
C# Tutorial

C# is a simple, modern, general-purpose, object-oriented programming

language developed by Microsoft within its .NET initiative led by Anders

Hejlsberg. This tutorial will teach you basic C# programming and will also

take you through various advanced concepts related to C# programming

language.

Audience
This tutorial has been prepared for the beginners to help them understand

basic C# programming.

Prerequisites
C# programming is very much based on C and C++ programming languages,

so if you have a basic understanding of C or C++ programming, then it will

be fun to learn C#.

C# - Overview
C# is a modern, general-purpose, object-oriented programming language

developed by Microsoft and approved by European Computer Manufacturers

Association (ECMA) and International Standards Organization (ISO).

C# was developed by Anders Hejlsberg and his team during the development

of .Net Framework.

C# is designed for Common Language Infrastructure (CLI), which consists of

the executable code and runtime environment that allows use of various high-

level languages on different computer platforms and architectures.

The following reasons make C# a widely used professional language −

 It is a modern, general-purpose programming language

 It is object oriented.

 It is component oriented.

 It is easy to learn.

 It is a structured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 It is a part of .Net Framework.

Strong Programming Features of C#
Although C# constructs closely follow traditional high-level languages, C and

C++ and being an object-oriented programming language. It has strong

resemblance with Java, it has numerous strong programming features that

make it endearing to a number of programmers worldwide.

Following is the list of few important features of C# −

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

 Conditional Compilation

 Simple Multithreading

 LINQ and Lambda Expressions

 Integration with Windows

C# - Environment
In this chapter, we will discuss the tools required for creating C#

programming. We have already mentioned that C# is part of .Net framework

and is used for writing .Net applications. Therefore, before discussing the

available tools for running a C# program, let us understand how C# relates

to the .Net framework.

The .Net Framework
The .Net framework is a revolutionary platform that helps you to write the

following types of applications −

 Windows applications

 Web applications

 Web services

The .Net framework applications are multi-platform applications. The

framework has been designed in such a way that it can be used from any of

the following languages: C#, C++, Visual Basic, Jscript, COBOL, etc. All these

languages can access the framework as well as communicate with each other.

The .Net framework consists of an enormous library of codes used by the

client languages such as C#. Following are some of the components of the

.Net framework −

 Common Language Runtime (CLR)

 The .Net Framework Class Library

 Common Language Specification

 Common Type System

 Metadata and Assemblies

 Windows Forms

 ASP.Net and ASP.Net AJAX

 ADO.Net

 Windows Workflow Foundation (WF)

 Windows Presentation Foundation

 Windows Communication Foundation (WCF)

 LINQ

For the jobs each of these components perform, please see ASP.Net -

Introduction, and for details of each component, please consult Microsoft's

documentation.

Integrated Development Environment

(IDE) for C#
Microsoft provides the following development tools for C# programming −

 Visual Studio 2010 (VS)

 Visual C# 2010 Express (VCE)

 Visual Web Developer

The last two are freely available from Microsoft official website. Using these

tools, you can write all kinds of C# programs from simple command-line

applications to more complex applications. You can also write C# source code

files using a basic text editor, like Notepad, and compile the code into

assemblies using the command-line compiler, which is again a part of the

.NET Framework.

Visual C# Express and Visual Web Developer Express edition are trimmed

down versions of Visual Studio and has the same appearance. They retain

most features of Visual Studio. In this tutorial, we have used Visual C# 2010

Express.

https://www.tutorialspoint.com/asp.net/asp.net_introduction.htm
https://www.tutorialspoint.com/asp.net/asp.net_introduction.htm

You can download it from Microsoft Visual Studio. It gets installed

automatically on your machine.

Note: You need an active internet connection for installing the express

edition.

Writing C# Programs on Linux or Mac OS
Although the.NET Framework runs on the Windows operating system, there

are some alternative versions that work on other operating systems. Mono is

an open-source version of the .NET Framework which includes a C# compiler

and runs on several operating systems, including various flavors of Linux and

Mac OS. Kindly check Go Mono.

The stated purpose of Mono is not only to be able to run Microsoft .NET

applications cross-platform, but also to bring better development tools for

Linux developers. Mono can be run on many operating systems including

Android, BSD, iOS, Linux, OS X, Windows, Solaris, and UNIX.

C# - Program Structure
Before we study basic building blocks of the C# programming language, let

us look at a bare minimum C# program structure so that we can take it as a

reference in upcoming chapters.

Creating Hello World Program
A C# program consists of the following parts −

 Namespace declaration

 A class

 Class methods

 Class attributes

 A Main method

 Statements and Expressions

 Comments

Let us look at a simple code that prints the words "Hello World" −

https://www.microsoft.com/visualstudio/eng/downloads
http://www.go-mono.com/mono-downloads/download.html

using System;

namespace HelloWorldApplication {
 class HelloWorld {
 static void Main(string[] args) {
 /* my first program in C# */
 Console.WriteLine("Hello World");
 Console.ReadKey();
 }
 }
}

When this code is compiled and executed, it produces the following result −

Hello World

Let us look at the various parts of the given program −

 The first line of the program using System; - the using keyword is used to

include the System namespace in the program. A program generally has

multiple using statements.

 The next line has the namespace declaration. A namespace is a collection of

classes. The HelloWorldApplicationF namespace contains the class HelloWorld.

 The next line has a class declaration, the class HelloWorld contains the data and

method definitions that your program uses. Classes generally contain multiple

methods. Methods define the behavior of the class. However, the HelloWorld class

has only one method Main.

 The next line defines the Main method, which is the entry point for all C#

programs. The Main method states what the class does when executed.

 The next line /*...*/ is ignored by the compiler and it is put to addcomments in

the program.

 The Main method specifies its behavior with the

statement Console.WriteLine("Hello World");

WriteLine is a method of the Console class defined in the Systemnamespace. This

statement causes the message "Hello, World!" to be displayed on the screen.

 The last line Console.ReadKey(); is for the VS.NET Users. This makes the

program wait for a key press and it prevents the screen from running and closing

quickly when the program is launched from Visual Studio .NET.

It is worth to note the following points −

 C# is case sensitive.

 All statements and expression must end with a semicolon (;).

 The program execution starts at the Main method.

 Unlike Java, program file name could be different from the class name.

Compiling and Executing the Program
If you are using Visual Studio.Net for compiling and executing C# programs,

take the following steps −

 Start Visual Studio.

 On the menu bar, choose File -> New -> Project.

 Choose Visual C# from templates, and then choose Windows.

 Choose Console Application.

 Specify a name for your project and click OK button.

 This creates a new project in Solution Explorer.

 Write code in the Code Editor.

 Click the Run button or press F5 key to execute the project. A Command Prompt

window appears that contains the line Hello World.

You can compile a C# program by using the command-line instead of the

Visual Studio IDE −

 Open a text editor and add the above-mentioned code.

 Save the file as helloworld.cs

 Open the command prompt tool and go to the directory where you saved the file.

 Type csc helloworld.cs and press enter to compile your code.

 If there are no errors in your code, the command prompt takes you to the next

line and generates helloworld.exe executable file.

 Type helloworld to execute your program.

 You can see the output Hello World printed on the screen.

C# - Basic Syntax
C# is an object-oriented programming language. In Object-Oriented

Programming methodology, a program consists of various objects that

interact with each other by means of actions. The actions that an object may

take are called methods. Objects of the same kind are said to have the same

type or, are said to be in the same class.

For example, let us consider a Rectangle object. It has attributes such as

length and width. Depending upon the design, it may need ways for accepting

the values of these attributes, calculating the area, and displaying details.

Let us look at implementation of a Rectangle class and discuss C# basic

syntax −

using System;

namespace RectangleApplication {
 class Rectangle {

 // member variables
 double length;
 double width;

 public void Acceptdetails() {
 length = 4.5;
 width = 3.5;
 }
 public double GetArea() {
 return length * width;
 }
 public void Display() {
 Console.WriteLine("Length: {0}", length);
 Console.WriteLine("Width: {0}", width);
 Console.WriteLine("Area: {0}", GetArea());
 }
 }
 class ExecuteRectangle {
 static void Main(string[] args) {
 Rectangle r = new Rectangle();
 r.Acceptdetails();
 r.Display();
 Console.ReadLine();
 }
 }
}

When the above code is compiled and executed, it produces the following

result −

Length: 4.5
Width: 3.5
Area: 15.75

The using Keyword
The first statement in any C# program is

using System;

The using keyword is used for including the namespaces in the program. A

program can include multiple using statements.

The class Keyword
The class keyword is used for declaring a class.

Comments in C#
Comments are used for explaining code. Compilers ignore the comment

entries. The multiline comments in C# programs start with /* and terminates

with the characters */ as shown below −

/* This program demonstrates

The basic syntax of C# programming

Language */

Single-line comments are indicated by the '//' symbol. For example,

}//end class Rectangle

Member Variables
Variables are attributes or data members of a class, used for storing data. In

the preceding program, the Rectangle class has two member variables

named length and width.

Member Functions
Functions are set of statements that perform a specific task. The member

functions of a class are declared within the class. Our sample class Rectangle

contains three member functions: AcceptDetails, GetArea and Display.

Instantiating a Class
In the preceding program, the class ExecuteRectangle contains

the Main()method and instantiates the Rectangle class.

Identifiers
An identifier is a name used to identify a class, variable, function, or any

other user-defined item. The basic rules for naming classes in C# are as

follows −

 A name must begin with a letter that could be followed by a sequence of letters,

digits (0 - 9) or underscore. The first character in an identifier cannot be a digit.

 It must not contain any embedded space or symbol such as? - + ! @ # % ^ & *

() [] { } . ; : " ' / and \. However, an underscore (_) can be used.

 It should not be a C# keyword.

C# Keywords
Keywords are reserved words predefined to the C# compiler. These keywords

cannot be used as identifiers. However, if you want to use these keywords as

identifiers, you may prefix the keyword with the @ character.

In C#, some identifiers have special meaning in context of code, such as get

and set are called contextual keywords.

The following table lists the reserved keywords and contextual keywords in

C# −

Reserved Keywords

abstract as base bool break byte case

catch char checked class const continue decimal

default delegate do double else enum event

explicit extern false finally fixed float for

foreach goto if implicit in
in (generic

modifier)
int

interface internal is lock long namespace new

null object operator out

out

(generic

modifier)

override params

private protected public readonly ref return sbyte

sealed short sizeof stackalloc static string struct

switch this throw true try typeof uint

ulong unchecked unsafe ushort using virtual void

volatile while

Contextual Keywords

add alias ascending descending dynamic from get

global group into join let orderby
partial

(type)

partial

(method)
remove select set

C# - Data Types
The variables in C#, are categorized into the following types −

 Value types

 Reference types

 Pointer types

Value Type
Value type variables can be assigned a value directly. They are derived from

the class System.ValueType.

The value types directly contain data. Some examples are int, char, and

float, which stores numbers, alphabets, and floating point numbers,

respectively. When you declare an int type, the system allocates memory to

store the value.

The following table lists the available value types in C# 2010 −

Type Represents Range Default

Value

bool Boolean value True or False False

byte 8-bit unsigned integer 0 to 255 0

char 16-bit Unicode character U +0000 to U +ffff '\0'

decimal 128-bit precise decimal

values with 28-29

significant digits

(-7.9 x 1028 to 7.9 x 1028) / 100to

28

0.0M

double 64-bit double-precision

floating point type

(+/-)5.0 x 10-324 to (+/-)1.7 x

10308

0.0D

float 32-bit single-precision

floating point type
-3.4 x 1038 to + 3.4 x 1038

0.0F

int 32-bit signed integer type -2,147,483,648 to 2,147,483,647 0

long 64-bit signed integer type -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

0L

sbyte 8-bit signed integer type -128 to 127 0

short 16-bit signed integer type -32,768 to 32,767 0

uint 32-bit unsigned integer

type
0 to 4,294,967,295

0

ulong 64-bit unsigned integer

type
0 to 18,446,744,073,709,551,615

0

ushort 16-bit unsigned integer

type
0 to 65,535

0

To get the exact size of a type or a variable on a particular platform, you can

use the sizeof method. The expression sizeof(type) yields the storage size

of the object or type in bytes. Following is an example to get the size

of int type on any machine −

using System;

namespace DataTypeApplication {

 class Program {

 static void Main(string[] args) {

 Console.WriteLine("Size of int: {0}", sizeof(int));

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Size of int: 4

Reference Type
The reference types do not contain the actual data stored in a variable, but

they contain a reference to the variables.

In other words, they refer to a memory location. Using multiple variables, the

reference types can refer to a memory location. If the data in the memory

location is changed by one of the variables, the other variable automatically

reflects this change in value. Example of built-in reference types

are: object, dynamic, and string.

Object Type

The Object Type is the ultimate base class for all data types in C# Common

Type System (CTS). Object is an alias for System.Object class. The object

types can be assigned values of any other types, value types, reference

types, predefined or user-defined types. However, before assigning values, it

needs type conversion.

When a value type is converted to object type, it is called boxing and on the

other hand, when an object type is converted to a value type, it is

called unboxing.

object obj;

obj = 100; // this is boxing

Dynamic Type

You can store any type of value in the dynamic data type variable. Type

checking for these types of variables takes place at run-time.

Syntax for declaring a dynamic type is −

dynamic <variable_name> = value;

For example,

dynamic d = 20;

Dynamic types are similar to object types except that type checking for object

type variables takes place at compile time, whereas that for the dynamic type

variables takes place at run time.

String Type

The String Type allows you to assign any string values to a variable. The

string type is an alias for the System.String class. It is derived from object

type. The value for a string type can be assigned using string literals in two

forms: quoted and @quoted.

For example,

String str = "Tutorials Point";

A @quoted string literal looks as follows −

@"Tutorials Point";

The user-defined reference types are: class, interface, or delegate. We will

discuss these types in later chapter.

Pointer Type
Pointer type variables store the memory address of another type. Pointers in

C# have the same capabilities as the pointers in C or C++.

Syntax for declaring a pointer type is −

type* identifier;

For example,

char* cptr;

int* iptr;

We will discuss pointer types in the chapter 'Unsafe Codes'.

C# - Type Conversion
Type conversion is converting one type of data to another type. It is also

known as Type Casting. In C#, type casting has two forms −

 Implicit type conversion − These conversions are performed by C# in a type-

safe manner. For example, are conversions from smaller to larger integral types

and conversions from derived classes to base classes.

 Explicit type conversion − These conversions are done explicitly by users using

the pre-defined functions. Explicit conversions require a cast operator.

The following example shows an explicit type conversion −

using System;

namespace TypeConversionApplication {
 class ExplicitConversion {
 static void Main(string[] args) {
 double d = 5673.74;
 int i;

 // cast double to int.
 i = (int)d;
 Console.WriteLine(i);
 Console.ReadKey();
 }
 }
}

When the above code is compiled and executed, it produces the following

result −

5673

C# Type Conversion Methods
C# provides the following built-in type conversion methods −

Sr.No. Methods & Description

1
ToBoolean

Converts a type to a Boolean value, where possible.

2
ToByte

Converts a type to a byte.

3
ToChar

Converts a type to a single Unicode character, where possible.

4
ToDateTime

Converts a type (integer or string type) to date-time structures.

5
ToDecimal

Converts a floating point or integer type to a decimal type.

6
ToDouble

Converts a type to a double type.

7
ToInt16

Converts a type to a 16-bit integer.

8
ToInt32

Converts a type to a 32-bit integer.

9
ToInt64

Converts a type to a 64-bit integer.

10
ToSbyte

Converts a type to a signed byte type.

11
ToSingle

Converts a type to a small floating point number.

12
ToString

Converts a type to a string.

13
ToType

Converts a type to a specified type.

14
ToUInt16

Converts a type to an unsigned int type.

15
ToUInt32

Converts a type to an unsigned long type.

16
ToUInt64

Converts a type to an unsigned big integer.

The following example converts various value types to string type −

using System;

namespace TypeConversionApplication {

 class StringConversion {

 static void Main(string[] args) {

 int i = 75;

 float f = 53.005f;

 double d = 2345.7652;

 bool b = true;

 Console.WriteLine(i.ToString());

 Console.WriteLine(f.ToString());

 Console.WriteLine(d.ToString());

 Console.WriteLine(b.ToString());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

75
53.005
2345.7652
True

C# - Variables
A variable is nothing but a name given to a storage area that our programs

can manipulate. Each variable in C# has a specific type, which determines

the size and layout of the variable's memory the range of values that can be

stored within that memory and the set of operations that can be applied to

the variable.

The basic value types provided in C# can be categorized as −

Type Example

Integral types sbyte, byte, short, ushort, int, uint, long, ulong, and char

Floating point types float and double

Decimal types decimal

Boolean types true or false values, as assigned

Nullable types Nullable data types

C# also allows defining other value types of variable such as enum and

reference types of variables such as class, which we will cover in subsequent

chapters.

Defining Variables
Syntax for variable definition in C# is −

<data_type> <variable_list>;

Here, data_type must be a valid C# data type including char, int, float,

double, or any user-defined data type, and variable_list may consist of one

or more identifier names separated by commas.

Some valid variable definitions are shown here −

int i, j, k;
char c, ch;
float f, salary;
double d;

You can initialize a variable at the time of definition as −

int i = 100;

Initializing Variables
Variables are initialized (assigned a value) with an equal sign followed by a

constant expression. The general form of initialization is −

variable_name = value;

Variables can be initialized in their declaration. The initializer consists of an

equal sign followed by a constant expression as −

<data_type> <variable_name> = value;

Some examples are −

int d = 3, f = 5; /* initializing d and f. */

byte z = 22; /* initializes z. */
double pi = 3.14159; /* declares an approximation of pi. */
char x = 'x'; /* the variable x has the value 'x'. */

It is a good programming practice to initialize variables properly, otherwise

sometimes program may produce unexpected result.

The following example uses various types of variables −

using System;

namespace VariableDefinition {

 class Program {

 static void Main(string[] args) {

 short a;

 int b ;

 double c;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

a = 10, b = 20, c = 30

Accepting Values from User
The Console class in the System namespace provides a

function ReadLine()for accepting input from the user and store it into a

variable.

For example,

int num;

num = Convert.ToInt32(Console.ReadLine());

The function Convert.ToInt32() converts the data entered by the user to

int data type, because Console.ReadLine() accepts the data in string

format.

Lvalue and Rvalue Expressions in C#
There are two kinds of expressions in C# −

 lvalue − An expression that is an lvalue may appear as either the left-hand or

right-hand side of an assignment.

 rvalue − An expression that is an rvalue may appear on the right- but not left-

hand side of an assignment.

Variables are lvalues and hence they may appear on the left-hand side of an

assignment. Numeric literals are rvalues and hence they may not be assigned

and can not appear on the left-hand side. Following is a valid C# statement

−

int g = 20;

But following is not a valid statement and would generate compile-time error

−

10 = 20;

C# - Constants and Literals

The constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals. Constants can be of any

of the basic data types like an integer constant, a floating constant, a

character constant, or a string literal. There are also enumeration constants

as well.

The constants are treated just like regular variables except that their values

cannot be modified after their definition.

Integer Literals
An integer literal can be a decimal, or hexadecimal constant. A prefix specifies

the base or radix: 0x or 0X for hexadecimal, and there is no prefix id for

decimal.

An integer literal can also have a suffix that is a combination of U and L, for

unsigned and long, respectively. The suffix can be uppercase or lowercase

and can be in any order.

Here are some examples of integer literals −

212 /* Legal */
215u /* Legal */
0xFeeL /* Legal */

Following are other examples of various types of Integer literals −

85 /* decimal */
0x4b /* hexadecimal */
30 /* int */
30u /* unsigned int */
30l /* long */
30ul /* unsigned long */

Floating-point Literals
A floating-point literal has an integer part, a decimal point, a fractional part,

and an exponent part. You can represent floating point literals either in

decimal form or exponential form.

Here are some examples of floating-point literals −

3.14159 /* Legal */
314159E-5F /* Legal */
510E /* Illegal: incomplete exponent */
210f /* Illegal: no decimal or exponent */
.e55 /* Illegal: missing integer or fraction */

While representing in decimal form, you must include the decimal point, the

exponent, or both; and while representing using exponential form you must

include the integer part, the fractional part, or both. The signed exponent is

introduced by e or E.

Character Constants
Character literals are enclosed in single quotes. For example, 'x' and can be

stored in a simple variable of char type. A character literal can be a plain

character (such as 'x'), an escape sequence (such as '\t'), or a universal

character (such as '\u02C0').

There are certain characters in C# when they are preceded by a backslash.

They have special meaning and they are used to represent like newline (\n)

or tab (\t). Here, is a list of some of such escape sequence codes −

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xhh . . . Hexadecimal number of one or more digits

Following is the example to show few escape sequence characters −

using System;

namespace EscapeChar {

 class Program {

 static void Main(string[] args) {

 Console.WriteLine("Hello\tWorld\n\n");

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Hello World

String Literals
String literals or constants are enclosed in double quotes "" or with @"". A

string contains characters that are similar to character literals: plain

characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and

separating the parts using whitespaces.

Here are some examples of string literals. All the three forms are identical

strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

@"hello dear"

Defining Constants
Constants are defined using the const keyword. Syntax for defining a

constant is −

const <data_type> <constant_name> = value;

The following program demonstrates defining and using a constant in your

program −

using System;

namespace DeclaringConstants {

 class Program {

 static void Main(string[] args) {

 const double pi = 3.14159;

 // constant declaration

 double r;

 Console.WriteLine("Enter Radius: ");

 r = Convert.ToDouble(Console.ReadLine());

 double areaCircle = pi * r * r;

 Console.WriteLine("Radius: {0}, Area: {1}", r, areaCircle);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Enter Radius:
3
Radius: 3, Area: 28.27431

C# - Operators

An operator is a symbol that tells the compiler to perform specific

mathematical or logical manipulations. C# has rich set of built-in operators

and provides the following type of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

This tutorial explains the arithmetic, relational, logical, bitwise, assignment,

and other operators one by one.

Arithmetic Operators
Following table shows all the arithmetic operators supported by C#. Assume

variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

+ Adds two operands A + B =

30

- Subtracts second operand from the first A - B = -

10

* Multiplies both operands A * B =

200

/ Divides numerator by de-numerator B / A = 2

% Modulus Operator and remainder of after an integer

division

B % A =

0

++ Increment operator increases integer value by one A++ =

11

-- Decrement operator decreases integer value by one A-- = 9

Relational Operators
Following table shows all the relational operators supported by C#. Assume

variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

https://www.tutorialspoint.com/csharp/csharp_arithmetic_operators.htm
https://www.tutorialspoint.com/csharp/csharp_relational_operators.htm

== Checks if the values of two operands are equal or not, if

yes then condition becomes true.

(A == B)

is not

true.

!= Checks if the values of two operands are equal or not, if

values are not equal then condition becomes true.

(A != B)

is true.

> Checks if the value of left operand is greater than the

value of right operand, if yes then condition becomes true.

(A > B)

is not

true.

< Checks if the value of left operand is less than the value of

right operand, if yes then condition becomes true.

(A < B)

is true.

>= Checks if the value of left operand is greater than or equal

to the value of right operand, if yes then condition

becomes true.

(A >= B)

is not

true.

<= Checks if the value of left operand is less than or equal to

the value of right operand, if yes then condition becomes

true.

(A <= B)

is true.

Logical Operators
Following table shows all the logical operators supported by C#. Assume

variable A holds Boolean value true and variable B holds Boolean value false,

then –

Operator Description Example

&& Called Logical AND operator. If both the operands are non

zero then condition becomes true.

(A && B)

is false.

|| Called Logical OR Operator. If any of the two operands is

non zero then condition becomes true.

(A || B)

is true.

! Called Logical NOT Operator. Use to reverses the logical

state of its operand. If a condition is true then Logical NOT

operator will make false.

!(A &&

B) is

true.

Bitwise Operators
Bitwise operator works on bits and perform bit by bit operation. The truth

tables for &, |, and ^ are as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; then in the binary format they are as follows

−

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C# are listed in the following table.

Assume variable A holds 60 and variable B holds 13, then −

Show Examples

Operator Description Example

https://www.tutorialspoint.com/csharp/csharp_bitwise_operators.htm

& Binary AND Operator copies a bit to the result if it exists

in both operands.

(A & B) =

12, which is

0000 1100

| Binary OR Operator copies a bit if it exists in either

operand.

(A | B) =

61, which is

0011 1101

^ Binary XOR Operator copies the bit if it is set in one

operand but not both.

(A ^ B) =

49, which is

0011 0001

~

Binary Ones Complement Operator is unary and has the

effect of 'flipping' bits.

(~A) = 61,

which is

1100 0011

in 2's

complement

due to a

signed

binary

number.

<< Binary Left Shift Operator. The left operands value is

moved left by the number of bits specified by the right

operand.

A << 2 =

240, which

is 1111

0000

>> Binary Right Shift Operator. The left operands value is

moved right by the number of bits specified by the right

operand.

A >> 2 =

15, which is

0000 1111

Assignment Operators
There are following assignment operators supported by C# −

Show Examples

Operator Description Example

https://www.tutorialspoint.com/csharp/csharp_assignment_operators.htm

= Simple assignment operator, Assigns values from right

side operands to left side operand

C = A + B

assigns

value of A

+ B into C

+= Add AND assignment operator, It adds right operand to

the left operand and assign the result to left operand

C += A is

equivalent

to C = C

+ A

-= Subtract AND assignment operator, It subtracts right

operand from the left operand and assign the result to

left operand

C -= A is

equivalent

to C = C -

A

*= Multiply AND assignment operator, It multiplies right

operand with the left operand and assign the result to left

operand

C *= A is

equivalent

to C = C

* A

/= Divide AND assignment operator, It divides left operand

with the right operand and assign the result to left

operand

C /= A is

equivalent

to C = C /

A

%= Modulus AND assignment operator, It takes modulus

using two operands and assign the result to left operand

C %= A is

equivalent

to C = C

% A

<<= Left shift AND assignment operator C <<= 2

is same

as C = C

<< 2

>>= Right shift AND assignment operator C >>= 2

is same

as C = C

>> 2

&= Bitwise AND assignment operator C &= 2 is

same as C

= C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is

same as C

= C ^ 2

|= bitwise inclusive OR and assignment operator C |= 2 is

same as C

= C | 2

Miscellaneous Operators
There are few other important operators including sizeof, typeof and ?

:supported by C#.

Show Examples

Operator Description Example

sizeof() Returns the size of a data type. sizeof(int), returns 4.

typeof() Returns the type of a class. typeof(StreamReader);

&

Returns the address of an variable.

&a; returns actual

address of the

variable.

*

Pointer to a variable.

*a; creates pointer

named 'a' to a

variable.

https://www.tutorialspoint.com/csharp/csharp_misc_operators.htm

? :

Conditional Expression

If Condition is true ?

Then value X :

Otherwise value Y

is
Determines whether an object is of a certain

type.

If(Ford is Car) //

checks if Ford is an

object of the Car class.

as

Cast without raising an exception if the cast

fails.

Object obj = new

StringReader("Hello");

StringReader r = obj

as StringReader;

Operator Precedence in C#
Operator precedence determines the grouping of terms in an expression. This

affects evaluation of an expression. Certain operators have higher

precedence than others; for example, the multiplication operator has higher

precedence than the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator

* has higher precedence than +, so the first evaluation takes place for 3*2

and then 7 is added into it.

Here, operators with the highest precedence appear at the top of the table,

those with the lowest appear at the bottom. Within an expression, higher

precedence operators are evaluated first.

Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

https://www.tutorialspoint.com/csharp/csharp_operators_precedence.htm

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

C# - Decision Making

Decision making structures requires the programmer to specify one or more

conditions to be evaluated or tested by the program, along with a statement

or statements to be executed if the condition is determined to be true, and

optionally, other statements to be executed if the condition is determined to

be false.

Following is the general form of a typical decision making structure found in

most of the programming languages −

C# provides following types of decision making statements. Click the

following links to check their detail.

Sr.No. Statement & Description

1 if statement

An if statement consists of a boolean expression followed by one or more

statements.

2 if...else statement

An if statement can be followed by an optional else statement, which

executes when the boolean expression is false.

https://www.tutorialspoint.com/csharp/if_statement_in_csharp.htm
https://www.tutorialspoint.com/csharp/if_else_statement_in_csharp.htm

3 nested if statements

You can use one if or else if statement inside another if or else

ifstatement(s).

4 switch statement

A switch statement allows a variable to be tested for equality against a

list of values.

5 nested switch statements

You can use one switch statement inside another switchstatement(s).

The ? : Operator
We have covered conditional operator ? : in previous chapter which can be

used to replace if...else statements. It has the following general form −

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement

of the colon.

The value of a ? expression is determined as follows: Exp1 is evaluated. If it

is true, then Exp2 is evaluated and becomes the value of the entire ?

expression. If Exp1 is false, then Exp3 is evaluated and its value becomes

the value of the expression.

C# - Loops

There may be a situation, when you need to execute a block of code several

number of times. In general, the statements are executed sequentially: The

first statement in a function is executed first, followed by the second, and so

on.

Programming languages provide various control structures that allow for

more complicated execution paths.

A loop statement allows us to execute a statement or a group of statements

multiple times and following is the general from of a loop statement in most

of the programming languages −

https://www.tutorialspoint.com/csharp/nested_if_statements_in_csharp.htm
https://www.tutorialspoint.com/csharp/switch_statement_in_csharp.htm
https://www.tutorialspoint.com/csharp/nested_switch_statements_in_csharp.htm

C# provides following types of loop to handle looping requirements. Click the

following links to check their detail.

Sr.No. Loop Type & Description

1 while loop

It repeats a statement or a group of statements while a given condition is

true. It tests the condition before executing the loop body.

2 for loop

It executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

3 do...while loop

It is similar to a while statement, except that it tests the condition at the

end of the loop body

4 nested loops

https://www.tutorialspoint.com/csharp/csharp_while_loop.htm
https://www.tutorialspoint.com/csharp/csharp_for_loop.htm
https://www.tutorialspoint.com/csharp/csharp_do_while_loop.htm
https://www.tutorialspoint.com/csharp/csharp_nested_loops.htm

You can use one or more loop inside any another while, for or do..while

loop.

Loop Control Statements
Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that

scope are destroyed.

C# provides the following control statements. Click the following links to

check their details.

Sr.No. Control Statement & Description

1 break statement

Terminates the loop or switch statement and transfers execution to the

statement immediately following the loop or switch.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest

its condition prior to reiterating.

Infinite Loop
A loop becomes infinite loop if a condition never becomes false. The for loop

is traditionally used for this purpose. Since none of the three expressions that

form the for loop are required, you can make an endless loop by leaving the

conditional expression empty.

Example

using System;

namespace Loops {

 class Program {

 static void Main(string[] args) {

 for (; ;) {

 Console.WriteLine("Hey! I am Trapped");

https://www.tutorialspoint.com/csharp/csharp_break_statement.htm
https://www.tutorialspoint.com/csharp/csharp_continue_statement.htm

 }

 }

 }

}

When the conditional expression is absent, it is assumed to be true. You may

have an initialization and increment expression, but programmers more

commonly use the for(;;) construct to signify an infinite loop.

C# - Encapsulation

Encapsulation is defined 'as the process of enclosing one or more items

within a physical or logical package'. Encapsulation, in object oriented

programming methodology, prevents access to implementation details.

Abstraction and encapsulation are related features in object oriented

programming. Abstraction allows making relevant information visible and

encapsulation enables a programmer to implement the desired level of

abstraction.

Encapsulation is implemented by using access specifiers. An access

specifier defines the scope and visibility of a class member. C# supports the

following access specifiers −

 Public

 Private

 Protected

 Internal

 Protected internal

Public Access Specifier
Public access specifier allows a class to expose its member variables and

member functions to other functions and objects. Any public member can be

accessed from outside the class.

The following example illustrates this −

using System;

namespace RectangleApplication {

 class Rectangle {

 //member variables

 public double length;

 public double width;

 public double GetArea() {

 return length * width;

 }

 public void Display() {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle {

 static void Main(string[] args) {

 Rectangle r = new Rectangle();

 r.length = 4.5;

 r.width = 3.5;

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Length: 4.5
Width: 3.5
Area: 15.75

In the preceding example, the member variables length and width are

declared public, so they can be accessed from the function Main() using an

instance of the Rectangle class, named r.

The member function Display() and GetArea() can also access these

variables directly without using any instance of the class.

The member functions Display() is also declared public, so it can also be

accessed from Main() using an instance of the Rectangle class, named r.

Private Access Specifier
Private access specifier allows a class to hide its member variables and

member functions from other functions and objects. Only functions of the

same class can access its private members. Even an instance of a class

cannot access its private members.

The following example illustrates this −

using System;

namespace RectangleApplication {

 class Rectangle {

 //member variables

 private double length;

 private double width;

 public void Acceptdetails() {

 Console.WriteLine("Enter Length: ");

 length = Convert.ToDouble(Console.ReadLine());

 Console.WriteLine("Enter Width: ");

 width = Convert.ToDouble(Console.ReadLine());

 }

 public double GetArea() {

 return length * width;

 }

 public void Display() {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle {

 static void Main(string[] args) {

 Rectangle r = new Rectangle();

 r.Acceptdetails();

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Enter Length:
4.4
Enter Width:
3.3
Length: 4.4
Width: 3.3
Area: 14.52

In the preceding example, the member variables length and width are

declared private, so they cannot be accessed from the function Main(). The

member functions AcceptDetails() and Display() can access these variables.

Since the member functions AcceptDetails() and Display() are

declared public, they can be accessed from Main() using an instance of the

Rectangle class, named r.

Protected Access Specifier
Protected access specifier allows a child class to access the member variables

and member functions of its base class. This way it helps in implementing

inheritance. We will discuss this in more details in the inheritance chapter.

Internal Access Specifier
Internal access specifier allows a class to expose its member variables and

member functions to other functions and objects in the current assembly. In

other words, any member with internal access specifier can be accessed from

any class or method defined within the application in which the member is

defined.

The following program illustrates this −

using System;

namespace RectangleApplication {

 class Rectangle {

 //member variables

 internal double length;

 internal double width;

 double GetArea() {

 return length * width;

 }

 public void Display() {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle {

 static void Main(string[] args) {

 Rectangle r = new Rectangle();

 r.length = 4.5;

 r.width = 3.5;

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Length: 4.5
Width: 3.5
Area: 15.75

In the preceding example, notice that the member function GetArea() is not

declared with any access specifier. Then what would be the default access

specifier of a class member if we don't mention any? It is private.

Protected Internal Access Specifier
The protected internal access specifier allows a class to hide its member

variables and member functions from other class objects and functions,

except a child class within the same application. This is also used while

implementing inheritance.

C# - Methods

A method is a group of statements that together perform a task. Every C#

program has at least one class with a method named Main.

To use a method, you need to −

 Define the method

 Call the method

Defining Methods in C#
When you define a method, you basically declare the elements of its

structure. The syntax for defining a method in C# is as follows −

<Access Specifier> <Return Type> <Method Name>(Parameter List) {
 Method Body
}

Following are the various elements of a method −

 Access Specifier − This determines the visibility of a variable or a method from

another class.

 Return type − A method may return a value. The return type is the data type of

the value the method returns. If the method is not returning any values, then the

return type is void.

 Method name − Method name is a unique identifier and it is case sensitive. It

cannot be same as any other identifier declared in the class.

 Parameter list − Enclosed between parentheses, the parameters are used to

pass and receive data from a method. The parameter list refers to the type, order,

and number of the parameters of a method. Parameters are optional; that is, a

method may contain no parameters.

 Method body − This contains the set of instructions needed to complete the

required activity.

Example
Following code snippet shows a function FindMax that takes two integer

values and returns the larger of the two. It has public access specifier, so it

can be accessed from outside the class using an instance of the class.

class NumberManipulator {

 public int FindMax(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

 }

 ...

}

Calling Methods in C#
You can call a method using the name of the method. The following example

illustrates this −

using System;

namespace CalculatorApplication {

 class NumberManipulator {

 public int FindMax(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

 }

 static void Main(string[] args) {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 NumberManipulator n = new NumberManipulator();

 //calling the FindMax method

 ret = n.FindMax(a, b);

 Console.WriteLine("Max value is : {0}", ret);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Max value is : 200

You can also call public method from other classes by using the instance of

the class. For example, the method FindMax belongs to

the NumberManipulatorclass, you can call it from another class Test.

using System;

namespace CalculatorApplication {

 class NumberManipulator {

 public int FindMax(int num1, int num2) {

 /* local variable declaration */

 int result;

 if(num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

 }

 }

 class Test {

 static void Main(string[] args) {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 NumberManipulator n = new NumberManipulator();

 //calling the FindMax method

 ret = n.FindMax(a, b);

 Console.WriteLine("Max value is : {0}", ret);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Max value is : 200

Recursive Method Call
A method can call itself. This is known as recursion. Following is an example

that calculates factorial for a given number using a recursive function −

using System;

namespace CalculatorApplication {

 class NumberManipulator {

 public int factorial(int num) {

 /* local variable declaration */

 int result;

 if (num == 1) {

 return 1;

 } else {

 result = factorial(num - 1) * num;

 return result;

 }

 }

 static void Main(string[] args) {

 NumberManipulator n = new NumberManipulator();

 //calling the factorial method {0}", n.factorial(6));

 Console.WriteLine("Factorial of 7 is : {0}", n.factorial(7));

 Console.WriteLine("Factorial of 8 is : {0}", n.factorial(8));

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Factorial of 6 is: 720
Factorial of 7 is: 5040
Factorial of 8 is: 40320

Passing Parameters to a Method
When method with parameters is called, you need to pass the parameters to

the method. There are three ways that parameters can be passed to a method

−

Sr.No. Mechanism & Description

1 Value parameters

This method copies the actual value of an argument into the formal

parameter of the function. In this case, changes made to the parameter

inside the function have no effect on the argument.

2 Reference parameters

This method copies the reference to the memory location of an argument

into the formal parameter. This means that changes made to the

parameter affect the argument.

3 Output parameters

This method helps in returning more than one value.

C# - Nullables

C# provides a special data types, the nullable types, to which you can assign

normal range of values as well as null values.

For example, you can store any value from -2,147,483,648 to 2,147,483,647

or null in a Nullable<Int32> variable. Similarly, you can assign true, false, or

null in a Nullable<bool> variable. Syntax for declaring a nullable type is as

follows −

< data_type> ? <variable_name> = null;

The following example demonstrates use of nullable data types −

using System;

namespace CalculatorApplication {

 class NullablesAtShow {

 static void Main(string[] args) {

 int? num1 = null;

 int? num2 = 45;

https://www.tutorialspoint.com/csharp/csharp_value_parameters.htm
https://www.tutorialspoint.com/csharp/csharp_reference_parameters.htm
https://www.tutorialspoint.com/csharp/csharp_output_parameters.htm

 double? num3 = new double?();

 double? num4 = 3.14157;

 bool? boolval = new bool?();

 // display the values

 Console.WriteLine("Nullables at Show: {0}, {1}, {2}, {3}", num1, num2, num3,
num4);

 Console.WriteLine("A Nullable boolean value: {0}", boolval);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Nullables at Show: , 45, , 3.14157
A Nullable boolean value:

The Null Coalescing Operator (??)
The null coalescing operator is used with the nullable value types and

reference types. It is used for converting an operand to the type of another

nullable (or not) value type operand, where an implicit conversion is possible.

If the value of the first operand is null, then the operator returns the value

of the second operand, otherwise it returns the value of the first operand.

The following example explains this −

using System;

namespace CalculatorApplication {

 class NullablesAtShow {

 static void Main(string[] args) {

 double? num1 = null;

 double? num2 = 3.14157;

 double num3;

 num3 = num1 ?? 5.34;

 Console.WriteLine(" Value of num3: {0}", num3);

 num3 = num2 ?? 5.34;

 Console.WriteLine(" Value of num3: {0}", num3);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Value of num3: 5.34
Value of num3: 3.14157

C# - Arrays

An array stores a fixed-size sequential collection of elements of the same

type. An array is used to store a collection of data, but it is often more useful

to think of an array as a collection of variables of the same type stored at

contiguous memory locations.

Instead of declaring individual variables, such as number0, number1, ..., and

number99, you declare one array variable such as numbers and use

numbers[0], numbers[1], and ..., numbers[99] to represent individual

variables. A specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address

corresponds to the first element and the highest address to the last element.

Declaring Arrays
To declare an array in C#, you can use the following syntax −

datatype[] arrayName;

where,

 datatype is used to specify the type of elements in the array.

 [] specifies the rank of the array. The rank specifies the size of the array.

 arrayName specifies the name of the array.

For example,

double[] balance;

Initializing an Array
Declaring an array does not initialize the array in the memory. When the

array variable is initialized, you can assign values to the array.

Array is a reference type, so you need to use the new keyword to create an

instance of the array. For example,

double[] balance = new double[10];

Assigning Values to an Array
You can assign values to individual array elements, by using the index

number, like −

double[] balance = new double[10];
balance[0] = 4500.0;

You can assign values to the array at the time of declaration, as shown −

double[] balance = { 2340.0, 4523.69, 3421.0};

You can also create and initialize an array, as shown −

int [] marks = new int[5] { 99, 98, 92, 97, 95};

You may also omit the size of the array, as shown −

int [] marks = new int[] { 99, 98, 92, 97, 95};

You can copy an array variable into another target array variable. In such

case, both the target and source point to the same memory location −

int [] marks = new int[] { 99, 98, 92, 97, 95};
int[] score = marks;

When you create an array, C# compiler implicitly initializes each array

element to a default value depending on the array type. For example, for an

int array all elements are initialized to 0.

Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing

the index of the element within square brackets after the name of the array.

For example,

double salary = balance[9];

The following example, demonstrates the above-mentioned concepts

declaration, assignment, and accessing arrays −

using System;

namespace ArrayApplication {

 class MyArray {

 static void Main(string[] args) {

 int [] n = new int[10]; /* n is an array of 10 integers */

 int i,j;

 /* initialize elements of array n */

 for (i = 0; i < 10; i++) {

 n[i] = i + 100;

 }

 /* output each array element's value */

 for (j = 0; j < 10; j++) {

 Console.WriteLine("Element[{0}] = {1}", j, n[j]);

 }

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Element[0] = 100
Element[1] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109

Using the foreach Loop
In the previous example, we used a for loop for accessing each array element.

You can also use a foreach statement to iterate through an array.

using System;

namespace ArrayApplication {

 class MyArray {

 static void Main(string[] args) {

 int [] n = new int[10]; /* n is an array of 10 integers */

 /* initialize elements of array n */

 for (int i = 0; i < 10; i++) {

 n[i] = i + 100;

 }

 /* output each array element's value */

 foreach (int j in n) {

 int i = j-100;

 Console.WriteLine("Element[{0}] = {1}", i, j);

 }

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Element[0] = 100
Element[1] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109

C# Arrays
There are following few important concepts related to array which should be

clear to a C# programmer −

Sr.No. Concept & Description

1 Multi-dimensional arrays

C# supports multidimensional arrays. The simplest form of the

multidimensional array is the two-dimensional array.

2 Jagged arrays

C# supports multidimensional arrays, which are arrays of arrays.

3 Passing arrays to functions

You can pass to the function a pointer to an array by specifying the array's

name without an index.

4 Param arrays

This is used for passing unknown number of parameters to a function.

5 The Array Class

Defined in System namespace, it is the base class to all arrays, and

provides various properties and methods for working with arrays.

C# - Strings

In C#, you can use strings as array of characters, However, more common

practice is to use the string keyword to declare a string variable. The string

keyword is an alias for the System.String class.

Creating a String Object
You can create string object using one of the following methods −

 By assigning a string literal to a String variable

 By using a String class constructor

 By using the string concatenation operator (+)

 By retrieving a property or calling a method that returns a string

 By calling a formatting method to convert a value or an object to its string

representation

https://www.tutorialspoint.com/csharp/csharp_multi_dimensional_arrays.htm
https://www.tutorialspoint.com/csharp/csharp_jagged_arrays.htm
https://www.tutorialspoint.com/csharp/csharp_passing_arrays_to_functions.htm
https://www.tutorialspoint.com/csharp/csharp_param_arrays.htm
https://www.tutorialspoint.com/csharp/csharp_array_class.htm

The following example demonstrates this −

using System;

namespace StringApplication {

 class Program {

 static void Main(string[] args) {

 //from string literal and string concatenation

 string fname, lname;

 fname = "Rowan";

 lname = "Atkinson";

 char []letters= { 'H', 'e', 'l', 'l','o' };

 string [] sarray={ "Hello", "From", "Tutorials", "Point" };

 string fullname = fname + lname;

 Console.WriteLine("Full Name: {0}", fullname);

 //by using string constructor { 'H', 'e', 'l', 'l','o' };

 string greetings = new string(letters);

 Console.WriteLine("Greetings: {0}", greetings);

 //methods returning string { "Hello", "From", "Tutorials", "Point" };

 string message = String.Join(" ", sarray);

 Console.WriteLine("Message: {0}", message);

 //formatting method to convert a value

 DateTime waiting = new DateTime(2012, 10, 10, 17, 58, 1);

 string chat = String.Format("Message sent at {0:t} on {0:D}", waiting);

 Console.WriteLine("Message: {0}", chat);

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Full Name: RowanAtkinson
Greetings: Hello
Message: Hello From Tutorials Point
Message: Message sent at 5:58 PM on Wednesday, October 10, 2012

Properties of the String Class
The String class has the following two properties −

Sr.No. Property & Description

1
Chars

Gets the Char object at a specified position in the current Stringobject.

2
Length

Gets the number of characters in the current String object.

Methods of the String Class
The String class has numerous methods that help you in working with the

string objects. The following table provides some of the most commonly used

methods −

Given below is the list of methods of the String class.

You can visit MSDN library for the complete list of methods and String class

constructors.

Examples
The following example demonstrates some of the methods mentioned above

−

Comparing Strings

using System;

namespace StringApplication {

 class StringProg {

 static void Main(string[] args) {

 string str1 = "This is test";

 string str2 = "This is text";

 if (String.Compare(str1, str2) == 0) {

 Console.WriteLine(str1 + " and " + str2 + " are equal.");

 } else {

 Console.WriteLine(str1 + " and " + str2 + " are not equal.");

 }

 Console.ReadKey() ;

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

This is test and This is text are not equal.

String Contains String

using System;

namespace StringApplication {

 class StringProg {

 static void Main(string[] args) {

 string str = "This is test";

 if (str.Contains("test")) {

 Console.WriteLine("The sequence 'test' was found.");

 }

 Console.ReadKey() ;

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

The sequence 'test' was found.

Getting a Substring

using System;

namespace StringApplication {

 class StringProg {

 static void Main(string[] args) {

 string str = "Last night I dreamt of San Pedro";

 Console.WriteLine(str);

 string substr = str.Substring(23);

 Console.WriteLine(substr);

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

San Pedro

Joining Strings

using System;

namespace StringApplication {

 class StringProg {

 static void Main(string[] args) {

 string[] starray = new string[]{"Down the way nights are dark",

 "And the sun shines daily on the mountain top",

 "I took a trip on a sailing ship",

 "And when I reached Jamaica",

 "I made a stop"};

 string str = String.Join("\n", starray);

 Console.WriteLine(str);

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Down the way nights are dark
And the sun shines daily on the mountain top
I took a trip on a sailing ship
And when I reached Jamaica
I made a stop

C# - Structures

In C#, a structure is a value type data type. It helps you to make a single

variable hold related data of various data types. The struct keyword is used

for creating a structure.

Structures are used to represent a record. Suppose you want to keep track

of your books in a library. You might want to track the following attributes

about each book −

 Title

 Author

 Subject

 Book ID

Defining a Structure
To define a structure, you must use the struct statement. The struct

statement defines a new data type, with more than one member for your

program.

For example, here is the way you can declare the Book structure −

struct Books {

 public string title;

 public string author;

 public string subject;

 public int book_id;

};

The following program shows the use of the structure −

using System;

struct Books {

 public string title;

 public string author;

 public string subject;

 public int book_id;

};

public class testStructure {

 public static void Main(string[] args) {

 Books Book1; /* Declare Book1 of type Book */

 Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 Book1.title = "C Programming";

 Book1.author = "Nuha Ali";

 Book1.subject = "C Programming Tutorial";

 Book1.book_id = 6495407;

 /* book 2 specification */

 Book2.title = "Telecom Billing";

 Book2.author = "Zara Ali";

 Book2.subject = "Telecom Billing Tutorial";

 Book2.book_id = 6495700;

 /* print Book1 info */

 Console.WriteLine("Book 1 title : {0}", Book1.title);

 Console.WriteLine("Book 1 author : {0}", Book1.author);

 Console.WriteLine("Book 1 subject : {0}", Book1.subject);

 Console.WriteLine("Book 1 book_id :{0}", Book1.book_id);

 /* print Book2 info */

 Console.WriteLine("Book 2 title : {0}", Book2.title);

 Console.WriteLine("Book 2 author : {0}", Book2.author);

 Console.WriteLine("Book 2 subject : {0}", Book2.subject);

 Console.WriteLine("Book 2 book_id : {0}", Book2.book_id);

 Console.ReadKey();

 }

}

When the above code is compiled and executed, it produces the following

result −

Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407
Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

Features of C# Structures
You have already used a simple structure named Books. Structures in C# are

quite different from that in traditional C or C++. The C# structures have the

following features −

 Structures can have methods, fields, indexers, properties, operator methods, and

events.

 Structures can have defined constructors, but not destructors. However, you

cannot define a default constructor for a structure. The default constructor is

automatically defined and cannot be changed.

 Unlike classes, structures cannot inherit other structures or classes.

 Structures cannot be used as a base for other structures or classes.

 A structure can implement one or more interfaces.

 Structure members cannot be specified as abstract, virtual, or protected.

 When you create a struct object using the New operator, it gets created and the

appropriate constructor is called. Unlike classes, structs can be instantiated

without using the New operator.

 If the New operator is not used, the fields remain unassigned and the object

cannot be used until all the fields are initialized.

Class versus Structure
Classes and Structures have the following basic differences −

 classes are reference types and structs are value types

 structures do not support inheritance

 structures cannot have default constructor

In the light of the above discussions, let us rewrite the previous example −

using System;

struct Books {

 private string title;

 private string author;

 private string subject;

 private int book_id;

 public void getValues(string t, string a, string s, int id) {

 title = t;

 author = a;

 subject = s;

 book_id = id;

 }

 public void display() {

 Console.WriteLine("Title : {0}", title);

 Console.WriteLine("Author : {0}", author);

 Console.WriteLine("Subject : {0}", subject);

 Console.WriteLine("Book_id :{0}", book_id);

 }

};

public class testStructure {

 public static void Main(string[] args) {

 Books Book1 = new Books(); /* Declare Book1 of type Book */

 Books Book2 = new Books(); /* Declare Book2 of type Book */

 /* book 1 specification */

 Book1.getValues("C Programming",

 "Nuha Ali", "C Programming Tutorial",6495407);

 /* book 2 specification */

 Book2.getValues("Telecom Billing",

 "Zara Ali", "Telecom Billing Tutorial", 6495700);

 /* print Book1 info */

 Book1.display();

 /* print Book2 info */

 Book2.display();

 Console.ReadKey();

 }

}

When the above code is compiled and executed, it produces the following

result −

Title : C Programming
Author : Nuha Ali
Subject : C Programming Tutorial
Book_id : 6495407
Title : Telecom Billing
Author : Zara Ali
Subject : Telecom Billing Tutorial
Book_id : 6495700

C# - Enums

An enumeration is a set of named integer constants. An enumerated type is

declared using the enum keyword.

C# enumerations are value data type. In other words, enumeration contains

its own values and cannot inherit or cannot pass inheritance.

Declaring enum Variable
The general syntax for declaring an enumeration is −

enum <enum_name> {
 enumeration list
};

Where,

 The enum_name specifies the enumeration type name.

 The enumeration list is a comma-separated list of identifiers.

Each of the symbols in the enumeration list stands for an integer value, one

greater than the symbol that precedes it. By default, the value of the first

enumeration symbol is 0. For example −

enum Days { Sun, Mon, tue, Wed, thu, Fri, Sat };

Example
The following example demonstrates use of enum variable −

using System;

namespace EnumApplication {

 class EnumProgram {

 enum Days { Sun, Mon, tue, Wed, thu, Fri, Sat };

 static void Main(string[] args) {

 int WeekdayStart = (int)Days.Mon;

 int WeekdayEnd = (int)Days.Fri;

 Console.WriteLine("Monday: {0}", WeekdayStart);

 Console.WriteLine("Friday: {0}", WeekdayEnd);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Monday: 1
Friday: 5

C# - Classes

When you define a class, you define a blueprint for a data type. This does not

actually define any data, but it does define what the class name means. That

is, what an object of the class consists of and what operations can be

performed on that object. Objects are instances of a class. The methods and

variables that constitute a class are called members of the class.

Defining a Class
A class definition starts with the keyword class followed by the class name;

and the class body enclosed by a pair of curly braces. Following is the general

form of a class definition −

<access specifier> class class_name {
 // member variables
 <access specifier> <data type> variable1;
 <access specifier> <data type> variable2;
 ...

 <access specifier> <data type> variableN;
 // member methods
 <access specifier> <return type> method1(parameter_list) {
 // method body
 }
 <access specifier> <return type> method2(parameter_list) {
 // method body
 }
 ...

 <access specifier> <return type> methodN(parameter_list) {
 // method body
 }
}

Note −

 Access specifiers specify the access rules for the members as well as the class

itself. If not mentioned, then the default access specifier for a class type

is internal. Default access for the members is private.

 Data type specifies the type of variable, and return type specifies the data type of

the data the method returns, if any.

 To access the class members, you use the dot (.) operator.

 The dot operator links the name of an object with the name of a member.

The following example illustrates the concepts discussed so far −

using System;

namespace BoxApplication {

 class Box {

 public double length; // Length of a box

 public double breadth; // Breadth of a box

 public double height; // Height of a box

 }

 class Boxtester {

 static void Main(string[] args) {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

 // volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 Console.WriteLine("Volume of Box2 : {0}", volume);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Volume of Box1 : 210
Volume of Box2 : 1560

Member Functions and Encapsulation
A member function of a class is a function that has its definition or its

prototype within the class definition similar to any other variable. It operates

on any object of the class of which it is a member, and has access to all the

members of a class for that object.

Member variables are the attributes of an object (from design perspective)

and they are kept private to implement encapsulation. These variables can

only be accessed using the public member functions.

Let us put above concepts to set and get the value of different class members

in a class −

using System;

namespace BoxApplication {

 class Box {

 private double length; // Length of a box

 private double breadth; // Breadth of a box

 private double height; // Height of a box

 public void setLength(double len) {

 length = len;

 }

 public void setBreadth(double bre) {

 breadth = bre;

 }

 public void setHeight(double hei) {

 height = hei;

 }

 public double getVolume() {

 return length * breadth * height;

 }

 }

 class Boxtester {

 static void Main(string[] args) {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box();

 double volume;

 // Declare Box2 of type Box

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 Console.WriteLine("Volume of Box1 : {0}" ,volume);

 // volume of box 2

 volume = Box2.getVolume();

 Console.WriteLine("Volume of Box2 : {0}", volume);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Volume of Box1 : 210
Volume of Box2 : 1560

C# Constructors
A class constructor is a special member function of a class that is executed

whenever we create new objects of that class.

A constructor has exactly the same name as that of class and it does not have

any return type. Following example explains the concept of constructor −

using System;

namespace LineApplication {

 class Line {

 private double length; // Length of a line

 public Line() {

 Console.WriteLine("Object is being created");

 }

 public void setLength(double len) {

 length = len;

 }

 public double getLength() {

 return length;

 }

 static void Main(string[] args) {

 Line line = new Line();

 // set line length

 line.setLength(6.0);

 Console.WriteLine("Length of line : {0}", line.getLength());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Object is being created
Length of line : 6

A default constructor does not have any parameter but if you need, a

constructor can have parameters. Such constructors are

called parameterized constructors. This technique helps you to assign

initial value to an object at the time of its creation as shown in the following

example −

using System;

namespace LineApplication {

 class Line {

 private double length; // Length of a line

 public Line(double len) { //Parameterized constructor

 Console.WriteLine("Object is being created, length = {0}", len);

 length = len;

 }

 public void setLength(double len) {

 length = len;

 }

 public double getLength() {

 return length;

 }

 static void Main(string[] args) {

 Line line = new Line(10.0);

 Console.WriteLine("Length of line : {0}", line.getLength());

 // set line length

 line.setLength(6.0);

 Console.WriteLine("Length of line : {0}", line.getLength());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Object is being created, length = 10
Length of line : 10
Length of line : 6

C# Destructors
A destructor is a special member function of a class that is executed

whenever an object of its class goes out of scope. A destructor has exactly

the same name as that of the class with a prefixed tilde (~) and it can neither

return a value nor can it take any parameters.

Destructor can be very useful for releasing memory resources before exiting

the program. Destructors cannot be inherited or overloaded.

Following example explains the concept of destructor −

using System;

namespace LineApplication {

 class Line {

 private double length; // Length of a line

 public Line() { // constructor

 Console.WriteLine("Object is being created");

 }

 ~Line() { //destructor

 Console.WriteLine("Object is being deleted");

 }

 public void setLength(double len) {

 length = len;

 }

 public double getLength() {

 return length;

 }

 static void Main(string[] args) {

 Line line = new Line();

 // set line length

 line.setLength(6.0);

 Console.WriteLine("Length of line : {0}", line.getLength());

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Object is being created
Length of line : 6
Object is being deleted

Static Members of a C# Class
We can define class members as static using the static keyword. When we

declare a member of a class as static, it means no matter how many objects

of the class are created, there is only one copy of the static member.

The keyword static implies that only one instance of the member exists for

a class. Static variables are used for defining constants because their values

can be retrieved by invoking the class without creating an instance of it. Static

variables can be initialized outside the member function or class definition.

You can also initialize static variables inside the class definition.

The following example demonstrates the use of static variables −

using System;

namespace StaticVarApplication {

 class StaticVar {

 public static int num;

 public void count() {

 num++;

 }

 public int getNum() {

 return num;

 }

 }

 class StaticTester {

 static void Main(string[] args) {

 StaticVar s1 = new StaticVar();

 StaticVar s2 = new StaticVar();

 s1.count();

 s1.count();

 s1.count();

 s2.count();

 s2.count();

 s2.count();

 Console.WriteLine("Variable num for s1: {0}", s1.getNum());

 Console.WriteLine("Variable num for s2: {0}", s2.getNum());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Variable num for s1: 6
Variable num for s2: 6

You can also declare a member function as static. Such functions can

access only static variables. The static functions exist even before the object

is created. The following example demonstrates the use of static

functions −

using System;

namespace StaticVarApplication {

 class StaticVar {

 public static int num;

 public void count() {

 num++;

 }

 public static int getNum() {

 return num;

 }

 }

 class StaticTester {

 static void Main(string[] args) {

 StaticVar s = new StaticVar();

 s.count();

 s.count();

 s.count();

 Console.WriteLine("Variable num: {0}", StaticVar.getNum());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Variable num: 3

C# - Inheritance

One of the most important concepts in object-oriented programming is

inheritance. Inheritance allows us to define a class in terms of another class,

which makes it easier to create and maintain an application. This also

provides an opportunity to reuse the code functionality and speeds up

implementation time.

When creating a class, instead of writing completely new data members and

member functions, the programmer can designate that the new class should

inherit the members of an existing class. This existing class is called

the baseclass, and the new class is referred to as the derived class.

The idea of inheritance implements the IS-A relationship. For example,

mammal IS A animal, dog IS-A mammal hence dog IS-A animal as well,

and so on.

Base and Derived Classes
A class can be derived from more than one class or interface, which means

that it can inherit data and functions from multiple base classes or interfaces.

The syntax used in C# for creating derived classes is as follows −

<acess-specifier> class <base_class> {
 ...
}
class <derived_class> : <base_class> {
 ...

}

Consider a base class Shape and its derived class Rectangle −

using System;

namespace InheritanceApplication {

 class Shape {

 public void setWidth(int w) {

 width = w;

 }

 public void setHeight(int h) {

 height = h;

 }

 protected int width;

 protected int height;

 }

 // Derived class

 class Rectangle: Shape {

 public int getArea() {

 return (width * height);

 }

 }

 class RectangleTester {

 static void Main(string[] args) {

 Rectangle Rect = new Rectangle();

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 Console.WriteLine("Total area: {0}", Rect.getArea());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Total area: 35

Initializing Base Class
The derived class inherits the base class member variables and member

methods. Therefore the super class object should be created before the

subclass is created. You can give instructions for superclass initialization in

the member initialization list.

The following program demonstrates this −

using System;

namespace RectangleApplication {

 class Rectangle {

 //member variables

 protected double length;

 protected double width;

 public Rectangle(double l, double w) {

 length = l;

 width = w;

 }

 public double GetArea() {

 return length * width;

 }

 public void Display() {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class Tabletop : Rectangle {

 private double cost;

 public Tabletop(double l, double w) : base(l, w) { }

 public double GetCost() {

 double cost;

 cost = GetArea() * 70;

 return cost;

 }

 public void Display() {

 base.Display();

 Console.WriteLine("Cost: {0}", GetCost());

 }

 }

 class ExecuteRectangle {

 static void Main(string[] args) {

 Tabletop t = new Tabletop(4.5, 7.5);

 t.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Length: 4.5
Width: 7.5
Area: 33.75
Cost: 2362.5

Multiple Inheritance in C#
C# does not support multiple inheritance. However, you can use

interfaces to implement multiple inheritance. The following program

demonstrates this −

using System;

namespace InheritanceApplication {

 class Shape {

 public void setWidth(int w) {

 width = w;

 }

 public void setHeight(int h) {

 height = h;

 }

 protected int width;

 protected int height;

 }

 // Base class PaintCost

 public interface PaintCost {

 int getCost(int area);

 }

 // Derived class

 class Rectangle : Shape, PaintCost {

 public int getArea() {

 return (width * height);

 }

 public int getCost(int area) {

 return area * 70;

 }

 }

 class RectangleTester {

 static void Main(string[] args) {

 Rectangle Rect = new Rectangle();

 int area;

 Rect.setWidth(5);

 Rect.setHeight(7);

 area = Rect.getArea();

 // Print the area of the object.

 Console.WriteLine("Total area: {0}", Rect.getArea());

 Console.WriteLine("Total paint cost: ${0}" , Rect.getCost(area));

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Total area: 35
Total paint cost: $2450

C# - Polymorphism

The word polymorphism means having many forms. In object-oriented

programming paradigm, polymorphism is often expressed as 'one interface,

multiple functions'.

Polymorphism can be static or dynamic. In static polymorphism, the

response to a function is determined at the compile time. In dynamic

polymorphism, it is decided at run-time.

Static Polymorphism
The mechanism of linking a function with an object during compile time is

called early binding. It is also called static binding. C# provides two

techniques to implement static polymorphism. They are −

 Function overloading

 Operator overloading

We discuss operator overloading in next chapter.

Function Overloading
You can have multiple definitions for the same function name in the same

scope. The definition of the function must differ from each other by the types

and/or the number of arguments in the argument list. You cannot overload

function declarations that differ only by return type.

The following example shows using function print() to print different data

types −

using System;

namespace PolymorphismApplication {

 class Printdata {

 void print(int i) {

 Console.WriteLine("Printing int: {0}", i);

 }

 void print(double f) {

 Console.WriteLine("Printing float: {0}" , f);

 }

 void print(string s) {

 Console.WriteLine("Printing string: {0}", s);

 }

 static void Main(string[] args) {

 Printdata p = new Printdata();

 // Call print to print integer

 p.print(5);

 // Call print to print float

 p.print(500.263);

 // Call print to print string

 p.print("Hello C++");

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Printing int: 5

Printing float: 500.263

Printing string: Hello C++

Dynamic Polymorphism
C# allows you to create abstract classes that are used to provide partial class

implementation of an interface. Implementation is completed when a derived

class inherits from it. Abstract classes contain abstract methods, which are

implemented by the derived class. The derived classes have more specialized

functionality.

Here are the rules about abstract classes −

 You cannot create an instance of an abstract class

 You cannot declare an abstract method outside an abstract class

 When a class is declared sealed, it cannot be inherited, abstract classes cannot

be declared sealed.

The following program demonstrates an abstract class −

using System;

namespace PolymorphismApplication {

 abstract class Shape {

 public abstract int area();

 }

 class Rectangle: Shape {

 private int length;

 private int width;

 public Rectangle(int a = 0, int b = 0) {

 length = a;

 width = b;

 }

 public override int area () {

 Console.WriteLine("Rectangle class area :");

 return (width * length);

 }

 }

 class RectangleTester {

 static void Main(string[] args) {

 Rectangle r = new Rectangle(10, 7);

 double a = r.area();

 Console.WriteLine("Area: {0}",a);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Rectangle class area :
Area: 70

When you have a function defined in a class that you want to be implemented

in an inherited class(es), you use virtual functions. The virtual functions

could be implemented differently in different inherited class and the call to

these functions will be decided at runtime.

Dynamic polymorphism is implemented by abstract classes and virtual

functions.

The following program demonstrates this −

using System;

namespace PolymorphismApplication {

 class Shape {

 protected int width, height;

 public Shape(int a = 0, int b = 0) {

 width = a;

 height = b;

 }

 public virtual int area() {

 Console.WriteLine("Parent class area :");

 return 0;

 }

 }

 class Rectangle: Shape {

 public Rectangle(int a = 0, int b = 0): base(a, b) {

 }

 public override int area () {

 Console.WriteLine("Rectangle class area :");

 return (width * height);

 }

 }

 class Triangle: Shape {

 public Triangle(int a = 0, int b = 0): base(a, b) {

 }

 public override int area() {

 Console.WriteLine("Triangle class area :");

 return (width * height / 2);

 }

 }

 class Caller {

 public void CallArea(Shape sh) {

 int a;

 a = sh.area();

 Console.WriteLine("Area: {0}", a);

 }

 }

 class Tester {

 static void Main(string[] args) {

 Caller c = new Caller();

 Rectangle r = new Rectangle(10, 7);

 Triangle t = new Triangle(10, 5);

 c.CallArea(r);

 c.CallArea(t);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Rectangle class area:

Area: 70

Triangle class area:

Area: 25

C# - Operator Overloading

You can redefine or overload most of the built-in operators available in C#.

Thus a programmer can use operators with user-defined types as well.

Overloaded operators are functions with special names the

keyword operatorfollowed by the symbol for the operator being defined.

similar to any other function, an overloaded operator has a return type and

a parameter list.

For example, go through the following function −

public static Box operator+ (Box b, Box c) {

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

}

The above function implements the addition operator (+) for a user-defined

class Box. It adds the attributes of two Box objects and returns the resultant

Box object.

Implementing the Operator Overloading
The following program shows the complete implementation −

using System;

namespace OperatorOvlApplication {

 class Box {

 private double length; // Length of a box

 private double breadth; // Breadth of a box

 private double height; // Height of a box

 public double getVolume() {

 return length * breadth * height;

 }

 public void setLength(double len) {

 length = len;

 }

 public void setBreadth(double bre) {

 breadth = bre;

 }

 public void setHeight(double hei) {

 height = hei;

 }

 // Overload + operator to add two Box objects.

 public static Box operator+ (Box b, Box c) {

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

 }

 }

 class Tester {

 static void Main(string[] args) {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 Box Box3 = new Box(); // Declare Box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.getVolume();

 Console.WriteLine("Volume of Box2 : {0}", volume);

 // Add two object as follows:

 Box3 = Box1 + Box2;

 // volume of box 3

 volume = Box3.getVolume();

 Console.WriteLine("Volume of Box3 : {0}", volume);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

Overloadable and Non-Overloadable
Operators
The following table describes the overload ability of the operators in C# −

Sr.No. Operators & Description

1
+, -, !, ~, ++, --

These unary operators take one operand and can be overloaded.

2
+, -, *, /, %

These binary operators take one operand and can be overloaded.

3
==, !=, <, >, <=, >=

The comparison operators can be overloaded.

4
&&, ||

The conditional logical operators cannot be overloaded directly.

5
+=, -=, *=, /=, %=

The assignment operators cannot be overloaded.

6
=, ., ?:, ->, new, is, sizeof, typeof

These operators cannot be overloaded.

Example
In the light of the above discussions, let us extend the preceding example,

and overload few more operators −

using System;

namespace OperatorOvlApplication {

 class Box {

 private double length; // Length of a box

 private double breadth; // Breadth of a box

 private double height; // Height of a box

 public double getVolume() {

 return length * breadth * height;

 }

 public void setLength(double len) {

 length = len;

 }

 public void setBreadth(double bre) {

 breadth = bre;

 }

 public void setHeight(double hei) {

 height = hei;

 }

 // Overload + operator to add two Box objects.

 public static Box operator+ (Box b, Box c) {

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

 }

 public static bool operator == (Box lhs, Box rhs) {

 bool status = false;

 if (lhs.length == rhs.length && lhs.height == rhs.height

 && lhs.breadth == rhs.breadth) {

 status = true;

 }

 return status;

 }

 public static bool operator !=(Box lhs, Box rhs) {

 bool status = false;

 if (lhs.length != rhs.length || lhs.height != rhs.height ||

 lhs.breadth != rhs.breadth) {

 status = true;

 }

 return status;

 }

 public static bool operator <(Box lhs, Box rhs) {

 bool status = false;

 if (lhs.length < rhs.length && lhs.height < rhs.height

 && lhs.breadth < rhs.breadth) {

 status = true;

 }

 return status;

 }

 public static bool operator >(Box lhs, Box rhs) {

 bool status = false;

 if (lhs.length > rhs.length && lhs.height >

 rhs.height && lhs.breadth > rhs.breadth) {

 status = true;

 }

 return status;

 }

 public static bool operator <=(Box lhs, Box rhs) {

 bool status = false;

 if (lhs.length <= rhs.length && lhs.height

 <= rhs.height && lhs.breadth <= rhs.breadth) {

 status = true;

 }

 return status;

 }

 public static bool operator >=(Box lhs, Box rhs) {

 bool status = false;

 if (lhs.length >= rhs.length && lhs.height

 >= rhs.height && lhs.breadth >= rhs.breadth) {

 status = true;

 }

 return status;

 }

 public override string ToString() {

 return String.Format("({0}, {1}, {2})", length, breadth, height);

 }

 }

 class Tester {

 static void Main(string[] args) {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 Box Box3 = new Box(); // Declare Box3 of type Box

 Box Box4 = new Box();

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 //displaying the Boxes using the overloaded ToString():

 Console.WriteLine("Box 1: {0}", Box1.ToString());

 Console.WriteLine("Box 2: {0}", Box2.ToString());

 // volume of box 1

 volume = Box1.getVolume();

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.getVolume();

 Console.WriteLine("Volume of Box2 : {0}", volume);

 // Add two object as follows:

 Box3 = Box1 + Box2;

 Console.WriteLine("Box 3: {0}", Box3.ToString());

 // volume of box 3

 volume = Box3.getVolume();

 Console.WriteLine("Volume of Box3 : {0}", volume);

 //comparing the boxes

 if (Box1 > Box2)

 Console.WriteLine("Box1 is greater than Box2");

 else

 Console.WriteLine("Box1 is not greater than Box2");

 if (Box1 < Box2)

 Console.WriteLine("Box1 is less than Box2");

 else

 Console.WriteLine("Box1 is not less than Box2");

 if (Box1 >= Box2)

 Console.WriteLine("Box1 is greater or equal to Box2");

 else

 Console.WriteLine("Box1 is not greater or equal to Box2");

 if (Box1 <= Box2)

 Console.WriteLine("Box1 is less or equal to Box2");

 else

 Console.WriteLine("Box1 is not less or equal to Box2");

 if (Box1 != Box2)

 Console.WriteLine("Box1 is not equal to Box2");

 else

 Console.WriteLine("Box1 is not greater or equal to Box2");

 Box4 = Box3;

 if (Box3 == Box4)

 Console.WriteLine("Box3 is equal to Box4");

 else

 Console.WriteLine("Box3 is not equal to Box4");

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Box 1: (6, 7, 5)
Box 2: (12, 13, 10)
Volume of Box1 : 210
Volume of Box2 : 1560
Box 3: (18, 20, 15)
Volume of Box3 : 5400
Box1 is not greater than Box2
Box1 is less than Box2
Box1 is not greater or equal to Box2
Box1 is less or equal to Box2
Box1 is not equal to Box2
Box3 is equal to Box4

C# - Interfaces

An interface is defined as a syntactical contract that all the classes inheriting

the interface should follow. The interface defines the 'what' part of the

syntactical contract and the deriving classes define the 'how' part of the

syntactical contract.

Interfaces define properties, methods, and events, which are the members

of the interface. Interfaces contain only the declaration of the members. It is

the responsibility of the deriving class to define the members. It often helps

in providing a standard structure that the deriving classes would follow.

Abstract classes to some extent serve the same purpose, however, they are

mostly used when only few methods are to be declared by the base class and

the deriving class implements the functionalities.

Declaring Interfaces
Interfaces are declared using the interface keyword. It is similar to class

declaration. Interface statements are public by default. Following is an

example of an interface declaration −

public interface ITransactions {

 // interface members

 void showTransaction();

 double getAmount();

}

Example
The following example demonstrates implementation of the above interface

−

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System;

namespace InterfaceApplication {

 public interface ITransactions {

 // interface members

 void showTransaction();

 double getAmount();

 }

 public class Transaction : ITransactions {

 private string tCode;

 private string date;

 private double amount;

 public Transaction() {

 tCode = " ";

 date = " ";

 amount = 0.0;

 }

 public Transaction(string c, string d, double a) {

 tCode = c;

 date = d;

 amount = a;

 }

 public double getAmount() {

 return amount;

 }

 public void showTransaction() {

 Console.WriteLine("Transaction: {0}", tCode);

 Console.WriteLine("Date: {0}", date);

 Console.WriteLine("Amount: {0}", getAmount());

 }

 }

 class Tester {

 static void Main(string[] args) {

 Transaction t1 = new Transaction("001", "8/10/2012", 78900.00);

 Transaction t2 = new Transaction("002", "9/10/2012", 451900.00);

 t1.showTransaction();

 t2.showTransaction();

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Transaction: 001
Date: 8/10/2012
Amount: 78900
Transaction: 002
Date: 9/10/2012
Amount: 451900

C# - Namespaces

A namespace is designed for providing a way to keep one set of names

separate from another. The class names declared in one namespace does not

conflict with the same class names declared in another.

Defining a Namespace
A namespace definition begins with the keyword namespace followed by the

namespace name as follows −

namespace namespace_name {
 // code declarations
}

To call the namespace-enabled version of either function or variable, prepend

the namespace name as follows −

namespace_name.item_name;

The following program demonstrates use of namespaces −

using System;

namespace first_space {

 class namespace_cl {

 public void func() {

 Console.WriteLine("Inside first_space");

 }

 }

}

namespace second_space {

 class namespace_cl {

 public void func() {

 Console.WriteLine("Inside second_space");

 }

 }

}

class TestClass {

 static void Main(string[] args) {

 first_space.namespace_cl fc = new first_space.namespace_cl();

 second_space.namespace_cl sc = new second_space.namespace_cl();

 fc.func();

 sc.func();

 Console.ReadKey();

 }

}

When the above code is compiled and executed, it produces the following

result −

Inside first_space
Inside second_space

The using Keyword
The using keyword states that the program is using the names in the given

namespace. For example, we are using the System namespace in our

programs. The class Console is defined there. We just write −

Console.WriteLine ("Hello there");

We could have written the fully qualified name as −

System.Console.WriteLine("Hello there");

You can also avoid prepending of namespaces with the using namespace

directive. This directive tells the compiler that the subsequent code is making

use of names in the specified namespace. The namespace is thus implied for

the following code −

Let us rewrite our preceding example, with using directive −

using System;

using first_space;

using second_space;

namespace first_space {

 class abc {

 public void func() {

 Console.WriteLine("Inside first_space");

 }

 }

}

namespace second_space {

 class efg {

 public void func() {

 Console.WriteLine("Inside second_space");

 }

 }

}

class TestClass {

 static void Main(string[] args) {

 abc fc = new abc();

 efg sc = new efg();

 fc.func();

 sc.func();

 Console.ReadKey();

 }

}

When the above code is compiled and executed, it produces the following

result −

Inside first_space
Inside second_space

Nested Namespaces
You can define one namespace inside another namespace as follows −

namespace namespace_name1 {

 // code declarations

 namespace namespace_name2 {

 // code declarations

 }

}

You can access members of nested namespace by using the dot (.) operator

as follows −

using System;

using first_space;

using first_space.second_space;

namespace first_space {

 class abc {

 public void func() {

 Console.WriteLine("Inside first_space");

 }

 }

 namespace second_space {

 class efg {

 public void func() {

 Console.WriteLine("Inside second_space");

 }

 }

 }

}

class TestClass {

 static void Main(string[] args) {

 abc fc = new abc();

 efg sc = new efg();

 fc.func();

 sc.func();

 Console.ReadKey();

 }

}

When the above code is compiled and executed, it produces the following

result −

Inside first_space
Inside second_space

C# - Preprocessor Directives

The preprocessor directives give instruction to the compiler to preprocess the

information before actual compilation starts.

All preprocessor directives begin with #, and only white-space characters

may appear before a preprocessor directive on a line. Preprocessor directives

are not statements, so they do not end with a semicolon (;).

C# compiler does not have a separate preprocessor; however, the directives

are processed as if there was one. In C# the preprocessor directives are used

to help in conditional compilation. Unlike C and C++ directives, they are not

used to create macros. A preprocessor directive must be the only instruction

on a line.

Preprocessor Directives in C#
The following table lists the preprocessor directives available in C# −

Sr.No. Preprocessor Directive & Description

1
#define

It defines a sequence of characters, called symbol.

2
#undef

It allows you to undefine a symbol.

3
#if

It allows testing a symbol or symbols to see if they evaluate to true.

4
#else

It allows to create a compound conditional directive, along with #if.

5
#elif

It allows creating a compound conditional directive.

6
#endif

Specifies the end of a conditional directive.

7
#line

It lets you modify the compiler's line number and (optionally) the file name

output for errors and warnings.

8
#error

It allows generating an error from a specific location in your code.

9
#warning

It allows generating a level one warning from a specific location in your

code.

10
#region

It lets you specify a block of code that you can expand or collapse when

using the outlining feature of the Visual Studio Code Editor.

11
#endregion

It marks the end of a #region block.

The #define Preprocessor
The #define preprocessor directive creates symbolic constants.

#define lets you define a symbol such that, by using the symbol as the

expression passed to the #if directive, the expression evaluates to true. Its

syntax is as follows −

#define symbol

The following program illustrates this −

#define PI

using System;

namespace PreprocessorDAppl {

 class Program {

 static void Main(string[] args) {

 #if (PI)

 Console.WriteLine("PI is defined");

 #else

 Console.WriteLine("PI is not defined");

 #endif

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

PI is defined

Conditional Directives
You can use the #if directive to create a conditional directive. Conditional

directives are useful for testing a symbol or symbols to check if they evaluate

to true. If they do evaluate to true, the compiler evaluates all the code

between the #if and the next directive.

Syntax for conditional directive is −

#if symbol [operator symbol]...

Where, symbol is the name of the symbol you want to test. You can also use

true and false or prepend the symbol with the negation operator.

The operator symbol is the operator used for evaluating the symbol.

Operators could be either of the following −

 == (equality)

 != (inequality)

 && (and)

 || (or)

You can also group symbols and operators with parentheses. Conditional

directives are used for compiling code for a debug build or when compiling

for a specific configuration. A conditional directive beginning with

a #if directive must explicitly be terminated with a #endif directive.

The following program demonstrates use of conditional directives −

#define DEBUG

#define VC_V10

using System;

public class TestClass {

 public static void Main() {

 #if (DEBUG && !VC_V10)

 Console.WriteLine("DEBUG is defined");

 #elif (!DEBUG && VC_V10)

 Console.WriteLine("VC_V10 is defined");

 #elif (DEBUG && VC_V10)

 Console.WriteLine("DEBUG and VC_V10 are defined");

 #else

 Console.WriteLine("DEBUG and VC_V10 are not defined");

 #endif

 Console.ReadKey();

 }

}

When the above code is compiled and executed, it produces the following

result −

DEBUG and VC_V10 are defined

C# - Regular Expressions

A regular expression is a pattern that could be matched against an input

text. The .Net framework provides a regular expression engine that allows

such matching. A pattern consists of one or more character literals, operators,

or constructs.

Constructs for Defining Regular

Expressions
There are various categories of characters, operators, and constructs that

lets you to define regular expressions. Click the following links to find these

constructs.

 Character escapes

https://www.tutorialspoint.com/csharp/csharp_character_escapes.htm

 Character classes

 Anchors

 Grouping constructs

 Quantifiers

 Backreference constructs

 Alternation constructs

 Substitutions

 Miscellaneous constructs

The Regex Class
The Regex class is used for representing a regular expression. It has the

following commonly used methods −

Sr.No. Methods & Description

1
public bool IsMatch(string input)

Indicates whether the regular expression specified in the Regex

constructor finds a match in a specified input string.

2
public bool IsMatch(string input, int startat)

Indicates whether the regular expression specified in the Regex

constructor finds a match in the specified input string, beginning at the

specified starting position in the string.

3
public static bool IsMatch(string input, string pattern)

Indicates whether the specified regular expression finds a match in the

specified input string.

4
public MatchCollection Matches(string input)

Searches the specified input string for all occurrences of a regular

expression.

5
public string Replace(string input, string replacement)

In a specified input string, replaces all strings that match a regular

expression pattern with a specified replacement string.

https://www.tutorialspoint.com/csharp/csharp_character_classes.htm
https://www.tutorialspoint.com/csharp/csharp_anchors.htm
https://www.tutorialspoint.com/csharp/csharp_grouping_constructs.htm
https://www.tutorialspoint.com/csharp/csharp_quantifiers.htm
https://www.tutorialspoint.com/csharp/csharp_backreference_constructs.htm
https://www.tutorialspoint.com/csharp/csharp_alternation_constructs.htm
https://www.tutorialspoint.com/csharp/csharp_substitutions.htm
https://www.tutorialspoint.com/csharp/csharp_miscellaneous_constructs.htm

6
public string[] Split(string input)

Splits an input string into an array of substrings at the positions defined

by a regular expression pattern specified in the Regex constructor.

For the complete list of methods and properties, please read the Microsoft

documentation on C#.

Example 1
The following example matches words that start with 'S' −

using System;

using System.Text.RegularExpressions;

namespace RegExApplication {

 class Program {

 private static void showMatch(string text, string expr) {

 Console.WriteLine("The Expression: " + expr);

 MatchCollection mc = Regex.Matches(text, expr);

 foreach (Match m in mc) {

 Console.WriteLine(m);

 }

 }

 static void Main(string[] args) {

 string str = "A Thousand Splendid Suns";

 Console.WriteLine("Matching words that start with 'S': ");

 showMatch(str, @"\bS\S*");

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Matching words that start with 'S':
The Expression: \bS\S*
Splendid
Suns

Example 2
The following example matches words that start with 'm' and ends with 'e' −

using System;

using System.Text.RegularExpressions;

namespace RegExApplication {

 class Program {

 private static void showMatch(string text, string expr) {

 Console.WriteLine("The Expression: " + expr);

 MatchCollection mc = Regex.Matches(text, expr);

 foreach (Match m in mc) {

 Console.WriteLine(m);

 }

 }

 static void Main(string[] args) {

 string str = "make maze and manage to measure it";

 Console.WriteLine("Matching words start with 'm' and ends with 'e':");

 showMatch(str, @"\bm\S*e\b");

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Matching words start with 'm' and ends with 'e':
The Expression: \bm\S*e\b
make
maze
manage
measure

Example 3
This example replaces extra white space −

using System;

using System.Text.RegularExpressions;

namespace RegExApplication {

 class Program {

 static void Main(string[] args) {

 string input = "Hello World ";

 string pattern = "\\s+";

 string replacement = " ";

 Regex rgx = new Regex(pattern);

 string result = rgx.Replace(input, replacement);

 Console.WriteLine("Original String: {0}", input);

 Console.WriteLine("Replacement String: {0}", result);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Original String: Hello World
Replacement String: Hello World

C# - Exception Handling

An exception is a problem that arises during the execution of a program. A

C# exception is a response to an exceptional circumstance that arises while

a program is running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to

another. C# exception handling is built upon four

keywords: try, catch, finally, and throw.

 try − A try block identifies a block of code for which particular exceptions is

activated. It is followed by one or more catch blocks.

 catch − A program catches an exception with an exception handler at the place

in a program where you want to handle the problem. The catch keyword indicates

the catching of an exception.

 finally − The finally block is used to execute a given set of statements, whether

an exception is thrown or not thrown. For example, if you open a file, it must be

closed whether an exception is raised or not.

 throw − A program throws an exception when a problem shows up. This is done

using a throw keyword.

Syntax
Assuming a block raises an exception, a method catches an exception using

a combination of the try and catch keywords. A try/catch block is placed

around the code that might generate an exception. Code within a try/catch

block is referred to as protected code, and the syntax for using try/catch

looks like the following −

try {
 // statements causing exception
} catch(ExceptionName e1) {
 // error handling code
} catch(ExceptionName e2) {
 // error handling code
} catch(ExceptionName eN) {
 // error handling code
} finally {
 // statements to be executed
}

You can list down multiple catch statements to catch different type of

exceptions in case your try block raises more than one exception in different

situations.

Exception Classes in C#
C# exceptions are represented by classes. The exception classes in C# are

mainly directly or indirectly derived from the System.Exception class.

Some of the exception classes derived from the System.Exception class are

the System.ApplicationException and System.SystemException classe

s.

The System.ApplicationException class supports exceptions generated by

application programs. Hence the exceptions defined by the programmers

should derive from this class.

The System.SystemException class is the base class for all predefined

system exception.

The following table provides some of the predefined exception classes derived

from the Sytem.SystemException class −

Sr.No. Exception Class & Description

1
System.IO.IOException

Handles I/O errors.

2
System.IndexOutOfRangeException

Handles errors generated when a method refers to an array index out of

range.

3
System.ArrayTypeMismatchException

Handles errors generated when type is mismatched with the array type.

4
System.NullReferenceException

Handles errors generated from referencing a null object.

5
System.DivideByZeroException

Handles errors generated from dividing a dividend with zero.

6
System.InvalidCastException

Handles errors generated during typecasting.

7
System.OutOfMemoryException

Handles errors generated from insufficient free memory.

8
System.StackOverflowException

Handles errors generated from stack overflow.

Handling Exceptions
C# provides a structured solution to the exception handling in the form of try

and catch blocks. Using these blocks the core program statements are

separated from the error-handling statements.

These error handling blocks are implemented using the try, catch,

and finally keywords. Following is an example of throwing an exception

when dividing by zero condition occurs −

using System;

namespace ErrorHandlingApplication {

 class DivNumbers {

 int result;

 DivNumbers() {

 result = 0;

 }

 public void division(int num1, int num2) {

 try {

 result = num1 / num2;

 } catch (DivideByZeroException e) {

 Console.WriteLine("Exception caught: {0}", e);

 } finally {

 Console.WriteLine("Result: {0}", result);

 }

 }

 static void Main(string[] args) {

 DivNumbers d = new DivNumbers();

 d.division(25, 0);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

Exception caught: System.DivideByZeroException: Attempted to divide by zero.
at ...
Result: 0

Creating User-Defined Exceptions
You can also define your own exception. User-defined exception classes are

derived from the Exception class. The following example demonstrates this

−

using System;

namespace UserDefinedException {

 class TestTemperature {

 static void Main(string[] args) {

 Temperature temp = new Temperature();

 try {

 temp.showTemp();

 } catch(TempIsZeroException e) {

 Console.WriteLine("TempIsZeroException: {0}", e.Message);

 }

 Console.ReadKey();

 }

 }

}

public class TempIsZeroException: Exception {

 public TempIsZeroException(string message): base(message) {

 }

}

public class Temperature {

 int temperature = 0;

 public void showTemp() {

 if(temperature == 0) {

 throw (new TempIsZeroException("Zero Temperature found"));

 } else {

 Console.WriteLine("Temperature: {0}", temperature);

 }

 }

}

When the above code is compiled and executed, it produces the following

result −

TempIsZeroException: Zero Temperature found

Throwing Objects
You can throw an object if it is either directly or indirectly derived from

the System.Exception class. You can use a throw statement in the catch

block to throw the present object as −

Catch(Exception e) {
 ...
 Throw e
}

C# - File I/O
A file is a collection of data stored in a disk with a specific name and a directory

path. When a file is opened for reading or writing, it becomes a stream.

The stream is basically the sequence of bytes passing through the

communication path. There are two main streams: the input stream and

the output stream. The input stream is used for reading data from file

(read operation) and the output stream is used for writing into the file

(write operation).

C# I/O Classes
The System.IO namespace has various classes that are used for performing

numerous operations with files, such as creating and deleting files, reading

from or writing to a file, closing a file etc.

The following table shows some commonly used non-abstract classes in the

System.IO namespace −

Sr.No. I/O Class & Description

1
BinaryReader

Reads primitive data from a binary stream.

2
BinaryWriter

Writes primitive data in binary format.

3
BufferedStream

A temporary storage for a stream of bytes.

4
Directory

Helps in manipulating a directory structure.

5
DirectoryInfo

Used for performing operations on directories.

6
DriveInfo

Provides information for the drives.

7
File

Helps in manipulating files.

8
FileInfo

Used for performing operations on files.

9
FileStream

Used to read from and write to any location in a file.

10
MemoryStream

Used for random access to streamed data stored in memory.

11
Path

Performs operations on path information.

12
StreamReader

Used for reading characters from a byte stream.

13
StreamWriter

Is used for writing characters to a stream.

14
StringReader

Is used for reading from a string buffer.

15
StringWriter

Is used for writing into a string buffer.

The FileStream Class
The FileStream class in the System.IO namespace helps in reading from,

writing to and closing files. This class derives from the abstract class Stream.

You need to create a FileStream object to create a new file or open an

existing file. The syntax for creating a FileStream object is as follows −

FileStream <object_name> = new FileStream(<file_name>, <FileMode Enumerator>,

 <FileAccess Enumerator>, <FileShare Enumerator>);

For example, we create a FileStream object F for reading a file

named sample.txt as shown −

FileStream F = new FileStream("sample.txt", FileMode.Open, FileAccess.Read,

 FileShare.Read);

Sr.No. Parameter & Description

1
FileMode

The FileMode enumerator defines various methods for opening files. The

members of the FileMode enumerator are −

 Append − It opens an existing file and puts cursor at the end of

file, or creates the file, if the file does not exist.

 Create − It creates a new file.

 CreateNew − It specifies to the operating system, that it should

create a new file.

 Open − It opens an existing file.

 OpenOrCreate − It specifies to the operating system that it should

open a file if it exists, otherwise it should create a new file.

 Truncate − It opens an existing file and truncates its size to zero

bytes.

2
FileAccess

FileAccess enumerators have members: Read, ReadWrite and Write.

3
FileShare

FileShare enumerators have the following members −

 Inheritable − It allows a file handle to pass inheritance to the child

processes

 None − It declines sharing of the current file

 Read − It allows opening the file for readin.

 ReadWrite − It allows opening the file for reading and writing

 Write − It allows opening the file for writing

Example
The following program demonstrates use of the FileStream class −

using System;
using System.IO;

namespace FileIOApplication {
 class Program {
 static void Main(string[] args) {
 FileStream F = new FileStream("test.dat", FileMode.OpenOrCreate,
 FileAccess.ReadWrite);

 for (int i = 1; i <= 20; i++) {
 F.WriteByte((byte)i);

 }
 F.Position = 0;
 for (int i = 0; i <= 20; i++) {
 Console.Write(F.ReadByte() + " ");
 }
 F.Close();
 Console.ReadKey();
 }
 }
}

When the above code is compiled and executed, it produces the following

result −

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1

Advanced File Operations in C#
The preceding example provides simple file operations in C#. However, to

utilize the immense powers of C# System.IO classes, you need to know the

commonly used properties and methods of these classes.

Sr.No. Topic & Description

1 Reading from and Writing into Text files

It involves reading from and writing into text files.

The StreamReader and StreamWriter class helps to accomplish it.

2 Reading from and Writing into Binary files

It involves reading from and writing into binary files.

The BinaryReader and BinaryWriter class helps to accomplish this.

3 Manipulating the Windows file system

It gives a C# programamer the ability to browse and locate Windows

files and directories.

https://www.tutorialspoint.com/csharp/csharp_text_files.htm
https://www.tutorialspoint.com/csharp/csharp_binary_files.htm
https://www.tutorialspoint.com/csharp/csharp_windows_file_system.htm

