o "¢ COURSE TECHNOLOGY
A CENGAGE Learning

Professional » Technical » Reference

The
Language

of SQL

Larry Rockoff

THE LANGUAGE
oF SQL

LARRY ROCKOFF

Course Technology PTR
A part of Cengage Learning

»~ COURSE TECHNOLOGY

CENGAGE Learning

Australia @ Brazil ® Japan e Korea ® Mexico ® Singapore ® Spain ® United Kingdom e United States

=%

COURSE TECHNOLOGY
CENGAGE Learning"

The Language of SQL
Larry Rockoff

Publisher and General Manager,
Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Mark Hughes
Acquisitions Editor: Mitzi Koontz

Project and Copy Editor:
Marta Justak

Technical Reviewer: Keith
Davenport

Interior Layout Tech: MPS Limited,
A Macmillan Company

Cover Designer: Luke Fletcher
Indexer: Valerie Haynes Perry

Proofreader: Chris Small

© 2011 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may
be reproduced, transmitted, stored, or used in any form or by any means graphic,
electronic, or mechanical, including but not limited to photocopying, recording,
scanning, digitizing, taping, Web distribution, information networks, or
information storage and retrieval systems, except as permitted under Section 107
or 108 of the 1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions
Further permissions questions can be emailed to
permissionrequest@cengage.com

DB2, Informix, and IBM are registered trademarks of IBM Corporation.
Oracle is a registered trademark of Oracle Corp. MySQL is a registered
trademark of MySQL AB. Sybase and SQL Anywhere are registered
trademarks of Sybase Inc. Access, Excel, Microsoft, SQL Server, and
Windows are registered trademarks of Microsoft Corporation. Mac OS
is a registered trademark of Apple Inc. PostgreSQL is a trademark of
PostgreSQL Inc and the Regents of the University of California.

All other trademarks are the property of their respective owners.

All images © Cengage Learning unless otherwise noted.
Library of Congress Control Number: 2010925128

ISBN-13: 978-1-4354-5751-5

ISBN-10: 1-4354-5751-X

elSBN-10:1-4354-5752-8

Course Technology, a part of Cengage Learning
20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1234567121110

For Lisa

ACKNOWLEDGMENTS

As noted in the 2002 hit movie About a Boy, no man is an island. While that
sentiment is certainly a general truth, it is one that I have specifically experienced
as I've written this book. As such, I would like to acknowledge the help received
from those who assisted, either directly or indirectly, with the words found
between these covers.

First, I would like to thank the many editors at Cengage Learning who skillfully
enhanced and improved many aspects of this book as it was brought to fruition.
Without Mitzi Koontz, my acquisitions editor, this book literally would not
exist. Keith Davenport, my technical editor, did an outstanding job in his review.
I thank him for the numerous suggestions and corrections that he provided.
Finally, Marta Justak, my project editor was superb in pulling it all together,
while adding a professional touch and coherency to the entire project.

I would also like to thank a former colleague, Mary Anne Schneider, who con-
tributed to my understanding of SQL, and other associates at ASAP Software
who gave me the freedom to explore things on my own.

Finally, and most especially, I would like to thank everyone in my immediate
family for their encouragement and support as I’'ve dedicated myself to this
project. .. this is for Lisa, Steve, Dan, Emily, and Kyle.

ABOUT THE AUTHOR

Larry Rockoff has been involved with SQL and Business Intelligence (BI) de-
velopment for many years. His main area of expertise is with data warehouse
systems and reporting tools. He recently developed a suite of BI tools for ASAP
Software, a subsidiary of Dell Inc. He holds an MBA from the University of
Chicago, with a specialization in Management Science.

For more information on his current activities or to contact the author, please
visit LarryRockoff.com.

CONTENTS

Chapter 1

Chapter 2

Chapter 3

Vi

Introduction i e Xii
Relational Databasesand SQL........................... 1
Language and LogiC. ..o v ittt it e e 1
SQL DEfinNed. . ..ottt e e 3
Microsoft SQL Server, Oracle,and MySQL, 3
OtherDatabases 5
Relational Databases i 6
Primary and Foreign Keyst 7
Datatypes. . . o e 8
NULL ValUes. . . oot e e e e e e 10
The Significance of SQLot 10
Looking Ahead i e 11
Basic DataRetrieval..........ot 13
ASImMple SELECT e 13
Syntax Notes 15
Specifying Columns i e 16
Column Names with Embedded Spaces. 17
Looking Ahead i 18
Calculationsand Aliasescciiiiiiinnnnnnnn 19
Calculated Fields oot e e 19
Literal Values. o 20

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Contents

Arithmetic Calculations 22
Concatenating Fields 23
Column AlI@ses oot s 24
Table Aliaseso 26
Looking Ahead 27
UsingFunctionst iiiinnnrnns 29
The Function of Functions. i 29
Character FUNCLIONSot e e 30
Composite FUNCLIONS i e e e e 36
Date/Time Functions. e 37
Numeric Functions s 40
Conversion FUNCLIONSottt 41
Looking Ahead 44
SortingData.........coiiiiiiiiii it i 47
Adding aSort e 47
Sorting in Ascending Order.t 48
Sorting in Descending Order. ...t s 49
Sorting by Multiple Columns. o i 50
Sorting by a Calculated Field. i 51
More on Sort SEqUENCESt i it e 52
Looking Ahead 55
Column-Based LogiCcviiiiiiiiiiiiiaaennnnn 57
IF-THEN-ELSE LOQIC . . . o oottt et e e e 57
TheSimple Format 58
The Searched Format i 60
Looking Ahead i e 62
Row-Based LOQiCcoviiiiiiii it i i in s 63
Applying Selection Criteria i 63
WHERE Clause Operators.t 65
Limiting ROWSo 66
Limiting RowswithaSort 68
Looking Ahead 70
Boolean LogiC.ocviii i 71

Complex Logical Conditions i 71

vii

viii

Contents

Chapter 9

Chapter 10

Chapter 11

Chapter 12

The AND Operator . ..ot e et 72
The OR Operator. . ..ot e ettt e 73
Using Parentheses. e 73
Multiple Sets of Parentheses. i 75
The NOT Operatoro. it e e 76
The BETWEEN Operator.oviiitii it e e 79
The IN Operatort e e e 80
Boolean Logicand NULLValuest 82
Looking Ahead i 84
InexactMatches.o i 85
Pattern Matching e 85
Wildcardso e 88
Matching by Sound 91
Looking Ahead i e 93
SummarizingData.............cciiiiii i 95
Eliminating Duplicates. 95
Aggregate Functions 97
The COUNT FuNnction i e 99
GroupingData 101
Multiple Columnsand Sorting i, 103
Selection Criteriaon Aggregatesciiiiiiiinenn.n. 105
Looking Ahead i 107
Combining Tables with anInnerJoin................... 109
JoiningTwo Tables. 110
ThelnnerJoin 112
Table OrderininnerJoins o i 114
Alternate Specification of InnerJoins 114
Table AliasesRevisited i 115
Looking Ahead it e 116
Combining Tables with an Outer Join................... 119
The Outer JOIN. . ..o e e 119
Left Joins . ..o 122
Testing for NULLValues. e 124
Right JOINS . ..o e 125

Table Orderin Quter Joins. oottt e et 125

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Contents

FUll Joins. ..o 126
Looking Ahead e 128
Self Joinsand Viewsc.cciiiiiiiiiininnnnn. 131
Self JOINS ..o e 131
Creating Views e 134
Referencing Views o e 136
Benefitsof Views 137
Modifying and Deleting Views, 138
Looking Ahead e 139
Subqueries i e 141
Types of SUbQUENIesui it e e e e 141
Using a SubqueryasaDataSource., 142
Using a Subquery in Selection Criteria. 145
Correlated Subqueries 147
The EXISTS Operator. ot e 149
Using a Subquery as a Calculated Column. 150
Looking Ahead i 151
SetLogiC ..ot e 153
Using the UNION Operatoroviiiiii i 154
Distinct and Non-Distinct Unions i, 157
Intersecting QUeries i 158
Looking Ahead i e 160
Stored Procedures and Parameters..................... 163
Creating Stored Procedures. i 164
Parameters in Stored Procedures, 166
Executing Stored Procedures. i 168
Modifying and Deleting Stored Procedures 169
FunctionsRevisited. i 170
Looking Ahead o 171
ModifyingDataciiiiiiiiii i anennn 173
Modification Strategies 173
Inserting Datacoin it e 174
DeletingDatao i e e e 178

Updating Data.oooii e e 180

Contents

Chapter 18

Chapter 19

Chapter 20

Appendix A

Appendix B

Correlated SubqueryUpdates. i, 181
Looking Ahead e 183
MaintainingTables 185
Data Definition Language.t 185
Table Attributes 186
Table Columns. e 187
Primary Keysand Indexes.t 188
Foreign Keys e 189
Creating Tables i 190
Creating INdexesot 192
Looking Ahead 192
Principles of Database Design 195
Goalsof Normalization i 196
How to NormalizeData.o 198
The Art of Database Design. 202
Alternatives to Normalization.......... 203
Looking Ahead i 205
Strategies for DisplayingData......................... 207
Beyond SQL . ..ot e 207
Reporting Tools and Crosstab Reports. 208
Spreadsheets and PivotTables o ... 210
Looking Aheado 212
Getting Started with Microsoft SQL Server.............. 215
OV VI . ettt et e e 215
Installing SQL Server Express 2008coiiiiiiinnennaen.. 215
Installing SQL Server Management Studio 216
Using SQL Server Management Studio 217
Getting Started withMySQLot 219
L =T T 219
Installing MySQL Community Serverc i, . 220
Installing MySQL Workbench i it 221

Using MySQL Workbench 222

Appendix C

Appendix D

Contents

Getting Started withOracle........................... 225
OVIVIBW . ottt e e e 225
Installing Oracle Database Express Edition 225
Using Oracle Database Express Edition 227
Listing of All SQL Statements. 229

Xi

INTRODUCTION

Research has shown that, being pressed for time, most readers tend to skip the
introduction of any book they happen to read and then proceed immediately to
the first real chapter.

With that fact firmly in mind, we will only cover relatively unimportant material
in the introduction, such as an explanation of what you will and will not learn by
reading this book.

On second thought, perhaps the introduction really is relevant, so you might as
well stick with it. We’ll make it brief.

Even if you’re not yet familiar with SQL, suffice it to say that it is a complex
language with many components and features. In this book, we’re going to focus
on one main topic:

m How to use SQL to retrieve data from a database
To a lesser extent, we will also cover:

m How to update data in a database
m How to build and maintain databases
m How to design relational databases

m Strategies for displaying data after it has been retrieved

Xii

Introduction

A number of features make this book unique among introductory SQL books:

= You will not be required to download software or sit with a computer as
you read the text.

Our intent is to provide examples of SQL usage that can be understood
simply by reading the book. The text includes small data samples that will
allow you to see clearly how SQL statements work.

m A language-based approach is employed to enable you to learn SQL as
you would learn English.

Topics are organized in an intuitive and logical sequence. SQL keywords are
introduced one at a time, allowing you to build on your prior under-
standing as you encounter new words and concepts.

m This book covers the syntax of three widely used databases: Microsoft
SQL Server, MySQL, and Oracle.

If there are any differences between the three databases, the Microsoft SQL
Server syntax is shown in the main text. Special “Database Differences”
boxes show and explain any variations in the syntax for MySQL or Oracle.

= An emphasis is given to relevant aspects of SQL for retrieving data.

This approach is useful for those who only need to use SQL in conjunction
with a reporting tool.

Additionally, a final chapter is provided that covers strategies for displaying
data after it has been retrieved, including ideas on how to use crosstab
reports and pivot tables.

Finally, one additional question that we’ll address in the introduction: How is
SQL pronounced?

There are actually two choices. One option is to simply say it as individual letters,
like “S-Q-L.” Another possibility is to pronounce it as “sequel.” There are peo-
ple who claim that only one of the two pronunciations is correct, but there is no
real agreement on the question. It’s basically a matter of personal preference.

As for what the letters S-Q-L mean, most agree that they stand for “structured
query language.” However, there are a few people who will argue that SQL stands

xiii

Xiv

Introduction

for nothing at all since the language is derived from an old language from IBM
called sequel, which did not stand for structured query language.

At any rate, the introduction is done. And now. .. on to some real information.

Companion Web Site Downloads

Please see Appendix D, for a description of the files available on the companion
Web site. These files list all SQL statements and provide all data shown in
the book.

You may download the companion Web site files from www.courseptr.com/
downloads.

www.courseptr.com/downloads
www.courseptr.com/downloads

CHAPTER 1

RELATIONAL
DATABASES AND SQL

In this first chapter, 'm going to provide a bit of background that will allow
you to get started quickly with the writing of SQL statements in subsequent
chapters. There are two general topics. The first will be an overview of the data-
bases covered in this book and some basic information on how those databases
relate to the language of SQL. I'll also talk about the features of this book, which
will allow you to determine readily the SQL syntax for the specific database
you’re using.

Second, I'm going to cover some of the key design features of relational data-
bases. We’ll talk about tables, rows, columns, keys, and datatypes. After you have
the basic information, you’ll be up and running in no time. So, without further
ado, let us begin.

Language and Logic

I must begin with an admission that the title of this book is not entirely appro-
priate. Although the book is entitled The Language of SQL, a more apt title might
have been The Logic of SQL. This is because, like all computer languages, the
language of SQL has much more to do with cold, hard logic than with English
vocabulary.

Nevertheless, there is a unique language-based syntax present in SQL that dis-
tinguishes it from many other computer languages. Unlike many programming
tools, SQL employs ordinary English words such as WHERE, FROM, and HAVING

Chapter 1 = Relational Databases and SQL

as keywords in its syntax. As a result, SQL is much less cryptic than other languages
you might have seen.

As such, after you become familiar with the language of SQL, you might find
yourself thinking of SQL commands as being analogous to English sentences and
having a certain expressive meaning.

For example, compare this sentence:

I would like a hamburger and fries from your value menu,
and make it togo.

with this SQL statement:

Select city, state
from customers
order by state

I’ll get into the details later, but this SQL statement means that you want the city
and state fields from a customer’s table in your database, and you want the
results sorted by state.

In both cases, you’re specifying which items you want (hamburger/fries or city/
state), where you want it from (value menu or customer’s table), and some extra
instructions (make it to go or sort the results by state).

So an important goal of this book is to allow you to learn SQL as you would learn
English, in a simple, intuitive way. My approach will be to introduce one word at
a time, while building on the logical intent and meaning of the language.

There is a second and perhaps less obvious meaning to the title of this book. There
is often some confusion between the language of SQL and SQL databases. There
are many software companies selling database management systems (DBMS)
software. In common usage, the databases in these types of software packages are
often referred to as SQL databases, since the SQL language is the primary means
of managing and accessing data in these databases. Some vendors even use the
word SQL as part of the database name. For example, Microsoft calls its latest
DBMS SQL Server 2008.

But, in point of fact, SQL is more properly a language. It is not really a database.
My focus in this book will be on the language of SQL rather than on any parti-
cular database.

Microsoft SQL Server, Oracle, and MySQL

SQL Defined

So what is SQL? In a nutshell, SQL is a standard computer language for main-
taining and utilizing data in relational databases. Put simply, SQL is a language
that lets users interact with relational databases. It has a long history of devel-
opment by various organizations going back to the 1970s. In 1986, the American
National Standards Institute (ANSI) published its first set of standards regarding
the language, and it has gone through several revisions since that time.

Generally speaking, there are three major components of the SQL language. The
first is called DML, or Data Manipulation Language. This module of the language
allows you to retrieve, update, add, or delete data in a database. The second
component is called DDL, or Data Definition Language. DDL enables you to
create and modify the database itself. For example, DDL provides ALTER state-
ments, which let you modify the design of tables in a database. Finally, the third
component, DCL, or Data Control Language, maintains proper security for the
database.

Many of the major software vendors, such as Microsoft and Oracle, have adapted
the standard for their own purposes and have added numerous extensions and
modifications to the language. But although each vendor has its own unique
interpretation of SQL, there is still an underlying base language, which is pretty
much the same for all vendors. That is what we will be covering in this book.

As a computer language, SQL is different than other languages you may be
familiar with, such as Visual Basic or C++. Other languages tend to be procedural
in nature. That means that they allow you to specify particular procedures to
accomplish a desired task. SQL is more of a declarative language. In SQL, the
desired objective is often declared with a single statement. The simpler structure
of SQL is possible since it is only concerned with relational databases rather than
the entirety of computer systems.

Microsoft SQL Server, Oracle, and MySQL

Although my aim is to cover the core language of SQL as it applies to all
implementations, I will also provide specific examples of SQL syntax. And since
syntax does vary somewhat among vendors, I’'ve decided to focus on the SQL
syntax utilized by these three databases:

m Microsoft SQL Server

Chapter 1 = Relational Databases and SQL

m Oracle Database

= MySQL

If there are any differences among these three databases, I'll present the syntax
for Microsoft SQL Server in the text of the book. I'll then indicate any differences
for MySQL or Oracle in a box such as the following:

DATABASE DIFFERENCES

A box such as this one will appear whenever | present syntax differences for Oracle Database or
MySQL. The syntax for Microsoft SQL Server will appear in the main text.

The heading of the box will indicate if the note is for MySQL, Oracle, or both.

Microsoft SQL Server is available in several versions and editions. The most recent
version is called Microsoft SQL Server 2008. Available editions run from a basic
Express edition to a fully featured Enterprise edition. The Express edition is free
but still has an abundance of features that allow you to get started with full-fledged
database development. The Enterprise edition includes many sophisticated data-
base management features, plus sophisticated business intelligence components.

Oracle is also available in a number of editions. The most recent version is called
Oracle Database 11g. Like Microsoft, Oracle also offers a free Express edition of
its database.

MySQL is an open source database, which means that no one single organization
owns or controls its development. Although MySQL was purchased by Sun
Microsystems in 2008, it remains one of the top choices for open source software.
Sun Microsystems was later purchased by Oracle. As an open source database,
MySQL is available on numerous platforms other than Windows, such as Mac OS X
and Linux. MySQL offers its Community Edition as a free download.

When starting out, it is sometimes useful to download the database of your
choice, so you have something to experiment with. However, this book does not
require you to do that. This book has been written in such a way as to allow you
to learn SQL simply by reading through the text. I'll provide enough data in the
text that you can understand the results of various SQL statements without
having to download software and type in statements yourself.

Nevertheless, if you would like to download the free versions of any of these
databases, the first three appendices at the back of this book have some useful

Other Databases

instructions and tips on how to do that. Appendix A has complete information
on how to get started with Microsoft SQL Server. The instructions include details
on how to install the software and execute SQL commands. Similarly, Appendix
B covers MySQL, and Appendix C explains Oracle.

In addition, Appendix D points to supplemental material that lists all the SQL
statements shown in this book in all three databases. As mentioned, we show all
SQL statements in this book in the syntax of Microsoft SQL Server. In most
cases, these statements also work in MySQL and Oracle, but there are occasional
differences.

Most readers will find it completely unnecessary to download the software or view
the additional material shown in Appendix D. The examples shown throughout
this book are self-explanatory and don’t require you to do anything else in order to
understand the material. However, if you are so inclined, then feel free to take
advantage of these extra features.

Other Databases

In addition to Microsoft SQL Server, Oracle, and MySQL, there are many other
SQL database software implementations. Some of the more popular packages are
the following:

m Microsoft Access from Microsoft
s DB2 from IBM

m Informix from IBM

= SQL Anywhere from Sybase

m PostgreSQL, which is an open source database

Of these listed databases, Microsoft Access is somewhat unique, and it’s parti-
cularly useful for SQL novices who want to learn the language. In essence, Access
is a graphical interface for relational databases. In other words, Access allows you
to create a query against a relational database entirely through graphical means.
The useful aspect of Access for beginners is that you can easily create a query in a
visual way and then switch to a SQL view to see the SQL statement you just
created. So you can try different things and quickly see what the corresponding
SQL syntax looks like.

Chapter 1 = Relational Databases and SQL

Another distinction of Access, compared to the other listed databases, is that it is
a desktop database. As such, it has great flexibility. Not only can you use it to
create a database that resides entirely in a single file on your PC, but it also allows
you to connect to more complex databases created with other tools, such as
Microsoft SQL Server.

Relational Databases

Let’s look at the basics of relational databases and how they work.

Basically, a relational database is a collection of data, stored in any number of
tables. The term relational is used to indicate that the tables are related to each
other. For example, let’s take the simple case of a database consisting of only two
tables: Customers and Orders. The Customers table contains one record for each
customer who has ever ordered. The Orders table has one record for each order
placed. Each table can contain any number of fields, which are used to store the
various attributes associated with each record. For example, a Customer table
might contain fields such as First Name and Last Name.

At this point, it’s useful to visualize some tables and the data they contain. The
common custom is to display a table as a grid of rows and columns. Each row
represents a record in the table. Each column represents a field in the table. The
top header row normally has the field names. The remaining rows show the
actual data.

In SQL terminology, records and fields are actually referred to as rows and
columns, corresponding to the visual representation. So henceforth, we’ll use the
terms rows and columns rather than records and fields to describe the design of
tables in relational databases.

Let’s look at an example of the simplest possible relational database. In this
database, there are only two tables, Customers and Orders. This is what these
tables might look like:

Customers table:

CustomerID FirstName LastName
1 William Smith
2 Natalie Lopez

3 Brenda Harper

Primary and Foreign Keys

Orders table:
OrderID CustomerID OrderAmount
1 1 50.00
2 1 60.00
3 2 33.50
4 3 20.00

In this example, the Customers table contains three columns: CustomerID,
FirstName, and LastName. There are currently three rows in the table, represent-
ing William Smith, Natalie Lopez, and Brenda Harper. Each row represents a
different customer, and each column represents a different piece of information
about the customer. Similarly, the Orders table has three columns and four rows.
This indicates that there are four orders in the database and three attributes for
those orders

Of course, this example is highly simplistic and only hints at the type of data that
could be stored in a real database. For example, a Customers table would normally
contain many additional columns describing other attributes of a customer, such
as city, state, ZIP, and phone. Similarly, an Orders table would ordinarily have
columns describing additional attributes of the order, such as order date, sales tax,
and the salesperson who took the order.

Primary and Foreign Keys

Note the first column in each table: CustomerID in the Customers table and
OrderID in the Orders table. These columns are commonly referred to as primary
keys. Primary keys are useful and necessary for two reasons. First, they enable you
to uniquely identify a single row in a table. For example, if you wanted to retrieve
the row for William Smith, you could simply use the CustomerID column to
obtain the data. Primary keys also ensure uniqueness. In designating the Custo-
merID column as a primary key, this guarantees that this column will have a
unique value for every row in the table. Even if you happened to have two dif-
ferent men both named William Smith in your database, those rows would have
different values in the CustomerID column.

In this example, the values in the primary key columns don’t have any particular
meaning. In the Customers table, the CustomerID column contains the values 1,

7

Chapter 1 = Relational Databases and SQL

2, and 3 for the three rows in the table. It is often the case that database tables are
designed in such a way as to generate sequential numbers automatically for the
primary key column as new rows are added to the table. This design feature is
usually referred to as auto-increment.

A second reason for primary keys is that they allow you to relate one table to
another easily. In this example, the CustomerID column in the Orders table
points to a corresponding row in the Customers table. Looking at the fourth row
of the Orders table, you’ll notice that the CustomerID column has a value of 3.
This means that this order is for the customer with a CustomerID of 3, who
happens to be Brenda Harper. The use of common columns among tables is an
essential design element in relational databases.

In addition to merely pointing to the Customers table, the CustomerID column
in the Orders table can be designated as something called a foreign key. I'll cover
foreign keys in detail in Chapter 18, but for now, just be aware that foreign keys
can be defined in order to ensure that the column has a valid value. For example,
you would not want the CustomerID column in the Orders table to have a value
unless that CustomerID actually existed in the Customers table. The designation
of a column as a foreign key can accomplish that restriction.

Datatypes

Primary and foreign keys add structure to a database table. They ensure that all
tables in a database are accessible and properly related to each other. Another
important attribute of every column in a table is a datatype.

Datatypes are simply a way of defining the type of data that the column can con-
tain. A datatype must be specified for each column in every table. Unfortunately,
there is a great deal of variation between relational databases as to which datatypes
are allowed and what they mean. For example, Microsoft SQL Server, MySQL, and
Oracle each have over 30 different allowable datatypes.

It would be impossible to cover the details and nuances of every available data-
type, even for just these three databases. What I will do, however, is to summarize
the situation by discussing the main categories of datatypes that are common to
most databases. Once you understand the important datatypes in these cate-
gories, you will have little trouble with other datatypes you may encounter.

Generally, there are three important kinds of datatypes: Numeric, Character, and
Date/Time.

Datatypes

Numeric datatypes come in a variety of flavors, including bits, integers, decimals,
and real numbers. Bits are numeric datatypes, which allow for only two values,
0 and 1. Bit datatypes are often used to define an attribute as having a simple true
or false type of value. Integers are numbers without decimal places. Decimal
datatypes can contain decimal places. Unlike bits, integers, and decimals, real
numbers are those whose exact value is only approximately defined internally.
The one distinguishing characteristic of all numeric datatypes is that they can be
included in arithmetic calculations. Here are a few representative examples of
numeric datatypes from Microsoft SQL Server, MySQL, and Oracle.

General Microsoft SQL MySQL Oracle

Description Server Datatype Datatype Datatype Example
bit bit bit (none) 1

integer int int number 43
decimal decimal decimal number 58.63
real float float number 80.62345

Character datatypes are sometimes referred to as string or character string data-
types. Unlike numeric datatypes, character datatypes aren’t restricted to num-
bers. They can include any alphabetic or numeric digit and can even contain
special characters, such as asterisks. When providing a value for character data-
types in SQL statements, the value always needs to be surrounded by single
quotes. In contrast, numeric datatypes never utilize quotes. Here are a few
representative examples of character datatypes.

General Microsoft SQL MySQL Oracle

Description Server Datatype Datatype Datatype Example
variable length varchar varchar varchar2 ‘Thomas Edison'
fixed length char char char '60601"'

The second example (60601) looks like it might be a numeric datatype since it’s
composed only of numbers. This is not an unusual situation. Even though they
contain only numbers, ZIP codes are usually defined as character datatypes
because there is never a need to perform arithmetic calculations with ZIP codes.

Date/time datatypes are used for the representation of dates and times. Like
character datatypes, date/time datatypes need to be enclosed in single quotes.

10

Chapter 1 = Relational Databases and SQL

These datatypes allow for special calculations involving dates. For example, you
can use a special function to calculate the number of days between any two date/
time dates. Here are a few examples of date/time datatypes.

General Microsoft SQL MySQL Oracle

Description Server Datatype Datatype Datatype Example

date date date (none) '2009-07-15'

date and time datetime datetime date '2009-07-15 08:48:30'
NULL Values

Another important attribute of individual columns in a table is whether or not
that column is allowed to contain null values. A null value means that there is no
data for that particular data element. It literally contains no data. Null values are
not the same as spaces or blanks. Logically, null values and spaces are treated
differently. The nuances of retrieving data that contains null values will be
addressed in detail in Chapter 8.

Many SQL databases will display the word NULL in all capital letters when dis-
playing data with null values. This is done so the user can tell that it contains a null
value and not simply spaces. I will follow that convention and display the word as
NULL throughout the book to emphasize that it represents a unique type of value.

Primary keys on a database can never contain NULL values. That is because
primary keys, by definition, must contain unique values.

The Significance of SQL

Before we leave the subject of relational databases, I'd like to review a bit of
history in order to give you an appreciation of the usefulness of relational data-
bases and the significance of SQL.

Back in the Stone Age of computing (the 1960s), data was typically stored either
on magnetic tape or in files on disk drives. Computer programs, written in lan-
guages such as FORTRAN and COBOL, typically read through input files and
processed one record at a time, eventually moving data to output files. Processing
was necessarily complex since procedures needed to be broken down into many
individual steps involving temporary tables, sorting, and multiple passes through
data until the right output could be produced.

Looking Ahead

In the 1970s, advances were made as hierarchical and network databases were
invented and utilized. These newer databases, through an elaborate system of
internal pointers, made it easier to read through data. For example, a program
could read a record for a customer, automatically be pointed to all orders for that
customer, and then be pointed to all details for each order. But it was basically
still the case that data needed to be processed one record at a time.

The main problem with data storage prior to relational databases was not how
the data was stored, but how it was accessed. The real breakthrough with rela-
tional databases came when the language of SQL was developed, because it
allowed for an entirely new method of accessing data.

Unlike earlier data retrieval methods, SQL permitted the user to access a large set
of data at a time. With one single statement, a SQL command could retrieve or
update thousands of records from multiple tables. This eliminated a great deal of
complexity. Computer programs no longer needed to read one record at a time
in a special sequence, while deciding what to do with each record. What used to
require hundreds of lines of programming code could now be accomplished with
just a few lines of logic.

Looking Ahead

This chapter has provided enough background information about relational
databases so that you can move on to the main topic, which involves retrieving
data from databases. We have discussed a number of important characteristics of
relational databases, such as primary keys, foreign keys, and datatypes. We also
have talked about the possible existence of NULL values in data. We will add to
our discussion of NULL values in Chapter 8 and return to the general topics of
database maintenance in Chapter 18 and database design in Chapter 19.

Why is the all-important topic of database design held off until much later in the
book? In the real world, databases are designed and created before any data
retrieval is attempted. Why would I not follow the same sequence of events in
this book? In short, I have found that it is much more productive to plunge into
using SQL without having to worry about details of database design. In truth,
database design is as much an art as it is a science. As such, the principles of
database design will be much more meaningful after you’re more aware of the
details and nuances of retrieving some data. So we’re going to temporarily ignore
the question of how to design a database and jump right into data retrieval in our
very next chapter.

11

This page intentionally left blank

CHAPTER 2

BAsic DATA
RETRIEVAL

KEYWORDS INTRODUGED: SELECT, FROM

In this chapter, we are going to begin our exploration of the most important
topic in SQL: how to retrieve data from a database. Whether you’re in a large or
small organization, the most common request made of SQL developers is the
request for a report. Of course, it’s a nontrivial exercise to get data into a data-
base. But once data is in a database, the energies of business analysts turn to the
wealth of data at their disposal and the desire to extract useful information from
all that data. This is where the fun and usefulness of SQL begins.

The emphasis in this book on data retrieval corresponds nicely to the real-world
demands that are placed on SQL developers. Your typical analysts don’t care
about how data gets into a database, but they do care about how to get some-
thing out of it. Your knowledge of SQL will go a long way toward helping your
organization unlock the secrets of the data stored in their databases.

A Simple SELECT

The ability to retrieve data in SQL is accomplished through something called the
SELECT statement. Without a lot of preliminary explanation, here is an example
of the simplest possible SELECT statement:

SELECT * FROM Customers

In the SQL language, as in all computer languages, certain words are keywords.
These words have a special meaning and must be used in a particular way. In this

13

14

Chapter2 = Basic Data Retrieval

statement, the words SELECT and FROM are keywords. The SELECT keyword
indicates that you are beginning a SELECT statement.

The FROM keyword is used to designate the table from which data is to be
retrieved. The name of the table follows the FROM. In this case, the table name is
Customers.

As is the custom, I will print keywords in all capital letters. This is done to ensure
that they are noticeable.

The asterisk (*) in this example is a special symbol that means “all columns.”

So to sum up, the statement means: Select all columns from the Customers
table.

If the Customers table looks like this:

CustomerID FirstName LastName
1 William Smith

2 Natalie Lopez

3 Brenda Harper

then this SELECT will return the following data:

CustomerID FirstName LastName
1 William Smith

2 Natalie Lopez

3 Brenda Harper

In other words, it brings back everything in the table.

In the first chapter, I mentioned that it’s a common practice to specify a primary
key for all tables. In the previous example, the CustomerID column is such a
column. I also mentioned that primary keys are sometimes set up to generate
sequential numbers automatically in a numeric sequence as rows are added to a
table. This is the case in the previous example. Most of the sample data I’ll show
throughout this book will show a similar column that is both a primary key and
defined as auto-increment. By convention, this is generally the first column in a
table.

Syntax Notes

Syntax Notes

Two points must be remembered when writing any SQL statement. First, the
keywords in SQL are not case sensitive. The word SELECT is treated identically
to “select” or “Select.”

Second, a SQL statement can be written on any number of lines. For example, the
SQL statement:

SELECT * FROM Customers

is identical to:

SELECT *
FROM Customers

It’s usually a good idea to begin each important keyword on a separate line.
When we get to more complex SQL statements, this will make it easier to quickly
grasp the meaning of the statement.

Finally, as I present different SQL statements in this book, I will often show both
a specific example and a more general format. For instance, the general format of
the previous statement would be shown as this:

SELECT *
FROM table

[talics are used to indicate a general expression. The italicized word table means
that you can substitute any table name of your own in that spot. So when you see
italicized words in any SQL statement in this book, that is simply my way of
saying that you can put any valid word or phrase in that location.

DATABASE DIFFERENCES: MySQL and Oracle

Many SQL implementations require a semicolon (;) at the end of every statement. This is true of
MySQL and Oracle, but not of Microsoft SQL Server. For simplicity, | will show SQL statements
without semicolons in this book. If you're using MySQL or Oracle, you'll need to add a semicolon to
the end of your statements. Therefore, the previous statement would appear as:

SELECT *
FROM Customers;

15

16

Chapter2 = Basic Data Retrieval

Specifying Columns

So far, we’ve done nothing more than simply display all the data in a table. But
what if you wanted to select only certain columns? Working from the same table,
you might want to display only the customer’s last name, for example. The
SELECT statement would then look like:

SELECT LastName
FROM Customers

and the resulting data would be:

LastName
Smith

Lopez
Harper

If you want to select more than one, but not all columns, the SELECT might
look like:

SELECT
FirstName,
LastName

FROM Customers

and the output would appear as:

FirstName LastName
William Smith
Natalie Lopez
Brenda Harper

The general format of this statement is:

SELECT columnlist
FROM table

The important thing to remember is that if you need to specify more than one
column in the columnlist, then those columns must be separated by commas.

Column Names with Embedded Spaces

Also notice that we placed each column in the columnlist on separate lines. This
was done to improve readability.

Column Names with Embedded Spaces

What if a column contains a space in its name? Let’s say, for example, that the
LastName column was specified as Last Name instead (with a space inserted
between the two words). Clearly, the following would not work:

SELECT
Last Name
FROM Customers

This statement would be considered invalid since Last and Name are not column
names. And even if Last and Name were proper column names, they would need
to be separated by a comma. The solution is to use a special character around any
column name containing spaces. The character to use differs, depending on
which database you’re using. For Microsoft SQL Server, the characters to use are
square brackets, and the proper syntax is:

SELECT
[Last Name]
FROM Customers

One additional syntax note: Just as keywords are not case sensitive, it’s also true
that table and column names are not case sensitive. For example, the previous
example is identical to:

select
[last name]
from customers

For clarity’s sake, I will print all keywords in all caps and capitalize table and
column names in this book, but that is not truly necessary.
DATABASE DIFFERENCES: MySQL and Oracle

For MySQL, the character to use around column names containing spaces is an accent grave (). The
syntax for the above example is:

SELECT
‘Last Name’
FROM Customers;

17

18

Chapter2 = Basic Data Retrieval

For Oracle, the character to use around column names containing spaces is the double quote. The
syntax for the example is:

SELECT
"Last Name"
FROM Customers;

Additionally, unlike Microsoft SQL Server and MySQL, column names surrounded by double quotes
are case sensitive. That means that the previous statement is not equivalent to:

SELECT
"LAST NAME"
FROM Customers;

Looking Ahead

In this chapter, we’ve begun our exploration of how to use the SELECT state-
ment to retrieve data. We learned about basic syntax and have seen how to select
specific columns. In reality, however, this allows us to accomplish very little of a
practical nature. Most significantly, we have not yet learned how to apply any
type of selection criteria to our data retrieval efforts. For example, while we know
how to select all customers, we don’t yet know how to only select customers from
the state of New York.

As it happens, I won’t be covering selection criteria until Chapter 7. What will we
be doing until then? In the next few chapters, we’re going to build on what can be
done with the columnlist component of the SELECT statement. In the next
chapter, I'll be moving on to more variations on column selection, allowing us to
create complex calculations in a single column. I'll also be talking about ways to
rename columns to make them more descriptive.

Similarly, Chapters 4 through 6 will build on your ability to create even more
complex and powerful columnlists, so when we finally get to the topic of selection
criteria, you will have a full arsenal of techniques available at your disposal.

CHAPTER 3

CALCULATIONS AND
ALIASES

KEYWORD INTRODUCED: AS

The topics covered in this chapter will allow you to present information in a
more convenient and interesting format for anyone viewing your data. The main
technique to be discussed is known as calculated fields. This technique will allow
you to perform calculations on individual data items that you retrieve from a
database.

Using this approach, customer names can be formatted exactly as desired.
Numeric calculations specific to your business or organization can be made and
presented. As a SQL developer, you often need the ability to customize the con-
tent of individual columns in order to successfully turn data into more intelligent
content. Calculated fields are very useful tools that can help you accomplish
that goal.

Calculated Fields

When selecting data from a table, you are not restricted to the columns that
happen to be in the table. The concept of calculated fields allows for a number of
other possibilities. With calculated fields, you can do the following:

m Select specific words or values
m Perform calculations on single or multiple columns

s Combine columns and literal values together

19

20 Chapter 3 = Calculations and Aliases

Let’s look at a few examples, all coming from this Orders table:

OrderID FirstName LastName QuantityPurchased PricePerltem
1 William Smith 4 2.50
2 Natalie Lopez 10 1.25
3 Brenda Harper 5 4.00

Literal Values

Our first example of a calculated field isn’t really a calculation at all. We’re going
to select a specific value as a column, even though the literal value has nothing to
do with data in the table. This type of expression is called a literal value. Here’s an
example:

SELECT

'First Name: ',
FirstName
FROM Orders

This statement will return this data;

(no column name) FirstName
First Name: William
First Name: Natalie
First Name: Brenda

In this statement, we are selecting two data items. The first is the literal value
'"First Name: '. Note that single quote marks are used to indicate that this is a
literal with character data. The second data item is the FirstName column.

Notice two things. First, the literal ‘First Name’ is repeated on every row. Second,
there is no header information for the first column. When run in Microsoft SQL
Server, the column header displays (“no column name”). The reason why there is
no header is simply because this is a calculated field. There isn’t a column name
that can be used for the header.

Literal Values

DATABASE DIFFERENCES: MySQL and Oracle

Both MySQL and Oracle will return a value in the header row for literal values. In MySQL, the header
for the first column in the previous example will appear as:

First Name:

In Oracle, the header for the first column will appear as:

'FIRSTNAME: '

One question you might very well ask is why the header row is important at all. If
you are using the SELECT statement to bring back data in a computer program,
then you probably don’t care about the header. You only need the data. However,
if you are using the SELECT statement to retrieve data for a report displayed to a
user, either on paper or on a computer screen, then the header might be relevant.
After all, when users look at a column of data, they generally want to know the
meaning of the column. In the case of a literal value, there really is no meaning to
the column, so a header isn’t truly necessary. But in other types of calculated
fields, there may be a meaningful label that could be applied to the column. Later
in this chapter, we will discuss the concept of column aliases, which is a way of
providing a header in this type of situation.

In addition to providing a column header where there is none, column aliases
also allow you to change the name of a column to something that may be more
meaningful for the person viewing the data. For example, a database designer
may have given your last name column the obscure name of LstNm222. A col-
umn alias can be employed to change it to something more descriptive.

One more point about literals. You might think that all literals need quotation
marks, but this is not necessarily true. For example, the following statement:
SELECT

5,

FirstName

FROM Orders

will return this data:

(no column name) FirstName
5 William
5 Natalie

5 Brenda

21

22

Chapter 3 = Calculations and Aliases

Even though the literal value 5 is completely meaningless, it is still a valid value.
Since it doesn’t have quote marks, the 5 is interpreted as a numeric value.

Arithmetic Calculations

Let’s return to a more typical example of a calculated field. Arithmetic calcula-
tions allow you to perform a calculation on one or more columns in a table. For
example:

SELECT

OrderID,

QuantityPurchased,
PricePerlItem,
QuantityPurchased * PricePerItem
FROM Orders

will return this data:

OrderID QuantityPurchased PricePerltem (no column name)

1 4 2.50 10.00
2 10 1.25 12.50
5 4.00 20.00

The first three columns of the above SELECT are nothing different from what
you’ve previously seen. The fourth column is a calculated column with this
arithmetic expression:

QuantityPurchased * PricePerItem

In this case, the asterisk is a symbol that denotes multiplication. It doesn’t mean
“all columns,” as was seen in the last chapter. In addition to the asterisk, several
other arithmetic operators are allowed. The most common are the following:

Arithmetic Operator Meaning

+ addition

- subtraction
multiplication

/ division

Concatenating Fields

Also note that, as with the literals, the fourth column has no header, due to the
fact that it isn’t derived from a single column.

Concatenating Fields

Concatenation is a fancy computer term that means to combine or join character
data together. Just as arithmetic operations can be performed on numeric data,
character data can be concatenated together. The syntax for concatenation var-
ies, depending on the database you’re working with. Here’s an example from
Microsoft SQL Server:

SELECT

OrderID,

FirstName,

LastName,

FirstName + ' ' + LastName
FROM Orders

The data retrieved is:

OrderID FirstName LastName (no column name)
1 William Smith William Smith
2 Natalie Lopez Natalie Lopez
3 Brenda Harper Brenda Harper

Again, the first three columns are nothing new. The fourth column is this
expression:

FirstName + ' ' 4+ LastName

The plus sign denotes concatenation. Since the operation involves character
rather than numeric data, SQL is smart enough to know that the plus sign means
concatenation and not addition. In this case, the concatenation expressed is
composed of three terms: the FirstName column, a literal space (' '), and the
LastName column. The literal space is necessary so that William Smith doesn’t
display as WilliamSmith.

23

24 Chapter 3 = Calculations and Aliases

DATABASE DIFFERENCES: MySQL and Oracle

MySQL doesn’t use a symbol (such as +) to denote concatenation, but it does require you to use a
function called concaT. We'll be covering this function in the next chapter, but for now this is a
taste of what the same statement looks like in MySQL:

SELECT

OrderID,

FirstName,

LastName,

CONCAT (FirstName, ' ', LastName)
FROM Orders;

Oracle uses two vertical bars (||) rather than a plus sign (+) to denote concatenation. The equivalent
statement in Oracle is:

SELECT

OrderID,

FirstName,

LastName,

FirstName || ' ' | | LastName
FROM Orders;

Column Aliases

In all the prior examples in this chapter, you have seen calculated fields with a
nondescriptive header. We’re now going to address the question as to how a
header can be specified for these types of columns. The answer is to use a column
alias. The term alias means an alternate name. Here’s an example of how to use a
column alias with the Microsoft SQL Server version of the previous SELECT
statement:

SELECT

OrderID,

FirstName,

LastName,
FirstName + ' ' + LastName AS 'Name'
FROM Orders

Notice that the column alias of ‘Name’ is surrounded by single quotes. The
output is:

Column Aliases

OrderID FirstName LastName Name

1 William Smith William Smith
2 Natalie Lopez Natalie Lopez
3 Brenda Harper Brenda Harper

The fourth column now has a header. The keyword AS is used to specify a col-
umn alias, which immediately follows the keyword.

DATABASE DIFFERENCES: MySQL and Oracle

The equivalent of the statement in MySQL is:

SELECT

OrderID,

FirstName,

LastName,

CONCAT (FirstName, ' ', LastName) AS 'Name'
FROM Orders;

Oracle does not require single quotes around column alias names. However, if the column alias
contains embedded spaces, then double quotes should be used. The same statement in Oracle is:

SELECT

OrderID,

FirstName,

LastName,

FirstName || ' ' | | LastName AS Name
FROM Orders;

In addition to providing a header for a calculated field, column aliases are often
useful if a column in a table has a cryptic name that you’d like to change. For
example, if a table has a column with a name of Qty, you could issue this state-
ment to display the column as Quantity Purchased:

SELECT
Qty AS 'Quantity Purchased’
FROM table

25

26

Chapter 3 = Calculations and Aliases

Table Aliases

In addition to providing alternate names for columns, aliases can also be speci-
fied for tables, using the same AS keyword. There are three general reasons for
using table aliases.

The first reason relates to tables with obscure or complex names. For example, if
a table is named Orders123, you can use the following SELECT to give it an alias
of Orders.

SELECT
LastName
FROM Ordersl1l23 AS Orders

Unlike column aliases, table aliases are not enclosed in quotes. When using table
aliases, you have the option of using the alias as a prefix for any selected columns.
For example, the above could also be written as:

SELECT
Orders.LastName
FROM Ordersl1l23 AS Orders

The prefix Orders has now been added as a prefix to LastName, using a period to
separate the prefix from the column name. In this situation, the prefix wasn’t
necessary. However, when data is selected from multiple tables, the prefix will
sometimes be required. This will be seen in later chapters.

DATABASE DIFFERENCES: Oracle

In Oracle, table aliases are specified without the As keyword. The syntax for the previous statement
in Oracle is:

SELECT
Orders.LastName
FROM Ordersl23 Orders;

Two remaining reasons for using table aliases will be covered in Chapters 11
and 14:

m Situations when selecting from multiple tables

m Situations when using a subquery in a SELECT statement

Looking Ahead

The meaning of the term subquery will become clear in Chapter 14 when the topic
is covered in detail.

Looking Ahead

In this chapter, you learned about three general ways to create calculated fields in
a SELECT statement. First, literal values can be used to select specific words or
values. Second, arithmetic calculations can be used to perform calculations on
single or multiple columns. Third, concatenation can be used to combine col-
umns and literal values together. We also discussed the related topic of column
aliases, which are often employed when using calculated fields.

In the next chapter, we’ll be moving on to the subject of functions, which provide
a slightly more complex way to perform calculations. As mentioned before, we’re
not quite at the point where you can apply selection criteria to your statements.
Pm still building on the basics of what can be done with the columnlist in a
SELECT. Don’t worry. We’ll get to the exciting stuff soon enough. In the
meantime, your patience in sticking with this methodical approach will soon
pay off.

27

This page intentionally left blank

CHAPTER 4

UsING FUNCTIONS

KEYWORDS INTRODUCED: LEFT, RIGHT,
SUBSTRING, LTRIM, RTRIM, CONCAT, UPPER,
LOWER, GETDATE/NOW/CURRENT DATE,
DATEPART/DATE FORMAT, DATEDIFF, ROUND,
RAND, PI, CAST, ISNULL/IFNULL/NVL

For those of you familiar with spreadsheet software such as Microsoft Excel, you
know that functions provide a huge amount of functionality for the typical
spreadsheet user. Without the ability to use functions, most of the data available
in spreadsheets would be of limited value. The same is true in the world of SQL.
Your familiarity with some of the most commonly used SQL functions will
greatly enhance your ability to generate dynamic results for those who will be
using your reports.

This chapter covers a wide variety of some of the most commonly used functions in
four different categories: character functions, date/time functions, numeric func-
tions, and conversion functions. Additionally, we will talk about composite func-
tions, which are a way of combining multiple functions into a single expression.

The Function of Functions

Similar to the calculations covered in the previous chapter, functions provide
another way to manipulate data. As was seen, calculations involve multiple fields,
either with arithmetic operators such as multiplication or by concatenation. In
contrast, functions are often performed on a single column.

29

30

Chapter 4 = Using Functions

What is a function? A function is merely a rule for transforming a value (or
values) into another value, using a specific formula. For example, the function
SUBSTRING can be used to determine that the first initial of the name JOAN isJ.
There are two types of functions: scalar and aggregate. The term scalar comes
from mathematics and refers to an operation that is done on a single number. In
computer usage, it means that the function is performed on data in a single row.
For example, the LTRIM function removes leading spaces from one specified
value.

In contrast, aggregate functions are meant to be performed on a larger set of
data. For example, the SUM function can be used to calculate the sum of all the
values of a specified column. Since aggregate functions apply to sets or groups of
data, we will leave our discussion of them to Chapter 10.

Every SQL database offers dozens of scalar functions. The functions vary widely
between databases, in terms of their names and also how they work. As a result,
we will only cover a few representative examples of some of the more useful
functions.

The most common types of scalar functions can be classified under three cate-
gories: character, date/time, and numeric. Obviously, these are functions that
allow you to manipulate character, date/time, or numeric datatypes.

In addition, you will learn about some useful conversion functions that can be
used to convert data from one datatype to another.

Character Functions

Character functions are those functions that enable you to manipulate character
data. Just as character datatypes are sometimes called string datatypes, character
functions are sometimes called string functions. 'm going to cover these eight
examples of character functions: LEFT, RIGHT, SUBSTRING, LTRIM, RTRIM,
CONCAT, UPPER, and LOWER.

In this chapter, rather than retrieve data from specified tables, 'm going to
simply use SELECT statements with literal values. Let’s start with our first
example, which is for the LEFT function. When you issue this SQL command:

SELECT
LEFT ('sunlight',3) AS 'The Answer'

Character Functions

it returns this data:

The Answer

sun

I included a column alias so the resulting data looks nicer. Note that there is no
FROM clause in the SELECT statement. Instead of retrieving data from a table,
you're selecting data from a single literal value, namely ‘sunlight’. Strictly
speaking, a FROM clause isn’t necessary in a SELECT statement, although in
practice, you would seldom write a SELECT statement like this. I'm writing the
SELECT statement in this manner, without a FROM clause, only because it makes
it easier to illustrate quickly how functions work.

DATABASE DIFFERENCES: Oracle

Unlike Microsoft SQL Server and MySQL, Oracle does require a FROM clause in all SELECT state-
ments. If run in Oracle, all the examples in this chapter would require a FROM clause to be added.
However, the table provided in the FROM clause does not have to be a real table. Oracle provides a
special dummy table called DUAL. The use of the DUAL table will be illustrated later in this chapter.

Let’s look at the format of this function in greater detail. The general format of
the LEFT function is:

LEFT (CharacterValue, NumberOfCharacters)

All functions have any number of arguments within the parentheses. For
example the previous LEFT function has two arguments: CharacterValue and
NumberOfCharacters. The term arguments is a commonly used mathematical
term that describes a component of functions and has nothing to do with any-
thing being disagreeable or unpleasant. Basically, each function is unique, and
the various arguments that are defined for each function are what truly define the
meaning of the function. In the case of the LEFT function, the CharacterValue
and NumberOfCharacters arguments are both needed in order to define what will
happen when the LEFT function is invoked.

The LEFT function has two arguments. Other functions may have more or fewer
arguments. Functions are even permitted to have no arguments. But even if there
are no arguments, all functions have a set of parentheses following the keyword.
The presence of the parentheses tells you that this is a function and not some-
thing else.

31

32

Chapter 4 = Using Functions

The formula for the LEFT function says: Take the specified CharacterValue, look
at the specified NumberOfCharacters on the left, and bring back the result. In the
previous example, it looks at the CharacterValue ‘sunlight’ and brings back the
left three characters. The result is “sun.”

The main point to remember is that for any function you want to use, you’ll need
to look up the function in the database’s reference guide and determine how
many arguments are required and what they mean.

The second character function is the RIGHT function. It’s the same as the LEFT
function, except that you’re now specifying characters on the right side. For
example:

SELECT
RIGHT ('sunlight',5) AS 'The Answer'

returns:

The Answer
light

In this case, you need to specify 5 as the number. If you used the number 3
instead of 5, you would have only gotten back “ght.”
DATABASE DIFFERENCES: Oracle

Oracle does not provide the LEFT or RIGHT function. The equivalent functionality in Oracle is
provided by the SUBSTR function, which will be discussed later.

You need to be aware of the fact that character data often contains spaces on the
right. Let’s look at this example, in which a table with only one row contains a
column named President, defined as being 20 characters long.

President

George Washington

If you issue this SELECT statement against the table:

SELECT
RIGHT (President,10) AS 'Last Name'
FROM tablel

Character Functions

you will get back this data:

Last Name

hington

We wanted to get back “Washington™ but only got “hington.” Why? Because the
entire column is 20 characters long. There are three spaces to the right of the
value George Washington. So when you ask for the rightmost 10 characters,
it’s going to take the three spaces plus another seven characters from George
Washington. You’ll soon see that you need to use the RTRIM function to give
you the data you’re looking for.

You might be wondering how to select data from the middle of a value. This is
done by using the SUBSTRING function. The general format of this function is:

SUBSTRING (CharacterValue, StartingPosition, NumberOfCharacters)

For example:

SELECT
SUBSTRING ('thewhitegoat', 4, 5) AS 'The Answer'

returns this data:

The Answer

white

This function is saying to take five characters, starting with position 4. Position 4
contains the w, so you end up with the word “white.”

DATABASE DIFFERENCES: MySQL and Oracle

MySQL sometimes requires that there be no space between the function name and the left
parenthesis. It depends on the specific function used. For example, the previous statement in MySQL
needs to be written as:

SELECT
SUBSTRING ('thewhitegoat', 4, 5) AS 'The Answer';

In Oracle, the equivalent of the SUBSTRING function is SUBSTR. One difference in the Oracle
version of SUBSTR is that the second argument (StartingPosition) can have a negative value.

33

34

Chapter 4 = Using Functions

A negative value for this argument means that you need to count that number of positions backward
from the right side of the column.

As mentioned, Oracle doesn't permit you to write a SELECT statement without a FROM clause.
However, Oracle does provide a dummy table called DUAL for this type of situation. The equivalent
of the SELECT with a SUBSTRING function is:

SELECT
SUBSTR ('thewhitegoat', 4, 5) AS "The Answer"
FROM DUAL;

Our next two character functions enable you to remove all spaces, either on the
left or on the right side of a value. The LTRIM function “trims” characters from
the left side of a character. For example:

SELECT
LTRIM ('the apple') AS 'The Answer'

returns this result:

The Answer
the apple

The LTRIM function enables you to get rid of the spaces to the left of “the apple.”
Note that LTRIM is smart enough not to eliminate spaces in the middle of a
phrase. It only removes the spaces to the very left of a character value.

Similarly, the RTRIM function removes any spaces to the right of a character value.
An example of RTRIM will be given in the next section on composite functions.

The next character function is CONCAT. The CONCAT function discussed here is
only available in MySQL and Oracle. As seen in the previous chapter, the
plus (+) operator handles concatenation in Microsoft SQL Server.

Let’s return to the concatenation example from the prior chapter. Our input
data, from an Orders table, was:

OrderID FirstName LastName QuantityPurchased PricePerltem
1 William Smith 4 2.50
2 Natalie Lopez 10 1.25

3 Brenda Harper 5 4.00

Character Functions

The syntax for concatenating the FirstName and LastName columns in MySQL
with a CONCAT function is:

SELECT

OrderID,

FirstName,

LastName,

CONCAT (FirstName, ' ', LastName) AS 'Name'
FROM Orders

In this example, the CONCAT function concatenates the three indicated values:
the FirstName column, a literal space, and the LastName column. The result of
the previous statement is:

OrderID FirstName LastName Name

1 William Smith William Smith
2 Natalie Lopez Natalie Lopez
3 Brenda Harper Brenda Harper

DATABASE DIFFERENCES: Oracle

The Oracle version of the CONCAT function only allows for two arguments. In other words, only two
values can be concatenated at a time. To accomplish the concatenation in the previous example, a
statement such as the following must be used:

SELECT

OrderID,

FirstName,

LastName,

CONCAT (CONCAT (FirstName, ' '), LastName) AS "Name"
FROM Orders;

This statement utilizes a composite function, a concept that is explained in the following section. In
this example, the inner CONCAT concatenates the FirstName column and a literal space. The outer
CONCAT concatenates that result with the LastName column.

The final two character functions to be covered are UPPER and LOWER. These
functions convert any word or phrase to upper- or lowercase. These functions
are sometimes helpful when presenting data. The syntax is simple and
straightforward.

35

36

Chapter 4 = Using Functions

Here’s an example that covers both functions:

SELECT
UPPER ('Abraham Lincoln') AS 'Convert to Uppercase',
LOWER ('ABRAHAM LINCOLN') AS 'Convert to Lowercase'

The output is:

Convert to Uppercase Convert to Lowercase
ABRAHAM LINCOLN abraham lincoln

Composite Functions

An important characteristic of functions, whether they are character, mathema-
tical, or date/time, is that two or more functions can be combined to create
composite functions. A composite function with two functions can be said to be
a function of a function. Let’s go back to the George Washington query to illus-
trate. Again, you're working from this data:

President

George Washington

Remember that the President column is 20 characters long. In other words, there
are three spaces to the right of the value George Washington. In addition to
illustrating composite functions, this next example will also cover the RTRIM
function mentioned in the previous section.

The statement:

SELECT
RIGHT (RTRIM (President),10) AS 'Last Name'
FROM tablel

returns this data:

Last Name

Washington

Why does this produce the correct value now? Let’s examine how it works. There
are two functions involved: RIGHT and RTRIM. When evaluating composite

Date/Time Functions 37

functions, you always start from the inside and work your way out. In this
example, the innermost function is:

RTRIM (President)
This function takes the value in the President column and eliminates all spaces

on the right. After this is done, the RIGHT function is applied to the result to
bring back the desired value. Since:

RTRIM (President)

equals “George Washington”, you can say that:
SELECT

RIGHT (RTRIM (President),10)

is the same as saying:

SELECT

RIGHT ('George Washington', 10)

In other words, you can obtain the desired result by first applying the RTRIM
function to your input data and then adding in the RIGHT function to the
expression.

DATABASE DIFFERENCES: Oracle

As mentioned, Oracle requires you to use their SUBSTR function rather than the RIGHT function
available in Microsoft SQL Server and MySQL. The equivalent of the previous statement in Oracle is:

SELECT
SUBSTR (RTRIM (President), -10, 10) AS "Last Name"
FROM tablel;

Date/Time Functions

Date/Time functions allow for the manipulation of date and time values. The names
of these functions differ, depending on the database used. In Microsoft SQL Server,
the functions we’ll cover are called: GETDATE, DATEPART, and DATEDIFF.

The simplest of the date/time functions is one that returns the current date and
time. In Microsoft SQL Server, the function is named GETDATE. This function
has no arguments. It merely returns the current date and time. For example:

SELECT GETDATE ()

38

Chapter 4 = Using Functions

brings back an expression with the current date and time. Since the GETDATE
function has no arguments, there is nothing between the parentheses.
Remember, that a date/time field is a special data type that contains both a date
and a time in a single field. An example of such a value is:

2009-07-1508:48:30

This value refers to the 15th of July 2009, at 48 minutes and 30 seconds past
8 a.m.

DATABASE DIFFERENCES: MySQL and Oracle

In MySQL, the equivalent of GETDATE is Now. The equivalent in Oracle is CURRENT DATE.

The next date/time function enables you to analyze any specified date and return
a value to represent such elements as the day or week of the date. Again, the name
of this function differs, depending on the database. In Microsoft SQL Server, this
function is called DATEPART. The general format of this function is:

DATEPART (DatePart, DateValue)

The DateValue argument is any date. The DatePart argument can have
many different values. Some examples of valid values are year, quarter, month,
dayofyear, day, week, weekday, hour, minute, and second.

The following chart shows how the DATEPART function evaluates the date
7/2/2009’, with different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEPART (month, ‘7/2/2009') 7
DATEPART (day, '7/2/2009") 2
DATEPART (week, ‘7/2/2009') 27
DATEPART (weekday, ‘7/2/2009) 5

Looking at the values in the above chart, you can see that the month of 7/2/2009
is 7. The day is 2. The week is 27, because 7/2/2009 is in the 27th week of the year.
The weekday is 5 because 7/2/2009 falls on a Thursday, which is the fifth day of
the week.

Date/Time Functions

DATABASE DIFFERENCES: MySQL and Oracle

In MySQL, the DATEPART function is named DATE_ FORMAT, and it utilizes different values for the
DateValue argument. For example, to return the day of the date 7/2/2009', you would issue this
SELECT in MySQL:

SELECT DATE_FORMAT ('2009-07-02"', '%d'");

Oracle doesn't have a function comparable to DATEPART.

The final date/time function enables you to determine the number of days (or
weeks, months, etc.) between any two dates. Again, the name of this function
differs, depending on the database. In Microsoft SQL Server, this function is
called DATEDIFF, and the general format is:

DATEDIFF (DatePart, StartDate, EndDate)
Valid values for the DatePart argument for this function include year, quarter,
month, dayofyear, day, month, hour, minute, and second.

Here’s a chart that shows how the DATEDIFF function evaluates the difference
between the dates 7/8/2009 and 8/14/2009, with different values for the DatePart

argument:

DATEDIFF Function Expression Resulting Value
DATEDIFF (day, ‘7/8/2009', '8/14/2009") 37

DATEDIFF (week, 7/8/2009', '8/14/2009") 5

DATEDIFF (month, ‘7/8/2009", ‘8/14/2009') 1

DATEDIFF (year, ‘7/8/2009', ‘8/14/2009’) 0

The above chart indicates that there are 37 days between the two dates. There are
5 weeks, 1 month, and 0 years between the dates.

DATABASE DIFFERENCES: MySQL and Oracle

In MySQL, the DATEDIFF function only allows you to calculate the number of days between two
dates, and the end date is generally listed first if you want to return a positive value. The general
format is:

DATEDIFF (EndDate, StartDate)

Oracle doesn't have a function comparable to DATEDIFF.

39

40

Chapter 4 = Using Functions

Numeric Functions

Numeric functions allow for manipulation of numeric values. Numeric func-
tions are sometimes called mathematical functions. The functions we’ll cover are
ROUND, RAND, and PI.

The ROUND function allows you to round any numeric value. The general for-
mat is:

ROUND (NumericValue, DecimalPlaces)

The NumericValue argument can be any positive or negative number, with or
without decimal places, such as 712.863 or —42.

The DecimalPlaces argument is trickier. It can contain a positive or negative
integer, or zero. If DecimalPlaces is a positive integer, it means to round to that
many decimal places. If DecimalPlaces is zero, it means that you want no decimal
places. If DecimalPlaces is a negative integer, it means to round to that number
of positions to the left of the decimal place. The following chart shows how
the number 712.863 is rounded, with different values for the DecimalPlaces
argument:

ROUND Function Expression Resulting Value
ROUND (712.863, 3) 712.863

ROUND (712.863, 2) 712.86

ROUND (712.863, 1) 712.9

ROUND (712.863, 0) 713

ROUND (712.863, —1) 710

ROUND (712.863, —2) 700

The RAND function is used to generate random numbers. What is a random
number and why would you ever need to generate one? This type of operation
comes up when you need to select a random event, such as the winner among
customers who entered a contest. The general format is:

RAND ([seed])
The square brackets around the seed argument indicate that this is an optional

argument. The RAND function behaves differently, depending on whether or
not the seed argument is provided. In most cases, the seed argument would not

Conversion Functions

be used. If it’s not used, then the RAND function returns a random value between

0 and 1. If executed 10 times in a row, it will return 10 different values. It
looks like:

SELECT
RAND () AS 'Random Value'

If the seed argument is specified, it needs to be an integer value. When the RAND
function is executed with a seed argument provided, it will return the same value
every time. It might look like:

SELECT
RAND (100) AS 'Random Value'

When you change the value of the seed argument, it will return a different value.

The PI function merely returns the value of the mathematical number pi.
(Think back to your days in geometry class.) In reality, this function is very sel-
dom used, but it nicely illustrates the point that numeric functions need not have
any arguments. For example, the statement:

SELECT PT ()

returns the value 3.14159265358979

DATABASE DIFFERENCES: Oracle

Oracle doesn't have functions comparable to RAND or PI.

What if you wanted the value of pi rounded to only two decimal places? Simple.
You merely create a composite function with the PT and ROUND functions. You
would first use the PI function to get the initial value and then apply the ROUND
function to round it to two decimal places. The following statement returns a
value of 3.14:

SELECT ROUND (PI (), 2)

Conversion Functions

All of the aforementioned functions relate to specific ways to manipulate char-
acter, date/time, or numeric datatypes. But you may need to convert data from

iy

42

Chapter 4 = Using Functions

one datatype to another or convert NULL values to something meaningful. The
remainder of this chapter will cover two special functions that can be used in
these situations.

The CAST function allows you to convert data from one datatype to another.
The general format of the function is:

CAST (ExpressionAS DataType)

The CAST function is actually unnecessary in many situations. Let’s take the
situation where you want to execute this statement, where the Quantity column
is defined as a character column:

SELECT
2 * Quantity
FROM table

You might think that the statement would fail due to the fact that Quantity is not
defined as a numeric column. However, most SQL databases are smart enough
to automatically convert the Quantity column to a numeric value so it can be
multiplied by 2.

Here’s an example where you may need to use the CAST function. Let’s say that
you have a column with dates stored in a character column. You would like to
convert those dates to a true date/time column. This statement illustrates how
the CAST function can handle that conversion:

SELECT
'2009-04-11'AS 'Original Date',
CAST ('2009-04-11" ASDATETIME) AS 'Converted Date'

The output is:

Original Date Converted Date
2009-04-11 2009-04-11 00:00:00

The Original Date column looks like a date, but it is really just character data. In
contrast, the Converted Date column is a true date/time column, as evidenced by
the time value, which is now shown.

Conversion Functions

DATABASE DIFFERENCES: Oracle

The equivalent statement for the previous casT function in Oracle is:

SELECT

'2009-04-11"AS "Original Date",

CAST ('11-APR-2009' AS DATE) AS "Converted Date"
FROM DUAL;

A second useful conversion function is one that converts NULL values to a
meaningful value. In Microsoft SQL Server, this function is called ISNULL.

As mentioned in Chapter 1, NULL values are those for which there is an absence
of data. A NULL value is not the same as a space or zero. Let’s say that you have
this table of products:

Product Description Color
1 Chair A Red

2 Chair B NULL
3 Lamp C Green

Notice that Chair B has a value of NULL in the Color column. This indicates that
a color for this chair has not yet been provided. Let’s say that you want to pro-
duce a list of all products. If you issue this SELECT:

SELECT
Description,
Color
FROM Products

It will show:

Description Color
Chair A Red
Chair B NULL

Lamp C Green

43

44

Chapter 4 = Using Functions

However, users may prefer to see something such as “Unknown” rather than
NULL for missing colors. Here’s the solution:

SELECT

Description,

ISNULL (Color, 'Unknown') AS 'Color'
FROM Products

The following data is retrieved:

Description Color
Chair A Red
Chair B Unknown
Lamp C Green

DATABASE DIFFERENCES: MySQL and Oracle

The 1sSNULL function is called TFNULL in MySQL. The equivalent of the above statement in
MySQL is:

SELECT

Description,

IFNULL (Color, 'Unknown') AS 'Color'
FROM Products;

The ISNULL function is called NVL in Oracle. The equivalent statement is:

SELECT

Description,

NVL (Color, 'Unknown') AS Color
FROM Products;

Additionally, unlike Microsoft SQL Server and MySQL, Oracle displays a dash rather than the word
NULL when it encounters NULL values.

Looking Ahead

This chapter described a wide variety of functions, which are basically predefined
rules for transforming a set of values into another value. Just as spreadsheets
provide built-in functions for manipulating data, SQL provides similar cap-
abilities. In addition to covering basic character, date/time, numeric, and

Looking Ahead

conversion functions, I’ve also explained how to create composite functions
from two or more of these functions.

A lot of the material on functions is necessarily dry, due to the fact that there
are simply so many available functions with widely varying capabilities. It’s
impossible to discuss every nuance of every available function. The thing to
remember is that functions can be looked up easily in a database’s reference
guide when they need to be used. Online reference material can serve as a handy
resource for exactly how each function works. So when you need to use any
particular function, you can simply check online to verify the function’s syntax.

In our next chapter, we’re going to take a break from columnlist issues and talk
about something a little more fun—how to sort your data. Sorts can serve lots of
useful purposes and satisfy the basic desire of users to view data in some sort
of order. With the sort, we will begin to think of the entire way in which our
information is presented, rather than with just bits and pieces of individual
data items.

45

This page intentionally left blank

CHAPTER 5

SORTING DATA

KEYwWORDS INTRODUGCED: ORDER BY,
ASC, DESC

The ability to present data in a sorted order is often essential to the task at hand.
For example, if you were shown a large list of customers in a random order, you’d
find it difficult to locate any one particular customer. However, if the same list
were sorted alphabetically, then you could quickly locate the desired customer.

The idea of sorting data alphabetically applies to many situations, even when the
data isn’t strictly alphabetic in nature. For example, you may want to sort a list of
orders by the order date and time to allow you to rapidly find an order taken at a
particular date and time. Or you might want to sort a list of orders by the order
amount, to allow you to view orders from the smallest to the largest. No matter
what particular form your sort takes, it adds a useful way to organize your data as
it is being presented to the end user.

Adding a Sort

Up until now, data has not been returned in any particular order. When a
SELECT is issued, you never know which row will come first. If the query is
executed from within a software program, and no one ever sees the data at that
point in time, then it really doesn’t matter. But if the data is to be immediately
displayed to a user, then the order of rows is often significant. A sort can be
added easily to a SELECT statement by using an ORDER BY clause.

47

48

Chapter5 ® Sorting Data

Here’s the general format for a SELECT statement with an ORDER BY clause:

SELECT columnlist
FROM tablelist
ORDER BY columnlist

The ORDER BY clause is always after the FROM clause, which, in turn, is always after
the SELECT keyword. The italicized columnlist for the SELECT and ORDER BY
keywords indicates that any number of columns can be listed. The columns in
columnlist can be individual columns or more complex expressions. The columns
specified after the SELECT and ORDER BY keywords can be entirely different
columns. The italicized tablelist indicates that any number of tables can be listed,
although you have not yet seen the syntax for listing multiple tables.

Turning to an example, you’ll be working from data in this Customers table:

CustomerID FirstName LastName

1 William Smith
2 Janet Smith
3 Natalie Lopez
4 Brenda Harper

Sorting in Ascending Order

If you want to sort data in alphabetic order, with A coming before Z, then you
simply need to add an ORDER BY clause to the SELECT. For example:

SELECT
FirstName,
LastName

FROM Customers
ORDER BY LastName

brings back this data:
FirstName LastName
Brenda Harper
Natalie Lopez
William Smith

Janet Smith

Sorting in Descending Order 49

Since there are two Smiths, William and Janet, there’s no way to predict which
one will be listed first. This is because you are only sorting on LastName, and
there are multiple rows with the same last name.

Similarly, if you issue this SELECT:

SELECT

FirstName,
LastName

FROM Customers
ORDER BY FirstName

then this data is retrieved:

FirstName LastName
Brenda Harper
Janet Smith
Natalie Lopez
William Smith

The order is now completely different since you’re sorting by first name.

SQL provides a special keyword named ASC, which stands for ascending. This
keyword is completely optional and largely unnecessary since all sorts are
assumed to be in ascending order by default. The following SELECT, which uses
the ASC keyword, returns the same data as shown previously:

SELECT

FirstName,

LastName

FROM Customers

ORDER BY FirstName ASC

The keyword ASC is used to emphasize the fact that the sort is ascending, as
opposed to descending.

Sorting in Descending Order

The DESC keyword sorts in an order opposite to ASC. Instead of ascending, the
order in such a sort is descending.

50

Chapter5 ® Sorting Data

For example:

SELECT

FirstName,

LastName

FROM Customers

ORDER BY FirstName DESC

retrieves:
FirstName LastName
William Smith
Natalie Lopez
Janet Smith
Brenda Harper

The first names are now in a Z to A order.

Sorting by Multiple Columns

We now return to the problem of what to do with the Smiths. If you want to sort
by last name, but there are two people with the same last name, you need to add a
secondary sort by first name, as follows:

SELECT

FirstName,

LastName

FROM Customers

ORDER BY LastName, FirstName

This brings back:
FirstName LastName
Brenda Harper
Natalie Lopez
Janet Smith
William Smith

Since you are specifying a second sort column, you can now be certain that Janet
Smith will appear before William Smith. Note that the ORDER BY clause needs to
list LastName before FirstName. The order of the columns is significant. Your

Sorting by a Calculated Field 51

intention is to sort first by LastName and then by FirstName, so you need to list
the LastName column first.

Sorting by a Calculated Field

We’re now going to throw in our knowledge of calculated fields and aliases from
Chapter 3 to illustrate some further possibilities. This SELECT:

SELECT

LastName + ', ' + FirstName AS 'Name'
FROM Customers

ORDER BY Name

returns this data:

Name

Harper, Brenda
Lopez, Natalie
Smith, Janet
Smith, William

As seen, you are able to refer to a column alias (Name) in the ORDER BY clause.
This illustrates another reason as to why aliases are often useful. Also, note the
design of the calculated field itself. You inserted a comma and a space between
the last and first name columns, to separate them and to show the name in a
commonly used format. Conveniently, this format also works well for sorting.
The ability to display names in this format, with a comma separating the last and
first name, is a handy trick to keep in mind. Users very often want to see names
arranged in this manner.

But what if you want to put the calculated field directly in the ORDER BY clause
without also using it as a column alias? Similar to the above, you could also

specify:

SELECT

FirstName,

LastName

FROM Customers

ORDER BY LastName + FirstName

52 Chapter5 ® Sorting Data

This would display:
FirstName LastName
Brenda Harper
Natalie Lopez
Janet Smith
William Smith

The data is sorted the same as in the prior example. The only difference is that
you’re now specifying a calculated field in the ORDER BY clause without making
use of column aliases.

More on Sort Sequences

In the previous examples, all of the data is character data, consisting of letters
from A to Z. There are no numbers or special characters. Additionally, there has
been no consideration of upper- and lowercase letters. In an ascending sort,
would the word “dog” appear before or after “DOG”?

Each database lets users specify or customize collation settings, which provide
details on how data is sorted. The settings vary somewhat among databases, but
three facts are generally true.

First, when data is sorted in an ascending order, any data with NULL values
appear first. As previously discussed, NULL values are those where there is an
absence of any data. After any NULLs, numbers will appear before characters.
For data sorted in descending order, character data will display first, then num-
bers, and then NULLs.

Second, for character data, there is usually no differentiation between upper- and
lowercase. An e is treated the same as an E.
DATABASE DIFFERENCES: Oracle

In Oracle, unlike in Microsoft SQL Server and MySQL, NULL values appear last in a list sorted in
ascending order.

In Oracle, one can add a special NULLS FIRST keyword to the ORDER BY clause to force NULL
values to appear first in an ascending sort. The general format for such a statement is:

SELECT columnlist
FROM tablelist
ORDER BY columnlist NULLS FIRST

More on Sort Sequences

If the NULLS FIRST keyword appears in a sort with a descending order, then NULL values will
appear last, as they normally would.

Additionally, unlike in Microsoft SQL Server and MySQL, Oracle treats upper- and lowercase letters
differently in a sorted list. In Oracle, uppercase letters always appear before lowercase letters in a
list sorted in ascending order. For example, in Oracle, the word “DOG" will appear before the word
"dog."” In Microsoft SQL Server and MySQL, DOG and dog are treated identically.

Third, for character data, the individual characters comprising the value are
evaluated from left to right. If we’re talking about letters, then AB will come
before AC. Let’s look at an example, taken from this table:

TablelD CharacterData NumericData
1 23 23

2 5 5

3 Dog NULL

4 NULL -6

In this table, the CharacterData column is defined as a character column, for
example, as VARCHAR (a variable length datatype). Similarly, the NumericData
column is defined as a numeric column, for example as INT (an integer data-
type). Values with no data are displayed as NULL.

When this SELECT is issued against the table:

SELECT NumericData
FROM tablename
ORDER BY NumericData

it will display:

NumericData
NULL

-6

5

23

Notice that NULLs come first, then the numbers in numeric sequence. If we want
the NULL values to assume a default value of 0, we can use the ISNULL function
seen in the last chapter and issue this SELECT statement:

53

54

Chapter5 ® Sorting Data

SELECT

ISNULL (NumericData, 0)

FROM tablename

ORDER BY ISNULL (NumericData, 0)

The result is now:

NumericData
)
0

23

The ISNULL function converted the NULL value to a 0, which results in a dif-
ferent sort order.

The decision as to whether you want NULL values to display as NULL or as 0
depends on the specific application you’re using. Basically, if the user thinks of
NULL values as meaning 0, then you should display NULLs as 0. However, if the
user sees NULL values as an absence of data, then a display of the word NULL is
appropriate.

Turning to a different ORDER BY clause against the same table, if we issue this
SELECT:

SELECT

CharacterData

FROM tablename

ORDER BY CharacterData

it will display:

CharacterData
NULL

23

5

Dog

Looking Ahead

As expected, NULLs come first, then values with numeric digits, and then values
with alphabetic characters. Notice that 23 comes before 5. This is because the 23
and 5 values are being evaluated as characters, not numbers. Since character data
is evaluated from left to right and since 2 is lower than 5, 23 is displayed first.

Looking Ahead

In this chapter, we talked about the basic possibilities for sorting data in a spe-
cific order. We illustrated how to sort by more than one column. We also dis-
cussed using calculated fields in sorts. Finally, we covered some of the quirks of
sorting, particularly when it comes to data with NULL values and with numbers
in character columns.

At the start of the chapter, we mentioned some of the general uses for sorts.
Primary among these is the ability to simply place data in an easily understood
order, thus allowing users to quickly locate their desired piece of information.
People generally like to see data in order, and sorts accomplish that goal. Another
interesting use of sorts will be covered in Chapter 7. In that chapter, we’re going
to introduce the keyword TOP and another way to use sorts in conjunction with
that keyword. This technique, commonly known as a Top N sort, will allow you,
for example, to display customers with the top five orders for a given time
period.

In our next chapter, we’re going to conclude our analysis of what can be done
with columnlists. Using the CASE statement and column-based logic, we’re going
to explore ways to inject some real logic into our columnlist expressions.

55

This page intentionally left blank

CHAPTER 6

CoLuMN-BASED
LoGic

KEYWORDS INTRODUGED: CASE, WHEN,
THEN, ELSE, END

The main topic of this chapter is something called the CASE expression. As
indicated by the title of this chapter, CASE expressions are a form of column-based
logic. That term is meant to indicate that these expressions apply logic to columns
rather than rows. CASE expressions are also sometimes referred to as conditional
logic. Basically, CASE expressions allow you to alter the output you present to a
user based on a logical condition, as it applies to an evaluation of specific columns
or data elements.

As a beginning SQL developer, you should know that the CASE expression is a
relatively advanced topic. You can get by without ever using CASE expressions
and still write some useful queries. But your knowledge of this topic is the type
of thing that can really set you apart. In fact, after you’ve gone through the entire
book, this is one of the topics you may want to review again, to get you thinking
about some of the interesting things that can be accomplished with this
technique.

IF-THEN-ELSE Logic

Let’s turn to some honest-to-goodness logic next. Up until now, you’ve learned
how to select columns from a single table, apply some calculations and functions,
and add a sort. However, you have not yet done anything all that logical.

57

58

Chapter 6 ® Column-Based Logic

The CASE expression in SQL enables you to apply a traditional IF-THEN-ELSE
type of logic to a single expression in a SELECT statement. The term IF-THEN-
ELSE refers to a commonly used logical construct employed by procedural pro-
gramming languages. In general terms, this type of logic looks like:

IF some condition is true
THEN do this
ELSE do that

A CASE expression is a construct that can appear in a number of places in a
SELECT statement. In this chapter, we’re going to focus on CASE expressions
that appear within the columnlist immediately following the SELECT keyword. A
SELECT statement that includes both columns and a CASE expression might
look like this:

SELECT
columnlil,
column2z,
CaseExpression
FROM table

The Simple Format

There are two general formats for the CASE expression, generally referred to as
simple and searched. The simple format is:

SELECT

CASE ColumnOrExpression

WHEN valuel THEN resultl

WHEN value2 THEN result2

(repeat WHEN-THEN any number of times)
[ELSE DefaultResult]

END

As can be seen, the CASE expression utilizes a number of keywords other than
CASE: WHEN, THEN, ELSE, and END. These additional keywords are needed to
fully define the logic of the CASE expression. The WHEN and THEN keywords
define a condition that is evaluated. If the value after the WHEN is true, then the
result after THEN is utilized. The WHEN and THEN keywords can be repeated any
number of times. When there is a WHEN, there must also be a corresponding
THEN. The ELSE keyword is used to define a default value to be used if none of
the WHEN-THEN conditions is true. As indicated by the brackets, the ELSE

The Simple Format

keyword is not required. However, it is generally a good idea to include the ELSE
keyword in every CASE expression, so as to explicitly state a default value.

Let’s look at a specific example, using this Products table:

ProductiD CategoryCode ProductDescription

1 F Apple

2 F Orange
3 S Mustard
4 v Carrot

A SELECT with a CASE expression against data in this table might look like:

SELECT

CASE CategoryCode

WHEN 'F' THEN 'Fruit'

WHEN 'V' THEN 'Vegetable'

ELSE 'Other’

END AS 'Category',
ProductDescription AS 'Description’
FROM Products

and produces this output:

Category Description
Fruit Apple

Fruit Orange

Other Mustard
Vegetable Carrot

Let’s look at the previous SELECT statement line by line. The first line contains
the SELECT keyword. The second line, with the CASE keyword, tells you that the
CategoryCode column is to be analyzed. The third line introduces the first
WHEN-THEN condition. This line says that if the CategoryCode column equals F,
then the value to display should be “Fruit”. The next line says that if it’s V, then
display “Vegetable”. The ELSE line provides a default value of “Other” to use if
the CategoryCode is not F or V. The END line terminates the CASE statement and
also includes an AS keyword to provide a column alias for the CASE expression.

59

60

Chapter 6 ® Column-Based Logic

The next line with ProductDescription is merely another column and has noth-
ing to do with the CASE expression.

The CASE expression is very useful for translating cryptic values into meaningful
descriptions. In this example, the CategoryCode column in the Products table
contains only a single character code to indicate the type of product. It’s using F
to denote Fruit, V for Vegetables, S for Spices, and so on. The CASE clause allows
you to specify the translation.

The Searched Format

The general format for the searched CASE expression is:

CASE

WHEN conditionl THEN resultl

WHEN condition2 THEN result2

repeat WHEN-THEN any number of times)
[ELSE DefaultResult]

END

The equivalent of the above SELECT statement using this second format is:

SELECT

CASE

WHEN CategoryCode = 'F' THEN 'Fruit'
WHEN CategoryCode = 'V' THEN 'Vegetable'
ELSE 'Other’

END AS 'Category',

ProductDescription AS 'Description'
FROM Products

The data retrieved is identical to the first format. Notice the subtle differences. In
the simple format, the column name to be evaluated is placed after the CASE
keyword, and the expression following the WHEN is a simple literal value. In the
searched format, a column name to be evaluated is not put next to the CASE
keyword. Instead, this format allows for a more complex conditional expression
following the WHEN keyword.

For the previous example, either format of the CASE clause can be used, and it
will produce the same result. Let’s now look at another example for which only
the searched format will yield the desired result.

The Searched Format
This next example will be taken from this data:

ProductiD Fruit Vegetable Spice ProductDescription

1 X Apple

2 X Orange
3 X Mustard
4 X Carrot

In this situation, the database contains multiple columns to indicate whether the
product is a fruit, vegetable, or spice. A CASE expression to create the same
output for this data is:

SELECT

CASE

WHEN Fruit = 'X' THEN 'Fruit'

WHEN Vegetable = 'X' THEN 'Vegetable'
ELSE 'Other’

END AS 'Category',
ProductDescription AS 'Description’
FROM Products

Once again, the result is:

Category Description
Fruit Apple

Fruit Orange

Other Mustard
Vegetable Carrot

Since the data now uses three separate columns to indicate if the product is a
fruit, vegetable, or spice, you need to use the searched format of the CASE clause
in order to apply the needed logic. The simple format only works with an analysis
of a single column.

Due to the inherent complexity of IF-THEN-ELSE logic, the CASE expression is one
of the more challenging topics in this book. In this chapter, we have focused on
using CASE expressions in the SELECT columnlist. However, CASE expressions can
also be utilized in other SQL clauses, such as the ORDER BY clause, and other clauses
not yet discussed, such as the WHERE and HAVING clauses.

61

62

Chapter 6 ® Column-Based Logic

Let’s give just one example of additional uses of the CASE expression. Although
we have not yet talked about the WHERE clause, let’s imagine that we know
something about it. As will be explained in Chapter 7, the WHERE clause allows
you to apply selection criteria to the rows that will be presented to the user. A
typical expression might be something like:

WHERE ProductDescription = 'White Glove'

This is a very specific directive. You only want to see rows where the product is a
white glove. The value of the CASE expression is that it allows you to apply
conditional logic to the value you’re looking for, perhaps based on the value of
some other column. For example, you may have another column, named
ProductType, which gives more information about products. Using a CASE ex-
pression, you can select products that are white gloves if the ProductType equals
X, or products that are socks if the ProductType equals Y. In essence, you can
substitute a CASE expression for the value “‘White Glove’ in the WHERE clause in
order to describe some more complex logic.

Looking Ahead

CASE expressions can be utilized to provide a logical evaluation for a column or
expression in a SELECT columnlist. There are two basic formats for the expres-
sion: the simple and the searched. A typical use is to provide translations for data
items with cryptic values. Finally, although this chapter is titled “Column-Based
Logic,” CASE expressions can be used in places other than the columns in a
SELECT columnlist. They can be used anyplace where you would like to specify
conditional logic for a specific column or data element.

In our next chapter, we are going to move beyond logic as it applies to column
values and talk about how to apply logic to the selection of entire rows. This is
the topic for which you’ve been patiently waiting, no doubt. The ability to specify
selection criteria in your SELECT statements is critical to most normal queries.
In the real world, it would be very unusual to issue a SELECT statement without
some sort of selection criteria. The topics discussed in the next chapter will allow
you to accomplish that objective.

CHAPTER 7

Row-BAseD LoGic

KEYWORDS INTRODUCED: WHERE,
TOP/LIMIT/ROWNUM

At long last, I am now going to show you how to apply selection criteria to your
tables. Up until this point, our SELECT statements have always brought back
every row in the table. This would rarely be the case in real-world situations.
Normally, you are interested in only retrieving data that meets certain criteria.
The topics in this chapter will address this issue.

If you’re selecting customers, then you would typically only get to see a subset of
all your customers. If you’re retrieving orders from your customers, you prob-
ably only want to see orders that meet certain conditions. If you’re looking at
products, then you’re probably only interested in viewing certain types of pro-
ducts. Rarely does someone want to simply see everything. Your interest (or
anyone else’s) in your data is typically directed toward a small subset of data in
order to analyze or view one particular aspect.

Applying Selection Criteria

Selection criteria in SQL begins with the WHERE clause. The WHERE keyword
accomplishes the task of selecting a subset of rows. The logic utilized for the
WHERE keyword builds on the column-based logic seen in the last chapter. The
difference is that, whereas the CASE expression only allowed you to apply logic
to a specific column, you are now going to apply logic to all the rows in a table.

63

Chapter 7 = Row-Based Logic

This is the general format of the SELECT statement, including the WHERE clause
and other clauses previously discussed:

SELECT columnlist
FROM tablelist
WHERE condition
ORDER BY columnlist

As can be seen, the WHERE clause must always be between the FROM and ORDER BY
clauses. In fact, if any clause is used, it must appear in the order shown.

Let’s look at an example, taken from data in this Orders table:

OrderID FirstName LastName QuantityPurchased PricePerltem
1 William Smith 4 2.50
2 Natalie Lopez 10 1.25
3 Brenda Harper 5 4.00

We'll start with a statement with a simple WHERE clause:

SELECT

FirstName,

LastName,
QuantityPurchased

FROM Orders

WHERE LastName = 'Harper'

The output is:

FirstName LastName QuantityPurchased

Brenda Harper 5

Since the WHERE clause stipulates to only select rows with a LastName equal to
‘Harper’, only one of the three rows in the table is returned.

Notice that the desired value of the LastName column was enclosed in quotes,
due to the fact that LastName is a text column. For numeric fields, no quotes are
necessary. For example, the following SELECT is equally valid and would have
returned the same data:

WHERE Clause Operators

SELECT

FirstName,

LastName,
QuantityPurchased

FROM Orders

WHERE QuantityPurchased =5

WHERE Clause Operators

In the previous statements, an equals sign (=) is used as the operator in
the WHERE clause. The equals sign indicates a test for equality. The general for-
mat shown above indicates that a condition follows the WHERE keyword. This
condition consists of an operator with two expressions on either side.

The following is a list of the basic operators that can be used in the WHERE clause:

WHERE Operator Meaning

= equals

<> does not equal

> is greater than

< is less than

>= is greater than or equal to
<= is less than or equal to

More advanced operators will be covered in the next chapter.

The meaning of the equals (=) and does not equal (<>) operators should be
obvious. Here’s an example of a WHERE clause with an “is greater than” operator,
taken from the same Orders table:

SELECT

FirstName,

LastName,
QuantityPurchased

FROM Orders

WHERE QuantityPurchased > 6

The result is:

FirstName LastName QuantityPurchased

Natalie Lopez 10

65

66

Chapter 7 = Row-Based Logic

In this example, only one row meets the qualification that the QuantityPurchased
column be greater than 6. Although not as commonly used, it’s also possible to
use the “is greater than” operator with a text column. This example:

SELECT

FirstName,
LastName

FROM Orders

WHERE LastName > 'K'

returns:
FirstName LastName
William Smith
Natalie Lopez

Since the test is for last names greater than K, it only brings back Smith and
Lopez, but not Harper. When applied to text fields, the greater than and less than
operators indicate selection by the alphabetic order of the values. In this case,
Smith and Lopez are returned, since S and L are after K in the alphabet.

Finally, it should be noted that all of these operators can also be used with the
WHEN keyword in the searched format of the CASE expression. For example, a
valid CASE expression might be:

CASE
WHEN columnl > valuel THEN resultl
END

Limiting Rows

What do you do if you want to select a small subset of the rows in a table, but you
don’t care which rows are returned? Let’s say that you have a table with 50,000
rows, and you want to see just a few rows of data to see what it looks like. It
wouldn’t make sense to use the WHERE clause for this purpose, since you don’t
care which rows are returned.

The solution is to use a special keyword to specify that you want to limit how
many rows are returned. This is another instance where the syntax differs among

Limiting Rows

databases. In Microsoft SQL Server, the keyword that accomplishes this task
1s TOP.

The general format is:

SELECT

TOP number
columnlist
FROM table

DATABASE DIFFERENCES: MySQL and Oracle

MySQL uses the keyword LIMIT rather than TOP. The general format is:

SELECT
columnlist
FROM table
LIMIT number

Oracle uses the keyword ROWNUM rather than TOP. The ROWNUM keyword needs to be specified in
a WHERE clause, as follows:

SELECT

columnlist

FROM table

WHERE ROWNUM <= number

In the remainder of this chapter, you’ll see statements using the Microsoft TOP
keyword. If you’re using MySQL or Oracle, you can simply substitute the
equivalent LIMIT or ROWNUM keywords.

Let’s say that you want to see the first 10 rows from a table. The SELECT to
accomplish this looks like:

SELECT
TOP 10 *
FROM table

This statement returns all columns in the first 10 rows from the table. Like any
SELECT statement without an ORDER BY clause, there’s no way to predict which
10 rows will be returned. It depends on how the data is physically stored in the
table.

67

68

Chapter 7 = Row-Based Logic

Similarly, you can list specific columns to return:

SELECT

TOP 10

columnl, column2
FROM table

In essence, the TOP keyword accomplishes something similar to the WHERE
clause, because it permits you to return a small subset of rows in the specified
table. Keep in mind, though, that rows returned using the TOP keyword are not a
true random sample in a statistical sense. They’re only the first rows that qualify,
based on how the data is physically stored in the database.

Limiting Rows with a Sort

Another use of the TOP keyword is to use it in combination with the ORDER BY
clause to obtain a certain number of rows with the highest values, based on a
specified category. This type of data selection is commonly referred to as a Top N
selection. Here’s an example, taken from this Books table:

BookID Title Author CurrentMonthSales
1 Pride and Prejudice Austen 15

2 Animal Farm Orwell 7

3 Merchant of Venice Shakespeare 5

4 Romeo and Juliet Shakespeare 8

5 Oliver Twist Dickens 3

6 Candide Voltaire 9

7 The Scarlet Letter Hawthorne 12

8 Hamlet Shakespeare 2

Let’s say that you want to see the three books that sold the most in the current
month. The SELECT to accomplish this is:

SELECT

TOP 3

Title AS 'Book Title',
CurrentMonthSales AS 'Quantity Sold'
FROM Books

ORDER BY CurrentMonthSales DESC

Limiting Rows with a Sort 69

The output is:

Book Title Quantity Sold
Pride and Prejudice 15

The Scarlet Letter 12

Candide 9

Let’s examine this statement in some detail. The TOP 3 in the second line
indicates that only three rows are to be returned. The main question to ask is
how it determines which three rows to display. The answer is found in the
ORDER BY clause. If there were no ORDER BY clause, then SELECT would simply
bring back any three rows of data, but that’s not what you want. You’re looking
for the three rows with the highest sales. In order to accomplish this, you need to
sort the rows by the CurrentMonthSales column in descending order. Why
descending? Because when you sort in descending order, the highest numbers
appear first. If you had sorted in ascending order, you would get the books with
the least amount of sales, not the most.

Now, let’s add one more twist to this scenario. Let’s say that you only want to see
the book by Shakespeare that sold the most. In order to accomplish this, you
need to add a WHERE clause, as follows:

SELECT

TOP 1

Title AS 'Book Title',
CurrentMonthSales AS 'Quantity Sold'
FROM Books

WHERE Author = 'Shakespeare'

ORDER BY CurrentMonthSales DESC

This brings back this data:

Book Title Quantity Sold

Romeo and Juliet 8

The WHERE clause adds the qualification that you are only looking at books by
Shakespeare. You also revised the TOP keyword to specify TOP 1, indicating that
you only want to see one row of data.

70

Chapter 7 = Row-Based Logic

DATABASE DIFFERENCES: Oracle

The procedure for limiting and sorting rows in Oracle is a bit more complex, since the ROWNUM is in
the WHERE clause in Oracle syntax. You need to sort the data first and then apply the ROWNUM
selection criteria. The general format is:

SELECT *

FROM

(SELECT

columnlist

FROM table

ORDER BY columnlist DESC)
WHERE ROWNUM <= number

This is an early example of a subquery, which will be covered in detail in Chapter 14. In brief, this
statement consists of two separate SELECT statements. The inner SELECT, enclosed in
parentheses, sorts the desired data by the specified columnlist, in descending order. The outer
SELECT statement then retrieves data from the inner SELECT using the RowNUM keyword to limit
the number of rows that are displayed.

Looking Ahead

This chapter introduced the topic of how to apply selection criteria to queries. A
number of basic operators, such as equals and greater than, were introduced. The
ability to specify some basic selection criteria goes a long way towards making
our SELECT statement truly useful. With the WHERE clause, you can now issue a
statement that retrieves all customers from the state of New York.

The related topic of limiting the number of rows returned in a query was also
covered in this chapter. Finally, the ability to limit rows in combination with an
ORDER BY clause allows for a useful Top N type of data selection.

In our next chapter, “Boolean Logic,” I am going to greatly enhance our selection
criteria capabilities by introducing a bunch of new keywords that add sophisti-
cated logic to the WHERE clause. Yes, it’s true that you can now select customers
from the state of New York, but what if you wanted to select customers who are
in New York or California, but not in Buffalo or Los Angeles? The keywords
covered in the next chapter will allow you to do that.

CHAPTER 8

BooLEAN LoGic

KEYWORDS INTRODUGCED: AND, OR,
NOT, BETWEEN, IN, IS, NULL

In the previous chapter, we introduced the concept of selection criteria, but only in
its simplest form. We’re now going to expand on that concept to greatly enhance
our ability to specify the rows that are returned from a SELECT. This is where
the pure logic of SQL comes into play. In this chapter, we are going to introduce
a number of operators that will allow you to create complex logical expressions.

With these new capabilities, if a user comes to you and says that she wants a list
of all female customers who live in ZIP codes 60601 through 62999, but excluding
anyone who’s under the age of 30 or who doesn’t have an email address, that will
be something you can provide.

Complex Logical Conditions

The WHERE clause introduced in the previous chapter utilized only simple
selection criteria. You saw WHERE clauses such as:

WHERE QuantityPurchased =5

The condition expressed in this WHERE clause is quite simple: It returns all rows
where the QuantityPurchased column has a value of 5.

In the real world, the selection of data is often far from straightforward.
Accordingly, let’s now turn our attention to ways of specifying some more
complex logical conditions in your selection criteria.

71

72

Chapter 8 = Boolean Logic

The ability to devise complex logical conditions is sometimes called Boolean logic.
This term, taken from mathematics, refers to the ability to formulate complex
conditions that are evaluated as either true or false. In the aforementioned example,
the condition QuantityPurchased = 5 is evaluated as either true or false for each
row in the table. Obviously, you only want to see rows where the condition is
evaluated as true.

The principle keywords used to create complex Boolean logic are AND, OR, and
NOT. These three operators are used to add additional functionality to the WHERE
clause. In the proper combination, the AND, OR, and NOT operators, along with
parentheses, can specify just about any logical expression you can imagine.

The AND Operator

The following examples will all be taken from this Orders table:

OrderID CustomerName State QuantityPurchased PricePerltem
1 William Smith IL 4 2.50
2 Natalie Lopez CA 10 1.25
3 Brenda Harper NY 5 4.00

Here’s an example of a WHERE clause that uses the AND operator:

SELECT

CustomerName,
QuantityPurchased

FROM Orders

WHERE QuantityPurchased > 3
AND QuantityPurchased < 7

The AND clause means that all conditions must evaluate to true for the row to be
selected.

This SELECT specifies that the only rows to be retrieved are those where the
QuantityPurchased is both greater than 3 and less than 7. Therefore, only these
two rows are returned:

CustomerName QuantityPurchased

William Smith 4
Brenda Harper 5

Using Parentheses

Notice that the row for Natalie Lopez is not returned. Why? Natalie purchased a
quantity of 10, which, in fact, does satisty the first condition (QuantityPurchased
> 3). However, the second condition (QuantityPurchased < 7) is not satisfied
and therefore is not true. When using the AND operator, all conditions specified
must be true.

The OR Operator

Let’s now look at the OR operator. The AND clause meant that all conditions
must evaluate to true for the row to be selected. The OR clause means that the
row will be selected if any of the conditions is determined to be true.

Here’s an example, taken from the same table:

SELECT

CustomerName,
QuantityPurchased,
PricePerItem

FROM Orders

WHERE QuantityPurchased > 8
OR PricePerItem > 3

The SELECT returns this data:

CustomerName QuantityPurchased PricePerltem
Natalie Lopez 10 1.25
Brenda Harper 5 4.00

Why are the rows for Natalie Lopez and Brenda Harper displayed, and not the
row for William Smith? The row for Natalie Lopez is selected because it meets the
requirements of the first condition (QuantityPurchased > 8). It doesn’t matter
that the second condition (PricePerltem > 3) isn’t true, because only one con-
dition needs to be true for an OR condition.

Likewise, the row for Brenda Harper is selected because the second condition
(PricePerItem > 3) is true for that row. The row for William Smith isn’t selected
because it doesn’t satisfy either of the two conditions.

Using Parentheses

Let’s say that you are only interested in orders from customers from either the
state of Illinois or the state of California. Additionally, you only want to see

73

74

Chapter 8 = Boolean Logic

orders where the quantity purchased is greater than 8. To satisfy this request, you
put together this SELECT statement:

SELECT

CustomerName,

State,
QuantityPurchased

FROM Orders

WHERE State = '"IL'

OR State = 'CA"

AND QuantityPurchased > 8

When you execute this, you are expecting to get back only one row, for Natalie
Lopez. This is because you have two rows for customers in Illinois or California
(Smith and Lopez). But only one of those (Lopez) has a quantity purchased
greater than 8.

However, when you execute this statement, you see:

CustomerName State QuantityPurchased
William Smith IL 4
Natalie Lopez CA 10

What went wrong? Why did you get back two rows instead of one? The answer
lies with how SQL interprets the WHERE clause, which contains both AND and OR
operators. Like other computer languages, SQL has a predetermined order of
evaluation, which specifies the order in which various operators are interpreted.
Unless told otherwise, SQL always processes the AND operator before the OR
operator. So, in the previous statement, it first looks at the AND and evaluates
the condition:

State = 'CA'
AND QuantityPurchased > 8

The row that satisfies that condition is for Natalie Lopez. It then evaluates the OR
operator, which allows for rows where the State equals IL. That adds in the row
for William Smith. Therefore, it determines that both the William Smith and the
Natalie Lopez rows meet the condition.

Obviously, this isn’t what was meant. This type of problem often comes up when
AND and OR operators are combined in a single WHERE clause. The way to resolve

Multiple Sets of Parentheses

the ambiguity is to use parentheses to specify the exact order of evaluation that
you would like. Anything in parentheses is always evaluated first.

Here’s how parentheses can be added to the previous SELECT to correct the
situation:

SELECT

CustomerName,

State,
QuantityPurchased

FROM Orders

WHERE (State = 'IL'

OR State = 'CA")

AND QuantityPurchased > 8

When this is executed, you now see this data:

CustomerName State QuantityPurchased
Natalie Lopez CA 10

The parentheses in the SELECT statement force the OR expression (State = ‘IL’
OR State = ‘CA’) to be evaluated first. This produces the intended result.

Multiple Sets of Parentheses

Let’s say that you want to select two different sets of rows from the Orders table:
first, rows for customers in New York, and second, rows for customers in Illinois
who have made a purchase with a quantity between 3 and 10. The following
SELECT accomplishes this requirement:

SELECT

CustomerName,

State,

QuantityPurchased

FROM Orders

WHERE State = 'NY'

OR (State = "'IL'

AND (QuantityPurchased >=3
AND QuantityPurchased <=10))

75

76

Chapter 8 = Boolean Logic

The result is:

CustomerName State QuantityPurchased

William Smith IL 4
Brenda Harper NY 5

Notice there are two sets of parentheses in this statement. Our use of parentheses
here is analogous to the parentheses used in the composite functions seen in
Chapter 4. With regard to functions, if there is more than one set of parentheses,
the innermost set of functions always gets evaluated first. The same is true of
parentheses used in Boolean expressions. In this example, the innermost set of
parentheses contains:

(QuantityPurchased >=3
AND QuantityPurchased <= 10)

After this is evaluated for each row, you can then proceed outward to the second
set of parentheses:

(State="IL"
AND (QuantityPurchased >=3
AND QuantityPurchased <=10))

Finally, you add in the final line in the WHERE clause (which is not enclosed in
any parentheses at all):

WHERE State = 'NY'

OR (State = '"IL'

AND (QuantityPurchased >=3
AND QuantityPurchased <=10))

The NOT Operator

In addition to the AND and OR operators, it is often useful to use the NOT
operator to express a complex logical condition. The NOT expresses a negation,
or opposite, of whatever follows the NOT. Here’s a simple example:

SELECT
CustomerName,
State,

The NOT Operator

QuantityPurchased
FROM Orders
WHERE NOT State = 'NY'

The result is:

CustomerName State QuantityPurchased

William Smith IL 4
Natalie Lopez CA 10

This specifies a selection of rows where the state is not equal to NY. In this simple
case, the NOT operator is not truly necessary. The previous statement can also be
accomplished via the following equivalent statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Orders

WHERE State <> 'NY'

In this situation, the not equals operator (<>) accomplishes the same thing as
the NOT operator.

Here’s a more complex example with the NOT operator:

SELECT

CustomerName,

State,
QuantityPurchased
FROM Orders

WHERE NOT (State = 'IL'
OR State = 'NY"')

The result is:

CustomerName State QuantityPurchased
Natalie Lopez CA 10

77

78

Chapter 8 = Boolean Logic

When the NOT operator is used before a set of parentheses, it negates everything
in the parentheses. In this example, you are looking for all rows where the state is
not Illinois or New York.

Again, note that the NOT operator is not strictly necessary in this example.
The previous query can also be accomplished via the following equivalent
statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Orders

WHERE State <> 'IL'
AND State <> 'NY!

You may need to think a minute about why the previous two statements are
really equivalent. The first statement utilizes the NOT operator and a logical
expression with an OR operator. The second statement converts the same logic
into an expression with an AND operator.

Here’s a final example of how the NOT operator can be used in a complex
statement:

SELECT

CustomerName,

State,

QuantityPurchased

FROM Orders

WHERE NOT (State ="'IL'
AND QuantityPurchased > 3)

The result is:

CustomerName State QuantityPurchased

Natalie Lopez CA 10
Brenda Harper NY 5

The BETWEEN Operator 79

As before, there is another way to express the previous statement without using
the NOT:

SELECT

CustomerName,

State,
QuantityPurchased

FROM Orders

WHERE State <> 'IL'

OR QuantityPurchased <=3

As seen in these examples, it may not be logically necessary to use the NOT
operator in complex expressions with arithmetic operators such as equals (=)
and less than (<). However, it’s often more straightforward to place a NOT in
front of a logical expression than to convert that expression to one that doesn’t
use the NOT. In other words, the NOT operator can provide a useful way of
expressing your logical thoughts.

The BETWEEN Operator

We will now turn to two special operators that can simplify expressions that
would ordinarily require the OR or AND operators. These are the BETWEEN and
IN operators. The BETWEEN operator allows you to abbreviate an AND expres-
sion with greater than or equal to (>=) and less than or equal to (<=) operators
into one simple expression with a single operator.

Here’s an example. Let’s say you want to select all rows with a quantity purchased
between 5 and 20. You can issue the following SELECT statement:

SELECT

CustomerName,
QuantityPurchased

FROM Orders

WHERE QuantityPurchased >=5
AND QuantityPurchased <= 20

or you can issue this equivalent statement that utilizes the BETWEEN operator:

SELECT

CustomerName,

QuantityPurchased

FROM Orders

WHERE QuantityPurchased BETWEEN 5 AND 20

80

Chapter 8 = Boolean Logic

In both cases, the SELECT returns this data:

CustomerName QuantityPurchased
Natalie Lopez 10
Brenda Harper 5

The BETWEEN operator always requires a corresponding AND placed between the
two numbers.

Note the relative simplicity of the BETWEEN operator. Also notice that the
BETWEEN keyword is equivalent only to the greater than or equal to (>=) and
less than or equal to (<=) operators. It can’t be used to express something simply
greater than (>) or less than (<) a range of numbers. In this example, the row for
Brenda Harper is selected since the quantity is equal to 5, and therefore is
between 5 and 20.

The NOT operator can be used with the BETWEEN. For example, this SELECT:

SELECT

CustomerName,

QuantityPurchased

FROM Orders

WHERE QuantityPurchased NOT BETWEEN 5 AND 20

retrieves this data:

CustomerName QuantityPurchased
William Smith 4

The IN Operator

Just as the BETWEEN represents a special case of the AND operator, the IN
operator allows for a special case of the OR. Let’s say you want to see rows where
the state is Illinois or New York. You can issue this SELECT statement:

SELECT
CustomerName,
State

FROM Orders

WHERE State = "IL'
OR State = "NY'

The IN Operator

or you can use this equivalent statement that utilizes the IN operator:

SELECT

CustomerName,

State

FROM Orders

WHERE State IN ('IL', 'NY')

In either case, the data retrieved is:

CustomerName State
William Smith IL
Brenda Harper NY

Notice that commas are used to separate all values within the parentheses fol-
lowing the IN keyword.

The usefulness of the IN operator may not be obvious in this example, where
only two states are listed. However, the IN can just as easily be used in situations
where you want to list dozens of specific values. This greatly reduces the amount
of typing required for such a statement. Another handy use for the IN operator
comes in situations where you want to use data from Excel in a SQL statement. If
you want to obtain multiple values from adjacent cells in a spreadsheet for your
SQL statement, Excel allows you to copy those values with a comma delimiter.
This result can then be pasted inside the parentheses following the IN operator.

As with the BETWEEN operator, the NOT operator can be used with the IN, as
shown in this example:

SELECT

CustomerName,

State

FROM Orders

WHERE State NOT IN ('IL', 'NY')

This retrieves this data:

CustomerName State

Natalie Lopez CA

81

82

Chapter 8 = Boolean Logic

One final note about the IN operator. There is a second way to use the IN,
which is substantially different from the syntax just discussed. In the second
format of the IN operator, an entire SELECT statement is specified within the
parentheses, allowing the individual values to be created logically when needed.
This is called a subquery, and it will be covered in detail in Chapter 14.

Boolean Logic and NULL Values

At the start of this chapter, I stated that the Boolean logic in SQL evaluates
complex expressions as either true or false. This assertion was not completely
correct. When evaluating the conditions in a WHERE clause, there are actually
three possibilities: true, false, and unknown. The possibility of unknown derives
from the fact that columns in SQL databases are sometimes allowed to have a
NULL value. As mentioned in Chapter 1, NULL values are those for which there
is an absence of data.

SQL provides a special keyword to test for the presence of NULL values for a
column specified in a WHERE clause. The keyword is IS NULL. Let’s look at an
example taken from the following Products table:

ProductID ProductDescription Weight
1 Printer A NULL

2 Printer B 0

3 Monitor C 2

4 Laptop D 4

For this example, you have to imagine that as rows are added to the Products
table, they are initially not given any value in the Weight column. They are
initially given a value of NULL, and a user of the system later assigns a weight to
the product.

Let’s say that you attempt to use the following SELECT to find products missing
a weight:

SELECT
ProductDescription,
Weight

FROM Products

WHERE Weight =0

Boolean Logic and NULL Values

This would return:

ProductDescription Weight

Printer B 0

This is not quite what you want. A weight equal to zero is not the same as a
weight with a NULL value. To correct this, you need to issue:

SELECT
ProductDescription,
Weight

FROM Products

WHERE Weight =0

OR Weight IS NULL

This returns:

ProductDescription Weight
Printer A NULL
Printer B 0

The IS NULL keyword can also be negated as IS NOT NULL, which allows you to
retrieve all rows that do not have NULL for the specified column.

It should be mentioned that the ISNULL function, discussed in Chapter 4, can
provide an alternative to the IS NULL keyword. The equivalent of the previous
SELECT statement, utilizing the ISNULL function is:

SELECT
ProductDescription,
Weight

FROM Products

WHERE ISNULL (Weight, 0) =0

This SELECT retrieves the same two rows. The ISNULL function converts all
values for the Weight column with a value of NULL to 0. Since the WHERE
clauses tests for a value of 0, it, in effect, tests for values of 0 or NULL.

83

84

Chapter 8 = Boolean Logic

You can also combine the ISNULL function and the IS NULL keyword in a
single SELECT statement, such as:

SELECT

ProductDescription,

ISNULL (Weight, 0) AS 'Weight'
FROM Products

WHERE Weight =0

OR Weight IS NULL

This produces this data:

ProductDescription Weight

Printer A 0
Printer B 0
Looking Ahead

This chapter covered the important topic of how to create complex expressions
of selection logic. The basic Boolean operators used in this endeavor were AND,
OR, and NOT. We also discussed the BETWEEN and IN operators, which allow for
a more concise statement of the AND and OR operators in certain situations.
Parentheses are another essential tool in the formulation of complex expressions.
By using parentheses or multiple sets of parentheses, you can create almost every
imaginable logical condition. Finally, we talked about how to deal with NULL
values when selecting data.

In our next chapter, we’re going to take an interesting detour into some alter-
native ways to specify selection criteria. We're first going to look at the topic of
pattern matching. This will allow you to match by portions of a word or phrase
and to do such things as find all products that contain the word “white.” The
second half of the chapter will turn to the possibility of matching by the sound of
a word or phrase. This, for example, will let you find all customers who have a
first name that sounds like Haley, even if the name is spelled Hailey.

CHAPTER 9

INEXACT MATCHES

KEYwoORrRDS INTRODUGCED: LIKE,
SOUNDEX, DIFFERENCE

I would like to now turn to two situations in which the data to be retrieved is not
precisely defined. In the first circumstance, we will look at the need to retrieve
data based on inexact matches with words or phrases. For example, you may be
interested in finding customers whose name contains the word “bank.”

In the second situation, we will extend the idea of inexact matches to include the
possibility of matching by the sound of a word or phrase. For instance, you may
be interested in customers whose name sounds like “Smith,” even though it may
not be spelled exactly that way.

Pattern Matching

Let’s first look at inexact matches within phrases, which is often referred to as
pattern matching. In SQL, the LIKE operator is utilized in the WHERE clause to
enable you to find matches against parts of a column value. The LIKE operator
requires the use of special wildcard characters to specify exactly how the match is
to work. Let’s start with an example from the Movies table shown on the next page.

Our first example of a SELECT statement with a LIKE operator is:

SELECT

MovieTitle AS 'Movie'

FROM Movies

WHERE MovieTitle LIKE '$LOVE%'

85

86

Chapter9 = Inexact Matches

MovielD MovieTitle

Love Actually

His Girl Friday

Love and Death

Sweet and Lowdown
Everyone Says | Love You
Down with Love

~N o U1 B W N =

101 Dalmatians

In this example, the percent (%) symbol is used as a wildcard. The percent (%)
wildcard means any characters. It can also represent a list of zero characters. The
percent (%) before LOVE means that you will accept a phrase with any char-
acters before LOVE. Similarly, the percent (%) after LOVE means that you will
accept a phrase with any characters after LOVE.

DATABASE DIFFERENCES: Oracle

Unlike Microsoft SQL Server and MySQL, Oracle is case sensitive when determining matches for
literal values. In Oracle, LOVE is not the same as Love. An equivalent statement in Oracle is:

SELECT

MovieTitle AS Movie

FROM Movies

WHERE MovieTitle LIKE '$Love%';

A better solution in Oracle is to use the UPPER function to convert your data to uppercase, as follows:

SELECT

MovieTitle AS Movie

FROM Movies

WHERE UPPER (MovieTitle) LIKE '$LOVE%';

In other words, you are looking for any movie title that contains the phrase
LOVE. Here is the data returned from the previous SELECT:

Movie

Love Actually

Love and Death
Everyone Says | Love You
Down with Love

Pattern Matching

Notice that LOVE appears as the first word, the last word, and sometimes in the
middle of the movie title.

Let’s now attempt to find only movies that begin with LOVE. If you issue:

SELECT

MovieTitle AS 'Movie'

FROM Movies

WHERE MovieTitle LIKE 'LOVES%'

you will only retrieve this data:

Movie

Love Actually
Love and Death

Since you are now specifying the percent (%) wildcard after the phrase LOVE,
you will only get back movies that begin with LOVE.

Similarly, if you issue:

SELECT

MovieTitle AS 'Movie'

FROM Movies

WHERE MovieTitle LIKE '$LOVE'

you only get this data:

Movie

Down with Love

This is because you now specified that the phrase must end with the phrase LOVE.

What if you only want to see movies that contain the word LOVE in the middle
of the title, but you don’t want to see movies where it is at the beginning or end?
The solution is to specify:

SELECT

MovieTitle AS 'Movie'

FROM Movies

WHERE MovieTitle LIKE '$ LOVE %'

87

88

Chapter9 = Inexact Matches

Notice that a space has been inserted between the phrase LOVE and the percent
(%) wildcards on either side. This ensures that there is at least one space on
either side of the word. The data brought back from this statement is:

Movie

Everyone Says | Love You

Wildcards

The percent (%) symbol is the most common wildcard used with the LIKE
operator. However, there are a few other possibilities. These include the under-
score character (_), a characterlist enclosed in square brackets, and a caret symbol
(M) plus a characterlist enclosed in square brackets. The following table lists these
wildcards and their meanings:

Wildcard Meaning

% any characters (can be zero characters)

_ exactly one character (can be any character)
[characterlist] exactly one character in the character list
[Acharacterlist] exactly one character not in the character set

We’re going to use the following Actors table to illustrate statements for the
remainder of this chapter:

ActorID FirstName LastName

1 Cary Grant

2 Mary Steenburgen
3 Jon Voight

4 Dustin Hoffman

5 John Wayne

6 Gary Cooper

7 Julie Andrews

Wildcards

Here’s an illustration of how the underscore (_) wildcard character can be used:

SELECT

FirstName,

LastName

FROM Actors

WHERE FirstName LIKE ' ARY'

The output of this SELECT is:

FirstName LastName
Cary Grant

Mary Steenburgen
Gary Cooper

This statement retrieves these three actors because all have a first name consist-
ing of exactly one character, followed by the phrase ARY.

Likewise, if you issue this statement:

SELECT

FirstName,

LastName

FROM Actors

WHERE FirstName LIKE 'J N'

it produces:

FirstName LastName

Jon Voight

The actor John Wayne is not selected since John doesn’t fit the J_N pattern. An
underscore can only stand for one character.

The final wildcards we’ll discuss, [characterlist] and [Acharacterlist], enable you
to specify multiple wildcard values in a single position.

DATABASE DIFFERENCES: MySQL and Oracle

The [characterlist] and [characterlist] wildcards are not available in MySQL or Oracle.

89

90

Chapter9 = Inexact Matches

The following illustrates the [characterlist] wildcard:

SELECT

FirstName,

LastName

FROM Actors

WHERE FirstName LIKE ' [CM]ARY'

This retrieves any rows where FirstName begins with a C or M and ends with
ARY. The result is:

FirstName LastName
Cary Grant
Mary Steenburgen

The following illustrates the [Acharacterlist] wildcard:

SELECT

FirstName,

LastName

FROM Actors

WHERE FirstName LIKE ' ["CG]ARY'

This selects any rows where FirstName does not begin with a C or G and ends
with ARY. The result is:

FirstName LastName

Mary Steenburgen

Finally, it should be noted that the NOT operator can be combined with LIKE, as
in this example:

SELECT

FirstName,

LastName

FROM Actors

WHERE FirstName LIKE '$ARY%'
AND FirstName NOT LIKE ' [MG]ARY'

Matching by Sound

The result is:

FirstName LastName

Cary Grant

Matching by Sound

Let’s turn from matching letters and characters to matching sounds. SQL pro-
vides two functions that give you some interesting ways to compare the sounds
of words or phrases. The two functions are SOUNDEX and DIFFERENCE.

Let’s first look at an example that utilizes the SOUNDEX function:

SELECT
SOUNDEX ('Smith') AS 'Sound of Smith',
SOUNDEX ('Smythe') AS 'Sound of Smythe'

The result is:

Sound of Smith Sound of Smythe
S530 S530

The SOUNDEX function always returns a four-character response, which is a sort
of code for the sound of the phrase. The first character is always the first letter of
the phrase. In this case, the first character is S because both Smith and Smythe
begin with an S.

The remaining three characters are calculated from an analysis of the sound of
the rest of the phrase. Internally, the function first removes all vowels and the
letter Y. So, the function takes the MITH from SMITH and converts it to MTH.
Likewise, it takes the MYTHE from SMYTHE and converts it to MTH. It then
assigns a number to represent the sound of the phrase. In this example, that
number turns out to be 530.

Since SOUNDEX returns a value of S530 for both Smith and Smythe, you can
conclude that they probably have very similar sounds.

Microsoft SQL Server provides one additional function, called DIFFERENCE,
which works in conjunction with the SOUNDEX function.

91

92

Chapter9 = Inexact Matches

DATABASE DIFFERENCES: MySQL and Oracle

The DIFFERENCE function isn't available in MySQL or Oracle.

Here’s an example, using the same words:

SELECT
DIFFERENCE ('Smith', 'Smythe') AS 'The Difference'

The result is:

The Difference
4

The DIFFERENCE function always requires two arguments. Internally, the
function first retrieves the SOUNDEX values for each of the arguments and then
compares those values. If it returns a value of 4, as in the previous example, that
means that all four characters in the SOUNDEX value are identical. A value of 0
means that none of the characters is identical. Therefore, a DIFFERENCE value
of 4 indicates the highest possible match, and a value of 0 is the lowest possible
match.

With this in mind, here’s an example of how the DIFFERENCE function can be
used to retrieve values that are very similar in sound to a specific phrase. Work-
ing from the Actors table, you’re going to attempt to find rows with a first name
that sounds like John. The SELECT statement is:

SELECT

FirstName,

LastName

FROM Actors

WHERE DIFFERENCE (FirstName, 'John') =4

The results are:

FirstName LastName

Jon Voight
John Wayne

Looking Ahead

The DIFFERENCE function concluded that both John and Jon had a difference
value of 4 between the name and the specified value of John.

If you want to analyze exactly why these two rows were selected, you can alter
your SELECT to show both the SOUNDEX and DIFFERENCE values for all rows
in the table:

SELECT

FirstName,

LastName,

DIFFERENCE (FirstName, 'John') AS 'Difference Value',
SOUNDEX (FirstName) AS 'Soundex Value'

FROM Actors

This returns:

FirstName LastName Difference Value Soundex Value

Cary Grant 2 C600
Mary Steenburgen 2 M600
Jon Voight 4 J500
Dustin Hoffman 1 D235
John Wayne 4 J500
Gary Cooper 2 G600
Julie Andrews 3 J400

Notice that both Jon Voight and John Wayne have a SOUNDEX value of J500 and
a DIFFERENCE value of 4 for their first names. This explains why they were
initially selected. Also notice that Julie Andrews has a DIFFERENCE value of 3. If
you had specified a WHERE clause where the DIFFERENCE value equaled 3 or 4,
that actor would have been selected as well.

Looking Ahead

This concludes our study of matching phrases by pattern or sound. Matching by
patterns is an important and widely used function of SQL. Any time you enter a
word in a search box and attempt to retrieve all entities containing that word,
you are utilizing pattern matching. Efforts to match by sound are much less
common. The technology exists, but there is an inherent difficulty in translating
words to sounds. The English language, or any language for that matter, contains
too many quirks and exceptions for such a match to be reliable.

93

94

Chapter9 = Inexact Matches

In our next chapter, “Summarizing Data,” we’re going to turn our attention to
ways to separate data into groups and summarize the values in those groups with
various statistics. Back in Chapter 4, we talked about scalar functions. The next
chapter will introduce another type of function, called aggregate functions. These
aggregate functions will allow you to summarize your data in many useful ways.
For example, you’ll be able to look at any group of orders and determine the
number of orders, the total dollar amount of the orders, and the average order
size. With these techniques, you’ll be able to move beyond the presentation of
detailed data and begin to truly add value for your users as you deliver sum-
marized information.

cHAPTER 10

SUMMARIZING DATA

KEYWORDS INTRODUGCED: DISTINCT, SUM,
AVG, MIN, MAX, COUNT, GROUP BY, HAVING

Up until now, we’ve been presenting data basically as it exists in a database. Sure,
we’ve used some functions to move things around and have created some addi-
tional calculations, but the rows we’ve retrieved have corresponded to rows in
the underlying database. We now want to turn to various methods to summarize
our data.

The computer term usually associated with this type of endeavor is aggregation,
which means “to combine into groups.” The ability to aggregate and summarize
your data is key to being able to move beyond a mere display of data to some-
thing approaching real information. There’s a bit of magic involved when users
view summarized data in a report. They understand and appreciate that you’ve
been able to extract some real meaning from the mass of data in a database, in
order to present a clearer picture of what it all means.

Eliminating Duplicates

Although it doesn’t provide a true aggregation, the most elementary way
to summarize data is to eliminate duplicates. SQL has a keyword named
DISTINCT, which provides an easy way to remove duplicate rows from your
output.

95

9%

Chapter 10 = Summarizing Data

Here’s an example of the DISTINCT keyword, used with the following

SongTitles table:
SongID Artist Album Title
1 The Beatles Abbey Road Come Together
2 The Beatles Abbey Road Sun King
3 The Beatles Revolver Yellow Submarine
4 The Rolling Stones Let It Bleed Monkey Man
5 The Rolling Stones Flowers Ruby Tuesday
6 Paul McCartney Ram Smile Away

Let’s say you want to see a list of artists in the table. This can be accom-

plished with:

SELECT
DISTINCT
Artist

FROM SongTitles
ORDER BY Artist

The results are:

Artist

Paul McCartney
The Beatles
The Rolling Stones

The DISTINCT keyword is always placed immediately after the SELECT key-
word. The DISTINCT specifies that only unique values of the columnlist that
follow are to be brought back. In this case, there are only three unique artists, so

only three rows are returned.

If you want to see unique combinations of both artists and albums, you’d issue:

SELECT
DISTINCT
Artist,

Aggregate Functions 97

Album
FROM SongTitles
ORDER BY Artist, Album

and the results would be:

Artist Album
Paul McCartney Ram

The Beatles Abbey Road
The Beatles Revolver
The Rolling Stones Flowers
The Rolling Stones Let It Bleed

Notice that Abbey Road is only listed once, even though there are two songs from
that album in the table. This is because the DISTINCT keyword causes only
unique values from the listed columns to be shown.

Aggregate Functions

The functions we discussed in Chapter 4 were all scalar functions. These
functions were all performed on a single number or value. In contrast, aggregate
functions are meant to be used with groups of data. The mostly widely used
aggregate functions are COUNT, SUM, AVG, MIN, and MAX. These provide counts,
sums, averages, and minimum and maximum values of groups of data.

All of our aggregate function examples will be taken from the following two
tables with data about students, fees, and grades. The Fees table contains:

FeelD Student FeeType Fee
1 George Gym 30

2 George Lunch 10
3 George Trip 8

4 Janet Gym 30

5 Alan Lunch 10

98

Chapter 10 = Summarizing Data

Here’s the Grades table:

GradelD Student GradeType Grade
1 Susan Quiz 92

2 Susan Quiz 95

3 Susan Homework 84

4 Kathy Quiz 62

5 Kathy Quiz 81

6 Kathy Homework NULL
7 Alec Quiz 58

8 Alec Quiz 74

9 Alec Homework 88

Starting with the SUM function, let’s say that you want to see the total amount of
gym fees paid by all students. This can be accomplished with:

SELECT

SUM (Fee) AS 'Total Gym Fees'
FROM Fees

WHERE FeeType = 'Gym'

The resulting data is:

Total Gym Fees
60

As can be seen, the SUM function sums up the total values for the Fee column,
subject to selection in the WHERE clause. Since the only expression in the
columnlist is an aggregate function, the query returns only one row of data,
giving the aggregate amount.

DATABASE DIFFERENCES: MySQL

As noted in Chapter 4, MySQL sometimes requires that there be no space between a function name
and the left parenthesis. This is also true of most aggregate functions. For example, the previous
statement needs to be written as the following in MySQL:

SELECT
SUM (Fee) AS 'Total Gym Fees'

The COUNT Function

FROM Fees
WHERE FeeType = 'Gym'

The AVG, MIN, and MAX functions are quite similar. Here’s an example of the
AVG function. In this case, we’re seeking to obtain the average grade of all quizzes
in the Grades table:

SELECT

AVG (Grade) AS 'Average Quiz Score'
FROM Grades

WHERE GradeType = 'Quiz'

The result is:

Average Quiz Score
77

More than one aggregate function can be used in a single SELECT statement.
Here’s a SELECT that illustrates AVG, MIN, and MAX in a single statement:

SELECT

AVG (Grade) AS 'Average Quiz Score',
MIN (Grade) AS 'Minimum Quiz Score',
MAX (Grade) AS 'Maximum Quiz Score'
FROM Grades

WHERE GradeType = 'Quiz'

The result is:

Average Quiz Score Minimum Quiz Score Maximum Quiz Score
77 58 95

The numbers you see have been computed separately. The output shows the
average, minimum, and maximum of all quizzes in the Grades table.

The COUNT Function

The COUNT function is slightly more complex, in that it can be used in three
different ways.

99

100

Chapter 10 = Summarizing Data

First, the COUNT function can be used to return a count of all selected rows,
regardless of the values in any particular column. As an example, the following
returns a count of all rows with homework grades:

SELECT

COUNT (*) AS 'Count of Homework Rows'
FROM Grades

WHERE GradeType = 'Homework'

The result is:

Count of Homework Rows
3

The asterisk in the parentheses means “all columns.” SQL retrieves all columns
in those rows that are selected, and then it returns a count of the number
of rows.

In the second format of the COUNT function, a specific column is specified rather
than the asterisk. Here’s an example:

SELECT

COUNT (Grade) AS 'Count of Homework Scores'
FROM Grades

WHERE GradeType = 'Homework'

The result is:

Count of Homework Scores
2

Notice the subtle difference between the previous two SELECT statements. In the
first, you're merely counting rows where the GradeType equals “Homework.”
There are three of these rows. In the second, you’re counting occurrences of the
Grade column where the GradeType column has a value of “Homework.” In this
case, one of the three rows has a value of NULL in the Grade column, so it isn’t
counted. As you remember, NULL means that the data doesn’t exist.

Grouping Data 101

The third format of the COUNT function allows you to use the DISTINCT
keyword in addition to a column name. Here’s an example:

SELECT
COUNT (DISTINCT FeeType) AS 'Number of Fee Types'
FROM Fees

This statement is counting the number of distinct values for the FeeType col-

umn. The result is:

Number of Fee Types
3

This means that there are three different values found in the FeeType column.

Grouping Data

The previous examples of aggregation functions are interesting, but of somewhat
limited value. The real power of the aggregation functions will become evident
after we introduce the concept of grouping data.

The GROUP BY keyword is used to separate data returned from a SELECT
statement into any number of groups. For example, when looking at the previous
Grades table, you may be interested in analyzing test scores based on the grade
type. In other words, you want to separate the data into two separate groups,
quizzes and homework. The value of the GradeType column can be used to
determine which group each row belongs to.

Once data has been separated into groups, then aggregation functions can be
utilized so that summary statistics for each of the groups can be calculated and
compared.

Let’s proceed with an example that introduces the GROUP BY keyword:

SELECT

GradeType AS 'Grade Type',
AVG (Grade) AS 'Average Grade'
FROM Grades

GROUP BY GradeType

ORDER BY GradeType

102

Chapter 10 = Summarizing Data

The result is:

Grade Type Average Grade
Homework 86
Quiz 77

In this example, the GROUP BY keyword specifies that groups are to be created
based on the value of the GradeType column. The two columns in the SELECT
columnlist are GradeType and a calculated field that uses the AVG function. The
GradeType column was included in the columnlist because when creating a
group, it’s usually a good idea to include the column on which the groups are
based. The “Average Grade” calculated field aggregates values based on all rows
in each group.

Notice that the average homework grade has been computed as 86. Even though
there is one row with a NULL value for the Homework type, SQL is smart
enough to ignore rows with NULL values when computing an average. If you
want the NULL value to be counted as a 0, then the TSNULL function can used to
convert the NULL to a 0, as follows:

AVG (ISNULL (Grade, 0)) AS 'Average Grade'

It’s important to note that when using a GROUP BY keyword, all columns in the
columnlist must either be listed as columns in the GROUP BY clause or else be
used in an aggregation function. Nothing else would make any sense. For
example, the following SELECT would error:

SELECT

GradeType AS 'Grade Type',

AVG (Grade) AS 'Average Grade',
Student AS 'Student'’

FROM Grades

GROUP BY GradeType

ORDER BY GradeType

The problem with this statement is that the Student column is not in the GROUP
BY clause, nor is it aggregated in any way. Since everything is being presented in
groups, SQL doesn’t know what to do with the Student column.

Multiple Columns and Sorting

DATABASE DIFFERENCES: MySQL

Unlike Microsoft SQL Server and Oracle, the previous statement will not error in MySQL, but will
produce incorrect results.

Multiple Columns and Sorting

The concept of groups can be extended so the groups are based on more than one
column. Let’s go back to the last SELECT and add the Student column to the
GROUP BY clause and also to the columnlist. It now looks like:

SELECT

GradeType AS 'Grade Type',
Student AS 'Student ',

AVG (Grade) AS 'Average Grade'
FROM Grades

GROUP BY GradeType, Student
ORDER BY GradeType, Student

The resulting data is:

Grade Type Student Average Grade
Homework Alec 88

Homework Kathy NULL

Homework Susan 84

Quiz Alec 66

Quiz Kathy 715

Quiz Susan 93.5

You now see a breakdown not only of grade types, but also of students. The
average grades are computed on each group. Note that the Homework row for
Kathy shows a NULL value, since she only has one homework row, and that row
has a value of NULL for the grade.

The order in which columns are listed in the GROUP BY clause has no sig-
nificance. The results would be the same if the clause were:

GROUP BY Student, GradeType

103

104

Chapter 10 = Summarizing Data

However, as always, the order that columns are listed in the ORDER BY clause is
meaningful. If you switch the ORDER BY clause to:

ORDER BY Student, GradeType

then the results are:

Grade Type Student Average
Homework Alec 88

Quiz Alec 66
Homework Kathy NULL
Quiz Kathy 71.5
Homework Susan 84

Quiz Susan 93.5

This still looks a bit strange, since it’s difficult to tell at a glance that the data is
really sorted by Student and then by Grade Type. As a general rule of thumb, it
often helps if columns are listed in the same order in which columns are sorted.
A more understandable SELECT statement would be:

SELECT

Student AS 'Student ',
GradeType AS 'Grade Type',
AVG (Grade) AS 'Average Grade'
FROM Grades

GROUP BY GradeType, Student
ORDER BY Student, GradeType

The data now looks like:

Student Grade Type Average Grade
Alec Homework 88

Alec Quiz 66

Kathy Homework NULL

Kathy Quiz 715

Susan Homework 84

Susan Quiz 93.5

Selection Criteria on Aggregates

This is more comprehensible, since the column order corresponds to the sort
order.

There’s sometimes a certain confusion as to the difference between the GROUP
BY and ORDER BY clauses. Just remember that the GROUP BY merely creates the
groups. You still need to use the ORDER BY to present your data in the correct
sequence.

Selection Criteria on Aggregates

One more topic needs to be added to our discussion of summarizing data. Once
groups are created, selection criteria becomes a bit more complex. When apply-
ing any kind of selection criteria to a SELECT with a GROUP BY, one has to ask
whether the selection criteria applies to the individual rows or to the entire

group.
In essence, the WHERE clause handles selection criteria for individual rows. SQL

provides a keyword named HAVING, which allows for selection criteria at the
group level.

Returning to the Grades table, let’s say you want to only look at grades on quizzes
that are 70 or higher. The grades you’d like to look at are individual grades, so
you can use the WHERE clause, as normal. Such a SELECT might look like:

SELECT

Student AS 'Student',
GradeType AS 'Grade Type',
Grade AS 'Grade'

FROM Grades

WHERE GradeType = 'Quiz’
AND Grade >= 70

ORDER BY Student, Grade

The resulting data is:

Student GradeType Grade
Alec Quiz 74
Kathy Quiz 81
Susan Quiz 92

Susan Quiz 95

105

106

Chapter 10 = Summarizing Data

Notice that quizzes with a score less than 70 aren’t shown. For example, you can
see Alec’s quiz score of 74, but not his quiz score of 58.

But what if you want to only display data for students who have an average quiz
grade of 70 or more? Then you want to select on an average, not on individual
rows. This is where the HAVING keyword comes in. You need to first group
grades by student and then apply your selection criteria to an aggregate statistic
based on the entire group. The following statement produces what we desire:

SELECT

Student AS 'Student ',

AVG (Grade) AS 'Average Quiz Grade'
FROM Grades

WHERE GradeType = 'Quiz'
GROUP BY Student
HAVING AVG (Grade) >= 70
ORDER BY Student

The output is:

Student Average Quiz Grade
Kathy 71.5
Susan 93.5

This SELECT has both a WHERE and a HAVING clause. The WHERE ensures that
you only select rows with a GradeType of “Quiz.” The HAVING guarantees that
you only select students with an average score of at least 70.

What if you wanted to add a column with the GradeType value? If you attempt
to add GradeType to the SELECT columnlist, the statement will error. This is
because all columns must be either listed in the GROUP BY or involved in an
aggregation. If you want to show the GradeType column, it must be added to the
GROUP BY clause, as follows:

SELECT

Student AS 'Student',
GradeType AS 'Grade Type',
AVG (Grade) AS 'Average Grade'
FROM Grades

WHERE GradeType = 'Quiz'

Looking Ahead

GROUP BY Student, GradeType
HAVING AVG (Grade) >= 70
ORDER BY Student

The resulting data is:

Student Grade Type Average Grade
Kathy Quiz 715
Susan Quiz 93.5

Now that we’ve added the HAVING clause to the mix, let’s recap the general
format of the SELECT statement:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

It should be emphasized that, when employing any of the above keywords in a
SELECT, they need to be entered in the order shown. For example, the HAVING
keyword needs to always be after a GROUP BY but before an ORDER BY.

Looking Ahead

In this chapter, we covered several forms of aggregation, starting with the sim-
plest—that of eliminating duplicates. We then introduced a number of aggregate
functions, which are a different class of functions from the scalar functions seen
in Chapter 4. The real power of aggregate functions becomes apparent when they
are used in conjunction with the GROUP BY keyword, which allows for true
aggregation of data into groups. Finally, we covered the HAVING keyword, which
allows you to apply group-level selection criteria to values in aggregate functions.

In our next chapter, “Combining Tables with an Inner Join,” we’re going to
begin our exploration of a key topic in SQL, the ability to access data from
multiple tables. Up until now, all SELECT queries have been against a single
table. In the real world, this is an unrealistic scenario. The true value of relational
databases lies in their ability to utilize multiple tables with related data. Seldom
would one require data from only a single table.

107

108

Chapter 10 = Summarizing Data

The topic of accessing data from multiple tables will be directly addressed in
Chapters 11 and 12. Chapter 11 covers the inner join and Chapter 12 looks at the
outer join. Subsequently, Chapters 13 through 15 will explore variations on the
same theme. After you complete the next five chapters, you will have mastered
the essential techniques of obtaining data from multiple tables.

CHAPTER 11

COMBINING TABLES
WITH AN INNER JOIN

KEYWORDS INTRODUGED: INNER JOIN, ON

Back in Chapter 1, we talked about the great advance of relational databases over
their predecessors. The significant achievement of relational databases was their
ability to allow data to be organized into any number of tables that are related
but at the same time independent of each other. Unlike earlier databases, the
relationships between tables in relational databases are not explicitly defined by a
series of pointers. Instead, relationships are inferred by columns that tables have
in common. Sometimes, these relationships are formalized by the definition of
primary and foreign keys, but this isn’t always necessary.

The great virtue of relational databases lies in the fact that someone can analyze
business entities and then design an appropriate database design, which allows
for maximum flexibility.

Let’s look at a common example. Most organizations have a business entity
known as the “customer.” As such, it is typical for a database to contain a Cus-
tomers table that defines each customer. Such a table would normally contain a
primary key to uniquely identify each customer and any number of columns
with attributes describing the customer. Common attributes might include
phone number, address, city, state, and so on.

The main idea is that all information about the customer is stored in a single
table and only in that table. This simplifies the task of data updates. When a
customer changes his phone number, there is only one table that needs to be
updated. However, the downside to this setup is that whenever someone needs

109

110

Chapter 11 = Combining Tables with an Inner Join

any information about a customer, that person needs to access the Customers
table to retrieve the information.

This brings us to the concept of a join. Let’s say that someone is analyzing
products that have been purchased. Along with information about the products,
it is often necessary to provide information about the customers who purchased
each product. For example, an analyst may desire to obtain customer ZIP codes
for a geographic analysis. The ZIP code is only stored in the Customers table.
Product information is stored in a Products table. To get information from both
customers and products, the tables must be joined together in such a way that the
information matches correctly.

In essence, the promise of relational databases is fulfilled by the ability to join
tables together in any desired manner.

Joining Two Tables

To begin our exploration of the join process, let’s revisit the Orders table that we
first encountered in Chapter 3:

OrderID FirstName LastName QuantityPurchased PricePerltem
1 William Smith 4 2.50
2 Natalie Lopez 10 1.25
3 Brenda Harper 5 4.00

The use of this table in earlier chapters was somewhat misleading. In reality, a
competent database designer would never create a table such as this. The pro-
blem is that it contains information about two separate entities: customers and
orders. In the real world, the information would be split into at least two separate
tables. A Customers table might look like this:

CustomerID FirstName LastName

1 William Smith
2 Natalie Lopez
3 Brenda Harper
4 Adam Petrie

Joining Two Tables

The Orders table would be similar to this:

OrderlD CustomerlID Quantity PricePerltem
1 1 4 2.50
2 2 10 1.25
3 2 12 1.50
4 3 5 4.00

We'll be using these two tables for the examples in this chapter. Notice a number
of additions. The Customers table now contains information only about custo-
mers. The Orders table now has information only about items purchased. We
added a CustomerID column to the Orders table to tell which customer placed
the order. As you might remember from Chapter 1, this is referred to as a foreign
key. We also added a row to the Orders table to indicate one customer (Natalie
Lopez) who placed more than one order. Additionally, we also added a new row
to the Customers table to represent a potential customer (Adam Petrie) who has
not yet placed an order.

Of course, there’s much information that is still missing. For example, an Orders
table would typically include additional columns, such as one that stores the
order date. Also, an Orders table would typically have a foreign key column with
a product ID, so the order could be linked to information about the product that
was sold. Plus, the Orders table itself might, in fact, be split into more than one
table so that information about the entire order (such as order date) could be
stored separately from information about each item that was ordered (assuming
that a customer could order more than one item in an order).

In other words, this still is not a completely realistic example. But now that we’ve
split our information into two separate tables, we can address how to create a
SELECT statement that can pull data from both tables simultaneously.

Before we get to the SELECT statement itself, we need to address one additional
concern, which is how to represent visually the two tables and the implied
relationship that exists between them. Previously, we displayed each table with
the column names on the top row and corresponding data on subsequent rows.
Now that we have more than one table to deal with, we’re going to introduce
another type of visual representation. Figure 11.1 shows a diagram with both
tables, with the table name on the top row and the column names in each

111

112

Chapter 11 = Combining Tables with an Inner Join

Customers Orders
CustomerlD OrderlD
FirstName e CustomerID
LastName Quantity
PricePerltem
Figure 11.1

Entity-relationship diagram.

subsequent row. This diagram is a simplified version of what is commonly called
an entity-relationship diagram. The term entity refers to the tables, and relation-
ship refers to the lines drawn between the data elements in those tables.

The important point to notice is that we’ve drawn a line from CustomerID in the
Customers table to CustomerID in the Orders table. This indicates that there is a
relationship between these two tables. Both tables share values stored in the
CustomerID column.

The Inner Join

We are now ready to present a SELECT statement with what is called an
inner join:

SELECT *

FROM Customers

INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

Let’s examine this statement line by line. The SELECT keyword on the first
line merely states that we want all (*) columns from both tables. The second line,
with the FROM clause, indicates that the first table we want to specify is the
Customers table. The third line introduces a new INNER JOIN keyword. This
keyword is used to specify an additional table that we want to join to. In this case,
we want to add in the Orders table.

Finally, the fourth line introduces the ON keyword. The ON keyword works in
conjunction with the INNER JOIN. The ON specifies exactly how the two tables
are to be joined. In this case, we are connecting the CustomerID column of
the Customers table (Customers.CustomerID) to the CustomerID column of the

The Inner Join

Orders table (Orders.CustomerID). Since the CustomerID column has the same
name in both the Customers and Orders table, we need to specify the table name
as a prefix to the CustomerID column name in the ON clause. The prefix allows
us to distinguish between these columns in two separate tables.

The above SELECT produces this data:

Customer ID First Name Last Name Order ID Customer ID Quantity PricePerltem

1 William Smith 1 1 4 2.50
2 Natalie Lopez 2 2 10 1.25
2 Natalie Lopez 3 2 12 1.50
3 Brenda Harper 4 3 5 4.00

Let’s analyze the results. Both the Customers table and the Orders table had four
rows. Looking at the OrderID column, you can tell that we have data from all
four rows from the Orders table. However, looking at the CustomerID column,
you might notice that we only have three customers shown. Why is that? The
answer is that the customer with a CustomerID of 4 doesn’t exist in the Orders
table. Since we’re joining the two tables together on the CustomerID field,
we have no rows in the Orders table that match the CustomerID of 4 in the
Customers table.

This brings us to this important observation: An inner join only brings back data
for which there is a match between both tables being joined. In the next chapter,
we’ll talk about an alternative method of joining tables that will allow the
customer information for CustomerID of 4 to be shown, even if there are no
orders for this customer.

Here’s a second important observation: Notice that the customer data for Natalie
Lopez is repeated twice in the above results. She only existed once in the Custo-
mers table, so why is her customer data shown twice? The answer is that all
possible matches are shown. Since Natalie has two rows in the Orders table, both
of these rows match with her row in the Customers table, therefore bringing back
her customer information twice.

Finally, you may be wondering why the join is referred to as an inner join. There
are, in fact, two main variations of the join, the inner join and the outer join.
Outer joins will be covered in the next chapter.

113

114

Chapter 11 = Combining Tables with an Inner Join

Table Order in Inner Joins

An inner join brings back data where there is a match between the two specified
tables. In the previous SELECT, we specified the Customers table in the FROM
clause and the Orders table in the INNER JOIN clause. But does it matter which
table is specified first? As it turns out, the order in which the tables are listed can
be reversed with no difference in the results. The following two SELECT state-
ments are logically identical and bring back the same data:

SELECT *

FROM Customers

INNER JOIN Orders

ON Customers.CustomerID = Orders.CustomerID

SELECT *

FROM Orders

INNER JOIN Customers

ON Orders.CustomerID = Customers.CustomerID

The only difference is that the first statement would display columns from the
Customers table first and the Orders table second. The second statement would
show columns from the Orders table first and the Customers table second.

Remember that SQL is not a procedural language. It doesn’t specify the exact
order in which a task is to be completed. SQL only specifies the desired logic and
leaves it to the internals of the database to decide exactly how to perform a task.
As such, SQL doesn’t determine exactly how the database physically retrieves
data. The database software determines the optimal way of obtaining data
for you.

Alternate Specification of Inner Joins

In the previous examples, we utilized the INNER JOIN and ON keywords to
specify inner joins. It is also possible to specify inner joins with just the FROM and
WHERE clauses.

You have already seen this statement that joins the Customers and Orders tables:

SELECT *

FROM Customers

INNER JOIN Orders

ON Customers.CustomerID = Orders.CustomerID

Table Aliases Revisited

An alternate way of specifying the same inner join without the INNER JOIN and
ON keywords is:
SELECT *

FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID

In this alternate specification, rather than using the INNER JOIN keyword to
specify additional tables to join, we merely list all tables to be joined in the FROM
clause. Instead of using the ON clause to specify how the tables are related, we use
the WHERE clause to specify the relationship between the tables.

Even though this alternate format works perfectly well and produces the same
results, I don’t recommend that it be used. The advantage of the INNER JOIN
and ON keywords is that they explicitly present the logic of the join. That is their
only purpose. Although it is possible to specify the relationship in a WHERE
clause, the meaning of the SQL statement is less obvious when the WHERE clause
is used for selection criteria and also to indicate relationships between multiple
tables.

Table Aliases Revisited

Let’s now look at the columns that were returned from the prior SELECT state-
ment. Since we specified all (*) columns, you can see all columns from both
tables. You can see the CustomerID column twice because that column exists in
both tables. In practice, you would not want this data repeated. Here’s an alter-
nate version of the SELECT, which now specifies only the columns you want to
see. In addition, let’s now specify explicitly both table and column aliases. The
table aliases (C for Customers and O for Orders) are specified right after the
FROM and INNER JOIN keywords by inserting the AS keyword. The syntax now
looks like:

SELECT

.CustomerIDAS 'Cust ID',
.FirstName AS 'First Name',
.LastName AS 'Last Name',
.OrderID AS 'Order ID',
.Quantity AS 'Qty’',
.PricePerItemAS 'Price'

FROM Customers AS C

INNER JOIN Orders AS O

ON C.CustomerID = O.CustomerID

O O 0O N0 N

115

116

Chapter 11 = Combining Tables with an Inner Join

The results are:

Cust ID First Name Last Name Order ID Qty Price
1 William Smith 1 4 2.50
2 Natalie Lopez 2 10 1.25
2 Natalie Lopez 3 12 1.50
3 Brenda Harper 4 5 4.00

Notice that we’re using the AS keyword to specify both column and table aliases.
It should also be mentioned that the AS keyword is completely optional. All of
the AS keywords can be removed from the SELECT, and the statement would
still be valid and return the same results. However, I recommend the use of the
AS keyword for the sake of clarity.

DATABASE DIFFERENCES: Oracle

As mentioned in Chapter 3, table aliases are specified in Oracle without the As keyword. The syntax
for the statement in Oracle is:

SELECT

.CustomerIDAS 'Cust ID',
.FirstName AS 'First Name',
.LastName AS 'Last Name',
.OrderIDAS 'Order ID',
.Quantity AS 'Qty"',
.PricePerItemAS 'Price’

FROM Customers C

INNER JOIN Orders O

ON C.CustomerID =0.CustomerID;

O O 0O N 0O N

Looking Ahead

The ability to join tables together in query is an essential feature of SQL. Rela-
tional databases would be of little use without joins. This chapter focused on the
formulation of the inner join. The inner join brings back data for which there is a
match between both tables being joined. We also talked about an alternate way of
specifying the inner join and the usefulness of specifying table aliases.

In our next chapter, “Combining Tables with an Outer Join,” we will turn to
another important type of join, the outer join. As mentioned, inner joins only

Looking Ahead

allow us to view data when there is a match between the tables being joined. So, if
you have a customer with no orders, you won’t see any customer information
when doing an inner join between a Customers and an Orders table. The outer
join will allow you to view customer information even if there are no orders for a
customer. In other words, the outer join lets us see data that we would not
otherwise be able to obtain with an inner join.

117

This page intentionally left blank

CHAPTER 12

COMBINING TABLES
WITH AN OUTER JOIN

KEYWORDS INTRODUGED: LEFT JOIN,
RIGHT JOIN, FULL JOIN

We now advance from inner to outer joins. The main restriction of inner joins is
that they require a match in all tables being joined to show any results. If you're
joining a Customers table to an Orders table, no data for the customer is shown if
that customer hasn’t yet placed an order. This may seem like a relatively unim-
portant problem, but it often becomes more significant with different types of data.

Let’s say, for example, that we have an Orders table and a Refunds table. The
Refunds table is related to the Orders table by an OrderID. In other words, all
refunds are tied to a specific order. The refund can’t exist unless the order exists.
The problem arises when you want to see both orders and refunds in a single
query. If you join these two tables with an inner join, you won’t see any orders if
refunds were never issued against that order. Presumably, this will be the
majority of your orders. In contrast, the outer join allows you to view orders
even if they don’t have a matching refund, and it is therefore an essential tech-
nique to understand and use.

The Outer Join

All the joins seen in the last chapter were inner joins. Since inner joins are the
most common join type, SQL specifies these as a default, so you can specify an
inner join using only the keyword JOIN. It isn’t necessary to state INNER JOIN.

119

120

Chapter 12 = Combining Tables with an Outer Join

In contrast to inner joins, there are three types of outer joins: LEFT OUTER
JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. These can be referred to
as simply: LEFT JOIN, RIGHT JOIN, and FULL JOIN. In this case, the word
OUTER isn’t necessary. To summarize, my recommendation is to refer to the
four join types as:

m INNER JOIN
m LEFT JOIN
m RIGHT JOIN

m FULL JOIN
This keeps the syntax consistent and easy to remember.

In our discussion of outer joins, we’re going to utilize three tables in our
examples. First, there will be a Customers table with information about each
customer. Second, there will be an Orders table with data on each order placed.
Finally, we will add a Refunds table with information about any refunds that
have been issued to customers.

Figure 12.1 shows how these three tables are connected.

Customers Orders Refunds
CustomerlD OrderlD RefundID
FirstName \‘ CustomerlD T~ OrderlD
LastName OrderDate RefundDate

OrderAmount RefundAmount
Figure 12.1

Entity-relationship diagram.

In contrast to the figure seen in the last chapter, the lines connecting the tables
are now shown as arrows. You can see an arrow drawn from the CustomerID
field of the Customers table to the CustomerID field of the Orders table. This
arrow indicates that the link between the Customers and Orders tables is possibly
one-sided in the sense that there may not be any orders for any given customer.
Additionally, there may be multiple orders for a single customer. Similarly, the
arrow drawn between the Orders and Refunds tables indicates that there may not
be any refunds for any given order, and that there may be multiple refunds for an
order.

The Outer Join

The line between the Customers and Orders tables is on the CustomerID
columns because the CustomerID is the common link between these two tables.
Similarly, the line between the Orders and Refunds tables is on the OrderID
columns because the OrderID is the common link between these two tables.

In other words, the Orders table is related to the Customers table by customer.
There must be a customer for an order to exist. The Refunds table is related to
the Orders table by the order. There must be an order before a refund is issued.
Note that the Refunds table is not directly related to the Customers table. How-
ever, by joining all three tables together, we will be able to determine which
customer a given refund was for.

Let’s now examine the contents of each table. The Customers table has these
values:

CustomerID FirstName LastName
1 William Smith

2 Natalie Lopez

3 Brenda Harper

4 Adam Petrie

The Orders table has this data:

OrderID CustomerID OrderDate OrderAmount
1 1 2009-09-01 10.00
2 2 2009-09-02 12.50
3 2 2009-10-03 18.00
4 3 2009-09-15 20.00

The Refunds table contains this data:

RefundID OrderID RefundDate RefundAmount

1 1 2009-09-02 5.00
2 3 2009-10-12 18.00

121

122

Chapter 12 = Combining Tables with an Outer Join

Notice that three out of the four customers have placed orders. Likewise, only

two refunds have been issued for the four orders placed.

Left Joins

Let’s now create a SELECT statement that joins all three tables together, using a

LEFT JOIN:

SELECT

Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt ',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds

ON Orders.OrderID = Refunds.OrderID

ORDER BY Customers.CustomerID, Orders.OrderID, RefundID

The resulting data looks like:

First Name Last Name Order Date Order Amt Refund Date = Refund Amt
William Smith 2009-09-01 10.00 2009-09-02 5.00

Natalie Lopez 2009-09-02 12.50 NULL NULL

Natalie Lopez 2009-10-03 18.00 2009-10-12 18.00

Brenda Harper 2009-09-15 20.00 NULL NULL

Adam Petrie NULL NULL NULL NULL

DATABASE DIFFERENCES: Oracle

Unlike SQL Server and MySQL, Oracle typically displays dates in a DD-MMM-YY format. For
example, the date 2009-09-02 in the previous table will display as 02-SEP-09 in Oracle. However,
no matter which database you're using, the exact format in which dates are displayed will vary,

depending on how your database was set up.

Left Joins

Before analyzing the previous SELECT statement, notice that there are two
interesting aspects of the data you can see. First, Adam Petrie has no data shown
other than his name. The reason for the lack of data is that there are no rows in
the Orders table associated with that customer. The power of the outer join
comes from the fact that you can see some data for Adam Petrie, even if he has no
orders. If we had specified an INNER JOIN rather than a LEFT JOIN, you would
see no rows at all for Adam.

Similarly, you can see no refund data for either the 9/2/2009 order from Natalie
Lopez or the order from Brenda Harper—because there are no rows in the Re-
funds table associated with those orders. If we had specified an INNER JOIN
rather than a LEFT JOIN, you would see no rows for those two orders.

Let’s now look at the SELECT statement itself. The first few lines that specify the
columns are nothing that you haven’t seen before. Notice that rather than using
table aliases, we’re listing all the columns with their full names, with the table as a
prefix.

The first table listed is the Customers table. This table is shown after the FROM
keyword. The second table shown is the Orders table, which appears after the
first LEFT JOIN keyword. The subsequent ON clause specifies how the Orders
table is linked to the Customers table. The third table shown is the Refunds table,
which appears after the second LEFT JOIN keyword. The subsequent ON clause
specifies how the Refunds table is joined to the Orders table.

It is critical to realize that the order in which tables are listed in reference to the
LEFT JOIN keyword is significant. When specifying a LEFT JOIN, the table to
the left of LEFT JOIN is always the primary table. The table to the right of
the LEFT JOIN is the secondary table. When joining between the primary and
secondary tables, we want all rows in the primary table, even if there are no
matches with any rows in the secondary table.

In the first specified LEFT JOIN, the Customers table is on the left and the
Orders table is on the right of the LEFT JOIN, which signifies that Customers is
primary and Orders is secondary. In other words, we want to see all selected data
from the Customers table, even if there isn’t a corresponding match in the
secondary table for that row.

Similarly, in the second LEFT JOIN, the Orders table is to the left and the
Refunds table is to the right. That means that we are specifying Orders as primary

123

124

Chapter 12 = Combining Tables with an Outer Join

and Refunds as secondary in this join. We want all orders, even if there are no
matching refunds for that order.

Finally, we included an ORDER BY clause. Notice that the fields specified in the
ORDER BY are not selected in the original columnlist.

Testing for NULL Values

In the previous SELECT, we had one customer with no orders and two orders
with no associated refunds. Unlike the INNER JOIN, the LEFT JOIN allows
these rows with missing values to appear.

To test your understanding of the LEFT JOIN, let’s now ask how we would list
only those orders for which no refund was issued. The solution involves adding a
WHERE clause that tests for NULL values, as follows:

SELECT

Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt'

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds

ON Orders.OrderID = Refunds.OrderID

WHERE Orders.OrderID IS NOT NULL

AND Refunds.RefundID IS NULL

ORDER BY Customers.CustomerID, Orders.OrderID

The resulting data is:

First Name Last Name Order Date Order Amt

Natalie Lopez 2009-09-02 12.50
Brenda Harper 2009-09-15 20.00

The WHERE clause first tests Orders.OrderID to make sure that it isn’t NULL.
Doing so ensures that you don’t see customers who never placed an order. The
second portion of the WHERE clause tests Refunds.RefundID to make sure that it
is NULL. This ensures that you only see orders that don’t match a refund.

Table Order in Outer Joins

Right Joins

The previous SELECT statements utilized the LEFT JOIN keyword. The good
news about right joins is that they are identical in concept to the left join. The
only difference between left and right joins is the order in which the two tables in
the join are listed.

In left joins, the primary table is listed to the left of the LEFT JOIN keyword. The
secondary table, which may or may not contain matching rows, is listed to
the right of the LEFT JOIN keyword.

In right joins, the primary table is listed to the right of the RIGHT JOIN keyword.
The secondary table is listed to the left of the RIGHT JOIN keyword. That’s the
only difference.

The FROM clause of the previous SELECT statement was:

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds

ON Orders.OrderID = Refunds.OrderID

If we desire to restate this using right joins, we could change it to:

FROM Refunds

RIGHT JOIN Orders

ON Orders.OrderID = Refunds.OrderID

RIGHT JOIN Customers

ON Customers.CustomerID = Orders.CustomerID

The point to note is that it’s only the order in which tables are listed before and
after the RIGHT JOIN that matters. The order in which columns are listed after
the ON keyword has no significance.

Basically, this means that it’s completely unnecessary to ever use the RIGHT JOIN
keyword. Anything that can be specified with a RIGHT JOIN can be specified with
a LEFT JOIN. Our suggestion is to stick with the LEFT JOIN, since we intuitively
tend to think in terms of listing more important, or primary, tables first.

Table Order in Outer Joins

We previously noted that the order in which tables were specified in an inner join
was not material. The same is not true of outer joins, since the order that tables

125

126

Chapter 12 = Combining Tables with an Outer Join

are listed in a left or right join is significant. However, there is some flexibility in
listing the tables in situations where there are three or more tables. The order of
the left (or right) join keywords can be switched around if desired.

Let’s again look at the original FROM clause from the previous SELECT:

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds

ON Orders.OrderID = Refunds.OrderID

We’ve already seen that you can list the Refunds table first and the Customers
table last, as long as you convert everything to right joins, as in:

FROM Refunds

RIGHT JOIN Orders

ON Orders.OrderID = Refunds.OrderID

RIGHT JOIN Customers

ON Customers.CustomerID = Orders.CustomerID

Is it possible to list the Customers table first and then the Refunds table, followed
by the Orders table? Yes, as long as you’re willing to mix left and right joins
together and throw in some parentheses. The following is equivalent to the
above:

FROM Customers

LEFT JOIN (Refunds

RIGHT JOIN Orders

ON Orders.OrderID = Refunds.OrderID)

ON Customers.CustomerID = Orders.CustomerID

What was originally a fairly simple statement has now turned into something
unnecessarily complex. Our advice is to stick with the LEFT JOIN keyword and
avoid parentheses when devising complex FROM clauses with multiple tables.

Full Joins

The remaining outer join type is the full join. You’ve seen that in left and right
joins, one table is primary and the other one is secondary. Alternatively, you can
say that one table is required and one is optional, which means that when
matching two tables, rows in the secondary (or optional) table don’t necessarily
have to exist.

Full Joins 127

In the inner join, both tables are primary (or required). When matching two
tables, there has to be a match between both tables for a row of data to be
selected.

In the full join, both tables are secondary (or optional). In this situation, if we’re
matching rows in table A and table B, then we display 1) all rows from table A,
even if there is no matching row in table B, and also 2) all rows from table B, even
if there is no matching row in table A.

DATABASE DIFFERENCES: MySQlL
Unlike Microsoft SQL Server and Oracle, MySQL doesn’t provide for a full join.

Let’s look at an example involving matching rows from these two tables. First,
a Movies table:

MovielD MovieTitle Rating

1 Sleepless in Seattle PG

2 Lost in America R

3 Bambi G

4 North by Northwest Not Rated
5 Forrest Gump PG-13

6 The Truman Show PG

Second, a Ratings table:

RatingID Rating RatingDescription

1 G General Audiences

2 PG Parental Guidance Suggested

3 PG-13 Parents Strongly Cautioned

4 R Restricted

5 NC-17 No One 17 and Under Admitted

The Movies table has a list of movies in the database and includes the MPAA
rating for each movie. The Ratings table has a list of the ratings and their
descriptions. Let’s say you want to find all matches between these two tables.
You're going to use a FULL JOIN to show all rows from the Movies table, as well

128

Chapter 12 = Combining Tables with an Outer Join

as all rows from the Ratings table. The full join will show all rows, even if a match
from the other table isn’t found. The SELECT looks like:

SELECT

MovieTitle AS 'Movie',

RatingDescription AS 'Rating Description'
FROM Movies

FULL JOIN Ratings

ON Movies.Rating =Ratings.Rating

ORDER BY RatingDescription, MovieTitle

The result of this statement is:

Movie Rating Description

North by Northwest NULL

Bambi General Audience

NULL No One 17 and Under Admitted
Sleepless in Seattle Parental Guidance Suggested
The Truman Show Parental Guidance Suggested
Forrest Gump Parents Strongly Cautioned
Lost in America Restricted

Notice that there are two blank cells in the data, which is a direct result of having
used a FULL JOIN. In the first instance, there is no rating shown for North by
Northwest because there was no matching row in the Ratings table for that
movie. In the second instance, there is no movie shown for the “No One 17 and
Under Admitted” rating description because there were no matching rows in the
Movies table for that rating.

The full join is seldom used in practice for the simple reason that this type of
relationship between tables is relatively uncommon. In essence, the full join
shows data where there are nonmatches in both directions between two tables.
We are normally only interested in data where there is a complete match between
two tables (the inner join) or perhaps a one-sided match (the left or right join).

Looking Ahead

This chapter extended our discussion of joins to left, right, and full joins. The left
join enables you to join a primary and a secondary table together. The left join

Looking Ahead

shows all rows in the primary table, even if there is no match in the secondary
table. The right join is simply the reverse of the left join, switching the order of
the primary and secondary tables. Finally, the full join enables both tables to be
secondary tables. It displays all rows that are in either table, even if there isn’t a
match in the other table.

In our next chapter, “Self Joins and Views,” we’re going to take a slight detour to
two related topics. First, we’re going to talk about self joins, which is a special
technique that allows us to join a table to itself. In a way, this creates a virtual
view of the table, in the sense that we can now view this table from two different
perspectives. The second main topic of the next chapter will extend the concept
of self joins to a more general way of creating virtual views of multiple tables.

129

This page intentionally left blank

CHAPTER 13

SELF JOINS AND VIEWS

KEYwWORDS INTRODUGCED: CREATE VIEW,
ALTER VIEW, DROP VIEW

The inner and outer joins of the past two chapters have dealt with various ways
of combining data from multiple tables. We’re now going to examine alternate
ways of using and defining tables. Previously, we’ve always assumed that the data
we’re looking at physically exists in tables in a database. We’ll now turn to two
techniques that will let us view data in a virtual way.

The first technique, the self join, allows you to refer to the same table twice, as if
it were two separate tables. In essence, the self join creates a virtual view of a
table, allowing it to be used more than once.

Second, you’ll learn about database views, which are a useful concept that
enables you to create new virtual tables at will.

Self Joins

The self join lets you join a table to itself. The most common use of the self join is
to deal with tables that are self-referencing in nature. These are tables that have a
column that refers to another column in the same table. A common example of
this type of relationship is a table that contains information about employees.

In this example, each row in a Personnel table has a column that points to
another row in the same table, representing the employee’s manager. In some
ways, this is similar to the concept of foreign keys. The main difference is that,
whereas foreign keys point to columns in other tables, we now have columns that
point to rows in the same table.

131

132

Chapter 13 = Self Joins and Views

Let’s look at the data in this Personnel table:

EmployeelD EmployeeName ManagerID

Susan Ford NULL
Harold Jenkins

Jacqueline Baker
Richard Fielding
Carol Bland
Janet Midling
Andrew Brown
Anne Nichol
Bradley Cash
David Sweet

O 00 N O U1l B W N —
Ul B D W NN = = -

—_
o

The ManagerID column tells which manager the employee reports to. The ID
number in this column corresponds to the numbers in the EmployeelD column.
For example, Harold Jenkins has a ManagerID of 1. This indicates that Harold’s
manager is Susan Ford, who has an EmployeelD of 1.

Similarly, it can be seen that the three people who report to Susan Ford are
Harold Jenkins, Jacqueline Baker, and Richard Fielding. Notice that Susan Ford
has no value in the ManagerID column. This indicates that she is the head of the
company. She has no manager.

Now, let’s say that we want to list all employees and show the name of the
manager who each employee reports to. To accomplish this, we’re going to cre-
ate a self join of the Employees table to itself. A table alias must always be used
with self joins so you have a way of distinguishing each instance of the table. The
first instance of the table will be given a table alias of Employees, and the second
instance will be given a table alias of Managers. Here’s the statement:

SELECT

Employees.EmployeeName AS 'Employee Name',
Managers.EmployeeName AS 'Manager Name'

FROM Personnel AS Employees

INNER JOIN Personnel AS Managers

ON Employees.ManagerID = Managers .EmployeelID
ORDER BY Employees.EmployeeID

Self Joins

The resulting data is:

Employee Name Manager Name
Harold Jenkins Susan Ford
Jacqueline Baker Susan Ford
Richard Fielding Susan Ford

Carol Bland Harold Jenkins
Janet Midling Harold Jenkins
Andrew Brown Jacqueline Baker
Anne Nichol Richard Fielding
Bradley Cash Richard Fielding
David Sweet Carol Bland

The trickiest part of this SELECT is the ON clause in the join. To get the self join
to work correctly, we need to use the ON to establish a relationship between
the ManagerID column of the Employees view of the Personnel table and the
EmployeelD column of the Managers view of the table. In other words, the
indicated manager is also an employee.

Notice that Susan Ford isn’t shown in the previous data because we utilized an
inner join in the statement. Since Susan Ford has no manager, there is no match
to the Managers view of the table. If we want Susan to be included, we merely
need to change the line:

INNER JOIN Personnel AS Managers

to:

LEFT JOIN Personnel AS Managers

The data retrieved is then:

Employee Name Manager Name
Susan Ford NULL

Harold Jenkins Susan Ford
Jacqueline Baker Susan Ford
Richard Fielding Susan Ford

Carol Bland Harold Jenkins
Janet Midling Harold Jenkins

(continued)

133

134 Chapter 13 = Self Joins and Views

Employee Name Manager Name
Andrew Brown Jacqueline Baker
Anne Nichol Richard Fielding
Bradley Cash Richard Fielding
David Sweet Carol Bland

Creating Views

The self join allows you to create multiple views of the same table. We’re now
going to extend this concept to the ability to create new views of any table or any
combination of tables.

Views are merely SELECT statements that have been saved in a database. Once
saved, the view can be referred to the same as any table in the database. Database
tables contain physical data. Views do not contain data, but allow you to proceed
as if the view were a real table with data.

Why are views necessary? We'll get into the benefits of views in detail later in the
chapter, but in short, the answer is that views provide added flexibility as to how
you can access data. Whether your database has been around for one day or for
years, your data is stored in tables in that database in a very specific manner. As
time moves on, requirements for accessing that data change, but it isn’t always easy
to reorganize the data in your database to meet new requirements. The great
advantage of views is that they allow you to create new virtual views of the data
that is already in your database. Views enable you to create the equivalent of new
tables without actually having to physically rearrange data. As such, views add a
dynamic element to your ability to keep your database design fresh and up to date.

How is a view stored in a database? All relational databases consist of a number
of different object types. The most important type is the table. However, most
database management software allows users to save any number of other object
types. The most common of these are views and stored procedures. There are
often many other object types in a database. For example, Microsoft SQL Server
allows users to create many other object types, such as functions and triggers.

SQL provides the CREATE VIEW keyword to enable users to create new views.
The syntax is as follows:

CREATE VIEW ViewName AS
SelectStatement

Creating Views 135

After the view is created, the ViewName is used to reference the data that would
be returned from the SelectStatement in the view.

Here’s an example. In the last chapter, we looked at this SELECT statement:

SELECT

Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds

ON Orders.OrderID = Refunds.OrderID

ORDER BY Customers.CustomerID, Orders.OrderID, RefundID

This statement returned this data:

First Name Last Name Order Date Order Amt Refund Date Refund Amt

William Smith 2009-09-01 10.00 2009-09-02 5.00

Natalie Lopez 2009-09-02 12.50 NULL NULL
Natalie Lopez 2009-10-03 18.00 2009-10-12 18.00
Brenda Harper 2009-09-15 20.00 NULL NULL
Adam Petrie NULL NULL NULL NULL

How would we set up this SELECT statement as a view? We simply place the
entire SELECT statement in a CREATE VIEW statement as follows:

CREATE VIEW CustomersOrdersRefunds AS
SELECT

Customers.FirstName AS 'First Name',
Customers.LastName AS 'Last Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'

136

Chapter 13 = Self Joins and Views

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds

ON Orders.OrderID = Refunds.OrderID

The only item missing in the above CREATE VIEW is the ORDER BY clause of the
original SELECT statement. Since views aren’t stored as physical data, there is no
point in including an ORDER BY clause in a view.

Referencing Views

When we execute the above CREATE VIEW statement, it creates a view called
CustomersOrdersRefunds. Creating the view does not return any data. It merely
defines the view for later use.

To use the view to bring back the same data as before, we execute this SELECT
statement:

SELECT *
FROM CustomersOrdersRefunds

This retrieves:

First Name Last Name Order Date Order Amt Refund Date Refund Amt

William Smith 2009-09-01 10.00 2009-09-02 5.00

Natalie Lopez 2009-09-02 12.50 NULL NULL
Natalie Lopez 2009-10-03 18.00 2009-10-12 18.00
Brenda Harper 2009-09-15 20.00 NULL NULL
Adam Petrie NULL NULL NULL NULL

What if you only wanted to see a few columns from the view for one specific
customer? You could issue a SELECT statement such as:

SELECT

[First Name],

[Last Name] ,

[Order Date]

FROM CustomersOrdersRefunds
WHERE [Last Name] = 'Lopez'

Benefits of Views 137
The output is:
First Name Last Name Order Date

Natalie Lopez 2009-09-02
Natalie Lopez 2009-10-03

It is important to note that when you reference columns in this view, you need to
specify the column alias names that were specified when the view was created.
You can no longer reference original column names. For example, the view
assigns a column alias named ‘First Name’ for the Customers.FirstName
column. In Microsoft SQL Server, these column aliases are enclosed in square
brackets due to the embedded spaces in the names.

DATABASE DIFFERENCES: MySQL and Oracle

As discussed in Chapter 2, MySQL and Oracle use different characters around columns containing

spaces. MySQL uses the accent grave (°); Oracle uses double quotes ().

Benefits of Views

The previous example illustrates one of the important benefits of using views.
Once a view is created, that view can be referenced just like it was a table. Even if
the view were created from multiple tables joined together, it now appears,
logically, to be just one table.

Let’s summarize the benefits of using views:

m Views can reduce complexity. First, views can simplify SELECT statements
that are particularly complex. For example, if you have a SELECT statement
that joins six tables together, it may be useful to create views with two or
three tables each. You can reference those views in a SELECT statement that
is less complex than the original.

m Views can increase reusability. If you have a situation where three tables
are always joined together, you can create a view with those three tables.
Then, instead of always having to join those three tables every time you need
data from those tables, you can simply reference a predefined view.

138

Chapter 13 = Self Joins and Views

m Views can properly format data. If you have a column that is not formatted
correctly in your database, you can use the CAST or other functions to for-
mat that column exactly as you want. For example, you may have a date
column that is stored as an integer datatype in your database in a
YYYYMMDD format. Users may prefer to view this data as a date/time
column so it can be presented and used as a true date. To accomplish this, a
view can be created on the table, which transforms that column to the
proper format. Then all subsequent references to that table can reference the
new view rather than the table.

m Views can create calculated columns. Let’s say that you have two columns
in a table: Quantity and PricePerltem. Your users are usually interested in
TotalPrice data, which is found by multiplying the two columns together.
You can create a view of the original table easily with a new calculated col-
umn that contains this calculation. Users can then reference the new view
and always have the calculation available.

m Views can be used to rename column names. If your database contains
cryptic column names, you can create views with column aliases to translate
those names into something more meaningful.

m Views can create a subset of data. Let’s say you have a table with all your
customers. Most of your users only need to see customers who have placed
an order during the past year. You can easily create a view that has this
useful subset of data.

m Views can be used to enforce security restrictions. You may have a situa-
tion where you want certain users to be able to access only certain columns
in a given table. To accomplish this, you can create a view of the table for
those users. You can then use the security features of your database to grant
access to the new view for those users, while restricting them from accessing
the underlying table.

Modifying and Deleting Views

After a view is created, it can be modified easily by using the ALTER VIEW
statement. Here’s the syntax:

ALTER VIEW ViewName AS
SelectStatement

Looking Ahead

When altering a view, you need to completely specify the entire SELECT state-
ment contained in the view. The original SELECT in the view gets replaced by
the new SELECT that you specify.

Let’s say that you originally created a view with this statement:

CREATE VIEW CustomersView AS
SELECT

FirstName AS 'First Name',
LastName AS 'Last Name'

FROM Customers

If you now want to modify the view to add a new column for middle name, you
can issue a statement such as:

ALTER VIEW CustomersView AS
SELECT

FirstName AS 'First Name',
MiddleName AS 'Middle Name',
LastName AS 'Last Name'

FROM Customers

Once again, creating or altering a view does not return any data. It merely creates
or modifies the definition of the view.

DATABASE DIFFERENCES: Oracle

Unlike Microsoft SQL Server and MySQL, the ALTER VIEW command in Oracle is more restrictive.
To accomplish the previous ALTER VIEW in Oracle, you would need to issue a DROP VIEW and
then a CREATE VIEW with the new view definition.

The DROP VIEW statement is used to delete a view you previously created. The
syntax is:

DROP VIEW ViewName

If you want to delete the CustomersView view you created earlier, you can issue
this statement:

DROP VIEW CustomersView

Looking Ahead

Self joins and views are two different ways to view data in a virtual manner. The
self join allows you to join a table to itself. Views are much more flexible.

139

140

Chapter 13 = Self Joins and Views

Essentially, any SELECT statement can be saved as a view, which can then be
referenced like any normal table. Unlike tables, views do not contain any data.
They merely define a new virtual view of data in existing tables. Views serve a
wide variety of functions, from reducing complexity to reformatting data. Once
created, views can be modified or deleted with the ALTER VIEW and DELETE
VIEW statements.

b

In our next chapter, “Subqueries,” we are going to return to a topic more
directly related to our prior discussion of how to join tables together. Subqueries
provide a method of relating tables to each other without making explicit use of
an inner or outer join. Due to the wide variety of types of subqueries and ways in
which they can be used, this is probably the most difficult but potentially
rewarding subject in this book. There’s actually quite a bit of flexibility as to how
and when subqueries can be used. As such, this is something that lends itself to a
certain amount of creativity in your query designs.

CHAPTER 14

SUBQUERIES

KEYWORD INTRODUCED: EXISTS

In Chapter 4, we talked about composite functions. These were functions that
contained other functions. In a similar manner, it is possible for SQL queries to
contain other queries. The queries that are contained within other queries are
called subqueries.

The topic of subqueries is somewhat complex, primarily because there are many
different ways in which they can be used. Subqueries can be found in many dif-
ferent parts of the SELECT statement, each with different nuances and require-
ments. As a query contained within another query, subqueries can be related to
and dependent on the main query, or they can be completely independent of the
main query. Again, this distinction results in different usage requirements.

No matter how subqueries are used, they add a great deal of flexibility to the ways
in which you can write SQL queries. It many cases, subqueries provide func-
tionality that could be accomplished by other means. In such instances, personal
preferences will come into play as you decide whether or not you want to utilize
the subquery solution. However, as you will see, there are certain situations
where subqueries are absolutely essential for the task at hand.

With that, let’s begin our discussion with an outline of the basic types of subqueries.

Types of Subqueries

Subqueries can be utilized not only with SELECT statements, but also with
the INSERT, UPDATE, and DELETE statements, which will be covered in

141

142

Chapter 14 = Subqueries

Chapter 17. In this chapter, however, we’re going to restrict our discussion of
subqueries to the SELECT.

Here’s the general SELECT statement that we have seen:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

Subqueries can be inserted into virtually any of the clauses in the SELECT
statement. However, the way in which the subquery is stated and used
varies slightly, depending on whether it is used in a columnlist, a tablelist, or a
condition.

But what exactly is a subquery? A subquery is merely a SELECT statement that is
inserted inside another SELECT statement. Additionally, a SELECT statement
can have more than one subquery.

To sum up, there are three main ways in which subqueries can be specified:

m When a subquery is part of a tablelist, it specifies a data source.

m When a subquery is part of a condition, it becomes part of the selection
criteria.

m When a subquery is part of a columnlist, it creates a single calculated
column.

The remainder of this chapter will explain each of these three scenarios in
detail.

Using a Subquery as a Data Source

When a subquery is specified as part of the FROM clause, it instantly creates a new
data source. This is similar to the concept of creating a view and then referencing
that view in a SELECT. The only difference is that a view is permanently saved in
a database. A subquery used as a data source isn’t saved. It exists only tempora-
rily, as part of the SELECT statement.

Using a Subquery as a Data Source

We will first consider an example that illustrates how subqueries can be used as
data sources. Let’s say we have this Customers table:

CustomerID CustomerName
1 William Smith

2 Natalie Lopez

3 Brenda Harper

4 Adam Petrie

Also, this Orders table:

OrderID CustomerID OrderAmount OrderType

1 1 22.25 Cash
2 2 11.75 Credit
3 2 5.00 Credit
4 2 8.00 Cash
5 3 9.33 Credit
6 3 10.11 Credit

We would like to see a list of customers, along with a total sum of the cash orders
they have placed. The following SELECT accomplishes that task:

SELECT

CustomerName AS 'Customer Name',

ISNULL (CashOrders.SumOfOrders, 0) AS 'Total Cash Orders'
FROM Customers

LEFT JOIN

(SELECT

CustomerlID,

SUM (OrderAmount) as 'SumOfOrders'
FROM Orders

WHERE OrderType = 'Cash'

GROUP BY CustomerID) AS CashOrders

ON Customers.CustomerID = CashOrders.CustomerID
ORDER BY Customers.CustomerID

Two blank lines were inserted to clearly separate the subquery from the rest of
the statement. The subquery is the middle section of the statement.

143

144

Chapter 14 = Subqueries

The results were:

Customer Name Total Cash Orders
William Smith 22.25

Natalie Lopez 8.00

Brenda Harper 0

Adam Petrie 0

Adam Petrie shows no cash orders, since he didn’t place any orders. Even though
Brenda Harper placed two orders, they were both credit orders, so she also shows
no cash orders. Note that the ISNULL function converts the NULL values that
would normally appear for Adam and Brenda to a 0.

Let’s now analyze how the subquery works. The subquery in the previous state-
ment is:

SELECT

CustomerlID,

SUM (OrderAmount) as 'Total Cash Orders'
FROM Orders

WHERE OrderType = 'Cash'

GROUP BY CustomerID

In general form, the main SELECT statement in the above is:

SELECT

CustomerName AS 'Customer Name',

ISNULL (OrderCounts.SumOfOrders, 0) AS 'Total Cash Orders'
FROM

Customers

INNER JOIN

(subquery) AS CashOrders

ON Customers.CustomerID = CashOrders.CustomerID

ORDER BY Customers.CustomerID

If the subquery were executed by itself, the results would be:

CustomerID SumOfOrders

1 2.25
2 8

Using a Subquery in Selection Criteria

We only see data for customers 1 and 2. The WHERE clause in the subquery
enforces the restriction that we only look at cash orders.

In this example, the entire subquery is referenced as if it were a separate table or
view. Notice that the subquery is given a table alias of CashOrders, which allows
the columns in the subquery to be referenced in the main SELECT. As such, the
following line in the main SELECT references data in the subquery:

ISNULL (CashOrders.SumOfOrders, 0) AS 'Total Cash Orders'

CashOrders.SumOfOrders is a column that is taken from the subquery.

Is it truly necessary to use a subquery to obtain the desired data? In this case, the
answer is yes. We might have attempted to simply join the Customers and
Orders tables via a left join, as in the following:

SELECT

CustomerName AS 'Customer Name',

Sum (OrderAmount) AS 'Total Cash Orders'

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
WHERE OrderType = 'Cash'

GROUP BY Customers.CustomerID, CustomerName
ORDER BY Customers.CustomerID

However, this statement yields the following data:

Customer Name Total Cash Orders

William Smith 22.25
Natalie Lopez 8.00

We no longer see any rows for Brenda Harper or Adam Petrie, because the WHERE
clause exclusion for cash orders is now in the main query rather than in a subquery.
As a result, we no longer see any rows for customers who didn’t place cash orders.

Using a Subquery in Selection Criteria

In Chapter 8, we introduced the first format of the IN operator. The example we
used was:

WHERE State IN ('IL', 'NY')

145

146

Chapter 14 = Subqueries

In this format, the IN operator merely lists a number of values in parentheses.
There is also a second format for the IN, one in which an entire SELECT state-
ment is inserted inside the parentheses. For example, a list of states might be
specified as:

WHERE State IN

(SELECT

States

FROM StateTable

WHERE Region = 'Midwest ')

Rather than list individual states, the second format allows us to generate a list of
states through more complex logic.

Let’s illustrate with an example that uses our Customers and Orders tables. Let’s
say we want to retrieve a list of customers who have ever paid cash for any order
they’ve placed. A SELECT that accomplishes this is:

SELECT CustomerName AS 'Customer Name'
FROM Customers

WHERE CustomerID IN

(SELECT CustomerID

FROM Orders

WHERE OrderType = 'Cash')

The resulting data is:

Customer Name

William Smith
Natalie Lopez

Brenda Harper is not included in the list because she has never placed an order
using cash. Notice that a subquery SELECT is placed entirely within the parentheses
for the IN keyword. Also note that the CustomerID column is used to connect the
two queries. Even though we are displaying CustomerName, we use CustomerID
to define the relationship between the Customers and Orders tables.

Once again, we can ask whether this subquery can also be expressed as a normal
query, and the answer is yes. Here is an equivalent query that returns the
same data:

Correlated Subqueries

SELECT CustomerName AS 'Customer Name'

FROM Customers

INNER JOIN Orders

ON Customers.CustomerID = Orders.CustomerID

WHERE OrderType = 'Cash'

GROUP BY Customers.CustomerID, Customers.CustomerName

Without using a subquery, we can directly join the Customers and Orders table.
However, a GROUP BY clause is now needed to ensure that we only bring back
one row per customer.

Correlated Subqueries

The subqueries we’ve seen so far have been uncorrelated subqueries. Generally
speaking, all subqueries can be classified as either uncorrelated or correlated.
These terms describe whether the subquery is related to the query in which it is
contained. Uncorrelated subqueries are unrelated. When a subquery is
unrelated, that means that it is completely independent of the outer query.
Uncorrelated queries are evaluated and executed only once as part of the entire
SELECT statement.

In contrast, correlated subqueries are specifically related to the outer query.
Because of this explicit relationship, correlated subqueries need to be evaluated
for each row returned and can produce different results each time the subquery is
executed.

The best way to explain is with an example. Returning to the Customers and
Orders tables, let’s say we want to produce a list of customers who have a total
order amount that is less than 20 dollars. Here’s a statement that accomplishes
that request:

SELECT

CustomerName as 'Customer Name'

FROM Customers

WHERE

(SELECT

SUM (OrderAmount)

FROM Orders

WHERE Customers.CustomerID = Orders.CustomerID)
<20

147

148

Chapter 14 = Subqueries

The result is:

Customer Name

Brenda Harper

What makes this subquery correlated, as opposed to uncorrelated? The answer
can be seen by looking at the subquery itself:

SELECT

SUM (OrderAmount)

FROM Orders

WHERE Customers.CustomerID = Orders.CustomerID

This subquery is correlated because it cannot be executed on its own. If run by
itself, this subquery would error because the Customers.CustomerID column
doesn’t exist within the context of the subquery.

To understand what’s going on, it’s helpful to look at the entire SELECT state-
ment in a general way:

SELECT

CustomerName as 'Customer Name'
FROM Customers

WHERE

SubqueryResult < 20

As a correlated subquery, the subquery needs to be evaluated for each customer.
Also note that this type of subquery only works if it returns a single value.

Again, one might ask if this subquery could be converted into a normal SELECT
statement. In this case, it can. Here’s an equivalent statement that produces the
same results:

SELECT

CustomerName as 'Customer Name'

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
GROUP BY Customers.CustomerID, CustomerName
HAVING SUM (OrderAmount) < 20

Notice that, without a subquery, the equivalent statement now requires
GROUP BY and HAVING clauses. The GROUP BY clause creates groups of

The EXISTS Operator

customers, and the HAVING clause enforces the requirement that each group
must have ordered less than 20 dollars.

The EXISTS Operator

One additional technique associated with correlated subqueries is the use of a
special operator called EXISTS. This operator allows you to determine if data in
a correlated subquery exists. Let’s say that you want to discover which customers
have placed orders. One way of accomplishing that is with this statement:

SELECT

CustomerName AS 'Customer Name'

FROM Customers

WHERE EXISTS

(SELECT *

FROM Orders

WHERE Customers.CustomerID = Orders.CustomerID)

This statement returns:

Customer Name
William Smith
Natalie Lopez
Brenda Harper

Adam Petrie doesn’t appear in the results since he has not placed any orders. The
EXISTS keyword in the above statement is evaluated as true if the SELECT in
the correlated subquery returns any data. Notice that the subquery selects all
columns (SELECT *). Since it doesn’t really matter what particular data is
selected in the subquery, we use the asterisk to return all data. We’re only inter-
ested in determining whether any data exists in the subquery.

As before, the logic in this statement can be expressed in other ways. Here’s a
statement that obtains the same results using a subquery with the IN operator:

SELECT

CustomerName AS 'Customer Name'
FROM Customers

WHERE CustomerID IN

(SELECT CustomerID

FROM Orders)

149

150

Chapter 14 = Subqueries

Here’s another statement that retrieves the same data without a subquery:

SELECT

CustomerName AS 'Customer Name'

FROM Customers

INNER JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
GROUP BY CustomerName

Using a Subquery as a Calculated Column

The final general use of subqueries is as a calculated column. Let’s say we would
like to see a list of customers, along with a count of the number of orders they
have placed.

This query can actually be accomplished without subqueries with this statement:

SELECT

CustomerName AS 'Customer Name',

COUNT (OrderID) AS 'Number of Orders'

FROM Customers

LEFT JOIN Orders

ON Customers.CustomerID = Orders.CustomerID
GROUP BY Customers.CustomerID, CustomerName
ORDER BY Customers.CustomerID

The output is:

Customer Name Number of Orders
William Smith

1
Natalie Lopez 3
Brenda Harper 2
Adam Petrie 0

However, another way of obtaining the same result is to use a subquery as a
calculated column. This looks like the following:

SELECT

CustomerName AS 'Customer Name',
(SELECT

COUNT (OrderID)

FROM Orders

Looking Ahead

WHERE Customers.CustomerID = Orders.CustomerID)
AS 'Number of Orders'

FROM Customers

ORDER BY Customers.CustomerID

Notice that in this case the subquery is a correlated subquery. The subquery is
used as a calculated column in the SELECT columnlist. In other words, after the
subquery is evaluated, it returns a single value, which is then included in the
columnlist. Here’s a general format of the above statement:

SELECT

CustomerName AS 'Customer Name',
SubqueryResult AS 'Number of Orders'
FROM Customers

ORDER BY Customers.CustomerID

Looking Ahead

In this chapter, we’ve seen subqueries used in three different ways: as a data
source, in selection criteria, and as a calculated column. We’ve also seen
examples of both correlated and uncorrelated subqueries. We’ve really only
touched on some of the uses (and abuses) of subqueries. What complicates the
matter is that many subqueries can be expressed in other ways. Whether or not
you choose to utilize subqueries depends on your personal taste and sometimes
on the performance of the statement. In general, SELECT statements with sub-
queries tend to run more slowly than an equivalent statement without a sub-
query. We'll leave it to more advanced SQL books to discuss the various
advantages and disadvantages of using subqueries.

Through our use of joins and subqueries, we’ve explored numerous ways to
select data from multiple tables. In our next chapter, “Set Logic,” we’re going to
look at a way to combine entire queries into a single SQL statement. This is a
special type of logic that allows us to merge multiple data sets into a single result.
As will be seen, set logic procedures are sometimes necessary in order to display
sets of data that are only partially related to each other. As with subqueries, the
techniques of set logic provide additional flexibility and logical possibilities for
your SQL statements.

151

This page intentionally left blank

CHAPTER 15

SET Loaic

KEYWORDS INTRODUCED: UNION,
UNION ALL, INTERSECT, EXCEPT/MINUS

The various joins and subqueries of the past few chapters have dealt with dif-
ferent ways of combining data from multiple tables. The end result, however, has
been a single SELECT statement. We’re now going to extend the concept of
combining tables to the possibility of combining data from entire queries. In
other words, we’re going to look at a way to write a single SQL statement that
combines more than one SELECT to retrieve data.

The concept of combining queries is often referred to as set logic, a term taken
from mathematics. Each SELECT query can be referred to as a set of data. The set
logic we will examine in this chapter will address four scenarios. Assuming that
we have data in SET A and in SET B, here are the possibilities that we want:

m Data thatisin SET A or in SET B
m Data that is in both SET A and SET B
m Data thatisin SET A, but not in SET B

m Data that is in SET B, but not in SET A

We’re going to start with a look at the first scenario, that data is in SET A or in
SET B. As will be seen, this is the most prevalent and important of the set logic
possibilities.

153

154 Chapter 15 = Set Logic

Using the UNION Operator

The UNION operator in SQL is used to handle logic to select data that is either
SET A or SET B. We’ll start with an example. Let’s say that we have two tables in
our database. The first is an Orders table containing data on orders placed by
customers. It might look like:

OrderID CustomerID OrderDate OrderAmount

1 1 2009-10-13 10
2 2 2009-10-13 8
3 2 2009-12-05 7
4 2 2009-12-15 21
5 3 2009-12-28 1"

The second table, named Returns, contains data on merchandise that has been
returned by customers. It might look like:

ReturniID CustomerlD ReturnDate ReturnAmount

1 1 2009-10-23 2
2 2 2009-12-07 7
3 3 2009-12-28 3

It’s important to note that, unlike the Refunds table seen in Chapter 12, this
Returns table is not directly related to the Orders table. In other words, returns
are not tied to a specific order. In this scenario, a customer might return mer-
chandise from multiple orders.

We want to create a report of all the orders and returns from one particular
customer. We would like the results sorted by either the order date if it’s an order
or the return date if it’s a return. Here is a statement that can accomplish this.
We’ve inserted a few extra blank lines in this statement, to emphasize the fact
that it contains two completely separate SELECTs, combined together with the
UNION operator:

SELECT

OrderDate AS 'Date',
'Order' AS 'Type',
OrderAmount AS 'Amount'
FROM Orders

WHERE CustomerID = 2

UNION

SELECT

ReturnDate AS 'Date’',
'Return' AS 'Type',
ReturnAmount AS 'Amount'
FROM Returns

WHERE CustomerID = 2

ORDER BY Date

The resulting date is:

Date Type
2009-10-13 Order
2009-12-05 Order
2009-12-07 Return
2009-12-15 Order

Using the UNION Operator

As seen, the UNION operator separates two completely separate SELECT state-
ments. There is also an ORDER BY clause at the very end, which applies to the
results of both SELECT statements. The general format for the previous state-

ment is:

SelectStatementOne
UNION

SelectStatementTwo
ORDER BY columnlist

In order for the UNION to work, three rules must be followed:

m All SELECT statements combined together with a UNION must have the
same number of columns in the SELECT columnlist.

m All columns in each SELECT columnlist must be in the same order.

155

156

Chapter 15 = Set Logic

m All corresponding columns in each SELECT columnlist must have the same,
or compatible, datatypes.

With reference to these rules, notice that both SELECT statements in the search
have three columns. Fach of the three columns has data in the same order and
with the same datatype.

When using the UNION, you should use column aliases to give the same column
name to all corresponding columns. In our example, the first column of the first
SELECT has an original name of OrderDate. The first column of the second
SELECT has an original name of ReturnDate. To ensure that the first column in
the final result has the desired name, both OrderDate and ReturnDate are given a
column alias of Date. This also allows the column to be referenced in an
ORDER BY columnlist.

Also notice that the second column of each SELECT utilizes literal values. We
created a calculated column named Type, which has a value of either Order or
Return. This allows us to tell which table each row comes from.

Finally, notice that the ORDER BY clause applies to the final results of both
queries combined together. This is how it should be, since there would be no
point to applying a sort to the individual queries.

At this point, it is useful to step back and talk about why it was necessary to
employ the UNION operator rather than simply join the Orders and Returns
tables together in a single SELECT statement. Since both tables have a
CustomerID column, why didn’t we simply join the two tables together on this
column? The problem with this possibility is that the two tables are really only
indirectly related to each. Customers can place orders and customers can initiate
returns, but there is no direct connection between orders and returns.

Additionally, even if there were a direct connection between the two tables, a join
would not accomplish what is desired. With a proper join, related information
can be placed together on the same row. In this case, however, we are interested
in showing orders and returns on separate rows. The UNION operator must be
used to display data in this manner.

In essence, the UNION allows us to retrieve unrelated or partially related data in a
single statement.

Distinct and Non-Distinct Unions

Distinct and Non-Distinct Unions

There are actually two variations of the UNION operator: UNION and UNION
ALL. There is only a slight difference between the two. The UNION operator
eliminates all duplicate rows. The UNION ALL operator specifies that all rows are
to be included, even if they are duplicates.

The UNION operator eliminates duplicates in a manner similar to the DISTINCT
keyword previously seen. Whereas DISTINCT applies to a single SELECT, the
UNION eliminates duplicates in all SELECT statements combined together via
the UNION.

In the previous example with the Orders and Returns tables, there was no pos-
sibility of duplication, so it didn’t matter which was used. Here’s an example that
illustrates the difference. Let’s say that you are only interested in the dates on
which any orders or returns were issued. You don’t want to see multiple rows for
the same date. The following statement accomplishes this task:

SELECT

OrderDate AS 'Date’

FROM Orders

UNION

SELECT

ReturnDate AS 'Date'

FROM Returns

Order by Date

The resulting data is:

Date

2009-10-13
2009-10-23
2009-12-05
2009-12-07
2009-12-15
2009-12-28

Notice that there is only one occurrence of 2009-12-28. Even though there is one
row with 2009-12-28 in the Orders table and one row with 2009-12-28 in the
Returns table, the UNION operator ensures that the 2009-12-28 date is only lis-
ted once.

157

158 Chapter 15 = Set Logic

Let’s change the statement, adding a DISTINCT to each individual SELECT, but
also specifying UNION ALL rather than UNION, as follows:
SELECT

DISTINCT

OrderDate AS 'Date'

FROM Orders

UNION ALL

SELECT

DISTINCT

ReturnDate AS 'Date’

FROM Returns

ORDER BY Date

The output is now:

Date

2009-10-13
2009-10-23
2009-12-05
2009-12-07
2009-12-15
2009-12-28
2009-12-28

The DISTINCT ensures that each order date or return date is only listed once.
Even though there are two orders from 2009-10-13, that date is only shown one
time. However, the UNION ALL allows duplicates between the Orders SELECT
and the Returns SELECT. So you can see that 2009-12-28 is listed twice, once
from the Orders table and once from the Returns table.

Intersecting Queries

The UNION and UNION ALL operators return data that is in either of the sets
specified in the two SELECT statements being combined. This is like using an OR
operator to combine data from two logical sets.

SQL provides an operator called INTERSECT, which only pulls data that is in
both of the two sets being looked at. The INTERSECT is analogous to the AND
operator and handles the second scenario stated at the start of the chapter:

m Data that is in both SET A and SET B

Intersecting Queries 159

DATABASE DIFFERENCES: MySQL

MySQL doesn’t support the INTERSECT operator.

Using the same Orders and Returns tables, let’s say that you want to see dates
on which there are both orders and returns. A statement that accomplishes
this is:

SELECT

OrderDate AS 'Date'’

FROM Orders

INTERSECT

SELECT

ReturnDate AS 'Date'’

FROM Returns

ORDER BY Date

The result is:

Date
2009-12-28

Only one row is shown because this is the only date that appears in both the
Orders and Returns tables.

There is one additional variation on the intersect operation, which is provided by
the EXCEPT operator. Whereas the INTERSECT returns data that is in both sets,
the EXCEPT returns data that is in one set but not the other and handles the third
and fourth scenarios stated at the start of the chapter:

m Data thatis in SET A, but not in SET B
m Data that is in SET B, but not in SET A

The general format of the EXCEPT is:

SelectStatementOne
EXCEPT

SelectStatementTwo
ORDER BY columnlist

160

Chapter 15 = Set Logic

This statement will show data that is in SelectStatementOne but not in Select-
StatementTwo. Here’s an example:

SELECT

OrderDate AS 'Date'
FROM Orders

EXCEPT

SELECT

ReturnDate AS 'Date’
FROM Returns

ORDER BY Date

The result is:

Date

2009-10-13
2009-12-05
2009-12-15

This data shows dates on which orders were placed, but on which no refunds
were issued. Notice that 2009-12-28 does not appear, since a refund was issued
on that date.

DATABASE DIFFERENCES: MySQL and Oracle

MySQL doesn’t support the EXCEPT operator.

The equivalent of the EXCEPT operator in Oracle is MINUS.

Looking Ahead

In this chapter, we’ve seen different ways to combine multiple sets of SELECT
statements into a single statement. The most commonly used operator is the
UNION, which allows you to combine data that is in either of two different
sets. The UNION is analogous to the OR operator. The UNION ALL is a variant of
the UNION that allows duplicate rows to be shown. Similarly, the INTERCEPT
operator allows that data to be presented if it is in both of the two sets of data
being combined. The INTERCEPT is analogous to the AND operator. Finally,
the EXCEPT operator allows for selection of data that is in one set but not in
another.

Looking Ahead

Our next chapter, “Stored Procedures and Parameters,” will relate how you can
save multiple SQL statements in a procedure and make use of parameters in
those procedures to add a degree of generality to your SQL commands. We’ll
also talk about the possibility of creating your own custom functions and explain
how functions differ from stored procedures. Much like the views discussed in
Chapter 13, stored procedures and custom functions are useful objects that you
can create and store in your database to provide some extra polish and func-
tionality for your systems.

161

This page intentionally left blank

CHAPTER 16

STORED PROCEDURES
AND PARAMETERS

KEYWORDS INTRODUCED:
CREATE PROCEDURE, BEGIN, EXEC/CALL,
ALTER PROCEDURE, DROP PROCEDURE

Up until now, all of our data retrieval has been accomplished with a single
statement. Even the set logic seen in the previous chapter was accomplished by
combining multiple SELECTs into a single statement. We’re now going to dis-
cuss a new scenario in which multiple statements can be saved into a single object
known as a stored procedure.

In broad terms, there are two general reasons why you might want to use stored
procedures:

m To save multiple SQL statements in a single procedure

m To use parameters in conjunction with your SQL statements

Stored procedures can, in fact, consist of a single SQL statement and contain no
parameters. But the real value of stored procedures becomes evident when they
contain multiple statements or parameters.

The subject of stored procedures is quite complex. In this brief review of the
subject, we’ll focus on an overview of the second stated reason—that of using
parameters in stored procedures. This is something that relates directly to the
issue of how to best retrieve data from a database. As you’ll see, the ability to add

163

164

Chapter 16 = Stored Procedures and Parameters

parameters to a SELECT statement turns out to be a very useful feature in
everyday use.

The use of stored procedures to contain multiple statements is beyond the
scope of this book. Basically, the ability to store multiple statements in a
procedure means that you can create complex logic and execute it all at once as a
single transaction. For example, you might have a business requirement to take
an incoming order from a customer and quickly evaluate it before accepting it
from the customer. This procedure might involve checking to make sure that
the items are in stock, verifying that the customer haa a good credit rating,
and getting an initial estimate as to when it can be shipped. This situation would
require multiple SQL statements with some added logic to determine what kind
of message to return if all were not well with the order. All of that logic could be
placed into a single stored procedure, which would enhance the modularity of
the system. With everything in one procedure, that logic could be executed from
any calling program, and it would always return the same result.

Creating Stored Procedures

Before we get into the details of how to utilize stored procedures, let’s cover the
mechanics of how they are created and maintained. The syntax varies sig-
nificantly among different databases.

The general format for creating a stored procedure in Microsoft SQL Server is:

CREATE PROCEDURE ProcedureName
AS
OptionalParameterDeclarations
BEGIN

SQLStatements

END

The CREATE PROCEDURE keyword allows you to issue a single command that
creates the procedure. The procedure itself can contain any number of SQL
statements and can also contain parameter declarations. We’ll talk about the
parameter declaration syntax later. The SQL statements are listed between
BEGIN and END keywords.

Creating Stored Procedures

DATABASE DIFFERENCES: MySQL and Oracle

The general format for creating a stored procedure in MySQL is slightly more complex.
The format is:

DELIMITER $$

CREATE PROCEDURE ProcedureName ()
BEGIN

SQLStatements

ENDSS

DELIMITER ;

MySQL requires delimiters when executing multiple statements. The normal delimiter is a semi-
colon. The first line in the above code temporarily changes the delimiter from a semicolon to two
dollar signs. Any needed parameters are specified between the parentheses on the CREATE
PROCEDURE line. Then each SQL statement listed between the BEGIN and END keywords
must have a semicolon at the end of the statement. The dollars signs are written after the END
keyword to denote that the CREATE PROCEDURE command is completed. Finally, another
DELIMITER statement is placed at the end to change the delimiter back to a semicolon.

The procedure for creating stored procedures in Oracle is quite a bit more involved and is beyond the
scope of this book. In order to create a stored procedure for a SELECT statement in Oracle, you will
need to first create an object called a package. The package will contain two basic components: a
specification and a body. The specification component specifies how to communicate with the body
component. The body component contains the SQL statements, which are at the heart of the stored
procedure.

Here’s an example of how to create a stored procedure that can be used to exe-
cute this single SELECT statement:

SELECT *
FROM Customers

The procedure will be named ProcedureOne. In Microsoft SQL Server, the
statement to create the procedure is:

CREATE PROCEDURE ProcedureOne

AS
BEG

IN

SELECT *
FROM Customers

END

165

166 Chapter 16 = Stored Procedures and Parameters

DATABASE DIFFERENCES: MySQL

In MySQL, the previous example would look like:

DELIMITER $$

CREATE PROCEDURE ProcedureOne ()
BEGIN

SELECT *

FROM Customers;

ENDSS

DELIMITER ;

Remember that creating a stored procedure does not execute anything. It simply
creates the procedure so that it can be executed later. Along with tables and
views, the procedure will be visible in your database management tool so that
you can view its contents.

Parameters in Stored Procedures

All of the SELECT statements you have seen up until now have had a certain
static quality due to the fact that they were written to retrieve data in one specific
way. The ability to add parameters to SELECT statements gives you the possi-
bility of much greater flexibility.

The term parameter in SQL statements is similar to the term variable, as it is used
in other computer languages. A parameter is basically a value that is passed to a
SQL statement by the calling program. It can have whatever value the user spe-
cifies at the time the call is made.

Let’s start with a simple example. We have a SELECT statement that retrieves
data from a Customers table. Rather than select all customers, we would like the
SELECT to retrieve data for only one specific CustomerID number. However, we
don’t want to code the number directly in the SELECT statement. We want
the SELECT statement to be general enough so it can accept any provided
CustomerID number and then execute with that value. The SELECT statement
without any parameters is simply:

SELECT *
FROM Customers

Parameters in Stored Procedures

Our goal is to add a WHERE clause that will allow us to select data for a particular
customer. In a general form, we’d like the SELECT statement to be:

SELECT *
FROM Customers
WHERE CustomerID = ParameterValue

In Microsoft SQL Server, the creation of such a stored procedure can be
accomplished with:

CREATE PROCEDURE CustomerProcedure
(@CustID INT)

AS

BEGIN

SELECT *

FROM Customers

WHERE CustomerID = @CustID

END

Notice the addition of the second line, which specifies the CustID parameter in
the procedure. In Microsoft SQL Server, the @ symbol is used to denote a para-
meter. The INT keyword is placed after the parameter to indicate that this
parameter will have an integer value. The same parameter name is used in the
WHERE clause.

DATABASE DIFFERENCES: MySQL

In MySQL, the command to create an equivalent stored procedure is:

DELIMITER $$

CREATE PROCEDURE CustomerProcedure
(CustID INT)

BEGIN

SELECT *

FROM Customers

WHERE CustomerID = CustID;

ENDSS

DELIMITER ;

Notice that MySQL doesn't require the @ symbol to denote a parameter.

167

168

Chapter 16 = Stored Procedures and Parameters

When a stored procedure is executed, the calling program passes a value for the
parameter, and the SQL statement is executed as if that value were part of the
statement.

It should also be noted that the parameters discussed previously are input para-
meters. As such, they contain values that passed into the stored procedure.
Stored procedures can also include output parameters, which can contain values
passed back to the calling program. It’s beyond the scope of this book to discuss
the various nuances of how to specify both input and output parameters in
stored procedures.

Executing Stored Procedures

After stored procedures are created, how are they executed? The syntax varies
between databases. Microsoft SQL Server provides the EXEC keyword to run
stored procedures.

In Microsoft SQL Server, the following statement will execute the ProcedureOne
procedure:

EXEC ProcedureOne

When this statement is executed, it brings back the results of the SELECT state-
ment contained in the stored procedure.

The ProcedureOne procedure didn’t have any parameters, so the syntax is
simple. How do you execute procedures with input parameters? The following
executes the CustomerProcedure procedure for a CustID value of 2:

EXEC CustomerProcedure
@CustID =2

DATABASE DIFFERENCES: MySQL

Rather than using EXEC, MySQL uses a CALL keyword to execute stored procedures, and the
syntax for stored procedures with parameters is slightly different. The equivalent of the previous two
EXEC statements in MySQL is:

CALL ProcedureOne;
CALL CustomerProcedure (2) ;

Modifying and Deleting Stored Procedures 169

Modifying and Deleting Stored Procedures

Once a stored procedure is created, it can be modified. Just as the ALTER VIEW
keyword was used to modify views, the ALTER PROCEDURE keyword is used to
modify stored procedures. The syntax is identical to the CREATE PROCEDURE,
except that the word ALTER is used in place of CREATE. Just as the CREATE
PROCEDURE has a slightly different syntax for each database, so does the ALTER
PROCEDURE.

You've already seen this example of creating a stored procedure with Microsoft
SQL Server:

CREATE PROCEDURE CustomerProcedure
(@CustID INT)

AS

BEGIN

SELECT *

FROM Customers

WHERE CustomerID = @CustID

END

After this procedure is created, if you wanted to alter the procedure to select only
the top five rows from the Customers table, the command to accomplish that
would be:

ALTER PROCEDURE CustomerProcedure
(@CustID INT)

AS

BEGIN

SELECT

TOP 5 *

FROM Customers

WHERE CustomerID = @CustID

END

DATABASE DIFFERENCES: MySQL

MySQL provides an ALTER PROCEDURE command, but it has limited functionality. To alter the
content of a stored procedure in MySQL, you need to issue a DROP PROCEDURE and then a
CREATE PROCEDURE Wwith the new content.

Deleting a stored procedure is even simpler. Just as the DROP VIEW deletes a
view, the DROP PROCEDURE statement deletes a procedure.

170

Chapter 16 = Stored Procedures and Parameters

Here’s how the stored procedure named CustomerProcedure can be deleted:

DROP PROCEDURE CustomerProcedure

Functions Revisited

In Chapter 4, we talked about the built-in scalar functions that are available in
SQL. For example, we used character functions such as LEFT and mathematical
functions such as ROUND. In Chapter 10, we discussed aggregate functions such
as MAX.

In addition to the built-in functions in SQL, developers can create their own
functions and save them in a database. The procedure for creating functions is
very similar to the procedure for creating stored procedures. SQL provides the
keywords CREATE FUNCTION, ALTER FUNCTION, and DROP FUNCTION,
which work very much like CREATE PROCEDURE, ALTER PROCEDURE, and
DROP PROCEDURE.

Due to the advanced nature of this topic, we’re not going to provide specific
examples of this functionality. However, we’ll spend a few moments explaining
the differences between using stored procedures and functions.

Both stored procedures and functions can be saved in a database. These entities
are saved as separate objects in a database, much like tables or views. The pro-
cedures for saving and modifying stored procedures and functions are very
similar. The same CREATE, ALTER, and DROP commands for stored procedures
can be used for functions.

The difference between the two lies in how they are used and in their capabilities.
There are two main distinctions between stored procedures and functions:

m Stored procedures can have any number of output parameters. They can
even have zero output parameters. In contrast, a function must always
contain exactly one output parameter. In other words, when you call a
function, you always get back a single value.

m Stored procedures are executed by a calling program. The stored
procedure cannot be directly referenced in a SELECT statement. In
contrast, functions can be referenced within statements, as seen in
Chapters 4 and 10. After you define your own function, you’ll reference
that function by the name you specified when the function was created.

Looking Ahead

Looking Ahead

In this chapter, we’ve seen that the use of parameters can add a great deal of
flexibility to the process of retrieving data. For example, parameters allow you to
generalize SQL statements so that values for selection criteria can be specified at
the time the statement is executed. You’ve also learned the basics of how to create
and modify stored procedures. Finally, we explained some of the differences
between stored procedures and user-defined functions.

Although the examples in the present chapter were focused on data retrieval,
stored procedures and functions are also quite useful in applying data updates.
Our next chapter, “Modifying Data,” will take us completely out of the realm of
data retrieval and move us squarely into issues surrounding the need to update
data. The business of maintaining data doesn’t present the same analytic possi-
bilities as data retrieval, but it is a necessary task for any enterprise. Fortunately,
most of the techniques you’ve learned with the SELECT statement apply equally
to the modification processes to be discussed in the next chapter.

171

This page intentionally left blank

CHAPTER 17

MODIFYING DATA

KEYWORDS INTRODUGCED: INSERT INTO,
VALUES, DELETE, TRUNCATE TABLE, UPDATE

Having exhausted our discussion of retrieving data from databases, we will now
move on to the topic of how to modify data. There are three basic scenarios as to
how data can be modified:

m Inserting new rows into a table
m Deleting rows from a table

m Updating existing data in specific rows and columns in a table

As you may surmise, inserting and deleting rows is relatively straightforward.
Updating existing data, however, is a more complex endeavor. We’ll begin with
the insert and delete functions and then conclude with updates.

Modification Strategies

The mechanics of modifying data are fairly straightforward. However, the nature
of the process means that this is an area fraught with danger. Being human,
mistakes can be made. With a single command, you can easily delete thousands
of rows in error. Or you can apply numerous updates that may be difficult to
retract.

As a practical matter, there are various strategies that can be employed to help
prevent catastrophic blunders. For example, when deleting rows from a table,

173

174

Chapter 17 = Modifying Data

you can employ a soft delete technique, which means that instead of actually
deleting rows, you can denote a special column in a table that marks each row as
either active or inactive. Rather than deleting a row, you merely mark a row as
being inactive. That ways, if a delete is done in error, you can easily reverse it by
changing the value of the active/inactive column.

A similar technique can be utilized when doing inserts. When adding a row, you
can mark in a special column the exact date and time of the insert. If it is later
determined that the row was added in error, you can find all rows added in a
specified time range and have them deleted.

The problem is more complex when it comes to updating data. Generally, it’s
advisable to maintain a separate table that holds data on intended update trans-
actions. If any kind of error is made, you can go back to the transaction table to
look up the before-and-after values for data that was modified and use that to
reverse any earlier mistakes.

The above mentioned strategies are just a few of the many approaches that can be
taken. This is a topic that is well beyond the scope of this book. Just be sure that
you are very cautious when updating data. Unlike many user-friendly desktop
applications, there is no undo command in SQL.

Inserting Data
SQL provides an INSERT keyword to add data into a table. There are two basic
ways in which an INSERT can be done:

m Insert specific data that is listed in an INSERT statement

m Insert data that is obtained from a SELECT statement

Let’s start with an example that shows how to insert data, where the data values
are specified in the INSERT statement. Let’s assume that we have a Customers
table with this data already in it:

CustomerID FirstName LastName State

1 William Smith IL
2 Natalie Lopez Wi
3 Brenda Harper NV

Inserting Data

Let’s also assume that the first column, CustomerID, is the primary key for the
table. Back in Chapters 1 and 2, we talked about the fact that primary keys
enforce the requirement that each row in a table should be uniquely identifiable.
We also mentioned that it is often the case that primary key columns are speci-
fied as auto-increment columns. This means that they are automatically assigned
a number as a row is added to the table.

Assuming that the CustomerID column is defined as an auto-increment column,
this means that when we add a row to the Customers table, we don’t specify
a value for the CustomerID column. It will be automatically determined as a
row is added to the table. We only need to specify values for the other three
columns.

Let’s proceed with an attempt to add two new customers to the table: Virginia
Jones from Ohio and Clark Woodland from California.

This statement performs the insert:

INSERT INTO Customers
(FirstName, LastName, State)
VALUES

('Virginia', 'Jones', 'OH'),
('Clark', 'Woodland', 'CA')

After the insert, the table contains:

CustomerID FirstName LastName State

1 William Smith IL

2 Natalie Lopez WI
3 Brenda Harper NV
4 Virginia Jones OH
5 Clark Woodland CA

A few words of explanation are in order. First, notice that the VALUES keyword
is used as a prefix to lists of values to be inserted into the table. The statement
lists each row of data in a separate set of parentheses. Virginia Jones of Ohio was
in one set of parentheses; Clark Woodland was in another set. The two sets were
separated by a comma. If we needed to only add one row, then just one set of
parentheses would be needed.

175

176

Chapter 17 = Modifying Data

DATABASE DIFFERENCES: Oracle

Oracle doesn't permit multiple rows to be specified after the vALUES keyword. The previous
example would need to be broken down into two statements, such as:

INSERT INTO Customers
(FirstName, LastName, State)
VALUES ('Virginia', 'Jones', 'OH');

INSERT INTO Customers
(FirstName, LastName, State)
VALUES ('Clark', 'Woodland', 'CA');

Also note that the order of values after the VALUES keyword corresponds to the
order of columns listed in the columnlist after the INSERT TO. The order in
which the columns are listed does not have to be the same as it is in the database.
In other words, the above insert just as easily could have been accomplished with
this statement:

INSERT INTO Customers
(State, LastName, FirstName)
VALUES

('OH', 'Jones', 'Virginia'),
('CA', '"Woodland', 'Clark")

In the above INSERT, we listed the State column first instead of last. Again, the
order in which columns are listed doesn’t matter.

To sum up, the general format for the INSERT INTO statement is:

INSERT INTO table
(columnlist)

VALUES

(RowValuesl) ,

(RowValues2)

(repeat any number of times)

The columns in columnlist need to correspond to the columns in RowValues.

Also, if all the columns in columnlist are listed in the same order as they physi-
cally exist in the database, and if there are no auto-increment columns in the

Inserting Data

table, then the INSERT INTO statement can be executed without specifying the
columnlist. However, this practice is strongly discouraged since it is prone to
error.

What happens when not all columns are specified in an INSERT? Simple. Those
columns that are not specified are given NULL values. For example, let’s say we
want to insert one additional row into the Customers table, for a customer
named Tom Monroe. However, we don’t know Tom’s state. Here’s the INSERT:

INSERT INTO Customers
(FirstName, LastName)
VALUES

('Tom', 'Monroe')

Afterwards, his row in the table appears as:

CustomerID FirstName LastName State
6 Tom Monroe NULL

Since we didn’t specify a value for the State column for this new row, it is given a
NULL value.

There are two variations of the INSERT INTO statement. The second format
applies to situations where you insert data that is obtained from a SELECT
statement, which means that instead of listing values after a VALUES keyword,
you substitute a SELECT statement that obtains similar values.

Let’s say that we have another table named CustomerTransactions, which holds
data that we would like to insert into the Customers table. The Customer-
Transactions table might look like:

CustomerID State Name1 Name2

1 RI Susan Harris
2 DC Michael Blake
3 RI Alan Canter

177

178

Chapter 17 = Modifying Data

If we wanted to add all customers in the state of Rhode Island from the
CustomerTransactions table to the Customers table, the following would

accomplish that objective:

INSERT INTO Customers

(FirstName, LastName, State)

SELECT

Namel,

Name2,

State

FROM CustomerTransactions
WHERE State = 'RI'

After this INSERT, the Customers table contains:

CustomerID FirstName LastName State
1 William Smith IL
2 Natalie Lopez W
3 Brenda Harper NV
4 Virginia Jones OH
5 Clark Woodland CA
6 Tom Monroe NULL
7 Susan Harris RI
8 Alan Canter RI

The above INSERT simply substituted a SELECT statement for the previously
seen VALUES clause. As would be expected, Michael Blake didn’t get added to
the Customers table, since he is not in Rhode Island. Also notice that the column
names in the Customers and CustomerTransactions tables are not identical. The
column names don’t matter as long as the columns are listed in the correct cor-

responding order.

Deleting Data

Deleting data is much simpler than adding it. The DELETE statement is used to
handle deletes. When a DELETE is executed, it deletes entire rows, not individual

columns in a row. The general format is:

DELETE
FROM table
WHERE condition

Deleting Data

Here’s a simple example. Let’s say we want to delete rows from the previously
mentioned Customers table if the customer is in Rhode Island. The statement to
accomplish this is:

DELETE
FROM Customers
WHERE State = 'RI'

That’s all there is to it. If you wanted to test the results of the above DELETE
before executing it, you would simply substitute a SELECT for DELETE, as
follows:

SELECT

COUNT (*)

FROM Customers
WHERE State = 'RI'

This would provide a count of the rows to be deleted, which supplies some level
of validation for the delete.

There is one other option for deleting data that is worth mentioning. If you want
to delete all the data in a single table, you can employ a TRUNCATE TABLE
statement to delete everything. The advantage of the TRUNCATE TABLE over the
DELETE statement is that it is much faster. Unlike the DELETE, the TRUNCATE
TABLE doesn’t log the results of the transaction. We haven’t talked about data-
base log processes, but this is a function that most databases provide that allows
database administrators to recover databases in the event of system crashes and
other similar problems.

If you want to delete all rows in the Customers table, you can issue this
statement:

TRUNCATE TABLE Customers
This has the same result as this statement:

DELETE
FROM Customers

One other slight difference between DELETE and TRUNCATE TABLE is that
TRUNCATE TABLE resets the current values used for auto-increment columns.
The DELETE doesn’t affect those values.

179

180

Chapter 17 = Modifying Data

Updating Data

The procedure for updating data involves specifying which columns are to be
updated, as well as logic for selecting rows. The general format for an UPDATE
statement is:

UPDATE table

SET Columnl = Expressionl,
Columnz = Expression2
(repeat any number of times)
WHERE condition

This statement is similar to the basic SELECT, except that the SET keyword is
used to assign new values to specified columns. The WHERE condition specifies
which rows are to be updated, but the UPDATE statement can update multiple
columns at the same time. If more than one column is being updated, the SET
keyword is only listed once, but a comma must separate all update expressions.

Starting with a simple example, let’s say we want to change the name of customer
William Smith to Bill Smythe. His row in the Customers table currently
looks like:

CustomerID FirstName LastName State
1 William Smith IL

The UPDATE statement to accomplish the change is:

UPDATE Customers

SET FirstName = 'Bill"',
LastName = 'Smythe'
WHERE CustomerID =1

After executing this statement, this row in the Customers table appears as:

CustomerID FirstName LastName State
1 Bill Smythe IL

Notice that the value of the State column is unchanged since that column was
not included in the UPDATE statement. Also note that the WHERE clause is

Correlated Subquery Updates

essential. Without the WHERE clause, every row in the table would have been
changed to Bill Smythe.

Correlated Subquery Updates

The previous UPDATE example is easy enough but not entirely realistic.
A more common example of an UPDATE involves situations where you
update data in one table based on data in another table. Let’s say we have this
Customers table:

CustomerID State Zip

1 IL 60089
2 CA 92802
3 WI 53718
4 DC 20024
5 FL 32801

This CustomerTransactions table has the recent changes for existing customers:

TransactionlD CustomerIlD State Zip

1 1 IL 60090
2 2 NV 89109
3 5 FL 32810

The Customers table is considered to be the main source of data for customers.
In order to accomplish an update of the Customers table from the
CustomerTransactions table, we're going to need to use the correlated subquery
technique discussed in Chapter 14. The correlated subquery is needed because
the UPDATE statement can only specify a single table to update. We can’t merely
join multiple tables together and have it work. We’ll need to use a correlated
subquery after the SET keyword to indicate where the data comes from.

The following statement can be utilized to update the State and Zip columns in
the Customers table from the transactions in the CustomerTransactions table.
Since this statement is fairly complex, we’ve inserted a few blank lines so we can
subsequently discuss the four sections of the statement.

181

182

Chapter 17 = Modifying Data

UPDATE Customers

SET Customers.State =

(SELECT CustomerTransactions.State

FROM CustomerTransactions

WHERE CustomerTransactions.CustomerID = Customers.CustomerID),

Customers.Zip =

(SELECT CustomerTransactions.Zip

FROM CustomerTransactions

WHERE CustomerTransactions.CustomerID = Customers.CustomerID)

WHERE EXISTS

(SELECT *

FROM CustomerTransactions

WHERE CustomerTransactions.CustomerID = Customers.CustomerID)

After executing this UPDATE, the Customers table contains:

CustomerID State Zip

1 IL 60090
2 NV 89109
3 Wi 53562
4 MD 20814
5 FL 32810

Let’s analyze this UPDATE statement in some detail. The first section of the
statement, consisting of the first line, indicates that the update is to be done on
the Customers table.

The second section of the statement specifies how the State column is to be
updated. The update is based on this correlated subquery:

SELECT CustomerTransactions.State

FROM CustomerTransactions

WHERE CustomerTransactions.CustomerID =
Customers.CustomerID

We can tell that this is a correlated subquery because it would error if we
attempted to execute this SELECT on its own. The subquery is taking data from

Looking Ahead

the CustomerTransactions table and matching between the two tables by
CustomerID.

The third section of the statement is identical to the second section, except that
these lines are concerned with updates to the Zip column. Also notice that the
SET keyword only needed to be specified once, in the second section. It isn’t
needed in the third section.

The final section has logic in a WHERE clause associated with the selection logic
for the entire UPDATE statement. The EXISTS operator is used along with
another correlated subquery to determine whether rows exist in the
CustomerTransactions table for each CustomerID in the Customers table.
Without this WHERE clause, the update would incorrectly change the State and
Zip columns for customers 3 and 4 to NULL values because these customers do
not have rows in the CustomerTransactions table. The correlated subquery in
this WHERE clause makes certain that we only apply updates for customers who
do, in fact, have data in the CustomerTransactions table.

As can be inferred, the subject of using correlated subqueries for updates is quite
complex. As such, the topic is generally beyond the scope of this book. However,
we’ve included this example if only to give an idea of some of the complexities
that are involved in data updates. Additionally, it should be noted that correlated
subqueries are similarly useful with deletes.

Looking Ahead

This chapter presented an overview of the various methods of updating data. The
mechanics of executing simple inserts, deletes, and updates are relatively
straightforward. However, the correlated subquery technique, which is often
necessary for real-world updates and deletes, is not for the faint of heart.
Additionally, the entire notion of applying updates to data is a demanding
exercise. With the power of SQL’s ability to update thousands of rows of data
with a single command comes an admonition to be cautious when performing
any type of update. Procedures for reversing any updates should be carefully
planned out before any data modifications are applied.

Now that we’ve talked about modifying the data in tables, we next progress to a
discussion of the tables themselves. In the next chapter, “Maintaining Tables,”

183

184

Chapter 17 = Modifying Data

we’re going to look at the mechanics of creating tables along with all the attri-
butes needed to properly hold the data in those tables. As such, we’ll be revisiting
some of the topics touched upon in Chapter 1, such as primary and foreign keys,
in greater detail. Up until now, we’ve assumed that tables are simply available for
our use. After this examination, you’ll have a much better idea of how to create
the tables that will hold your data.

CHAPTER 18

MAINTAINING TABLES

KEYwWORDS INTRODUCED: CREATE TABLE,
DROP TABLE, CREATE INDEX, DROP INDEX

With this chapter, we change our focus from data retrieval and modification to
design. Up until now, we’ve assumed that tables simply exist and are available to
us. However, in the normal course of events, you need to create tables before the
data in them can be accessed. We now turn to the question of how to create and
maintain tables.

We’ve previously touched on a few of the topics we’ll be addressing, such as
primary and foreign keys, but we now want to delve into these areas in greater
detail and also bring in the related topic of table indexes.

Data Definition Language

Way back in Chapter 1, we mentioned that there are three main components of
the SQL language: DML (Data Manipulation Language), DDL (Data Definition
Language), and DCL (Data Control Language). Up until now, most of what
we’ve talked about has been DML. DML statements allow you to manipulate
data in relational databases by retrieval, insertion, deletion, or update. This is
handled by the SELECT, INSERT, DELETE, and UPDATE statements.

Although our focus has been on DML, we have already seen a few instances of
DDL (Data Definition Language). The CREATE VIEW and CREATE PROCEDURE
statements are DDL, and so are the related ALTER and DROP versions of those
statements.

185

186

Chapter 18 = Maintaining Tables

The CREATE VIEW and CREATE PROCEDURE statements are DDL because they
only allow you to manipulate the database itself. They have nothing to do with
the data in databases.

In this chapter, we’re going to give a brief overview of a few additional DDL
statements, which can be utilized to create and modify tables and indexes.

Each database has a different way of organizing its objects, and therefore has dif-
ferent available DDL statements. For example, MySQL has 11 different CREATE
statements for these types of objects: Databases, Events, Functions, Indexes, Logfile
Groups, Procedures, Servers, Tables, TableSpaces, Triggers, and Views.

Oracle has over 30 different CREATE commands for the object types in its data-
base. Microsoft SQL Server has over 40 different CREATE commands for its
object types.

In truth, most modifications to database objects, such as views and tables, can be
accomplished through the visual GUI (graphical user interface), which each
software vendor provides to administer their software. It is often not necessary to
learn any DDL at all, since it can usually be handled with the software GUL

However, it’s useful at least to be aware of the existence of a few key statements to
manipulate data objects. We’ve already seen some statements that allow us to
modify views and stored procedures. In this chapter, we’ll show you some of the
possibilities for modifying tables and indexes via DDL.

Table Attributes

In Chapter 1, we briefly discussed a few attributes of database tables, such as
primary keys, foreign keys, and datatypes. In Chapter 2, we extended that dis-
cussion to talk about auto-increment columns.

As mentioned, SQL DDL provides CREATE statements for many types of data-
base objects. In Chapter 13, we talked about the CREATE PROCEDURE and
CREATE VIEW statements that handle stored procedures and views.

We’re now going to bring our attention back to tables. Tables are perhaps the
primary and most essential object type in a database. Without tables, nothing
else really matters. All the data in a database is physically stored in tables. Most
other object types relate to tables in one way or another. Views provide a virtual
view of tables. Stored procedures generally act upon data in tables. Functions
allow for special rules for the manipulation of data in tables.

Table Columns

We'll focus here on how tables can be created initially. There are a large number
of attributes that can be associated with table definitions. We’re going to give an
overview of some of the more important attributes and discuss what they mean.

The subject of table attributes is also related to the larger topic of database
design, which will be addressed in the next chapter. For now, we want to focus on
the mechanics of what can be done with the tables themselves.

The specifics of how tables can be designed and altered varies widely among
Microsoft SQL Server, MySQL, and Oracle. We'll talk primarily about those
attributes that are common to tables in all three databases.

Table Columns

Tables are defined as containing any number of columns. Each column has a
number of attributes specific to that column. The first and most obvious attribute
is the column name. Each column must be given a name unique to that table.

A second attribute of columns is the datatype, a subject that was addressed in
Chapter 1. We've already described some notable datatypes in three main cate-
gories: numeric, character, and date/time. The datatype is a key determinant of
what type of data each column can contain.

A third attribute of columns is whether or not it can be defined as an auto-
increment column. We briefly introduced this attribute type in Chapter 2 and
talked about it further in the previous chapter about modifying data. Basically,
an auto-increment column means that the column is automatically assigned a
numeric value, in ascending sequence, as each row is added to the table. Auto-
increment columns are often used with primary keys but can also be assigned to
an ordinary column.

Note that the term auto-increment is specific to MySQL. Microsoft uses the term
identity to refer to the same type of attribute.

DATABASE DIFFERENCES: Oracle

Oracle doesn't have an auto-increment type of attribute. Instead, Oracle requires you to define a
column as a sequence and then create a triggerto populate that column with sequential values. This
procedure is beyond the scope of this book.

A fourth column attribute is whether or not the column is allowed to contain
NULL values. The default is to allow NULL values. If you don’t want to allow a

187

188

Chapter 18 = Maintaining Tables

column to contain NULLs, it is normally specified via a NOT NULL keyword
applied to the column description.

The final column attribute we’ll mention is whether the column is assigned a
default value. A default value is one that is automatically assigned to the column
if no value for that column is provided when a row is added. For example, if most
of your customers are in the U.S., you may want to specify that a column con-
taining a country code be given a default value of U.S.

Primary Keys and Indexes

Let’s turn to the topic of primary keys and explain how that attribute relates to
table indexes.

Indexes are a physical structure that can be added to any column in a database
table. Indexes serve the purpose of speeding up data retrieval when that column is
involved in a SQL statement. The actual data in the index is hidden, but basically
the index involves a structure that maintains information on the sort order of the
column, thus allowing for quicker retrieval when specific values are requested.

One downside to indexing a column is that it requires more disk storage in your
database. A second negative is that indexes generally slow down data updates
involving that column. This happens because any time a row is inserted or mod-
ified, the index must recalculate the proper sorted order for values in that column.

Any column can be indexed, but only one column can be designated as a primary
key. Specifying a column as a primary key means two things: The column will be
indexed, and the column will be guaranteed to contain unique values.

As discussed in Chapter 1, primary keys accomplish two main benefits for the
database user: They enable you to uniquely identify a single row in a table, and
they allow you to easily relate tables to one another. And now, you can add a
third benefit: By being indexed, the primary key enables faster data retrieval of
rows involving that column.

The main reason for having primary keys is to guarantee unique values for all
rows in a table. There always has to be a way to identify single rows for updates or
deletes, and the primary key ensures that can be done.

A primary key can actually span more than one column and can consist of two
or three columns. If the primary key contains more than one column, it simply
means that all those columns together will contain a unique value. This type of

Foreign Keys

primary key is normally referred to as a composite primary key. As an example of
when a composite primary key might be utilized, let’s say that you have a Movies
table. You’d like to have a key that uniquely defines each movie in the table.
Rather than use a MovielD integer value as the key, you’d like to use the movie
title as the key. The problem, however, is that movies are sometimes remade with
the same title. To solve the problem, you can use two columns, the movie title
and the year, to form a composite primary key to uniquely define each movie.

Because primary keys must contain unique values, they are never allowed to
contain NULL values. Some value for the column must always be specified.

Finally, primary keys are often specified as auto-increment columns. By making
a primary key auto-increment, database developers don’t need to worry about
assigning a unique value for the column. The auto-increment feature takes care
of that requirement.

Foreign Keys

SQL databases also designate specific columns as a foreign key. A foreign key is
simply a reference from a column in one table to a column in a different table.
When setting up a foreign key, you will be asked to specify both columns.
The foreign key column in the table being configured is often referred to as being
in the child table. The referenced column in the other table is referred to as
being in the parent table.

For example, let’s say you have a Customers table with a CustomerID column
that is set up as a primary key. You also have an Orders table with an OrderID
column set up as a primary key and a CustomerID column. You would like
to set up the CustomerID column in the Orders table as a foreign key that
references the CustomerID column in the Customer table. In this case, the
Orders table is the child table and the Customers table is the parent table.

When you set up foreign keys, you will be able to set some specific actions for
updates and deletes involving rows in the parent table. The three most common
actions are:

m No Action
m Cascade

m Set Null

189

190

Chapter 18 = Maintaining Tables

Let’s continue with the example of the Customers and Orders tables. The most
common action to specify is No Action. This is the default action if none is
specified. If you set the CustomerID column in the Orders table to No Action for
updates, that means that a check is made whenever an update is attempted in the
parent table on the CustomerID column. If it tries to do an update on the
CustomerID, which would result in any row in the child pointing to a value
that no longer exists, it will prevent that action from occurring. The same would
be true if No Action is specified for deletes. This ensures that, when using the
CustomerID column in both tables, all rows in the Orders properly point to an
existing row in the Customers table.

The second alternative for a specified action for foreign keys is Cascade. This
means that when a value in the parent table is updated, and if that value affects
rows in the child table, then it will automatically update all rows in the child table
to reflect the new value in the parent table. Similarly, if a row in the parent table
is deleted, and if that affects rows in the child table, it will automatically delete
affected rows in the child table.

A third alternative for a specified action for foreign keys is Set Null, which means
that when a value in the parent is updated or deleted, and if that values affects
rows in the child table, it will automatically update all affected rows in the child
table to contain a NULL value in the foreign key.

Creating Tables

The CREATE TABLE statement can be used to create new tables in a database.
The syntax and available features vary among databases. We’re going to focus on
a simple example that creates a table with these attributes:

m The table name is MyTable.

m The first column in the table is named ColumnOne and defined as a
primary key. This column will be defined as an INT (integer) datatype and
also as an auto-increment column.

m The second column in the table is named ColumnTwo and defined as an
INT datatype. This column will not allow NULL values. This column will
also be defined as a foreign key, with No Action specified for both deletes
and updates, related to a column named FirstColumn in another table
called RelatedTable.

Creating Tables

m The third column in the table is named ColumnThree and defined as a
VARCHAR datatype with a length of 25. This column will allow NULL
values.

m The fourth column in the table is named ColumnFour and defined as a
FLOAT datatype and will allow NULL values. It will be given a default value
of 10.

Here is the CREATE TABLE statement in Microsoft SQL Server that accom-
plishes this:

CREATE TABLE MyTable

(ColumnOne INT IDENTITY (1,1) PRIMARY KEY NOT NULL,
ColumnTwo INT NOT NULL

REFERENCES RelatedTable (FirstColumn),
ColumnThree VARCHAR (25) NULL,

ColumnFour FLOAT NULL DEFAULT (10))

DATABASE DIFFERENCES: MySQL and Oracle

The same CREATE TABLE statement in MySQL looks like:

CREATE TABLE MyTable

ColumnOne INT AUTO_INCREMENT PRIMARY KEY NOT NULL
ColumnTwo INT NOT NULL,

ColumnThree VARCHAR (25) NULL,

ColumnFour FLOAT NULL DEFAULT 10,

CONSTRAINT FOREIGN KEY (ColumnTwo)

REFERENCES 'RelatedTable' (FirstColumn)) ;

The same statement in Oracle is:

CREATE TABLE MyTable

(ColumnOne INT PRIMARY KEY NOT NULL

ColumnTwo INT NOT NULL,

ColumnThree VARCHAR2 (25) NULL,

ColumnFour FLOAT DEFAULT 10 NULL,

CONSTRAINT "ForeignKey" FOREIGN KEY (ColumnTwo)
REFERENCES RelatedTable (FirstColumn)) ;

As previously mentioned, Oracle doesn’t allow for auto-increment columns.

After a table is created, an ALTER TABLE statement can be used to modify spe-
cific attributes of the table. Due to its complexity and to the vast differences

191

192

Chapter 18 = Maintaining Tables

between databases, the syntax for the ALTER TABLE won’t be covered in
this book.

As one example, if you wanted to modify MyTable to eliminate the Column-
Three column from the table, you would need to issue this ALTER TABLE
statement:

ALTER TABLE MyTable
DROP COLUMN ColumnThree

The syntax for deleting a table is simple. To delete MyTable, issue this statement:

DROP TABLE MyTable

Creating Indexes

SQL provides a CREATE INDEX statement to create indexes after the table is
created. You can also use the ALTER TABLE statement to add or modify indexes.

If you would like to add a new index on the ColumnFour column in MyTable
table, the syntax in Microsoft SQL Server is:

CREATE INDEX Index2
ON MyTable (ColumnFour)

This creates a new index named index2.
To delete an index, simply issue a DROP INDEX statement such as:

DROP INDEX Index2
ON MyTable

DATABASE DIFFERENCES: Oracle

In Oracle, the equivalent DROP INDEX statement is:

DROP INDEX Index2;

Looking Ahead

The SQL statements that add or modify tables and indexes are complex but
relatively unimportant to learn in detail. Database software generally provides
graphical tools to modify the structure of tables without having to resort to is-
suing SQL statements. The important concepts to take from this chapter are a

Looking Ahead

knowledge of the various table attributes, including an understanding of how
indexes and primary and foreign keys are related to each other.

In our next chapter, “Principles of Database Design,” we move from the rela-
tively mundane task of creating tables to the much broader topic of database
design. Just as tables are normally created before their data is accessed, it’s also
true that databases are normally designed before tables are created in those
databases. So in a sense, we're moving in reverse through topics that are
normally introduced before data retrieval is ever attempted. The specific design
of your database is, of course, an essential component of your ability to deliver
quality results via SQL. If a database is poorly designed, you're going to be
hindered in your subsequent attempts to retrieve data. Basic knowledge of the
database design principles discussed in the next chapter can go a long way
toward ensuring a quality database environment.

193

This page intentionally left blank

CHAPTER 19

PRINCIPLES OF
DATABASE DESIGN

In our first chapter, we introduced the notion that relational databases are a
collection of data, stored in any number of tables. The tables are assumed to be
related to each other in some fashion. In the prior chapter on maintaining tables,
we made clear that database designers can, if they want, assign foreign keys to
ensure that certain relationships between tables are maintained properly.

However, even with our knowledge of primary and foreign keys, we still have not
yet addressed the basic issue of how to design a database in the first place. The
main questions to address are the following:

m How should data be organized into a set of related tables?

m What data elements should be placed in each table?

Once tables and their data elements are defined, then a database administrator
can go about the business of creating foreign keys, indexes, appropriate data-
types, and so on.

There will never be a single correct answer to the above two questions. Besides
the fact that every organization or business is unique, it is also true that there is
no definitive solution for any given business. Much depends on how flexible a
business wants its data design to be. Another obvious factor is the existence of
current data. Very few organizations have the luxury of designing their databases
in a vacuum, apart from what already exists.

195

196

Chapter 19 = Principles of Database Design

Despite these provisos, certain database design principles have evolved over time
to guide us in our quest for an optimal design structure. It should be said from
the outset that the most influential architect of relational database design is E.F.
Codd, who published his groundbreaking article, “A Relational Model of Data
for Large Shared Data Banks” in 1970. This article laid the foundation for what
we now call the relational model and the concept of normalization.

Goals of Normalization

The term normalization refers to a specific process that allows designers to turn
unstructured data into a properly designed set of tables and data elements.

The best way to understand normalization is to illustrate what it isn’t. To do this,
we’ll start with the presentation of a poorly designed table with a number of
obvious problems. The following is a table named Grades, and it attempts to
present information about all of the grades that students have received for the
tests they’ve taken. Each row represents a grade for a particular student.

Total

Test Student Date Points Grade TestFormat Teacher Assistant
Pronoun Quiz Amy 2009-03-02 10 8 Multiple Choice Smith Collins
Pronoun Quiz Jon 2009-03-02 10 6 Multiple Choice Jones Brown
Solids Quiz Beth 2009-03-03 20 17 Multiple Choice Kaplan NULL
China Test Karen 2009-02-04 50 45 Essay Harris Taylor
China Test Alex 2009-03-04 50 38 Essay Harris Taylor
Grammar Test Karen 2009-03-05 100 88 Multiple Choice, Smith Collins

Essay

Let’s first list the information that each column in this table is meant to provide.
The columns are:

m Test: A description of the test or quiz given

Student: The student who took the test

Date: The date on which the test was taken

TotalPoints: The total number of possible points for the test

Grade: The number of points that the student received

Goals of Normalization

m TestFormat: The format of the test, either essay, multiple choice, or both
m Teacher: The teacher who gave the test

m Assistant: The person who assisted the teacher in this class

We’re going to assume that the primary key for this table is a composite primary
key consisting of the Test and Student columns. Each row in the table is meant to
express a grade for a specific test and student.

Let’s now discuss two obvious problems with this table. First, certain data is
unnecessarily duplicated. For example, you can see that the Pronoun Quiz,
which was given on 2009-03-02, had a total of 10 points. The problem, however,
is that this information needs to be repeated on every row for that quiz. It
would be better if we could simply record the total points for that particular
quiz once.

A second problem is that data is repeated within certain single cells. We have a
row for which the TestFormat is both Multiple Choice and Essay. This was done
because the test had both types of questions. But this makes the data difficult to
utilize. If we wanted to retrieve all tests with essay questions, how could we
do that?

To be more general, the main problem with this table is that it attempts to put
all information into a single table. It would be much better to break down the
information in this table into separate entities, such as students, grades, and
teachers, representing each entity as a separate table. The power of SQL can then
be used to join tables together to retrieve any needed information.

With this discussion in mind, let’s now formalize what the process of normal-
ization hopes to accomplish. There are two main goals:

m Eliminate redundant data. The above example clearly illustrates the issue of
redundant data. But why is this important? What exactly is the problem
with listing the same data on multiple rows? Besides the obvious duplication
of effort, one answer is that redundancy reduces flexibility. When data is
repeated, that means that any changes to particular values affect multiple
rows rather than just one.

» Eliminate insert, delete, and update anomalies. The problem of redundant
data also relates to this second goal, which is to eliminate insert, delete, and

197

198

Chapter 19 = Principles of Database Design

update anomalies. Let’s say, for example, that one particular teacher gets
married and changes her name. You would like the data to reflect the new
name. You now need to do an update on all rows that contain her name.
Because the data is stored redundantly, you need to update a large amount
of data, rather than just one row.

There are also insert and delete anomalies. For example, let’s say you just
hired a new teacher to teach music. You would like to record that some-
where in your database. However, since that teacher hasn’t yet given any
tests, there is nowhere to put this information, since you don’t have a table
specific to the entity of teachers.

Similarly, a delete anomaly would occur if you wanted to delete a row, but
by doing so that would eliminate some related piece of information. To use
another example, if you had a database of books and wanted to delete a row
for a book by Nathaniel Hawthorne, and if that were the only book for

Mr. Hawthorne, then that row deletion would not only eliminate the book,
but also the fact that Nathanial Hawthorne is an author of other books you
might acquire in the future.

How to Normalize Data

We’ve been throwing around the term normalization for a while. It’s now time to
be more specific about what it means.

The term itself originates with E.F. Codd, and it refers to a series of reccommended
steps taken to remove redundancy and update anomalies from a database design.
The steps involved in the normalization process are commonly referred to as first
normal form, second normal form, third normal form, and so on. Although certain
individuals have described steps up to sixth normal form, the usual practice is to
go only through first, second, and third normal form. When data is in third
normal form, it is generally said to be sufficiently normalized.

We are not going to describe the entire set of rules and procedures for converting
data into first, second, and third normal form. There are texts that will lead you
through the process in great detail, showing you how to transform data first into
first normal form, then into second form, and then finally into third normal form.

Instead, we are going to summarize the rules for getting your data into third
normal form. In practice, an experienced database administrator can jump from

How to Normalize Data 199

unstructured data to third normal form without having to follow every inter-
mediate procedure. We will do the same thing here.

The three main rules for normalizing your data are as follows:

m Eliminate repeating data. This rule means that no multivalued attributes
are allowed. In the previous example, we cannot allow a value such as
Multiple Choice, Essay to exist in a single data cell. The existence of multiple
values in a single cell creates obvious difficulties in retrieving data by any
given specified value.

A corollary to this rule is that repeated columns are not allowed. In our
example, the database might have been designed so that, rather than a single
column named TestFormat, we had two separate columns named Test
Formatl and TestFormat2. With this alternative approach, we might have
placed the value Multiple Choice in the Test Formatl column and Essay in
the TestFormat2 column. This would not be permitted. We don’t want to
have repeated data, whether it is multiple values in a single column or
multiple columns to handle similar data.

m Eliminate partial dependencies. This rule refers primarily to situations
where the primary key for a table is a composite primary key, meaning a key
composed of multiple columns. The rule states that no column in the table
can be related only to part of the primary key.

Let’s illustrate with an example. As mentioned, the primary key in the
Grades table is a composite key consisting of the Student and Test columns.
The problem occurs with columns such as TotalPoints. The TotalPoints
column is really an attribute of the test and has nothing to do with students.
This rule mandates that all non-key columns in a table refer to the entire
key, and not just a part of the key. In essence, partial dependencies indicate
that the data in the table relates to more than one entity.

= Eliminate transitive dependencies. This rule refers to situations where a
column in the table refers not to the primary key, but to another non-key
column in the same table. In this example, the Assistant column is really an
attribute of the Teacher column. The fact that Assistant relates to the teacher
and not to anything in the primary key (test or student) indicates that the
information doesn’t belong in this table.

200

Chapter 19 = Principles of Database Design

So we’ve seen the problems and have talked about the rules for fixing the data.
How are proper database design changes actually determined? This is where
experience comes in. And there is generally not a single solution to the problem.

That said, the following is one solution to this design problem. In this new
design, several tables have been created from the one original table, and all data is
now in normalized form. Figure 19.1 shows the tables in the new design, shown
without data.

Students Grades Tests Formats
StudentiD StudentiD TestlD TestID
Student TestID / TeacherlD TestFormat
Grade Test
Date Teachers
TotalPoints TeacherlD
Teacher
Assistant
Figure 19.1

Normalized design.

The primary keys in each table are shown in bold. A number of ID columns with
auto-increment values have been added to the tables, allowing relationships
between the tables to be defined. All the other columns are the same as shown
before.

The main point to notice is that every entity discussed in this example has been
broken out into separate tables. The Students table has information about each
student. The only attribute in this table is the student name. The Grades table has
information about each grade. It has a composite primary key of StudentID and
TestID because each grade is tied to a student and to a specific test given.

The Tests table has information about each test given, such as the date,
TeacherlD, the test description, and the total points for the test

The Formats table has information about the test formats. Multiple rows are
added to this table for each test, to show whether the test is multiple choice,
essay, or both.

The Teachers table has information about each teacher, including the teacher’s
assistant, if there is one.

The following shows the data contained in these new tables, corresponding to the
data in the original Grades table.

How to Normalize Data

Students table:
StudentID Student
1 Amy
2 Jon
3 Beth
4 Karen
5 Alex
Teachers table:
TeacherID Teacher Assistant
1 Smith Collins
2 Jones Brown
3 Kaplan NULL
4 Harris Taylor
Tests table:
TestID TeacherID Test Date TotalPoints
1 1 Pronoun Quiz 2009-03-02 10
2 2 Pronoun Quiz 2009-03-02 10
3 3 Solids Quiz 2009-03-03 20
4 4 China Test 2009-03-04 50
5 1 Grammar Test 2009-03-05 100

Formats table:

TestID

TestFormat

U U1 B W N =

Multiple Choice
Multiple Choice
Multiple Choice
Essay
Multiple Choice
Essay

201

202

Chapter 19 = Principles of Database Design

Grades table:

StudentID TestID Grade

1 1 8
2 2 6
3 3 17
4 4 45
5 4 38
4 5 88

Your first impression might be that we have unnecessarily complicated the
situation, rather than improved it. For example, the Grades table is now a mass of
numbers, the meaning of which is not completely obvious on quick inspection.

This is true. However, remembering the ability of SQL to join tables together
easily, you can also see that there is now much greater flexibility in this new
design. Not only are we free to join together only those tables needed for any
particular analysis, but we can now add new columns to these tables much more
readily, without affecting anything else.

Our information has become more modularized. For example, if we should
decide that we want to capture additional information about each student, such
as address and phone, we can simply add new columns to the Students table.
Additionally, when we want to modify a student’s address or phone later, it only
affects one row in the table

The Art of Database Design

Ultimately, designing a database is much more than simply going through the
normalization procedures. Database design is really more of an art than a sci-
ence, and it requires asking and thinking about relevant business issues.

In our grades example, we presented one possible database design as an illustra-
tion of how to normalize data. In truth, there are many possibilities for designing
this database. Much depends on the realities of how the data will be accessed and
modified. Numerous questions can be asked to ascertain whether your design is
as flexible and meaningful as it needs to be. For example:

m Are there other tables that need to be added to our database? One obvious
choice would be a Subjects table, so you could easily select tests by subject,

Alternatives to Normalization

such as English or Math. If you did this, would you relate the subject to the
test or to the teacher who gave the test?

m Is it possible for a grade to count in more than one subject? Maybe the
English and Social Studies teachers are doing a combined lesson and want
certain tests to count for both subjects. How do you account for that?

= What do you do if a child flunks a grade and is now taking the same tests
for a second year? How do you differentiate his grade now from last year’s
grades?

= How do you allow for special rules that teachers might implement, such
as dropping the lowest quiz score in a particular time period?

m Are there special analysis requirements for the data? If there is more than
one teacher for the same subject, do you want to be able to compare the
average grades for the students of each teacher, to make sure that one
teacher isn’t unfairly inflating grades?

The list of possible questions is endless. But the point is that data doesn’t exist in a
vacuum. There is a necessary interaction between data design and requirements in
the real world. Databases need to be designed in such a way as to allow for needed
flexibility. However, there is also a danger that databases can be overly designed to a
point where the data becomes unintelligible. A zealous database administrator may
decide to create 20 tables to allow for every possible situation. That, too, is inad-
visable. Database design is something of a balancing act in search of a design that is
sufficiently flexible but also intuitive and understandable by users of the system.

Alternatives to Normalization

We have emphasized that normalization is the overriding principle that should
be followed in designing a database. In certain situations, however, there are
viable alternatives that might make more sense.

For example, in the realm of data warehouse systems and software, many prac-
titioners advocate utilizing a star schema design for databases rather than nor-
malization. In a star schema, a certain amount of redundancy is allowed and
encouraged. The emphasis is on creating a data structure that more intuitively
reflects business realities, and also one that allows for quick processing of data by
special analytical software.

203

204

Chapter 19 = Principles of Database Design

To give a brief overview of star schema designs, the main idea is to create a
central fact table, which is related to any number of dimension tables. The fact
table contains all the quantitative numbers that are additive in nature. In our
prior example, the Grade column is such a number, since we can add up grades
to obtain a meaningful total grade. The dimension tables contain information on
all the entities that are related to the central facts, such as subject, time, teacher,
student, and so on.

Furthermore, special analytical software exists that allows database developers to
create cubes from their star schema databases. These cubes extend analysis capa-
bilities, allowing users to drill down predefined hierarchies, which are defined
in the various dimensions. A user of such a system would be able to drill down
from viewing a semester’s worth of grades for a student, to his grades in any
individual week.

Figure 19.2 shows what a database with a star schema design might look like for
our grades example.

Students Grades Time
Student ID Date Date
Student \ TestID
StudentID Tests
Teachers TeacherlD TestlD
TeacherlD "“’/ Grade Test
Teacher TotalPoints
Assistant Formats _
TestlD
TestFormat
Figure 19.2

Star schema design.

In this design, the Grades table is the central fact table. The other tables are all
dimension tables.

The first four columns in the Grades table (Date, TestID, StudentID, and
TeacherID) are there only to relate the table to each of the dimensions. The other
two columns have the additive numeric quantities we talked about. Notice that

Looking Ahead

TotalPoints is now in the Grades table. In our normalized design, it was an
attribute of the Tests table. By putting both the Grade and TotalPoints in the
Grades table, we can use our analytical software to easily sum up grades and
compute average grades (Grade divided by the TotalPoints) for any set of data.

Certainly, this is only a brief introduction to the subject of designing databases
for data warehouses. It illustrates the point that there are many different ways to
design a database, and the best way often relates to the type of software that will
be used with the data.

Looking Ahead

This chapter covered the principles of database design. We went over the basics
of the normalization process, showing how a database with a single table can be
converted into a more flexible structure with multiple tables, related by addi-
tional key columns. We also emphasized that database design is not merely a
technical exercise. Attention must be paid to organizational realities and to
considerations as to how the data will be utilized. Finally, we briefly described
one alternative to the conventional normalized design, in an effort to emphasize
that there is often more than one approach to this endeavor.

In our final chapter, “Strategies for Displaying Data,” we’re going to discuss
some interesting possibilities for using reporting software tools to complement
our knowledge of SQL. In our quest to sharpen our SQL skills, we must not
forget that there is a world beyond SQL. We make to make sure that we don’t
expend our efforts in SQL when the underlying objective can be accomplished
more effectively through other means.

205

This page intentionally left blank

CHAPTER 20

STRATEGIES FOR
DiIsSPLAYING DATA

In this final chapter, we’re going to return to the main theme of this book, which
is how to retrieve data from relational databases. In the past few chapters, we’ve
taken a slight detour from the related topics of updating data, maintaining
tables, and designing databases.

But now, we want to focus again on the role of SQL in retrieving data. More
specifically, we want to address situations where data is presented to users via
reporting software.

Beyond SQL

Specialized reporting tools are often used to present data to users. Examples of
this type of software include Microsoft Reporting Services and Crystal Reports.
These software packages allow developers to connect to databases via SQL, and
they provide a well-designed user interface, allowing users to easily access data
via predefined reports. With minimal effort, these reporting tools also enable
developers to present data in a variety of formats.

In addition, most reporting tools enable users to export retrieved data to a spread-
sheet, such as Excel. This provides opportunities for users to manipulate their
own data, allowing them to transform data into formats unique to spreadsheets.

With this in mind, the purpose of this chapter is to raise an awareness on the part
of the database developer of what can be accomplished either through reporting
software or by users manipulating data in spreadsheets. Either way, there are

207

208

Chapter 20 = Strategies for Displaying Data

opportunities for offloading some of the complexity that would ordinarily be
involved with using SQL to other tools or the end user. Often, it is easier and
better for the user to play a role in the final arrangement of data than it is for the
database developer to attempt to do it all in SQL.

Basically, we’ll consider the possibility of avoiding overly complex SQL state-
ments when similar functionality can be handled either by a reporting tool or by
the user viewing the data.

Reporting Tools and Crosstab Reports

We’'re going to use Microsoft Reporting Services to illustrate what can be done
with reporting tools. This is just one of many available tools, including Crystal
Reports, Cognos, and MicroStrategy.

Specifically, we’re going to look at a report type that Microsoft calls a matrix report.
Outside of Microsoft, matrix reports are commonly referred to as crosstab reports.

The simplest way to create a new report in Microsoft Reporting Services is
through their Report Wizard. After being invoked, the wizard runs you through
the following steps:

1. Obtain a data source and connection.

2. Create the query, either through a provided SELECT statement or by using
a built-in Query Builder.

3. Specify a report type. Options include tabular and matrix.

4. Arrange specific columns from the SELECT or Query Builder into various
report areas.

5. Select a visual style for the report.

Step 3 allows you to specify the report type. In Microsoft terminology, a tabular
report presents data in the normal fashion. Data elements are shown as columns,
and each occurrence appears as a new row. The data shown in the report is
exactly as the SELECT statement or Query Builder specifies.

The matrix report is the new feature we want to consider. When the matrix
report type is utilized, data items are not placed into columns as normal. Instead,
data items are placed into one of four different areas of the report: rows,
columns, details, and pages.

Reporting Tools and Crosstab Reports

The best way to illustrate the difference between tabular and matrix reports is
with a simple example. Let’s say that you have a SELECT statement such as the
following:

SELECT

CustomerName AS 'Customer',
ProductCategory AS 'Product Category',
OrderAmount AS 'Amount'

FROM SalesTable

When you create a tabular report with this statement, a report might appear as in
Figure 20.1.

Customer |Product Amount
Category

Carter Desks 150
Carter Paper 5
Kraft Chairs 120
Pollen Chairs 40
Pollen Chairs 200
Smith Chairs 40
Smith Desks 300
Figure 20.1

Tabular report.

Data in this tabular report is presented in the normal arrangement of columns
and rows.

Now, let’s see what the report looks like if the same SELECT statement is used
in conjunction with a matrix report. In specifying the matrix report, the
CustomerName column can be put in the rows area, ProductCategory in
the columns area, and OrderAmount in the details area. Figure 20.2 displays the
resulting matrix report.

Chairs Desks Paper
Carter 0 150 5
| Kraft 120 0 0
Pollen 240 0 0
Smith 40 300 0
Figure 20.2

Matrix report.

209

210

Chapter 20 = Strategies for Displaying Data

The matrix report presents data in an entirely different way. Rather than showing
individual rows, it summarizes the data by customer and product groups. The
report has dynamically determined which unique values exist in the customers
and product groups, and it presents the necessary rows and columns to display
all the values.

The details area of a matrix report requires data items with quantitative values,
because those values will be summed up automatically in the matrix report.
Notice that in the tabular report, Pollen, had two orders of chairs, one for 40 and
one for 200. In the matrix report, these two values were summed automatically,
to display a total of 240.

There are, of course, numerous other features and capabilities of this and other
reporting tools. The main point is to remain mindful of what can accomplished
with reporting tools to lessen the burden on the developer writing SQL
statements.

Spreadsheets and Pivot Tables

In addition to reporting tools, spreadsheets also provide a great deal of func-
tionality for you to manipulate data. Most reporting tools allow you to export
data into an Excel spreadsheet. At that point, you have the ability to do whatever
you want in Excel to format and analyze the data.

Many basic Excel functions and features overlap what can be specified in a
SELECT statement. For example, Excel allows you to sort data easily. Excel
provides numerous built-in functions that are similar or identical to the built-in
functions in SQL.

Another important feature of Excel is the capability to group data with subtotals.
This means that if you need both detailed data and subtotals by group, you can
easily accomplish this in Excel. The SQL developer may need to provide data at
only the lowest level of detail. With a few keystrokes in Excel, you can then group
data and add subtotals as desired.

However, the most significant feature that Excel provides in this regard is the
pivot table. With Excel, you have the ability to select any area of data on a
worksheet and convert that data into a pivot table. At a basic level, a pivot table is
the equivalent of the matrix (crosstab) report type seen in the previous example.

Spreadsheets and Pivot Tables

However, the pivot table also adds some key elements that greatly enhance its
usefulness:

m First, a pivot table is completely interactive. Rather than viewing a static
crosstab report, the user can modify the pivot table quickly by rearranging
data elements into the various areas: rows, columns, and data. In addition,
pivot tables provide a fourth data area called the page, which allows for data
items to be used in filtering but not displayed.

m The data in pivot tables exists as a separate store of data and can even be
saved as a separate file. Because the data in a pivot table exists on its own,
users can rearrange the data without affecting the data from which the pivot
table was created.

= Pivot tables allow for additional data selection. For example, specific
values of various data items can be excluded. Or the aggregated values in
the data area of the pivot table can be changed from sums to counts.

= Pivot tables can add drill-down functionality to the data. For example,
if the underlying data contains columns such as country, state, and city, the
pivot table can be set up so you can double-click on a country to see all
states in that country and then double-click again to see all cities in each
state.

m Pivot tables allow users to drill through from summarized data to the
underlying details. Thus, you have the ability to double-click on any
individual value in the data area to see the individual rows that contributed
to that number.

It’s beyond the scope of this book to explore pivot tables in any amount of detail.
But an awareness of what you can accomplish with pivot tables can be very useful
for the SQL developer.

Figure 20.3 shows an example of a pivot table that was created from the same
data as listed earlier, but with the addition of two new columns: Date and
Subcategory. The Subcategory column is a further breakdown of the product
category. In this pivot table, the date, product category, and subcategory were all
put in the rows area. This illustrates how pivot tables can provide a further
breakdown of data in a very flexible manner.

211

212

Chapter 20 = Strategies for Displaying Data

Sum of Amount Customer _
Date Product Category|Subcategory Carter| Kraft|Pollen| Smith
12/5/2009 Chairs Metal 120 40
Plastic 40
Paper Glossy 5
12/6/2009 Desks Wood 150
12/7/2009 Chairs Metal 200
Desks Metal 300
Grand Total 155] 120] 240] 340
Figure 20.3
Pivot table.

The important point about this pivot table is that there are three different levels
of groups in the rows. First, it divides all data by date, then by product category,
and finally by subcategory. You can see that on 12/5/09, there were two different
product categories sold: chairs and paper. For chairs, there were two different
subcategories sold: metal and plastic. For each of these categories, the pivot table
provides a breakdown of sales by customer.

As such, pivot tables are very adept at summarizing data in innumerable ways.
Additionally, users have the ability to arrange data items in almost any desired
format.

Looking Ahead

In this chapter, we’ve examined a few ways in which reporting tools and spread-
sheets can be used to display data in custom formats. In particular, the crosstab
report adds an ability to summarize data in a way that is difficult to present
strictly through SQL statements. Pivot tables in Excel utilize the basic concept of
the crosstab report and extend it to provide additional flexibility and functionality
for users. By being aware of reporting and user tools available to reformat data,
SQL developers can focus their talents more productively on retrieving data and
let the reporting tool or user handle more complex display issues.

Now that you’ve completed the book, why not try out a few commands on your
own? If you haven’t already done so, take a look at Appendices A, B, and C to get
some tips on how to get started with Microsoft SQL Server, MySQL, or Oracle.
These appendices provide instructions on how to install the free versions of these
databases, and they also provide some basic information on how to use the
software to execute SQL commands.

Finally, I sincerely hope that this book has served as a useful guide into the world
of SQL. At the start of the book, I mentioned that SQL involves both logic and

Looking Ahead

language. The language component is fairly obvious. In each chapter, I’ve stres-
sed the keywords that are introduced and the meaning behind those words. But
now that you’ve completed the book, I hope you can appreciate that the power of
SQL is with the logic that it encompasses.

It is pure logic that allows you take a bunch of values arranged in columns and
rows and transform it into something approaching information. The challenge
in using SQL is in determining how to apply logic to real-world data. This is
where the theoretical and practical meet. In using functions, aggregation, joins,
subqueries, views, and the like, you’ll grapple with the reality of raw data and
learn how to manipulate it with a few twists of logic.

But logic isn’t the end of the matter. The language of SQL plays an equally
important role. I would say that the real beauty of SQL lies in the fact that the
language is quite sparse. It’s neither cryptic nor verbose. Each keyword has a
distinct purpose and specifies a particular bit of logic and nothing more. I
wouldn’t go so far as to say that SQL has poetic qualities, but within the realm of
computer languages, the language has a certain aesthetic appeal.

213

This page intentionally left blank

APPENDIX A

GETTING STARTED
WITH MICROSOFT
SQUL SERVER

Overview

The procedure to install the free version of Microsoft SQL Server is as follows.
This procedure was tested on a PC with the Windows 7 operating system. Please
note that the specific instructions may vary from what is shown here, depending
on what is already installed on your PC.

As these procedures may change over time, please consult www.courseptr.com/
downloads for any updates.

There are two main steps involved:

m Install SQL Server Express 2008

m Install SQL Server Management Studio

Microsoft SQL Server Express 2008 allows you to create databases. The SQL
Server Management Studio is a graphical interface that allows you to issue SQL
commands to interact with the server and any databases you create.

Both downloads are available at www.microsoft.com/sqlserver.

Installing SQL Server Express 2008

The steps for installing the Microsoft SQL Server database are as follows.

1. Go to www.microsoft.com/sqlserver.

215

www.courseptr.com/downloads
www.courseptr.com/downloads
www.microsoft.com/sqlserver
www.microsoft.com/sqlserver

216 Appendix A = Getting Started with Microsoft SQL Server

9.

In the Downloads area at the far right, click on SQL SERVER 2008
EXPRESS.

Click the INSTALL button.

If you don’t already have it, a new window will pop up to allow you to
install the Microsoft Web Platform. Click on the GET THE MICROSOFT
WEB PLATFORM button.

. You may then be asked a series of questions, such as if you want to run the

application and allow various procedures to execute. Respond RUN, YES,
or ALLOW to all questions.

After the install of Microsoft Web Platform completes, you will see a screen
asking you to install SQL Server Express 2008. Click the INSTALL button.

On the License screen, click the ALLOW button.

On the Authentication Mode screen, select Mixed Mode authentication
and enter a password for the SQL Server Administrator (SA) user.

After the install completes, click the FINISH and then the EXIT buttons.

After this has completed, you will have the following software installed:

m Microsoft SQL Server 2008 Import and Export Data

m Microsoft SQL Server 2008 Configuration Tools

Installing SQL Server Management Studio

The steps for installing the Microsoft SQL Server 2008 Express Management
Tools are as follows:

1.
2.
3.

Go to www.microsoft.com/sqlserver.
In the Downloads area, click on SQL SERVER 2008 EXPRESS.

On the grid under Other Installation Options, click the INSTALL button
under the Management Tools column.

You may then be asked a series of questions, asking if you want to
allow various procedures to execute. Respond YES or ALLOW to all
questions.

www.microsoft.com/sqlserver

Using SQL Server Management Studio

5. You will now see a screen asking you to install SQL Server 2008 Manage-
ment Studio Express. Click the INSTALL button.

6. On the License screen, click the I ACCEPT button. The software will then
be installed. During the installation, you may see a window warning of
compatibility issues. If so, click the RUN PROGRAM button.

7. After the install completes, click the EXIT button.
After this has completed, you will have the following software installed:

m Microsoft SQL Server Management Studio

m Microsoft SQL Server Integration Services

Using SQL Server Management Studio

When you start SQL Server Management Studio, you’ll see a window to establish
a connection with the Microsoft SQL Server that you already installed. Enter
“localhost\SQLEXPRESS” in the Server Name box. In the Authentication box,
select WINDOWS AUTHENTICATION. You don’t need to enter a user name or
password. Click the CONNECT button.

After connecting, you’ll need to create a database to work with. To do this, find
the Object Explorer pane on the left side of the window. Right-click on the
DATABASES line and then select NEW DATABASE. In the New Database win-
dow, enter a name in the Database Name box (for example, FirstDatabase). Click
the OK button. You will now see your new database under Databases.

To execute any desired SQL code, you can highlight your database and then click
the NEW QUERY button. A new query window will open. You can enter any
SQL code and then click the EXECUTE button. If you enter multiple SQL
statements in the query window, you can highlight any number of individual
statements and execute only the highlighted portion. The results of your query
will be shown in either a Results or a Message pane after the query is executed. If
there is data to be shown, it will appear in a Results pane. Otherwise, a status
message will appear in a Message pane.

Microsoft provides complete online documentation on SQL Server in the MSDN
(Microsoft Development Network) area of their Web site. The starting point for
the Transact-SQL reference guide is currently at:

http:/msdn.microsoft.com/en-us/library/bb510741.aspx

217

http://msdn.microsoft.com/en-us/library/bb510741.aspx

This page intentionally left blank

APPENDIX B

GETTING STARTED
wiTH MYSQL

Overview

The procedure to install the free version of MySQL is as follows. This procedure
was tested on a PC with the Windows 7 operating system. Please note that the
specific instructions may vary from what is shown below, depending on what is
already installed on your PC.

As these procedures may change over time, please consult www.courseptr.com/
downloads for any updates.

There are two main steps involved:

m Install MySQL Community Server

m Install MySQL Workbench, version 5.2 or higher

MySQL Community Server allows you to create databases. The MySQL Work-
bench is a graphical interface that allows you to issue SQL commands to interact
with the server and any databases you create.

The MySQL Community server download is available at www.mysql.com. At the
time of this writing, the MySQL Workbench download is in transition. In order
to use this tool to execute SQL statements, you will need to obtain version 5.2 or
higher. At present, this version is available in beta at dev.mysql.com.

219

www.courseptr.com/downloads
www.courseptr.com/downloads
www.mysql.com

220 Appendix B ® Getting Started with MySQL

Installing MySQL Community Server
The steps for installing the MySQL Community Server are as follows:

1.
2.
3.

10.
11.

12.

13.

14.
15.
16.
17.

18.

19.

Go to www.mysql.com.

Click on the DOWNLOADS tab.

Click on MySQL COMMUNITY SERVER.

Select the MICROSOFT WINDOWS platform.

Click one of the DOWNLOAD buttons.

If you’re a returning user, log in. Otherwise, register as a new user.

Click on HTTP next to one of the mirror files shown.

. When asked if you want to run or save the file, select the RUN button.

After the download completes, when asked if you want to run the software,
select the RUN button. The install setup wizard will then start.

On the Welcome screen, click the NEXT button.

On the Setup Type screen, select TYPICAL and then click the NEXT
button.

On the Ready to Install screen, click the INSTALL button.

On the User Account Control message box, click the YES button. The
software will then be installed.

Close the MySQL Enterprise message box.

On the MySQL Server 5.1 Setup Wizard box, click the FINISH button.

On the User Account control message box, click the YES button.

On the Registration screen, enter your information and register, if desired.

Go to the MySQL Server Instance Configuration Wizard message box. You
may need to minimize your browser to see this.

On the Welcome screen, click the NEXT button.

www.mysql.com

20.

21.

22.

23.

24.

Installing MySQL Workbench

On the Configuration Type screen, select STANDARD CONFIGURATION
and then click the NEXT button.

On the Windows Options screen, check INSTALL AS WINDOWS
SERVICE and make sure that LAUNCH THE MYSQL SERVER
AUTOMATICALLY is checked; then click the NEXT button.

On the Security Option screen, enter a root password, if desired, and then
click the NEXT button.

On the Ready to Execute screen, click the EXECUTE button. It should
display the messages: Configuration file created, Windows service MySQL
installed, Service started successfully.

Click the FINISH button.

After this has completed, you will have the following software installed:

» MySQL Command Line Client

m MySQL Server Instance Config Wizard

Installing MySQL Workbench

The steps for installing the MySQL Workbench are as follows. Note that you
need to be on version 5.2 or higher in order to execute SQL with the tool. At the
time of publication, version 5.2 is only available as a beta release.

1.
2.

3.

Go to dev.mysql.com.

Click on the DOWNLOADS tab.

Click MySQL WORKBENCH on the left pane.

Click on MySQL WORKBENCH. Make sure that it is version 5.2 or higher.
Select the MICROSOFT WINDOWS platform.

Click one of the DOWNLOAD buttons.

If you're a returning user, log in. Otherwise, register as a new user if desired.

Click on HTTP next to one of the mirror files shown.

221

222 Appendix B ® Getting Started with MySQL

9. When asked if you want to run or save the file, select the RUN button.
The setup wizard will then start.

10. On the Welcome screen, click the NEXT button.

11. On the Setup Type screen, select COMPLETE and then click the NEXT
button.

12. On the Ready to Install screen, click the INSTALL button.

13. On the Completion screen, click the FINISH button.
After this has completed, you will have the following software installed:

m MySQL Workbench version 5.2

Using MySQL Workbench

When you first open MySQL Workbench after the initial install, you will need to
establish a connection to your MySQL Server instance that you already installed.

To create a connection, select MANAGE CONNECTIONS under the Database
menu. Click the NEW button to add a new connection. Then enter a connection
name (ex: MyConnection) and click the TEST CONNECTION button. Enter a
password if you previously supplied one. Then click the CLOSE button.

After creating the connection, you’ll need to create a database to work with. To
do this, select QUERY DATABASE under the Database menu. Select the
connection you just created and click the OK button. Enter a password if you
previously supplied one. You will now see an SQL Editor pane on your screen.
An Object Explorer area will appear on the left side of the pane. A SQL State-
ments area will appear on the right side. In the Object Explorer, right-click any
database and select CREATE SCHEMA. Enter the name of your new database
(ex: FirstDatabase) in the Name textbox. Click the APPLY button twice and then
the FINISH button. You will now see your new database in the Object Explorer.
Finally, using the Default drop-down box at the top of the Object Explorer, select
your new database as the default database.

Now that a connection and database have been created, you can enter any
desired SQL statement in the SQL Statements area of the SQL Editor pane. If you
don’t see the SQL Editor pane, go back and select Query Database under the

Using MySQL Workbench

Database menu as described previously. As before, this will ask you to select a
connection.

After entering a SQL statement in the SQL Statements area, click the EXECUTE
button, which looks like a lightning bolt. If you enter multiple statements in the
window, you can highlight one individual statement and execute only the high-
lighted portion.

The results of your query will be shown under an Output or Result pane after the
query is executed. If there is data to be shown, it will appear in a Result pane.
Otherwise, a status message will appear under an Output pane.

MySQL provides complete documentation on their database. The MySQL
reference manual is currently at:

http:/dev.mysql.com/doc/refman/5.1/en

223

http://dev.mysql.com/doc/refman/5.1/en

This page intentionally left blank

APPENDIX C

GETTING STARTED
WITH ORACLE

Overview

The procedure to install the free version of Oracle Database is as follows. This
procedure was tested on a PC with the Windows 7 operating system. Please note
that the specific instructions may vary from what is shown below, depending on
what is already installed on your PC.

As these procedures may change over time, please consult www.courseptr.com/
downloads for any updates.

There is one step involved: Install Oracle Database Express Edition.

This installation will create a single database and provide a Web-based graphical
interface that will allow you to execute SQL commands against the database.

This download is available at www.oracle.com/database.
As part of the install process, you may be asked to enter a database username.

The name you should enter is SYSTEM.

Installing Oracle Database Express Edition

The steps for installing Oracle Database Express Edition are as follows.

1. Go to www.oracle.com/database.

2. Click on EXPRESS EDITION found on the left side of the page.

225

www.courseptr.com/downloads
www.courseptr.com/downloads
www.oracle.com/database
www.oracle.com/database

226

Appendix C = Getting Started with Oracle

10.
11.
12.
13.
14.

15.

Click the FREE DOWNLOAD button.

Click ORACLE DATABASE 10g EXPRESS EDITION FOR MICROSOFT
WINDOWS.

Click ACCEPT LICENSE AGREEMENT.

Under Oracle Database 10g Express Edition (Western European), click
ORACLEXE.EXE.

You may then be asked a series of questions, asking if you want allow
various procedures to execute. Respond RUN to all questions.

If you don’t have an account with Oracle, click SIGN UP NOW. Otherwise,
enter your username and password and then enter personal information.

When asked if you want to run or save the file, select the RUN button. The
install setup wizard will then start.

On the Welcome screen, click the NEXT button.

On the License screen, click ACCEPT and then the NEXT button.
On the Destination screen, click the NEXT button.

On the Database Passwords screen, enter a password.

On Summary screen, click INSTALL.

After the install completes, click the FINISH button.

After this has completed, you will have the following software installed: Oracle
Database 10g Express Edition.

The interface to the database is Web based. The various features are accessible
under the Start menu under the Oracle Database 10g Express directory. The
primary application in this directory that you’ll want to use is Go To Database
Home Page.

After the initial install, you will be taken to a Database Login screen on the
Database Home Page. This is the same page you would enter by selecting GO TO
DATABASE HOME PAGE under the Oracle Database 10g Express Edition
directory under the Start menu.

Using Oracle Database Express Edition

After going to this Database Home Page, enter the user name SYSTEM and the
password you created; then click the LOGIN button.

Using Oracle Database Express Edition

To gain access to the Oracle database, run the GO TO DATABASE HOME PAGE
program under the Oracle Database 10g Express Edition directory in the start
menu. This will open up a Web-based application, which will allow you to
interface with the database.

To sign on, enter a username of SYSTEM, the password you specified during the
install, and then click the LOGIN button.

You will then see four icons representing different functionalities: Administra-
tion, Object Browser, SQL, and Utilities. To execute SQL, click the SQL icon.
You will then see three icons: SQL Commands, SQL Scripts, and Query Builder.

If you want to execute a single SQL statement, you can use the SQL Commands
icon. This will allow you to execute a single command and see any results. If you
enter multiple SQL statements, you can highlight one individual statement and
execute only the highlighted portion. To execute a SQL statement in the SQL
Commands window, click the RUN button.

If you want to execute multiple SQL statements, but you don’t need to see the
output, you can use the SQL Scripts icon. After selecting this icon, you can either
create a new script or edit an existing script. To create a new script, click the
CREATE button and then name the script and enter the statements you want in
that script. To execute, click the RUN button. After you enter the request, it will
ask for a confirmation to do the run. Click the RUN button again. You will then
be able to see a summary of your script execution by clicking on the icon under
the View Results column.

Oracle provides complete online documentation on their database. Their
reference manuals are currently at:

http:/www.oracle.com/pls/db112

227

http://www.oracle.com/pls/db112

This page intentionally left blank

APPENDIX D

LisTING OF ALL SQL
STATEMENTS

A listing of all SQL statements in this book can be found on this Cengage Web
site: www.courseptr.com/downloads.

These three files are provided:
m SQL Statements and Data for SQL Server.doc

m SQL Statements and Data for MySQL.doc

m SQL Statements and Data for Oracle.doc

These three files list all SQL statements in the book for each of the three databases
covered. Additionally, these files contain SQL scripts that allow you to create all
the data used in the book. After running the setup scripts, you can execute any
statement in the book and see the same output shown in the book.

Specific instructions on how to execute the setup scripts are provided in each of
the files.

229

www.courseptr.com/downloads

This page intentionally left blank

Symbols

* (accent grave), using with column names,
17, 137
* (asterisk)
as multiplication symbol, 22
using with COUNT function, 100
using in SELECT statements, 14
@ (at) symbol, using with parameters, 167
A (carat) wildcard, using, 88-91
, (comma)
using with columns, 16
using with VALUES keyword, 175
+ (concatenation) symbol, using, 23
" (double quote), using with column names,
18, 137
= (equals sign), using in WHERE clause, 65
>= (greater than or equal to) operator, 79
> (is greater than) operator, using with WHERE
clause, 65
<= (less than or equal to) operator, 79
'" (literal space), using in concatenation, 23
<> (not equals operator) versus NOT, 77-79
() (parentheses)
negating contents of, 78
using in Boolean logic, 73-76
using with arguments, 31
using with VALUES keyword, 175
% (percent) wildcard, using, 86-88
; (semicolon), ending statements with, 15
[] (square brackets)
using with arguments, 40
using with ELSE keyword, 58—59
_ (underscore) wildcard, using, 88-89

A

accent grave (*), using with column names,
17,137
Access, use of, 5-6

INDEX

Actors table, wildcards in, 88-91
aggregate functions
selection criteria on, 105-107
SUM, 98
aggregation, defined, 95
alias, defined, 24
aliases
specifying after FROM and INNER JOIN,
115-116
using, 26-27
ALTER PROCEDURE keyword, using, 169
ALTER TABLE statement, using, 191-192
ALTER VIEW statement, using, 138-139
AND expression, abbreviating, 79
AND operator
combining with OR in WHERE clause, 74-75
versus INTERSECT, 158
order of processing, 74
using with BETWEEN operator, 80
using in Boolean logic, 72-73
arguments, defined, 31
arithmetic calculations, performing, 22-23
ascending order, sorting in, 48-49
ASC keyword, using in sort, 49
AS keyword
specifying column aliases with, 25
specifying table aliases with, 26
using with CASE expression, 59
using with table aliases for joins, 115-116
asterisk (*)
as multiplication symbol, 22
using with COUNT function, 100
using in SELECT statements, 14
at (@) symbol, using with parameters, 167
auto-increment, explained, 8, 187
AVG function, using, 99

B
BETWEEN operator

231

232

Index

using in Boolean logic, 79-80
using with AND operator, 80
using with NOT operator, 80
bit datatype, explained, 9
Books table, limiting rows with sort, 68-70
Boolean logic
explained, 72
interpretation of WHERE clause, 74
keywords, 72
NOT operator, 76-79
NULL values, 82-84
AND operator, 72-73
BETWEEN operator, 79-80
IN operator, 80-82
OR operator, 73
using parentheses (()), 73-76

C

calculated columns
creating via views, 138
using subqueries as, 150-151
calculated fields
arithmetic calculations, 22-23
features of, 19-20
literal values, 20-22
sorting by, 51-52
CALL keyword, using in MySQL, 168
capitalization, use of, 17
caret (A) wildcard, using, 88-91
Cascade action, specifying for tables, 190
CASE expressions
ELSE keyword, 58-59
END line, 59
explained, 57
AS keyword, 59
searched format, 60-62
in SELECT statements, 58
simple format, 58—60
in SQL clauses, 60-62
terminating, 59
THEN keyword, 58
uses of, 60
using SELECT statements with, 59
using with IF-THEN-ELSE logic, 58
WHEN keyword, 58
WHEN-THEN condition, 59
WHERE clause, 62
CAST function, using, 42-44
character data, sorting, 53
character datatypes, examples, 9
character functions
CONCAT, 34-35
LEFT, 30-32

LOWER, 35-36

LTRIM, 34

RIGHT, 32-33, 36-37

RTRIM, 34, 36-37

SUBSTRING, 33-34

UPPER, 35-36

See also scalar functions

[characterlist] wildcard, using, 88-91

character string datatypes, examples, 9
characters, using percent (%) wildcard with, 86
child table, foreign key column in, 189

Codd, E.F., 198

column aliases
features of, 21
using, 24-25

columnlist, placing columns in, 16-17
column names, embedded spaces in, 17

columns. See also fields
attributes in tables, 187-188
auto-increment type of, 187
basing groups on, 103-105
datatype attribute, 187
default values, 188
displaying in views, 136-137
in Grades table, 196
indexing, 188
limiting display of, 68
NULL values, 187-188

performing arithmetic calculations on, 22-23

renaming via views, 138
sorting, 103-105
sorting by, 50-51
specifying, 16-17

specifying with COUNT function, 100

comma (,)

using with columns, 16

using with VALUES keyword, 175
composite functions

evaluating, 36-37

example, 35

using, 36-37
concatenating fields, 23-24
concatenation (+) symbol, using, 23
CONCAT function, using, 34-35

conditional logic. See CASE expressions

conversion functions, CAST, 42-44
correlated subqueries

EXISTS operator, 149-150

using, 147-149

correlated subquery updates, 181-183

COUNT function
and NULL value, 100
using, 99-101
CREATE commands, number of, 186

CREATE INDEX statement, using, 192
CREATE PROCEDURE statement, as DDL (Data
Definition Language), 186
CREATE TABLE statement, using, 190-192
CREATE VIEW keyword, syntax for, 134-135
CREATE VIEW statement, as DDL (Data
Definition Language), 186

crosstab reports, using, 208-210
CustomerProcedure, executing, 168
Customers table

correlated subqueries, 147-149

correlated subquery updates, 181-183

deleting all rows in, 179

example, 6

foreign keys, 190

INSERT INTO statement, 177-178

INSERT keyword, 174-178

joining with Orders table, 114-115

LEFT JOIN, 123

listing after Refunds table, 126

outer joins, 120

sorting by calculated fields, 51-52

sorting by columns, 50-51

sorting in ascending order, 48-49

sorting in descending order, 49-50

sort sequences, 52-55

subqueries as data sources, 143-145

updating data, 180

using in join, 110

using SELECT statement with, 14

values for outer joins, 121

D

data
converting to datatypes, 41-42
creating subsets via views, 138
deleting, 178-179
eliminating dependencies, 199
eliminating redundancies, 197
eliminating repetition, 199
formatting via views, 138
inserting, 174-178
modification strategies, 173-174
normalizing, 198-202
selecting from middle of values, 33
updating, 180-181
database design
art of, 202-203
normalization, 196-199
Data Control Language (DCL), explained, 3
Data Definition Language (DDL). See DDL (Data
Definition Language)
data, grouping, 101-102

Index

Data Manipulation Language (DML),
explained, 3
data sources, using subqueries as, 142-145
datatype attribute, using with columns, 187
datatypes
character, 8-9
date/time, 8-9
numeric, 8-9
DATEDIFF function, using, 39
DATEPART functions, using, 38
dates, displaying, 122
date/time datatypes, use of, 9-10
date/time functions
DATEDIFF, 39
DATEPART, 38
GETDATE, 37-38
using, 37-39
See also scalar functions
DCL (Data Control Language), explained, 3
DDL (Data Definition Language)
CREATE PROCEDURE statement, 186
CREATE VIEW statement, 186
overview of, 3, 185-186
DD-MMM-YY date format, use in Oracle, 122
decimal datatypes, contents of, 9
DecimalPlaces argument, using, 40
delete anomalies, eliminating, 197-198
DELETE statement, executing, 178-179
deleting
data, 178-179
indexes, 192
rows from table, 173-174
stored procedures, 169-170
tables, 192
views, 138-139
dependencies, eliminating from data, 199
descending order, sorting in, 49-50
DESC keyword, using in sort, 49-50
designing databases
art of, 202-203
normalization, 196-199
DIFFERENCE function, using with
SOUNDEX, 91-93
DISTINCT keyword
versus UNION operator, 157-158
using, 95-97
using with COUNT function, 101
DML (Data Manipulation Language),
explained, 3
double quote ("), using with column names,
18, 137
DROP INDEX command, using, 192
DROP PROCEDURE command, using, 169-170
DROP TABLE command, using, 192

233

234

Index

DROP VIEW statement, using, 139
duplicates

eliminating, 95-97, 157-158

in Grades table, 197

E

ELSE keyword, using in CASE expression, 58-59

Employees alias, using with Personnel table,
132-133

entity-relationship diagram, 112, 120

equals sign (=), using in WHERE clause, 65

Excel, features of, 210

EXCEPT operator, using in intersect operation,

159-160
EXEC keyword, using with stored
procedures, 168
EXISTS operator
correlated subquery updates, 183
using with correlated subqueries, 149-150

F

Fees table, aggregate functions in, 97-99
fields, concatenating, 23-24. See also columns
foreign keys

explained, 8

using in tables, 189-190
Formats table, normalizing, 200-201
FROM clause in SELECT statements

listing tables for joins in, 115

using with ORDER BY clause, 48
FROM keyword, 13-14
FULL JOIN, using, 126-128
functions

combining, 36-37

creating and saving, 170

overview of, 29-30

scalar and aggregate, 30

versus stored procedures, 170

G

GETDATE function, using, 37-38
Grades table
columns, 196-197
duplicates in, 197
normalization, 196
normalizing, 200-202
primary key, 197
in star schema design, 204-205
greater than or equal to (>=) operator, 79
GROUP BY clause
versus ORDER BY, 105
order of processing, 107
using with correlated subqueries, 148-149

GROUP BY keyword, using, 101-102
groups
basing on multiple columns, 103-105
handling selection criteria for, 105-107

H

HAVING clause, using with correlated
subqueries, 148-149
HAVING keyword
order of processing, 107
using with WHERE clause, 105-107
header row, using with literal values, 21
headers, specifying for columns, 24-25

IF-THEN-ELSE logic, overview of, 57-58
indexes

creating, 192

deleting, 192

using in tables, 188-189
INNER JOIN clause

advantage of, 115

using ON keyword with, 112-113
inner joins

alternate specification, 114-115

capabilities of, 113

versus full joins, 127

restriction of, 119

specifying, 119

table order in, 114

See also joins; outer joins; self joins

IN operator

using in Boolean logic, 80-82

using with NOT operator, 81-82

using with subqueries, 149
insert anomalies, eliminating, 197-198
INSERT INTO statement, format of, 176-178
INSERT keyword, using, 174-178
inserts, performing, 174
installing

Microsoft SQL Server Management Studio,

216-217

MySQL, 219

MySQL Workbench, 221-222

Oracle Database, 225

Oracle Database Express Edition, 225-227
integers, defined, 9
INTERSECT operator, using, 158-160

is greater than (>) operator, using with WHERE

clause, 65
ISNULL function
versus IS NULL keyword, 83-84

using, 44

using in sorts, 53—-54
IS NULL keyword, using, 82-84
italics, use of, 15

J

JOIN keyword, using, 119
joins
concept of, 110
inner join, 112-113
See also inner joins; outer joins; self joins

K

keywords
beginning on separate lines, 15
case of, 15

L

LEFT function

arguments, 31

data returned by, 30-31

format of, 31

formula for, 32
LEFT JOIN, using, 122-124
less than or equal to (<=) operator, 79
LIKE operator

combining NOT with, 90-91

using in SELECT statement, 85-86

wildcards used with, 88-91
LIMIT keyword, use in MySQL, 67
literal space (''), using in concatenation, 23
literal values, 20-22
LOWER function, using, 35-36
LTRIM function

explained, 30

using, 34

M

mathematical functions. See numeric functions
matrix reports
versus tabular reports, 209
using, 208-210
MAX function, using, 99
Microsoft Access, use of, 5-6
Microsoft Reporting Services, using, 208-210
Microsoft SQL Server
@ (at) symbol used with parameters, 167
stored procedures, 167
versions and editions, 4
Microsoft SQL Server Express 2008, installing,
215-216

Index

Microsoft SQL Server Management Studio
installing, 216-217
using, 217
MIN function, using, 99
Movies table
FULL JOIN in, 127-128
pattern matching, 85-88
MySQL
accent grave (°) used with column names,
17,137
aggregate functions, 98-99
AVG, 99
CALL keyword, 168
column aliases, 25
CONCAT function, 24
DATEDIFF function, 39
DATE_FORMAT function, 39
DROP PROCEDURE command, 169
IFNULL function, 44
installing, 219
LIMIT keyword, 67
MAX, 99
MIN, 99
omission of space and left parenthesis, 98-99
as open source database, 4
reference manual, 223
stored procedures, 165, 167
treatment of literal values, 21
use of accent grave (°), 17
use of spaces in, 33
MySQL Community Server, installing, 220-221
MySQL Workbench
installing, 221-222
using, 222-223
MyTable table
adding index to, 192
creating, 190-192
modifying, 192

N

No Action, specifying for tables, 190
normalization
alternatives, 203-205
goals of, 196-199
normalizing data, 198-202
not equals operator (<>) versus NOT, 77-79
NOT operator
combining with LIKE, 90-91
using in Boolean logic, 76-79
using with BETWEEN operator, 80
using with IN operator, 81-82
NULLS FIRST keyword, using, 52-53
NULL values, 82-84

235

Index

in Boolean logic, 82-84

in columns, 187-188

converting, 42-43

converting in sorts, 54

for COUNT function, 100

in Oracle, 52

overview of, 10

relative to INSERT statement, 177

representing, 44

sorting, 52-55

testing presence in WHERE clause, 82-84

testing relative to LEFT JOIN, 124
numeric datatypes, kinds of, 9
numeric functions

PI, 41

RAND, 40-41

ROUND, 40

See also scalar functions

NumericValue argument, using, 40

o

ON clause, using with self join, 133
ON keyword
advantage of, 115
using with INNER JOIN, 112-113
open source database, MySQL as, 4
operators
using in WHERE clause, 65-66
using with WHEN keyword, 66
Oracle
case sensitivity of, 86
CAST function, 43
FROM clause in SELECT statements, 31, 34
column aliases, 25
concatenation (||), 24
CONCAT function, 35
DD-MMM-YY date format, 122
display of dash (-) for NULL values, 44
double quote (") used with column names,
18, 137
DUAL dummy table, 31, 34
editions, 4
AS keyword used with table aliases, 116
limiting rows in, 70
MINUS operator, 160
NULLS FIRST keyword, 52-53
NULL values, 52
ROWNUM keyword, 67
sorting rows in, 70
stored procedures, 165
SUBSTR function, 32-34, 37
table aliases, 26, 116
treatment of literal values, 21

upper- and lowercase letters, 53
UPPER function, 86
use of double quote ("), 18
Oracle Database
installing, 225
reference manuals, 227
Oracle Database Express Edition
installing, 225-227
using, 227
ORDER BY clause
adding to SELECT statement, 47-52
versus GROUP BY, 105
order of processing, 107
using, 104
using with character data, 54
using with TOP keyword, 68
Orders alias, assigning, 26
Orders table
calculated fields, 20
CONCAT function, 34-35
correlated subqueries, 147-149
example, 7
foreign keys, 190
joining Customers table with, 114-115
LEFT JOIN, 123
AND operator, 72-73
OR operator, 73
outer joins, 120
parentheses (()) with Boolean logic, 73-76
subqueries as data sources, 143-145
UNION operator, 154-156
using in join, 111
values for outer joins, 121
WHERE clause operators, 65-66
OR operator

combining with AND in WHERE clause, 74-75

order of processing, 74
using in Boolean logic, 73
outer joins
FULL JOIN, 120, 126-128
LEFT JOIN, 120, 122-124
RIGHT JOIN, 120, 125
table order in, 125-126
See also inner joins; joins; self joins

P

parameter, using with stored procedures,
166-168
parentheses (())
negating contents of, 78
using in Boolean logic, 73-76
using with arguments, 31
using with VALUES keyword, 175

parent table, columns in, 189
pattern matching, 85-88
percent (%) wildcard, using, 86-88
Personnel table, self joins, 131-134
PI function, using, 41
pivot tables, using, 210-212. See also reporting
tools
primary keys
explained, 7-8
in Grades table, 197
in normalized design, 200
specifying for tables, 14
using in tables, 188—189
procedures. See stored procedures
Products table
Boolean logic and NULL values, 82-84
CASE expression searched format, 60-62
CASE expression simple format, 58-60

Q

queries
combining, 153
intersecting, 158-160
See also set logic; subqueries

R

RAND function, using, 40-41
real number, defined, 9
records. See rows
Refunds table

LEFT JOIN, 123-124

listing before Customers table, 126

outer joins, 120

values for outer joins, 121
relational databases

Customers table, 6

defined, 6

example, 6

Orders table, 7

rows and columns, 6
reporting tools

crosstab reports, 208-210

use of, 207-208

See also pivot tables; spreadsheets
Returns table, UNION operator,
154-156

reusability, increasing via views, 137
RIGHT function

data returned by, 32

using, 36-37
RIGHT JOIN, using, 125
ROUND function, using, 40
ROWNUM keyword, use in Oracle, 67

Index

rows
deleting, 179
deleting from tables, 173-174
limiting, 66-68
limiting in Oracle, 70
limiting with sort, 68-70
removing duplicates, 95-96
returning count of, 100
selecting subsets of, 63
sorting in Oracle, 70

RTRIM function, using, 34, 36-37

S

scalar functions
defined, 30, 97
types of, 30
See also character functions; date/time
functions; numeric functions
security restrictions, enforcing via views, 138
seed argument, using square brackets
with, 40-41
selection criteria
on aggregates, 105-107
applying, 63-65
complexity of, 71-72
at group level, 105-107
using subqueries in, 145-147
SELECT keyword
example, 13-14
using with CASE expression, 59
SELECT statement
adding parentheses (()) in, 75
ON clause in self join, 133
COUNT function, 100
inner join, 112-113
LIKE operator, 85-86
placing in CREATE VIEW, 135-136
ProcedureOne stored procedure, 165
UNION operator, 154-156
using with matrix reports, 209-210
WHERE and HAVING clauses in, 106-107
WHERE clause, 64-65
SELECT statements
adding ORDER BY clause to, 47-52
adding sort to, 47-49
CASE expressions in, 58
for specifying columns, 16
in subqueries, 70
using column alias with, 24-25
using header row with, 21
using with CASE expressions, 59
using with Customers table, 14
self joins
overview of, 131

237

238

Index

views, 134-136
See also inner joins; joins; outer joins
semicolon (;), ending statements with, 15
SET keyword, using with UPDATE, 180
set logic
distinct and non-distinct unions, 156-158
explained, 153
intersecting queries, 158-160
UNION operator, 154-156
See also queries; subqueries
Set Null action, specifying for tables, 190
soft delete technique, employing, 174
sort
adding to SELECT statement, 47-48
using to limit rows, 68-70
sorting
in ascending order, 48-49
by calculated fields, 51-52
character data, 53
columns, 103-105
in descending order, 49-50
by multiple columns, 50-51
NULL values, 52-55
upper- and lowercase letters, 52
using ISNULL function, 53-54
SOUNDEX function, using with
DIFFERENCE, 91-93
sounds, matching, 91-93
spaces, removing, 34
spreadsheets, using, 210. See also reporting tools
SQL
databases versus language, 2
DCL (Data Control Language), 3
DDL (Data Definition Language), 3
defined, 3
development of, 3
DML (Data Manipulation Language), 3
language components, 3
significance of, 9-10
SQL database implementations, Microsoft
Access, 5-6
SQL Server
@ (at) symbol used with parameters, 167
stored procedures, 167
versions and editions, 4
SQL statements
accessing listing of, 229
writing, 15
square brackets ([])
using with arguments, 40
using with ELSE keyword, 58-59
star schema design, explained, 203-205
stored procedures
ALTER PROCEDURE keyword, 169

CREATE PROCEDURE line, 165

creating, 164-166

deleting, 169-170

effect of, 166

EXEC keyword, 168

executing with input parameters, 168

versus functions, 170

modifying, 169

parameters in, 166-168

reasons for use of, 163-164

saving, 170
string datatypes, examples, 9
string functions

CONCAT, 34-35

LEFT, 30-32

LOWER, 35-36

LTRIM, 34

RIGHT, 32-33, 36-37

RTRIM, 34, 36-37

SUBSTRING, 33-34

UPPER, 35-36

See also scalar functions

Students table, normalizing, 200-201
subqueries

correlated versus uncorrelated, 147-149

defined, 142

SELECT statements in, 70

specifying, 142

uses of, 141-142

using as calculated columns, 150-151

using as data sources, 142-145

using IN operator with, 149

using in selection criteria, 145-147

See also queries; set logic

subquery updates, correlated, 181-183
SUBSTRING function, using, 30, 33-34
SUM function, using, 98

T

table aliases
specifying after FROM and INNER JOIN,
115-116
using, 26-27
table columns. See columns
tables
attributes, 186-187
creating, 190-192
deleting, 192
foreign keys, 189-190
indexes, 188-189, 192
joining, 110-112
modifying attributes in, 191-192
normalized design, 200

primary keys, 188-189
pulling data from simultaneously, 111-112
separating in normalization, 200
specifying for joins, 112
specifying primary keys for, 14
tabular reports
creating with SELECT statements, 209
explained, 208
versus matrix report, 209
Teachers table, normalizing, 200-201
Tests table, normalizing, 200-201
THEN keyword, using in CASE expression, 58
TOP keyword
using to limit columns, 68
using to limit rows, 67
using with ORDER BY clause, 68
using with WHERE clause, 69
Top N selection, explained, 68
Transact-SQL reference guide, accessing, 217
TRUNCATE TABLE statement, using, 179

U

underscore (_) wildcard, using, 88-89
UNION operator
versus DISTINCT keyword, 157-158
UNION ALL variation, 156-158
using, 154-158
'Unknown', displaying for NULL values, 44
update anomalies, eliminating, 197-198
UPDATE statement
correlated subquery updates, 181-183
format for, 180
UPPER function, using, 35-36, 86

Vv

VALUES keyword, using with INSERT INTO,
175-176

Index

values, selecting data from middle of, 33
views
benefits of, 137-138
CREATE VIEW keyword, 134-136
creating for self joins, 134-136
deleting, 138-139
displaying columns in, 136-137
modifying, 138-139
referencing, 136-137
storage in databases, 134

w

WHEN keyword, using in CASE expression, 58
WHEN keyword, using operators with, 66
WHEN-THEN condition, using with CASE
expression, 59
WHERE clause
correlated subquery updates, 183
equals sign (=) in, 65
HAVING keyword, 105-107
interpretation in Boolean logic, 74
operators, 65-66
testing for NULL values in, 82-84
using in SELECT statement, 64-65
using with joins, 115
using with NULL values and LEFT JOIN, 124
using with stored procedures, 167
using with TOP keyword, 69
WHERE clause, using with CASE expression, 62
WHERE condition, using with UPDATE,
180-181
WHERE keyword, explained, 63
wildcards
caret symbol (A), 88-91
percent (%) symbol, 86-88
specifying in single position, 89-91
underscore (_), 88-89
using with LIKE operator, 88-91

239

This page intentionally left blank

the

nNnwway

to learn programming

Let’'s face it. c++, Java, and Perl can be a little intimidating. But now they don‘t have to be.
The for the absolute beginner™ series gives you a fun, non-intimidating introduction to the world
of programming. Each book in this series teaches a specific programming language using simple
game programming as a teaching aid. All titles include source code on the companion CD-ROM or

Web site.

{
e

il
DarkBASIC
Prog ramming
Beomy

P x A

&

DarkBASIC Programming
for the Absolute Beginner

By Jerry Lee Ford, Jr.
1-59863-385-6 | $29.99 | 432 pages

\|Iﬂﬁ<n|'[Nmﬂ&
cel VBA
Programmm;,
Third Edition
_Q
= A
]

Microsoft Excel VBA Programming for
the Absolute Beginner, Third Edition

By Duane Birnbaum and Michael Vine
1-59863-394-5 | $29.99 | 544 pages

-~
-

..... ﬁ’

Visual Basic 2008
ress
Programming

% A

=
Microsoft Visual Basic 2008 Express

Programming for the Absolute Beginner
By Jerry Lee Ford, Jr.
1-59863-900-5 | $29.99 | 432 pages

L COURSE TECHNOLOGY
GE Le

Professional » Technical « Reference

Microsaft

WSH and VBScript
Programming,
l'hlrll Edition

Microsoft WSH and VBScript
Programming for the
Absolute Beginner, Third Edition

By Jerry Lee Ford, Jr.
1-59863-803-3 | $34.99 | 480 pages

P
=t

Microsaft w
Access VBA

Programming,
Third Edition

-
-'\

Microsoft Access VBA Programming for
the Absolute Beginner, Third Edition

By Michael Vine
1-59863-393-7 | $29.99 | 384 pages

AJ

Programming

Ajax Programming
for the Absolute Beginner

By Jerry Lee Ford, Jr.
1-59863-564-6 | $29.99 | 320 pages

-“:.t.-‘;
‘;“C‘ rlljf_)gramming
g~ w
=%
L5
C Programming for the

Absolute Beginner, Second Edition
By Michael Vine
1-53863-480-1 | $29.99 | 336 pages

Windows
PowerShell

Programming

Microsoft Windows PowerShell

Programming for the Absolute Beginner

By Jerry Lee Ford, Jr.
1-59863-354-6 | $29.99 | 376 pages

Java

Progmmrmng

e Buli

Java Programming for the
Absolute Beginner, Second Edition

By John Flynt
1-50863-275-2 | $29.99 | 480 pages

Call 1.800.648.7450 to order
Order online at www.courseptr.com

www.courseptr.com

	Contents
	Introduction
	Chapter 1 Relational Databases and SQL
	Language and Logic
	SQL Defined
	Microsoft SQL Server, Oracle, and MySQL
	Other Databases
	Relational Databases
	Primary and Foreign Keys
	Datatypes
	NULL Values
	The Significance of SQL
	Looking Ahead

	Chapter 2 Basic Data Retrieval
	A Simple SELECT
	Syntax Notes
	Specifying Columns
	Column Names with Embedded Spaces
	Looking Ahead

	Chapter 3 Calculations and Aliases
	Calculated Fields
	Literal Values
	Arithmetic Calculations
	Concatenating Fields
	Column Aliases
	Table Aliases
	Looking Ahead

	Chapter 4 Using Functions
	The Function of Functions
	Character Functions
	Composite Functions
	Date/Time Functions
	Numeric Functions
	Conversion Functions
	Looking Ahead

	Chapter 5 Sorting Data
	Adding a Sort
	Sorting in Ascending Order
	Sorting in Descending Order
	Sorting by Multiple Columns
	Sorting by a Calculated Field
	More on Sort Sequences
	Looking Ahead

	Chapter 6 Column-Based Logic
	IF-THEN-ELSE Logic
	The Simple Format
	The Searched Format
	Looking Ahead

	Chapter 7 Row-Based Logic
	Applying Selection Criteria
	WHERE Clause Operators
	Limiting Rows
	Limiting Rows with a Sort
	Looking Ahead

	Chapter 8 Boolean Logic
	Complex Logical Conditions
	The AND Operator
	The OR Operator
	Using Parentheses
	Multiple Sets of Parentheses
	The NOT Operator
	The BETWEEN Operator
	The IN Operator
	Boolean Logic and NULL Values
	Looking Ahead

	Chapter 9 Inexact Matches
	Pattern Matching
	Wildcards
	Matching by Sound
	Looking Ahead

	Chapter 10 Summarizing Data
	Eliminating Duplicates
	Aggregate Functions
	The COUNT Function
	Grouping Data
	Multiple Columns and Sorting
	Selection Criteria on Aggregates
	Looking Ahead

	Chapter 11 Combining Tables with an Inner Join
	Joining Two Tables
	The Inner Join
	Table Order in Inner Joins
	Alternate Specification of Inner Joins
	Table Aliases Revisited
	Looking Ahead

	Chapter 12 Combining Tables with an Outer Join
	The Outer Join
	Left Joins
	Testing for NULL Values
	Right Joins
	Table Order in Outer Joins
	Full Joins
	Looking Ahead

	Chapter 13 Self Joins and Views
	Self Joins
	Creating Views
	Referencing Views
	Benefits of Views
	Modifying and Deleting Views
	Looking Ahead

	Chapter 14 Subqueries
	Types of Subqueries
	Using a Subquery as a Data Source
	Using a Subquery in Selection Criteria
	Correlated Subqueries
	The EXISTS Operator
	Using a Subquery as a Calculated Column
	Looking Ahead

	Chapter 15 Set Logic
	Using the UNION Operator
	Distinct and Non-Distinct Unions
	Intersecting Queries
	Looking Ahead

	Chapter 16 Stored Procedures and Parameters
	Creating Stored Procedures
	Parameters in Stored Procedures
	Executing Stored Procedures
	Modifying and Deleting Stored Procedures
	Functions Revisited
	Looking Ahead

	Chapter 17 Modifying Data
	Modification Strategies
	Inserting Data
	Deleting Data
	Updating Data
	Correlated Subquery Updates
	Looking Ahead

	Chapter 18 Maintaining Tables
	Data Definition Language
	Table Attributes
	Table Columns
	Primary Keys and Indexes
	Foreign Keys
	Creating Tables
	Creating Indexes
	Looking Ahead

	Chapter 19 Principles of Database Design
	Goals of Normalization
	How to Normalize Data
	The Art of Database Design
	Alternatives to Normalization
	Looking Ahead

	Chapter 20 Strategies for Displaying Data
	Beyond SQL
	Reporting Tools and Crosstab Reports
	Spreadsheets and Pivot Tables
	Looking Ahead

	Appendix A: Getting Started with Microsoft SQL Server
	Overview
	Installing SQL Server Express 2008
	Installing SQL Server Management Studio
	Using SQL Server Management Studio

	Appendix B: Getting Started with MySQL
	Overview
	Installing MySQL Community Server
	Installing MySQL Workbench
	Using MySQL Workbench

	Appendix C: Getting Started with Oracle
	Overview
	Installing Oracle Database Express Edition
	Using Oracle Database Express Edition

	Appendix D: Listing of All SQL Statements
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

