
P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6

Dynamic programming

In the preceding chapters we have seen some elegant design principles—such as

divide-and-conquer, graph exploration, and greedy choice—that yield definitive al-

gorithms for a variety of important computational tasks. The drawback of these

tools is that they can only be used on very specific types of problems. We now turn

to the two sledgehammers of the algorithms craft, dynamic programming and lin-
ear programming, techniques of very broad applicability that can be invoked when

more specialized methods fail. Predictably, this generality often comes with a cost

in efficiency.

6.1 Shortest paths in dags, revisited
At the conclusion of our study of shortest paths (Chapter 4), we observed that the

problem is especially easy in directed acyclic graphs (dags). Let’s recapitulate this

case, because it lies at the heart of dynamic programming.

The special distinguishing feature of a dag is that its nodes can be linearized; that

is, they can be arranged on a line so that all edges go from left to right (Figure 6.1).

To see why this helps with shortest paths, suppose we want to figure out distances

from node S to the other nodes. For concreteness, let’s focus on node D. The only

way to get to it is through its predecessors, B or C ; so to find the shortest path to

D, we need only compare these two routes:

dist(D) = min{dist(B) + 1,dist(C) + 3}.
A similar relation can be written for every node. If we compute these dist values

in the left-to-right order of Figure 6.1, we can always be sure that by the time we

get to a node v, we already have all the information we need to compute dist(v).

We are therefore able to compute all distances in a single pass:

initialize all dist(·) values to ∞
dist(s) = 0

for each v ∈ V\{s}, in linearized order:

dist(v) = min(u,v)∈E {dist(u) + l(u, v)}

Notice that this algorithm is solving a collection of subproblems, {dist(u) : u ∈ V}.
We start with the smallest of them, dist(s), since we immediately know its answer

156

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 157

Figure 6.1 A dag and its linearization (topological ordering).

B

DC

A

S E

1

2

4 1

6

3 1

2

S C A B D E
4 6

3

1

2

1

1

2

to be 0. We then proceed with progressively “larger” subproblems—distances to ver-

tices that are further and further along in the linearization—where we are thinking

of a subproblem as large if we need to have solved a lot of other subproblems before

we can get to it.

This is a very general technique. At each node, we compute some function of the

values of the node’s predecessors. It so happens that our particular function is a

minimum of sums, but we could just as well make it a maximum, in which case

we would get longest paths in the dag. Or we could use a product instead of a sum

inside the brackets, in which case we would end up computing the path with the

smallest product of edge lengths.

Dynamic programming is a very powerful algorithmic paradigm in which a problem

is solved by identifying a collection of subproblems and tackling them one by one,

smallest first, using the answers to small problems to help figure out larger ones,

until the whole lot of them is solved. In dynamic programming we are not given

a dag; the dag is implicit. Its nodes are the subproblems we define, and its edges

are the dependencies between the subproblems: if to solve subproblem B we need

the answer to subproblem A, then there is a (conceptual) edge from A to B. In this

case, A is thought of as a smaller subproblem than B—and it will always be smaller,

in an obvious sense.

But it’s time we saw an example.

6.2 Longest increasing subsequences
In the longest increasing subsequence problem, the input is a sequence of numbers

a1, . . . , an. A subsequence is any subset of these numbers taken in order, of the form

ai1 , ai2 , . . . , aik where 1 ≤ i1 < i2 < · · · < ik ≤ n, and an increasing subsequence is

one in which the numbers are getting strictly larger. The task is to find the increasing

subsequence of greatest length. For instance, the longest increasing subsequence of

5, 2, 8, 6, 3, 6, 9, 7 is 2, 3, 6, 9:

5 2 8 6 3 6 9 7

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

158 6.2 Longest increasing subsequences

Figure 6.2 The dag of increasing subsequences.

5 2 8 3 9 766

In this example, the arrows denote transitions between consecutive elements of the

optimal solution. More generally, to better understand the solution space, let’s create

a graph of all permissible transitions: establish a node i for each element ai , and add

directed edges (i, j) whenever it is possible for ai and aj to be consecutive elements

in an increasing subsequence, that is, whenever i < j and ai < aj (Figure 6.2).

Notice that (1) this graph G = (V, E) is a dag, since all edges (i, j) have i < j ,
and (2) there is a one-to-one correspondence between increasing subsequences and

paths in this dag. Therefore, our goal is simply to find the longest path in the dag!

Here is the algorithm:

for j = 1, 2, . . . , n:

L(j) = 1 + max{L(i) : (i, j) ∈ E }
return max j L(j)

L(j) is the length of the longest path—the longest increasing subsequence—ending

at j (plus 1, since strictly speaking we need to count nodes on the path, not edges).

By reasoning in the same way as we did for shortest paths, we see that any path to

node j must pass through one of its predecessors, and therefore L(j) is 1 plus the

maximum L(·) value of these predecessors. If there are no edges into j , we take the

maximum over the empty set, zero. And the final answer is the largest L(j), since

any ending position is allowed.

This is dynamic programming. In order to solve our original problem, we have de-

fined a collection of subproblems {L(j) : 1 ≤ j ≤ n} with the following key property

that allows them to be solved in a single pass:

(∗) There is an ordering on the subproblems, and a relation that shows how to
solve a subproblem given the answers to “smaller” subproblems, that is,
subproblems that appear earlier in the ordering.

In our case, each subproblem is solved using the relation

L(j) = 1 + max{L(i) : (i, j) ∈ E },

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 159

an expression which involves only smaller subproblems. How long does this step

take? It requires the predecessors of j to be known; for this the adjacency list of

the reverse graph GR, constructible in linear time (recall Exercise 3.5), is handy.

The computation of L(j) then takes time proportional to the indegree of j , giving

an overall running time linear in |E |. This is at most O(n2), the maximum being

when the input array is sorted in increasing order. Thus the dynamic programming

solution is both simple and efficient.

There is one last issue to be cleared up: the L-values only tell us the length of the

optimal subsequence, so how do we recover the subsequence itself? This is easily

managed with the same bookkeeping device we used for shortest paths in Chapter 4.

While computing L(j), we should also note down prev(j), the next-to-last node

on the longest path to j . The optimal subsequence can then be reconstructed by

following these backpointers.

6.3 Edit distance
When a spell checker encounters a possible misspelling, it looks in its dictionary

for other words that are close by. What is the appropriate notion of closeness in this

case?

A natural measure of the distance between two strings is the extent to which they

can be aligned, or matched up. Technically, an alignment is simply a way of writing

the strings one above the other. For instance, here are two possible alignments of

SNOWY and SUNNY:

S − N O W Y

S U N N − Y
Cost: 3

− S N O W − Y

S U N − − N Y
Cost: 5

The “−” indicates a “gap”; any number of these can be placed in either string. The

cost of an alignment is the number of columns in which the letters differ. And the

edit distance between two strings is the cost of their best possible alignment. Do

you see that there is no better alignment of SNOWY and SUNNY than the one shown

here with a cost of 3?

Edit distance is so named because it can also be thought of as the minimum number

of edits—insertions, deletions, and substitutions of characters—needed to transform

the first string into the second. For instance, the alignment shown on the left corre-

sponds to three edits: insert U, substitute O → N, and delete W.

In general, there are so many possible alignments between two strings that it would

be terribly inefficient to search through all of them for the best one. Instead we turn

to dynamic programming.

A dynamic programming solution

When solving a problem by dynamic programming, the most crucial question is,

What are the subproblems? As long as they are chosen so as to have the property

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

160 6.3 Edit distance

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences: the formula for L(j) also
suggests an alternative, recursive algorithm. Wouldn’t that be even simpler?

Actually, recursion is a very bad idea: the resulting procedure would require exponential
time! To see why, suppose that the dag contains edges (i, j) for all i < j—that is, the given
sequence of numbers a1, a2, . . . , an is sorted. In that case, the formula for subproblem L(j)
becomes

L(j) = 1 + max{L(1), L(2), . . . , L(j − 1)}.
The following figure unravels the recursion for L(5). Notice that the same subproblems get
solved over and over again!

L(2)

L(1) L(1) L(2) L(1) L(2)

L(1)L(1) L(1) L(2)

L(1)

L(3)

L(1) L(3) L(4)

L(5)

For L(n) this tree has exponentially many nodes (can you bound it?), and so a recursive
solution is disastrous.

Then why did recursion work so well with divide-and-conquer? The key point is that in
divide-and-conquer, a problem is expressed in terms of subproblems that are substantially
smaller, say half the size. For instance, mergesort sorts an array of size n by recursively
sorting two subarrays of size n/2. Because of this sharp drop in problem size, the full
recursion tree has only logarithmic depth and a polynomial number of nodes.

In contrast, in a typical dynamic programming formulation, a problem is reduced to sub-
problems that are only slightly smaller—for instance, L(j) relies on L(j − 1). Thus the full
recursion tree generally has polynomial depth and an exponential number of nodes. How-
ever, it turns out that most of these nodes are repeats, that there are not too many distinct
subproblems among them. Efficiency is therefore obtained by explicitly enumerating the
distinct subproblems and solving them in the right order.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 161

Programming?

The origin of the term dynamic programming has very little to do with writing code. It
was first coined by Richard Bellman in the 1950s, a time when computer programming
was an esoteric activity practiced by so few people as to not even merit a name. Back then
programming meant “planning,” and “dynamic programming” was conceived to optimally
plan multistage processes. The dag of Figure 6.2 can be thought of as describing the
possible ways in which such a process can evolve: each node denotes a state, the leftmost
node is the starting point, and the edges leaving a state represent possible actions, leading
to different states in the next unit of time.

The etymology of linear programming, the subject of Chapter 7, is similar.

(∗) from page 158. it is an easy matter to write down the algorithm: iteratively solve

one subproblem after the other, in order of increasing size.

Our goal is to find the edit distance between two strings x[1 · · · m] and y[1 · · · n].

What is a good subproblem? Well, it should go part of the way toward solving the

whole problem; so how about looking at the edit distance between some prefix of the

first string, x[1 · · · i], and some prefix of the second, y[1 · · · j]? Call this subproblem

E (i, j) (see Figure 6.3). Our final objective, then, is to compute E (m, n).

For this to work, we need to somehow express E (i, j) in terms of smaller subprob-

lems. Let’s see—what do we know about the best alignment between x[1 · · · i] and

y[1 · · · j]? Well, its rightmost column can only be one of three things:

x[i]
− or

−
y[j]

or
x[i]
y[j]

The first case incurs a cost of 1 for this particular column, and it remains to align

x[1 · · · i − 1] with y[1 · · · j]. But this is exactly the subproblem E (i − 1, j)! We seem

to be getting somewhere. In the second case, also with cost 1, we still need to align

x[1 · · · i] with y[1 · · · j − 1]. This is again another subproblem, E (i, j − 1). And in

the final case, which either costs 1 (if x[i] �= y[j]) or 0 (if x[i] = y[j]), what’s left

is the subproblem E (i − 1, j − 1). In short, we have expressed E (i, j) in terms of

Figure 6.3 The subproblem E(7, 5).

P L Y N O M IO

P O N N L

L

AXE E T I

A

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

162 6.3 Edit distance

three smaller subproblems E (i − 1, j), E (i, j − 1), E (i − 1, j − 1). We have no idea

which of them is the right one, so we need to try them all and pick the best:

E (i, j) = min{1 + E (i − 1, j), 1 + E (i, j − 1), diff(i, j) + E (i − 1, j − 1)}

where for convenience diff(i, j) is defined to be 0 if x[i] = y[j] and 1 otherwise.

For instance, in computing the edit distance between EXPONENTIAL and

POLYNOMIAL, subproblem E (4, 3) corresponds to the prefixes EXPO and POL. The

rightmost column of their best alignment must be one of the following:

O

− or
−
L

or
O

L

Thus, E (4, 3) = min{1 + E (3, 3), 1 + E (4, 2), 1 + E (3, 2)}.
The answers to all the subproblems E (i, j) form a two-dimensional table, as in

Figure 6.4. In what order should these subproblems be solved? Any order is fine,

as long as E (i − 1, j), E (i, j − 1), and E (i − 1, j − 1) are handled before E (i, j).
For instance, we could fill in the table one row at a time, from top row to bottom

row, and moving left to right across each row. Or alternatively, we could fill it in

column by column. Both methods would ensure that by the time we get around to

computing a particular table entry, all the other entries we need are already filled

in.

With both the subproblems and the ordering specified, we are almost done. There

just remain the “base cases” of the dynamic programming, the very smallest sub-

problems. In the present situation, these are E (0, ·) and E (·, 0), both of which

are easily solved. E (0, j) is the edit distance between the 0-length prefix of x,

Figure 6.4 (a) The table of subproblems. Entries E(i − 1, j − 1), E(i − 1, j),
and E(i, j − 1) are needed to fill in E(i, j). (b) The final table of values found by
dynamic programming.

(a)

i

j − 1 j

i− 1

m GOAL

n

(b)

P O L Y N O M I A L
0 1 2 3 4 5 6 7 8 9 10

E 1 1 2 3 4 5 6 7 8 9 10
X 2 2 2 3 4 5 6 7 8 9 10
P 3 2 3 3 4 5 6 7 8 9 10
O 4 3 2 3 4 5 5 6 7 8 9
N 5 4 3 3 4 4 5 6 7 8 9
E 6 5 4 4 4 5 5 6 7 8 9
N 7 6 5 5 5 4 5 6 7 8 9
T 8 7 6 6 6 5 5 6 7 8 9
I 9 8 7 7 7 6 6 6 6 7 8
A 10 9 8 8 8 7 7 7 7 6 7
L 11 10 9 8 9 8 8 8 8 7 6

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 163

namely the empty string, and the first j letters of y: clearly, j . And similarly,

E (i, 0) = i.

At this point, the algorithm for edit distance basically writes itself.

for i = 0, 1, 2, . . . , m:

E (i, 0) = i

for j = 1, 2, . . . , n:

E (0, j) = j

for i = 1, 2, . . . , m:

for j = 1, 2, . . . , n:

E (i, j) = min{E (i − 1, j) + 1, E (i, j − 1) + 1, E (i − 1, j − 1) + diff(i, j)}
return E (m, n)

This procedure fills in the table row by row, and left to right within each row. Each

entry takes constant time to fill in, so the overall running time is just the size of the

table, O(mn).

And in our example, the edit distance turns out to be 6:

E X P O N E N − T I A L

− − P O L Y N O M I A L

The underlying dag

Every dynamic program has an underlying dag structure: think of each node as

representing a subproblem, and each edge as a precedence constraint on the order

in which the subproblems can be tackled. Having nodes u1, . . . , uk point to v means

“subproblem v can only be solved once the answers to u1, . . . , uk are known.”

In our present edit distance application, the nodes of the underlying dag corre-

spond to subproblems, or equivalently, to positions (i, j) in the table. Its edges

are the precedence constraints, of the form (i − 1, j) → (i, j), (i, j − 1) → (i, j),
and (i − 1, j − 1) → (i, j) (Figure 6.5). In fact, we can take things a little fur-

ther and put weights on the edges so that the edit distances are given by

shortest paths in the dag! To see this, set all edge lengths to 1, except for

{(i − 1, j − 1) → (i, j) : x[i] = y[j]} (shown dotted in the figure), whose length

is 0. The final answer is then simply the distance between nodes s = (0, 0)

and t = (m, n). One possible shortest path is shown, the one that yields the

alignment we found earlier. On this path, each move down is a deletion, each

move right is an insertion, and each diagonal move is either a match or a

substitution.

By altering the weights on this dag, we can allow generalized forms of edit dis-

tance, in which insertions, deletions, and substitutions have different associated

costs.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

164 6.4 Knapsack

Figure 6.5 The underlying dag, and a path of length 6.

P O L Y N O M LI A

E

X

P

O

N

E

N

T

A

L

I

6.4 Knapsack
During a robbery, a burglar finds much more loot than he had expected and has

to decide what to take. His bag (or “knapsack”) will hold a total weight of at

most W pounds. There are n items to pick from, of weight w1, . . . , wn and dollar

value v1, . . . , vn. What’s the most valuable combination of items he can fit into his

bag?1

For instance, take W = 10 and

Item Weight Value

1 6 $30

2 3 $14

3 4 $16

4 2 $9

1If this application seems frivolous, replace “weight” with “CPU time” and “only W pounds can be

taken” with “only W units of CPU time are available.” Or use “bandwidth” in place of “CPU time,” etc.

The knapsack problem generalizes a wide variety of resource-constrained selection tasks.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 165

Common subproblems

Finding the right subproblem takes creativity and experimentation. But there are a few
standard choices that seem to arise repeatedly in dynamic programming.

i. The input is x1, x2, . . . , xn and a subproblem is x1, x2, . . . , xi .

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is therefore linear.
ii. The input is x1, . . . , xn , and y1, . . . , ym . A subproblem is x1, . . . , xi and y1, . . . , y j .

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

The number of subproblems is O(mn).
iii. The input is x1, . . . , xn and a subproblem is xi , xi+1, . . . , x j .

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is O(n2).
iv. The input is a rooted tree. A subproblem is a rooted subtree.

If the tree has n nodes, how many subproblems are there?

We’ve already encountered the first two cases, and the others are coming up shortly.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

166 6.4 Knapsack

Of mice and men

Our bodies are extraordinary machines: flexible in function, adaptive to new environments,
and able to interact and reproduce. All these capabilities are specified by a program unique
to each of us, a string that is 3 billion characters long over the alphabet {A, C, G, T}—our
DNA.

The DNA sequences of any two people differ by only about 0.1%. However, this still leaves
3 million positions on which they vary, more than enough to explain the vast range of
human diversity. These differences are of great scientific and medical interest—for instance,
they might help predict which people are prone to certain diseases.

DNA is a vast and seemingly inscrutable program, but it can be broken down into smaller
units that are more specific in their role, rather like subroutines. These are called genes.
Computers have become a crucial tool in understanding the genes of humans and other
organisms, to the extent that computational genomics is now a field in its own right. Here are
examples of typical questions that arise.

1. When a new gene is discovered, one way to gain insight into its function is to
find known genes that match it closely. This is particularly helpful in transferring
knowledge from well-studied species, such as mice, to human beings.

A basic primitive in this search problem is to define an efficiently computable
notion of when two strings approximately match. The biology suggests a general-
ization of edit distance, and dynamic programming can be used to compute it.

Then there’s the problem of searching through the vast thicket of known genes:
the database GenBank already has a total length of over 1010, and this number is
growing rapidly. The current method of choice is BLAST, a clever combination of
algorithmic tricks and biological intuitions that has made it the most widely used
software in computational biology.

2. Methods for sequencing DNA (that is, determining the string of characters that
constitute it) typically only find fragments of 500–700 characters. Billions of these
randomly scattered fragments can be generated, but how can they be assembled
into a coherent DNA sequence? For one thing, the position of any one fragment
in the final sequence is unknown and must be inferred by piecing together
overlapping fragments.

A showpiece of these efforts is the draft of human DNA completed in 2001 by
two groups simultaneously: the publicly funded Human Genome Consortium
and the private Celera Genomics.

3. When a particular gene has been sequenced in each of several species, can this
information be used to reconstruct the evolutionary history of these species?

We will explore these problems in the exercises at the end of this chapter. Dynamic pro-
gramming has turned out to be an invaluable tool for some of them and for computational
biology in general.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 167

There are two versions of this problem. If there are unlimited quantities of each

item available, the optimal choice is to pick item 1 and two of item 4 (total: $48).

On the other hand, if there is one of each item (the burglar has broken into an art

gallery, say), then the optimal knapsack contains items 1 and 3 (total: $46).

As we shall see in Chapter 8, neither version of this problem is likely to have a

polynomial-time algorithm. However, using dynamic programming they can both be

solved in O(nW) time, which is reasonable when W is small, but is not polynomial

since the input size is proportional to log W rather than W.

Knapsack with repetition

Let’s start with the version that allows repetition. As always, the main question in

dynamic programming is, what are the subproblems? In this case we can shrink the

original problem in two ways: we can either look at smaller knapsack capacities

w ≤ W, or we can look at fewer items (for instance, items 1, 2, . . . , j , for j ≤ n). It

usually takes a little experimentation to figure out exactly what works.

The first restriction calls for smaller capacities. Accordingly, define

K (w) = maximum value achievable with a knapsack of capacity w.

Can we express this in terms of smaller subproblems? Well, if the optimal solution to

K (w) includes item i, then removing this item from the knapsack leaves an optimal

solution to K (w − wi). In other words, K (w) is simply K (w − wi) + vi , for some i.
We don’t know which i, so we need to try all possibilities.

K (w) = max
i:wi ≤w

{K (w − wi) + vi},

where as usual our convention is that the maximum over an empty set is 0.

We’re done! The algorithm now writes itself, and it is characteristically simple and

elegant.

K (0) = 0

for w = 1 to W:

K (w) = max{K (w − wi) + vi : wi ≤ w}
return K (W)

This algorithm fills in a one-dimensional table of length W + 1, in left-to-right order.

Each entry can take up to O(n) time to compute, so the overall running time is

O(nW).

As always, there is an underlying dag. Try constructing it, and you will be rewarded

with a startling insight: this particular variant of knapsack boils down to finding the

longest path in a dag!

Knapsack without repetition

On to the second variant: what if repetitions are not allowed? Our earlier sub-

problems now become completely useless. For instance, knowing that the value

K (w − wn) is very high doesn’t help us, because we don’t know whether or not

item n already got used up in this partial solution. We must therefore refine our

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

168 6.5 Chain matrix multiplication

concept of a subproblem to carry additional information about the items being

used. We add a second parameter, 0 ≤ j ≤ n:

K (w, j) = maximum value achievable using a knapsack of capacity w and items 1, . . . , j .

The answer we seek is K (W, n).

How can we express a subproblem K (w, j) in terms of smaller subproblems? Quite

simple: either item j is needed to achieve the optimal value, or it isn’t needed:

K (w, j) = max{K (w − wj , j − 1) + v j , K (w, j − 1)}.
(The first case is invoked only if wj ≤ w.) In other words, we can express K (w, j)
in terms of subproblems K (·, j − 1).

The algorithm then consists of filling out a two-dimensional table, with W + 1 rows

and n + 1 columns. Each table entry takes just constant time, so even though the

table is much larger than in the previous case, the running time remains the same,

O(nW). Here’s the code.

Initialize all K (0, j) = 0 and all K (w, 0) = 0

for j = 1 to n:

for w = 1 to W:

if wj > w: K (w, j) = K (w, j − 1)

else: K (w, j) = max{K (w, j − 1), K (w − wj , j − 1) + v j }
return K (W, n)

6.5 Chain matrix multiplication
Suppose that we want to multiply four matrices, A× B × C × D, of dimensions

50 × 20, 20 × 1, 1 × 10, and 10 × 100, respectively (Figure 6.6). This will in-

volve iteratively multiplying two matrices at a time. Matrix multiplication is not

Figure 6.6 A × B × C × D = (A × (B × C)) × D.

(a)

× ×

C DBA

×

20 × 1 1 × 1050 × 20 10 × 100

(b)

×

A B × C

×

50 × 20 20 × 10
D

10 × 100

(c)

A× (B × C)

×

50 × 10
D

10 × 100

(d)

(A× (B × C)) ×D
50 × 100

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 169

Memoization

In dynamic programming, we write out a recursive formula that expresses large problems
in terms of smaller ones and then use it to fill out a table of solution values in a bottom-up
manner, from smallest subproblem to largest.

The formula also suggests a recursive algorithm, but we saw earlier that naive recursion
can be terribly inefficient, because it solves the same subproblems over and over again.
What about a more intelligent recursive implementation, one that remembers its previous
invocations and thereby avoids repeating them?

On the knapsack problem (with repetitions), such an algorithm would use a hash table
(recall Section 1.5) to store the values of K (·) that had already been computed. At each
recursive call requesting some K (w), the algorithm would first check if the answer was
already in the table and then would proceed to its calculation only if it wasn’t. This trick is
called memoization:

A hash table, initially empty, holds values of K (w) indexed by w

function knapsack(w)

if w is in hash table: return K (w)

K (w) = max{knapsack(w − wi) + vi : wi ≤ w}
insert K (w) into hash table, with key w

return K (w)

Since this algorithm never repeats a subproblem, its running time is O(nW), just like the
dynamic program. However, the constant factor in this big-O notation is substantially
larger because of the overhead of recursion.

In some cases, though, memoization pays off. Here’s why: dynamic programming automat-
ically solves every subproblem that could conceivably be needed, while memoization only
ends up solving the ones that are actually used. For instance, suppose that W and all the
weights wi are multiples of 100. Then a subproblem K (w) is useless if 100 does not divide
w . The memoized recursive algorithm will never look at these extraneous table entries.

commutative (in general, A× B �= B × A), but it is associative, which means for

instance that A× (B × C) = (A× B) × C . Thus we can compute our product of

four matrices in many different ways, depending on how we parenthesize it. Are

some of these better than others?

Multiplying an m× n matrix by an n × p matrix takes mnp multiplications, to a good

enough approximation. Using this formula, let’s compare several different ways of

evaluating A× B × C × D:

Parenthesization Cost computation Cost

A× ((B × C) × D) 20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200

(A× (B × C)) × D 20 · 1 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200

(A× B) × (C × D) 50 · 20 · 1 + 1 · 10 · 100 + 50 · 1 · 100 7, 000

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

170 6.5 Chain matrix multiplication

As you can see, the order of multiplications makes a big difference in the final run-

ning time! Moreover, the natural greedy approach, to always perform the cheapest

matrix multiplication available, leads to the second parenthesization shown here

and is therefore a failure.

How do we determine the optimal order, if we want to compute A1 × A2 × · · ·
× An, where the Ai ’s are matrices with dimensions m0 × m1, m1 × m2, . . . , mn−1

× mn, respectively? The first thing to notice is that a particular parenthesiza-

tion can be represented very naturally by a binary tree in which the individ-

ual matrices correspond to the leaves, the root is the final product, and inte-

rior nodes are intermediate products (Figure 6.7). The possible orders in which

to do the multiplication correspond to the various full binary trees with n
leaves, whose number is exponential in n (Exercise 2.13). We certainly can-

not try each tree, and with brute force thus ruled out, we turn to dynamic

programming.

The binary trees of Figure 6.7 are suggestive: for a tree to be optimal, its subtrees

must also be optimal. What are the subproblems corresponding to the subtrees?

They are products of the form Ai × Ai+1 × · · · × Aj . Let’s see if this works: for

1 ≤ i ≤ j ≤ n, define

C (i, j) = minimum cost of multiplying Ai × Ai+1 × · · · × Aj .

The size of this subproblem is the number of matrix multiplications, | j − i|. The

smallest subproblem is when i = j , in which case there’s nothing to multiply, so

C (i, i) = 0. For j > i, consider the optimal subtree for C (i, j). The first branch in

this subtree, the one at the top, will split the product in two pieces, of the form

Ai × · · · × Ak and Ak+1 × · · · × Aj , for some k between i and j . The cost of the

subtree is then the cost of these two partial products, plus the cost of combining

them: C (i, k) + C (k + 1, j) + mi−1 · mk · mj . And we just need to find the splitting

Figure 6.7 (a) ((A × B) × C) × D; (b) A × ((B × C) × D);
(c) (A × (B × C)) × D.

D A

C

BA

D

B C

D

A

CB

(a) (b) (c)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 171

point k for which this is smallest:

C (i, j) = min
i≤k< j

{
C (i, k) + C (k + 1, j) + mi−1 · mk · mj

}
.

We are ready to code! In the following, the variable s denotes subproblem size.

for i = 1 to n: C (i, i) = 0

for s = 1 to n − 1:

for i = 1 to n − s:

j = i + s

C (i, j) = min{C (i, k) + C (k + 1, j) + mi−1 · mk · mj : i ≤ k < j }
return C (1, n)

The subproblems constitute a two-dimensional table, each of whose entries takes

O(n) time to compute. The overall running time is thus O(n3).

6.6 Shortest paths
We started this chapter with a dynamic programming algorithm for the elemen-

tary task of finding the shortest path in a dag. We now turn to more sophisticated

shortest-path problems and see how these too can be accommodated by our pow-

erful algorithmic technique.

Shortest reliable paths

Life is complicated, and abstractions such as graphs, edge lengths, and shortest

paths rarely capture the whole truth. In a communications network, for example,

even if edge lengths faithfully reflect transmission delays, there may be other con-

siderations involved in choosing a path. For instance, each extra edge in the path

might be an extra “hop” fraught with uncertainties and dangers of packet loss. In

such cases, we would like to avoid paths with too many edges. Figure 6.8 illustrates

this problem with a graph in which the shortest path from S to T has four edges,

while there is another path that is a little longer but uses only two edges. If four

edges translate to prohibitive unreliability, we may have to choose the latter path.

Figure 6.8 We want a path from s to t that is both short and has few edges.

B

DC

A

S

1

2

1

2

1

4

T5

3

5

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

172 6.6 Shortest paths

Suppose then that we are given a graph G with lengths on the edges, along with

two nodes s and t and an integer k, and we want the shortest path from s to t that
uses at most k edges.

Is there a quick way to adapt Dijkstra’s algorithm to this new task? Not quite: that

algorithm focuses on the length of each shortest path without “remembering” the

number of hops in the path, which is now a crucial piece of information.

In dynamic programming, the trick is to choose subproblems so that all vital in-

formation is remembered and carried forward. In this case, let us define, for each

vertex v and each integer i ≤ k, dist(v, i) to be the length of the shortest path from
s to v that uses i edges. The starting values dist(v, 0) are ∞ for all vertices except

s, for which it is 0. And the general update equation is, naturally enough,

dist(v, i) = min
(u,v)∈E

{dist(u, i − 1) + �(u, v)}.

Need we say more?

All-pairs shortest paths

What if we want to find the shortest path not just between s and t but between

all pairs of vertices? One approach would be to execute our general shortest-path

algorithm from Section 4.6.1 (since there may be negative edges) |V | times, once

for each starting node. The total running time would then be O(|V |2|E |). We’ll now

see a better alternative, the O(|V |3) dynamic programming-based Floyd-Warshall
algorithm.

Is there a good subproblem for computing distances between all pairs of vertices in

a graph? Simply solving the problem for more and more pairs or starting points is

unhelpful, because it leads right back to the O(|V |2|E |) algorithm.

One idea comes to mind: the shortest path u → w1 → · · · → wl → v between u and

v uses some number of intermediate nodes—possibly none. Suppose we disallow

intermediate nodes altogether. Then we can solve all-pairs shortest paths at once:

the shortest path from u to v is simply the direct edge (u, v), if it exists. What if we

now gradually expand the set of permissible intermediate nodes? We can do this one

node at a time, updating the shortest path lengths at each stage. Eventually this set

grows to all of V , at which point all vertices are allowed to be on all paths, and we

have found the true shortest paths between vertices of the graph!

More concretely, number the vertices in V as {1, 2, . . . , n}, and let dist(i, j, k)

denote the length of the shortest path from i to j in which only nodes {1, 2, . . . , k}
can be used as intermediates. Initially, dist(i, j, 0) is the length of the direct edge

between i and j , if it exists, and is ∞ otherwise.

What happens when we expand the intermediate set to include an extra node k? We

must reexamine all pairs i, j and check whether using k as an intermediate point

gives us a shorter path from i to j . But this is easy: a shortest path from i to j that

uses k along with possibly other lower-numbered intermediate nodes goes through

k just once (why? because we assume that there are no negative cycles). And we

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 173

have already calculated the length of the shortest path from i to k and from k to j
using only lower-numbered vertices:

dist(k, j, k − 1)

k

j

dist(i, k, k − 1)

i

dist(i, j, k − 1)

Thus, using k gives us a shorter path from i to j if and only if

dist(i, k, k − 1) + dist(k, j, k − 1) < dist(i, j, k − 1),

in which case dist(i, j, k) should be updated accordingly.

Here is the Floyd-Warshall algorithm—and as you can see, it takes O(|V |3) time.

for i = 1 to n:

for j = 1 to n:

dist(i, j, 0) = ∞
for all (i, j) ∈ E:

dist(i, j, 0) = �(i, j)

for k = 1 to n:

for i = 1 to n:

for j = 1 to n:

dist(i, j, k) = min{dist(i, k, k − 1) + dist(k, j, k − 1), dist(i, j, k − 1)}

The traveling salesman problem

A traveling salesman is getting ready for a big sales tour. Starting at his hometown,

suitcase in hand, he will conduct a journey in which each of his target cities is

visited exactly once before he returns home. Given the pairwise distances between

cities, what is the best order in which to visit them, so as to minimize the overall

distance traveled?

Denote the cities by 1, . . . , n, the salesman’s hometown being 1, and let D = (di j)

be the matrix of intercity distances. The goal is to design a tour that starts and ends

at 1, includes all other cities exactly once, and has minimum total length. Figure 6.9

shows an example involving five cities. Can you spot the optimal tour? Even in this

tiny example, it is tricky for a human to find the solution; imagine what happens

when hundreds of cities are involved.

It turns out this problem is also difficult for computers. In fact, the traveling salesman

problem (TSP) is one of the most notorious computational tasks. There is a long

history of attempts at solving it, a long saga of failures and partial successes, and

along the way, major advances in algorithms and complexity theory. The most basic

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

174 6.6 Shortest paths

Figure 6.9 The optimal traveling salesman tour has length 10.

B

DC

A

E

2

2

2

3

4

2

4

2

1

3

piece of bad news about the TSP, which we will better understand in Chapter 8, is

that it is highly unlikely to be solvable in polynomial time.

How long does it take, then? Well, the brute-force approach is to evaluate every

possible tour and return the best one. Since there are (n − 1)! possibilities, this

strategy takes O(n!) time. We will now see that dynamic programming yields a

much faster solution, though not a polynomial one.

What is the appropriate subproblem for the TSP? Subproblems refer to partial so-

lutions, and in this case the most obvious partial solution is the initial portion of

a tour. Suppose we have started at city 1 as required, have visited a few cities,

and are now in city j . What information do we need in order to extend this par-

tial tour? We certainly need to know j , since this will determine which cities

are most convenient to visit next. And we also need to know all the cities vis-

ited so far, so that we don’t repeat any of them. Here, then, is an appropriate

subproblem.

For a subset of cities S ⊆ {1, 2, . . . , n} that includes 1, and j ∈ S, let C (S, j) be
the length of the shortest path visiting each node in S exactly once, starting at 1

and ending at j .

When |S| > 1, we define C (S, 1) = ∞ since the path cannot both start and end

at 1.

Now, let’s express C (S, j) in terms of smaller subproblems. We need to start

at 1 and end at j ; what should we pick as the second-to-last city? It has to

be some i ∈ S, so the overall path length is the distance from 1 to i, namely,

C (S − { j }, i), plus the length of the final edge, di j . We must pick the best

such i:

C (S, j) = min
i∈S:i �= j

C (S − { j }, i) + di j .

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 175

On time and memory

The amount of time it takes to run a dynamic programming algorithm is easy to discern
from the dag of subproblems: in many cases it is just the total number of edges in the dag ! All
we are really doing is visiting the nodes in linearized order, examining each node’s inedges,
and, most often, doing a constant amount of work per edge. By the end, each edge of the
dag has been examined once.

But how much computer memory is required? There is no simple parameter of the dag
characterizing this. It is certainly possible to do the job with an amount of memory
proportional to the number of vertices (subproblems), but we can usually get away with
much less. The reason is that the value of a particular subproblem only needs to be
remembered until the larger subproblems depending on it have been solved. Thereafter,
the memory it takes up can be released for reuse.

For example, in the Floyd-Warshall algorithm the value of dist(i, j, k) is not needed once
the dist(·, ·, k + 1) values have been computed. Therefore, we only need two |V | × |V |
arrays to store the dist values, one for odd values of k and one for even values: when
computing dist(i, j, k), we overwrite dist(i, j, k − 2).

(And let us not forget that, as always in dynamic programming, we also need one more
array, prev(i, j), storing the next to last vertex in the current shortest path from i to
j , a value that must be updated with dist(i, j, k). We omit this mundane but crucial
bookkeeping step from our dynamic programming algorithms.)

Can you see why the edit distance dag in Figure 6.5 only needs memory proportional to the
length of the shorter string?

The subproblems are ordered by |S|. Here’s the code.

C ({1}, 1) = 0

for s = 2 to n:

for all subsets S ⊆ {1, 2, . . . , n} of size s and containing 1:

C (S, 1) = ∞
for all j ∈ S, j �= 1:

C (S, j) = min{C (S − { j }, i) + di j : i ∈ S, i �= j }
return min j C ({1, . . . , n}, j) + dj1

There are at most 2n · n subproblems, and each one takes linear time to solve. The

total running time is therefore O(n22n).

6.7 Independent sets in trees
A subset of nodes S ⊂ V is an independent set of graph G = (V, E) if there are no

edges between them. For instance, in Figure 6.10 the nodes {1, 5} form an inde-

pendent set, but nodes {1, 4, 5} do not, because of the edge between 4 and 5. The

largest independent set is {2, 3, 6}.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

176 6.7 Independent sets in trees

Figure 6.10 The largest independent set in this graph has size 3.

1 2

3 4

5 6

Like several other problems we have seen in this chapter (knapsack, traveling sales-

man), finding the largest independent set in a graph is believed to be intractable.

However, when the graph happens to be a tree, the problem can be solved in lin-

ear time, using dynamic programming. And what are the appropriate subproblems?

Already in the chain matrix multiplication problem we noticed that the layered

structure of a tree provides a natural definition of a subproblem—as long as one

node of the tree has been identified as a root.

So here’s the algorithm: Start by rooting the tree at any node r . Now, each node

defines a subtree—the one hanging from it. This immediately suggests subproblems:

I (u) = size of largest independent set of subtree hanging from u.

Our final goal is I (r).

Dynamic programming proceeds as always from smaller subproblems to larger ones,

that is to say, bottom-up in the rooted tree. Suppose we know the largest inde-

pendent sets for all subtrees below a certain node u; in other words, suppose we

know I (w) for all descendants w of u. How can we compute I (u)? Let’s split the

computation into two cases: any independent set either includes u or it doesn’t

(Figure 6.11).

I (u) = max

⎧⎨
⎩1 +

∑
grandchildren w of u

I (w),
∑

children w of u

I (w)

⎫⎬
⎭ .

If the independent set includes u, then we get one point for it, but we aren’t allowed

to include the children of u—therefore we move on to the grandchildren. This is the

first case in the formula. On the other hand, if we don’t include u, then we don’t

get a point for it, but we can move on to its children.

The number of subproblems is exactly the number of vertices. With a little care, the

running time can be made linear, O(|V | + |E |).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 177

Figure 6.11 I (u) is the size of the largest independent set of the subtree rooted
at u. Two cases: either u is in this independent set, or it isn’t.

r

u

Exercises

6.1. A contiguous subsequence of a list S is a subsequence made up of consecutive

elements of S. For instance, if S is

5, 15, −30, 10, −5, 40, 10,

then 15, −30, 10 is a contiguous subsequence but 5, 15, 40 is not. Give a

linear-time algorithm for the following task:

Input: A list of numbers, a1, a2, . . . , an.
Output: The contiguous subsequence of maximum sum (a subsequence

of length zero has sum zero).

For the preceding example, the answer would be 10,−5, 40, 10, with a sum of 55.

(Hint: For each j ∈ {1, 2, . . . , n}, consider contiguous subsequences ending

exactly at position j .)

6.2. You are going on a long trip. You start on the road at mile post 0. Along the way

there are n hotels, at mile posts a1 < a2 < · · · < an, where each ai is measured

from the starting point. The only places you are allowed to stop are at these

hotels, but you can choose which of the hotels you stop at. You must stop at the

final hotel (at distance an), which is your destination.

You’d ideally like to travel 200 miles a day, but this may not be possible

(depending on the spacing of the hotels). If you travel x miles during a day, the

penalty for that day is (200 − x)2. You want to plan your trip so as to minimize

the total penalty—that is, the sum, over all travel days, of the daily penalties.

Give an efficient algorithm that determines the optimal sequence of hotels at

which to stop.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

178 Exercises

6.3. Yuckdonald’s is considering opening a series of restaurants along Quaint Valley

Highway (QVH). The n possible locations are along a straight line, and the

distances of these locations from the start of QVH are, in miles and in increasing

order, m1, m2, . . . , mn. The constraints are as follows:
� At each location, Yuckdonald’s may open at most one restaurant. The

expected profit from opening a restaurant at location i is pi , where pi > 0

and i = 1, 2, . . . , n.
� Any two restaurants should be at least k miles apart, where k is a positive

integer.

Give an efficient algorithm to compute the maximum expected total profit

subject to the given constraints.

6.4. You are given a string of n characters s[1 . . . n], which you believe to be a

corrupted text document in which all punctuation has vanished (so that it looks

something like “itwasthebestoftimes...”). You wish to reconstruct the document

using a dictionary, which is available in the form of a Boolean function dict(·):
for any string w,

dict(w) =
{
true if w is a valid word

false otherwise.

(a) Give a dynamic programming algorithm that determines whether the

string s[·] can be reconstituted as a sequence of valid words. The running

time should be at most O(n2), assuming calls to dict take unit time.

(b) In the event that the string is valid, make your algorithm output the

corresponding sequence of words.

6.5. Pebbling a checkerboard. We are given a checkerboard which has 4 rows and n

columns, and has an integer written in each square. We are also given a set of 2n

pebbles, and we want to place some or all of these on the checkerboard (each

pebble can be placed on exactly one square) so as to maximize the sum of the

integers in the squares that are covered by pebbles. There is one constraint: for a

placement of pebbles to be legal, no two of them can be on horizontally or

vertically adjacent squares (diagonal adjacency is fine).

(a) Determine the number of legal patterns that can occur in any column (in

isolation, ignoring the pebbles in adjacent columns) and describe these

patterns.

Call two patterns compatible if they can be placed on adjacent columns to form a

legal placement. Let us consider subproblems consisting of the first k columns

1 ≤ k ≤ n. Each subproblem can be assigned a type, which is the pattern

occurring in the last column.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 179

(b) Using the notions of compatibility and type, give an O(n)-time dynamic

programming algorithm for computing an optimal placement.

6.6. Let us define a multiplication operation on three symbols a, b, c according to the

following table; thus ab = b, ba = c, and so on. Notice that the multiplication

operation defined by the table is neither associative nor commutative.

a b c

a b b a

b c b a

c a c c

Find an efficient algorithm that examines a string of these symbols, say bbbbac,

and decides whether or not it is possible to parenthesize the string in such a way

that the value of the resulting expression is a. For example, on input bbbbac your

algorithm should return yes because ((b(bb))(ba))c = a.

6.7. A subsequence is palindromic if it is the same whether read left to right or right

to left. For instance, the sequence

A, C , G , T, G , T, C , A, A, A, A, T, C , G

has many palindromic subsequences, including A, C , G , C , A and A, A, A, A (on

the other hand, the subsequence A, C , T is not palindromic). Devise an

algorithm that takes a sequence x[1 . . . n] and returns the (length of the) longest

palindromic subsequence. Its running time should be O(n2).

6.8. Given two strings x = x1x2 · · · xn and y = y1y2 · · · ym, we wish to find the length

of their longest common substring, that is, the largest k for which there are

indices i and j with xi xi+1 · · · xi+k−1 = yj yj+1 · · · yj+k−1. Show how to do this in

time O(mn).

6.9. A certain string-processing language offers a primitive operation which splits a

string into two pieces. Since this operation involves copying the original string, it

takes n units of time for a string of length n, regardless of the location of the cut.

Suppose, now, that you want to break a string into many pieces. The order in

which the breaks are made can affect the total running time. For example, if you

want to cut a 20-character string at positions 3 and 10, then making the first cut

at position 3 incurs a total cost of 20 + 17 = 37, while doing position 10 first has

a better cost of 20 + 10 = 30.

Give a dynamic programming algorithm that, given the locations of m cuts in a

string of length n, finds the minimum cost of breaking the string into m+ 1

pieces.

6.10. Counting heads. Given integers n and k, along with p1, . . . , pn ∈ [0, 1], you want

to determine the probability of obtaining exactly k heads when n biased coins

are tossed independently at random, where pi is the probability that the ith coin

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

180 Exercises

comes up heads. Give an O(nk) algorithm for this task.2 Assume you can

multiply and add two numbers in [0, 1] in O(1) time.

6.11. Given two strings x = x1x2 · · · xn and y = y1y2 · · · ym, we wish to find the length

of their longest common subsequence, that is, the largest k for which there are

indices i1 < i2 < · · · < ik and j1 < j2 < · · · < jk with xi1 xi2 · · · xik = yj1 yj2 · · · yjk.

Show how to do this in time O(mn).

6.12. You are given a convex polygon P on n vertices in the plane (specified by their x

and y coordinates). A triangulation of P is a collection of n − 3 diagonals of P

such that no two diagonals intersect (except possibly at their endpoints). Notice

that a triangulation splits the polygon’s interior into n − 2 disjoint triangles. The

cost of a triangulation is the sum of the lengths of the diagonals in it. Give an

efficient algorithm for finding a triangulation of minimum cost. (Hint: Label the

vertices of P by 1, . . . , n, starting from an arbitrary vertex and walking

clockwise. For 1 ≤ i < j ≤ n, let the subproblem A(i, j) denote the minimum

cost triangulation of the polygon spanned by vertices i, i + 1, . . . , j .)

6.13. Consider the following game. A “dealer” produces a sequence s1 · · · sn of “cards,”

face up, where each card si has a value vi . Then two players take turns picking a

card from the sequence, but can only pick the first or the last card of the

(remaining) sequence. The goal is to collect cards of largest total value. (For

example, you can think of the cards as bills of different denominations.) Assume

n is even.

(a) Show a sequence of cards such that it is not optimal for the first player to

start by picking up the available card of larger value. That is, the natural

greedy strategy is suboptimal.

(b) Give an O(n2) algorithm to compute an optimal strategy for the first

player. Given the initial sequence, your algorithm should precompute in

O(n2) time some information, and then the first player should be able to

make each move optimally in O(1) time by looking up the precomputed

information.

6.14. Cutting cloth. You are given a rectangular piece of cloth with dimensions X × Y,

where X and Y are positive integers, and a list of n products that can be made

using the cloth. For each product i ∈ [1, n] you know that a rectangle of cloth of

dimensions ai × bi is needed and that the final selling price of the product is ci .

Assume the ai , bi , and ci are all positive integers. You have a machine that can

cut any rectangular piece of cloth into two pieces either horizontally or

vertically. Design an algorithm that determines the best return on the X × Y

piece of cloth, that is, a strategy for cutting the cloth so that the products made

from the resulting pieces give the maximum sum of selling prices. You are free to

make as many copies of a given product as you wish, or none if desired.

6.15. Suppose two teams, A and B, are playing a match to see who is the first to win n

games (for some particular n). We can suppose that A and B are equally

2In fact, there is also a O(n log2 n) algorithm within your reach.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 181

competent, so each has a 50% chance of winning any particular game. Suppose

they have already played i + j games, of which A has won i and B has won j .

Give an efficient algorithm to compute the probability that A will go on to win

the match. For example, if i = n − 1 and j = n − 3 then the probability that A

will win the match is 7/8, since it must win any of the next three games.

6.16. The garage sale problem. On a given Sunday morning, there are n garage sales

going on, g1, g2, . . . , gn. For each garage sale g j , you have an estimate of its

value to you, v j . For any two garage sales you have an estimate of the

transportation cost di j of getting from gi to g j . You are also given the costs d0 j

and dj0 of going between your home and each garage sale. You want to find a

tour of a subset of the given garage sales, starting and ending at home, that

maximizes your total benefit minus your total transportation costs.

Give an algorithm that solves this problem in time O(n22n). (Hint: This is

closely related to the traveling salesman problem.)

6.17. Given an unlimited supply of coins of denominations x1, x2, . . . , xn, we wish to

make change for a value v; that is, we wish to find a set of coins whose total

value is v. This might not be possible: for instance, if the denominations are 5

and 10 then we can make change for 15 but not for 12. Give an O(nv)

dynamic-programming algorithm for the following problem.

Input: x1, . . . , xn; v.
Question: Is it possible to make change for v using coins of

denominations x1, . . . , xn?

6.18. Consider the following variation on the change-making problem (Exercise 6.17):

you are given denominations x1, x2, . . . , xn, and you want to make change for a

value v, but you are allowed to use each denomination at most once. For

instance, if the denominations are 1, 5, 10, 20, then you can make change for

16 = 1 + 15 and for 31 = 1 + 10 + 20 but not for 40 (because you can’t use 20

twice).

Input: Positive integers x1, x2, . . . , xn; another integer v.
Output: Can you make change for v, using each denomination xi at most

once?

Show how to solve this problem in time O(nv).

6.19. Here is yet another variation on the change-making problem (Exercise 6.17).

Given an unlimited supply of coins of denominations x1, x2, . . . , xn, we wish to

make change for a value v using at most k coins; that is, we wish to find a set of

≤ k coins whose total value is v. This might not be possible: for instance, if the

denominations are 5 and 10 and k = 6, then we can make change for 55 but not

for 65. Give an efficient dynamic-programming algorithm for the following

problem.

Input: x1, . . . , xn; k; v.
Question: Is it possible to make change for v using at most k coins, of

denominations x1, . . . , xn?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

182 Exercises

Figure 6.12 Two binary search trees for the keywords of a programming
language.

end

begin else if while

do then

do

then

whilebegin

if

else

end

6.20. Optimal binary search trees. Suppose we know the frequency with which

keywords occur in programs of a certain language, for instance:

begin 5%
do 40%
else 8%
end 4%
if 10%
then 10%
while 23%

We want to organize them in a binary search tree, so that the keyword in the root

is alphabetically bigger than all the keywords in the left subtree and smaller than

all the keywords in the right subtree (and this holds for all nodes).

Figure 6.12 has a nicely-balanced example on the left. In this case, when a

keyword is being looked up, the number of comparisons needed is at most three:

for instance, in finding “while”, only the three nodes “end”, “then”, and “while”

get examined. But since we know the frequency with which keywords are

accessed, we can use an even more fine-tuned cost function, the average number

of comparisons to look up a word. For the search tree on the left, it is

cost = 1(0.04) + 2(0.40 + 0.10) + 3(0.05 + 0.08 + 0.10 + 0.23) = 2.42.

By this measure, the best search tree is the one on the right, which has a cost of

2.18.

Give an efficient algorithm for the following task.

Input: n words (in sorted order); frequencies of these words:
p1, p2, . . . , pn.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 183

Output: The binary search tree of lowest cost (defined above as the

expected number of comparisons in looking up a word).

6.21. A vertex cover of a graph G = (V, E) is a subset of vertices S ⊆ V that includes

at least one endpoint of every edge in E . Give a linear-time algorithm for the

following task.

Input: An undirected tree T = (V, E).
Output: The size of the smallest vertex cover of T.

For instance, in the following tree, possible vertex covers include

{A, B, C , D, E , F , G } and {A, C , D, F } but not {C , E , F }. The smallest vertex

cover has size 3: {B, E , G }.

E

DA

B

C F

G

6.22. Give an O(nt) algorithm for the following task.

Input: A list of n positive integers a1, a2, . . . , an; a positive integer t.
Question: Does some subset of the ai ’s add up to t? (You can use each ai

at most once.)

6.23. A mission-critical production system has n stages that have to be performed

sequentially; stage i is performed by machine Mi . Each machine Mi has a

probability ri of functioning reliably and a probability 1 − ri of failing (and the

failures are independent). Therefore, if we implement each stage with a single

machine, the probability that the whole system works is r1 · r2 · · · rn. To improve

this probability we add redundancy, by having mi copies of the machine Mi that

performs stage i. The probability that all mi copies fail simultaneously is only

(1 − ri)
mi , so the probability that stage i is completed correctly is 1 − (1 − ri)

mi

and the probability that the whole system works is
∏n

i=1(1 − (1 − ri)
mi). Each

machine Mi has a cost ci , and there is a total budget B to buy machines.

(Assume that B and ci are positive integers.)

Given the probabilities r1, . . . , rn, the costs c1, . . . , cn, and the budget B, find the

redundancies m1, . . . , mn that are within the available budget and that maximize

the probability that the system works correctly.

6.24. Time and space complexity of dynamic programming. Our dynamic programming

algorithm for computing the edit distance between strings of length m and n

creates a table of size n × m and therefore needs O(mn) time and space. In

practice, it will run out of space long before it runs out of time. How can this

space requirement be reduced?

(a) Show that if we just want to compute the value of the edit distance

(rather than the optimal sequence of edits), then only O(n) space is

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

184 Exercises

needed, because only a small portion of the table needs to be maintained

at any given time.

(b) Now suppose that we also want the optimal sequence of edits. As we

saw earlier, this problem can be recast in terms of a corresponding

grid-shaped dag, in which the goal is to find the optimal path from node

(0, 0) to node (n, m). It will be convenient to work with this formulation,

and while we’re talking about convenience, we might as well also

assume that m is a power of 2.

Let’s start with a small addition to the edit distance algorithm that will

turn out to be very useful. The optimal path in the dag must pass

through an intermediate node (k, m/2) for some k; show how the

algorithm can be modified to also return this value k.

(c) Now consider a recursive scheme:

procedure find-path((0, 0) → (n, m))

compute the value k above

find-path((0, 0) → (k, m/2))

find-path((k, m/2) → (n, m))

concatenate these two paths, with k in the middle

Show that this scheme can be made to run in O(mn) time and O(n)

space.

6.25. Consider the following 3-PARTITION problem. Given integers a1, . . . , an, we want to

determine whether it is possible to partition {1, . . . , n} into three disjoint subsets

I , J , K such that

∑
i∈I

ai =
∑
j∈J

aj =
∑
k∈K

ak = 1

3

n∑
i=1

ai

For example, for input (1, 2, 3, 4, 4, 5, 8) the answer is yes, because there is the

partition (1, 8), (4, 5), (2, 3, 4). On the other hand, for input (2, 2, 3, 5) the

answer is no.

Devise and analyze a dynamic programming algorithm for 3-PARTITION that runs

in time polynomial in n and in
∑

i ai .

6.26. Sequence alignment. When a new gene is discovered, a standard approach to

understanding its function is to look through a database of known genes and

find close matches. The closeness of two genes is measured by the extent to

which they are aligned. To formalize this, think of a gene as being a long string

over an alphabet � = {A, C , G , T}. Consider two genes (strings) x = ATGC C

and y = T AC GC A. An alignment of x and y is a way of matching up these two

strings by writing them in columns, for instance:

− A T − G C C

T A − C G C A

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 185

Here the “−” indicates a “gap.” The characters of each string must appear in

order, and each column must contain a character from at least one of the strings.

The score of an alignment is specified by a scoring matrix δ of size

(|�| + 1) × (|�| + 1), where the extra row and column are to accommodate

gaps. For instance the preceding alignment has the following score:

δ(−, T) + δ(A, A) + δ(T, −) + δ(−, C) + δ(G , G) + δ(C , C) + δ(C , A).

Give a dynamic programming algorithm that takes as input two strings x[1 . . . n]

and y[1 . . . m] and a scoring matrix δ, and returns the highest-scoring alignment.

The running time should be O(mn).

6.27. Alignment with gap penalties. The alignment algorithm of Exercise 6.26 helps to

identify DNA sequences that are close to one another. The discrepancies

between these closely matched sequences are often caused by errors in DNA

replication. However, a closer look at the biological replication process reveals

that the scoring function we considered earlier has a qualitative problem: nature

often inserts or removes entire substrings of nucleotides (creating long gaps),

rather than editing just one position at a time. Therefore, the penalty for a gap of

length 10 should not be 10 times the penalty for a gap of length 1, but something

significantly smaller.

Repeat Exercise 6.26, but this time use a modified scoring function in which the

penalty for a gap of length k is c0 + c1k, where c0 and c1 are given constants

(and c0 is larger than c1).

6.28. Local sequence alignment. Often two DNA sequences are significantly different,

but contain regions that are very similar and are highly conserved. Design an

algorithm that takes an input two strings x[1 . . . n] and y[1 . . . m] and a scoring

matrix δ (as defined in Exercise 6.26), and outputs substrings x′ and y′ of x and

y, respectively, that have the highest-scoring alignment over all pairs of such

substrings. Your algorithm should take time O(mn).

6.29. Exon chaining. Each gene corresponds to a subregion of the overall genome (the

DNA sequence); however, part of this region might be “junk DNA.” Frequently,

a gene consists of several pieces called exons, which are separated by junk

fragments called introns. This complicates the process of identifying genes in a

newly sequenced genome.

Suppose we have a new DNA sequence and we want to check whether a certain

gene (a string) is present in it. Because we cannot hope that the gene will be a

contiguous subsequence, we look for partial matches—fragments of the DNA

that are also present in the gene (actually, even these partial matches will be

approximate, not perfect). We then attempt to assemble these

fragments.

Let x[1 . . . n] denote the DNA sequence. Each partial match can be represented

by a triple (li , ri , wi), where x[li . . . ri] is the fragment and wi is a weight

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

186 Exercises

representing the strength of the match (it might be a local alignment score or

some other statistical quantity). Many of these potential matches could be false,

so the goal is to find a subset of the triples that are consistent (nonoverlapping)

and have a maximum total weight.

Show how to do this efficiently.

6.30. Reconstructing evolutionary trees by maximum parsimony. Suppose we manage

to sequence a particular gene across a whole bunch of different species. For

concreteness, say there are n species, and the sequences are strings of length k

over alphabet � = {A, C , G , T}. How can we use this information to reconstruct

the evolutionary history of these species?

Evolutionary history is commonly represented by a tree whose leaves are the

different species, whose root is their common ancestor, and whose internal

branches represent speciation events (that is, moments when a new species

broke off from an existing one). Thus we need to find the following:

� A (binary) evolutionary tree with the given species at the leaves.
� For each internal node, a string of length k: the gene sequence for that

particular ancestor.

For each possible tree T , annotated with sequences s(u) ∈ �k at each of its

nodes u, we can assign a score based on the principle of parsimony: fewer

mutations are more likely.

score(T) =
∑

(u,v)∈E (T)

(number of positions on which s(u) and s(v) agree).

Finding the highest-score tree is a difficult problem. Here we will consider just a

small part of it: suppose we know the structure of the tree, and we want to fill in

the sequences s(u) of the internal nodes u. Here’s an example with k = 4 and

n = 5:

CGCG AGGA ATCAAGTCATTC

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch06 GTBL020-Dasgupta-v10 August 11, 2006 16:53

Chapter 6 Algorithms 187

(a) In this particular example, there are several maximum parsimony

reconstructions of the internal node sequences. Find one of them.

(b) Give an efficient (in terms of n and k) algorithm for this task. (Hint:

Even though the sequences might be long, you can do just one position

at a time.)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7

Linear programming and
reductions

Many of the problems for which we want algorithms are optimization tasks: the

shortest path, the cheapest spanning tree, the longest increasing subsequence, and

so on. In such cases, we seek a solution that (1) satisfies certain constraints (for

instance, the path must use edges of the graph and lead from s to t, the tree must

touch all nodes, the subsequence must be increasing); and (2) is the best possible,

with respect to some well-defined criterion, among all solutions that satisfy these

constraints.

Linear programming describes a broad class of optimization tasks in which both

the constraints and the optimization criterion are linear functions. It turns out an

enormous number of problems can be expressed in this way.

Given the vastness of its topic, this chapter is divided into several parts, which can

be read separately subject to the following dependencies.

Duality

matchings
Flows and

Games

Simplex

Introduction to
linear programming
and reductions

7.1 An introduction to linear programming
In a linear programming problem we are given a set of variables, and we want to

assign real values to them so as to (1) satisfy a set of linear equations and/or linear

inequalities involving these variables and (2) maximize or minimize a given linear

objective function.

188

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 189

7.1.1 Example: profit maximization

A boutique chocolatier has two products: its flagship assortment of triangular choco-

lates, called Pyramide, and the more decadent and deluxe Pyramide Nuit. How much

of each should it produce to maximize profits? Let’s say it makes x1 boxes of Pyra-

mide per day, at a profit of $1 each, and x2 boxes of Nuit, at a more substantial profit

of $6 apiece; x1 and x2 are unknown values that we wish to determine. But this is

not all; there are also some constraints on x1 and x2 that must be accommodated

(besides the obvious one, x1, x2 ≥ 0). First, the daily demand for these exclusive

chocolates is limited to at most 200 boxes of Pyramide and 300 boxes of Nuit. Also,

the current workforce can produce a total of at most 400 boxes of chocolate per day.

What are the optimal levels of production?

We represent the situation by a linear program, as follows.

Objective function max x1 + 6x2

Constraints x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane,

and a linear inequality designates a half-space, the region on one side of the line.

Thus the set of all feasible solutions of this linear program, that is, the points (x1, x2)

which satisfy all constraints, is the intersection of five half-spaces. It is a convex

polygon, shown in Figure 7.1.

We want to find the point in this polygon at which the objective function—the

profit—is maximized. The points with a profit of c dollars lie on the line x1 + 6x2 = c,

which has a slope of −1/6 and is shown in Figure 7.1 for selected values of c. As c
increases, this “profit line” moves parallel to itself, up and to the right. Since the goal

Figure 7.1 (a) The feasible region for a linear program. (b) Contour lines of the
objective function: x1 + 6x2 = c for different values of the profit c.

(a)

100 200 300 400

100

200

300

400

0

x2

x1

(b)

100 200 300 400

100

200

300

400

0

c = 1500

c = 1200

c = 600

x2

x1

Optimum point
Profit = $1900

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

190 7.1 An introduction to linear programming

is to maximize c, we must move the line as far up as possible, while still touching

the feasible region. The optimum solution will be the very last feasible point that

the profit line sees and must therefore be a vertex of the polygon, as shown in

the figure. If the slope of the profit line were different, then its last contact with the

polygon could be an entire edge rather than a single vertex. In this case, the optimum

solution would not be unique, but there would certainly be an optimum vertex.

It is a general rule of linear programs that the optimum is achieved at a vertex of

the feasible region. The only exceptions are cases in which there is no optimum;

this can happen in two ways:

1. The linear program is infeasible; that is, the constraints are so tight that it is

impossible to satisfy all of them. For instance,

x ≤ 1, x ≥ 2.

2. The constraints are so loose that the feasible region is unbounded, and it is

possible to achieve arbitrarily high objective values. For instance,

max x1 + x2

x1, x2 ≥ 0.

Solving linear programs

Linear programs (LPs) can be solved by the simplex method, devised by George

Dantzig in 1947. We shall explain it in more detail in Section 7.6, but briefly, this

algorithm starts at a vertex, in our case perhaps (0, 0), and repeatedly looks for an

adjacent vertex (connected by an edge of the feasible region) of better objective

value. In this way it does hill-climbing on the vertices of the polygon, walking from

neighbor to neighbor so as to steadily increase profit along the way. Here’s a possible

trajectory.

100

300

200

100 2000

Profit $ 1900

$0 $200

$1400

Upon reaching a vertex that has no better neighbor, simplex declares it to be optimal

and halts. Why does this local test imply global optimality? By simple geometry—

think of the profit line passing through this vertex. Since all the vertex’s neighbors

lie below the line, the rest of the feasible polygon must also lie below this line.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 191

More products

Encouraged by consumer demand, the chocolatier decides to introduce a third and

even more exclusive line of chocolates, called Pyramide Luxe. One box of these will

bring in a profit of $13. Let x1, x2, x3 denote the number of boxes of each chocolate

produced daily, with x3 referring to Luxe. The old constraints on x1 and x2 persist,

although the labor restriction now extends to x3 as well: the sum of all three variables

can be at most 400. What’s more, it turns out that Nuit and Luxe require the same

packaging machinery, except that Luxe uses it three times as much, which imposes

another constraint x2 + 3x3 ≤ 600. What are the best possible levels of production?

Here is the updated linear program.

max x1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

Figure 7.2 The feasible polyhedron for a three-variable linear program.

x1

x3

x2

Optimum

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

192 7.1 An introduction to linear programming

The space of solutions is now three-dimensional. Each linear equation defines a 3D

plane, and each inequality a half-space on one side of the plane. The feasible region

is an intersection of seven half-spaces, a polyhedron (Figure 7.2). Looking at the fig-

ure, can you decipher which inequality corresponds to each face of the polyhedron?

A profit of c corresponds to the plane x1 + 6x2 + 13x3 = c. As c increases, this profit-

plane moves parallel to itself, further and further into the positive orthant until it no

longer touches the feasible region. The point of final contact is the optimal vertex:

(0, 300, 100), with total profit $3100.

How would the simplex algorithm behave on this modified problem? As before, it

would move from vertex to vertex, along edges of the polyhedron, increasing profit

steadily. A possible trajectory is shown in Figure 7.2, corresponding to the following

sequence of vertices and profits:

(0, 0, 0)

$0
−→ (200, 0, 0)

$200
−→ (200, 200, 0)

$1400
−→ (200, 0, 200)

$2800
−→ (0, 300, 100)

$3100

Finally, upon reaching a vertex with no better neighbor, it would stop and declare

this to be the optimal point. Once again by basic geometry, if all the vertex’s neigh-

bors lie on one side of the profit-plane, then so must the entire polyhedron.

A magic trick called duality

Here is why you should believe that (0, 300, 100), with a total profit of $3100, is the
optimum: Look back at the linear program. Add the second inequality to the third, and add
to them the fourth multiplied by 4. The result is the inequality x1 + 6x2 + 13x3 ≤ 3100.

Do you see? This inequality says that no feasible solution (values x1, x2, x3 satisfying the
constraints) can possibly have a profit greater than 3100. So we must indeed have found the
optimum! The only question is, where did we get these mysterious multipliers (0, 1, 1, 4)
for the four inequalities?

In Section 7.4 we’ll see that it is always possible to come up with such multipliers by solving
another LP! Except that (it gets even better) we do not even need to solve this other LP,
because it is in fact so intimately connected to the original one—it is called the dual—that
solving the original LP solves the dual as well! But we are getting far ahead of our story.

What if we add a fourth line of chocolates, or hundreds more of them? Then the

problem becomes high-dimensional, and hard to visualize. Simplex continues to

work in this general setting, although we can no longer rely upon simple geometric

intuitions for its description and justification. We will study the full-fledged simplex

algorithm in Section 7.6.

In the meantime, we can rest assured in the knowledge that there are many pro-

fessional, industrial-strength packages that implement simplex and take care of all

the tricky details like numeric precision. In a typical application, the main task is

therefore to correctly express the problem as a linear program. The package then

takes care of the rest.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 193

With this in mind, let’s look at a high-dimensional application.

7.1.2 Example: production planning

This time, our company makes handwoven carpets, a product for which the demand

is extremely seasonal. Our analyst has just obtained demand estimates for all months

of the next calendar year: d1, d2, . . . , d12. As feared, they are very uneven, ranging

from 440 to 920.

Here’s a quick snapshot of the company. We currently have 30 employees, each of

whom makes 20 carpets per month and gets a monthly salary of $2,000. We have

no initial surplus of carpets.

How can we handle the fluctuations in demand? There are three ways:

1. Overtime, but this is expensive since overtime pay is 80% more than regular

pay. Also, workers can put in at most 30% overtime.

2. Hiring and firing, but these cost $320 and $400, respectively, per worker.

3. Storing surplus production, but this costs $8 per carpet per month. We cur-

rently have no stored carpets on hand, and we must end the year without

any carpets stored.

This rather involved problem can be formulated and solved as a linear program!

A crucial first step is defining the variables.

wi = number of workers during ith month; w0 = 30.

xi = number of carpets made during ith month.

oi = number of carpets made by overtime in month i.

hi , fi = number of workers hired and fired, respectively, at beginning of month i.

si = number of carpets stored at end of month i; s0 = 0.

All in all, there are 72 variables (74 if you count w0 and s0).

We now write the constraints. First, all variables must be nonnegative:

wi , xi , oi , hi , fi , si ≥ 0, i = 1, . . . , 12.

The total number of carpets made per month consists of regular production plus

overtime:

xi = 20wi + oi

(one constraint for each i = 1, . . . , 12). The number of workers can potentially

change at the start of each month:

wi = wi−1 + hi − fi .

The number of carpets stored at the end of each month is what we started with,

plus the number we made, minus the demand for the month:

si = si−1 + xi − di .

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

194 7.1 An introduction to linear programming

And overtime is limited:

oi ≤ 6wi .

Finally, what is the objective function? It is to minimize the total cost:

min 2000
∑

i

wi + 320
∑

i

hi + 400
∑

i

fi + 8
∑

i

si + 180
∑

i

oi ,

a linear function of the variables. Solving this linear program by simplex should take

less than a second and will give us the optimum business strategy for our company.

Well, almost. The optimum solution might turn out to be fractional; for instance, it

might involve hiring 10.6 workers in the month of March. This number would have

to be rounded to either 10 or 11 in order to make sense, and the overall cost would

then increase correspondingly. In the present example, most of the variables take on

fairly large (double-digit) values, and thus rounding is unlikely to affect things too

much. There are other LPs, however, in which rounding decisions have to be made

very carefully in order to end up with an integer solution of reasonable quality.

In general, there is a tension in linear programming between the ease of obtaining

fractional solutions and the desirability of integer ones. As we shall see in Chapter 8,

finding the optimum integer solution of an LP is an important but very hard problem,

called integer linear programming.

7.1.3 Example: optimum bandwidth allocation

Next we turn to a miniaturized version of the kind of problem a network service

provider might face.

Suppose we are managing a network whose lines have the bandwidths shown in

Figure 7.3, and we need to establish three connections: between users A and B,

between B and C , and between A and C . Each connection requires at least two

units of bandwidth, but can be assigned more. Connection A–B pays $3 per unit of

bandwidth, and connections B–C and A–C pay $2 and $4, respectively.

Each connection can be routed in two ways, a long path and a short path, or by a

combination: for instance, two units of bandwidth via the short route, one via the

long route. How do we route these connections to maximize our network’s revenue?

This is a linear program. We have variables for each connection and each path (long

or short); for example, xAB is the short-path bandwidth allocated to the connection

between A and B, and x′
AB the long-path bandwidth for this same connection. We

demand that no edge’s bandwidth is exceeded and that each connection gets a

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 195

Figure 7.3 A communications network between three users A, B, and C .
Bandwidths are shown.

a

cb

12

10

6

13

11

8

user
A

user
B

user
C

bandwidth of at least 2 units.

max 3xAB + 3x′
AB + 2xBC + 2x′

BC + 4xAC + 4x′
AC

xAB + x′
AB + xBC + x′

BC ≤ 10 [edge (b, B)]

xAB + x′
AB + xAC + x′

AC ≤ 12 [edge (a, A)]

xBC + x′
BC + xAC + x′

AC ≤ 8 [edge (c, C)]

xAB + x′
BC + x′

AC ≤ 6 [edge (a, b)]

x′
AB + xBC + x′

AC ≤ 13 [edge (b, c)]

x′
AB + x′

BC + xAC ≤ 11 [edge (a, c)]

xAB + x′
AB ≥ 2

xBC + x′
BC ≥ 2

xAC + x′
AC ≥ 2

xAB , x′
AB , xBC , x′

BC , xAC , x′
AC ≥ 0

Even a tiny example like this one is hard to solve on one’s own (try it!), and yet the

optimal solution is obtained instantaneously via simplex:

xAB = 0, x′
AB = 7, xBC = x′

BC = 1.5, xAC = 0.5, x′
AC = 4.5.

This solution is not integral, but in the present application we don’t need it to be,

and thus no rounding is required. Looking back at the original network, we see that

every edge except a–c is used at full capacity.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

196 7.1 An introduction to linear programming

Reductions

Sometimes a computational task is sufficiently general that any subroutine for it can also
be used to solve a variety of other tasks, which at first glance might seem unrelated. For
instance, we saw in Chapter 6 how an algorithm for finding the longest path in a dag can,
surprisingly, also be used for finding longest increasing subsequences. We describe this
phenomenon by saying that the longest increasing subsequence problem reduces to the
longest path problem in a dag. In turn, the longest path in a dag reduces to the shortest
path in a dag; here’s how a subroutine for the latter can be used to solve the former:

function LONGEST PATH(G)

negate all edge weights of G
return SHORTEST PATH(G)

Let’s step back and take a slightly more formal view of reductions. If any subroutine for task
Q can also be used to solve P , we say P reduces to Q. Often, P is solvable by a single call
to Q’s subroutine, which means any instance x of P can be transformed into an instance y
of Q such that P (x) can be deduced from Q(y):

Postprocessx P (x)
Q(y)

Algorithm for P

Preprocess
for Q

Algorithmy

(Do you see that the reduction from P = LONGEST PATH to Q = SHORTEST PATH follows
this schema?) If the pre- and postprocessing procedures are efficiently computable then this
creates an efficient algorithm for P out of any efficient algorithm for Q!

Reductions enhance the power of algorithms: Once we have an algorithm for problem Q
(which could be shortest path, for example) we can use it to solve other problems. In fact,
most of the computational tasks we study in this book are considered core computer science
problems precisely because they arise in so many different applications, which is another way
of saying that many problems reduce to them. This is especially true of linear programming.

One cautionary observation: our LP has one variable for every possible path between

the users. In a larger network, there could easily be exponentially many such paths,

and therefore this particular way of translating the network problem into an LP will

not scale well. We will see a cleverer and more scalable formulation in Section 7.2.

Here’s a parting question for you to consider. Suppose we removed the constraint

that each connection should receive at least two units of bandwidth. Would the

optimum change?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 197

7.1.4 Variants of linear programming

As evidenced in our examples, a general linear program has many degrees of

freedom.

1. It can be either a maximization or a minimization problem.

2. Its constraints can be equations and/or inequalities.

3. The variables are often restricted to be nonnegative, but they can also be

unrestricted in sign.

We will now show that these various LP options can all be reduced to one another
via simple transformations. Here’s how.

1. To turn a maximization problem into a minimization (or vice versa), just

multiply the coefficients of the objective function by −1.

2a. To turn an inequality constraint like
∑n

i=1 ai xi ≤ b into an equation, intro-

duce a new variable s and use

n∑
i=1

ai xi + s = b

s ≥ 0.

This s is called the slack variable for the inequality. As justification, observe

that a vector (x1, . . . , xn) satisfies the original inequality constraint if and

only if there is some s ≥ 0 for which it satisfies the new equality constraint.

2b. To change an equality constraint into inequalities is easy: rewrite ax = b as

the equivalent pair of constraints ax ≤ b and ax ≥ b.

3. Finally, to deal with a variable x that is unrestricted in sign, do the following:

• Introduce two nonnegative variables, x+, x− ≥ 0.

• Replace x, wherever it occurs in the constraints or the objective func-

tion, by x+ − x−.

This way, x can take on any real value by appropriately adjusting the new

variables. More precisely, any feasible solution to the original LP involving

x can be mapped to a feasible solution of the new LP involving x+, x−, and

vice versa.

By applying these transformations we can reduce any LP (maximization or min-

imization, with both inequalities and equations, and with both nonnegative and

unrestricted variables) into an LP of a much more constrained kind that we call the

standard form, in which the variables are all nonnegative, the constraints are all

equations, and the objective function is to be minimized.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

198 7.2 Flows in networks

Matrix-vector notation

A linear function like x1 + 6x2 can be written as the dot product of two vectors

c =
(

1

6

)
and x =

(
x1

x2

)
,

denoted c · x or cTx. Similarly, linear constraints can be compiled into matrix-vector form:

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

=⇒
⎛
⎜⎝1 0

0 1

1 1

⎞
⎟⎠

︸ ︷︷ ︸

(
x1

x2

)
≤

⎛
⎜⎝200

300

400

⎞
⎟⎠

︸ ︷︷ ︸
.

A x ≤ b

Here each row of matrix A corresponds to one constraint: its dot product with x is at most
the value in the corresponding row of b. In other words, if the rows of A are the vectors
a1, . . . , am , then the statement Ax ≤ b is equivalent to

ai · x ≤ bi for all i = 1, . . . , m.

With these notational conveniences, a generic LP can be expressed simply as

max cTx

Ax ≤ b

x ≥ 0.

For example, our first linear program gets rewritten thus:

max x1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

=⇒
min −x1 − 6x2

x1 + s1 = 200

x2 + s2 = 300

x1 + x2 + s3 = 400

x1, x2, s1, s2, s3 ≥ 0

The original was also in a useful form: maximize an objective subject to certain

inequalities. Any LP can likewise be recast in this way, using the reductions given

earlier.

7.2 Flows in networks

7.2.1 Shipping oil

Figure 7.4(a) shows a directed graph representing a network of pipelines along

which oil can be sent. The goal is to ship as much oil as possible from the source
s to the sink t. Each pipeline has a maximum capacity it can handle, and there are

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 199

Figure 7.4 (a) A network with edge capacities. (b) A flow in the network.

(a)

s

a

b

c

d

e

t3

3

4

10

1

2

5

5

2

1

1

(b)

s

a

b

c

d

e

t

5

2

0

10
2

1

4

5

2

1

no opportunities for storing oil en route. Figure 7.4(b) shows a possible flow from

s to t, which ships 7 units in all. Is this the best that can be done?

7.2.2 Maximizing flow

The networks we are dealing with consist of a directed graph G = (V, E); two special

nodes s, t ∈ V , which are, respectively, a source and sink of G ; and capacities ce > 0

on the edges.

We would like to send as much oil as possible from s to t without exceeding the

capacities of any of the edges. A particular shipping scheme is called a flow and

consists of a variable fe for each edge e of the network, satisfying the following two

properties:

1. It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E .

2. For all nodes u except s and t, the amount of flow entering u equals the

amount leaving u: ∑
(w,u)∈E

fwu =
∑

(u,z)∈E

fuz.

In other words, flow is conserved.

The size of a flow is the total quantity sent from s to t and, by the conservation

principle, is equal to the quantity leaving s:

size(f) =
∑

(s,u)∈E

fsu.

In short, our goal is to assign values to { fe : e ∈ E } that will satisfy a set of linear

constraints and maximize a linear objective function. But this is a linear program!

The maximum-flow problem reduces to linear programming.

For example, for the network of Figure 7.4 the LP has 11 variables, one per edge. It

seeks to maximize fsa + fsb + fsc subject to a total of 27 constraints: 11 for nonnega-

tivity (such as fsa ≥ 0), 11 for capacity (such as fsa ≤ 3), and 5 for flow conservation

(one for each node of the graph other than s and t, such as fsc + fdc = fce). Simplex

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

200 7.2 Flows in networks

would take no time at all to correctly solve the problem and to confirm that, in our

example, a flow of 7 is in fact optimal.

7.2.3 A closer look at the algorithm

All we know so far of the simplex algorithm is the vague geometric intuition that it

keeps making local moves on the surface of a convex feasible region, successively

improving the objective function until it finally reaches the optimal solution. Once

we have studied it in more detail (Section 7.6), we will be in a position to understand

exactly how it handles flow LPs, which is useful as a source of inspiration for

designing direct max-flow algorithms.

It turns out that in fact the behavior of simplex has an elementary interpretation:

Start with zero flow.

Repeat: choose an appropriate path from s to t, and increase flow along the

edges of this path as much as possible.

Figure 7.5(a)–(d) shows a small example in which simplex halts after two iterations.

The final flow has size 2, which is easily seen to be optimal.

There is just one complication. What if we had initially chosen a different path, the

one in Figure 7.5(e)? This gives only one unit of flow and yet seems to block all other

paths. Simplex gets around this problem by also allowing paths to cancel existing
flow. In this particular case, it would subsequently choose the path of Figure 7.5(f).

Edge (b, a) of this path isn’t in the original network and has the effect of canceling

flow previously assigned to edge (a, b).

To summarize, in each iteration simplex looks for an s − t path whose edges (u, v)

can be of two types:

1. (u, v) is in the original network, and is not yet at full capacity.

2. The reverse edge (v, u) is in the original network, and there is some flow

along it.

If the current flow is f , then in the first case, edge (u, v) can handle up to cuv − fuv

additional units of flow, and in the second case, up to fvu additional units (canceling

all or part of the existing flow on (v, u)). These flow-increasing opportunities can

be captured in a residual network G f = (V, E f), which has exactly the two types

of edges listed, with residual capacities c f :{
cuv − fuv if (u, v) ∈ E and fuv < cuv

fvu if (v, u) ∈ E and fvu > 0.

Thus we can equivalently think of simplex as choosing an s − t path in the residual

network.

By simulating the behavior of simplex, we get a direct algorithm for solving max-

flow. It proceeds in iterations, each time explicitly constructing G f , finding a suitable

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 201

Figure 7.5 An illustration of the max-flow algorithm. (a) A toy network.
(b) The first path chosen. (c) The second path chosen. (d) The final flow. (e) We
could have chosen this path first. (f) In which case, we would have to allow this
second path.

(a)

s

b

a

t

11

1 1

1

(b)

s

a

t

(c)

s

b

t

(d)

s

b

a

t

11

1 1

0

(e)

s

b

a

t

1

1

1

(f)

s

b

a

t
1

1

1

s − t path in G f by using, say, a linear-time breadth-first search, and halting if there

is no longer any such path along which flow can be increased.

Figure 7.6 illustrates the algorithm on our oil example.

7.2.4 A certificate of optimality

Now for a truly remarkable fact: not only does simplex correctly compute a maxi-

mum flow, but it also generates a short proof of the optimality of this flow!

Let’s see an example of what this means. Partition the nodes of the oil network

(Figure 7.4) into two groups, L = {s, a, b} and R = {c, d, e, t}:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

202 7.2 Flows in networks

Figure 7.6 The max-flow algorithm applied to the network of Figure 7.4. At
each iteration, the current flow is shown on the left and the residual network on
the right. The paths chosen are shown in bold.

Current flow Residual graph

(a)

s

a

b

c

d

e

t s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

(b)

s

a

b

c

d

e

t

1

1

1

1

1

s

a

b

c

d

e

t3

4

10 1

1 1

21
2

1

1

1

4

1

4

(c)

s

a

b

c

d

e

t

1

1
1

2

2

2

s

a

b

c

d

e

t3

4

10 1

1 1

2

1

4

2

2
1

3
2

(d)

s

a

b

c

d

e

t1
1

2

2

5

4

3

s

a

b

c

d

e

t3

10 1

1 1

2

2

2
1

3
1

1

4

5

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 203

Figure 7.6 Continued

Current Flow Residual Graph

(e)

s

a

b

c

d

e

t1

2

2

54

5

1

s

a

b

c

d

e

t3

10 1

1 1

2

2
1

54

5

1

1

(f)

s

a

b

c

d

e

t1

2

2

54

5

2
1

1 s

a

b

c

d

e

t

10 1

1 1

2

2

54

5

2

2

1

1

s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

L R

Any oil transmitted must pass from L to R. Therefore, no flow can possibly exceed

the total capacity of the edges from L to R, which is 7. But this means that the flow

we found earlier, of size 7, must be optimal!

More generally, an (s, t)-cut partitions the vertices into two disjoint groups L and R
such that s is in L and t is in R. Its capacity is the total capacity of the edges from

L to R, and as argued previously, is an upper bound on any flow:

Pick any flow f and any (s, t)-cut (L , R). Then size (f) ≤ capacity(L , R).

Some cuts are large and give loose upper bounds—cut ({s, b, c}, {a, d, e, t}) has a

capacity of 19. But there is also a cut of capacity 7, which is effectively a certificate of

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

204 7.2 Flows in networks

optimality of the maximum flow. This isn’t just a lucky property of our oil network;

such a cut always exists.

Max-flow min-cut theorem:

The size of the maximum flow in a network equals the capacity of the smallest
(s, t)-cut.

Moreover, our algorithm automatically finds this cut as a by-product!

Let’s see why this is true. Suppose f is the final flow when the algorithm terminates.

We know that node t is no longer reachable from s in the residual network Gf . Let

L be the nodes that are reachable from s in G f , and let R = V − L be the rest of

the nodes. Then (L , R) is a cut in the graph G :

L R

ts

e

e

We claim that

size(f) = capacity(L , R).

To see this, observe that by the way L is defined, any edge going from L to R must

be at full capacity (in the current flow f), and any edge from R to L must have zero

flow. (So, in the figure, fe = ce and fe′ = 0.) Therefore the net flow across (L , R) is

exactly the capacity of the cut.

7.2.5 Efficiency

Each iteration of our maximum-flow algorithm is efficient, requiring O(|E |) time

if a depth-first or breadth-first search is used to find an s − t path. But how many

iterations are there?

Suppose all edges in the original network have integer capacities ≤ C . Then an

inductive argument shows that on each iteration of the algorithm, the flow is always

an integer and increases by an integer amount. Therefore, since the maximum flow

is at most C |E | (why?), it follows that the number of iterations is at most this much.

But this is hardly a reassuring bound: what if C is in the millions?

We examine this issue further in Exercise 7.31. It turns out that it is indeed possible

to construct bad examples in which the number of iterations is proportional to C ,

if s − t paths are not carefully chosen. However, if paths are chosen in a sensible

manner—in particular, by using a breadth-first search, which finds the path with the

fewest edges—then the number of iterations is at most O(|V | · |E |), no matter what

the capacities are. This latter bound gives an overall running time of O(|V | · |E |2)
for maximum flow.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 205

Figure 7.7 An edge between two people means they like each other. Is it
possible to pair everyone up happily?

Alice

Beatrice

Carol

Danielle

GIRLS

Chet

Dan

Bob

Al

BOYS

7.3 Bipartite matching
Figure 7.7 shows a graph with four nodes on the left representing boys and four

nodes on the right representing girls.1 There is an edge between a boy and girl if

they like each other (for instance, Al likes all the girls). Is it possible to choose

couples so that everyone has exactly one partner, and it is someone they like? In

graph-theoretic jargon, is there a perfect matching?

This matchmaking game can be reduced to the maximum-flow problem, and thereby

to linear programming! Create a new source node, s, with outgoing edges to all the

boys; a new sink node, t, with incoming edges from all the girls; and direct all the

edges in the original bipartite graph from boy to girl (Figure 7.8). Finally, give every

edge a capacity of 1. Then there is a perfect matching if and only if this network

has a flow whose size equals the number of couples. Can you find such a flow in

the example?

Figure 7.8 A matchmaking network. Each edge has a capacity of one.

s t

Dan

Bob

Chet

Danielle

Beatrice

Alice

Carol

Al

Actually, the situation is slightly more complicated than just stated: what is easy to

see is that the optimum integer-valued flow corresponds to the optimum matching.

1This kind of graph, in which the nodes can be partitioned into two groups such that all edges are

between the groups, is called bipartite.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

206 7.4 Duality

We would be at a bit of a loss interpreting a flow that ships 0.7 units along the edge

Al–Carol, for instance! Fortunately, the maximum-flow problem has the following

Property: if all edge capacities are integers, then the optimal flow found by our
algorithm is integral. We can see this directly from the algorithm, which in such
cases would increment the flow by an integer amount on each iteration.

Hence integrality comes for free in the maximum-flow problem. Unfortunately, this

is the exception rather than the rule: as we will see in Chapter 8, it is a very difficult

problem to find the optimum solution (or for that matter, any solution) of a general

linear program, if we also demand that the variables be integers.

7.4 Duality
We have seen that in networks, flows are smaller than cuts, but the maximum

flow and minimum cut exactly coincide and each is therefore a certificate of the

other’s optimality. Remarkable as this phenomenon is, we now generalize it from

maximum flow to any problem that can be solved by linear programming! It turns

out that every linear maximization problem has a dual minimization problem, and

they relate to each other in much the same way as flows and cuts.

To understand what duality is about, recall our introductory LP with the two types

of chocolate:

max x1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0.

Simplex declares the optimum solution to be (x1, x2) = (100, 300), with objective

value 1900. Can this answer be checked somehow? Let’s see: suppose we take the

first inequality and add it to six times the second inequality. We get

x1 + 6x2 ≤ 2000.

This is interesting, because it tells us that it is impossible to achieve a profit of more

than 2000. Can we add together some other combination of the LP constraints and

bring this upper bound even closer to 1900? After a little experimentation, we find

that multiplying the three inequalities by 0, 5, and 1, respectively, and adding them

up yields

x1 + 6x2 ≤ 1900.

So 1900 must indeed be the best possible value! The multipliers (0, 5, 1) magically

constitute a certificate of optimality! It is remarkable that such a certificate exists

for this LP—and even if we knew there were one, how would we systematically go

about finding it?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 207

Let’s investigate the issue by describing what we expect of these three multipliers,

call them y1, y2, y3.

Multiplier Inequality

y1 x1 ≤ 200

y2 x2 ≤ 300

y3 x1 + x2 ≤ 400

To start with, these yi ’s must be nonnegative, for otherwise they are unqualified to

multiply inequalities (multiplying an inequality by a negative number would flip

the ≤ to ≥). After the multiplication and addition steps, we get the bound:

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3.

We want the left-hand side to look like our objective function x1 + 6x2 so that the

right-hand side is an upper bound on the optimum solution. For this we need y1 + y3

to be 1 and y2 + y3 to be 6. Come to think of it, it would be fine if y1 + y3 were

larger than 1—the resulting certificate would be all the more convincing. Thus, we

get an upper bound

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3 if

⎧⎪⎨
⎪⎩

y1, y2, y3 ≥ 0

y1 + y3 ≥ 1

y2 + y3 ≥ 6

⎫⎪⎬
⎪⎭ .

We can easily find y’s that satisfy the inequalities on the right by simply making them

large enough, for example (y1, y2, y3) = (5, 3, 6). But these particular multipliers

would tell us that the optimum solution of the LP is at most 200 · 5 + 300 · 3 + 400

· 6 = 4300, a bound that is far too loose to be of interest. What we want is a bound

that is as tight as possible, so we should minimize 200y1 + 300y2 + 400y3 subject

to the preceding inequalities. And this is a new linear program!

Therefore, finding the set of multipliers that gives the best upper bound on our

original LP is tantamount to solving a new LP:

min 200y1 + 300y2 + 400y3

y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

By design, any feasible value of this dual LP is an upper bound on the original

primal LP. So if we somehow find a pair of primal and dual feasible values that are

equal, then they must both be optimal. Here is just such a pair:

Primal : (x1, x2) = (100, 300); Dual : (y1, y2, y3) = (0, 5, 1).

They both have value 1900, and therefore they certify each other’s optimality

(Figure 7.9).

Amazingly, this is not just a lucky example, but a general phenomenon. To start

with, the preceding construction—creating a multiplier for each primal constraint;

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

208 7.4 Duality

Figure 7.9 By design, dual feasible values ≥ primal feasible values. The duality
theorem tells us that moreover their optima coincide.

Primal
Primal feasible

This duality gap is zero

opt Dual feasible Objective
value

opt
Dual

writing a constraint in the dual for every variable of the primal, in which the sum is

required to be above the objective coefficient of the corresponding primal variable;

and optimizing the sum of the multipliers weighted by the primal right-hand sides—

can be carried out for any LP, as shown in Figure 7.10, and in even greater generality

in Figure 7.11. The second figure has one noteworthy addition: if the primal has an

equality constraint, then the corresponding multiplier (or dual variable) need not

be nonnegative, because the validity of equations is preserved when multiplied by

negative numbers. So, the multipliers of equations are unrestricted variables. Notice

also the simple symmetry between the two LPs, in that the matrix A = (ai j) defines

one primal constraint with each of its rows, and one dual constraint with each of

its columns.

By construction, any feasible solution of the dual is an upper bound on any feasible

solution of the primal. But moreover, their optima coincide!

Duality theorem: If a linear program has a bounded optimum, then so does its
dual, and the two optimum values coincide.

When the primal is the LP that expresses the max-flow problem, it is possible to

assign interpretations to the dual variables that show the dual to be none other than

the minimum-cut problem (Exercise 7.25). The relation between flows and cuts is

therefore just a specific instance of the duality theorem. And in fact, the proof of this

theorem falls out of the simplex algorithm, in much the same way as the max-flow

min-cut theorem fell out of the analysis of the max-flow algorithm.

Figure 7.10 A generic primal LP in matrix-vector form, and its dual.

Primal LP:

max cTx

Ax ≤ b

x ≥ 0

Dual LP:

min yTb

yTA ≥ cT

y ≥ 0

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 209

Figure 7.11 In the most general case of linear programming, we have a set I of
inequalities and a set E of equalities (a total of m = |I | + |E | constraints) over
n variables, of which a subset N are constrained to be nonnegative. The dual has
m = |I | + |E | variables, of which only those corresponding to I have
nonnegativity constraints.

Visualizing duality

One can solve the shortest-path problem by the following “analog” device: Given a weighted
undirected graph, build a physical model of it in which each edge is a string of length equal
to the edge’s weight, and each node is a knot at which the appropriate endpoints of strings
are tied together. Then to find the shortest path from s to t , just pull s away from t until
the gadget is taut. It is intuitively clear that this finds the shortest path from s to t .

T

B S

D C

A

There is nothing remarkable or surprising about all this until we notice the following:
the shortest-path problem is a minimization problem, right? Then why are we pulling s
away from t , an act whose purpose is, obviously, maximization? Answer: By pulling s away
from t we solve the dual of the shortest-path problem! This dual has a very simple form
(Exercise 7.28), with one variable xu for each node u:

max xs − xt

|xu − xv | ≤ wuv for all edges {u, v}.
In words, the dual problem is to stretch s and t as far apart as possible, subject to the
constraint that the endpoints of any edge {u, v} are separated by a distance of at most wuv .

7.5 Zero-sum games
We can represent various conflict situations in life by matrix games. For example,

the schoolyard rock-paper-scissors game is specified by the payoff matrix illustrated

here. There are two players, called Row and Column, and they each pick a move

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

210 7.5 Zero-sum games

from {r, p, s}. They then look up the matrix entry corresponding to their moves, and

Column pays Row this amount. It is Row’s gain and Column’s loss.

G =

Column

r p s

r 0 −1 1

p 1 0 −1

R
o
w

s −1 1 0

Now suppose the two of them play this game repeatedly. If Row always makes the

same move, Column will quickly catch on and will always play the countermove,

winning every time. Therefore Row should mix things up: we can model this by

allowing Row to have a mixed strategy, in which on each turn she plays r with

probability x1, p with probability x2, and s with probability x3. This strategy is

specified by the vector x = (x1, x2, x3), positive numbers that add up to 1. Similarly,

Column’s mixed strategy is some y = (y1, y2, y3).
2

On any given round of the game, there is an xi yj chance that Row and Column will

play the ith and j th moves, respectively. Therefore the expected (average) payoff is∑
i, j

G i j · Prob[Row plays i, Column plays j] =
∑
i, j

G i j xi yj .

Row wants to maximize this, while Column wants to minimize it. What payoffs can

they hope to achieve in rock-paper-scissors? Well, suppose for instance that Row

plays the “completely random” strategy x = (1/3, 1/3, 1/3). If Column plays r , then

the average payoff (reading the first column of the game matrix) will be

1

3
· 0 + 1

3
· 1 + 1

3
· −1 = 0.

This is also true if Column plays p, or s. And since the payoff of any mixed strategy

(y1, y2, y3) is just a weighted average of the individual payoffs for playing r , p, and

s, it must also be zero. This can be seen directly from the preceding formula,

∑
i, j

G i j xi yj =
∑
i, j

G i j · 1

3
yj =

∑
j

yj

(∑
i

1

3
G i j

)
=

∑
j

yj · 0 = 0,

where the second-to-last equality is the observation that every column of G adds up

to zero. Thus by playing the “completely random” strategy, Row forces an expected

payoff of zero, no matter what Column does. This means that Column cannot hope

for a negative (expected) payoff (remember that he wants the payoff to be as small

as possible). But symmetrically, if Column plays the completely random strategy,

he also forces an expected payoff of zero, and thus Row cannot hope for a posi-

tive (expected) payoff. In short, the best each player can do is to play completely

2Also of interest are scenarios in which players alter their strategies from round to round, but these can

get very complicated and are a vast subject unto themselves.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 211

randomly, with an expected payoff of zero. We have mathematically confirmed what

you knew all along about rock-paper-scissors!

Let’s think about this in a slightly different way, by considering two scenarios:

1. First Row announces her strategy, and then Column picks his.

2. First Column announces his strategy, and then Row chooses hers.

We’ve seen that the average payoff is the same (zero) in either case if both parties

play optimally. But this might well be due to the high level of symmetry in rock-

paper-scissors. In general games, we’d expect the first option to favor Column, since

he knows Row’s strategy and can fully exploit it while choosing his own. Likewise,

we’d expect the second option to favor Row. Amazingly, this is not the case: if

both play optimally, then it doesn’t hurt a player to announce his or her strategy in

advance! What’s more, this remarkable property is a consequence of—and in fact

equivalent to—linear programming duality.

Let’s investigate this with a nonsymmetric game. Imagine a presidential election
scenario in which there are two candidates for office, and the moves they make

correspond to campaign issues on which they can focus (the initials stand for econ-
omy, society, morality, and tax cut). The payoff entries are millions of votes lost by

Column.

G =
m t

e 3 −1

s −2 1

Suppose Row announces that she will play the mixed strategy x = (1/2, 1/2). What

should Column do? Move m will incur an expected loss of 1/2, while t will incur

an expected loss of 0. The best response of Column is therefore the pure strategy

y = (0, 1).

More generally, once Row’s strategy x = (x1, x2) is fixed, there is always a pure
strategy that is optimal for Column: either move m, with payoff 3x1 − 2x2, or t,
with payoff −x1 + x2, whichever is smaller. After all, any mixed strategy y is a

weighted average of these two pure strategies and thus cannot beat the better of the

two.

Therefore, if Row is forced to announce x before Column plays, she knows that

his best response will achieve an expected payoff of min{3x1 − 2x2, −x1 + x2}. She

should choose x defensively to maximize her payoff against this best response:

Pick (x1, x2) that maximizes min{3x1 − 2x2, −x1 + x2}︸ ︷︷ ︸
payoff from Column’s best response to x

This choice of xi ’s gives Row the best possible guarantee about her expected payoff.

And we will now see that it can be found by an LP! The main trick is to notice that

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

212 7.5 Zero-sum games

for fixed x1 and x2 the following are equivalent:

z = min{3x1 − 2x2, −x1 + x2}
max z

z ≤ 3x1 − 2x2

z ≤ −x1 + x2

And Row needs to choose x1 and x2 to maximize this z.

max z

−3x1 + 2x2 + z ≤ 0

x1 − x2 + z ≤ 0

x1 + x2 = 1

x1, x2 ≥ 0

Symmetrically, if Column has to announce his strategy first, his best bet is to choose

the mixed strategy y that minimizes his loss under Row’s best response, in other

words,

Pick (y1, y2) that minimizes max{3y1 − y2, −2y1 + y2}︸ ︷︷ ︸
outcome of Row’s best response to y

In LP form, this is

min w

−3y1 + y2 + w ≥ 0

2y1 − y2 + w ≥ 0

y1 + y2 = 1

y1, y2 ≥ 0

The crucial observation now is that these two LPs are dual to each other (see

Figure 7.11)! Hence, they have the same optimum, call it V.

Let us summarize. By solving an LP, Row (the maximizer) can determine a strat-

egy for herself that guarantees an expected outcome of at least V no matter what

Column does. And by solving the dual LP, Column (the minimizer) can guarantee

an expected outcome of at most V , no matter what Row does. It follows that this

is the uniquely defined optimal play: a priori it wasn’t even certain that such a

play existed. V is known as the value of the game. In our example, it is 1/7 and is

realized when Row plays her optimum mixed strategy (3/7, 4/7) and Column plays

his optimum mixed strategy (2/7, 5/7).

This example is easily generalized to arbitrary games and shows the existence of

mixed strategies that are optimal for both players and achieve the same value—a

fundamental result of game theory called the min-max theorem. It can be written

in equation form as follows:

max
x

min
y

∑
i, j

G i j xi yj = min
y

max
x

∑
i, j

G i j xi yj .

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 213

This is surprising, because the left-hand side, in which Row has to announce her

strategy first, should presumably be better for Column than the right-hand side, in

which he has to go first. Duality equalizes the two, as it did with maximum flows

and minimum cuts.

7.6 The simplex algorithm
The extraordinary power and expressiveness of linear programs would be little con-

solation if we did not have a way to solve them efficiently. This is the role of the

simplex algorithm.

At a high level, the simplex algorithm takes a set of linear inequalities and a linear

objective function and finds the optimal feasible point by the following strategy:

let v be any vertex of the feasible region

while there is a neighbor v′ of v with better objective value:

set v = v′

In our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visualize

and made intuitive sense. But what if there are n variables, x1, . . . , xn?

Any setting of the xi ’s can be represented by an n-tuple of real numbers and plotted

in n-dimensional space. A linear equation involving the xi ’s defines a hyperplane in

this same space R
n, and the corresponding linear inequality defines a half-space, all

points that are either precisely on the hyperplane or lie on one particular side of it. Fi-

nally, the feasible region of the linear program is specified by a set of inequalities and

is therefore the intersection of the corresponding half-spaces, a convex polyhedron.

But what do the concepts of vertex and neighbor mean in this general context?

Figure 7.12 A polyhedron defined by seven inequalities.

x1

x3

x2

1

4

2

3

5

6

7

A

B C

max x1 + 6x2 + 13x3

x1 ≤ 200 1

x2 ≤ 300 2

x1 + x2 + x3 ≤ 400 3

x2 + 3x3 ≤ 600 4

x1 ≥ 0 5

x2 ≥ 0 6

x3 ≥ 0 7

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

214 7.6 The simplex algorithm

7.6.1 Vertices and neighbors in n-dimensional space

Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is
the unique point at which some subset of hyperplanes meet. Vertex A, for instance, is

the sole point at which constraints 2©, 3©, and 7© are satisfied with equality. On the

other hand, the hyperplanes corresponding to inequalities 4© and 6© do not define

a vertex, because their intersection is not just a single point but an entire line.

Let’s make this definition precise.

Pick a subset of the inequalities. If there is a unique point that satisfies them
with equality, and this point happens to be feasible, then it is a vertex.

How many equations are needed to uniquely identify a point? When there are n
variables, we need at least n linear equations if we want a unique solution. On the

other hand, having more than n equations is redundant: at least one of them can

be rewritten as a linear combination of the others and can therefore be disregarded.

In short,

Each vertex is specified by a set of n inequalities.3

A notion of neighbor now follows naturally.

Two vertices are neighbors if they have n − 1 defining inequalities in common.

In Figure 7.12, for instance, vertices A and C share the two defining inequalities

{ 3©, 7©} and are thus neighbors.

7.6.2 The algorithm

On each iteration, simplex has two tasks:

1. Check whether the current vertex is optimal (and if so, halt).

2. Determine where to move next.

As we will see, both tasks are easy if the vertex happens to be at the origin. And if the

vertex is elsewhere, we will transform the coordinate system to move it to the origin!

First let’s see why the origin is so convenient. Suppose we have some generic LP

max cTx

Ax ≤ b

x ≥ 0

where x is the vector of variables, x = (x1, . . . , xn). Suppose the origin is feasible.

Then it is certainly a vertex, since it is the unique point at which the n inequalities

{x1 ≥ 0, . . . , xn ≥ 0} are tight. Now let’s solve our two tasks. Task 1:

The origin is optimal if and only if all ci ≤ 0.

3There is one tricky issue here. It is possible that the same vertex might be generated by different

subsets of inequalities. In Figure 7.12, vertex B is generated by { 2©, 3©, 4©}, but also by { 2©, 4©, 5©}.
Such vertices are called degenerate and require special consideration. Let’s assume for the time being

that they don’t exist, and we’ll return to them later.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 215

If all ci ≤ 0, then considering the constraints x ≥ 0, we can’t hope for a better

objective value. Conversely, if some ci > 0, then the origin is not optimal, since we

can increase the objective function by raising xi .

Thus, for task 2, we can move by increasing some xi for which ci > 0. How much

can we increase it? Until we hit some other constraint. That is, we release the tight

constraint xi ≥ 0 and increase xi until some other inequality, previously loose, now

becomes tight. At that point, we again have exactly n tight inequalities, so we are

at a new vertex.

For instance, suppose we’re dealing with the following linear program.

max 2x1 + 5x2

2x1 − x2 ≤ 4 1©
x1 + 2x2 ≤ 9 2©
−x1 + x2 ≤ 3 3©

x1 ≥ 0 4©
x2 ≥ 0 5©

Simplex can be started at the origin, which is specified by constraints 4© and 5©. To

move, we release the tight constraint x2 ≥ 0. As x2 is gradually increased, the first

constraint it runs into is −x1 + x2 ≤ 3, and thus it has to stop at x2 = 3, at which

point this new inequality is tight. The new vertex is thus given by 3© and 4©.

So we know what to do if we are at the origin. But what if our current vertex u

is elsewhere? The trick is to transform u into the origin, by shifting the coordinate

system from the usual (x1, . . . , xn) to the “local view” from u. These local coor-

dinates consist of (appropriately scaled) distances y1, . . . , yn to the n hyperplanes

(inequalities) that define and enclose u:

y2
y1

x

u

Specifically, if one of these enclosing inequalities is ai · x ≤ bi , then the distance

from a point x to that particular “wall” is

yi = bi − ai · x.

The n equations of this type, one per wall, define the yi ’s as linear functions of the

xi ’s, and this relationship can be inverted to express the xi ’s as a linear function of the

yi ’s. Thus we can rewrite the entire LP in terms of the y’s. This doesn’t fundamen-

tally change it (for instance, the optimal value stays the same), but expresses it in a

different coordinate frame. The revised “local” LP has the following three properties:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

216 7.6 The simplex algorithm

1. It includes the inequalities y ≥ 0, which are simply the transformed versions

of the inequalities defining u.

2. u itself is the origin in y-space.

3. The cost function becomes max cu + c̃Ty, where cu is the value of the objec-

tive function at u and c̃ is a transformed cost vector.

In short, we are back to the situation we know how to handle! Figure 7.13 shows

this algorithm in action, continuing with our earlier example.

The simplex algorithm is now fully defined. It moves from vertex to neighboring

vertex, stopping when the objective function is locally optimal, that is, when the

coordinates of the local cost vector are all zero or negative. As we’ve just seen, a

vertex with this property must also be globally optimal. On the other hand, if the

current vertex is not locally optimal, then its local coordinate system includes some

dimension along which the objective function can be improved, so we move along

this direction—along this edge of the polyhedron—until we reach a neighboring

vertex. By the nondegeneracy assumption (see footnote 3 in Section 7.6.1), this

edge has nonzero length, and so we strictly improve the objective value. Thus the

process must eventually halt.

7.6.3 Loose ends

There are several important issues in the simplex algorithm that we haven’t yet

mentioned.

The starting vertex:

How do we find a vertex at which to start simplex? In our 2D and 3D examples we

always started at the origin, which worked because the linear programs happened

to have inequalities with positive right-hand sides. In a general LP we won’t always

be so fortunate. However, it turns out that finding a starting vertex can be reduced
to an LP and solved by simplex!

To see how this is done, start with any linear program in standard form (recall

Section 7.1.4), since we know LPs can always be rewritten this way.

min cTx such that Ax = b and x ≥ 0.

We first make sure that the right-hand sides of the equations are all nonnegative: if

bi < 0, just multiply both sides of the ith equation by −1.

Then we create a new LP as follows:

� Create m new artificial variables z1, . . . , zm ≥ 0, where m is the number of

equations.
� Add zi to the left-hand side of the ith equation.
� Let the objective, to be minimized, be z1 + z2 + · · · + zm.

For this new LP, it’s easy to come up with a starting vertex, namely, the one with

zi = bi for all i and all other variables zero. Therefore we can solve it by simplex,

to obtain the optimum solution.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 217

Figure 7.13 Simplex in action.

Initial LP:

max 2x1 + 5x2

2x1 − x2 ≤ 4 1

x1 + 2x2 ≤ 9 2

−x1 + x2 ≤ 3 3

x1 ≥ 0 4

x2 ≥ 0 5

Current vertex: { }

}

}

}

4 , 5 (origin).
Objective value: 0.

Move: increase x2.
5 is released, 3 becomes tight. Stop at x2 = 3.

New vertex { 4 , 3 has local coordinates (y1, y2):

y1 = x1, y2 = 3 + x1 − x2

Rewritten LP:

max 15 + 7y1 − 5y2

y1 + y2 ≤ 7 1

3y1 − 2y2 ≤ 3 2

y2 ≥ 0 3

y1 ≥ 0 4

−y1 + y2 ≤ 3 5

Current vertex: { 4 , 3 .
Objective value: 15.

Move: increase y1.
4 is released, 2 becomes tight. Stop at y1 = 1.

New vertex { 2 ↪ 3 has local coordinates (z1, z2):

z1 = 3 − 3y1 + 2y2, z2 = y2

Rewritten LP:

max 22 − 7
3z1 − 1

3z2

− 1
3z1 + 5

3z2 ≤ 6 1

z1 ≥ 0 2

z2 ≥ 0 3

1
3z1 − 2

3z2 ≤ 1 4

1
3z1 + 1

3z2 ≤ 4 5

Current vertex: { 2 , 3 .
Objective value: 22.

Optimal: all ci < 0.

Solve 2 , 3 (in original LP) to get optimal solution
(x1,x2) = (1↪ 4).

{ 1 , 2
{ 3 , 4

{ 2 , 3

y1

x2

Increase

Increase

{ 1 , 5{ 4 , 5

}

}

}
}

}}

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

218 7.6 The simplex algorithm

There are two cases. If the optimum value of z1 + · · · + zm is zero, then all zi ’s

obtained by simplex are zero, and hence from the optimum vertex of the new LP

we get a starting feasible vertex of the original LP, just by ignoring the zi ’s. We can

at last start simplex!

But what if the optimum objective turns out to be positive? Let us think. We tried

to minimize the sum of the zi ’s, but simplex decided that it cannot be zero. But this

means that the original linear program is infeasible: it needs some nonzero zi ’s to

become feasible. This is how simplex discovers and reports that an LP is infeasible.

Degeneracy:

In the polyhedron of Figure 7.12 vertex B is degenerate. Geometrically, this means

that it is the intersection of more than n = 3 faces of the polyhedron (in this case,
2©, 3©, 4©, 5©). Algebraically, it means that if we choose any one of four sets of

three inequalities ({ 2©, 3©, 4©}, { 2©, 3©, 5©}, { 2©, 4©, 5©}, and { 3©, 4©, 5©}) and solve

the corresponding system of three linear equations in three unknowns, we’ll get

the same solution in all four cases: (0, 300, 100). This is a serious problem: simplex

may return a suboptimal degenerate vertex simply because all its neighbors are

identical to it and thus have no better objective. And if we modify simplex so that it

detects degeneracy and continues to hop from vertex to vertex despite lack of any

improvement in the cost, it may end up looping forever.

One way to fix this is by a perturbation: change each bi by a tiny random amount

to bi ± εi . This doesn’t change the essence of the LP since the εi ’s are tiny, but it

has the effect of differentiating between the solutions of the linear systems. To see

why geometrically, imagine that the four planes 2©, 3©, 4©, 5© were jolted a little.

Wouldn’t vertex B split into two vertices, very close to one another?

Unboundedness:

In some cases an LP is unbounded, in that its objective function can be made ar-

bitrarily large (or small, if it’s a minimization problem). If this is the case, simplex

will discover it: in exploring the neighborhood of a vertex, it will notice that taking

out an inequality and adding another leads to an underdetermined system of equa-

tions that has an infinity of solutions. And in fact (this is an easy test) the space of

solutions contains a whole line across which the objective can become larger and

larger, all the way to ∞. In this case simplex halts and complains.

7.6.4 The running time of simplex

What is the running time of simplex, for a generic linear program

max cTx such that Ax ≤ 0 and x ≥ 0,

where there are n variables and A contains m inequality constraints? Since it is an

iterative algorithm that proceeds from vertex to vertex, let’s start by computing the

time taken for a single iteration. Suppose the current vertex is u. By definition, it

is the unique point at which n inequality constraints are satisfied with equality.

Each of its neighbors shares n − 1 of these inequalities, so u can have at most n · m
neighbors: choose which inequality to drop and which new one to add.

A naive way to perform an iteration would be to check each potential neighbor

to see whether it really is a vertex of the polyhedron and to determine its cost.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 219

Gaussian elimination

Under our algebraic definition, merely writing down the coordinates of a vertex involves
solving a system of linear equations. How is this done?

We are given a system of n linear equations in n unknowns, say n = 4 and

x1 − 2x3 = 2

x2 + x3 = 3

x1 + x2 − x4 = 4

x2 + 3x3 + x4 = 5

The high school method for solving such systems is to repeatedly apply the following rule:
if we add a multiple of one equation to another equation, the overall system of equations remains
equivalent. For example, adding −1 times the first equation to the third one, we get the
equivalent system

x1 − 2x3 = 2

x2 + x3 = 3

x2 + 2x3 − x4 = 2

x2 + 3x3 + x4 = 5

This transformation is clever in the following sense: it eliminates the variable x1 from the
third equation, leaving just one equation with x1. In other words, ignoring the first equation,
we have a system of three equations in three unknowns: we decreased n by 1! We can
solve this smaller system to get x2, x3, x4, and then plug these into the first equation to get x1.

This suggests an algorithm—once more due to Gauss.

proceduregauss
Input: A system E = {e1,...,en} of equations in n unknowns X = {x1,...,xn}:
 e1 : a11x1 + a12x2 + ...+ a1nxn = b1;...; en : an1x1 + an2x2 +...+ annxn = bn
Output: A solution of the system, if one exists

If all coefficients ai1 are zero:
 halt with message "either infeasible or not linearly independent"

if n = 1: return b1/a11

choose the coefficient ap1 of largest magnitude, and swap equations e1, ep
for i = 2 to n:
 ei = ei − (ai1/a11).ei
(x2,...,xn) = gauss(E − {e1}, X − {x1})
x1 = (b1 − Σj>1 a1jxj)/a11
return (x1,...,xn)

X) (E,

(When choosing the equation to swap into first place, we pick the one with largest |a p1|
for reasons of numerical accuracy; after all, we will be dividing by a p1.)

Gaussian elimination uses O(n2) arithmetic operations to reduce the problem size from n to
n−1, and thus uses O(n3) operations overall. To show that this is also a good estimate of
the total running time, we need to argue that the numbers involved remain polynomially
bounded—for instance, that the solution (x1, . . . , xn) does not require too much more
precision to write down than the original coefficients ai j and bi . Do you see why this is true?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

220 7.6 The simplex algorithm

Finding the cost is quick, just a dot product, but checking whether it is a true vertex

involves solving a system of n equations in n unknowns (that is, satisfying the n
chosen inequalities exactly) and checking whether the result is feasible. By Gaussian

elimination (see the following box) this takes O(n3) time, giving an unappetizing

running time of O(mn4) per iteration.

Fortunately, there is a much better way, and this mn4 factor can be improved to mn,

making simplex a practical algorithm. Recall our earlier discussion (Section 7.6.2)

about the local view from vertex u. It turns out that the per-iteration overhead of

rewriting the LP in terms of the current local coordinates is just O((m+ n)n); this

exploits the fact that the local view changes only slightly between iterations, in just

one of its defining inequalities.

Next, to select the best neighbor, we recall that the (local view of) the objective

function is of the form “max cu + c̃ · y” where cu is the value of the objective

function at u. This immediately identifies a promising direction to move: we pick

any c̃i > 0 (if there is none, then the current vertex is optimal and simplex halts).

Since the rest of the LP has now been rewritten in terms of the y-coordinates, it is

easy to determine how much yi can be increased before some other inequality is

violated. (And if we can increase yi indefinitely, we know the LP is unbounded.)

It follows that the running time per iteration of simplex is just O(mn). But how

many iterations could there be? Naturally, there can’t be more than
(
m+n

n

)
, which

is an upper bound on the number of vertices. But this upper bound is exponential

in n. And in fact, there are examples of LPs for which simplex does indeed take

an exponential number of iterations. In other words, simplex is an exponential-time
algorithm. However, such exponential examples do not occur in practice, and it is

this fact that makes simplex so valuable and so widely used.

Linear programming in polynomial time

Simplex is not a polynomial time algorithm. Certain rare kinds of linear programs cause it
to go from one corner of the feasible region to a better corner and then to a still better one,
and so on for an exponential number of steps. For a long time, linear programming was
considered a paradox, a problem that can be solved in practice, but not in theory!

Then, in 1979, a young Soviet mathematician called Leonid Khachiyan came up with the
ellipsoid algorithm, one that is very different from simplex, extremely simple in its conception
(but sophisticated in its proof) and yet one that solves any linear program in polynomial time.
Instead of chasing the solution from one corner of the polyhedron to the next, Khachiyan’s
algorithm confines it to smaller and smaller ellipsoids (skewed high-dimensional balls).
When this algorithm was announced, it became a kind of “mathematical Sputnik,” a splashy
achievement that had the U.S. establishment worried, in the height of the Cold War, about
the possible scientific superiority of the Soviet Union. The ellipsoid algorithm turned out
to be an important theoretical advance, but did not compete well with simplex in practice.
The paradox of linear programming deepened: A problem with two algorithms, one that is
efficient in theory, and one that is efficient in practice!

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 221

Linear programming in polynomial time (Continued)

A few years later Narendra Karmarkar, a graduate student at UC Berkeley, came up with a
completely different idea, which led to another provably polynomial algorithm for linear
programming. Karmarkar’s algorithm is known as the interior point method, because it does
just that: it dashes to the optimum corner not by hopping from corner to corner on the
surface of the polyhedron like simplex does, but by cutting a clever path in the interior of
the polyhedron. And it does perform well in practice.

But perhaps the greatest advance in linear programming algorithms was not Khachiyan’s
theoretical breakthrough or Karmarkar’s novel approach, but an unexpected consequence
of the latter: the fierce competition between the two approaches, simplex and interior point,
resulted in the development of very fast code for linear programming.

7.7 Postscript: circuit evaluation
The importance of linear programming stems from the astounding variety of prob-

lems that reduce to it and thereby bear witness to its expressive power. In a sense,

this next one is the ultimate application.

We are given a Boolean circuit, that is, a dag of gates of the following types.

� Input gates have indegree zero, with value true or false.
� AND gates and OR gates have indegree 2.
� NOT gates have indegree 1.

In addition, one of the gates is designated as the output. Here’s an example.

true

AND

NOT

AND

OR

OR NOT

output

false true

The CIRCUIT VALUE problem is the following: when the laws of Boolean logic are

applied to the gates in topological order, does the output evaluate to true?

There is a simple, automatic way of translating this problem into a linear program.

Create a variable xg for each gate g, with constraints 0 ≤ xg ≤ 1. Add additional

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

222 Exercises

constraints for each type of gate:

gate g

g g

xg = 1 − xh

AND NOTOR

xg ≤ xh

xg ≤ xh

xg ≥ xh

xg ≥ xh

xg ≤ xh + xh

h hh h h

xg ≥ xh + xh − 1

falsetrue

g

xg = 1 xg = 0

g

These constraints force all the gates to take on exactly the right values—0 for false,

and 1 for true. We don’t need to maximize or minimize anything, and we can read

the answer off from the variable xo corresponding to the output gate.

This is a straightforward reduction to linear programming, from a problem that may

not seem very interesting at first. However, the CIRCUIT VALUE problem is in a sense

the most general problem solvable in polynomial time! After all, any algorithm will

eventually run on a computer, and the computer is ultimately a Boolean combina-

tional circuit implemented on a chip. If the algorithm runs in polynomial time, it can

be rendered as a Boolean circuit consisting of polynomially many copies of the com-

puter’s circuit, one per unit of time, with the values of the gates in one layer used to

compute the values for the next. Hence, the fact that CIRCUIT VALUE reduces to linear

programming means that all problems that can be solved in polynomial time do!

In our next topic, NP-completeness, we shall see that many hard problems reduce,

much the same way, to integer programming, linear programming’s difficult twin.

Another parting thought: by what other means can the circuit evaluation problem

be solved? Let’s think—a circuit is a dag. And what algorithmic technique is most

appropriate for solving problems on dags? That’s right: dynamic programming! To-

gether with linear programming, the world’s two most general algorithmic

techniques.

Exercises

7.1. Consider the following linear program.

maximize 5x + 3y

5x − 2y ≥ 0

x + y ≤ 7

x ≤ 5

x ≥ 0

y ≥ 0

Plot the feasible region and identify the optimal solution.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 223

7.2. Duckwheat is produced in Kansas and Mexico and consumed in New York and

California. Kansas produces 15 shnupells of duckwheat and Mexico 8.

Meanwhile, New York consumes 10 shnupells and California 13. The

transportation costs per shnupell are $4 from Mexico to New York, $1 from

Mexico to California, $2 from Kansas to New York, and $3 from Kansas to

California.

Write a linear program that decides the amounts of duckwheat (in shnupells and

fractions of a shnupell) to be transported from each producer to each consumer,

so as to minimize the overall transportation cost.

7.3. A cargo plane can carry a maximum weight of 100 tons and a maximum volume

of 60 cubic meters. There are three materials to be transported, and the cargo

company may choose to carry any amount of each, up to the maximum

available limits given below.

� Material 1 has density 2 tons/cubic meter, maximum available amount 40

cubic meters, and revenue $1,000 per cubic meter.
� Material 2 has density 1 ton/cubic meter, maximum available amount 30

cubic meters, and revenue $1,200 per cubic meter.
� Material 3 has density 3 tons/cubic meter, maximum available amount 20

cubic meters, and revenue $12,000 per cubic meter.

Write a linear program that optimizes revenue within the constraints.

7.4. Moe is deciding how much Regular Duff beer and how much Duff Strong beer to

order each week. Regular Duff costs Moe $1 per pint and he sells it at $2 per

pint; Duff Strong costs Moe $1.50 per pint and he sells it at $3 per pint. However,

as part of a complicated marketing scam, the Duff company will only sell a pint

of Duff Strong for each two pints or more of Regular Duff that Moe buys.

Furthermore, due to past events that are better left untold, Duff will not sell Moe

more than 3,000 pints per week. Moe knows that he can sell however much beer

he has. Formulate a linear program for deciding how much Regular Duff and

how much Duff Strong to buy, so as to maximize Moe’s profit. Solve the

program geometrically.

7.5. The Canine Products company offers two dog foods, Frisky Pup and Husky

Hound, that are made from a blend of cereal and meat. A package of Frisky Pup

requires 1 pound of cereal and 1.5 pounds of meat, and sells for $7. A package

of Husky Hound uses 2 pounds of cereal and 1 pound of meat, and sells for $6.

Raw cereal costs $1 per pound and raw meat costs $2 per pound. It also costs

$1.40 to package the Frisky Pup and $0.60 to package the Husky Hound. A total

of 240,000 pounds of cereal and 180,000 pounds of meat are available each

month. The only production bottleneck is that the factory can only package

110,000 bags of Frisky Pup per month. Needless to say, management would like

to maximize profit.

(a) Formulate the problem as a linear program in two variables.

(b) Graph the feasible region, give the coordinates of every vertex, and circle

the vertex maximizing profit. What is the maximum profit possible?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

224 Exercises

7.6. Give an example of a linear program in two variables whose feasible region is

infinite, but such that there is an optimum solution of bounded cost.

7.7. Find necessary and sufficient conditions on the reals a and b under which the

linear program

max x + y

ax + by ≤ 1

x, y ≥ 0

(a) Is infeasible.

(b) Is unbounded.

(c) Has a finite and unique optimal solution.

7.8. You are given the following points in the plane:

(1, 3), (2, 5), (3, 7), (5, 11), (7, 14), (8, 15), (10, 19).

You want to find a line ax + by = c that approximately passes through these

points (no line is a perfect fit). Write a linear program (you don’t need to solve

it) to find the line that minimizes the maximum absolute error,

max
1≤i≤7

|axi + byi − c|.

7.9. A quadratic programming problem seeks to maximize a quadratic objective

function (with terms like 3x2
1 or 5x1x2) subject to a set of linear constraints. Give

an example of a quadratic program in two variables x1, x2 such that the feasible

region is nonempty and bounded, and yet none of the vertices of this region

optimize the (quadratic) objective.

7.10. For the following network, with edge capacities as shown, find the maximum

flow from S to T , along with a matching cut.

A

B

C

G

T

D

E

F

4

1

6

10
2

20

2

5

1
10

5

4

12

6

2

S

7.11. Write the dual to the following linear program.
max x + y

2x + y ≤ 3

x + 3y ≤ 5

x, y ≥ 0

Find the optimal solutions to both primal and dual LPs.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 225

7.12. For the linear program max x1 − 2x3

x1 − x2 ≤ 1

2x2 − x3 ≤ 1

x1, x2, x3 ≥ 0

prove that the solution (x1, x2, x3) = (3/2, 1/2, 0) is optimal.

7.13. Matching pennies. In this simple two-player game, the players (call them R and

C) each choose an outcome, heads or tails. If both outcomes are equal, C gives a

dollar to R; if the outcomes are different, R gives a dollar to C .

(a) Represent the payoffs by a 2 × 2 matrix.

(b) What is the value of this game, and what are the optimal strategies for

the two players?

7.14. The pizza business in Little Town is split between two rivals, Tony and Joey.

They are each investigating strategies to steal business away from the other. Joey

is considering either lowering prices or cutting bigger slices. Tony is looking into

starting up a line of gourmet pizzas, or offering outdoor seating, or giving free

sodas at lunchtime. The effects of these various strategies are summarized in the

following payoff matrix (entries are dozens of pizzas, Joey’s gain and Tony’s

loss).

TONY

Gourmet Seating Free soda

JOEY Lower price +2 0 −3

Bigger slices −1 −2 +1

For instance, if Joey reduces prices and Tony goes with the gourmet option, then

Tony will lose 2 dozen pizzas worth of business to Joey.

What is the value of this game, and what are the optimal strategies for Tony and

Joey?

7.15. Find the value of the game specified by the following payoff matrix.

0 0 −1 −1

0 1 −2 −1

−1 −1 1 1

−1 0 0 1

1 −2 0 −3

0 −3 2 −1

0 −2 1 −1

(Hint: Consider the mixed strategies (1/3, 0, 0, 1/2, 1/6, 0, 0) and

(2/3, 0, 0, 1/3).)

7.16. A salad is any combination of the following ingredients: (1) tomato, (2) lettuce,

(3) spinach, (4) carrot, and (5) oil. Each salad must contain: (A) at least 15

grams of protein, (B) at least 2 and at most 6 grams of fat, (C) at least 4 grams of

carbohydrates, (D) at most 100 milligrams of sodium. Furthermore, (E) you do

not want your salad to be more than 50% greens by mass. The nutritional

contents of these ingredients (per 100 grams) are

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

226 Exercises

energy protein fat carbohydrate sodium

ingredient (kcal) (grams) (grams) (grams) (milligrams)

tomato 21 0.85 0.33 4.64 9.00

lettuce 16 1.62 0.20 2.37 8.00

spinach 371 12.78 1.58 74.69 7.00

carrot 346 8.39 1.39 80.70 508.20

oil 884 0.00 100.00 0.00 0.00

Find a linear programming applet on the Web and use it to make the salad with

the fewest calories under the nutritional constraints. Describe your linear

programming formulation and the optimal solution (the quantity of each

ingredient and the value). Cite the Web resources that you used.

7.17. Consider the following network (the numbers are edge capacities).

A

B

C

D

TS

7

6

3

4

2

2

5

9

(a) Find the maximum flow f and a minimum cut.

(b) Draw the residual graph Gf (along with its edge capacities). In this

residual network, mark the vertices reachable from S and the vertices

from which T is reachable.

(c) An edge of a network is called a bottleneck edge if increasing its capacity

results in an increase in the maximum flow. List all bottleneck edges in

the above network.

(d) Give a very simple example (containing at most four nodes) of a network

which has no bottleneck edges.

(e) Give an efficient algorithm to identify all bottleneck edges in a network.

(Hint: Start by running the usual network flow algorithm, and then

examine the residual graph.)

7.18. There are many common variations of the maximum flow problem. Here are

four of them.

(a) There are many sources and many sinks, and we wish to maximize the

total flow from all sources to all sinks.

(b) Each vertex also has a capacity on the maximum flow that can enter it.

(c) Each edge has not only a capacity, but also a lower bound on the flow it

must carry.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 227

(d) The outgoing flow from each node u is not the same as the incoming

flow, but is smaller by a factor of (1 − εu), where εu is a loss coefficient

associated with node u.

Each of these can be solved efficiently. Show this by reducing (a) and (b) to the

original max-flow problem, and reducing (c) and (d) to linear programming.

7.19. Suppose someone presents you with a solution to a max-flow problem on some

network. Give a linear time algorithm to determine whether the solution does

indeed give a maximum flow.

7.20. Consider the following generalization of the maximum flow problem.

You are given a directed network G = (V, E) with edge capacities {ce}. Instead of

a single (s, t) pair, you are given multiple pairs (s1, t1), (s2, t2), . . . , (sk, tk), where

the si are sources of G and the ti are sinks of G . You are also given k demands

d1, . . . , dk. The goal is to find k flows f (1), . . . , f (k) with the following properties:

� f (i) is a valid flow from si to ti .
� For each edge e, the total flow f (1)

e + f (2)
e + · · · + f (k)

e does not exceed the

capacity ce.
� The size of each flow f (i) is at least the demand di .
� The size of the total flow (the sum of the flows) is as large as possible.

How would you solve this problem?

7.21. An edge of a flow network is called critical if decreasing the capacity of this edge

results in a decrease in the maximum flow. Give an efficient algorithm that finds

a critical edge in a network.

7.22. In a particular network G = (V, E) whose edges have integer capacities ce, we

have already found the maximum flow f from node s to node t. However, we

now find out that one of the capacity values we used was wrong: for edge (u, v)

we used cuv whereas it should have been cuv − 1. This is unfortunate because

the flow f uses that particular edge at full capacity: fuv = cuv.

We could redo the flow computation from scratch, but there’s a faster way. Show

how a new optimal flow can be computed in O(|V | + |E |) time.

7.23. A vertex cover of an undirected graph G = (V, E) is a subset of the vertices

which touches every edge—that is, a subset S ⊂ V such that for each edge

{u, v} ∈ E , one or both of u, v are in S.

Show that the problem of finding the minimum vertex cover in a bipartite graph

reduces to maximum flow. (Hint: Can you relate this problem to the minimum

cut in an appropriate network?)

7.24. Direct bipartite matching. We’ve seen how to find a maximum matching in a

bipartite graph via reduction to the maximum flow problem. We now develop a

direct algorithm.

Let G = (V1 ∪ V2, E) be a bipartite graph (so each edge has one endpoint in V1

and one endpoint in V2), and let M ∈ E be a matching in the graph (that is, a set

of edges that don’t touch). A vertex is said to be covered by M if it is the

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

228 Exercises

endpoint of one of the edges in M. An alternating path is a path of odd length

that starts and ends with a non-covered vertex, and whose edges alternate

between M and E − M.

(a) In the bipartite graph below, a matching M is shown in bold. Find an

alternating path.

A

B

C

D

E

F

G

H

I

(b) Prove that a matching M is maximum if and only if there does not exist

an alternating path with respect to it.

(c) Design an algorithm that finds an alternating path in O(|V | + |E |) time

using a variant of breadth-first search.

(d) Give a direct O(|V | · |E |) algorithm for finding a maximum matching in a

bipartite graph.

7.25. The dual of maximum flow. Consider the following network with edge capacities.

S

B

T

A
1

3

2

1

1

(a) Write the problem of finding the maximum flow from S to T as a linear

program.

(b) Write down the dual of this linear program. There should be a dual

variable for each edge of the network and for each vertex other than S, T .

Now we’ll solve the same problem in full generality. Recall the linear program

for a general maximum flow problem (Section 7.2).

(c) Write down the dual of this general flow LP, using a variable ye for each

edge and xu for each vertex u �= s, t.

(d) Show that any solution to the general dual LP must satisfy the following

property: for any directed path from s to t in the network, the sum of the

yc values along the path must be at least 1.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 229

(e) What are the intuitive meanings of the dual variables? Show that any

s − t cut in the network can be translated into a dual feasible solution

whose cost is exactly the capacity of that cut.

7.26. In a satisfiable system of linear inequalities

a11x1 + · · · + a1nxn ≤ b1

...

am1x1 + · · · + amnxn ≤ bm

we describe the j th inequality as forced-equal if it is satisfied with equality by

every solution x = (x1, . . . , xn) of the system. Equivalently,
∑

i aj i xi ≤ bj is not

forced-equal if there exists an x that satisfies the whole system and such that∑
i aj i xi < bj .

For example, in

x1 + x2 ≤ 2

−x1 − x2 ≤ −2

x1 ≤ 1

−x2 ≤ 0

the first two inequalities are forced-equal, while the third and fourth are not. A

solution x to the system is called characteristic if, for every inequality I that is

not forced-equal, x satisfies I without equality. In the instance above, such a

solution is (x1, x2) = (−1, 3), for which x1 < 1 and −x2 < 0 while x1 + x2 = 2

and −x1 − x2 = −2.

(a) Show that any satisfiable system has a characteristic solution.

(b) Given a satisfiable system of linear inequalities, show how to use linear

programming to determine which inequalities are forced-equal, and to

find a characteristic solution.

7.27. Show that the change-making problem (Exercise 6.17) can be formulated as an

integer linear program. Can we solve this program as an LP, in the certainty that

the solution will turn out to be integral (as in the case of bipartite matching)?

Either prove it or give a counterexample.

7.28. A linear program for shortest path. Suppose we want to compute the shortest

path from node s to node t in a directed graph with edge lengths le > 0.

(a) Show that this is equivalent to finding an s − t flow f that minimizes∑
e le fe subject to size(f) = 1. There are no capacity constraints.

(b) Write the shortest path problem as a linear program.

(c) Show that the dual LP can be written as

max xs − xt

xu − xv ≤ luv for all (u, v) ∈ E

(d) An interpretation for the dual is given in the box on page 209. Why isn’t

our dual LP identical to the one on that page?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

230 Exercises

7.29. Hollywood. A film producer is seeking actors and investors for his new movie.

There are n available actors; actor i charges si dollars. For funding, there are m

available investors. Investor j will provide pj dollars, but only on the condition

that certain actors Lj ⊆ {1, 2, . . . , n} are included in the cast (all of these actors

Lj must be chosen in order to receive funding from investor j).

The producer’s profit is the sum of the payments from investors minus the

payments to actors. The goal is to maximize this profit.

(a) Express this problem as an integer linear program in which the variables

take on values {0, 1}.
(b) Now relax this to a linear program, and show that there must in fact be

an integral optimal solution (as is the case, for example, with maximum

flow and bipartite matching).

7.30. Hall’s theorem. Returning to the matchmaking scenario of Section 7.3, suppose

we have a bipartite graph with boys on the left and an equal number of girls on

the right. Hall’s theorem says that there is a perfect matching if and only if the

following condition holds: any subset S of boys is connected to at least |S| girls.

Prove this theorem. (Hint: The max-flow min-cut theorem should be helpful.)

7.31. Consider the following simple network with edge capacities as shown.

S

B

T

A

1

1000

1000 1000

1000

(a) Show that, if the Ford-Fulkerson algorithm is run on this graph, a

careless choice of updates might cause it to take 1000 iterations. Imagine

if the capacities were a million instead of 1000!

We will now find a strategy for choosing paths under which the algorithm is

guaranteed to terminate in a reasonable number of iterations.

Consider an arbitrary directed network (G = (V, E), s, t, {ce}) in which we want

to find the maximum flow. Assume for simplicity that all edge capacities are at

least 1, and define the capacity of an s − t path to be the smallest capacity of its

constituent edges. The fattest path from s to t is the path with the most capacity.

(b) Show that the fattest s − t path in a graph can be computed by a variant

of Dijkstra’s algorithm.

(c) Show that the maximum flow in G is the sum of individual flows along

at most |E | paths from s to t.

(d) Now show that if we always increase flow along the fattest path in the

residual graph, then the Ford-Fulkerson algorithm will terminate in at

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch07 GTBL020-Dasgupta-v10 August 11, 2006 18:9

Chapter 7 Algorithms 231

most O(|E | log F) iterations, where F is the size of the maximum flow.

(Hint: It might help to recall the proof for the greedy set cover algorithm

in Section 5.4.)

In fact, an even simpler rule—finding a path in the residual graph using

breadth-first search—guarantees that at most O(|V | · |E |) iterations will be

needed.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8

NP-complete problems

8.1 Search problems
Over the past seven chapters we have developed algorithms for finding shortest

paths and minimum spanning trees in graphs, matchings in bipartite graphs, max-

imum increasing subsequences, maximum flows in networks, and so on. All these

algorithms are efficient, because in each case their time requirement grows as a

polynomial function (such as n, n2, or n3) of the size of the input.

To better appreciate such efficient algorithms, consider the alternative: In all these

problems we are searching for a solution (path, tree, matching, etc.) from among an

exponential population of possibilities. Indeed, n boys can be matched with n girls

in n! different ways, a graph with n vertices has nn−2 spanning trees, and a typical

graph has an exponential number of paths from s to t. All these problems could in

principle be solved in exponential time by checking through all candidate solutions,

one by one. But an algorithm whose running time is 2n, or worse, is all but useless

in practice (see the next box). The quest for efficient algorithms is about finding

clever ways to bypass this process of exhaustive search, using clues from the input

in order to dramatically narrow down the search space.

So far in this book we have seen the most brilliant successes of this quest, algorith-

mic techniques that defeat the specter of exponentiality: greedy algorithms, dynamic

programming, linear programming (while divide-and-conquer typically yields faster

algorithms for problems we can already solve in polynomial time). Now the time

has come to meet the quest’s most embarrassing and persistent failures. We shall

see some other “search problems,” in which again we are seeking a solution with

particular properties among an exponential chaos of alternatives. But for these new

problems no shortcut seems possible. The fastest algorithms we know for them

are all exponential—not substantially better than an exhaustive search. We now

introduce some important examples.

Satisfiability

SATISFIABILITY, or SAT (recall Exercise 3.28 and Section 5.3), is a problem of great prac-

tical importance, with applications ranging from chip testing and computer design

232

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 233

The story of Sissa and Moore

According to the legend, the game of chess was invented by the Brahmin Sissa to amuse
and teach his king. Asked by the grateful monarch what he wanted in return, the wise
man requested that the king place one grain of rice in the first square of the chessboard,
two in the second, four in the third, and so on, doubling the amount of rice up to the
64th square. The king agreed on the spot, and as a result he was the first person to learn
the valuable—albeit humbling—lesson of exponential growth. Sissa’s request amounted to
264 − 1 = 18,446,744,073,709,551,615 grains of rice, enough rice to pave all of India
several times over!

All over nature, from colonies of bacteria to cells in a fetus, we see systems that grow
exponentially—for a while. In 1798, the British philosopher T. Robert Malthus published
an essay in which he predicted that the exponential growth (he called it “geometric growth”)
of the human population would soon deplete linearly growing resources, an argument that
influenced Charles Darwin deeply. Malthus knew the fundamental fact that an exponential
sooner or later takes over any polynomial.

In 1965, computer chip pioneer Gordon E. Moore noticed that transistor density in chips
had doubled every year in the early 1960s, and he predicted that this trend would continue.
This prediction, moderated to a doubling every 18 months and extended to computer
speed, is known as Moore’s law. It has held remarkably well for 40 years. And these are the
two root causes of the explosion of information technology in the past decades: Moore’s law
and efficient algorithms.

It would appear that Moore’s law provides a disincentive for developing polynomial
algorithms. After all, if an algorithm is exponential, why not wait it out until Moore’s law
makes it feasible? But in reality the exact opposite happens: Moore’s law is a huge incentive
for developing efficient algorithms, because such algorithms are needed in order to take
advantage of the exponential increase in computer speed.

Here is why. If, for example, an O(2n) algorithm for Boolean satisfiability (SAT) were given
an hour to run, it would have solved instances with 25 variables back in 1975, 31 variables
on the faster computers available in 1985, 38 variables in 1995, and about 45 variables with
today’s machines. Quite a bit of progress—except that each extra variable requires a year
and a half’s wait, while the appetite of applications (many of which are, ironically, related to
computer design) grows much faster. In contrast, the size of the instances solved by an O(n)
or O(n log n) algorithm would be multiplied by a factor of about 100 each decade. In the
case of an O(n2) algorithm, the instance size solvable in a fixed time would be multiplied by
about 10 each decade. Even an O(n6) algorithm, polynomial yet unappetizing, would more
than double the size of the instances solved each decade. When it comes to the growth of the
size of problems we can attack with an algorithm, we have a reversal: exponential algorithms
make polynomially slow progress, while polynomial algorithms advance exponentially fast!
For Moore’s law to be reflected in the world we need efficient algorithms.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

234 8.1 Search problems

The story of Sissa and Moore (Continued)

As Sissa and Malthus knew very well, exponential expansion cannot be sustained indefinitely
in our finite world. Bacterial colonies run out of food; chips hit the atomic scale. Moore’s law
will stop doubling the speed of our computers within a decade or two. And then progress
will depend on algorithmic ingenuity—or otherwise perhaps on novel ideas such as quantum
computation, explored in Chapter 10.

to image analysis and software engineering. It is also a canonical hard problem.

Here’s what an instance of SAT looks like:

(x ∨ y ∨ z) (x ∨ y) (y ∨ z) (z ∨ x) (x ∨ y ∨ z).

This is a Boolean formula in conjunctive normal form (CNF). It is a collection of

clauses (the parentheses), each consisting of the disjunction (logical or, denoted

∨) of several literals, where a literal is either a Boolean variable (such as x) or

the negation of one (such as x). A satisfying truth assignment is an assignment of

false or true to each variable so that every clause contains a literal whose value

is true. The SAT problem is the following: given a Boolean formula in conjunctive

normal form, either find a satisfying truth assignment or else report that none exists.

In the instance shown previously, setting all variables to true, for example, satisfies

every clause except the last. Is there a truth assignment that satisfies all clauses?

With a little thought, it is not hard to argue that in this particular case no such truth

assignment exists. (Hint: The three middle clauses constrain all three variables to

have the same value.) But how do we decide this in general? Of course, we can

always search through all truth assignments, one by one, but for formulas with

n variables, the number of possible assignments is exponential, 2n.

SAT is a typical search problem. We are given an instance I (that is, some input

data specifying the problem at hand, in this case a Boolean formula in conjunctive

normal form), and we are asked to find a solution S (an object that meets a partic-

ular specification, in this case an assignment that satisfies each clause). If no such

solution exists, we must say so.

More specifically, a search problem must have the property that any proposed solu-

tion S to an instance I can be quickly checked for correctness. What does this entail?

For one thing, S must at least be concise (quick to read), with length polynomially

bounded by that of I . This is clearly true in the case of SAT, for which S is an as-

signment to the variables. To formalize the notion of quick checking, we will say

that there is a polynomial-time algorithm that takes as input I and S and decides

whether or not S is a solution of I . For SAT, this is easy as it just involves checking

whether the assignment specified by S indeed satisfies every clause in I .

Later in this chapter it will be useful to shift our vantage point and to think of this

efficient algorithm for checking proposed solutions as defining the search problem.

Thus:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 235

A search problem is specified by an algorithm C that takes two inputs, an
instance I and a proposed solution S, and runs in time polynomial in |I |. We
say S is a solution to I if and only if C(I , S) = true.

Given the importance of the SAT search problem, researchers over the past 50 years

have tried hard to find efficient ways to solve it, but without success. The fastest

algorithms we have are still exponential on their worst-case inputs.

Yet, interestingly, there are two natural variants of SAT for which we do have good

algorithms. If all clauses contain at most one positive literal, then the Boolean

formula is called a Horn formula, and a satisfying truth assignment, if one exists,

can be found by the greedy algorithm of Section 5.3. Alternatively, if all clauses

have only two literals, then graph theory comes into play, and SAT can be solved

in linear time by finding the strongly connected components of a particular graph

constructed from the instance (recall Exercise 3.28). In fact, in Chapter 9 we’ll

see a different polynomial algorithm for this same special case, which is called

2SAT.

On the other hand, if we are just a little more permissive and allow clauses to contain

three literals, then the resulting problem, known as 3SAT (an example of which we

saw earlier), once again becomes hard to solve!

The traveling salesman problem

In the traveling salesman problem (TSP) we are given n vertices 1, . . . , n and all

n(n − 1)/2 distances between them, as well as a budget b. We are asked to find a

tour, a cycle that passes through every vertex exactly once, of total cost b or less—or

to report that no such tour exists. That is, we seek a permutation τ (1), . . . , τ (n) of

the vertices such that when they are toured in this order, the total distance covered

is at most b:

dτ (1),τ (2) + dτ (2),τ (3) + · · · + dτ (n),τ (1) ≤ b.

See Figure 8.1 for an example (only some of the distances are shown; assume the

rest are very large).

Notice how we have defined the TSP as a search problem: given an instance, find

a tour within the budget (or report that none exists). But why are we expressing

the traveling salesman problem in this way, when in reality it is an optimization
problem, in which the shortest possible tour is sought? Why dress it up as something

else?

For a good reason. Our plan in this chapter is to compare and relate problems. The

framework of search problems is helpful in this regard, because it encompasses

optimization problems like the TSP in addition to true search problems like SAT.

Turning an optimization problem into a search problem does not change its difficulty

at all, because the two versions reduce to one another. Any algorithm that solves

the optimization TSP also readily solves the search problem: find the optimum tour

and if it is within budget, return it; if not, there is no solution.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

236 8.1 Search problems

Figure 8.1 The optimal traveling salesman tour, shown in bold, has length 18.

4

5

6

3

3 3

2
4

1

2 3

Conversely, an algorithm for the search problem can also be used to solve the

optimization problem. To see why, first suppose that we somehow knew the cost
of the optimum tour; then we could find this tour by calling the algorithm for the

search problem, using the optimum cost as the budget. Fine, but how do we find

the optimum cost? Easy: By binary search! (See Exercise 8.1.)

Incidentally, there is a subtlety here: Why do we have to introduce a budget? Isn’t

any optimization problem also a search problem in the sense that we are searching

for a solution that has the property of being optimal? The catch is that the solution

to a search problem should be easy to recognize, or as we put it earlier, polynomial-

time checkable. Given a potential solution to the TSP, it is easy to check the properties

“is a tour” (just check that each vertex is visited exactly once) and “has total length

≤ b.” But how could one check the property “is optimal”?

As with SAT, there are no known polynomial-time algorithms for the TSP, despite

much effort by researchers over nearly a century. Of course, there is an exponential

algorithm for solving it, by trying all (n − 1)! tours, and in Section 6.6 we saw a

faster, yet still exponential, dynamic programming algorithm.

The minimum spanning tree (MST) problem, for which we do have efficient algo-

rithms, provides a stark contrast here. To phrase it as a search problem, we are

again given a distance matrix and a bound b, and are asked to find a tree T with

total weight
∑

(i, j)∈T di j ≤ b. The TSP can be thought of as a tough cousin of the MST

problem, in which the tree is not allowed to branch and is therefore a path.1 This

extra restriction on the structure of the tree results in a much harder problem.

Euler and Rudrata

In the summer of 1735 Leonhard Euler (pronounced “Oiler”), the famous Swiss

mathematician, was walking the bridges of the East Prussian town of Königsberg.

1Actually the TSP demands a cycle, but one can define an alternative version that seeks a path, and it is

not hard to see that this is just as hard as the TSP itself.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 237

After a while, he noticed in frustration that, no matter where he started his walk,

no matter how cleverly he continued, it was impossible to cross each bridge exactly

once. And from this silly ambition, the field of graph theory was born.

Euler identified at once the roots of the park’s deficiency. First, you turn the map

of the park into a graph whose vertices are the four land masses (two islands, two

banks) and whose edges are the seven bridges:

Southern bank

Northern bank

Small
island

Big
island

This graph has multiple edges between two vertices—a feature we have not been

allowing so far in this book, but one that is meaningful for this particular problem,

since each bridge must be accounted for separately. We are looking for a path that

goes through each edge exactly once (the path is allowed to repeat vertices). In other

words, we are asking this question: When can a graph be drawn without lifting the
pencil from the paper?

The answer discovered by Euler is simple, elegant, and intuitive: If and only if
(a) the graph is connected and (b) every vertex, with the possible exception of two
vertices (the start and final vertices of the walk), has even degree (Exercise 3.26).

This is why Königsberg’s park was impossible to traverse: all four vertices have odd

degree.

To put it in terms of our present concerns, let us define a search problem called EULER

PATH: Given a graph, find a path that contains each edge exactly once. It follows

from Euler’s observation, and a little more thinking, that this search problem can

be solved in polynomial time.

Almost a millennium before Euler’s fateful summer in East Prussia, a Kashmiri

poet named Rudrata had asked this question: Can one visit all the squares of the

chessboard, without repeating any square, in one long walk that ends at the starting

square and at each step makes a legal knight move? This is again a graph problem:

the graph now has 64 vertices, and two squares are joined by an edge if a knight

can go from one to the other in a single move (that is, if their coordinates differ by 2

in one dimension and by 1 in the other). See Figure 8.2 for the portion of the graph

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

238 8.1 Search problems

Figure 8.2 Knight’s moves on a corner of a chessboard.

corresponding to the upper left corner of the board. Can you find a knight’s tour on

your chessboard?

This is a different kind of search problem in graphs: we want a cycle that goes

through all vertices (as opposed to all edges in Euler’s problem), without repeating

any vertex. And there is no reason to stick to chessboards; this question can be asked

of any graph. Let us define the RUDRATA CYCLE search problem to be the following:

given a graph, find a cycle that visits each vertex exactly once—or report that no

such cycle exists.2 This problem is ominously reminiscent of the TSP, and indeed no

polynomial algorithm is known for it.

There are two differences between the definitions of the Euler and Rudrata prob-

lems. The first is that Euler’s problem visits all edges while Rudrata’s visits all

vertices. But there is also the issue that one of them demands a path while the

other requires a cycle. Which of these differences accounts for the huge dispar-

ity in computational complexity between the two problems? It must be the first,

because the second difference can be shown to be purely cosmetic. Indeed, de-

fine the RUDRATA PATH problem to be just like RUDRATA CYCLE, except that the goal

is now to find a path that goes through each vertex exactly once. As we will

soon see, there is a precise equivalence between the two versions of the Rudrata

problem.

Cuts and bisections

A cut is a set of edges whose removal leaves a graph disconnected. It is often of

interest to find small cuts, and the MINIMUM CUT problem is, given a graph and a

2In the literature this problem is known as the Hamilton cycle problem, after the great Irish

mathematician who rediscovered it in the 19th century.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 239

Figure 8.3 What is the smallest cut in this graph?

budget b, to find a cut with at most b edges. For example, the smallest cut in

Figure 8.3 is of size 3. This problem can be solved in polynomial time by n − 1

max-flow computations: give each edge a capacity of 1, and find the maximum

flow between some fixed node and every single other node. The smallest such flow

will correspond (via the max-flow min-cut theorem) to the smallest cut. Can you

see why? We’ve also seen a very different, randomized algorithm for this problem

(page 140).

In many graphs, such as the one in Figure 8.3, the smallest cut leaves just a sin-

gleton vertex on one side—it consists of all edges adjacent to this vertex. Far more

interesting are small cuts that partition the vertices of the graph into nearly equal-

sized sets. More precisely, the BALANCED CUT problem is this: given a graph with

n vertices and a budget b, partition the vertices into two sets S and T such that

|S|, |T | ≥ n/3 and such that there are at most b edges between S and T . Another hard

problem.

Balanced cuts arise in a variety of important applications, such as clustering. Con-

sider for example the problem of segmenting an image into its constituent com-

ponents (say, an elephant standing in a grassy plain with a clear blue sky above).

A good way of doing this is to create a graph with a node for each pixel of the

image and to put an edge between nodes whose corresponding pixels are spatially

close together and are also similar in color. A single object in the image (like the

elephant, say) then corresponds to a set of highly connected vertices in the graph.

A balanced cut is therefore likely to divide the pixels into two clusters without

breaking apart any of the primary constituents of the image. The first cut might,

for instance, separate the elephant on the one hand from the sky and from grass

on the other. A further cut would then be needed to separate the sky from the

grass.

Integer linear programming

Even though the simplex algorithm is not polynomial time, we mentioned in Chap-

ter 7 that there is a different, polynomial algorithm for linear programming. There-

fore, linear programming is efficiently solvable both in practice and in theory. But the

situation changes completely if, in addition to specifying a linear objective function

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

240 8.1 Search problems

and linear inequalities, we also constrain the solution (the values for the variables)

to be integer. This latter problem is called INTEGER LINEAR PROGRAMMING (ILP). Let’s

see how we might formulate it as a search problem. We are given a set of linear

inequalities Ax ≤ b, where A is an m× n matrix and b is an m-vector; an objective

function specified by an n-vector c; and finally, a goal g (the counterpart of a budget

in maximization problems). We want to find a nonnegative integer n-vector x such

that Ax ≤ b and c · x ≥ g.

But there is a redundancy here: the last constraint c · x ≥ g is itself a linear in-

equality and can be absorbed into Ax ≤ b. So, we define ILP to be following search

problem: given A and b, find a nonnegative integer vector x satisfying the inequal-

ities Ax ≤ b, or report that none exists. Despite the many crucial applications of

this problem, and intense interest by researchers, no efficient algorithm is known

for it.

There is a particularly clean special case of ILP that is very hard in and of itself:

the goal is to find a vector x of 0’s and 1’s satisfying Ax = 1, where A is an m× n
matrix with 0 − 1 entries and 1 is the m-vector of all 1’s. It should be apparent from

the reductions in Section 7.1.4 that this is indeed a special case of ILP. We call it

ZERO-ONE EQUATIONS (ZOE).

We have now introduced a number of important search problems, some of which

are familiar from earlier chapters and for which there are efficient algorithms,

and others which are different in small but crucial ways that make them very

hard computational problems. To complete our story we will introduce a few

more hard problems, which will play a role later in the chapter, when we re-

late the computational difficulty of all these problems. The reader is invited to

skip ahead to Section 8.2 and then return to the definitions of these problems as

required.

Three-dimensional matching

Recall the BIPARTITE MATCHING problem: given a bipartite graph with n nodes on each

side (the boys and the girls), find a set of n disjoint edges, or decide that no such set

exists. In Section 7.3, we saw how to efficiently solve this problem by a reduction to

maximum flow. However, there is an interesting generalization, called 3D MATCHING,

for which no polynomial algorithm is known. In this new setting, there are n boys

and n girls, but also n pets, and the compatibilities among them are specified by a

set of triples, each containing a boy, a girl, and a pet. Intuitively, a triple (b, g, p)

means that boy b, girl g, and pet p get along well together. We want to find n disjoint

triples and thereby create n harmonious households.

Can you spot a solution in Figure 8.4?

Independent set, vertex cover, and clique

In the INDEPENDENT SET problem (recall Section 6.7) we are given a graph and an

integer g, and the aim is to find g vertices that are independent, that is, no two

of which have an edge between them. Can you find an independent set of three

vertices in Figure 8.5? How about four vertices? We saw in Section 6.7 that this

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 241

Figure 8.4 A more elaborate matchmaking scenario. Each triple is shown as a
triangular-shaped node joining boy, girl, and pet.

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

problem can be solved efficiently on trees, but for general graphs no polynomial

algorithm is known.

There are many other search problems about graphs. In VERTEX COVER, for exam-

ple, the input is a graph and a budget b, and the idea is to find b vertices that

cover (touch) every edge. Can you cover all edges of Figure 8.5 with seven ver-

tices? With six? (And do you see the intimate connection to the INDEPENDENT SET

problem?)

VERTEX COVER is a special case of SET COVER, which we encountered in Chapter 5. In

that problem, we are given a set E and several subsets of it, S1, . . . , Sm, along with

Figure 8.5 What is the size of the largest independent set in this graph?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

242 8.1 Search problems

a budget b. We are asked to select b of these subsets so that their union is E . VERTEX

COVER is the special case in which E consists of the edges of a graph, and there is a

subset Si for each vertex, containing the edges adjacent to that vertex. Can you see

why 3D MATCHING is also a special case of SET COVER?

And finally there is the CLIQUE problem: given a graph and a goal g, find a set of g
vertices such that all possible edges between them are present. What is the largest

clique in Figure 8.5?

Longest path

We know the shortest-path problem can be solved very efficiently, but how about

the LONGEST PATH problem? Here we are given a graph G with nonnegative edge

weights and two distinguished vertices s and t, along with a goal g. We are

asked to find a path from s to t with total weight at least g. Naturally, to

avoid trivial solutions we require that the path be simple, containing no repeated

vertices.

No efficient algorithm is known for this problem (which sometimes also goes by

the name of TAXICAB RIP-OFF).

Knapsack and subset sum

Recall the KNAPSACK problem (Section 6.4): we are given integer weights w1, . . . , wn

and integer values v1, . . . , vn for n items. We are also given a weight capacity W
and a goal g (the former is present in the original optimization problem, the latter

is added to make it a search problem). We seek a set of items whose total weight is

at most W and whose total value is at least g. As always, if no such set exists, we

should say so.

In Section 6.4, we developed a dynamic programming scheme for KNAPSACK with

running time O(nW), which we noted is exponential in the input size, since it

involves W rather than log W. And we have the usual exhaustive algorithm as well,

which looks at all subsets of items—all 2n of them. Is there a polynomial algorithm

for KNAPSACK? Nobody knows of one.

But suppose that we are interested in the variant of the knapsack problem in

which the integers are coded in unary—for instance, by writing I I I I I I I I I I I I
for 12. This is admittedly an exponentially wasteful way to represent integers, but

it does define a legitimate problem, which we could call UNARY KNAPSACK. It follows

from our discussion that this somewhat artificial problem does have a polynomial

algorithm.

A different variation: suppose now that each item’s value is equal to its weight (all

given in binary), and to top it off, the goal g is the same as the capacity W. (To

adapt the silly break-in story whereby we first introduced the knapsack problem,

the items are all gold nuggets, and the burglar wants to fill his knapsack to the hilt.)

This special case is tantamount to finding a subset of a given set of integers that

adds up to exactly W. Since it is a special case of KNAPSACK, it cannot be any harder.

But could it be polynomial? As it turns out, this problem, called SUBSET SUM, is also

very hard.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 243

At this point one could ask: If SUBSET SUM is a special case that happens to be as

hard as the general KNAPSACK problem, why are we interested in it? The reason is

simplicity. In the complicated calculus of reductions between search problems that

we shall develop in this chapter, conceptually simple problems like SUBSET SUM and

3SAT are invaluable.

8.2 NP-complete problems

Hard problems, easy problems:

In short, the world is full of search problems, some of which can be solved efficiently,

while others seem to be very hard. This is depicted in the following table.

Hard problems (NP-complete) Easy problems (in P)

3SAT 2SAT, HORN SAT

TRAVELING SALESMAN PROBLEM MINIMUM SPANNING TREE

LONGEST PATH SHORTEST PATH

3D MATCHING BIPARTITE MATCHING

KNAPSACK UNARY KNAPSACK

INDEPENDENT SET INDEPENDENT SET on trees
INTEGER LINEAR PROGRAMMING LINEAR PROGRAMMING

RUDRATA PATH EULER PATH

BALANCED CUT MINIMUM CUT

This table is worth contemplating. On the right we have problems that can be solved

efficiently. On the left, we have a bunch of hard nuts that have escaped efficient

solution over many decades or centuries.

The various problems on the right can be solved by algorithms that are specialized

and diverse: dynamic programming, network flow, graph search, greedy. These

problems are easy for a variety of different reasons.

In stark contrast, the problems on the left are all difficult for the same reason! At

their core, they are all the same problem, just in different disguises! They are all

equivalent: as we shall see in Section 8.3, each of them can be reduced to any of

the others—and back.

P and NP

It’s time to introduce some important concepts. We know what a search problem is:

its defining characteristic is that any proposed solution can be quickly checked for

correctness, in the sense that there is an efficient checking algorithm C that takes

as input the given instance I (the data specifying the problem to be solved), as well

as the proposed solution S, and outputs true if and only if S really is a solution

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

244 8.2 NP-complete problems

Why P and NP?

Okay, P must stand for “polynomial.” But why use the initials NP (the common chatroom
abbreviation for “no problem”) to describe the class of search problems, some of which are
terribly hard?

NP stands for “nondeterministic polynomial time,” a term going back to the roots of
complexity theory. Intuitively, it means that a solution to any search problem can be found
and verified in polynomial time by a special (and quite unrealistic) sort of algorithm, called a
nondeterministic algorithm. Such an algorithm has the power of guessing correctly at every step.

Incidentally, the original definition of NP (and its most common usage to this day) was not
as a class of search problems, but as a class of decision problems: algorithmic questions that can
be answered by yes or no. Example: “Is there a truth assignment that satisfies this Boolean
formula?” But this too reflects a historical reality: At the time the theory of NP-completeness
was being developed, researchers in the theory of computation were interested in formal
languages, a domain in which such decision problems are of central importance.

to instance I . Moreover the running time of C(I , S) is bounded by a polynomial in

|I |, the length of the instance. We denote the class of all search problems by NP.

We’ve seen many examples of NP search problems that are solvable in polyno-

mial time. In such cases, there is an algorithm that takes as input an instance I
and has a running time polynomial in |I |. If I has a solution, the algorithm re-

turns such a solution; and if I has no solution, the algorithm correctly reports

so. The class of all search problems that can be solved in polynomial time is de-
noted P. Hence, all the search problems on the right-hand side of the table are

in P.

Are there search problems that cannot be solved in polynomial time? In other words,

is P �= NP? Most algorithms researchers think so. It is hard to believe that exponen-

tial search can always be avoided, that a simple trick will crack all these hard

problems, famously unsolved for decades and centuries. And there is a good reason

for mathematicians to believe that P �= NP—the task of finding a proof for a given

mathematical assertion is a search problem and is therefore in NP (after all, when

a formal proof of a mathematical statement is written out in excruciating detail, it

can be checked mechanically, line by line, by an efficient algorithm). So if P = NP,

there would be an efficient way to prove theorems, thus eliminating the need for

mathematicians! All in all, there are a variety of reasons why it is widely believed

that P �= NP. However, proving this has turned out to be extremely difficult, one of

the deepest and most important unsolved puzzles of mathematics.

Reductions, again

Even if we accept that P �= NP, what about the specific problems on the left side of

the table? On the basis of what evidence do we believe that these particular problems

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 245

have no efficient algorithm (besides, of course, the historical fact that many clever

mathematicians and computer scientists have tried hard and failed to find any)?

Such evidence is provided by reductions, which translate one search problem into

another. What they demonstrate is that the problems on the left side of the table are

all, in some sense, exactly the same problem, except that they are stated in different

languages. What’s more, we will also use reductions to show that these problems

are the hardest search problems in NP—if even one of them has a polynomial time

algorithm, then every problem in NP has a polynomial time algorithm. Thus if we

believe that P �= NP, then all these search problems are hard.

We defined reductions in Chapter 7 and saw many examples of them. Let’s now

specialize this definition to search problems. A reduction from search problem A to

search problem B is a polynomial-time algorithm f that transforms any instance I of

A into an instance f (I) of B, together with another polynomial-time algorithm h that

maps any solution S of f (I) back into a solution h(S) of I ; see the following diagram.

If f (I) has no solution, then neither does I . These two translation procedures f
and h imply that any algorithm for B can be converted into an algorithm for A by

bracketing it between f and h.

I
Instance Instance f(I)f

for B
Algorithm

Algorithm for A

Solution S of f(I)

No solution to f(I)
No solution to I

h(S) of I
Solution

h

And now we can finally define the class of the hardest search problems.

A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must

be useful in solving every search problem in the world! It is remarkable that such

problems exist. But they do, and the first column of the table we saw earlier is filled

with the most famous examples. In Section 8.3 we shall see how all these problems

reduce to one another, and also why all other search problems reduce to them.

Factoring

One last point: we started off this book by introducing another famously hard search

problem: FACTORING, the task of finding all prime factors of a given integer. But the

difficulty of FACTORING is of a different nature than that of the other hard search

problems we have just seen. For example, nobody believes that FACTORING is NP-

complete. One major difference is that, in the case of FACTORING, the definition does

not contain the now familiar clause “or report that none exists.” A number can

always be factored into primes.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

246 8.2 NP-complete problems

The two ways to use reductions

So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C , then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre-
and postprocessing functions f and h (see the reduction diagram). If (f AB , h AB) and
(f BC , h BC) define the reductions from A to B and from B to C , respectively, then a
reduction from A to C is given by compositions of these functions: f BC ◦ f AB maps an in-
stance of A to an instance of C and h AB ◦ h BC sends a solution of C back to a solution of A.

This means that once we know a problem A is NP-complete, we can use it to prove that a
new search problem B is also NP-complete, simply by reducing A to B . Such a reduction
establishes that all problems in NP reduce to B , via A.

Figure 8.6 The space NP of all search problems, assuming P �= NP.

NP

Increasing difficulty

P complete

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 247

Figure 8.7 Reductions between search problems.

3D MATCHING

RUDRATA CYCLESUBSET SUM

TSP

ILP

ZOE

All of NP

SAT

3 SAT

VERTEX COVER

INDEPENDENT SET

CLIQUE

Another difference (possibly not completely unrelated) is this: as we shall see in

Chapter 10, FACTORING succumbs to the power of quantum computation—while SAT,

TSP, and the other NP-complete problems do not seem to.

8.3 The reductions
We shall now see that the search problems of Section 8.1 can be reduced to

one another as depicted in Figure 8.7. As a consequence, they are all NP-

complete.

Before we tackle the specific reductions in the tree, let’s warm up by relating two

versions of the Rudrata problem.

RUDRATA (s,t)-PATH−→RUDRATA CYCLE

Recall the RUDRATA CYCLE problem: given a graph, is there a cycle that passes through

each vertex exactly once? We can also formulate the closely related RUDRATA (s, t)-
PATH problem, in which two vertices s and t are specified, and we want a path starting

at s and ending at t that goes through each vertex exactly once. Is it possible that

RUDRATA CYCLE is easier than RUDRATA (s, t)-PATH? We will show by a reduction that

the answer is no.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

248 8.3 The reductions

The reduction maps an instance (G = (V, E), s, t) of RUDRATA (s, t)-PATH into an

instance G ′ = (V ′, E ′) of RUDRATA CYCLE as follows: G ′ is simply G with an additional

vertex x and two new edges {s, x} and {x, t}. For instance:

G G

s

tt

s

x

So V ′ = V ∪ {x}, and E ′ = E ∪ {{s, x}, {x, t}}. How do we recover a Rudrata (s, t)-
path in G given any Rudrata cycle in G ′? Easy, we just delete the edges {s, x} and

{x, t} from the cycle.

Instance:

nodes s, t
G = (V, E)

{s, x}, {x, t}

G = (V ,E) RUDRATA

CYCLE
and edges

{s, x}, {x, t}

No solution

Solution:
pathAdd node x

Solution: cycle

No solution

Delete edges

RUDRATA (s, t)-PATH

To confirm the validity of this reduction, we have to show that it works in the case

of either outcome depicted.

1. When the instance of RUDRATA CYCLE has a solution.

Since the new vertex x has only two neighbors, s and t, any Rudrata cycle in G ′

must consecutively traverse the edges {t, x} and {x, s}. The rest of the cycle then

traverses every other vertex en route from s to t. Thus deleting the two edges {t, x}
and {x, s} from the Rudrata cycle gives a Rudrata path from s to t in the original

graph G .

2. When the instance of RUDRATA CYCLE does not have a solution.

In this case we must show that the original instance of RUDRATA (s, t)-PATH cannot

have a solution either. It is usually easier to prove the contrapositive, that is, to

show that if there is a Rudrata (s, t)-path in G , then there is also a Rudrata cycle in

G ′. But this is easy: just add the two edges {t, x} and {x, s} to the Rudrata path to

close the cycle.

One last detail, crucial but typically easy to check, is that the pre- and

postprocessing functions take time polynomial in the size of the instance

(G , s, t).

It is also possible to go in the other direction and reduce RUDRATA CYCLE to RUDRATA

(s, t)-PATH. Together, these reductions demonstrate that the two Rudrata variants

are in essence the same problem—which is not too surprising, given that their

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 249

descriptions are almost the same. But most of the other reductions we will see are

between pairs of problems that, on the face of it, look quite different. To show that

they are essentially the same, our reductions will have to cleverly translate between

them.

3SAT−→INDEPENDENT SET

One can hardly think of two more different problems. In 3SAT the input is a set of

clauses, each with three or fewer literals, for example

(x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y),

and the aim is to find a satisfying truth assignment. In INDEPENDENT SET the

input is a graph and a number g, and the problem is to find a set of g
pairwise non-adjacent vertices. We must somehow relate Boolean logic with

graphs!

Let us think. To form a satisfying truth assignment we must pick one literal from

each clause and give it the value true. But our choices must be consistent: if we

choose x in one clause, we cannot choose x in another. Any consistent choice of

literals, one from each clause, specifies a truth assignment (variables for which

neither literal has been chosen can take on either value).

So, let us represent a clause, say (x ∨ y ∨ z), by a triangle, with vertices labeled

x, y, z. Why triangle? Because a triangle has its three vertices maximally connected,

and thus forces us to pick only one of them for the independent set. Repeat this

construction for all clauses—a clause with two literals will be represented simply by

an edge joining the literals. (A clause with one literal is silly and can be removed in

a preprocessing step, since the value of the variable is determined.) In the resulting

graph, an independent set has to pick at most one literal from each group (clause).

To force exactly one choice from each clause, take the goal g to be the number of

clauses; in our example, g = 4.

All that is missing now is a way to prevent us from choosing opposite literals (that

is, both x and x) in different clauses. But this is easy: put an edge between any two

vertices that correspond to opposite literals. The resulting graph for our example is

shown in Figure 8.8.

Let’s recap the construction. Given an instance I of 3SAT, we create an instance

(G , g) of INDEPENDENT SET as follows.

� Graph G has a triangle for each clause (or just an edge, if the clause has two

literals), with vertices labeled by the clause’s literals, and has additional edges

between any two vertices that represent opposite literals.
� The goal g is set to the number of clauses.

Clearly, this construction takes polynomial time. However, recall that for a reduction

we do not just need an efficient way to map instances of the first problem to instances

of the second (the function f in the diagram on page 245), but also a way to

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

250 8.3 The reductions

Figure 8.8 The graph corresponding to (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y).

y y y

x z x xz x z

y

reconstruct a solution to the first instance from any solution of the second (the

function h). As always, there are two things to show.

1. Given an independent set S of g vertices in G , it is possible to efficiently

recover a satisfying truth assignment to I .

For any variable x, the set S cannot contain vertices labeled both x and x, because

any such pair of vertices is connected by an edge. So assign x a value of true if S
contains a vertex labeled x, and a value of false if S contains a vertex labeled x
(if S contains neither, then assign either value to x). Since S has g vertices, it must

have one vertex per clause; this truth assignment satisfies those particular literals,

and thus satisfies all clauses.

2. If graph G has no independent set of size g, then the Boolean formula I is

unsatisfiable.

It is usually cleaner to prove the contrapositive, that if I has a satisfying assignment

then G has an independent set of size g. This is easy: for each clause, pick any

literal whose value under the satisfying assignment is true (there must be at least

one such literal), and add the corresponding vertex to S. Do you see why set S must

be independent?

SAT−→3SAT

This is an interesting and common kind of reduction, from a problem to a special
case of itself. We want to show that the problem remains hard even if its inputs

are restricted somehow—in the present case, even if all clauses are restricted to

have ≤ 3 literals. Such reductions modify the given instance so as to get rid of the

forbidden feature (clauses with ≥ 4 literals) while keeping the instance essentially

the same, in that we can read off a solution to the original instance from any solution

of the modified one.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 251

Here’s the trick for reducing SAT to 3SAT: given an instance I of SAT, use exactly

the same instance for 3SAT, except that any clause with more than three literals,

(a1 ∨ a2 ∨ · · · ∨ ak) (where the ai ’s are literals and k > 3), is replaced by a set of

clauses,

(a1 ∨ a2 ∨ y1) (y1 ∨ a3 ∨ y2) (y2 ∨ a4 ∨ y3) · · · (yk−3 ∨ ak−1 ∨ ak),

where the yi ’s are new variables. Call the resulting 3SAT instance I ′. The conversion

from I to I ′ is clearly polynomial time.

Why does this reduction work? I ′ is equivalent to I in terms of satisfiability, because

for any assignment to the ai ’s,

{
(a1 ∨ a2 ∨ · · · ∨ ak)

is satisfied

}
⇐⇒

⎧⎪⎨
⎪⎩

there is a setting of the yi ’s for which

(a1 ∨ a2 ∨ y1) (y1 ∨ a3 ∨ y2) · · · (yk−3 ∨ ak−1 ∨ ak)

are all satisfied

⎫⎪⎬
⎪⎭ .

To see this, first suppose that the clauses on the right are all satisfied. Then at least

one of the literals a1, . . . , ak must be true—otherwise y1 would have to be true,

which would in turn force y2 to be true, and so on, eventually falsifying the last

clause. But this means (a1 ∨ a2 ∨ · · · ∨ ak) is also satisfied.

Conversely, if (a1 ∨ a2 ∨ · · · ∨ ak) is satisfied, then some ai must be true. Set

y1, . . . , yi−2 to true and the rest to false. This ensures that the clauses on the

right are all satisfied.

Thus, any instance of SAT can be transformed into an equivalent instance of 3SAT. In

fact, 3SAT remains hard even under the further restriction that no variable appears

in more than three clauses. To show this, we must somehow get rid of any variable

that appears too many times.

Here’s the reduction from 3SAT to its constrained version. Suppose that in the 3SAT

instance, variable x appears in k > 3 clauses. Then replace its first appearance by

x1, its second appearance by x2, and so on, replacing each of its k appearances by

a different new variable. Finally, add the clauses

(x1 ∨ x2) (x2 ∨ x3) · · · (xk ∨ x1).

And repeat for every variable that appears more than three times.

It is easy to see that in the new formula no variable appears more than three times

(and in fact, no literal appears more than twice). Furthermore, the extra clauses

involving x1, x2, . . . , xk constrain these variables to have the same value; do you see

why? Hence the original instance of 3SAT is satisfiable if and only if the constrained

instance is satisfiable.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

252 8.3 The reductions

Figure 8.9 S is a vertex cover if and only if V − S is an independent set.

S

INDEPENDENT SET−→VERTEX COVER

Some reductions rely on ingenuity to relate two very different problems. Others

simply record the fact that one problem is a thin disguise of another. To reduce

INDEPENDENT SET to VERTEX COVER we just need to notice that a set of nodes S is a

vertex cover of graph G = (V, E) (that is, S touches every edge in E) if and only if

the remaining nodes, V − S, are an independent set of G (Figure 8.9).

Therefore, to solve an instance (G , g) of INDEPENDENT SET, simply look for a vertex

cover of G with |V | − g nodes. If such a vertex cover exists, then take all nodes not
in it. If no such vertex cover exists, then G cannot possibly have an independent

set of size g.

INDEPENDENT SET−→CLIQUE

INDEPENDENT SET and CLIQUE are also easy to reduce to one another. Define the com-
plement of a graph G = (V, E) to be G = (V, E), where E contains precisely those

unordered pairs of vertices that are not in E . Then a set of nodes S is an independent

set of G if and only if S is a clique of G . To paraphrase, these nodes have no edges

between them in G if and only if they have all possible edges between them in G .

Therefore, we can reduce INDEPENDENT SET to CLIQUE by mapping an instance (G , g)

of INDEPENDENT SET to the corresponding instance (G , g) of CLIQUE; the solution to

both is identical.

3SAT−→3D MATCHING

Again, two very different problems. We must reduce 3SAT to the problem of finding,

among a set of boy-girl-pet triples, a subset that contains each boy, each girl, and

each pet exactly once. In short, we must design sets of boy-girl-pet triples that

somehow behave like Boolean variables and gates!

Consider the following set of four triples, each represented by a triangular node

joining a boy, girl, and pet:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 253

p1

p3

g0

g1 b1

b0

p0 p2

Suppose that the two boys b0 and b1 and the two girls g0 and g1 are not involved in

any other triples. (The four pets p0, . . . , p3 will of course belong to other triples as

well; for otherwise the instance would trivially have no solution.) Then any match-

ing must contain either the two triples (b0, g1, p0), (b1, g0, p2) or the two triples

(b0, g0, p1), (b1, g1, p3), because these are the only ways in which these two boys

and girls can find any match. Therefore, this “gadget” has two possible states: it

behaves like a Boolean variable!

To then transform an instance of 3SAT to one of 3D MATCHING, we start by creat-

ing a copy of the preceding gadget for each variable x. Call the resulting nodes

px1, bx0, gx1, and so on. The intended interpretation is that boy bx0 is matched with

girl gx1 if x = true, and with girl gx0 if x = false.

Next we must create triples that somehow mimic clauses. For each clause, say

c = (x ∨ y ∨ z), introduce a new boy bc and a new girl gc . They will be involved

in three triples, one for each literal in the clause. And the pets in these triples

must reflect the three ways whereby the clause can be satisfied: (1) x = true,

(2) y = false, (3) z = true. For (1), we have the triple (bc, gc, px1), where px1

is the pet p1 in the gadget for x. Here is why we chose p1: if x = true, then

bx0 is matched with gx1 and bx1 with gx0, and so pets px0 and px2 are taken. In

which case bc and gc can be matched with px1. But if x = false, then px1 and px3

are taken, and so gc and bc cannot be accommodated this way. We do the same

thing for the other two literals of the clause, which yield triples involving bc and gc

with either py0 or py2 (for the negated variable y) and with either pz1 or pz3 (for

variable z).

We have to make sure that for every occurrence of a literal in a clause c
there is a different pet to match with bc and gc . But this is easy: by an ear-

lier reduction we can assume that no literal appears more than twice, and so

each variable gadget has enough pets, two for negated occurrences and two for

unnegated.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

254 8.3 The reductions

The reduction now seems complete: from any matching we can recover a satisfy-

ing truth assignment by simply looking at each variable gadget and seeing with

which girl bx0 was matched. And from any satisfying truth assignment we can

match the gadget corresponding to each variable x so that triples (bx0, gx1, px0) and

(bx1, gx0, px2) are chosen if x = true and triples (bx0, gx0, px1) and (bx1, gx1, px3)

are chosen if x = false; and for each clause c match bc and gc with the pet that

corresponds to one of its satisfying literals.

But one last problem remains: in the matching defined at the end of the last para-

graph, some pets may be left unmatched. In fact, if there are n variables and m
clauses, then exactly 2n − m pets will be left unmatched (you can check that this

number is sure to be positive, because we have at most three occurrences of every

variable, and at least two literals in every clause). But this is easy to fix: Add 2n − m
new boy-girl couples that are “generic animal-lovers,” and match them by triples

with all the pets!

3D MATCHING−→ZOE

Recall that in ZOE we are given an m× n matrix A with 0 − 1 entries, and we must

find a 0 − 1 vector x = (x1, . . . , xn) such that the m equations

Ax = 1

are satisfied, where by 1 we denote the column vector of all 1’s. How can we express

the 3D MATCHING problem in this framework?

ZOE and ILP are very useful problems precisely because they provide a format in

which many combinatorial problems can be expressed. In such a formulation we

think of the 0 − 1 variables as describing a solution, and we write equations ex-

pressing the constraints of the problem.

For example, here is how we express an instance of 3D MATCHING (m boys, m girls,

m pets, and n boy-girl-pet triples) in the language of ZOE. We have 0 − 1 variables

x1, . . . , xn, one per triple, where xi = 1 means that the ith triple is chosen for the

matching, and xi = 0 means that it is not chosen.

Now all we have to do is write equations stating that the solution described by the

xi ’s is a legitimate matching. For each boy (or girl, or pet), suppose that the triples

containing him (or her, or it) are those numbered j1, j2, . . . , jk; the appropriate

equation is then

xj1 + xj2 + · · · + xjk = 1,

which states that exactly one of these triples must be included in the match-

ing. For example, here is the A matrix for an instance of 3D MATCHING we saw

earlier.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 255

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 1 1
0 1 1 0 0
1 0 0 0 1
0 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 0 1 1 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The five columns of A correspond to the five triples, while the nine rows are for Al,

Bob, Chet, Alice, Beatrice, Carol, Armadillo, Bobcat, and Canary, respectively.

It is straightforward to argue that solutions to the two instances translate back and

forth.

ZOE−→SUBSET SUM

This is a reduction between two special cases of ILP: one with many equations but

only 0 − 1 coefficients, and the other with a single equation but arbitrary integer

coefficients. The reduction is based on a simple and time-honored idea: 0 − 1 vectors

can encode numbers!

For example, given this instance of ZOE:

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 1 1 0

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

we are looking for a set of columns of A that, added together, make up the all-1’s

vector. But if we think of the columns as binary integers (read from top to bottom),

we are looking for a subset of the integers 18, 5, 4, 8 that add up to the binary integer

111112 = 31. And this is an instance of SUBSET SUM. The reduction is complete!

Except for one detail, the one that usually spoils the close connection between 0 − 1

vectors and binary integers: carry. Because of carry, 5-bit binary integers can add up

to 31 (for example, 5 + 6 + 20 = 31 or, in binary, 001012 + 001102 + 101002 = 111112)

even when the sum of the corresponding vectors is not (1, 1, 1, 1, 1). But this is easy

to fix: Think of the column vectors not as integers in base 2, but as integers in base

n + 1—one more than the number of columns. This way, since at most n integers

are added, and all their digits are 0 and 1, there can be no carry, and our reduction

works.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

256 8.3 The reductions

ZOE−→ILP

3SAT is a special case of SAT—or, SAT is a generalization of 3SAT. By special case we

mean that the instances of 3SAT are a subset of the instances of SAT (in particular,

the ones with no long clauses), and the definition of solution is the same in both

problems (an assignment satisfying all clauses). Consequently, there is a reduction

from 3SAT to SAT, in which the input undergoes no transformation, and the solution

to the target instance is also kept unchanged. In other words, functions f and h
from the reduction diagram (on page 245) are both the identity.

This sounds trivial enough, but it is a very useful and common way of establishing

that a problem is NP-complete: Simply notice that it is a generalization of a known

NP-complete problem. For example, the SET COVER problem is NP-complete because

it is a generalization of VERTEX COVER (and also, incidentally, of 3D MATCHING). See

Exercise 8.10 for more examples.

Often it takes a little work to establish that one problem is a special case of another.

The reduction from ZOE to ILP is a case in point. In ILP we are looking for an integer

vector x that satisfies Ax ≤ b, for given matrix A and vector b. To write an instance

of ZOE in this precise form, we need to rewrite each equation of the ZOE instance as

two inequalities (recall the transformations of Section 7.1.4), and to add for each

variable xi the inequalities xi ≤ 1 and −xi ≤ 0.

ZOE−→RUDRATA CYCLE

In the RUDRATA CYCLE problem we seek a cycle in a graph that visits every vertex

exactly once. We shall prove it NP-complete in two stages: first we will reduce ZOE

to a generalization of RUDRATA CYCLE, called RUDRATA CYCLE WITH PAIRED EDGES, and then

Figure 8.10 Rudrata cycle with paired edges: C = {(e1, e3), (e5, e6), (e4, e5),
(e3, e7), (e3, e8)}.

e7

e1

e5

e4

e8

e3

e2

e6

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 257

Figure 8.11 Reducing ZOE to RUDRATA CYCLE WITH PAIRED EDGES.

variablesequations

we shall see how to get rid of the extra features of that problem and reduce it to the

plain RUDRATA CYCLE problem.

In an instance of RUDRATA CYCLE WITH PAIRED EDGES we are given a graph G = (V, E)

and a set C ⊆ E × E of pairs of edges. We seek a cycle that (1) visits all vertices

once, like a Rudrata cycle should, and (2) for every pair of edges (e, e′) in C , traverses

either edge e or edge e′—exactly one of them. In the simple example of Figure 8.10 a

solution is shown in bold. Notice that we allow two or more parallel edges between

two nodes—a feature that doesn’t make sense in most graph problems—since now

the different copies of an edge can be paired with other copies of edges in ways that

do make a difference.

Now for the reduction of ZOE to RUDRATA CYCLE WITH PAIRED EDGES. Given an instance

of ZOE, Ax = 1 (where A is an m× n matrix with 0 − 1 entries, and thus describes

m equations in n variables), the graph we construct has the very simple structure

shown in Figure 8.11: a cycle that connects m+ n collections of parallel edges. For

each variable xi we have two parallel edges (corresponding to xi = 1 and xi = 0).

And for each equation xj1 + · · · + xjk = 1 involving k variables we have k parallel

edges, one for every variable appearing in the equation. This is the whole graph.

Evidently, any Rudrata cycle in this graph must traverse the m+ n collections of

parallel edges one by one, choosing one edge from each collection. This way, the

cycle “chooses” for each variable a value—0 or 1—and, for each equation, a variable

appearing in it.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

258 8.3 The reductions

The whole reduction can’t be this simple, of course. The structure of the matrix A

(and not just its dimensions) must be reflected somewhere, and there is one place

left: the set C of pairs of edges such that exactly one edge in each pair is traversed.

For every equation (recall there are m in total), and for every variable xi appearing in

it, we add to C the pair (e, e′) where e is the edge corresponding to the appearance

of xi in that particular equation (on the left-hand side of Figure 8.11), and e′ is

the edge corresponding to the variable assignment xi = 0 (on the right side of the

figure). This completes the construction.

Take any solution of this instance of RUDRATA CYCLE WITH PAIRED EDGES. As discussed

before, it picks a value for each variable and a variable for every equation. We claim

that the values thus chosen are a solution to the original instance of ZOE. If a variable

xi has value 1, then the edge xi = 0 is not traversed, and thus all edges associated

with xi on the equation side must be traversed (since they are paired in C with

the xi = 0 edge). So, in each equation exactly one of the variables appearing in it

has value 1—which is the same as saying that all equations are satisfied. The other

direction is straightforward as well: from a solution to the instance of ZOE one easily

obtains an appropriate Rudrata cycle.

Getting Rid of the Edge Pairs:

So far we have a reduction from ZOE to RUDRATA CYCLE WITH PAIRED EDGES; but we are

really interested in RUDRATA CYCLE, which is a special case of the problem with paired

edges: the one in which the set of pairs C is empty. To accomplish our goal, we

need, as usual, to find a way of getting rid of the unwanted feature—in this case

the edge pairs.

Consider the graph shown in Figure 8.12, and suppose that it is a part of a larger

graph G in such a way that only the four endpoints a, b, c, d touch the rest of the

graph. We claim that this graph has the following important property: in any Rudrata
cycle of G the subgraph shown must be traversed in one of the two ways shown in
bold in Figure 8.12(b) and (c). Here is why. Suppose that the cycle first enters the

subgraph from vertex a continuing to f . Then it must continue to vertex g, because

g has degree 2 and so it must be visited immediately after one of its adjacent nodes

is visited—otherwise there is no way to include it in the cycle. Hence we must go

on to node h, and here we seem to have a choice. We could continue on to j , or

return to c. But if we take the second option, how are we going to visit the rest of

the subgraph? (A Rudrata cycle must leave no vertex unvisited.) It is easy to see that

this would be impossible, and so from h we have no choice but to continue to j and

from there to visit the rest of the graph as shown in Figure 8.12(b). By symmetry, if

the Rudrata cycle enters this subgraph at c, it must traverse it as in Figure 8.12(c).

And these are the only two ways.

But this property tells us something important: this gadget behaves just like two

edges {a, b} and {c, d} that are paired up in the RUDRATA CYCLE WITH PAIRED EDGES

problem (see Figure 8.12(d)).

The rest of the reduction is now clear: to reduce RUDRATA CYCLE WITH PAIRED EDGES

to RUDRATA CYCLE we go through the pairs in C one by one. To get rid of each

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 259

Figure 8.12 A gadget for enforcing paired behavior.

(a)

a

c

f m s
b

d
qpjh

g

l

k n r

(b)

a

c

b

d

(c)

a

c

b

d

(d)

a

c

b

d

C = {({a, b}, {c, d})}

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

260 8.3 The reductions

pair ({a, b}, {c, d}) we replace the two edges with the gadget in Figure 8.12(a).

For any other pair in C that involves {a, b}, we replace the edge {a, b} with the

new edge {a, f }, where f is from the gadget: the traversal of {a, f } is from now

on an indication that edge {a, b} in the old graph would be traversed. Similarly,

{c, h} replaces {c, d}. After |C | such replacements (performed in polynomial time,

since each replacement adds only 12 vertices to the graph) we are done, and the

Rudrata cycles in the resulting graph will be in one-to-one correspondence with the

Rudrata cycles in the original graph that conform to the constraints in C .

RUDRATA CYCLE−→TSP

Given a graph G = (V, E), construct the following instance of the TSP: the set of

cities is the same as V , and the distance between cities u and v is 1 if {u, v} is an

edge of G and 1 + α otherwise, for some α > 1 to be determined. The budget of the

TSP instance is equal to the number of nodes, |V |.
It is easy to see that if G has a Rudrata cycle, then the same cycle is also a tour

within the budget of the TSP instance; and that conversely, if G has no Rudrata cycle,

then there is no solution: the cheapest possible TSP tour has cost at least n + α (it

must use at least one edge of length 1 + α, and the total length of all n − 1 others

is at least n − 1). Thus RUDRATA CYCLE reduces to TSP.

In this reduction, we introduced the parameter α because by varying it, we can

obtain two interesting results. If α = 1, then all distances are either 1 or 2, and

so this instance of the TSP satisfies the triangle inequality: if i, j, k are cities,

then di j + djk ≥ dik (proof: a + b ≥ c holds for any numbers 1 ≤ a, b, c ≤ 2). This

is a special case of the TSP which is of practical importance and which, as we

shall see in Chapter 9, is in a certain sense easier, because it can be efficiently

approximated.

If on the other hand α is large, then the resulting instance of the TSP may not satisfy

the triangle inequality, but has another important property: either it has a solution of

cost nor less, or all its solutions have cost at least n + α (which now can be arbitrarily

larger than n). There can be nothing in between! As we shall see in Chapter 9, this

important gap property implies that, unless P = NP, no approximation algorithm is

possible.

ANY PROBLEM IN NP−→SAT

We have reduced SAT to the various search problems in Figure 8.7. Now we come

full circle and argue that all these problems—and in fact all problems in NP—reduce

to SAT.

In particular, we shall show that all problems in NP can be reduced to a gener-

alization of SAT which we call CIRCUIT SAT. In CIRCUIT SAT we are given a (Boolean)

circuit (see Figure 8.13, and recall Section 7.7), a dag whose vertices are gates of

five different types:

� AND gates and OR gates have indegree 2.
� NOT gates have indegree 1.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 261

Figure 8.13 An instance of CIRCUIT SAT.

true

AND

NOT

AND

OR

OR

? ?

output

?

AND

� Known input gates have no incoming edges and are labeled false or true.
� Unknown input gates have no incoming edges and are labeled “?”.

One of the sinks of the dag is designated as the output gate.

Given an assignment of values to the unknown inputs, we can evaluate the gates

of the circuit in topological order, using the rules of Boolean logic (such as false
∨ true = true), until we obtain the value at the output gate. This is the value of

the circuit for the particular assignment to the inputs. For instance, the circuit in

Figure 8.13 evaluates to false under the assignment true,false,true (from

left to right).

CIRCUIT SAT is then the following search problem: Given a circuit, find a truth as-

signment for the unknown inputs such that the output gate evaluates to true, or

report that no such assignment exists. For example, if presented with the circuit in

Figure 8.13 we could have returned the assignment (false,true,true) because,

if we substitute these values to the unknown inputs (from left to right), the output

becomes true.

CIRCUIT SAT is a generalization of SAT. To see why, notice that SAT asks for a satisfying

truth assignment for a circuit that has this simple structure: a bunch of AND gates at

the top join the clauses, and the result of this big AND is the output. Each clause is

the OR of its literals. And each literal is either an unknown input gate or the NOT of

one. There are no known input gates.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

262 8.3 The reductions

Going in the other direction, CIRCUIT SAT can also be reduced to SAT. Here is how we

can rewrite any circuit in conjunctive normal form (the AND of clauses): for each

gate g in the circuit we create a variable g, and we model the effect of the gate using

a few clauses:

Gate g

g g

g

g

AND NOTOR

h1 h1h2 h2 h

falsetrue

(g) (g)

(g ∨ h2)
(g ∨ h1)

(g ∨ h1 ∨ h2)

(g ∨ h1)
(g ∨ h2)

(g ∨ h)
(g ∨ h)

(g ∨ h1 ∨ h2)

(Do you see that these clauses do, in fact, force exactly the desired effect?) And

to finish up, if g is the output gate, we force it to be true by adding the clause

(g). The resulting instance of SAT is equivalent to the given instance of CIRCUIT SAT:

the satisfying truth assignments of this conjunctive normal form are in one-to-one

correspondence with those of the circuit.

Now that we know CIRCUIT SAT reduces to SAT, we turn to our main job, showing that

all search problems reduce to CIRCUIT SAT. So, suppose that A is a problem in NP. We

must discover a reduction from A to CIRCUIT SAT. This sounds very difficult, because
we know almost nothing about A!

All we know about A is that it is a search problem, so we must put this knowledge

to work. The main feature of a search problem is that any solution to it can quickly

be checked: there is an algorithm C that checks, given an instance I and a proposed

solution S, whether or not S is a solution of I . Moreover, C makes this decision

in time polynomial in the length of I (we can assume that S is itself encoded as a

binary string, and we know that the length of this string is polynomial in the length

of I).

Recall now our argument in Section 7.7 that any polynomial algorithm can be ren-

dered as a circuit, whose input gates encode the input to the algorithm. Naturally,

for any input length (number of input bits) the circuit will be scaled to the appropri-

ate number of inputs, but the total number of gates of the circuit will be polynomial

in the number of inputs. If the polynomial algorithm in question solves a problem

that requires a yes or no answer (as is the situation with C: “Does S encode a

solution to the instance encoded by I ?”), then this answer is given at the output

gate.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 263

We conclude that, given any instance I of problem A, we can construct in poly-

nomial time a circuit whose known inputs are the bits of I , and whose unknown

inputs are the bits of S, such that the output is true if and only if the unknown

inputs spell a solution S of I . In other words, the satisfying truth assignments to the
unknown inputs of the circuit are in one-to-one correspondence with the solutions of
instance I of A. The reduction is complete.

Unsolvable problems

At least an NP-complete problem can be solved by some algorithm—the trouble is that this
algorithm will be exponential. But it turns out there are perfectly decent computational
problems for which no algorithms exist at all !

One famous problem of this sort is an arithmetical version of SAT. Given a polynomial
equation in many variables, perhaps

x 3 y z + 2y 4z2 − 7x y 5z = 6,

are there integer values of x , y , z that satisfy it? There is no algorithm that solves this
problem. No algorithm at all, polynomial, exponential, doubly exponential, or worse! Such
problems are called unsolvable.

The first unsolvable problem was discovered in 1936 by Alan M. Turing, then a student
of mathematics at Cambridge, England. When Turing came up with it, there were no
computers or programming languages (in fact, it can be argued that these things came
about later exactly because this brilliant thought occurred to Turing). But today we can state
it in familiar terms.

Suppose that you are given a program in your favorite programming language, along with
a particular input. Will the program ever terminate, once started on this input? This is
a very reasonable question. Many of us would be ecstatic if we had an algorithm, call it
terminates(p,x), that took as input a file containing a program p, and a file of data
x, and after grinding away, finally told us whether or not p would ever stop if started
on x.

But how would you go about writing the program terminates? (If you haven’t seen this
before, it’s worth thinking about it for a while, to appreciate the difficulty of writing such a
“universal infinite-loop detector.”)

Well, you can’t. Such an algorithm does not exist !

And here is the proof: Suppose we actually had such a program terminates(p,x). Then
we could use it as a subroutine of the following evil program:

function paradox(z:file)

1: if terminates(z,z) goto 1

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

264 Exercises

Unsolvable problems (Continued)

Notice what paradox does: it terminates if and only if program z does not terminate when
given its own code as input.

You should smell trouble. What if we put this program in a file named paradox and we
executed paradox(paradox)? Would this execution ever stop? Or not? Neither answer is
possible. Since we arrived at this contradiction by assuming that there is an algorithm for
telling whether programs terminate, we must conclude that this problem cannot be solved
by any algorithm.

By the way, all this tells us something important about programming: It will never be
automated, it will forever depend on discipline, ingenuity, and hackery. We now know that
you can’t tell whether a program has an infinite loop. But can you tell if it has a buffer
overrun? Do you see how to use the unsolvability of the “halting problem” to show that this,
too, is unsolvable?

Exercises

8.1. Optimization versus search. Recall the traveling salesman problem:

TSP

Input: A matrix of distances; a budget b
Output: A tour which passes through all the cities and has length ≤ b, if

such a tour exists.

The optimization version of this problem asks directly for the shortest tour.

TSP-OPT

Input: A matrix of distances

Output: The shortest tour which passes through all the cities.

Show that if TSP can be solved in polynomial time, then so can TSP-OPT.

8.2. Search versus decision. Suppose you have a procedure which runs in polynomial

time and tells you whether or not a graph has a Rudrata path. Show that you can

use it to develop a polynomial-time algorithm for RUDRATA PATH (which returns

the actual path, if it exists).

8.3. STINGY SAT is the following problem: given a set of clauses (each a disjunction of

literals) and an integer k, find a satisfying assignment in which at most k

variables are true, if such an assignment exists. Prove that STINGY SAT is

NP-complete.

8.4. Consider the CLIQUE problem restricted to graphs in which every vertex has

degree at most 3. Call this problem CLIQUE-3.

(a) Prove that CLIQUE-3 is in NP.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 265

(b) What is wrong with the following proof of NP-completeness for CLIQUE-3?

We know that the CLIQUE problem in general graphs is NP-complete, so it

is enough to present a reduction from CLIQUE-3 to CLIQUE. Given a graph G

with vertices of degree ≤ 3, and a parameter g, the reduction leaves the

graph and the parameter unchanged: clearly the output of the reduction

is a possible input for the CLIQUE problem. Furthermore, the answer to

both problems is identical. This proves the correctness of the reduction

and, therefore, the NP-completeness of CLIQUE-3.

(c) It is true that the VERTEX COVER problem remains NP-complete even when

restricted to graphs in which every vertex has degree at most 3. Call this

problem VC-3. What is wrong with the following proof of

NP-completeness for CLIQUE-3?

We present a reduction from VC-3 to CLIQUE-3. Given a graph G = (V, E)

with node degrees bounded by 3, and a parameter b, we create an

instance of CLIQUE-3 by leaving the graph unchanged and switching the

parameter to |V | − b. Now, a subset C ⊆ V is a vertex cover in G if and

only if the complementary set V − C is a clique in G . Therefore G has a

vertex cover of size ≤ b if and only if it has a clique of size ≥ |V | − b.

This proves the correctness of the reduction and, consequently, the

NP-completeness of CLIQUE-3.

(d) Describe an O(|V |) algorithm for CLIQUE-3.

8.5. Give a simple reduction from 3D MATCHING to SAT, and another from RUDRATA CYCLE

to SAT. (Hint: In the latter case you may use variables xi j whose intuitive

meaning is “vertex i is the j th vertex of the Rudrata cycle”; you then need to

write clauses that express the constraints of the problem.)

8.6. On page 251 we saw that 3SAT remains NP-complete even when restricted to

formulas in which each literal appears at most twice.

(a) Show that if each literal appears at most once, then the problem is

solvable in polynomial time.

(b) Show that INDEPENDENT SET remains NP-complete even in the special case

when all the nodes in the graph have degree at most 4.

8.7. Consider a special case of 3SAT in which all clauses have exactly three literals,

and each variable appears exactly three times. Show that this problem can be

solved in polynomial time. (Hint: Create a bipartite graph with clauses on the

left, variables on the right, and edges whenever a variable appears in a clause.

Use Exercise 7.30 to show that this graph has a matching.)

8.8. In the EXACT 4SAT problem, the input is a set of clauses, each of which is a

disjunction of exactly four literals, and such that each variable occurs at most

once in each clause. The goal is to find a satisfying assignment, if one exists.

Prove that EXACT 4SAT is NP-complete.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

266 Exercises

8.9. In the HITTING SET problem, we are given a family of sets {S1, S2, . . . , Sn} and a

budget b, and we wish to find a set H of size ≤ b which intersects every Si , if

such an H exists. In other words, we want H ∩ Si �= ∅ for all i.

Show that HITTING SET is NP-complete.

8.10. Proving NP-completeness by generalization. For each of the problems below,

prove that it is NP-complete by showing that it is a generalization of some

NP-complete problem we have seen in this chapter.

(a) SUBGRAPH ISOMORPHISM: Given as input two undirected graphs G and H ,

determine whether G is a subgraph of H (that is, whether by deleting

certain vertices and edges of H we obtain a graph that is, up to renaming

of vertices, identical to G), and if so, return the corresponding mapping

of V(G) into V(H).

(b) LONGEST PATH: Given a graph G and an integer g, find in G a simple path

of length g.

(c) MAX SAT: Given a CNF formula and an integer g, find a truth assignment

that satisfies at least g clauses.

(d) DENSE SUBGRAPH: Given a graph and two integers a and b, find a set of a

vertices of G such that there are at least b edges between them.

(e) SPARSE SUBGRAPH: Given a graph and two integers a and b, find a set of a

vertices of G such that there are at most b edges between them.

(f) SET COVER. (This problem generalizes two known NP-complete

problems.)

(g) RELIABLE NETWORK: We are given two n × n matrices, a distance matrix di j

and a connectivity requirement matrix ri j , as well as a budget b; we must

find a graph G = ({1, 2, . . . , n}, E) such that (1) the total cost of all edges

is b or less and (2) between any two distinct vertices i and j there are ri j

vertex-disjoint paths. (Hint: Suppose that all di j ’s are 1 or 2, b = n, and

all ri j ’s are 2. Which well known NP-complete problem is this?)

8.11. There are many variants of Rudrata’s problem, depending on whether the graph

is undirected or directed, and whether a cycle or path is sought. Reduce the

DIRECTED RUDRATA PATH problem to each of the following.

(a) The (undirected) RUDRATA PATH problem.

(b) The undirected RUDRATA (s, t)-PATH problem, which is just like RUDRATA

PATH except that the endpoints of the path are specified in the input.

8.12. The k-SPANNING TREE problem is the following.

Input: An undirected graph G = (V, E)

Output: A spanning tree of G in which each node has degree ≤ k, if such

a tree exists.

Show that for any k ≥ 2:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 267

(a) k-SPANNING TREE is a search problem.

(b) k-SPANNING TREE is NP-complete. (Hint: Start with k = 2 and consider the

relation between this problem and RUDRATA PATH.)

8.13. Determine which of the following problems are NP-complete and which are

solvable in polynomial time. In each problem you are given an undirected graph

G = (V, E), along with:

(a) A set of nodes L ⊆ V , and you must find a spanning tree such that its set

of leaves includes the set L.

(b) A set of nodes L ⊆ V , and you must find a spanning tree such that its set

of leaves is precisely the set L.

(c) A set of nodes L ⊆ V , and you must find a spanning tree such that its set

of leaves is included in the set L.

(d) An integer k, and you must find a spanning tree with k or fewer leaves.

(e) An integer k, and you must find a spanning tree with k or more leaves.

(f) An integer k, and you must find a spanning tree with exactly k leaves.

(Hint: All the NP-completeness proofs are by generalization, except for one.)

8.14. Prove that the following problem is NP-complete: given an undirected graph

G = (V, E) and an integer k, return a clique of size k as well as an independent

set of size k, provided both exist.

8.15. Show that the following problem is NP-complete.

MAXIMUM COMMON SUBGRAPH

Input: Two graphs G 1 = (V1, E1) and G 2 = (V2, E2); a budget b.
Output: Two set of nodes V ′

1 ⊆ V1 and V ′
2 ⊆ V2 whose deletion leaves at

least b nodes in each graph, and makes the two graphs identical.

8.16. We are feeling experimental and want to create a new dish. There are various

ingredients we can choose from and we’d like to use as many of them as

possible, but some ingredients don’t go well with others. If there are n possible

ingredients (numbered 1 to n), we write down an n × n matrix giving the discord

between any pair of ingredients. This discord is a real number between 0.0 and

1.0, where 0.0 means “they go together perfectly” and 1.0 means “they really

don’t go together.” Here’s an example matrix when there are five possible

ingredients.

1 2 3 4 5

1 0.0 0.4 0.2 0.9 1.0

2 0.4 0.0 0.1 1.0 0.2

3 0.2 0.1 0.0 0.8 0.5

4 0.9 1.0 0.8 0.0 0.2

5 1.0 0.2 0.5 0.2 0.0

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

268 Exercises

In this case, ingredients 2 and 3 go together pretty well whereas 1 and 5 clash

badly. Notice that this matrix is necessarily symmetric; and that the diagonal

entries are always 0.0. Any set of ingredients incurs a penalty which is the sum

of all discord values between pairs of ingredients. For instance, the set of

ingredients {1, 3, 5} incurs a penalty of 0.2 + 1.0 + 0.5 = 1.7. We want this

penalty to be small.

EXPERIMENTAL CUISINE

Input: n, the number of ingredients to choose from; D, the n × n
“discord” matrix; some number p ≥ 0

Output: The maximum number of ingredients we can choose with

penalty ≤ p.

Show that if EXPERIMENTAL CUISINE is solvable in polynomial time, then so is

3SAT.

8.17. Show that for any problem � in NP, there is an algorithm which solves � in

time O(2p(n)), where n is the size of the input instance and p(n) is a polynomial

(which may depend on �).

8.18. Show that if P = NP then the RSA cryptosystem (Section 1.4.2) can be broken in

polynomial time.

8.19. A kite is a graph on an even number of vertices, say 2n, in which n of the

vertices form a clique and the remaining n vertices are connected in a “tail” that

consists of a path joined to one of the vertices of the clique. Given a graph and a

goal g, the KITE problem asks for a subgraph which is a kite and which contains

2g nodes. Prove that KITE is NP-complete.

8.20. In an undirected graph G = (V, E), we say D ⊆ V is a dominating set if every

v ∈ V is either in D or adjacent to at least one member of D. In the DOMINATING

SET problem, the input is a graph and a budget b, and the aim is to find a

dominating set in the graph of size at most b, if one exists. Prove that this

problem is NP-complete.

8.21. Sequencing by hybridization. One experimental procedure for identifying a new

DNA sequence repeatedly probes it to determine which k-mers (substrings of

length k) it contains. Based on these, the full sequence must then be

reconstructed.

Let’s now formulate this as a combinatorial problem. For any string x (the DNA

sequence), let �(x) denote the multiset of all of its k-mers. In particular, �(x)

contains exactly |x| − k + 1 elements.

The reconstruction problem is now easy to state: given a multiset of k-length

strings, find a string x such that �(x) is exactly this multiset.

(a) Show that the reconstruction problem reduces to RUDRATA PATH. (Hint:

Construct a directed graph with one node for each k-mer, and with an

edge from a to b if the last k − 1 characters of a match the first k − 1

characters of b.)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

Chapter 8 Algorithms 269

(b) But in fact, there is much better news. Show that the same problem also

reduces to EULER PATH. (Hint: This time, use one directed edge for each

k-mer.)

8.22. In task scheduling, it is common to use a graph representation with a node for

each task and a directed edge from task i to task j if i is a precondition for j .

This directed graph depicts the precedence constraints in the scheduling

problem. Clearly, a schedule is possible if and only if the graph is acyclic; if it

isn’t, we’d like to identify the smallest number of constraints that must be

dropped so as to make it acyclic.

Given a directed graph G = (V, E), a subset E ′ ⊆ E is called a feedback arc set if

the removal of edges E ′ renders G acyclic.

FEEDBACK ARC SET (FAS): Given a directed graph G = (V, E) and a budget

b, find a feedback arc set of ≤ b edges, if one exists.

(a) Show that FAS is in NP.

FAS can be shown to be NP-complete by a reduction from VERTEX COVER. Given an

instance (G , b) of VERTEX COVER, where G is an undirected graph and we want a

vertex cover of size ≤ b, we construct a instance (G ′, b) of FAS as follows. If

G = (V, E) has n vertices v1, . . . , vn, then make G ′ = (V ′, E ′) a directed graph

with 2n vertices w1, w′
1, . . . , wn, w′

n, and n + 2|E | (directed) edges:
� (wi , w′

i) for all i = 1, 2, . . . , n.
� (w′

i , wj) and (w′
j , wi) for every (vi , v j) ∈ E .

(b) Show that if G contains a vertex cover of size b, then G ′ contains a

feedback arc set of size b.

(c) Show that if G ′ contains a feedback arc set of size b, then G contains a

vertex cover of size (at most) b. (Hint: Given a feedback arc set of size b

in G ′, you may need to first modify it slightly to obtain another one

which is of a more convenient form, but is of the same size or smaller.

Then, argue that G must contain a vertex cover of the same size as the

modified feedback arc set.)

8.23. In the NODE-DISJOINT PATHS problem, the input is an undirected graph in which

some vertices have been specially marked: a certain number of “sources”

s1, s2, . . . sk and an equal number of “destinations” t1, t2, . . . tk. The goal is to find

k node-disjoint paths (that is, paths which have no nodes in common) where the

ith path goes from si to ti . Show that this problem is NP-complete.

Here is a sequence of progressively stronger hints.

(i) Reduce from 3SAT.

(ii) For a 3SAT formula with m clauses and n variables, use k = m+ n

sources and destinations. Introduce one source/destination pair (sx, tx) for

each variable x, and one source/destination pair (sc, tc) for each

clause c.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch08 GTBL020-Dasgupta-v10 August 11, 2006 17:15

270 Exercises

(iii) For each 3SAT clause, introduce 6 new intermediate vertices, one for each

literal occurring in that clause and one for its complement.

(iv) Notice that if the path from sc to tc goes through some intermediate vertex

representing, say, an occurrence of variable x, then no other path can go

through that vertex. What vertex would you like the other path to be forced

to go through instead?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9

Coping with NP-completeness

You are the junior member of a seasoned project team. Your current task is to write

code for solving a simple-looking problem involving graphs and numbers. What are

you supposed to do?

If you are very lucky, your problem will be among the half-dozen problems concern-

ing graphs with weights (shortest path, minimum spanning tree, maximum flow,

etc.), that we have solved in this book. Even if this is the case, recognizing such

a problem in its natural habitat—grungy and obscured by reality and context—

requires practice and skill. It is more likely that you will need to reduce your prob-

lem to one of these lucky ones—or to solve it using dynamic programming or linear

programming.

But chances are that nothing like this will happen. The world of search problems

is a bleak landscape. There are a few spots of light—brilliant algorithmic ideas—

each illuminating a small area around it (the problems that reduce to it; two of

these areas, linear and dynamic programming, are in fact decently large). But the

remaining vast expanse is pitch dark: NP-complete. What are you to do?

You can start by proving that your problem is actually NP-complete. Often a proof

by generalization (recall the discussion on page 256 and Exercise 8.10) is all that

you need; and sometimes a simple reduction from 3SAT or ZOE is not too difficult to

find. This sounds like a theoretical exercise, but, if carried out successfully, it does

bring some tangible rewards: now your status in the team has been elevated, you

are no longer the kid who can’t do, and you have become the noble knight with the

impossible quest.

But, unfortunately, a problem does not go away when proved NP-complete. The

real question is, What do you do next?

This is the subject of the present chapter and also the inspiration for some of the

most important modern research on algorithms and complexity. NP-completeness

is not a death certificate—it is only the beginning of a fascinating adventure.

Your problem’s NP-completeness proof probably constructs graphs that are com-

plicated and weird, very much unlike those that come up in your application. For

example, even though SAT is NP-complete, satisfying assignments for HORN SAT (the

271

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

272 9.1 Intelligent exhaustive search

instances of SAT that come up in logic programming) can be found efficiently (recall

Section 5.3). Or, suppose the graphs that arise in your application are trees. In this

case, many NP-complete problems, such as INDEPENDENT SET, can be solved in linear

time by dynamic programming (recall Section 6.7).

Unfortunately, this approach does not always work. For example, we know that

3SAT is NP-complete. And the INDEPENDENT SET problem, along with many other NP-

complete problems, remains so even for planar graphs (graphs that can be drawn in

the plane without crossing edges). Moreover, often you cannot neatly characterize

the instances that come up in your application. Instead, you will have to rely on

some form of intelligent exponential search—procedures such as backtracking and

branch and bound which are exponential time in the worst-case, but, with the right

design, could be very efficient on typical instances that come up in your application.

We discuss these methods in Section 9.1.

Or you can develop an algorithm for your NP-complete optimization problem that

falls short of the optimum but never by too much. For example, in Section 5.4 we

saw that the greedy algorithm always produces a set cover that is no more than log n
times the optimal set cover. An algorithm that achieves such a guarantee is called an

approximation algorithm. As we will see in Section 9.2, such algorithms are known

for many NP-complete optimization problems, and they are some of the most clever

and sophisticated algorithms around. And the theory of NP-completeness can again

be used as a guide in this endeavor, by showing that, for some problems, there are

even severe limits to how well they can be approximated—unless of course P = NP.

Finally, there are heuristics, algorithms with no guarantees on either the running

time or the degree of approximation. Heuristics rely on ingenuity, intuition, a good

understanding of the application, meticulous experimentation, and often insights

from physics or biology, to attack a problem. We see some common kinds in

Section 9.3.

9.1 Intelligent exhaustive search

9.1.1 Backtracking

Backtracking is based on the observation that it is often possible to reject a solution

by looking at just a small portion of it. For example, if an instance of SAT contains

the clause (x1 ∨ x2), then all assignments with x1 = x2 = 0 (i.e., false) can be

instantly eliminated. To put it differently, by quickly checking and discrediting this

partial assignment, we are able to prune a quarter of the entire search space. A

promising direction, but can it be systematically exploited?

Here’s how it is done. Consider the Boolean formula φ(w, x, y, z) specified by the

set of clauses

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 273

We will incrementally grow a tree of partial solutions. We start by branching on any

one variable, say w:

Initial formula φ

w = 1w = 0

Plugging w = 0 and w = 1 into φ, we find that no clause is immediately violated

and thus neither of these two partial assignments can be eliminated outright. So we

need to keep branching. We can expand either of the two available nodes, and on

any variable of our choice. Let’s try this one:

Initial formula φ

w = 1w = 0

x = 0 x = 1

This time, we are in luck. The partial assignment w = 0, x = 1 violates the clause

(w ∨ x) and can be terminated, thereby pruning a good chunk of the search space.

We backtrack out of this cul-de-sac and continue our explorations at one of the two

remaining active nodes.

In this manner, backtracking explores the space of assignments, growing the tree

only at nodes where there is uncertainty about the outcome, and stopping if at any

stage a satisfying assignment is encountered.

In the case of Boolean satisfiability, each node of the search tree can be described

either by a partial assignment or by the clauses that remain when those values are

plugged into the original formula. For instance, if w = 0 and x = 0 then any clause

with w or x is instantly satisfied and any literal w or x is not satisfied and can be

removed. What’s left is

(y ∨ z), (y), (y ∨ z).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

274 9.1 Intelligent exhaustive search

Figure 9.1 Backtracking reveals that φ is not satisfiable.

(), (y ∨ z)(y ∨ z), (y), (y ∨ z)

(z), (z)

(x ∨ y), (y ∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z)

(x ∨ y ∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0

Likewise, w = 0 and x = 1 leaves

(), (y ∨ z),

with the “empty clause” () ruling out satisfiability. Thus the nodes of the search

tree, representing partial assignments, are themselves SAT subproblems.

This alternative representation is helpful for making the two decisions that repeat-

edly arise: which subproblem to expand next, and which branching variable to use.

Since the benefit of backtracking lies in its ability to eliminate portions of the search

space, and since this happens only when an empty clause is encountered, it makes

sense to choose the subproblem that contains the smallest clause and to then branch

on a variable in that clause. If this clause happens to be a singleton, then at least

one of the resulting branches will be terminated. (If there is a tie in choosing sub-

problems, one reasonable policy is to pick the one lowest in the tree, in the hope

that it is close to a satisfying assignment.) See Figure 9.1 for the conclusion of our

earlier example.

More abstractly, a backtracking algorithm requires a test that looks at a subproblem

and quickly declares one of three outcomes:

1. Failure: the subproblem has no solution.

2. Success: a solution to the subproblem is found.

3. Uncertainty.

In the case of SAT, this test declares failure if there is an empty clause, success if

there are no clauses, and uncertainty otherwise. The backtracking procedure then

has the following format.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 275

Start with some problem P0

Let S = {P0}, the set of active subproblems

Repeat while S is nonempty:

choose a subproblem P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If test(Pi) succeeds: halt and announce this solution

If test(Pi) fails: discard Pi

Otherwise: add Pi to S
Announce that there is no solution

For SAT, the choose procedure picks a clause, and expand picks a variable within

that clause. We have already discussed some reasonable ways of making such

choices.

With the right test, expand, and choose routines, backtracking can be remark-

ably effective in practice. The backtracking algorithm we showed for SAT is the basis

of many successful satisfiability programs. Another sign of quality is this: if pre-

sented with a 2SAT instance, it will always find a satisfying assignment, if one exists,

in polynomial time (Exercise 9.1)!

9.1.2 Branch-and-bound

The same principle can be generalized from search problems such as SAT to opti-

mization problems. For concreteness, let’s say we have a minimization problem;

maximization will follow the same pattern.

As before, we will deal with partial solutions, each of which represents a subproblem,

namely, what is the (cost of the) best way to complete this solution? And as before,

we need a basis for eliminating partial solutions, since there is no other source of

efficiency in our method. To reject a subproblem, we must be certain that its cost

exceeds that of some other solution we have already encountered. But its exact cost

is unknown to us and is generally not efficiently computable. So instead we use a

quick lower bound on this cost.

Start with some problem P0

Let S = {P0}, the set of active subproblems

bestsofar = ∞
Repeat while S is nonempty:

choose a subproblem P ∈ S and remove

it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If Pi is a complete solution: update bestsofar

else if lowerbound(Pi) < bestsofar: add Pi to S
return bestsofar

Let’s see how this works for the traveling salesman problem on a graph G = (V, E)

with edge lengths de > 0. A partial solution is a simple path a b passing through

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

276 9.2 Approximation algorithms

some vertices S ⊆ V , where S includes the endpoints a and b. We can denote such

a partial solution by the tuple [a, S, b]—in fact, a will be fixed throughout the

algorithm. The corresponding subproblem is to find the best completion of the tour,

that is, the cheapest complementary path b a with intermediate nodes V − S.

Notice that the initial problem is of the form [a, {a}, a] for any a ∈ V of our choosing.

At each step of the branch-and-bound algorithm, we extend a particular partial

solution [a, S, b] by a single edge (b, x), where x ∈ V − S. There can be up to

|V − S| ways to do this, and each of these branches leads to a subproblem of the

form [a, S ∪ {x}, x].

How can we lower-bound the cost of completing a partial tour [a, S, b]? Many

sophisticated methods have been developed for this, but let’s look at a rather simple

one. The remainder of the tour consists of a path through V − S, plus edges from a
and b to V − S. Therefore, its cost is at least the sum of the following:

1. The lightest edge from a to V − S.

2. The lightest edge from b to V − S.

3. The minimum spanning tree of V − S.

(Do you see why?) And this lower bound can be computed quickly by a minimum

spanning tree algorithm. Figure 9.2 runs through an example: each node of the

tree represents a partial tour (specifically, the path from the root to that node) that

at some stage is considered by the branch-and-bound procedure. Notice how just

28 partial solutions are considered, instead of the 7! = 5,040 that would arise in a

brute-force search.

9.2 Approximation algorithms
In an optimization problem we are given an instance I and are asked to find the

optimum solution—the one with the maximum gain if we have a maximization

problem like INDEPENDENT SET, or the minimum cost if we are dealing with a min-

imization problem such as the TSP. For every instance I , let us denote by OPT(I)

the value (benefit or cost) of the optimum solution. It makes the math a little sim-

pler (and is not too far from the truth) to assume that OPT(I) is always a positive
integer.

We have already seen an example of a (famous) approximation algorithm in

Section 5.4: the greedy scheme for SET COVER. For any instance I of size n, we showed

that this greedy algorithm is guaranteed to quickly find a set cover of cardinality at

most OPT(I) log n. This log n factor is known as the approximation guarantee of the

algorithm.

More generally, consider any minimization problem. Suppose now that we have an

algorithm A for our problem which, given an instance I , returns a solution with

value A(I). The approximation ratio of algorithm A is defined to be

αA = max
I

A(I)

OPT(I)
.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 277

Figure 9.2 (a) A graph and its optimal traveling salesman tour. (b) The
branch-and-bound search tree, explored left to right. Boxed numbers indicate
lower bounds on cost.

(a)

A B

C

D

EF

G

H

1

2

1

11

2

1

2

5

1 1

1

A B

C

D

EF

G

H

1

1

1

1

1

1 1

1

(b)

A

E

HF

G

B

F

G

D
15

14

8

B D

C

D H

G

H8

E C G

inf

8

10

13

12

8

814

8

8

8

8

10

C10

GE

F

G

H

D

11

11

11

11

inf

H

G
14

1410 10

Cost: 11 Cost: 8

In other words, αA measures by the factor by which the output of algorithm A
exceeds the optimal solution, on the worst-case input. The approximation ratio can

also be defined for maximization problems, such as INDEPENDENT SET, in the same

way—except that to get a number larger than 1 we take the reciprocal.

So, when faced with an NP-complete optimization problem, a reasonable goal is

to look for an approximation algorithm A whose αA is as small as possible. But

this kind of guarantee might seem a little puzzling: How can we come close to the

optimum if we cannot determine the optimum? Let’s look at a simple example.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

278 9.2 Approximation algorithms

Figure 9.3 A graph whose optimal vertex cover, shown shaded, is of size 8.

9.2.1 Vertex cover

We already know the VERTEX COVER problem is NP-hard.

Vertex Cover

Input: An undirected graph G = (V, E).

Output: A subset of the vertices S ⊆ V that touches every edge.

Goal: Minimize |S|.

See Figure 9.3 for an example.

Since VERTEX COVER is a special case of SET COVER, we know from Chapter 5 that it

can be approximated within a factor of O(log n) by the greedy algorithm: repeatedly

delete the vertex of highest degree and include it in the vertex cover. And there are

graphs on which the greedy algorithm returns a vertex cover that is indeed log n
times the optimum.

A better approximation algorithm for VERTEX COVER is based on the notion of a match-
ing, a subset of edges that have no vertices in common (Figure 9.4). A matching is

maximal if no more edges can be added to it. Maximal matchings will help us find

good vertex covers, and moreover, they are easy to generate: repeatedly pick edges

that are disjoint from the ones chosen already, until this is no longer possible.

What is the relationship between matchings and vertex covers? Here is the crucial

fact: any vertex cover of a graph G must be at least as large as the number of

edges in any matching in G ; that is, any matching provides a lower bound on OPT.

This is simply because each edge of the matching must be covered by one of its

endpoints in any vertex cover! Finding such a lower bound is a key step in designing

an approximation algorithm, because we must compare the quality of the solution

found by our algorithm to OPT, which is NP-complete to compute.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 279

Figure 9.4 (a) A matching, (b) its completion to a maximal matching, and
(c) the resulting vertex cover.

(a) (b) (c)

One more observation completes the design of our approximation algorithm: let S
be a set that contains both endpoints of each edge in a maximal matching M. Then

S must be a vertex cover—if it isn’t, that is, if it doesn’t touch some edge e ∈ E , then

M could not possibly be maximal since we could still add e to it. But our cover S
has 2|M| vertices. And from the previous paragraph we know that any vertex cover

must have size at least |M|. So we’re done.

Here’s the algorithm for VERTEX COVER.

Find a maximal matching M ⊆ E

Return S = {all endpoints of edges in M}
This simple procedure always returns a vertex cover whose size is at most twice

optimal!

In summary, even though we have no way of finding the best vertex cover, we can

easily find another structure, a maximal matching, with two key properties:

1. Its size gives us a lower bound on the optimal vertex cover.

2. It can be used to build a vertex cover, whose size can be related to that of

the optimal cover using property 1.

Thus, this simple algorithm has an approximation ratio of αA ≤ 2. In fact, it is not

hard to find examples on which it does make a 100% error; hence αA = 2.

9.2.2 Clustering

We turn next to a clustering problem, in which we have some data (text documents,

say, or images, or speech samples) that we want to divide into groups. It is often

useful to define “distances” between these data points, numbers that capture how

close or far they are from one another. Often the data are true points in some high-

dimensional space and the distances are the usual Euclidean distance; in other cases,

the distances are the result of some “similarity tests” to which we have subjected

the data points. Assume that we have such distances and that they satisfy the usual

metric properties:

1. d(x, y) ≥ 0 for all x, y.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

280 9.2 Approximation algorithms

Figure 9.5 Some data points and the optimal k = 4 clusters.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x).

4. (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y).

We would like to partition the data points into groups that are compact in the sense

of having small diameter.

k-Cluster

Input: Points X = {x1, . . . , xn} with underlying distance metric d(·, ·); integer k.

Output: A partition of the points into k clusters C1, . . . , Ck.

Goal: Minimize the diameter of the clusters,

max
j

max
xa,xb∈C j

d(xa, xb).

One way to visualize this task is to imagine n points in space, which are to be

covered by k spheres of equal size. What is the smallest possible diameter of the

spheres? Figure 9.5 shows an example.

This problem is NP-hard, but has a very simple approximation algorithm. The idea

is to pick k of the data points as cluster centers and to then assign each of the

remaining points to the center closest to it, thus creating k clusters. The centers are

picked one at a time, using an intuitive rule: always pick the next center to be as

far as possible from the centers chosen so far (see Figure 9.6).

Pick any point μ1 ∈ X as the first cluster center

for i = 2 to k:

Let μi be the point in X farthest from μ1, . . . , μi−1

(i.e., that maximizes min j<i d(·, μ j))

Create k clusters: Ci = {all x ∈ X whose closest center is μi}

It’s clear that this algorithm returns a valid partition. What’s more, the resulting

diameter is guaranteed to be at most twice optimal.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 281

Figure 9.6 (a) Four centers chosen by farthest-first traversal. (b) The resulting
clusters.

(a) 2

1

4

3

(b)

Here’s the argument. Let x ∈ X be the point farthest from μ1, . . . , μk (in other words

the next center we would have chosen, if we wanted k + 1 of them), and let r be its

distance to its closest center. Then every point in X must be within distance r of its

cluster center. By the triangle inequality, this means that every cluster has diameter

at most 2r .

But how does r relate to the diameter of the optimal clustering? Well, we have

identified k + 1 points {μ1, μ2, . . . , μk, x} that are all at a distance at least r from

each other (why?). Any partition into k clusters must put two of these points in the

same cluster and must therefore have diameter at least r .

This algorithm has a certain high-level similarity to our scheme for VERTEX COVER.

Instead of a maximal matching, we use a different easily computable structure—a

set of k points that cover all of X within some radius r , while at the same time

being mutually separated by a distance of at least r . This structure is used both to

generate a clustering and to give a lower bound on the optimal clustering.

We know of no better approximation algorithm for this problem.

9.2.3 TSP

The triangle inequality played a crucial role in making the k-CLUSTER problem approx-

imable. It also helps with the TRAVELING SALESMAN PROBLEM: if the distances between

cities satisfy the metric properties, then there is an algorithm that outputs a tour

of length at most 1.5 times optimal. We’ll now look at a slightly weaker result that

achieves a factor of 2.

Continuing with the thought processes of our previous two approximation algo-

rithms, we can ask whether there is some structure that is easy to compute and that

is plausibly related to the best traveling salesman tour (as well as providing a good

lower bound on OPT). A little thought and experimentation reveals the answer to be

the minimum spanning tree.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

282 9.2 Approximation algorithms

Let’s understand this relation. Removing any edge from a traveling salesman tour

leaves a path through all the vertices, which is a spanning tree. Therefore,

TSP cost ≥ cost of this path ≥ MST cost.

Now, we somehow need to use the MST to build a traveling salesman tour. If we

can use each edge twice, then by following the shape of the MST we end up with

a tour that visits all the cities, some of them more than once. Here’s an example,

with the MST on the left and the resulting tour on the right (the numbers show the

order in which the edges are taken).

Tulsa
Albuquerque Amarillo

Wichita

Little
Rock

Dallas

Houston

San Antonio

El Paso

Tulsa

Wichita

Little
Rock

Dallas

Houston
El Paso

Amarillo

San Antonio

Albuquerque

5

2

1

109

11

8 7

12

6

4

13

14

3

15

16

Therefore, this tour has a length at most twice the MST cost, which as we’ve already

seen is at most twice the TSP cost.

This is the result we wanted, but we aren’t quite done because our tour visits some

cities multiple times and is therefore not legal. To fix the problem, the tour should

simply skip any city it is about to revisit, and instead move directly to the next new
city in its list:

Tulsa

Wichita

Little
Rock

Dallas

Houston

San Antonio

El Paso

Albuquerque

Amarillo

By the triangle inequality, these bypasses can only make the overall tour shorter.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 283

General TSP

But what if we are interested in instances of TSP that do not satisfy the triangle

inequality? It turns out that this is a much harder problem to approximate.

Here is why: Recall that on page 260 we gave a polynomial-time reduction which

given any graph G and any integer C > 0 produces an instance I (G , C) of the TSP

such that:

(i) If G has a Rudrata path, then OPT(I (G , C)) = n, the number of vertices in G .

(ii) If G has no Rudrata path, then OPT(I (G , C)) ≥ n + C .

This means that even an approximate solution to TSP would enable us to solve

RUDRATA PATH! Let’s work out the details.

Consider an approximation algorithm A for TSP and let αA denote its approximation

ratio. From any instance G of RUDRATA PATH, we will create an instance I (G , C) of

TSP using the specific constant C = nαA. What happens when algorithm A is run on

this TSP instance? In case (i), it must output a tour of length at most αAOPT(I (G , C))

= nαA, whereas in case (ii) it must output a tour of length at least OPT(I (G , C))

> nαA. Thus we can figure out whether G has a Rudrata path! Here is the resulting

procedure:

Given any graph G:

compute I (G , C) (with C = n · αA) and run algorithm A on it

if the resulting tour has length ≤ nαA:
conclude that G has a Rudrata path

else: conclude that G has no Rudrata path

This tells us whether or not G has a Rudrata path; by calling the procedure a

polynomial number of times, we can find the actual path (Exercise 8.2).

We’ve shown that if TSP has a polynomial-time approximation algorithm, then there

is a polynomial algorithm for the NP-complete RUDRATA PATH problem. So, unless

P = NP, there cannot exist an efficient approximation algorithm for the TSP.

9.2.4 Knapsack

Our last approximation algorithm is for a maximization problem and has a very

impressive guarantee: given any ε > 0, it will return a solution of value at least

(1 − ε) times the optimal value, in time that scales only polynomially in the input

size and in 1/ε.

The problem is KNAPSACK, which we first encountered in Chapter 6. There are

n items, with weights w1, . . . , wn and values v1, . . . , vn (all positive integers), and

the goal is to pick the most valuable combination of items subject to the constraint

that their total weight is at most W.

Earlier we saw a dynamic programming solution to this problem with running time

O(nW). Using a similar technique, a running time of O(nV) can also be achieved,

where V is the sum of the values. Neither of these running times is polynomial,

because W and V can be very large, exponential in the size of the input.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

284 9.2 Approximation algorithms

Let’s consider the O(nV) algorithm. In the bad case when V is large, what if we

simply scale down all the values in some way? For instance, if

v1 = 117,586,003, v2 = 738,493,291, v3 = 238,827,453,

we could simply knock off some precision and instead use 117, 738, and 238. This

doesn’t change the problem all that much and will make the algorithm much, much

faster!

Now for the details. Along with the input, the user is assumed to have specified

some approximation factor ε > 0.

Discard any item with weight > W

Let vmax = maxi vi

Rescale values v̂i = 	vi · n
εvmax

Run the dynamic programming algorithm with values {̂vi}
Output the resulting choice of items

Let’s see why this works. First of all, since the rescaled values v̂i are all at most n/ε,

the dynamic program is efficient, running in time O(n3/ε).

Now suppose the optimal solution to the original problem is to pick some subset of

items S, with total value K ∗. The rescaled value of this same assignment is

∑
i∈S

v̂i =
∑
i∈S

⌊
vi · n

εvmax

⌋
≥

∑
i∈S

(
vi · n

εvmax

− 1

)
≥ K ∗ · n

εvmax

− n .

Therefore, the optimal assignment for the shrunken problem, call it Ŝ, has a rescaled

value of at least this much. In terms of the original values, assignment Ŝ has a value

of at least∑
i∈Ŝ

vi ≥
∑
i∈Ŝ

v̂i · εvmax

n
≥

(
K ∗ · n

εvmax

− n

)
· εvmax

n
= K ∗ − εvmax ≥ K ∗(1 − ε).

9.2.5 The approximability hierarchy

Given any NP-complete optimization problem, we seek the best approximation al-

gorithm possible. Failing this, we try to prove lower bounds on the approximation

ratios that are achievable in polynomial time (we just carried out such a proof for the

general TSP). All told, NP-complete optimization problems are classified as follows:

� Those for which, like the TSP, no finite approximation ratio is possible.
� Those for which an approximation ratio is possible, but there are limits to

how small this can be. VERTEX COVER, k-CLUSTER, and the TSP with triangle

inequality belong here. (For these problems we have not established limits

to their approximability, but these limits do exist, and their proofs constitute

some of the most sophisticated results in this field.)
� Down below we have a more fortunate class of NP-complete problems for

which approximability has no limits, and polynomial approximation algo-

rithms with error ratios arbitrarily close to zero exist. KNAPSACK resides here.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 285

� Finally, there is another class of problems, between the first two given here,

for which the approximation ratio is about log n. SET COVER is an example.

(A humbling reminder: All this is contingent upon the assumption P �= NP. Failing

this, this hierarchy collapses down to P, and all NP-complete optimization problems

can be solved exactly in polynomial time.)

A final point on approximation algorithms: often these algorithms, or their variants,

perform much better on typical instances than their worst-case approximation ratio

would have you believe.

9.3 Local search heuristics
Our next strategy for coping with NP-completeness is inspired by evolution (which

is, after all, the world’s best-tested optimization procedure)—by its incremental pro-

cess of introducing small mutations, trying them out, and keeping them if they work

well. This paradigm is called local search and can be applied to any optimization

task. Here’s how it looks for a minimization problem.

let s be any initial solution

while there is some solution s′ in the neighborhood of s

for which cost(s′) < cost(s): replace s by s′

return s

On each iteration, the current solution is replaced by a better one close to it, in

its neighborhood. This neighborhood structure is something we impose upon the

problem and is the central design decision in local search. As an illustration, let’s

revisit the traveling salesman problem.

9.3.1 Traveling salesman, once more

Assume we have all interpoint distances between n cities, giving a search space of

(n − 1)! different tours. What is a good notion of neighborhood?

The most obvious notion is to consider two tours as being close if they differ in

just a few edges. They can’t differ in just one edge (do you see why?), so we will

consider differences of two edges. We define the 2-change neighborhood of tour s
as being the set of tours that can be obtained by removing two edges of s and then

putting in two other edges. Here’s an example of a local move:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

286 9.3 Local search heuristics

We now have a well-defined local search procedure. How does it measure up under

our two standard criteria for algorithms—what is its overall running time, and does

it always return the best solution?

Embarrassingly, neither of these questions has a satisfactory answer. Each iteration

is certainly fast, because a tour has only O(n2) neighbors. However, it is not clear

how many iterations will be needed: whether for instance, there might be an expo-

nential number of them. Likewise, all we can easily say about the final tour is that it

is locally optimal—that is, it is superior to the tours in its immediate neighborhood.

There might be better solutions further away. For instance, the following picture

shows a possible final answer that is clearly suboptimal; the range of local moves

is simply too limited to improve upon it.

To overcome this, we may try a more generous neighborhood, for instance 3-change,

consisting of tours that differ on up to three edges. And indeed, the preceding bad

case gets fixed:

But there is a downside, in that the size of a neighborhood becomes O(n3), mak-

ing each iteration more expensive. Moreover, there may still be suboptimal local

minima, although fewer than before. To avoid these, we would have to go up to

4-change, or higher. In this manner, efficiency and quality often turn out to be

competing considerations in a local search. Efficiency demands neighborhoods that

can be searched quickly, but smaller neighborhoods can increase the abundance of

low-quality local optima. The appropriate compromise is typically determined by

experimentation.

Figure 9.7 shows a specific example of local search at work. Figure 9.8 is a more

abstract, stylized depiction of local search. The solutions crowd the unshaded area,

and cost decreases when we move downward. Starting from an initial solution, the

algorithm moves downhill until a local optimum is reached.

In general, the search space might be riddled with local optima, and some of them

may be of very poor quality. The hope is that with a judicious choice of neighborhood

structure, most local optima will be reasonable. Whether this is the reality or merely

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 287

Figure 9.7 (a) Nine American cities. (b) Local search, starting at a random tour,
and using 3-change. The traveling salesman tour is found after three moves.

(a)

Tulsa
Albuquerque Amarillo

Wichita

Little
Rock

Dallas

Houston

San Antonio

El Paso

(b)

(i) (ii)

(iii) (iv)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

288 9.3 Local search heuristics

Figure 9.8 Local search.

Cost

Local optima

misplaced faith, it is an empirical fact that local search algorithms are the top per-

formers on a broad range of optimization problems. Let’s look at another such

example.

9.3.2 Graph partitioning

The problem of graph partitioning arises in a diversity of applications, from circuit

layout to program analysis to image segmentation. We saw a special case of it,

BALANCED CUT, in Chapter 8.

Graph Partitioning

Input: An undirected graph G = (V, E) with nonnegative edge weights; a real

number α ∈ (0, 1/2].

Output: A partition of the vertices into two groups A and B, each of size at

least α|V |.
Goal: Minimize the capacity of the cut (A, B).

Figure 9.9 shows an example in which the graph has 16 nodes, all edge weights are 0

or 1, and the optimal solution has cost 0. Removing the restriction on the sizes of A
and B would give the MINIMUM CUT problem, which we know to be efficiently solvable

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 289

Figure 9.9 An instance of GRAPH PARTITIONING, with the optimal partition for
α = 1/2. Vertices on one side of the cut are shaded.

using flow techniques. The present variant, however, is NP-hard. In designing a local

search algorithm, it will be a big convenience to focus on the special case α = 1/2,

in which A and B are forced to contain exactly half the vertices. The apparent

loss of generality is purely cosmetic, as GRAPH PARTITIONING reduces to this particular

case.

We need to decide upon a neighborhood structure for our problem, and there is one

obvious way to do this. Let (A, B), with |A| = |B|, be a candidate solution; we will

define its neighbors to be all solutions obtainable by swapping one pair of vertices

across the cut, that is, all solutions of the form (A− {a} + {b}, B − {b} + {a}) where

a ∈ A and b ∈ B. Here’s an example of a local move:

We now have a reasonable local search procedure, and we could just stop here. But

there is still a lot of room for improvement in terms of the quality of the solutions

produced. The search space includes some local optima that are quite far from the

global solution. Here’s one which has cost 2.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

290 9.3 Local search heuristics

What can be done about such suboptimal solutions? We could expand the neighbor-

hood size to allow two swaps at a time, but this particular bad instance would still

stubbornly resist. Instead, let’s look at some other generic schemes for improving

local search procedures.

9.3.3 Dealing with local optima

Randomization and restarts

Randomization can be an invaluable ally in local search. It is typically used in two

ways: to pick a random initial solution, for instance a random graph partition; and

to choose a local move when several are available.

When there are many local optima, randomization is a way of making sure that

there is at least some probability of getting to the right one. The local search can

then be repeated several times, with a different random seed on each invocation,

and the best solution returned. If the probability of reaching a good local optimum

on any given run is p, then within O(1/p) runs such a solution is likely to be found

(recall Exercise 1.34).

Figure 9.10 shows a small instance of graph partitioning, along with the search space

of solutions. There are a total of
(
8
4

) = 70 possible states, but since each of them has

an identical twin in which the left and right sides of the cut are flipped, in effect

there are just 35 solutions. In the figure, these are organized into seven groups for

readability. There are five local optima, of which four are bad, with cost 2, and one

is good, with cost 0. If local search is started at a random solution, and at each step

a random neighbor of lower cost is selected, then the search is at most four times

as likely to wind up in a bad solution than a good one. Thus only a small handful

of repetitions is needed.

Simulated annealing

In the example of Figure 9.10, each run of local search has a reasonable chance of

finding the global optimum. This isn’t always true. As the problem size grows, the

ratio of bad to good local optima often increases, sometimes to the point of being

exponentially large. In such cases, simply repeating the local search a few times is

ineffective.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 291

Figure 9.10 The search space for a graph with eight nodes. The space contains
35 solutions, which have been partitioned into seven groups for clarity. An
example of each is shown. There are five local optima.

4 states, cost 2

1 state, cost 0

8 states, cost 3

8 states, cost 4

4 states, cost 6

2 states, cost 4

8 states, cost 3

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

292 9.3 Local search heuristics

A different avenue of attack is to occasionally allow moves that actually increase the

cost, in the hope that they will pull the search out of dead ends. This would be very

useful at the bad local optima of Figure 9.10, for instance. The method of simulated
annealing redefines the local search by introducing the notion of a temperature T .

let s be any starting solution

repeat

randomly choose a solution s′ in the neighborhood of s

if � = cost(s′) − cost(s) is negative:

replace s by s′

else:

replace s by s′ with probability e−�/T.

If T is zero, this is identical to our previous local search. But if T is large, then

moves that increase the cost are occasionally accepted. What value of T should be

used?

The trick is to start with T large and then gradually reduce it to zero. Thus initially,

the local search can wander around quite freely, with only a mild preference for low-

cost solutions. As time goes on, this preference becomes stronger, and the system

mostly sticks to the lower-cost region of the search space, with occasional excursions

out of it to escape local optima. Eventually, when the temperature drops further,

the system converges on a solution. Figure 9.11 shows this process schematically.

Simulated annealing is inspired by the physics of crystallization. When a substance

is to be crystallized, it starts in liquid state, with its particles in relatively uncon-

strained motion. Then it is slowly cooled, and as this happens, the particles gradually

Figure 9.11 Simulated annealing.

Cost

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 293

move into more regular configurations. This regularity becomes more and more pro-

nounced until finally a crystal lattice is formed.

The benefits of simulated annealing come at a significant cost: because of the chang-

ing temperature and the initial freedom of movement, many more local moves are

needed until convergence. Moreover, it is quite an art to choose a good timetable by

which to decrease the temperature, called an annealing schedule. But in many cases

where the quality of solutions improves significantly, the tradeoff is worthwhile.

Exercises

9.1. In the backtracking algorithm for SAT, suppose that we always choose a

subproblem (CNF formula) that has a clause that is as small as possible; and we

expand it along a variable that appears in this small clause. Show that if the

input formula only contains clauses with two literals (that is, it is an instance of

2SAT), then a satisfying assignment, if one exists, will be found in polynomial

time.

9.2. Devise a backtracking algorithm for the RUDRATA PATH problem from a fixed vertex

s. To fully specify such an algorithm you must define:

(a) What is a subproblem?

(b) How to choose a subproblem.

(c) How to expand a subproblem.

Argue briefly why your choices are reasonable.

9.3. Devise a branch-and-bound algorithm for the SET COVER problem. This entails

deciding:

(a) What is a subproblem?

(b) How do you choose a subproblem to expand?

(c) How do you expand a subproblem?

(d) What is an appropriate lowerbound?

Do you think that your choices above will work well on typical instances of the

problem? Why?

9.4. Given an undirected graph G = (V, E) in which each node has degree ≤ d,

show how to efficiently find an independent set whose size is at least 1/(d + 1)

times that of the largest independent set.

9.5. Local search for minimum spanning trees. Consider the set of all spanning trees

(not just minimum ones) of a weighted, connected, undirected graph

G = (V, E).

Recall from Section 5.1 that adding an edge e to a spanning tree T creates an

unique cycle, and subsequently removing any other edge e′ �= e from this cycle

gives back a different spanning tree T ′. We will say that T and T ′ differ by a

single edge swap (e, e′) and that they are neighbors.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

294 Exercises

(a) Show that it is possible to move from any spanning tree T to any other

spanning tree T ′ by performing a series of edge-swaps, that is, by moving

from neighbor to neighbor. At most how many edge-swaps are needed?

(b) Show that if T ′ is an MST, then it is possible to choose these swaps so

that the costs of the spanning trees encountered along the way are

nonincreasing. In other words, if the sequence of spanning trees

encountered is

T = T0 → T1 → T2 → · · · → Tk = T ′,

then cost(Ti+1) ≤ cost(Ti) for all i < k.

(c) Consider the following local search algorithm which is given as input an

undirected graph with distinct edge weights.

Let T be any spanning tree of G

while there is an edge-swap (e, e′) which reduces

cost(T):

T ← T + e − e′

return T

Show that this procedure always returns a minimum spanning tree. At

most how many iterations does it take?

9.6. In the MINIMUM STEINER TREE problem, the input consists of: a complete graph

G = (V, E) with distances duv between all pairs of nodes; and a distinguished set

of terminal nodes V ′ ⊆ V . The goal is to find a minimum-cost tree that includes

the vertices V ′. This tree may or may not include nodes in V − V ′.

Suppose the distances in the input are a metric (recall the definition on page 279).

Show that an efficient ratio-2 approximation algorithm for MINIMUM STEINER TREE

can be obtained by ignoring the nonterminal nodes and simply returning the

minimum spanning tree on V ′. (Hint: Recall our approximation algorithm for the

TSP.)

9.7. In the MULTIWAY CUT problem, the input is an undirected graph G = (V, E) and a

set of terminal nodes s1, s2, . . . , sk ∈ V . The goal is to find the minimum set of

edges in E whose removal leaves all terminals in different components.

(a) Show that this problem can be solved exactly in polynomial time when

k = 2.

(b) Give an approximation algorithm with ratio at most 2 for the case k = 3.

(c) Design a local search algorithm for multiway cut.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

Chapter 9 Algorithms 295

9.8. In the MAX SAT problem, we are given a set of clauses, and we want to find an

assignment that satisfies as many of them as possible.

(a) Show that if this problem can be solved in polynomial time, then so can

SAT.

(b) Here’s a very naive algorithm.

for each variable:

set its value to either 0 or 1 by flipping a coin

Suppose the input has m clauses, of which the j th has kj literals. Show

that the expected number of clauses satisfied by this simple algorithm is
m∑

j=1

(
1 − 1

2kj

)
≥ m

2
.

In other words, this is a 2-approximation in expectation! And if the

clauses all contain k literals, then this approximation factor improves to

1 + 1/(2k − 1).

(c) Can you make this algorithm deterministic? (Hint: Instead of flipping a coin

for each variable, select the value that satisfies the most as-yet-unsatisfied

clauses. What fraction of the clauses is satisfied in the end?)

9.9. In the MAXIMUM CUT problem we are given an undirected graph G = (V, E) with a

weight w(e) on each edge, and we wish to separate the vertices into two sets S

and V − S so that the total weight of the edges between the two sets is as large

as possible.

For each S ⊆ V, define w(S) to be the sum of all wuv over all edges {u, v} such that

|S ∩ {u, v}| = 1. Obviously, MAX CUT is about maximizing w(S) over all subsets of

V .

Consider the following local search algorithm for MAX CUT:

start with any S ⊆ V

while there is a subset S′ ⊆ V such that

|(S′ − S) ∪ (S − S′)| = 1 and w(S′) > w(S) do:

set S = S′

(a) Show that this is an approximation algorithm for MAX CUT with ratio 2.

(b) But is it a polynomial-time algorithm?

9.10. Let us call a local search algorithm exact when it always produces the optimum

solution. For example, the local search algorithm for the minimum spanning tree

problem introduced in Problem 9.5 is exact. For another example, simplex can be

considered an exact local search algorithm for linear programming.

(a) Show that the 2-change local search algorithm for the TSP is not exact.

(b) Repeat for the � n
2
�-change local search algorithm, where n is the number

of cities.

(c) Show that the (n − 1)-change local search algorithm is exact.

(d) If A is an optimization problem, define A-IMPROVEMENT to be the following

search problem: Given an instance x of A and a solution s of A, find

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch09 GTBL020-Dasgupta-v10 August 11, 2006 17:0

296 Exercises

another solution of x with better cost (or report that none exists, and

thus s is optimum). For example, in TSP IMPROVEMENT we are given a

distance matrix and a tour, and we are asked to find a better tour. It turns

out that TSP IMPROVEMENT is NP-complete, and so is SET COVER IMPROVEMENT.

Prove the latter.

(e) We say that a local search algorithm has polynomial iteration if each

execution of the loop requires polynomial time. For example, the obvious

implementations of the (n − 1)-change local search algorithm for the TSP

defined above do not have polynomial iteration. Show that, unless

P = NP, there is no exact local search algorithm with polynomial

iteration for the TSP and SET COVER problems.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10

Quantum algorithms

This book started with the world’s oldest and most widely used algorithms (the ones

for adding and multiplying numbers) and an ancient hard problem (FACTORING). In

this last chapter the tables are turned: we present one of the latest algorithms—and

it is an efficient algorithm for FACTORING!

There is a catch, of course: this algorithm needs a quantum computer to execute.

Quantum physics is a beautiful and mysterious theory that describes Nature in the

small, at the level of elementary particles. One of the major discoveries of the nineties

was that quantum computers—computers based on quantum physics principles—

are radically different from those that operate according to the more familiar prin-

ciples of classical physics. Surprisingly, they can be exponentially more powerful:

as we shall see, quantum computers can solve FACTORING in polynomial time! As a

result, in a world with quantum computers, the systems that currently safeguard

business transactions on the Internet (and are based on the RSA cryptosystem) will

no longer be secure.

10.1 Qubits, superposition, and measurement
In this section we introduce the basic features of quantum physics that are necessary

for understanding how quantum computers work.1

In ordinary computer chips, bits are physically represented by low and high voltages

on wires. But there are many other ways a bit could be stored—for instance, in the

state of a hydrogen atom. The single electron in this atom can either be in the

ground state (the lowest energy configuration) or it can be in an excited state (a

high energy configuration). We can use these two states to encode for bit values 0

and 1, respectively.

Let us now introduce some quantum physics notation. We denote the ground state

of our electron by
∣∣0〉

, since it encodes for bit value 0, and likewise the excited state

1This field is so strange that the famous physicist Richard Feynman is quoted as having said, “I think I

can safely say that no one understands quantum physics.” So there is little chance you will understand

the theory in depth after reading this section! But if you are interested in learning more, see the

recommended reading at the book’s end.

297

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

298 10.1 Qubits, superposition, and measurement

Figure 10.1 An electron can be in a ground state or in an excited state. In the
Dirac notation used in quantum physics, these are denoted

∣∣0〉
and

∣∣1〉
. But the

superposition principle says that, in fact, the electron is in a state that is a linear
combination of these two: α0

∣∣0〉 + α1

∣∣1〉
. This would make immediate sense if

the α’s were probabilities, nonnegative real numbers adding to 1. But the
superposition principle insists that they can be arbitrary complex numbers, as
long as the squares of their norms add up to 1!

ground state 0 excited state 1 superposition
α0 0 + α1 1

by
∣∣1〉

. These are the two possible states of the electron in classical physics. Many of

the most counterintuitive aspects of quantum physics arise from the superposition
principle which states that if a quantum system can be in one of two states, then it

can also be in any linear superposition of those two states. For instance, the state

of the electron could well be 1√
2

∣∣0〉 + 1√
2

∣∣1〉
or 1√

2

∣∣0〉 − 1√
2

∣∣1〉
; or an infinite number

of other combinations of the form α0

∣∣0〉 + α1

∣∣1〉
. The coefficient α0 is called the

amplitude of state
∣∣0〉

, and similarly with α1. And—if things aren’t already strange

enough—the α’s can be complex numbers, as long as they are normalized so that

|α0|2 + |α1|2 = 1. For example, 1√
5

∣∣0〉 + 2i√
5

∣∣1〉
(where i is the imaginary unit,

√−1)

is a perfectly valid quantum state! Such a superposition, α0

∣∣0〉 + α1

∣∣1〉
, is the basic

unit of encoded information in quantum computers (Figure 10.1). It is called a qubit
(pronounced “cubit”).

The whole concept of a superposition suggests that the electron does not make up

its mind about whether it is in the ground or excited state, and the amplitude α0 is

a measure of its inclination toward the ground state. Continuing along this line of

thought, it is tempting to think of α0 as the probability that the electron is in the

ground state. But then how are we to make sense of the fact that α0 can be negative,

or even worse, imaginary? This is one of the most mysterious aspects of quantum

physics, one that seems to extend beyond our intuitions about the physical world.

This linear superposition, however, is the private world of the electron. For us to

get a glimpse of the electron’s state we must make a measurement, and when we

do so, we get a single bit of information—0 or 1. If the state of the electron is

α0

∣∣0〉 + α1

∣∣1〉
, then the outcome of the measurement is 0 with probability |α0|2 and

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 299

Figure 10.2 Measurement of a superposition has the effect of forcing the system
to decide on a particular state, with probabilities determined by the amplitudes.

with prob |α0|2

with prob |α1|2
α0 0 + α1 1

state 0

state 1

1 with probability |α1|2 (luckily we normalized so |α0|2 + |α1|2 = 1). Moreover, the

act of measurement causes the system to change its state: if the outcome of the

measurement is 0, then the new state of the system is
∣∣0〉

(the ground state), and if

the outcome is 1, the new state is
∣∣1〉

(the excited state). This feature of quantum

physics, that a measurement disturbs the system and forces it to choose (in this

case ground or excited state), is another strange phenomenon with no classical

analog.

The superposition principle holds not just for 2-level systems like the one we just

described, but in general for k-level systems. For example, in reality the electron in

the hydrogen atom can be in one of many energy levels, starting with the ground

state, the first excited state, the second excited state, and so on. So we could consider

a k-level system consisting of the ground state and the first k − 1 excited states,

and we could denote these by
∣∣0〉

,
∣∣1〉

,
∣∣2〉

, . . . ,
∣∣k − 1

〉
. The superposition principle

would then say that the general quantum state of the system is α0

∣∣0〉 + α1

∣∣1〉 + · · ·
+ αk−1

∣∣k − 1
〉
, where

∑k−1
j=0 |α j |2 = 1. Measuring the state of the system would now

reveal a number between 0 and k − 1, and outcome j would occur with probability

|α j |2. As before, the measurement would disturb the system, and the new state

would actually become
∣∣ j

〉
or the j th excited state.

How do we encode n bits of information? We could choose k = 2n levels of the

hydrogen atom. But a more promising option is to use n qubits.

Let us start by considering the case of two qubits, that is, the state of the electrons

of two hydrogen atoms. Since each electron can be in either the ground or excited

state, in classical physics the two electrons have a total of four possible states—00,

01, 10, or 11—and are therefore suitable for storing 2 bits of information. But in

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

300 10.1 Qubits, superposition, and measurement

Entanglement

Suppose we have two qubits, the first in the state α0

∣∣0〉 + α1

∣∣1〉
and the second in the

state β0

∣∣0〉 + β1

∣∣1〉
. What is the joint state of the two qubits? The answer is, the (tensor)

product of the two: α0β0

∣∣00
〉 + α0β1

∣∣01
〉 + α1β0

∣∣10
〉 + α1β1

∣∣11
〉
.

Given an arbitrary state of two qubits, can we specify the state of each individual qubit in this
way? No, in general the two qubits are entangled and cannot be decomposed into the states

of the individual qubits. For example, consider the state
∣∣ψ 〉 = 1√

2

∣∣00
〉 + 1√

2

∣∣11
〉
, which

is one of the famous Bell states. It cannot be decomposed into states of the two individual
qubits (see Exercise 10.1). Entanglement is one of the most mysterious aspects of quantum
mechanics and is ultimately the source of the power of quantum computation.

quantum physics, the superposition principle tells us that the quantum state of the

two electrons is a linear combination of the four classical states,

∣∣α〉 = α00

∣∣00
〉 + α01

∣∣01
〉 + α10

∣∣10
〉 + α11

∣∣11〉
,

normalized so that
∑

x∈{0,1}2 |αx|2 = 1.2 Measuring the state of the system now reveals

2 bits of information, and the probability of outcome x ∈ {0, 1}2 is |αx|2. Moreover,

as before, if the outcome of measurement is jk, then the new state of the system is∣∣ jk
〉
: if jk = 10, for example, then the first electron is in the excited state and the

second electron is in the ground state.

An interesting question comes up here: what if we make a partial measurement? For

instance, if we measure just the first qubit, what is the probability that the outcome

is 0? This is simple. It is exactly the same as it would have been had we measured

both qubits, namely, Pr {1st bit = 0} = Pr {00} + Pr {01} = |α00| 2 + |α01| 2. Fine, but

how much does this partial measurement disturb the state of the system?

The answer is elegant. If the outcome of measuring the first qubit is 0, then the new

superposition is obtained by crossing out all terms of
∣∣α〉

that are inconsistent with

this outcome (that is, whose first bit is 1). Of course the sum of the squares of the

amplitudes is no longer 1, so we must renormalize. In our example, this new state

would be

∣∣αnew

〉 = α00√
|α00| 2 + |α01| 2

∣∣00
〉 + α01√

|α00| 2 + |α01| 2

∣∣01
〉
.

Finally, let us consider the general case of n hydrogen atoms. Think of n as a fairly

small number of atoms, say n = 500. Classically the states of the 500 electrons could

be used to store 500 bits of information in the obvious way. But the quantum state

2Recall that {0, 1}2 denotes the set consisting of the four 2-bit binary strings and in general {0, 1}n

denotes the set of all n-bit binary strings.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 301

of the 500 qubits is a linear superposition of all 2500 possible classical states:

∑
x∈{0,1}n

αx

∣∣x〉
.

It is as if Nature has 2500 scraps of paper on the side, each with a complex number

written on it, just to keep track of the state of this system of 500 hydrogen atoms!

Moreover, at each moment, as the state of the system evolves in time, it is as though

Nature crosses out the complex number on each scrap of paper and replaces it with

its new value.

Let us consider the effort involved in doing all this. The number 2500 is much larger

than estimates of the number of elementary particles in the universe. Where, then,

does Nature store this information? How could microscopic quantum systems of

a few hundred atoms contain more information than we can possibly store in the

entire classical universe? Surely this is a most extravagant theory about the amount

of effort put in by Nature just to keep a tiny system evolving in time.

In this phenomenon lies the basic motivation for quantum computation. After all, if

Nature is so extravagant at the quantum level, why should we base our computers

on classical physics? Why not tap into this massive amount of effort being expended

at the quantum level?

But there is a fundamental problem: this exponentially large linear superposition

is the private world of the electrons. Measuring the system only reveals n bits of

information. As before, the probability that the outcome is a particular 500-bit string

x is |αx|2. And the new state after measurement is just
∣∣x〉

.

10.2 The plan
A quantum algorithm is unlike any you have seen so far. Its structure reflects the

tension between the exponential “private workspace” of an n-qubit system and the

mere n bits that can be obtained through measurement.

The input to a quantum algorithm consists of n classical bits, and the output also

consists of n classical bits. It is while the quantum system is not being watched

that the quantum effects take over and we have the benefit of Nature working

exponentially hard on our behalf.

If the input is an n-bit string x, then the quantum computer takes as input n qubits in

state
∣∣x〉

. Then a series of quantum operations are performed, by the end of which

the state of the n qubits has been transformed to some superposition
∑

y αy

∣∣y〉
.

Finally, a measurement is made, and the output is the n-bit string y with probability

|αy|2. Observe that this output is random. But this is not a problem, as we have seen

before with randomized algorithms such as the one for primality testing. As long

as y corresponds to the right answer with high enough probability, we can repeat

the whole process a few times to make the chance of failure miniscule.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

302 10.2 The plan

Figure 10.3 A quantum algorithm takes n “classical” bits as its input,
manipulates them so as to create a superposition of their 2n possible states,
manipulates this exponentially large superposition to obtain the final quantum
result, and then measures the result to get (with the appropriate probability
distribution) the n output bits. For the middle phase, there are elementary
operations which count as one step and yet manipulate all the exponentially
many amplitudes of the superposition.

Exponential
superposition

Input x Output y
n-bit stringn-bit string

Now let us look more closely at the quantum part of the algorithm. Some of the key

quantum operations (which we will soon discuss) can be thought of as looking for

certain kinds of patterns in a superposition of states. Because of this, it is helpful

to think of the algorithm as having two stages. In the first stage, the n classical

bits of the input are “unpacked” into an exponentially large superposition, which

is expressly set up so as to have an underlying pattern or regularity that, if de-

tected, would solve the task at hand. The second stage then consists of a suitable

set of quantum operations, followed by a measurement, which reveals the hidden

pattern.

All this probably sounds quite mysterious at the moment, but more details are on

the way. In Section 10.3 we will give a high-level description of the most important

operation that can be efficiently performed by a quantum computer: a quantum

version of the fast Fourier transform (FFT). We will then describe certain patterns

that this quantum FFT is ideally suited to detect, and will show how to recast the

problem of factoring an integer N in terms of detecting precisely such a pattern.

Finally we will see how to set up the initial stage of the quantum algorithm, which

converts the input N into an exponentially large superposition with the right kind

of pattern.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 303

The algorithm to factor a large integer N can be viewed as a sequence of reductions

(and everything shown here in italics will be defined in good time):

� FACTORING is reduced to finding a nontrivial square root of 1 modulo N.
� Finding such a root is reduced to computing the order of a random integer

modulo N.
� The order of an integer is precisely the period of a particular periodic superpo-

sition.
� Finally, periods of superpositions can be found by the quantum FFT.

We begin with the last step.

10.3 The quantum Fourier transform
Recall the fast Fourier transform (FFT) from Chapter 2. It takes as input an

M-dimensional, complex-valued vector α (where M is a power of 2, say M = 2m),

and outputs an M-dimensional complex-valued vector β:

⎡
⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

...

βM−1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1√
M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 ω ω2 · · · ωM−1

1 ω2 ω4 · · · ω2(M−1)

...

1 ω j ω2 j · · · ω(M−1) j

...

1 ω(M−1) ω2(M−1) · · · ω(M−1)(M−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

α0

α1

α2

...

αM−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where ω is a complex Mth root of unity (the extra factor of
√

M is new and has

the effect of ensuring that if the |αi |2 add up to 1, then so do the |βi |2). Although

the preceding equation suggests an O(M2) algorithm, the classical FFT is able to

perform this calculation in just O(M log M) steps, and it is this speedup that has

had the profound effect of making digital signal processing practically feasible. We

will now see that quantum computers can implement the FFT exponentially faster,

in O(log2 M) time!

But wait, how can any algorithm take time less than M, the length of the input? The

point is that we can encode the input in a superposition of just m = log M qubits:

after all, this superposition consists of 2m amplitude values. In the notation we

introduced earlier, we would write the superposition as
∣∣α〉 = ∑M−1

j=0 α j

∣∣ j
〉

where

αi is the amplitude of the m-bit binary string corresponding to the number i in the

natural way. This brings up an important point: the
∣∣ j

〉
notation is really just another

way of writing a vector, where the index of each entry of the vector is written out

explicitly in the special bracket symbol.

Starting from this input superposition
∣∣α〉

, the quantum Fourier transform (QFT)
manipulates it appropriately in m = log M stages. At each stage the superposi-

tion evolves so that it encodes the intermediate results at the same stage of the

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

304 10.3 The quantum Fourier transform

Figure 10.4 The classical FFT circuit from Chapter 2. Input vectors of M bits
are processed in a sequence of m = log M levels.

α0

α4

α2

α6

α1

α5

α7

α3

1

4

4

4

4

6

6 7

4

4

2

2
6

3

2
5

4

β0

β1

β2

β3

β4

β5

β6

β7

classical FFT (whose circuit, with m = log M stages, is reproduced from Chapter 2

in Figure 10.4). As we will see in Section 10.5, this can be achieved with m quantum

operations per stage. Ultimately, after m such stages and m2 = log2 M elementary

operations, we obtain the superposition
∣∣β〉

that corresponds to the desired output

of the QFT.

So far we have only considered the good news about the QFT: its amazing speed.

Now it is time to read the fine print. The classical FFT algorithm actually outputs
the M complex numbers β0, . . . , βM−1. In contrast, the QFT only prepares a super-

position
∣∣β = ∑M−1

j=0 β j

∣∣ j
〉
. And, as we saw earlier, these amplitudes are part of the

“private world” of this quantum system.

Thus the only way to get our hands on this result is by measuring it! And measuring

the state of the system only yields m = log M classical bits: specifically, the output

is index j with probability |β j |2.
So, instead of QFT, it would be more accurate to call this algorithm quantum Fourier
sampling. Moreover, even though we have confined our attention to the case M = 2m

in this section, the algorithm can be implemented for arbitrary values of M, and

can be summarized as follows:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 305

Figure 10.5 Examples of periodic superpositions.

0 M − 6

· · ·
3 6

5

9 M − 3

M − 7 M − 3

· · ·
1 9

period 4

period 3

Input: A superposition of m = log M qubits,
∣∣α〉 = ∑M−1

j=0 α j

∣∣ j
〉
.

Method: Using O(m2) = O(log2 M) quantum operations perform the quantum

FFT to obtain the superposition
∣∣β〉 = ∑M−1

j=0 β j

∣∣ j
〉
.

Output: A random m-bit number j (that is, 0 ≤ j ≤ M − 1), from the

probability distribution Pr [j] = |β j |2.

Quantum Fourier sampling is basically a quick way of getting a very rough idea

about the output of the classical FFT, just detecting one of the larger components of

the answer vector. In fact, we don’t even see the value of that component—we only

see its index. How can we use such meager information? In which applications of

the FFT is just the index of the large components enough? This is what we explore

next.

10.4 Periodicity
Suppose that the input to the QFT,

∣∣α〉 = (α0, α1, . . . , αM−1), is such that αi = α j

whenever i ≡ j mod k, where k is a particular integer that divides M. That is, the

array α consists of M/k repetitions of some sequence (α0, α1, . . . , αk−1) of length k.

Moreover, suppose that exactly one of the k numbers α0, . . . , αk−1 is nonzero, say

α j . Then we say that
∣∣α〉

is periodic with period k and offset j (Figure 10.5).

It turns out that if the input vector is periodic, we can use quantum Fourier sam-

pling to compute its period! This is based on the following fact, proved in the next

box:

Suppose the input to quantum Fourier sampling is periodic with period k, for
some k that divides M. Then the output will be a multiple of M/k, and it is
equally likely to be any of the k multiples of M/k.

Now a little thought tells us that by repeating the sampling a few times (repeatedly

preparing the periodic superposition and doing Fourier sampling), and then taking

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

306 10.4 Periodicity

The Fourier transform of a periodic vector

Suppose the vector
∣∣α〉 = (α0, α1, . . . , αM−1) is periodic with period k and with no offset

(that is, the nonzero terms are α0, αk, α2k, . . .). Thus,

∣∣α〉 =
M/k−1∑

j=0

√
k
M

∣∣ j k
〉
.

We will show that its Fourier transform
∣∣β〉 = (β0, β1, . . . , βM−1) is also periodic, with

period M/k and no offset.

Claim
∣∣β〉 = 1√

k

∑k−1

j=0

∣∣ j M
k

〉
.

Proof. In the input vector, the coefficient α� is
√

k/M if k divides �, and is zero otherwise.
We can plug this into the formula for the j th coefficient of

∣∣β〉
:

β j = 1√
M

M−1∑
�=0

ω j�α� =
√

k

M

M/k−1∑
i=0

ω j ik .

The summation is a geometric series, 1 + ω j k + ω2 j k + ω3 j k + · · · , containing M/k
terms and with ratio ω j k (recall that ω is a complex Mth root of unity). There are two
cases. If the ratio is exactly 1, which happens if j k ≡ 0 mod M, then the sum of the series
is simply the number of terms. If the ratio isn’t 1, we can apply the usual formula for

geometric series to find that the sum is
1−ω j k(M/k)

1−ω j k = 1−ωMj

1−ω j k = 0.

Therefore β j is 1/
√

k if M divides j k, and is zero otherwise.

More generally, we can consider the original superposition to be periodic with period k, but
with some offset l < k:

∣∣α〉 =
M/k−1∑

j=0

√
k
M

∣∣ j k + l
〉
.

Then, as before, the Fourier transform
∣∣β〉

will have nonzero amplitudes precisely at
multiples of M/k:

Claim
∣∣β〉 = 1√

k

∑k−1

j=0 ωl j M/k
∣∣ j M

k

〉
.

The proof of this claim is very similar to the preceding one (Exercise 10.5).

We conclude that the QFT of any periodic superposition with period k is an array that is
everywhere zero, except at indices that are multiples of M/k, and all these k nonzero coefficients
have equal absolute values. So if we sample the output, we will get an index that is a multiple
of M/k, and each of the k such indices will occur with probability 1/k.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 307

the greatest common divisor of all the indices returned, we will with very high

probability get the number M/k—and from it the period k of the input!

Let’s make this more precise.

Lemma Suppose s independent samples are drawn uniformly from

0,
M

k
,

2M

k
, . . . ,

(k − 1)M

k
.

Then with probability at least 1 − k/2s, the greatest common divisor of these samples
is M/k.

Proof. The only way this can fail is if all the samples are multiples of j ·
M/k, where j is some integer greater than 1. So, fix any integer j ≥ 2. The

chance that a particular sample is a multiple of j M/k is at most 1/j ≤ 1/2;

and thus the chance that all the samples are multiples of j M/k is at most

1/2s.

So far we have been thinking about a particular number j ; the probability

that this bad event will happen for some j ≤ k is at most equal to the sum
of these probabilities over the different values of j , which is no more than

k/2s.

We can make the failure probability as small as we like by taking s to be an appro-

priate multiple of log M.

10.5 Quantum circuits
So quantum computers can carry out a Fourier transform exponentially faster than

classical computers. But what do these computers actually look like? What is a

quantum circuit made up of, and exactly how does it compute Fourier transforms

so quickly?

10.5.1 Elementary quantum gates

An elementary quantum operation is analogous to an elementary gate like the AND

or NOT gate in a classical circuit. It operates upon either a single qubit or two qubits.

One of the most important examples is the Hadamard gate, denoted by H, which

operates on a single qubit. On input
∣∣0〉

, it outputs H(
∣∣0〉

) = 1√
2

∣∣0〉 + 1√
2

∣∣1〉
. And for

input
∣∣1〉

, H(
∣∣1〉

) = 1√
2

∣∣0〉 − 1√
2

∣∣1〉
. In pictures:

1√
2

0 + 1√
2

1 H1H0 1√
2

0 − 1√
2

1

Notice that in either case, measuring the resulting qubit yields 0 with probability

1/2 and 1 with probability 1/2. But what happens if the input to the Hadamard gate

is an arbitrary superposition α0

∣∣0〉 + α1

∣∣1〉
? The answer, dictated by the linearity of

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

308 10.5 Quantum circuits

quantum physics, is the superposition α0 H (
∣∣0〉

) + α1 H (
∣∣1〉

) = α0+α1√
2

∣∣0〉 + α0−α1√
2

∣∣1〉
.

And so, if we apply the Hadamard gate to the output of a Hadamard gate, it restores

the qubit to its original state!

Another basic gate is the controlled-NOT, or CNOT. It operates upon two qubits, with

the first acting as a control qubit and the second as the target qubit. The CNOT gate

flips the second bit if and only if the first qubit is a 1. Thus CNOT(
∣∣00

〉
) = ∣∣00

〉
and

CNOT(
∣∣10

〉
) = ∣∣11〉

:

00 00 10 11

Yet another basic gate, the controlled phase gate, is described below in the subsection

describing the quantum circuit for the QFT.

Now let us consider the following question: Suppose we have a quantum state on

n qubits,
∣∣α〉 = ∑

x∈{0,1}n αx

∣∣x〉
. How many of these 2n amplitudes change if we

apply the Hadamard gate to only the first qubit? The surprising answer is—all of

them! The new superposition becomes
∣∣β〉 = ∑

x∈{0,1}n βx

∣∣x〉
, where β0y = α0y+α1y√

2

and β1y = α0y−α1y√
2

. Looking at the results more closely, the quantum operation on

the first qubit deals with each n − 1 bit suffix y separately. Thus the pair of ampli-

tudes α0y and α1y are transformed into (α0y + α1y)/
√

2 and (α0y − α1y)/
√

2. This is

exactly the feature that will give us an exponential speedup in the quantum Fourier

transform.

10.5.2 Two basic types of quantum circuits

A quantum circuit takes some number n of qubits as input, and outputs the same

number of qubits. In the diagram these n qubits are carried by the n wires going

from left to right. The quantum circuit consists of the application of a sequence of

elementary quantum gates (of the kind described above) to single qubits and pairs

of qubits.

At a high level, there are two basic functionalities of quantum circuits that we use

in the design of quantum algorithms:

Quantum Fourier Transform These quantum circuits take as input n qubits in

some state
∣∣α〉

and output the state
∣∣β〉

resulting from applying the QFT to∣∣α〉
.

Classical Functions Consider a function f with n input bits and m output

bits, and suppose we have a classical circuit that outputs f (x). Then there is a

quantum circuit that, on input consisting of an n-bit string x padded with m
0’s, outputs x and f (x):

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 309

f(x)x C

x

f(x)

x

0

Classical circuit Quantum circuit

Now the input to this quantum circuit could be a superposition over the n bit

strings x,
∑

x

∣∣x, 0k
〉
, in which case the output has to be

∑
x

∣∣x, f (x)
〉
.

Exercise 10.7 explores the construction of such circuits out of elementary

quantum gates.

Understanding quantum circuits at this high level is sufficient to follow the rest of

this chapter. The next subsection on quantum circuits for the QFT can therefore be

safely skipped by anyone not wanting to delve into these details.

10.5.3 The quantum Fourier transform circuit

Here we have reproduced the diagram (from Section 2.6.4) showing how the clas-

sical FFT circuit for M-vectors is composed of two FFT circuits for (M/2)-vectors

followed by some simple gates.

α0
α2

α3

j + M/2

j
α1

βj+M/2FFTM/2

FFTM/2
...

...

βj

FFTM (input: α0, . . . ,αM−1, output: β0, . . . ,βM−1)

αM−2

αM−1

Let’s see how to simulate this on a quantum system. The input is now encoded

in the 2m amplitudes of m = log M qubits. Thus the decomposition of the inputs

into evens and odds, as shown in the preceding figure, is clearly determined by one

of the qubits—the least significant qubit. How do we separate the even and odd

inputs and apply the recursive circuits to compute FFTM/2 on each half? The answer

is remarkable: just apply the quantum circuit QFTM/2 to the remaining m− 1 qubits.

The effect of this is to apply QFTM/2 to the superposition of all the m-bit strings of

the form x0 (of which there are M/2), and separately to the superposition of all

the m-bit strings of the form x1. Thus the two recursive classical circuits can be

emulated by a single quantum circuit—an exponential speedup when we unwind

the recursion!

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

310 10.6 Factoring as periodicity

QFTM/2

least significant bit

m− 1 qubits QFTM/2

H

Let us now consider the gates in the classical FFT circuit after the recursive calls

to FFTM/2: the wires pair up j with M/2 + j , and ignoring for now the phase

that is applied to the contents of the (M/2 + j)th wire, we must add and subtract

these two quantities to obtain the j th and the (M/2 + j)th outputs, respectively.

How would a quantum circuit achieve the result of these M classical gates? Sim-

ple: just perform the Hadamard gate on the first qubit! Recall from the preceding

discussion (Section 10.5.1) that for every possible configuration of the remaining

m− 1 qubits x, this pairs up the strings 0x and 1x. Translating from binary, this

means we are pairing up x and M/2 + x. Moreover the result of the Hadamard

gate is that for each such pair, the amplitudes are replaced by the sum and differ-

ence (normalized by 1/
√

2) , respectively. So far the QFT requires almost no gates

at all!

The phase that must be applied to the (M/2 + j)th wire for each j requires a little

more work. Notice that the phase of ω j must be applied only if the first qubit is

1. Now if j is represented by the m− 1 bits j1 . . . jm−1, then ω j = �m−1
l=1 ω2 jl . Thus

the phase ω j can be applied by applying for the lth wire (for each l) a phase of

ω2l

if the lth qubit is a 1 and the first qubit is a 1. This task can be accomplished

by another two-qubit quantum gate—the controlled phase gate. It leaves the two

qubits unchanged unless they are both 1, in which case it applies a specified phase

factor.

The QFT circuit is now specified. The number of quantum gates is given by the

formula S(m) = S(m− 1) + O(m), which works out to S(m) = O(m2). The QFT on

inputs of size M = 2m thus requires O(m2) = O(log2 M) quantum operations.

10.6 Factoring as periodicity
We have seen how the quantum Fourier transform can be used to find the period of

a periodic superposition. Now we show, by a sequence of simple reductions, how

factoring can be recast as a period-finding problem.

Fix an integer N. A nontrivial square root of 1 modulo N (recall Exercises 1.36

and 1.40) is any integer x �≡ ±1 mod N such that x2 ≡ 1 mod N. If we can find a

nontrivial square root of 1 mod N, then it is easy to decompose N into a product of

two nontrivial factors (and repeating the process would factor N):

Lemma If x is a nontrivial square root of 1 modulo N, then gcd(x + 1, N) is a
nontrivial factor of N.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 311

Proof. x2 ≡ 1 mod N implies that N divides (x2 − 1) = (x + 1)(x − 1). But N does

not divide either of these individual terms, since x �≡ ±1 mod N. Therefore N must

have a nontrivial factor in common with each of (x + 1) and (x − 1). In particular,

gcd(N, x + 1) is a nontrivial factor of N.

Example. Let N = 15. Then 42 ≡ 1 mod 15, but 4 �≡ ±1 mod 15. Both gcd(4 − 1, 15)

= 3 and gcd(4 + 1, 15) = 5 are nontrivial factors of 15.

To complete the connection with periodicity, we need one further concept. Define

the order of x modulo N to be the smallest positive integer r such that xr ≡ 1 mod N.

For instance, the order of 2 mod 15 is 4.

Computing the order of a random number x mod N is closely related to the problem

of finding nontrivial square roots, and thereby to factoring. Here’s the link.

Lemma Let N be an odd composite, with at least two distinct prime factors, and
let x be chosen uniformly at random between 0 and N − 1. If gcd(x, N) = 1, then
with probability at least 1/2, the order r of x mod N is even, and moreover xr/2 is a
nontrivial square root of 1 mod N.

The proof of this lemma is left as an exercise. What it implies is that if we could

compute the order r of a randomly chosen element x mod N, then there’s a good

chance that this order is even and that xr/2 is a nontrivial square root of 1 modulo

N. In which case gcd(xr/2 + 1, N) is a factor of N.

Example. If x = 2 and N = 15, then the order of 2 is 4 since 24 ≡ 1 mod 15. Raising

2 to half this power, we get a nontrivial root of 1: 22 ≡ 4 �≡ ±1 mod 15. So we get a

divisor of 15 by computing gcd(4 + 1, 15) = 5.

Hence we have reduced FACTORING to the problem of ORDER FINDING. The advan-

tage of this latter problem is that it has a natural periodic function associated with

it: fix N and x, and consider the function f (a) = xa mod N. If r is the order of

x, then f (0) = f (r) = f (2r) = · · · = 1, and similarly, f (1) = f (r + 1) = f (2r + 1)

= · · · = x. Thus f is periodic, with period r . And we can compute it efficiently

by the repeated squaring algorithm from Section 1.2.2. So, in order to factor N,

all we need to do is to figure out how to use the function f to set up a periodic

superposition with period r ; whereupon we can use quantum Fourier sampling as

in Section 10.3 to find r . This is described in the next box.

10.7 The quantum algorithm for factoring
We can now put together all the pieces of the quantum algorithm for FACTORING (see

Figure 10.6). Since we can test in polynomial time whether the input is a prime or

a prime power, we’ll assume that we have already done that and that the input is

an odd composite number with at least two distinct prime factors.

Input: an odd composite integer N.

Output: a factor of N.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

312 10.7 The quantum algorithm for factoring

Setting up a periodic superposition

Let us now see how to use our periodic function f (a) = x a mod N to set up a periodic
superposition. Here is the procedure:

� We start with two quantum registers, both initially 0.
� Compute the quantum Fourier transform of the first register modulo M, to get a

superposition over all numbers between 0 and M − 1:
1√
M

∑M−1

a=0

∣∣a , 0
〉
. This is

because the initial superposition can be thought of as periodic with period M, so the
transform is periodic with period 1.

� We now compute the function f (a) = x a mod N. The quantum circuit for doing
this regards the contents of the first register a as the input to f , and the second register
(which is initially 0) as the answer register. After applying this quantum circuit, the

state of the two registers is:
∑M−1

a=0
1√
M

∣∣a , f (a)
〉
.

� We now measure the second register. This gives a periodic superposition on the first
register, with period r , the period of f . Here’s why:

Since f is a periodic function with period r , for every r th value in the first register,
the contents of the second register are the same. The measurement of the second
register therefore yields f (k) for some random k between 0 and r − 1. What is the
state of the first register after this measurement? To answer this question, recall the
rules of partial measurement outlined earlier in this chapter. The first register is now
in a superposition of only those values a that are compatible with the outcome of
the measurement on the second register. But these values of a are exactly k, k +
r, k + 2r, . . . , k + M − r . So the resulting state of the first register is a periodic
superposition

∣∣α〉
with period r , which is exactly the order of x that we wish to find!

1. Choose x uniformly at random in the range 1 ≤ x ≤ N − 1.

2. Let M be a power of 2 near N (for reasons we cannot get into here, it is best

to choose M ≈ N2).

3. Repeat s = 2 log N times:

(a) Start with two quantum registers, both initially 0, the first large enough

to store a number modulo M and the second modulo N.

(b) Use the periodic function f (a) ≡ xa mod N to create a periodic super-

position
∣∣α〉

of length M as follows (see box for details):

i. Apply the QFT to the first register to obtain the superposition∑M−1
a=0

1√
M

∣∣a, 0
〉
.

ii. Compute f (a) = xa mod N using a quantum circuit, to get the su-

perposition
∑M−1

a=0
1√
M

∣∣a, xa mod N
〉
.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 313

Figure 10.6 Quantum factoring.

iii. Measure the second register. Now the first register contains the peri-

odic superposition
∣∣α〉 = ∑M/r−1

j=0

√
r
M

∣∣ j r + k
〉

where k is a random

offset between 0 and r − 1 (recall that r is the order of x modulo N).

(c) Fourier sample the superposition
∣∣α〉

to obtain an index between 0 and

M − 1.

Let g be the gcd of the resulting indices j1, . . . , js.

4. If M/g is even, then compute gcd(N, xM/2g + 1) and output it if it is a non-

trivial factor of N; otherwise return to step 1.

From previous lemmas, we know that this method works for at least half the choices

of x, and hence the entire procedure has to be repeated only a couple of times on

average before a factor is found.

But there is one aspect of this algorithm, having to do with the number M, that

is still quite unclear: M, the size of our FFT, must be a power of 2. And for our

period-detecting idea to work, the period must divide M—hence it should also be

a power of 2. But the period in our case is the order of x, definitely not a power

of 2!

The reason it all works anyway is the following: the quantum Fourier transform can
detect the period of a periodic vector even if it does not divide M. But the derivation

is not as clean as in the case when the period does divide M, so we shall not go

any further into this.

Let n = log N be the number of bits of the input N. The running time of the al-

gorithm is dominated by the 2 log N = O(n) repetitions of step 3. Since modular

exponentiation takes O(n3) steps (as we saw in Section 1.2.2) and the quantum

Fourier transform takes O(n2) steps, the total running time for the quantum factor-

ing algorithm is O(n3 log n).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

314 Exercises

Implications for computer science and quantum physics

In the early days of computer science, people wondered whether there were much more
powerful computers than those made up of circuits composed of elementary gates. But
since the seventies this question has been considered well settled. Computers implementing
the von Neumann architecture on silicon were the obvious winners, and it was widely
accepted that any other way of implementing computers is polynomially equivalent to
them. That is, a T-step computation on any computer takes at most some polynomial in
T steps on another. This fundamental principle is called the extended Church-Turing thesis.
Quantum computers violate this fundamental thesis and therefore call into question some
of our most basic assumptions about computers.

Can quantum computers be built? This is the challenge that is keeping busy many research
teams of physicists and computer scientists around the world. The main problem is that
quantum superpositions are very fragile and need to be protected from any inadvertent
measurement by the environment. There is progress, but it is very slow: so far, the most
ambitious reported quantum computation was the factorization of the number 15 into its
factors 3 and 5 using nuclear magnetic resonance (NMR). And even in this experiment,
there are questions about how faithfully the quantum factoring algorithm was really
implemented. The next decade promises to be really exciting in terms of our ability to
physically manipulate quantum bits and implement quantum computers.

But there is another possibility: What if all these efforts at implementing quantum
computers fail? This would be even more interesting, because it would point to some
fundamental flaw in quantum physics, a theory that has stood unchallenged for a century.

Quantum computation is motivated as much by trying to clarify the mysterious nature of
quantum physics as by trying to create novel and superpowerful computers.

Exercises

10.1.
∣∣ψ 〉 = 1√

2

∣∣00
〉 + 1√

2

∣∣11〉
is one of the famous “Bell states,” a highly entangled

state of its two qubits. In this question we examine some of its strange properties.

(a) Suppose this Bell state could be decomposed as the (tensor) product of

two qubits (recall the box on page 300), the first in state α0

∣∣0〉 + α1

∣∣1〉
and the second in state β0

∣∣0〉 + β1

∣∣1〉
. Write four equations that the

amplitudes α0, α1, β0, and β1 must satisfy. Conclude that the Bell state

cannot be so decomposed.

(b) What is the result of measuring the first qubit of
∣∣ψ 〉

?

(c) What is the result of measuring the second qubit after measuring the first

qubit?

(d) If the two qubits in state
∣∣ψ 〉

are very far from each other, can you see

why the answer to (c) is surprising?

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

Chapter 10 Algorithms 315

10.2. Show that the following quantum circuit prepares the Bell state∣∣ψ 〉 = 1√
2

∣∣00
〉 + 1√

2

∣∣11〉
on input

∣∣00
〉
: apply a Hadamard gate to the first qubit

followed by a CNOT with the first qubit as the control and the second qubit as the

target.

H

What does the circuit output on input 10, 01, and 11? These are the rest of the

Bell basis states.

10.3. What is the quantum Fourier transform modulo M of the uniform superposition
1√
M

∑M−1
j=0

∣∣ j
〉
?

10.4. What is the QFT modulo M of
∣∣ j

〉
?

10.5. Convolution-Multiplication. Suppose we shift a superposition
∣∣α〉 = ∑

j α j

∣∣ j
〉

by

l to get the superposition
∣∣α′〉 = ∑

j α j

∣∣ j + l
〉
. If the QFT of

∣∣α〉
is

∣∣β〉
, show that

the QFT of α′ is β ′, where β ′
j = β jω

l j . Conclude that if∣∣α′〉 = ∑M/k−1
j=0

√
k
M

∣∣ jk + l
〉
, then

∣∣β ′〉 = 1√
k

∑k−1
j=0 ωl j M/k

∣∣ j M/k
〉
.

10.6. Show that if you apply the Hadamard gate to the inputs and outputs of a CNOT

gate, the result is a CNOT gate with control and target qubits switched:

H

HH

H
≡

10.7. The CONTROLLED SWAP (C-SWAP) gate takes as input 3 qubits and swaps the second

and third if and only if the first qubit is a 1.

(a) Show that each of the NOT, CNOT, and C-SWAP gates are their own inverses.

(b) Show how to implement an AND gate using a C-SWAP gate, i.e., what inputs

a, b, c would you give to a C-SWAP gate so that one of the outputs is a ∧ b?

(c) How would you achieve fanout using just these three gates? That is, on

input a and 0, output a and a.

(d) Conclude therefore that for any classical circuit C there is an equivalent

quantum circuit Q using just NOT and C-SWAP gates in the following sense:

if C outputs y on input x, then Q outputs
∣∣x, y, z

〉
on input

∣∣x, 0, 0
〉
. (Here

z is some set of junk bits that are generated during this computation.)

(e) Now show that that there is a quantum circuit Q−1 that outputs
∣∣x, 0, 0

〉
on input

∣∣x, y, z
〉
.

(f) Show that there is a quantum circuit Q ′ made up of NOT, CNOT, and C-SWAP

gates that outputs
∣∣x, y, 0

〉
on input

∣∣x, 0, 0
〉
.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 Ch010 GTBL020-Dasgupta-v10 August 12, 2006 0:25

316 Exercises

10.8. In this problem we will show that if N = pq is the product of two odd primes,

and if x is chosen uniformly at random between 0 and N − 1, such that

gcd(x, N) = 1, then with probability at least 3/8, the order r of x mod N is even,

and moreover xr/2 is a nontrivial square root of 1 mod N.

(a) Let p be an odd prime and let x be a uniformly random number modulo

p. Show that the order of x mod p is even with probability at least 1/2.

(Hint: Use Fermat’s little theorem (Section 1.3).)

(b) Use the Chinese remainder theorem (Exercise 1.37) to show that with

probability at least 3/4, the order r of x mod N is even.

(c) If r is even, prove that the probability that xr/2 ≡ ±1 is at most 1/2.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 BM GTBL020-Dasgupta-v10 July 28, 2006 20:19

Historical notes and further reading

Chapters 1 and 2

The classical book on the theory of numbers is

G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers. Oxford
University Press, 1980.

The primality algorithm was discovered by Robert Solovay and Vblker Strassen in

the mid-1970’s, while the RSA cryptosystem came about a couple of years later. See

D. R. Stinson, Cryptography: Theory and Practice. Chapman and Hall, 2005

for much more on cryptography. For randomized algorithms, see

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University
Press, 1995.

Universal hash functions were proposed in 1979 by Larry Carter and Mark Wegman.

The fast matrix multiplication algorithm is due to Volker Strassen (1969). Also due

to Strassen, with Arnold Schönhage, is the fastest known algorithm for integer

multiplication. It uses a variant of the FFT to multiply n-bit integers in O(n log n
log log n) bit operations.

Chapter 3

Depth-first search and its many applications were articulated by John Hopcroft and

Bob Tarjan in 1973—they were honored for this contribution by the Turing award,

the highest distinction in Computer Science. The two-phase algorithm for finding

strongly connected components is due to Rao Kosaraju.

Chapters 4 and 5

Dijkstra’s algorithm was discovered in 1959 by Edsger Dijkstra (1930–2002), while

the first algorithm for computing minimum spanning trees can be traced back to a

1926 paper by the Czech mathematician Otakar Boruvka. The analysis of the union-

find data structure (which is actually a little more tight than our log* n bound) is

due to Bob Tarjan. Finally, David Huffman discovered in 1952, while a graduate

student, the encoding algorithm that bears his name.

Chapter 7

The simplex method was discovered in 1947 by George Danzig (1914–2005), and the

min-max theorem for zero-sum games in 1928 by John von Neumann (who is also

considered the father of the computer). A very nice book on linear programming is

V. Chvátal, Linear Programming. W. H. Freeman, 1983.

317

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

das23402 BM GTBL020-Dasgupta-v10 July 28, 2006 20:19

318

And for game theory, see

Martin J. Osborne and Ariel Rubinstein, A course in game theory. M.I.T. Press,
1994.

Chapters 8 and 9

The notion of NP-completeness was first identified in the work of Steve Cook, who

proved in 1971 that SAT is NP-complete; a year later Dick Karp came up with a

list of 23 NP-complete problems (including all the ones proven so in Chapter 8),

establishing beyond doubt the applicability of the concept (they were both given the

Turing award). Leonid Levin, working in the Soviet Union, independently proved a

similar theorem.

For an excellent treatment of NP-completeness see

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, 1979.

And for the more general subject of Complexity see

C. H. Papadimitriou, Computational Complexity. Addison-Wesley, Reading
Massachusetts, 1995.

Chapter 10

The quantum algorithm for primality was discovered in 1994 by Peter Shor. For a

novel introduction to quantum mechanics for computer scientists see

http://www.cs.berkeley.edu/∼vazirani/quantumphysics.html

and for an introduction to quantum computation see the notes for the course

“Qubits, Quantum Mechanics, and Computers” at

http://www.cs.berkeley.edu/∼vazirani/cs191.html

http://www.cs.berkeley.edu/%E2%88%BCvazirani/quantumphysics.html
http://www.cs.berkeley.edu/%E2%88%BCvazirani/cs191.html

P1: NDK/OVY P2: NDK/OVY QC: OSO/OVY T1: OSO

das23402 IND GTBL020-Dasgupta-v7 August 12, 2006 0:30

Index
O(·), 6

�(·), 8

�(·), 8∣∣ · 〉
, 297

addition, 11

adjacency list, 82

adjacency matrix, 81

advanced encryption standard

(AES), 32

amortized analysis, 135

ancestor, 88

approximation algorithm, 276

approximation ratio, 276

backtracking, 272

bases, 12

basic computer step, 5

Bellman-Ford algorithm, 117

biconnected components, 102

big-O notation, 6–8

binary search, 50

binary tree

complete, 12

full, 73, 140

bipartite graph, 96

Boolean circuit, 221, 260

Boolean formula, 144

conjunctive normal form, 234

implication, 144

literal, 144

satisfying assignment, 144,

234

variable, 144

branch-and-bound, 275

Carmichael numbers, 26, 28

Chinese remainder theorem, 42

circuit SAT, see satisfiability

circuit value, 221

clique, 242, 252

clustering, 239, 279

CNF, see Boolean formula

complex numbers, 63, 298

roots of unity, 63

computational biology, 166

connectedness

directed, 91

undirected, 86

controlled-NOT gate, 308

cryptography

private-key, 30, 31

public-key, 30, 33

cut, 130

s − t cut, 203

and flow, 203

balanced cut, 239

max cut, 295

minimum cut, 139, 238

cut property, 130

cycle, 89

dag, see directed acyclic graph

Dantzig, George, 190

degree, 96

depth-first search, 83

back edge, 85

tree edge, 85

descendant, 88

DFS, see depth-first search

digital signature, 43

Dijkstra’s algorithm, 110

directed acyclic graph, 89

longest path, 120

shortest path, 119, 156

disjoint sets, 132

path compression, 135

union by rank, 133

distances in graphs, 104

division, 15

duality, 192, 206

flow, 228

shortest path, 229

duality theorem, 208

dynamic programming

common subproblems, 165

subproblem, 158

versus divide-and-conquer,

160

edit distance, 159

ellipsoid method, 220

entanglement, 300

entropy, 143, 151

equivalence relation, 102

Euler path, 100, 237

Euler tour, 100

Euler, Leonhard, 100, 236

exhaustive search, 232

exponential time, 4, 233

extended Church-Turing thesis, 314

factoring, 24, 245, 297, 310

fast Fourier transform, 57

algorithm, 68

feasible solutions, 189

Fermat test, 25

Fermat’s little theorem, 23

Feynman, Richard, 297

Fibonacci numbers, 2

Fibonacci, Leonardo, 2

flow, 199

forest, 86

Fourier basis, 65

games

min-max theorem, 212

mixed strategy, 210

payoff, 210

pure strategy, 210

Gauss, Carl Friedrich, 45, 70

Gaussian elimination, 219

gcd, see greatest common divisor

geometric series, 9, 49

graph, 80

dense, 82

directed, 81

edge, 80

node, 80

reverse, 96

sink, 90

source, 90

sparse, 82

undirected, 81

vertex, 80

graph partitioning, 288

greatest common divisor, 19

Euclid’s algorithm, 20

extended Euclid algorithm, 21

greedy algorithm, 127

group theory, 26

Hadamard gate, 307

half-space, 189, 213

Hall’s theorem, 230

halting problem, 263

Hamilton cycle, see Rudrata cycle

Hardy, G.H., 31

319

P1: NDK/OVY P2: NDK/OVY QC: OSO/OVY T1: OSO

das23402 IND GTBL020-Dasgupta-v7 August 12, 2006 0:30

320 Index

harmonic series, 39

hash function, 35

for Web search, 94

universal, 38

heap, 109, 114

d-ary, 114, 115, 122

binary, 114, 122

Fibonacci, 114

Horn formula, 144

Horner’s rule, 77

Huffman encoding, 138

hydrogen atom, 297

hyperplane, 213

ILP, see integer linear programming

independent set, 240, 249, 252

in trees, 175

integer linear programming, 194, 222, 239, 256

interior-point method, 220

interpolation, 58, 62

Karger’s algorithm, 139

k-cluster, 280

knapsack, 242

approximation algorithm, 283

unary knapsack, 242

with repetition, 167

without repetition, 167

Kruskal’s algorithm, 128–132

Lagrange prime number theorem, 28

linear inequality, 189

linear program, 189

dual, 207

infeasible, 190

matrix-vector form, 198

primal, 207

standard form, 197

unbounded, 190

linearization, 90

log∗, 137

logarithm, 12

longest increasing subsequence, 157

longest path, 120, 242, 265

master theorem for recurrences, 49

matching

3D matching, 240, 241, 252, 254

bipartite matching, 205, 228, 240

maximal, 278

perfect, 205

matrix multiplication, 56, 168

max cut, 295

max SAT, see satisfiability

max-flow min-cut theorem, 204

measurement, 298

partial, 300

median, 53

minimum spanning tree, 127, 236

local search, 293

modular arithmetic, 16–23

addition, 17

division, 18, 23

exponentiation, 18

multiplication, 18

multiplicative inverse, 23

Moore’s Law, 4, 233

Moore, Gordon, 233

MP3 compression, 138

MST, see minimum spanning tree

multiplication, 13

divide-and-conquer, 45–48

multiway cut, 294

negative cycle, 118

negative edges in graphs, 115

network, 199

nontrivial square root, 28, 43, 310

NP, 244

NP-complete problem, 245

number theory, 31

one-time pad, 31

optimization problems, 188

order modulo N, 311

P, 244

path compression, see disjoint sets

polyhedron, 192, 213

polynomial multiplication, 57

polynomial time, 5, 233

prefix-free code, 140

Prim’s algorithm, 139

primality, 23–27

priority queue, 109, 113–115

Prolog, 145

quantum circuit, 307

quantum computer, 297

quantum Fourier sampling, 304

quantum Fourier transform,

303

quantum gate, 307

qubit, 298

random primes, 28

recurrence relation, 46, 49

master theorem, 49

recursion, 160

reduction, 196, 245

relatively prime, 23

repeated squaring, 18

residual network, 200

RSA cryptosystem, 33–34,

267

Rudrata paths and cycles, 265

Rudrata cycle, 238, 247, 256

Rudrata path, 238, 247, 265

satisfiability, 232

2SAT, 101, 235

3SAT, 235, 249, 250, 252

backtracking, 272, 293

circuit SAT, 260

Horn SAT, 144, 235

max SAT, 265, 295

SAT, 250

search problem, 232, 234

selection, 54

set cover, 145, 241

shortest path, 104

all pairs, 172

reliable paths, 171

signal processing, 59

simplex algorithm, 190

degenerate vertex, 218

neighbor, 213

vertex, 213

simulated annealing, 290

sorting

iterative mergesort, 51

lower bound, 52

mergesort, 50–51

quicksort, 56, 75

Strassen, Volker, 56

strongly connected component, 91

subset sum, 242, 255

superposition, 298

periodic, 305

superposition principle, 298

topological sorting, see linearization

traveling salesman problem, 173, 235, 260

approximation algorithm, 281

branch-and-bound, 276

inapproximability, 283

local search, 285

tree, 129

TSP, see traveling salesman problem

Tukey, John, 70

Turing, Alan M., 263

two’s complement, 17

undecidability, 263

Vandermonde matrix, 64

vertex cover, 241, 252

approximation algorithm, 278

Wilson’s theorem, 42

World Wide Web, 81, 82, 94

zero-one equations, 240, 254–256

ZOE, see zero-one equations

McGraw-Hill Higher Education

D
asgupta 

Papadim
itriou 

Vazirani
A

lgorith
m

s

Algorithms

Sanjoy Dasgupta
Christos Papadimitriou

Umesh Vazirani

T his text, extensively class-tested over a decade at UC Berkeley and UC
San Diego, explains the fundamentals of algorithms in a story line that makes
the material enjoyable and easy to digest.

Emphasis is placed on understanding the crisp mathematical idea behind
each algorithm, in a manner that is intuitive and rigorous without being
unduly formal.

Features include:
•	 The use of boxes to strengthen the narrative: pieces that provide historical

context, descriptions of how the algorithms are used in practice, and
excursions for the mathematically sophisticated.

•	 Carefully chosen advanced topics that can be skipped in a standard one-
semester course, but can be covered in an advanced algorithms course or
in a more leisurely two-semester sequence.

•	 An accessible treatment of linear programming introduces students to
one of the greatest achievements in algorithms. An optional chapter on
the quantum algorithm for factoring provides a unique peephole into this
exciting topic.

	Cover Page
	Title Page

	Copyright Page

	Dedication
	Contents
	Preface
	0 Prologue
	0.1 Books and algorithms
	0.2 Enter Fibonacci
	0.3 Big-O notation
	Exercises

	1 Algorithms with numbers
	1.1 Basic arithmetic
	1.2 Modular arithmetic
	1.3 Primality testing
	1.4 Cryptography
	1.5 Universal hashing
	Exercises
	Randomized algorithms: a virtual chapter

	2 Divide-and-conquer algorithms
	2.1 Multiplication
	2.2 Recurrence relations
	2.3 Mergesort
	2.4 Medians
	2.5 Matrix multiplication
	2.6 The fast Fourier transform
	Exercises

	3 Decompositions of graphs
	3.1 Why graphs?
	3.2 Depth-first search in undirected graphs
	3.3 Depth-first search in directed graphs
	3.4 Strongly connected components
	Exercises

	4 Paths in graphs
	4.1 Distances
	4.2 Breadth-first search
	4.3 Lengths on edges
	4.4 Dijkstra’s algorithm
	4.5 Priority queue implementations
	4.6 Shortest paths in the presence of negative edges
	4.7 Shortest paths in dags
	Exercises

	5 Greedy algorithms
	5.1 Minimum spanning trees
	5.2 Huffman encoding
	5.3 Horn formulas
	5.4 Set cover
	Exercises

	6 Dynamic programming
	6.1 Shortest paths in dags, revisited
	6.2 Longest increasing subsequences
	6.3 Edit distance
	6.4 Knapsack
	6.5 Chain matrix multiplication
	6.6 Shortest paths
	6.7 Independent sets in trees
	Exercises

	7 Linear programming and reductions
	7.1 An introduction to linear programming
	7.2 Flows in networks
	7.3 Bipartite matching
	7.4 Duality
	7.5 Zero-sum games
	7.6 The simplex algorithm
	7.7 Postscript: circuit evaluation
	Exercises

	8 NP-complete problems
	8.1 Search problems
	8.2 NP-complete problems
	8.3 The reductions
	Exercises

	9 Coping with NP-completeness
	9.1 Intelligent exhaustive search
	9.2 Approximation algorithms
	9.3 Local search heuristics
	Exercises

	10 Quantum algorithms
	10.1 Qubits, superposition, and measurement
	10.2 The plan
	10.3 The quantum Fourier transform
	10.4 Periodicity
	10.5 Quantum circuits
	10.6 Factoring as periodicity
	10.7 The quantum algorithm for factoring
	Exercises

	Historical notes and further reading
	Index

