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Abstract. This paper presents an extension of the UML 1.4 metamodel
that facilitates the description of software architectures. To this end,
concepts like views, ports, connectors, and protocols are introduced, and
the UML’s subsystem concept is adapted. The approach is inspired by
ROOM and IEEE P1471, using an explicit metamodeling approach for
clarity. This paper should be seen as input for the discussion on the UML
2.0
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1 Introduction

1.1 Motivation

Today, UML is generally acknowledged to be “the lingua franca of the software
engineering community” (cf. [18, p. v]). As such, it is quite naturally the first
choice when it comes to selecting a language for describing software architectures,
for facilitating communication between the various stakeholders is the one of the
prime purposes of software architectures. However, there is not much support for
architectural modeling in the UML (cf. [9]). There have been several approaches
to ameliorating this (see Section 1.3), none of which has gone beyond shallow
extensions.

With the discussion on creating UML 2.0 gaining momentum, now is the
right moment to consider bolder steps. This paper proposes significant additions
and enhancements of the UML in a direct metamodelling approach. This paper
is intended to stimulate the development towards UML 2.0 rather than to be di-
rectly applicable in practice, though the whole approach originated in a concrete
software development effort, and is thoroughly devoted to practical purposes.

1.2 Approach

Background There two fundamentally different understandings of what a soft-
ware architecture should be. On the one hand, there is the academic approach
(Architecture Description Languages like Wright, cf. [2]), according to which



software architectures as coarse structures in a very general and loose sense,
encompassing each and every style.

On the other hand, there is a more pragmatic approach (which I also follow)
imposing some restrictions on the admissible styles in order to be able to pro-
vide better methodological and tool support. Examples of the latter approach
are Real-time OO Modelling (ROOM), UML for Realtime (UML/RT) and the
IEEE standard on architectural descriptions P1471 (cf. [17], [19, 13], and [11],
respectively).

Starting point My approach is based on the following four observations. First
of all, a software architecture is one of the first artifacts created in the course of
a development project. In any case, it exists long before concrete system parts
are created. In order to be able to visualize an architecture, reason about it,
communicate with it and treat it in other ways, its building blocks must have an
abstract, design-level representation, that is, invariably, an UML representation.

Second, with so many different stakeholders and activities based on it, an ar-
chitectural design is a very rich description, and thus in need of internal structur-
ing to separate concerns. Intuition, practical experience, and empirical surveys
show that this is best achieved using multiple views.

Third, many architectures involve legacies, which are not object-oriented, and
these must be dealt with adequately, too. So, there should be no technological
bias towards object technology in architectural descriptions.

Fourth, “software architecture is a framework for change”1, that is, one of
its fundamental purposes is to foster system evolution and reuse of (its) parts.
So, particular care has to be taken to control change impacts (the so called
“ripple effect”). On the conceptual level, isolating architectural building blocks
is best achieved by creating large, self-sufficient units with a strong encapsulation
mechanism, that controls not only the stimuli to a building block, but also those
from it. I will introduce the notion of ports for this purpose.

Goals Based on these observations, the approach taken in this paper pursues
three goals. First, by being based directly on the UML metamodel, I try to
achieve a maximum of expressiveness for architectural designs with a small and
coherent attack. This ensures a seamless integration of new concepts, and thus
retaining as much as possible of the syntax, semantics, and pragmatics of UML.
The present approach tries to follow the spirit of UML rather than only the words
of the standard. The obvious disadvantage is, that without thorough knowledge
of the UML metamodel, this paper is virtually incomprehensible.

Second, there are many different approaches to architectural modeling, each
with their own strengths and weaknesses. So, rather than picking a particular
one I try to compile the best and most widely accepted concepts and notations
from all of them, and adapt them so that they neatly fit into the UML. In par-
ticular, the extensions and modifications I shall propose are strongly influenced
by ROOM and IEEE P1471.
1 Attributed to Tom DeMarco.



Third, the kind of architectural building blocks I envision are entities of
large granularity, with an identifiable, relevant and non-trivial functionality in
the problem domain (i.e. similar to so called “business objects”). They are both
conceptual and physical entities, so that they are units throughout a complete
system lifecycle. In fact, they are true systems themselves. Previous approaches
have used UML classes as architectural components which is not really a con-
vincing solution. Instead, I attempt to extend UML subsystems to be usable as
architectural building blocks.

1.3 Related work

In [19], some ROOM-concepts are integrated into UML as stereotypes of Class.
The approach precedes UML 1.3 and P1471. It lacks a view concept and is
strongly influenced by OO-notions.

Another light-weight approach is presented in [6, 14, 1]. There, some concepts
of the component-and-connector style are added to UML as stereotypes of Class.
This approach is strongly influenced by academic Architecture Description Lan-
guages, but fails to implant their rigor into the UML. Neither ROOM nor the
P1471 are dealt with. There is no view concept, and little connection to the rest
of the UML.

Strohmeier and Kandé [12] improve on this by attempting to integrate both
the P1471 and ROOM into the UML metamodel. The use a mix of lightweight
and heavyweight extensions, and allow an arbitrary set of viewpoints. They
use stereotypes of UML classes as architectural building blocks, and, by using
the pattern-notation, seem to suggest that architectural configurations should be
UML collaborations (similar to what is proposed in [5]). The main concepts (Ar-
chitecture, ArchitectureViewpoint, ArchitectureView and so on) are presented,
but not connected to the metamodel by generalization-relationships. Thus, their
roles in the UML, their semantics, syntax, and pragmatics are poorly defined,
and so the integration remains shallow and informal.

Note that all of the above use stereotypes of UML class for architectural
building blocks, failing to satisfy the requirements I listed above (see also the
detailed discussion in Section 2.2 below). But there are also two approaches that
use subsystems.

In [16], the usage of UML subsystems in behavioral designs is discussed.
Though this approach does not aim explicitly at architectural modeling, clearly,
subsystems are understood as architectural building blocks.

A strictly lightweight extension approach is taken in [10]: a concept of sub-
system is introduced as a stereotype of package (the paper is based on UML 1.1).
The classical 4+1-view model is adopted (that is, a fixed set of viewpoints), and
more than a dozen stereotypes are introduced for threads, layers, and directories
supporting it. Great care is taken to establish the connection between the con-
ceptual and the implementation level. It is quite a comprehensive and coherent
approach, though e.g. a view concept is missing. A predecessor to P1471, its
concepts are not taken into account.



1.4 Notational conventions

In static structure diagrams referring to the UML metamodel, shaded boxes
represent metaclasses of standard UML, and white boxes represent concepts
introduced here. Concepts referred to, but not defined in the present diagram
are shown with dashed outlines. Whenever I refer to a concept from the UML
metamodel like Subsystem in the text, I put it in this typeface. Apart from this,
I use all the notational conventions proposed in the UML standard document.

2 Elements of architectural modeling in UML

2.1 Overview of concepts

This approach is centered around using UML Subsystems as architectural build-
ing blocks, that is, a coherent and strongly encapsulated entity that is self-
sufficient with respect to configuration, construction, reuse, and evolution. In
contrast to Subsystems as they are, I propose to structure them into “view”s, and
restrict interactions with them to exclusive points of interaction called “ports”,
which are behaviorally specified by “protocol roles”. Subsystems may then be
glued together by “connectors” at their ports, and the expected behavior of
connectors may be specified by a “protocol”. The overall static structure is cap-
tured by a “configuration”, while the dynamic structure is described by a “con-
figuration space”. Those concepts, that exist not only at design-time have an
instance-level analog.

In the following sections, each concept is presented as a new metaclass, with
its embedding into the UML metamodel, its additional syntax (if any), and its
constraints expressed in OCL. A few more metaclasses are added so as to facili-
tate the UML embedding. Following the style of the UML standard, my model
is presented in a set of overlapping static structure diagrams. Also, since the
model is quite closely knit, there are some forward references.

2.2 Subsystems as architectural building blocks

The following alternatives for architectural building blocks are conceivable within
the conceptual framework of the UML: Class, Component, Package, and Subsys-
tem (cf. Section 1.3 above). Consider these in turn.

Class represents classes of OO-programming languages, that is, Class has an
unwanted technological bias and represents entities of too small granularity. In
UML, a Component is just a piece of code. A Component has no design aspect,
so it exists on the wrong level of abstraction. A Package may contain any kind
ModelElement, but a package has no internal structure.

Finally, there is the concept of Subsystem, which has been introduced as a
subclass of Package in UML 1.3.2 A Subsystem has three partitions for Operations,
and ”specification” and ”implementation elements”, respectively, but no concept
2 In the remainder, we will refer to [15], i.e. UML 1.4 rather than 1.3.



of view, or port. There are no instances of Subsystems. They may not appear in
deployment diagrams, and they may be mixed with objects, classes, and packages
in static structure diagrams. Finally, the semantics of Subsystems is not very well
defined currently (a meagre twelve pages in the standard).

So, I propose to modify Subsystem as follows.3 First, the partitions are re-
placed by set of Views. Being a Namespace, a Subsystem may own arbitrary
ModelElements, and in order to eliminate hidden dependencies, no ModelEle-
ments may be imported. The package constraint 1 on p. 2-175 has to be extended
to also include Ports and the other concepts introduced above. See Figure 1.

kind: String

View

Diagram
kind: String

PresentationElement

ModelElement

1..*

Element

isActive: Bool
isLayer: Bool
multiplicity: Multiplicity

Subsystem

presentation

subject

*

* *pe

*
**\ownedElement

Fig. 1. Embedding of Subsystem, View and Diagram.

The last four constraints on Subsystem (cf. [15, p. 2-202]) become obsolete.
As new attributes and relationships I propose to introduce the following.

isActive: Boolean Attribute with approximately the same meaning as the ac-
tive class-stereotype.

isLayer: Boolean Attribute that indicates whether the respective Subsystem is
a layer in a layered system.

view: View set The set of all Views specified for this Subsystem. A View may
refer to any of the ModelElements that a Subsystem owns or imports
by being a Package.

multiplicity: MultiplicityKind similar to the multiplicity of, say, ClassifierRole.

The following new constraints apply to Subsystem.

1. Views are unique, i.e., there is always at most one View of a kind.
3 Instead of replacing Subsystems with a modified version the way I have proposed it,

one may also supplement it, e.g. under the name of Unit or Capsule, as a neighbor
to Subsystem.



context Subsystem
inv: self.view->forAll(v1,v2 |v1.kind=v2.kind implies v1=v2)

2. A Subsystem may not own public ModelElements other than Ports. All Ports
must be public.

context Subsystem
inv: self.ownedElement ->

forAll(visibilityKind=“public” implies oclIsTypeOf(Port))
inv: self.ownedElement->

forAll(oclIsTypeOf(Port) implies visibilityKind=“public”)

3. A Subsystem must be a self contained Namespace, i.e. as a Package it must
carry the top-level-stereotype.

context Subsystem
inv: self.stereotype->exists(topLevel)

4. In order to circumvent hidden dependencies, a Subsystem may not import
ModelElements, but has to own them exclusively.

context Subsystem
inv: self.allImportedElements->isEmpty()

As syntax for Subsystems, I propose to use the SARA-notation (cf. [7], also used
in ROOM), see Figure 2.

Connector

Port

Subsystem

Fig. 2. New syntax for architectural modeling concepts. The folk notation for layered
architectures might also be introduced, as syntactic sugar.

2.3 Viewpoint, View and Diagram to structure Subsystem

To improve handling of the design of a large Subsystem, it may be looked at from
a multitude of angles, each focusing on some special aspect of the system, i.e.



its behavior, functionality, structure, performance, and so on. So, a Subsystem
should be equipped with or represented by a set of views. In the UML, however,
the term view is used loosely, sometimes as a synonym for (sets of) diagrams,
but there are no such concepts in the UML metamodel.

The P1471 on the other hand proposes to have both viewpoints (generic
“kinds” of views) and views (concrete “instances” thereof) as metaclasses—but
what kind of “instance-relationship is this? Looking at the UML, there are at
least two such notions: the kind of relationship between Classifiers and Instances,
and the relationship between, say, metaclasses and meta-metaclasses. Now, I
suggest that the instance-relationship between view and viewpoint is of the latter
kind rather than of the former. So, when introducing View as a metaclass in the
UML metamodel, the viewpoint-concept should correspond to a UML profile or
preface. In other words, viewpoint should not be a metaclass as in the P1471.

Thus I suggest that there are two new metaclasses View and Diagram as
direct children of ModelElement so as to stress the importance of these concepts.
A Subsystem owns Views, which own Diagrams, which own PresentationElements.
A View refers to (some of) the ModelElements owned by its Subsystem. Note
that different diagrams may share the same ModelElements, but not the same
PresentationElements.

Since the model shall accommodate arbitrary viewpoints, View needs a string-
valued attribute kind. See Figure 1 for a synopsis of the embedding of View and
Diagram. View has the following attributes and associations.

diagram: Diagram set The Diagrams that belong to a View. Diagrams are used
to structure the PresentationElements referred to by a View. Indi-
rectly, they also express a structure of the ModelElements represented
by the PresentationElements.

me: ModelElement set The ModelElements belonging to a View. Since several
Views may refer to the same ModelElement (e.g. Ports), a weak ag-
gregation must be used.

kind: String The pragmatic function of a view. This attribute should not be
an enumeration type (like role of Subsystem), as our approach does
not in any way restrict the number or function of viewpoints, and so
this attribute may take on arbitrary values.

Determining just which viewpoints are relevant for some particular project is
an essential step during requirements analysis. Though I do not want to prescribe
the number and kind of viewpoints one may have, there are some that are likely
to occur almost always, and I shall mention them explicitly.

interfaces An interfaces view is the simplest abstraction of a system: it just
presents Subsystem as a black box with Ports.

functionality A functionality view describes the functionality of a Subsys-
tem. It can be described simply by a UseCase, and possibly a Col-
laboration between the Ports and the UseCases with a number of In-
teractions. Since a Port is an Actor, the scenarios of use cases can be



described quite precisely by the ProtocolRole of the Port. When refin-
ing the Subsystem, these specifications remain, and ensure a smooth
transition between development phases.

behavior The behavior view of a Subsystem can be described by a StateMa-
chine. Its triggers and effects may refer to the Signals and Operations
sent or received by the Ports.

structure The static structure of a Subsystem may be defined by a Configura-
tion and some Connectors. The dynamic structure may be represented
as a ConfigurationSpace, that is, a set of Interactions on the Subsystems
defined the Configuration—the latter are the representedClassifiers of
the Collaboration.

Fig. 3. Syntactic sugar for various common views (left to right): abstract examples for
interfaces, functionality, behavior, and structure views.

Additional syntactical sugar may be supplied like in Figure 3. The following
new constraints apply.

1. Every PresentationElement of (some Diagram of) a View must the presentation
of some subject.

context View
inv: self.me.presentation->includesAll(self.diagram.pe)

2. The interface view contains only Ports.

context View
inv: self.kind=“interface” implies self.me.oclIsTypeOf(Port)

3. The behavior view contains only StateMachines and Collaborations. There
may only be one such StateMachine.

context View
inv: self.kind=“behavior” implies self.me.forAll->

(v |v.oclIsKindOf(StateMachine) or v.oclIsTypeOf(Collaboration))
and self.kind=“behavior” ->count (oclIsTypeOf(StateMachine)) ≤ 1



4. The structure view contains a single Configuration and a set of Connectors
that establish the binding between the Configuration and the Ports of the
Subsystem. It may also contain a ConfigurationSpace.

context View
inv: self.kind=“structure” implies

self.me.oclIsTypeOf(Configuration)
or self.me.oclIsTypeOf(Connector)
or self.me.oclIsTypeOf(ConfigurationSpace)

and self.kind=“structure”->count (oclIsTypeOf(Configuration))=1
and self.kind=“structure”->count (oclIsTypeOf(ConfigurationSpace))= 1

2.4 Ports and ProtocolRoles to encapsulate Subsystems

In order to turn Subsystems into truly self-contained architectural units that
are immune to change impact, a Subsystem must control the dependencies on
it as well as those of it, that is, incoming as well as outgoing information. In
UML 1.4, Subsystems have only Interfaces with Operations: this restricts only
incoming information, and it exhibits a bias to OO technology. Note also, that
Operations are synchronous, whereas many architectures are distributed, using
an asynchronous calling mechanism (i.e. like Signal). So, I propose to define a
new metaclass Port that is behaviorally specified by ProtocolRole. A ProtocolRole
is specified by a StateMachine and two sets of incoming and outgoing Signals or
Operations.

Again, there is the question of how and where to introduce these concepts
within the UML metamodel. Obviously, a Port would be a Namespace, but not
typically a Package. More precisely, since a Port specifies a system boundary,
it should be as an actor to a UseCase. The simplest way to achieve this is to
introduce Port as a subclass of Actor. Also, since Subsystems are to appear in
deployment diagrams, Ports have to be there too, and so, Port must also be a
Component. ProtocolRoles, on the other hand, have no relative in UML, so I
propose to introduce them as a direct child of ModelElement. See Figure 4 for
the embedding.

Port has the following attributes and associations.

role: ProtocolRole Analog to role of ConnectorEnd.
constraints: Constraint set A set of constraints on the role, i.e. on the (sets of)

incoming and/or outgoing Signals.
characteristics: String Additional characteristics may be provided concerning

e.g. performance aspects.

There are no new constraints. There may be several kinds of Ports, and different
ways of implementing them, that have to be omitted due to space restrictions.
See [20] for more details. ProtocolRole has two sets of Operations and Signals by
the names in and out, and an facultative StateMachine.
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Classifier StateMachine

Port
characteristics: String
constraints: Constraint set
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1..*

0..1

Protocol

Actor

ProtocolRole

out: (Operation   Signal) set

/representedClassifier

Fig. 4. Embedding of Port and ProtocolRole.

2.5 Connector, ConnectorEnd and Protocol as architectural glue

Subsystems are glued together by Connectors at their Ports. So, Connector is
a kind of of Association, and, following the UML, thus requires the auxiliary
construct of ConnectorEnd. Every ConnectorEnd is then attached to exactly one
Port. Connector is an abstract class with two subclasses, SimpleConnectors (for
ideal synchronous channels) and ComplexConnectors (for asynchronous and/or
faulty channels). A Connector may be specified by a Protocol, which is basically
a Collaboration of ProtocolRoles, see Figure 5. ConnectorEnd has the following
new attributes.

source: Bool Indicates whether there are Signals sent or Operations called from
this ConnectorEnd.

sink: Bool Converse of source.

There are the following constraints.

1. The representedClassifiers of a Protocol must be ProtocolRoles.

context Protocol
inv: self.representedClassifier->forAll(oclIsTypeOf(ProtocolRole))

2. Connectors may have only ConnectorEnds as their connection.

context Connector
inv: self.connection->forAll(oclIsTypeOf(ConnectorEnd))

Note that several ConnectorEnds may be attached to a single Port. Note also,
that both Ports and ConnectorEnds play a ProtocolRole, so that the attachment
may be checked for compatibility. Thus, a Port is a kind of formal contract
between the Subsystems connected by that Connector.



ConnectorEnd
sink: Bool
source: Bool

Port

StateMachine

Connector
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Protocol
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11..* /representedClassifier

Fig. 5. Embedding of Connector, Port, ProtocolRole and Protocol.

2.6 Configuration and ConfigurationSpace as architectural structures

To wrap up, we need a further concept to represent the static structure of an
architecture, that is, an ensemble of Subsystems with their Ports and Connectors
between these. For this purpose, I introduce the metaclass Configuration as a
child of ModelElement, see Figure 6. Configuration has the following attributes
and associations.

component: Subsystem set The Subsystems that form the Configuration.
connector: Connector set The Connectors among the Subsystems of the Con-

figuration.
binding: SimpleConnector The binding connects (some of) the Ports of the Sub-

system with Ports of a sub-Configuration.

1. The ProtocolRoles of Ports connected by a Connector have non-empty in-
coming (outgoing) sets of Signals, if the respective ConnectorEnd is a source
(sink).

context Configuration
inv: let con: ConnectorEnd=self.connector.connection

in con.source implies con.port.role.in ->notEmpty
and con.sink implies con.port.role.out->notEmpty

Connectors are always part of a Configuration. The Ports of Subsystems of
a sub-Configuration belong to a different Namespace. Thus, Connectors can not
tunnel Subsystem boundaries.

Many systems also have a dynamic structure, that is, their structure evolves
over time. So, a Configuration is really only a snapshot of a systems structure. The
collection of snapshots and their relationships are represented by a new metaclass
called ConfigurationSpace. Intuitively, a ConfigurationSpace can easily be seen as



a role model, since both Subsystem and Port are Classifiers, ClassifierRole can be
used to represent them in Interactions.4

ModelElement

Namespace

Collaboration

SimpleConnector

ComplexConnector

component

binding
1..*

2..*

1..*

/representedClassifier

Connector

ConfigurationSpace

Configuration

Subsystem

Fig. 6. Embedding of Configuration.

1. The representedClassifiers of a ConfigurationSpace may be only Ports or Sub-
systems.

context ConfigurationSpace
inv: self.representedClassifier.oclIsTypeOf(Port)

or self.representedClassifier.oclIsTypeOf(Subsystem)

2. A ConfigurationSpace may own only ProtocolRoles, ConnectorRoles, and
ConnectorEndRoles.

context ConfigurationSpace
inv: self.ownedElement.oclIsTypeOf(ProtocolRole)

or self.ownedElement.oclIsTypeOf(ConnectorRole)
or self.ownedElement.oclIsTypeOf(ConnectorEndRole)

3. The type of a ClassifierRole in a ConfigurationSpace must be a ConnectorEn-
dRole.

context ConfigurationSpace
inv: self.representedClassifier.base.type.oclIsTypeOf(ConnectorEndRole)

2.7 Type and instance levels

In UML 1.3, Subsystem already had a boolean attribute isInstantiable, but there
was no metaclass SubsystemInstances—instances of Subsystems existed only im-
plicitly as the composition of the Instances of the ModelElements contained in
4 Note that this embedding implies the existing of the further auxiliary metaclasses

ConnectorRole and ConnectorEndRole. These, however, are omitted here for clarity.
The avid reader is, once again, referred to [20].



the Subsystem. In UML 1.4, this has been fixed by adding SubsystemInstance as
a child of Instance. In my approach, there are also instances of Configuration,
Connector, ConnectorEnd, and Port with the obvious names.

However, there may not be instances of View, ConfigurationSpace, Protocol
and ProtocolRole: these are only specification elements and are not reified di-
rectly, but only as a consequence of the code that ultimately implements all
these concepts. The details have to be omitted here due to space restrictions;
confer [20] for a complete account.

3 Pragmatics

In this section, I want to briefly discuss a pragmatic issue related to my ap-
proach, the software process. When architectural units are indeed self sufficient,
coarse entities, as I have assumed as my starting point (cf. Section 1.1), the sys-
tems resulting from the composition of Subsystems have a recursive, or fractal,
structure. Using a traditional waterfall or iterative process, it becomes difficult
to establish a mapping between the product structure and the process structure.
Using a language of process patterns instead of a monolithic process solves this
problem [5, 3, 4, 20, 21].

4 Conclusions

I have proposed an extension to the UML 1.4 to support modeling of software ar-
chitectures, building on ROOM, P1471 and, to a lesser degree, ADLs like Wright.
Among the concepts added are those known from the Component-and-Connector
architectural style, where UML subsystems take the place of architectural com-
ponents. Other common architectural styles (e.g. layered) are also catered for in
my approach. The extensions are presented in a direct metamodeling approach.
The resulting metamodel is P1471-compliant.

I have pursued three goals (cf. Section 1.2): direct metamodeling for smooth
integration, compile best practices, and reshape Subsystem as architectural units.
The first goal has obviously been achieved. Concerning the second point, since
this approach builds mainly on the concepts of ROOM and P1471, I think it
is reasonable to consider these approaches as mainstream, and so, if they deal
with the right notions, then so does my approach. The third issue will have to be
resolved by more practical work with it: the experiences collected so far have not
shown any major defects, or fatal restrictions or omissions. See [20] for further
concepts like architectural style and product line architecture, implementation-
relationships, view integration and so on. There, one may also find a worked-
out example. Compared to previous work, the present approach is much more
comprehensive, explicit, and tightly knit. It is also really integrated into the
UML.

I now want to counter a number of possible objections. However, the approach
has been developed in a CASE-tool development effort, that is, quite a practical
task. And with its direct metamodeling approach, the whole point of this paper



is to keep all changes “under the hood”, that is, only its effects are seen on
the outside, not the technicalities. The usual diagrams remain usable without
changes (recall that Subsystems may occur in static structure diagrams).

Second, one might object that I propose real changes, so that this approach
could not be packaged up as a profile. Most of the extensions, however, are
conservative, and could be reformulated using stereotyping, so that they could be
packaged up as a UML profile. The one exception is the new notion of Subsystem
I propose: either, the metamodel is actually modified, or another notion (e.g. by
the name “Unit”) has to be added as a neighbor of Subsystem.

The OMG is currently soliciting input for the discussion on UML 2.0. One of
the shortcomings of the UML 1.4 is the lack of adequate provision for modeling
software architectures, and I hope and expect that this will be addressed quite
profoundly. I hope that my paper will contribute to this discussion.
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20. Harald Störrle. Models of Software Architecture. Design and Analysis with UML
and Petri-nets. PhD thesis, LMU München, Institut für Informatik, December
2000. In print, ISBN 3-8311-1330-0.
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