_ID function

 refining, WHERE clause

 set operations, column names

 transforming

 CASE expression

 DECODE function

 WHERE clause, conditions

retrieving data

 customer table

 SELECT statement

return_option

RIGHT outer joins 2nd

righthand side of rules, range references

ROLLUP keyword

 group operations

 partial rollups

root nodes

 listing

 XML

root, hierarchical queries

ROUND function 2nd

rounding dates

ROWID pseudocolumn

ROWNUM, GROUP BY clause and

rows

 aggregate functions

 modification of

 returning

 WITH CHECK OPTION

ROWS BETWEEN clause, unbounded windows

RR (year) indicator

RRRR (year) indicator

RTRIM function, dates

rules

 iterative models

 model queries

RULES clause

 ITERATE subclause

RULES keyword

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

sample database, overview

scalar functions, grouping

schemas

 assigning

 registration

scripts, PL/SQL

searched CASE expressions

seconds, fractional 2nd

 overview

 TIMESTAMP data type

SELECT statement 2nd 3rd

 analytic functions

 clause references

 correlated subqueries

 dates, ranges

 DISTINCT keyword

 DML

 inline views

 creating data sets

 execution

 overview

 joins

 noncorrelated subqueries

 multiple-column

 multiple-row

 overview

 scalar

 object types

 ORDER BY clause

 stored functions, calling from

 subqueries

 WHERE clause

self joins 2nd

SELF keyword, object types

self non-equi-joins

self outer joins

self-referential integrity constraints

semantics

semi-joins

sequences, matching

sequential order models

SEQUENTIAL ORDER option

session time zones

SESSIONTIMEZONE function

SET clause, multiple-column subqueries

set operations

 INTERSECT operator 2nd

 MINUS operator 2nd

 comparing tables

 NULLs in compound queries

 operators

 precedence

 restrictions

 table comparisons

 tables, comparing

 UNION ALL operator 2nd

 comparing tables

 UNION operator 2nd

sets of characters, matching

simple CASE expressions

single characters, matching

single words, matching

singletable inserts

sort columns

sorting, ORDER BY clause

source_string

special characters

specifying format

spreadsheets

 cells

 references

 rules

 model queries

 reference models

SQL (Structured Query Language)

 history

 Oracle and ANSI compliance

 queries compared to DSS queries

standards, ANSI

START WITH clause

 hierarchical queries

START WITH...CONNECT BY clause, hierarchical queries

START WITH...CONNECT BY construct

state

 CASE expression

 DECODE function

statements

 CREATE TABLE, object tables

 CREATE TYPE BODY

 CREATE VIEW

 DELETE

 join views

 multiple-column subqueries

 scalar subqueries

 DML

 INSERT

 converting strings to date format

 join views

 specifying partitions

 Merge

 partition pruning

 SELECT 2nd

 correlated subqueries

 DISTINCT

 inline views 2nd 3rd

 joins

 noncorrelated subqueries 2nd 3rd 4th

 object types

 ORDER BY

 returning between date ranges

 subqueries

 WHERE clause

 UPDATE

 CASE expression

 DECODE function

 inline views

 join views

 multiple-column subqueries

 selective aggregation

storage, partitions and

stored functions

 calling

 restrictions

 DML statements

 joins, avoiding

 packages

 rules

 TRUST keyword

 views

stored procedures

 compared to stored functions

 packages

strings

 converting to dates 2nd

 creating from dates

 extractValue() member function

 pattern-matching

 regular expressions

 replace_string

 source_string

 target

structure of model query rules

Structured Query Language [See SQL]

style, coding

subexpressions 2nd [See also expressions]

 backreferences

SUBMULTISET operator

SUBPARTITION clause

subpartitions

 deleting

 templates

subqueries 2nd

 case study

 comparison operators and

 correlated

 global inline views

 inline views 2nd

 aggregate queries, overcoming limitations of

 hierarchical queries, overcoming limitations of

 joins

 noncorrelated

 multiple-column

 multiple-row

 overview

 scalar

 WITH clause

SUBSTR function

subtotals

 generating

 ROLLUP keyword

subtraction (-) operator, dates

subtrees, deleting

subtypes

 objects

 substituting

summaries [See also group operations]

 date math

 GROUP BY clause

 multiple level

symbolic cell references

syntax

 advantages of new join syntax

 inner joins

 outer joins

 regular expressions

SYS_CONNECT_BY_PATH function

SYS_EXTRACT_UTC function

SYSDATE function

SYSTIMESTAMP function

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

TABLE expression, querying collections

tables [See also joins]

 aliases 2nd

 SELECT statements

 collections

 comparisons

 multilevel

 comparing, set operations

 comparisons

 customer, SELECT statement example

 entities

 hierarchies

 join queries

 joins

 key-preserved

 lines as relationships

 modifying

 UPDATE statement

 without WHERE clause

 moving data to

 nested

 NOT NULL columns, INSERT statement and

 object type

 partitions

 methods

 overview of

 pruning

 specifying

 self-referential integrity constraints

 XML

tags, XML

target strings

templates, subpartition

temporal data

 data types

 converting

 date/time formats

 literals

 modification of

 time zones

terminology 2nd

text

 date formatting

 fuzziness

 regular expressions

 backreferences

 collation elements

 equivalence classes

 functions

 named character classes

time

 AM/PM indicators

 formats

 fractional seconds

 overview

 TIMESTAMP data type

 TIMESTAMP WITH LOCAL TIME ZONE data type

 TIMESTAMP WITH TIME ZONE data type

 rounding and truncating dates

time zones

 database

 default

 overview

 session

TIMESTAMP data type

 literals

TIMESTAMP WITH LOCAL TIME ZONE data type, converting

TO_CHAR function

 combining with TO_DATE function

 overview

TO_DATE function

 combining with TO_CHAR function

 default date format

 overview

 specifying format

TO_DSINTERVAL function

TO_YMINTERVAL function

tools, subtypes

top N/bottom N queries (analytic ranking functions)

traversing hierarchical trees

trees, cycles

 identifying

 ignoring

TRUNC function 2nd

 date pivot tables

 date ranges and

truncating dates

TRUST keyword, stored procedure

two-digit years

TZ_OFFSET function

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

underscore (_), pattern-matching character

UNION ALL set operator 2nd

 comparing tables

UNION clause, data sets, creating custom

union compatibility conditions

UNION operation compared to UNION ALL

UNION query

UNION set operator 2nd

UNIQUE SINGLE REFERENCE cell reference

Universal Coordinated Time (UTC)

UNTIL option

UPDATE semantics

UPDATE statement

 CASE expression

 collections and

 DECODE function

 DML

 inline views

 join views

 multiple-column subqueries

 selective aggregation

 WHERE clause and

updating

 cells

 XML documents

UPSERT semantics

user-defined constructors, object types

USER_UPDATABLE_COLUMNS

USING clause

UTC (Universal Coordinated Time)

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

validity functions, XMLType object types

VALUE function, returning objects

values

 adding

 backreferences

 built-in temporal functions

 CONNECT_BY_ROOT operator

 NULLIF function

 NULLs

 references (PREVIOUS function)

VARCHAR2 data type, TO_DATE data type

variable arrays

variables, bind

varrays

vertical joins

vertical partitioning

views

 data dictionary, USER_UPDATABLE_COLUMNS

 DML statements on joins

 hierarchical queries

 inline

 aggregate queries, overcoming limitations of

 creating data sets

 DML statements

 execution

 hierarchical queries, overcoming limitations of

 overview

 selective aggregation

 join queries

 partitions

 stored functions

 WITH CHECK OPTION

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

weekends, date math and

weeks

 date math

 ISO standard

WHERE clause

 capabilities of

 columns, restricting access

 compared to HAVING clause

 conditions

 components of

 equality/inequality

 matching

 membership

 range

 evaluation

 conditions

 GROUP BY clause

 HAVING clause and

 join conditions

 logical operators

 noncorrelated subqueries

 NULL expression

 partition pruning

 SELECT statements

 subqueries

 tips for using

 UPDATE statement and

 value of

WIDTH_BUCKET analytic function

wildcards

 ANY

 IS ANY

windowing analytic functions

WITH CHECK OPTION

 hiding columns

WITH clause, subqueries

words

 backreferences

 matching

 printing numeric amounts in

working days, calculating

WW (ISO week) indicator

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XML (Extensible Markup Language)

 generating

 overview of

 storing data

 updating

XMLAgg() function

XMLElement() function

XMLForest() function

XMLType object type

 validity functions

XPath, inspecting XML documents

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YEAR TO MONTH interval literal

years

 AD/BC indicators

 finding number between dates

 ISO standard

 two-digit

YY (year) indicator

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zeros

 division by errors

 in years

 one-to-many relationship evaluation

 SELECT statements

 < Day Day Up >

	Mastering Oracle SQL, 2nd Edition
	Table of Contents
	Copyright
	Preface
	Why We Wrote This Book
	What's New in Oracle SQL?
	Objectives of This Book
	Audience for This Book
	Platform and Version
	Structure of This Book
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Acknowledgments

	Chapter 1. Introduction to SQL
	1.1 What Is SQL?
	1.2 A Brief History of SQL
	1.3 A Simple Database
	1.4 DML Statements
	1.5 So Why Are There 17 More Chapters?

	Chapter 2. The WHERE Clause
	2.1 Life Without WHERE
	2.2 WHERE to the Rescue
	2.3 WHERE Clause Evaluation
	2.4 Conditions and Expressions
	2.5 WHERE to Go from Here

	Chapter 3. Joins
	3.1 What Is a Join Query?
	3.2 Join Conditions
	3.3 Types of Joins
	3.4 Joins and Subqueries
	3.5 DML Statements on a Join View

	Chapter 4. Group Operations
	4.1 Aggregate Functions
	4.2 The GROUP BY Clause
	4.3 The HAVING Clause
	4.4 Nested Group Operations

	Chapter 5. Subqueries
	5.1 What Is a Subquery?
	5.2 Noncorrelated Subqueries
	5.3 Correlated Subqueries
	5.4 Inline Views
	5.5 Subquery Case Study: The Top N Performers

	Chapter 6. Handling Temporal Data
	6.1 Time Zones
	6.2 Temporal Data Types in Oracle
	6.3 Literals of Temporal Types
	6.4 Getting Temporal Data In and Out of a Database
	6.5 Date and Time Formats
	6.6 Manipulating Temporal Data

	Chapter 7. Set Operations
	7.1 Set Operators
	7.2 Precedence of Set Operators
	7.3 Comparing Two Tables
	7.4 Using NULLs in Compound Queries
	7.5 Rules and Restrictions on Set Operations

	Chapter 8. Hierarchical Queries
	8.1 Representing Hierarchical Information
	8.2 Simple Hierarchy Operations
	8.3 Oracle SQL Extensions
	8.4 Complex Hierarchy Operations
	8.5 Restrictions on Hierarchical Queries
	8.6 Enhancements in Oracle Database 10g

	Chapter 9. DECODE and CASE
	9.1 DECODE, NULLIF, NVL, and NVL2
	9.2 The Case for CASE
	9.3 DECODE and CASE Examples

	Chapter 10. Partitioning
	10.1 Partitioning Concepts
	10.2 Partitioning Tables
	10.3 Partitioning Indexes
	10.4 Partitioning Methods
	10.5 Specifying Partitions
	10.6 Partition Pruning

	Chapter 11. PL/SQL
	11.1 What Is PL/SQL?
	11.2 Procedures, Functions, and Packages
	11.3 Calling Stored Functions from Queries
	11.4 Restrictions on Calling PL/SQL from SQL
	11.5 Stored Functions in DML Statements
	11.6 The SQL Inside Your PL/SQL

	Chapter 12. Objects and Collections
	12.1 Object Types
	12.2 Collection Types
	12.3 Collection Instantiation
	12.4 Querying Collections
	12.5 Collection Unnesting
	12.6 Collection Functions
	12.7 Comparing Collections
	12.8 Manipulating Collections
	12.9 Multilevel Collections

	Chapter 13. Advanced Group Operations
	13.1 Multiple Summary Levels
	13.2 Pushing the GROUPING Envelope
	13.3 The GROUPING_ID and GROUP_ID Functions

	Chapter 14. Advanced Analytic SQL
	14.1 Analytic SQL Overview
	14.2 Ranking Functions
	14.3 Windowing Functions
	14.4 Reporting Functions
	14.5 Summary

	Chapter 15. SQL Best Practices
	15.1 Know When to Use Specific Constructs
	15.2 Avoid Unnecessary Parsing
	15.3 Consider Literal SQL for Decision-Support Systems

	Chapter 16. XML
	16.1 What Is XML?
	16.2 Storing XML Data
	16.3 Generating XML Documents
	16.4 Summary

	Chapter 17. Regular Expressions
	17.1 Elementary Regular Expression Syntax
	17.2 Advanced Function Options
	17.3 Advanced Regular Expression Syntax

	Chapter 18. Model Queries
	18.1 Basic Elements of a Model Query
	18.2 Cell References
	18.3 Rules
	18.4 Iterative Models
	18.5 Reference Models

	Appendix A. Oracle's Old Join Syntax
	A.1 Old Inner Join Syntax
	A.2 Old Outer Join Syntax
	A.3 Advantages of the New Join Syntax

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

