
Oracle Database 10g: SQL
Fundamentals I

Electronic Presentation

D17108GC11
Production 1.1
August 2004
D39769

®

Copyright © 2004, Oracle. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for commercial computer
software and shall be deemed to be Restricted Rights software under Federal law, as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any form or by any means without the express
prior written permission of Oracle Corporation. Any other copying is a violation of copyright law and
may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights,” as defined in FAR 52.227-14, Rights in Data-
General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them in writing to Education Products, Oracle Corporation, 500 Oracle
Parkway, Box SB-6, Redwood Shores, CA 94065. Oracle Corporation does not warrant that this
document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

Author
Nancy Greenberg

Technical Contributors
and Reviewers
Wayne Abbott
Christian Bauwens
Perry Benson
Brian Boxx
Zarko Cesljas
Dairy Chan
Laszlo Czinkoczki
Marjolein Dekkers
Matthew Gregory
Stefan Grenstad
Joel Goodman
Rosita Hanoman
Sushma Jagannath
Angelika Krupp
Christopher Lawless
Marcelo Manzano
Isabelle Marchand
Malika Marghadi
Valli Pataballa
Elspeth Payne
Ligia Jasmin Robayo
Bryan Roberts
Helen Robertson
Lata Shivaprasad
John Soltani
Priya Vennapusa
Ken Woolfe

Publisher
Jobi Varghese

Copyright © 2004, Oracle. All rights reserved.

Introduction

Copyright © 2004, Oracle. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do
the following:
• List the features of Oracle10g
• Discuss the theoretical and physical aspects of a

relational database
• Describe the Oracle implementation of the RDBMS

and ORDBMS
• Understand the goals of the course

Copyright © 2004, Oracle. All rights reserved.

Goals of the Course

After completing this course, you should be able to do
the following:
• Identify the major structural components of

Oracle Database 10g
• Retrieve row and column data from tables with the

SELECT statement
• Create reports of sorted and restricted data
• Employ SQL functions to generate and retrieve

customized data
• Run data manipulation language (DML) statements

to update data in Oracle Database 10g
• Obtain metadata by querying the dictionary views

Copyright © 2004, Oracle. All rights reserved.

Oracle10g

Single
development

model

Common
skill sets

Reliability Unified
management

Scalability One
vendor

Copyright © 2004, Oracle. All rights reserved.

Oracle10g

Copyright © 2004, Oracle. All rights reserved.

Oracle Database 10g

Multimedia

Object relational data

Messages

Documents

Copyright © 2004, Oracle. All rights reserved.

Oracle Application Server 10g

Application
development
framework

Application
server

Business intelligence

Portals

Integration

Transactional applications

Copyright © 2004, Oracle. All rights reserved.

Oracle Enterprise Manager 10g
Grid Control

• Software provisioning
• Application service level monitoring

Copyright © 2004, Oracle. All rights reserved.

Relational and Object Relational
Database Management Systems

• Relational model and object relational model
• User-defined data types and objects
• Fully compatible with relational database
• Support of multimedia and large objects
• High-quality database server features

Copyright © 2004, Oracle. All rights reserved.

Oracle Internet Platform
Sy

st
em

 m
an

ag
em

en
t

Network services

Databases Application
servers

Internet applications

Any
browser

Any
FTP client

Any
mail client

SQL

PL/SQL

Java

Clients

Presentation and
business logic

Business logic
and data

D
evelopm

ent tools

Copyright © 2004, Oracle. All rights reserved.

System Development Life Cycle

Strategy
and

analysis
Design

Build
and

document
Transition

Production

Copyright © 2004, Oracle. All rights reserved.

Data Storage on Different Media

Electronic
spreadsheet Filing cabinet

Database

Copyright © 2004, Oracle. All rights reserved.

Relational Database Concept

• Dr. E. F. Codd proposed the relational model for
database systems in 1970.

• It is the basis for the relational database
management system (RDBMS).

• The relational model consists of the following:
– Collection of objects or relations
– Set of operators to act on the relations
– Data integrity for accuracy and consistency

Copyright © 2004, Oracle. All rights reserved.

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables.

Oracle
server

Table name: EMPLOYEES Table name: DEPARTMENTS

… …

Copyright © 2004, Oracle. All rights reserved.

Data Models

Model of
system

in client’s
mind

Entity model of
client’s model

Tables on disk

Oracle
server

Table model
of entity model

Copyright © 2004, Oracle. All rights reserved.

• Create an entity relationship diagram from
business specifications or narratives:

• Scenario
– “. . . Assign one or more employees to a

department . . .”
– “. . . Some departments do not yet have assigned

employees . . .”

Entity Relationship Model

EMPLOYEE
#* number
* name
o job title

DEPARTMENT
#* number
* name
o location

assigned to

composed of

Copyright © 2004, Oracle. All rights reserved.

Entity Relationship
Modeling Conventions

Entity
• Singular, unique name
• Uppercase
• Soft box
• Synonym in parentheses

Unique identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

EMPLOYEE
#* number
* name
o job title

DEPARTMENT
#* number
* name
o location

Attribute
• Singular name
• Lowercase
• Mandatory marked with *
• Optional marked with “o”

assigned to

composed of

Copyright © 2004, Oracle. All rights reserved.

Relating Multiple Tables

• Each row of data in a table is uniquely identified
by a primary key (PK).

• You can logically relate data from multiple tables
using foreign keys (FK).

Table name: EMPLOYEES
Table name: DEPARTMENTS

Primary key Primary keyForeign key

…

Copyright © 2004, Oracle. All rights reserved.

Relational Database Terminology

1

2
3 4

6

5

Copyright © 2004, Oracle. All rights reserved.

Relational Database Properties

A relational database:
• Can be accessed and modified by executing

structured query language (SQL) statements
• Contains a collection of tables with no physical

pointers
• Uses a set of operators

Copyright © 2004, Oracle. All rights reserved.

Communicating with an RDBMS
Using SQL

SQL statement is entered. Statement is sent to
Oracle server.

Oracle
server

SELECT department_name
FROM departments;

Copyright © 2004, Oracle. All rights reserved.

Oracle’s Relational Database Management
System

User tables Data
dictionary

Oracle
server

Copyright © 2004, Oracle. All rights reserved.

SQL Statements
SELECT
INSERT
UPDATE
DELETE
MERGE

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

GRANT
REVOKE

COMMIT
ROLLBACK
SAVEPOINT

Data manipulation language (DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

Copyright © 2004, Oracle. All rights reserved.

Tables Used in the Course

EMPLOYEES

DEPARTMENTS JOB_GRADES

Copyright © 2004, Oracle. All rights reserved.

Summary

• Oracle Database 10g is the database for grid
computing.

• The database is based on the object relational
database management system.

• Relational databases are composed of relations,
managed by relational operations, and governed
by data integrity constraints.

• With the Oracle server, you can store and manage
information by using the SQL language and
PL/SQL engine.

Copyright © 2004, Oracle. All rights reserved.

Retrieving Data Using
the SQL SELECT Statement

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• List the capabilities of SQL SELECT statements
• Execute a basic SELECT statement
• Differentiate between SQL statements and

iSQL*Plus commands

Copyright © 2004, Oracle. All rights reserved.

Capabilities of SQL SELECT Statements

SelectionProjection

Table 1 Table 2

Table 1Table 1

Join

Copyright © 2004, Oracle. All rights reserved.

Basic SELECT Statement

• SELECT identifies the columns to be displayed
• FROM identifies the table containing those columns

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

Copyright © 2004, Oracle. All rights reserved.

Selecting All Columns

SELECT *
FROM departments;

Copyright © 2004, Oracle. All rights reserved.

Selecting Specific Columns

SELECT department_id, location_id
FROM departments;

Copyright © 2004, Oracle. All rights reserved.

Writing SQL Statements

• SQL statements are not case-sensitive.
• SQL statements can be on one or more lines.
• Keywords cannot be abbreviated or split

across lines.
• Clauses are usually placed on separate lines.
• Indents are used to enhance readability.
• In iSQL*Plus, SQL statements can optionally be

terminated by a semicolon (;). Semicolons are
required if you execute multiple SQL statements.

• In SQL*plus, you are required to end each SQL
statement with a semicolon (;).

Copyright © 2004, Oracle. All rights reserved.

Column Heading Defaults

• iSQL*Plus:
– Default heading alignment: Center
– Default heading display: Uppercase

• SQL*Plus:
– Character and Date column headings are left-

aligned
– Number column headings are right-aligned
– Default heading display: Uppercase

Copyright © 2004, Oracle. All rights reserved.

Arithmetic Expressions

Create expressions with number and date data by
using arithmetic operators.

Multiply*
Divide/

Subtract-
Add+
DescriptionOperator

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, salary + 300
FROM employees;

Using Arithmetic Operators

…

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, 12*salary+100
FROM employees;

Operator Precedence

SELECT last_name, salary, 12*(salary+100)
FROM employees;

…

…

1

2

Copyright © 2004, Oracle. All rights reserved.

Defining a Null Value

• A null is a value that is unavailable, unassigned,
unknown, or inapplicable.

• A null is not the same as a zero or a blank space.

SELECT last_name, job_id, salary, commission_pct
FROM employees;

…

…

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, 12*salary*commission_pct
FROM employees;

Null Values
in Arithmetic Expressions

Arithmetic expressions containing a null value
evaluate to null.

…

…

Copyright © 2004, Oracle. All rights reserved.

Defining a Column Alias

A column alias:
• Renames a column heading
• Is useful with calculations
• Immediately follows the column name (There can

also be the optional AS keyword between the
column name and alias.)

• Requires double quotation marks if it contains
spaces or special characters or if it is case-
sensitive

Copyright © 2004, Oracle. All rights reserved.

Using Column Aliases

SELECT last_name "Name" , salary*12 "Annual Salary"
FROM employees;

SELECT last_name AS name, commission_pct comm
FROM employees;

…

…

Copyright © 2004, Oracle. All rights reserved.

Concatenation Operator

A concatenation operator:
• Links columns or character strings to other

columns
• Is represented by two vertical bars (||)
• Creates a resultant column that is a character

expression
SELECT last_name||job_id AS "Employees"
FROM employees;

…

Copyright © 2004, Oracle. All rights reserved.

Literal Character Strings

• A literal is a character, a number, or a date that is
included in the SELECT statement.

• Date and character literal values must be enclosed
by single quotation marks.

• Each character string is output once for each
row returned.

Copyright © 2004, Oracle. All rights reserved.

Using Literal Character Strings

…

SELECT last_name ||' is a '||job_id
AS "Employee Details"

FROM employees;

Copyright © 2004, Oracle. All rights reserved.

Alternative Quote (q) Operator

• Specify your own quotation mark delimiter
• Choose any delimiter
• Increase readability and usability
SELECT department_name ||

q'[, it's assigned Manager Id:]'
|| manager_id
AS "Department and Manager"

FROM departments;

…

Copyright © 2004, Oracle. All rights reserved.

Duplicate Rows

The default display of queries is all rows, including
duplicate rows.
SELECT department_id
FROM employees;

…
SELECT DISTINCT department_id
FROM employees;

…

1

2

Copyright © 2004, Oracle. All rights reserved.

SQL and iSQL*Plus Interaction

SQL statements

Query resultsiSQL*Plus
commands

Client
Formatted report

Internet
browser

Oracle
server

Copyright © 2004, Oracle. All rights reserved.

SQL Statements Versus
iSQL*Plus Commands

SQL
statements

SQL
• A language
• ANSI standard
• Keyword cannot be

abbreviated
• Statements manipulate

data and table definitions
in the database

iSQL*Plus
• An environment
• Oracle-proprietary
• Keywords can be

abbreviated
• Commands do not allow

manipulation of values in
the database

• Runs on a browser
• Centrally loaded; does not

have to be implemented
on each machine

iSQL*Plus
commands

Copyright © 2004, Oracle. All rights reserved.

Overview of iSQL*Plus

After you log in to iSQL*Plus, you can:
• Describe table structures
• Enter, execute, and edit SQL statements
• Save or append SQL statements to files
• Execute or edit statements that are stored in

saved script files

Copyright © 2004, Oracle. All rights reserved.

Logging In to iSQL*Plus

From your browser environment:

Copyright © 2004, Oracle. All rights reserved.

iSQL*Plus Environment

6

3 4 5

1

2

8 9

7

Copyright © 2004, Oracle. All rights reserved.

Displaying Table Structure

Use the iSQL*Plus DESCRIBE command to display the
structure of a table:

DESC[RIBE] tablename

Copyright © 2004, Oracle. All rights reserved.

Displaying Table Structure

DESCRIBE employees

Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files

SELECT last_name, hire_date, salary
FROM employees; 1

2

Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files

Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files

1

Copyright © 2004, Oracle. All rights reserved.

Interacting with Script Files

2
3

D:\TEMP\emp_data.sql

Copyright © 2004, Oracle. All rights reserved.

iSQL*Plus History Page

1

2

3

Copyright © 2004, Oracle. All rights reserved.

iSQL*Plus History Page

3

4

Copyright © 2004, Oracle. All rights reserved.

Setting iSQL*Plus Preferences

2
3

1

Copyright © 2004, Oracle. All rights reserved.

Setting the Output Location Preference

1

2

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Write a SELECT statement that:

– Returns all rows and columns from a table
– Returns specified columns from a table
– Uses column aliases to display more descriptive

column headings
• Use the iSQL*Plus environment to write, save, and

execute SQL statements and iSQL*Plus
commands

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

Copyright © 2004, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
• Selecting all data from different tables
• Describing the structure of tables
• Performing arithmetic calculations and specifying

column names
• Using iSQL*Plus

Copyright © 2004, Oracle. All rights reserved.

Restricting and Sorting Data

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Limit the rows that are retrieved by a query
• Sort the rows that are retrieved by a query
• Use ampersand substitution in iSQL*Plus to

restrict and sort output at run time

Copyright © 2004, Oracle. All rights reserved.

Limiting Rows Using a Selection

“retrieve all
employees in
department 90”

EMPLOYEES

…

Copyright © 2004, Oracle. All rights reserved.

Limiting the Rows That Are Selected

• Restrict the rows that are returned by using the
WHERE clause:

• The WHERE clause follows the FROM clause.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)];

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, department_id
FROM employees
WHERE department_id = 90 ;

Using the WHERE Clause

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, department_id
FROM employees
WHERE last_name = 'Whalen' ;

Character Strings and Dates

• Character strings and date values are enclosed by
single quotation marks.

• Character values are case-sensitive, and date
values are format-sensitive.

• The default date format is DD-MON-RR.

Copyright © 2004, Oracle. All rights reserved.

Comparison Conditions

Not equal to<>
Between two values
(inclusive)

BETWEEN
...AND...

Match any of a list of values IN(set)

Match a character pattern LIKE

Is a null value IS NULL

Less than<
Less than or equal to<=

Greater than or equal to>=
Greater than>
Equal to=
MeaningOperator

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary
FROM employees
WHERE salary <= 3000 ;

Using Comparison Conditions

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 2500 AND 3500 ;

Using the BETWEEN Condition

Use the BETWEEN condition to display rows based on a
range of values:

Lower limit Upper limit

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, salary, manager_id
FROM employees
WHERE manager_id IN (100, 101, 201) ;

Using the IN Condition

Use the IN membership condition to test for values in
a list:

Copyright © 2004, Oracle. All rights reserved.

SELECT first_name
FROM employees
WHERE first_name LIKE 'S%' ;

Using the LIKE Condition

• Use the LIKE condition to perform wildcard
searches of valid search string values.

• Search conditions can contain either literal
characters or numbers:
– % denotes zero or many characters.
– _ denotes one character.

Copyright © 2004, Oracle. All rights reserved.

• You can combine pattern-matching characters:

• You can use the ESCAPE identifier to search for the
actual % and _ symbols.

SELECT last_name
FROM employees
WHERE last_name LIKE '_o%' ;

Using the LIKE Condition

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL ;

Using the NULL Conditions

Test for nulls with the IS NULL operator.

Copyright © 2004, Oracle. All rights reserved.

Logical Conditions

Returns TRUE if the following
condition is false

NOT

Returns TRUE if either component
condition is true

OR

Returns TRUE if both component
conditions are true

AND

MeaningOperator

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >=10000
AND job_id LIKE '%MAN%' ;

Using the AND Operator

AND requires both conditions to be true:

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
OR job_id LIKE '%MAN%' ;

Using the OR Operator

OR requires either condition to be true:

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id
FROM employees
WHERE job_id

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP') ;

Using the NOT Operator

Copyright © 2004, Oracle. All rights reserved.

Rules of Precedence

You can use parentheses to override rules of precedence.

Not equal to6
NOT logical condition7
AND logical condition8
OR logical condition9

IS [NOT] NULL, LIKE, [NOT] IN4
[NOT] BETWEEN5

Comparison conditions3
Concatenation operator2
Arithmetic operators1
MeaningOperator

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id = 'SA_REP'
OR job_id = 'AD_PRES'
AND salary > 15000;

Rules of Precedence

SELECT last_name, job_id, salary
FROM employees
WHERE (job_id = 'SA_REP'
OR job_id = 'AD_PRES')
AND salary > 15000;

1

2

Copyright © 2004, Oracle. All rights reserved.

Using the ORDER BY Clause

• Sort retrieved rows with the ORDER BY clause:
– ASC: ascending order, default
– DESC: descending order

• The ORDER BY clause comes last in the SELECT
statement:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date ;

…

Copyright © 2004, Oracle. All rights reserved.

Sorting

• Sorting in descending order:

• Sorting by column alias:

• Sorting by multiple columns:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date DESC ; 1

SELECT employee_id, last_name, salary*12 annsal
FROM employees
ORDER BY annsal ;

2

SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id, salary DESC;

3

Copyright © 2004, Oracle. All rights reserved.

Substitution Variables

... salary = ? …
… department_id = ? …
... last_name = ? ...

I want
to query
different
values.

Copyright © 2004, Oracle. All rights reserved.

Substitution Variables

• Use iSQL*Plus substitution variables to:
– Temporarily store values with single-ampersand (&)

and double-ampersand (&&) substitution
• Use substitution variables to supplement the

following:
– WHERE conditions
– ORDER BY clauses
– Column expressions
– Table names
– Entire SELECT statements

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

Using the & Substitution Variable

Use a variable prefixed with an ampersand (&) to
prompt the user for a value:

Copyright © 2004, Oracle. All rights reserved.

Using the & Substitution Variable

101

1
2

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, department_id, salary*12
FROM employees
WHERE job_id = '&job_title' ;

Character and Date Values
with Substitution Variables

Use single quotation marks for date and character
values:

Copyright © 2004, Oracle. All rights reserved.

Specifying Column Names,
Expressions, and Text

SELECT employee_id, last_name, job_id,&column_name
FROM employees
WHERE &condition
ORDER BY &order_column ;

salary

salary > 15000

last_name

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, &&column_name
FROM employees
ORDER BY &column_name ;

…

Using the && Substitution Variable

Use the double ampersand (&&) if you want to reuse
the variable value without prompting the user each
time:

Copyright © 2004, Oracle. All rights reserved.

Using the iSQL*Plus DEFINE Command

• Use the iSQL*Plus DEFINE command to create and
assign a value to a variable.

• Use the iSQL*Plus UNDEFINE command to remove
a variable.

DEFINE employee_num = 200

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

UNDEFINE employee_num

Copyright © 2004, Oracle. All rights reserved.

old 3: WHERE employee_id = &employee_num
new 3: WHERE employee_id = 200

SET VERIFY ON
SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num;

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, both before and after iSQL*Plus
replaces substitution variables with values:

Copyright © 2004, Oracle. All rights reserved.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESC]] ;

Summary

In this lesson, you should have learned how to:
• Use the WHERE clause to restrict rows of output:

– Use the comparison conditions
– Use the BETWEEN, IN, LIKE, and NULL conditions
– Apply the logical AND, OR, and NOT operators

• Use the ORDER BY clause to sort rows of output:

• Use ampersand substitution in iSQL*Plus to
restrict and sort output at run time

Copyright © 2004, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
• Selecting data and changing the order of

the rows that are displayed
• Restricting rows by using the WHERE clause
• Sorting rows by using the ORDER BY clause
• Using substitution variables to add flexibility to

your SQL SELECT statements

Copyright © 2004, Oracle. All rights reserved.

Using Single-Row Functions to
Customize Output

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe various types of functions that are

available in SQL
• Use character, number, and date functions in

SELECT statements
• Describe the use of conversion functions

Copyright © 2004, Oracle. All rights reserved.

SQL Functions

Function

Input

arg 1

arg 2

arg n

Function performs
action

Output

Result
value

Copyright © 2004, Oracle. All rights reserved.

Two Types of SQL Functions

Single-row
functions

Multiple-row
functions

Return one result
per row

Return one result
per set of rows

Functions

Copyright © 2004, Oracle. All rights reserved.

Single-Row Functions

Single-row functions:
• Manipulate data items
• Accept arguments and return one value
• Act on each row that is returned
• Return one result per row
• May modify the data type
• Can be nested
• Accept arguments that can be a column or an

expression

function_name [(arg1, arg2,...)]

Copyright © 2004, Oracle. All rights reserved.

Single-Row Functions

Conversion

Character

Number

Date

General Single-row
functions

Copyright © 2004, Oracle. All rights reserved.

Character Functions

Character
functions

LOWER

UPPER

INITCAP

CONCAT

SUBSTR

LENGTH

INSTR

LPAD | RPAD

TRIM

REPLACE

Case-manipulation
functions

Character-manipulation
functions

Copyright © 2004, Oracle. All rights reserved.

Case-Manipulation Functions

These functions convert case for character strings:

sql courseLOWER('SQL Course')

Sql CourseINITCAP('SQL Course')

SQL COURSEUPPER('SQL Course')

ResultFunction

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';

Using Case-Manipulation Functions

Display the employee number, name, and department
number for employee Higgins:

SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';
no rows selected

Copyright © 2004, Oracle. All rights reserved.

Character-Manipulation Functions

These functions manipulate character strings:

BLACK and BLUE REPLACE
('JACK and JUE','J','BL')

10LENGTH('HelloWorld')

6INSTR('HelloWorld', 'W')

*****24000LPAD(salary,10,'*')

24000*****RPAD(salary, 10, '*')

HelloWorldCONCAT('Hello', 'World')

elloWorldTRIM('H' FROM 'HelloWorld')

HelloSUBSTR('HelloWorld',1,5)

ResultFunction

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, CONCAT(first_name, last_name) NAME,

job_id, LENGTH (last_name),

INSTR(last_name, 'a') "Contains 'a'?"

FROM employees

WHERE SUBSTR(job_id, 4) = 'REP';

Using the Character-Manipulation
Functions

2

31 2

1

3

Copyright © 2004, Oracle. All rights reserved.

Number Functions

• ROUND: Rounds value to specified decimal
• TRUNC: Truncates value to specified decimal
• MOD: Returns remainder of division

100MOD(1600, 300)

45.93ROUND(45.926, 2)

45.92TRUNC(45.926, 2)

ResultFunction

Copyright © 2004, Oracle. All rights reserved.

SELECT ROUND(45.923,2), ROUND(45.923,0),
ROUND(45.923,-1)

FROM DUAL;

Using the ROUND Function

DUAL is a dummy table that you can use to view results
from functions and calculations.

3

31 2

1 2

Copyright © 2004, Oracle. All rights reserved.

Using the TRUNC Function

SELECT ROUND(45.923,2), ROUND(45.923),
ROUND(45.923,-1)

FROM DUAL;
3

31 2

1 2

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, MOD(salary, 5000)
FROM employees
WHERE job_id = 'SA_REP';

Using the MOD Function

For all employees with job title of Sales Representative,
calculate the remainder of the salary after it is divided
by 5,000.

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, hire_date
FROM employees
WHERE hire_date < ''01-FEB-88';';

Working with Dates

• The Oracle database stores dates in an internal numeric
format: century, year, month, day, hours, minutes, and
seconds.

• The default date display format is DD-MON-RR.
– Enables you to store 21st-century dates in the

20th century by specifying only the last two digits
of the year

– Enables you to store 20th-century dates in the
21st century in the same way

Copyright © 2004, Oracle. All rights reserved.

Working with Dates

SYSDATE is a function that returns:
• Date
• Time

Copyright © 2004, Oracle. All rights reserved.

Arithmetic with Dates

• Add or subtract a number to or from a date for a
resultant date value.

• Subtract two dates to find the number of days
between those dates.

• Add hours to a date by dividing the number of
hours by 24.

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, (SYSDATE-hire_date)/7 AS WEEKS
FROM employees
WHERE department_id = 90;

Using Arithmetic Operators
with Dates

Copyright © 2004, Oracle. All rights reserved.

Date Functions

Next day of the date specifiedNEXT_DAY

Last day of the monthLAST_DAY

Round dateROUND

Truncate dateTRUNC

Number of months between two datesMONTHS_BETWEEN

Add calendar months to dateADD_MONTHS

ResultFunction

Copyright © 2004, Oracle. All rights reserved.

Using Date Functions

'08-SEP-95'NEXT_DAY ('01-SEP-95','FRIDAY')

'28-FEB-95'LAST_DAY ('01-FEB-95')

19.6774194MONTHS_BETWEEN
('01-SEP-95','11-JAN-94')

'11-JUL-94'ADD_MONTHS ('11-JAN-94',6)

ResultFunction

Copyright © 2004, Oracle. All rights reserved.

Using Date Functions

Assume SYSDATE = '25-JUL-03':

01-JUL-03TRUNC(SYSDATE ,'MONTH')

01-JAN-03TRUNC(SYSDATE ,'YEAR')

01-AUG-03ROUND(SYSDATE,'MONTH')

01-JAN-04ROUND(SYSDATE ,'YEAR')

ResultFunction

Copyright © 2004, Oracle. All rights reserved.

Practice 3: Overview of Part 1

This practice covers the following topics:
• Writing a query that displays the current date
• Creating queries that require the use of numeric,

character, and date functions
• Performing calculations of years and months of

service for an employee

Copyright © 2004, Oracle. All rights reserved.

Conversion Functions

Implicit data type
conversion

Explicit data type
conversion

Data type
conversion

Copyright © 2004, Oracle. All rights reserved.

Implicit Data Type Conversion

For assignments, the Oracle server can automatically
convert the following:

VARCHAR2NUMBER

VARCHAR2DATE

NUMBERVARCHAR2 or CHAR

DATEVARCHAR2 or CHAR

ToFrom

Copyright © 2004, Oracle. All rights reserved.

Implicit Data Type Conversion

For expression evaluation, the Oracle Server can
automatically convert the following:

NUMBERVARCHAR2 or CHAR

DATEVARCHAR2 or CHAR

ToFrom

Copyright © 2004, Oracle. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

Copyright © 2004, Oracle. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

Copyright © 2004, Oracle. All rights reserved.

Using the TO_CHAR Function with Dates

The format model:
• Must be enclosed by single quotation marks
• Is case-sensitive
• Can include any valid date format element
• Has an fm element to remove padded blanks or

suppress leading zeros
• Is separated from the date value by a comma

TO_CHAR(date, 'format_model')

Copyright © 2004, Oracle. All rights reserved.

Elements of the Date Format Model

Three-letter abbreviation of the day of the
week

DY

Full name of the day of the weekDAY

Two-digit value for monthMM

Full name of the monthMONTH

Three-letter abbreviation of the monthMON

Numeric day of the monthDD

Full year in numbersYYYY

Year spelled out (in English)YEAR

ResultElement

Copyright © 2004, Oracle. All rights reserved.

Elements of the Date Format Model

• Time elements format the time portion of the date:

• Add character strings by enclosing them in double
quotation marks:

• Number suffixes spell out numbers:

DD "of" MONTH 12 of OCTOBER

ddspth fourteenth

HH24:MI:SS AM 15:45:32 PM

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name,
TO_CHAR(hire_date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;

Using the TO_CHAR Function with Dates

…

Copyright © 2004, Oracle. All rights reserved.

Using the TO_CHAR Function with Numbers

These are some of the format elements that you can
use with the TO_CHAR function to display a number
value as a character:

Prints a decimal point.

Prints a comma as thousands indicator,

Places a floating dollar sign$

Uses the floating local currency symbolL

Represents a number9

Forces a zero to be displayed0

ResultElement

TO_CHAR(number, 'format_model')

Copyright © 2004, Oracle. All rights reserved.

SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';

Using the TO_CHAR Function with Numbers

Copyright © 2004, Oracle. All rights reserved.

Using the TO_NUMBER and TO_DATE
Functions

• Convert a character string to a number format
using the TO_NUMBER function:

• Convert a character string to a date format using
the TO_DATE function:

• These functions have an fx modifier. This
modifier specifies the exact matching for the
character argument and date format model of a
TO_DATE function.

TO_NUMBER(char[, 'format_model'])

TO_DATE(char[, 'format_model'])

Copyright © 2004, Oracle. All rights reserved.

RR Date Format

Current Year
1995
1995
2001
2001

Specified Date
27-OCT-95
27-OCT-17
27-OCT-17
27-OCT-95

RR Format
1995
2017
2017
1995

YY Format
1995
1917
2017
2095

If two digits
of the
current
year are:

0–49

0–49 50–99

50–99

The return date is in
the current century

The return date is in
the century after
the current one

The return date is in
the century before
the current one
The return date is in
the current century

If the specified two-digit year is:

Copyright © 2004, Oracle. All rights reserved.

Example of RR Date Format

To find employees hired prior to 1990, use the RR date
format, which produces the same results whether the
command is run in 1999 or now:

SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-YYYY')
FROM employees
WHERE hire_date < TO_DATE('01-Jan-90','DD-Mon-RR');

Copyright © 2004, Oracle. All rights reserved.

Nesting Functions

• Single-row functions can be nested to any level.
• Nested functions are evaluated from deepest level

to the least deep level.

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name,
UPPER(CONCAT(SUBSTR (LAST_NAME, 1, 8), '_US'))

FROM employees
WHERE department_id = 60;

Nesting Functions

Copyright © 2004, Oracle. All rights reserved.

General Functions

The following functions work with any data type and
pertain to using nulls:
• NVL (expr1, expr2)

• NVL2 (expr1, expr2, expr3)

• NULLIF (expr1, expr2)

• COALESCE (expr1, expr2, ..., exprn)

Copyright © 2004, Oracle. All rights reserved.

NVL Function

Converts a null value to an actual value:
• Data types that can be used are date, character,

and number.
• Data types must match:

– NVL(commission_pct,0)

– NVL(hire_date,'01-JAN-97')

– NVL(job_id,'No Job Yet')

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, NVL(commission_pct, 0),
(salary*12) + (salary*12*NVL(commission_pct, 0)) AN_SAL

FROM employees;

Using the NVL Function

…

1

1 2

2

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, commission_pct,
NVL2(commission_pct,

'SAL+COMM', 'SAL') income
FROM employees WHERE department_id IN (50, 80);

Using the NVL2 Function

1 2

2
1

Copyright © 2004, Oracle. All rights reserved.

SELECT first_name, LENGTH(first_name) "expr1",
last_name, LENGTH(last_name) "expr2",
NULLIF(LENGTH(first_name), LENGTH(last_name)) result

FROM employees;

Using the NULLIF Function

…

1

2
3

1 2 3

Copyright © 2004, Oracle. All rights reserved.

Using the COALESCE Function

• The advantage of the COALESCE function over the
NVL function is that the COALESCE function can
take multiple alternate values.

• If the first expression is not null, the COALESCE
function returns that expression; otherwise, it
does a COALESCE of the remaining expressions.

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name,
COALESCE(manager_id,commission_pct, -1) comm

FROM employees
ORDER BY commission_pct;

Using the COALESCE Function

…

Copyright © 2004, Oracle. All rights reserved.

Conditional Expressions

• Provide the use of IF-THEN-ELSE logic within a
SQL statement

• Use two methods:
– CASE expression
– DECODE function

Copyright © 2004, Oracle. All rights reserved.

CASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]

END

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, salary,
CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary
WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"
FROM employees;

Using the CASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

…

…

Copyright © 2004, Oracle. All rights reserved.

DECODE Function

Facilitates conditional inquiries by doing the work of a
CASE expression or an IF-THEN-ELSE statement:

DECODE(col|expression, search1, result1
[, search2, result2,...,]
[, default])

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, salary,
DECODE(job_id, 'IT_PROG', 1.10*salary,

'ST_CLERK', 1.15*salary,
'SA_REP', 1.20*salary,

salary)
REVISED_SALARY

FROM employees;

Using the DECODE Function

…

…

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary,
DECODE (TRUNC(salary/2000, 0),

0, 0.00,
1, 0.09,
2, 0.20,
3, 0.30,
4, 0.40,
5, 0.42,
6, 0.44,

0.45) TAX_RATE
FROM employees
WHERE department_id = 80;

Using the DECODE Function

Display the applicable tax rate for each employee in
department 80:

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Perform calculations on data using functions
• Modify individual data items using functions
• Manipulate output for groups of rows using

functions
• Alter date formats for display using functions
• Convert column data types using functions
• Use NVL functions
• Use IF-THEN-ELSE logic

Copyright © 2004, Oracle. All rights reserved.

Practice 3: Overview of Part 2

This practice covers the following topics:
• Creating queries that require the use of numeric,

character, and date functions
• Using concatenation with functions
• Writing case-insensitive queries to test the

usefulness of character functions
• Performing calculations of years and months of

service for an employee
• Determining the review date for an employee

Copyright © 2004, Oracle. All rights reserved.

Reporting Aggregated Data
Using the Group Functions

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the available group functions
• Describe the use of group functions
• Group data by using the GROUP BY clause
• Include or exclude grouped rows by using the

HAVING clause

Copyright © 2004, Oracle. All rights reserved.

What Are Group Functions?

Group functions operate on sets of rows to give one
result per group.

EMPLOYEES

Maximum salary in
EMPLOYEES table

…

Copyright © 2004, Oracle. All rights reserved.

Types of Group Functions

• AVG

• COUNT

• MAX

• MIN

• STDDEV

• SUM

• VARIANCE

Group
functions

Copyright © 2004, Oracle. All rights reserved.

SELECT [column,] group_function(column), ...
FROM table
[WHERE condition]
[GROUP BY column]
[ORDER BY column];

Group Functions: Syntax

Copyright © 2004, Oracle. All rights reserved.

SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)

FROM employees
WHERE job_id LIKE '%REP%';

Using the AVG and SUM Functions

You can use AVG and SUM for numeric data.

Copyright © 2004, Oracle. All rights reserved.

SELECT MIN(hire_date), MAX(hire_date)
FROM employees;

Using the MIN and MAX Functions

You can use MIN and MAX for numeric, character, and
date data types.

Copyright © 2004, Oracle. All rights reserved.

COUNT(*) returns the number of rows in a table:

COUNT(expr) returns the number of rows with non-
null values for the expr:
SELECT COUNT(commission_pct)
FROM employees
WHERE department_id = 80;

SELECT COUNT(*)
FROM employees
WHERE department_id = 50;

Using the COUNT Function

1

2

Copyright © 2004, Oracle. All rights reserved.

SELECT COUNT(DISTINCT department_id)
FROM employees;

Using the DISTINCT Keyword

• COUNT(DISTINCT expr) returns the number of
distinct non-null values of the expr.

• To display the number of distinct department
values in the EMPLOYEES table:

Copyright © 2004, Oracle. All rights reserved.

Group functions ignore null values in the column:

The NVL function forces group functions to include
null values:

SELECT AVG(commission_pct)
FROM employees;

SELECT AVG(NVL(commission_pct, 0))
FROM employees;

Group Functions and Null Values

1

2

Copyright © 2004, Oracle. All rights reserved.

Creating Groups of Data

EMPLOYEES

…

4400

9500

3500

6400

10033

Average
salary in
EMPLOYEES
table for each
department

Copyright © 2004, Oracle. All rights reserved.

You can divide rows in a table into smaller groups by
using the GROUP BY clause.

Creating Groups of Data:
GROUP BY Clause Syntax

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id ;

Using the GROUP BY Clause

All columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

Copyright © 2004, Oracle. All rights reserved.

Using the GROUP BY Clause

The GROUP BY column does not have to be in the
SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department_id ;

Copyright © 2004, Oracle. All rights reserved.

Grouping by More Than One Column

EMPLOYEES

Add the
salaries in

the EMPLOYEES
table for

each job,
grouped by
department

…

Copyright © 2004, Oracle. All rights reserved.

SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
GROUP BY department_id, job_id ;

Using the GROUP BY Clause
on Multiple Columns

Copyright © 2004, Oracle. All rights reserved.

Illegal Queries
Using Group Functions

Any column or expression in the SELECT list that is not
an aggregate function must be in the GROUP BY clause:

SELECT department_id, COUNT(last_name)
FROM employees;

SELECT department_id, COUNT(last_name)
*

ERROR at line 1:
ORA-00937: not a single-group group function

Column missing in the GROUP BY clause

Copyright © 2004, Oracle. All rights reserved.

Illegal Queries
Using Group Functions

• You cannot use the WHERE clause to restrict groups.
• You use the HAVING clause to restrict groups.
• You cannot use group functions in the WHERE clause.
SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;

WHERE AVG(salary) > 8000
*

ERROR at line 3:
ORA-00934: group function is not allowed here

Cannot use the WHERE clause to restrict groups

Copyright © 2004, Oracle. All rights reserved.

Restricting Group Results

EMPLOYEES

…

The maximum
salary

per department
when it is

greater than
$10,000

Copyright © 2004, Oracle. All rights reserved.

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Restricting Group Results
with the HAVING Clause

When you use the HAVING clause, the Oracle server
restricts groups as follows:
1. Rows are grouped.
2. The group function is applied.
3. Groups matching the HAVING clause are

displayed.

Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;

Using the HAVING Clause

Copyright © 2004, Oracle. All rights reserved.

SELECT job_id, SUM(salary) PAYROLL
FROM employees
WHERE job_id NOT LIKE '%REP%'
GROUP BY job_id
HAVING SUM(salary) > 13000
ORDER BY SUM(salary);

Using the HAVING Clause

Copyright © 2004, Oracle. All rights reserved.

SELECT MAX(AVG(salary))
FROM employees
GROUP BY department_id;

Nesting Group Functions

Display the maximum average salary:

Copyright © 2004, Oracle. All rights reserved.

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Summary

In this lesson, you should have learned how to:
• Use the group functions COUNT, MAX, MIN, and AVG
• Write queries that use the GROUP BY clause
• Write queries that use the HAVING clause

Copyright © 2004, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
• Writing queries that use the group functions
• Grouping by rows to achieve more than one result
• Restricting groups by using the HAVING clause

Copyright © 2004, Oracle. All rights reserved.

Displaying Data
from Multiple Tables

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Write SELECT statements to access data from

more than one table using equijoins and non-
equijoins

• Join a table to itself by using a self-join
• View data that generally does not meet a join

condition by using outer joins
• Generate a Cartesian product of all rows from two

or more tables

Copyright © 2004, Oracle. All rights reserved.

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS

…

…

Copyright © 2004, Oracle. All rights reserved.

Types of Joins

Joins that are compliant with the SQL:1999 standard
include the following:
• Cross joins
• Natural joins
• USING clause
• Full (or two-sided) outer joins
• Arbitrary join conditions for outer joins

Copyright © 2004, Oracle. All rights reserved.

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT table1.column, table2.column
FROM table1
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2

ON (table1.column_name = table2.column_name)]|
[LEFT|RIGHT|FULL OUTER JOIN table2
ON (table1.column_name = table2.column_name)]|

[CROSS JOIN table2];

Copyright © 2004, Oracle. All rights reserved.

Creating Natural Joins

• The NATURAL JOIN clause is based on all columns
in the two tables that have the same name.

• It selects rows from the two tables that have equal
values in all matched columns.

• If the columns having the same names have
different data types, an error is returned.

Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, department_name,
location_id, city

FROM departments
NATURAL JOIN locations ;

Retrieving Records with Natural Joins

Copyright © 2004, Oracle. All rights reserved.

Creating Joins with the USING Clause

• If several columns have the same names but the
data types do not match, the NATURAL JOIN clause
can be modified with the USING clause to specify
the columns that should be used for an equijoin.

• Use the USING clause to match only one column
when more than one column matches.

• Do not use a table name or alias in the referenced
columns.

• The NATURAL JOIN and USING clauses are
mutually exclusive.

Copyright © 2004, Oracle. All rights reserved.

Joining Column Names

EMPLOYEES DEPARTMENTS

Foreign key Primary key

… …

Copyright © 2004, Oracle. All rights reserved.

SELECT employees.employee_id, employees.last_name,
departments.location_id, department_id

FROM employees JOIN departments
USING (department_id) ;

Retrieving Records with the USING Clause

…

Copyright © 2004, Oracle. All rights reserved.

Qualifying Ambiguous
Column Names

• Use table prefixes to qualify column names that
are in multiple tables.

• Use table prefixes to improve performance.
• Use column aliases to distinguish columns that

have identical names but reside in different tables.
• Do not use aliases on columns that are identified

in the USING clause and listed elsewhere in the
SQL statement.

Copyright © 2004, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name,
d.location_id, department_id

FROM employees e JOIN departments d
USING (department_id) ;

Using Table Aliases

• Use table aliases to simplify queries.
• Use table aliases to improve performance.

Copyright © 2004, Oracle. All rights reserved.

Creating Joins with the ON Clause

• The join condition for the natural join is basically
an equijoin of all columns with the same name.

• Use the ON clause to specify arbitrary conditions
or specify columns to join.

• The join condition is separated from other search
conditions.

• The ON clause makes code easy to understand.

Copyright © 2004, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id);

Retrieving Records with the ON Clause

…

Copyright © 2004, Oracle. All rights reserved.

Self-Joins Using the ON Clause

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

… …

Copyright © 2004, Oracle. All rights reserved.

Self-Joins Using the ON Clause

SELECT e.last_name emp, m.last_name mgr
FROM employees e JOIN employees m
ON (e.manager_id = m.employee_id);

…

Copyright © 2004, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
AND e.manager_id = 149 ;

Applying Additional Conditions
to a Join

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, city, department_name
FROM employees e
JOIN departments d
ON d.department_id = e.department_id
JOIN locations l
ON d.location_id = l.location_id;

Creating Three-Way Joins with the
ON Clause

…

Copyright © 2004, Oracle. All rights reserved.

Non-Equijoins

EMPLOYEES JOB_GRADES

Salary in the EMPLOYEES
table must be between
lowest salary and highest
salary in the JOB_GRADES
table.

…

Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.salary, j.grade_level
FROM employees e JOIN job_grades j
ON e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

Retrieving Records
with Non-Equijoins

…

Copyright © 2004, Oracle. All rights reserved.

Outer Joins

EMPLOYEESDEPARTMENTS

There are no employees in
department 190.

…

Copyright © 2004, Oracle. All rights reserved.

INNER Versus OUTER Joins

• In SQL:1999, the join of two tables returning only
matched rows is called an inner join.

• A join between two tables that returns the results
of the inner join as well as the unmatched rows
from the left (or right) tables is called a left (or
right) outer join.

• A join between two tables that returns the results
of an inner join as well as the results of a left and
right join is a full outer join.

Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e LEFT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

LEFT OUTER JOIN

…

Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

RIGHT OUTER JOIN

…

Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, d.department_id, d.department_name
FROM employees e FULL OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

FULL OUTER JOIN

…

Copyright © 2004, Oracle. All rights reserved.

Cartesian Products

• A Cartesian product is formed when:
– A join condition is omitted
– A join condition is invalid
– All rows in the first table are joined to all rows in the

second table
• To avoid a Cartesian product, always include a

valid join condition.

Copyright © 2004, Oracle. All rights reserved.

Generating a Cartesian Product

Cartesian product:
20 x 8 = 160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, department_name
FROM employees
CROSS JOIN departments ;

Creating Cross Joins

• The CROSS JOIN clause produces the cross-
product of two tables.

• This is also called a Cartesian product between
the two tables.

…

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use
joins to display data from multiple tables by using:
• Equijoins
• Non-equijoins
• Outer joins
• Self-joins
• Cross joins
• Natural joins
• Full (or two-sided) outer joins

Copyright © 2004, Oracle. All rights reserved.

Practice 5: Overview

This practice covers the following topics:
• Joining tables using an equijoin
• Performing outer and self-joins
• Adding conditions

Copyright © 2004, Oracle. All rights reserved.

Using Subqueries to Solve Queries

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Define subqueries
• Describe the types of problems that subqueries

can solve
• List the types of subqueries
• Write single-row and multiple-row subqueries

Copyright © 2004, Oracle. All rights reserved.

Using a Subquery
to Solve a Problem

Who has a salary greater than Abel’s?

Which employees have salaries greater
than Abel’s salary?

Main query:

What is Abel’s salary?

Subquery:

Copyright © 2004, Oracle. All rights reserved.

• The subquery (inner query) executes once before
the main query (outer query).

• The result of the subquery is used by the main
query.

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Subquery Syntax

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name
FROM employees
WHERE salary >

(SELECT salary
FROM employees
WHERE last_name = 'Abel');

Using a Subquery

11000

Copyright © 2004, Oracle. All rights reserved.

Guidelines for Using Subqueries

• Enclose subqueries in parentheses.
• Place subqueries on the right side of the

comparison condition.
• The ORDER BY clause in the subquery is not

needed unless you are performing Top-N analysis.
• Use single-row operators with single-row

subqueries, and use multiple-row operators with
multiple-row subqueries.

Copyright © 2004, Oracle. All rights reserved.

Types of Subqueries

• Single-row subquery

• Multiple-row subquery

Main query

Subquery
returns

ST_CLERK

ST_CLERK
SA_MAN

Main query

Subquery
returns

Copyright © 2004, Oracle. All rights reserved.

Single-Row Subqueries

• Return only one row
• Use single-row comparison operators

Greater than or equal to >=

Less than <

Less than or equal to<=

Equal to=

Not equal to<>

Greater than >

MeaningOperator

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE employee_id = 141)

AND salary >
(SELECT salary
FROM employees
WHERE employee_id = 143);

Executing Single-Row Subqueries

ST_CLERK

2600

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees);

Using Group Functions in a Subquery

2500

Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, MIN(salary)
FROM employees
GROUP BY department_id
HAVING MIN(salary) >

(SELECT MIN(salary)
FROM employees
WHERE department_id = 50);

The HAVING Clause with Subqueries

• The Oracle server executes subqueries first.
• The Oracle server returns results into the HAVING

clause of the main query.

2500

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees
GROUP BY department_id);

What Is Wrong with This Statement?

ERROR at line 4:
ORA-01427: single-row subquery returns more than
one row

Single-row operator with multiple-row subquery

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name = 'Haas');

Will This Statement Return Rows?

no rows selected

Subquery returns no values.

Copyright © 2004, Oracle. All rights reserved.

Multiple-Row Subqueries

• Return more than one row
• Use multiple-row comparison operators

Compare value to every value returned by
the subquery

ALL

Equal to any member in the listIN

Compare value to each value returned by the
subquery

ANY

MeaningOperator

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ANY

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Using the ANY Operator
in Multiple-Row Subqueries

9000, 6000, 4200

…

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ALL

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Using the ALL Operator
in Multiple-Row Subqueries

9000, 6000, 4200

Copyright © 2004, Oracle. All rights reserved.

SELECT emp.last_name
FROM employees emp
WHERE emp.employee_id NOT IN

(SELECT mgr.manager_id
FROM employees mgr);

no rows selected

Null Values in a Subquery

Copyright © 2004, Oracle. All rights reserved.

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Summary

In this lesson, you should have learned how to:
• Identify when a subquery can help solve a

question
• Write subqueries when a query is based on

unknown values

Copyright © 2004, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
• Creating subqueries to query values based on

unknown criteria
• Using subqueries to find out which values exist in

one set of data and not in another

Copyright © 2004, Oracle. All rights reserved.

Using the Set Operators

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe set operators
• Use a set operator to combine multiple queries

into a single query
• Control the order of rows returned

Copyright © 2004, Oracle. All rights reserved.

Set Operators

UNION/UNION ALL

A B A B

A B

INTERSECT

A B

MINUS

Copyright © 2004, Oracle. All rights reserved.

Tables Used in This Lesson

The tables used in this lesson are:
• EMPLOYEES: Provides details regarding all

current employees
• JOB_HISTORY: Records the details of the start

date and end date of the former job, and the job
identification number and department when an
employee switches jobs

Copyright © 2004, Oracle. All rights reserved.

UNION Operator

A B

The UNION operator returns results from both
queries after eliminating duplications.

Copyright © 2004, Oracle. All rights reserved.

Using the UNION Operator

Display the current and previous job details of all
employees. Display each employee only once.
SELECT employee_id, job_id
FROM employees
UNION
SELECT employee_id, job_id
FROM job_history;

…
…

Copyright © 2004, Oracle. All rights reserved.

UNION ALL Operator

A B

The UNION ALL operator returns results from both
queries, including all duplications.

Copyright © 2004, Oracle. All rights reserved.

Using the UNION ALL Operator

Display the current and previous departments of all
employees.
SELECT employee_id, job_id, department_id
FROM employees
UNION ALL
SELECT employee_id, job_id, department_id
FROM job_history
ORDER BY employee_id;

…

…

Copyright © 2004, Oracle. All rights reserved.

INTERSECT Operator

A B

The INTERSECT operator returns rows that are
common to both queries.

Copyright © 2004, Oracle. All rights reserved.

Using the INTERSECT Operator

Display the employee IDs and job IDs of those
employees who currently have a job title that is the
same as their job title when they were initially hired
(that is, they changed jobs but have now gone back to
doing their original job).

SELECT employee_id, job_id
FROM employees
INTERSECT
SELECT employee_id, job_id
FROM job_history;

Copyright © 2004, Oracle. All rights reserved.

MINUS Operator

A B

The MINUS operator returns rows in the first query
that are not present in the second query.

Copyright © 2004, Oracle. All rights reserved.

MINUS Operator

Display the employee IDs of those employees who
have not changed their jobs even once.

SELECT employee_id,job_id
FROM employees
MINUS
SELECT employee_id,job_id
FROM job_history;

…

Copyright © 2004, Oracle. All rights reserved.

Set Operator Guidelines

• The expressions in the SELECT lists must match in
number and data type.

• Parentheses can be used to alter the sequence of
execution.

• The ORDER BY clause:
– Can appear only at the very end of the statement
– Will accept the column name, aliases from the first

SELECT statement, or the positional notation

Copyright © 2004, Oracle. All rights reserved.

The Oracle Server and Set Operators

• Duplicate rows are automatically eliminated
except in UNION ALL.

• Column names from the first query appear in the
result.

• The output is sorted in ascending order by default
except in UNION ALL.

Copyright © 2004, Oracle. All rights reserved.

Matching the SELECT Statements

Using the UNION operator, display the department ID,
location, and hire date for all employees.
SELECT department_id, TO_NUMBER(null)

location, hire_date
FROM employees
UNION
SELECT department_id, location_id, TO_DATE(null)
FROM departments;

…

Copyright © 2004, Oracle. All rights reserved.

Matching the SELECT Statement:
Example

Using the UNION operator, display the employee ID, job
ID, and salary of all employees.

SELECT employee_id, job_id,salary
FROM employees
UNION
SELECT employee_id, job_id,0
FROM job_history;

…

Copyright © 2004, Oracle. All rights reserved.

Controlling the Order of Rows

Produce an English sentence using two UNION
operators.
COLUMN a_dummy NOPRINT
SELECT 'sing' AS "My dream", 3 a_dummy
FROM dual
UNION
SELECT 'I''d like to teach', 1 a_dummy
FROM dual
UNION
SELECT 'the world to', 2 a_dummy
FROM dual
ORDER BY a_dummy;

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use UNION to return all distinct rows
• Use UNION ALL to return all rows, including

duplicates
• Use INTERSECT to return all rows that are shared

by both queries
• Use MINUS to return all distinct rows that are

selected by the first query but not by the second
• Use ORDER BY only at the very end of the

statement

Copyright © 2004, Oracle. All rights reserved.

Practice 7: Overview

In this practice, you use the set operators to create
reports:
• Using the UNION operator
• Using the INTERSECTION operator
• Using the MINUS operator

Copyright © 2004, Oracle. All rights reserved.

Manipulating Data

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe each data manipulation language (DML)

statement
• Insert rows into a table
• Update rows in a table
• Delete rows from a table
• Control transactions

Copyright © 2004, Oracle. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:
– Add new rows to a table
– Modify existing rows in a table
– Remove existing rows from a table

• A transaction consists of a collection of DML
statements that form a logical unit of work.

Copyright © 2004, Oracle. All rights reserved.

Adding a New Row to a Table

DEPARTMENTS
New
row

Insert new row
into the

DEPARTMENTS table

Copyright © 2004, Oracle. All rights reserved.

INSERT Statement Syntax

• Add new rows to a table by using the INSERT
statement:

• With this syntax, only one row is inserted at a
time.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

Copyright © 2004, Oracle. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each
column.

• List values in the default order of the columns in
the table.

• Optionally, list the columns in the INSERT clause.

• Enclose character and date values in single
quotation marks.

INSERT INTO departments(department_id,
department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);
1 row created.

Copyright © 2004, Oracle. All rights reserved.

INSERT INTO departments
VALUES (100, 'Finance', NULL, NULL);
1 row created.

INSERT INTO departments (department_id,
department_name)

VALUES (30, 'Purchasing');
1 row created.

Inserting Rows with Null Values

• Implicit method: Omit the column from the
column list.

• Explicit method: Specify the NULL keyword in the
VALUES clause.

Copyright © 2004, Oracle. All rights reserved.

INSERT INTO employees (employee_id,
first_name, last_name,
email, phone_number,
hire_date, job_id, salary,
commission_pct, manager_id,
department_id)

VALUES (113,
'Louis', 'Popp',
'LPOPP', '515.124.4567',
SYSDATE, 'AC_ACCOUNT', 6900,
NULL, 205, 100);

1 row created.

Inserting Special Values

The SYSDATE function records the current date and
time.

Copyright © 2004, Oracle. All rights reserved.

• Add a new employee.

• Verify your addition.

Inserting Specific Date Values

INSERT INTO employees
VALUES (114,

'Den', 'Raphealy',
'DRAPHEAL', '515.127.4561',
TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),
'AC_ACCOUNT', 11000, NULL, 100, 30);

1 row created.

Copyright © 2004, Oracle. All rights reserved.

INSERT INTO departments

(department_id, department_name, location_id)

VALUES (&department_id, '&department_name',&location);

Creating a Script

• Use & substitution in a SQL statement to prompt
for values.

• & is a placeholder for the variable value.

1 row created.

Copyright © 2004, Oracle. All rights reserved.

Copying Rows
from Another Table

• Write your INSERT statement with a subquery:

• Do not use the VALUES clause.
• Match the number of columns in the INSERT

clause to those in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

4 rows created.

Copyright © 2004, Oracle. All rights reserved.

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table:

Copyright © 2004, Oracle. All rights reserved.

• Modify existing rows with the UPDATE statement:

• Update more than one row at a time (if required).

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

UPDATE Statement Syntax

Copyright © 2004, Oracle. All rights reserved.

• Specific row or rows are modified if you specify
the WHERE clause:

• All rows in the table are modified if you omit the
WHERE clause:

Updating Rows in a Table

UPDATE employees
SET department_id = 70
WHERE employee_id = 113;
1 row updated.

UPDATE copy_emp
SET department_id = 110;
22 rows updated.

Copyright © 2004, Oracle. All rights reserved.

UPDATE employees
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 205)

WHERE employee_id = 114;
1 row updated.

Updating Two Columns with a Subquery

Update employee 114’s job and salary to match that of
employee 205.

Copyright © 2004, Oracle. All rights reserved.

UPDATE copy_emp
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

1 row updated.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update
rows in a table based on values from another table:

Copyright © 2004, Oracle. All rights reserved.

Delete a row from the DEPARTMENTS table:

Removing a Row from a Table

DEPARTMENTS

Copyright © 2004, Oracle. All rights reserved.

DELETE Statement

You can remove existing rows from a table by using
the DELETE statement:

DELETE [FROM] table
[WHERE condition];

Copyright © 2004, Oracle. All rights reserved.

Deleting Rows from a Table

• Specific rows are deleted if you specify the WHERE
clause:

• All rows in the table are deleted if you omit the
WHERE clause:

DELETE FROM departments
WHERE department_name = 'Finance';

1 row deleted.

DELETE FROM copy_emp;
22 rows deleted.

Copyright © 2004, Oracle. All rights reserved.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove rows
from a table based on values from another table:
DELETE FROM employees
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name

LIKE '%Public%');
1 row deleted.

Copyright © 2004, Oracle. All rights reserved.

TRUNCATE Statement

• Removes all rows from a table, leaving the table
empty and the table structure intact

• Is a data definition language (DDL) statement
rather than a DML statement; cannot easily be
undone

• Syntax:

• Example:

TRUNCATE TABLE table_name;

TRUNCATE TABLE copy_emp;

Copyright © 2004, Oracle. All rights reserved.

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM employees
WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000, 50);

1 row created.

Using a Subquery in an INSERT Statement

Copyright © 2004, Oracle. All rights reserved.

Using a Subquery in an INSERT Statement

Verify the results:

SELECT employee_id, last_name, email, hire_date,
job_id, salary, department_id

FROM employees
WHERE department_id = 50;

Copyright © 2004, Oracle. All rights reserved.

Database Transactions

A database transaction consists of one of the
following:
• DML statements that constitute one consistent

change to the data
• One DDL statement
• One data control language (DCL) statement

Copyright © 2004, Oracle. All rights reserved.

Database Transactions

• Begin when the first DML SQL statement is
executed.

• End with one of the following events:
– A COMMIT or ROLLBACK statement is issued.
– A DDL or DCL statement executes (automatic

commit).
– The user exits iSQL*Plus.
– The system crashes.

Copyright © 2004, Oracle. All rights reserved.

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:
• Ensure data consistency
• Preview data changes before making changes

permanent
• Group logically related operations

Copyright © 2004, Oracle. All rights reserved.

Controlling Transactions

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK
to SAVEPOINT B

ROLLBACK
to SAVEPOINT A

ROLLBACK

Copyright © 2004, Oracle. All rights reserved.

UPDATE...
SAVEPOINT update_done;
Savepoint created.
INSERT...
ROLLBACK TO update_done;
Rollback complete.

Rolling Back Changes to a Marker

• Create a marker in a current transaction by using
the SAVEPOINT statement.

• Roll back to that marker by using the ROLLBACK
TO SAVEPOINT statement.

Copyright © 2004, Oracle. All rights reserved.

Implicit Transaction Processing

• An automatic commit occurs under the following
circumstances:
– DDL statement is issued
– DCL statement is issued
– Normal exit from iSQL*Plus, without explicitly

issuing COMMIT or ROLLBACK statements
• An automatic rollback occurs under an abnormal

termination of iSQL*Plus or a system failure.

Copyright © 2004, Oracle. All rights reserved.

State of the Data
Before COMMIT or ROLLBACK

• The previous state of the data can be recovered.
• The current user can review the results of the DML

operations by using the SELECT statement.
• Other users cannot view the results of the DML

statements by the current user.
• The affected rows are locked; other users cannot

change the data in the affected rows.

Copyright © 2004, Oracle. All rights reserved.

State of the Data After COMMIT

• Data changes are made permanent in the
database.

• The previous state of the data is permanently lost.
• All users can view the results.
• Locks on the affected rows are released; those

rows are available for other users to manipulate.
• All savepoints are erased.

Copyright © 2004, Oracle. All rights reserved.

COMMIT;
Commit complete.

Committing Data

• Make the changes:

• Commit the changes:

DELETE FROM employees
WHERE employee_id = 99999;
1 row deleted.

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);
1 row created.

Copyright © 2004, Oracle. All rights reserved.

DELETE FROM copy_emp;
22 rows deleted.
ROLLBACK ;
Rollback complete.

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK
statement:
• Data changes are undone.
• Previous state of the data is restored.
• Locks on the affected rows are released.

Copyright © 2004, Oracle. All rights reserved.

State of the Data After ROLLBACK

DELETE FROM test;
25,000 rows deleted.

ROLLBACK;
Rollback complete.

DELETE FROM test WHERE id = 100;
1 row deleted.

SELECT * FROM test WHERE id = 100;
No rows selected.

COMMIT;
Commit complete.

Copyright © 2004, Oracle. All rights reserved.

Statement-Level Rollback

• If a single DML statement fails during execution,
only that statement is rolled back.

• The Oracle server implements an implicit
savepoint.

• All other changes are retained.
• The user should terminate transactions explicitly

by executing a COMMIT or ROLLBACK statement.

Copyright © 2004, Oracle. All rights reserved.

Read Consistency

• Read consistency guarantees a consistent view of
the data at all times.

• Changes made by one user do not conflict with
changes made by another user.

• Read consistency ensures that on the same data:
– Readers do not wait for writers
– Writers do not wait for readers

Copyright © 2004, Oracle. All rights reserved.

Implementation of Read Consistency

SELECT *
FROM userA.employees;

UPDATE employees
SET salary = 7000
WHERE last_name = 'Grant';

Data
blocks

Undo
segments

Changed
and
unchanged
data
Before
change
(“old” data)

User A

User B

Read-
consistent
image

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the
following statements:

Adds a new row to the tableINSERT

Modifies existing rows in the tableUPDATE

Removes existing rows from the tableDELETE

Makes all pending changes permanentCOMMIT

Discards all pending data changesROLLBACK

Is used to roll back to the savepoint markerSAVEPOINT

DescriptionFunction

Copyright © 2004, Oracle. All rights reserved.

Practice 8: Overview

This practice covers the following topics:
• Inserting rows into the tables
• Updating and deleting rows in the table
• Controlling transactions

Copyright © 2004, Oracle. All rights reserved.

Using DDL Statements
to Create and Manage Tables

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Categorize the main database objects
• Review the table structure
• List the data types that are available for columns
• Create a simple table
• Understand how constraints are created at the

time of table creation
• Describe how schema objects work

Copyright © 2004, Oracle. All rights reserved.

Database Objects

Logically represents subsets of data from
one or more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some
queries

Index

DescriptionObject

Copyright © 2004, Oracle. All rights reserved.

Naming Rules

Table names and column names:
• Must begin with a letter
• Must be 1–30 characters long
• Must contain only A–Z, a–z, 0–9, _, $, and #
• Must not duplicate the name of another object

owned by the same user
• Must not be an Oracle server reserved word

Copyright © 2004, Oracle. All rights reserved.

• You must have:
– CREATE TABLE privilege
– A storage area

• You specify:
– Table name
– Column name, column data type, and column size

CREATE TABLE Statement

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ...]);

Copyright © 2004, Oracle. All rights reserved.

Referencing Another User’s Tables

• Tables belonging to other users are not in the
user’s schema.

• You should use the owner’s name as a prefix to
those tables.

USERBUSERA

SELECT *
FROM userB.employees;

SELECT *
FROM userA.employees;

Copyright © 2004, Oracle. All rights reserved.

• Specify a default value for a column during an
insert.

• Literal values, expressions, or SQL functions are
legal values.

• Another column’s name or a pseudocolumn are
illegal values.

• The default data type must match the column data
type.

DEFAULT Option

... hire_date DATE DEFAULT SYSDATE, ...

CREATE TABLE hire_dates
(id NUMBER(8),
hire_date DATE DEFAULT SYSDATE);

Table created.

Copyright © 2004, Oracle. All rights reserved.

Creating Tables

• Create the table.

• Confirm table creation.
DESCRIBE dept

CREATE TABLE dept
(deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13),
create_date DATE DEFAULT SYSDATE);

Table created.

Copyright © 2004, Oracle. All rights reserved.

Data Types

Raw binary dataRAW and LONG
RAW

Binary data (up to 4 GB)BLOB

Binary data stored in an external file (up to 4 GB)BFILE

Date and time valuesDATE

Variable-length character data (up to 2 GB)LONG

Character data (up to 4 GB)CLOB

A base-64 number system representing the unique
address of a row in its table

ROWID

Fixed-length character dataCHAR(size)

Variable-length numeric dataNUMBER(p,s)

Variable-length character dataVARCHAR2(size)

DescriptionData Type

Copyright © 2004, Oracle. All rights reserved.

Datetime Data Types

You can use several datetime data types:

Stored as an interval of years
and months

INTERVAL YEAR TO
MONTH

Stored as an interval of days, hours,
minutes, and seconds

INTERVAL DAY TO
SECOND

Date with fractional secondsTIMESTAMP

DescriptionData Type

Copyright © 2004, Oracle. All rights reserved.

Datetime Data Types

• The TIMESTAMP data type is an extension of the
DATE data type.

• It stores the year, month, and day of the DATE data
type plus hour, minute, and second values as well
as the fractional second value.

• You can optionally specify the time zone.

TIMESTAMP[(fractional_seconds_precision)]

TIMESTAMP[(fractional_seconds_precision)]
WITH TIME ZONE

TIMESTAMP[(fractional_seconds_precision)]
WITH LOCAL TIME ZONE

Copyright © 2004, Oracle. All rights reserved.

Datetime Data Types

• The INTERVAL YEAR TO MONTH data type stores a
period of time using the YEAR and MONTH datetime
fields:

• The INTERVAL DAY TO SECOND data type stores a
period of time in terms of days, hours, minutes,
and seconds:

INTERVAL YEAR [(year_precision)] TO MONTH

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

Copyright © 2004, Oracle. All rights reserved.

Including Constraints

• Constraints enforce rules at the table level.
• Constraints prevent the deletion of a table if there

are dependencies.
• The following constraint types are valid:

– NOT NULL

– UNIQUE

– PRIMARY KEY

– FOREIGN KEY

– CHECK

Copyright © 2004, Oracle. All rights reserved.

Constraint Guidelines

• You can name a constraint, or the Oracle server
generates a name by using the SYS_Cn format.

• Create a constraint at either of the following times:
– At the same time as the table is created
– After the table has been created

• Define a constraint at the column or table level.
• View a constraint in the data dictionary.

Copyright © 2004, Oracle. All rights reserved.

Defining Constraints

• Syntax:

• Column-level constraint:

• Table-level constraint:

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],
...
[table_constraint][,...]);

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

column [CONSTRAINT constraint_name] constraint_type,

Copyright © 2004, Oracle. All rights reserved.

Defining Constraints

• Column-level constraint:

• Table-level constraint:

CREATE TABLE employees(
employee_id NUMBER(6)
CONSTRAINT emp_emp_id_pk PRIMARY KEY,

first_name VARCHAR2(20),
...);

CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk
PRIMARY KEY (EMPLOYEE_ID));

1

2

Copyright © 2004, Oracle. All rights reserved.

NOT NULL Constraint

Ensures that null values are not permitted for the
column:

NOT NULL constraint
(No row can contain
a null value for
this column.)

Absence of NOT NULL
constraint
(Any row can contain
a null value for this
column.)

NOT NULL
constraint

…

Copyright © 2004, Oracle. All rights reserved.

UNIQUE Constraint

EMPLOYEES
UNIQUE constraint

INSERT INTO

Not allowed:
already exists

Allowed

…

Copyright © 2004, Oracle. All rights reserved.

UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
CONSTRAINT emp_email_uk UNIQUE(email));

Copyright © 2004, Oracle. All rights reserved.

PRIMARY KEY Constraint

DEPARTMENTS
PRIMARY KEY

INSERT INTONot allowed
(null value)

Not allowed
(50 already exists)

…

Copyright © 2004, Oracle. All rights reserved.

FOREIGN KEY Constraint
DEPARTMENTS

EMPLOYEES
FOREIGN
KEY

INSERT INTO
Not allowed
(9 does not

exist)
Allowed

PRIMARY
KEY

…

…

Copyright © 2004, Oracle. All rights reserved.

FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
department_id NUMBER(4),
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)

REFERENCES departments(department_id),
CONSTRAINT emp_email_uk UNIQUE(email));

Copyright © 2004, Oracle. All rights reserved.

FOREIGN KEY Constraint:
Keywords

• FOREIGN KEY: Defines the column in the child
table at the table-constraint level

• REFERENCES: Identifies the table and column
in the parent table

• ON DELETE CASCADE: Deletes the dependent
rows in the child table when a row in the
parent table is deleted

• ON DELETE SET NULL: Converts dependent
foreign key values to null

Copyright © 2004, Oracle. All rights reserved.

CHECK Constraint

• Defines a condition that each row must satisfy
• The following expressions are not allowed:

– References to CURRVAL, NEXTVAL, LEVEL, and
ROWNUM pseudocolumns

– Calls to SYSDATE, UID, USER, and USERENV
functions

– Queries that refer to other values in other rows

..., salary NUMBER(2)
CONSTRAINT emp_salary_min

CHECK (salary > 0),...

Copyright © 2004, Oracle. All rights reserved.

CREATE TABLE: Example
CREATE TABLE employees

(employee_id NUMBER(6)
CONSTRAINT emp_employee_id PRIMARY KEY

, first_name VARCHAR2(20)
, last_name VARCHAR2(25)

CONSTRAINT emp_last_name_nn NOT NULL
, email VARCHAR2(25)

CONSTRAINT emp_email_nn NOT NULL
CONSTRAINT emp_email_uk UNIQUE

, phone_number VARCHAR2(20)
, hire_date DATE

CONSTRAINT emp_hire_date_nn NOT NULL
, job_id VARCHAR2(10)

CONSTRAINT emp_job_nn NOT NULL
, salary NUMBER(8,2)

CONSTRAINT emp_salary_ck CHECK (salary>0)
, commission_pct NUMBER(2,2)
, manager_id NUMBER(6)
, department_id NUMBER(4)

CONSTRAINT emp_dept_fk REFERENCES
departments (department_id));

Copyright © 2004, Oracle. All rights reserved.

UPDATE employees
*

ERROR at line 1:
ORA-02291: integrity constraint (HR.EMP_DEPT_FK)
violated - parent key not found

UPDATE employees
SET department_id = 55
WHERE department_id = 110;

Violating Constraints

Department 55 does not exist.

Copyright © 2004, Oracle. All rights reserved.

Violating Constraints

You cannot delete a row that contains a primary key
that is used as a foreign key in another table.

DELETE FROM departments
WHERE department_id = 60;

DELETE FROM departments
*

ERROR at line 1:
ORA-02292: integrity constraint (HR.EMP_DEPT_FK)
violated - child record found

Copyright © 2004, Oracle. All rights reserved.

Creating a Table
by Using a Subquery

• Create a table and insert rows by combining the
CREATE TABLE statement and the AS subquery
option.

• Match the number of specified columns to the
number of subquery columns.

• Define columns with column names and
default values.

CREATE TABLE table
[(column, column...)]

AS subquery;

Copyright © 2004, Oracle. All rights reserved.

CREATE TABLE dept80
AS
SELECT employee_id, last_name,

salary*12 ANNSAL,
hire_date

FROM employees
WHERE department_id = 80;

Table created.

Creating a Table
by Using a Subquery

DESCRIBE dept80

Copyright © 2004, Oracle. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to:
• Add a new column
• Modify an existing column
• Define a default value for the new column
• Drop a column

Copyright © 2004, Oracle. All rights reserved.

Dropping a Table

• All data and structure in the table are deleted.
• Any pending transactions are committed.
• All indexes are dropped.
• All constraints are dropped.
• You cannot roll back the DROP TABLE statement.
DROP TABLE dept80;
Table dropped.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the
CREATE TABLE statement to create a table and include
constraints.
• Categorize the main database objects
• Review the table structure
• List the data types that are available for columns
• Create a simple table
• Understand how constraints are created at the

time of table creation
• Describe how schema objects work

Copyright © 2004, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:
• Creating new tables
• Creating a new table by using the CREATE TABLE

AS syntax
• Verifying that tables exist
• Dropping tables

Copyright © 2004, Oracle. All rights reserved.

Creating Other Schema Objects

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Create simple and complex views
• Retrieve data from views
• Create, maintain, and use sequences
• Create and maintain indexes
• Create private and public synonyms

Copyright © 2004, Oracle. All rights reserved.

Database Objects

Logically represents subsets of data from
one or more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some
queries

Index

DescriptionObject

Copyright © 2004, Oracle. All rights reserved.

What Is a View?

EMPLOYEES table

Copyright © 2004, Oracle. All rights reserved.

Advantages of Views

To restrict
data access

To make complex
queries easy

To provide
data

independence

To present
different views of

the same data

Copyright © 2004, Oracle. All rights reserved.

Simple Views and Complex Views

Yes
No

No

One

Simple Views

YesContain functions

YesContain groups of data

One or moreNumber of tables

Not alwaysDML operations
through a view

Complex ViewsFeature

Copyright © 2004, Oracle. All rights reserved.

Creating a View

• You embed a subquery in the CREATE VIEW
statement:

• The subquery can contain complex SELECT
syntax.

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]
AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

Copyright © 2004, Oracle. All rights reserved.

Creating a View

• Create the EMPVU80 view, which contains details
of employees in department 80:

• Describe the structure of the view by using the
iSQL*Plus DESCRIBE command:

DESCRIBE empvu80

CREATE VIEW empvu80
AS SELECT employee_id, last_name, salary

FROM employees
WHERE department_id = 80;

View created.

Copyright © 2004, Oracle. All rights reserved.

Creating a View

• Create a view by using column aliases in the
subquery:

• Select the columns from this view by the given
alias names:

CREATE VIEW salvu50
AS SELECT employee_id ID_NUMBER, last_name NAME,

salary*12 ANN_SALARY
FROM employees
WHERE department_id = 50;

View created.

Copyright © 2004, Oracle. All rights reserved.

SELECT *
FROM salvu50;

Retrieving Data from a View

Copyright © 2004, Oracle. All rights reserved.

Modifying a View

• Modify the EMPVU80 view by using a CREATE OR
REPLACE VIEW clause. Add an alias for each
column name:

• Column aliases in the CREATE OR REPLACE VIEW
clause are listed in the same order as the columns
in the subquery.

CREATE OR REPLACE VIEW empvu80
(id_number, name, sal, department_id)

AS SELECT employee_id, first_name || ' '
|| last_name, salary, department_id

FROM employees
WHERE department_id = 80;

View created.

Copyright © 2004, Oracle. All rights reserved.

Creating a Complex View

Create a complex view that contains group functions
to display values from two tables:

CREATE OR REPLACE VIEW dept_sum_vu
(name, minsal, maxsal, avgsal)

AS SELECT d.department_name, MIN(e.salary),
MAX(e.salary),AVG(e.salary)

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
GROUP BY d.department_name;

View created.

Copyright © 2004, Oracle. All rights reserved.

Rules for Performing
DML Operations on a View

• You can usually perform DML operations
on simple views.

• You cannot remove a row if the view contains the
following:
– Group functions
– A GROUP BY clause
– The DISTINCT keyword
– The pseudocolumn ROWNUM keyword

Copyright © 2004, Oracle. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:
• Group functions
• A GROUP BY clause
• The DISTINCT keyword
• The pseudocolumn ROWNUM keyword
• Columns defined by expressions

Copyright © 2004, Oracle. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot add data through a view if the view
includes:
• Group functions
• A GROUP BY clause
• The DISTINCT keyword
• The pseudocolumn ROWNUM keyword
• Columns defined by expressions
• NOT NULL columns in the base tables that are not

selected by the view

Copyright © 2004, Oracle. All rights reserved.

Using the WITH CHECK OPTION Clause

• You can ensure that DML operations performed on
the view stay in the domain of the view by using
the WITH CHECK OPTION clause:

• Any attempt to change the department number for
any row in the view fails because it violates the
WITH CHECK OPTION constraint.

CREATE OR REPLACE VIEW empvu20
AS SELECT *

FROM employees
WHERE department_id = 20
WITH CHECK OPTION CONSTRAINT empvu20_ck ;

View created.

Copyright © 2004, Oracle. All rights reserved.

Denying DML Operations

• You can ensure that no DML operations occur by
adding the WITH READ ONLY option to your view
definition.

• Any attempt to perform a DML operation on any
row in the view results in an Oracle server error.

Copyright © 2004, Oracle. All rights reserved.

CREATE OR REPLACE VIEW empvu10
(employee_number, employee_name, job_title)

AS SELECT employee_id, last_name, job_id
FROM employees
WHERE department_id = 10
WITH READ ONLY ;

View created.

Denying DML Operations

Copyright © 2004, Oracle. All rights reserved.

Removing a View

You can remove a view without losing data because a
view is based on underlying tables in the database.
DROP VIEW view;

DROP VIEW empvu80;
View dropped.

Copyright © 2004, Oracle. All rights reserved.

Practice 10: Overview of Part 1

This practice covers the following topics:
• Creating a simple view
• Creating a complex view
• Creating a view with a check constraint
• Attempting to modify data in the view
• Removing views

Copyright © 2004, Oracle. All rights reserved.

Sequences

Logically represents subsets of data from
one or more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some
queries

Index

DescriptionObject

Copyright © 2004, Oracle. All rights reserved.

Sequences

A sequence:
• Can automatically generate unique numbers
• Is a sharable object
• Can be used to create a primary key value
• Replaces application code
• Speeds up the efficiency of accessing sequence

values when cached in memory

1

2 4

3 5

6 8

7

10

9

Copyright © 2004, Oracle. All rights reserved.

CREATE SEQUENCE Statement:
Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

Copyright © 2004, Oracle. All rights reserved.

Creating a Sequence

• Create a sequence named DEPT_DEPTID_SEQ to
be used for the primary key of the DEPARTMENTS
table.

• Do not use the CYCLE option.

CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;

Sequence created.

Copyright © 2004, Oracle. All rights reserved.

NEXTVAL and CURRVAL Pseudocolumns

• NEXTVAL returns the next available sequence
value. It returns a unique value every time it is
referenced, even for different users.

• CURRVAL obtains the current sequence value.
• NEXTVAL must be issued for that sequence before

CURRVAL contains a value.

Copyright © 2004, Oracle. All rights reserved.

Using a Sequence

• Insert a new department named “Support” in
location ID 2500:

• View the current value for the DEPT_DEPTID_SEQ
sequence:

INSERT INTO departments(department_id,
department_name, location_id)

VALUES (dept_deptid_seq.NEXTVAL,
'Support', 2500);

1 row created.

SELECT dept_deptid_seq.CURRVAL
FROM dual;

Copyright © 2004, Oracle. All rights reserved.

Caching Sequence Values

• Caching sequence values in memory gives faster
access to those values.

• Gaps in sequence values can occur when:
– A rollback occurs
– The system crashes
– A sequence is used in another table

Copyright © 2004, Oracle. All rights reserved.

Modifying a Sequence

Change the increment value, maximum value,
minimum value, cycle option, or cache option:

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

Sequence altered.

Copyright © 2004, Oracle. All rights reserved.

Guidelines for Modifying
a Sequence

• You must be the owner or have the ALTER
privilege for the sequence.

• Only future sequence numbers are affected.
• The sequence must be dropped and

re-created to restart the sequence at a different
number.

• Some validation is performed.
• To remove a sequence, use the DROP statement:

DROP SEQUENCE dept_deptid_seq;
Sequence dropped.

Copyright © 2004, Oracle. All rights reserved.

Indexes

Logically represents subsets of data from
one or more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some
queries

Index

DescriptionObject

Copyright © 2004, Oracle. All rights reserved.

Indexes

An index:
• Is a schema object
• Can be used by the Oracle server to speed up the

retrieval of rows by using a pointer
• Can reduce disk I/O by using a rapid path access

method to locate data quickly
• Is independent of the table that it indexes
• Is used and maintained automatically by the

Oracle server

Copyright © 2004, Oracle. All rights reserved.

How Are Indexes Created?

• Automatically: A unique index is created
automatically when you define a PRIMARY KEY or
UNIQUE constraint in a table definition.

• Manually: Users can create nonunique indexes on
columns to speed up access to the rows.

Copyright © 2004, Oracle. All rights reserved.

Creating an Index

• Create an index on one or more columns:

• Improve the speed of query access to the
LAST_NAME column in the EMPLOYEES table:

CREATE INDEX emp_last_name_idx
ON employees(last_name);
Index created.

CREATE INDEX index
ON table (column[, column]...);

Copyright © 2004, Oracle. All rights reserved.

Index Creation Guidelines

Do not create an index when:
The columns are not often used as a condition in the query

The table is small or most queries are expected to retrieve more
than 2% to 4% of the rows in the table
The table is updated frequently

A column contains a large number of null values
One or more columns are frequently used together in a WHERE
clause or a join condition

A column contains a wide range of values

The indexed columns are referenced as part of an expression

The table is large and most queries are expected to retrieve less
than 2% to 4% of the rows in the table

Create an index when:

Copyright © 2004, Oracle. All rights reserved.

Removing an Index

• Remove an index from the data dictionary by
using the DROP INDEX command:

• Remove the UPPER_LAST_NAME_IDX index from
the data dictionary:

• To drop an index, you must be the owner of the
index or have the DROP ANY INDEX privilege.

DROP INDEX emp_last_name_idx;
Index dropped.

DROP INDEX index;

Copyright © 2004, Oracle. All rights reserved.

Synonyms

Logically represents subsets of data from
one or more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some
queries

Index

DescriptionObject

Copyright © 2004, Oracle. All rights reserved.

Synonyms

Simplify access to objects by creating a synonym
(another name for an object). With synonyms, you can:
• Create an easier reference to a table that is owned

by another user
• Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR object;

Copyright © 2004, Oracle. All rights reserved.

Creating and Removing Synonyms

• Create a shortened name for the DEPT_SUM_VU
view:

• Drop a synonym:

CREATE SYNONYM d_sum
FOR dept_sum_vu;
Synonym Created.

DROP SYNONYM d_sum;
Synonym dropped.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create, use, and remove views
• Automatically generate sequence numbers by

using a sequence generator
• Create indexes to improve query retrieval speed
• Use synonyms to provide alternative names for

objects

Copyright © 2004, Oracle. All rights reserved.

Practice 10: Overview of Part 2

This practice covers the following topics:
• Creating sequences
• Using sequences
• Creating nonunique indexes
• Creating synonyms

Copyright © 2004, Oracle. All rights reserved.

Managing Objects
with Data Dictionary Views

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Use the data dictionary views to research data on

your objects
• Query various data dictionary views

Copyright © 2004, Oracle. All rights reserved.

The Data Dictionary

Oracle server

Tables containing
business data:
EMPLOYEES
DEPARTMENTS
LOCATIONS
JOB_HISTORY
...

Data dictionary
views:
DICTIONARY
USER_OBJECTS
USER_TABLES
USER_TAB_COLUMNS
...

Copyright © 2004, Oracle. All rights reserved.

Data Dictionary Structure

Oracle server

Consists of:
– Base tables
– User-accessible views

Copyright © 2004, Oracle. All rights reserved.

Data Dictionary Structure

View naming convention:

Database administrator’s view (what is in
everyone’s schemas)

DBA

Performance-related dataV$

User’s view (what is in your schema;
what you own)

USER

Expanded user’s view (what you can
access)

ALL

PurposeView Prefix

Copyright © 2004, Oracle. All rights reserved.

How to Use the Dictionary Views

Start with DICTIONARY. It contains the names and
descriptions of the dictionary tables and views.
DESCRIBE DICTIONARY

SELECT *
FROM dictionary
WHERE table_name = 'USER_OBJECTS';

Copyright © 2004, Oracle. All rights reserved.

USER_OBJECTS and ALL_OBJECTS Views

USER_OBJECTS:

• Query USER_OBJECTS to see all of the objects that
are owned by you

• Is a useful way to obtain a listing of all object
names and types in your schema, plus the
following information:
– Date created
– Date of last modification
– Status (valid or invalid)

ALL_OBJECTS:

• Query ALL_OBJECTS to see all objects to which
you have access

Copyright © 2004, Oracle. All rights reserved.

USER_OBJECTS View

SELECT object_name, object_type, created, status
FROM user_objects
ORDER BY object_type;

…

Copyright © 2004, Oracle. All rights reserved.

Table Information

USER_TABLES:

DESCRIBE user_tables

SELECT table_name
FROM user_tables;

…

Copyright © 2004, Oracle. All rights reserved.

Column Information

USER_TAB_COLUMNS:
DESCRIBE user_tab_columns

…

Copyright © 2004, Oracle. All rights reserved.

Column Information

SELECT column_name, data_type, data_length,
data_precision, data_scale, nullable

FROM user_tab_columns
WHERE table_name = 'EMPLOYEES';

Copyright © 2004, Oracle. All rights reserved.

Constraint Information

• USER_CONSTRAINTS describes the constraint
definitions on your tables.

• USER_CONS_COLUMNS describes columns that are
owned by you and that are specified in
constraints.

DESCRIBE user_constraints

…

Copyright © 2004, Oracle. All rights reserved.

Constraint Information

SELECT constraint_name, constraint_type,
search_condition, r_constraint_name,
delete_rule, status

FROM user_constraints
WHERE table_name = 'EMPLOYEES';

Copyright © 2004, Oracle. All rights reserved.

Constraint Information

DESCRIBE user_cons_columns

SELECT constraint_name, column_name
FROM user_cons_columns
WHERE table_name = 'EMPLOYEES';

…

Copyright © 2004, Oracle. All rights reserved.

View Information

DESCRIBE user_views

SELECT DISTINCT view_name FROM user_views;

SELECT text FROM user_views
WHERE view_name = 'EMP_DETAILS_VIEW';

1

2

3

Copyright © 2004, Oracle. All rights reserved.

Sequence Information

DESCRIBE user_sequences

Copyright © 2004, Oracle. All rights reserved.

Sequence Information

• Verify your sequence values in the
USER_SEQUENCES data dictionary table.

• The LAST_NUMBER column displays the next
available sequence number if NOCACHE is
specified.

SELECT sequence_name, min_value, max_value,
increment_by, last_number

FROM user_sequences;

Copyright © 2004, Oracle. All rights reserved.

Synonym Information

DESCRIBE user_synonyms

SELECT *
FROM user_synonyms;

Copyright © 2004, Oracle. All rights reserved.

Adding Comments to a Table

• You can add comments to a table or column by
using the COMMENT statement:

• Comments can be viewed through the data
dictionary views:
– ALL_COL_COMMENTS

– USER_COL_COMMENTS

– ALL_TAB_COMMENTS

– USER_TAB_COMMENTS

COMMENT ON TABLE employees
IS 'Employee Information';
Comment created.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to find
information about your objects through the following
dictionary views:
• DICTIONARY

• USER_OBJECTS

• USER_TABLES

• USER_TAB_COLUMNS

• USER_CONSTRAINTS

• USER_CONS_COLUMNS

• USER_VIEWS

• USER_SEQUENCES

• USER_TAB_SYNONYMS

Copyright © 2004, Oracle. All rights reserved.

Practice 11: Overview

This practice covers the following topics:
• Querying the dictionary views for table and

column information
• Querying the dictionary views for constraint

information
• Querying the dictionary views for view information
• Querying the dictionary views for sequence

information
• Querying the dictionary views for synonym

information
• Adding a comment to a table and querying the

dictionary views for comment information

Copyright © 2004, Oracle. All rights reserved.

Oracle Join Syntax

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Write SELECT statements to access data from

more than one table using equijoins and non-
equijoins

• Use outer joins to view data that generally does
not meet a join condition

• Join a table to itself by using a self-join

Copyright © 2004, Oracle. All rights reserved.

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS

…

…

Copyright © 2004, Oracle. All rights reserved.

Cartesian Products

• A Cartesian product is formed when:
– A join condition is omitted
– A join condition is invalid
– All rows in the first table are joined to all rows in the

second table
• To avoid a Cartesian product, always include a

valid join condition in a WHERE clause.

Copyright © 2004, Oracle. All rights reserved.

Generating a Cartesian Product

Cartesian product:
20 x 8 = 160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

Copyright © 2004, Oracle. All rights reserved.

• Equijoin
• Non-equijoin
• Outer join
• Self-join

Types of Joins

• Cross join
• Natural join
• Using clause
• Full (or two-sided)

outer join
• Arbitrary join

condition for outer
join

SQL:1999–compliant joinsOracle-proprietary joins
(8i and earlier releases)

Copyright © 2004, Oracle. All rights reserved.

Joining Tables Using Oracle Syntax

Use a join to query data from more than one table:

• Write the join condition in the WHERE clause.
• Prefix the column name with the table name when

the same column name appears in more than one
table.

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

Copyright © 2004, Oracle. All rights reserved.

Equijoins

EMPLOYEES DEPARTMENTS

Foreign key Primary key

… …

Copyright © 2004, Oracle. All rights reserved.

SELECT employees.employee_id, employees.last_name,
employees.department_id, departments.department_id,
departments.location_id

FROM employees, departments
WHERE employees.department_id = departments.department_id;

Retrieving Records
with Equijoins

…

Copyright © 2004, Oracle. All rights reserved.

Additional Search Conditions
Using the AND Operator

EMPLOYEES DEPARTMENTS

… …

Copyright © 2004, Oracle. All rights reserved.

Qualifying Ambiguous Column Names

• Use table prefixes to qualify column names that
are in multiple tables.

• Use table prefixes to improve performance.
• Use column aliases to distinguish columns that

have identical names but reside in different tables.

Copyright © 2004, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,

d.department_id, d.location_id

FROM employees e , departments d

WHERE e.department_id = d.department_id;

Using Table Aliases

• Use table aliases to simplify queries.
• Use table prefixes to improve performance.

Copyright © 2004, Oracle. All rights reserved.

Joining More Than Two Tables

EMPLOYEES LOCATIONSDEPARTMENTS

…
To join n tables together, you need a minimum of n–1
join conditions. For example, to join three tables, a
minimum of two joins is required.

Copyright © 2004, Oracle. All rights reserved.

Non-Equijoins

EMPLOYEES JOB_GRADES

Salary in the EMPLOYEES
table must be between
lowest salary and highest
salary in the JOB_GRADES
table.

…

Copyright © 2004, Oracle. All rights reserved.

Retrieving Records
with Non-Equijoins

SELECT e.last_name, e.salary, j.grade_level
FROM employees e, job_grades j
WHERE e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

…

Copyright © 2004, Oracle. All rights reserved.

Outer Joins

EMPLOYEESDEPARTMENTS

There are no employees
in department 190.

…

Copyright © 2004, Oracle. All rights reserved.

Outer Joins Syntax

• You use an outer join to see rows that do not meet
the join condition.

• The outer join operator is the plus sign (+).

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column(+) = table2.column;

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column = table2.column(+);

Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name

FROM employees e, departments d

WHERE e.department_id(+) = d.department_id ;

Using Outer Joins

…

Copyright © 2004, Oracle. All rights reserved.

Self-Joins

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

… …

Copyright © 2004, Oracle. All rights reserved.

Joining a Table to Itself

SELECT worker.last_name || ' works for '

|| manager.last_name

FROM employees worker, employees manager

WHERE worker.manager_id = manager.employee_id ;

…

Copyright © 2004, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use
joins to display data from multiple tables by using
Oracle-proprietary syntax for versions 8i and earlier.

Copyright © 2004, Oracle. All rights reserved.

Practice C: Overview

This practice covers writing queries to join tables
using Oracle syntax.

Copyright © 2004, Oracle. All rights reserved.

Using SQL*Plus

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:
• Log in to SQL*Plus
• Edit SQL commands
• Format output using SQL*Plus commands
• Interact with script files

Copyright © 2004, Oracle. All rights reserved.

SQL and SQL*Plus Interaction

Buffer

Server
SQL statements

Query results

SQL
scripts

SQL*Plus

Copyright © 2004, Oracle. All rights reserved.

SQL Statements Versus
SQL*Plus Commands

SQL
statements

SQL
• A language
• ANSI-standard
• Keywords cannot be

abbreviated
• Statements manipulate

data and table
definitions in the
database

SQL*Plus
• An environment
• Oracle-proprietary
• Keywords can be

abbreviated
• Commands do not

allow manipulation of
values in the database

SQL
buffer

SQL*Plus
commands

SQL*Plus
buffer

Copyright © 2004, Oracle. All rights reserved.

Overview of SQL*Plus

• Log in to SQL*Plus.
• Describe the table structure.
• Edit your SQL statement.
• Execute SQL from SQL*Plus.
• Save SQL statements to files and append SQL

statements to files.
• Execute saved files.
• Load commands from file to buffer to edit.

Copyright © 2004, Oracle. All rights reserved.

sqlplus [username[/password

[@database]]]

Logging In to SQL*Plus

• From a Windows environment:

• From a command line:

Copyright © 2004, Oracle. All rights reserved.

Displaying Table Structure

Use the SQL*Plus DESCRIBE command to display the
structure of a table:

DESC[RIBE] tablename

Copyright © 2004, Oracle. All rights reserved.

Name Null? Type
----------------------- -------- ------------
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)

Displaying Table Structure

SQL> DESCRIBE departments

Copyright © 2004, Oracle. All rights reserved.

SQL*Plus Editing Commands

• A[PPEND] text

• C[HANGE] / old / new

• C[HANGE] / text /

• CL[EAR] BUFF[ER]

• DEL

• DEL n

• DEL m n

Copyright © 2004, Oracle. All rights reserved.

SQL*Plus Editing Commands

• I[NPUT]
• I[NPUT] text
• L[IST]
• L[IST] n
• L[IST] m n
• R[UN]
• n
• n text
• 0 text

Copyright © 2004, Oracle. All rights reserved.

SQL> 1

SQL> L

SQL> LIST

1 SELECT last_name
2* FROM employees

1* SELECT last_name

SQL> A , job_id

1* SELECT last_name, job_id

1 SELECT last_name, job_id
2* FROM employees

Using LIST, n, and APPEND

Copyright © 2004, Oracle. All rights reserved.

Using the CHANGE Command

SQL> L

1* SELECT * from employees

SQL> c/employees/departments

1* SELECT * from departments

SQL> L

1* SELECT * from departments

Copyright © 2004, Oracle. All rights reserved.

SQL*Plus File Commands

• SAVE filename

• GET filename

• START filename

• @ filename

• EDIT filename

• SPOOL filename

• EXIT

Copyright © 2004, Oracle. All rights reserved.

Created file my_query

SQL> START my_query

SQL> L
1 SELECT last_name, manager_id, department_id
2* FROM employees

SQL> SAVE my_query

Using the SAVE and START Commands

LAST_NAME MANAGER_ID DEPARTMENT_ID
------------------------- ---------- -------------
King 90
Kochhar 100 90
...
20 rows selected.

Copyright © 2004, Oracle. All rights reserved.

Summary

• Execute SQL statements
• Edit SQL statements
• Format output
• Interact with script files

In this appendix, you should have learned how to use
SQL*Plus as an environment to do the following:

