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Describing Software Architecture with UML

C. Hofmeister, R. L. Nord, D. Soni
Siemens Corporate Research, Princeton, New Jersey, USA

Abstract: This paper describes our experience using UML, the Unified Modeling La
guage, to describe the software architecture of a system. We found that it w
well for communicating the static structure of the architecture: the element
the architecture, their relations, and the variability of a structure. These st
properties are much more readily described with it than the dynamic proper
We could easily describe a particular sequence of activities, but not a genera
quence. In addition, the ability to show peer-to-peer communication is miss
from UML.

Keywords: software architecture, UML, architecture descriptions, multiple views

1. INTRODUCTION

UML, the Unified Modeling Language, is a standard that has wide accepta
and will likely become even more widely used. Although its original purpo
was for detailed design, its ability to describe elements and the relations
tween them makes it potentially applicable much more broadly. This paper
scribes our experience using UML to describe the software architecture
system.

For these architecture descriptions, we wanted a consistent, clear not
that was readily accessible to architects, developers, and managers. It wa
our goal to define a formal architecture description language. The nota
could be incomplete, but had to nevertheless capture the most important as
of the architecture.

In this paper we start by giving an overview of the kinds of information w
want to capture in a software architecture description. Then we give an exa
of a software architecture description for part of particular system: the im
processing portion of a real-time image acquisition system. The final sec
discusses the strengths and weaknesses of UML for describing architectu

We separate software architecture into four views: conceptual, module
ecution, and code. This separation is based on our study of the software a
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tectures of large systems, and on our experience designing and revie
architectures (Soni, 1995). The different views address different enginee
concerns, and separation of such concerns helps the architect make sou
cisions about design trade-offs.

The notion of this kind of separation is not unique: most of the work in so
ware architecture to date either recognizes different architecture views o
cuses on one particular view in order to explore its distinct characteristics
distinguish it from the others (Bass, 1998). The 4+1 approach separates a
tecture into multiple views (Kruchten, 1995). The Garlen and Shaw work
cuses on the conceptual view (Shaw, 1996). Over the years there has b
great deal of work on the module view (Prieto-Diaz, 1986). There is other w
that focuses on the execution view, and in particular explores the dynamic
pects of a system (Kramer, 1990; Purtilo, 1994). The code view has been
plored in the context of configuration management and system building.

The conceptual view describes the architecture in terms of domain
ments. Here the architect designs the functional features of the system. Fo
ample, one common goal is to organize the architecture so that functi
features can be added, removed, or modified. This is important for evolut
for supporting a product line, and for reuse across generations of a produ

The module view describes the decomposition of the software and its o
nization into layers. An important consideration here is limiting the impact
a change in external software or hardware. Another consideration is the fo
ing of software engineers’ expertise, in order to increase implementation
ciency.

The execution view is the run-time view of the system: it is the mapping
modules to run-time images, defining the communication among them, and
signing them to physical resources. Resource usage and performance ar
concerns in the execution view. Decisions such as whether to use a link lib
or a shared library, or whether to use threads or processes are made he
though these decisions may feed back to the module view and require cha
there.

The code view captures how modules and interfaces in the module view
mapped to source files, and run-time images in the execution view are ma
to executable files. The partitioning of these files and how they are organ
into directories affect the buildability of a system, and become increasingly
portant when supporting multiple versions or product lines.

Each of the four views has particular elements that need to be described
elements must be named, and their interface, attributes, behavior, and rela
to each other must be described. Some of the views also have a configura
which constrains the elements by defining what roles they can play in a pa
ular system. In the configuration, the architect may want to describe additio
attributes or behavior associated with the elements, or to describe the beh
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In the next four sections, we show how we used UML to describe eac

these four views, starting with the conceptual view and ending with the c
view. To make the explanation clearer, we use an example from an image
quisition system.

The image acquisition system acquires a set of digitized images. The
controls the acquisition by selecting an acquisition procedure from a set of
defined procedures, then starting the procedure and perhaps adjusting it d
acquisition. The raw data for the images is captured by a hardware devi
“camera”, and is then sent to an image pipeline where it is converted to ima
The image pipeline does this conversion, first composing the raw data into
crete images, and then running one or more standard imaging transforma
to improve the viewability of the images. The image pipeline is the portion
the system that we will use as an example.

2. CONCEPTUAL ARCHITECTURE VIEW

The basic elements in the conceptual view are components with ports thro
which all interactions occur, and connectors with roles to define how they
be bound to ports. The components and connectors are bound together to
a configuration. In order to bind together a port and role in a configuration,
port and role protocols must be compatible. Components can be decomp
into other components and connectors. These elements, their associated b
ior, and the relations of the conceptual view are summarized in Table 1.

Figure 1 is a UML diagram that describes much of the conceptual view
the image pipeline. It is represented by the ImagePipeline component, w
has ports acqControl for controlling the acquisition, packetIn for the incom
raw data, and framedOutput for the resulting images.

The ImagePipeline is decomposed into a set of components and conne
that are bound together to form a configuration. The components, ports,

connectors are a stereotype of Class1, but we use the convention of special sym
bols for ports and connectors (and leave off the stereotype for componen
order to make the diagrams easier to read. Roles are shown as labels on the

Table 1: Elements of Conceptual Architecture View

 Elements Behavior Relations

 component
 port
 connector
 role

component functionality
port protocol
connector protocol
role protocol

component decomposition
port-role binding (for configuration)
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connector associations. We also use the convention that when an associa
multiplicity is not specified, it is assumed to be one.

The multiplicities on the components, connectors, and bindings show th
of allowable configurations. Each acquisition procedure has a distinct se
processing steps, represented by the Imager component. So the diagram
the general structure of an image pipeline, which all acquisition procedures
here to.

The first stage of the pipeline is the Framer, followed by one or more s
sequent stages, represented by the Imager. Each of the stages is conne
the pipelineControl port via a Client/Server connector. The Imager compon
has a multiplicity of ‘1..*’, meaning that an acquisition procedure has one
more of these later stages.

The Imager is bound to ‘1..*’ Client/Server connectors, but the associa
is one-to-one, so each Imager instance is bound to exactly one Client/Serv
stance. Each Client/Server instance is bound to the pipelineControl port o
actly one PipelineMgr, but pipelineControl is bound to all Client/Serv
instances in the pipeline. Similarly the ‘1..*’ ImagePipe connectors have a o
to-one association with the Imagers. Because the bindings also have mult
ities, we can conclude that there are the same number of Client/Server, Im

1. “A stereotype is, in effect, a new class of modeling element that is introduced at model
time. It represents a subclass of an existing modeling element with the same form (attrib
and relationships) but with a different intent... To permit limited graphical extension of t
UML notation as well, a graphic icon or a graphic marker (such as texture or color) can
associated with a stereotype.” (UML, 1997)

Figure 1:  Conceptual Configuration
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and ImagePipe elements bound together in a legal configuration.
We use the ‘{or}’ annotation at the source side of the ImagePipe to sh

that an ImagePipe is either bound to the output of the first stage or a later s
But while the output of the first stage (the Framer) is always bound to the
agePipe, the later stages could be bound to framedOutput. When a later st
bound to framedOutput, it is necessarily the last stage in the pipeline.

Figure 2 shows the protocol RequestDataPacket, which the packetIn p
on the ImagePipeline and Framer follow. We have adopted the ROOM nota
here, showing the incoming and outgoing messages, then either a sequen
agram or state diagram to show the legal sequences of these messages
1994; Selic, 1998).

The resource budgets are attributes of the components and connectors.
can be described in the attribute box of the appropriate class in a UML diag
in a table, or in text.

For the conceptual view, we represent components, ports, and connecto
stereotyped classes. Decomposition is shown with nesting (association)
bindings are shown by association. We use:
• UML Class Diagrams for showing the static configuration.
• ROOM protocol declarations and UML Sequence Diagrams or State D

grams for showing the protocols that ports adhere to.
• UML Sequence Diagrams for showing a particular sequence of interact

among a group of components.

Figure 2:  Protocol for packetIn Port
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3. MODULE ARCHITECTURE VIEW

In the module architecture view, subsystems are decomposed into modules
modules are assigned to layers in accordance with their use-dependencie
ble 2). There is no configuration for the module view because it defines
modules and their inherent relations to each other, but not how they wil
combined into a particular product.

Table 3 shows how the image pipeline’s conceptual elements are mapp
module elements. Notice that ports, connectors, and components are some
combined into one module. This information could also be shown in a UM
class diagram, with the mapping between conceptual and module elem
shown as an explicit association.

The SPipeline subsystem is decomposed into the six modules shown in
ure 3. This decomposition is dictated by the modules’ correspondence to
conceptual elements, and their decomposition. Again we use nesting to s
the decomposition, and we use stereotypes for each different type of elem

We do not use the UML “component” notation for a module, because in
module view the modules are abstract, not the physical modules of source c

Table 2: Elements of Module Architecture View

Elements Behavior Relations

 module
 subsystem
 layer

interface protocol module implements conceptual component
subsystem decomposition
module use-dependency

Table 3: Mapping between Conceptual and Module Architecture Views

Conceptual element Subsystem or Module

ImagePipeline SPipeline

acqControl, pipelineControl MPipelineAPI

PipelineMgr, ImagePipe, Client/Server MPipelineControl, MImageBuffer

stageControl, imageIn, imageOut MImageMgrAPI

Framer MFramer

Imager MImager
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The use-dependencies among the pipeline modules are also derived
the conceptual elements’ associations. These are shown in Figure 4. The M
ent and MDataMgrAPI are not part of the SPipeline subsystem, but we inclu
them in order to show all use-dependencies of the SPipeline subsystem. W
the UML “lollipop” notation to show the interface(s) of each module, and
make it clear that the modules are dependent on the interface of another
ule, not the module itself.

Figure 4 also shows some of the layers of the system. These are based
use-dependencies among modules and subsystems, so we often show u

Figure 3:  Decomposition of SPipeline

Figure 4:  Use-Dependencies of SPipeline
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pendencies between and within layers in the same diagram, as we did he
For the interface definition, we use a simple list of the interface metho

This information could be put inside the class definition in a UML diagram. W
generally prefer to list it separately, using the class diagrams to focus on th
lations among modules rather than a complete description of the modules

In the module view, we represent modules with a stereotyped class, and
systems and layers with stereotyped packages. Decomposition is show
nesting (association), and the use-dependency is a UML dependency. W
• Tables for describing the mapping between the conceptual and mo

views.
• UML Package Diagrams for showing subsystem decomposition depen

cies.
• UML Class Diagrams for showing use-dependencies between module
• UML Package Diagrams for showing use-dependencies among layers

the assignment of modules to layers.

4. EXECUTION ARCHITECTURE VIEW

The execution architecture view describes how modules will be combined
a particular product by showing how they are assigned to run-time ima
Here the run-time images and communication paths are bound together to
a configuration. Table 4 lists the elements, behavior, and relations of the
cution view.

The execution configuration of the Image pipeline in Figure 5 indicates t
there is always just one EClient process, but multiple pipelines can exist at
time. A pipeline has one process each for EPipelineMgr, EImageBuffer,
EFramer, and one process each for additional pipeline stages.

We again use a stereotype of the UML Class for run-time images. They
stereotyped with the name of the platform element, in this case <<process>
<<shared data>>. We originally used the UML “active object” notation fo
process, but now prefer to use a stereotyped class. One reason is that we
want to use classes rather than objects in a configuration diagram. A se
reason is that active objects have a thread of control, whereas passive o
run only when invoked (UML, 1997). This distinction was not what we want

Table 4: Elements of Execution Architecture View

Elements Behavior Relations

run-time image
communication path

communication protocol run-time image contains module
binding (for configuration)
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to describe; we wanted to characterize the run-time image by its platform
ment (e.g. process, thread, dynamic link library, etc.) rather than convey co
flow information about the elements.

This diagram uses nesting to show the modules associated with each
time image. The modules have a multiplicity that is assumed to be one if n
is explicitly shown. In the configuration in Figure 5, there are multiple modu
MImageMgrAPI, but at most one per process, and only in the EFramer
EImager processes. There are also multiple modules MPipelineAPI in the
figuration, but all of these reside in process EClient.

The run-time images also have multiplicity, as do communication pa
which are labeled to show the communication mechanisms. This has the
implications as for the conceptual configuration, namely that with multipli
ties on the run-time images, communication paths, and modules we can s
all   allowable configurations in a single diagram.

UML class diagrams cannot show dynamic behavior, so we use differen
agrams to show the dynamic aspects of configurations. Figure 5 shows the
figuration of the pipeline during an imaging procedure. The processes
implement the pipeline are created dynamically when the imaging procedu
requested, and are destroyed after the procedure has completed. A UM
quence diagram shows how the pipeline is created at the start of a proce
(Figure 6).

For the execution view, we represent the run-time images as stereot
classes, and the communication paths as associations. Module containm
shown by nesting (association). We use:
• UML Class Diagrams for showing the static configuration.
• UML Sequence Diagrams for showing the dynamic behavior of a confi

ration, or the transition between configurations.
• UML State Diagrams or Sequence Diagrams for showing the protocol

Figure 5:  Execution Configuration of the Image Pipeline
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5. CODE ARCHITECTURE VIEW

The code architecture view contains files and directories, and like the mo
view, does not have a configuration. The relations defined in the code view
ply across all products, not just to a particular product. The code view elem
and their relations are listed in Table 5.

Modules and interfaces from the module view are partitioned into sou
files in a particular programming language. Table 6 shows this mapping for
MPipelineControl module and its interfaces: the public interfaces are e
mapped to a file, and we have created an additional file for the private inter
to the module.

The source files are organized into directories, as shown in Figure 7. We
the UML “component” notation to represent the files, and the package nota
for directories. Both files and directories have stereotypes to clarify their me
ing. In UML, the component symbol is used for “source code components
nary code components, and executable components” (UML, 1997). We be

Figure 6:  Image Pipeline Creation

Table 5: Elements of Code Architecture View

Elements Relations

 source
 intermediate
 executable
 directory

source implements module
source includes source
intermediate compiled from run-time image
executable implements run-time image
executable linked from intermediate

:EPipelineMgr

:EFramer

:EClient 
(module MPipelineAPI)

:EImager

:EImageBuffer

create

create

configure

create
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the intention of this symbol is closest to our notion of a file (whether sour
intermediate, or executable).

Figure 7 also shows the include dependencies for the PipelineControl so
files. We use the UML dependency notation for these relationships, with
stereotype <<include>> if the diagram contains more than one type of de
dency. Source files can also have a “generate” dependency, for example
a preprocessor uses one source file to generate another.

The run-time images from the execution view also have a relationship to
ements in the code view, in this case to executable files. Table 7 shows how
of the run-time images in the image pipeline are mapped to executable f
Here the mapping is one-to-one, but if the run-time image contained dyna
link libraries, each of these libraries would be in a separate executable file

Table 6: Source Files for Module MPipelineControl

Module or Interface Source File

MPipelineControl CPipelineControl.CPP, CPipelineControlPvt.H

IPipelineControl CPipelineControl.H

IStageControl CStageControl.H

Figure 7:  Include Dependencies among Source Files
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<<Source>> 
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The executable files are also organized into directories (Figure 8). The r
tionship between the executable files and the source files is through interm
ate files. An executable file has link dependencies to the object files it links
and an object file has compile dependencies to the source files from which
compiled. These dependencies are also shown in Figure 8.

For the code view, we represent the source, object, and executable fil
stereotyped classes, and the directories as stereotyped packages. The in
compile, and link relationships are shown as stereotyped dependencies
use:
• Tables to describe the mapping between elements in the module and e

tion views and elements in the code view.

Table 7: Mapping between Run-time Image and Executable File

Run-time Image Executable File

EPipelineMgr EPipelineMgr.exe

EFramer EFramer.exe

Figure 8:  Dependencies among Source, Object, and Executable Files
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• UML Component Diagrams for showing the dependencies among sou
intermediate, and executable files.

6. DISCUSSION

Table 8 summarizes the elements of our four architecture views and their
responding UML Metamodel Classes and stereotype names, if any. For
tions among the architecture description elements, we use UML associa
and dependencies. We generally create a separate diagram for each kind
lation, but sometimes we combine them (e.g. the execution configuration
gram).

We use UML Class/Object, Package, and Component Diagrams for th
ements and their relations, sometimes including the interfaces and attribut
these diagrams. Sequence Diagrams or State Diagrams are used to descr
havior.

The configuration diagrams in the conceptual and execution views are U

Table 8: Summary of Architecture Description Elements

Element UML Metamodel Class Stereotype Name

component Class <<component>>

port Class <<port>>

connector Class <<connector>>

role label on association

port or role protocol Class <<protocol>>

module Class <<module>>

subsystem Package <<subsystem>>

layer Package <<layer>>

run-time image Class <<process>>, <<shared data>>,
 <<thread>>, etc.

communication path association

source Component <<source>>

intermediate Component <<object>>

executable Component <<executable>>

directory Package <<directory>>
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Class/Object Diagrams, but we added some conventions to help define th
mantics and improve the readability of the diagrams.

One convention is to use nesting to indicate decomposition. This make
structure easier to see, although it can make layout difficult for complex st
tures. With this convention we cannot show recursive or indefinite nest
which could be easily described in a diagram that depicts decomposition
labeled association (a line) between two objects.

A semantic convention we use is that a configuration diagram describes
set of possible configurations at a single point in time. Systems generally h
defined modes, e.g. start-up, shut-down, operational, diagnosis, recovery
Each of these modes can have a different configuration, so should have a
ferent diagram. In some modes (in our example, the operational mode) the
figuration changes over time (in our case, pipelines are created and destr
with each acquisition procedure). The dynamic behavior should be descr
separately. A sequence diagram works well to describe start-up and shut-d
behavior.

An important concern we have about using UML to describe software ar
tecture is that the same notation can have a wide range of semantics. W
the same basic diagram, the UML Class/Object diagram to show most o
aspects of the architecture. We use stereotypes and special symbols to
mize the confusion between different views.

The more traditional use of UML is for the design of implementation clas
for a system. We are also concerned that by using the same notation to des
the software architecture, we run the risk of further blurring the distinction
tween the architecture and the implementation. This is another reason to
sistently use particular conventions, stereotypes, and special symbols for
architecture diagrams.

In summary, we found UML deficient in describing:
• correspondences: A graphical notation is too cumbersome for straigh

ward mappings such as the correspondence between elements in diff
views. This information is more efficiently described in a table (e.g.Ta
3).

• protocols: The ability to show peer-to-peer communication is missing fr
UML. We used ROOM to describe protocols (e.g. Figure 2).

• ports on components: We used nesting to show the relationship betw
ports and components, but this is visually somewhat misleading. We wo
prefer a notation more similar to the lollipop notation for the interfaces o
module.

• dynamic aspects of the structure
• a general sequence of activities
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UML worked well for describing:
• the static structure of the architecture
• variability: e.g. the conceptual configuration in Figure 1 describes the str

ture of a set of pipelines.
• a particular sequence of activities: e.g. the start-up behavior of an Im

Pipeline (Figure 6).
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