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Abstract— UML state machines are commonly used to model 
the state-based behavior of communication and control systems 
to support various activities such as test cases and code 
generation. Standard UML state machines are well suited to 
model functional behavior; however extra-functional behavior 
such as robustness and security can also be directly modeled on 
them, but this often results in cluttered models since extra-
functional behaviors are often crosscutting. Such modeling 
crosscutting behavior directly on UML state machines is a 
common practice. Aspect-Oriented Modeling (AOM) allows 
systematically modeling of crosscutting behavior and has shown 
to provide a scalable solution in the recent years. However, due to 
lack of familiarity of AOM in both academic and industry, extra-
functional behavior is often modeled directly on UML state 
machines and as a result those UML state machines are difficult 
to read and maintain. To improve the readability of already 
developed UML state machines and ease maintenance, we 
propose a set of heuristics, derived from two industrial cases 
studies, implemented in a tool to automatically identify 
commonly observed crosscutting behaviors in UML state 
machines and refactor them as Aspect State Machines.  Such 
refactoring makes the state machines easier to maintain and 
comprehend. We present the results of applying our proposed 
heuristics to the existing UML state machines of two industrial 
case studies developed for model-based testing. 

Keywords— Model Refactoring, UML State machine, Aspect-
Oriented Modeling, Heuristics  

I. INTRODUCTION  
UML state machines [1] provide a standardized way of 
modeling functional behavior of state-based systems to support 
a variety of activities including testing [2-5], code generation 
[6], and domain specific modeling [7, 8]. UML state machines 
provide advanced features such as hierarchy and concurrency 
to model the behavior of complex industrial systems. However, 
when extra-functional behavior (e.g., robustness, logging) is 
modeled with UML state machines, the resulting state 
machines are cluttered with redundant modeling elements, 
because the extra-functional behavior is often crosscutting. 
Such cluttering significantly reduces readability, 
understandability, and results in state machines that are very 
difficult to maintain [9].  

In this paper, we present our work on automatically refactoring 
crosscutting behavior from existing UML state machines into 
aspect-oriented state machines. The work presented here is 
motivated from our previous work on modeling and testing of 
two industrial case studies; a Videoconferencing System (VCS) 
called Saturn developed by Cisco Systems [2, 10] and 
Automated Bottle Recycling System (ABRS) developed by 
Tomra AS, Norway [6] . Both case studies posed challenges of 
modeling complex systems with many crosscutting behaviors.  

For the VCS, we developed a robustness modeling 
methodology to model robustness behavior that is typically 
crosscutting behavior [9]. Such crosscutting behavior was 
modeled using a slight extension of UML state machines 
through a profile called AspectSM as Aspect State Machines 
(ASMs). With ASMs, a modeler can model crosscutting 
behavior separately from the base state machines and thus 
reducing the cluttering and improving readability. For the 
ABRS system, we modeled several crosscutting behaviors, 
although, AspectSM wasn’t used. 

In this paper, we present a set of heuristics to automatically 
refactor crosscutting behaviors from existing UML state 
machines as ASMs. Even though, we refactor crosscutting 
behaviors as ASMs, other approaches to model crosscutting 
behaviors and standard UML state machines using advanced 
features such as hierarchy can be used in place of ASMs.  

The main contributions of this paper are as follows: 1) We 
define a set of heuristics (derived from the industrial case 
studies) for identifying crosscutting patterns in standard UML 
state machines; 2) We provide rules for refactoring the state 
machine based on the patterns identified by the heuristics into 
ASMs and base state machine; 3) We provide tool support 
implementing heuristics and rules for refactoring; 4) We 
present the results of the application to two industrial case 
studies.  

The rest of the paper is organized as follows; Section II 
briefly presents the two industrial case studies. Section III 
presents our heuristics and the proposed refactoring rules. 
Section IV briefly discusses our tool called ReState. The results 
of applying our approach on the two industrial case studies are 
presented in Section V. Section VI concludes the paper. 
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II. CASE STUDY 
Below, we present briefly the industrial case studies that 

required modeling of crosscutting behaviors. 

A. Video Conferencing System 
The first case study is related to a project aiming at 

supporting automated, model-based robustness testing of a core 
subsystem of a video conference system (VCS) called Saturn 
developed by Cisco Systems, Norway as reported in [9]. The 
core functionality of Saturn manages the sending and receiving 
of multimedia streams. Audio and video signals are sent 
through separate channels and there is also a possibility of 
transmitting presentations in parallel with audio and video. One 
participant can send presentations at a time and rest of the 
participants receive it. Saturn consists of 20 subsystems and 
each subsystem can work in parallel to the core behavior.  

In [4], we modeled five crosscutting robustness behaviors 
of Saturn as ASMs that are: 1) Audio Quality, 2) Video quality, 
3) Media quality recovery, 4) Network communication, 5) 
Crosscutting in guards conditions providing inputs to the VCS. 
To assess our approach, we obtained woven models of these 
crosscutting behaviors and used them to assess if our tool can 
identify and refactor crosscutting behaviors.  

B. Automated Bottle Recycling System (ABRS) 
The second case study was the industrial Automated Bottle 

Recycling System developed by Tomra AS, Norway. In our 
previous work, we published the case study as part of 
environment modeling approach [6, 11]. The bottle recycling 
system is fitted with a sorting arm that is used for separating 
three types of the recyclables, plastic bottles, cans and glass 
bottles.  For testing of ABRS, we proposed the environmental 
modeling approach and developed state machines that captured 
the environment of the system, along with the possible error 
states. While the approach was successfully in testing the 
ABRS, it produced state machines that contained a number of 
cross cutting concerns. 

In this paper, from the published case study in [6] we have 
taken four of our state machines of the various components 
developed for environmental modeling approach and have 
applied the refactoring. One of the state machines contained 
cross cutting behavior, modeled as the error state. Originally 
the error state was introduced in [6] to model the 
environmental errors. However, the error states were modeled 
as part of state machines, thus mixing core 
functionalities/behaviors with erroneous behaviors. The other 
state machines did not contain any such behavior. 

III. HEURISTICS BASED APPROACH FOR AUTOMATED 
REFACTORING OF STATE MACHINES 

Our proposed approach relies on heuristics to refactor 
existing UML state machines. The approach has two phases: i) 
crosscutting identification phase based on heuristics; ii) 
Extraction and refactoring of the identified crosscutting 
behaviors as one or more ASMs. The heuristics for identifying 
the crosscutting behavior are formalized in Object Constraint 
Language (OCL) [12] in the following section. 

A. Heurisctis for Identifying Crosscutting Behaviors  
We propose four heuristics as shown in Table 1 together with 
refactoring rules for generating ASMs. 

TABLE I.  HEURISTICS FOR IDENTIFYING CROSSCUTTING BEHAVIORS 

ID Heuristic for identifying crosscutting behaviors Ref 
1a. Description: Similar incoming transition with same trigger, 

guard condition and effects. 
Rule:  
context UML::Vertex inv: 
self.incoming -> select (t1, t2: Transition | t1. name <> 
t2.name and t1.source <> t2.source and t1.trigger = t2.trigger 
and t1.effect = t2.effect and t1.guard.specification.body = 
t2.guard.specification.body and t1 <> t2)->size () >=1 

Rule 1 

1b Description: Similar incoming transition with same trigger 
and effects but different guard conditions. 
Rule: 
context UML::Vertex inv: 
self.incoming -> select (t1, t2: Transition | t1. name <> 
t2.name and t1.source <> t2.source and t1.trigger = t2.trigger 
and t1.effect = t2.effect and t1.guard.specification.body <> 
t2.guard.specification.body) ->size() >=1 

Rule 2 

1c Description: Similar incoming transitions with same trigger 
and guard condition but different effects. 
Rule: 
context UML::Vertex inv: 
self.incoming -> select (t1, t2: Transition | t1. name <> 
t2.name and t1.source <> t2.source and t1.trigger = t2.trigger 
and t1.effect<> t2.effect and t1.guard.specification.body = 
t2.guard.specification.body) ->size() >=1 

Rule 3 

2a Description: Common trigger across different transitions 
(more than one triggers). 
Rule: 
context UML::Region inv: 
self.transition-> select (t1, t2 :Transition | t1.trigger-> 
intersection (t2.trigger) >=1 

Rule 4 

2b Description: Common effect across different transitions 
(more than one action in body of effect). 
Rule: 
context UML::Region inv: 
self.transition-> select (t1, t2 :Transition | t1.effect-> 
intersection(t2.effect) >=1 

Rule 5 

2c Description: Common constraint across different guard 
conditions (composite guard conditions). 
Rule: 
context UML::Region inv: 
self.transition-> select (t1, t2 :Transition | 
isSubString(t1.guard.specification.body, 
t2.guard.specification.body)>=1 
* isSubString( , ) takes two guard conditions as string and 
returns true if second guard is a substring of the first guard. 

Rule 6 

3a Description: Similar outgoing transitions from a given vertex 
with same trigger and effects but different guard condition. 
Rule: 
context UML::Vertex inv: 
self.outgoing -> select (t1, t2: Transition | t1. Name <> 
t2.name and t1.trigger = t2.trigger and t1.effect = t2.effect and 
t1.guard.specification.body <> t2.guard.specification.body) -
>size() >=1 

Rule 7 

3b Description: Similar outgoing transitions with different 
trigger and guard conditions but same effect. 
Rule: 
context UML::Vertex inv: 
self.outgoing -> select (t1, t2: Transition | t1. name <> 
t2.name and t1.trigger = t2.trigger and t1.effect = t2.effect and 
t1.guard.specification.body <> t2.guard.specification.body) -
>size() >=1 

Rule 8 

4 Description:  Common constraints in State invariants. 
Rule: 

Rule 9 
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context UML::Region inv: 
self.vertex -> select (v1, v2: Vertex| 
isSubConstraint(v1.constraint, v2.constraint) ->size() >=1 
* isSubConstraint( , ) takes two constraints and returns true if 
second constraint is contained in first. 

 For example, the first heuristic (1a) states that we can 
identify a crosscutting behavior when a given state in a state 
machine has more than one common incoming transition. 
Consider the example in Fig. 1, where T1, T2 and T3 are 
similar transitions. Once the crosscutting behaviors are 
identified, we apply the corresponding refactoring rules. Each 
heuristic is mapped to a different refactoring rule, allowing us 
to tackle various sub-variations of the heuristics. The next 
section explains one of the heuristics and refactoring rules 
applied when a crosscutting concern is successfully identified. 
The other rules are implemented in a similar manner. 

B. Refactoring rules for identifying crosscutting behaviors 
We have devised refactoring rules to deal with different 

types of crosscutting behaviors identified by the heuristics 
presented in the previous section.  We present the heuristic 1a 
here along with the rule applied once a match is found. 

Heuristic 1a. An example is shown in Fig. 1, where all the 
three incoming transitions on state S have the same trigger 
Trigger, the guard condition Guard and the effect Effect. And 
is identified as a possible crosscutting behavior. 

 
Fig. 1. State machine with similar incoming transitions 

Refactoring Rule 1. For crosscutting behavior identified 
by heuristic 1a, we propose to generate the aspect state 
machine as shown in Fig. 2. 

We remove the S state from the base state machine along 
with the similar transitions T1, T2 and T3.  Then an aspect state 
machine is used to model the identified crosscutting behavior. 
As the target state S has now been removed from the base state 
machine, we use the aspect oriented construct of Introduction 
to add a new modeling element, the state S, in the aspect state 
machine. The selectedSates pointcut selects the source states at 
which the transitions to S are to be added in woven model. The 
transitions T1, T2 and T3 are removed from the base state 
machine, leaving a clean base state machine with possibly less 
transitions and states. 

Note that in this case the generated OCL queries are much 
simpler as compared to a forward engineering approach 
reported in [9] as we already have the required information 
about the target states.   

IV. AUTOMATION OF REFACTORING RULES USING RESTATE  
Fig. 3 shows the architecture diagram of ReState Tool. The 

tool is implemented in Java. Use of Java as the implementation 

language allows us to use the extensive support for 
manipulating meta-models available through Java EMF [13]. 
Another possibility was to implement the transformation in a 
model transformation language. However, EMF was preferred 
since it provides a mature underlying infrastructure. ReState 
takes the UML state machine, the UML meta-model and the 
AspectSM profile as input and produces one or more ASMs 
and a clean base state machine as output. 

The input state machine is read from .uml file using the 
ModelLoader, which internally uses the Java EMF library. The 
loaded model is passed to the HeuristicsEngine that tries to 
find matches against the proposed heuristics. The ReState tool 
uses matching rules written in java, translated from the OCL 
rules manually by the developers. The various proposed 
refactoring rules are stored in the RuleRepository. Once a 
match is found, the ModelTransformer applies corresponding 
transformation. In case of multiple matches, the designer is 
allowed to select a given refactoring. In case of multiple 
matches the decision is left to the designers.  

The ModelTransformer applies the transformation rules and 
produces a clean state machine and uses the AspectGenerator 
component to generate aspects. Each identified match is 
modeled as a separate aspect state machine. The 
AspectGenerator contains the implementation to produce 
aspect state machines using AspectSM notation. This 
component can be further extended to support other notations 
in future. 

 
Fig. 2. Aspect state machine resulting from rule 1  

 
Fig. 3. Architecture of ReState Tool 

V. RESULTS OF AUTOMATED REFACTORING 
To assess the proposed heuristics, for Saturn, we wove five-

aspect state machines corresponding to each of the robustness 
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behavior into a base state machines (functional state machines 
of Saturn subsystems) and obtained five woven state machines. 
Each state machine contains (one) robustness behavior in 
addition to the elements of the base state machine. We applied 
our heuristics to each of these woven state machines to assess 
that if crosscutting behaviors can be detected and refactored as 
aspect state machines.  The results of applying the heuristics 
revealed that for the first four robustness behaviors we were 
able to successfully detect and refactor crosscutting behaviors. 
These four robustness behaviors were identified with rules 2a 
and 4. The fifth crosscutting behavior wasn’t detected by any 
heuristics. A summary of the results appears in Table 2.  

For the ABRS, when we apply our heuristics on the state 
machine, one state (the Error State) and its incoming transitions 
were identified as a crosscutting behavior. The results are 
summarized in Table 2 and Table 3. As can be seen from the 
tables, only one aspect was identified from the four published 
state machines for ABRS system. Manual analysis of the state 
machines shows that there was no other crosscutting or 
redundant behavior in the state machines.   

TABLE II.  RESULTS OF REFACTORING INDUSTRIAL CASE STUDIES 

Rule VCS ABRS 
1. a - 1 
2. a 2 - 
4  2 - 
Unidentified 1 - 

TABLE III.  RESULTS OF REFACTORING INDUSTRIAL CASE STUDIES 

Model 
Elements 

VCS (Average of 5 
behaviors) 

ABRS 

Before After % 
Saving 

Before After % 
Saving 

States 212 8 96 19 18 6 
Transitions 356 6 98 31 26 16 

Triggers 2686 31 99 - -  

Mean - - 97 - - 11 

 
Table 3 presents the modifications made in the both case 

studies. The % saving column shows the percentage of model 
elements reduced as a result of refactoring. For VCS, we saved 
on average 97% of model elements, whereas for ABRS we 
saved on average 11%. The results showed that our approach is 
quite effective in refactoring crosscutting behaviors. 

VI.  CONCLUSION 
Aspect oriented modeling offers a number of benefits such 

as increased reuse, ease of maintenance and enhanced 
modularity. A number of approaches have been proposed to 
bring aspect orientation to various design models including 
UML state machines. However, aspect oriented modeling is 
relatively new and is not yet widely practiced in industry. Just 
like legacy code, there are a large number of projects with 
models that do not incorporate separation of concerns and 
consequently can benefit from refactoring’s of their models. 

Based on our experiences in modeling industrial case 
studies, we have presented an approach to refactor existing 

UML state machines; we split the state machines in a base state 
machine and one or more aspect state machines modeling 
crosscutting behavior. We propose heuristics for identifying 
crosscutting behavior in legacy state machines and provide a 
set of refactoring rules. Our refactoring rules are applied as 
guidelines and our tool gives the designer the final say on the 
refactoring’s. For modeling cross cutting behavior, we rely on 
AspectSM profile. We present the results of applying our 
approach on the two industrial case studies, developed as part 
of our previous work on environmental modeling and 
robustness modeling. Our automated tool was successfully able 
to identify the five crosscutting behaviors from the state 
machines of the two-selected case study. The results show that 
such refactoring’s can significantly simplify existing models. 
One current limitation with the approach is considering the 
priority of refactoring rules; we have not yet addressed the 
issue of rule precedence when situations requiring multiple 
refactoring arise. Our future work will empirically evaluate the 
effects of rule precedence. 
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