

Context-Free Slicing of UML Class Models

Huzefa Kagdi, Jonathan I. Maletic, Andrew Sutton
Department of Computer Science

Kent State University
Kent Ohio 44242

{hkagdi, jmaletic, asutton}@cs.kent.edu

Abstract In the work presented here, we introduce a method to
automatically generate a subset of a UML class model
based on a user-defined criterion. The goal of this work
is to allow us to automatically extract a pertinent and
meaningful UML class diagram from a very large UML
class model.

The concept of model slicing is introduced as a means
to support maintenance through the understanding,
querying, and analysis of large UML models. The
specific models being examined are class models as
defined in the Unified Modeling Language (UML).
Model slicing is analogous to classical program slicing.
Since UML class models do not explicitly embody any
behavioral aspect by themselves, models slices are
computed in a context-free manner. The paper defines
and formalizes the concept of context-free model slicing.
A concrete application of model slicing in software
maintenance is presented to support the usefulness and
validity of the method.

In the next section (2) we describe and formally define
our approach to UML class model slicing. A concrete
application of this approach is given in section 3.
Related work on examining subsets of UML diagrams
are discussed in section 4. Conclusions are given in
section 5.

2. UML Model Slicing
Our method is rooted in the classical definition of

program slicing but extends that concept to the UML
models. In general, we term this approach model slicing.
Here, we focus our discussion on the UML class models.
However, since class models are devoid of explicit
behavioral information (by themselves) we further define
the concept of context-free model slicing. Program
slicing has the implicit context of the definition-use
relationship with respect to a supplied slicing criterion.
In model slicing of a UML class model, we must specify
some sort of non-behavioral aspect to construct the slice.
In short, model slices are defined via a generalized
slicing criterion that is specified with predicates over the
model’s features.

1. Introduction
There is an ever increasing importance being put on

design models to support the evolution of large software
systems. Design models such as UML class models are
being maintained and updated from initial development
as well as being reverse engineered to more accurately
reflect the state of evolving systems. However, herein
lays the problem - a UML class model for a large system
is typically comprised of thousands of classes and
relationships. Viewing the entire model at one time is
impractical and typically of little use for a particular
maintenance task.

Program slicing, as defined in [11], takes a program
and a slicing criteria to compute a slice or subset of the
source code. More formally, given a slicing criterion,
s(v, n) with a set of variables v and a location of a
statement of interest s, program slicing determines a set
of statements contributing directly or indirectly to the
values of variables, v, before the statement s is executed.
Those resultant statements comprise the program slice.
Statements in a program slice have a specific behavioral
context. In this case, the behavior is the statements
affected by or affecting the states of the variables
involved in a computation at a particular point in a

There are few, if any, existing methods (or tools) for
supporting the automated or semi-automated extraction
of meaningful subsets of a class model. Currently, this is
done manually. An engineer must wade through the
entire class model and (using some tool) construct a
specific class diagram within the context of this model.
While a diagram may exist that is close to what is desired
(e.g., the entire class hierarchy for a particular concept) it
may be far too unwieldy and include many classes of
little interest or consequence to the problem at hand (e.g.,
entity classes contained by all classes in an inheritance
hierarchy).

2.1. Context-free Model Slice program. These statements included in the program slice
are those extracted from the investigation of the
definition-use relationship (i.e., statements with
definition and usage of variables given in the slicing
criteria).

A context-free model slice is defined primarily to
encapsulate static and structural aspects of a UML model
and precludes the inclusion of behavioral, computation,
or interaction information. For the purpose of model
slicing, we define a model, M, as a directed multi-graph
M = (E, R, Γ) where

It should be noted the definition-use relationship is the
only relationship of interest in program slicing. This is
evident in the definition of the program-slicing criteria.
The slicing criterion does not provide any means for the
explicit specification of relationships other than
definition-use relationship. The usage of this relationship
is implicitly assumed. This assumption restricts program
slicing to the singular relationship among the elements
(statements) of the source code.

• E = {e1, e2,.., en} is the finite set of elements,
• R = {r1, r2,...,rm} is the finite set of relationships,
• Γ:R⇒E×E is a function that maps elements to

elements via a relationship. Γ:R⇒E×E defines
multiple relations between each element. The
relations ri and rj are multiple relations on the
same elements if Γ(ri) = Γ(rj). UML model slicing extends this concept of program

slicing via a generalized, albeit more complex, slicing
criteria. These extensions elevate the capabilities of
program slicing from the source-code level to UML
structural models (i.e., class models) and behavioral
models (i.e., sequence, collaboration, and state behavior
models). All elements and relationships defined for the
UML class models can be used in the computations of a
model slice. This includes elements such as classes,
packages, components and operations, and relationships
such as associations, dependencies and generalizations.
The slicing criteria for the extended domain must account
for all the elements and relationships available in the
UML metamodel.

Each element, e is defined by a finite set of properties i
{p1, p2 … pk}, such that each element has a finite set of
properties. Likewise each relation, r is defined by a finite
set of properties {p1, p2, … pk}. Each property, pi is an
ordered pair that defines a name and a value (e.g., {(type,
Class), (name, “stack”)…}).

The model consists of a finite set of elements E and a
finite set of relationships R. The set E contains instances
of all metamodel elements such as class, namespace,
package, component etc., and the set R provides all
instances of relationships including association,
generalization, dependency, etc. These correspond to the
meta-classes defined in the UML metamodel. As can be
seen from the above definition elements and relationships
are both first class entities.

Unlike program slicing, model slicing does not
necessarily require the physical location of an element of
interest (i.e., an observation point of a behavior). UML
class models, representing only abstracted structural
elements, contain no behavioral elements (e.g., instances
of classes or statements). However, other views such as
sequence diagrams, object diagrams, and collaborations
define contexts in which objects may be explicitly
located. In these cases, we define context to be the
location of the object. The context can be a particular set
of scenarios in which a set of objects are involved or a
particular range in the lifeline of a set of objects when
dealing with an interaction model such as one pictured by
a sequence diagram.

The elements and relations are mapped with the
function, Γ. Given a relationship ri, the mapping Γ tells
which elements are its end points.

A property of a member of the set E could be the type
of element such as (type, Class), and a property of a
member of the set R could be the type of the relationship
such as (type, Generalization). Thus, this definition of
model makes the elements and relations along with their
property sets available for model slicing

The context-free model slice, Scf, of a given UML
model M, is defined as a function over a model and
determined by the specified slicing criteria, Ccf., Here, we distinguish between slicing of models that

require or do not require context information and
introduce the terms context-free and context-sensitive
slices. The context-free slices are applicable to models
that do not require a context for the computation of a
model slice. Context-sensitive slices are applicable to
models that do require such context information. Here
we focus on the definition of context-free model slicing
and reserve the definition of context-sensitive slicing for
future work (as it requires the former definition at the
very least).

Scf(M, Ccf) = M’ = (E’, R’, Γ’) ⊆ M
The context-free slicing criteria Ccf is defined as a

triple of constrains that must all be satisfied to construct
M’.

Ccf = (I, S, D)
The initial-element set, I = ∀e∈ E | PI(M) specifies

the initial elements of the slice. The predicate PI(M) is
constructed to be satisfied for elements in the initial set.

The selected-element set, S = ∀e∈ E | PS(M) specifies
the elements selected for inclusion in the resultant slice.
The predicate PS(M) is defined so that only elements of
interest are selected.

Figure 1. The model slice is shown within the grey
boxes. The levels reflect the traversal of two
relationships. The class Class is not included in the
slice.

The dimension-set, D = ∀r∈ R | (PD(M) ∧ T(M) ∧
B(M)) specifies the relationships of interest (a.k.a.,
dimensions) to be included in the slice and traversed in
its computation. The predicate PD defines which
relationships are included in the slice. The predicate
T(M) defines a terminating condition of the computation
with respect to each of, or all, the relationships. The
bounding predicate B(M) is the computational upper
bound on the path length between elements with respect
to each of, or all the relationships, of the slice.

3. Applying Model Slicing
In this section, we demonstrate by an example the

ability of model-slicing to satisfy a typical design
understanding question that is asked of UML class
models during software maintenance.

Question: How can a programmer discover
relationships between a specific class and other classes
in a UML system model?

Programmers, when faced with such problems,
might typically browse through project software artifacts
including reference manuals, UML class diagrams, and
source code to discover relationships between one class
and its associates (base classes, aggregations,
dependencies, etc.). Rarely, even in good software
documentation, is this information localized for easy
consumption. Model slicing can be used as a query
mechanism to provide concise views of the
programmer’s informational needs. Consider a snippet

programmer looking for the inheritance hierarchy and
immediate associations of the Classifier class could use
the following slicing criteria to determine related classes.

PI(M) := e ⊇ {(name, ” Classifier”)}

of the UML metamodel shown in Figure 1. A

⊇ [R1∨ R2]
}

r⊇ R1)∨
∀e ∃ e’∈E |path(e, e’, r)| ≤1))

The s n
by

cluded as part of Association
be

4. Related Work
his section, we discuss existing methods to query

an

, 10]
all

PS(M) := T
PD(M) := r
R1= {(type, “Generalization”)
R2= {(type, “Association”)}
T(M):= F
B(M):= (∀

 (∀r⊇ R2 ∧ (
lice consists of elements in the initial set, show

 the level zero in Figure 1. The traversal starts with
Classifier and considers elements at level one. The
relationships traversed to the candidate elements are
shown in bold. Two elements along the Generalization
path (Namespace and GeneralizableElement) and one
element along the Association path (Feature) are
included in the slice. After the first iteration, the slice
now includes those elements contained in level zero and
those contained in level one. In the second iteration, only
elements involved in the Generalization relationship are
considered because the bounding condition of the
Association relationship was satisfied at level one. All
the elements in the Generalization relationship at this
level are included in the slice and are shown to be
contained in level 2. The computation of the model slice
terminates after this iteration as there are no more
elements in the Generalization path. The final slice is
depicted in Figure 1, consisting of all elements contained
within the outermost level.

The class, Feature, is in
cause aggregation is a kind of association in the UML

metamodel. Note the Association computation is not
transitive as only the immediate associations of Classifier
are considered (i.e., Feature). Associations of base
classes are not considered for the slice. If those
associations are of interest, the base classes must be
included in the initial element set of the slicing criteria.

In t
d extract information from UML class models – the

subset of a model that deals with the structural design of
the system (i.e., classes, attributes, and operations).
These approaches include constraint and query
languages, XML processing, and model processing.

The UML object constraint language (OCL) [1, 3
ows querying of UML models. It is primarily used for

model validation and constraint checking. Recent work
in Model Driven Architecture (MDA) has proposed using
OCL as a query language to satisfy the query component
to the QVT (Query/View/Transformation) specifications
[2]. As a query language, OCL can be used to extract

model elements that satisfy some condition (e.g., all
abstract classes in a model).

Many approaches to querying UML models involve
an

el analysis in the
co

e use of additional
lan

5. Conclusions & Future Work
his paper we introduced the concept of model

sli

is realized as a set of predicates that
sp

ely investigating the concept of context-
sen

alysis or operations on the XML-based interchange
format for UML models, XMI [5, 7, 9]. These
approaches apply XML processing techniques such as
XPath, XQuery and XSLT to extract data from the XMI
files. This approach is similar to those used in XML-
based source code or AST analysis.

Other approaches involve mod
ntext of additional semantic information. In [4] a

metric-based approach is proposed to derive subparts of
UML class diagrams. A high level view of the subparts
exhibiting a particular metric-based feature such as
coupling (referred to as a coupling diagram) is obtained,
and then classes within a particular range of metric
values are extracted and visualized via a diagram. This
approach is particularly good at “pruning” large UML
diagrams to show only the relevant classes in the
diagram. However, this approach is very limited in the
types of pruning that can be done.

Other approaches involve th
guages and technologies to query or validate UML

models. In [6], OCL expressions are translated to SQL
statements to query and evaluate models stored in a
relational database. In [8], Python and OCL are used
together to provide more procedural control for the
evaluation of such queries.

In t
cing pertaining to UML class models. The work

generalizes the concept of program slicing so that it can
be applied to more abstract models. The ultimate goal is
to provide an automatic mechanism that will enable
developers to extract task-specific UML sub-models by
giving specification in terms of UML-level constructs.
This type of approach will support the development of
sophisticated tools to automatically extract meaningful
sub-models of large system design model so they can be
visualized or analyzed to facilitate maintenance and
evolution tasks.

Model slicing
ecify a slicing criterion. We envision that languages

such as OCL can be used to implement the predicates
required to compute the model slices. In this vein, we are
extending our prototype implementation of the model
slicing algorithm and plan to apply it to large models of
real systems (e.g., an open source systems such as
HippoDraw).

We are activ
sitive slicing of UML models using a behavioral

model, such as a sequence diagram that is implicitly
linked to the static class model.

This research was supported, in part, by a grant from
the National Science Foundation (CCR-02-04175).

6. References
[1] Akehurst, D. H. and Bordbar, B., "On Querying UML Data
Models with OCL", in Proceedings of Fourth International
Conference on the Unified Modeling Languages (UML'01),
Toronto, Canada, October 1-5 2001, pp. 91-103.

[2] Appukkutan, B., Tratt, L., Clark, T., Reddy, S., Venkatesh,
R., Evans, A., Maskeri, G., Sammut, P., and Willans, J., "QVT-
Partners Revised Submission to MOF 2.0
Query/View/Transformations RFP", Object Management
Group, Document ad/03-08-08, August 2003.

[3] Gogolla, M. and Richters, M., "On Constraints and Queries
in UML", in Proceedings of Workshop on the Unified
Modeling Language - Technical Aspects and Applications,
Mannheim, Germany, November 10-11 1997, pp. 109-121.

[4] Kollmann, R. and Gogolla, M., "Metric-Based Selective
Representation of UML Diagrams", in Proceedings of Sixth
European Conference on Software Maintenance and
Reengineering(CSMR'02), Budapest, Hungary, March 11 - 13
2002, pp. 89-98.

[5] Kurtev, I. and van der Berg, K., "Model Driven Architecture
Based XML Processing", in Proceedings of ACM Symposium
on Document Engineering (DOCENG'03), Grenoble, France,
2003, pp. 246-248.

[6] Marder, U., Ritther, N., and Steiert, H.-P., "A DBMS-based
Approach for Automatic Checking of OCL Constraints", in
Proceedings of OOPSLA'99 Workshop on Rigourous
Modeling and Analysis with the UML: Challenges and
Limitations, Denver, Colorado, November 1-5 1999.

[7] Peltier, M., Bézivin, J., and Guillaume, G., "MTRANS: A
general framework, based on XSLT, for model
transformations", in Proceedings of ETAPS'01 Workshop on
Transformations in UML, Genova, Italy, April 7 2001.

[8] Siikarla, M., Peltonen, J., and Selonen, P., "Combining OCL
and Programming Languages for UML Model Processing", in
Proceedings of UML'03 Workshop on OCL 2.0 - Industry
Standard or Scientific Playground?, San Francisco, California,
October 21 2003.

[9] Stevens, P., "Small-Scale XMI Programming: A Revolution
in UML Tool Use?" Automated Software Engineering, vol. 10,
no. 1, January 2003 2003, pp. 7-21.

[10] Warmer, J. and Kleppe, A., The Object Constraint
Language : Precise Modeling with UML, 1st ed., Addison-
Wesley Pub Co, 1998.

[11] Weiser, M., "Program slicing", in Proceedings of
International Conference on Software Engineering (ICSE'81),
San Diego, California, United States, March 09 - 12 1981, pp.
439 - 449.

	Introduction
	UML Model Slicing
	Context-free Model Slice

	Applying Model Slicing
	Related Work
	Conclusions & Future Work
	References

