

HTML Utopia:

Designing Without Tables Using CSS

(Chapters 1, 3, 4, and 5)

Thank you for downloading these four chapters of Dan Shafer’s
HTML Utopia: Designing Without Tables Using CSS.

This excerpt encapsulates the Summary of Contents, Information
about the Author and SitePoint, Table of Contents, Preface, four
chapters of the book, and a portion of Appendix C: CSS Property
Reference.

We hope you find this information useful in evaluating the book.

For more information, visit sitepoint.com

http://www.sitepoint.com/launch/8d142e

Summary of Contents of this Excerpt
Preface ..xi

I. Introduction to CSS ... 1

1. Getting the Lay of the Land ... 3

3. Digging Below The Surface .. 49

II. Page Layout with CSS... 73

4. CSS Web Site Design... 75

5. Building the Skeleton ... 87

C. CSS Property Reference (A-D only) 309

Index... 481

Summary of Additional Book Contents
I. Introduction to CSS ... 1

2. Putting CSS Into Perspective 23

II. Page Layout with CSS... 73

6. Putting Things in Their Place 123

III. Styling Text and other Content with CSS 155

7. Splashing Around a Bit of Color 157

8. Making Fonts Consistent ... 173

9. Text Effects and the Cascade 193

10. Adding Graphics to the Design 241

IV. Non-Obvious Uses of CSS... 255

11. Improving the User Experience 257

12. Validation and Backwards Compatibility................ 275

A. CSS Miscellany.. 293

B. CSS Color Reference ... 301

C. CSS Property Reference .. 309

Recommended Resources... 473

HTML Utopia: Designing

Without Tables Using CSS

by Dan Shafer

HTML Utopia: Designing Without Tables Using CSS
by Dan Shafer

Copyright © 2003 SitePoint Pty. Ltd.

Editor: Georgina Laidlaw

Technical Editor: Kevin Yank

Illustrations and Cover Design: Julian Carroll

Printing History:

First Edition: May 2003

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the

case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by

the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names

only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe

ment of the trademark.

Published by SitePoint Pty. Ltd.

Suite 6, 50 Regent Street Richmond

VIC Australia 3121.

Web: www.sitepoint.com

E-Mail: business@sitepoint.com

ISBN 0-9579218-2-9

Printed and bound in the United States of America

About the Author

Dan Shafer is a highly respected Web design consultant. He cut his teeth as the

first Webmaster and Director of Technology at Salon.com, then spent almost

five years as the Master Builder in CNET's Builder.com division.

Dan gained widespread recognition as a respected commentator on the Web

design scene when he hosted the annual Builder.com Live! conference in New

Orleans. He has designed and built more than 100 Websites and is regarded as

an expert in Web user experience design and implementation.

The author of more than 50 previous titles on computers and technology, Dan

lives in Monterey, California, with his wife of almost 25 years, Carolyn, and their

Shiitzu dog, Albert Einstein.

About SitePoint

SitePoint specializes in publishing fun, practical and easy-to-understand content

for Web Professionals. Visit http://www.sitepoint.com/ to access our books,

newsletters, articles and community forums.

http://www.sitepoint.com/

This book is dedicated to One Mind,
in the knowing that It is all there is.

ii

Table of Contents
Preface ... xi

Who Should Read This Book? .. xii

The Book's Web Site ... xiii

The Code Archive .. xiii

Updates and Errata ... xiii

The SitePoint Forums .. xiii

The SitePoint Newsletters ... xiii

Your Feedback ... xiv

Acknowledgements .. xiv

I. Introduction to CSS

1. Getting the Lay of the Land ... 3
CSS in Context .. 4

The Basic Purpose of CSS .. 5

Why Most—But Not All—Tables Are Bad 6

Tables Mean Long Load Times ... 6

Use of Transparent Images Slows Us Down 7

Maintaining Tables is a Nightmare 7

When it’s OK to Use a Table .. 8

What is CSS, Really? ... 8

Parts of a CSS Rule .. 10

Types of CSS Rules .. 12

What Properties Can CSS Rules Affect? 13

What Elements Can CSS Affect? .. 13

Where Can CSS Styles Be Defined? 14

Why Bother? ... 17

Summary ... 21

2. Putting CSS Into Perspective .. 23
What is CSS Good For? ... 23

Color and CSS ... 24

Fonts and CSS ... 28

Pseudo-Class Animation and CSS 30

Images and CSS ... 31

Multiple Style Sheets, Users, and CSS 33

What CSS Alone Can’t Do For You ... 34

CSS and Web Accessibility .. 36

CSS and the Ever-Shifting World of Browsers 42

Accommodating Older Browsers ... 44

 1

HTML Utopia: Designing Without Tables Using CSS

Dealing with Broken Browsers .. 46

Summary ... 47

3. Digging Below The Surface ... 49
Applying CSS to HTML Documents .. 50

Using Shorthand Properties ... 51

How Inheritance Works in CSS ... 51

Selectors and Structure of CSS Rules .. 54

Universal Selector .. 56

Element Type Selector ... 56

Class Selector .. 57

ID Selector .. 58

Pseudo-Element Selector .. 59

Pseudo-Class Selector ... 60

Descendant Selector ... 61

Parent-Child Selector ... 62

Adjacent Selector ... 62

Attribute Selectors ... 63

Selector Grouping .. 65

Expressing Measurements ... 65

Absolute Values ... 66

Relative Values .. 68

CSS Comments .. 70

Summary ... 71

II. Page Layout with CSS 73

4. CSS Web Site Design .. 75
Advantages of CSS Design ... 76

Increased Stylistic Control ... 76

Centralized Design Information ... 77

Semantic Content Markup ... 78

Accessibility ... 79

Standards Compliance ... 80

CSS Success Stories ... 82

Our Sample Site: Footbag Freaks .. 83

Summary ... 85

5. Building the Skeleton ... 87
Enumerating Design Types ... 88

How Many Page Types? ... 88

How Many Design Elements? ... 89

CSS Positioning and Multi-Column Page Layouts 90

Order this 500 page hard-copy CSS Book Now! iv

http://www.sitepoint.com/launch/8d142e

HTML Utopia: Designing Without Tables Using CSS

The CSS Box Model .. 90

The display Property .. 112

CSS Positioning and Multi-Column Layouts 113

Absolute, Relative, and Positioning Contexts 113

Basic Three-Column Layout ... 117

Adding a Top Header Area ... 120

Summary ... 121

6. Putting Things in Their Place .. 123
More on Positioning Page Blocks .. 123

Measurement Units and Types Influence Design 123

The float Property .. 125

The clear Property .. 127

Absolute Versus Relative Heights and Widths 131

The z-Index Property and Overlapping Content 140

CSS Layout in Practice: Footbag Freaks 145

Summary ... 153

III. Styling Text and other Content with CSS 155

7. Splashing Around a Bit of Color .. 157
Who’s in Charge Here? .. 157

Color in CSS .. 159

How to Specify Colors ... 159

Color Selection and Combining Colors 162

Setting body Color ... 164

Transparency, Color, and User Overrides 165

Interesting Uses of Color .. 166

Warnings and Cautions .. 166

Coloring Alternate Rows of Data Tables 169

Summary ... 172

8. Making Fonts Consistent .. 173
How CSS Deals With Fonts ... 173

The font-family Property .. 174

The font-size Property .. 176

HTML Sizes Versus CSS Sizes ... 176

Variability Across Browsers and Platforms 177

Relative to What? .. 178

Other Font Properties .. 180

The font-style Property .. 180

The font-variant Property ... 180

The font-weight Property ... 181

Order this 500 page hard-copy CSS Book Now! v

http://www.sitepoint.com/launch/8d142e

HTML Utopia: Designing Without Tables Using CSS

The font Shorthand Property ... 181

Standard and Nonstandard Font Families 184

Specifying Font Lists .. 186

Using Nonstandard and Downloadable Fonts 188

Summary ... 191

9. Text Effects and the Cascade ... 193
Using the span Element ... 194

Text Alignment as a Design Technique 196

Text Alignment in CSS Versus HTML 197

Moving from Crowded to Airy Design with Alignment 197

First-Line Indentation .. 203

Horizontal and Vertical Spacing ... 206

The line-height Property .. 206

The letter-spacing and word-spacing Properties 209

Text Decorations ... 214

Shadowed Text Without Graphics .. 219

Styling Hyperlinks ... 221

Styling Lists with CSS .. 224

The list-style-type Property .. 224

The list-style-position Property ... 229

The list-style-image Property .. 231

Cascading and Inheritance ... 233

Basic Principles of Cascading .. 233

Sort Order ... 235

Specificity .. 237

Origin .. 239

Weight (!important) .. 239

Summary ... 240

10. Adding Graphics to the Design ... 241
Alignment of Images and Text .. 242

Placing Text On Top of Images .. 245

Clipping HTML Content ... 250

Summary ... 253

IV. Non-Obvious Uses of CSS 255

11. Improving the User Experience .. 257
Basic List Styling With CSS ... 259

Enhancing the Look of the Menu ... 265

Creating a Submenu within the Main Menu 266

Modifying the Cursor on the Fly .. 269

Order this 500 page hard-copy CSS Book Now! vi

http://www.sitepoint.com/launch/8d142e

HTML Utopia: Designing Without Tables Using CSS

Using a Background Image as a Fixed Canvas 271

Summary ... 274

12. Validation and Backward Compatibility 275
Validating Your CSS .. 275

Adjusting for Backward Compatibility 279

Which Are the Non-Conforming Browsers? 280

Basic Approaches to Non-Conforming Browsers 281

Accommodating Netscape 4.x ... 285

Keep the Quirks: DOCTYPE Switching 288

Summary ... 291

A. CSS Miscellany ... 293
At-Rules ... 293

Aural Style Sheets .. 297

CSS and JavaScript .. 299

B. CSS Color Reference ... 301

C. CSS Property Reference .. 309
azimuth ... 309

border-bottom-color, border-left-color, border-right-color, border-top-

border-bottom-style, border-left-style, border-right-style, border-top-

border-bottom-width, border-left-width, border-right-width, border-

background .. 310

background-attachment .. 311

background-color ... 312

background-image .. 313

background-position ... 314

background-position-x, background-position-y 316

background-repeat ... 317

behavior ... 318

border .. 319

border-bottom, border-left, border-right, border-top 320

color .. 321

style ... 322

top-width ... 322

border-collapse ... 323

border-color ... 324

border-spacing ... 326

border-style .. 326

border-width .. 328

bottom .. 329

Order this 500 page hard-copy CSS Book Now! vii

http://www.sitepoint.com/launch/8d142e

HTML Utopia: Designing Without Tables Using CSS

caption-side ... 331

clear ... 332

clip .. 332

color .. 334

content .. 335

counter-increment .. 338

counter-reset .. 339

cue .. 340

cue-after, cue-before ... 341

cursor .. 342

direction .. 344

display ... 346

elevation .. 351

empty-cells ... 351

filter .. 352

float ... 354

font ... 355

font-family ... 357

font-size ... 359

font-size-adjust .. 361

font-stretch .. 363

font-style ... 364

font-variant .. 365

font-weight .. 366

height .. 368

ime-mode ... 369

layout-flow ... 370

layout-grid ... 371

layout-grid-char .. 372

layout-grid-line ... 373

layout-grid-mode .. 374

layout-grid-type ... 375

layer-background-color ... 376

layer-background-image .. 377

left ... 379

letter-spacing ... 380

line-break ... 381

line-height ... 382

list-style ... 383

list-style-image ... 385

list-style-position .. 386

list-style-type ... 388

Order this 500 page hard-copy CSS Book Now! viii

http://www.sitepoint.com/launch/8d142e

HTML Utopia: Designing Without Tables Using CSS

margin ... 390

margin-bottom, margin-left, margin-right, margin-top 391

marker-offset ... 392

marks .. 394

max-height, min-height .. 394

max-width, min-width .. 396

-moz-border-radius ... 397

-moz-border-radius-bottomleft, -moz-border-radius-bottomright, -moz-

border-radius-topleft, -moz-border-radius-topright 398

-moz-opacity .. 400

orphans ... 401

outline ... 402

outline-color .. 403

outline-style ... 404

outline-width ... 405

overflow ... 406

overflow-x, overflow-y .. 408

padding ... 409

padding-bottom, padding-left, padding-right, padding-top 410

page ... 412

page-break-after ... 413

page-break-before ... 414

page-break-inside ... 416

pause ... 417

pause-after, pause-before .. 418

pitch .. 418

pitch-range ... 420

play-during .. 420

position ... 422

quotes .. 423

richness ... 425

right .. 426

ruby-align .. 427

ruby-overhang .. 428

ruby-position ... 430

scrollbar-base-color ... 431

scrollbar-element-color ... 432

size .. 434

speak ... 435

speak-header .. 435

speak-numeral .. 436

speak-punctuation .. 437

Order this 500 page hard-copy CSS Book Now! ix

http://www.sitepoint.com/launch/8d142e

HTML Utopia: Designing Without Tables Using CSS

speech-rate ... 438

stress ... 439

table-layout .. 440

text-align ... 441

text-align-last ... 442

text-autospace .. 443

text-decoration ... 444

text-indent ... 445

text-justify ... 446

text-kashida-space .. 448

text-overflow .. 449

text-shadow ... 450

text-transform .. 451

text-underline-position ... 452

top ... 453

unicode-bidi ... 454

vertical-align .. 457

visibility ... 459

voice-family ... 460

volume ... 461

white-space .. 462

widows .. 464

width ... 465

word-break ... 466

word-spacing .. 467

word-wrap .. 468

writing-mode ... 469

z-index ... 470

zoom ... 471

Recommended Resources ... 473

Index ... 481

Order this 500 page hard-copy CSS Book Now! x

http://www.sitepoint.com/launch/8d142e

Preface

I was already in my 50s when the World Wide Web burst upon the scene. Having

spent most of my life to that point as a writer and editor, I naturally gravitated

to the publishing side of the coin, rather than remaining content to be an amazed

consumer of all the wonderful information and connections that began to flow

from it.

As I saw the first version of the first graphical Web browser before it was officially

released, some might say I’ve been there from the beginning. And one thing that

bothered me from that beginning, as an author and publisher, was the inability

to disentangle content from presentation. The interconnectedness of it all meant

that, to produce a Website, you needed not only something to say, and some

graphical designs to make the site look good, but you also needed to be a bit of

a programmer. Initially, this “programming” was a pretty lightweight task to

someone like me who had a broad but thin programming background. HTML

markup, when all was said and done, wasn't really programming. Still, it was

more than just writing words. And it was more than using a word processor to

format words.

Designers who had clear ideas of how they wanted their Web pages to look were

frustrated and stymied by the need to create complex sets of deeply nested tables

even to approximate their visions. And, as designers came up with increasingly

complex ideas, and Web browsers diverged further and further from standards

and compatibility, the Web threatened to collapse under its own weight. Serious

designers began lobbying for a complete break from HTML to some new approach

to the Web. Chaos reigned.

I was at CNET’s Builder.com at the time, chronicling all of this, as well as parti

cipating in it both as a designer and as a pundit. I was one of the founding

members of the Web Standards Project, or WaSP[1], and I helped found the

major conference where Web designers and creators gathered at Builder.com Live!
in New Orleans. So I had a front-row seat as we gradually figured out the best

way to deal with this problem.

The Holy Grail of the Web, then, was the notion that authors should write, de

signers should design (and code HTML) and programmers should… well… pro

gram. Those boundaries were not clean in the first few years of the Web.

[1] http://www.webstandards.org/

http://www.webstandards.org/

Preface

Then, along came Cascading Style Sheets (CSS), the subject of this book. The

governing forces of the Web, through the World Wide Web Consortium, better

known as the W3C[2], addressed the problem and proposed that we divide

presentation instructions, and structural markup with content, into two separate

kinds of files.

Things haven’t been the same since, thank goodness! Now we really can (mostly)

separate what we say from how it gets presented to the user in a Web browser.

I wager that most Web developers today are fairly comfortable with CSS and

would no more think of embedding presentation instructions in their HTML

than they’d consider mixing 23 fonts on the same Web or print page.

Since CSS emerged, there have been dozens of books written about it. So when

SitePoint approached me about doing a CSS book, my first thought was, “Who

needs another CSS book?” But as they began to reveal their vision to me, it made

sense. It was indeed time for a book that took a different tack, based on the ex

tensive experience of the Web design community.

So, this book is different in two primary ways.

First, it focuses on the question of how to accomplish with CSS some of the

successes Web designers have spent significant time and energy to create using

nested tables. Said another way, this book doesn’t try to start from scratch and

become a CSS tutorial. Instead, it’s a sort of introductory CSS design guide.

Second, it starts at the outside and works its way in. Most, if not all, other CSS

books, focus first on the little pieces: the attributes, values, and tags that comprise

the syntax of CSS. They then explain how to put those pieces together into a

Website.

This book begins by looking at how CSS should influence the entire design of a

site, and how to put the CSS framework in place before you begin to deal with

individual HTML elements and their styling.

Who Should Read This Book?
As I wrote this book, I had in mind Web designers with at least a little experience

building sites, who are curious about how CSS can help them become more ef

fective designers. It is, then, aimed at a beginner to intermediate designer. I shall

assume a strong grasp of HTML, but that's about it.

[2] http://www.w3.org/

Order this 500 page hard-copy CSS Book Now! xii

http://www.w3.org/
http://www.sitepoint.com/launch/8d142e

The Book's Web Site

The Book's Web Site
Located at http://www.sitepoint.com/books/, the Website supporting this book

will give you access to the following facilities:

The Code Archive
As you progress through the text, you'll note a number of references to the code

archive. This is a downloadable ZIP archive that contains complete code for all

the examples presented in the book. You'll also find a copy of the Footbag Freaks

Website[4], which we use as an example throughout the book.

Updates and Errata
No book is perfect, and I expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book's

Website will always have the latest information about known typographical and

code errors, and necessary updates for new browser releases and versions of the

CSS standard.

The SitePoint Forums
If you’d like to communicate with me or anyone else on the SitePoint publishing

team about this book, you should join SitePoint’s online community[5]. In fact,

you should join that community even if you don’t want to talk to us, because

there are a lot of fun and experienced Web designers and developers hanging out

there. It’s a good way to learn new stuff, get questions answered (unless you really

enjoy being on the phone with some company’s tech support line for a couple of

hours at a time), and just have fun.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters in

cluding The SitePoint Tribune and The SitePoint Tech Times. In them, you'll read

about the latest news, product releases, trends, tips, and techniques for all aspects

of Web development. If nothing else, you'll get the useful CSS articles and tips,

[4] http://www.footbagfreaks.com/

[5] http://www.sitepointforums.com/

Order this 500 page hard-copy CSS Book Now! xiii

http://www.sitepoint.com/books/
http://www.footbagfreaks.com/
http://www.footbagfreaks.com/
http://www.sitepointforums.com/
http://www.sitepoint.com/launch/8d142e

Preface

but if you're interested in learning other technologies, you'll find them especially

useful. Sign up to one or more SitePoint newsletters at http://www.site-

point.com/newsletter/.

Your Feedback
If you can't find your answer through the forums, or if you wish to contact us for

any other reason, the best place to write is <books@sitepoint.com>. We have a

well-manned email support system set up to track your inquiries, and if our

support staff is unable to answer your question, they send it straight to me.

Suggestions for improvements as well as notices of any mistakes you may find

are especially welcome.

Acknowledgements
A huge vote of thanks and appreciation goes to Kevin Yank, Technical Editor of

this book. SitePoint as a publisher has a radically different approach than any

other publisher I’ve dealt with. Kevin taught me a lot about CSS, argued with

me about details when necessary, and generally made a major and measurable

contribution to the technical quality of this book. In particular, he wrote the

impressive Appendix C. Needless to say, errors remain my responsibility, but I

can tell you that any errors that slipped through are my fault, and not due to a

lack of understanding on Kevin’s part. He must eat, sleep, and breathe W3C

specs.

Also immensely influential on this book was Editor Georgina Laidlaw. She kept

the project as on schedule as it could be, acted as a liaison between Kevin and I,

and copy-edited the text to make sure my propensity to write incredibly long

sentences was curbed. Plus, she was a joy to work with.

Julian Carroll, Designer, created the graphic design for the book, did almost all

the graphics work, and designed the Footbag Freaks sample Website[7] to boot.

He also wrote the article that was the original inspiration for this book: HTML
Utopia: Designing without Tables using CSS[8].

Mark Harbottle, SitePoint’s CEO, approached me with the concept, negotiated

the deal, and remained flexible during sometimes difficult periods as the book

[7] http://www.footbagfreaks.com/

[8] http://www.sitepoint.com/article/379

Order this 500 page hard-copy CSS Book Now! xiv

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/newsletter/
http://www.footbagfreaks.com/
http://www.sitepoint.com/article/379
http://www.sitepoint.com/article/379
http://www.sitepoint.com/launch/8d142e

Acknowledgements

evolved and grew and shrank and missed deadlines. He was never anything less

than a professional and a gentleman.

Jeff Soulé, a bright technology guy who also happens to be married to my lovely

oldest daughter Sheila, read some of the chapters of the book as it was being

written, learned some CSS in the process, and offered several helpful suggestions

that led to clearer explanations of some points.

Two world-class Web designers, Eric Meyer and Jeffrey Zeldman, helped me

through, with their writing, their examples, and their dogged determination that

CSS be understandable to, and usable by, all Web designers.

Finally, my wife, Carolyn, continues to stand by her man despite long hours, blue

air, bouts of self-doubt and depression, periods of inexplicable and incomprehens

ible joy, and reams of techno-speak. She is, as always, my primary inspiration

and life teacher, without whom none of this would be possible or make sense.

Order this 500 page hard-copy CSS Book Now! xv

http://www.sitepoint.com/launch/8d142e

xvi

I Introduction to CSS

1 Getting the Lay of the Land

We can look at Cascading Style Sheets (CSS) from a number of contextual per

spectives. I prefer to view them as a correction to a fundamental mistake that

was made at the beginning of Web Time, back in the old days of the early 1990s,

when Tim Berners-Lee and the first pioneering Web builders first envisioned the

beginnings of the Web.

What was that mistake?

To meet the requirements of the Web’s initially limited purpose, it was not ne

cessary to separate content from presentation. Even though some thought it was

a good idea, there was no really compelling, practical reason to recognize this

distinction. After all, the Web’s early intent was simply to allow a small number

of nuclear physicists using disparate systems at various locations to share vital

experimental data.

Berners-Lee didn’t envision the massively popular, wildly commercialized, extens

ively morphed Web that emerged from his core ideas in the early 1990s—I doubt

that anyone could have.

So, the mistake was a lack of foresight, rather than an oversight. But it was a

mistake nonetheless.

Chapter 1: Getting the Lay of the Land

CSS in Context

Almost as soon as the Web became popularized by the emergence of the first

graphical Web browser (the forerunner to Netscape Navigator), graphic designers

became aware of a problem. The method by which the Web browser displayed

information stored in HTML files was not within the designer’s control. No, it

was the users who were in primary charge of how the Web pages they visited

would appear on their systems.

While there were many, including myself, who thought this was A Good Thing,

professional designers were beside themselves with concern. From their perspective,

this constituted a fundamental flaw. "Users don't know anything about good

design", they argued. If the designers couldn't control with great accuracy things

like colors, fonts, and the precise, pixel-level positioning of every design element

on the Web page, their creations could easily end up as ugly travesties in the

user’s browser.

While a few decided to look upon this as a challenge posed by the new medium,

most designers, accustomed to print and other fixed layouts that afforded them

complete control over what the user saw, found ways to bend the Web to their

will.

Lest I incur the ire of every designer reading this book, let me hasten to add that

I don’t think this was A Bad Thing. It is certainly the case that designers know

more about how content should be displayed for users than do the users them

selves. Things like spacing, color combinations, and other design elements affect

readability and usability. My point has much less to do with who should have

been in charge, than it does with the actions to which designers were more or

less forced to resort, in order to achieve at least some measure of control.

Soon, expert designers discovered that they could use tables to gain significant

control over the presentation of content to users. By carefully laying out tables

within tables within tables, they could position quite precisely any design element

that could be contained within a table cell. And that encompassed almost

everything.

The first desktop publishing-style Web page design tool, NetObjects Fusion, en

abled designers to lay out pages with a high degree of precision. It generated

complex, table-based HTML, which resulted in Web pages that were as close as

possible to the designer’s original vision.

We never looked back.

Order this 500 page hard-copy CSS Book Now! 4

http://www.sitepoint.com/launch/8d142e

The Basic Purpose of CSS

But tables weren’t intended to be used as layout tools, so while they were margin

ally effective, they were also horribly inefficient. We’ll explore some of the

shortcomings and disadvantages of using tables for layout tasks a little later in

this chapter; for now, just know that everyone, including the designers who used

the techniques, understood pretty well how clumsy a solution they really were.

The Basic Purpose of CSS
CSS emerged as a standard for Web page design, in large part, as a reaction to

the overuse of excessively complex tables to force precision layout upon a medium

that was not originally intended for such a purpose. While this is a bit of an

oversimplification of the facts, it’s hardly an unfair one.

After a brief series of skirmishes at the beginning of the Web’s development, the

question of who should control the overall appearance of a page or site ended

with the designers as victors. In fact, hardly a shot was fired. Users, after all,

eventually care most about usability, accessibility and convenience, rather than

the nitty-gritty details of design techniques.

Though flush with their victory, designers found themselves hard-pressed to

identify very good, standards-compliant ways to provide their customers—and

their customers’ users—with great designs that were also effective and efficient.

Thus, they were forced to rely largely on tables.

As the snarl of tables grew to resemble a giant thicket, even the design community

became uneasy. Maintaining a Web page that consists of a half-dozen or more

deeply intertwined tables is a nightmare. Most designers prefer not to deal with

code—even simple HTML markup—at such a level of detail.

Into the breech stepped the World Wide Web Consortium, better known as the

W3C[1], a body founded by Tim Berners-Lee to oversee the technical growth of

the Web. They saw that separating the content of a site from its form (or appear

ance) would be the most logical solution. This would enable content ex-

perts—writers, artists, photographers, and programmers–to provide the “stuff”

that people come to a site to see, read, or experience. It would also free the design

experts—artists, graphic designers, and typographers–to determine the site’s

aesthetics independently of its content.

The result was CSS.

[1] http://www.w3.org/

Order this 500 page hard-copy CSS Book Now! 5

http://www.w3.org/
http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

Why Most—But Not All—Tables Are Bad
Why are tables such a bad idea as a design mechanism? There are numerous

reasons, but the ones we’re most concerned with in this context are:

❑	 They result in load times that are longer than necessary.

❑	 They encourage the use of inefficient “placeholder graphics” that further slow

performance.

❑	 Their maintenance can be a nightmare in which even minor changes “break”

the entire layout.

Tables Mean Long Load Times
Most people don't know that Web browsers are deliberately designed to ensure

that each table downloads as a single entity. So, none of the material that's con

tained in a table will be displayed until all the contents of that table are down

loaded to the client machine, and available for display1 .

When the original, intended purpose of tables is taken into account, this makes

sense. Tables were designed to display… well… tables of data. Each cell contained

a value that was being compared to, or related with, the values of other cells in

the table. Isolated bits of data appearing quasi-randomly would not do; the table

was a single, integrated entity.

When designers began to rely on tables to contain all or most of the content of

a Web page, they were also saddled with the consequences of this design decision.

In addition to the apparent delay that many users experience as a result of tables

displaying all at once, the sheer volume of HTML code that is required to create

today's Web page layouts with nested tables can also add actual load time due to

increased page size. Table-based layouts almost certainly account for more user

concern over long page load times than any other single factor.

Avoiding this significant load time would obviously be A Good Thing.

1Cascading Style Sheets Level 2 (CSS2) includes a property called table-layout that alters this be

havior, with several important caveats. Refer to Appendix C for details.

Order this 500 page hard-copy CSS Book Now! 6

http://www.sitepoint.com/launch/8d142e

Use of Transparent Images Slows Us Down

Use of Transparent Images Slows Us Down
Even with the availability of tables as layout mechanisms, designers could not

quite attain the detailed level of control over page design that they wanted.

Sometimes, for instance, a designer might need a bit more breathing room around

one part of a table cell (something for which table design does not allow). This

kind of precision was unachievable.

Early on, some designer came up with the notion of creating a transparent.gif
image file—a tiny GIF image that had no visible content. By creating table cells

to contain these transparent images, we could force extra room both vertically

and horizontally into tables whose cells were designed to remain in close proximity

to one another.

The problem is, given a table with dozens (or even hundreds) of these images,

and depending on a variety of other factors, the performance impact of transparent

GIFs on a Web page can be significant. More importantly, however, this technique

will often restrict the page to a fixed pixel size, and it clutters the page with images

that have no actual meaning for the content of the page. As we'll see later, this

severely impacts the ability for users with disabilities to make sense of your site.

Maintaining Tables is a Nightmare
The third reason why most tables are bad is that maintaining a complex array of

deeply nested tables is a nightmare. If you use tools such as Macromedia

Dreamweaver or Adobe GoLive to manage your sites and their designs, you can

generally ignore the messiness of the nested tables that make the design possible.

But even these tools are not foolproof, and when they “mess up” (to use a highly

technical term), amending the unsightly pages they create can be quite a challenge.

If you’re like most designers, and you wouldn’t be caught dead using an HTML-

generating tool because you feel you gain more control and understanding if you

hand-code everything, then you’ll be familiar with this problem.

The difficulty arises because, by necessity, tables have a fairly complex set of tags,

even if they aren’t embedded within other tables. And when we have nested

tables, well, we’ve got a clear case of the uglies alright.

The situation is further complicated by the fact that, unlike programming editors,

HTML editors generally do not force or support the clean indentation of code.

So, finding the start and end points for a given table, row, or even cell turns out

Order this 500 page hard-copy CSS Book Now! 7

http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

to be what software folks call a “non-trivial task.” While it’s true that a competent

HTML coder or designer could make this problem more tractable, it’s never really

solvable, no matter what we do.

When it’s OK to Use a Table
There is one notable exception to the cardinal rule that Tables are A Bad Thing.

If you have tabular data, and the appearance of that data is less important than

its appropriate display in connection with other portions of the same data set,

then a table is in order.

In general (though there are undoubtedly some exceptions to this rule as well),

this means that the use of tables should be confined to the presentation of nu

meric or textual data, not graphics, multimedia data types, forms, or any other

interactive user interface components.

What is CSS, Really?
OK, now that we’ve established that an important role of CSS in our lives as

designers is to free us from the drudgery (and treachery) of using tables for page

layout, let’s take a look at what CSS really is.

The most important word in the Cascading Style Sheets label is the middle one:

style. The cascading issue becomes important only when we get into fairly complex

style usage, while the word “sheet” is even a tad misleading at times. So, even

though we mean Cascading Style Sheets in the broadest and most accurate sense,

we’ll focus not on the cascading or sheet-like nature of these beasts, but on their

role in determining the styles of our Web pages and sites. Styles are defined in

the form of rules. These rules tell any Web browser that understands them (i.e.

that supports CSS) how to display specific types of content structures when it

encounters these structures in delivering a Web page to a user.

To understand how styles affect Web page appearance, we need to be sure we

understand what happens to a Web page in the absence of any style rules.

Figure 1.1 shows the general process of interaction between a client (Web

browser), and a server where a Web page or site is located. Note that the browser

automatically determines how information provided by the server is displayed

to the user, unless it is specifically told otherwise. In other words, each browser

has a default way of displaying all HTML-tagged content. So, a first-level heading

Order this 500 page hard-copy CSS Book Now! 8

http://www.sitepoint.com/launch/8d142e

What is CSS, Really?

enclosed in the <h1></h1> tag set will always be displayed using a relatively large

font in black. The “default” font that’s used may vary between browsers, and can

be affected by user-defined settings as well.

Figure 1.1. Normal Browser Page Display Behavior

Figure 1.2 depicts what happens when a style rule exists for a particular type of

HTML structure. The rule overrides the browser’s default handling of that ele

ment, and the style takes over. Even if the user has defined his or her own settings

for this element, those wishes will generally not be honored (though there are

some intriguing exceptions to this, which we’ll discuss much later in this book).

Order this 500 page hard-copy CSS Book Now! 9

http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

Figure 1.2. Browser Displaying Page With Style Rule in Effect

Parts of a CSS Rule
Every style, whether it’s embedded in a separate style sheet or not, consists of

one or more rules. Figure 1.3 shows a CSS rule with all the parts labeled.

Each rule has exactly two parts:

a selector that defines the HTML element(s) to which the rule applies, and

a collection of one or more properties2, which describes the appearance of

all elements in the document that match the selector.

2Many books and articles about CSS call them “attributes,” or use the two terms interchangeably.

In this book, I used the W3C endorsed terminology of “properties”, and reserve the name “attributes”

for attributes of HTML tags.

Order this 500 page hard-copy CSS Book Now! 10

http://www.sitepoint.com/launch/8d142e

Parts of a CSS Rule

Figure 1.3. Parts of a CSS Rule

Each property consists of a pair of values separated by a colon. The first item of

the pair defines the specific property that’s being modified. The second item de

scribes the value that the property takes on. Each property-value pair must be

followed by a semicolon, with one exception: The semicolon following the last

property is optional and may be omitted. In this book, however, we will always

add this optional semicolon. I encourage you to adopt this habit as well, as it's

much easier to train yourself to always add that semicolon than it is to remember

when it is required and when it isn't. It also makes it easier to add properties to

an existing style rule.

Here are a few examples of increasingly complex CSS rules, with the parts iden

tified so that you can fix this syntax clearly in your mind. Essentially, this is the

only real syntax issue you must learn in order to master CSS, so it’s important!

h1 {
 color: red;
}

The selector, h1, indicates that this rule applies to all h1 headings in the document.

The name of the property that’s being modified is color, which applies to the

font color. The value we want the color property to take on is red. Chapter 7

and Chapter 9 explore fonts and coloring in CSS in great detail.

p {
 font-size: 14px;
 color: green;
}

Order this 500 page hard-copy CSS Book Now! 11

http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

The selector, p, indicates the style rule should be applied to all paragraphs in the

document. There are two property name-value pairs in the rule. The first, font-
size, sets the size of the font in all paragraphs in the document to 14 pixels. A

pixel is one dot on your screen, and is the most common measurement used in

CSS. See Chapter 3, for an explanation of this and other measurement issues in

CSS. The second property is color and is set to green. The result of this rule is

that all paragraphs in the document will appear in a green, 14-pixel-high font.

p {
 font-family: 'New York', Times, serif;

}

Again, this rule deals with paragraphs, as is evidenced by the p selector. This

time, the selector affects the font family that is used to display text. The new

wrinkles in this example are that it includes a list of values for the font-family
property, and one of those values is enclosed in quotation marks.

The font-family property is one of a handful of CSS properties to which you

can assign a list of possible values, rather than a single, fixed value. When you

use a list, commas must separate its individual members. In this case, the font-
family property list tells the browser to use New York as the font if the user’s

machine has it installed. If not, it directs the browser to use Times. And if neither

of these fonts is available on the user’s system, then the browser is told to default

to the font used for serif type. Again, this subject is covered in more depth in

Chapter 7 and Chapter 9.

Whenever the name of a property value in a CSS rule includes spaces (as is the

case with the font named “New York”), you must put that value into quotation

marks. Many designers use single quotation marks for a number of reasons, not

the least of which is that they’re easier to type, but you can use either single or

double quotation marks.

Types of CSS Rules
There are several possible ways to categorize and think about CSS rules.

First, there is the question of what types of style properties the rules define.

Second, there is the requirement of describing the type(s) of HTML elements

that the rules affect. Finally, there is the issue of whether the styles are “inline”,

“embedded” or “external.”

Order this 500 page hard-copy CSS Book Now! 12

http://www.sitepoint.com/launch/8d142e

What Properties Can CSS Rules Affect?

Let's take a brief look at each of these categorizations, so that you have a good

overview of the organization of CSS rules before you embark on a detailed study

of their actual use.

What Properties Can CSS Rules Affect?
CSS rules can include properties that affect virtually every aspect of the

presentation of information on a Website. A complete reference to these properties

is presented in Appendix C.

What Elements Can CSS Affect?
Stated another way, this question asks “How specifically can a CSS rule target

a piece of information on a Web page for special presentation?” CSS allows the

designer to affect all paragraphs, but how can you confine that impact to certain,

specific paragraphs? Is this even possible?

The answer, unsurprisingly, is yes. Through various combinations of selector usage,

the designer can become quite specific indeed about the circumstances under

which a style rule is enforced. For example, you can assign rules so that they affect:

❑	 all elements of a specific type

❑	 all elements of a specific type that are assigned to a common group or class

❑	 all elements of a specific type that are contained within other elements of a

specific type

❑	 all elements of a specific type that are both contained within another specific

element type and assigned to a common group or class

❑	 all elements of a specific type only when they come immediately after an ele

ment of some other type

❑	 only a specific element of a specific type which is assigned a unique ID

Chapter 3, includes a detailed discussion of all the CSS selectors you can use to

achieve this kind of precision targeting.

Order this 500 page hard-copy CSS Book Now! 13

http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

Where Can CSS Styles Be Defined?
Finally, you can define CSS styles in any of three places, in conjunction with a

Web page.

Inline CSS

First, you can define a style entirely within an appropriate HTML tag. This type

of style is referred to as an inline style because it is defined in line with the

document's HTML code. You can assign a style attribute to almost all HTML

elements. For example, to make a second-level heading in a document appear in

red text and all capital letters, you could code a line like this:

<h2 style="color: red; text-transform: uppercase;">An Unusual
 Heading</h2>

If you follow the advice in this book, you won’t use many inline styles. As you’ll

learn, separating content from presentation is one of the big advantages of CSS,

and embedding styles directly in HTML tags defeats that purpose. Inline styles

are mainly useful for rapid prototyping—quickly applying style properties to a

particular element to experiment with an effect before giving the properties a

more permanent place in an embedded or external style rule.

Embedded CSS

Specifying style properties in an embedded style is probably the method that’s

most common today, particularly among beginning Web designers or those just

learning the techniques involved in CSS design. It’s not my favorite, but it does

have the singular virtue of being easy to deal with, so you’ll see it used from time

to time in this book.

To embed a style sheet in a Web page, you place a style block in the head of

the document’s HTML, as shown here in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>CSS Style Sheet Demo</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">

<!-

Order this 500 page hard-copy CSS Book Now! 14

http://www.sitepoint.com/launch/8d142e

External CSS

h1, h2 {
 color: green;

}

h3 {

 color: blue;

}

-->

</style>

</head>

...

The CSS rules contained in the style block apply to all the designated parts of

the current document. In this case, the first rule directs the browser to display

all level 1 and 2 headings (h1, h2) in green. The second rule displays all level 3

headings (h3) in blue.

Notice the HTML comment delimiters (<!-- -->) just inside the <style> tags.

These prevent ancient browsers that do not support CSS from interpreting the

style rules as document content and displaying them in the browser window. All

CSS capable browsers will ignore the comment delimiters. Even though it’s

probably safe (or nearly so) to omit these symbols today, as so few ancient

browsers are still in use, it does no harm to include them. I recommend you do

so, just because it’s good form.

The second thing to notice about the style element’s syntax is that each rule

starts on a new line, and each property specified within the rule appears indented

within braces on its own line. This is not, strictly speaking, required, but it’s a

good rule of thumb that improves the readability of your code, especially if you’re

used to the look of JavaScript code.

External CSS

Finally, you can define CSS rules in a file that’s completely separate from the

Web page. You can then link to this file by including a <link> tag in the head
portion of any Web page on which you want to implement the styles contained

in that file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>CSS Style Sheet Demo</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />

Order this 500 page hard-copy CSS Book Now! 15

http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

<link rel="stylesheet" type="text/css" href="corpstyle.css" />
</head>
...

In this example, the file corpstyle.css contains a set of external styles that

have been linked to this page. Here's what the contents of this file might look

like:

h1, h2 {
 color: green;
}
h3 {
 color: blue;
}

This is my personal preference for the way we should deal with all CSS usage,

for a number of reasons.

First, this is the least “locked-in” of the three basic methods designers can use to

insert styles into a Web page. If you define an external style sheet file, you can

bring it to bear on as many pages on your site as you want, simply by linking

to the style sheet from each page on which you want it used. Making a change

to a style that appears on every page of your site becomes a simple matter of

modifying the shared .css file. If you use embedded or, worse yet, inline styles,

you’ll have to copy and paste them into other documents if you want to use them.

Second, and closely related to the first advantage, is that this method is the

easiest way to ensure the maintainability of your CSS styles. If you define all

your site’s styles in external files, implementing a site-wide style change is a simple

matter of making one edit in a single file. All the pages that use that style sheet

will display the new styles immediately, following this one change. With the

other techniques, you have to either remember which styles are defined on which

pages, or use search mechanisms to help you deal with the decentralized styling

rules.

Third, external style sheets are treated as separate files by the browser. When

the browser navigates to a new page, using the same style sheet, the external style

sheet does not need to be downloaded again. Pages that use external styles are

therefore quicker to load.

Last, but not least, external style sheets are simply more professional. By using

them, you demonstrate an understanding of the importance of the first two issues

I’ve just raised, and you make it much easier to discuss them, share them with

Order this 500 page hard-copy CSS Book Now! 16

http://www.sitepoint.com/launch/8d142e

Why Bother?

colleagues, analyze their effects, and, in general, to work with them as if they

were a serious part of the site’s design, rather than an afterthought.

Why Bother?
Well, now that you have a basic overview of what CSS is all about, why we have

it, and why I think it’s an important technique for Web designers to adopt,

where’s the proof? Let’s look at an example of a small, but not overly simplistic

Web page (see Figure 1.4).

Figure 1.4. Sample Web Page Demonstrating Embedded Styles

Using embedded CSS, here’s the HTML that will produce that page. Look ma,

no tables! Don’t let the complexity of the code intimidate you—by the end of

Chapter 3, you should be able to infer the meaning of most of it without my

help. For now, you can download the code archive from the book’s Website[2]

and marvel at the results in your browser. The file is called ch1sample.html.

[2] http://www.sitepoint.com/books/

Order this 500 page hard-copy CSS Book Now! 17

http://www.sitepoint.com/books/
http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Basic 3-Column Sample Page</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
<!-
body {
 background-color: teal;

 margin: 20px;

 padding: 0;

 font-size: 1.1em;

font-family: verdana, arial, helvetica, sans-serif;

}
h1 {
 font-family: verdana, arial, helvetica, sans-serif;
 margin: 0 0 15px 0;
 padding: 0;
 color: #888;
}
h2 {
 font-family: verdana, arial, helvetica, sans-serif;
 margin: 0 0 5px 0;
 padding: 0;
 font-size: 1.1em;
}
p {
 font-family: verdana, arial, helvetica, sans-serif;
line-height: 1.1em;
 margin: 0 0 16px 0;
 padding: 0;
}
.content>p {
 margin: 0;
}
.content>p+p {
 text-indent: 30px;
}
a {
 color: teal;

 font-family: verdana, arial, helvetica, sans-serif;

 font-weight: 600;

 text-decoration: none;

}

Order this 500 page hard-copy CSS Book Now! 18

http://www.sitepoint.com/launch/8d142e

Why Bother?

a:link {
 color: teal;
}
a:visited {
 color: teal;
}
a:hover {
 background-color: #bbb;
}

/* All the content boxes belong to the content class. */
.content {
 position: relative;
width: auto;
 min-width: 120px;
 margin: 0 210px 20px 170px;
 border: 1px solid black;
 background-color: white;
 padding: 10px;
 z-index: 3;
}

#navleft {
 position: absolute;
 width: 128px;
 top: 20px;
 left: 20px;
 font-size: 0.9em;
 border: 1px dashed black;
 background-color: white;
 padding: 10px;
 z-index: 2;
}

#navright {
 position: absolute;
 width: 168px;
 top: 20px;
 right: 20px;
 border: 1px dashed black;
 background-color: #eee;
 padding: 10px;
 z-index: 1;
}

-->

</style>

Order this 500 page hard-copy CSS Book Now! 19

http://www.sitepoint.com/launch/8d142e

Chapter 1: Getting the Lay of the Land

</head>
<body>

<div class="content">
<h1>Getting the Lay of the Land</h1>
 <p>We can look at Cascading Style Sheets (CSS) from a number of

 contextual perspectives. I prefer to view them as a
 correction to a fundamental mistake that was made at the
 beginning of Web Time, back in the old days of the mid-1990's
 when Tim Berners-Lee and a subsequent phalanx of Web builders
 first envisioned the beginnings of the Web.</p>

 <p>What was that mistake?</p>
</div>

<div class="content">
<h2>CSS in Context</h2>
 <p>Almost as soon as the Web became popular, graphic designers

 began noticing what they saw as a fundamental flaw: the
 method by which a Web browser displayed information in HTML
 files was not within the designers' control. No, it was the
 users who were in primary charge of how the Web pages they
 visited would appear on their systems.</p>

</div>

<div class="content">
 <h2>Keep Adding Content</h2>
 <p>You can see that as you keep adding content to this page, it

 adds nicely boxed and centered material down the center of
 the page.</p>

</div>

<div id="navleft">
 <h2>Some Links</h2>
 <p>
 <a href="http://www.danshafer.com/"

 title="Dan Shafer's Personal Web Site">Dan's Home

 Page

 <a href="http://www.sitepoint.com/"
 title="SitePoint Home Base">SitePoint Home

 <a href="http://www.sitepointforums.com/"
 title="Discussion Board for This Book">Discuss This
 Book

 Fake Link One

 Nothing Here

 Links Nowhere

 Fake Link Four

Order this 500 page hard-copy CSS Book Now! 20

http://www.sitepoint.com/launch/8d142e

Summary

Fifth Fake Link

 </p>

</div>

<div id="navright">
 <h2>Why CSS is Better</h2>
 <p>Style sheets allow you to separate content from its

 presentation, which leads to pages that are more easily
 reproduced as templates for other pages and to vastly easier
 maintenance. Smaller file sizes, fewer place-holder graphics,
 and faster load times are some of the other benefits of
 CSS.</p>

 <p>If you have other ideas on this subject,
 drop me an email and
 let's talk about it!</p>

</div>

</body>

</html>

Summary
You should now understand the historical and technological contexts in which

CSS has emerged, what major problems it is designed to solve, and how it works

at a surface level. You should also know why tables are a bad idea as a Web page

layout device, even though they have other, perfectly valid uses.

In addition, you can identify both the parts of a CSS rule and at least three ways

of categorizing CSS style rules in general.

Chapter 2, drills more deeply into the prospective issues surrounding CSS. It

clears up some of the misconceptions you may have about this technology, and

describes some of the important issues you’ll have to take into consideration be

cause of the way Web browsers work (or don’t) with CSS rules.

Order this 500 page hard-copy CSS Book Now! 21

http://www.sitepoint.com/launch/8d142e

22

3	 Digging Below The Surface

This chapter completes our look at the “mechanics” of CSS: the background you

need to have to work with the technology. It covers six major topics:

❑	 quick review of the three methods for assigning CSS properties to HTML

documents

❑	 use of shorthand properties to group values for a related set of properties in

a single statement

❑	 workings of the inheritance mechanism in style sheets

❑	 structure of a style, including variations on the use of selectors for determining

with great precision exactly what is affected by a style

❑	 units and values that can appear in styles to express sizes, locations, and

other properties, and how they are used

❑	 CSS comments, which can be used to place human-readable notes in your

CSS code

Chapter 3: Digging Below The Surface

Applying CSS to HTML Documents

In Chapter 1, I introduced the three methods for applying style sheet properties

to HTML documents. I will briefly review them here to jog your memory.

❑	 Inline styles: We can use the style attribute, which is available for the vast

majority of HTML elements, to directly assign CSS properties to HTML ele

ments.

<h1 style="font-family: 'Comic Sans'; color: blue;">

 Welcome</h1>

This method is best reserved for when you want to try out quickly one or

more CSS properties to see how they affect an element. You should never use

this method in a practical Web site, as it misses almost every advantage that

CSS has to offer.

❑	 Embedded styles: We can use the <style> tag in the head portion of any

HTML document to declare CSS rules that apply to the elements of the page.

<style type="text/css">

<!-

h1, h2 {

 color: green;

}

h3 {

 color: blue;

}

-->

</style>

This form of CSS offers many advantages over inline styles, but is still not as

flexible or powerful as external styles (see below). I recommend you only use

embedded styles when you are certain the styles you are creating will only be

useful in the current page. Even then, the separation of code offered by external

styles can make them a preferable option, but embedded styles can often be

more convenient for quick-and-dirty, single-page work.

❑	 External styles: We can use a <link> tag in the head portion of any HTML

document to apply a set of CSS rules in an external file to the elements of

the page.

<link rel="stylesheet" type="text/css" href="mystyles.css" />

Order this 500 page hard-copy CSS Book Now! 50

http://www.sitepoint.com/launch/8d142e

Using Shorthand Properties

The recommended method for applying CSS to HTML, external styles offer

the full range of performance and productivity advantages that CSS can

provide.

Using Shorthand Properties
Most property names take a single item as a value. When you define a property

with a collection of related values (e.g. a list of fonts for the font-family prop

erty), the values are separated from one another by commas and, if any of the

values include embedded white space or reserved characters such as colons, they

may need to be enclosed in quotation marks.

In addition, there is a special set of properties called shorthand properties. Such

properties let you use a single property declaration to assign values to a number

of related properties. This sounds more complicated than it is.

The best-known shorthand property is font. CSS beginners are usually accus

tomed to defining font properties one by one:

h1 {
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt;
 font-family: Helvetica;
}

But CSS provides a shorthand property, font, that allows this same rule to be

defined much more succinctly:

h1 {
 font: bold 12pt/14pt Helvetica;

}

All shorthand properties are identified as such in Appendix C.

How Inheritance Works in CSS
Before you can grasp some of the syntax and behavior of CSS rules, you need a

basic understanding of the inheritance CSS uses.

Order this 500 page hard-copy CSS Book Now! 51

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

Every element on an HTML page belongs to the document’s inheritance tree.

The root of that tree is always the html element, even in documents that fail to

include the html tag explicitly.

Commonly, the html element has only two direct descendants in the inheritance

tree: head and body.

Figure 3.1 shows a simple HTML inheritance tree for a small document.

Figure 3.1. Sample HTML Inheritance Tree Diagram

As you can see, the document has in its head the standard title and link ele

ments, the latter of which probably links to an external style sheet. It also includes

a meta element (most likely to set the document's character set).

The body consists of five elements: an h1, an h2, a p element (labeled p1 so we

can refer to it easily), a div and a list (ul) element. The div element, in turn,

contains two paragraph elements, one of which has an emphasis (em) element,

and the other of which contains an anchor (a) element. The ul element includes

three list item (li) elements, one of which includes an emphasis (em) element,

while another contains a paragraph element labeled p4.

Order this 500 page hard-copy CSS Book Now! 52

http://www.sitepoint.com/launch/8d142e

How Inheritance Works in CSS

Paragraph element p1 is a direct descendant of the body.

Each element in an HTML document has a parent element (with the exception

of the root html element), and is said to be a child of its parent element. In Fig

ure 3.1, for example, p2’s parent is the div. p2 would be described as a child of

the div.

Some elements in an HTML document—and most of them in a complex docu-

ment—are descendants of more than one element. For example, in Figure 3.1,

the paragraph element p1 is a descendant of body and html. Similarly, paragraph

elements p2 and p3 are descendants of the div element, the body element, and

the html element. Paragraph element p4 is tied with several other elements in

the document for the most ancestors: an li, the ul, the body, and the html ele

ments. This notion of element hierarchy is important for two reasons.

First, the proper use of some of the CSS selectors you’ll work with depends on

your understanding of the document hierarchy. There is, for example, an import

ant difference between a descendant selector and a parent-child selector. These

are covered in detail in the section called “Selectors and Structure of CSS Rules”.

Second, many properties for which you don’t supply a specific value for a partic

ular element will take on the value assigned to the parent element. This means,

for example, that if you don’t explicitly define a font-family property for the

h1 element in the document diagrammed in Figure 3.1, it will use the font defined

in the body tag. If no explicit font-family is defined there either, then both

body text and the h1 heading use the font defined by the browser as the default.

In contrast, setting the width property of an element will not directly affect the

width of child elements. font-family is an inherited property, width is not.

Inherited properties, properties that are inherited from ancestors by default, are

indicated in Appendix C. In addition, you can set any property to the special

value inherit, to cause it to inherit the value assigned to the parent element.

This inheritance issue can be tricky to understand when you deal with fairly

complex documents. It is particularly important when you’re starting with a site

that’s been defined using the traditional table layout approach, in which style

information is embedded in HTML tags. When a style sheet seems not to function

properly, you’ll frequently find the problem lies in one of those embedded styles

from which another element is inheriting a value.

Order this 500 page hard-copy CSS Book Now! 53

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

Selectors and Structure of CSS Rules

Recall from Chapter 1, that every CSS style rule consists of two parts: a selector,

which defines the type(s) of HTML element(s) to which the style rule applies,

and a series of property declarations that define the style.

So far, we’ve seen only simplistic selectors. Typically, they’ve contained only one

element:

h1 {
 font-size: 18px;
 text-transform: capitalize;
}

We have encountered one or two instances where a single rule is designed to

apply to more than one kind of HTML element:

h1, h2, h3 {
 font-size: 18px;
 text-transform: capitalize;
}

These are the most basic selectors in CSS. There are many others. Table 3.1

summarizes all the selector types available in CSS, roughly from simplest to most

complex. The remainder of this section describes each type of selector in detail,

in the order in which they appear in Table 3.1. Selector types that are defined

for the first time in the CSS2 specification or that have changed between CSS1

and CSS2 are marked with “(CSS2).”

Table 3.1. Types of CSS Selectors

Example(s)Use or MeaningSelector Type

*
(no selector)

Apply rule to all elements in

document.

universal selector

(CSS2)

h1
p

Apply rule to all HTML ele

ments of the selector’s type.

element type

Order this 500 page hard-copy CSS Book Now! 54

http://www.sitepoint.com/launch/8d142e

Selectors and Structure of CSS Rules

Example(s)Use or MeaningSelector Type

.articletitle
h1.important

Apply rule to all HTML ele

ments of the type preceding

the period (or all, if none is

specified) whose definition

makes them part of the class

following the period of the se

lector.

class selector

#special3
p#special52

Apply rule to only one ele

ment in the entire document:

the one whose id attribute

matches the string following

the pound sign (hash mark) in

the selector.

ID selector

p:first-letter
p:first-line
h1:first-child

Apply rule to occurrences of

the pseudo-element.

pseudo-element se

lector (CSS2)

a:hover
a:active
a:focus
a:link
a:visited
body:lang(d)

Apply rule to occurrences of

the pseudo-class, whose appear

ance may change as the user

interacts with the page.

pseudo-class selector

(CSS2)

p em
p.wide em

Apply rule to elements of the

right-most type in a space-

separated list of element types

only where that element type

descends from (i.e., inherits)

the type to its left.

descendant selector

body > pApply rule to all elements of

type specified to the right of

the “>”, which are children of

the elements to the left of the

“>” (stricter form of the des

cendant selector).

parent-child selector

(CSS2)

Order this 500 page hard-copy CSS Book Now! 55

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

Example(s)Use or MeaningSelector Type

h1+h2
p+h3

Apply rule to all elements of

type specified to the right of

the “+”, which are physically

adjacent (in the HTML code,

not necessarily on the visible

page) to elements of the type

to the left of the “+”.

adjacent selectors

(CSS2)

p[align]
input[type="text"]
img[alt~="none"]
body[lang|="en"]

Apply rule to all elements with

attributes matching the profile

specified in square brackets.

attribute selectors

(CSS2)

Universal Selector
The universal selector has no real practical value by itself. A style rule with no

selector applies to all elements of all types on a Web page, so the asterisk is su

perfluous.

However, the universal selector can come in handy in specific situations involving,

for example, attribute selectors, which I explain later in this section.

In this example, all elements in the page are given a text color of red:

* {
 color: red;

}

Element Type Selector
The single element selector is the most common selector. It specifies one HTML

element type with no qualifiers or enhancements.

In the absence of other style rules applying to the element type provided in the

selector, this rule applies to all such elements on the page.

In this example, we specify the text and background colors (black and white, re

spectively) for the document by assigning these properties to the body element:

Order this 500 page hard-copy CSS Book Now! 56

http://www.sitepoint.com/launch/8d142e

Class Selector

body {
 color: black;
 background-color: white;
}

Class Selector
To apply a style rule to a potentially arbitrary group of elements in a Web page,

you’ll need to define a class in the style sheet, and then identify through their

HTML tags the elements that belong to that class.

Defining a class in a style sheet requires that you precede the class name with a

period. No space is permitted between the period and the name of the class. The

following style sheet entry defines a class named special. Because there’s no

HTML element name associated with the class, any type of element on a page

using this style sheet can be identified with the class, as you’ll see in a moment.

.special {
 font-family: verdana, arial, sans-serif;

}

If you want to include only elements of a particular type in your class, you can

use the more specific selector shown here:

p.special {
 font-family: verdana, arial, sans-serif;

}

The above style rule would apply only to paragraph elements that were identified

as being members of the class called special.

Within the HTML markup, you can indicate that an element belongs to a class

by using the element’s class attribute:

<p class="special">Paragraph of stuff.</p>

An HTML element can belong to multiple classes if you wish, simply by listing

the classes (separated by spaces) in the class attribute:

<p class="special exciting">Paragraph! Of! Stuff!</p>

If you define an element-specific class such as the p.special example above, and

then associate that class (in this case, special) with an element of any other

type, the style rule simply does not apply to that element.

Order this 500 page hard-copy CSS Book Now! 57

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

ID Selector
The ID selector permits you to identify single instances of HTML elements where

you wish to override the style properties set in, for example, a class style rule.

Like a class selector, an ID selector requires definition in the style sheet and ex

plicit inclusion in the HTML tag. Use the “#” symbol to identify an ID selector1 .

IDs must be unique within a document; no two HTML tags in a single document

should have the same ID.

This style sheet rule defines a rule for an element with the ID unique:

#unique {
 font-size: 10px;

}

The code below shows how to indicate the element to be affected by the above

rule using the HTML id attribute:

<h4 id="unique">This will be a very tiny headline</h4>

For example, if you had five <div class="sidebar"> items on your page, but

you wanted to style differently the one responsible for displaying your site’s

search box, you could do so like this:

div.sidebar

{

 ...

}

#searchbox

{

 ...

}

Now, if both of these rules define a background-color property, and your search

box tag was <div id="searchbox" class="sidebar">, then the search box

would get all the sidebar properties assigned to it, but it would take its back-
ground-color from the #searchbox rule. The guidelines for cascading overlapping

rules (discussed in Chapter 9), in combination with the ID selector, let you avoid

having to redefine all the sidebar properties in a special searchbox class.

1You can optionally confine the ID’s use to an element of a specific type by preceding the # with the

HTML element’s tag name (e.g. div#searchbox). But, as you can have only one element with the

specific ID in your document, it seems silly to confine it to a specific element type.

Order this 500 page hard-copy CSS Book Now! 58

http://www.sitepoint.com/launch/8d142e

Pseudo-Element Selector

However, you could just as easily define a class and apply it to the exceptional

element (the search box, in this example). This is more flexible, although perhaps

not as efficient in terms of code space. For example, after you’ve identified a class

or other rule that applies to all level three headings except one, and if you’ve used

an ID selector for the exception, what do you do when a redesign or content

change requires even one more such exception? The ID selector solution breaks

down immediately in that situation.

It appears from my testing that not all of the newer browsers enforce the rule

that the ID be unique in the document. Instead, they apply the ID rule to all
elements in the document that carry the ID. That makes the ID essentially

equivalent to the class selector. This is clearly not what the CSS specification

had in mind, but it is how many of the browsers I’ve tested behave.

Pseudo-Element Selector
This and all the remaining selectors in this section require a browser that supports

the CSS2 specification.

The pseudo-element and pseudo-class selectors are unique among the CSS select

ors in that they have no equivalent HTML tag or attribute. That’s why they use

the prefix “pseudo”, meaning “false.”

So far, the CSS specification has defined only three pseudo-elements: first-
letter, first-line, and first-child. While the first two of these phrases

mean something to us humans, it’s ultimately up to each browser to interpret

them when rendering HTML pages using these pseudo-elements. For example,

does first-line mean “first sentence” or does it mean first physical line dis

played, a value that changes as the user resizes the browser? The first-child
pseudo-element, on the other hand, is not browser-dependent. It refers to the

first descendant of the element to which it is applied, in accordance with the

HTML document hierarchy described in the section called “How Inheritance

Works in CSS”.

To define a pseudo-element selector for a style rule, precede the pseudo-element

name with a colon. Here’s an example:

p:first-letter {
 font-face: Gothic, serif;
 font-size: 250%;
 float: left;
}

Order this 500 page hard-copy CSS Book Now! 59

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

This creates a drop-caps effect for the first letter in every paragraph on the page.

The first letter in each paragraph will be a Gothic letter 2.5 times larger than the

usual type used in paragraphs. The float style property, which we discuss in

Chapter 6, ensures the remaining text in the paragraph wraps around the enlarged

drop-cap correctly.

Pseudo-Class Selector
The pseudo-class selector is exactly like the pseudo-element selector, with one

exception. A pseudo-class selector applies to a whole element, but only under

certain conditions.

The current release of CSS2 defines the following pseudo-classes:

❑ :hover

❑ :active

❑ :focus

❑ :link

❑ :visited

❑ :lang()

A style sheet, then, can define style rules for these pseudo-classes like this:

a:hover {
 color:#ffcc00;

}

All anchor tags will change their color when the user hovers over them with the

cursor. As you can see, this means the pseudo-class selector comes into play only

when the user interacts with the affected element.

The :lang() pseudo-class2 refers to the setting of the lang attribute in an HTML

element. For example, you can define a paragraph in a document as being written

in German, with a tag like this:

<p lang="de">Deutsche Grammophone</p>

2Be aware that browser support for the :lang() pseudo-class is still very scarce. It is covered here

mainly for the sake of completeness.

Order this 500 page hard-copy CSS Book Now! 60

http://www.sitepoint.com/launch/8d142e

Descendant Selector

If you wanted, for example, to change the font family associated with all elements

in the document written in German, you could write a style rule like this:

:lang(de) {
 font-family: spezialitat;

}

Don’t confuse this lang attribute with the language attribute that applies to

tags related to the scripting language being used in a script or on a page.

Descendant Selector
Recall that all HTML elements (except the html element) are descendants of at

least one other HTML element. To apply a CSS style rule to an element that’s

a descendant of another type of element, use the descendant selector.

A descendant selector, such as the one shown in the following style rule, restricts

the applicability of the rule to elements that are descendants of other elements.

The descendant selector is read from right to left to determine its scope. Spaces

separate the element types.

li em {
 font-size: 16px;
 color: green;
}

The style rule describes a 16-pixel-high font size and a color of green to be applied

to any text contained in an em element (emphasis) only where the emphasized

text is a descendant of a list item.

In the fragment below, the first em element will be displayed in green, 16-pixel

characters, while the second will not, as it doesn’t appear within a list item.

Item one

Item two

<p>

An italicized word.

</p>

It’s important to note that the descendant relationship need not be an immediate

parent-child connection. In Figure 3.1, for example, the following style rule would

apply to the anchor element (a) even though it explicitly focuses on a elements

Order this 500 page hard-copy CSS Book Now! 61

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

that are descendants of div elements. This is because, in this case, the a element

is the child of a paragraph that’s contained in a div element.

div a {
 font-style: italic;

}

Parent-Child Selector
The parent-child selector causes a style rule to apply to element patterns that

match a specific sequence of parent and child elements. It is a special case of the

descendant selector discussed in the preceding section. The key difference between

the two is that the pair of elements in a parent-child selector must be directly

related to one another in a strict inheritance sequence.

A parent-child relationship is specified in a selector with the “greater-than” sign

(>).

The following style rule:

div > p {
 font-weight: bold;

}

will not apply to the p1 or p4 elements in Figure 3.1 because these paragraph

elements aren’t children of a div element. Similarly, p5 won’t be affected even

though it’s a descendant of a div element, because the intervening ul and li ele

ments mean that it is not a child of that div element. Only p2 and p3 will be af

fected by the rule.

As of this writing, Internet Explorer for Windows (up to and including version

6) distinguishes itself by being the only major browser that does not support

parent-child selectors in its latest version. Because of this, careful use of descendant

selectors is far more common, and the parent-child selector is often abused to

specifically create styles that do not apply to Internet Explorer for Windows.

Adjacent Selector
Adjacency is unrelated to inheritance. Adjacency refers to the sequence in which

elements appear in an HTML document. As it happens, adjacent elements are

always siblings, but it’s their placement in the document, rather than their inher-

Order this 500 page hard-copy CSS Book Now! 62

http://www.sitepoint.com/launch/8d142e

Attribute Selectors

itance relationship, that is the focus of this selector. This is demonstrated in this

HTML fragment:

<h1>This is important stuff!</h1>

<h2>First important item</h2>

<h2>Second important item</h2>

The first h2 heading is adjacent to the h1 heading. The second h2 heading is not

adjacent to the h1 heading. Neither h2 heading inherits from the h1 heading.

The adjacent selector uses the + sign as its connector, as shown here:

h1 + h2 {
 margin-top: 11px;

}

This style rule would put an extra 11 pixels of space between the bottom of an

h1 heading and an immediately-following h2 heading. It’s important to recognize

that an h2 heading that follows a paragraph under an h1 heading would not be

affected.

As of this writing, Internet Explorer for Windows (up to and including version

6) remains the only major browser that does not support adjacent selectors in its

latest version. Because of this, the adjacent selector has not yet found widespread

use in practical Web design.

Attribute Selectors
The group of selectors I’m lumping together as “attribute selectors” are among

the most interesting of all the CSS selectors, because they almost feel like pro

gramming techniques. Each attribute selector declares that the rule with which

it is associated is applied only to elements that have a specific attribute defined,

or have that attribute defined with a specific value.

There are four levels of attribute matching:

❑	 [attribute] – matches if the attribute is defined at all for the element(s)

❑	 [attribute="setting"] – matches only if the attribute is defined as having

the value of setting

❑	 [attribute~="setting"] – matches only if the attribute is defined with a

space-separated list of values, one of which exactly matches “setting”

Order this 500 page hard-copy CSS Book Now! 63

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

❑	 [attribute|="setting"] – matches only if the attribute is defined with a hy-

phen-separated list of “words” and the first of these words begins with setting

You might, for example, want to apply style properties to all single-line text input

boxes (<input type="text" />) in your document. Perhaps you want to set

their text and background colors to white and black, respectively. This style rule

would have that effect:

input[type="text"] {
 color: white;
 background-color: black;
}

The third variation of the attribute selector described above searches the values

assigned to an attribute, to see whether it contains the word you’ve specified (i.e.

a value in a space-separated list).

For example, during the development of a Website, various graphic designers

may have inserted temporary placeholder alt text tags, with the idea of returning

to them later to finish them. You could call attention to the existence of such

tags with a style rule like this:

img[alt~="placeholder"] {
 border: 8px solid red;
}

This selector will find all img tags whose alt attributes contain the word “place

holder” and will put an 8-pixel red border around them. That ought to be hard

to miss!

The fourth variation is really useful only when you’re dealing with the lang at

tribute. It enables you to isolate the first portion of the lang attribute, where the

human language being used is defined. The other portions of the hyphen-separated

value are ignored. It would be pretty rare to use this version, but it comes in

handy when the language defined is en-cockney and you’re really only interested

in whether the language is English.

As you would expect by now, attribute selectors are not supported by Internet

Explorer for Windows. As with other advanced selector types, this has prevented

widespread adoption of attribute selectors, despite their obvious usefulness.

Order this 500 page hard-copy CSS Book Now! 64

http://www.sitepoint.com/launch/8d142e

Selector Grouping

Selector Grouping
To apply a style rule to elements in an HTML document of several different

types, use selector grouping. Separate with a comma each element type to which

the rule is to be applied.

Here’s a simple example of this type of selector:

h1, h2, h3 {
 font-family: verdana, arial, sans-serif;
 color: green;
}

The elements in the selector list need not be all of the same type or even of the

same level of specificity. For example, the following style rule is perfectly legal.

It applies a specific style to level 2 headings (h2) and to paragraphs whose class

is defined as special:

h2, p.special {
 font-size: 22px;

}

You may include a space between the comma-separated items or not.

Expressing Measurements
Many of the properties you define in a CSS rule include measurements. These

measurements tell the rule how tall or wide something is to be. Fonts, spacing,

and positioning are the primary places you’ll use such measurements.

There are two types of measurements: absolute and relative. An absolute meas

urement (e.g. setting a font-size to 18px, or 18 pixels) tells the browser to render

the affected content as 18 pixels in height3. Technically, it actually tells the

browser to use the specified font and scale its character height, so that the font’s

overall height is 18 pixels. Chapter 8, includes an explanation of font height and

width.

3Again, if I wanted to be terribly precise, I would say that a pixel is actually a relative measurement,

because its meaning is relative to the display medium on which the page is produced. But, in this

context, “relative” means “relative to some other value in the style rule or in the HTML” and in that

sense, pixels are absolute.

Order this 500 page hard-copy CSS Book Now! 65

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

Using relative measurements, on the other hand, instructs the browser to scale

a value by some percentage or multiple, relative to the size of the object before

the scaling takes place.

This example defines a style rule, in which all fonts in paragraphs on the page

should be scaled to 150% of the size they would have been without this style:

p {
 font-size: 150%;

}

If you knew that, in the absence of such an instruction, all paragraphs on the

page display their text at a size of 12 pixels, you could also accomplish the same

thing this way:

p {
 font-size: 18px;

}

I recommend that you generally use the relative sizing values whenever you can.

This technique works better when the user has set preferences for font sizes, and

in situations where multiple style sheets could be applied. It's also more accessible,

as visually impaired users can more easily increase the font size on the page by

configuring their browsers' preferences.

All length values (the term CSS2 uses to describe any size measurement,

whether horizontal or vertical) consist of an optional sign (“+” or “-“) followed

by a number (which may be a decimal value) followed by a unit of measurement.

No spaces are permitted between the number and the unit of measurement.

Absolute Values
Table 3.2 shows the absolute values supported in CSS style sheets, and where

it’s not obvious, their meanings.

Table 3.2. Absolute Values in Style Sheets

ExplanationStyle MeaningStyle Abbreviation

Imperial unit of measure;

2.54cm

inchin

centimetercm

Order this 500 page hard-copy CSS Book Now! 66

http://www.sitepoint.com/launch/8d142e

Absolute Values

millimetermm

1/72 inchpointpt

12 points (1/6 inch)picapc

One dot on the screenpixelpx

When a length of zero is used, no unit of measurement is needed. 0px is the same

as 0. It doesn't make sense to give a unit of measurement when the length is zero

units, for zero is the same distance in any unit of measurement.

Wherever you need to supply an absolute measurement for the size or position

of an element in a style sheet rule, you can use any of the above abbreviations

interchangeably. All of the following should produce precisely the same result:

font-size: 1in;
font-size: 2.54cm;
font-size: 25.4mm;
font-size: 72pt;
font-size: 6pc;

Pixels pose an entirely different set of issues. If you use the pixel as your unit of

measurement (as we have, with few exceptions, so far), you’ll find that your fonts

maintain their size ratio with graphics on your page, as the page is displayed on

different monitors, with varying resolutions and screen sizes.

In general, pixels are not the most appropriate measurement to use; nevertheless,

they are the most common. Most designers probably prefer to work with pixels

because they want maximum control over the user experience. And clients often

insist on using pixel measurements, believing that this is the best way to replicate

on-screen a design they’ve seen on a printed page.

A pixel is one point on a screen that can be on or off, blue or green (or whatever

color combination is needed). For example, if you set your computer’s display to

a resolution of 800 pixels by 600 pixels—one of the most common screen resolu

tion settings—then a pixel corresponds to 1/600 of the screen height. On a typical

15-inch display, the height is about 10.5 inches and the width is a little more

than 13 inches4. A 12-pixel-high font display on that monitor would turn out to

be about 1/50 of the 10.5-inch height of the display, or just a bit more than 1/5

inch.

4High school math would lead you to predict a 9- by 12-inch screen, but, unfortunately, 15 inch

monitors don’t normally have a full 15 inches of diagonal screen space. Perhaps computer manufac

turers don’t study Pythagoras.

Order this 500 page hard-copy CSS Book Now! 67

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

If the user sets his or her resolution to 1024 pixels by 768 pixels, the same 16

pixel high font displays at 78% the height, or 0.16 inches. What if the user’s on

a 13-inch display instead of a 15-inch display? You begin to see the problem with

using pixels.

So, if pixels are problematic, why have we used them so far? There are three

reasons.

First, they are easily the most common absolute value measurements used on

Web pages, despite the problems they seem to pose. Even though some Web

purists argue against the use of pixels, there really is no perfect, absolute measure

ment that will work well in all circumstances. In such situations, people tend to

stay with what they know and what works for them. In this case, that’s pixels.

Second, pixels are the measurement used in virtually all computer software. This

means users expect the text on their displays to get smaller if they increase the

resolution and larger if they decrease it. Text that worked “better” and didn’t

undergo such transformation would jar the typical user.

Finally, whenever a measurement is being applied to something other than a font,

pixel measurements are generally the best way to describe distance. Only fonts

are measured in non-pixel units, primarily because they have lives of their own

in print and other media. Everything else on a computer display is measured in

pixels by default, so using pixels for positioning, and to describe the size of such

elements as graphic images is appropriate.

Relative Values
Because of the problems posed by the use of any absolute value, the most flexible

and least controlling way to approach measurements for style rules is to use rel

ative units of measurement. Principally, these are em and %, although some people

prefer to use the more obscure ex measurement. The “em” measurement is so

named because it refers to the height of a capital “M” character in the given font,

but in practice it is equal to the font-size of the current font. The “ex” measure

ment is based on the height of the lower-case “x” character in a font (more com

monly known as the x-height of the font) and is far less common than the em.

Both the em and the percentage generate font sizes based on the inherited or

default size of the font for the object to which they’re applied. In addition, ems

and percentages are 1:100 equivalent. A size of 1em is identical to a size of 100%.

Order this 500 page hard-copy CSS Book Now! 68

http://www.sitepoint.com/launch/8d142e

Relative Values

This description begs the question, “What’s the default or inherited font size for

a particular HTML element?” The answer is: it depends.

Prior to the emergence of Opera 5 for Windows, browsers set the default values

for all fonts as part of their startup process. Users had no control. The browser

defined a default. The Web designer overrode defaults willy-nilly. The user took

what was presented.

Then, along came the idea of user choice. Not surprisingly, this development was

facilitated by the emergence of CSS. Essentially, what the developers of the Opera

browser did was create a local style sheet that the user could modify, and set his

or her defaults to use. They also defined a nice graphical user interface through

which the user could set preferences for these styles.

This was great for users, but Web designers found themselves in a quandary. If,

for example, you assumed that browsers were going to default body text to a 12

point font size5 (which was the de facto standard before the user-controlled pref

erences era), you could set a style to apply a 1.25em scaling to the text and get

a 15 point font size for the text in question. It was nice and predictable.

Now, however, a 1.25em scaling applied to a font tells the browser to increase

the size of the font to 1.25 times (125% of) its default size. If the user has set

up his or her browser to show standard text at a height of 16 points, your 1.25em
transformation brings the size up to 20 points.

When you stop and think about it, though, that’s probably just fine. The user

who chooses a larger base font size probably needs to see bigger type. If you want

type that would otherwise be at 12 points to display at 14 for some good reason,

then it’s not unreasonable to expect that this new user will benefit in the same

way from seeing the font used in this particular situation increase from his or her

standard 16 points to 20.6

Most of the time, there’s not really a reason to muck with the user’s settings for

font sizes, so changing them arbitrarily isn’t a good idea. Before you apply this

kind of transformation to a text segment on your Web design, ask yourself if it’s

really necessary. My bet is that nine times out of ten, you’ll find it’s not.

5Just in case you were wondering, pixel sizes and point sizes are not equivalent, and the ratio between

the two varies between browsers and operating systems. For example, the 12 point default font size

used by most Windows browsers was rendered at 16 pixels on that platform. 12pt is equivalent to

16px on Windows browsers.
6If that’s not the case, you probably want to rethink your reason for boosting the font size in the

first place.

Order this 500 page hard-copy CSS Book Now! 69

http://www.sitepoint.com/launch/8d142e

Chapter 3: Digging Below The Surface

I would be remiss if I didn’t point out that there are some inherent pitfalls in

using relative font sizes, of which you should beware. Under some circumstances,

relative font values can combine and multiply, producing bizarre results indeed.

For example, if you define style rules so that all text that is bold is displayed at

1.5 ems and all text that is italic is displayed at 1.5 ems, text that is bold and it

alic will display at 2.25 ems (1.5 x 1.5). This problem arises with child elements,

which inherit from their parent container elements the computed values for

measured properties and not the relative values. This is relatively easy to avoid,

but if you overlook it, the results can be quite startling.

CSS Comments
More than likely, you are familiar with the concept of comments in HTML:

<!-- this is an HTML comment -->

Comments allow you to include explanations and reminders within your code.

These are entirely ignored by the browser, and are normally included solely for

the developer's convenience. If you've ever had to make changes to code that

hasn't been touched in a few months, I'm sure you can appreciate the value of a

few well-placed comments that remind you of how it all works.

CSS has its own syntax for comments. In HTML, a comment begins with <!-
and ends with -->. In CSS, a comment begins with /* and ends with */:

<style type="text/css">
/* This rule makes all text red by default.
 We include paragraphs and table cells for
 older browsers that don't inherit properly. */

body, p, td, th {
 color: red;

}

</style>

If you know much JavaScript, you'll recognize this syntax, which can be used to

create multiline comments in that language as well. Unlike JavaScript, however,

CSS does not support the single-line double-slash (//) comment style.

Order this 500 page hard-copy CSS Book Now! 70

http://www.sitepoint.com/launch/8d142e

Summary

Summary
This chapter ends our overview of CSS technology. This chapter covered more

of the syntactical and structural rules of CSS styles. Along the way, it explained

the basic ideas involved in HTML document inheritance.

In Part II, which starts with Chapter 4, we’ll launch into a full-scale project. Be

ginning with a traditional table-based layout for a Website, we’ll start to focus

on how to lay out the page using CSS rather than tables.

Order this 500 page hard-copy CSS Book Now! 71

http://www.sitepoint.com/launch/8d142e

72

II Page Layout with CSS

4 CSS Web Site Design

The development of any Website begins with its design. Typically, you'll have a

statement from your client, or at least a rough idea in your head, of the intended

capabilities of the site. If you're a by-the-book sort of developer, this may even

take the form of a detailed specification document, which may describe the use

cases (i.e. things that visitors can do) the site needs to support, the official spe

cifications and recommendations the site must observe, and the list of browsers

and platforms that must be able to access the site.

At this stage, it is customary for the designer to create a series of mock-ups, pro

gressing from paper sketches, to prototype designs in a graphics application, to

actual Web pages in HTML. If you have some experience in traditional site

design, you probably produce even your very first paper sketches with a mind to

the HTML code that will eventually replicate those layouts on screen.

As you move from tables to using CSS as your primary page layout tool, you'll

have to learn a whole new set of design principles upon which to base your initial

mock-ups. In this and the next few chapters of this book, I'll guide you through

those principles so that you can come to grips with the new limitations, and let

your imagination run wild with the new possibilities.

It is human nature to resist change. When you encounter things that CSS can't
do, you'll be tempted to cling tightly to the heavy handed control offered by

table-based design, rather than to brave the new world of CSS layout, where the

Chapter 4: CSS Web Site Design

layout of a hundred pages can hinge on a single rule. In this chapter, I'll endeavour

to coax you out of your comfort zone by explaining some of the “big picture”

advantages of CSS-based design, and present some success stories of Websites

that have taken the plunge and are reaping the rewards of CSS layout.

Advantages of CSS Design
In the past few chapters, I've touched on a number of the powerful features of,

and reasons for, using CSS for site layout. In this section, I'll formalize those ar

guments and present them all in one place. Not only do I hope to convince you
of the merits of CSS, but I hope to give you the tools to sell others on the techno

logy.

In the cutthroat world of freelance Web development, you will often be called

upon to explain why you will do a better job than other developers bidding on

the same project. If CSS layout is one of the tools in your Web design arsenal,

the sites you build will benefit from the advantages presented here. Many of

these advantages go well beyond ease of development, and translate directly to

extra value for your clients. Let them know about this—it just might make the

difference between winning the contract and losing out to a designer who lives

and breathes table-based design.

Increased Stylistic Control
The prima facie selling point of CSS, and the reason most Web developers first

choose to dabble in the technology, is that it lets you control many aspects of

the appearance of your site that you simply cannot control with pure HTML.

There is, for example, a waning fad of removing the underlines from hyperlinks

and indicating them with some other style distinction (such as bold or colored

text, or perhaps adding the underline when the mouse hovers over a link) that

was sparked by the introduction of CSS. For a complete reference to the style

properties that can be controlled with CSS, see Appendix C.

In addition to the sheer number of controllable style properties, CSS lets you apply

them more uniformly to the range of HTML page elements that are available.

With HTML, for instance, if you want to put a visible border around an area of

the page, you need to use a table to do it, because you can add borders only to

tables. CSS not only gives you greater control over the look of the border (solid,

embossed, dotted, or dashed, thick or thin, red or green, etc.), but also lets you

add a border to any page element—not just tables. The design rationale behind

CSS is to give the designer as many options as possible, so any style property

Order this 500 page hard-copy CSS Book Now! 76

http://www.sitepoint.com/launch/8d142e

Centralized Design Information

that exists can usually be applied anywhere that it could potentially make sense

to do so.

CSS simply has more style properties, that can be applied to more page elements,

than HTML has ever offered. If you had to choose between CSS and HTML as

a means for specifying the design of your site, based only on which would afford

you the most visual control, CSS would win hands down. Despite this, common

practice is to use HTML for design wherever possible, and to resort to CSS

whenever an effect is needed that HTML cannot produce. While the visual ap

pearance of sites designed with this rationale is just as good, you miss out on all

the other advantages of CSS.

Centralized Design Information
As I've already explained, the best way to use CSS in the design of a Website is

to write one or more .css files to house all your style code, and then link it to

the appropriate pages with the HTML <link> tag. With this approach, everything

to do with the look of your site can be found in one place, and is not jumbled up

with the content of your site.

The idea is that you should be able to change the content of your site without

affecting its look, and vice versa. In traditional Web design, where HTML tags

and attributes are used to specify how things look in the browser, the code for

these two aspects of your site is mixed together, so anyone who wants to modify

one of these must understand both, or risk breaking one while making changes

to the other. The look and the content of the site are said to be coupled.

This principle of keeping code that serves different purposes in different places

is known in the programming world as decoupling. If a site's style and content

are decoupled, a Web designer can modify the look of the site by editing the

.css file(s), while a content editor can add content to the site by editing the

.html files.

Even more significant than facilitating organization and teamwork, this separation

of code reduces code duplication. In HTML-based design, if you want the title

at the top of every article on your site to be displayed in a large, red font, you

have to put a tag inside the relevant <h1> tag on every article page of

your site. With CSS-based design, you can specify the font properties for the

<h1> tags in one place, which saves you typing. And should you decide to change

the appearance of these headings, you have only to modify the CSS file instead

of each and every HTML file, which saves your sanity! These differences are illus

trated in Figure 4.1.

Order this 500 page hard-copy CSS Book Now! 77

http://www.sitepoint.com/launch/8d142e

Chapter 4: CSS Web Site Design

Figure 4.1. CSS Centralizes your Design Code

If you look closely at Figure 4.1, you'll see that on top of the organizational ad

vantages described above, the browser has less code to download. On heavily-

designed sites, or sites with hundreds of pages or more, this reduced download

time can have a significant impact both on the user experience, and on your

bandwidth costs.

Semantic Content Markup
When you use .css files to decouple the content and look of your site, as I've

just described, a curious thing begins to happen to your HTML code. Because

CSS affords you complete control over the appearance of page elements, you

begin to choose tags because they describe the structure and meaning of elements

Order this 500 page hard-copy CSS Book Now! 78

http://www.sitepoint.com/launch/8d142e

Accessibility

of the page, instead of how you want them to look. Stripped of most or all of the

presentational information, your HTML code is free to capture the semantics

of your site's content.

There are a number of reasons why this is a desirable state of affairs, not the least

of which is how easily you can find things when you're making changes to the

content of your site. The easiest way to spot a CSS site is to use the “View Source”

feature in your browser—if you can make sense of the code there within 10

seconds, chances are that you're not dealing with a site that uses table-based

layout and other non-semantic HTML.

Search engine optimization (SEO) is greatly assisted by semantic HTML, because

the fewer presentational tags the search engine has to wade through in analyzing

your site, the greater your site's keyword density—an important metric in de

termining your site's ranking. As we'll see, CSS lets you control the position of

an element in the browser window, largely independent of its position in the

HTML document. So, if you have a newsletter subscription form or some other

lengthy chunk of HTML that won't mean a whole lot to a search engine, feel free

to move its code to the end of your HTML document and use CSS to ensure

that it is displayed near the top of the browser window.

Increasingly supported by modern browsers is a feature of the HTML <link>
tag1, which lets you restrict a linked style sheet so that it affects only the page

when it's displayed by a certain type of browser or display. For instance, you

could link three .css files to a page: one that defined the appearance of the page

on a desktop browser, another that dictates how the page will look when printed,

and yet another that controls the display on mobile devices such as Internet-

connected Personal Digital Assistants (PDAs). Only by using semantic markup,

and allowing the CSS to take care of the display properties, is this sort of content

repurposing possible.

Last, but certainly not least, are the vast improvements to accessibility that a site

can garner by using semantic markup. We'll discuss these in detail in the next

section.

Accessibility
Should you ever have the opportunity to observe a visually impaired individual

browsing the Web, I highly recommend the experience. Alternatively, get yourself

1Specifically, the media attribute.

Order this 500 page hard-copy CSS Book Now! 79

http://www.sitepoint.com/launch/8d142e

Chapter 4: CSS Web Site Design

some screen reader software, switch off your monitor, and see for yourself what

it's like.

Heavily-designed Websites that make use of tables, images, and other non-se-

mantic HTML for layout are extremely difficult to use when the most natural

way to experience a Website is to listen to it read aloud, from top to bottom. It's

not uncommon for a modern Website to inflict 30 seconds or more of nested

tables opening and closing, unidentified images for layout, and other nonsense,

before the actual content begins. Now, if you think that sounds mildly annoying,

imagine having to listen to it for each and every page of the sites that you visit!

Semantic HTML nearly eliminates this aural garbage, because it ensures that

every tag in the document has a structural meaning that's significant to the

viewer (or listener). An aural browser ignores the visual formatting properties

defined in the CSS, so the user need not be bothered listening to them.

On a site that used semantic markup, for example, a visually impaired user would

never have to wonder if a word was bold because it was more important, or just

because it looked better that way. Elements that were displayed in bold for design

reasons would have that property assigned using CSS, and the aural browser

would never mention it. Elements that needed additional impact or emphasis

would be marked up using the semantically meaningful and tags,

which are displayed by default as bold and italics in visual browsers.

A complete set of guidelines exists for developers who are interested in making

their sites more accessible for users with disabilities. The Web Content Accessib-

ility Guidelines 1.0[1] (WCAG) is recommended reading for all Web developers,

with Guideline 3[2] treating the idea of avoiding presentational markup in favour

of semantic markup.

Standards Compliance
The WCAG is not the only specification that advocates the use of CSS for the

presentation properties of HTML documents. In fact, the latest HTML stand-

ards[3] themselves are written with this in mind!

[1] http://www.w3.org/TR/WCAG10/

[2] http://www.w3.org/TR/WCAG10/#gl-structure-presentation

[3] http://www.w3.org/MarkUp/#recommendations

Order this 500 page hard-copy CSS Book Now! 80

http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/#gl-structure-presentation
http://www.w3.org/MarkUp/#recommendations
http://www.w3.org/MarkUp/#recommendations
http://www.sitepoint.com/launch/8d142e

Standards Compliance

The World Wide Web Consortium[4] (W3C) is the body responsible for publish

ing Recommendations (de facto standards) relating to the Web. Here are some of

the W3C Recommendations that relate to using semantic markup and CSS:

HTML 4 (http://www.w3.org/TR/html4)

The latest (and last) major revision of the HTML Recommendation marks

all non-semantic elements and attributes as deprecated2. The tag[6],

for example, is clearly marked as deprecated in this standard. Under the de-

scription of deprecated elements[7], the Recommendation has this to say:

In general, authors should use style sheets to achieve stylistic and

formatting effects rather than HTML presentational attributes.

XHTML 1.0 (http://www.w3.org/TR/xhtml1/)

A reformulation of HTML 4 as an XML document type, XHTML lets you

use HTML tags and attributes, while also benefiting from the features of

XML (mixing tag languages, custom tags, etc.).

This Recommendation includes the same tags and deprecations as HTML 4.

Web Content Accessibility Guidelines 1.0 (http://www.w3.org/TR/WCAG10/)

As described in the section called “Accessibility”, the WCAG Recommendation

strongly recommends using CSS and semantic markup in Web design to

improve accessibility. I'll let the Recommendation speak for itself:

Misusing markup for a presentation effect (e.g., using a table for

layout or a header to change the font size) makes it difficult for

users with specialized software to understand the organization

of the page or to navigate through it. Furthermore, using

presentation markup, rather than structural markup, to convey

structure (e.g., constructing what looks like a table of data with

an HTML PRE element) makes it difficult to render a page intel

ligibly to other devices

According to many Web developers, strict standards compliance is an idealistic

goal that is rarely practical. One of the primary goals of this book is to demonstrate

that this is no longer true. Today's browsers provide strong support for CSS and

[4] http://www.w3.org/

2A deprecated element or attribute is one that has been tagged for removal from the specification,

and which therefore should not be used. For a document to strictly comply with the specification, it

should not use any deprecated tags or attributes.

[6] http://www.w3.org/TR/html4/present/graphics.html#h-15.2.2

[7] http://www.w3.org/TR/html4/conform.html#deprecated

Order this 500 page hard-copy CSS Book Now! 81

http://www.w3.org/
http://www.w3.org/TR/html4
http://www.w3.org/TR/html4/present/graphics.html#h-15.2.2
http://www.w3.org/TR/html4/conform.html#deprecated
http://www.w3.org/TR/html4/conform.html#deprecated
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/WCAG10/
http://www.sitepoint.com/launch/8d142e

Chapter 4: CSS Web Site Design

produce more consistent results when they are fed standards-compliant code.

While bugs and compatibility issues still exist, they are no more insurmountable

than the bugs that face designers who rely on noncompliant code.

CSS Success Stories
The following sites serve as great examples of what can be accomplished with

CSS page layout:

SitePoint (http://www.sitepoint.com/)

I know, I know... it's unseemly to use my own publisher as an example of

why CSS works, but you've got to hand it to these guys. They've not only

taken a tired, table-laden layout and replaced it with a fresh, standards-

compliant design, but they've also made the site vastly more usable in the

process.

Though the flat colors in use on this site may look simplistic at first glance,

this “low fat” approach to the design keeps the pages loading quickly, despite

often lengthy content and a plethora of navigational options.

A List Apart (http://www.alistapart.com/)

Since its inception in 1998, this site, and the associated mailing list, has be

come one of the leading sources of information and advocacy for CSS design

and layout. The site itself is a model of simplicity, but it demonstrates that

simple doesn't have to mean boring or ugly.

Netscape DevEdge (http://devedge.netscape.com/)

DevEdge is Netscape's resource site for Web developers. With Netscape 6 and

7 having been based on a standards-compliant Web layout engine, it seemed

only logical to redesign the site to take advantage of this technology. They've

even published an article[13] that covers their approach to this redesign.

ESPN (http://www.espn.com/)

The first mainstream, commercial Website to be built with CSS page layout

techniques, ESPN.com is the ice breaker that the Web design community

has been waiting for!

When pitching a site design idea—especially when you propose to use “new”

technologies like CSS layout—clients will often ask if you can show them

another site that has implemented a similar solution successfully. Until now,

[13] http://devedge.netscape.com/viewsource/2003/devedge-redesign/

Order this 500 page hard-copy CSS Book Now! 82

http://www.sitepoint.com/
http://www.alistapart.com/
http://devedge.netscape.com/
http://devedge.netscape.com/viewsource/2003/devedge-redesign/
http://www.espn.com/
http://www.sitepoint.com/launch/8d142e

Our Sample Site: Footbag Freaks

all the best examples of CSS site design were either sites written by Web

developers, for Web developers, or personal sites that could afford to take

risks because they weren't in it for the money.

For an in-depth interview with one of the designers behind this site, visit

Netscape DevEdge[15].

Fast Company Magazine (http://www.fastcompany.com/)

The online presence for a popular business magazine, this site was redesigned

to make use of CSS layout and semantic markup. The actual look and organ

ization of the site hasn't changed drastically from its previous version, but

thanks to CSS, its pages load much more quickly.

Our Sample Site: Footbag Freaks
For the rest of this book, I will relate each of the techniques we discuss, wherever

possible, to a sample site that has been developed especially for this book. Called

Footbag Freaks, this fictitious site can be found online at http://www.footbag-

freaks.com/. The source code is also available for download from this book's

Website[18]. You can see the front page of the Footbag Freaks site in Figure 4.2.

[15] http://devedge.netscape.com/viewsource/2003/espn-interview/01/

[18] http://www.sitepoint.com/books/

Order this 500 page hard-copy CSS Book Now! 83

http://devedge.netscape.com/viewsource/2003/espn-interview/01/
http://www.fastcompany.com/
http://www.footbagfreaks.com/
http://www.footbagfreaks.com/
http://www.sitepoint.com/books/
http://www.sitepoint.com/books/
http://www.sitepoint.com/launch/8d142e

Chapter 4: CSS Web Site Design

Figure 4.2. The Footbag Freaks Home Page

This site makes full use of CSS for both page layout, and the styling of text and

other page elements. The HTML code is entirely semantic. The site has been

designed and tested to work on the following browsers:

❑	 Internet Explorer 5 or later for Macintosh and Windows

❑	 Opera 6 or later

❑	 Mozilla 1.0 or later and related browsers, including Netscape 6 or later and

Camino

The site complies with the following W3C Recommendatons:

Order this 500 page hard-copy CSS Book Now! 84

http://www.sitepoint.com/launch/8d142e

Summary

❑ XHTML 1.0 (Strict)

❑ WCAG 1.0 (AAA Rating for Accessibility)

❑ CSS 2.0

Summary
In this chapter, I provided the justification for all that is to follow. I explained

in detail the most important advantages that CSS has to offer for your Web

design work. These advantages fell under the headings of:

❑ increased stylistic control

❑ centralized design information

❑ semantic content markup

❑ accessibility

❑ standards compliance

After presenting a few success stories—sites that have used CSS design techniques

to good effect—I introduced our own, admittedly fictional, success story: Footbag
Freaks. Throughout the rest of this book, we'll explore the wide range of CSS

features and techniques that go into making a site like this one.

Chapter 5, begins this process by looking at how to build the skeleton of a page

layout, and flesh out major pieces of design using, pure CSS techniques.

Order this 500 page hard-copy CSS Book Now! 85

http://www.sitepoint.com/launch/8d142e

86

5 Building the Skeleton

Most books on CSS begin by teaching you how to deal with the bits and pieces

of a Web page: fonts, colors, lists, and the like. Then, they move on to explaining

the broader issues associated with CSS Positioning (CSS-P), which affect the

layout of pages rather than the appearance of individual elements.

In this book, I take the opposite approach. I first look at the site-level and page-

level issues involved with CSS design, so that we can understand the big picture

perspective of page layout without tables (which is, after all, the primary thrust

of this book). And later, in Part III, I’ll discuss styling the content of the pages

we’ll be laying out in this and the next chapter.

This chapter focuses specifically on creating the basic structural layout of a Web

page or site using CSS. In it, I’ll discuss multi-column layouts—both in general

and very specifically—as they relate to the Footbag Freaks site. I’ll teach you

about boxes, borders, and the famous Box Model of CSS design. I’ll delve into

the intricacies of creating and using two- and three-column page layouts, and

into the mysteries of floating objects. I’ll guide you through the process of creating

dummy layouts for the pages you’ll encounter in the Footbag Freaks project, and

in other projects you may create.

I’ll conclude with the usual tips on dealing with the layout issues presented in

this chapter—the issues involved in converting pages to CSS from an existing

table-centric design.

Chapter 5: Building the Skeleton

Enumerating Design Types
One of the first decisions you have to make when you create any Website, but

particularly one where you intend to put CSS to its most effective use, is how

many different types of pages and elements you’re going to need.

How Many Page Types?
Most sites use more than one basic page layout. The front, or index page, often

has a different look and feel from the “inside” pages. In the Footbag Freaks site,

for example, the specification tells us that bread-crumb navigation will appear

on all but the front page. An inspection reveals that the large graphic that displays

near the top of the front page does not appear on other pages of the site.

On a typically complex ecommerce site, you might run into far more page types.

For example, such a site might include different layouts for its:

❑ front page (index)

❑ catalog pages

❑ secure ordering pages

❑ main content pages

❑ site map page

Some of these pages might display dynamic content that is stored in a database

and generated in response to specific user requests. Others might be flat HTML

pages that never change unless you redesign them.

The Footbag Freaks site appears to need only one type of page layout. The sec

ondary page has fewer elements than the home page, but the relative positioning

and layout of the common elements doesn’t change from one page type to the

other.

Order this 500 page hard-copy CSS Book Now! 88

http://www.sitepoint.com/launch/8d142e

How Many Design Elements?

How Many Design Elements?

Figure 5.1. The Footbag Freaks Home Page

Looking at the Footbag Freaks home page, we can easily identify the following

seven design elements, indicated in Figure 5.1:

1.	 the top of the page where the Footbag Freaks logo appears against a colored

background

Order this 500 page hard-copy CSS Book Now! 89

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

2.	 the left-hand column where the site’s navigation is located

3.	 inside the navigation area, the text field for newsletter sign-up and related

text

4.	 the large image area where the sun, the sky, and the hacky sack appear

5.	 the news area

6.	 the sponsor area

7.	 the footer where the copyright information appears

The second page of the site eliminates the fourth design element from this list

and adds a submenu navigation element inside the main navigation. So, each

page type has seven design elements, six of which are common, and one of which

is unique to each page.

CSS Positioning and Multi-Column Page
Layouts

Now that you have an idea of the number of pieces of design for which you’re

going to define CSS rules, let’s take a step back and get a basic grounding in how

to use specific CSS rules to create these layouts and effects.

The CSS Box Model
From the perspective of a style sheet, everything you deal with in HTML pages

can be viewed as living inside a box. This fact is generally far more obvious when

you’re formatting large chunks of content, like the seven design elements in the

Footbag Freaks Website. But it’s true even when you’re dealing with individual

components of those elements, like headings, lists, list elements, and even seg

ments of text.

The basic CSS box model is shown in Figure 5.2.

Order this 500 page hard-copy CSS Book Now! 90

http://www.sitepoint.com/launch/8d142e

The CSS Box Model

Figure 5.2. Basic CSS Box Model

At the center of the CSS box model is the content itself. Don’t think of this

“content” as being the same as words or pictures that comprise the content of a

news story or a set of links. The content is anything contained within the area

of the box.

Notice from Figure 5.2 that the visible width of the box is determined by adding

together the content width, the padding and the border. The margin determines

the distance on each side between the visible box and adjacent elements. Similarly,

the visible height of the box is determined by adding the content’s height to

the padding and border settings. Once again, the margin determines how far the

box will be separated from adjacent objects vertically.

The width of each of these elements—margin, border, and padding—can be set

using four CSS properties (one for each side of the box), or using a single short

hand property. Border behavior is slightly more complicated because a border

Order this 500 page hard-copy CSS Book Now! 91

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

can have not only a width but also visible characteristics such as line style and

color.

I’ll begin by explaining and demonstrating the use of padding in some detail.

Then, I’ll move on to a discussion of margins, which will be briefer, as it’s so

similar to padding. Finally, I’ll discuss the border property and its variations.

For the next several sections, I’ll use a basic, single-box layout to demonstrate

CSS rule techniques. It starts out as in Figure 5.3 with no padding, border, or

margin properties defined, so that the content is the same size as the box.

Figure 5.3. Starting Point for Box Model Demonstrations

I’ve given the h1 element a gray background so you can see more easily the impact

of the effects I’ll be demonstrating. I'll describe the background-color property

I've used here more fully in Chapter 7.

This HTML produces the page shown in Figure 5.3:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Box Model Demo</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">

<!-

h1 {

 background-color: #c0c0c0;
}
-->

Order this 500 page hard-copy CSS Book Now! 92

http://www.sitepoint.com/launch/8d142e

Pixels Versus Percentages

</style>
</head>

<body>

<h1>Help! I'm Stuck in a Box Model!</h1>

</body>

</html>

Throughout the rest of this discussion, I’ll be modifying only the style sheet in

formation, so I’ll reproduce only that section of the code, indicating any changes

in bold.

Pixels Versus Percentages

Because the box model deals with the display of content on the screen, the pixel

measurement (abbreviated px) is the most commonly used of the absolute

measurement units in CSS. However, often we desire to create a “stretchy” layout,

in which case it is necessary and appropriate to use the percentage model (with

the % symbol), rather than pixels. I’ll have more to say on this subject in

Chapter 6.

Setting the Padding Properties

There are four properties that together define the padding around an object in

a CSS rule: padding-left, padding-right, padding-top and padding-bottom.

Let’s change just one of the padding settings to get a feel for how this works.

Modify the style sheet in the sample file, so that it looks like the following frag

ment (remember that the new material is bold):

h1 {

 background-color: #c0c0c0;

padding-left: 25px;

}

The result of this change is shown in Figure 5.4. Notice that the text now begins

25 pixels from the left side of the box, resulting in 25 pixels of blank, gray space

to the left of the text.

Order this 500 page hard-copy CSS Book Now! 93

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Figure 5.4. padding-left Demonstration

As you’d expect, you can set the other padding sizes the same way, as shown in

this code fragment:

h1 {
 background-color: #c0c0c0;
padding-left: 25px;
padding-top: 15px;

padding-bottom: 30px;

padding-right: 20px;

}

You can see the effect of these changes in Figure 5.5.

Figure 5.5. All Four Padding Properties Defined

You may notice that the right side of the padding appears not to have worked.

You asked for 20 pixels, but no matter how wide you stretch the window, the

gray area defining the box that contains our h1 element just goes on and on.

Order this 500 page hard-copy CSS Book Now! 94

http://www.sitepoint.com/launch/8d142e

Setting the Padding Properties

This is because padding-right creates a space between the right edge of the text

and the right edge of the heading, as represented by the gray box. This spacing

is difficult to see in this case, because the heading automatically spans the width

of the browser window, leaving plenty of room for the text to breathe on the right

side. If you make the browser narrow enough, though, you can see the padding

take effect.

Figure 5.6 demonstrates this principle. The first screenshot shows how the page

in Figure 5.5 looks if you narrow the browser window so that there would be

room on the first line for the word “in” if padding-right were not set as it is.

The second screenshot reinforces this idea by showing the page resized so that

one word only fits on each line. Notice that the right padding size looks, in sev

eral cases, large enough to accommodate the word on the next line. In fact, merely

removing the padding-right property from the style sheet produces the result

shown in the third screenshot.

Figure 5.6. Demonstration of Effect of padding-right

Because it’s often necessary to adjust padding around objects in HTML, the CSS

standards define a shorthand property simply called padding. You can give this

property up to four values. Table 5.1 tells you how the properties will be assigned

in each case.

Order this 500 page hard-copy CSS Book Now! 95

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Table 5.1. Effect of Multiple Values on padding Shorthand
Property

InterpretationNo. of Values

Set all four padding values to this value.1

Set the top and bottom padding to the first value, left and right

padding to the second.

2

Set the top padding to the first value, right and left to the

second value, bottom to the third value.

3

Set the top padding to the first value, right padding to the

second, bottom padding to the third, and left padding to the

fourth.1

4

1You can remember this as clockwise, starting from the top, or as TRBL (trouble), whichever you

find easier to remember.

For example, the last code fragment above could be rewritten using the padding
shorthand property as follows:

<style type="text/css">

<!-

h1 {

 background-color: #c0c0c0;
padding: 15px 20px 30px 25px;

}

-->

</style>

To create equal top and bottom padding, and equal left and right padding, even

though right padding is all but meaningless in this context, you could use:

<style type="text/css">

<!-

h1 {

 background-color: #c0c0c0;
padding: 15px 25px;

}

-->

</style>

The result of this code fragment is shown in Figure 5.7.

Order this 500 page hard-copy CSS Book Now! 96

http://www.sitepoint.com/launch/8d142e

Setting the Padding Properties

Figure 5.7. Equal Top-Bottom and Left-Right Padding Using
padding Shorthand

Finally, to create equal padding on all four sides of the h1 element, you could

code this:

h1 {
 background-color: #c0c0c0;
padding: 25px;

}

This code produces the result shown in Figure 5.8.

Figure 5.8. Equal Padding on All Sides Using padding Shorthand

What if you use either ems or percentages for the padding values? The two have

slightly different effects. The em unit scales the padding according to the size of

the font of the content, while the percentage unit scales the padding according

to the width of the block that contains the element. To demonstrate these effects,

Order this 500 page hard-copy CSS Book Now! 97

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

we’ll work with a new HTML page that displays two headings against colored

backgrounds on a page of a contrasting color.

Here’s the HTML for that demo page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Box Model Demo</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">

<!-

body {

 background-color: #808080;
}
h1, h4 {
 background-color: #c0c0c0;
}
-->
</style>
</head>

<body>

<h1>Help! I'm Stuck in a Box Model!</h1>

<h4>But it's not too crowded if you're just a little old h4

 heading like me! In fact, it's kind of cozy in here.</h4>
</body>
</html>

Notice that I’ve given the page a dark grey background and I’ve added an h4
element, which I’ve styled in the same CSS rule as the h1 element.

This HTML page displays as shown in Figure 5.9.

Order this 500 page hard-copy CSS Book Now! 98

http://www.sitepoint.com/launch/8d142e

Setting the Padding Properties

Figure 5.9. Proportional padding Page Starting Point

Now, let’s change the style sheet in this page so that it uses the padding shorthand

to create a 1em padding space around the objects. The code fragment below will

do the trick:

body {
 background-color: #808080;
}
h1, h4 {
 background-color: #c0c0c0;
padding: 1em;

}

As you can see in Figure 5.10, the amount of padding placed around the two

heading elements is proportional to the size of the font in the elements themselves.

Recall that 1em is equal to the height of the font in use. Consequently, much

more space is placed around the h1 element than around the h4 element.

Order this 500 page hard-copy CSS Book Now! 99

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Figure 5.10. Using ems for Proportional Padding

Now, let’s see what happens if we use a percentage rather than an em for the

proportional padding value. Change the HTML, so the style sheet looks like this:

body {
 background-color: #808080;
}
h1, h4 {
 background-color: #c0c0c0;
padding: 10%;

}

The result of this change can be seen in Figure 5.11. Wow! There’s a huge amount

of space around those elements. The browser has applied 10% of the width of

the page (the body is the containing block for heading elements) as the padding

on all four sides.

Order this 500 page hard-copy CSS Book Now! 100

http://www.sitepoint.com/launch/8d142e

Setting the Padding Properties

Figure 5.11. Using Percentage for Proportional Spacing

I’ve been using background color behind the text of the elements to make it easy

for you to see the effect of these padding settings, but it’s not necessary to have

background colors behind those elements to position them. Figure 5.12 uses the

same HTML code as Figure 5.11, the only difference being that I’ve removed the

background colors of the body and the h1 and h4 elements. As you can see, they

maintain their relative spacing.

Order this 500 page hard-copy CSS Book Now! 101

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Figure 5.12. Demonstration of padding Without Color Backgrounds

Setting Margin Properties

The way we set margin properties is identical to the way we set padding properties.

The property names substitute the word “margin” for the word “padding,” includ

ing the shorthand property.

The difference between margins and padding is that margins exist outside the

boundaries of the object, while padding exists inside those boundaries. Figure 5.13

illustrates this difference, based on the style sheet rules in the following code

fragment.

body {
 background-color: #808080;

}

h1 {

 background-color: #c0c0c0;

}

h2 {

 background-color: #c0c0c0;
 margin-left: 5%;

Order this 500 page hard-copy CSS Book Now! 102

http://www.sitepoint.com/launch/8d142e

Setting Margin Properties

}
p {
 background-color: #c0c0c0;
 margin-left: 20%;
}

Figure 5.13. margin-left Settings Push Content and Background
Over

Notice that the second-level heading and the paragraph, for both of which we’ve

set margin-left properties, are indented from the left edge of the browser. But

here, unlike the example in which we set the padding-left property, the text

and its background color block are indented. This is because the color block and

the text are inside the content box and the margin is outside that box.

Let’s next apply padding-left and margin-left settings to the code fragment.

body {
 background-color: #808080;
}
h1 {
 background-color: #c0c0c0;
}
h2 {
 background-color: #c0c0c0;
 margin-left: 5%;
padding-left: 1em;

}

Order this 500 page hard-copy CSS Book Now! 103

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

p {
 background: #c0c0c0;
 margin-left: 20%;
padding-left: 10%;

}

As you can see in Figure 5.14, the margin has pushed the HTML elements and

their surrounding background color blocks to the right, while the padding has

moved the text to the right within the colored background blocks.

Figure 5.14. margin-left Combined with padding-left Setting

Horizontal margin effects are cumulative. Take a look at the following HTML

code, and at Figure 5.15, which shows how it is rendered.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Box Model Demo</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">

<!-

body {

 background-color: #808080;
}
h1 {
 background-color: #c0c0c0;

Order this 500 page hard-copy CSS Book Now! 104

http://www.sitepoint.com/launch/8d142e

Setting Margin Properties

}
h2 {
 background-color: #c0c0c0;
 margin-left: 5%;
 padding-left: 1em;
}
p {
 background-color: #c0c0c0;
 margin-left: 20%;
 padding-left: 10%;
}
li {
 background-color: #ffffff;
}
li p {
 margin-left: 10%;
}
-->
</style>
</head>

<body>

<h1>No left margin set for this level-one heading</h1>

<h2>Left margin set at 5% for me</h2>

<p>A paragraph with a margin-left set at 20%. This will result in

 a deep indent of the paragraph from the left margin.</p>

Item one
<p>Paragraph item</p>

</body>
</html>

Order this 500 page hard-copy CSS Book Now! 105

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Figure 5.15. Cumulative Effect of Horizontal Margin Settings

The big difference here is in the bulleted list. Notice that the first item in the list

displays with no extra indentation. This is not surprising, as the style rules do

not define any extra margin settings for an li element. Look at the second list

element, however, which is a paragraph. The last style rule in the HTML above

assigns a paragraph that is the descendant of an li element a margin-left setting

of 10%. As you can see, this margin applies to the existing left margin of the

bulleted list, which results in the paragraph item being pushed further to the

right. Note also that this same element is a paragraph, so it retains the styling of

all p elements, including their padding-left setting of 10%. This produces the

additional indentation of the paragraph text within the gray box in the list.

If you load the above HTML (from the file boxmodel4.html included in the code

archive for this book) and resize it, you’ll notice that the indentation of the

paragraph element inside the list changes as the width of the window changes.

That’s because I used a relative value of 20% for the margin and 10% for the

padding. Both of these values are therefore calculated relative to the width of the

containing block (the list item), which in turn takes its width from the browser

window. The bigger the browser window, the bigger the margin and padding on

the nested paragraph.

You can set vertical margins with the margin-top and margin-bottom properties.

Here’s another HTML page that demonstrates vertical margins:

Order this 500 page hard-copy CSS Book Now! 106

http://www.sitepoint.com/launch/8d142e

Setting Margin Properties

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Box Model Demo</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">

<!-

body {

 background-color: #808080;
}
h1 {
 background-color: #c0c0c0;
 margin-bottom: 5%;
}
h2 {
 background-color: #c0c0c0;

margin-left: 5%;

margin-top: 5%;

 margin-bottom: 5%;

 padding-left: 1em;

}
p {
 background: #c0c0c0;
margin-left: 20%;
padding-left: 10%;
 margin-top: 5%;
 margin-bottom: 5%;
}

-->

</style>

</head>

<body>

<h1>No top margin but 5% bottom margin</h1>

<h2>Top and bottom margins set 5% for me</h2>

<p>A paragraph with top and bottom margins set at 5%</p>

</body>

</html>

This page renders as shown in Figure 5.16. If you load this document (boxmod-
el5.html) and resize the browser, you’ll notice that vertical spacing increases

and decreases accordingly, but stays proportional.

Order this 500 page hard-copy CSS Book Now! 107

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Figure 5.16. Demonstration of Vertical Margins

Vertical margins, unlike horizontal margins, are not cumulative. If you have two

elements stacked on top of one another, like the h1 and h2 elements in Fig

ure 5.16, the vertical spacing between them will be the greater of the margin-
bottom setting of the top element, and the margin-top setting of the bottom

element. In this case, they are both 5%, so the distance between the two elements

is 5%, not 10% as you might have guessed. If I had defined the margin-bottom
of the h1 as 10%, then the vertical distance separating the two elements would

have been 10% of the height of the containing block. The containing block in

this case is the body, which is, for all practical purposes, the same as the browser

window’s client area.

It is possible to use negative values for margin property settings. This comes in

handy when you’ve set a margin-left property for the body of an HTML page,

but you want to move an element closer to the left margin of the page. The fol

lowing HTML results in the display shown in Figure 5.17.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Box Model Demo</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<style type="text/css">
<!-
body {

Order this 500 page hard-copy CSS Book Now! 108

http://www.sitepoint.com/launch/8d142e

Setting Margin Properties

background-color: #808080;
 margin-left: 5%;
}
h1 {
 background-color: #c0c0c0;

 margin-left: -3%;

 margin-bottom: 5%;

}
h2 {
 background-color: #c0c0c0;
 margin-top: 5%;
 margin-bottom: 5%;
}

-->

</style>

</head>

<body>

<h1>Body margin is 5%, but I'm set to -3%</h1>

<h2>I have no margin-left setting, so I use the body 5%

 setting</h2>
</body>
</html>

Figure 5.17. Usefulness of Negative Margin Setting

As with the padding property, the margin shorthand property lets you set all

four margins with a single property declaration, and interprets multiple values

using the rules shown in Table 5.1.

Order this 500 page hard-copy CSS Book Now! 109

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Setting Border Properties

Border properties are more complex than padding and margin properties because

they affect not only the spacing between objects, but also the appearance of that

intervening space. A border can be, and usually is, visible. In most ways, managing

border properties is similar to the process for managing margins and padding.

But there are some key differences.

Borders have three types of properties: style, width, and color. By default, their

style is set to none, their width to medium2 and their color to the text color of the

HTML element to which they are applied.

The border-style property can take any one of a range of constant values. The

available values and the browsers that support them are shown in Table 5.2.

Table 5.2. CSS Border Style Constants

SampleSupporting BrowsersCSS SpecConstant

All CSS BrowsersCSS1double

groove

inset

none

outset

ridge

solid

Netscape 6, Mozilla,

IE 5.5/Win, IE 4/Mac

dashed

dotted

2Netscape 4 sets a default border width of 0, so you can't rely on the default value if you wish to

target that browser.

Order this 500 page hard-copy CSS Book Now! 110

http://www.sitepoint.com/launch/8d142e

Setting Border Properties

SampleSupporting BrowsersCSS SpecConstant

Netscape 6, Mozilla,

IE 5.5/Win, IE 4/Mac

CSS2hidden

The hidden value has the same effect as none, except when applied to table lay

outs. Refer to the border-style property in Appendix C, for further details.

W3C specifications leave the issue of the precise appearance of these borders

largely up to the browsers, so don’t be surprised if the results of using these

characteristics vary a bit from browser to browser, and platform to platform. But,

as is the case with default behaviors for other border settings, the browsers largely

treat this issue predictably and satisfactorily within reason.

The width of a border around an object can be set either with four individual

property-value pairs, or with the border-width shorthand syntax. The four

property-value pairs are border-top-width, border-right-width, border-bot-
tom-width, and border-left-width. Each of these values can be set with a pixel

or em value setting, or with one of three descriptive settings: thin, medium, or

thick.

If you use the descriptive settings of thin, medium, and thick, the results are

browser-dependent. They are, however, fairly predictable and consistent across

browsers and operating systems, within a pixel or so for each of the three descript

ive settings.

Note that if you wish to use specific measurements for border widths, you should

use pixels. This is the most meaningful unit of measurement for screen layouts,

which is where border-width is an important property.

You can control the colors associated with all four borders using the border-
color shorthand property. Alternatively, you can create different colors for all

four borders by using the border-top-color, border-right-color, border-
bottom-color, and border-left-color properties.

As I'll explain in greater detail in Chapter 7, you can supply a color argument in

any of the standard ways: using a full RGB code as in #ff9900, using a three-digit

RGB shortcut as in #f90, with the rgb method as in rgb(102,153,0), or using

a standard color name as in red.

The shorthand properties border-style, border-width, and border-color all

accept multiple values according to the rules in Table 5.1. Note, however, that

Order this 500 page hard-copy CSS Book Now! 111

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Netscape Navigator 4.x does not recognize multiple arguments to these properties,

nor does it support the side-specific style and color properties.

There is one additional shorthand property that is probably the most widely used

approach to defining border properties. Using the border property, you can

specify the style, width, and color of all four borders of an object in a compact

form. Since a uniform border surrounding an object is most often your desire,

this is an efficient way to set border property values.

This property declaration will produce a uniform 3-pixel, solid, green border

around any element to which it is legally applied:

border: 3px solid green;

The display Property
Before we can move on to look at CSS positioning issues, there is one more CSS

property we need to understand. It comes up infrequently, but when it does, it

has a significant impact on page layout.

The display property determines how a browser displays an element—whether

it treats it as a block, an inline text fragment, or something else. Although it can

be assigned any of 17 legal values, browser support realities confine the list to

six, only four of which are really important. For a full reference to display, see

Appendix C.

The six possible values for the display property are:

❑ block

❑ inline

❑ list-item

❑ none

❑ table-footer-group

❑ table-header-group

The default value varies from element to element. Block elements such as p, h1,

and div default to block, while inline elements such as strong, code, and span
default to inline. List items, quite obviously, default to list-item. Assigning

Order this 500 page hard-copy CSS Book Now! 112

http://www.sitepoint.com/launch/8d142e

CSS Positioning and Multi-Column Layouts

non-default settings to elements (such as setting a div to display: inline) can

produce some interesting effects (imagine a paragraph containing two divs and

a list being displayed in the middle of a line of text).

If you supply a value of none, the element to which it applies is not shown and

the space it would normally occupy is collapsed. This differentiates the display:
none property-value pair from the visibility: hidden setting commonly used

to hide the element but preserve the space it would occupy if it were visible.

CSS Positioning and Multi-Column Lay
outs

The box model we’ve been examining so far in this chapter applies within groups

of content. Generally, you use a <div> tag to group together collections of related

content and to assign CSS styles to such a group.

But CSS Positioning (CSS-P) involves more than working with individual groups

of related information. The connections between groups of content on an HTML

page are equally important in determining the layout of the page. The primary

CSS property involved in these connections is the position property.

The position property takes a single constant value. The value determines how

the block is positioned on the page. The two most frequently used values for the

position property are absolute and relative. Another value, static, is the

default value, and is seldom used in CSS rules. A fourth value, fixed, is not

supported by IE on Windows at all, which unfortunately means it’s almost unus

able in practical sites. Refer to Appendix C, for complete details on these more

esoteric settings.

Absolute, Relative, and Positioning Contexts
Positioning can be confusing in CSS because the coordinate system within which

a block is placed depends on the positioning context of the block. There’s no

universal set of coordinates to guide that placement, even when the absolute
value is assigned to the position property. Each time a block is positioned on

the page (with a position setting other than static), it creates a new positioning

context for its descendants, in which the upper left corner of its content area has

the coordinates (0,0). So, if you use CSS to position an element that is within
the block, its position will be calculated relative to that new coordinate system—it's

positioning context.

Order this 500 page hard-copy CSS Book Now! 113

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

The best way to understand this concept is to look at a few simple, interrelated

examples. I’ll start with a blank page. In this context, the upper left corner of the

client area (also referred to in modern Web design parlance as the “document”)

is where the initial (0,0) coordinates are located. In that context, place a simple

bit of text in a div (which uses a style sheet rule associated with the class big-
Title, to make it more readable) as shown in Figure 5.18.

Figure 5.18. Initial Positioning of Element on Blank Page

Here’s the HTML fragment that produces the result shown in Figure 5.18. The

CSS properties top and left are used to position the div on the page.

<div class="bigTitle"
 style="position:absolute; left:125px; top:75px;">
 This is the first line of text being positioned.
</div>

Now put a second div completely inside the first one, as shown here:

<div class="bigTitle"
 style="position:absolute; left:125px; top:75px;">
 This is the first line of text being positioned.
<div class="bigTitle"

 style="position:absolute; left:25px; top:30px;">

 This is a second line.

 </div>
</div>

Order this 500 page hard-copy CSS Book Now! 114

http://www.sitepoint.com/launch/8d142e

Absolute, Relative, and Positioning Contexts

Figure 5.19. Positioning an Element Within a Pre-Positioned Block

The result is shown in Figure 5.19. Notice that the second line of text is indented

25 pixels from the left of the first line of text, because that first line sets the po

sitioning context for the second. Notice, too, that its font size is huge. Why?

Take a look at the style rule for the bigTitle class and you’ll understand:

.bigTitle {
 font-family: Arial, Verdana, sans-serif;
 font-size: 2em;
 font-weight: bold;
}

As the second div is a child of the first, its font size is calculated relative to that

of the first div. The style rule defines the font as being of size 2 ems, which in

structs the browser to render the text at twice the size it would otherwise be.

When that 2 em rule is applied to the first line, its size is doubled. But when it

is applied to the second line, the font size of the first line is doubled to calculate

that of the second.

The page now has two div elements, one nested inside the other. Both use abso

lute positioning. Now I’ll add a third element, this time a span element that will

be contained in the second div block. Using relative positioning, the HTML

turns out to look like this:

<div class="firstDiv"
 style="position:absolute; left:125px; top:75px;">

 This is the first line of text being positioned.
 <div class="firstDiv"

 style="position:absolute; left:25px; top:30px;">
 This is<span style="position:relative; left:10px;

top:30px;">an example of a second line.

Order this 500 page hard-copy CSS Book Now! 115

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

</div>
</div>

The result of this bit of HTML can be seen in Figure 5.20. Notice that the words

“an example of,” which are contained in the span, appear below, and slightly to

the right of their original position. Relative positioning is always based on the

positioned element’s original position on the page. In other words, the positioning

context of an element that uses relative positioning is provided by its default

position. In this example, the span is positioned below and to the right of where

it would appear in the line if the positioning were removed, as it is in Figure 5.21.

Figure 5.20. Relative Positioning an Element on a Page

Figure 5.21. Original Location of Relatively Positioned Content

In summary, the basic rules that determine the positioning context for an element

when we’re using the CSS position property are:

1.	 Absolutely positioned elements are positioned relative to the positioning

context in which they are located.

Order this 500 page hard-copy CSS Book Now! 116

http://www.sitepoint.com/launch/8d142e

Basic Three-Column Layout

2.	 Relatively positioned elements create their own positioning context based

on their static (original) location.

Basic Three-Column Layout
The sample site for this book, Footbag Freaks, uses a combination of a three-

column layout with a header at the top and a footer at the bottom. This is a

classic Web page design. Some have even called it “the Holy Grail” when it in

cludes a fluid center column. The first place I saw this reference was on Eric

Costello’s website, http://www.glish.com/.

To understand the CSS involved in creating this basic page layout, let’s start by

looking at the core code for building a three-column layout with a fluid center

column. Then, we’ll add the top-level header area. Finally, we’ll take apart the

core of the Footbag Freaks home page to see how we built the site on the basis

of those standards, but tweaked it a little to produce a more creative design.

A basic three-column layout involves a CSS style sheet with separate rules for

the layout and positioning of the left-hand column, the center column, and the

right-hand column. We’ll call these three sections left, center, and right. Later,

we’ll mix in the top and bottom areas.

Here is the CSS rule that defines the block whose identifier is left:

#left {
 position: absolute;
 left: 10px;
 top: 10px;
 width: 200px;
}

This is quite straightforward. Using absolute positioning, this column has its

upper left corner placed 10 pixels down from the top of the document area of

the browser and 10 pixels to the right of the left margin of that space. It sets a

fixed width for the column, though as we’ll see, you could supply a relative value

(such as a percentage) to create a stretchy layout that would keep the left column’s

width proportional to the document area’s width.

The center column of the three-column layout uses the following CSS rule:

#center {

 margin-left: 220px;

Order this 500 page hard-copy CSS Book Now! 117

http://www.glish.com/
http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

margin-right: 220px;
}

Note that this column is not positioned. Its position will thus retain its “natural”

place based on its location in the HTML file that generates the page. Margin

settings of 220px ensure that the left and right columns (which are set to 200

pixels in width and 10 pixels in from the document edge) will have room for their

content without overlapping any of the adjoining columns.

Finally, a basic right-hand column looks much like the left:

#right {
 position: absolute;
 right: 10px;
 top: 10px;
 width: 200px;
}

Here, the right: 10px property is used to ensure that the this column is placed

with its right hand side 10 pixels from the right hand side of the page. The impact

of these style rules on a demonstration HTML page can be seen in Figure 5.22.

Figure 5.22. Demonstration Basic Three-Column Layout

Here’s the HTML for the page in Figure 5.21. The <link> tag in the header

points to the threecoldemo.css file, which contains the three CSS rules above.

Order this 500 page hard-copy CSS Book Now! 118

http://www.sitepoint.com/launch/8d142e

Basic Three-Column Layout

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Three-Column Layout Demonstration</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="threecoldemo.css" type="text/css" />
</head>
<body>
 <div id="left">
 <p>
 This is quite straight-forward. Using absolute positioning,
 this column has its upper left corner placed 10 pixels down
 from the top of the document area of the browser and 10
 pixels to the right of the left margin of that space. It
 sets a fixed width for the column, though as we will see,
 you could supply a relative value (such as a percentage) to
 create a stretchy layout that would keep the left column's
 width proportional to the document area's width.

 </p>

 </div>

 <div id="center">

 <p>
 Notice that this column is not able to be positioned. Its
 position will thus retain its "natural" place based on its
 location in the HTML file that generates the page. Margin
 settings ensure that the left and right columns (which are
 set to 200 pixels in width) will have room for their content
 without creating a visible space between any of the
 adjoining columns.

 </p>

 </div>

 <div id="right">

 <p>
 The right-hand column is so much like the left-hand column
 that it seems unworthy of comment.

 </p>
 </div>
</body>
</html>

Order this 500 page hard-copy CSS Book Now! 119

http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

Adding a Top Header Area
Another common page layout modifies the basic three-column design by adding

a top-level header area. As you can imagine, this is not difficult to achieve. Here

are the style rules for the four content <div> blocks on such a page. The three

holdovers are nearly identical; I’ve added a gray background to the center block

and given the top block a gray background as well, simply to make it easier to

see where blocks start and end.

#top {

 margin: 20px;

 padding: 10px;

 background: #ccc;

 height: 100px;

}
#left {

 position: absolute;

 left: 10px;

 top: 160px;

 width: 200px;

}
#center {

 background: #ccc;

 margin-top: 0;

 margin-left: 220px;

 margin-right: 220px;

}
#right {

 position: absolute;

 right: 10px;

 top: 160px;

 width: 200px;

}

Figure 5.23 shows the result of applying those rules to a page that is nearly

identical to the HTML that generated Figure 5.22. The only difference is that

this HTML contains the following fragment, which defines the content of the

top block on the page:

 <div id="top">
 <h1>
 This is the header area of the three-column-plus-header
 layout

 </h1>

 </div>

Order this 500 page hard-copy CSS Book Now! 120

http://www.sitepoint.com/launch/8d142e

Summary

Figure 5.23. Basic Three-Column Layout With Top Header Block

There are numerous variations on these layout themes. One of the best places I

know of to learn how to apply these variations effectively is at Owen Briggs’

wonderful site, The Noodle Incident[2].

Summary
This chapter presented the important concepts involved in CSS layout and posi

tioning, beginning with the box model and continuing through the multiple

variations of the position property. We then drove a number of these points

home by assembling an example of the “classic” three-column layout.

You may have noticed that there is often more than one way to achieve a given

effect in CSS. For example, if you want to place a block on the right-hand side

of the browser window occupying 20% of its width, you can either give it a mar-
gin-left of 80%, use absolute positioning and set its left property to 80% and

its width property to 20%, or use absolute positioning and set its right property

to 0 and its width property to 20%.

[2] http://www.thenoodleincident.com/tutorials/box_lesson/boxes.html

Order this 500 page hard-copy CSS Book Now! 121

http://www.thenoodleincident.com/tutorials/box_lesson/boxes.html
http://www.sitepoint.com/launch/8d142e

Chapter 5: Building the Skeleton

In Chapter 6, we'll see that not all of these options work quite the same in practice.

We'll explore some of the non-ideal behaviors of current browsers that lead us

to choose one option over the another. We'll also look at a few more advanced

CSS properties that affect the layout relationships of elements on the page.

Order this 500 page hard-copy CSS Book Now! 122

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property
Reference

This appendix contains a complete reference to all CSS properties at the time of

this writing. This includes properties defined in the CSS1[1] and CSS2[2] spe

cifications, as well as browser-specific extensions to the CSS recommendations.

Where a browser-specific extension exposes the same functionality as a planned

feature in CSS3, which is currently a working draft, this is indicated with a refer

ence to the relevant draft.

azimuth
azimuth sets the direction in horizontal space from which the sound comes when

the content is presented aurally (e.g. in a speaking browser for the blind).

For full details on this property, see the CSS2 specification[3].

Inherited: Yes

See also: elevation

Value

An angle (-360deg to 360deg, where 0deg is in front of the listener), or a descript

ive constant (e.g. far-right behind).

Initial value: center

Compatibility

CSS Version: 2

Not yet supported by any browser.

[1] http://www.w3.org/TR/REC-CSS1

[2] http://www.w3.org/TR/REC-CSS2/

[3] http://www.w3.org/TR/REC-CSS2/aural.html#spatial-props

http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/aural.html#spatial-props

Appendix C. CSS Property Reference

Examples

This style rule will cause all headings to be heard from the front-left of the sound

field:

h1, h2, h3, h4, h5, h6 {
 azimuth: -45deg;

}

background
A shorthand property that allows you to set all the background properties of an

element with a single property declaration.

Inherited: No

See also: background-attachment, background-color, background-image,

background-position, and background-repeat

Value

You can specify any of the values permitted by the five background- properties,

in any order, separated by spaces. The properties you do not specify take on their

initial value.

Initial value: none

Compatibility

CSS Version: 1

Is supported by Internet Explorer 4 or later, Netscape 6 or later, Opera 5 or later,

and all Mozilla browsers. Is partially supported by Netscape 4.x; however, this

support is undocumented and unreliable.

Examples

This rule gives the page a fixed (non-scrolling) background image, which will

display over a solid white background:

Order this 500 page hard-copy CSS Book Now! 310

http://www.sitepoint.com/launch/8d142e

background-attachment

body {
 background: #fff url(/images/texture.gif) fixed;

}

background-attachment
This property determines whether the background image assigned to an element

scrolls in sync with the element's content or remains fixed in relation to the

browser window. For example, if you wanted the top-left corner of your page

background image to remain in the top-left corner of the browser window, even

as the page was scrolled, you would set background-attachment to fixed.

Inherited: No

See also: background-image

Value

fixed or scroll

Initial value: scroll

Compatibility

CSS Version: 1

Supported by Internet Explorer 4 or later, Netscape 6 or later, Opera 5 or later,

and all Mozilla browsers.

Internet Explorer for Windows (at least up to version 6) and Opera browsers (up

to version 6), do not correctly support background-attachment: fixed on ele

ments besides body. Opera 7, Internet Explorer 5 for Macintosh, Netscape 6.2.1

or later, and Mozilla browsers all get this right.

Examples

This style rule applies a background image to the page and specifies that the image

should not scroll with the page content:

body {

 background-image: url(/images/texture.gif);

Order this 500 page hard-copy CSS Book Now! 311

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

background-attachment: fixed;

}

background-color
Sets the background color for an element.

Note that the default background color is transparent, so even though this

property is not inherited, nested elements will allow the background to show

through by default. The reason for this arrangement is to allow background images

to be displayed behind nested elements.

It is considered good practice always to specify a foreground color (with the

color property) whenever you specify a background color, and vice versa.

Inherited: No

See also: color

Value

Any CSS color value (see Appendix B) or transparent.

Initial value: transparent

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 or later and

Netscape 4 or later.

Netscape 4 does not correctly fill a block element with its assigned background

color, unless it has a border assigned (even a zero-width border will do), and

setting any visible border leaves a transparent gap between the padding area of

the block and its border in that browser. The Netscape 4 specific layer-back-
ground-color property lets you fill that transparent gap.

Order this 500 page hard-copy CSS Book Now! 312

http://www.sitepoint.com/launch/8d142e

background-image

Example

This style rule fills blockquote tags of class warning with a tomato red background

color. Note the zero-width border, which coerces Netscape 4 into filling the entire

block with the color.

blockquote.warning {
 background-color: #ff6347;
 border: 0 solid #ff6347;
}

background-image
This property sets the background image for an element. By default, element

backgrounds are transparent, so the background image will show through nested

elements, unless they have been assigned background colors or images of their

own.

The positioning and tiling of a background image may be customized with the

background-position and background-repeat properties, respectively.

Inherited: No

See also: background-attachment, background-color, background-position,

background-repeat

Value

A URL or none. In CSS, URLs must be surrounded by the url() wrapper, not

quotes. See the examples below.

Initial value: none

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 or later and

Netscape 4 or later.

Netscape 4 does not correctly fill a block element with its assigned background

image, unless it has a border assigned (even a zero-width border will do), and

Order this 500 page hard-copy CSS Book Now! 313

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

setting any visible border leaves a transparent gap between the padding area of

the block and its border in that browser. The Netscape 4 specific layer-back-
ground-image property lets you fill that transparent gap.

Example

These style rules demonstrate assigning background images with relative, absolute,

and fully-qualified URLs, respectively:

body {
 background-image: url(../images/texture.gif);

}

body {
 background-image: url(/images/texture.gif);

}

body {
 background-image: url(http://www.mysite.com/images/texture.gif);
}

background-position
By default, an element's background image (assigned with the background-image
property) is aligned so that its top and left edges are flush with the top and left

edges of the element (including any padding), respectively. With the background-
position property, you can assign a different position for the image.

Inherited: No

See also: background-image

Value

One position specifier, or two position specifiers separated by a space.

Each of the position specifiers may be a CSS length measurement (pixels, points,

ems, etc.), a percentage, or one of the constants from Table C.1.

Table C.1. background-position constants

HorizontalVertical

Order this 500 page hard-copy CSS Book Now! 314

http://www.sitepoint.com/launch/8d142e

background-position

left, center, righttop, center, bottom

If you specify only one measurement or percentage, it applies to the horizontal

position; the vertical position of the image will default to 50%. If you specify two

measurements or percentages, the first specifies the horizontal position, the

second specifies the vertical. Negative measurements/percentages are allowed,

but are rarely useful.

If you specify only one constant, the other dimension defaults to center. The

order of constants is not significant.

You can mix length measurement types and percentages (i.e. specify vertical po

sition in one format, horizontal in another). You cannot mix lengths/percentages

with constants, however.

Percentages and constants differ from length measurements in the way they pos

ition the image. In an element 500 pixels wide, a horizontal position of center
or 50% will center the image within the horizontal area of the element. A horizontal

position of 250px, however (or any equivalent length measurement), positions

the left edge of the image exactly 250 pixels from the left edge of the element.

Initial value: 0 0

Compatibility

CSS Version: 2

Works in Internet Explorer 4 or later, Netscape 6 or later, Opera, and Mozilla

browsers.

Setting a non-default value for this property in Internet Explorer 4 for Windows

reveals a bug in that browser's support of background-repeat. See the compat-

ibility section of background-repeat for details.

Examples

In this style rule, the background image is centered in the element area:

body {
 background-position: center;
}

Order this 500 page hard-copy CSS Book Now! 315

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

In both of these style rules, the background image is placed flush against the

bottom-right corner of the element:

body {
 background-position: 100% 100%;

}

body {
 background-position: bottom right;

}

In this style rule, the background image's left edge will be positioned 20 pixels

from the left of the element, and the image will be centered vertically:

body {
 background-position: 20px;

}

In this style rule, the background image's top edge is 20 pixels from the top of

the element, and the image will be centered horizontally across the element's

width:

body {
 background-position: 50% 20px;

}

The following style rule is illegal, as it mixes a length measurement with a constant:

body {
 background-position: 20px center; /* This is illegal! */
}

background-position-x, background-pos-
ition-y

These nonstandard properties are supported only by Internet Explorer browsers,

and let you individually specify the two components of the background-position
property. These properties are most useful in Dynamic HTML scripting in an

Internet Explorer only environment.

Inherited: No

See also: background-position

Order this 500 page hard-copy CSS Book Now! 316

http://www.sitepoint.com/launch/8d142e

background-repeat

Value

Both of these properties support values specified in CSS lengths and percentages.

Additionally, background-position-x and background-position-y support

the horizontal and vertical position constants listed in Table C.1. Important

differences between positions specified with CSS length measurements, and pos

itions specified with percentages or constants, are described under background-
position.

Initial value: 0

Compatibility

CSS Version: n/a

Supported by Internet Explorer 4 or later only.

Example

This style rule places the background image 20 pixels from the top and centered

horizontally on the page:

body {
 background-position-x: center;
 background-position-y: 20px;
}

background-repeat
By default, a background image, specified with the background-image property,

will repeat horizontally and vertically to fill the element (this is often referred to

as tiling). The background-repeat property lets you override that behavior with

your own preferences.

Inherited: No

See also: background-image, background-position

Value

repeat, no-repeat, repeat-x, or repeat-y

Order this 500 page hard-copy CSS Book Now! 317

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

The first two options are self-explanatory. repeat-x causes the image to repeat

only horizontally, effectively forming a horizontal band with the background

image. repeat-y causes the image to repeat only vertically, forming a vertical

band.

Initial value: repeat

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 or later and

Netscape 4 or later.

Internet Explorer 4 for Windows, however, only tiles images down and to the

right (not up or to the left), so if you specify a background-position other than

the default, you may get incomplete tiling in that browser.

Example

This style rule uses background-repeat and background-position to create a

horizontal band 50 pixels down from the top of the page. We keep the left edge

of the background image flush against the left margin to avoid the bug in Internet

Explorer 4 for Windows.

body {
 background-repeat: repeat-x;
 background-position: 0 50px;
}

behavior
An Internet Explorer only property, behavior lets you assign packaged Dynamic

HTML code to HTML elements in bulk. For a full description of the Behaviors

feature in Internet Explorer, refer to the MSDN Web site[4].

Inherited: No

[4] http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Order this 500 page hard-copy CSS Book Now! 318

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp
http://www.sitepoint.com/launch/8d142e

border

Value

A URL (specified with the CSS url() wrapper) or an object ID.

Initial value: none

Compatibility

CSS Version: n/a

Attached behaviors are supported by Internet Explorer 5 for Windows or later.

Other behavior types are supported by Internet Explorer 5.5 for Windows or

later.

Example

The following style rule applies the behavior defined in the draganddrop.htc
file to any element of class draganddrop:

.draganddrop {
 behavior: url(draganddrop.htc);

}

border
A shorthand property that lets you set the same width, color, and style for all

four borders of an element with a single property declaration. This property sets

up identical borders on all four sides, but can be followed by side-specific border

properties that modify them.

Inherited: No

See also: border-width, border-style, and border-color

Value

You can specify a border-width value, a border-style value, and a border-
color value, or any combination of the three, in any order, separated by spaces.

Initial value: none

Order this 500 page hard-copy CSS Book Now! 319

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

Compatibility

CSS Version: 1

Works on all CSS-compatible browsers, with the same browser-specific limitations

as the individual border- properties.

Example

This style rule puts a dashed, yellow border 1 pixel wide around div tags of class

advertisement:

div.advertisement {
 border: dashed yellow 1px;

}

border-bottom, border-left, border-right,
border-top

These four properties are shorthand properties that let you set the style, width,

and color of the border on a particular side of an element with single property

declaration.

Inherited: No

See also: border-width, border-style, and border-color

Value

You can specify a border-width value, a border-style value, and a border-
color value, or any combination of the three, in any order, separated by spaces.

Initial value: none

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, with exception of Netscape 4.

Order this 500 page hard-copy CSS Book Now! 320

http://www.sitepoint.com/launch/8d142e

border-bottom-color, border-left-color, border-right-color, border-top-color

Example

Applies a 1 pixel thick, dashed, blue border to the bottom of elements with a

title attribute:

[title] {

 border-bottom: dashed blue 1px;

}

Note that attribute selectors are not yet supported by many browsers.

border-bottom-color, border-left-color,
border-right-color, border-top-color

Each of these properties sets the color of the border along one side of an element.

Inherited: No

See also: border-color

Value

Any CSS color value (see Appendix B).

Initial value: none

Compatibility

CSS Version: 2

Works in all CSS-compatible browsers, with exception of Netscape 4.

Example
p.funky {

 border-style: solid;

 border-top-color: blue;

 border-right-color: yellow;

 border-bottom-color: #ff0000;

 border-left-color: #0f0;

}

Order this 500 page hard-copy CSS Book Now! 321

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

border-bottom-style, border-left-style,
border-right-style, border-top-style

Each of these properties sets the style of the border along one side of an element.

Inherited: No

See also: border-style

Value

Any of the constants allowed for border-style.

Initial value: none

Compatibility

CSS Version: 2

Works in all CSS-compatible browsers, with exception of Netscape 4.

Example

This style rule puts double lines along the left and right and single lines along

the top and bottom of blockquote elements:

blockquote {

 border-top-style: solid;

 border-bottom-style: solid;

 border-left-style: double;

 border-right-style: double;

}

border-bottom-width, border-left-width,
border-right-width, border-top-width

Each of these properties sets the width of the border along one side of an element.

Inherited: No

Order this 500 page hard-copy CSS Book Now! 322

http://www.sitepoint.com/launch/8d142e

border-collapse

See also: border-width

Value

thin, medium, thick, or any CSS length measurement.

Initial value: medium (0 in Netscape 4)

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 or later and

Netscape 4 or later.

Note that Netscape 4's default value is 0, so you need to set the border width as

well as the style for borders to appear in that browser.

Example

This style rule puts 2-pixel borders along the left and right and 1-pixel borders

along the top and bottom of blockquote elements:

blockquote {

 border-style: solid;

 border-top-width: 1px;

 border-bottom-width: 1px;

 border-left-width: 2px;

 border-right-width: 2px;

}

border-collapse
This property lets you choose which of two systems for defining table borders

you want the browser to use.

The default system, which you can select with the value separate, is the familiar

“separate borders” system, where each table cell has its own borders separated

by the cell spacing of the table. The new system, which you can select with the

collapse value, gets rid of any cell spacing, combines the borders of adjacent

Order this 500 page hard-copy CSS Book Now! 323

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

cells, and lets you assign borders to row and column groups. For full details, refer

to the CSS2 specification[5].

Inherited: Yes

See also: empty-cells

Value

collapse or separate

Initial value: separate1

Compatibility

CSS Version: 2

Works in Internet Explorer 5 for Windows, Netscape 6, and Mozilla browsers.

Example

This style rule sets tables of class data to use the collapsed border model:

table.data {
 border-collapse: collapse;

}

border-color
The border-color property sets the color of the border surrounding the selected

element(s).

The colors for each side may be set individually using the border-bottom-color,

border-left-color, border-right-color, and border-top-color properties.

Inherited: No

[5] http://www.w3.org/TR/REC-CSS2/tables.html#borders
1The initial value prescribed by the CSS2 specification is actually collapse; however, all current

browsers' default table rendering corresponds to separate. The CSS Working Group has therefore

proposed changing the default value of this property to separate in a future version of the CSS

specification. This proposal may be found in the Errata for the CSS2 specification.

Order this 500 page hard-copy CSS Book Now! 324

http://www.w3.org/TR/REC-CSS2/tables.html#borders
http://www.sitepoint.com/launch/8d142e

border-color

Value

You can specify from one to four different color values (see Appendix B) to specify

different colors for each side of the element, as shown in Table C.2. Note that

Netscape 4 supports only a single border color value.

Table C.2. Effects of multiple values on border properties

Effect on bordersNumber of values

All four borders receive the value specified.1

Top and bottom (horizontal) borders receive the first value,

left and right (vertical) borders receive the second.

2

Top border receives the first value, vertical borders receive

the second, bottom border receives the third.

3

Values are applied to top, right, bottom, and left borders,

respectively.

4

Initial value: The color property of the element, which may be inherited if not

explicitly specified.

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 or later and

Netscape 4 or later. Netscape 4 supports only a single border color value.

Example

This style rule puts blue borders on the top and bottom and red borders on the

left and right sides of blockquote elements:

blockquote {
 border-style: solid;
 border-color: blue red;
}

Order this 500 page hard-copy CSS Book Now! 325

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

border-spacing
This property is the CSS equivalent to the cellspacing attribute of the HTML

<table> tag. It lets you specify the spacing that will appear between cells in a

table. This property is ignored if border-collapse is set to collapse for the

table.

Inherited: Yes

See also: border-collapse

Value

A single CSS length measurement, or two lengths separated by a space. A single

value will be applied as both the horizontal and vertical spacing between cells.

Two values will be applied as horizontal and vertical spacing, respectively.

Initial value: 0

Compatibility

CSS Version: 2

Supported by Netscape 6 and Mozilla browsers only at this time.

Example

This style rule allows 5 pixels of spacing between all table cells in tables of class

spacious.

table.spacious {
 border-spacing: 5px;

}

border-style
The border-style property sets the style of the border surrounding the selected

element(s).

The style for each side may be set individually, using the border-bottom-style,

border-left-style, border-right-style, and border-top-style properties.

Order this 500 page hard-copy CSS Book Now! 326

http://www.sitepoint.com/launch/8d142e

border-style

Inherited: No

Value

The CSS specifications provide a set of constants for a range of border styles.

Table C.3 shows the available constants and the browsers that support them.

You can specify from one to four different style values to specify different styles

for each side of the element, as shown in Table C.2. Note that Netscape 4 supports

only a single border style value.

The difference between none and hidden, though not visible in Table C.3, arises

in HTML tables where the border-collapse property is set to collapse. When

two cells share a border and one of them specifies a style of none for the border,

the other cell's border style takes precedence and the border is drawn.

The hidden border style, however, takes precedence over all other border styles;

therefore, if the first cell in the previous example specified a style of hidden, the

other cell's border style would be ignored and no border would be drawn. See the

CSS2 Specification[6] for a full discussion of table border conflict resolution.

Initial value: none

Table C.3. CSS border style constants

SampleSupporting BrowsersCSS SpecConstant

All CSS BrowsersCSS1double

All CSS BrowsersCSS1groove

All CSS BrowsersCSS1inset

All CSS BrowsersCSS1none

All CSS BrowsersCSS1outset

All CSS BrowsersCSS1ridge

[6] http://www.w3.org/TR/REC-CSS2/tables.html#border-conflict-resolution

Order this 500 page hard-copy CSS Book Now! 327

http://www.w3.org/TR/REC-CSS2/tables.html#border-conflict-resolution
http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

SampleSupporting BrowsersCSS SpecConstant

All CSS BrowsersCSS1solid

Netscape 6, Mozilla,

IE 5.5/Win, IE 4/Mac

CSS1dashed

Netscape 6, Mozilla,

IE 5.5/Win, IE 4/Mac

CSS1dotted

Netscape 6, Mozilla,

IE 5.5/Win, IE 4/Mac

CSS2hidden

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 and Netscape

4. For specific compatibility information, see above.

Note that Netscape 4 defines a default border width of 0, so in addition to a

border-style, you must also specify a border-width for the border to appear

in that browser.

Example

This style rule makes any element of class fauxbutton look like a button by

giving it an outset border style, a light grey background, and black text:

.fauxbutton {

 border-style: outset;

 border-color: grey;

 border-width: medium;

 background: lightgrey;

 color: black;

}

border-width
The border-width property sets the width of the border surrounding the selected

element(s).

Order this 500 page hard-copy CSS Book Now! 328

http://www.sitepoint.com/launch/8d142e

bottom

The widths for each side may be set individually using the border-bottom-width,

border-left-width, border-right-width, and border-top-width properties.

Inherited: No

Value

thin, medium, thick, or any CSS length measurement.

You can specify from one to four different values to specify different border

widths for each side of the element, as shown in Table C.2.

Initial value: medium (0 in Netscape 4)

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 and Netscape

4.

Note that Netscape 4 defines a default border width of 0, so in addition to a

border-style, you must also specify a border-width for the border to appear

in that browser.

Example

This style rule puts thick borders on the top and bottom and thin borders on the

left and right sides of blockquote elements:

blockquote {
 border-style: solid;
 border-width: thick thin;
}

bottom
This property lets you set the distance between the bottom edge of an absolute
positioned element (including its padding, border, and margin)2 and the bottom

2The CSS2 specification contains an error that suggests that the padding, border, and margin of the

positioned element should not be considered. This has been acknowledged as a mistake by the CSS

Working Group in the Errata document for CSS2.

Order this 500 page hard-copy CSS Book Now! 329

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

edge of the positioning context in which it resides. The positioning context is the

content area of the element's nearest ancestor that has a position property value

other than static, or the body element.

In Internet Explorer for Windows, Netscape 6, and Mozilla browsers, when the

positioning context is the document body, the element is positioned relative to

the bottom edge of the browser window (when no scrolling has yet occurred) instead

of the document area, as the CSS Specification requires. Internet Explorer 5 for

Macintosh follows the specification and positions the block relative to the bottom

of the document area.

For relative positioned elements, this property sets a relative offset from the

normal position of its bottom edge. So, a setting of 10px will shift the bottom

edge of the box up by 10 pixels, and a setting of -10px will shift it down by the

same amount.

Inherited: No

See also: position, left, top, and right

Value

A CSS length measurement, a percentage value, or the auto constant. Percentages

are based on the height of the parent element. The auto constant tells the browser

to determine the position of the bottom edge itself, based on whatever other

constraints may exist on the size/position of the element.

Initial value: auto

Compatibility

CSS Version: 2

Works in Internet Explorer 5 or later, Netscape 6 or later, and Mozilla browsers.

Often, the same effect can be achieved by setting the top property of a box. Since

top is supported by more browsers than bottom, this should be done whenever

possible.

Order this 500 page hard-copy CSS Book Now! 330

http://www.sitepoint.com/launch/8d142e

caption-side

Example

This style rule positions the element with ID menu at the bottom of the window

(or the bottom of the document in Internet Explorer for Macintosh):

#menu {

 position: absolute;

 bottom: 0;

 width: 100px;

 height: 200px;

}

caption-side
This property lets you specify the side of a table on which its caption (specified

with the <caption> tag) should appear.

Inherited: Yes

Value

Any of the following constants: top, bottom, left, or right.

Initial value: top

Compatibility

CSS Version: 2

Works in Internet Explorer 5 for Macintosh, Netscape 6 or later, and Mozilla

browsers. The values left and right do not yet work in most browsers.

Example

This style rule places captions at the bottom of all tables that occur within other

tables.

table table {

 caption-side: bottom;

}

Order this 500 page hard-copy CSS Book Now! 331

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

clear
Setting a clear property on an element lets you specify that it should appear

below any floating elements that would normally cut into it. You can specify that

the element should be clear of left-floated elements, right-floated elements, or

both.

Inherited: No

See also: float

Value

left, right, none, or both.

Initial value: none

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers, including Internet Explorer 4 or later,

Netscape 4 or later, and Mozilla browsers.

Example

This style rule ensures that the element with ID footer will be clear of any

floating elements above it in the page:

#footer {
 clear: both;

}

clip
This property clips the visible region of the absolute- or fixed-positioned element(s)

to which it is applied. The element occupies the same amount of space on the

page as usual, but only the area specified by this property is displayed.

Order this 500 page hard-copy CSS Book Now! 332

http://www.sitepoint.com/launch/8d142e

clip

In contrast to the overflow property, this property only affects the visible area

of an element (including its padding, borders, etc.). The size and position of an

element for layout purposes is not affected by this property.

Inherited: No

See also: overflow

Value

The current CSS specification allows only for rectangular clipping regions. You

specify such a region by wrapping four measurement values in the CSS rect()
wrapper as follows:

clip: rect(top right bottom left);

For an element x pixels wide and y pixels high, the default clipping region (assum

ing it has no borders or padding to increase its rendered area) would be rect(0px
xpx ypx 0). To trim off 10 pixels from each side of the image, you'd change this

to rect(10px x-10px y-10px 10px), where you would calculate and substitute

the actual values of x-10 and y-10.

The default value, auto, lets the browser determine the area of the element to

draw, as usual.

Initial value: auto

Compatibility

CSS Version: 2

Works in all CSS-compatible browsers, including Internet Explorer 4 or later,

Netscape 4 or later, and Mozilla browsers. This property is buggy in Internet

Explorer 4 for Macintosh and can cause affected elements to be left out of

scrollbar size calculations in Netscape 4.

Example

This style rule will clip 10 pixels off the left and right sides of the element with

ID logo, which is a 100 x 100 pixel image:

#logo {
 position: absolute;

Order this 500 page hard-copy CSS Book Now! 333

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

clip: rect(0px 90px 100px 10px);
}

color
This property sets the foreground (text) color of the element. This property also

defines the default border color of the element.

In general, you should always specify a background color when you specify a

foreground color, and vice versa.

Inherited: Yes

See also: background-color

Value

Any CSS color value (see Appendix B).

Initial value: black

Compatibility

CSS Version: 1

Works in all CSS-compatible browsers including Internet Explorer 4 or later,

Netscape 4 or later, and Mozilla browsers.

Example

This style rule sets paragraphs of class warning to have white text on a tomato

red background.

p.warning {
 color: white;
 background-color: #ff6347;
}

Order this 500 page hard-copy CSS Book Now! 334

http://www.sitepoint.com/launch/8d142e

content

content

Sometimes it makes sense to generate some text at the beginning or end of an

element as part of that element's style. Termed generated content, this text is

not part of the HTML document, but is generated purely by the style sheet. The

CSS content property is intended for this purpose. You must apply it to the

:before or :after pseudo-elements, as shown in the examples below.

Inherited: No

See also: counter-increment, counter-reset, quotes

Value

The CSS2 specification mandates a number of different generated content formats,

but several are not yet supported by current browsers (see the Compatibility

section for details). You can use any combination of the following content formats

by listing them one after the other, separated by spaces.

"arbitrary string"
This format lets you place a string of text before or after the actual content

of the element. You cannot format this text by placing HTML code in the

string—the browser will display the tags as text. Instead, use CSS to style the

string, as in the examples below. The special code \A in the string produces

a line break (same effect as an HTML
 tag).

url(http://url.goes.here)
This format lets you place some external resource before or after the actual

content of the element. For example, if you supply a URL to an image, the

browser should place that image before/after the content of the element. If

you supply a URL to an HTML document, the browser should display the

contents of the document before/after the content of the element.

There are obvious complexities that come into play here, but since no browsers

yet support this format, any further discussion would be purely academic.

Order this 500 page hard-copy CSS Book Now! 335

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

counter(name)

counter(name, style)

counters(name, string)

counters(name, string, style)

These formats let you generate numbered elements (for example, numbered

section headings) without having to resort to an ordered list () in the

HTML document. You must define, increment, and reset your counters when

appropriate using the counter-increment and counter-reset CSS properties,

and then use one of the above formats to display the value of a counter where

desired.

counter(name) will display the value of the named counter in decimal format,

while counter(name, style) lets you specify the style in which to display

the counter value (you can use any style allowed by the list-style-type
CSS property). You can also define hierarchical counters to produce multiple-

level numbering (e.g. “Section 5.2.3”), the values of which you can output

with counters(name, string) or counters(name, string, style). The

string argument specifies the string that is used to separate the numbers,

and is typically a period (".").

attr(attribute)
This format lets you output the value of an attribute of the element (e.g. the

title attribute of an <a> tag) before or after the actual content of the ele

ment.

open-quote
close-quote

These formats let you display opening or closing quotation marks, the exact

appearance of which are dictated by the CSS quotes property.

no-open-quote
no-close-quote

These formats let you put 'fake' opening or closing quotes that don't actually

display anything, but which still jump in and out of nesting levels defined in

the quotes property.

Initial value: "" (the empty string)

Compatibility

CSS Version: 2

Order this 500 page hard-copy CSS Book Now! 336

http://www.sitepoint.com/launch/8d142e

content

Netscape 6, Mozilla, and Opera browsers support a subset of the formats discussed

above. Specifically, they support the "arbitrary string" and quote-related

formats. Internet Explorer browsers do not support this property up to and in

cluding IE6 for Windows.

Examples

This style rule puts the text “Note: ” in bold at the start of a paragraph of class

note:

p.note:before {
 content: "Note: ";
 font-weight: bold;
}

These style rules puts angle brackets (< >) around span elements of class tagname
by using generated content and the quotes property:

span.tagname {
 quotes: "<" ">";
}
span.tagname:before {
 content: open-quote;
}
span.tagname:after {
 content: close-quote;
}

These style rules put quotation marks around <blockquote> elements. The third

style rule (which is not supported by current browsers because of the use of at-
tr(attribute)) applies to blockquote elements that have a cite attribute, and

modifies the content property to close the quotation marks and then display the

source of the citation on a new line.

blockquote:before {
 content: open-quote;
}
blockquote:after {
 content: close-quote;
}
blockquote[cite]:after {
 content: close-quote "\Afrom " attr(cite);
}

Order this 500 page hard-copy CSS Book Now! 337

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

Also unsupported by current browsers, these style rules should place a standard

HTML header and footer on the current page:

body:before {
 content: url(standardheader.html);

}

body:after {

 content: url(standardfooter.html);

}

counter-increment
This property increments or decrements a named counter (for display with the

content property) for each occurrence of the selected element(s).

On nested elements, a hierarchical counter is automatically created, so that you

effectively have a separate counter at each level of the structure.

Inherited: No

See also: content, counter-reset

Value

A counter name, optionally followed by a positive or negative integer to indicate

how much to increment (positive) or decrement (negative) the counter. If you

want to increment/decrement multiple counters for a single element, you can

separate their names (and optional integers) by spaces.

The default value, none is also supported, but is of little practical use.

Initial value: none

Compatibility

CSS Version: 2

Not supported by any currently-available browser.

Order this 500 page hard-copy CSS Book Now! 338

http://www.sitepoint.com/launch/8d142e

counter-reset

Examples

This simple example will keep track of the number of h1 tags in the document

and will output a chapter number at the start of each:

h1 {
 counter-increment: chapter;

}

h1:before {

 content: "Chapter " counter(chapter) " - ";

}

This example uses a counter to number div elements in the document, and then

displays the counter value in h1 tags appearing within them. Because the coun
ters() format is used to output the counter value, nested div elements will be

numbered hierarchically (e.g. “Division 2.1.3”).

div {
 counter-increment: division;

}

div > h1:before {

 content: "Division " counters(division,".") ": ";

}

counter-reset
This property sets a named counter (for display with the content property), to

a particular value, each time the enclosing style rule is matched.

By default, the counter is reset to zero, but you can specify any value you like.

Inherited: No

See also: counter-increment

Value

A counter name, optionally followed by a positive or negative integer that specifies

the new value for the counter (the default it 0). If you want to set multiple

counters for a single element, you can separate their names (and optional integers)

by spaces.

The default value, none is also supported, but is of little practical use.

Order this 500 page hard-copy CSS Book Now! 339

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

Initial value: none

Compatibility

CSS Version: 2

Not supported by any currently-available browser.

Example

This example lets you use h1 elements to mark chapters, h2 elements to mark

subsections, and have hierarchical numbering on section headings:

h1 {

 counter-increment: chapter;

 counter-reset: section;

}

h1:before {

 content: "Chapter " counter(chapter) " - ";

}

h2 {

 counter-increment: section;

}

h2:before {

 content: "Section " counter(chapter) "." counter(section) " - ";
}

cue
Sound cues are used by aural (speaking) browsers for the visually impaired as

“audio icons”. This is a shorthand property that lets you specify the cue-before
and cue-after properties with a single property declaration.

Inherited: No

See also: cue-before, cue-after

Value

One or two URLs (specified with CSS url() syntax) that point to sound files.

If one URL is provided, it is assigned to cue-before and cue-after—the sound

Order this 500 page hard-copy CSS Book Now! 340

http://www.sitepoint.com/launch/8d142e

cue-after, cue-before

is played before and after the element. If two URLs are provided, the first is as

signed to cue-before and the second to cue-after.

Initial value: none

Compatibility

CSS Version: 2

Not supported by any currently-available browser.

Example

This example plays ding.wav before and after each div element:

div {
 cue: url(/sounds/ding.wav);

}

cue-after, cue-before
Sound cues are used by aural (speaking) browsers for the visually impaired as

“audio icons”. cue-before and cue-after let you set cues to be played before

and after an element, respectively.

Inherited: No

See also: cue

Value

A URL, specified with CSS url() syntax, that points to a sound file.

The default value, none is also supported, but is of little practical use.

Initial value: none

Compatibility

CSS Version: 2

Not supported by any currently-available browser.

Order this 500 page hard-copy CSS Book Now! 341

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

Example

This example plays ding.wav before each h1 element, with the exception of h1
elements of class silent:

h1 {
 cue-before: url(/sounds/ding.wav);

}

h1.silent {

 cue-before: none;

}

cursor
This property lets you modify the appearance of the mouse cursor when the

mouse is over a selected element.

Inherited: Yes

Value

Table C.4 lists the different cursor values supported by the CSS2 standard and

the major browsers that support them. The special value auto is the default, and

lets the browser determine what the cursor should look like automatically. The

value default sets the cursor to its default appearance, as dictated by the oper

ating system.

The value url(url), which is currently supported only in Internet Explorer 6 for

Windows, lets you define your own cursor by pointing to a .cur (Windows

static cursor) or .ani (Windows animated cursor) file on your site. Presumably,

this property will support more standard image formats when it is implemented

in other browsers.

Table C.5 lists additional, nonstandard cursors supported by various versions of

Internet Explorer.

All of the cursors' exact appearances may vary between browsers and operating

systems.

Order this 500 page hard-copy CSS Book Now! 342

http://www.sitepoint.com/launch/8d142e

cursor

Table C.4. CSS2 standard cursors

cursor value	 Appearance (as in IE (Win) IE (Mac) NS/Moz

IE6)

auto n/a

crosshair

default

e-resize

help

move

n-resize

ne-resize

nw-resize

pointer

s-resize

se-resize

sw-resize

text

url(url) n/a

w-resize

wait

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

4 4 6/1

6 – –

4 4	 6/1

4 4	 6/1

Table C.5. Internet Explorer-only cursors

IE (Mac)IE (Win)Appearance (as in IE6)cursor value

–6all-scroll

Order this 500 page hard-copy CSS Book Now! 343

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

IE (Mac)IE (Win)Appearance (as in IE6)cursor value

–6col-resize

44hand

–6no-drop

–6not-allowed

–6progress

–6row-resize

–6vertical-text

Initial value: auto

Compatibility

CSS Version: 1

Supported by all CSS-compatible browsers, with the notable exception of Netscape

4.

Some values of this property are not be supported by all browsers—refer to

Table C.4 and Table C.5.

Example

This style rule (which doesn't work in browsers that don't support attribute se

lectors) displays the pointer cursor when the mouse is over any element with a

onclick attribute.

[onclick] {
 cursor: pointer;

}

direction
Most western languages are written left-to-right (LTR). As you probably know,

many other languages (e.g. Hebrew) are written right-to-left (RTL). Documents

Order this 500 page hard-copy CSS Book Now! 344

http://www.sitepoint.com/launch/8d142e

direction

written with the Unicode character set[7] can contain text from both LTR and

RTL languages. The Unicode standard includes a complicated algorithm that

should be used for displaying such mixed text. It also defines special characters

that let you “group” text.

For example, consider the following imaginary string of text, where the lowercase

text represents LTR characters and the uppercase text represents RTL:

english1 HEBREW1 english2 HEBREW2 english3

Now, the obvious way to render this would be “english1 1WERBEH english2

2WERBEH english3”, but what if we add some HTML tags to the mix?

<p>english1 <q>HEBREW1 english2 HEBREW2</q> english3</p>

As you can see, the text beginning with HEBREW1 and ending with HEBREW2 is in

tended as an inline quotation in Hebrew, which just happens to contain an

English word. Since HEBREW1 and HEBREW2 belong to the same block of Hebrew

text, “2WERBEH” should be rendered to the left or “1WERBEH”. With this in

mind, the complete paragraph should be rendered as “english1 2WERBEH eng

lish2 1WERBEH english3”.

The HTML 4.0 standard (along with XHTML 1.0) defines the dir attribute and

the bdo element to handle these complexities. To obtain the desired rendering

in an HTML4-compatible browser, the code should be:

<p>english1 <q lang="he" dir="rtl">HEBREW1 english2 HEBREW2</q>
 english3</p>

The dir attribute of the q tag is what specifies the rendering order; the lang at

tribute won't have any actual visible effect. For full details on language and bid

irectional text rendering in HTML, refer to Section 8 of the HTML 4.0 stand-

ard[8].

So, where does CSS come into play, you ask? Well, the direction property, in

combination with a unicode-bidi property setting of embed, performs the same

role as the HTML dir attribute. In combination with a unicode-bidi property

setting of bidi-override, direction has the same effect as the HTML bdo tag.

It is still considered best practice, however, to include bidirectional text attributes

as part of the HTML code. The direction and unicode-bidi properties are in

tended for use in styling XML documents that do not have the benefit of HTML4's

[7] http://www.unicode.org/

[8] http://www.w3.org/TR/REC-html40/struct/dirlang.html

Order this 500 page hard-copy CSS Book Now! 345

http://www.unicode.org/
http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

bidirectional text features. Since the focus of this book is on Web development,

I'll therefore refer you to the CSS2 standard[9] for full details on these properties.

Inherited: Yes

See also: unicode-bidi

Value

ltr or rtl.

Initial value: ltr

Compatibility

CSS Version: 2

Not supported by any currently-available browser.

Example

This style rule sets the text direction of an imaginary XML element named hebrew
to rtl. The unicode-bidi property is there to ensure that this setting will “group”

any elements within it according to this direction, even if hebrew is rendered as

an inline element.

hebrew {
 direction: rtl;
 unicode-bidi: embed;
}

display
In HTML, there are different types of elements. div and blockquote, for example,

are both block elements, while strong and em are both inline elements. For each

type of element, a browser supports a “display mode”. All block elements are es

sentially displayed the same way, just with varying margins, padding, borders,

etc. by default.

[9] http://www.w3.org/TR/REC-CSS2/visuren.html#direction

Order this 500 page hard-copy CSS Book Now! 346

http://www.w3.org/TR/REC-CSS2/visuren.html#direction
http://www.sitepoint.com/launch/8d142e

display

The display property lets you set the “display mode” for an element. For example,

you can set a hyperlink (a) to be displayed as a block instead of inline text.

The most common use for the display property is to show and hide portions of

an HTML document. Setting display to none causes the element not only to

be hidden (as with the visibility property), but not to occupy any space on

the page either. Using Dynamic HTML to set this property in JavaScript event

handlers lets you create, for instance, hierarchical menus that expand and collapse

to display submenus on the fly.

Inherited: No

See also: visibility

Value

block
CSS version: 1

Browser support: All CSS-compatible, including Netscape 4.

The default display mode for p, div, ul, blockquote, and many others, block
causes the element to occupy a rectangular area of the page, stacked vertically

with its sibling elements, so that previous siblings are above it, and subsequent

siblings are below it.

inline
CSS version: 1

Browser support: All CSS-compatible, including Netscape 4.

The default display mode for strong, u, a, code, and many others, this causes

the element to flow “inline” as a string of text within the parent block, possibly

broken by word wrapping.

list-item
CSS version: 1

Browser support: Netscape 4 or later, Internet Explorer 6 for Windows,

Internet Explorer 5 for Mac.

Order this 500 page hard-copy CSS Book Now! 347

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

The default display mode for li elements, list-item causes the element to

be rendered as a list item. The list-style family of properties control the

position and appearance of the list item marker (i.e. the bullet or number).

marker
CSS version: 2

Browser support: No currently-available browsers.

This display mode can be applied only to :before and :after pseudo-ele-

ments, and tells the browser to treat generated content (created with the

content property) as a “marker” to be displayed in its own box in the margin

of the main content. The formatting is similar to, although somewhat more

flexible than, the formatting applied to the bullets or numbers preceding list

items. The marker-offset property is specifically provided to format gener

ated content with this display mode.

none
CSS version: 1

Browser support: All CSS-compatible, including Netscape 4.

This display mode causes the element not to be rendered at all. The element

will not occupy any space on the page (unlike visibility: hidden, which

hides the element but reserves space for it on the page).

compact
CSS version: 2

Browser support: No currently-available browsers.

This display mode causes the element to appear in the left margin (or right

margin in right-to-left languages) of the block immediately following it if it

can fit all on one line. If the element is too big to fit in the next block's margin

on one line, it is displayed as a normal block instead. The effect is illustrated

in Figure C.1.

Order this 500 page hard-copy CSS Book Now! 348

http://www.sitepoint.com/launch/8d142e

display

Figure C.1. Effect of compact display mode

run-in
CSS version: 2

Browser support: No currently-available browsers.

This display mode causes the element to appear as an inline element at the

start of the block immediately following it. If there is no block following a

run-in element, it is displayed as a normal block instead. The effect is illus

trated in Figure C.2.

Figure C.2. Effect of run-in display mode

table
inline-table
table-row
table-column
table-row-group
table-column-group
table-header-group
table-footer-group
table-cell
table-caption

CSS version: 2

Browser support: Fully supported by IE5 (Macintosh). IE5 (Win) supports

only table-header-group, while IE5.5 (Win) adds support for table-
footer-group. There is no additional support in IE6 (Win). NS6/Mozilla

Order this 500 page hard-copy CSS Book Now! 349

http://www.sitepoint.com/launch/8d142e

Appendix C. CSS Property Reference

supports all of these except inline-table, table-caption, table-column,

and table-column-group.

These display modes let you display various elements as tables (or parts

thereof). The practical utility of these display modes is questionable, which

is why most browsers have yet to fully implement them. For full details, refer

to the CSS2 Specification[10].

inline-block
CSS version: 3 (according to early draft specification)

Browser support: Internet Explorer 5.5 or later for Windows only.

This display lets you place a block inline with the content of its parent ele

ment.

Initial value: inline3

Compatibility

CSS Version: 1 (many display modes added in CSS2, with more coming in

CSS3)

All CSS-compatible browsers support this property, but none yet supports the

full range of CSS2 display modes. See above for full compatibility information.

Example

This style rule hides unordered list (ul) elements nested within an unordered list

of class menu. In a practical application, JavaScript code could be used to display

these submenus, by changing the display property to block, when the user clicks

one of the main menu items.

ul.menu ul {
 display: none;
}

[10] http://www.w3.org/TR/REC-CSS2/tables.html
3Elements like p, div, blockquote, etc. have a default display value of block, and other elements

have their own default display values. These defaults come from the browser's built-in default style

sheet, rather than from the CSS specification. If you were to create your own tag (which you can do

with XHTML), its display property would be inline by default.

Order this 500 page hard-copy CSS Book Now! 350

http://www.w3.org/TR/REC-CSS2/tables.html
http://www.sitepoint.com/launch/8d142e

What’s Next?
If you’ve enjoyed these chapters from HTML Utopia: Designing
Without Tables Using CSS, why not order yourself a copy?

You’ll learn how to shrink your Web pages 30-60%, support
today’s accessibility standards and tomorrow’s browsers, speed up
site maintenance, and optimize your content for the search
engines… all with CSS. You’ll also gain access to the code archive
download, so you can try out all the examples without retyping!

In the remaining chapters, you’ll learn how to

� Position page blocks to achieve complex site layouts

� Specify and apply colors effectively in CSS

� Deploy cross-browser fonts (and downloadable fonts!)

� Apply funky text decorations (like shadowed text!)

� Modify the mouse cursor

� And a whole lot more…

On top of that, you’ll also benefit from the complete CSS
Property Reference, with over 150 properties documented, as well
as a complete HTML and CSS color reference!

Order Now and Get it Delivered to your Doorstep!

“After reading HTML Utopia: Designing Without Tables Using CSS
you will not only understand how to use CSS to emulate old-school, table-
driven Web layouts, you will be creating Web sites that would be
impossible to design using traditional methods.”

— Jeffrey Zeldman, Co-Founder of the Web Standards Project

http://www.sitepoint.com/launch/8d142e

Index

Symbols
!important (see cascading, factors,

weight)

.css files, 15

/* */ (see comments)

<!-- -->

concealing CSS with, 15

<center> tags, 197

 tags, 217

 tag, 173, 178

 tags, 242

 tags, 224

<link> tags, 15, 50, 77, 79, 118, 235

 tags, 224

 tags, 194

<style> tags, 14, 50, 235

 tags, 224

@ (see at-rules)

A
accessibility

and CSS, 36, 79

alignment

as a design tool, 196, 197

of images, 242

alternate style sheets, 38

(see also multiple style sheets)

at-rules, 191, 293

@font-face, 190

@import, 46, 293

@media, 293

@page, 296, 412, 434

attributes

(see also properties)

align, 126, 197, 242

class, 57

clear, 127

id, 58

lang, 60

vs. language, 61

size, 176

style, 14, 50, 238

aural browsers, 80

aural style sheets, 297

B
backgrounds

images

fixing position of, 271

blinking text, 215

borders, 110, 262

in the CSS box model, 91

box model (see Cascading Style Sheets,

box model)

browsers

(see also DOCTYPE switching)

support for CSS, 42

supporting buggy versions, 46, 285

supporting old versions, 44, 279

C
cascading, 233

factors, 234

origin, 239

sort order, 235

specificity, 237

weight, 239

Cascading Style Sheets

advantages of, 76

box model, 90, 124

Internet Explorer bug, 124

description of, 8

embedded, 14, 50

external, 15, 50

inline, 14, 50

Index

introduction to, 3

limitations of, 34

positioning (see CSS Positioning

(CSS-P))

purpose of, 5

why use, 17

classes (see selectors, types of, class)

clipping content, 250

code archive, xiii

colors, 111, 157

3-digit shorthand, 161

and CSS, 24

background colors, 164

color names, 159

hexadecimal notation, 161

interesting uses of, 166

methods to specify, 159

reference, 301

rgb function, 161

selecting combinations, 162

system colors, 161

table backgrounds, 169

text colors, 164

user preferences, 158

where can be set, 159

columns (see multi-column layouts)

comments, 70

CSS (see Cascading Style Sheets)

CSS Positioning (CSS-P), 113

z-indexes, 140, 245

cursors

modifying with CSS, 269

D
deprecated elements, 81

DHTML (see Dynamic HTML)

distances (see measurements)

DOCTYPE switching, 288

Internet Explorer XML DOCTYPE

switching bug, 290

drop-caps, 125

Dynamic HTML, 299

E
elements

(see also individual tag entries)

which CSS can target, 13

embedded styles (see Cascading Style

Sheets, embedded)

external styles (see Cascading Style

Sheets, external)

F
fonts, 173

and CSS, 28

cross-platform equivalents, 184

downloadable, 189

families, 174

generic, 175, 186

line height, 182

Microsoft Web Fonts, 185

nonstandard, 188

sizes, 176

browser discrepancies, 177

relative, 178

standard, 184

styles (italic, oblique), 180

system constants, 183

variants (small caps), 180

weight (bold), 181

Footbag Freaks website, 83

browser compatibility, 84

layout deconstructed, 145

layout elements, 89

standards compliance, 84

form layout

with float and clear, 129

G
graphics

and CSS, 31, 241

clipping (see clipping content)

Order this 500 page hard-copy CSS Book Now! 482

http://www.sitepoint.com/launch/8d142e

H
HTML

history in Web design, 4

hyperlinks

changing on mouse hover, 30, 269

displaying as block elements, 263

Internet Explorer margin bug, 264

removing underlines, 219, 223, 262

styling with CSS, 30, 221

I

images (see graphics)

indents, 203

hanging, 204

inherit

special property value, 53

inheritance, 233

in CSS, 51

inherited properties (see properties, in

herited)

inline styles (see Cascading Style

Sheets, inline)

J
JavaScript, 34

and CSS, 299

K
kerning (see spacing, between letters)

knockout type, 245

L
leading (see line height)

length values, 66

(see also measurements)

lengths (see measurements)

line height, 206

line-through text (see strike-through

text)

links (see hyperlinks)

lists

removing default indent, 260

styling with CSS, 224, 259, 265

using as menus, 257

nested submenus, 266

M
margins, 102

in the CSS box model, 91

Mozilla top margin bug, 139, 221

negative values, 108

page margins, 134

vertical collapsing, 108

measurements, 65

absolute, 65, 66

centimeters (cm), 66

inches (in), 66

millimeters (mm), 67

picas (pc), 67

pixels (px), 67

points (pt), 67

absolute vs. relative, 131

relative, 65, 68

ems (em), 68

exes (ex), 68

percentages (%), 68

Microsoft Web Embedding Font Tool

(WEFT), 190

multi-column layouts, 113

stretchy layouts, 131

three column layouts, 117

multiple style sheets, 33

(see also alternate style sheets)

O
outdents (see indents, hanging)

outlines, 159

(see also borders)

overlines, 215

Order this 500 page hard-copy CSS Book Now! 483

http://www.sitepoint.com/launch/8d142e

Index

P
padding, 93, 265

in the CSS box model, 91

positioning contexts, 113, 221

absolute vs. relative, 116

properties, 10, 13

-moz-border-radius, 397

-moz-border-radius-bottomleft, 398

-moz-border-radius-bottomright, 398

-moz-border-radius-topleft, 398

-moz-border-radius-topright, 398

-moz-opacity, 400

azimuth, 309

background, 273, 310

background-attachment, 311

background-color, 164, 201, 312

transparent value, 165

background-image, 313

background-position, 314

background-position-x, 316

background-position-y, 316

background-repeat, 317

behavior, 318

border, 112, 319

border-bottom, 320

border-bottom-color, 111, 321

border-bottom-style, 322

border-bottom-width, 111, 322

border-collapse, 323

border-color, 111, 324

border-left, 320

border-left-color, 111, 321

border-left-style, 322

border-left-width, 111, 322

border-right, 320

border-right-color, 111, 321

border-right-style, 322

border-right-width, 111, 322

border-spacing, 326

border-style, 110, 326

border-top, 320

border-top-color, 111, 321

border-top-style, 322

border-top-width, 111, 322

border-width, 111, 328

bottom, 329

caption-side, 331

clear, 127, 243, 332

clip, 332

color, 11, 164, 334

content, 335

counter-increment, 338

counter-reset, 339

cue, 340

cue-after, 341

cue-before, 341

cursor, 269, 342

direction, 344

display, 112, 264, 346

elevation, 351

empty-cells, 351

filter, 352

float, 31, 125, 242, 354

font, 51, 181, 265, 355

font-family, 12, 174, 184, 357

font-size, 12, 176, 359

relative measurements, 68

font-size-adjust, 361

font-stretch, 363

font-style, 180, 364

font-variant, 180, 365

font-weight, 181, 366

height, 368

ime-mode, 369

inherited, 53

layer-background-color, 376

layer-background-image, 377

layout-flow, 370

layout-grid, 371

layout-grid-char, 372

layout-grid-line, 373

layout-grid-mode, 374

layout-grid-type, 375

Order this 500 page hard-copy CSS Book Now! 484

http://www.sitepoint.com/launch/8d142e

left, 114, 379

letter-spacing, 209, 380

line-break, 381

line-height, 182, 206, 382

list-style, 224, 260, 383

list-style-image, 231, 385

list-style-position, 229, 386

list-style-type, 224, 388

margin, 390

margin-bottom, 106, 391

margin-left, 103, 391

margin-right, 391

margin-top, 106, 391

marker-offset, 392

marks, 394

max-height, 394

max-width, 396

min-height, 394

min-width, 396

orphans, 401

outline, 159, 402

outline-color, 403

outline-style, 404

outline-width, 405

overflow, 252, 406

overflow-x, 408

overflow-y, 408

padding, 95, 265, 409

padding-bottom, 93, 410

padding-left, 93, 206, 410

padding-right, 93, 410

padding-top, 93, 410

page, 412

page-break-after, 413

page-break-before, 414

page-break-inside, 416

pause, 417

pause-after, 418

pause-before, 418

pitch, 418

pitch-range, 420

play-during, 420

position, 113, 221, 422

quotes, 423

richness, 425

right, 426

ruby-align, 427

ruby-overhang, 428

ruby-position, 430

scrollbar-3dLight-color, 432, 432

scrollbar-arrow-color, 432

scrollbar-base-color, 431

scrollbar-face-color, 432

scrollbar-highlight-color, 432

scrollbar-shadow-color, 433

scrollbar-track-color, 433

shorthand, 51, 91, 95

size, 434

speak, 435

speak-header, 435

speak-numeral, 436

speak-punctuation, 437

speech-rate, 438

stress, 439

table-layout, 440

text-align, 197, 441

text-align-last, 442

text-autospace, 443

text-decoration, 214, 262, 444

text-indent, 203, 445

text-justify, 446

text-kashida-space, 448

text-overflow, 449

text-shadow, 219, 450

text-transform, 451

text-underline-position, 452

top, 114, 453

unicode-bidi, 454

vertical-align, 457

visibility, 113, 459

voice-family, 460

volume, 461

white-space, 462

widows, 464

Order this 500 page hard-copy CSS Book Now! 485

http://www.sitepoint.com/launch/8d142e

Index

width, 264, 465

word-break, 466

word-spacing, 213, 467

word-wrap, 468

writing-mode, 469

z-index, 141, 221, 245, 470

zoom, 471

pseudo-classes, 30, 60, 221

:active, 222

:first, 296

:focus, 221

:hover, 221, 263, 269

:left, 296

:link, 221

:right, 296

:visited, 221

pseudo-elements, 59

:after, 335

:before, 335

:first-letter, 125

R
rules

(see also at-rules)

description of, 8

examples of, 11

syntax of, 10

S
search engine optimization, 79

selectors, 10

grouping, 65

types of, 54

adjacent, 62

attribute, 63

class, 57, 168

descendant, 61

element type, 56

ID, 58

parent-child, 62

pseudo-class, 60

pseudo-element, 59

universal, 56

semantic markup, 78

shadowed text, 219

shorthand properties (see properties,

shorthand)

sizes (see measurements)

spacing, 206

between letters, 209

between lines (see line height)

between words, 213

strike-through text, 217

style attribute (see attributes, style)

T
tables

history in Web design, 4

styling with CSS, 169

when to use, 8, 169

why avoid them, 6

tags (see individual tag entries)

three column layouts (see multi-column

layouts)

transparent placeholder images, 7

U
underlines, 215

units (see measurements)

V

validating CSS code, 275

W
W3C (see World Wide Web Consorti

um)

Web Content Accessibility Guidelines

(WCAG), 80

Web Design Group (WDG)

CSSCheck validator, 279

Web Standards Project (WaSP), 45

Order this 500 page hard-copy CSS Book Now! 486

http://www.sitepoint.com/launch/8d142e

World Wide Web Consortium (W3C),

xii, 5, 81

CSS validation service, 275

X

x-height, 68

Z
z-indexes (see CSS Positioning (CSS

P), z-indexes)

Order this 500 page hard-copy CSS Book Now! 487

http://www.sitepoint.com/launch/8d142e

	HTML Utopia: Designing Without Tables Using CSS
	Table of Contents
	Preface
	Who Should Read This Book?
	The Book's Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	Introduction to CSS
	Getting the Lay of the Land
	CSS in Context
	The Basic Purpose of CSS
	Why Most—But Not All—Tables Are Bad
	Tables Mean Long Load Times
	Use of Transparent Images Slows Us Down
	Maintaining Tables is a Nightmare
	When it’s OK to Use a Table

	What is CSS, Really?
	Parts of a CSS Rule
	Types of CSS Rules
	What Properties Can CSS Rules Affect?
	What Elements Can CSS Affect?
	Where Can CSS Styles Be Defined?
	Inline CSS
	Embedded CSS
	External CSS

	Why Bother?
	Summary

	Digging Below The Surface
	Applying CSS to HTML Documents
	Using Shorthand Properties
	How Inheritance Works in CSS
	Selectors and Structure of CSS Rules
	Universal Selector
	Element Type Selector
	Class Selector
	ID Selector
	Pseudo-Element Selector
	Pseudo-Class Selector
	Descendant Selector
	Parent-Child Selector
	Adjacent Selector
	Attribute Selectors
	Selector Grouping

	Expressing Measurements
	Absolute Values
	Relative Values

	CSS Comments
	Summary

	Page Layout with CSS
	CSS Web Site Design
	Advantages of CSS Design
	Increased Stylistic Control
	Centralized Design Information
	Semantic Content Markup
	Accessibility
	Standards Compliance

	CSS Success Stories
	Our Sample Site: Footbag Freaks
	Summary

	Building the Skeleton
	Enumerating Design Types
	How Many Page Types?
	How Many Design Elements?

	CSS Positioning and Multi-Column Page Layouts
	The CSS Box Model
	Pixels Versus Percentages
	Setting the Padding Properties
	Setting Margin Properties
	Setting Border Properties

	The display Property
	CSS Positioning and Multi-Column Layouts
	Absolute, Relative, and Positioning Contexts
	Basic Three-Column Layout
	Adding a Top Header Area

	Summary

	Appendix C. CSS Property Reference
	azimuth
	background
	background-attachment
	background-color
	background-image
	background-position
	background-position-x, background-position-y
	background-repeat
	behavior
	border
	border-bottom, border-left, border-right, border-top
	border-bottom-color, border-left-color, border-right-color, border-top-color
	border-bottom-style, border-left-style, border-right-style, border-top-style
	border-bottom-width, border-left-width, border-right-width, border-top-width
	border-collapse
	border-color
	border-spacing
	border-style
	border-width
	bottom
	caption-side
	clear
	clip
	color
	content
	counter-increment
	counter-reset
	cue
	cue-after, cue-before
	cursor
	direction
	display

	Index

