

A Heuristic-Based Approach to Refactor Crosscutting
Behaviors in UML State Machines

Muhammad Uzair Khan1, Muhamamd Zohaib Iqbal1 2
1Software Quality Engineering and Testing Lab (QUEST),
National University of Computer and Emerging Sciences,

FAST NU, Islamabad, Pakistan
2 SnT Centre for Security, Reliability and Trust, University

of Luxembourg, Luxembourg
{uzair.khan, zohaib.iqbal}@nu.edu.pk

Shaukat Ali
Simula Research Laboratory, P.O.Box 134, Lysaker,

Norway
 shaukat@simula.no

Abstract— UML state machines are commonly used to model
the state-based behavior of communication and control systems
to support various activities such as test cases and code
generation. Standard UML state machines are well suited to
model functional behavior; however extra-functional behavior
such as robustness and security can also be directly modeled on
them, but this often results in cluttered models since extra-
functional behaviors are often crosscutting. Such modeling
crosscutting behavior directly on UML state machines is a
common practice. Aspect-Oriented Modeling (AOM) allows
systematically modeling of crosscutting behavior and has shown
to provide a scalable solution in the recent years. However, due to
lack of familiarity of AOM in both academic and industry, extra-
functional behavior is often modeled directly on UML state
machines and as a result those UML state machines are difficult
to read and maintain. To improve the readability of already
developed UML state machines and ease maintenance, we
propose a set of heuristics, derived from two industrial cases
studies, implemented in a tool to automatically identify
commonly observed crosscutting behaviors in UML state
machines and refactor them as Aspect State Machines. Such
refactoring makes the state machines easier to maintain and
comprehend. We present the results of applying our proposed
heuristics to the existing UML state machines of two industrial
case studies developed for model-based testing.

Keywords— Model Refactoring, UML State machine, Aspect-
Oriented Modeling, Heuristics

I. INTRODUCTION
UML state machines [1] provide a standardized way of
modeling functional behavior of state-based systems to support
a variety of activities including testing [2-5], code generation
[6], and domain specific modeling [7, 8]. UML state machines
provide advanced features such as hierarchy and concurrency
to model the behavior of complex industrial systems. However,
when extra-functional behavior (e.g., robustness, logging) is
modeled with UML state machines, the resulting state
machines are cluttered with redundant modeling elements,
because the extra-functional behavior is often crosscutting.
Such cluttering significantly reduces readability,
understandability, and results in state machines that are very
difficult to maintain [9].

In this paper, we present our work on automatically refactoring
crosscutting behavior from existing UML state machines into
aspect-oriented state machines. The work presented here is
motivated from our previous work on modeling and testing of
two industrial case studies; a Videoconferencing System (VCS)
called Saturn developed by Cisco Systems [2, 10] and
Automated Bottle Recycling System (ABRS) developed by
Tomra AS, Norway [6] . Both case studies posed challenges of
modeling complex systems with many crosscutting behaviors.

For the VCS, we developed a robustness modeling
methodology to model robustness behavior that is typically
crosscutting behavior [9]. Such crosscutting behavior was
modeled using a slight extension of UML state machines
through a profile called AspectSM as Aspect State Machines
(ASMs). With ASMs, a modeler can model crosscutting
behavior separately from the base state machines and thus
reducing the cluttering and improving readability. For the
ABRS system, we modeled several crosscutting behaviors,
although, AspectSM wasn’t used.

In this paper, we present a set of heuristics to automatically
refactor crosscutting behaviors from existing UML state
machines as ASMs. Even though, we refactor crosscutting
behaviors as ASMs, other approaches to model crosscutting
behaviors and standard UML state machines using advanced
features such as hierarchy can be used in place of ASMs.

The main contributions of this paper are as follows: 1) We
define a set of heuristics (derived from the industrial case
studies) for identifying crosscutting patterns in standard UML
state machines; 2) We provide rules for refactoring the state
machine based on the patterns identified by the heuristics into
ASMs and base state machine; 3) We provide tool support
implementing heuristics and rules for refactoring; 4) We
present the results of the application to two industrial case
studies.

The rest of the paper is organized as follows; Section II
briefly presents the two industrial case studies. Section III
presents our heuristics and the proposed refactoring rules.
Section IV briefly discusses our tool called ReState. The results
of applying our approach on the two industrial case studies are
presented in Section V. Section VI concludes the paper.

 This work was supported by ICT R&D Fund, Pakistan under the project
ICTRDF/MBTToolset/2013. Muhammad Zohaib Iqbal was partly supported
by National Research Fund, Luxembourg (FNR/P10/03).

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.94

558

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.94

557

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.94

557

II. CASE STUDY
Below, we present briefly the industrial case studies that

required modeling of crosscutting behaviors.

A. Video Conferencing System
The first case study is related to a project aiming at

supporting automated, model-based robustness testing of a core
subsystem of a video conference system (VCS) called Saturn
developed by Cisco Systems, Norway as reported in [9]. The
core functionality of Saturn manages the sending and receiving
of multimedia streams. Audio and video signals are sent
through separate channels and there is also a possibility of
transmitting presentations in parallel with audio and video. One
participant can send presentations at a time and rest of the
participants receive it. Saturn consists of 20 subsystems and
each subsystem can work in parallel to the core behavior.

In [4], we modeled five crosscutting robustness behaviors
of Saturn as ASMs that are: 1) Audio Quality, 2) Video quality,
3) Media quality recovery, 4) Network communication, 5)
Crosscutting in guards conditions providing inputs to the VCS.
To assess our approach, we obtained woven models of these
crosscutting behaviors and used them to assess if our tool can
identify and refactor crosscutting behaviors.

B. Automated Bottle Recycling System (ABRS)
The second case study was the industrial Automated Bottle

Recycling System developed by Tomra AS, Norway. In our
previous work, we published the case study as part of
environment modeling approach [6, 11]. The bottle recycling
system is fitted with a sorting arm that is used for separating
three types of the recyclables, plastic bottles, cans and glass
bottles. For testing of ABRS, we proposed the environmental
modeling approach and developed state machines that captured
the environment of the system, along with the possible error
states. While the approach was successfully in testing the
ABRS, it produced state machines that contained a number of
cross cutting concerns.

In this paper, from the published case study in [6] we have
taken four of our state machines of the various components
developed for environmental modeling approach and have
applied the refactoring. One of the state machines contained
cross cutting behavior, modeled as the error state. Originally
the error state was introduced in [6] to model the
environmental errors. However, the error states were modeled
as part of state machines, thus mixing core
functionalities/behaviors with erroneous behaviors. The other
state machines did not contain any such behavior.

III. HEURISTICS BASED APPROACH FOR AUTOMATED
REFACTORING OF STATE MACHINES

Our proposed approach relies on heuristics to refactor
existing UML state machines. The approach has two phases: i)
crosscutting identification phase based on heuristics; ii)
Extraction and refactoring of the identified crosscutting
behaviors as one or more ASMs. The heuristics for identifying
the crosscutting behavior are formalized in Object Constraint
Language (OCL) [12] in the following section.

A. Heurisctis for Identifying Crosscutting Behaviors
We propose four heuristics as shown in Table 1 together with
refactoring rules for generating ASMs.

TABLE I. HEURISTICS FOR IDENTIFYING CROSSCUTTING BEHAVIORS

ID Heuristic for identifying crosscutting behaviors Ref
1a. Description: Similar incoming transition with same trigger,

guard condition and effects.
Rule:
context UML::Vertex inv:
self.incoming -> select (t1, t2: Transition | t1. name <>
t2.name and t1.source <> t2.source and t1.trigger = t2.trigger
and t1.effect = t2.effect and t1.guard.specification.body =
t2.guard.specification.body and t1 <> t2)->size () >=1

Rule 1

1b Description: Similar incoming transition with same trigger
and effects but different guard conditions.
Rule:
context UML::Vertex inv:
self.incoming -> select (t1, t2: Transition | t1. name <>
t2.name and t1.source <> t2.source and t1.trigger = t2.trigger
and t1.effect = t2.effect and t1.guard.specification.body <>
t2.guard.specification.body) ->size() >=1

Rule 2

1c Description: Similar incoming transitions with same trigger
and guard condition but different effects.
Rule:
context UML::Vertex inv:
self.incoming -> select (t1, t2: Transition | t1. name <>
t2.name and t1.source <> t2.source and t1.trigger = t2.trigger
and t1.effect<> t2.effect and t1.guard.specification.body =
t2.guard.specification.body) ->size() >=1

Rule 3

2a Description: Common trigger across different transitions
(more than one triggers).
Rule:
context UML::Region inv:
self.transition-> select (t1, t2 :Transition | t1.trigger->
intersection (t2.trigger) >=1

Rule 4

2b Description: Common effect across different transitions
(more than one action in body of effect).
Rule:
context UML::Region inv:
self.transition-> select (t1, t2 :Transition | t1.effect->
intersection(t2.effect) >=1

Rule 5

2c Description: Common constraint across different guard
conditions (composite guard conditions).
Rule:
context UML::Region inv:
self.transition-> select (t1, t2 :Transition |
isSubString(t1.guard.specification.body,
t2.guard.specification.body)>=1
* isSubString(,) takes two guard conditions as string and
returns true if second guard is a substring of the first guard.

Rule 6

3a Description: Similar outgoing transitions from a given vertex
with same trigger and effects but different guard condition.
Rule:
context UML::Vertex inv:
self.outgoing -> select (t1, t2: Transition | t1. Name <>
t2.name and t1.trigger = t2.trigger and t1.effect = t2.effect and
t1.guard.specification.body <> t2.guard.specification.body) -
>size() >=1

Rule 7

3b Description: Similar outgoing transitions with different
trigger and guard conditions but same effect.
Rule:
context UML::Vertex inv:
self.outgoing -> select (t1, t2: Transition | t1. name <>
t2.name and t1.trigger = t2.trigger and t1.effect = t2.effect and
t1.guard.specification.body <> t2.guard.specification.body) -
>size() >=1

Rule 8

4 Description: Common constraints in State invariants.
Rule:

Rule 9

559558558

context UML::Region inv:
self.vertex -> select (v1, v2: Vertex|
isSubConstraint(v1.constraint, v2.constraint) ->size() >=1
* isSubConstraint(,) takes two constraints and returns true if
second constraint is contained in first.

 For example, the first heuristic (1a) states that we can
identify a crosscutting behavior when a given state in a state
machine has more than one common incoming transition.
Consider the example in Fig. 1, where T1, T2 and T3 are
similar transitions. Once the crosscutting behaviors are
identified, we apply the corresponding refactoring rules. Each
heuristic is mapped to a different refactoring rule, allowing us
to tackle various sub-variations of the heuristics. The next
section explains one of the heuristics and refactoring rules
applied when a crosscutting concern is successfully identified.
The other rules are implemented in a similar manner.

B. Refactoring rules for identifying crosscutting behaviors
We have devised refactoring rules to deal with different

types of crosscutting behaviors identified by the heuristics
presented in the previous section. We present the heuristic 1a
here along with the rule applied once a match is found.

Heuristic 1a. An example is shown in Fig. 1, where all the
three incoming transitions on state S have the same trigger
Trigger, the guard condition Guard and the effect Effect. And
is identified as a possible crosscutting behavior.

Fig. 1. State machine with similar incoming transitions

Refactoring Rule 1. For crosscutting behavior identified
by heuristic 1a, we propose to generate the aspect state
machine as shown in Fig. 2.

We remove the S state from the base state machine along
with the similar transitions T1, T2 and T3. Then an aspect state
machine is used to model the identified crosscutting behavior.
As the target state S has now been removed from the base state
machine, we use the aspect oriented construct of Introduction
to add a new modeling element, the state S, in the aspect state
machine. The selectedSates pointcut selects the source states at
which the transitions to S are to be added in woven model. The
transitions T1, T2 and T3 are removed from the base state
machine, leaving a clean base state machine with possibly less
transitions and states.

Note that in this case the generated OCL queries are much
simpler as compared to a forward engineering approach
reported in [9] as we already have the required information
about the target states.

IV. AUTOMATION OF REFACTORING RULES USING RESTATE
Fig. 3 shows the architecture diagram of ReState Tool. The

tool is implemented in Java. Use of Java as the implementation

language allows us to use the extensive support for
manipulating meta-models available through Java EMF [13].
Another possibility was to implement the transformation in a
model transformation language. However, EMF was preferred
since it provides a mature underlying infrastructure. ReState
takes the UML state machine, the UML meta-model and the
AspectSM profile as input and produces one or more ASMs
and a clean base state machine as output.

The input state machine is read from .uml file using the
ModelLoader, which internally uses the Java EMF library. The
loaded model is passed to the HeuristicsEngine that tries to
find matches against the proposed heuristics. The ReState tool
uses matching rules written in java, translated from the OCL
rules manually by the developers. The various proposed
refactoring rules are stored in the RuleRepository. Once a
match is found, the ModelTransformer applies corresponding
transformation. In case of multiple matches, the designer is
allowed to select a given refactoring. In case of multiple
matches the decision is left to the designers.

The ModelTransformer applies the transformation rules and
produces a clean state machine and uses the AspectGenerator
component to generate aspects. Each identified match is
modeled as a separate aspect state machine. The
AspectGenerator contains the implementation to produce
aspect state machines using AspectSM notation. This
component can be further extended to support other notations
in future.

Fig. 2. Aspect state machine resulting from rule 1

Fig. 3. Architecture of ReState Tool

V. RESULTS OF AUTOMATED REFACTORING
To assess the proposed heuristics, for Saturn, we wove five-

aspect state machines corresponding to each of the robustness

560559559

behavior into a base state machines (functional state machines
of Saturn subsystems) and obtained five woven state machines.
Each state machine contains (one) robustness behavior in
addition to the elements of the base state machine. We applied
our heuristics to each of these woven state machines to assess
that if crosscutting behaviors can be detected and refactored as
aspect state machines. The results of applying the heuristics
revealed that for the first four robustness behaviors we were
able to successfully detect and refactor crosscutting behaviors.
These four robustness behaviors were identified with rules 2a
and 4. The fifth crosscutting behavior wasn’t detected by any
heuristics. A summary of the results appears in Table 2.

For the ABRS, when we apply our heuristics on the state
machine, one state (the Error State) and its incoming transitions
were identified as a crosscutting behavior. The results are
summarized in Table 2 and Table 3. As can be seen from the
tables, only one aspect was identified from the four published
state machines for ABRS system. Manual analysis of the state
machines shows that there was no other crosscutting or
redundant behavior in the state machines.

TABLE II. RESULTS OF REFACTORING INDUSTRIAL CASE STUDIES

Rule VCS ABRS
1. a - 1
2. a 2 -
4 2 -
Unidentified 1 -

TABLE III. RESULTS OF REFACTORING INDUSTRIAL CASE STUDIES

Model
Elements

VCS (Average of 5
behaviors)

ABRS

Before After %
Saving

Before After %
Saving

States 212 8 96 19 18 6
Transitions 356 6 98 31 26 16

Triggers 2686 31 99 - -

Mean - - 97 - - 11

Table 3 presents the modifications made in the both case

studies. The % saving column shows the percentage of model
elements reduced as a result of refactoring. For VCS, we saved
on average 97% of model elements, whereas for ABRS we
saved on average 11%. The results showed that our approach is
quite effective in refactoring crosscutting behaviors.

VI. CONCLUSION
Aspect oriented modeling offers a number of benefits such

as increased reuse, ease of maintenance and enhanced
modularity. A number of approaches have been proposed to
bring aspect orientation to various design models including
UML state machines. However, aspect oriented modeling is
relatively new and is not yet widely practiced in industry. Just
like legacy code, there are a large number of projects with
models that do not incorporate separation of concerns and
consequently can benefit from refactoring’s of their models.

Based on our experiences in modeling industrial case
studies, we have presented an approach to refactor existing

UML state machines; we split the state machines in a base state
machine and one or more aspect state machines modeling
crosscutting behavior. We propose heuristics for identifying
crosscutting behavior in legacy state machines and provide a
set of refactoring rules. Our refactoring rules are applied as
guidelines and our tool gives the designer the final say on the
refactoring’s. For modeling cross cutting behavior, we rely on
AspectSM profile. We present the results of applying our
approach on the two industrial case studies, developed as part
of our previous work on environmental modeling and
robustness modeling. Our automated tool was successfully able
to identify the five crosscutting behaviors from the state
machines of the two-selected case study. The results show that
such refactoring’s can significantly simplify existing models.
One current limitation with the approach is considering the
priority of refactoring rules; we have not yet addressed the
issue of rule precedence when situations requiring multiple
refactoring arise. Our future work will empirically evaluate the
effects of rule precedence.

REFERENCES
[1] OMG, "Unified Modeling Language, Superstructure Specification,

Version 2.4," ed: Object Management Group Inc., 2011.
[2] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "Generating Test Data

from OCL Constraints with Search Techniques," IEEE Trans. Softw.
Eng., vol. 39(10), pp. 1376–1402, 2013.

[3] A. Arcuri, M. Iqbal, and L. Briand, "Black-Box System Testing of
Real-Time Embedded Systems Using Random and Search-Based
Testing," in Testing Software and Systems, LNCS. vol. 6435, A.
Petrenko, A. Simão, and J. Maldonado, Eds., ed: Springer Berlin
Heidelberg, 2010, pp. 95–110.

[4] M. Utting and B. Legeard, Practical model-based testing: a tools
approach: Morgan Kaufmann, 2010.

[5] R. Lefticaru and F. Ipate, "Functional search-based testing from state
machines," 2008, pp. 525-528.

[6] M. Z. Iqbal, A. Arcuri, and L. Briand, "Environment modeling and
simulation for automated testing of soft real-time embedded
software," Software & Systems Modeling, pp. 1–42, 2013.

[7] H. Gomaa, "Designing software product lines with UML," in 2012
35th Annual IEEE Software Engineering Workshop, 2012, pp. 160-
216.

[8] B. Selic, "Using UML for modeling complex real-time systems," in
Languages, Compilers, and Tools for Embedded Systems, 1998, pp.
250-260.

[9] S. Ali, L. C. Briand, and H. Hemmati, "Modeling Robustness
Behavior Using Aspect-Oriented Modeling to Support Robustness
Testing of Industrial Systems," Software and Systems Modeling, vol.
11(4), pp. 633–670, 2012.

[10] S. Ali, L. Briand, A. Arcuri, and S. Walawege, "An Industrial
Application of Robustness Testing using Aspect-Oriented Modeling,
UML/MARTE, and Search Algorithms," in ACM/IEEE 14th
International Conference on Model Driven Engineering Languages
and Systems (Models 2011), LNCS. vol. 6981, J. Whittle, T. Clark,
and T. Kühne, Eds., ed: Springer Berlin Heidelberg, 2011, pp. 108–
122.

[11] M. Z. Iqbal, A. Arcuri, and L. Briand, "Environment Modeling with
UML/MARTE to Support Black-Box System Testing for Real-Time
Embedded Systems: Methodology and Industrial Case Studies," in
Model Driven Engineering Languages and Systems, LNCS. vol. 6394,
D. Petriu, N. Rouquette, and Ø. Haugen, Eds., ed: Springer Berlin
Heidelberg, 2010, pp. 286–300.

[12] OMG, "Object Constraint Language Specification, Version 2.0," ed:
Object Management Group Inc., 2006.

[13] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF:
eclipse modeling framework: Pearson Education, 2008.

561560560

