
McGraw-Hill Higher Education

D
asgupta 

Papadim
itriou 

Vazirani
A

lgorith
m

s

Algorithms

Sanjoy Dasgupta
Christos Papadimitriou

Umesh Vazirani

T his text, extensively class-tested over a decade at UC Berkeley and UC
San Diego, explains the fundamentals of algorithms in a story line that makes
the material enjoyable and easy to digest.

Emphasis is placed on understanding the crisp mathematical idea behind
each algorithm, in a manner that is intuitive and rigorous without being
unduly formal.

Features include:
• The use of boxes to strengthen the narrative: pieces that provide historical

context, descriptions of how the algorithms are used in practice, and
excursions for the mathematically sophisticated.

• Carefully chosen advanced topics that can be skipped in a standard one-
semester course, but can be covered in an advanced algorithms course or
in a more leisurely two-semester sequence.

• An accessible treatment of linear programming introduces students to
one of the greatest achievements in algorithms. An optional chapter on
the quantum algorithm for factoring provides a unique peephole into this
exciting topic.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 11, 2006 19:10

Algorithms
Sanjoy Dasgupta

University of California, San Diego

Christos Papadimitriou
University of California at Berkeley

Umesh Vazirani
University of California at Berkeley

i

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 11, 2006 19:10

ALGORITHMS

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright c© 2008 by The McGraw-Hill Companies, Inc. All rights

reserved. No part of this publication may be reproduced or distributed in any form or by any means, or

stored in a database or retrieval system, without the prior written consent of The McGraw-Hill

Companies, Inc., including, but not limited to, in any network or other electronic storage or

transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside

the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8 7 6

ISBN 978-0-07-352340-8

MHID 0-07-352340-2

Publisher: Alan R. Apt

Executive Marketing Manager: Michael Weitz

Project Manager: Joyce Watters

Lead Production Supervisor: Sandy Ludovissy

Associate Media Producer: Christina Nelson

Designer: John Joran

Compositor: Techbooks

Typeface: 10/12 Slimbach

Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Dasgupta Sanjoy.

Algorithms / Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani.—1st ed.

p. cm.

Includes index.

ISBN 978-0-07-352340-8 — ISBN 0-07-352340-2

1. Algorithms—Textbooks. 2. Computer algorithms—Textbooks. I. Papadimitriou, Christos H.

II. Vazirani, Umesh Virkumar. III. Title.

QA9.58.D37 2008

518′1—dc22 2006049014

CIP

www.mhhe.com

ii

http://www.mhhe.com

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

To our students and teachers,
and our parents.

iii

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

iv

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

Contents
Preface ix

0 Prologue 1

0.1 Books and algorithms 1
0.2 Enter Fibonacci 2
0.3 Big-O notation 6
Exercises 8

1 Algorithms with numbers 11

1.1 Basic arithmetic 11
1.2 Modular arithmetic 16
1.3 Primality testing 23
1.4 Cryptography 30
1.5 Universal hashing 35
Exercises 38

Randomized algorithms: a virtual chapter 29

2 Divide-and-conquer algorithms 45

2.1 Multiplication 45
2.2 Recurrence relations 49
2.3 Mergesort 50
2.4 Medians 53
2.5 Matrix multiplication 56
2.6 The fast Fourier transform 58
Exercises 70

3 Decompositions of graphs 80

3.1 Why graphs? 80
3.2 Depth-first search in undirected graphs 83
3.3 Depth-first search in directed graphs 87
3.4 Strongly connected components 91
Exercises 95

4 Paths in graphs 104

4.1 Distances 104
4.2 Breadth-first search 105

v

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

vi Contents

4.3 Lengths on edges 107
4.4 Dijkstra’s algorithm 108
4.5 Priority queue implementations 113
4.6 Shortest paths in the presence of negative edges 115
4.7 Shortest paths in dags 119
Exercises 120

5 Greedy algorithms 127

5.1 Minimum spanning trees 127
5.2 Huffman encoding 138
5.3 Horn formulas 144
5.4 Set cover 145
Exercises 148

6 Dynamic programming 156

6.1 Shortest paths in dags, revisited 156
6.2 Longest increasing subsequences 157
6.3 Edit distance 159
6.4 Knapsack 164
6.5 Chain matrix multiplication 168
6.6 Shortest paths 171
6.7 Independent sets in trees 175
Exercises 177

7 Linear programming and reductions 188

7.1 An introduction to linear programming 188
7.2 Flows in networks 198
7.3 Bipartite matching 205
7.4 Duality 206
7.5 Zero-sum games 209
7.6 The simplex algorithm 213
7.7 Postscript: circuit evaluation 221
Exercises 222

8 NP-complete problems 232

8.1 Search problems 232
8.2 NP-complete problems 243
8.3 The reductions 247
Exercises 264

9 Coping with NP-completeness 271

9.1 Intelligent exhaustive search 272
9.2 Approximation algorithms 276
9.3 Local search heuristics 285
Exercises 293

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

Contents vii

10 Quantum algorithms 297

10.1 Qubits, superposition, and measurement 297
10.2 The plan 301
10.3 The quantum Fourier transform 303
10.4 Periodicity 305
10.5 Quantum circuits 307
10.6 Factoring as periodicity 310
10.7 The quantum algorithm for factoring 311
Exercises 314

Historical notes and further reading 317

Index 319

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

Boxes
Bases and logs 12
Two’s complement 17
Is your social security number a prime? 24
Hey, that was group theory! 27
Carmichael numbers 28
Randomized algorithms: a virtual chapter 29
Binary search 50
An n log n lower bound for sorting 52
The Unix sort command 56
Why multiply polynomials? 59
The slow spread of a fast algorithm 70
How big is your graph? 82
Crawling fast 94
Which heap is best? 114
Trees 129
A randomized algorithm for minimum cut 139
Entropy 143
Recursion? No, thanks 160
Programming? 161
Common subproblems 165
Of mice and men 166
Memoization 169
On time and memory 175
A magic trick called duality 192
Reductions 196
Matrix-vector notation 198
Visualizing duality 209
Gaussian elimination 219
Linear programming in polynomial time 220
The story of Sissa and Moore 233
Why P and NP? 244
The two ways to use reductions 246
Unsolvable problems 263
Entanglement 300
The Fourier transform of a periodic vector 306
Setting up a periodic superposition 312
Implications for computer science and quantum physics 314

viii

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

Preface
This book evolved over the past ten years from a set of lecture notes developed while

teaching the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our

way of teaching this course evolved tremendously over these years in a number of

directions, partly to address our students’ background (undeveloped formal skills

outside of programming), and partly to reflect the maturing of the field in general,

as we have come to see it. The notes increasingly crystallized into a narrative, and

we progressively structured the course to emphasize the “story line” implicit in

the progression of the material. As a result, the topics were carefully selected and

clustered. No attempt was made to be encyclopedic, and this freed us to include

topics traditionally de-emphasized or omitted from most Algorithms books.

Playing on the strengths of our students (shared by most of today’s undergraduates

in Computer Science), instead of dwelling on formal proofs we distilled in each

case the crisp mathematical idea that makes the algorithm work. In other words,

we emphasized rigor over formalism. We found that our students were much more

receptive to mathematical rigor of this form. It is this progression of crisp ideas that

helps weave the story.

Once you think about Algorithms in this way, it makes sense to start at the his-

torical beginning of it all, where, in addition, the characters are familiar and the

contrasts dramatic: numbers, primality, and factoring. This is the subject of Part

I of the book, which also includes the RSA cryptosystem, and divide-and-conquer

algorithms for integer multiplication, sorting and median finding, as well as the fast

Fourier transform. There are three other parts: Part II, the most traditional section of

the book, concentrates on data structures and graphs; the contrast here is between

the intricate structure of the underlying problems and the short and crisp pieces of

pseudocode that solve them. Instructors wishing to teach a more traditional course

can simply start with Part II, which is self-contained (following the prologue), and

then cover Part I as required. In Parts I and II we introduced certain techniques (such

as greedy and divide-and-conquer) which work for special kinds of problems; Part

III deals with the “sledgehammers” of the trade, techniques that are powerful and

general: dynamic programming (a novel approach helps clarify this traditional stum-

bling block for students) and linear programming (a clean and intuitive treatment of

the simplex algorithm, duality, and reductions to the basic problem). The final Part

IV is about ways of dealing with hard problems: NP-completeness, various heuris-

tics, as well as quantum algorithms, perhaps the most advanced and modern topic.

As it happens, we end the story exactly where we started it, with Shor’s quantum

algorithm for factoring.

ix

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 FM GTBL020-Dasgupta-v10 August 12, 2006 0:39

x Preface

The book includes three additional undercurrents, in the form of three series of sep-

arate “boxes,” strengthening the narrative (and addressing variations in the needs

and interests of the students) while keeping the flow intact, pieces that provide

historical context; descriptions of how the explained algorithms are used in practice

(with emphasis on internet applications); and excursions for the mathematically

sophisticated.

Many of our colleagues have made crucial contributions to this book. We are grateful

for feedback from Dimitris Achlioptas, Dorit Aharanov, Mike Clancy, Jim Demmel,

Monika Henzinger, Mike Jordan, Milena Mihail, Gene Myers, Dana Randall, Satish

Rao, Tim Roughgarden, Jonathan Shewchuk, Martha Sideri, Alistair Sinclair, and

David Wagner, all of whom beta tested early drafts. Satish Rao, Leonard Schulman,

and Vijay Vazirani shaped the exposition of several key sections. Gene Myers, Satish

Rao, Luca Trevisan, Vijay Vazirani, and Lofti Zadeh provided exercises. And finally,

there are the students of UC Berkeley and, later, UC San Diego, who inspired this

project, and who have seen it through its many incarnations.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

Chapter 0

Prologue

Look around you. Computers and networks are everywhere, enabling an intricate

web of complex human activities: education, commerce, entertainment, research,

manufacturing, health management, human communication, even war. Of the two

main technological underpinnings of this amazing proliferation, one is obvious: the

breathtaking pace with which advances in microelectronics and chip design have

been bringing us faster and faster hardware.

This book tells the story of the other intellectual enterprise that is crucially fueling

the computer revolution: efficient algorithms. It is a fascinating story.

Gather ’round and listen close.

0.1 Books and algorithms
Two ideas changed the world. In 1448 in the German city of Mainz a goldsmith

named Johann Gutenberg discovered a way to print books by putting together mov-

able metallic pieces. Literacy spread, the Dark Ages ended, the human intellect was

liberated, science and technology triumphed, the Industrial Revolution happened.

Many historians say we owe all this to typography. Imagine a world in which only

an elite could read these lines! But others insist that the key development was not

typography, but algorithms.

c© Corbis

Johann Gutenberg

1398–1468

1

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

2 0.2 Enter Fibonacci

Today we are so used to writing numbers in decimal, that it is easy to forget that

Gutenberg would write the number 1448 as MCDXLVIII. How do you add two Roman

numerals? What is MCDXLVIII + DCCCXII? (And just try to think about multiplying

them.) Even a clever man like Gutenberg probably only knew how to add and

subtract small numbers using his fingers; for anything more complicated he had to

consult an abacus specialist.

The decimal system, invented in India around AD 600, was a revolution in quanti-

tative reasoning: using only 10 symbols, even very large numbers could be written

down compactly, and arithmetic could be done efficiently on them by following

elementary steps. Nonetheless these ideas took a long time to spread, hindered

by traditional barriers of language, distance, and ignorance. The most influential

medium of transmission turned out to be a textbook, written in Arabic in the ninth

century by a man who lived in Baghdad. Al Khwarizmi laid out the basic meth-

ods for adding, multiplying, and dividing numbers—even extracting square roots

and calculating digits of π . These procedures were precise, unambiguous, mechan-

ical, efficient, correct—in short, they were algorithms, a term coined to honor the

wise man after the decimal system was finally adopted in Europe, many centuries

later.

Since then, this decimal positional system and its numerical algorithms have played

an enormous role in Western civilization. They enabled science and technology;

they accelerated industry and commerce. And when, much later, the computer was

finally designed, it explicitly embodied the positional system in its bits and words

and arithmetic unit. Scientists everywhere then got busy developing more and more

complex algorithms for all kinds of problems and inventing novel applications—

ultimately changing the world.

0.2 Enter Fibonacci
Al Khwarizmi’s work could not have gained a foothold in the West were it not for

the efforts of one man: the 13th century Italian mathematician Leonardo Fibonacci,

who saw the potential of the positional system and worked hard to develop it further

and propagandize it.

But today Fibonacci is most widely known for his famous sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

each the sum of its two immediate predecessors. More formally, the Fibonacci num-

bers Fn are generated by the simple rule

Fn =

⎧⎪⎪⎨
⎪⎪⎩

Fn−1 + Fn−2 if n > 1

1 if n = 1

0 if n = 0.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

Chapter 0 Algorithms 3

No other sequence of numbers has been studied as extensively, or applied to more

fields: biology, demography, art, architecture, music, to name just a few. And, to-

gether with the powers of 2, it is computer science’s favorite sequence.

In fact, the Fibonacci numbers grow almost as fast as the powers of 2: for example,

F30 is over a million, and F100 is already 21 digits long! In general, Fn ≈ 20.694n (see

Exercise 0.3).

But what is the precise value of F100, or of F200? Fibonacci himself would surely

have wanted to know such things. To answer, we need an algorithm for computing

the nth Fibonacci number.

c© Corbis

Leonardo of Pisa (Fibonacci)

1170–1250

An exponential algorithm

One idea is to slavishly implement the recursive definition of Fn. Here is the resulting

algorithm, in the “pseudocode” notation used throughout this book:

function fib1(n)
if n = 0: return 0

if n = 1: return 1

return fib1(n − 1) + fib1(n − 2)

Whenever we have an algorithm, there are three questions we always ask about it:

1. Is it correct?

2. How much time does it take, as a function of n?

3. And can we do better?

The first question is moot here, as this algorithm is precisely Fibonacci’s definition

of Fn. But the second demands an answer. Let T(n) be the number of computer steps
needed to compute fib1(n); what can we say about this function? For starters, if n
is less than 2, the procedure halts almost immediately, after just a couple of steps.

Therefore,

T(n) ≤ 2 for n ≤ 1.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

4 0.2 Enter Fibonacci

For larger values of n, there are two recursive invocations of fib1, taking time

T(n − 1) and T(n − 2), respectively, plus three computer steps (checks on the value

of n and a final addition). Therefore,

T(n) = T(n − 1) + T(n − 2) + 3 for n > 1.

Compare this to the recurrence relation for Fn: we immediately see that T(n) ≥ Fn.

This is very bad news: the running time of the algorithm grows as fast as the

Fibonacci numbers! T(n) is exponential in n, which implies that the algorithm is

impractically slow except for very small values of n.

Let’s be a little more concrete about just how bad exponential time is. To compute

F200, the fib1 algorithm executes T(200) ≥ F200 ≥ 2138 elementary computer steps.

How long this actually takes depends, of course, on the computer used. At this time,

the fastest computer in the world is the NEC Earth Simulator, which clocks 40 trillion

steps per second. Even on this machine, fib1(200) would take at least 292 seconds.

This means that, if we start the computation today, it would still be going long after

the sun turns into a red giant star.

But technology is rapidly improving—computer speeds have been doubling roughly

every 18 months, a phenomenon sometimes called Moore’s law. With this extraor-

dinary growth, perhaps fib1 will run a lot faster on next year’s machines. Let’s

see—the running time of fib1(n) is proportional to 20.694n ≈ (1.6)n, so it takes

1.6 times longer to compute Fn+1 than Fn. And under Moore’s law, computers get

roughly 1.6 times faster each year. So if we can reasonably compute F100 with this

year’s technology, then next year we will manage F101. And the year after, F102. And

so on: just one more Fibonacci number every year! Such is the curse of exponential

time.

In short, our naive recursive algorithm is correct but hopelessly inefficient. Can we
do better?

A polynomial algorithm

Let’s try to understand why fib1 is so slow. Figure 0.1 shows the cascade of

recursive invocations triggered by a single call to fib1(n). Notice that many com-

putations are repeated!

A more sensible scheme would store the intermediate results—the values F0, F1, . . . ,

Fn−1—as soon as they become known.

function fib2(n)

if n = 0: return 0

create an array f[0 . . . n]

f[0] = 0, f[1] = 1

for i = 2 . . . n:

f[i] = f[i − 1] + f[i − 2]

return f[n]

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

Chapter 0 Algorithms 5

Figure 0.1 The proliferation of recursive calls in fib1.

Fn−3

Fn−1

Fn−4

Fn−2

Fn−4

Fn−6Fn−5Fn−4

Fn−2 Fn−3

Fn−3 Fn−4 Fn−5Fn−5

Fn

As with fib1, the correctness of this algorithm is self-evident because it directly

uses the definition of Fn. How long does it take? The inner loop consists of a single

computer step and is executed n − 1 times. Therefore the number of computer steps

used by fib2 is linear in n. From exponential we are down to polynomial, a huge

breakthrough in running time. It is now perfectly reasonable to compute F200 or

even F200,000.
1

As we will see repeatedly throughout this book, the right algorithm makes all the

difference.

More careful analysis

In our discussion so far, we have been counting the number of basic computer steps
executed by each algorithm and thinking of these basic steps as taking a constant

amount of time. This is a very useful simplification. After all, a processor’s instruc-

tion set has a variety of basic primitives—branching, storing to memory, comparing

numbers, simple arithmetic, and so on—and rather than distinguishing between

these elementary operations, it is far more convenient to lump them together into

one category.

But looking back at our treatment of Fibonacci algorithms, we have been too liberal

with what we consider a basic step. It is reasonable to treat addition as a single

computer step if small numbers are being added, 32-bit numbers say. But the nth

Fibonacci number is about 0.694n bits long, and this can far exceed 32 as n grows.

1To better appreciate the importance of this dichotomy between exponential and polynomial algorithms,

the reader may want to peek ahead to the story of Sissa and Moore in Chapter 8.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

6 0.3 Big-O notation

Arithmetic operations on arbitrarily large numbers cannot possibly be performed

in a single, constant-time step. We need to audit our earlier running time estimates

and make them more honest.

We will see in Chapter 1 that the addition of two n-bit numbers takes time roughly

proportional to n; this is not too hard to understand if you think back to the grade-

school procedure for addition, which works on one digit at a time. Thus fib1,

which performs about Fn additions, actually uses a number of basic steps roughly

proportional to nFn. Likewise, the number of steps taken by fib2 is proportional

to n2, still polynomial in n and therefore exponentially superior to fib1. This cor-

rection to the running time analysis does not diminish our breakthrough.

But can we do even better than fib2? Indeed we can: see Exercise 0.4.

0.3 Big-O notation
We’ve just seen how sloppiness in the analysis of running times can lead to an

unacceptable level of inaccuracy in the result. But the opposite danger is also

present: it is possible to be too precise. An insightful analysis is based on the right

simplifications.

Expressing running time in terms of basic computer steps is already a simplifica-

tion. After all, the time taken by one such step depends crucially on the particu-

lar processor and even on details such as caching strategy (as a result of which

the running time can differ subtly from one execution to the next). Account-

ing for these architecture-specific minutiae is a nightmarishly complex task and

yields a result that does not generalize from one computer to the next. It there-

fore makes more sense to seek an uncluttered, machine-independent characteriza-

tion of an algorithm’s efficiency. To this end, we will always express running time

by counting the number of basic computer steps, as a function of the size of the

input.

And this simplification leads to another. Instead of reporting that an algorithm takes,

say, 5n3 + 4n + 3 steps on an input of size n, it is much simpler to leave out lower-

order terms such as 4n and 3 (which become insignificant as n grows), and even the

detail of the coefficient 5 in the leading term (computers will be five times faster in

a few years anyway), and just say that the algorithm takes time O(n3) (pronounced

“big oh of n3”).

It is time to define this notation precisely. In what follows, think of f (n) and g(n)

as the running times of two algorithms on inputs of size n.

Let f (n) and g(n) be functions from positive integers to positive reals. We say
f = O(g) (which means that “ f grows no faster than g”) if there is a constant
c > 0 such that f (n) ≤ c · g(n).

Saying f = O(g) is a very loose analog of “ f ≤ g.” It differs from the usual notion

of ≤ because of the constant c, so that for instance 10n = O(n). This constant also

allows us to disregard what happens for small values of n. For example, suppose we

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

Chapter 0 Algorithms 7

are choosing between two algorithms for a particular computational task. One takes

f1(n) = n2 steps, while the other takes f2(n) = 2n + 20 steps (Figure 0.2). Which

is better? Well, this depends on the value of n. For n ≤ 5, n2 is smaller; thereafter,

2n + 20 is the clear winner. In this case, f2 scales much better as n grows, and

therefore it is superior.

This superiority is captured by the big-O notation: f2 = O(f1), because

f2(n)

f1(n)
= 2n + 20

n2
≤ 22

for all n; on the other hand, f1 �= O(f2), since the ratio f1(n)/ f2(n) = n2/(2n + 20)

can get arbitrarily large, and so no constant c will make the definition work.

Figure 0.2 Which running time is better?

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

n

2n+20

n2

Now another algorithm comes along, one that uses f3(n) = n + 1 steps. Is this better

than f2? Certainly, but only by a constant factor. The discrepancy between 2n + 20

and n + 1 is tiny compared to the huge gap between n2 and 2n + 20. In order to

stay focused on the big picture, we treat functions as equivalent if they differ only

by multiplicative constants.

Returning to the definition of big-O , we see that f2 = O(f3):

f2(n)

f3(n)
= 2n + 20

n + 1
≤ 20,

and of course f3 = O(f2), this time with c = 1.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

8 Exercises

Just as O(·) is an analog of ≤, we can also define analogs of ≥ and = as follows:

f = �(g) means g = O(f)

f = �(g) means f = O(g) and f = �(g).

In the preceding example, f2 = �(f3) and f1 = �(f3).

Big-O notation lets us focus on the big picture. When faced with a complicated

function like 3n2 + 4n + 5, we just replace it with O(f (n)), where f (n) is as simple

as possible. In this particular example we’d use O(n2), because the quadratic portion

of the sum dominates the rest. Here are some commonsense rules that help simplify

functions by omitting dominated terms:

1. Multiplicative constants can be omitted: 14n2 becomes n2.

2. na dominates nb if a > b: for instance, n2 dominates n.

3. Any exponential dominates any polynomial: 3n dominates n5 (it even domi-

nates 2n).

4. Likewise, any polynomial dominates any logarithm: n dominates (log n)3. This

also means, for example, that n2 dominates n log n.

Don’t misunderstand this cavalier attitude toward constants. Programmers and al-

gorithm developers are very interested in constants and would gladly stay up nights

in order to make an algorithm run faster by a factor of 2. But understanding algo-

rithms at the level of this book would be impossible without the simplicity afforded

by big-O notation.

Exercises

0.1. In each of the following situations, indicate whether f = O(g), or f = �(g), or

both (in which case f = �(g)).

f (n) g(n)

(a) n − 100 n − 200

(b) n1/2 n2/3

(c) 100n + log n n + (log n)2

(d) n log n 10n log 10n

(e) log 2n log 3n

(f) 10 log n log(n2)

(g) n1.01 n log2 n

(h) n2/ log n n(log n)2

(i) n0.1 (log n)10

(j) (log n)log n n/ log n

(k)
√

n (log n)3

(l) n1/2 5log2 n

(m) n2n 3n

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

Chapter 0 Algorithms 9

(n) 2n 2n+1

(o) n! 2n

(p) (log n)log n 2(log2 n)2

(q)
∑n

i=1 ik nk+1

0.2. Show that, if c is a positive real number, then g(n) = 1 + c + c2 + · · · + cn is:

(a) �(1) if c < 1.

(b) �(n) if c = 1.

(c) �(cn) if c > 1.

The moral: in big-� terms, the sum of a geometric series is simply the first term if

the series is strictly decreasing, the last term if the series is strictly increasing, or

the number of terms if the series is unchanging.

0.3. The Fibonacci numbers F0, F1, F2, . . . , are defined by the rule

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

In this problem we will confirm that this sequence grows exponentially fast and

obtain some bounds on its growth.

(a) Use induction to prove that Fn ≥ 20.5n for n ≥ 6.

(b) Find a constant c < 1 such that Fn ≤ 2cn for all n ≥ 0. Show that your answer

is correct.

(c) What is the largest c you can find for which Fn = �(2cn)?

0.4. Is there a faster way to compute the nth Fibonacci number than by fib2

(page 4)? One idea involves matrices.

We start by writing the equations F1 = F1 and F2 = F0 + F1 in matrix notation:

(
F1

F2

)
=

(
0 1

1 1

)
·
(

F0

F1

)
.

Similarly,

(
F2

F3

)
=

(
0 1

1 1

)
·
(

F1

F2

)
=

(
0 1

1 1

)2

·
(

F0

F1

)

and in general

(
Fn

Fn+1

)
=

(
0 1

1 1

)n

·
(

F0

F1

)
.

So, in order to compute Fn, it suffices to raise this 2 × 2 matrix, call it X, to the

nth power.

(a) Show that two 2 × 2 matrices can be multiplied using 4 additions and 8

multiplications.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch00 GTBL020-Dasgupta-v10 August 2, 2006 2:44

10 Exercises

But how many matrix multiplications does it take to compute Xn?

(b) Show that O(log n) matrix multiplications suffice for computing Xn.

(Hint: Think about computing X8.)

Thus the number of arithmetic operations needed by our matrix-based algorithm,

call it fib3, is just O(log n), as compared to O(n) for fib2. Have we broken

another exponential barrier?

The catch is that our new algorithm involves multiplication, not just addition; and

multiplications of large numbers are slower than additions. We have already seen

that, when the complexity of arithmetic operations is taken into account, the

running time of fib2 becomes O(n2).

(c) Show that all intermediate results of fib3 are O(n) bits long.

(d) Let M(n) be the running time of an algorithm for multiplying n-bit

numbers, and assume that M(n) = O(n2) (the school method for

multiplication, recalled in Chapter 1, achieves this). Prove that the

running time of fib3 is O(M(n) log n).

(e) Can you prove that the running time of fib3 is O(M(n))? Assume

M(n) = �(na) for some 1 ≤ a ≤ 2. (Hint: The lengths of the numbers

being multiplied get doubled with every squaring.)

In conclusion, whether fib3 is faster than fib2 depends on whether we can

multiply n-bit integers faster than O(n2). Do you think this is possible? (The

answer is in Chapter 2.)

Finally, there is a formula for the Fibonacci numbers:

Fn = 1√
5

(
1 + √

5

2

)n

− 1√
5

(
1 − √

5

2

)n

.

So, it would appear that we only need to raise a couple of numbers to the nth

power in order to compute Fn. The problem is that these numbers are irrational,

and computing them to sufficient accuracy is nontrivial. In fact, our matrix

method fib3 can be seen as a roundabout way of raising these irrational

numbers to the nth power. If you know your linear algebra, you should see why.

(Hint: What are the eigenvalues of the matrix X?)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1

Algorithms with numbers

One of the main themes of this chapter is the dramatic contrast between two ancient

problems that at first seem very similar:

FACTORING: Given a number N, express it as a product of its prime factors.

PRIMALITY: Given a number N, determine whether it is a prime.

Factoring is hard. Despite centuries of effort by some of the world’s smartest math-

ematicians and computer scientists, the fastest methods for factoring a number N
take time exponential in the number of bits of N.

On the other hand, we shall soon see that we can efficiently test whether N is

prime! And (it gets even more interesting) this strange disparity between the two

intimately related problems, one very hard and the other very easy, lies at the heart

of the technology that enables secure communication in today’s global information

environment.

En route to these insights, we need to develop algorithms for a variety of com-

putational tasks involving numbers. We begin with basic arithmetic, an especially

appropriate starting point because, as we know, the word algorithms originally ap-

plied only to methods for these problems.

1.1 Basic arithmetic

1.1.1 Addition

We were so young when we learned the standard technique for addition that we

would scarcely have thought to ask why it works. But let’s go back now and take a

closer look.

It is a basic property of decimal numbers that

The sum of any three single-digit numbers is at most two digits long.

Quick check: the sum is at most 9 + 9 + 9 = 27, two digits long. In fact, this rule

holds not just in decimal but in any base b ≥ 2 (Exercise 1.1). In binary, for instance,

the maximum possible sum of three single-bit numbers is 3, which is a 2-bit number.

11

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

12 1.1 Basic arithmetic

Bases and logs

Naturally, there is nothing special about the number 10—we just happen to have 10 fingers,
and so 10 was an obvious place to pause and take counting to the next level. The Mayans
developed a similar positional system based on the number 20 (no shoes, see?). And of course
today computers represent numbers in binary.

How many digits are needed to represent the number N ≥ 0 in base b? Let’s see—with k
digits in base b we can express numbers up to bk − 1; for instance, in decimal, three digits
get us all the way up to 999 = 103 − 1. By solving for k, we find that �logb(N + 1)� digits
(about logb N digits, give or take 1) are needed to write N in base b.

How much does the size of a number change when we change bases? Recall the rule for
converting logarithms from base a to base b: logb N = (loga N)/(loga b). So the size of
integer N in base a is the same as its size in base b, times a constant factor loga b. In big-O
notation, therefore, the base is irrelevant, and we write the size simply as O(log N). When
we do not specify a base, as we almost never will, we mean log2 N.

Incidentally, this function log N appears repeatedly in our subject, in many guises. Here’s a
sampling:

1. log N is, of course, the power to which you need to raise 2 in order to obtain N.
2. Going backward, it can also be seen as the number of times you must halve N to get

down to 1. (More precisely: �log N�.) This is useful when a number is halved at each
iteration of an algorithm, as in several examples later in the chapter.

3. It is the number of bits in the binary representation of N. (More precisely: �log(N + 1)�.)
4. It is also the depth of a complete binary tree with N nodes. (More precisely: �log N�.)

5. It is even the sum 1 + 1

2
+ 1

3
+ · · · + 1

N
, to within a constant factor (Exercise 1.5).

This simple rule gives us a way to add two numbers in any base: align their right-

hand ends, and then perform a single right-to-left pass in which the sum is computed

digit by digit, maintaining the overflow as a carry. Since we know each individual

sum is a two-digit number, the carry is always a single digit, and so at any given

step, three single-digit numbers are added. Here’s an example showing the addition

53 + 35 in binary.

Carry: 1 1 1 1

1 1 0 1 0 1 (53)

1 0 0 0 1 1 (35)

1 0 1 1 0 0 0 (88)

Ordinarily we would spell out the algorithm in pseudocode, but in this case it is so

familiar that we do not repeat it. Instead we move straight to analyzing its efficiency.

Given two binary numbers x and y, how long does our algorithm take to add them?
This is the kind of question we shall persistently be asking throughout this book.

We want the answer expressed as a function of the size of the input: the number of

bits of x and y, the number of keystrokes needed to type them in.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 13

Suppose x and y are each n bits long; in this chapter we will consistently use the

letter n for the sizes of numbers. Then the sum of x and y is n + 1 bits at most, and

each individual bit of this sum gets computed in a fixed amount of time. The total

running time for the addition algorithm is therefore of the form c0 + c1n, where c0

and c1 are some constants; in other words, it is linear. Instead of worrying about the

precise values of c0 and c1, we will focus on the big picture and denote the running

time as O(n).

Now that we have a working algorithm whose running time we know, our thoughts

wander inevitably to the question of whether there is something even better.

Is there a faster algorithm? (This is another persistent question.) For addition, the

answer is easy: in order to add two n-bit numbers we must at least read them

and write down the answer, and even that requires n operations. So the addition

algorithm is optimal, up to multiplicative constants!

Some readers may be confused at this point: Why O(n) operations? Isn’t binary

addition something that computers today perform by just one instruction? There

are two answers. First, it is certainly true that in a single instruction we can add

integers whose size in bits is within the word length of today’s computers—32

perhaps. But, as will become apparent later in this chapter, it is often useful and

necessary to handle numbers much larger than this, perhaps several thousand bits

long. Adding and multiplying such large numbers on real computers is very much

like performing the operations bit by bit. Second, when we want to understand

algorithms, it makes sense to study even the basic algorithms that are encoded in

the hardware of today’s computers. In doing so, we shall focus on the bit complexity
of the algorithm, the number of elementary operations on individual bits—because

this accounting reflects the amount of hardware, transistors and wires, necessary

for implementing the algorithm.

1.1.2 Multiplication and division

Onward to multiplication! The grade-school algorithm for multiplying two numbers

x and y is to create an array of intermediate sums, each representing the product of

x by a single digit of y. These values are appropriately left-shifted and then added

up. Suppose for instance that we want to multiply 13 × 11, or in binary notation,

x = 1101 and y = 1011. The multiplication would proceed thus.

1 1 0 1

× 1 0 1 1

1 1 0 1 (1101 times 1)

1 1 0 1 (1101 times 1, shifted once)

0 0 0 0 (1101 times 0, shifted twice)

+ 1 1 0 1 (1101 times 1, shifted thrice)

1 0 0 0 1 1 1 1 (binary 143)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

14 1.1 Basic arithmetic

In binary this is particularly easy since each intermediate row is either zero or x
itself, left-shifted an appropriate amount of times. Also notice that left-shifting is

just a quick way to multiply by the base, which in this case is 2. (Likewise, the

effect of a right shift is to divide by the base, rounding down if needed.)

The correctness of this multiplication procedure is the subject of Exercise 1.6; let’s

move on and figure out how long it takes. If x and y are both n bits, then there are

n intermediate rows, with lengths of up to 2n bits (taking the shifting into account).

The total time taken to add up these rows, doing two numbers at a time, is

O(n) + O(n) + · · · + O(n)︸ ︷︷ ︸
n − 1 times

,

which is O(n2), quadratic in the size of the inputs: still polynomial but much slower

than addition (as we have all suspected since elementary school).

But Al Khwarizmi knew another way to multiply, a method which is used today in

some European countries. To multiply two decimal numbers x and y, write them

next to each other, as in the example below. Then repeat the following: divide the

first number by 2, rounding down the result (that is, dropping the .5 if the number

was odd), and double the second number. Keep going till the first number gets down

to 1. Then strike out all the rows in which the first number is even, and add up

whatever remains in the second column.

11 13

5 26

2 52 (strike out)

1 104

143 (answer)

But if we now compare the two algorithms, binary multiplication and multiplication

by repeated halvings of the multiplier, we notice that they are doing the same thing!

The three numbers added in the second algorithm are precisely the multiples of 13

by powers of 2 that were added in the binary method. Only this time 11 was not

given to us explicitly in binary, and so we had to extract its binary representation

by looking at the parity of the numbers obtained from it by successive divisions

by 2. Al Khwarizmi’s second algorithm is a fascinating mixture of decimal and

binary!

The same algorithm can thus be repackaged in different ways. For variety we

adopt a third formulation, the recursive algorithm of Figure 1.1, which directly

implements the rule

x · y =
{

2(x · �y/2�) if y is even

x + 2(x · �y/2�) if y is odd.

Is this algorithm correct? The preceding recursive rule is transparently correct; so

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 15

Figure 1.1 Multiplication à la Français.

function multiply(x, y)

Input: Two n−bit integers x and y, where y ≥ 0

Output: Their product

if y = 0: return 0

z = multiply(x, �y/2�)
if y is even:

return 2z
else:

return x + 2z

checking the correctness of the algorithm is merely a matter of verifying that it

mimics the rule and that it handles the base case (y = 0) properly.

How long does the algorithm take? It must terminate after n recursive calls, be-

cause at each call y is halved—that is, its number of bits is decreased by one. And

each recursive call requires these operations: a division by 2 (right shift); a test for

odd/even (looking up the last bit); a multiplication by 2 (left shift); and possibly

one addition, a total of O(n) bit operations. The total time taken is thus O(n2), just

as before.

Can we do better? Intuitively, it seems that multiplication requires adding about n
multiples of one of the inputs, and we know that each addition is linear, so it would

appear that n2 bit operations are inevitable. Astonishingly, in Chapter 2 we’ll see

that we can do significantly better!

Division is next. To divide an integer x by another integer y �= 0 means to find a

quotient q and a remainder r , where x = yq + r and r < y. We show the recursive

version of division in Figure 1.2; like multiplication, it takes quadratic time. The

analysis of this algorithm is the subject of Exercise 1.8.

Figure 1.2 Division.

function divide(x, y)

Input: Two n−bit integers x and y, where y ≥ 1

Output: The quotient and remainder of x divided by y

if x = 0: return (q, r) = (0, 0)

(q, r) = divide(�x/2�, y)

q = 2 · q, r = 2 · r
if x is odd: r = r + 1

if r ≥ y: r = r − y, q = q + 1

return (q, r)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

16 1.2 Modular arithmetic

1.2 Modular arithmetic
With repeated addition or multiplication, numbers can get cumbersomely large. So

it is fortunate that we reset the hour to zero whenever it reaches 24, and the month

to January after every stretch of 12 months. Similarly, for the built-in arithmetic

operations of computer processors, numbers are restricted to some size, 32 bits say,

which is considered generous enough for most purposes.

For the applications we are working toward—primality testing and cryptography—

it is necessary to deal with numbers that are significantly larger than 32 bits, but

whose range is nonetheless limited.

Modular arithmetic is a system for dealing with restricted ranges of integers. We

define x modulo N to be the remainder when x is divided by N; that is, if x = qN + r
with 0 ≤ r < N, then x modulo N is equal to r . This gives an enhanced notion of

equivalence between numbers: x and y are congruent modulo N if they differ by a

multiple of N, or in symbols,

x ≡ y (mod N) ⇐⇒ N divides (x − y).

For instance, 253 ≡ 13 (mod 60) because 253 − 13 is a multiple of 60; more famil-

iarly, 253 minutes is 4 hours and 13 minutes. These numbers can also be negative,

as in 59 ≡ −1 (mod 60): when it is 59 minutes past the hour, it is also 1 minute

short of the next hour.

Figure 1.3 Addition modulo 8.

0 00

+ =6

3

1

One way to think of modular arithmetic is that it limits numbers to a predefined

range {0, 1, . . . , N − 1} and wraps around whenever you try to leave this range—like

the hand of a clock (Figure 1.3).

Another interpretation is that modular arithmetic deals with all the integers, but

divides them into N equivalence classes, each of the form {i + kN : k ∈ Z} for some

i between 0 and N − 1. For example, there are three equivalence classes modulo 3:

· · · −9 −6 −3 0 3 6 9 · · ·
· · · −8 −5 −2 1 4 7 10 · · ·
· · · −7 −4 −1 2 5 8 11 · · ·

Any member of an equivalence class is substitutable for any other; when viewed

modulo 3, the numbers 5 and 11 are no different. Under such substitutions, addition

and multiplication remain well-defined:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 17

Two’s complement

Modular arithmetic is nicely illustrated in two’s complement, the most common format for
storing signed integers. It uses n bits to represent numbers in the range [−2n−1, 2n−1 − 1]
and is usually described as follows:

� Positive integers, in the range 0 to 2n−1 − 1, are stored in regular binary and have a
leading bit of 0.

� Negative integers −x , with 1 ≤ x ≤ 2n−1, are stored by first constructing x in binary,
then flipping all the bits, and finally adding 1. The leading bit in this case is 1.

(And the usual description of addition and multiplication in this format is even more
arcane!)

Here’s a much simpler way to think about it: any number in the range −2n−1 to 2n−1 − 1 is
stored modulo 2n . Negative numbers −x therefore end up as 2n − x . Arithmetic operations
like addition and subtraction can be performed directly in this format, ignoring any overflow
bits that arise.

Substitution rule If x ≡ x′ (mod N) and y ≡ y′ (mod N), then:

x + y ≡ x′ + y′ (mod N) and xy ≡ x′y′ (mod N).

(See Exercise 1.9.) For instance, suppose you watch an entire season of your favorite

television show in one sitting, starting at midnight. There are 25 episodes, each

lasting 3 hours. At what time of day are you done? Answer: the hour of completion is

(25 × 3) mod 24, which (since 25 ≡ 1 mod 24) is 1 × 3 = 3 mod 24, or three o’clock

in the morning.

It is not hard to check that in modular arithmetic, the usual associative, commu-

tative, and distributive properties of addition and multiplication continue to apply,

for instance:

x + (y + z) ≡ (x + y) + z (mod N) Associativity

xy ≡ yx (mod N) Commutativity

x(y + z) ≡ xy + yz (mod N) Distributivity

Taken together with the substitution rule, this implies that while performing a se-

quence of arithmetic operations, it is legal to reduce intermediate results to their

remainders modulo N at any stage. Such simplifications can be a dramatic help in

big calculations. Witness, for instance:

2345 ≡ (25)69 ≡ 3269 ≡ 169 ≡ 1 (mod 31).

1.2.1 Modular addition and multiplication

To add two numbers x and y modulo N, we start with regular addition. Since x and

y are each in the range 0 to N − 1, their sum is between 0 and 2(N − 1). If the sum

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

18 1.2 Modular arithmetic

exceeds N − 1, we merely need to subtract off N to bring it back into the required

range. The overall computation therefore consists of an addition, and possibly a

subtraction, of numbers that never exceed 2N. Its running time is linear in the sizes

of these numbers, in other words O(n), where n = �log N� is the size of N; as a

reminder, our convention is to use the letter n to denote input size.

To multiply two mod-N numbers x and y, we again just start with regular multi-

plication and then reduce the answer modulo N. The product can be as large as

(N − 1)2, but this is still at most 2n bits long since log(N − 1)2 = 2 log(N − 1) ≤ 2n.

To reduce the answer modulo N, we compute the remainder upon dividing it by N,

using our quadratic-time division algorithm. Multiplication thus remains a quadratic

operation.

Division is not quite so easy. In ordinary arithmetic there is just one tricky case—

division by zero. It turns out that in modular arithmetic there are potentially other

such cases as well, which we will characterize toward the end of this section.

Whenever division is legal, however, it can be managed in cubic time, O(n3).

To complete the suite of modular arithmetic primitives we need for cryptography, we

next turn to modular exponentiation, and then to the greatest common divisor, which

is the key to division. For both tasks, the most obvious procedures take exponentially

long, but with some ingenuity polynomial-time solutions can be found. A careful

choice of algorithm makes all the difference.

1.2.2 Modular exponentiation

In the cryptosystem we are working toward, it is necessary to compute xy mod N for

values of x, y, and N that are several hundred bits long. Can this be done quickly?

The result is some number modulo N and is therefore itself a few hundred bits long.

However, the raw value of xy could be much, much longer than this. Even when x
and y are just 20-bit numbers, xy is at least (219)(219) = 2(19)(524288), about 10 million

bits long! Imagine what happens if y is a 500-bit number!

To make sure the numbers we are dealing with never grow too large, we need

to perform all intermediate computations modulo N. So here’s an idea: calculate

xy mod N by repeatedly multiplying by x modulo N. The resulting sequence of

intermediate products,

x mod N → x2 mod N → x3 mod N → · · · → xy mod N,

consists of numbers that are smaller than N, and so the individual multiplications

do not take too long. But there’s a problem: if y is 500 bits long, we need to perform

y − 1 ≈ 2500 multiplications! This algorithm is clearly exponential in the size of y.

Luckily, we can do better: starting with x and squaring repeatedly modulo N, we

get

x mod N → x2 mod N → x4 mod N → x8 mod N → · · · → x2�log y�
mod N.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 19

Each takes just O(log2 N) time to compute, and in this case there are only log y
multiplications. To determine xy mod N, we simply multiply together an appropriate

subset of these powers, those corresponding to 1’s in the binary representation of

y. For instance,

x25 = x110012 = x100002 · x10002 · x12 = x16 · x8 · x1.

A polynomial-time algorithm is finally within reach!

Figure 1.4 Modular exponentiation.

function modexp(x, y, N)

Input: Two n−bit integers x and N, an integer exponent y
Output: xy mod N

if y = 0: return 1

z = modexp(x, �y/2�, N)

if y is even:
return z2 mod N

else:
return x · z2 mod N

We can package this idea in a particularly simple form: the recursive algorithm of

Figure 1.4, which works by executing, modulo N, the self-evident rule

xy =
{ (

x�y/2�)2
if y is even

x · (
x�y/2�)2

if y is odd.

In doing so, it closely parallels our recursive multiplication algorithm (Figure 1.1).

For instance, that algorithm would compute the product x · 25 by an analogous

decomposition to the one we just saw: x · 25 = x · 16 + x · 8 + x · 1. And whereas

for multiplication the terms x · 2i come from repeated doubling, for exponentiation

the corresponding terms x2i

are generated by repeated squaring.

Let n be the size in bits of x, y, and N (whichever is largest of the three). As with

multiplication, the algorithm will halt after at most n recursive calls, and during

each call it multiplies n-bit numbers (doing computation modulo N saves us here),

for a total running time of O(n3).

1.2.3 Euclid’s algorithm for greatest common divisor

Our next algorithm was discovered well over 2000 years ago by the mathematician

Euclid, in ancient Greece. Given two integers a and b, it finds the largest integer

that divides both of them, known as their greatest common divisor (gcd).

The most obvious approach is to first factor a and b, and then multiply together

their common factors. For instance, 1035 = 32 · 5 · 23 and 759 = 3 · 11 · 23, so their

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

20 1.2 Modular arithmetic

gcd is 3 · 23 = 69. However, we have no efficient algorithm for factoring. Is there

some other way to compute greatest common divisors?

Euclid’s algorithm uses the following simple formula.

c© Corbis

Euclid of Alexandria

BC 325–265

Euclid’s rule If x and y are positive integers with x ≥ y, then gcd(x, y) =
gcd(x mod y, y).

Proof. It is enough to show the slightly simpler rule gcd(x, y) = gcd(x − y, y) from

which the one stated can be derived by repeatedly subtracting y from x.

Here it goes. Any integer that divides both x and y must also divide x − y, so

gcd(x, y) ≤ gcd(x − y, y). Likewise, any integer that divides both x − y and y must

also divide both x and y, so gcd(x, y) ≥ gcd(x − y, y).

Figure 1.5 Euclid’s algorithm for finding the greatest common divisor of
two numbers.

function Euclid(a, b)

Input: Two integers a and b with a ≥ b ≥ 0

Output: gcd(a, b)

if b = 0: return a
return Euclid(b, a mod b)

Euclid’s rule allows us to write down an elegant recursive algorithm (Figure 1.5), and

its correctness follows immediately from the rule. In order to figure out its running

time, we need to understand how quickly the arguments (a, b) decrease with each

successive recursive call. In a single round, arguments (a, b) become (b, a mod b):

their order is swapped, and the larger of them, a, gets reduced to a mod b. This is

a substantial reduction.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 21

Lemma If a ≥ b, then a mod b < a/2.

Proof. Witness that either b ≤ a/2 or b > a/2. These two cases are shown in the

following figure. If b ≤ a/2, then we have a mod b < b ≤ a/2; and if b > a/2, then

a mod b = a − b < a/2.

a a/2 b a

a mod b

b

a mod b

a/2

This means that after any two consecutive rounds, both arguments, a and b, are at

the very least halved in value—the length of each decreases by at least one bit. If

they are initially n-bit integers, then the base case will be reached within 2n recursive

calls. And since each call involves a quadratic-time division, the total time is O(n3).

1.2.4 An extension of Euclid’s algorithm

A small extension to Euclid’s algorithm is the key to dividing in the modular world.

To motivate it, suppose someone claims that d is the greatest common divisor of a
and b: how can we check this? It is not enough to verify that d divides both a and

b, because this only shows d to be a common factor, not necessarily the largest one.

Here’s a test that can be used if d is of a particular form.

Lemma If d divides both a and b, and d = ax + by for some integers x and y,
then necessarily d = gcd(a, b).

Proof. By the first two conditions, d is a common divisor of a and b and so it cannot

exceed the greatest common divisor; that is, d ≤ gcd(a, b). On the other hand, since

gcd(a, b) is a common divisor of a and b, it must also divide ax + by = d, which

implies gcd(a, b) ≤ d. Putting these together, d = gcd(a, b).

So, if we can supply two numbers x and y such that d = ax + by, then we can be sure

d = gcd(a, b). For instance, we know gcd(13, 4) = 1 because 13 · 1 + 4 · (−3) = 1.

But when can we find these numbers: under what circumstances can gcd(a, b) be

expressed in this checkable form? It turns out that it always can. What is even better,

the coefficients x and y can be found by a small extension to Euclid’s algorithm;

see Figure 1.6.

Figure 1.6 A simple extension of Euclid’s algorithm.

function extended−Euclid(a, b)
Input: Two positive integers a and b with a ≥ b ≥ 0

Output: Integers x, y, d such that d = gcd(a, b) and ax + by = d

if b = 0: return (1, 0, a)

(x′, y′, d) = extended−Euclid(b, a mod b)
return (y′, x′ − �a/b�y′, d)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

22 1.2 Modular arithmetic

Lemma For any positive integers a and b, the extended Euclid algorithm returns
integers x, y, and d such that gcd(a, b) = d = ax + by.

Proof. The first thing to confirm is that if you ignore the x’s and y’s, the extended

algorithm is exactly the same as the original. So, at least we compute d = gcd(a, b).

For the rest, the recursive nature of the algorithm suggests a proof by induction. The

recursion ends when b = 0, so it is convenient to do induction on the value of b.

The base case b = 0 is easy enough to check directly. Now pick any larger value of

b. The algorithm finds gcd(a, b) by calling gcd(b, a mod b). Since a mod b < b, we

can apply the inductive hypothesis to this recursive call and conclude that the x′

and y′ it returns are correct:

gcd(b, a mod b) = bx′ + (a mod b)y′.

Writing (a mod b) as (a − �a/b�b), we find

d = gcd(a, b) = gcd(b, a mod b) = bx′ + (a mod b)y′

= bx′ + (a − �a/b�b)y′ = ay′ + b(x′ − �a/b�y′).

Therefore d = ax + by with x = y′ and y = x′ − �a/b�y′, thus validating the algo-

rithm’s behavior on input (a, b).

Example. To compute gcd(25, 11), Euclid’s algorithm would proceed as follows:

25 = 2 · 11 + 3

11 = 3 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

(at each stage, the gcd computation has been reduced to the underlined numbers).

Thus gcd(25, 11) = gcd(11, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1.

To find x and y such that 25x + 11y = 1, we start by expressing 1 in terms of the

last pair (1, 0). Then we work backwards and express it in terms of (2, 1), (3, 2),

(11, 3), and finally (25, 11). The first step is:

1 = 1 − 0.

To rewrite this in terms of (2, 1), we use the substitution 0 = 2 − 2 · 1 from the last

line of the gcd calculation to get:

1 = 1 − (2 − 2 · 1) = −1 · 2 + 3 · 1.

The second-last line of the gcd calculation tells us that 1 = 3 − 1 · 2. Substituting:

1 = −1 · 2 + 3(3 − 1 · 2) = 3 · 3 − 4 · 2.

Continuing in this same way with substitutions 2 = 11 − 3 · 3 and 3 = 25 − 2 · 11

gives:

1 = 3 · 3 − 4(11 − 3 · 3) = −4 · 11 + 15 · 3 = −4 · 11 + 15(25 − 2 · 11) = 15 · 25 − 34 · 11.

We’re done: 15 · 25 − 34 · 11 = 1, so x = 15 and y = −34.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 23

1.2.5 Modular division

In real arithmetic, every number a �= 0 has an inverse, 1/a, and dividing by a is the

same as multiplying by this inverse. In modular arithmetic, we can make a similar

definition.

We say x is the multiplicative inverse of a modulo N if ax ≡ 1 (mod N).

There can be at most one such x modulo N (Exercise 1.23), and we shall denote it

by a−1. However, this inverse does not always exist! For instance, 2 is not invertible

modulo 6: that is, 2x �≡ 1 mod 6 for every possible choice of x. In this case, a and

N are both even and thus then a mod N is always even, since a mod N = a − kN
for some k. More generally, we can be certain that gcd(a, N) divides ax mod N,

because this latter quantity can be written in the form ax + kN. So if gcd(a, N) > 1,

then ax �≡ 1 mod N, no matter what x might be, and therefore a cannot have a

multiplicative inverse modulo N.

In fact, this is the only circumstance in which a is not invertible. When gcd(a, N) = 1

(we say a and N are relatively prime), the extended Euclid algorithm gives us

integers x and y such that ax + Ny = 1, which means that ax ≡ 1 (mod N). Thus

x is a’s sought inverse.

Example. Continuing with our previous example, suppose we wish to compute

11−1 mod 25. Using the extended Euclid algorithm, we find that 15 · 25 − 34 · 11 = 1.

Reducing both sides modulo 25, we have −34 · 11 ≡ 1 mod 25. So −34 ≡ 16 mod 25

is the inverse of 11 mod 25.

Modular division theorem For any a mod N, a has a multiplicative inverse mod-
ulo N if and only if it is relatively prime to N. When this inverse exists, it can be
found in time O(n3) (where as usual n denotes the number of bits of N) by running
the extended Euclid algorithm.

This resolves the issue of modular division: when working modulo N, we can divide

by numbers relatively prime to N—and only by these. And to actually carry out the

division, we multiply by the inverse.

1.3 Primality testing
Is there some litmus test that will tell us whether a number is prime without actually

trying to factor the number? We place our hopes in a theorem from the year 1640.

Fermat’s little theorem If p is prime, then for every 1 ≤ a < p,

ap−1 ≡ 1 (mod p).

Proof. Let S be the nonzero integers modulo p; that is, S = {1, 2, . . . , p − 1}. Here’s

the crucial observation: the effect of multiplying these numbers by a (modulo p) is

simply to permute them. For instance, here’s a picture of the case a = 3, p = 7:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

24 1.3 Primality testing

Is your social security number a prime?

The numbers 7, 17, 19, 71, and 79 are primes, but how about 717-19-7179? Telling whether
a reasonably large number is a prime seems tedious because there are far too many candidate
factors to try. However, there are some clever tricks to speed up the process. For instance, you
can omit even-valued candidates after you have eliminated the number 2. You can actually
omit all candidates except those that are themselves primes.

In fact, a little further thought will convince you that you can proclaim N a prime as soon

as you have rejected all candidates up to
√

N, for if N can indeed be factored as N = K · L ,

then it is impossible for both factors to exceed
√

N.

We seem to be making progress! Perhaps by omitting more and more candidate factors, a
truly efficient primality test can be discovered.

Unfortunately, there is no fast primality test down this road. The reason is that we have
been trying to tell if a number is a prime by factoring it. And factoring is a hard problem!

Modern cryptography, as well as the balance of this chapter, is about the following important
idea: factoring is hard and primality is easy. We cannot factor large numbers, but we can easily
test huge numbers for primality! (Presumably, if a number is composite, such a test will
detect this without finding a factor.)

6

5

4

3

2

1 1

2

3

4

5

6

Let’s carry this example a bit further. From the picture, we can conclude

{1, 2, . . . , 6} = {3 · 1 mod 7, 3 · 2 mod 7, . . . , 3 · 6 mod 7}.

Multiplying all the numbers in each representation then gives 6! ≡ 36 · 6! (mod 7),

and dividing by 6! we get 36 ≡ 1 (mod 7), exactly the result we wanted in the case

a = 3, p = 7.

Now let’s generalize this argument to other values of a and p, with S
= {1, 2, . . . , p − 1}. We’ll prove that when the elements of S are multiplied by a
modulo p, the resulting numbers are all distinct and nonzero. And since they lie in

the range [1, p − 1], they must simply be a permutation of S.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 25

The numbers a · i mod p are distinct because if a · i ≡ a · j (mod p), then dividing

both sides by a gives i ≡ j (mod p). They are nonzero because a · i ≡ 0 similarly

implies i ≡ 0. (And we can divide by a, because by assumption it is nonzero and

therefore relatively prime to p.)

We now have two ways to write set S:

S = {1, 2, . . . , p − 1} = {a · 1 mod p, a · 2 mod p, . . . , a · (p − 1) mod p}.

We can multiply together its elements in each of these representations to get

(p − 1)! ≡ ap−1 · (p − 1)! (mod p).

Dividing by (p − 1)! (which we can do because it is relatively prime to p, since p
is assumed prime) then gives the theorem.

This theorem suggests a “factorless” test for determining whether a number N is

prime:

Is aN−1 ≡ 1 mod N?Pick some a
“prime”

“composite”

Fermat’s test

Pass

Fail

The problem is that Fermat’s theorem is not an if-and-only-if condition; it doesn’t

say what happens when N is not prime, so in these cases the preceding diagram is

questionable. In fact, it is possible for a composite number N to pass Fermat’s test

(that is, aN−1 ≡ 1 mod N) for certain choices of a. For instance, 341 = 11 · 31 is not

prime, and yet 2340 ≡ 1 mod 341. Nonetheless, we might hope that for composite N,

most values of a will fail the test. This is indeed true, in a sense we will shortly make

precise, and motivates the algorithm of Figure 1.7: rather than fixing an arbitrary

value of a in advance, we should choose it randomly from {1, . . . , N − 1}.

Figure 1.7 An algorithm for testing primality.

function primality(N)

Input: Positive integer N
Output: yes/no

Pick a positive integer a < N at random
if aN−1 ≡ 1 (mod N):

return yes
else:

return no

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

26 1.3 Primality testing

In analyzing the behavior of this algorithm, we first need to get a minor bad case

out of the way. It turns out that certain extremely rare composite numbers N, called

Carmichael numbers, pass Fermat’s test for all a relatively prime to N. On such

numbers our algorithm will fail; but they are pathologically rare, and we will later

see how to deal with them (page 28), so let’s ignore these numbers for the time being.

In a Carmichael-free universe, our algorithm works well. Any prime number N will

of course pass Fermat’s test and produce the right answer. On the other hand, any

non-Carmichael composite number N must fail Fermat’s test for some value of a;

and as we will now show, this implies immediately that N fails Fermat’s test for at
least half the possible values of a!

Lemma If aN−1 �≡ 1 mod N for some a relatively prime to N, then it must hold for
at least half the choices of a < N.

Proof. Fix some value of a for which aN−1 �≡ 1 mod N. The key is to notice that every

element b < N that passes Fermat’s test with respect to N (that is, bN−1 ≡ 1 mod N)

has a twin, a · b, that fails the test:

(a · b)N−1 ≡ aN−1 · bN−1 ≡ aN−1 �≡ 1 mod N.

Moreover, all these elements a · b, for fixed a but different choices of b, are distinct,

for the same reason a · i �≡ a · j in the proof of Fermat’s test: just divide by a.

FailPass

The set {1, 2, . . . , N−1}

b
a · b

The one-to-one function b �→ a · b shows that at least as many elements fail the test

as pass it.

We are ignoring Carmichael numbers, so we can now assert

If N is prime, then aN−1 ≡ 1 mod N for all a < N.
If N is not prime, then aN−1 ≡ 1 mod N for at most half the values of a < N.

The algorithm of Figure 1.7 therefore has the following probabilistic behavior.

Pr(Algorithm 1.7 returns yes when N is prime) = 1

Pr(Algorithm 1.7 returns yes when N is not prime) ≤ 1

2

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 27

Hey, that was group theory!

For any integer N, the set of all numbers mod N that are relatively prime to N constitute
what mathematicians call a group:

� There is a multiplication operation defined on this set.
� The set contains a neutral element (namely 1: any number multiplied by this remains

unchanged).
� All elements have a well-defined inverse.

This particular group is called the multiplicative group of N, usually denoted Z
∗
N .

Group theory is a very well developed branch of mathematics. One of its key concepts is that
a group can contain a subgroup—a subset that is a group in and of itself. And an important
fact about a subgroup is that its size must divide the size of the whole group.

Consider now the set B = {b : bN−1 ≡ 1 mod N}. It is not hard to see that it is a subgroup
of Z

∗
N (just check that B is closed under multiplication and inverses). Thus the size of B

must divide that of Z
∗
N . Which means that if B doesn’t contain all of Z

∗
N , the next largest

size it can have is |Z∗
N|/2.

We can reduce this one-sided error by repeating the procedure many times, by ran-

domly picking several values of a and testing them all (Figure 1.8).

Pr(Algorithm 1.8 returns yes when N is not prime) ≤ 1

2k

This probability of error drops exponentially fast, and can be driven arbitrarily low

by choosing k large enough. Testing k = 100 values of a makes the probability of

failure at most 2−100, which is miniscule: far less, for instance, than the probability

that a random cosmic ray will sabotage the computer during the computation!

Figure 1.8 An algorithm for testing primality, with low error probability.

function primality2(N)

Input: Positive integer N
Output: yes/no

Pick positive integers a1, a2, . . . , ak < N at random
if aN−1

i ≡ 1 (mod N) for all i = 1, 2, . . . , k:

return yes
else:

return no

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

28 1.3 Primality testing

Carmichael numbers

The smallest Carmichael number is 561. It is not a prime: 561 = 3 · 11 · 17; yet it fools the
Fermat test, because a560 ≡ 1 (mod 561) for all values of a relatively prime to 561. For a
long time it was thought that there might be only finitely many numbers of this type; now
we know they are infinite, but exceedingly rare.

There is a way around Carmichael numbers, using a slightly more refined primality test
due to Rabin and Miller. Write N − 1 in the form 2t u. As before we’ll choose a random
base a and check the value of a N−1 mod N. Perform this computation by first determining
au mod N and then repeatedly squaring, to get the sequence:

au mod N, a 2u mod N, . . . , a 2t u = a N−1 mod N.

If a N−1 �≡ 1 mod N, then N is composite by Fermat’s little theorem, and we’re done.
But if a N−1 ≡ 1 mod N, we conduct a little follow-up test: somewhere in the preceding
sequence, we ran into a 1 for the first time. If this happened after the first position (that is,
if au mod N �= 1), and if the preceding value in the list is not −1 mod N, then we declare
N composite.

In the latter case, we have found a nontrivial square root of 1 modulo N: a number that is
not ±1 mod N but that when squared is equal to 1 mod N. Such a number can only exist
if N is composite (Exercise 1.40). It turns out that if we combine this square-root check
with our earlier Fermat test, then at least three-fourths of the possible values of a between
1 and N − 1 will reveal a composite N, even if it is a Carmichael number.

1.3.1 Generating random primes

We are now close to having all the tools we need for cryptographic applications. The

final piece of the puzzle is a fast algorithm for choosing random primes that are a few

hundred bits long. What makes this task quite easy is that primes are abundant—a

random n-bit number has roughly a one-in-n chance of being prime (actually about

1/(ln 2n) ≈ 1.44/n). For instance, about 1 in 20 social security numbers is prime!

Lagrange’s prime number theorem Let π(x) be the number of primes ≤ x. Then
π(x) ≈ x/(ln x), or more precisely,

lim
x→∞

π(x)

(x/ ln x)
= 1.

Such abundance makes it simple to generate a random n-bit prime:

� Pick a random n-bit number N.
� Run a primality test on N.
� If it passes the test, output N; else repeat the process.

How fast is this algorithm? If the randomly chosen N is truly prime, which happens

with probability at least 1/n, then it will certainly pass the test. So on each iteration,

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 29

Randomized algorithms: a virtual chapter

Surprisingly—almost paradoxically—some of the fastest and most clever algorithms we have
rely on chance: at specified steps they proceed according to the outcomes of random coin
tosses. These randomized algorithms are often very simple and elegant, and their output is
allowed to be incorrect with small probability. This bound on the failure probability holds
for every input; it only depends on the random choices made by the algorithm itself, and
can easily be made as small as one likes.

Instead of devoting a special chapter to this topic, in this book we intersperse randomized
algorithms at the chapters and sections where they arise most naturally. Furthermore, no
specialized knowledge of probability is necessary to follow what is happening. You just
need to be familiar with the concept of probability, expected value, the expected number
of times we must flip a coin before getting heads, and the property known as “linearity of
expectation.”

Here are pointers to the major randomized algorithms in this book: One of the earliest
and most dramatic examples of a randomized algorithm is the probabilistic primality test of
Figure 1.8. Although a deterministic primality test was recently discovered, the randomized
test is much faster and therefore remains the algorithm of choice. Later in this chapter, in
Section 1.5 (page 35), we discuss hashing, a general randomized data structure that supports
inserts, deletes, and lookups. Again, in practice it leads to faster data access than deterministic
schemes like binary search trees.

There are two varieties of randomized algorithms. Monte Carlo algorithms always run fast
but their output has a small chance of being incorrect; the primality test is an example. Las
Vegas algorithms, on the other hand, always output the correct answer but guarantee a short
running time with high probability. Examples of this are the randomized algorithms for
sorting and median finding described in Chapter 2 (on pages 50 and 53, respectively).

The fastest known algorithm for the minimum cut problem is a randomized Monte Carlo
algorithm, described in the box on page 139. Randomization plays an important role in
heuristics as well; these are described in Section 9.3. And finally the quantum algorithm
for factoring (Section 10.7) works very much like a randomized algorithm, its output being
correct with high probability—except that it draws its randomness not from coin tosses, but
from the superposition principle in quantum mechanics.

Virtual exercises: 1.29, 1.34, 1.46, 2.24, 2.33, 5.35, 9.8, 10.8.

this procedure has at least a 1/n chance of halting. Therefore on average it will halt

within O(n) rounds (Exercise 1.34).

Next, exactly which primality test should be used? In this application, since the

numbers we are testing for primality are chosen at random rather than by an ad-

versary, it is sufficient to perform the Fermat test with base a = 2 (or to be really

safe, a = 2, 3, 5), because for random numbers the Fermat test has a much smaller

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

30 1.4 Cryptography

failure probability than the worst-case 1/2 bound that we proved earlier. Numbers

that pass this test have been jokingly referred to as “industrial grade primes.” The

resulting algorithm is quite fast, generating primes that are hundreds of bits long in

a fraction of a second on a PC.

The important question that remains is: what is the probability that the output of the

algorithm is really prime? To answer this we must first understand how discerning

the Fermat test is. As a concrete example, suppose we perform the test with base a
= 2 for all numbers N ≤ 25 × 109. In this range, there are about 109 primes, and

about 20,000 composites that pass the test (see the following figure). Thus the

chance of erroneously outputting a composite is approximately 20,000/109 = 2 ×
10−5. This chance of error decreases rapidly as the length of the numbers involved

is increased (to the few hundred digits we expect in our applications).

Fermat test
(base a = 2)

Composites

Pass

Fail

≈ 109 primes

≈ 20,000 composites

Before primality test:
all numbers After primality test

Primes

≤ 25×109

1.4 Cryptography
Our next topic, the Rivest-Shamir-Adleman (RSA) cryptosystem, uses all the ideas

we have introduced in this chapter! It derives very strong guarantees of security by

ingeniously exploiting the wide gulf between the polynomial-time computability of

certain number-theoretic tasks (modular exponentiation, greatest common divisor,

primality testing) and the intractability of others (factoring).

The typical setting for cryptography can be described via a cast of three characters:

Alice and Bob, who wish to communicate in private, and Eve, an eavesdropper

who will go to great lengths to find out what they are saying. For concreteness,

let’s say Alice wants to send a specific message x, written in binary (why not),

to her friend Bob. She encodes it as e(x), sends it over, and then Bob applies his

decryption function d(·) to decode it: d(e(x)) = x. Here e(·) and d(·) are appropriate

transformations of the messages.

Alice and Bob are worried that the eavesdropper, Eve, will intercept e(x): for in-

stance, she might be a sniffer on the network. But ideally the encryption function

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 31

Eve

BobAlice

Encoder Decoderx x = d(e(x))
e(x)

e(·) is so chosen that without knowing d(·), Eve cannot do anything with the infor-

mation she has picked up. In other words, knowing e(x) tells her little or nothing

about what x might be.

For centuries, cryptography was based on what we now call private-key protocols.
In such a scheme, Alice and Bob meet beforehand and together choose a secret

codebook, with which they encrypt all future correspondence between them. Eve’s

only hope, then, is to collect some encoded messages and use them to at least

partially figure out the codebook.

Public-key schemes such as RSA are significantly more subtle and tricky: they allow

Alice to send a message to Bob without their ever having met before. Bob’s encryp-

tion function e(·) is publicly available, and Alice can encrypt her message with this

function, thereby digitally locking it.Only Bob knows the key to quickly unlocking

this digital lock: the decryption function d(·). The point is that Alice and Bob need

only perform simple calculations to lock and unlock the message respectively—

operations that any pocket computing device could handle. By contrast, to unlock

the message without the key, Eve must perform operations like factoring large num-

bers, which requires more computational power than would be afforded by the

world’s most powerful computers combined. This compelling guarantee enables

secure Web commerce, such as sending credit card numbers to companies over the

Internet.

1.4.1 Private-key schemes: one-time pad and AES

If Alice wants to transmit an important private message to Bob, it would be wise of

her to scramble it with an encryption function,

e : 〈messages〉 → 〈encoded messages〉.
Of course, this function must be invertible—for decoding to be possible—and is

therefore a bijection. Its inverse is the decryption function d(·).
In the one-time pad, Alice and Bob meet beforehand and secretly choose a bi-

nary string r of the same length—say, n bits—as the important message x that

Alice will later send. Alice’s encryption function is then a bitwise exclusive-or, er (x)

= x ⊕ r : each position in the encoded message is the exclusive-or of the correspond-

ing positions in x and r . For instance, if r = 01110010, then the message 11110000 is

scrambled thus:

er (11110000) = 11110000 ⊕ 01110010 = 10000010.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

32 1.4 Cryptography

This function er is a bijection from n-bit strings to n-bit strings, as evidenced by the

fact that it is its own inverse!

er (er (x)) = (x ⊕ r) ⊕ r = x ⊕ (r ⊕ r) = x ⊕ 0 = x,

where 0 is the string of all zeros. Thus Bob can decode Alice’s transmission by

applying the same encryption function a second time: dr (y) = y ⊕ r .

How should Alice and Bob choose r for this scheme to be secure? Simple: they should

pick r at random, flipping a coin for each bit, so that the resulting string is equally

likely to be any element of {0, 1}n. This will ensure that if Eve intercepts the encoded

message y = er (x), she gets no information about x. Suppose, for example, that Eve

finds out y = 10; what can she deduce? She doesn’t know r , and the possible values

it can take all correspond to different original messages x:

00

01

10

11

x

10

e11

e01

e00

y

e10

So given what Eve knows, all possibilities for x are equally likely!

The downside of the one-time pad is that it has to be discarded after use, hence the

name. A second message encoded with the same pad would not be secure, because

if Eve knew x ⊕ r and z ⊕ r for two messages x and z, then she could take the

exclusive-or to get x ⊕ z, which might be important information—for example, (1)

it reveals whether the two messages begin or end the same, and (2) if one message

contains a long sequence of zeros (as could easily be the case if the message is an

image), then the corresponding part of the other message will be exposed. Therefore

the random string that Alice and Bob share has to be the combined length of all the

messages they will need to exchange.

The one-time pad is a toy cryptographic scheme whose behavior and theoretical

properties are completely clear. At the other end of the spectrum lies the advanced
encryption standard (AES), a very widely used cryptographic protocol that was

approved by the U.S. National Institute of Standards and Technologies in 2001. AES

is once again private-key: Alice and Bob have to agree on a shared random string

r . But this time the string is of a small fixed size, 128 to be precise (variants with

192 or 256 bits also exist), and specifies a bijection er from 128-bit strings to 128-bit

strings. The crucial difference is that this function can be used repeatedly, so for

instance a long message can be encoded by splitting it into segments of 128 bits

and applying er to each segment.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 33

The security of AES has not been rigorously established, but certainly at present

the general public does not know how to break the code—to recover x from er (x)—

except using techniques that are not very much better than the brute-force approach

of trying all possibilities for the shared string r .

1.4.2 RSA

Unlike the previous two protocols, the RSA scheme is an example of public-key
cryptography: anybody can send a message to anybody else using publicly available

information, rather like addresses or phone numbers. Each person has a public

key known to the whole world and a secret key known only to him- or herself.

When Alice wants to send message x to Bob, she encodes it using his public key.

He decrypts it using his secret key, to retrieve x. Eve is welcome to see as many

encrypted messages for Bob as she likes, but she will not be able to decode them,

under certain simple assumptions.

The RSA scheme is based heavily upon number theory. Think of messages from Alice

to Bob as numbers modulo N; messages larger than N can be broken into smaller

pieces. The encryption function will then be a bijection on {0, 1, . . . , N − 1}, and

the decryption function will be its inverse. What values of N are appropriate, and

what bijection should be used?

Property Pick any two primes p and q and let N = pq. For any e relatively prime
to (p − 1)(q − 1):

1. The mapping x �→ xe mod N is a bijection on {0, 1, . . . , N − 1}.
2. Moreover, the inverse mapping is easily realized: let d be the inverse of e modulo

(p − 1)(q − 1). Then for all x ∈ {0, . . . , N − 1},

(xe)d ≡ x mod N.

The first property tells us that the mapping x �→ xe mod N is a reasonable way to

encode messages x; no information is lost. So, if Bob publishes (N, e) as his public
key, everyone else can use it to send him encrypted messages. The second property

then tells us how decryption can be achieved. Bob should retain the value d as

his secret key, with which he can decode all messages that come to him by simply

raising them to the dth power modulo N.

Example. Let N = 55 = 5 · 11. Choose encryption exponent e = 3, which satisfies

the condition gcd(e, (p − 1)(q − 1)) = gcd(3, 40) = 1. The decryption exponent is

then d = 3−1 mod 40 = 27. Now for any message x mod 55, the encryption of x
is y = x3 mod 55, and the decryption of y is x = y27 mod 55. So, for example, if

x = 13, then y = 133 = 52 mod 55 and 13 = 5227 mod 55.

Let’s prove the assertion above and then examine the security of the scheme.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

34 1.4 Cryptography

Proof. If the mapping x �→ xe mod N is invertible, it must be a bijection; hence

statement 2 implies statement 1. To prove statement 2, we start by observing that e is

invertible modulo (p − 1)(q − 1) because it is relatively prime to this number. To see

that (xe)d ≡ x mod N, we examine the exponent: since ed ≡ 1 mod (p − 1)(q − 1),

we can write ed in the form 1 + k(p − 1)(q − 1) for some k. Now we need to show

that the difference

xed − x = x1+k(p−1)(q−1) − x

is always 0 modulo N. The second form of the expression is convenient because

it can be simplified using Fermat’s little theorem. It is divisible by p (since xp−1

≡ 1 mod p) and likewise by q. Since p and q are primes, this expression must also

be divisible by their product N. Hence xed − x = x1+k(p−1)(q−1) − x ≡ 0 (mod N),

exactly as we need.

Figure 1.9 RSA.

Bob chooses his public and secret keys.

� He starts by picking two large (n-bit) random primes p and q.
� His public key is (N, e) where N = pq and e is a 2n-bit number relatively

prime to (p − 1)(q − 1). A common choice is e = 3 because it permits fast

encoding.
� His secret key is d, the inverse of e modulo (p − 1)(q − 1), computed using

the extended Euclid algorithm.

Alice wishes to send message x to Bob.

� She looks up his public key (N, e) and sends him y = (xe mod N), computed

using an efficient modular exponentiation algorithm.
� He decodes the message by computing yd mod N.

The RSA protocol is summarized in Figure 1.9. It is certainly convenient: the com-

putations it requires of Alice and Bob are elementary. But how secure is it against

Eve?

The security of RSA hinges upon a simple assumption:

Given N, e, and y = xe mod N, it is computationally intractable to determine x.

This assumption is quite plausible. How might Eve try to guess x? She could exper-

iment with all possible values of x, each time checking whether xe ≡ y mod N, but

this would take exponential time. Or she could try to factor N to retrieve p and q,

and then figure out d by inverting e modulo (p − 1)(q − 1), but we believe factoring

to be hard. Intractability is normally a source of dismay; the insight of RSA lies in

using it to advantage.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 35

1.5 Universal hashing
We end this chapter with an application of number theory to the design of hash
functions. Hashing is a very useful method of storing data items in a table so as to

support insertions, deletions, and lookups.

Suppose, for instance, that we need to maintain an ever-changing list of about

250 IP (Internet protocol) addresses, perhaps the addresses of the currently active

customers of a Web service. (Recall that an IP address consists of 32 bits encoding

the location of a computer on the Internet, usually shown broken down into four

8-bit fields, for example, 128.32.168.80.) We could obtain fast lookup times if we

maintained the records in an array indexed by IP address. But this would be very

wasteful of memory: the array would have 232 ≈ 4 × 109 entries, the vast majority

of them blank. Or alternatively, we could use a linked list of just the 250 records.

But then accessing records would be very slow, taking time proportional to 250, the

total number of customers. Is there a way to get the best of both worlds, to use an

amount of memory that is proportional to the number of customers and yet also

achieve fast lookup times? This is exactly where hashing comes in.

1.5.1 Hash tables

Here’s a high-level view of hashing. We will give a short “nickname” to each of the

232 possible IP addresses. You can think of this short name as just a number between

1 and 250 (we will later adjust this range very slightly). Thus many IP addresses

will inevitably have the same nickname; however, we hope that most of the 250 IP

addresses of our particular customers are assigned distinct names, and we will store

their records in an array of size 250 indexed by these names. What if there is more

than one record associated with the same name? Easy: each entry of the array points

to a linked list containing all records with that name. So the total amount of storage

is proportional to 250, the number of customers, and is independent of the total

number of possible IP addresses. Moreover, if not too many customer IP addresses

are assigned the same name, lookup is fast, because the average size of the linked

list we have to scan through is small.

But how do we assign a short name to each IP address? This is the role of a hash
function: in our example, a function h that maps IP addresses to positions in a table

of length about 250 (the expected number of data items). The name assigned to an

x

y

z

x y

z

Space of all 232 IP addresses

250 IPs

Hash table

h

of size ≈ 250

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

36 1.5 Universal hashing

IP address x is thus h(x), and the record for x is stored in position h(x) of the table.

As described before, each position of the table is in fact a bucket, a linked list that

contains all current IP addresses that map to it. Hopefully, there will be very few

buckets that contain more than a handful of IP addresses.

1.5.2 Families of hash functions

Designing hash functions is tricky. A hash function must in some sense be “ran-

dom” (so that it scatters data items around), but it should also be a function and

therefore “consistent” (so that we get the same result every time we apply it).

And the statistics of the data items may work against us. In our example, one

possible hash function would map an IP address to the 8-bit number that is its last

segment: h(128.32.168.80) = 80. A table of n = 256 buckets would then be required.

But is this a good hash function? Not if, for example, the last segment of an IP ad-

dress tends to be a small (single- or double-digit) number; then low-numbered

buckets would be crowded. Taking the first segment of the IP address also invites

disaster—for example, if most of our customers come from Asia.

There is nothing inherently wrong with these two functions. If our 250 IP addresses

were uniformly drawn from among all N = 232 possibilities, then these functions

would behave well. The problem is we have no guarantee that the distribution of

IP addresses is uniform.

Conversely, there is no single hash function, no matter how sophisticated, that

behaves well on all sets of data. Since a hash function maps 232 IP addresses to

just 250 names, there must be a collection of at least 232/250 ≈ 224 ≈ 16,000,000 IP

addresses that are assigned the same name (or, in hashing terminology, “collide”).

If many of these show up in our customer set, we’re in trouble.

Obviously, we need some kind of randomization. Here’s an idea: let us pick a

hash function at random from some class of functions. We will then show that, no

matter what set of 250 IP addresses we actually care about, most choices of the

hash function will give very few collisions among these addresses.

To this end, we need to define a class of hash functions from which we can pick

at random; and this is where we turn to number theory. Let us take the number

of buckets to be not 250 but n = 257—a prime number! And we consider every IP

address x as a quadruple x = (x1, . . . , x4) of integers modulo n—recall that it is in

fact a quadruple of integers between 0 and 255, so there is no harm in this. We can

define a function h from IP addresses to a number mod n as follows: fix any four

numbers mod n = 257, say 87, 23, 125, and 4. Now map the IP address (x1, . . . , x4)

to h(x1, . . . , x4) = (87x1 + 23x2 + 125x3 + 4x4) mod 257. Indeed, any four numbers

mod n define a hash function.

For any four coefficients a1, . . . , a4 ∈ {0, 1, . . . , n − 1}, write a = (a1, a2, a3, a4) and

define ha to be the following hash function:

ha(x1, . . . , x4) =
4∑

i=1

ai · xi mod n.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 37

We will show that if we pick these coefficients a at random, then ha is very likely

to be good in the following sense.

Property Consider any pair of distinct IP addresses x = (x1, . . . , x4) and y
= (y1, . . . , y4). If the coefficients a = (a1, a2, a3, a4) are chosen uniformly at random
from {0, 1, . . . , n − 1}, then

Pr {ha(x1, . . . , x4) = ha(y1, . . . , y4)} = 1

n
.

In other words, the chance that x and y collide under ha is the same as it would

be if each were assigned nicknames randomly and independently. This condition

guarantees that the expected lookup time for any item is small. Here’s why. If we

wish to look up x in our hash table, the time required is dominated by the size of

its bucket, that is, the number of items that are assigned the same name as x. But

there are only 250 items in the hash table, and the probability that any one item

gets the same name as x is 1/n = 1/257. Therefore the expected number of items

that are assigned the same name as x by a randomly chosen hash function ha is

250/257 ≈ 1, which means the expected size of x’s bucket is less than 2.1

Let us now prove the preceding property.

Proof. Since x = (x1, . . . , x4) and y = (y1, . . . , y4) are distinct, these quadruples

must differ in some component; without loss of generality let us assume that x4 �= y4.

We wish to compute the probability Pr[ha(x1, . . . , x4) = ha(y1, . . . , y4)], that is, the

probability that
∑4

i=1 ai · xi ≡ ∑4
i=1 ai · yi mod n. This last equation can be rewritten

as

3∑
i=1

ai · (xi − yi) ≡ a4 · (y4 − x4) mod n. (1)

Suppose that we draw a random hash function ha by picking a = (a1, a2, a3, a4) at

random. We start by drawing a1, a2, and a3, and then we pause and think: What

is the probability that the last drawn number a4 is such that equation (1) holds? So

far the left-hand side of equation (1) evaluates to some number, call it c. And since

n is prime and x4 �= y4, (y4 − x4) has a unique inverse modulo n. Thus for equation

(1) to hold, the last number a4 must be precisely c · (y4 − x4)
−1 mod n, out of its n

possible values. The probability of this happening is 1/n, and the proof is complete.

Let us step back and see what we just achieved. Since we have no control over

the set of data items, we decided instead to select a hash function h uniformly at

1When a hash function ha is chosen at random, let the random variable Yi (for i = 1, . . . , 250) be 1 if

item i gets the same name as x and 0 otherwise. So the expected value of Yi is 1/n. Now,

Y = Y1 + Y2 + · · · + Y250 is the number of items which get the same name as x, and by linearity of

expectation, the expected value of Y is simply the sum of the expected values of Y1 through Y250. It is

thus 250/n = 250/257.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

38 Exercises

random from among a family H of hash functions. In our example,

H = {ha : a ∈ {0, . . . , n − 1}4}.

To draw a hash function uniformly at random from this family, we just draw four

numbers a1, . . . , a4 modulo n. (Incidentally, notice that the two simple hash func-

tions we considered earlier, namely, taking the last or the first 8-bit segment, belong

to this class. They are h(0,0,0,1) and h(1,0,0,0), respectively.) And we insisted that the

family have the following property:

For any two distinct data items x and y, exactly |H|/n of all the hash functions
in H map x and y to the same bucket, where n is the number of buckets.

A family of hash functions with this property is called universal. In other words, for

any two data items, the probability these items collide is 1/n if the hash function

is randomly drawn from a universal family. This is also the collision probability if

we map x and y to buckets uniformly at random—in some sense the gold standard

of hashing. We then showed that this property implies that hash table operations

have good performance in expectation.

This idea, motivated as it was by the hypothetical IP address application, can of

course be applied more generally. Start by choosing the table size n to be some

prime number that is a little larger than the number of items expected in the table

(there is usually a prime number close to any number we start with; actually, to

ensure that hash table operations have good performance, it is better to have the

size of the hash table be about twice as large as the number of items). Next assume

that the size of the domain of all data items is N = nk, a power of n (if we need to

overestimate the true number of data items, so be it). Then each data item can be

considered as a k-tuple of integers modulo n, and H = {ha : a ∈ {0, . . . , n − 1}k} is

a universal family of hash functions.

Exercises

1.1. Show that in any base b ≥ 2, the sum of any three single-digit numbers is at

most two digits long.

1.2. Show that any binary integer is at most four times as long as the corresponding

decimal integer. For very large numbers, what is the ratio of these two lengths,

approximately?

1.3. A d-ary tree is a rooted tree in which each node has at most d children. Show

that any d-ary tree with n nodes must have a depth of �(log n/ log d). Can you

give a precise formula for the minimum depth it could possibly have?

1.4. Show that

log(n!) = �(n log n).

(Hint: To show an upper bound, compare n! with nn. To show a lower bound,

compare it with (n/2)n/2.)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 39

1.5. Unlike a decreasing geometric series, the sum of the harmonic series

1, 1/2, 1/3, 1/4, 1/5, . . . diverges; that is,

∞∑
i=1

1

i
= ∞.

It turns out that, for large n, the sum of the first n terms of this series can be well

approximated as

n∑
i=1

1

i
≈ ln n + γ,

where ln is natural logarithm (log base e = 2.718 . . .) and γ is a particular

constant 0.57721 Show that

n∑
i=1

1

i
= �(log n).

(Hint: To show an upper bound, decrease each denominator to the next power

of two. For a lower bound, increase each denominator to the next power of 2.)

1.6. Prove that the grade-school multiplication algorithm (page 13), when applied to

binary numbers, always gives the right answer.

1.7. How long does the recursive multiplication algorithm (page 15) take to multiply

an n-bit number by an m-bit number? Justify your answer.

1.8. Justify the correctness of the recursive division algorithm given in page 15, and

show that it takes time O(n2) on n-bit inputs.

1.9. Starting from the definition of x ≡ y mod N (namely, that N divides x − y),

justify the substitution rule

x ≡ x′ mod N, y ≡ y′ mod N ⇒ x + y ≡ x′ + y′ mod N,

and also the corresponding rule for multiplication.

1.10. Show that if a ≡ b (mod N) and if M divides N then a ≡ b (mod M).

1.11. Is 41536 − 94824 divisible by 35?

1.12. What is 222006

(mod 3)?

1.13. Is the difference of 530,000 and 6123,456 a multiple of 31?

1.14. Suppose you want to compute the nth Fibonacci number Fn, modulo an integer

p. Can you find an efficient way to do this? (Hint: Recall Exercise 0.4.)

1.15. Determine necessary and sufficient conditions on x and c so that the following

holds: for any a, b, if ax ≡ bx mod c, then a ≡ b mod c.

1.16. The algorithm for computing ab mod c by repeated squaring does not necessarily

lead to the minimum number of multiplications. Give an example of b >10

where the exponentiation can be performed using fewer multiplications, by

some other method.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

40 Exercises

1.17. Consider the problem of computing xy for given integers x and y: we want the

whole answer, not modulo a third integer. We know two algorithms for doing

this: the iterative algorithm which performs y − 1 multiplications by x; and the

recursive algorithm based on the binary expansion of y.

Compare the time requirements of these two algorithms, assuming that the time

to multiply an n-bit number by an m-bit number is O(mn).

1.18. Compute gcd(210, 588) two different ways: by finding the factorization of each

number, and by using Euclid’s algorithm.

1.19. The Fibonacci numbers F0, F1, . . . are given by the recurrence Fn+1 = Fn + Fn−1,

F0 = 0, F1 = 1. Show that for any n ≥ 1, gcd(Fn+1, Fn) = 1.

1.20. Find the inverse of: 20 mod 79, 3 mod 62, 21 mod 91, 5 mod 23.

1.21. How many integers modulo 113 have inverses? (Note: 113 = 1331.)

1.22. Prove or disprove: If a has an inverse modulo b, then b has an inverse modulo a.

1.23. Show that if a has a multiplicative inverse modulo N, then this inverse is unique

(modulo N).

1.24. If p is prime, how many elements of {0, 1, . . . , pn − 1} have an inverse modulo

pn?

1.25. Calculate 2125 mod 127 using any method you choose. (Hint: 127 is prime.)

1.26. What is the least significant decimal digit of 171717

? (Hint: For distinct primes

p, q, and any a relatively prime to pq, we proved the formula a(p−1)(q−1) ≡ 1

(mod pq) in Section 1.4.2.)

1.27. Consider an RSA key set with p = 17, q = 23, N = 391, and e = 3 (as in

Figure 1.9). What value of d should be used for the secret key? What is the

encryption of the message M = 41?

1.28. In an RSA cryptosystem, p = 7 and q = 11 (as in Figure 1.9). Find appropriate

exponents d and e.

1.29. Let [m] denote the set {0, 1, . . . , m− 1}. For each of the following families of

hash functions, say whether or not it is universal, and determine how many

random bits are needed to choose a function from the family.

(a) H = {ha1,a2
: a1, a2 ∈ [m]}, where m is a fixed prime and

ha1,a2
(x1, x2) = a1x1 + a2x2 mod m.

Notice that each of these functions has signature ha1,a2
: [m]2 → [m], that

is, it maps a pair of integers in [m] to a single integer in [m].

(b) H is as before, except that now m = 2k is some fixed power of 2.

(c) H is the set of all functions f : [m] → [m− 1].

1.30. The grade-school algorithm for multiplying two n-bit binary numbers x and y

consists of adding together n copies of x, each appropriately left-shifted. Each

copy, when shifted, is at most 2n bits long.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 41

In this problem, we will examine a scheme for adding n binary numbers, each m

bits long, using a circuit or a parallel architecture. The main parameter of interest

in this question is therefore the depth of the circuit or the longest path from the

input to the output of the circuit. This determines the total time taken for

computing the function.

To add two m-bit binary numbers naively, we must wait for the carry bit from

position i − 1 before we can figure out the ith bit of the answer. This leads to a

circuit of depth O(m). However carry lookahead circuits (see wikipedia.com if

you want to know more about this) can add in O(log m) depth.

(a) Assuming you have carry lookahead circuits for addition, show how to

add n numbers each m bits long using a circuit of depth

O((log n)(log m)).

(b) When adding three m-bit binary numbers x + y + z, there is a trick we

can use to parallelize the process. Instead of carrying out the addition

completely, we can re-express the result as the sum of just two binary

numbers r + s, such that the ith bits of r and s can be computed

independently of the other bits. Show how this can be done. (Hint: One

of the numbers represents carry bits.)

(c) Show how to use the trick from the previous part to design a circuit of

depth O(log n) for multiplying two n-bit numbers.

1.31. Consider the problem of computing N! = 1 · 2 · 3 · · · N.

(a) If N is an n-bit number, how many bits long is N!, approximately (in

�(·) form)?

(b) Give an algorithm to compute N! and analyze its running time.

1.32. A positive integer N is a power if it is of the form qk, where q, k are positive

integers and k > 1.

(a) Give an efficient algorithm that takes as input a number N and

determines whether it is a square, that is, whether it can be written as q2

for some positive integer q. What is the running time of your algorithm?

(b) Show that if N = qk (with N, q, and k all positive integers), then either

k ≤ log N or N = 1.

(c) Give an efficient algorithm for determining whether a positive integer N

is a power. Analyze its running time.

1.33. Give an efficient algorithm to compute the least common multiple of two n-bit

numbers x and y, that is, the smallest number divisible by both x and y. What is

the running time of your algorithm as a function of n?

1.34. On page 29, we claimed that since about a 1/n fraction of n-bit numbers are

prime, on average it is sufficient to draw O(n) random n-bit numbers before

hitting a prime. We now justify this rigorously.

Suppose a particular coin has a probability p of coming up heads. How many

times must you toss it, on average, before it comes up heads? (Hint: Method 1:

start by showing that the correct expression is
∑∞

i=1 i(1 − p)i−1 p. Method 2: if E

is the average number of coin tosses, show that E = 1 + (1 − p)E .)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

42 Exercises

1.35. Wilson’s theorem says that a number N is prime if and only if

(N − 1)! ≡ −1 (mod N).

(a) If p is prime, then we know every number 1 ≤ x < p is invertible

modulo p. Which of these numbers are their own inverse?

(b) By pairing up multiplicative inverses, show that (p − 1)! ≡ −1 (mod p)

for prime p.

(c) Show that if N is not prime, then (N − 1)! �≡ −1 (mod N). (Hint:

Consider d = gcd(N, (N − 1)!).)

(d) Unlike Fermat’s Little theorem, Wilson’s theorem is an if-and-only-if

condition for primality. Why can’t we immediately base a primality test

on this rule?

1.36. Square roots. In this problem, we’ll see that it is easy to compute square roots

modulo a prime p with p ≡ 3 (mod 4).

(a) Suppose p ≡ 3 (mod 4). Show that (p + 1)/4 is an integer.

(b) We say x is a square root of a modulo p if a ≡ x2 (mod p). Show that if

p ≡ 3 (mod 4) and if a has a square root modulo p, then a(p+1)/4 is such

a square root.

1.37. The Chinese remainder theorem.

(a) Make a table with three columns. The first column is all numbers from 0

to 14. The second is the residues of these numbers modulo 3; the third

column is the residues modulo 5.

(b) Prove that if p and q are distinct primes, then for every pair (j, k) with

0 ≤ j < p and 0 ≤ k < q, there is a unique integer 0 ≤ i < pq such that

i ≡ j mod p and i ≡ k mod q. (Hint: Prove that no two different i’s in

this range can have the same (j, k), and then count.)

(c) In this one-to-one correspondence between integers and pairs, it is easy

to go from i to (j, k). Prove that the following formula takes you the

other way:

i = { j · q · (q−1 mod p) + k · p · (p−1 mod q)} mod pq.

(d) Can you generalize parts (b) and (c) to more than two primes?

1.38. To see if a number, say 562437487, is divisible by 3, you just add up the digits of

its decimal representation, and see if the result is divisible by 3.

(5 + 6 + 2 + 4 + 3 + 7 + 4 + 8 + 7 = 46, so it is not divisible by 3.)

To see if the same number is divisible by 11, you can do this: subdivide the

number into pairs of digits, from the right-hand end (87, 74, 43, 62, 5), add these

numbers, and see if the sum is divisible by 11 (if it’s too big, repeat).

How about 37? To see if the number is divisible by 37, subdivide it into triples

from the end (487, 437, 562) add these up, and see if the sum is divisible by 37.

This is true for any prime p other than 2 and 5. That is, for any prime p �= 2, 5,

there is an integer r such that in order to see if p divides a decimal

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

Chapter 1 Algorithms 43

number n, we break n into r -tuples of decimal digits (starting from the

right-hand end), add up these r -tuples, and check if the sum is divisible

by p.

(a) What is the smallest such r for p = 13? For p = 17?

(b) Show that r is a divisor of p − 1.

1.39. Give a polynomial-time algorithm for computing abc

mod p, given a, b, c, and

prime p.

1.40. Show that if x is a nontrivial square root of 1 modulo N, that is, if x2 ≡ 1 mod N

but x �≡ ±1 mod N, then N must be composite. (For instance, 42 ≡ 1 mod 15 but

4 �≡ ±1 mod 15; thus 4 is a nontrivial square root of 1 modulo 15.)

1.41. Quadratic residues. Fix a positive integer N. We say that a is a quadratic residue

modulo N if there exists x such that a ≡ x2 mod N.

(a) Let N be an odd prime and a be a non-zero quadratic residue modulo N.

Show that there are exactly two values in {0, 1, . . . , N − 1} satisfying

x2 ≡ a mod N.

(b) Show that if N is an odd prime, there are exactly (N + 1)/2 quadratic

residues in {0, 1, . . . , N − 1}.
(c) Give an example of positive integers a and N such that x2 ≡ a mod N

has more than two solutions in {0, 1, . . . , N − 1}.
1.42. Suppose that instead of using a composite N = pq in the RSA cryptosystem

(Figure 1.9), we simply use a prime modulus p. As in RSA, we would have an

encryption exponent e, and the encryption of a message m mod p would be

me mod p. Prove that this new cryptosystem is not secure, by giving an efficient

algorithm to decrypt: that is, an algorithm that given p, e, and me mod p as

input, computes m mod p. Justify the correctness and analyze the running time

of your decryption algorithm.

1.43. In the RSA cryptosystem, Alice’s public key (N, e) is available to everyone.

Suppose that her private key d is compromised and becomes known to Eve.

Show that if e = 3 (a common choice) then Eve can efficiently factor N.

1.44. Alice and her three friends are all users of the RSA cryptosystem. Her friends

have public keys (Ni , ei = 3), i = 1, 2, 3, where as always, Ni = piqi for

randomly chosen n-bit primes pi , qi . Show that if Alice sends the same n-bit

message M (encrypted using RSA) to each of her friends, then anyone who

intercepts all three encrypted messages will be able to efficiently recover M.

(Hint: It helps to have solved problem 1.37 first.)

1.45. RSA and digital signatures. Recall that in the RSA public-key cryptosystem, each

user has a public key P = (N, e) and a secret key d. In a digital signature

scheme, there are two algorithms, sign and verify. The sign procedure takes

a message and a secret key, then outputs a signature σ . The verify procedure

takes a public key (N, e), a signature σ , and a message M, then returns “true” if

σ could have been created by sign (when called with message M and the secret

key corresponding to the public key (N, e)); “false” otherwise.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch01 GTBL020-Dasgupta-v10 August 9, 2006 18:57

44 Exercises

(a) Why would we want digital signatures?

(b) An RSA signature consists of sign(M, d) = Md (mod N), where d is a

secret key and N is part of the public key. Show that anyone who knows

the public key (N, e) can perform verify((N, e), Md, M), i.e., they can

check that a signature really was created by the private key. Give an

implementation and prove its correctness.

(c) Generate your own RSA modulus N = pq, public key e, and private key

d (you don’t need to use a computer). Pick p and q so you have a 4-digit

modulus and work by hand. Now sign your name using the private

exponent of this RSA modulus. To do this you will need to specify some

one-to-one mapping from strings to integers in [0, N − 1]. Specify any

mapping you like. Give the mapping from your name to numbers

m1, m2, . . . mk, then sign the first number by giving the value md
1

(mod N), and finally show that (md
1)e = m1 (mod N).

(d) Alice wants to write a message that looks like it was digitally signed by

Bob. She notices that Bob’s public RSA key is (17, 391). To what

exponent should she raise her message?

1.46. Digital signatures, continued. Consider the signature scheme of Exercise 1.45.

(a) Signing involves decryption, and is therefore risky. Show that if Bob

agrees to sign anything he is asked to, Eve can take advantage of this and

decrypt any message sent by Alice to Bob.

(b) Suppose that Bob is more careful, and refuses to sign messages if their

signatures look suspiciously like text. (We assume that a randomly

chosen message—that is, a random number in the range

{1, . . . , N − 1}—is very unlikely to look like text.) Describe a way in

which Eve can nevertheless still decrypt messages from Alice to Bob, by

getting Bob to sign messages whose signatures look random.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2

Divide-and-conquer algorithms

The divide-and-conquer strategy solves a problem by:

1. Breaking it into subproblems that are themselves smaller instances of the

same type of problem

2. Recursively solving these subproblems

3. Appropriately combining their answers

The real work is done piecemeal, in three different places: in the partitioning of

problems into subproblems; at the very tail end of the recursion, when the sub-

problems are so small that they are solved outright; and in the gluing together of

partial answers. These are held together and coordinated by the algorithm’s core

recursive structure.

As an introductory example, we’ll see how this technique yields a new algorithm

for multiplying numbers, one that is much more efficient than the method we all

learned in elementary school!

2.1 Multiplication
The mathematician Carl Friedrich Gauss (1777–1855) once noticed that although

the product of two complex numbers

(a + bi)(c + di) = ac − bd + (bc + ad)i

seems to involve four real-number multiplications, it can in fact be done with just

three: ac, bd, and (a + b)(c + d), since

bc + ad = (a + b)(c + d) − ac − bd.

In our big-O way of thinking, reducing the number of multiplications from four to

three seems wasted ingenuity. But this modest improvement becomes very signifi-

cant when applied recursively.

Let’s move away from complex numbers and see how this helps with regular mul-

tiplication. Suppose x and y are two n-bit integers, and assume for convenience

that n is a power of 2 (the more general case is hardly any different). As a first step

toward multiplying x and y, split each of them into their left and right halves, which

45

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

46 2.1 Multiplication

c© Corbis

Carl Friedrich Gauss

1777–1855

are n/2 bits long:

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR.

For instance, if x = 101101102 (the subscript 2 means “binary”) then xL = 10112,

xR = 01102, and x = 10112 × 24 + 01102. The product of x and y can then be re-

written as

xy = (2n/2xL + xR)(2
n/2yL + yR) = 2n xL yL + 2n/2 (xL yR + xR yL) + xR yR.

We will compute xy via the expression on the right. The additions take linear time, as

do the multiplications by powers of 2 (which are merely left-shifts). The significant

operations are the four n/2-bit multiplications, xL yL, xL yR, xR yL, xR yR; these we can

handle by four recursive calls. Thus our method for multiplying n-bit numbers

starts by making recursive calls to multiply these four pairs of n/2-bit numbers

(four subproblems of half the size), and then evaluates the preceding expression

in O(n) time. Writing T(n) for the overall running time on n-bit inputs, we get the

recurrence relation

T(n) = 4T(n/2) + O(n).

We will soon see general strategies for solving such equations. In the meantime,

this particular one works out to O(n2), the same running time as the traditional

grade-school multiplication technique. So we have a radically new algorithm, but

we haven’t yet made any progress in efficiency. How can our method be sped up?

This is where Gauss’s trick comes to mind. Although the expression for xy seems

to demand four n/2-bit multiplications, as before just three will do: xL yL, xR yR, and

(xL + xR)(yL + yR), since xL yR + xR yL = (xL + xR)(yL + yR) − xL yL − xR yR. The resulting

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 47

Figure 2.1 A divide-and-conquer algorithm for integer multiplication.

function multiply(x, y)

Input: n-bit positive integers x and y
Output: Their product

if n = 1: return xy

xL, xR = leftmost �n/2�, rightmost �n/2� bits of x
yL, yR = leftmost �n/2�, rightmost �n/2� bits of y

P1 = multiply(xL, yL)

P2 = multiply(xR, yR)

P3 = multiply(xL + xR, yL + yR)

return P1 × 2n + (P3 − P1 − P2) × 2n/2 + P2

algorithm, shown in Figure 2.1, has an improved running time of1

T(n) = 3T(n/2) + O(n).

The point is that now the constant factor improvement, from 4 to 3, occurs at every
level of the recursion, and this compounding effect leads to a dramatically lower

time bound of O(n1.59).

This running time can be derived by looking at the algorithm’s pattern of recursive

calls, which form a tree structure, as in Figure 2.2. Let’s try to understand the shape

of this tree. At each successive level of recursion the subproblems get halved in size.

At the (log2 n)th level, the subproblems get down to size 1, and so the recursion ends.

Therefore, the height of the tree is log2 n. The branching factor is 3—each problem

recursively produces three smaller ones—with the result that at depth k in the tree

there are 3k subproblems, each of size n/2k.

For each subproblem, a linear amount of work is done in identifying further sub-

problems and combining their answers. Therefore the total time spent at depth k in

the tree is

3k × O
(n

2k

)
=

(
3

2

)k

× O(n).

1Actually, the recurrence should read

T(n) ≤ 3T(n/2 + 1) + O(n)

since the numbers (xL + xR) and (yL + yR) could be n/2 + 1 bits long. The one we’re using is simpler to

deal with and can be seen to imply exactly the same big-O running time.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

48 2.1 Multiplication

Figure 2.2 Divide-and-conquer integer multiplication. (a) Each problem is
divided into three subproblems. (b) The levels of recursion.

(a)

10110010× 01100011

1011 × 0110 0010 × 0011 1101 × 1001

(b)

2

11 1

2

11 1

2

11 1

2

11 1

Size n

Size n/2

· · · · · ·

log n
levels

Size n/4

At the very top level, when k = 0, this works out to O(n). At the bottom, when

k = log2 n, it is O(3log2 n), which can be rewritten as O(nlog2 3) (do you see why?).

Between these two endpoints, the work done increases geometrically from O(n) to

O(nlog2 3), by a factor of 3/2 per level. The sum of any increasing geometric series

is, within a constant factor, simply the last term of the series: such is the rapidity of

the increase (Exercise 0.2). Therefore the overall running time is O(nlog2 3), which

is about O(n1.59).

In the absence of Gauss’s trick, the recursion tree would have the same height, but

the branching factor would be 4. There would be 4log2 n = n2 leaves, and therefore

the running time would be at least this much. In divide-and-conquer algorithms, the

number of subproblems translates into the branching factor of the recursion tree;

small changes in this coefficient can have a big impact on running time.

A practical note: it generally does not make sense to recurse all the way down to 1 bit.

For most processors, 16- or 32-bit multiplication is a single operation, so by the time

the numbers get into this range they should be handed over to the built-in procedure.

Finally, the eternal question: Can we do better? It turns out that even faster al-

gorithms for multiplying numbers exist, based on another important divide-and-

conquer algorithm: the fast Fourier transform, to be explained in Section 2.6.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 49

2.2 Recurrence relations
Divide-and-conquer algorithms often follow a generic pattern: they tackle a problem

of size n by recursively solving, say, a subproblems of size n/b and then combining

these answers in O(nd) time, for some a, b, d > 0 (in the multiplication algorithm,

a = 3, b = 2, and d = 1). Their running time can therefore be captured by the equa-

tion T(n) = aT(�n/b�) + O(nd). We next derive a closed-form solution to this gen-

eral recurrence so that we no longer have to solve it explicitly in each new instance.

Master theorem2 If T(n) = aT(�n/b�) + O(nd) for some constants a > 0, b > 1,
and d ≥ 0, then

T(n) =
⎧⎨
⎩

O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a.

This single theorem tells us the running times of most of the divide-and-conquer

procedures we are likely to use.

Proof. To prove the claim, let’s start by assuming for the sake of convenience

that n is a power of b. This will not influence the final bound in any important

way—after all, n is at most a multiplicative factor of b away from some power of b
(Exercise 2.2)—and it will allow us to ignore the rounding effect in �n/b�.
Next, notice that the size of the subproblems decreases by a factor of b with each

level of recursion, and therefore reaches the base case after logb n levels. This is the

height of the recursion tree. Its branching factor is a, so the kth level of the tree is

made up of ak subproblems, each of size n/bk (Figure 2.3). The total work done at

this level is

ak × O
(n

bk

)d

= O(nd) ×
(a

bd

)k

.

As k goes from 0 (the root) to logb n (the leaves), these numbers form a geometric

series with ratio a/bd. Finding the sum of such a series in big-O notation is easy

(Exercise 0.2), and comes down to three cases.

1. The ratio is less than 1.

Then the series is decreasing, and its sum is just given by its first term, O(nd).

2. The ratio is greater than 1.

The series is increasing and its sum is given by its last term, O(nlogb a):

nd
(a

bd

)logb n

= nd

(
alogb n

(blogb n)d

)
= alogb n = a(loga n)(logb a) = nlogb a.

3. The ratio is exactly 1.

In this case all O(log n) terms of the series are equal to O(nd).

These cases translate directly into the three contingencies in the theorem statement.

2There are even more general results of this type, but we will not be needing them.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

50 2.3 Mergesort

Binary search

The ultimate divide-and-conquer algorithm is, of course, binary search: to find a key k in a
large file containing keys z[0, 1, . . . , n − 1] in sorted order, we first compare k with z[n/2],
and depending on the result we recurse either on the first half of the file, z[0, . . . , n/2 − 1],
or on the second half, z[n/2, . . . , n − 1]. The recurrence now is T(n) = T(�n/2�) + O(1),
which is the case a = 1, b = 2, d = 0. Plugging into our master theorem we get the familiar
solution: a running time of just O(log n).

Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.

Size 1

Size n/b2

Size n/b

Size n

Depth
logb n

Width alogb n = nlogb a

Branching factor a

2.3 Mergesort
The problem of sorting a list of numbers lends itself immediately to a divide-and-

conquer strategy: split the list into two halves, recursively sort each half, and then

merge the two sorted sublists.

function mergesort(a[1 . . . n])

Input: An array of numbers a[1 . . . n]

Output: A sorted version of this array

if n > 1:
return merge(mergesort(a[1 . . . �n/2�]),

mergesort(a[�n/2� + 1 . . . n]))
else:

return a

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 51

The correctness of this algorithm is self-evident, as long as a correct merge sub-

routine is specified. If we are given two sorted arrays x[1 . . . k] and y[1 . . . l], how

do we efficiently merge them into a single sorted array z[1 . . . k + l]? Well, the very

first element of z is either x[1] or y[1], whichever is smaller. The rest of z[·] can

then be constructed recursively.

function merge(x[1 . . . k], y[1 . . . l])

if k = 0: return y[1 . . . l]
if l = 0: return x[1 . . . k]

if x[1] ≤ y[1]:
return x[1] ◦ merge(x[2 . . . k], y[1 . . . l])

else:
return y[1] ◦ merge(x[1 . . . k], y[2 . . . l])

Here ◦ denotes concatenation. This merge procedure does a constant amount of

work per recursive call (provided the required array space is allocated in advance),

for a total running time of O(k + l). Thus merge’s are linear, and the overall time

taken by mergesort is

T(n) = 2T(n/2) + O(n),

or O(n log n).

Looking back at the mergesort algorithm, we see that all the real work is done in

merging, which doesn’t start until the recursion gets down to singleton arrays. The

singletons are merged in pairs, to yield arrays with two elements. Then pairs of these

2-tuples are merged, producing 4-tuples, and so on. Figure 2.4 shows an example.

This viewpoint also suggests how mergesort might be made iterative. At any

given moment, there is a set of “active” arrays—initially, the singletons—which are

merged in pairs to give the next batch of active arrays. These arrays can be organized

in a queue, and processed by repeatedly removing two arrays from the front of the

queue, merging them, and putting the result at the end of the queue.

In the following pseudocode, the primitive operation inject adds an element to

the end of the queue while eject removes and returns the element at the front of

the queue.

function iterative-mergesort(a[1 . . . n])
Input: elements a1, a2, . . . , an to be sorted

Q = [] (empty queue)
for i = 1 to n:

inject(Q, [ai])

while |Q| > 1:
inject(Q,merge(eject(Q),eject(Q)))

return eject(Q)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

52 2.3 Mergesort

Figure 2.4 The sequence of merge operations in mergesort.

2 3 10 1 6 7 135

102 53 137 1 6

2 5 3 7 13 1 610

Input: 10 2 3 1135 7 6

1 6 10 133 52 7

An n log n lower bound for sorting

Sorting algorithms can be depicted as trees. The one in the following figure sorts an array of
three elements, a1, a2, a3. It starts by comparing a1 to a2 and, if the first is larger, compares
it with a3; otherwise it compares a2 and a3. And so on. Eventually we end up at a leaf, and
this leaf is labeled with the true order of the three elements as a permutation of 1, 2, 3. For
example, if a2 < a1 < a3, we get the leaf labeled “2 1 3.”

3 2 1

Yes

a2 < a3?

a1 < a2?

a1 < a3?

a2 < a3? a1 < a3?

2 3 1

2 1 3

3 1 2 1 3 2

1 2 3

No

The depth of the tree—the number of comparisons on the longest path from root to leaf,
in this case 3—is exactly the worst-case time complexity of the algorithm.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 53

An n log n lower bound for sorting (continued)

This way of looking at sorting algorithms is useful because it allows one to argue that
mergesort is optimal, in the sense that �(n log n) comparisons are necessary for sorting n
elements.

Here is the argument: Consider any such tree that sorts an array of n elements. Each of its
leaves is labeled by a permutation of {1, 2, . . . , n}. In fact, every permutation must appear
as the label of a leaf. The reason is simple: if a particular permutation is missing, what
happens if we feed the algorithm an input ordered according to this same permutation?
And since there are n! permutations of n elements, it follows that the tree has at least n! leaves.

We are almost done: This is a binary tree, and we argued that it has at least n! leaves.
Recall now that a binary tree of depth d has at most 2d leaves (proof: an easy induction on
d). So, the depth of our tree—and the complexity of our algorithm—must be at least log(n!).

And it is well known that log(n!) ≥ c · n log n for some c > 0. There are many ways to see
this. The easiest is to notice that n! ≥ (n/2)(n/2) because n! = 1 · 2 · · · · · n contains at least
n/2 factors larger than n/2; and to then take logs of both sides. Another is to recall Stirling’s
formula

n! ≈
√

π

(
2n + 1

3

)
· nn · e −n .

Either way, we have established that any comparison tree that sorts n elements must make,
in the worst case, �(n log n) comparisons, and hence mergesort is optimal!
Well, there is some fine print: this neat argument applies only to algorithms that use compar-
isons. Is it conceivable that there are alternative sorting strategies, perhaps using sophisticated
numerical manipulations, that work in linear time? The answer is yes, under certain excep-
tional circumstances: the canonical such example is when the elements to be sorted are
integers that lie in a small range (Exercise 2.20).

2.4 Medians
The median of a list of numbers is its 50th percentile: half the numbers are bigger

than it, and half are smaller. For instance, the median of [45, 1, 10, 30, 25] is 25,

since this is the middle element when the numbers are arranged in order. If the list

has even length, there are two choices for what the middle element could be, in

which case we pick the smaller of the two, say.

The purpose of the median is to summarize a set of numbers by a single, typical

value. The mean, or average, is also very commonly used for this, but the median

is in a sense more typical of the data: it is always one of the data values, unlike

the mean, and it is less sensitive to outliers. For instance, the median of a list of a

hundred 1’s is (rightly) 1, as is the mean. However, if just one of these numbers gets

accidentally corrupted to 10,000, the mean shoots up above 100, while the median

is unaffected.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

54 2.4 Medians

Computing the median of n numbers is easy: just sort them. The drawback is that

this takes O(n log n) time, whereas we would ideally like something linear. We have

reason to be hopeful, because sorting is doing far more work than we really need—

we just want the middle element and don’t care about the relative ordering of the

rest of them.

When looking for a recursive solution, it is paradoxically often easier to work with

a more general version of the problem—for the simple reason that this gives a more

powerful step to recurse upon. In our case, the generalization we will consider is

selection.

Selection

Input: A list of numbers S; an integer k

Output: The kth smallest element of S

For instance, if k = 1, the minimum of S is sought, whereas if k = �|S|/2�, it is the

median.

A randomized divide-and-conquer algorithm for selection

Here’s a divide-and-conquer approach to selection. For any number v, imagine

splitting list S into three categories: elements smaller than v, those equal to v (there

might be duplicates), and those greater than v. Call these SL , Sv, and SR respectively.

For instance, if the array

S : 2 36 5 21 8 13 11 20 5 4 1

is split on v = 5, the three subarrays generated are

SL : 2 4 1 Sv : 5 5 SR : 36 21 8 13 11 20 .

The search can instantly be narrowed down to one of these sublists. If we want, say,

the eighth-smallest element of S, we know it must be the third-smallest element of

SR since |SL | + |Sv| = 5. That is, selection(S, 8) = selection(SR, 3). More generally,

by checking k against the sizes of the subarrays, we can quickly determine which

of them holds the desired element:

selection(S, k) =

⎧⎪⎪⎨
⎪⎪⎩

selection(SL , k) if k ≤ |SL |
v if |SL | < k ≤ |SL | + |Sv |
selection(SR , k − |SL | − |Sv |) if k > |SL | + |Sv |.

The three sublists SL , Sv, and SR can be computed from S in linear time; in fact,

this computation can even be done in place, that is, without allocating new memory

(Exercise 2.15). We then recurse on the appropriate sublist. The effect of the split

is thus to shrink the number of elements from |S| to at most max{|SL |, |SR |}.
Our divide-and-conquer algorithm for selection is now fully specified, except for the

crucial detail of how to choose v. It should be picked quickly, and it should shrink

the array substantially, the ideal situation being |SL |, |SR | ≈ 1
2
|S|. If we could always

guarantee this situation, we would get a running time of

T(n) = T(n/2) + O(n),

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 55

which is linear as desired. But this requires picking v to be the median, which is our

ultimate goal! Instead, we follow a much simpler alternative: we pick v randomly
from S.

Efficiency analysis

Naturally, the running time of our algorithm depends on the random choices of v.

It is possible that due to persistent bad luck we keep picking v to be the largest

element of the array (or the smallest element), and thereby shrink the array by only

one element each time. In the earlier example, we might first pick v = 36, then

v = 21, and so on. This worst-case scenario would force our selection algorithm to

perform

n + (n − 1) + (n − 2) + · · · + n

2
= �(n2)

operations (when computing the median), but it is extremely unlikely to occur.

Equally unlikely is the best possible case we discussed before, in which each ran-

domly chosen v just happens to split the array perfectly in half, resulting in a running

time of O(n). Where, in this spectrum from O(n) to �(n2), does the average running

time lie? Fortunately, it lies very close to the best-case time.

To distinguish between lucky and unlucky choices of v, we will call v good if it

lies within the 25th to 75th percentile of the array that it is chosen from. We like

these choices of v because they ensure that the sublists SL and SR have size at most

three-fourths that of S (do you see why?), so that the array shrinks substantially.

Fortunately, good v’s are abundant: half the elements of any list must fall between

the 25th to 75th percentile!

Given that a randomly chosen v has a 50% chance of being good, how many v’s

do we need to pick on average before getting a good one? Here’s a more familiar

reformulation (see also Exercise 1.34):

Lemma On average a fair coin needs to be tossed two times before a “heads” is
seen.

Proof. Let E be the expected number of tosses before a heads is seen. We certainly

need at least one toss, and if it’s heads, we’re done. If it’s tails (which occurs with

probability 1/2), we need to repeat. Hence E = 1 + 1
2
E , which works out to E = 2.

Therefore, after two split operations on average, the array will shrink to at most

three-fourths of its size. Letting T(n) be the expected running time on an array of

size n, we get

T(n) ≤ T(3n/4) + O(n).

This follows by taking expected values of both sides of the following statement:

Time taken on an array of size n

≤ (time taken on an array of size 3n/4) + (time to reduce array size to ≤ 3n/4),

and, for the right-hand side, using the familiar property that the expectation of the
sum is the sum of the expectations.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

56 2.5 Matrix multiplication

The unix Sort command

Comparing the algorithms for sorting and median-finding we notice that, beyond the
common divide-and-conquer philosophy and structure, they are exact opposites. Mergesort
splits the array in two in the most convenient way (first half, second half), without
any regard to the magnitudes of the elements in each half; but then it works hard to
put the sorted subarrays together. In contrast, the median algorithm is careful about its
splitting (smaller numbers first, then the larger ones), but its work ends with the recursive call.

Quicksort is a sorting algorithm that splits the array in exactly the same way as the median
algorithm; and once the subarrays are sorted, by two recursive calls, there is nothing more to
do. Its worst-case performance is �(n2), like that of median-finding. But it can be proved
(Exercise 2.24) that its average case is O(n log n); furthermore, empirically it outperforms
other sorting algorithms. This has made quicksort a favorite in many applications—for
instance, it is the basis of the code by which really enormous files are sorted.

From this recurrence we conclude that T(n) = O(n): on any input, our algorithm

returns the correct answer after a linear number of steps, on the average.

2.5 Matrix multiplication
The product of two n × n matrices X and Y is a third n × n matrix Z = XY, with

(i, j)th entry

Zi j =
n∑

k=1

XikYkj .

To make it more visual, Zi j is the dot product of the ith row of X with the j th
column of Y:

X ZY

i

j

(i, j)× =

In general, XY is not the same as YX; matrix multiplication is not commutative.

The preceding formula implies an O(n3) algorithm for matrix multiplication: there

are n2 entries to be computed, and each takes O(n) time. For quite a while, this was

widely believed to be the best running time possible, and it was even proved that

in certain models of computation no algorithm could do better. It was therefore a

source of great excitement when in 1969, the German mathematician Volker Strassen

announced a significantly more efficient algorithm, based upon divide-and-conquer.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 57

Matrix multiplication is particularly easy to break into subproblems, because it can

be performed blockwise. To see what this means, carve X into four n/2 × n/2 blocks,

and also Y:

X =
[

A B
C D

]
, Y =

[
E F
G H

]
.

Then their product can be expressed in terms of these blocks and is exactly as if the

blocks were single elements (Exercise 2.11).

XY =
[

A B
C D

] [
E F
G H

]
=

[
AE + BG AF + B H
C E + DG C F + DH

]

We now have a divide-and-conquer strategy: to compute the size-n product XY,

recursively compute eight size-n/2 products AE , BG , AF , B H, C E , DG , C F , DH ,

and then do a few O(n2)-time additions. The total running time is described by the

recurrence relation

T(n) = 8T(n/2) + O(n2).

This comes out to an unimpressive O(n3), the same as for the default algorithm. But

the efficiency can be further improved, and as with integer multiplication, the key

is some clever algebra. It turns out XY can be computed from just seven n/2 × n/2

subproblems, via a decomposition so tricky and intricate that one wonders how

Strassen was ever able to discover it!

XY =
[

P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

]

where

P1 = A(F − H)

P2 = (A+ B)H

P3 = (C + D)E

P4 = D(G − E)

P5 = (A+ D)(E + H)

P6 = (B − D)(G + H)

P7 = (A− C)(E + F)

The new running time is

T(n) = 7T(n/2) + O(n2),

which by the master theorem works out to O(nlog2 7) ≈ O(n2.81).

2.6 The fast Fourier transform
We have so far seen how divide-and-conquer gives fast algorithms for multiplying

integers and matrices; our next target is polynomials. The product of two degree-d
polynomials is a polynomial of degree 2d, for example:

(1 + 2x + 3x2) · (2 + x + 4x2) = 2 + 5x + 12x2 + 11x3 + 12x4.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

58 2.6 The fast Fourier transform

More generally, if A(x) = a0 + a1x + · · · + adxd and B(x) = b0 + b1x + · · · + bdxd,

their product C (x) = A(x) · B(x) = c0 + c1x + · · · + c2dx2d has coefficients

ck = a0bk + a1bk−1 + · · · + akb0 =
k∑

i=0

aibk−i

(for i > d, take ai and bi to be zero). Computing ck from this formula takes O(k)

steps, and finding all 2d + 1 coefficients would therefore seem to require �(d2)

time. Can we possibly multiply polynomials faster than this?

The solution we will develop, the fast Fourier transform, has revolutionized—

indeed, defined—the field of signal processing (see the following box). Because

of its huge importance, and its wealth of insights from different fields of study, we

will approach it a little more leisurely than usual. The reader who wants just the

core algorithm can skip directly to Section 2.6.4.

2.6.1 An alternative representation of polynomials

To arrive at a fast algorithm for polynomial multiplication we take inspiration from

an important property of polynomials.

Fact A degree-d polynomial is uniquely characterized by its values at any d + 1

distinct points.

A familiar instance of this is that “any two points determine a line.” We will later

see why the more general statement is true (page 64), but for the time being it gives

us an alternative representation of polynomials. Fix any distinct points x0, . . . , xd.

We can specify a degree-d polynomial A(x) = a0 + a1x + · · · + adxd by either one

of the following:

1. Its coefficients a0, a1, . . . , ad

2. The values A(x0), A(x1), . . . , A(xd)

Of these two representations, the second is the more attractive for polynomial mul-

tiplication. Since the product C (x) has degree 2d, it is completely determined by

its value at any 2d + 1 points. And its value at any given point z is easy enough to

figure out, just A(z) times B(z). Thus polynomial multiplication takes linear time
in the value representation.

The problem is that we expect the input polynomials, and also their product, to be

specified by coefficients. So we need to first translate from coefficients to values—

which is just a matter of evaluating the polynomial at the chosen points—then

multiply in the value representation, and finally translate back to coefficients, a

process called interpolation.

Interpolation

Coefficient representation
a0, a1, . . . , ad

Value representation
A(x0),A(x1), . . . ,A(xd)

Evaluation

Figure 2.5 presents the resulting algorithm.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 59

Why multiply polynomials?

For one thing, it turns out that the fastest algorithms we have for multiplying integers rely
heavily on polynomial multiplication; after all, polynomials and binary integers are quite
similar—just replace the variable x by the base 2, and watch out for carries. But perhaps
more importantly, multiplying polynomials is crucial for signal processing.

A signal is any quantity that is a function of time (as in Figure (a)) or of position. It might,
for instance, capture a human voice by measuring fluctuations in air pressure close to the
speaker’s mouth, or alternatively, the pattern of stars in the night sky, by measuring brightness
as a function of angle.

a(t)

t

a(t)

t t

δ(t)

(a) (b) (c)

In order to extract information from a signal, we need to first digitize it by sampling
(Figure (b))—and, then, to put it through a system that will transform it in some way. The
output is called the response of the system:

signal −→ SYSTEM −→ response.

An important class of systems are those that are linear—the response to the sum of two signals
is just the sum of their individual responses—and time invariant—shifting the input signal
by time t produces the same output, also shifted by t . Any system with these properties
is completely characterized by its response to the simplest possible input signal: the unit
impulse δ(t), consisting solely of a “jerk” at t = 0 (Figure (c)). To see this, first consider the
close relative δ(t − i), a shifted impulse in which the jerk occurs at time i . Any signal a (t)
can be expressed as a linear combination of these, letting δ(t − i) pick out its behavior at
time i ,

a (t) =
T−1∑
i=0

a (i)δ(t − i)

(if the signal consists of T samples). By linearity, the system response to input a (t) is
determined by the responses to the various δ(t − i). And by time invariance, these are in
turn just shifted copies of the impulse response b(t), the response to δ(t).

In other words, the output of the system at time k is

c (k) =
k∑

i=0

a (i)b(k − i),

exactly the formula for polynomial multiplication!

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

60 2.6 The fast Fourier transform

Figure 2.5 Polynomial multiplication

Input: Coefficients of two polynomials, A(x) and B(x), of
degree d

Output: Their product C = A · B

Selection

Pick some points x0, x1, . . . , xn−1, where n ≥ 2d + 1

Evaluation

Compute A(x0), A(x1), . . . , A(xn−1) and B(x0), B(x1), . . . , B(xn−1)

Multiplication

Compute C (xk) = A(xk)B(xk) for all k = 0, . . . , n − 1

Interpolation

Recover C (x) = c0 + c1x + · · · + c2dx2d

The equivalence of the two polynomial representations makes it clear that this

high-level approach is correct, but how efficient is it? Certainly the selection step

and the n multiplications are no trouble at all, just linear time.3 But (leaving aside

interpolation, about which we know even less) how about evaluation? Evaluating a

polynomial of degree d ≤ n at a single point takes O(n) steps (Exercise 2.29), and

so the baseline for n points is �(n2). We’ll now see that the fast Fourier transform

(FFT) does it in just O(n log n) time, for a particularly clever choice of x0, . . . , xn−1 in

which the computations required by the individual points overlap with one another

and can be shared.

2.6.2 Evaluation by divide-and-conquer

Here’s an idea for how to pick the n points at which to evaluate a polynomial A(x)

of degree ≤ n − 1. If we choose them to be positive-negative pairs, that is,

±x0, ±x1, . . . , ±xn/2−1,

then the computations required for each A(xi) and A(−xi) overlap a lot, because

the even powers of xi coincide with those of −xi .

To investigate this, we need to split A(x) into its odd and even powers, for instance

3 + 4x + 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4).

Notice that the terms in parentheses are polynomials in x2. More generally,

A(x) = Ae(x
2) + xAo(x

2),

3In a typical setting for polynomial multiplication, the coefficients of the polynomials are real numbers

and, moreover, are small enough that basic arithmetic operations (adding and multiplying) take unit

time. We will assume this to be the case without any great loss of generality; in particular, the time

bounds we obtain are easily adjustable to situations with larger numbers.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 61

where Ae(·), with the even-numbered coefficients, and Ao(·), with the odd-

numbered coefficients, are polynomials of degree ≤ n/2 − 1 (assume for conve-

nience that n is even). Given paired points ±xi , the calculations needed for A(xi)

can be recycled toward computing A(−xi):

A(xi) = Ae(x
2
i) + xi Ao(x

2
i)

A(−xi) = Ae(x
2
i) − xi Ao(x

2
i).

In other words, evaluating A(x) at n paired points ±x0, . . . , ±xn/2−1 reduces to

evaluating Ae(x) and Ao(x) (which each have half the degree of A(x)) at just n/2

points, x2
0 , . . . , x2

n/2−1.

Evaluate:
A(x)
degree ≤ n− 1

Ae(x) and Ao(x)
degree ≤ n/2 − 1

at:

at: −x0 +x1 −x1 · · ·

· · ·x2
0

−xn/2−1+xn/2−1

x2
1 x2

n/2−1

+x0

Equivalently,
evaluate:

The original problem of size n is in this way recast as two subproblems of size

n/2, followed by some linear-time arithmetic. If we could recurse, we would get a

divide-and-conquer procedure with running time

T(n) = 2T(n/2) + O(n),

which is O(n log n), exactly what we want.

But we have a problem: The plus-minus trick only works at the top level of the recur-

sion. To recurse at the next level, we need the n/2 evaluation points x2
0 , x2

1 , . . . , x2
n/2−1

to be themselves plus-minus pairs. But how can a square be negative? The task seems

impossible! Unless, of course, we use complex numbers.

Fine, but which complex numbers? To figure this out, let us “reverse engineer” the

process. At the very bottom of the recursion, we have a single point. This point

might as well be 1, in which case the level above it must consist of its square roots,

±√
1 = ±1.

The next level up then has ±√+1 = ±1 as well as the complex numbers ±√−1

= ±i, where i is the imaginary unit. By continuing in this manner, we even-

tually reach the initial set of n points. Perhaps you have already guessed what

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

62 2.6 The fast Fourier transform

−1 −i

−1

+1

+1

+i+1

...

they are: the complex nth roots of unity, that is, the n complex solutions to the

equation zn = 1.

Figure 2.6 is a pictorial review of some basic facts about complex numbers. The

third panel of this figure introduces the nth roots of unity: the complex numbers

1, ω, ω2, . . . , ωn−1, where ω = e2π i/n. If n is even,

1. The nth roots are plus-minus paired, ωn/2+ j = −ω j.

2. Squaring them produces the (n/2)nd roots of unity.

Therefore, if we start with these numbers for some n that is a power of 2, then

at successive levels of recursion we will have the (n/2k)th roots of unity, for k =
0, 1, 2, 3, All these sets of numbers are plus-minus paired, and so our divide-

and-conquer, as shown in the last panel, works perfectly. The resulting algorithm

is the fast Fourier transform (Figure 2.7).

2.6.3 Interpolation

Let’s take stock of where we are. We first developed a high-level scheme for

multiplying polynomials (Figure 2.5), based on the observation that polynomials

can be represented in two ways, in terms of their coefficients or in terms of their

values at a selected set of points.

Interpolation

Coefficient representation
a0, a1, . . . , an−1

Value representation
A(x0),A(x1), . . . A(xn−1)

Evaluation

,

The value representation makes it trivial to multiply polynomials, but we cannot

ignore the coefficient representation since it is the form in which the input and

output of our overall algorithm are specified.

So we designed the FFT, a way to move from coefficients to values in time just

O(n log n), when the points {xi} are complex nth roots of unity (1, ω, ω2, . . . , ωn−1).

〈values〉 = FFT(〈coefficients〉, ω).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 63

Figure 2.6 The complex roots of unity are ideal for our divide-and-conquer
scheme.

θ
Real

Imaginary

a

b

r

The complex plane

z = a + bi is plotted at position (a, b).

Polar coordinates: rewrite as z = r(cos θ + i sin θ) = reiθ,
denoted (r, θ).
• length r =

√
a2 + b2.

• angle θ ∈ [0, 2π): cos θ = a/r , sin θ = b/r .
• θ can always be reduced modulo 2π.

Examples:
Number −1 i 5 + 5i

Polar coords (1,π) (1,π/2) (5
√

2,π/4)

(r1r2, θ1 + θ2)

(r1, θ1)

(r2, θ2)

Multiplying is easy in polar coordinates

Multiply the lengths and add the angles:

(r1, θ1) × (r2, θ2) = (r1r2, θ1 + θ2).

For any z = (r, θ),
• −z = (r, θ + π) since −1 = (1,π).
• If z is on the unit circle (i.e., r = 1), then zn = (1,nθ).

Angle 2π
n

4π
n

2π
n + π

The nth complex roots of unity

Solutions to the equation zn = 1.

By the multiplication rule: solutions are z = (1, θ), for θ a
multiple of 2π/n (shown here for n = 16).

For even n:

• These numbers are plus-minus paired: −(1, θ) = (1, θ+π).
• Their squares are the (n/2)nd roots of unity, shown here
with boxes around them.

Divide-and-conquer step

Evaluate
Ae(x), Ao(x)
at (n/2)nd
roots

Still
paired

Divide and
conquer

Paired

Evaluate A(x)
at nth roots
of unity

(n is a power of 2)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

64 2.6 The fast Fourier transform

Figure 2.7 The fast Fourier transform (polynomial formulation)

function FFT(A, ω)

Input: Coefficient representation of a polynomial A(x)

of degree ≤ n − 1, where n is a power of 2

ω, an nth root of unity
Output: Value representation A(ω0), . . . , A(ωn−1)

if ω = 1: return A(1)

express A(x) in the form Ae(x
2) + xAo(x

2)

call FFT(Ae, ω
2) to evaluate Ae at even powers of ω

call FFT(Ao, ω
2) to evaluate Ao at even powers of ω

for j = 0 to n − 1:
compute A(ω j) = Ae(ω

2 j) + ω j Ao(ω
2 j)

return A(ω0), . . . , A(ωn−1)

The last remaining piece of the puzzle is the inverse operation, interpolation. It will

turn out, amazingly, that

〈coefficients〉 = 1

n
FFT(〈values〉, ω−1).

Interpolation is thus solved in the most simple and elegant way we could possibly

have hoped for—using the same FFT algorithm, but called with ω−1 in place of

ω! This might seem like a miraculous coincidence, but it will make a lot more

sense when we recast our polynomial operations in the language of linear algebra.

Meanwhile, our O(n log n) polynomial multiplication algorithm (Figure 2.5) is now

fully specified.

A matrix reformulation

To get a clearer view of interpolation, let’s explicitly set down the relation-

ship between our two representations for a polynomial A(x) of degree ≤ n
− 1. They are both vectors of n numbers, and one is a linear transformation

of the other: ⎡
⎢⎢⎢⎢⎢⎣

A(x0)

A(x1)

...

A(xn−1)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1

...

1 xn−1 x2
n−1 · · · xn−1

n−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

...

an−1

⎤
⎥⎥⎥⎥⎥⎦ .

Call the matrix in the middle M. Its specialized format—a Vandermonde matrix—

gives it many remarkable properties, of which the following is particularly relevant

to us.

If x0, . . . , xn−1 are distinct numbers, then M is invertible.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 65

The existence of M−1 allows us to invert the preceding matrix equation so as to

express coefficients in terms of values. In brief,

Evaluation is multiplication by M, while interpolation is multiplication by M−1.

This reformulation of our polynomial operations reveals their essential nature more

clearly. Among other things, it finally justifies an assumption we have been making

throughout, that A(x) is uniquely characterized by its values at any n points—in

fact, we now have an explicit formula that will give us the coefficients of A(x) in

this situation. Vandermonde matrices also have the distinction of being quicker to

invert than more general matrices, in O(n2) time instead of O(n3). However, using

this for interpolation would still not be fast enough for us, so once again we turn to

our special choice of points—the complex roots of unity.

Interpolation resolved

In linear algebra terms, the FFT multiplies an arbitrary n-dimensional vector—which

we have been calling the coefficient representation—by the n × n matrix

Mn(ω) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...

1 ω j ω2 j · · · ω(n−1) j

...

1 ω(n−1) ω2(n−1) · · · ω(n−1)(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←− row for ω0 = 1

←− ω

←− ω2

...

←− ω j

...

←− ωn−1

where ω is a complex nth root of unity, and n is a power of 2. Notice how simple

this matrix is to describe: its (j, k)th entry (starting row- and column-count at

zero) is ω jk.

Multiplication by M = Mn(ω) maps the kth coordinate axis (the vector with all

zeros except for a 1 at position k) onto the kth column of M. Now here’s the crucial

observation, which we’ll prove shortly: the columns of M are orthogonal (at right
angles) to each other. Therefore they can be thought of as the axes of an alternative

coordinate system, which is often called the Fourier basis. The effect of multiplying

a vector by M is to rotate it from the standard basis, with the usual set of axes, into

the Fourier basis, which is defined by the columns of M (Figure 2.8). The FFT is thus

a change of basis, a rigid rotation. The inverse of M is the opposite rotation, from

the Fourier basis back into the standard basis. When we write out the orthogonality

condition precisely, we will be able to read off this inverse transformation with ease:

Inversion formula Mn(ω)−1 = 1
n
Mn(ω−1).

But ω−1 is also an nth root of unity, and so interpolation—or equivalently, multi-

plication by Mn(ω)−1—is itself just an FFT operation, but with ω replaced by ω−1.

Now let’s get into the details. Take ω to be e2π i/n for convenience, and think of

the columns of M as vectors in C
n. Recall that the angle between two vectors

u = (u0, . . . , un−1) and v = (v0, . . . , vn−1) in C
n is just a scaling factor times their

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

66 2.6 The fast Fourier transform

Figure 2.8 The FFT takes points in the standard coordinate system, whose axes
are shown here as x1, x2, x3, and rotates them into the Fourier basis, whose axes
are the columns of Mn(ω), shown here as f1, f2, f3. For instance, points in
direction x1 get mapped into direction f1.

FFT

x1

x3

x2

f3

f1

f2

inner product

u · v∗ = u0v
∗
0 + u1v

∗
1 + · · · + un−1v

∗
n−1,

where z∗ denotes the complex conjugate4 of z. This quantity is maximized when

the vectors lie in the same direction and is zero when the vectors are orthogonal to

each other.

The fundamental observation we need is the following.

Lemma The columns of matrix M are orthogonal to each other.

Proof. Take the inner product of any columns j and k of matrix M,

1 + ω j−k + ω2(j−k) + · · · + ω(n−1)(j−k).

This is a geometric series with first term 1, last term ω(n−1)(j−k), and ratio ω(j−k).

Therefore it evaluates to (1 − ωn(j−k))/(1 − ω(j−k)), which is 0—except when j = k,

in which case all terms are 1 and the sum is n.

The orthogonality property can be summarized in the single equation

MM∗ = nI ,

since (MM∗)i j is the inner product of the ith and j th columns of M (do you see

why?). This immediately implies M−1 = (1/n)M∗: we have an inversion formula!

But is it the same formula we earlier claimed? Let’s see—the (j, k)th entry of M∗

is the complex conjugate of the corresponding entry of M, in other words ω− jk.

Whereupon M∗ = Mn(ω−1), and we’re done.

And now we can finally step back and view the whole affair geometrically. The

task we need to perform, polynomial multiplication, is a lot easier in the Fourier

4The complex conjugate of a complex number z = reiθ is z∗ = re−iθ . The complex conjugate of a vector

(or matrix) is obtained by taking the complex conjugates of all its entries.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 67

basis than in the standard basis. Therefore, we first rotate vectors into the Fourier

basis (evaluation), then perform the task (multiplication), and finally rotate back

(interpolation). The initial vectors are coefficient representations, while their rotated

counterparts are value representations. To efficiently switch between these, back and

forth, is the province of the FFT.

2.6.4 A closer look at the fast Fourier transform

Now that our efficient scheme for polynomial multiplication is fully realized, let’s

hone in more closely on the core subroutine that makes it all possible, the fast

Fourier transform.

The definitive FFT algorithm

The FFT takes as input a vector a = (a0, . . . , an−1) and a complex number ω whose

powers 1, ω, ω2, . . . , ωn−1 are the complex nth roots of unity. It multiplies vector

a by the n × n matrix Mn(ω), which has (j, k)th entry (starting row- and column-

count at zero) ω jk. The potential for using divide-and-conquer in this matrix-vector

multiplication becomes apparent when M’s columns are segregated into evens and

odds:

=

aMn(ω)

an−1

a0

a1

a2

a3

a4

...

ωjk

k

j =

a2

a1

a3

an−1

...

a0

...
an−2

2k + 1
Column

2k

Even

ω2jk ωj · ω2jk

columns
Odd

columns

j

Row j
a2

a1

a3

an−1

...

a0

...
an−2

ω2jk

ω2jk

ωj · ω2jk

2k + 1
Column

j + n/2

2k

−ωj · ω2jk

In the second step, we have simplified entries in the bottom half of the matrix using

ωn/2 = −1 and ωn = 1. Notice that the top left n/2 × n/2 submatrix is Mn/2(ω
2), as

is the one on the bottom left. And the top and bottom right submatrices are almost

the same as Mn/2(ω
2), but with their j th rows multiplied through by ω j and −ω j,

respectively. Therefore the final product is the vector.

a0

a2...
an−2

a0

a2...
an−2

Mn/2

Mn/2 Mn/2

Mn/2

a1

a3...
an−1

a1

a3...
an−1

+ ωj

− ωjj + n/2

Row j

In short, the product of Mn(ω) with vector (a0, . . . , an−1), a size-n problem,

can be expressed in terms of two size-n/2 problems: the product of Mn/2(ω
2)

with (a0, a2, . . . , an−2) and with (a1, a3, . . . , an−1). This divide-and-conquer strategy

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

68 2.6 The fast Fourier transform

leads to the definitive FFT algorithm of Figure 2.9, whose running time is T(n)

= 2T (n/2) + O(n) = O(n log n).

Figure 2.9 The fast Fourier transform

function FFT(a, ω)

Input: An array a = (a0, a1, . . . , an−1), for n a power of 2

A primitive nth root of unity, ω

Output: Mn(ω) a

if ω = 1: return a
(s0, s1, . . . , sn/2−1) = FFT((a0, a2, . . . , an−2), ω

2)

(s′
0, s′

1, . . . , s′
n/2−1) = FFT((a1, a3, . . . , an−1), ω

2)

for j = 0 to n/2 − 1:
r j = s j + ω j s′

j

r j+n/2 = s j − ω j s′
j

return (r0, r1, . . . , rn−1)

The fast Fourier transform unraveled

Throughout all our discussions so far, the fast Fourier transform has remained tightly

cocooned within a divide-and-conquer formalism. To fully expose its structure, we

now unravel the recursion.

The divide-and-conquer step of the FFT can be drawn as a very simple circuit. Here

is how a problem of size n is reduced to two subproblems of size n/2 (for clarity,

one pair of outputs (j, j + n/2) is singled out):

a0
a2

a3

j + n/2

j
a1

an−1

rj+n/2FFTn/2

FFTn/2
...

...

an−2

rj

FFTn (input: a0, . . . , an−1, output: r0, . . . , rn−1)

We’re using a particular shorthand: the edges are wires carrying complex numbers

from left to right. A weight of j means “multiply the number on this wire by ω j.” And

when two wires come into a junction from the left, the numbers they are carrying

get added up. So the two outputs depicted are executing the commands

r j = s j + ω j s′
j

r j+n/2 = s j − ω j s′
j

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 69

from the FFT algorithm (Figure 2.9), via a pattern of wires known as a butterfly: .

Unraveling the FFT circuit completely for n = 8 elements, we get Figure 2.10. Notice

the following.

1. For n inputs there are log2 n levels, each with n nodes, for a total of n log n
operations.

2. The inputs are arranged in a peculiar order: 0, 4, 2, 6, 1, 5, 3, 7.

Why? Recall that at the top level of recursion, we first bring up the even coef-

ficients of the input and then move on to the odd ones. Then at the next level,

the even coefficients of this first group (which therefore are multiples of 4, or

equivalently, have zero as their two least significant bits) are brought up, and

so on. To put it otherwise, the inputs are arranged by increasing last bit of the

binary representation of their index, resolving ties by looking at the next more sig-

nificant bit(s). The resulting order in binary, 000, 100, 010, 110, 001, 101, 011, 111, is

the same as the natural one, 000, 001, 010, 011, 100, 101, 110, 111 except the bits are
mirrored!

3. There is a unique path between each input aj and each output A(ωk).

This path is most easily described using the binary representations of j and k (shown

in Figure 2.10). There are two edges out of each node, one going up (the 0-edge) and

Figure 2.10 The fast Fourier transform circuit.

a0

a4

a2

a6

a1

a5

a7

A(ω1)

A(ω2)

A(ω3)

A(ω4)

A(ω5)

A(ω6)

A(ω7)

a3

A(ω0)

1

4

4

4

4

6

6 7

4

4

2

2
6

3

2
5

4

000

100

010

110

001

101

011

111 111

110

101

100

011

010

001

000

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

70 Exercises

one going down (the 1-edge). To get to A(ωk) from any input node, simply follow

the edges specified in the bit representation of k, starting from the rightmost bit.

(Can you similarly specify the path in the reverse direction?)

4. On the path between aj and A(ωk), the labels add up to jk mod 8.

Since ω8 = 1, this means that the contribution of input aj to output A(ωk) is ajω
jk,

and therefore the circuit computes correctly the values of polynomial A(x).

5. And finally, notice that the FFT circuit is a natural for parallel computation

and direct implementation in hardware.

The slow spread of a fast algorithm

In 1963, during a meeting of President Kennedy’s scientific advisors, John Tukey, a math-
ematician from Princeton, explained to IBM’s Dick Garwin a fast method for computing
Fourier transforms. Garwin listened carefully, because he was at the time working on ways
to detect nuclear explosions from seismographic data, and Fourier transforms were the bot-
tleneck of his method. When he went back to IBM, he asked John Cooley to implement
Tukey’s algorithm; they decided that a paper should be published so that the idea could not
be patented.

Tukey was not very keen to write a paper on the subject, so Cooley took the initiative.
And this is how one of the most famous and most cited scientific papers was published in
1965, co-authored by Cooley and Tukey. The reason Tukey was reluctant to publish the
FFT was not secretiveness or pursuit of profit via patents. He just felt that this was a simple
observation that was probably already known. This was typical of the period: back then (and
for some time later) algorithms were considered second-class mathematical objects, devoid
of depth and elegance, and unworthy of serious attention.

But Tukey was right about one thing: it was later discovered that British engineers had used
the FFT for hand calculations during the late 1930s. And—to end this chapter with the
same great mathematician who started it—a paper by Gauss in the early 1800s on (what
else?) interpolation contained essentially the same idea in it! Gauss’s paper had remained a
secret for so long because it was protected by an old-fashioned cryptographic technique: like
most scientific papers of its era, it was written in Latin.

Exercises

2.1. Use the divide-and-conquer integer multiplication algorithm to multiply the two

binary integers 10011011 and 10111010.

2.2. Show that for any positive integers n and any base b, there must be some power

of b lying in the range [n, bn].

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 71

2.3. Section 2.2 describes a method for solving recurrence relations which is based

on analyzing the recursion tree and deriving a formula for the work done at each

level. Another (closely related) method is to expand out the recurrence a few

times, until a pattern emerges. For instance, let’s start with the familiar

T(n) = 2T(n/2) + O(n). Think of O(n) as being ≤ cn for some constant c, so:

T(n) ≤ 2T(n/2) + cn. By repeatedly applying this rule, we can bound T(n) in

terms of T(n/2), then T(n/4), then T(n/8), and so on, at each step getting closer

to the value of T(·) we do know, namely T(1) = O(1).

T(n) ≤ 2T(n/2) + cn

≤ 2[2T(n/4) + cn/2] + cn = 4T(n/4) + 2cn

≤ 4[2T(n/8) + cn/4] + 2cn = 8T(n/8) + 3cn

≤ 8[2T(n/16) + cn/8] + 3cn = 16T(n/16) + 4cn

...

A pattern is emerging. . . the general term is

T(n) ≤ 2kT(n/2k) + kcn.

Plugging in k = log2 n, we get T(n) ≤ nT(1) + cn log2 n = O(n log n).

(a) Do the same thing for the recurrence T(n) = 3T(n/2) + O(n). What is

the general kth term in this case? And what value of k should be plugged

in to get the answer?

(b) Now try the recurrence T(n) = T(n − 1) + O(1), a case which is not

covered by the master theorem. Can you solve this too?

2.4. Suppose you are choosing between the following three algorithms:
� Algorithm A solves problems by dividing them into five subproblems of half

the size, recursively solving each subproblem, and then combining the

solutions in linear time.
� Algorithm B solves problems of size n by recursively solving two

subproblems of size n − 1 and then combining the solutions in constant time.
� Algorithm C solves problems of size n by dividing them into nine

subproblems of size n/3, recursively solving each subproblem, and then

combining the solutions in O(n2) time.

What are the running times of each of these algorithms (in big-O notation), and

which would you choose?

2.5. Solve the following recurrence relations and give a � bound for each of them.

(a) T(n) = 2T(n/3) + 1

(b) T(n) = 5T(n/4) + n

(c) T(n) = 7T(n/7) + n

(d) T(n) = 9T(n/3) + n2

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

72 Exercises

(e) T(n) = 8T(n/2) + n3

(f) T(n) = 49T(n/25) + n3/2 log n

(g) T(n) = T(n − 1) + 2

(h) T(n) = T(n − 1) + nc , where c ≥ 1 is a constant

(i) T(n) = T(n − 1) + cn, where c > 1 is some constant

(j) T(n) = 2T(n − 1) + 1

(k) T(n) = T(
√

n) + 1

2.6. A linear, time-invariant system has the following impulse response:

t

b(t)

t0

1/t0

(a) Describe in words the effect of this system.

(b) What is the corresponding polynomial?

2.7. What is the sum of the nth roots of unity? What is their product if n is odd? If n

is even?

2.8. Practice with the fast Fourier transform.

(a) What is the FFT of (1, 0, 0, 0)? What is the appropriate value of ω in this

case? And of which sequence is (1, 0, 0, 0) the FFT?

(b) Repeat for (1, 0, 1, −1).

2.9. Practice with polynomial multiplication by FFT.

(a) Suppose that you want to multiply the two polynomials x + 1 and x2 + 1

using the FFT. Choose an appropriate power of two, find the FFT of the

two sequences, multiply the results componentwise, and compute the

inverse FFT to get the final result.

(b) Repeat for the pair of polynomials 1 + x + 2x2 and 2 + 3x.

2.10. Find the unique polynomial of degree 4 that takes on values p(1) = 2, p(2) = 1,

p(3) = 0, p(4) = 4, and p(5) = 0. Write your answer in the coefficient

representation.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 73

2.11. In justifying our matrix multiplication algorithm (Section 2.5), we claimed the

following blockwise property: if X and Y are n × n matrices, and

X =
[

A B

C D

]
, Y =

[
E F

G H

]
,

where A, B, C , D, E , F , G , and H are n/2 × n/2 submatrices, then the product

XY can be expressed in terms of these blocks:

XY =
[

A B

C D

] [
E F

G H

]
=

[
AE + BG AF + B H

C E + DG C F + DH

]
.

Prove this property.

2.12. How many lines, as a function of n (in �(·) form), does the following program
print? Write a recurrence and solve it. You may assume n is a power of 2.

function f(n)

if n > 1:

print line(“still going'')

f(n/2)

f(n/2)

2.13. A binary tree is full if all of its vertices have either zero or two children. Let Bn

denote the number of full binary trees with n vertices.

(a) By drawing out all full binary trees with 3, 5, or 7 vertices, determine the

exact values of B3, B5, and B7. Why have we left out even numbers of

vertices, like B4?

(b) For general n, derive a recurrence relation for Bn.

(c) Show by induction that Bn is 2�(n).

2.14. You are given an array of n elements, and you notice that some of the elements

are duplicates; that is, they appear more than once in the array. Show how to

remove all duplicates from the array in time O(n log n).

2.15. In our median-finding algorithm (Section 2.4), a basic primitive is the split

operation, which takes as input an array S and a value v and then divides S into

three sets: the elements less than v, the elements equal to v, and the elements

greater than v. Show how to implement this split operation in place, that is,

without allocating new memory.

2.16. You are given an infinite array A[·] in which the first n cells contain integers in

sorted order and the rest of the cells are filled with ∞. You are not given the

value of n. Describe an algorithm that takes an integer x as input and finds a

position in the array containing x, if such a position exists, in O(log n) time. (If

you are disturbed by the fact that the array A has infinite length, assume instead

that it is of length n, but that you don’t know this length, and that the

implementation of the array data type in your programming language returns the

error message ∞ whenever elements A[i] with i > n are accessed.)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

74 Exercises

2.17. Given a sorted array of distinct integers A[1, . . . , n], you want to find out

whether there is an index i for which A[i] = i. Give a divide-and-conquer

algorithm that runs in time O(log n).

2.18. Consider the task of searching a sorted array A[1 . . . n] for a given element x: a

task we usually perform by binary search in time O(log n). Show that any

algorithm that accesses the array only via comparisons (that is, by asking

questions of the form “is A[i] ≤ z?”), must take �(log n) steps.

2.19. A k-way merge operation. Suppose you have k sorted arrays, each with

n elements, and you want to combine them into a single sorted array of

kn elements.

(a) Here’s one strategy: Using the merge procedure from Section 2.3, merge

the first two arrays, then merge in the third, then merge in the fourth,

and so on. What is the time complexity of this algorithm, in terms of k

and n?

(b) Give a more efficient solution to this problem, using divide-and-conquer.

2.20. Show that any array of integers x[1 . . . n] can be sorted in O(n + M) time, where

M = max
i

xi − min
i

xi .

For small M, this is linear time: why doesn’t the �(n log n) lower bound apply in

this case?

2.21. Mean and median. One of the most basic tasks in statistics is to summarize a set

of observations {x1, x2, . . . , xn} ⊆ R by a single number. Two popular choices for

this summary statistic are:
� The median, which we’ll call μ1

� The mean, which we’ll call μ2

(a) Show that the median is the value of μ that minimizes the function

∑
i

|xi − μ|.

You can assume for simplicity that n is odd. (Hint: Show that for any

μ �= μ1, the function decreases if you move μ either slightly to the left or

slightly to the right.)

(b) Show that the mean is the value of μ that minimizes the function∑
i

(xi − μ)2.

One way to do this is by calculus. Another method is to prove that for

any μ ∈ R, ∑
i

(xi − μ)2 =
∑

i

(xi − μ2)
2 + n(μ − μ2)

2.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 75

Notice how the function for μ2 penalizes points that are far from μ much more

heavily than the function for μ1. Thus μ2 tries much harder to be close to all the

observations. This might sound like a good thing at some level, but it is

statistically undesirable because just a few outliers can severely throw off the

estimate of μ2. It is therefore sometimes said that μ1 is a more robust estimator

than μ2. Worse than either of them, however, is μ∞, the value of μ that

minimizes the

function

max
i

|xi − μ|.

(c) Show that μ∞ can be computed in O(n) time (assuming the numbers xi

are small enough that basic arithmetic operations on them take unit

time).

2.22. You are given two sorted lists of size m and n. Give an O(log m+ log n) time

algorithm for computing the kth smallest element in the union of the two

lists.

2.23. An array A[1 . . . n] is said to have a majority element if more than half of its

entries are the same. Given an array, the task is to design an efficient algorithm

to tell whether the array has a majority element, and, if so, to find that element.

The elements of the array are not necessarily from some ordered domain like the

integers, and so there can be no comparisons of the form “is A[i] > A[j]?”.

(Think of the array elements as GIF files, say.) However you can answer

questions of the form: “is A[i] = A[j]?” in constant time.

(a) Show how to solve this problem in O(n log n) time. (Hint: Split the array

A into two arrays A1 and A2 of half the size. Does knowing the majority

elements of A1 and A2 help you figure out the majority element of A? If

so, you can use a divide-and-conquer approach.)

(b) Can you give a linear-time algorithm? (Hint: Here’s another

divide-and-conquer approach:
� Pair up the elements of A arbitrarily, to get n/2 pairs
� Look at each pair: if the two elements are different, discard both of

them; if they are the same, keep just one of them

Show that after this procedure there are at most n/2 elements left, and

that they have a majority element if A does.)

2.24. On page 56 there is a high-level description of the quicksort algorithm.

(a) Write down the pseudocode for quicksort.

(b) Show that its worst-case running time on an array of size n is �(n2).

(c) Show that its expected running time satisfies the recurrence relation

T(n) ≤ O(n) + 1

n

n−1∑
i=0

(T(i) + T(n − i)).

Then, show that the solution to this recurrence is O(n log n).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

76 Exercises

2.25. In Section 2.1 we described an algorithm that multiplies two n-bit binary integers

x and y in time na, where a = log2 3. Call this procedure fastmultiply

(x, y).

(a) We want to convert the decimal integer 10n (a 1 followed by n zeros) into

binary. Here is the algorithm (assume n is a power of 2):

function pwr2bin(n)

if n = 1: return 10102

else:

z =???
return fastmultiply(z, z)

Fill in the missing details. Then give a recurrence relation for the running

time of the algorithm, and solve the recurrence.

(b) Next, we want to convert any decimal integer x with n digits (where n is

a power of 2) into binary. The algorithm is the following:

function dec2bin(x)

if n = 1: return binary[x]

else:

split x into two decimal numbers xL, xR with n/2

digits each

return ???

Here binary[·] is a vector that contains the binary representation of all

one-digit integers. That is, binary[0] = 02, binary[1] = 12, up to

binary[9] = 10012. Assume that a lookup in binary takes O(1) time.

Fill in the missing details. Once again, give a recurrence for the running

time of the algorithm, and solve it.

2.26. Professor F. Lake tells his class that it is asymptotically faster to square an n-bit

integer than to multiply two n-bit integers. Should they believe him?

2.27. The square of a matrix A is its product with itself, AA.

(a) Show that five multiplications are sufficient to compute the square of a

2 × 2 matrix.

(b) What is wrong with the following algorithm for computing the square of

an n × n matrix?

“Use a divide-and-conquer approach as in Strassen’s algorithm,

except that instead of getting 7 subproblems of size n/2, we now get

5 subproblems of size n/2 thanks to part (a). Using the same

analysis as in Strassen’s algorithm, we can conclude that the

algorithm runs in time O(nlog2 5).”

(c) In fact, squaring matrices is no easier than matrix multiplication. Show

that if n × n matrices can be squared in time O(nc), then any two n × n

matrices can be multiplied in time O(nc).

2.28. The Hadamard matrices H0, H1, H2, . . . are defined as follows:
� H0 is the 1 × 1 matrix

[
1
]

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 77

� For k > 0, Hk is the 2k × 2k matrix

Hk =
[

Hk−1 Hk−1

Hk−1 −Hk−1

]
.

Show that if v is a column vector of length n = 2k, then the matrix-vector

product Hkv can be calculated using O(n log n) operations. Assume that all the

numbers involved are small enough that basic arithmetic operations like

addition and multiplication take unit time.

2.29. Suppose we want to evaluate the polynomial p(x) = a0 + a1x + a2x2 + · · ·
+anxn at point x.

(a) Show that the following simple routine, known as Horner’s rule, does the

job and leaves the answer in z.

z = an

for i = n − 1 downto 0:

z = zx + ai

(b) How many additions and multiplications does this routine use, as a

function of n? Can you find a polynomial for which an alternative

method is substantially better?

2.30. This problem illustrates how to do the Fourier Transform (FT) in modular

arithmetic, for example, modulo 7.

(a) There is a number ω such that all the powers ω, ω2, . . . , ω6 are distinct

(modulo 7). Find this ω, and show that ω + ω2 + · · · + ω6 = 0.

(Interestingly, for any prime modulus there is such a number.)

(b) Using the matrix form of the FT, produce the transform of the sequence

(0, 1, 1, 1, 5, 2) modulo 7; that is, multiply this vector by the matrix

M6(ω), for the value of ω you found earlier. In the matrix multiplication,

all calculations should be performed modulo 7.

(c) Write down the matrix necessary to perform the inverse FT. Show that

multiplying by this matrix returns the original sequence. (Again all

arithmetic should be performed modulo 7.)

(d) Now show how to multiply the polynomials x2 + x + 1 and x3 + 2x − 1

using the FT modulo 7.

2.31. In Section 1.2.3, we studied Euclid’s algorithm for computing the greatest

common divisor (gcd) of two positive integers: the largest integer which divides

them both. Here we will look at an alternative algorithm based on divide-and-

conquer.

(a) Show that the following rule is true.

gcd(a, b) =

⎧⎪⎨
⎪⎩

2 gcd(a/2, b/2) if a, b are even

gcd(a, b/2) if a is odd, b is even

gcd((a − b)/2, b) if a, b are odd

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

78 Exercises

(b) Give an efficient divide-and-conquer algorithm for greatest common

divisor.

(c) How does the efficiency of your algorithm compare to Euclid’s algorithm

if a and b are n-bit integers? (In particular, since n might be large you

cannot assume that basic arithmetic operations like addition take

constant

time.)

2.32. In this problem we will develop a divide-and-conquer algorithm for the

following geometric task.

CLOSEST PAIR

Input: A set of points in the plane, {p1 = (x1, y1), . . . , pn = (xn, yn)}
Output: The closest pair of points: that is, the pair pi �= pj for which the

distance between pi and pj , that is,

√
(xi − xj)2 + (yi − yj)2,

is minimized.

For simplicity, assume that n is a power of two, and that all the x-coordinates xi

are distinct, as are the y-coordinates.

Here’s a high-level overview of the algorithm:
� Find a value x for which exactly half the points have xi < x, and half have

xi > x. On this basis, split the points into two groups, L and R.
� Recursively find the closest pair in L and in R. Say these pairs are pL , qL ∈ L

and pR , qR ∈ R, with distances dL and dR respectively. Let d be the smaller of

these two distances.
� It remains to be seen whether there is a point in L and a point in R that are

less than distance d apart from each other. To this end, discard all points

with xi < x − d or xi > x + d and sort the remaining points by y-

coordinate.
� Now, go through this sorted list, and for each point, compute its distance to

the seven subsequent points in the list. Let pM , qM be the closest pair found

in this way.
� The answer is one of the three pairs {pL , qL}, {pR , qR}, {pM , qM}, whichever

is closest.

(a) In order to prove the correctness of this algorithm, start by showing the

following property: any square of size d × d in the plane contains at most

four points of L.

(b) Now show that the algorithm is correct. The only case which needs

careful consideration is when the closest pair is split between L

and R.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch02 GTBL020-Dasgupta-v10 August 10, 2006 18:29

Chapter 2 Algorithms 79

(c) Write down the pseudocode for the algorithm, and show that its running

time is given by the recurrence:

T(n) = 2T(n/2) + O(n log n).

Show that the solution to this recurrence is O(n log2 n).

(d) Can you bring the running time down to O(n log n)?

2.33. Suppose you are given n × n matrices A, B, C and you wish to check whether

AB = C . You can do this in O(nlog2
7

) steps using Strassen’s algorithm. In this

question we will explore a much faster, O(n2) randomized test.

(a) Let v be an n-dimensional vector whose entries are randomly and

independently chosen to be 0 or 1 (each with probablity 1/2). Prove that

if M is a non-zero n × n matrix, then Pr[Mv = 0] ≤ 1/2.

(b) Show that Pr[ABv = C v] ≤ 1/2 if AB �= C . Why does this give an O(n2)

randomized test for checking whether AB = C ?

2.34. Linear 3SAT. The 3SAT problem is defined in Section 8.1. Briefly, the input is a

Boolean formula—expressed as a set of clauses—over some set of variables and

the goal is to determine whether there is an assignment (of true/false values)

to these variables that makes the entire formula evaluate to true.

Consider a 3SAT instance with the following special locality property. Suppose

there are n variables in the Boolean formula, and that they are numbered

1,2, . . . , n in such a way that each clause involves variables whose numbers are

within ±10 of each other. Give a linear-time algorithm for solving such an

instance of 3SAT.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3

Decompositions of graphs

3.1 Why graphs?
A wide range of problems can be expressed with clarity and precision in the concise

pictorial language of graphs. For instance, consider the task of coloring a political

map. What is the minimum number of colors needed, with the obvious restriction

that neighboring countries should have different colors? One of the difficulties in

attacking this problem is that the map itself, even a stripped-down version like

Figure 3.1(a), is usually cluttered with irrelevant information: intricate boundaries,

border posts where three or more countries meet, open seas, and meandering rivers.

Such distractions are absent from the mathematical object of Figure 3.1(b), a graph

with one vertex for each country (1 is Brazil, 11 is Argentina) and edges between

neighbors. It contains exactly the information needed for coloring, and nothing

more. The precise goal is now to assign a color to each vertex so that no edge has

endpoints of the same color.

Graph coloring is not the exclusive domain of map designers. Suppose a university

needs to schedule examinations for all its classes and wants to use the fewest time

slots possible. The only constraint is that two exams cannot be scheduled concur-

rently if some student will be taking both of them. To express this problem as a

graph, use one vertex for each exam and put an edge between two vertices if there

is a conflict, that is, if there is somebody taking both endpoint exams. Think of each

time slot as having its own color. Then, assigning time slots is exactly the same as

coloring this graph!

Some basic operations on graphs arise with such frequency, and in such a diversity

of contexts, that a lot of effort has gone into finding efficient procedures for them.

This chapter is devoted to some of the most fundamental of these algorithms—those

that uncover the basic connectivity structure of a graph.

Formally, a graph is specified by a set of vertices (also called nodes) V and by

edges E between select pairs of vertices. In the map example, V = {1, 2, 3, . . . , 13}
and E includes, among many other edges, {1, 2}, {9, 11}, and {7, 13}. Here an edge

between x and y specifically means “x shares a border with y.” This is a symmetric

80

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 81

Figure 3.1 (a) A map and (b) its graph.

(b)

23
45

6

12

1

8

7

9

13
11

10

(a)

Colombia

Venezuela

Peru

Ecuador

B r a z i l

Guyana
Suriname

French

Bolivia

Argentina

Paraguay

Uruguay

Chile

S O U T H A M E R I C A

relation—it implies also that y shares a border with x—and we denote it using set

notation, e = {x, y}. Such edges are undirected and are part of an undirected graph.

Sometimes graphs depict relations that do not have this reciprocity, in which case it

is necessary to use edges with directions on them. There can be directed edges e from
x to y (written e = (x, y)), or from y to x (written (y, x)), or both. A particularly

enormous example of a directed graph is the graph of all links in the World Wide

Web. It has a vertex for each site on the Internet, and a directed edge (u, v) whenever

site u has a link to site v: in total, billions of nodes and edges! Understanding even

the most basic connectivity properties of the Web is of great economic and social

interest. Although the size of this problem is daunting, we will soon see that a lot

of valuable information about the structure of a graph can, happily, be determined

in just linear time.

3.1.1 How is a graph represented?

We can represent a graph by an adjacency matrix; if there are n = |V | vertices

v1, . . . , vn, this is an n × n array whose (i, j)th entry is

ai j =
{

1 if there is an edge from vi to v j

0 otherwise.

For undirected graphs, the matrix is symmetric since an edge {u, v} can be taken in

either direction.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

82 3.1 Why graphs?

How big is your graph?

Which of the two representations, adjacency matrix or adjacency list, is better? Well, it
depends on the relationship between |V |, the number of nodes in the graph, and |E |,
the number of edges. |E | can be as small as |V | (if it gets much smaller, then the graph
degenerates— for example, has isolated vertices), or as large as |V |2 (when all possible edges
are present). When |E | is close to the upper limit of this range, we call the graph dense. At
the other extreme, if |E | is close to |V |, the graph is sparse. As we shall see in this chapter
and the next two chapters, exactly where |E | lies in this range is usually a crucial factor in
selecting the right graph algorithm.

Or, for that matter, in selecting the graph representation. If it is the World Wide Web graph
that we wish to store in computer memory, we should think twice before using an adjacency
matrix: at the time of writing, search engines know of about eight billion vertices of this
graph, and hence the adjacency matrix would take up dozens of millions of terabits. Again
at the time we write these lines, it is not clear that there is enough computer memory in
the whole world to achieve this. (And waiting a few years until there is enough memory is
unwise: the Web will grow too and will probably grow faster.)

With adjacency lists, representing the World Wide Web becomes feasible: there are only a
few dozen billion hyperlinks in the Web, and each will occupy a few bytes in the adjacency
list. You can carry a device that stores the result, a terabyte or two, in your pocket (it may
soon fit in your earring, but by that time the Web will have grown too).

The reason why adjacency lists are so much more effective in the case of the World Wide
Web is that the Web is very sparse: the average Web page has hyperlinks to only about half
a dozen other pages, out of the billions of possibilities.

The biggest convenience of this format is that the presence of a particular edge can

be checked in constant time, with just one memory access. On the other hand the

matrix takes up O(n2) space, which is wasteful if the graph does not have very many

edges.

An alternative representation, with size proportional to the number of edges, is the

adjacency list. It consists of |V | linked lists, one per vertex. The linked list for vertex

u holds the names of vertices to which u has an outgoing edge—that is, vertices

v for which (u, v) ∈ E . Therefore, each edge appears in exactly one of the linked

lists if the graph is directed or two of the lists if the graph is undirected. Either

way, the total size of the data structure is O(|E |). Checking for a particular edge

(u, v) is no longer constant time, because it requires sifting through u’s adjacency

list. But it is easy to iterate through all neighbors of a vertex (by running down the

corresponding linked list), and, as we shall soon see, this turns out to be a very useful

operation in graph algorithms. Again, for undirected graphs, this representation has

a symmetry of sorts: v is in u’s adjacency list if and only if u is in v’s adjacency

list.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 83

Figure 3.2 Exploring a graph is rather like navigating a maze.

A

C

B

F

D

H I J

K

E

G

L

H

G

DA

C

F
K
L

J

I

B

E

3.2 Depth-first search in undirected graphs

3.2.1 Exploring mazes

Depth-first search is a surprisingly versatile linear-time procedure that reveals a

wealth of information about a graph. The most basic question it addresses is,

What parts of the graph are reachable from a given vertex?

To understand this task, try putting yourself in the position of a computer that has

just been given a new graph, say in the form of an adjacency list. This representation

offers just one basic operation: finding the neighbors of a vertex. With only this

primitive, the reachability problem is rather like exploring a labyrinth (Figure 3.2).

You start walking from a fixed place and whenever you arrive at any junction (vertex)

there are a variety of passages (edges) you can follow. A careless choice of passages

might lead you around in circles or might cause you to overlook some accessible

part of the maze. Clearly, you need to record some intermediate information during

exploration.

This classic challenge has amused people for centuries. Everybody knows that all

you need to explore a labyrinth is a ball of string and a piece of chalk. The chalk

prevents looping, by marking the junctions you have already visited. The string

always takes you back to the starting place, enabling you to return to passages that

you previously saw but did not yet investigate.

How can we simulate these two primitives, chalk and string, on a computer? The

chalk marks are easy: for each vertex, maintain a Boolean variable indicating

whether it has been visited already. As for the ball of string, the correct cyber-

analog is a stack. After all, the exact role of the string is to offer two primitive

operations—unwind to get to a new junction (the stack equivalent is to push the

new vertex) and rewind to return to the previous junction (pop the stack).

Instead of explicitly maintaining a stack, we will do so implicitly via recursion

(which is implemented using a stack of activation records). The resulting algorithm

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

84 3.2 Depth-first search in undirected graphs

Figure 3.3 Finding all nodes reachable from a particular node.

procedure explore(G , v)

Input: G = (V, E) is a graph; v ∈ V
Output: visited(u) is set to true for all nodes u reachable

from v

visited(v) = true
previsit(v)
for each edge (v, u) ∈ E:

if not visited(u): explore(u)
postvisit(v)

is shown in Figure 3.3.1 The previsit and postvisit procedures are optional,

meant for performing operations on a vertex when it is first discovered and also

when it is being left for the last time. We will soon see some creative uses for them.

More immediately, we need to confirm that explore always works correctly. It cer-

tainly does not venture too far, because it only moves from nodes to their neighbors

and can therefore never jump to a region that is not reachable from v. But does it

find all vertices reachable from v? Well, if there is some u that it misses, choose any

path from v to u, and look at the last vertex on that path that the procedure actually

visited. Call this node z, and let w be the node immediately after it on the same path.

zv uw

So z was visited but w was not. This is a contradiction: while the explore procedure

was at node z, it would have noticed w and moved on to it.

Incidentally, this pattern of reasoning arises often in the study of graphs and is

in essence a streamlined induction. A more formal inductive proof would start by

framing a hypothesis, such as “for any k ≥ 0, all nodes within k hops from v get

visited.” The base case is as usual trivial, since v is certainly visited. And the general

case—showing that if all nodes k hops away are visited, then so are all nodes k + 1

hops away—is precisely the same point we just argued.

Figure 3.4 shows the result of running explore on our earlier example graph,

starting at node A, and breaking ties in alphabetical order whenever there is a

choice of nodes to visit. The solid edges are those that were actually traversed, each

of which was elicited by a call to explore and led to the discovery of a new vertex.

1As with many of our graph algorithms, this one applies to both undirected and directed graphs. In

such cases, we adopt the directed notation for edges, (x, y). If the graph is undirected, then each of its

edges should be thought of as existing in both directions: (x, y) and (y, x).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 85

Figure 3.4 The result of explore(A) on the graph of Figure 3.2.

I

E

J

C

F

B

A

D

G

H

For instance, while B was being visited, the edge B − E was noticed and, since E
was as yet unknown, was traversed via a call to explore(E). These solid edges

form a tree (a connected graph with no cycles) and are therefore called tree edges.
The dotted edges were ignored because they led back to familiar terrain, to vertices

previously visited. They are called back edges.

3.2.2 Depth-first search

The explore procedure visits only the portion of the graph reachable from its

starting point. To examine the rest of the graph, we need to restart the procedure

elsewhere, at some vertex that has not yet been visited. The algorithm of Figure 3.5,

called depth-first search (DFS), does this repeatedly until the entire graph has been

traversed.

Figure 3.5 Depth-first search.

procedure dfs(G)

for all v ∈ V:
visited(v) = false

for all v ∈ V:
if not visited(v): explore(v)

The first step in analyzing the running time of DFS is to observe that each vertex is

explore’d just once, thanks to the visited array (the chalk marks). During the

exploration of a vertex, there are the following steps:

1. Some fixed amount of work—marking the spot as visited, and the

pre/postvisit.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

86 3.2 Depth-first search in undirected graphs

2. A loop in which adjacent edges are scanned, to see if they lead somewhere

new.

This loop takes a different amount of time for each vertex, so let’s consider all

vertices together. The total work done in step 1 is then O(|V |). In step 2, over

the course of the entire DFS, each edge {x, y} ∈ E is examined exactly twice, once

during explore(x) and once during explore(y). The overall time for step 2 is

therefore O(|E |) and so the depth-first search has a running time of O(|V | + |E |),
linear in the size of its input. This is as efficient as we could possibly hope for, since

it takes this long even just to read the adjacency list.

Figure 3.6 (a) A 12-node graph. (b) DFS search forest.

(a)

A B C D

E F G H

I J K L

(b) A

B E

I

J G

K

FC

D

H

L

1,10

2,3

4,9

5,8

6,7

11,22 23,24

12,21

13,20

14,17

15,16

18,19

Figure 3.6 shows the outcome of depth-first search on a 12-node graph, once again

breaking ties alphabetically (ignore the pairs of numbers for the time being). The

outer loop of DFS calls explore three times, on A, C , and finally F . As a result,

there are three trees, each rooted at one of these starting points. Together they

constitute a forest.

3.2.3 Connectivity in undirected graphs

An undirected graph is connected if there is a path between any pair of vertices. The

graph of Figure 3.6 is not connected because, for instance, there is no path from A
to K . However, it does have three disjoint connected regions, corresponding to the

following sets of vertices:

{A, B, E , I , J } {C , D, G , H, K , L} {F }.

These regions are called connected components: each of them is a subgraph that is

internally connected but has no edges to the remaining vertices. When explore
is started at a particular vertex, it identifies precisely the connected component

containing that vertex. And each time the DFS outer loop calls explore, a new

connected component is picked out.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 87

Thus depth-first search is trivially adapted to check if a graph is connected and,

more generally, to assign each node v an integer ccnum[v] identifying the connected

component to which it belongs. All it takes is

procedure previsit(v)
ccnum[v] = cc

where cc needs to be initialized to zero and to be incremented each time the DFS

procedure calls explore.

3.2.4 Previsit and postvisit orderings

We have seen how depth-first search—a few unassuming lines of code—is able to

uncover the connectivity structure of an undirected graph in just linear time. But it

is far more versatile than this. In order to stretch it further, we will collect a little

more information during the exploration process: for each node, we will note down

the times of two important events, the moment of first discovery (corresponding

to previsit) and that of final departure (postvisit). Figure 3.6 shows these

numbers for our earlier example, in which there are 24 events. The fifth event is the

discovery of I . The 21st event consists of leaving D behind for good.

One way to generate arrays pre and post with these numbers is to define a simple

counter clock, initially set to 1, which gets updated as follows.

procedure previsit(v)
pre[v] = clock
clock = clock + 1

procedure postvisit(v)
post[v] = clock
clock = clock + 1

These timings will soon take on larger significance. Meanwhile, you might have

noticed from Figure 3.4 that:

Property For any nodes u and v, the two intervals [pre(u), post(u)] and [pre(v),

post(v)] are either disjoint or one is contained within the other.

Why? Because [pre(u), post(u)] is essentially the time during which vertex u was

on the stack. The last-in, first-out behavior of a stack explains the rest.

3.3 Depth-first search in directed graphs

3.3.1 Types of edges

Our depth-first search algorithm can be run verbatim on directed graphs, taking care

to traverse edges only in their prescribed directions. Figure 3.7 shows an example

and the search tree that results when vertices are considered in lexicographic order.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

88 3.3 Depth-first search in directed graphs

Figure 3.7 DFS on a directed graph.

AB C

F DE

G H

A

H

B C

E D

F

G

12,15

13,14

1,16

2,11

4,7

5,6

8,9

3,10

In further analyzing the directed case, it helps to have terminology for important

relationships between nodes of a tree. A is the root of the search tree; everything

else is its descendant. Similarly, E has descendants F , G , and H , and conversely,

is an ancestor of these three nodes. The family analogy is carried further: C is the

parent of D, which is its child.

For undirected graphs we distinguished between tree edges and nontree edges. In

the directed case, there is a slightly more elaborate taxonomy:

B
ac

k

F
orw

ard

Cross

Tre
e

A

B

C D

DFS tree
Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in

the DFS tree.

Back edges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they

therefore lead to a node that has already been completely

explored (that is, already postvisited).

Figure 3.7 has two forward edges, two back edges, and two cross edges. Can you

spot them?

Ancestor and descendant relationships, as well as edge types, can be read off directly

from pre and post numbers. Because of the depth-first exploration strategy, vertex

u is an ancestor of vertex v exactly in those cases where u is discovered first and

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 89

v is discovered during explore(u). This is to say pre(u) < pre(v) < post(v)

< post(u), which we can depict pictorially as two nested intervals:

u v uv

The case of descendants is symmetric, since u is a descendant of v if and only if

v is an ancestor of u. And since edge categories are based entirely on ancestor-

descendant relationships, it follows that they, too, can be read off from pre and

post numbers. Here is a summary of the various possibilities for an edge (u, v):

pre/post ordering for (u, v) Edge type

u vv u

u

Tree/forward

v u
Back

v v u
Cross

v

u

You can confirm each of these characterizations by consulting the diagram of edge

types. Do you see why no other orderings are possible?

3.3.2 Directed acyclic graphs

A cycle in a directed graph is a circular path v0 → v1 → v2 → · · · → vk → v0.

Figure 3.7 has quite a few of them, for example, B → E → F → B. A graph without

cycles is acyclic. It turns out we can test for acyclicity in linear time, with a single

depth-first search.

Property A directed graph has a cycle if and only if its depth-first search reveals a
back edge.

Proof. One direction is quite easy: if (u, v) is a back edge, then there is a cycle

consisting of this edge together with the path from v to u in the search tree.

Conversely, if the graph has a cycle v0 → v1 → · · · → vk → v0, look at the first node

on this cycle to be discovered (the node with the lowest pre number). Suppose it

is vi . All the other v j on the cycle are reachable from it and will therefore be its

descendants in the search tree. In particular, the edge vi−1 → vi (or vk → v0 if i = 0)

leads from a node to its ancestor and is thus by definition a back edge.

Directed acyclic graphs, or dags for short, come up all the time. They are good

for modeling relations like causalities, hierarchies, and temporal dependencies. For

example, suppose that you need to perform many tasks, but some of them cannot

begin until certain others are completed (you have to wake up before you can get

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

90 3.3 Depth-first search in directed graphs

Figure 3.8 A directed acyclic graph with one source, two sinks, and four
possible linearizations.

A

B

C

D

E

F

out of bed; you have to be out of bed, but not yet dressed, to take a shower; and so

on). The question then is, what is a valid order in which to perform the tasks?

Such constraints are conveniently represented by a directed graph in which each

task is a node, and there is an edge from u to v if u is a precondition for v. In other

words, before performing a task, all the tasks pointing to it must be completed. If this

graph has a cycle, there is no hope: no ordering can possibly work. If on the other

hand the graph is a dag, we would like if possible to linearize (or topologically sort)
it, to order the vertices one after the other in such a way that each edge goes from

an earlier vertex to a later vertex, so that all precedence constraints are satisfied. In

Figure 3.8, for instance, one valid ordering is B, A, D, C , E , F . (Can you spot the

other three?)

What types of dags can be linearized? Simple: All of them. And once again depth-

first search tells us exactly how to do it: simply perform tasks in decreasing or-

der of their post numbers. After all, the only edges (u, v) in a graph for which

post(u) <post(v) are back edges (recall the table of edge types on page 88)—and

we have seen that a dag cannot have back edges. Therefore:

Property In a dag, every edge leads to a vertex with a lower post number.

This gives us a linear-time algorithm for ordering the nodes of a dag. And, to-

gether with our earlier observations, it tells us that three rather different-sounding

properties—acyclicity, linearizability, and the absence of back edges during a depth-

first search—are in fact one and the same thing.

Since a dag is linearized by decreasing post numbers, the vertex with the smallest

post number comes last in this linearization, and it must be a sink—no outgoing

edges. Symmetrically, the one with the highest post is a source, a node with no

incoming edges.

Property Every dag has at least one source and at least one sink.

The guaranteed existence of a source suggests an alternative approach to lineariza-

tion:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 91

Find a source, output it, and delete it from the graph.

Repeat until the graph is empty.

Can you see why this generates a valid linearization for any dag? What happens if

the graph has cycles? And, how can this algorithm be implemented in linear time?

(Exercise 3.14.)

3.4 Strongly connected components

3.4.1 Defining connectivity for directed graphs

Connectivity in undirected graphs is pretty straightforward: a graph that is not con-

nected can be decomposed in a natural and obvious manner into several connected

components (Figure 3.6 is a case in point). As we saw in Section 3.2.3, depth-first

search does this handily, with each restart marking a new connected component.

In directed graphs, connectivity is more subtle. In some primitive sense, the directed

graph of Figure 3.9(a) is “connected”—it can’t be “pulled apart,” so to speak, with-

out breaking edges. But this notion is hardly interesting or informative. The graph

cannot be considered connected, because for instance there is no path from G
to B or from F to A. The right way to define connectivity for directed graphs is

this:

Two nodes u and v of a directed graph are connected if there is a path from u to
v and a path from v to u.

Figure 3.9 (a) A directed graph and its strongly connected components. (b) The
meta-graph.

(a)
A

D E

C

F

B

HG

K

L

JI

(b)

A B,E C,F

D
J,K,L
G,H,I

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

92 3.4 Strongly connected components

This relation partitions V into disjoint sets (Exercise 3.30) that we call strongly
connected components. The graph of Figure 3.9(a) has five of them.

Now shrink each strongly connected component down to a single meta-node, and

draw an edge from one meta-node to another if there is an edge (in the same

direction) between their respective components (Figure 3.9(b)). The resulting

meta-graph must be a dag. The reason is simple: a cycle containing several strongly

connected components would merge them all into a single, strongly connected

component. Restated,

Property Every directed graph is a dag of its strongly connected components.

This tells us something important: The connectivity structure of a directed graph is

two-tiered. At the top level we have a dag, which is a rather simple structure—for

instance, it can be linearized. If we want finer detail, we can look inside one of

the nodes of this dag and examine the full-fledged strongly connected component

within.

3.4.2 An efficient algorithm

The decomposition of a directed graph into its strongly connected components is

very informative and useful. It turns out, fortunately, that it can be found in linear

time by making further use of depth-first search. The algorithm is based on some

properties we have already seen but which we will now pinpoint more closely.

Property 1 If the explore subroutine is started at node u, then it will terminate
precisely when all nodes reachable from u have been visited.

Therefore, if we call explore on a node that lies somewhere in a sink strongly

connected component (a strongly connected component that is a sink in the meta-

graph), then we will retrieve exactly that component. Figure 3.9 has two sink

strongly connected components. Starting explore at node K , for instance, will

completely traverse the larger of them and then stop.

This suggests a way of finding one strongly connected component, but still leaves

open two major problems: (A) how do we find a node that we know for sure lies in

a sink strongly connected component and (B) how do we continue once this first

component has been discovered?

Let’s start with problem (A). There is not an easy, direct way to pick out a node that

is guaranteed to lie in a sink strongly connected component. But there is a way to

get a node in a source strongly connected component.

Property 2 The node that receives the highest post number in a depth-first search
must lie in a source strongly connected component.

This follows from the following more general property.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 93

Figure 3.10 The reverse of the graph from Figure 3.9.

A

D E

C

F

B

HG

K

L

JI

A B,E C,F

D
J,K,L
G,H,I

Property 3 If C and C ′ are strongly connected components, and there is an edge
from a node in C to a node in C ′, then the highest post number in C is bigger than
the highest post number in C ′.

Proof. In proving Property 3, there are two cases to consider. If the depth-first

search visits component C before component C ′, then clearly all of C and C ′ will be

traversed before the procedure gets stuck (see Property 1). Therefore the first node

visited in C will have a higher post number than any node of C ′. On the other

hand, if C ′ gets visited first, then the depth-first search will get stuck after seeing all

of C ′ but before seeing any of C , in which case the property follows immediately.

Property 3 can be restated as saying that the strongly connected components can
be linearized by arranging them in decreasing order of their highest post numbers.
This is a generalization of our earlier algorithm for linearizing dags; in a dag, each

node is a singleton strongly connected component.

Property 2 helps us find a node in the source strongly connected component of G .

However, what we need is a node in the sink component. Our means seem to be

the opposite of our needs! But consider the reverse graph GR , the same as G but

with all edges reversed (Figure 3.10). GR has exactly the same strongly connected

components as G (why?). So, if we do a depth-first search of GR , the node with

the highest post number will come from a source strongly connected component

in GR , which is to say a sink strongly connected component in G . We have solved

problem (A)!

Onward to problem (B). How do we continue after the first sink component is

identified? The solution is also provided by Property 3. Once we have found the

first strongly connected component and deleted it from the graph, the node with

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

94 3.4 Strongly connected components

Crawling fast

All this assumes that the graph is neatly given to us, with vertices numbered 1 to n and
edges tucked in adjacency lists. The realities of the World Wide Web are very different. The
nodes of the Web graph are not known in advance, and they have to be discovered one by
one during the process of search. And, of course, recursion is out of the question.

Still, crawling the Web is done by algorithms very similar to depth-first search. An explicit
stack is maintained, containing all nodes that have been discovered (as endpoints of hy-
perlinks) but not yet explored. In fact, this “stack” is not exactly a last-in, first-out list. It
gives highest priority not to the nodes that were inserted most recently (nor the ones that
were inserted earliest, that would be a breadth-first search, see Chapter 2), but to the ones
that look most “interesting”—a heuristic criterion whose purpose is to keep the stack from
overflowing and, in the worst case, to leave unexplored only nodes that are very unlikely to
lead to vast new expanses.

In fact, crawling is typically done by many computers running explore simultaneously:
each one takes the next node to be explored from the top of the stack, downloads the http
file (the kind of Web files that point to each other), and scans it for hyperlinks. But when a
new http document is found at the end of a hyperlink, no recursive calls are made: instead,
the new vertex is inserted in the central stack.

But one question remains: When we see a “new” document, how do we know that it is
indeed new, that we have not seen it before in our crawl? And how do we give it a name, so
it can be inserted in the stack and recorded as “already seen”? The answer is by hashing.

Incidentally, researchers have run the strongly connected components algorithm on the Web
and have discovered some very interesting structure.

the highest post number among those remaining will belong to a sink strongly

connected component of whatever remains of G . Therefore we can keep using the

post numbering from our initial depth-first search on GR to successively output

the second strongly connected component, the third strongly connected component,

and so on. The resulting algorithm is this.

1. Run depth-first search on GR.

2. Run the undirected connected components algorithm (from Section 3.2.3)

on G , and during the depth-first search, process the vertices in decreasing

order of their post numbers from step 1.

This algorithm is linear-time, only the constant in the linear term is about twice

that of straight depth-first search. (Question: How does one construct an adjacency

list representation of GR in linear time? And how, in linear time, does one order the

vertices of G by decreasing post values?)

Let’s run this algorithm on the graph of Figure 3.9. If step 1 considers vertices

in lexicographic order, then the ordering it sets up for the second step (namely,

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 95

decreasing post numbers in the depth-first search of GR) is: G , I , J , L , K , H, D, C ,

F , B, E , A. Then step 2 peels off components in the following sequence:

{G , H, I , J , K , L}, {D}, {C , F }, {B, E }, {A}.

Exercises

3.1. Perform a depth-first search on the following graph; whenever there’s a choice of

vertices, pick the one that is alphabetically first. Classify each edge as a tree edge

or back edge, and give the pre and post number of each vertex.

A B C

D E F

G H I

3.2. Perform depth-first search on each of the following graphs; whenever there’s a

choice of vertices, pick the one that is alphabetically first. Classify each edge as a

tree edge, forward edge, back edge, or cross edge, and give the pre and post

number of each vertex.

(a)

F

A CB

E D

G H

(b)

F

C

BA

H

G

E

D

3.3. Run the DFS-based topological ordering algorithm on the following graph.

Whenever you have a choice of vertices to explore, always pick the one that is

alphabetically first.

A

C

E

D

F

B

G

H

(a) Indicate the pre and post numbers of the nodes.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

96 Exercises

(b) What are the sources and sinks of the graph?

(c) What topological ordering is found by the algorithm?

(d) How many topological orderings does this graph have?

3.4. Run the strongly connected components algorithm on the following directed

graphs G . When doing DFS on GR : whenever there is a choice of vertices to

explore, always pick the one that is alphabetically first.

(i) A

B
E

G H

I

C D

F

J

(ii)

A B C

D E F

G H I

In each case answer the following questions.

(a) In what order are the strongly connected components (SCCs) found?

(b) Which are source SCCs and which are sink SCCs?

(c) Draw the “metagraph” (each meta-node is an SCC of G).

(d) What is the minimum number of edges you must add to this graph to

make it strongly connected?

3.5. The reverse of a directed graph G = (V, E) is another directed graph

G R = (V, ER) on the same vertex set, but with all edges reversed; that is,

ER = {(v, u) : (u, v) ∈ E }.
Give a linear-time algorithm for computing the reverse of a graph in adjacency

list format.

3.6. In an undirected graph, the degree d(u) of a vertex u is the number of neighbors

u has, or equivalently, the number of edges incident upon it. In a directed graph,

we distinguish between the indegree din(u), which is the number of edges into u,

and the outdegree dout(u), the number of edges leaving u.

(a) Show that in an undirected graph,
∑

u∈V d(u) = 2|E |.
(b) Use part (a) to show that in an undirected graph, there must be an even

number of vertices whose degree is odd.

(c) Does a similar statement hold for the number of vertices with odd

indegree in a directed graph?

3.7. A bipartite graph is a graph G = (V, E) whose vertices can be partitioned into

two sets (V = V1 ∪ V2 and V1 ∩ V2 = ∅) such that there are no edges between

vertices in the same set (for instance, if u, v ∈ V1, then there is no edge between

u and v).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 97

(a) Give a linear-time algorithm to determine whether an undirected graph is

bipartite.

(b) There are many other ways to formulate this property. For instance, an

undirected graph is bipartite if and only if it can be colored with just two

colors.

Prove the following formulation: an undirected graph is bipartite if and

only if it contains no cycles of odd length.

(c) At most how many colors are needed to color in an undirected graph

with exactly one odd-length cycle?

3.8. Pouring water. We have three containers whose sizes are 10 pints, 7 pints, and 4

pints, respectively. The 7-pint and 4-pint containers start out full of water, but

the 10-pint container is initially empty. We are allowed one type of operation:

pouring the contents of one container into another, stopping only when the

source container is empty or the destination container is full. We want to know

if there is a sequence of pourings that leaves exactly 2 pints in the 7- or 4-pint

container.

(a) Model this as a graph problem: give a precise definition of the graph

involved and state the specific question about this graph that needs to be

answered.

(b) What algorithm should be applied to solve the problem?

3.9. For each node u in an undirected graph, let twodegree[u] be the sum of the

degrees of u’s neighbors. Show how to compute the entire array of

twodegree[·] values in linear time, given a graph in adjacency list format.

3.10. Rewrite the explore procedure (Figure 3.3) so that it is non-recursive (that is,

explicitly use a stack). The calls to previsit and postvisit should be

positioned so that they have the same effect as in the recursive procedure.

3.11. Design a linear-time algorithm which, given an undirected graph G and a

particular edge e in it, determines whether G has a cycle containing e.

3.12. Either prove or give a counterexample: if {u, v} is an edge in an undirected

graph, and during depth-first search post(u) < post(v), then v is an ancestor of

u in the DFS tree.

3.13. Undirected vs. directed connectivity.

(a) Prove that in any connected undirected graph G = (V, E) there is a

vertex v ∈ V whose removal leaves G connected. (Hint: Consider the

DFS search tree for G .)

(b) Give an example of a strongly connected directed graph G = (V, E) such

that, for every v ∈ V , removing v from G leaves a directed graph that is

not strongly connected.

(c) In an undirected graph with 2 connected components it is always possible

to make the graph connected by adding only one edge. Give an example

of a directed graph with two strongly connected components such that

no addition of one edge can make the graph strongly connected.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

98 Exercises

3.14. The chapter suggests an alternative algorithm for linearization (topological

sorting), which repeatedly removes source nodes from the graph (page 90).

Show that this algorithm can be implemented in linear time.

3.15. The police department in the city of Computopia has made all streets one-way.

The mayor contends that there is still a way to drive legally from any

intersection in the city to any other intersection, but the opposition is not

convinced. A computer program is needed to determine whether the mayor is

right. However, the city elections are coming up soon, and there is just enough

time to run a linear-time algorithm.

(a) Formulate this problem graph-theoretically, and explain why it can

indeed be solved in linear time.

(b) Suppose it now turns out that the mayor’s original claim is false. She

next claims something weaker: if you start driving from town hall,

navigating one-way streets, then no matter where you reach, there is

always a way to drive legally back to the town hall. Formulate this

weaker property as a graph-theoretic problem, and carefully show how it

too can be checked in linear time.

3.16. Suppose a CS curriculum consists of n courses, all of them mandatory. The

prerequisite graph G has a node for each course, and an edge from course v to

course w if and only if v is a prerequisite for w. Find an algorithm that works

directly with this graph representation, and computes the minimum number of

semesters necessary to complete the curriculum (assume that a student can take

any number of courses in one semester). The running time of your algorithm

should be linear.

3.17. Infinite paths. Let G = (V, E) be a directed graph with a designated “start

vertex” s ∈ V , a set VG ⊆ V of “good” vertices, and a set VB ⊆ V of “bad”

vertices. An infinite trace p of G is an infinite sequence v0v1v2 · · · of vertices

vi ∈ V such that (1) v0 = s, and (2) for all i ≥ 0, (vi , vi+1) ∈ E . That is, p is an

infinite path in G starting at vertex s. Since the set V of vertices is finite, every

infinite trace of G must visit some vertices infinitely often.

(a) If p is an infinite trace, let Inf(p) ⊆ V be the set of vertices that occur

infinitely often in p. Show that Inf(p) is a subset of a strongly connected

component of G .

(b) Describe an algorithm that determines if G has an infinite trace.

(c) Describe an algorithm that determines if G has an infinite trace that

visits some good vertex in VG infinitely often.

(d) Describe an algorithm that determines if G has an infinite trace that

visits some good vertex in VG infinitely often, but visits no bad vertex in

VB infinitely often.

3.18. You are given a binary tree T = (V, E) (in adjacency list format), along with a

designated root node r ∈ V . Recall that u is said to be an ancestor of v in the

rooted tree, if the path from r to v in T passes through u.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 99

You wish to preprocess the tree so that queries of the form “is u an ancestor of

v?” can be answered in constant time. The preprocessing itself should take linear

time. How can this be done?

3.19. As in the previous problem, you are given a binary tree T = (V, E) with

designated root node. In addition, there is an array x[·] with a value for each

node in V . Define a new array z[·] as follows: for each u ∈ V ,

z[u] = the maximum of the x-values associated with u’s descendants.

Give a linear-time algorithm which calculates the entire z-array.

3.20. You are given a tree T = (V, E) along with a designated root node r ∈ V . The

parent of any node v
= r , denoted p(v), is defined to be the node adjacent to v

in the path from r to v. By convention, p(r) = r . For k > 1, define

pk(v) = pk−1(p(v)) and p1(v) = p(v) (so pk(v) is the kth ancestor of v).

Each vertex v of the tree has an associated non-negative integer label l(v). Give a

linear-time algorithm to update the labels of all the vertices in T according to the

following rule: lnew(v) = l(pl(v)(v)).

3.21. Give a linear-time algorithm to find an odd-length cycle in a directed graph.

(Hint: First solve this problem under the assumption that the graph is strongly

connected.)

3.22. Give an efficient algorithm which takes as input a directed graph G = (V, E),

and determines whether or not there is a vertex s ∈ V from which all other

vertices are reachable.

3.23. Give an efficient algorithm that takes as input a directed acyclic graph

G = (V, E), and two vertices s, t ∈ V , and outputs the number of different

directed paths from s to t in G .

3.24. Give a linear-time algorithm for the following task.

Input: A directed acyclic graph G

Question: Does G contain a directed path that touches every vertex exactly once?

3.25. You are given a directed graph in which each node u ∈ V has an associated price

pu which is a positive integer. Define the array cost as follows: for each u ∈ V ,

cost[u] = price of the cheapest node reachable from u (including u itself).

For instance, in the graph below (with prices shown for each vertex), the cost

values of the nodes A, B, C , D, E , F are 2, 1, 4, 1, 4, 5, respectively.

A

B

C

D

E

F
1 5

462

3

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

100 Exercises

Your goal is to design an algorithm that fills in the entire cost array (i.e., for all

vertices).

(a) Give a linear-time algorithm that works for directed acyclic graphs. (Hint:

Handle the vertices in a particular order.)

(b) Extend this to a linear-time algorithm that works for all directed graphs.

(Hint: Recall the “two-tiered” structure of directed graphs.)

3.26. An Eulerian tour in an undirected graph is a cycle that is allowed to pass through

each vertex multiple times, but must use each edge exactly once.

This simple concept was used by Euler in 1736 to solve the famous Konigsberg

bridge problem, which launched the field of graph theory. The city of Konigsberg

(now called Kaliningrad, in western Russia) is the meeting point of two rivers

with a small island in the middle. There are seven bridges across the rivers, and

a popular recreational question of the time was to determine whether it is

possible to perform a tour in which each bridge is crossed exactly once.

Euler formulated the relevant information as a graph with four nodes (denoting

land masses) and seven edges (denoting bridges), as shown here.

Southern bank

Northern bank

Small
island

Big
island

Notice an unusual feature of this problem: multiple edges between certain pairs

of nodes.

(a) Show that an undirected graph has an Eulerian tour if and only if all its

vertices have even degree. Conclude that there is no Eulerian tour of the

Konigsberg bridges.

(b) An Eulerian path is a path which uses each edge exactly once. Can you

give a similar if-and-only-if characterization of which undirected graphs

have Eulerian paths?

(c) Can you give an analog of part (a) for directed graphs?

3.27. Two paths in a graph are called edge-disjoint if they have no edges in common.

Show that in any undirected graph, it is possible to pair up the vertices of odd

degree and find paths between each such pair so that all these paths are

edge-disjoint.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 101

3.28. In the 2SAT problem, you are given a set of clauses, where each clause is the

disjunction (OR) of two literals (a literal is a Boolean variable or the negation of a

Boolean variable). You are looking for a way to assign a value true or false to

each of the variables so that all clauses are satisfied—that is, there is at least one

true literal in each clause. For example, here’s an instance of 2SAT:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x1 ∨ x4).

This instance has a satisfying assignment: set x1, x2, x3, and x4 to true, false,

false, and true, respectively.

(a) Are there other satisfying truth assignments of this 2SAT formula? If so,

find them all.

(b) Give an instance of 2SAT with four variables, and with no satisfying

assignment.

The purpose of this problem is to lead you to a way of solving 2SAT efficiently

by reducing it to the problem of finding the strongly connected components of a

directed graph. Given an instance I of 2SAT with n variables and m clauses,

construct a directed graph GI = (V, E) as follows.
� GI has 2n nodes, one for each variable and its negation.
� GI has 2m edges: for each clause (α ∨ β) of I (where α, β are literals), GI

has an edge from the negation of α to β, and one from the negation of β

to α.

Note that the clause (α ∨ β) is equivalent to either of the implications α ⇒ β or

β ⇒ α. In this sense, GI records all implications in I .

(c) Carry out this construction for the instance of 2SAT given above, and for

the instance you constructed in (b).

(d) Show that if GI has a strongly connected component containing both x

and x for some variable x, then I has no satisfying assignment.

(e) Now show the converse of (d): namely, that if none of GI ’s strongly

connected components contain both a literal and its negation, then the

instance I must be satisfiable. (Hint: Assign values to the variables as

follows: repeatedly pick a sink strongly connected component of GI .

Assign value true to all literals in the sink, assign false to their

negations, and delete all of these. Show that this ends up discovering a

satisfying assignment.)

(f) Conclude that there is a linear-time algorithm for solving 2SAT.

3.29. Let S be a finite set. A binary relation on S is simply a collection R of ordered

pairs (x, y) ∈ S × S. For instance, S might be a set of people, and each such pair

(x, y) ∈ R might mean “x knows y.”

An equivalence relation is a binary relation which satisfies three properties:
� Reflexivity: (x, x) ∈ R for all x ∈ S
� Symmetry: if (x, y) ∈ R then (y, x) ∈ R
� Transitivity: if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

102 Exercises

For instance, the binary relation “has the same birthday as” is an equivalence

relation, whereas “is the father of” is not, since it violates all three properties.

Show that an equivalence relation partitions set S into disjoint groups

S1, S2, . . . , Sk (in other words, S = S1 ∪ S2 ∪ · · · ∪ Sk and Si ∩ Sj = ∅ for all

i
= j) such that:
� Any two members of a group are related, that is, (x, y) ∈ R for any

x, y ∈ Si , for any i.
� Members of different groups are not related, that is, for all i
= j , for all

x ∈ Si and y ∈ Sj , we have (x, y)
∈ R.

(Hint: Represent an equivalence relation by an undirected graph.)

3.30. On page 91, we defined the binary relation “connected” on the set of vertices of

a directed graph. Show that this is an equivalence relation (see Exercise 3.29),

and conclude that it partitions the vertices into disjoint strongly connected

components.

3.31. Biconnected components. Let G = (V, E) be an undirected graph. For any two

edges e, e′ ∈ E , we’ll say e ∼ e′ if either e = e′ or there is a (simple) cycle

containing both e and e′.

(a) Show that ∼ is an equivalence relation (recall Exercise 3.29) on the edges.

The equivalence classes into which this relation partitions the edges are called

the biconnected components of G . A bridge is an edge which is in a biconnected

component all by itself.

A separating vertex is a vertex whose removal disconnects the graph.

(b) Partition the edges of the graph below into biconnected components, and

identify the bridges and separating vertices.

C

DA B E

F G

O N M L

K J

I H

Not only do biconnected components partition the edges of the graph, they also

almost partition the vertices in the following sense.

(c) Associate with each biconnected component all the vertices that are

endpoints of its edges. Show that the vertices corresponding to two

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch03 GTBL020-Dasgupta-v10 August 10, 2006 19:18

Chapter 3 Algorithms 103

different biconnected components are either disjoint or intersect in a

single separating vertex.

(d) Collapse each biconnected component into a single meta-node, and

retain individual nodes for each separating vertex. (So there are edges

between each component-node and its separating vertices.) Show that

the resulting graph is a tree.

DFS can be used to identify the biconnected components, bridges, and

separating vertices of a graph in linear time.

(e) Show that the root of the DFS tree is a separating vertex if and only if it

has more than one child in the tree.

(f) Show that a non-root vertex v of the DFS tree is a separating vertex if and

only if it has a child v′ none of whose descendants (including itself) has

a backedge to a proper ancestor of v.

(g) For each vertex u define:

low(u) = min

⎧⎨
⎩
pre(u)

pre(w) where (v, w) is a backedge for

some descendant v of u

Show that the entire array of low values can be computed in linear time.

(h) Show how to compute all separating vertices, bridges, and biconnected

components of a graph in linear time. (Hint: Use low to identify

separating vertices, and run another DFS with an extra stack of edges to

remove biconnected components one at a time.)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4

Paths in graphs

4.1 Distances
Depth-first search readily identifies all the vertices of a graph that can be reached

from a designated starting point. It also finds explicit paths to these vertices, sum-

marized in its search tree (Figure 4.1). However, these paths might not be the most

economical ones possible. In the figure, vertex C is reachable from S by traversing

just one edge, while the DFS tree shows a path of length 3. This chapter is about

algorithms for finding shortest paths in graphs.

Path lengths allow us to talk quantitatively about the extent to which different

vertices of a graph are separated from each other:

The distance between two nodes is the length of the shortest path between them.

To get a concrete feel for this notion, consider a physical realization of a graph that

has a ball for each vertex and a piece of string for each edge. If you lift the ball for

vertex s high enough, the other balls that get pulled up along with it are precisely

the vertices reachable from s. And to find their distances from s, you need only

measure how far below s they hang.

In Figure 4.2, for example, vertex B is at distance 2 from S, and there are two shortest

paths to it. When S is held up, the strings along each of these paths become taut.

Figure 4.1 (a) A simple graph and (b) its depth-first search tree.

(a)

E AS

BD C

(b)
S

A

B

D

E

C

104

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 105

Figure 4.2 A physical model of a graph.

B

E S

D C

A

D EC

B

A

S

On the other hand, edge (D, E) plays no role in any shortest path and therefore

remains slack.

4.2 Breadth-first search
In Figure 4.2, the lifting of s partitions the graph into layers: s itself, the nodes at

distance 1 from it, the nodes at distance 2 from it, and so on. A convenient way

to compute distances from s to the other vertices is to proceed layer by layer. Once

we have picked out the nodes at distance 0, 1, 2, . . . , d, the ones at d + 1 are easily

determined: they are precisely the as-yet-unseen nodes that are adjacent to the layer

at distance d. This suggests an iterative algorithm in which two layers are active at

any given time: some layer d, which has been fully identified, and d + 1, which is

being discovered by scanning the neighbors of layer d.

Breadth-first search (BFS) directly implements this simple reasoning (Figure 4.3).

Initially the queue Q consists only of s, the one node at distance 0. And for each

subsequent distance d = 1, 2, 3, . . . , there is a point in time at which Q contains

all the nodes at distance d and nothing else. As these nodes are processed (ejected

off the front of the queue), their as-yet-unseen neighbors are injected into the end

of the queue.

Let’s try out this algorithm on our earlier example (Figure 4.1) to confirm that it does

the right thing. If S is the starting point and the nodes are ordered alphabetically,

they get visited in the sequence shown in Figure 4.4. The breadth-first search tree,

on the right, contains the edges through which each node is initially discovered.

Unlike the DFS tree we saw earlier, it has the property that all its paths from S are

the shortest possible. It is therefore a shortest-path tree.

Correctness and efficiency

We have developed the basic intuition behind breadth-first search. In order to check

that the algorithm works correctly, we need to make sure that it faithfully executes

this intuition. What we expect, precisely, is that

For each d = 0, 1, 2, . . . , there is a moment at which (1) all nodes at distance
≤ d from s have their distances correctly set; (2) all other nodes have their
distances set to ∞; and (3) the queue contains exactly the nodes at distance d.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

106 4.2 Breadth-first search

Figure 4.3 Breadth-first search.

procedure bfs(G , s)

Input: Graph G = (V, E), directed or undirected; vertex s ∈ V
Output:For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

for all u ∈ V:
dist(u) = ∞

dist(s) = 0

Q = [s] (queue containing just s)
while Q is not empty:

u = eject(Q)

for all edges (u, v) ∈ E:
if dist(v) = ∞:

inject(Q, v)

dist(v) = dist(u) + 1

Figure 4.4 The result of breadth-first search on the graph of Figure 4.1.

Order Queue contents
of visitation after processing node

[S]
S [A C D E]
A [C D E B]
C [D E B]
D [E B]
E [B]
B []

DA

B

C E

S

This has been phrased with an inductive argument in mind. We have already dis-

cussed both the base case and the inductive step. Can you fill in the details?

The overall running time of this algorithm is linear, O(|V | + |E |), for exactly the

same reasons as depth-first search. Each vertex is put on the queue exactly once,

when it is first encountered, so there are 2 |V | queue operations. The rest of the

work is done in the algorithm’s innermost loop. Over the course of execution, this

loop looks at each edge once (in directed graphs) or twice (in undirected graphs),

and therefore takes O(|E |) time.

Now that we have both BFS and DFS before us: how do their exploration styles

compare? Depth-first search makes deep incursions into a graph, retreating only

when it runs out of new nodes to visit. This strategy gives it the wonderful, subtle,

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 107

and extremely useful properties we saw in Chapter 3. But it also means that DFS

can end up taking a long and convoluted route to a vertex that is actually very

close by, as in Figure 4.1. Breadth-first search makes sure to visit vertices in in-

creasing order of their distance from the starting point. This is a broader, shal-

lower search, rather like the propagation of a wave upon water. And it is achieved

using almost exactly the same code as DFS—but with a queue in place of a

stack.

Also notice one stylistic difference from DFS: since we are only interested in dis-

tances from s, we do not restart the search in other connected components. Nodes

not reachable from s are simply ignored.

4.3 Lengths on edges
Breadth-first search treats all edges as having the same length. This is rarely true

in applications where shortest paths are to be found. For instance, suppose you

are driving from San Francisco to Las Vegas, and want to find the quickest route.

Figure 4.5 shows the major highways you might conceivably use. Picking the right

combination of them is a shortest-path problem in which the length of each edge

(each stretch of highway) is important. For the remainder of this chapter, we will

deal with this more general scenario, annotating every edge e ∈ E with a length le.
If e = (u, v), we will sometimes also write l(u, v) or luv.

Figure 4.5 Edge lengths often matter.

Francisco
San

Los
Angeles

Bakersfield

Sacramento

Reno

Las
Vegas

409

290

95

271

133

445

291
112

275

These le’s do not have to correspond to physical lengths. They could denote time

(driving time between cities) or money (cost of taking a bus), or any other quantity

that we would like to conserve. In fact, there are cases in which we need to use

negative lengths, but we will briefly overlook this particular complication.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

108 4.4 Dijkstra’s algorithm

4.4 Dijkstra’s algorithm

4.4.1 An adaptation of breadth-first search

Breadth-first search finds shortest paths in any graph whose edges have unit length.

Can we adapt it to a more general graph G = (V, E) whose edge lengths le are

positive integers?

A more convenient graph

Here is a simple trick for converting G into something BFS can handle: break G ’s

long edges into unit-length pieces by introducing “dummy” nodes. Figure 4.6 shows

an example of this transformation. To construct the new graph G ′,

For any edge e = (u, v) of E , replace it by le edges of length 1, by adding le − 1

dummy nodes between u and v.

Graph G ′ contains all the vertices V that interest us, and the distances between

them are exactly the same as in G . Most importantly, the edges of G ′ all have unit

length. Therefore, we can compute distances in G by running BFS on G ′.

Figure 4.6 Breaking edges into unit-length pieces.

C

A

B

E

D

C E

DB

A1

2
2

4

2
3

1

Alarm clocks

If efficiency were not an issue, we could stop here. But when G has very long edges,

the G ′ it engenders is thickly populated with dummy nodes, and the BFS spends

most of its time diligently computing distances to these nodes that we don’t care

about at all.

To see this more concretely, consider the graphs G and G ′ of Figure 4.7, and imagine

that the BFS, started at node s of G ′, advances by one unit of distance per minute. For

the first 99 minutes it tediously progresses along S − A and S − B, an endless desert

of dummy nodes. Is there some way we can snooze through these boring phases

and have an alarm wake us up whenever something interesting is happening—

specifically, whenever one of the real nodes (from the original graph G) is reached?

We do this by setting two alarms at the outset, one for node A, set to go off at

time T = 100, and one for B, at time T = 200. These are estimated times of arrival,
based upon the edges currently being traversed. We doze off and awake at T = 100

to find A has been discovered. At this point, the estimated time of arrival for B is

adjusted to T = 150 and we change its alarm accordingly.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 109

Figure 4.7 BFS on G ′ is mostly uneventful. The dotted lines show some early
“wavefronts.”

G: A

B

S

200

100

50

G :

S

A

B

More generally, at any given moment the breadth-first search is advancing along

certain edges of G , and there is an alarm for every endpoint node toward which it

is moving, set to go off at the estimated time of arrival at that node. Some of these

might be overestimates because BFS may later find shortcuts, as a result of future

arrivals elsewhere. In the preceding example, a quicker route to B was revealed upon

arrival at A. However, nothing interesting can possibly happen before an alarm goes
off. The sounding of the next alarm must therefore signal the arrival of the wavefront

to a real node u ∈ V by BFS. At that point, BFS might also start advancing along

some new edges out of u, and alarms need to be set for their endpoints.

The following “alarm clock algorithm” faithfully simulates the execution of BFS on

G ′.

� Set an alarm clock for node s at time 0.
� Repeat until there are no more alarms:

Say the next alarm goes off at time T , for node u. Then:

– The distance from s to u is T .

– For each neighbor v of u in G :

∗ If there is no alarm yet for v, set one for time T + l(u, v).

∗ If v’s alarm is set for later than T + l(u, v), then reset it to this earlier

time.

Dijkstra’s algorithm

The alarm clock algorithm computes distances in any graph with positive integral

edge lengths. It is almost ready for use, except that we need to somehow implement

the system of alarms. The right data structure for this job is a priority queue (usually

implemented via a heap), which maintains a set of elements (nodes) with associated

numeric key values (alarm times) and supports the following operations:

Insert. Add a new element to the set.

Decrease-key. Accommodate the decrease in key value of a particular element.1

1The name decrease-key is standard but is a little misleading: the priority queue typically does not itself

change key values. What this procedure really does is to notify the queue that a certain key value has

been decreased.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

110 4.4 Dijkstra’s algorithm

Delete-min. Return the element with the smallest key, and remove it from the

set.

Make-queue. Build a priority queue out of the given elements with the given

key values. (In many implementations, this is significantly faster than

inserting the elements one by one.)

The first two let us set alarms, and the third tells us which alarm is next to go off.

Putting this all together, we get Dijkstra’s algorithm (Figure 4.8).

Figure 4.8 Dijkstra’s shortest-path algorithm.

procedure dijkstra(G , l, s)

Input: Graph G = (V, E), directed or undirected;
positive edge lengths {le : e ∈ E }; vertex s ∈ V

Output: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all u ∈ V:
dist(u) = ∞
prev(u) = nil

dist(s) = 0

H = makequeue (V) (using dist-values as keys)
while H is not empty:

u = deletemin(H)

for all edges (u, v) ∈ E:
if dist(v) > dist(u) + l(u, v):

dist(v) = dist(u) + l(u, v)

prev(v) = u
decreasekey(H, v)

In the code, dist(u) refers to the current alarm clock setting for node u. A value

of ∞ means the alarm hasn’t so far been set. There is also a special array, prev,

that holds one crucial piece of information for each node u: the identity of the node

immediately before it on the shortest path from s to u. By following these back-

pointers, we can easily reconstruct shortest paths, and so this array is a compact

summary of all the paths found. A full example of the algorithm’s operation, along

with the final shortest-path tree, is shown in Figure 4.9.

In summary, we can think of Dijkstra’s algorithm as just BFS, except it uses a priority

queue instead of a regular queue, so as to prioritize nodes in a way that takes

edge lengths into account. This viewpoint gives a concrete appreciation of how and

why the algorithm works, but there is a more direct, more abstract derivation that

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 111

Figure 4.9 A complete run of Dijkstra’s algorithm, with node A as the starting
point. Also shown are the associated dist values and the final shortest-path tree.

B

C

D

E

A

4

1 3

2

4

1

3

5

2

A: 0 D: ∞
B: 4 E: ∞
C: 2

B

C

D

E

A

4

2

4

1

3

5

2

1 3
A: 0 D: 6
B: 3 E: 7
C: 2

B

C

D

E

A

4

1 3

2

4

1

3

5

2

A: 0 D: 5
B: 3 E: 6
C: 2

B

C

D

E

A

4

1 3

2

1

5

2

3

4 A: 0 D: 5
B: 3 E: 6
C: 2

B

C

D

E

A

2

1 3

2

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

112 4.4 Dijkstra’s algorithm

doesn’t depend upon BFS at all. We now start from scratch with this complementary

interpretation.

4.4.2 An alternative derivation

Here’s a plan for computing shortest paths: expand outward from the starting point

s, steadily growing the region of the graph to which distances and shortest paths are

known. This growth should be orderly, first incorporating the closest nodes and then

moving on to those further away. More precisely, when the “known region” is some

subset of vertices R that includes s, the next addition to it should be the node outside
R that is closest to s. Let us call this node v; the question is: how do we identify it?

To answer, consider u, the node just before v in the shortest path from s to v:

u
s V

Since we are assuming that all edge lengths are positive, u must be closer to s than v
is. This means that u is in R—otherwise it would contradict v’s status as the closest

node to s outside R. So, the shortest path from s to v is simply a known shortest
path extended by a single edge.

Figure 4.10 Single-edge extensions of known shortest paths.

s
u

R
Known region

v

But there will typically be many single-edge extensions of the currently known

shortest paths (Figure 4.10); which of these identifies v? The answer is, the shortest of
these extended paths. Because, if an even shorter single-edge-extended path existed,

this would once more contradict v’s status as the node outside R closest to s.

So, it’s easy to find v: it is the node outside R for which the smallest value of

distance(s, u) + l(u, v) is attained, as u ranges over R. In other words, try all single-
edge extensions of the currently known shortest paths, find the shortest such extended
path, and proclaim its endpoint to be the next node of R.

We now have an algorithm for growing R by looking at extensions of the current

set of shortest paths. Some extra efficiency comes from noticing that on any given

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 113

iteration, the only new extensions are those involving the node most recently added

to region R. All other extensions will have been assessed previously and do not need

to be recomputed. In the following pseudocode, dist(v) is the length of the cur-

rently shortest single-edge-extended path leading to v; it is ∞ for nodes not adjacent

to R.

Initialize dist(s) to 0, other dist(·) values to ∞
R = { } (the “known region∫)
while R �= V:

Pick the node v �∈ R with smallest dist(·)
Add v to R
for all edges (v, z) ∈ E:

if dist(z) > dist(v) + l(v, z):
dist(z) = dist(v) + l(v, z)

Incorporating priority queue operations gives us back Dijkstra’s algorithm

(Figure 4.8).

To justify this algorithm formally, we would use a proof by induction, as with

breadth-first search. Here’s an appropriate inductive hypothesis.

At the end of each iteration of the while loop, the following conditions hold:
(1) there is a value d such that all nodes in R are at distance ≤ d from s and
all nodes outside R are at distance ≥ d from s, and (2) for every node u, the
value dist(u) is the length of the shortest path from s to u whose intermediate
nodes are constrained to be in R (if no such path exists, the value is ∞).

The base case is straightforward (with d = 0), and the details of the inductive step

can be filled in from the preceding discussion.

4.4.3 Running time

At the level of abstraction of Figure 4.8, Dijkstra’s algorithm is structurally identi-

cal to breadth-first search. However, it is slower because the priority queue prim-

itives are computationally more demanding than the constant-time eject’s and

inject’s of BFS. Since makequeue takes at most as long as |V | insert oper-

ations, we get a total of |V | deletemin and |V | + |E | insert/decreasekey
operations. The time needed for these varies by implementation; for instance, a

binary heap gives an overall running time of O((|V | + |E |) log |V |).

4.5 Priority queue implementations

4.5.1 Array

The simplest implementation of a priority queue is as an unordered array of key

values for all potential elements (the vertices of the graph, in the case of Dijkstra’s

algorithm). Initially, these values are set to ∞.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

114 4.5 Priority queue implementations

Which heap is best?

The running time of Dijkstra’s algorithm depends heavily on the priority queue implemen-
tation used. Here are the typical choices.

Implementation deletemin
insert/

decreasekey

|V | × deletemin +
(|V | + |E |) × insert

Array O(|V |) O(1) O(|V |2)

Binary heap O(log |V |) O(log |V |) O((|V | + |E |) log |V |)
d -ary heap O

(
d log |V |

log d

)
O

(
log |V |
log d

)
O

(
(|V | · d + |E |) log |V |

log d

)
Fibonacci heap O(log |V |) O(1) (amortized) O(|V | log |V | + |E |)

So for instance, even a naive array implementation gives a respectable time complexity of
O(|V |2), whereas with a binary heap we get O((|V | + |E |) log |V |). Which is preferable?

This depends on whether the graph is sparse (has few edges) or dense (has lots of them). For
all graphs, |E | is less than |V |2. If it is �(|V |2), then clearly the array implementation is
the faster. On the other hand, the binary heap becomes preferable as soon as |E | dips below
|V |2/ log |V |.
The d -ary heap is a generalization of the binary heap (which corresponds to d = 2) and
leads to a running time that is a function of d . The optimal choice is d ≈ |E |/|V |; in other
words, to optimize we must set the degree of the heap to be equal to the average degree of
the graph. This works well for both sparse and dense graphs. For very sparse graphs, in
which |E | = O(|V |), the running time is O(|V | log |V |), as good as with a binary heap.
For dense graphs, |E | = �(|V |2) and the running time is O(|V |2), as good as with a linked
list. Finally, for graphs with intermediate density |E | = |V |1+δ , the running time is O(|E |),
linear!

The last line in the table gives running times using a sophisticated data structure called a
Fibonacci heap. Although its efficiency is impressive, this data structure requires considerably
more work to implement than the others, and this tends to dampen its appeal in practice.
We will say little about it except to mention a curious feature of its time bounds. Its insert
operations take varying amounts of time but are guaranteed to average O(1) over the course
of the algorithm. In such situations (one of which we shall encounter in Chapter 5) we say
that the amortized cost of heap insert’s is O(1).

An insert or decreasekey is fast, because it just involves adjusting a key value,

an O(1) operation. To deletemin, on the other hand, requires a linear-time scan

of the list.

4.5.2 Binary heap
Here elements are stored in a complete binary tree, namely, a binary tree in which

each level is filled in from left to right, and must be full before the next level

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 115

is started. In addition, a special ordering constraint is enforced: the key value of
any node of the tree is less than or equal to that of its children. In particular,

therefore, the root always contains the smallest element. See Figure 4.11(a) for an

example.

To insert, place the new element at the bottom of the tree (in the first available

position), and let it “bubble up.” That is, if it is smaller than its parent, swap the

two and repeat (Figure 4.11(b)–(d)). The number of swaps is at most the height of

the tree, which is
log2 n� when there are n elements. A decreasekey is similar,

except that the element is already in the tree, so we let it bubble up from its current

position.

To deletemin, return the root value. To then remove this element from the heap,

take the last node in the tree (in the rightmost position in the bottom row) and place

it at the root. Let it “sift down”: if it is bigger than either child, swap it with the

smaller child and repeat (Figure 4.11(e)–(g)). Again this takes O(log n) time.

The regularity of a complete binary tree makes it easy to represent using an array.

The tree nodes have a natural ordering: row by row, starting at the root and moving

left to right within each row. If there are n nodes, this ordering specifies their posi-

tions 1, 2, . . . , n within the array. Moving up and down the tree is easily simulated

on the array, using the fact that node number j has parent
 j/2� and children 2 j
and 2 j + 1 (Exercise 4.16).

4.5.3 d-ary heap

A d-ary heap is identical to a binary heap, except that nodes have d children in-

stead of just two. This reduces the height of a tree with n elements to �(logd n)

= �((log n)/(log d)). Inserts are therefore speeded up by a factor of �(log d).

Deletemin operations, however, take a little longer, namely O(d logd n) (do you

see why?).

The array representation of a binary heap is easily extended to the d-ary case.

This time, node number j has parent �(j − 1)/d and children {(j − 1)d + 2,

. . . , min{n, (j − 1)d + d + 1}} (Exercise 4.16).

4.6 Shortest paths in the presence of negative edges

4.6.1 Negative edges

Dijkstra’s algorithm works in part because the shortest path from the starting point

s to any node v must pass exclusively through nodes that are closer than v. This no

longer holds when edge lengths can be negative. In Figure 4.12, the shortest path

from S to A passes through B, a node that is further away!

What needs to be changed in order to accommodate this new complication? To

answer this, let’s take a particular high-level view of Dijkstra’s algorithm. A crucial

invariant is that the dist values it maintains are always either overestimates or

exactly correct. They start off at ∞, and the only way they ever change is by updating

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

116 4.6 Shortest paths in the presence of negative edges

Figure 4.11 (a) A binary heap with 10 elements. Only the key values are
shown. (b)–(d) The intermediate “bubble-up” steps in inserting an element with
key 7. (e)–(g) The “sift-down” steps in a delete-min operation.

(a) 3

510

1211 6 8

15 20 13

(b) 3

510

1211 6 8

15 20 13 7

(c) 3

510

11 6 8

15 20 13 12

7

(d) 3

5

11 6 8

15 20 13 12

7

10

(e)

5

11 6 8

15 20 13 12

7

10

(f)

5

11 6 8

15 20 13

7

10

12

(g)

11 8

15 20 13

7

10 6

5

12

(h)

11 8

15 20 13

7

10

5

6

12

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 117

Figure 4.12 Dijkstra’s algorithm will not work if there are negative edges.

S

A

B

2

3

4

along an edge:

procedure update((u, v) ∈ E)
dist(v) = min{dist(v),dist(u) + l(u, v)}

This update operation is simply an expression of the fact that the distance to v
cannot possibly be more than the distance to u, plus l(u, v). It has the following

properties.

1. It gives the correct distance to v in the particular case where u is the second-

last node in the shortest path to v, and dist(u) is correctly set.

2. It will never make dist(v) too small, and in this sense it is safe. For instance,

a slew of extraneous update’s can’t hurt.

This operation is extremely useful: it is harmless, and if used carefully, will cor-

rectly set distances. In fact, Dijkstra’s algorithm can be thought of simply as a se-

quence of update’s. We know this particular sequence doesn’t work with negative

edges, but is there some other sequence that does? To get a sense of the properties

this sequence must possess, let’s pick a node t and look at the shortest path to it

from s.

ts
u1 u2 u3 uk

This path can have at most |V | − 1 edges (do you see why?). If the sequence of up-

dates performed includes (s, u1), (u1, u2), (u2, u3), . . . , (uk, t), in that order (though

not necessarily consecutively), then by the first property the distance to t will be

correctly computed. It doesn’t matter what other updates occur on these edges, or

what happens in the rest of the graph, because updates are safe.

But still, if we don’t know all the shortest paths beforehand, how can we be sure to

update the right edges in the right order? Here is an easy solution: simply update all
the edges, |V | − 1 times! The resulting O(|V | · |E |) procedure is called the Bellman-

Ford algorithm and is shown in Figure 4.13, with an example run in Figure 4.14.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

118 4.6 Shortest paths in the presence of negative edges

Figure 4.13 The Bellman-Ford algorithm for single-source shortest paths in
general graphs.

procedure shortest-paths(G , l, s)
Input: Directed graph G = (V, E);

edge lengths {le : e ∈ E } with no negative cycles;
vertex s ∈ V

Output:For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all u ∈ V:
dist(u) = ∞
prev(u) = nil

dist(s) = 0

repeat |V | − 1 times:
for all e ∈ E:

update(e)

Figure 4.14 The Bellman-Ford algorithm illustrated on a sample graph.

E

B

A

G

F

D

S

C

3

1

1

−2

2

10

−1

−1

−4

1

8 Iteration
Node 0 1 2 3 4 5 6 7

S 0 0 0 0 0 0 0 0
A ∞ 10 10 5 5 5 5 5
B ∞ ∞ ∞ 10 6 5 5 5
C ∞ ∞ ∞ ∞ 11 7 6 6
D ∞ ∞ ∞ ∞ ∞ 14 10 9
E ∞ ∞ 12 8 7 7 7 7
F ∞ ∞ 9 9 9 9 9 9
G ∞ 8 8 8 8 8 8 8

A note about implementation: for many graphs, the maximum number of edges

in any shortest path is substantially less than |V | − 1, with the result that fewer

rounds of updates are needed. Therefore, it makes sense to add an extra check to

the shortest-path algorithm, to make it terminate immediately after any round in

which no update occurred.

4.6.2 Negative cycles

If the length of edge (E , B) in Figure 4.14 were changed to −4, the graph would

have a negative cycle A → E → B → A. In such situations, it doesn’t make sense

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 119

to even ask about shortest paths. There is a path of length 2 from A to E . But going

round the cycle, there’s also a path of length 1, and going round multiple times, we

find paths of lengths 0, −1, −2, and so on.

The shortest-path problem is ill-posed in graphs with negative cycles. As might be

expected, our algorithm from Section 4.6.1 works only in the absence of such cycles.

But where did this assumption appear in the derivation of the algorithm? Well, it

slipped in when we asserted the existence of a shortest path from s to t.

Fortunately, it is easy to automatically detect negative cycles and issue a warning.

Such a cycle would allow us to endlessly apply rounds of update operations,

reducing dist estimates every time. So instead of stopping after |V | − 1 iterations,

perform one extra round. There is a negative cycle if and only if some dist value

is reduced during this final round.

4.7 Shortest paths in dags
There are two subclasses of graphs that automatically exclude the possibility of neg-

ative cycles: graphs without negative edges, and graphs without cycles. We already

know how to efficiently handle the former. We will now see how the single-source

shortest-path problem can be solved in just linear time on directed acyclic graphs.

As before, we need to perform a sequence of updates that includes every shortest

path as a subsequence. The key source of efficiency is that

In any path of a dag, the vertices appear in increasing linearized order.

Figure 4.15 A single-source shortest-path algorithm for directed acyclic graphs.

procedure dag-shortest-paths(G , l, s)
Input: Dag G = (V, E);

edge lengths {le : e ∈ E }; vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

for all u ∈ V:
dist(u) = ∞
prev(u) = nil

dist(s) = 0

Linearize G
for each u ∈ V, in linearized order:

for all edges (u, v) ∈ E:
update(u, v)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

120 Exercises

Therefore, it is enough to linearize (that is, topologically sort) the dag by depth-first

search, and then visit the vertices in sorted order, updating the edges out of each.

The algorithm is given in Figure 4.15.

Notice that our scheme doesn’t require edges to be positive. In particular, we can

find longest paths in a dag by the same algorithm: just negate all edge lengths.

Exercises

4.1. Suppose Dijkstra’s algorithm is run on the following graph, starting at node A.

A B C D

E F G H

1 2

41268

5

64

1 1

1

(a) Draw a table showing the intermediate distance values of all the nodes at

each iteration of the algorithm.

(b) Show the final shortest-path tree.

4.2. Just like the previous problem, but this time with the Bellman-Ford algorithm.

B

G H

I

C D

F

E

S

A

7

1

−4

6

5

3

−2

3

2

−2

6

4

−2

1

−1 1

4.3. Squares. Design and analyze an algorithm that takes as input an undirected

graph G = (V, E) and determines whether G contains a simple cycle (that is, a

cycle which doesn’t intersect itself) of length four. Its running time should be at

most O(|V |3).
You may assume that the input graph is represented either as an adjacency

matrix or with adjacency lists, whichever makes your algorithm simpler.

4.4. Here’s a proposal for how to find the length of the shortest cycle in an

undirected graph with unit edge lengths.

When a back edge, say (v, w), is encountered during a depth-first search, it

forms a cycle with the tree edges from w to v. The length of the cycle is

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 121

level[v] − level[w] + 1, where the level of a vertex is its distance in the DFS

tree from the root vertex. This suggests the following algorithm:
� Do a depth-first search, keeping track of the level of each vertex.
� Each time a back edge is encountered, compute the cycle length and save it

if it is smaller than the shortest one previously seen.

Show that this strategy does not always work by providing a counterexample as

well as a brief (one or two sentence) explanation.

4.5. Often there are multiple shortest paths between two nodes of a graph. Give a

linear-time algorithm for the following task.

Input: Undirected graph G = (V, E) with unit edge lengths; nodes u, v ∈ V .

Output: The number of distinct shortest paths from u to v.

4.6. Prove that for the array prev computed by Dijkstra’s algorithm, the edges

{u,prev[u]} (for all u ∈ V) form a tree.

4.7. You are given a directed graph G = (V, E) with (possibly negative) weighted

edges, along with a specific node s ∈ V and a tree T = (V, E ′), E ′ ⊆ E . Give an

algorithm that checks whether T is a shortest-path tree for G with starting point

s. Your algorithm should run in linear time.

4.8. Professor F. Lake suggests the following algorithm for finding the shortest path

from node s to node t in a directed graph with some negative edges: add a large

constant to each edge weight so that all the weights become positive, then run

Dijkstra’s algorithm starting at node s, and return the shortest path found to

node t.

Is this a valid method? Either prove that it works correctly, or give a

counterexample.

4.9. Consider a directed graph in which the only negative edges are those that leave

s; all other edges are positive. Can Dijkstra’s algorithm, started at s, fail on such

a graph? Prove your answer.

4.10. You are given a directed graph with (possibly negative) weighted edges, in

which the shortest path between any two vertices is guaranteed to have at most

k edges. Give an algorithm that finds the shortest path between two vertices u

and v in O(k|E |) time.

4.11. Give an algorithm that takes as input a directed graph with positive edge

lengths, and returns the length of the shortest cycle in the graph (if the graph is

acyclic, it should say so). Your algorithm should take time at most O(|V |3).
4.12. Give an O(|V |2) algorithm for the following task.

Input: An undirected graph G = (V, E); edge lengths le > 0; an edge e ∈ E .

Output: The length of the shortest cycle containing edge e.

4.13. You are given a set of cities, along with the pattern of highways between them,

in the form of an undirected graph G = (V, E). Each stretch of highway e ∈ E

connects two of the cities, and you know its length in miles, le. You want to get

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

122 Exercises

from city s to city t. There’s one problem: your car can only hold enough gas to

cover L miles. There are gas stations in each city, but not between cities.

Therefore, you can only take a route if every one of its edges has length le ≤ L.

(a) Given the limitation on your car’s fuel tank capacity, show how to

determine in linear time whether there is a feasible route from s to t.

(b) You are now planning to buy a new car, and you want to know the

minimum fuel tank capacity that is needed to travel from s to t. Give an

O((|V | + |E |) log |V |) algorithm to determine this.

4.14. You are given a strongly connected directed graph G = (V, E) with positive edge

weights along with a particular node v0 ∈ V . Give an efficient algorithm for

finding shortest paths between all pairs of nodes, with the one restriction that

these paths must all pass through v0.

4.15. Shortest paths are not always unique: sometimes there are two or more different

paths with the minimum possible length. Show how to solve the following

problem in O((|V | + |E |) log |V |) time.

Input: An undirected graph G = (V, E); edge lengths le > 0; starting vertex

s ∈ V .

Output: A Boolean array usp[·]: for each node u, the entry usp[u] should be

true if and only if there is a unique shortest path from s to u. (Note:

usp[s] = true.)

4.16. Section 4.5.2 describes a way of storing a complete binary tree of n nodes in an

array indexed by 1, 2, . . . , n.

(a) Consider the node at position j of the array. Show that its parent is at

position
 j/2� and its children are at 2 j and 2 j + 1 (if these numbers are

≤ n).

(b) What are the corresponding indices when a complete d-ary tree is stored

in an array?

Figure 4.16 shows pseudocode for a binary heap, modeled on an exposition by

R. E. Tarjan.2 The heap is stored as an array h, which is assumed to support two

constant-time operations:
� |h|, which returns the number of elements currently in the array;
� h−1, which returns the position of an element within the array.

The latter can always be achieved by maintaining the values of h−1 as an

auxiliary array.

(c) Show that the makeheap procedure takes O(n) time when called on a set

of n elements. What is the worst-case input? (Hint: Start by showing that

the running time is at most
∑n

i=1 log(n/ i).)

(d) What needs to be changed to adapt this pseudocode to d-ary heaps?

2See: R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied

Mathematics, 1983.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 123

Figure 4.16 Operations on a binary heap.

procedure insert(h, x)

bubbleup(h, x, |h| + 1)

procedure decreasekey(h, x)

bubbleup(h, x, h−1(x))

function deletemin(h)

if |h| = 0:

return null

else:

x = h(1)

siftdown(h, h(|h|), 1)

return x

function makeheap(S)

h = empty array of size |S|
for x ∈ S:

h(|h| + 1) = x

for i = |S| downto 1:

siftdown(h, h(i), i)

return h

procedure bubbleup(h, x, i)

(place element x in position i of h, and let it bubble up)

p = �i/2
while i �= 1 and key(h(p)) > key(x):

h(i) = h(p); i = p; p = �i/2
h(i) = x

procedure siftdown(h, x, i)

(place element x in position i of h, and let it sift down)

c = minchild(h, i)

while c �= 0 and key(h(c)) < key(x):

h(i) = h(c); i = c; c = minchild(h, i)

h(i) = x

function minchild(h, i)

(return the index of the smallest child of h(i))

if 2i > |h|:
return 0 (no children)

else:

return arg min{key(h(j)) : 2i ≤ j ≤ min{|h|, 2i + 1}}

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

124 Exercises

4.17. Suppose we want to run Dijkstra’s algorithm on a graph whose edge weights are

integers in the range 0, 1, . . . , W, where W is a relatively small number.

(a) Show how Dijkstra’s algorithm can be made to run in time

O(W|V | + |E |).
(b) Show an alternative implementation that takes time just

O((|V | + |E |) log W).

4.18. In cases where there are several different shortest paths between two nodes (and

edges have varying lengths), the most convenient of these paths is often the one

with fewest edges. For instance, if nodes represent cities and edge lengths

represent costs of flying between cities, there might be many ways to get from

city s to city t which all have the same cost. The most convenient of these

alternatives is the one which involves the fewest stopovers. Accordingly, for a

specific starting node s, define

best[u] = minimum number of edges in a shortest path from s to u.

In the example below, the best values for nodes S, A, B, C , D, E , F are

0, 1, 1, 1, 2, 2, 3, respectively.

S

A

B

C

D

E

F

2

2

4 3

2

2 1

1

1

1

Give an efficient algorithm for the following problem.

Input: Graph G = (V, E); positive edge lengths le; starting node s ∈ V .

Output: The values of best[u] should be set for all nodes u ∈ V .

4.19. Generalized shortest-paths problem. In Internet routing, there are delays on lines

but also, more significantly, delays at routers. This motivates a generalized

shortest-paths problem.

Suppose that in addition to having edge lengths {le : e ∈ E }, a graph also has

vertex costs {cv : v ∈ V}. Now define the cost of a path to be the sum of its edge

lengths, plus the costs of all vertices on the path (including the endpoints). Give

an efficient algorithm for the following problem.

Input: A directed graph G = (V, E); positive edge lengths le and positive

vertex costs cv; a starting vertex s ∈ V .

Output: An array cost[·] such that for every vertex u, cost[u] is the least

cost of any path from s to u (i.e., the cost of the cheapest path), under the

definition above.

Notice that cost[s] = cs.

4.20. There is a network of roads G = (V, E) connecting a set of cities V . Each road in

E has an associated length le. There is a proposal to add one new road to this

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

Chapter 4 Algorithms 125

network, and there is a list E ′ of pairs of cities between which the new road can

be built. Each such potential road e′ ∈ E ′ has an associated length. As a designer

for the public works department you are asked to determine the road e′ ∈ E ′

whose addition to the existing network G would result in the maximum

decrease in the driving distance between two fixed cities s and t in the network.

Give an efficient algorithm for solving this problem.

4.21. Shortest path algorithms can be applied in currency trading. Let c1, c2, . . . , cn be

various currencies; for instance, c1 might be dollars, c2 pounds, and c3 lire. For

any two currencies ci and c j , there is an exchange rate ri, j ; this means that you

can purchase ri, j units of currency c j in exchange for one unit of ci . These

exchange rates satisfy the condition that ri, j · r j,i < 1, so that if you start with a

unit of currency ci , change it into currency c j and then convert back to currency

ci , you end up with less than one unit of currency ci (the difference is the cost of

the transaction).

(a) Give an efficient algorithm for the following problem: Given a set of

exchange rates ri, j , and two currencies s and t, find the most

advantageous sequence of currency exchanges for converting currency s

into currency t. Toward this goal, you should represent the currencies

and rates by a graph whose edge lengths are real numbers.

The exchange rates are updated frequently, reflecting the demand and supply of

the various currencies. Occasionally the exchange rates satisfy the following

property: there is a sequence of currencies ci1 , ci2 , . . . , cik such that

ri1,i2 · ri2,i3 · · · rik−1,ik · rik,i1 > 1. This means that by starting with a unit of currency

ci1 and then successively converting it to currencies ci2 , ci3 , . . . , cik, and finally

back to ci1 , you would end up with more than one unit of currency ci1 . Such

anomalies last only a fraction of a minute on the currency exchange, but they

provide an opportunity for risk-free profits.

(b) Give an efficient algorithm for detecting the presence of such an

anomaly. Use the graph representation you found above.

4.22. The tramp steamer problem. You are the owner of a steamship that can ply

between a group of port cities V . You make money at each port: a visit to city i

earns you a profit of pi dollars. Meanwhile, the transportation cost from port i to

port j is ci j > 0. You want to find a cyclic route in which the ratio of profit to

cost is maximized.

To this end, consider a directed graph G = (V, E) whose nodes are ports, and

which has edges between each pair of ports. For any cycle C in this graph, the

profit-to-cost ratio is

r (C) =
∑

(i, j)∈C pj∑
(i, j)∈C ci j

.

Let r ∗ be the maximum ratio achievable by a simple cycle. One way to determine

r ∗ is by binary search: by first guessing some ratio r , and then testing whether it

is too large or too small.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch04 GTBL020-Dasgupta-v10 August 12, 2006 1:48

126 Exercises

Consider any positive r > 0. Give each edge (i, j) a weight of wi j = r ci j − pj .

(a) Show that if there is a cycle of negative weight, then r < r ∗.
(b) Show that if all cycles in the graph have strictly positive weight, then

r > r ∗.
(c) Give an efficient algorithm that takes as input a desired accuracy ε > 0

and returns a simple cycle C for which r (C) ≥ r ∗ − ε. Justify the

correctness of your algorithm and analyze its running time in terms of

|V |, ε, and R = max(i, j)∈E (pj/ci j).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5

Greedy algorithms

A game like chess can be won only by thinking ahead: a player who is focused

entirely on immediate advantage is easy to defeat. But in many other games, such

as Scrabble, it is possible to do quite well by simply making whichever move seems

best at the moment and not worrying too much about future consequences.

This sort of myopic behavior is easy and convenient, making it an attractive algorith-

mic strategy. Greedy algorithms build up a solution piece by piece, always choosing

the next piece that offers the most obvious and immediate benefit. Although such

an approach can be disastrous for some computational tasks, there are many for

which it is optimal. Our first example is that of minimum spanning trees.

5.1 Minimum spanning trees
Suppose you are asked to network a collection of computers by linking selected

pairs of them. This translates into a graph problem in which nodes are computers,

undirected edges are potential links, and the goal is to pick enough of these edges

that the nodes are connected. But this is not all; each link also has a maintenance

cost, reflected in that edge’s weight. What is the cheapest possible network?

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4

One immediate observation is that the optimal set of edges cannot contain a cycle,

because removing an edge from this cycle would reduce the cost without compro-

mising connectivity:

Property 1 Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are

called trees. The particular tree we want is the one with minimum total weight,

known as the minimum spanning tree. Here is its formal definition.

127

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

128 5.1 Minimum spanning trees

Input: An undirected graph G = (V, E); edge weights we.

Output: A tree T = (V, E ′), with E ′ ⊆ E , that minimizes

weight(T) =
∑
e∈E ′

we.

In the preceding example, the minimum spanning tree has a cost of 16:

A

B

C

D

E

F

1

4

2 5
4

However, this is not the only optimal solution. Can you spot another?

5.1.1 A greedy approach

Kruskal’s minimum spanning tree algorithm starts with the empty graph and then

selects edges from E according to the following rule.

Repeatedly add the next lightest edge that doesn’t produce a cycle.

In other words, it constructs the tree edge by edge and, apart from taking care to

avoid cycles, simply picks whichever edge is cheapest at the moment. This is a greedy
algorithm: every decision it makes is the one with the most obvious immediate

advantage.

Figure 5.1 shows an example. We start with an empty graph and then attempt to

add edges in increasing order of weight (ties are broken arbitrarily):

B − C , C − D, B − D, C − F , D − F , E − F , A− D, A− B, C − E , A− C .

The first two succeed, but the third, B − D, would produce a cycle if added. So

we ignore it and move along. The final result is a tree with cost 14, the minimum

possible.

Figure 5.1 The minimum spanning tree found by Kruskal’s algorithm.

B

A
6 5

3

42 FD

C E

5 4
1

2
4

B

A

FD

C E

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 129

Trees

A tree is an undirected graph that is connected and acyclic. Much of what makes trees so
useful is the simplicity of their structure. For instance,

Property 2 A tree on n nodes has n − 1 edges.

This can be seen by building the tree one edge at a time, starting from an empty
graph. Initially each of the n nodes is disconnected from the others, in a connected
component by itself. As edges are added, these components merge. Since each edge unites
two different components, exactly n − 1 edges are added by the time the tree is fully formed.

In a little more detail: When a particular edge {u, v} comes up, we can be sure that u
and v lie in separate connected components, for otherwise there would already be a path
between them and this edge would create a cycle. Adding the edge then merges these two
components, thereby reducing the total number of connected components by one. Over
the course of this incremental process, the number of components decreases from n to one,
meaning that n − 1 edges must have been added along the way.

The converse is also true.

Property 3 Any connected, undirected graph G = (V, E) with |E | = |V | − 1 is a tree.

We just need to show that G is acyclic. One way to do this is to run the following
iterative procedure on it: while the graph contains a cycle, remove one edge from this
cycle. The process terminates with some graph G ′ = (V, E ′), E ′ ⊆ E , which is acyclic
and, by Property 1 (from page 127), is also connected. Therefore G ′ is a tree, whereupon
|E ′| = |V | − 1 by Property 2. So E ′ = E , no edges were removed, and G was acyclic to
start with.

In other words, we can tell whether a connected graph is a tree just by counting how many
edges it has. Here’s another characterization.

Property 4 An undirected graph is a tree if and only if there is a unique path between any
pair of nodes.

In a tree, any two nodes can only have one path between them; for if there were two paths,
the union of these paths would contain a cycle.

On the other hand, if a graph has a path between any two nodes, then it is connected. If
these paths are unique, then the graph is also acyclic (since a cycle has two paths between
any pair of nodes).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

130 5.1 Minimum spanning trees

Figure 5.2 T ∪ {e}. The addition of e (dotted) to T (solid lines) produces a
cycle. This cycle must contain at least one other edge, shown here as e′, across
the cut (S,V − S).

e

S V − S

e

The correctness of Kruskal’s method follows from a certain cut property, which

is general enough to also justify a whole slew of other minimum spanning tree

algorithms.

5.1.2 The cut property

Say that in the process of building a minimum spanning tree (MST), we have already

chosen some edges and are so far on the right track. Which edge should we add

next? The following lemma gives us a lot of flexibility in our choice.

Cut property Suppose edges X are part of a minimum spanning tree of G = (V, E).
Pick any subset of nodes S for which X does not cross between S and V − S, and let
e be the lightest edge across this partition. Then X ∪ {e} is part of some MST.

A cut is any partition of the vertices into two groups, S and V − S. What this property

says is that it is always safe to add the lightest edge across any cut (that is, between

a vertex in S and one in V − S), provided X has no edges across the cut.

Let’s see why this holds. Edges X are part of some MST T ; if the new edge e also

happens to be part of T , then there is nothing to prove. So assume e is not in T . We

will construct a different MST T ′ containing X ∪ {e} by altering T slightly, changing

just one of its edges.

Add edge e to T . Since T is connected, it already has a path between the endpoints

of e, so adding e creates a cycle. This cycle must also have some other edge e′

across the cut (S, V − S) (Figure 5.2). If we now remove this edge, we are left with

T ′ = T ∪ {e} − {e′}, which we will show to be a tree. T ′ is connected by Property 1,

since e′ is a cycle edge. And it has the same number of edges as T ; so by Properties

2 and 3, it is also a tree.

Moreover, T ′ is a minimum spanning tree. Compare its weight to that of T :

weight(T ′) = weight(T) + w(e) − w(e′).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 131

Figure 5.3 The cut property at work. (a) An undirected graph. (b) Set X has
three edges, and is part of the MST T on the right. (c) If S = {A, B,C , D}, then
one of the minimum-weight edges across the cut (S,V − S) is e = {D, E}. X ∪ {e}
is part of MST T ′, shown on the right.

(a) A

B

C E

FD

2 2 3

3

41

1

2 1

(b)

Edges X:

A

B

C E

FD

MST T :

A

B

C E

FD

(c)

The cut:

A

B

C E

FD

e

S V − S

MST T :

A

B

C E

FD

Both e and e′ cross between S and V − S, and e is specifically the lightest edge of

this type. Therefore w(e) ≤ w(e′), and weight(T ′) ≤ weight(T). Since T is an MST,

it must be the case that weight(T ′) = weight(T) and that T ′ is also an MST.

Figure 5.3 shows an example of the cut property. Which edge is e′?

5.1.3 Kruskal’s algorithm

We are ready to justify Kruskal’s algorithm. At any given moment, the edges it has

already chosen form a partial solution, a collection of connected components each

of which has a tree structure. The next edge e to be added connects two of these

components; call them T1 and T2. Since e is the lightest edge that doesn’t produce

a cycle, it is certain to be the lightest edge between T1 and V − T1 and therefore

satisfies the cut property.

Now we fill in some implementation details. At each stage, the algorithm chooses

an edge to add to its current partial solution. To do so, it needs to test each candi-

date edge u − v to see whether the endpoints u and v lie in different components;

otherwise the edge produces a cycle. And once an edge is chosen, the correspond-

ing components need to be merged. What kind of data structure supports such

operations?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

132 5.1 Minimum spanning trees

Figure 5.4 Kruskal’s minimum spanning tree algorithm.

procedure kruskal (G, w)
Input: A connected undirected graph G = (V, E) with edge weights we
output: A minimum spanning three defined by the edges X

for all u ∈V:
 makeset (u)

X = {}
sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:
 if find(u) ≠ find(v):
 add edge {u, v} to X
 union(u, v)

We will model the algorithm’s state as a collection of disjoint sets, each of which

contains the nodes of a particular component. Initially each node is in a component

by itself:

makeset(x): create a singleton set containing just x.

We repeatedly test pairs of nodes to see if they belong to the same set.

find(x): to which set does x belong?

And whenever we add an edge, we are merging two components.

union(x, y): merge the sets containing x and y.

The final algorithm is shown in Figure 5.4. It uses |V | makeset, 2|E | find, and

|V | − 1 union operations.

5.1.4 A data structure for disjoint sets

Union by rank:

One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are

elements of the set, arranged in no particular order, and each has parent pointers

that eventually lead up to the root of the tree. This root element is a convenient

representative, or name, for the set. It is distinguished from the other elements by

the fact that its parent pointer is a self-loop.

In addition to a parent pointer π , each node also has a rank that, for the time being,

should be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)

while x �= π(x) : x = π(x)

return x

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 133

Figure 5.5 A directed-tree representation of two sets {B, E} and
{A,C , D, F ,G, H}.

E H

B C F

A

D

G

As can be expected, makeset is a constant-time operation. On the other hand, find
follows parent pointers to the root of the tree and therefore takes time proportional

to the height of the tree. The tree actually gets built via the third operation, union,

and so we must make sure that this procedure keeps trees shallow.

Merging two sets is easy: make the root of one point to the root of the other. But we

have a choice here. If the representatives (roots) of the sets are rx and ry, do we make

rx point to ry or the other way around? Since tree height is the main impediment

to computational efficiency, a good strategy is to make the root of the shorter tree
point to the root of the taller tree. This way, the overall height increases only if the

two trees being merged are equally tall. Instead of explicitly computing heights of

trees, we will use the rank numbers of their root nodes—which is why this scheme

is called union by rank.

procedure union(x, y)

rx = find(x)

ry = find(y)

if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node.

This means, for instance, that as you move up a path toward a root node, the rank
values along the way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

134 5.1 Minimum spanning trees

Figure 5.6 A sequence of disjoint-set operations. Superscripts denote rank.

After makeset(A),makeset(B),...,makeset(G):

A0 B0 C0 D0 E0 0 0F G

After union(A,D),union(B,E),union(C,F):

A0 B0 C0

G0F1E1D1

After union(C,G),union(E,A):

B

1

F1

C 0G

0

E

D2

A0 0

After union(B,G):

A

G0

FE1

0

C0

D2

B0

1

A root node with rank k is created by the merger of two trees with roots of rank

k − 1. It follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (nonroot) nodes as well: a node of rank k has at least

2k descendants. After all, any internal node was once a root, and neither its rank

nor its set of descendants has changed since then. Moreover, different rank-k nodes

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 135

cannot have common descendants, since by Property 1 any element has at most

one ancestor of rank k. Which means

Property 3 If there are n elements overall, there can be at most n/2k nodes of
rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore,

all the trees have height ≤ log n, and this is an upper bound on the running time of

find and union.

Path compression:

With the data structure as presented so far, the total time for Kruskal’s algorithm

becomes O(|E | log |V |) for sorting the edges (remember, log |E | ≈ log |V |) plus an-

other O(|E | log |V |) for the union and find operations that dominate the rest of

the algorithm. So there seems to be little incentive to make our data structure any

more efficient.

But what if the edges are given to us sorted? Or if the weights are small (say, O(|E |))
so that sorting can be done in linear time? Then the data structure part becomes the

bottleneck, and it is useful to think about improving its performance beyond log n
per operation. As it turns out, the improved data structure is useful in many other

applications.

But how can we perform union’s and find’s faster than log n? The answer is, by

being a little more careful to maintain our data structure in good shape. As any

housekeeper knows, a little extra effort put into routine maintenance can pay off

handsomely in the long run, by forestalling major calamities. We have in mind a

particular maintenance operation for our union-find data structure, intended to keep

the trees short—during each find, when a series of parent pointers is followed up

to the root of a tree, we will change all these pointers so that they point directly

to the root (Figure 5.7). This path compression heuristic only slightly increases the

time needed for a find and is easy to code.

function find(x)

if x �= π(x) : π(x) = find(π(x))

return π(x)

The benefit of this simple alteration is long-term rather than instantaneous and thus

necessitates a particular kind of analysis: we need to look at sequences of find and

union operations, starting from an empty data structure, and determine the average

time per operation. This amortized cost turns out to be just barely more than O(1),

down from the earlier O(log n).

Think of the data structure as having a “top level’’ consisting of the root nodes, and

below it, the insides of the trees. There is a division of labor: find operations (with

or without path compression) only touch the insides of trees, whereas union’s only

look at the top level. Thus path compression has no effect on union operations and

leaves the top level unchanged.

We now know that the ranks of root nodes are unaltered, but what about nonroot
nodes? The key point here is that once a node ceases to be a root, it never resurfaces,

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

136 5.1 Minimum spanning trees

Figure 5.7 The effect of path compression: find(I) followed by find(K).

B0

D0

I0 J0 K0

H0

C1

1 G1

A3

F

E2

−→
B0

0D

K0

J0

I0

H0

C1 F1

G1

A3

E2

−→ B0

D H0 J 0

I0 K0 G1C1 F1E2

A

0

3

and its rank is forever fixed. Therefore the ranks of all nodes are unchanged by

path compression, even though these numbers can no longer be interpreted as tree

heights. In particular, properties 1–3 (from page 133) still hold.

If there are n elements, their rank values can range from 0 to log n by Property 3.

Let’s divide the nonzero part of this range into certain carefully chosen intervals,

for reasons that will soon become clear:

{1}, {2}, {3, 4}, {5, 6, . . . , 16}, {17, 18, . . . , 216 = 65536}, {65537, 65538, . . . , 265536}, . . .

Each group is of the form {k + 1, k + 2, . . . , 2k}, where k is a power of 2. The number

of groups is log∗ n, which is defined to be the number of successive log operations

that need to be applied to n to bring it down to 1 (or below 1). For instance,

log∗ 1000 = 4 since log log log log 1000 ≤ 1. In practice there will just be the first

five of the intervals shown; more are needed only if n ≥ 265536, in other words

never.

In a sequence of find operations, some may take longer than others. We’ll bound

the overall running time using some creative accounting. Specifically, we will give

each node a certain amount of pocket money, such that the total money doled out

is at most n log∗ n dollars. We will then show that each find takes O(log∗ n) steps,

plus some additional amount of time that can be “paid for’’ using the pocket money

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 137

of the nodes involved—one dollar per unit of time. Thus the overall time for m
find’s is O(m log∗ n) plus at most O(n log∗ n).

In more detail, a node receives its allowance as soon as it ceases to be a root, at

which point its rank is fixed. If this rank lies in the interval {k + 1, . . . , 2k}, the node

receives 2k dollars. By Property 3, the number of nodes with rank > k is bounded

by

n

2k+1
+ n

2k+2
+ · · · ≤ n

2k
.

Therefore the total money given to nodes in this particular interval is at most n
dollars, and since there are log∗ n intervals, the total money disbursed to all nodes

is ≤ n log∗ n.

Now, the time taken by a specific find is simply the number of pointers followed.

Consider the ascending rank values along this chain of nodes up to the root. Nodes

x on the chain fall into two categories: either the rank of π(x) is in a higher interval

than the rank of x, or else it lies in the same interval. There are at most log∗ n nodes

of the first type (do you see why?), so the work done on them takes O(log∗ n) time.

The remaining nodes—whose parents’ ranks are in the same interval as theirs—have

to pay a dollar out of their pocket money for their processing time.

This only works if the initial allowance of each node x is enough to cover all of its

payments in the sequence of find operations. Here’s the crucial observation: each

time x pays a dollar, its parent changes to one of higher rank. Therefore, if x’s rank

lies in the interval {k + 1, . . . , 2k}, it has to pay at most 2k dollars before its parent’s

rank is in a higher interval; whereupon it never has to pay again.

5.1.5 Prim’s algorithm

Let’s return to our discussion of minimum spanning tree algorithms. What the cut

property tells us in most general terms is that any algorithm conforming to the

following greedy schema is guaranteed to work.

X = { } (edges picked so far)

repeat until |X| = |V | − 1:

pick a set S ⊂ V for which X has no edges between S and V − S

let e ∈ E be the minimum-weight edge between S and V − S

X = X ∪ {e}

A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate

set of edges X always forms a subtree, and S is chosen to be the set of this tree’s

vertices.

On each iteration, the subtree defined by X grows by one edge, namely, the lightest

edge between a vertex in S and a vertex outside S (Figure 5.8). We can equivalently

think of S as growing to include the vertex v �∈ S of smallest cost:

cost(v) = min
u∈S

w(u, v).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

138 5.2 Huffman encoding

Figure 5.8 Prim’s algorithm: the edges X form a tree, and S consists of its
vertices.

e

S V − S

X

This is strongly reminiscent of Dijkstra’s algorithm, and in fact the pseudocode

(Figure 5.9) is almost identical. The only difference is in the key values by which

the priority queue is ordered. In Prim’s algorithm, the value of a node is the weight

of the lightest incoming edge from set S, whereas in Dijkstra’s it is the length of an

entire path to that node from the starting point. Nonetheless, the two algorithms

are similar enough that they have the same running time, which depends on the

particular priority queue implementation.

Figure 5.9 shows Prim’s algorithm at work, on a small six-node graph. Notice how

the final MST is completely specified by the prev array.

5.2 Huffman encoding
In the MP3 audio compression scheme, a sound signal is encoded in three steps.

1. It is digitized by sampling at regular intervals, yielding a sequence of real numbers

s1, s2, . . . , sT . For instance, at a rate of 44,100 samples per second, a 50-minute

symphony would correspond to T = 50 × 60 × 44,100 ≈ 130 million measure-

ments.1

2. Each real-valued sample st is quantized: approximated by a nearby number from

a finite set �. This set is carefully chosen to exploit human perceptual limitations,

with the intention that the approximating sequence is indistinguishable from

s1, s2, . . . , sT by the human ear.

3. The resulting string of length T over alphabet � is encoded in binary.

It is in the last step that Huffman encoding is used. To understand its role, let’s look

at a toy example in which T is 130 million and the alphabet � consists of just four

1For stereo sound, two channels would be needed, doubling the number of samples.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 139

Figure 5.9 Top: Prim’s minimum spanning tree algorithm. Below: An
illustration of Prim’s algorithm, starting at node A. Also shown are a table of
cost/prev values, and the final MST.

procedure prim (G, w)

Input: A connected undirected graph G = (V, E) with edge
 weights we
output: A minimum spanning tree defined by the array prev

for all u ∈V:
 cost(u) = ∞
 prev(u) = nil
pick any initial node u0
cost(u0) = 0

H = makequeue (V) (priority queue, using cost-values as keys)
while H is not empty:
 v = deletemin (H)
 for each {v, z} ∈ E :
 if cost(z) > w(v, z) :
 cost(z) > w(v, z)
 prev(z) = v
 decreasekey(H, z)

values, denoted by the symbols A, B, C , D. What is the most economical way to

write this long string in binary? The obvious choice is to use 2 bits per symbol—say

codeword 00 for A, 01 for B, 10 for C , and 11 for D—in which case 260 megabits

are needed in total. Can there possibly be a better encoding than this?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

140 5.2 Huffman encoding

A randomized algorithm for minimum cut

We have already seen that spanning trees and cuts are intimately related. Here is another
connection. Let’s remove the last edge that Kruskal’s algorithm adds to the spanning tree;
this breaks the tree into two components, thus defining a cut (S, S) in the graph. What
can we say about this cut? Suppose the graph we were working with was unweighted, and
that its edges were ordered uniformly at random for Kruskal’s algorithm to process them.
Here is a remarkable fact: with probability at least 1/n2, (S, S) is the minimum cut in
the graph, where the size of a cut (S, S) is the number of edges crossing between S and
S. This means that repeating the process O(n2) times and outputting the smallest cut
found yields the minimum cut in G with high probability: an O(mn2 log n) algorithm
for unweighted minimum cuts. Some further tuning gives the O(n2 log n) minimum
cut algorithm, invented by David Karger, which is the fastest known algorithm for this
important problem.

So let us see why the cut found in each iteration is the minimum cut with probability at least
1/n2. At any stage of Kruskal’s algorithm, the vertex set V is partitioned into connected
components. The only edges eligible to be added to the tree have their two endpoints
in distinct components. The number of edges incident to each component must be at
least C , the size of the minimum cut in G (since we could consider a cut that separated
this component from the rest of the graph). So if there are k components in the graph,
the number of eligible edges is at least kC/2 (each of the k components has at least C
edges leading out of it, and we need to compensate for the double-counting of each edge).
Since the edges were randomly ordered, the chance that the next eligible edge in the list
is from the minimum cut is at most C/(kC/2) = 2/k. Thus, with probability at least
1 − 2/k = (k − 2)/k, the choice leaves the minimum cut intact. But now the chance that
Kruskal’s algorithm leaves the minimum cut intact all the way up to the choice of the last
spanning tree edge is at least

n − 2

n
· n − 3

n − 1
· n − 4

n − 2
· · · 2

4
· 1

3
= 1

n(n − 1)
.

In search of inspiration, we take a closer look at our particular sequence and find

that the four symbols are not equally abundant.

Symbol Frequency

A 70 million

B 3 million

C 20 million

D 37 million

Is there some sort of variable-length encoding, in which just one bit is used for the

frequently occurring symbol A, possibly at the expense of needing three or more

bits for less common symbols?

A danger with having codewords of different lengths is that the resulting encoding

may not be uniquely decipherable. For instance, if the codewords are {0, 01, 11, 001},

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 141

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets.

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

the decoding of strings like 001 is ambiguous. We will avoid this problem by insisting

on the prefix-free property: no codeword can be a prefix of another codeword.

Any prefix-free encoding can be represented by a full binary tree—that is, a binary

tree in which every node has either zero or two children—where the symbols are

at the leaves, and where each codeword is generated by a path from root to leaf,

interpreting left as 0 and right as 1 (Exercise 5.29). Figure 5.10 shows an example

of such an encoding for the four symbols A, B, C , D. Decoding is unique: a string

of bits is decrypted by starting at the root, reading the string from left to right to

move downward, and, whenever a leaf is reached, outputting the corresponding

symbol and returning to the root. It is a simple scheme and pays off nicely for our

toy example, where (under the codes of Figure 5.10) the total size of the binary

string drops to 213 megabits, a 17% improvement.

In general, how do we find the optimal coding tree, given the frequencies

f1, f2, . . . , fn of n symbols? To make the problem precise, we want a tree whose

leaves each correspond to a symbol and which minimizes the overall length of the

encoding,

cost of tree =
n∑

i=1

fi · (depth of ith symbol in tree)

(the number of bits required for a symbol is exactly its depth in the tree).

There is another way to write this cost function that is very helpful. Although we are

only given frequencies for the leaves, we can define the frequency of any internal
node to be the sum of the frequencies of its descendant leaves; this is, after all, the

number of times the internal node is visited during encoding or decoding. During

the encoding process, each time we move down the tree, one bit gets output for

every nonroot node through which we pass. So the total cost—the total number of

bits which are output—can also be expressed thus:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

142 5.2 Huffman encoding

The first formulation of the cost function tells us that the two symbols with the
smallest frequencies must be at the bottom of the optimal tree, as children of the

lowest internal node (this internal node has two children since the tree is full).
Otherwise, swapping these two symbols with whatever is lowest in the tree would

improve the encoding.

This suggests that we start constructing the tree greedily: find the two symbols with

the smallest frequencies, say i and j , and make them children of a new node, which

then has frequency fi + f j . To keep the notation simple, let’s just assume these are

f1 and f2. By the second formulation of the cost function, any tree in which f1 and

f2 are sibling-leaves has cost f1 + f2 plus the cost for a tree with n − 1 leaves of

frequencies (f1 + f2), f3, f4, . . . , fn:

f1 f2

f3f5 f4

f1 + f2

The latter problem is just a smaller version of the one we started with. So we pull f1
and f2 off the list of frequencies, insert (f1 + f2), and loop. The resulting algorithm

can be described in terms of priority queue operations (as defined on page 109) and

takes O(n log n) time if a binary heap (Section 4.5.2) is used.

procedure Huffman(f)

Input: An array f [1 · · · n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i = 1 to n: insert(H, i)
for k = n + 1 to 2n − 1:

i = deletemin(H), j = deletemin(H)

create a node numbered k with children i, j
f [k] = f [i] + f [j]
insert(H, k)

Returning to our toy example: can you tell if the tree of Figure 5.10 is optimal?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 143

Entropy

The annual county horse race is bringing in three thoroughbreds who have never com-
peted against one another. Excited, you study their past 200 races and summarize these
as probability distributions over four outcomes: first (“first place”), second, third, and
other.

Outcome Aurora Whirlwind Phantasm

first 0.15 0.30 0.20
second 0.10 0.05 0.30
third 0.70 0.25 0.30
other 0.05 0.40 0.20

Which horse is the most predictable? One quantitative approach to this question is to look
at compressibility. Write down the history of each horse as a string of 200 values (first,
second, third, other). The total number of bits needed to encode these track-record
strings can then be computed using Huffman’s algorithm. This works out to 290 bits for
Aurora, 380 for Whirlwind, and 420 for Phantasm (check it!). Aurora has the shortest
encoding and is therefore in a strong sense the most predictable.

The inherent unpredictability, or randomness, of a probability distribution can be measured
by the extent to which it is possible to compress data drawn from that distribution.

more compressible ≡ less random ≡ more predictable

Suppose there are n possible outcomes, with probabilities p1, p2, . . . , pn . If a sequence
of m values is drawn from the distribution, then the i th outcome will pop up roughly
mpi times (if m is large). For simplicity, assume these are exactly the observed frequencies,
and moreover that the pi ’s are all powers of 2 (that is, of the form 1/2k). It can be seen
by induction (Exercise 5.19) that the number of bits needed to encode the sequence is∑n

i=1 mpi log(1/pi). Thus the average number of bits needed to encode a single draw from

the distribution is
n∑

i=1

pi log
1

pi

.

This is the entropy of the distribution, a measure of how much randomness it contains.

For example, a fair coin has two outcomes, each with probability 1/2. So its entropy is

1

2
log 2 + 1

2
log 2 = 1.

This is natural enough: the coin flip contains one bit of randomness. But what if the coin
is not fair, if it has a 3/4 chance of turning up heads? Then the entropy is

3

4
log

4

3
+ 1

4
log 4 = 0.81.

A biased coin is more predictable than a fair coin, and thus has lower entropy. As the bias
becomes more pronounced, the entropy drops toward zero.

We explore these notions further in Exercises 5.18 and 5.19.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

144 5.3 Horn formulas

5.3 Horn formulas
In order to display human-level intelligence, a computer must be able to perform at

least some modicum of logical reasoning. Horn formulas are a particular framework

for doing this, for expressing logical facts and deriving conclusions.

The most primitive object in a Horn formula is a Boolean variable, taking value

either true or false. For instance, variables x, y, and z might denote the following

possibilities.

x ≡ the murder took place in the kitchen

y ≡ the butler is innocent

z ≡ the colonel was asleep at 8 pm

A literal is either a variable x or its negation x (“NOT x”). In Horn formulas, knowl-

edge about variables is represented by two kinds of clauses:

1. Implications, whose left-hand side is an AND of any number of positive literals

and whose right-hand side is a single positive literal. These express statements

of the form “if the conditions on the left hold, then the one on the right must

also be true.” For instance,

(z ∧ w) ⇒ u

might mean “if the colonel was asleep at 8 pm and the murder took place at 8 pm

then the colonel is innocent.” A degenerate type of implication is the singleton
“⇒ x,” meaning simply that x is true: “the murder definitely occurred in the

kitchen.”

2. Pure negative clauses, consisting of an OR of any number of negative literals, as

in

(u ∨ v ∨ y)

(“they can’t all be innocent”).

Given a set of clauses of these two types, the goal is to determine whether there is a

consistent explanation: an assignment of true/false values to the variables that

satisfies all the clauses. This is also called a satisfying assignment.

The two kinds of clauses pull us in different directions. The implications tell us

to set some of the variables to true, while the negative clauses encourage us to

make them false. Our strategy for solving a Horn formula is this: We start with

all variables false. We then proceed to set some of them to true, one by one, but

very reluctantly, and only if we absolutely have to because an implication would

otherwise be violated. Once we are done with this phase and all implications are

satisfied, only then do we turn to the negative clauses and make sure they are all

satisfied.

In other words, our algorithm for Horn clauses is the following greedy scheme

(stingy is perhaps more descriptive):

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 145

Input: a Horn formula
Output: a satisfying assignment, if one exists

set all variables to false

while there is an implication that is not satisfied:
set the right-hand variable of the implication to true

if all pure negative clauses are satisfied:
return the assignment

else: return “formula is not satisfiable’’

For instance, suppose the formula is

(w ∧ y ∧ z) ⇒ x, (x ∧ z) ⇒ w, x ⇒ y, ⇒ x, (x ∧ y) ⇒ w, (w ∨ x ∨ y), (z).

We start with everything false and then notice that x must be true on account

of the singleton implication ⇒ x. Then we see that y must also be true, because

of x ⇒ y. And so on.

To see why the algorithm is correct, notice that if it returns an assignment, this

assignment satisfies both the implications and the negative clauses, and so it is

indeed a satisfying truth assignment of the input Horn formula. So we only have to

convince ourselves that if the algorithm finds no satisfying assignment, then there

really is none. This is so because our “stingy” rule maintains the following invariant:

If a certain set of variables is set to true, then they must be true in any

satisfying assignment.

Hence, if the truth assignment found after the while loop does not satisfy the

negative clauses, there can be no satisfying truth assignment.

Horn formulas lie at the heart of Prolog (“programming by logic”), a language in

which you program by specifying desired properties of the output, using simple

logical expressions. The workhorse of Prolog interpreters is our greedy satisfiability

algorithm. Conveniently, it can be implemented in time linear in the length of the

formula; do you see how (Exercise 5.33)?

5.4 Set cover
The dots in Figure 5.11 represent a collection of towns. This county is in its early

stages of planning and is deciding where to put schools. There are only two con-

straints: each school should be in a town, and no one should have to travel more than

30 miles to reach one of them. What is the minimum number of schools needed?

This is a typical set cover problem. For each town x, let Sx be the set of towns within

30 miles of it. A school at x will essentially “cover” these other towns. The question

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

146 5.4 Set cover

Figure 5.11 (a) Eleven towns. (b) Towns that are within 30 miles of each other.

(a)

h

b

k

j

i

g

f
ea

c

d

(b)

h

b

k

j

i

g

f
ea

c

d

is then, how many sets Sx must be picked in order to cover all the towns in the

county?

Set Cover

Input: A set of elements B; sets S1, . . . , Sm ⊆ B

Output: A selection of the Si whose union is B.

Cost: Number of sets picked.

(In our example, the elements of B are the towns.) This problem lends itself imme-

diately to a greedy solution:

Repeat until all elements of B are covered:

Pick the set Si with the largest number of uncovered elements.

This is extremely natural and intuitive. Let’s see what it would do on our

earlier example: It would first place a school at town a, since this covers

the largest number of other towns. Thereafter, it would choose three more

schools—c, j , and either f or g—for a total of four. However, there exists

a solution with just three schools, at b, e, and i. The greedy scheme is not

optimal!

But luckily, it isn’t too far from optimal.

Claim Suppose B contains n elements and that the optimal cover consists of k sets.
Then the greedy algorithm will use at most k ln n sets.2

Let nt be the number of elements still not covered after t iterations of the greedy

algorithm (so n0 = n). Since these remaining elements are covered by the optimal

2ln means “natural logarithm,” that is, to the base e.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 147

k sets, there must be some set with at least nt/k of them. Therefore, the greedy

strategy will ensure that

nt+1 ≤ nt − nt

k
= nt

(
1 − 1

k

)
,

which by repeated application implies nt ≤ n0(1 − 1/k)t. A more convenient bound

can be obtained from the useful inequality

1 − x ≤ e−x for all x, with equality if and only if x = 0,

which is most easily proved by a picture:

x
0

11 − x

e−x

nt ≤ n0 1 − 1
k

t

< n0(e−1/k)t = ne−t/k

.

Thus

At t = k ln n, therefore, nt is strictly less than ne− ln n = 1, which means no elements

remain to be covered.

The ratio between the greedy algorithm’s solution and the optimal solution varies

from input to input but is always less than ln n. And there are certain inputs for

which the ratio is very close to ln n (Exercise 5.34). We call this maximum ratio

the approximation factor of the greedy algorithm. There seems to be a lot of room

for improvement, but in fact such hopes are unjustified: it turns out that under

certain widely-held complexity assumptions (which will be clearer when we reach

Chapter 8), there is provably no polynomial-time algorithm with a smaller approx-

imation factor.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

148 Exercises

Exercises

5.1. Consider the following graph.

A B C D

E F G H

1 2 2

1

6

33

5

5

4 5

6

7

(a) What is the cost of its minimum spanning tree?

(b) How many minimum spanning trees does it have?

(c) Suppose Kruskal’s algorithm is run on this graph. In what order are the

edges added to the MST? For each edge in this sequence, give a cut that

justifies its addition.

5.2. Suppose we want to find the minimum spanning tree of the following graph.

A B C D

E F G H

41268

5

64

1 1

31 2

(a) Run Prim’s algorithm; whenever there is a choice of nodes, always use

alphabetic ordering (e.g., start from node A). Draw a table showing the

intermediate values of the cost array.

(b) Run Kruskal’s algorithm on the same graph. Show how the disjoint-sets

data structure looks at every intermediate stage (including the structure

of the directed trees), assuming path compression is used.

5.3. Design a linear-time algorithm for the following task.

Input: A connected, undirected graph G.
Question: Is there an edge you can remove from G while still leaving G
connected?

Can you reduce the running time of your algorithm to O(|V |)?
5.4. Show that if an undirected graph with n vertices has k connected components,

then it has at least n − k edges.

5.5. Consider an undirected graph G = (V, E) with nonnegative edge weights we ≥ 0.

Suppose that you have computed a minimum spanning tree of G , and that you

have also computed shortest paths to all nodes from a particular node s ∈ V .

Now suppose each edge weight is increased by 1: the new weights are

w′
e = we + 1.

(a) Does the minimum spanning tree change? Give an example where it

changes or prove it cannot change.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 149

(b) Do the shortest paths change? Give an example where they change or

prove they cannot change.

5.6. Let G = (V, E) be an undirected graph. Prove that if all its edge weights are

distinct, then it has a unique minimum spanning tree.

5.7. Show how to find the maximum spanning tree of a graph, that is, the spanning

tree of largest total weight.

5.8. Suppose you are given a connected weighted graph G = (V, E) with a

distinguished vertex s and where all edge weights are positive and distinct. Is it

possible for a tree of shortest paths from s and a minimum spanning tree in G to

not share any edges? If so, give an example. If not, give a reason.

5.9. The following statements may or may not be correct. In each case, either prove it

(if it is correct) or give a counterexample (if it isn’t correct). Always assume that

the graph G = (V, E) is undirected and connected. Do not assume that edge

weights are distinct unless this is specifically stated.

(a) If graph G has more than |V | − 1 edges, and there is a unique heaviest

edge, then this edge cannot be part of a minimum spanning tree.

(b) If G has a cycle with a unique heaviest edge e, then e cannot be part of

any MST.

(c) Let e be any edge of minimum weight in G . Then e must be part of some

MST.

(d) If the lightest edge in a graph is unique, then it must be part of every

MST.

(e) If e is part of some MST of G , then it must be a lightest edge across some

cut of G .

(f) If G has a cycle with a unique lightest edge e, then e must be part of

every MST.

(g) The shortest-path tree computed by Dijkstra’s algorithm is necessarily an

MST.

(h) The shortest path between two nodes is necessarily part of some MST.

(i) Prim’s algorithm works correctly when there are negative edges.

(j) (For any r > 0, define an r -path to be a path whose edges all have weight

< r .) If G contains an r -path from node s to t, then every MST of G must

also contain an r -path from node s to node t.

5.10. Let T be an MST of graph G . Given a connected subgraph H of G , show that

T ∩ H is contained in some MST of H .

5.11. Give the state of the disjoint-sets data structure after the following sequence of

operations, starting from singleton sets {1}, . . . , {8}. Use path compression. In

case of ties, always make the lower numbered root point to the higher numbered

one.

union(1, 2),union(3, 4),union(5, 6), union(7, 8),union(1, 4),

union(6, 7),union(4, 5),find(1)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

150 Exercises

5.12. Suppose you implement the disjoint-sets data structure using union-by-rank but

not path compression. Give a sequence of m union and find operations on n

elements that take �(m log n) time.

5.13. A long string consists of the four characters A, C , G , T ; they appear with

frequency 31%, 20%, 9%, and 40%, respectively. What is the Huffman encoding

of these four characters?

5.14. Suppose the symbols a, b, c, d, e occur with frequencies 1/2, 1/4, 1/8, 1/16, 1/16,

respectively.

(a) What is the Huffman encoding of the alphabet?

(b) If this encoding is applied to a file consisting of 1,000,000 characters

with the given frequencies, what is the length of the encoded file in bits?

5.15. We use Huffman’s algorithm to obtain an encoding of alphabet {a, b, c} with

frequencies fa, fb, fc . In each of the following cases, either give an example of

frequencies (fa, fb, fc) that would yield the specified code, or explain why the

code cannot possibly be obtained (no matter what the frequencies

are).

(a) Code: {0, 10, 11}
(b) Code: {0, 1, 00}
(c) Code: {10, 01, 00}

5.16. Prove the following two properties of the Huffman encoding scheme.

(a) If some character occurs with frequency more than 2/5, then there is

guaranteed to be a codeword of length 1.

(b) If all characters occur with frequency less than 1/3, then there is

guaranteed to be no codeword of length 1.

5.17. Under a Huffman encoding of n symbols with frequencies f1, f2, . . . , fn, what is

the longest a codeword could possibly be? Give an example set of frequencies

that would produce this case.

5.18. The following table gives the frequencies of the letters of the English language

(including the blank for separating words) in a particular corpus.

blank 18.3% r 4.8% y 1.6%

e 10.2% d 3.5% p 1.6%

t 7.7% l 3.4% b 1.3%

a 6.8% c 2.6% v 0.9%

o 5.9% u 2.4% k 0.6%

i 5.8% m 2.1% j 0.2%

n 5.5% w 1.9% x 0.2%

s 5.1% f 1.8% q 0.1%

h 4.9% g 1.7% z 0.1%

(a) What is the optimum Huffman encoding of this alphabet?

(b) What is the expected number of bits per letter?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 151

(c) Suppose now that we calculate the entropy of these frequencies

H =
26∑

i=0

pi log
1

pi

(see the box in page 143). Would you expect it to be larger or smaller

than your answer above? Explain.

(d) Do you think that this is the limit of how much English text can be

compressed? What features of the English language, besides letters and

their frequencies, should a better compression scheme take into account?

5.19. Entropy. Consider a distribution over n possible outcomes, with probabilities

p1, p2, . . . , pn.

(a) Just for this part of the problem, assume that each pi is a power of 2

(that is, of the form 1/2k). Suppose a long sequence of m samples is

drawn from the distribution and that for all 1 ≤ i ≤ n, the i th outcome

occurs exactly mpi times in the sequence. Show that if Huffman encoding

is applied to this sequence, the resulting encoding will have length

n∑
i=1

mpi log
1

pi

.

(b) Now consider arbitrary distributions—that is, the probabilities pi are not

restricted to powers of 2. The most commonly used measure of the

amount of randomness in the distribution is the entropy

n∑
i=1

pi log
1

pi

.

For what distribution (over n outcomes) is the entropy the largest

possible? The smallest possible?

5.20. Give a linear-time algorithm that takes as input a tree and determines whether it

has a perfect matching: a set of edges that touches each node exactly once.

5.21. A feedback edge set of an undirected graph G = (V, E) is a subset of edges

E ′ ⊆ E that intersects every cycle of the graph. Thus, removing the edges E ′ will

render the graph acyclic.

Give an efficient algorithm for the following problem:

Input: Undirected graph G = (V, E) with positive edge weights we

Output: A feedback edge set E ′ ⊆ E of minimum total weight∑
e∈E ′ we

5.22. In this problem, we will develop a new algorithm for finding minimum spanning

trees. It is based upon the following property:

Pick any cycle in the graph, and let e be the heaviest edge in that cycle. Then

there is a minimum spanning tree that does not contain e.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

152 Exercises

(a) Prove this property carefully.

(b) Here is the new MST algorithm. The input is some undirected graph

G = (V, E) (in adjacency list format) with edge weights {we}.
sort the edges according to their weights

for each edge e ∈ E, in decreasing order of we:

if e is part of a cycle of G:

G = G − e (that is, remove e from G)

return G

Prove that this algorithm is correct.

(c) On each iteration, the algorithm must check whether there is a cycle

containing a specific edge e. Give a linear-time algorithm for this task,

and justify its correctness.

(d) What is the overall time taken by this algorithm, in terms of |E |?
5.23. You are given a graph G = (V, E) with positive edge weights, and a minimum

spanning tree T = (V, E ′) with respect to these weights; you may assume G and

T are given as adjacency lists. Now suppose the weight of a particular edge

e ∈ E is modified from w(e) to a new value ŵ(e). You wish to quickly update the

minimum spanning tree T to reflect this change, without recomputing the entire

tree from scratch. There are four cases. In each case give a linear-time algorithm

for updating the tree.

(a) e �∈ E ′ and ŵ(e) > w(e).

(b) e �∈ E ′ and ŵ(e) < w(e).

(c) e ∈ E ′ and ŵ(e) < w(e).

(d) e ∈ E ′ and ŵ(e) > w(e).

5.24. Sometimes we want light spanning trees with certain special properties. Here’s

an example.

Input: Undirected graph G = (V, E); edge weights we; subset of vertices

U ⊂ V
Output: The lightest spanning tree in which the nodes of U are leaves

(there might be other leaves in this tree as well).

(The answer isn’t necessarily a minimum spanning tree.)

Give an algorithm for this problem which runs in O(|E | log |V |) time. (Hint:

When you remove nodes U from the optimal solution, what is left?)

5.25. A binary counter of unspecified length supports two operations: increment

(which increases its value by one) and reset (which sets its value back to

zero). Show that, starting from an initially zero counter, any sequence of n

increment and reset operations takes time O(n); that is, the amortized time

per operation is O(1).

5.26. Here’s a problem that occurs in automatic program analysis. For a set of

variables x1, . . . , xn, you are given some equality constraints, of the form

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 153

“xi = xj ” and some disequality constraints, of the form “xi �= xj .” Is it possible

to satisfy all of them?

For instance, the constraints
x1 = x2, x2 = x3, x3 = x4, x1 �= x4

cannot be satisfied. Give an efficient algorithm that takes as input m constraints

over n variables and decides whether the constraints can be satisfied.

5.27. Graphs with prescribed degree sequences. Given a list of n positive integers

d1, d2, . . . , dn, we want to efficiently determine whether there exists an

undirected graph G = (V, E) whose nodes have degrees precisely d1, d2, . . . , dn.

That is, if V = {v1, . . . , vn}, then the degree of vi should be exactly di . We call

(d1, . . . , dn) the degree sequence of G . This graph G should not contain self-loops

(edges with both endpoints equal to the same node) or multiple edges between

the same pair of nodes.

(a) Give an example of d1, d2, d3, d4 where all the di ≤ 3 and

d1 + d2 + d3 + d4 is even, but for which no graph with degree sequence

(d1, d2, d3, d4) exists.

(b) Suppose that d1 ≥ d2 ≥ · · · ≥ dn and that there exists a graph G = (V, E)

with degree sequence (d1, . . . , dn). We want to show that there must exist

a graph that has this degree sequence and where in addition the

neighbors of v1 are v2, v3, . . . , vd1+1. The idea is to gradually transform G

into a graph with the desired additional property.

i. Suppose the neighbors of v1 in G are not v2, v3, . . . , vd1+1. Show that

there exists i < j ≤ n and u ∈ V such that {v1, vi}, {u, v j } /∈ E and

{v1, v j }, {u, vi} ∈ E .

ii. Specify the changes you would make to G to obtain a new graph

G ′ = (V, E ′) with the same degree sequence as G and where (v1, vi)

∈ E ′.
iii. Now show that there must be a graph with the given degree

sequence but in which v1 has neighbors v2, v3, . . . , vd1+1.

(c) Using the result from part (b), describe an algorithm that on input

d1, . . . , dn (not necessarily sorted) decides whether there exists a graph

with this degree sequence. Your algorithm should run in time polynomial

in n.

5.28. Alice wants to throw a party and is deciding whom to call. She has n people to

choose from, and she has made up a list of which pairs of these people know

each other. She wants to pick as many people as possible, subject to two

constraints: at the party, each person should have at least five other people

whom they know and five other people whom they don’t know.

Give an efficient algorithm that takes as input the list of n people and the list of

pairs who know each other and outputs the best choice of party invitees. Give

the running time in terms of n.

5.29. A prefix-free encoding of a finite alphabet � assigns each symbol in � a binary

codeword, such that no codeword is a prefix of another codeword. A prefix-free

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

154 Exercises

encoding is minimal if it is not possible to arrive at another prefix-free encoding

(of the same symbols) by contracting some of the keywords. For instance, the

encoding {0, 101} is not minimal since the codeword 101 can be contracted to 1

while still maintaining the prefix-free property.

Show that a minimal prefix-free encoding can be represented by a full binary

tree in which each leaf corresponds to a unique element of �, whose codeword

is generated by the path from the root to that leaf (interpreting a left branch as 0

and a right branch as 1).

5.30. Ternary Huffman. Trimedia Disks Inc. has developed “ternary” hard disks. Each

cell on a disk can now store values 0, 1, or 2 (instead of just 0 or 1). To take

advantage of this new technology, provide a modified Huffman algorithm for

compressing sequences of characters from an alphabet of size n, where the

characters occur with known frequencies f1, f2, . . . , fn. Your algorithm should

encode each character with a variable-length codeword over the values 0, 1, 2

such that no codeword is a prefix of another codeword and so as to obtain the

maximum possible compression. Prove that your algorithm is correct.

5.31. The basic intuition behind Huffman’s algorithm, that frequent blocks should

have short encodings and infrequent blocks should have long encodings, is also

at work in English, where typical words like I, you, is, and, to, from, and so

on are short, and rarely used words like velociraptor are longer.

However, words like fire!, help!, and run! are short not because they are

frequent, but perhaps because time is precious in situations where they are

used.

To make things theoretical, suppose we have a file composed of m different

words, with frequencies f1, . . . , fm. Suppose also that for the ith word, the cost

per bit of encoding is ci . Thus, if we find a prefix-free code where the ith word

has a codeword of length li , then the total cost of the encoding will be∑
i fi · ci · li .

Show how to find the prefix-free encoding of minimal total cost.

5.32. A server has n customers waiting to be served. The service time required by

each customer is known in advance: it is ti minutes for customer i. So if, for

example, the customers are served in order of increasing i, then the ith customer

has to wait
∑i

j=1 t j minutes.

We wish to minimize the total waiting time

T =
n∑

i=1

(time spent waiting by customer i).

Give an efficient algorithm for computing the optimal order in which to process

the customers.

5.33. Show how to implement the stingy algorithm for Horn formula satisfiability

(Section 5.3) in time that is linear in the length of the formula (the number of

occurrences of literals in it).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch05 GTBL020-Dasgupta-v10 August 10, 2006 22:46

Chapter 5 Algorithms 155

5.34. Show that for any integer n that is a power of 2, there is an instance of the set

cover problem (Section 5.4) with the following properties:

i. There are n elements in the base set.

ii. The optimal cover uses just two sets.

iii. The greedy algorithm picks at least log n sets.

Thus the approximation ratio we derived in the chapter is tight.

5.35. Show that an unweighted graph with n nodes has at most n(n−1)distinct

minimum cuts.

