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1 Scope
This specification contains defines the Object Constraint Language (OCL), version 2.0. OCL version 2.0 is the version of 
OCL that is aligned with UML 2.0 and MOF 2.0.

2 Conformance
The UML 2.0 Infrastructure and the MOF 2.0 Core submissions that are being developed in parallel with this OCL 2.0 
submission share a common core. The OCL specification contains a well-defined and named subset of OCL that is 
defined purely based on the common core of UML and MOF. This allows this subset of OCL to be used with both the 
MOF and the UML, while the full specification can be used with the UML only.

The following compliance points are distinguished for both parts.

1. Syntax compliance. The tool can read and write OCL expressions in accordance with the grammar, including validat-
ing its type conformance and conformance of well-formedness rules against a model.

2. XMI compliance. The tool can exchage OCL expressions using XMI.

3. Evaluation compliance. The tool evaluates OCL expressions in accordance with the semantics chapter. The following 
additional compliance points are optional for OCL evaluators, as they are dependent on the technical platform on 
which they are evaluated. 

• allInstances() 

• pre-values and oclIsNew() in postconditions

• OclMessage 

• navigating across non-navigable associations 

• accessing private and protected features of an object

The following table shows the possible compliance points. Each tools is expected to fill in this table to specify which 
compliance point are supported. 

Table 1. Overview of OCL compliance points

OCL-MOF subset Full OCL
Syntax
XMI
Evaluation
- allInstances
- @pre in postcondtions
- OclMessage
- navigating non-navigable associations
- accessing proivate and protected features
UML OCL 2.0 Adopted Specification        1



3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

• UML 2.0 Superstructure Specification

• UML 2.0 Infrastructure Specification

• MOF 2.0 Core Specification

4 Terms and Definitions
For the purposes of this specification, the terms and definitions given in the normative references and the following apply.

Editorial Comment: Needs to be completed (or possibly eliminated).

5 .Symbols
List of symbols/abbreviations.

Editorial Comment: Needs to be completed (or possibly eliminated).

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification replaces the specification of OCL given in UML 1.4.1 and UML 1.5.

6.2 Structure of the specification

The document is divided into several chapters.

The OCL Language Description chapter gives an informal description of OCL in the style that has been used in the UML 
1.1 through 1.4. This section is not normative, but meant to be explanatory. 

Chapter 8 (“Abstract Syntax”) describes the abstract syntax of OCL using a MOF 2.0 compliant metamodel. This is the 
same approach as used in the UML 1.4 and other UML 2.0 submissions. The metamodel is MOF 2.0 compliant in the 
sense that it only uses constructs that are defined in the MOF 2.0.

Chapter 9 (“Concrete Syntax”) describes the canonical concrete syntax using an attributed EBNF grammar. This syntax is 
mapped onto the abstract syntax, achieving a complete separation between concrete and abstract syntax.

Chapter 10 (“Semantics Described using UML”) describes the semantics for OCL using UML. 
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In section 11 (“The OCL Standard Library”) the OCL Standard Library is described. This defines type like Integer, 
Boolean, etc. and all the collection types. OCL is not a stand-alone language, but an integral part of the UML. An OCL 
expression needs to be placed within the context of a UML model. 

Section 12 (“The Use of Ocl Expressions in UML Models”) describes a number of places within the UML where OCL 
expressions can be used.

Appendix A (“Semantics”) describes the underlying semantics of OCL using a mathematical formalism. This appendix, 
however is not normative, but ment for the readers that need a mathematical description for the semantics of OCL.

Appendix B (“Interchange Format”) is currently a place holder for an interchange format, which can be defined along the 
same lines as XMI. 

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• BoldSoft

• Dresden University of Technology

• Kings College

• Klasse Objecten

• Rational Software Corporation

• Borland Software Corporation

• University of Bremen

• IONA

• Adaptive Ltd

• International Business Machines

• Telelogic

• Kabira Technologies Inc.

• University of Kent

• Project Technology Inc.

• University of York

• Compuware Corporation

• Syntropy Ltd.

• Oracle

• Softeam
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7 OCL Language Description
This chapter introduces the Object Constraint Language (OCL), a formal language used to describe expressions on UML 
models. These expressions typically specify invariant conditions that must hold for the system being modeled or queries 
over objects described in a model. Note that when the OCL expressions are evaluated, they do not have side effects; i.e. 
their evaluation cannot alter the state of the corresponding executing system.

OCL expressions can be used to specify operations / actions that, when executed, do alter the state of the system. UML 
modelers can use OCL to specify application-specific constraints in their models. UML modelers can also use OCL to 
specify queries on the UML model, which are completely programming language independent.

This chapter is informative only and not normative. 

7.1 Why OCL?
A UML diagram, such as a class diagram, is typically not refined enough to provide all the relevant aspects of a 
specification. There is, among other things, a need to describe additional constraints about the objects in the model. Such 
constraints are often described in natural language. Practice has shown that this will always result in ambiguities. In order 
to write unambiguous constraints, so-called formal languages have been developed. The disadvantage of traditional 
formal languages is that they are usable to persons with a strong mathematical background, but difficult for the average 
business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to read and write. It has been developed 
as a business modeling language within the IBM Insurance division, and has its roots in the Syntropy method.

OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without side effect. When an 
OCL expression is evaluated, it simply returns a value. It cannot change anything in the model. This means that the state 
of the system will never change because of the evaluation of an OCL expression, even though an OCL expression can be 
used to specify a state change (e.g., in a post-condition). 

OCL is not a programming language; therefore, it is not possible to write program logic or flow control in OCL. You 
cannot invoke processes or activate non-query operations within OCL. Because OCL is a modeling language in the first 
place, OCl expressions are not by definition directly executable. 

OCL is a typed language, so that each OCL expression has a type. To be well formed, an OCL expression must conform 
to the type conformance rules of the language. For example, you cannot compare an Integer with a String. Each Classifier 
defined within a UML model represents a distinct OCL type. In addition, OCL includes a set of supplementary predefined 
types. These are described in Chapter 11 (“The OCL Standard Library”).

As a specification language, all implementation issues are out of scope and cannot be expressed in OCL. 

The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model cannot change 
during evaluation.

7.1.1 Where to Use OCL

OCL can be used for a number of different purposes:

• As a query language

• To specify invariants on classes and types in the class model
UML OCL 2.0 Adopted Specification        5



• To specify type invariant for Stereotypes

• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• To specify target (sets) for messages and actions

• To specify constraints on operations

• To specify derivation rules for attributes for any expression over a UML model.

7.2 Introduction

7.2.1 Legend

Text written in the Letter Gothic typeface as shown below is an OCL expression.

'This is an OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre and post denote the stereotypes, 
respectively «invariant», «precondition», and «postcondition», of the constraint. The actual OCL expression comes after 
the colon.

context TypeName inv:
'this is an OCL expression with stereotype <<invariant>> in the
context of TypeName' = 'another string'

In the examples the keywords of OCL are written in boldface in this document. The boldface has no formal meaning, but 
is used to make the expressions more readable in this document. OCL expressions are written using ASCII characters 
only.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

7.2.2 Example Class Diagram

The diagram below is used in the examples in this chapter.
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7.3 Relation to the UML Metamodel

7.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OCL expression, the reserved word 
self is used to refer to the contextual instance. For instance, if the context is Company, then self refers to an instance of 
Company.

7.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specified through a so-called context declaration at the 
beginning of an OCL expression. The context declaration of the constraints in the following sections is shown.

Person
isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
gender : Gender

income(Date) : Integer

accountNumber:Integer

Bank

0..1

customer

Company
name : String
numberOfEmployees : Integer

stockPrice() : Real

manager 0..*
managedCompanies

employee employer

wife

husband 0..1
0..1

0..*0..*

Job
title : String
startDate : Date
salary : Integer

Marriage
place : String
date : Date

male
female

«enumeration»
Gender

Figure 1 -  Class Diagram Example 

1

0..*
UML OCL 2.0 Adopted Specification        7



If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to connect it to its contextual 
element, there is no need for an explicit context declaration in the test of the constraint. The context declaration is 
optional. 

7.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an «invariant». When the invariant 
is associated with a Classifier, the latter is referred to as a “type” in this chapter. An OCL expression is an invariant of the 
type and must be true for all instances of that type at any time. (Note that all OCL expressions that express invariants are 
of the type Boolean.)

For example, if in the context of the Company type in Figure 1 on page 7, the following expression would specify an 
invariant that the number of employees must always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we start evaluating the 
expression.) This invariant holds for every instance of the Company type. 

The type of the contextual instance of an OCL expression, which is part of an invariant, is written with the context 
keyword, followed by the name of the type as follows. The label inv: declares the constraint to be an «invariant» 
constraint.

context Company inv:
self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the above examples. As an alternative 
for self, a different name can be defined playing the part of self:

context c : Company inv:
c.numberOfEmployees > 50

This invariant is equivalent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing the constraint to be referenced by 
name. In the following example the name of the constraint is enoughEmployees. In the UML 1.4 metamodel, this name is 
a (meta-)attribute of the metaclass Constraint that is inherited from ModelElement. 

context c : Company inv enoughEmployees:
c.numberOfEmployees > 50

7.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to «precondition» and «postcondition» 
stereotypes of Constraint associated with an Operation or other behavioral feature. The contextual instance self then is an 
instance of the type which owns the operation or method as a feature. The context declaration in OCL uses the context 
keyword, followed by the type and operation declaration. The stereotype of constraint is shown by putting the labels 
‘pre:’ and ‘post:’ before the actual Preconditions and Postconditions

context Typename::operationName(param1 : Type1, ... ): ReturnType
pre :  param1 > ...
post:  result = ...
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The name self can be used in the expression referring to the object on which the operation was called. The reserved word 
result denotes the result of the operation, if there is one. The names of the parameters (param1) can also be used in the 
OCL expression. In the example diagram, we can write:

context Person::income(d : Date) : Integer
post:  result = 5000

Optionally, the name of the precondition or postcondition may be written after the pre or post keyword, allowing the 
constraint to be referenced by name. In the following example the name of the precondition is parameterOk and the name 
of the postcondition is resultOk. In the UML metamodel, these names are the values of the attribute name of the 
metaclass Constraint that is inherited from ModelElement.

context Typename::operationName(param1 : Type1, ... ): ReturnType
pre  parameterOk:  param1 > ...
post resultOk   :  result = ...

7.3.5 Package Context

The above context declaration is precise enough when the package in which the Classifier belongs is clear from the 
environment. To specify explicitly in which package invariant, pre or postcondition Constraints belong, these constraints 
can be enclosed between 'package' and 'endpackage' statements. The package statements have the syntax:

package Package::SubPackage

context X inv:
... some invariant ...
context X::operationName(..)
pre: ... some precondition ...

endpackage

An OCL file (or stream) may contain any number package statements, thus allowing all invariant, preconditions and 
postconditions to be written and stored in one file. This file may co-exist with a UML model as a separate entity. 

7.3.6 Operation Body Expression

An OCL expression may be used to indicate the result of a query operation. This can be done using the following syntax:

context Typename::operationName(param1 : Type1, ... ): ReturnType
body:  -- some expression

The expression must conform to the result type of the operation. Like in the pre- and postconditions, the parameters may 
be used in the expression. Pre-, and postconditions, and body expressions may be mixed together after one operation 
context. For example:

context Person::getCurrentSpouse() : Person
pre:   self.isMarried = true
body:  self.mariages->select( m | m.ended = false ).spouse

7.3.7 Initial and Derived Values

An OCL expression may be used to indicate the initial or derived value of an attribute or association end. This can be 
done using the following syntax:
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context Typename::attributeName: Type
init:  -- some expression representing the initial value

context Typename::assocRoleName: Type
derive:  -- some expression representing the derivation rule

The expression must conform to the result type of the attribute. In the case the context is an association end the 
expression must conform to the classifier at that end when the multiplicity is at most one, or Set or OrderedSet when the 
multiplicity may be more than one. Initial, and derivation expressions may be mixed together after one  context. For 
example:

context Person::income : Integer
init:   parents.income->sum() * 1% -- pocket allowance
derive:  if underAge
         then parents.income->sum() * 1% -- pocket allowance
         else job.salary                 -- income from regular job
         endif

7.3.8 Other Types of Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass Expression or one of its subtypes. In 
that case, the semantics section describes the meaning of the expression. A special subclass of Expression, called 
ExpressionInOcl is used for this purpose. See Section 12.1, “Introduction,” on page 155 for a definition.

7.4 Basic Values and Types
In OCL, a number of basic types are predefined and available to the modeler at all time. These predefined value types are 
independent of any object model and part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. The basic types of OCL, with corresponding examples 
of their values, are shown in Table 2

OCL defines a number of operations on the predefined types. Table 3 gives some examples of the operations on the 
predefined types. See Section 11.4, “Primitive Types,” on page 136 for a complete list of all operations.

Table 2 - Basic Types

type  values

Boolean true, false

Integer 1, -5, 2, 34, 26524, ...

Real 1.5, 3.14,  ...

String 'To be or not to be...'

Table 3 - Operations on predefined types

type operations

Integer *, +, -, /, abs()

Real *, +, -, /, floor()
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Collection, Set, Bag, Sequence  and Tuple are basic types as well. Their specifics will be described in the upcoming 
sections.

7.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of classifiers (types/classes, ...), their features 
and associations, and their generalizations. All classifiers from the UML model are types in the OCL expressions that are 
attached to the model.

7.4.2 Enumeration Types

Enumerations are Datatypes in UML and have a name, just like any other Classifier. An enumeration defines a number of 
enumeration literals, that are the possible values of the enumeration. Within OCL one can refer to the value of an 
enumeration. When we have Datatype named Gender in the example model with values 'female' or 'male' they can be used 
as follows:

context Person inv: gender = Gender::male

7.4.3 Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The let expression allows one to define a variable 
which can be used in the constraint. 

context Person inv:
let income : Integer = self.job.salary->sum() in
if isUnemployed then

income < 100
else

income >= 100 
endif

A let expression may be included in any kind of OCL expression. It is only known within this specific expression. 

7.4.4 Additional operations/attributes through «definition» expressions

The Let expression allows a variable to be used in one Ocl expression. To enable reuse of variables/operations over 
multiple OCL expressions one can use a Constraint with the stereotype «definition», in which helper variables/operations 
are defined. This «definition» Constraint must be attached to a Classifier and may only contain variable and/or operation 
definitions, nothing else. All variables and operations defined in the «definition» constraint are known in the same context 
as where any property of the Classifier can be used. Such variables and operations are attributes and operations with 
stereotype «OclHelper» of the classifier. They are used in an OCL expression in exactly the same way as normal 
attributes or operations are used. The syntax of the attribute or operation definitions is similar to the Let expression, but 
each attribute and operation definition is prefixed with the keyword ’def’ as shown below. 

Boolean and, or, xor, not, implies, if-then-else

String concat(), size(), substring()

Table 3 - Operations on predefined types

type operations
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context Person
def: income : Integer = self.job.salary->sum() 
def: nickname : String = ’Little Red Rooster’
def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

The names of the attributes / operations in a let expression may not conflict with the names of respective attributes/
associationEnds and operations of the Classifier.

Using this definition syntax is identical to defining an attribute/operation in the UML with stereotype «OclHelper» with 
an attached OCL constraint for its derivation.

7.4.5 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy. This hierarchy determines 
conformance of the different types to each other. You cannot, for example, compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL expression in which the types don’t 
conform is an invalid expression. It contains a type conformance error. A type type1 conforms to a type type2 when an 
instance of type1 can be substituted at each place where an instance of type2 is expected. The type conformance rules for 
types in the class diagrams are simple.

• Each type conforms to each of its supertypes.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3, then type1 conforms to type3.

The effect of this is that a type conforms to its supertype, and all the supertypes above. The type conformance rules for 
the types from the OCL Standard Library are listed in Table 4.

The conformance relation between the collection types only holds if they are collections of element types that conform to 
each other. See Section 7.5.13, “Collection Type Hierarchy and Type Conformance Rules,” on page 23 for the complete 
conformance rules for collections.

Table 4 - Type conformance rules

Type Conforms to/Is a subtype of Condition

Set(T1) Collection(T2) if T1 conforms to T2

Sequence(T1) Collection(T2) if T1 conforms to T2

Bag(T1) Collection(T2) if T1 conforms to T2

Integer Real
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Table 5 provides examples of valid and invalid expressions.

7.4.6 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on a subtype of the current known type 
of the object. Because the property is not defined on the current known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-typed using the operation 
oclAsType(OclType). This operation results in the same object, but the known type is the argument OclType. When there 
is an object object of type Type1 and Type2 is another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtypes; therefore, in the example, Type2 must be a subtype of Type1.

If the actual type of the object is not a subtype of the type to which it is re-typed, the expression is undefined (see  
(“Undefined Values”)).

7.4.7 Precedence Rules

The precedence order for the operations, starting with highest precedence, in OCL is:

• @pre 

• dot and arrow operations: ‘.’ and ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’ 

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parentheses ‘(’ and ‘)’ can be used to change precedence.

Table 5 - Valid Expressions

OCL expression valid explanation

1 + 2 * 34 yes

1 + 'motorcycle' no type String does not conform to type 
Integer

23 * false no type Boolean does not conform to Integer

12 + 13.5 yes
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7.4.8 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+’, ‘-’, ‘*’. ‘/’, ‘<‘, ‘>’, ‘<>’ ‘<=’ ‘>=’ are used as infix 
operators. If a type defines one of those operators with the correct signature, they will be used as infix operators. The 
expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the ‘+’ operation on a with b as the parameter to the operation.

The infix operators defined for a type must have exactly one parameter. For the infix operators ‘<‘, ‘>’, ‘<=’, ‘>=’, ‘<>’, 
‘and’, ‘or’, and ‘xor’ the return type must be Boolean.

7.4.9 Keywords

Keywords in OCL are reserved words. That means that the keywords cannot occur anywhere in an OCL expression as the 
name of a package, a type or a property. The list of keywords is shown below:

and
attr
context
def
else
endif
endpackage
if
implies
in
inv
let
not
oper
or
package
post
pre
then
xor

7.4.10 Comment

Comments in OCL are written following two successive dashes (minus signs). Everything immediately following the two 
dashes up to and including the end of line is part of the comment. For example:

-- this is a comment
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Undefined Values
Some expressions will, when evaluated, have an undefined value. For instance, typecasting with oclAsType() to a type 
that the object does not support or getting the ->first() element of an empty collection will result in undefined. In general, 
an expression where one of the parts is undefined will itself be undefined. There are some important exceptions to this 
rule, however. First, there are the logical operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

• False IMPLIES anything is True

• anything IMPLIES True is True

The rules for OR and AND are valid irrespective of the order of the arguments and they are valid whether the value of the 
other sub-expression is known or not. 

The IF-expression is another exception. It will be valid as long as the chosen branch is valid, irrespective of the value of 
the other branch. 

Finally, there is an explicit operation for testing if the value of an expression is undefined. oclIsUndefined() is an 
operation on OclAny that results in True if its argument is undefined and False otherwise.

7.5 Objects and Properties
OCL expressions can refer to Classifiers, e.g. types, classes, interfaces, associations (acting as types) and datatypes. Also 
all attributes, association-ends, methods, and operations without side-effects that are defined on these types, etc. can be 
used. In a class model, an operation or method is defined to be side-effect-free if the isQuery attribute of the operations is 
true. For the purpose of this document, we will refer to attributes, association-ends, and side-effect-free methods and 
operations as being properties. A property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

The value of a property on an object that is defined in a class diagram is specified in an OCL expression by a dot 
followed by the name of the property.

context Person inv: 
self.isMarried

If self is a reference to an object, then self.property is the value of the property property on self. 

7.5.1 Properties: Attributes

For example, the age of a Person is written as self.age:

context Person inv:
self.age > 0
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The value of the subexpression self.age is the value of the age attribute on the particular instance of Person identified by 
self. The type of this subexpression is the type of the attribute age, which is the standard type Integer. 

Using attributes, and operations defined on the basic value types, we can express calculations etc. over the class model. 
For example, a business rule might be “the age of a Person is always greater than zero.” This can be stated by the 
invariant above.

Attributes may have multiplicities in a UML model. Wheneven the multiplicity of an attribute is greater than 1, the result 
type is collection of values. Collections in OCL are described later in this chapter.

7.5.2 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an income expressed as a function 
of the date. This operation would be accessed as follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The result of this operation call is a value of the return type of the operation, which is Integer in this example. If the 
operation has out or in/out parameters, the result of this operation is a tuple containing all out, in/out parameters and the 
return value. For example, if the income operation would have an out parameter bonus, the result of the above operation 
call is of type Tuple( bonus: Integer, result: Integer). You can access these values using the names of the out 
parameters, and the keyword result, for example:

aPerson.income(aDate).bonus = 300 and
aPerson.income(aDate).result = 5000

Note that the out parameters need not be included in the operation call. Values for all in or in/out parameters are 
neccessary.

Defining operations
The operation itself could be defined by a postcondition constraint. This is a constraint that is stereotyped as 
«postcondition». The object that is returned by the operation can be referred to by result. It takes the following form:

context Person::income (d: Date) : Integer
post: result = age * 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the definition may be recursive) as 
long as the recursion is not infinite. Inside a pre- or postcondition one can also use the parameters of the operation. The 
type of result, when the operation has no out or in/out parameters, is the return type of the operation, which is Integer in 
the above example. When the operation does have out or in/out parameters, the return type is a Tuple as explained above. 
The postcondition for the income operation with out parameter bonus may take the following form:

context Person::income (d: Date, bonus: Integer) : Integer
post: result = Tuple { bonus = ...,
                       result = .... }

To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty argument list are 
mandatory:

context Company inv:
self.stockPrice() > 0
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7.5.3 Properties:  AssociationEnds and Navigation

Starting from a specific object, we can navigate an association on the class diagram to refer to other objects and their 
properties. To do so, we navigate the association by using the opposite association-end:

object.associationEndName

The value of this expression is the set of objects on the other side of the associationEndName association. If the 
multiplicity of the association-end has a maximum of one (“0..1” or “1”), then the value of this expression is an object. In 
the example class diagram, when we start in the context of a Company (i.e., self is an instance of Company), we can 
write:

context Company 
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty() 

In the first invariant self.manager is a Person, because the multiplicity of the association is one. In the second invariant 
self.employee will evaluate in a Set of Persons. By default, navigation will result in a Set. When the association on the 
Class Diagram is adorned with {ordered}, the navigation results in an OrderedSet.

Collections, like Sets, OrderedSets, Bags, and Sequences are predefined types in OCL. They have a large number of 
predefined operations on them. A property of the collection itself is accessed by using an arrow ‘->’ followed by the name 
of the property. The following example is in the context of a person:

context Person inv:
self.employer->size() < 3

This applies the size property on the Set self.employer, which results in the number of employers of the Person self.

context Person inv:
self.employer->isEmpty()

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of employers is empty and 
false otherwise.

Missing AssociationEnd names
When the name of an association-end is missing at one of the ends of an association, the name of the type at the 
association end tarting with a lowercase character is used as the rolename. If this results in an ambiguity, the rolename is 
mandatory. This is e.g. the case with unnamed rolenames in reflexive associations. If the rolename is ambiguous, then it 
cannot be used in OCL.

Navigation over Associations with Multiplicity Zero or One
Because the multiplicity of the role manager is one, self.manager is an object of type Person. Such a single object can be 
used as a Set as well. It then behaves as if it is a Set containing the single object. The usage as a set is done through the 
arrow followed by a property of Set. This is shown in the following example:

context Company inv:
self.manager->size() = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access the size property on Set. This 
expression evaluates to true.

context Company inv:
self.manager->foo
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The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set. This 
expression is incorrect, because foo is not a defined property of Set.

context Company inv:
self.manager.age > 40

The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person. 

In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether there is an object or not 
when navigating the association. In the example we can write:

context Person inv: 
self.wife->notEmpty() implies self.wife.gender = Gender::female

Combining Properties
Properties can be combined to make more complicated expressions. An important rule is that an OCL expression always 
evaluates to a specific object of a specific type. After obtaining a result, one can always apply another property to the 
result to get a new result value. Therefore, each OCL expression can be read and evaluated left-to-right. 

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18
context Person inv:
self.wife->notEmpty() implies self.wife.age >= 18 and
self.husband->notEmpty() implies self.husband.age >= 18

[2] a company has at most 50 employees
context Company inv:
self.employee->size() <= 50

7.5.4 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot and the name of the 
association class starting with a lowercase character:

context Person inv:
self.job 

The sub-expression self.job evaluates to a Set of all the jobs a person has with the companies that are his/her employer. In 
the case of an association class, there is no explicit rolename in the class diagram. The name job used in this navigation 
is the name of the association class starting with a lowercase character, similar to the way described in the section 
“Missing AssociationEnd names” above. 
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In case of a recursive association, that is an association of a class with itself, the name of the association class alone is not 
enough. We need to distinguish the direction in which the association is navigated as well as the name of the association 
class. Take the following model as an example.

When navigating to an association class such as employeeRanking there are two possibilities depending on the direction. 
For instance, in the above example, we may navigate towards the employees end, or the bosses end. By using the name of 
the association class alone, these two options cannot be distinguished. To make the distinction, the rolename of the 
direction in which we want to navigate is added to the association class name, enclosed in square brackets. In the 
expression

context Person inv:
self.employeeRanking[bosses]->sum() > 0

the self.employeeRanking[bosses] evaluates to the set of EmployeeRankings belonging to the collection of bosses. And in 
the expression

context Person inv:
self.employeeRanking[employees]->sum() > 0

the self.employeeRanking[employees] evaluates to the set of EmployeeRankings belonging to the collection of employees. 
The unqualified use of the association class name is not allowed in such a recursive situation. Thus, the following 
example is invalid:

context Person inv:
self.employeeRanking->sum() > 0 -- INVALID!

In a non-recursive situation, the association class name alone is enough, although the qualified version is allowed as well. 
Therefore, the examples at the start of this section could also be written as:

context Person inv:
self.job[employer] 

7.5.5 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the association. This is done using the 
dot-notation and the role-names at the association-ends.

context Job
inv: self.employer.numberOfEmployees >= 1
inv: self.employee.age > 21

Navigation from an association class to one of the objects on the association will always deliver exactly one object. This 
is a result of the definition of AssociationClass. Therefore, the result of this navigation is exactly one object, although it 
can be used as a Set using the arrow (->).

EmployeeRanking

Person
age

bosses

employees * score

*

Figure 2 - Navigating recursive association classes
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7.5.6 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the other end of the association. To 
navigate them, we can add the values for the qualifiers to the navigation. This is done using square brackets, following the 
role-name. It is permissible to leave out the qualifier values, in which case the result will be all objects at the other end of 
the association. The following example results in a Set(Person) containing all customers of the Bank.

context Bank inv: 
self.customer

The next example results in one Person, having account number 8764423.

context Bank inv:
self.customer[8764423]

If there is more than one qualifier attribute, the values are separated by commas, in the order which is specified in the 
UML class model. It is not permissible to partially specify the qualifier attribute values.

7.5.7 Using Pathnames for Packages

Within UML, types are organized in packages. OCL provides a way of explicitly referring to types in other packages by 
using a package-pathname prefix. The syntax is a package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within packages:

Packagename1::Packagename2::Typename

7.5.8 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed using the oclAsType() 
operation. Whenever we have a class B as a subtype of class A, and a property p1 of both A and B, we can write:

context B inv: 
self.oclAsType(A).p1  -- accesses the p1 property defined in A 
self.p1  -- accesses the p1 property defined in B 

Figure 3 shows an example where such a construct is needed. In this model fragment there is an ambiguity with the OCL 
expression on Dependency:

context Dependency inv: 
self.source <> self

This can either mean normal association navigation, which is inherited from ModelElement, or it might also mean 
navigation through the dotted line as an association class. Both possible navigations use the same role-name, so this is 
always ambiguous. Using oclAsType() we can distinguish between them with:

context Dependency 
inv: self.oclAsType(Dependency).source->isEmpty()
inv: self.oclAsType(ModelElement).source->isEmpty()
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Figure 3    - Accessing Overridden Properties Example

7.5.9 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These are:

oclIsTypeOf (t : OclType)  : Boolean
oclIsKindOf (t : OclType)  : Boolean
oclInState (s : OclState)  : Boolean
oclIsNew   ()             : Boolean
oclAsType (t : OclType) : instance of OclType

The operation is oclIsTypeOf results in true if the type of self and t are the same. For example:

context Person
inv: self.oclIsTypeOf( Person )      -- is true 
inv: self.oclIsTypeOf( Company)      -- is false

The above property deals with the direct type of an object. The oclIsKindOf property determines whether t is either the 
direct type or one of the supertypes of an object.

The operation oclInState(s) results in true if the object is in the state s. Values for s are the names of the states in the 
statemachine(s) attached to the Classifier of object. For nested states the statenames can be combined using the double 
colon ‘::’ .

....

D ep en den cy

targ et

source
*

*

M od elE lem en t

N ote

v alu e: U ninterp rete d

On Off

Standby NoPower
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In the example statemachine above, values for s can be On, Off, Off::Standby, Off::NoPower. If the classifier of object has 
the above associated statemachine valid OCL expressions are:

object.oclInState(On)
object.oclInState(Off)
object.oclInstate(Off::Standby)
object.oclInState(Off::NoPower)

If there are multiple statemachines attached to the object’s classifier, then the statename can be prefixed with the name of 
the statemachine containing the state and the double colon ‘::’, as with nested states.

The operation oclIsNew evaluates to true if, used in a postcondition, the object is created during performing the operation. 
i.e., it didn’t exist at precondition time. 

7.5.10 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The types are either predefined in OCL 
or defined in the class model. In OCL, it is also possible to use features defined on the types/classes themselves. These 
are, for example, the class-scoped features defined in the class model. Furthermore, several features are predefined on 
each type.

A predefined feature on classes, interfaces and enumerations is allInstances, which results in the Set of all instances of the 
type in existence at the specific time when the expression is evaluated. If we want to make sure that all instances of 
Person have unique names, we can write:

context Person inv:
Person.allInstances()->forAll(p1, p2 |
                              p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances() is the set of all persons and is of type Set(Person). It is the set of all persons that exist in the 
system at the time that the expression is evaluated.

7.5.11 Collections

Single navigation of an association results in a Set, combined navigations in a Bag, and navigation over associations 
adorned with {ordered} results in an OrderedSet. Therefore, the collection types define in the OCL Standard Library play 
an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of predefined operations to enable 
the OCL expression author (the modeler) to manipulate collections. Consistent with the definition of OCL as an 
expression language, collection operations never change collections; isQuery is always true. They may result in a 
collection, but rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL distinguishes three different 
collection types: Set, Sequence, and Bag. A Set is the mathematical set. It does not contain duplicate elements. A Bag is 
like a set, which may contain duplicates (i.e., the same element may be in a bag twice or more). A Sequence is like a Bag 
in which the elements are ordered. Both Bags and Sets have no order defined on them. 

Collection Literals
Sets, Sequences, and Bags can be specified by a literal in OCL. Curly brackets surround the elements of the collection, 
elements in the collection are written within, separated by commas. The type of the collection is written before the curly 
brackets:
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Set { 1 , 2 , 5 , 88 }
Set { 'apple' , 'orange', 'strawberry' }

A Sequence:

Sequence { 1, 3, 45, 2, 3 }
Sequence { 'ape', 'nut' }

A bag:

Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to create them. The elements 
inside the curly brackets can be replaced by an interval specification, which consists of two expressions of type Integer, 
Int-expr1 and Int-expr2, separated by ‘..’. This denotes all the Integers between the values of Int-expr1 and Int-expr2, 
including the values of Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }  
Sequence{ 1..10 }
-- are both identical to
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described in chapter 11 (“The OCL Standard Library”). 

Collections can be specified by a literal, as described above. The only other way to get a collection is by navigation. To 
be more precise, the only way to get a Set, OrderedSet, Sequence, or Bag is:

1. a literal, this will result in a Set, OrderedSet, Sequence, or Bag:

 Set        {2 , 4, 1 , 5 , 7 , 13, 11, 17 }
 OrderedSet {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
 Sequence   {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
 Bag        {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

 context Company inv:
 self.employee

3.  operations on collections may result in new collections:

collection1->union(collection2)

7.5.12 Collections of Collections

In UML 1.4 a collection in OCL was always flattened, i.e. a collection could never contain other collections as elements. 
This restriction is relieved in UML 2.0. OCL allows elements of collections to be collections themselves. The OCL 
Standard Library includes specific flatten operations for collections. These can be used to flatten collections of collections 
explicitly.

7.5.13 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in 7.4.5 (“Type Conformance”), the following rules hold for all types, including 
the collection types:

•  The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X). 

 Type conformance rules are as follows for the collection types:
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•  Type1 conforms to Type2 when they are identical (standard rule for all types).

•  Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

•  Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2. This is also true for Set(Type1)/
Set(Type2), Sequence(Type1)/Sequence(Type2), Bag(Type1)/Bag(Type2)

•  Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3, then Type1 conforms to 
Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle)  conforms to  Set(Transport)
Set(Bicycle)  conforms to  Collection(Bicycle)
Set(Bicycle)  conforms to  Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are both subtypes of 
Collection(Bicycle) at the same level in the hierarchy. 

7.5.14 Previous Values in Postconditions

As stated in 7.3.4 (“Pre- and Postconditions”), OCL can be used to specify pre- and post-conditions on operations and 
methods in UML. In a postcondition, the expression can refer to values for each property of an object at two moments in 
time:

• the value of a property at the start of the operation or method

• the value of a property upon completion of the operation or method

The value of a property in a postcondition is the value upon completion of the operation. To refer to the value of a 
property at the start of the operation, one has to postfix the property name with the keyword ‘@pre’:

context Person::birthdayHappens()
post: age = age@pre + 1

The property age refers to the property of the instance of Person which executes the operation. The property age@pre 
refers to the value of the property age of the Person that executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the parameters. 

context Company::hireEmployee(p : Person)
post: employees = employees@pre->including(p) and

    stockprice() = stockprice@pre() + 10

When the pre-value of a property evaluates to an object, all further properties that are accessed of this object are the new 
values (upon completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x
    -- and then the new value of c of x.
a.b@pre.c@pre -- takes the old value of property b of a, say x
    -- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition. Asking for a current property of 
an object that has been destroyed during execution of the operation results in OclUndefined. Also, referring to the 
previous value of an object that has been created during execution of the operation results in OclUndefined.
24                 UML OCL 2.0 Adopted Specification



7.5.15 Tuples

It is possible to compose several values into a tuple. A tuple consists of named parts, each of which can have a distinct 
type. Some examples of tuples are:

Tuple {name: String = ‘John’,  age: Integer = 10}
Tuple {a: Collection(Integer) = Set{1, 3, 4}, b: String = ‘foo’, c: String = ‘bar’}

This is also the way to write tuple literals in OCL; they are enclosed in curly brackets, and the parts are separated by 
commas. The type names are optional, and the order of the parts is unimportant. Thus:

Tuple {name: String = ‘John’, age: Integer = 10} is equivalent to
Tuple {name = ‘John’, age = 10} and to
Tuple {age = 10, name = ‘John’}

Also, note that the values of the parts may be given by arbitrary OCL expressions, so for example we may write:

context Person def:
attr statistics : Set(TupleType(company: Company, numEmployees: Integer, 
                               wellpaidEmployees: Set(Person), totalSalary: Integer)) = 
      managedCompanies->collect(c | 
       Tuple { company: Company = c,
           numEmployees: Integer = c.employee->size(), 
           wellpaidEmployees: Set(Person) = c.job->select(salary>10000).employee->asSet(),
           totalSalary: Integer = c.job.salary->sum()
          }
      )

This results in a bag of tuples summarizing the company, number of employees, the best paid employees and total salary 
costs of each company a person manages.

The parts of a tuple are accessed by their names, using the same dot notation that is used for accessing attributes. Thus:

Tuple {x: Integer = 5, y: String = ‘hi’}.x = 5

is a true, if somewhat pointless, expression. Using the definition of statistics above, we can write:

context Person inv:
statistics->sortedBy(totalSalary)->last().wellpaidEmployees->includes(self)

This asserts that a person is one of the best-paid employees of the company with the highest total salary that he manages. 
In this expression, both ‘totalSalary’ and ‘wellpaidEmployees’ are accessing tuple parts.

7.6 Collection Operations
OCL defines many operations on the collection types. These operations are specifically meant to enable a flexible and 
powerful way of projecting new collections from existing ones. The different constructs are described in the following 
sections.

7.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations results in a collection, while we are interested only in a special 
subset of the collection. OCL has special constructs to specify a selection from a specific collection. These are the select 
and reject operations. The select specifies a subset of a collection. A select is an operation on a collection and is specified 
using the arrow-syntax:
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collection->select( ... )

The parameter of select has a special syntax that enables one to specify which elements of the collection we want to 
select. There are three different forms, of which the simplest one is:

collection->select( boolean-expression )

This results in a collection that contains all the elements from collection for which the boolean-expression evaluates to 
true. To find the result of this expression, for each element in collection the expression boolean-expression is evaluated. 
If this evaluates to true, the element is included in the result collection, otherwise not. As an example, the following OCL 
expression specifies that the collection of all the employees older than 50 years is not empty:

context Company inv: 
self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person from self.employee and evaluates age > 50 for this 
person. If this results in true, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument is the element of the collection 
on which the select is invoked. Thus the age property is taken in the context of a person. 

In the above example, it is impossible to refer explicitly to the persons themselves; you can only refer to properties of 
them. To enable to refer to the persons themselves, there is a more general syntax for the select expression:

collection->select( v | boolean-expression-with-v )

The variable v is called the iterator. When the select is evaluated, v iterates over the collection and the boolean-
expression-with-v is evaluated for each v. The v is a reference to the object from the collection and can be used to refer to 
the objects themselves from the collection. The two examples below are identical:

context Company inv: 
self.employee->select(age > 50)->notEmpty()

context Company inv: 
self.employee->select(p | p.age > 50)->notEmpty()

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates to True. This amounts 
to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be given. The select now is written as:

collection->select( v : Type | boolean-expression-with-v )

The meaning of this is that the objects in collection must be of type Type. The next example is identical to the previous 
examples:

context Company inv: 
self.employee.select(p : Person | p.age > 50)->notEmpty()

The compete select syntax now looks like one of: 

collection->select( v : Type | boolean-expression-with-v )
collection->select( v | boolean-expression-with-v )
collection->select( boolean-expression )

The reject operation is identical to the select operation, but with reject we get the subset of all the elements of the 
collection for which the expression evaluates to False. The reject syntax is identical to the select syntax:

collection->reject( v : Type | boolean-expression-with-v )
collection->reject( v | boolean-expression-with-v )
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collection->reject( boolean-expression )

As an example, specify that the collection of all the employees who are not married is empty:

context Company inv: 
self.employee->reject( isMarried )->isEmpty()

The reject operation is available in OCL for convenience, because each reject can be restated as a select with the negated 
expression. Therefore, the following two expressions are identical:

collection->reject( v : Type | boolean-expression-with-v )
collection->select( v : Type  | not (boolean-expression-with-v) )

7.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a sub-collection of the original 
collection. When we want to specify a collection which is derived from some other collection, but which contains 
different objects from the original collection (i.e., it is not a sub-collection), we can use a collect operation. The collect 
operation uses the same syntax as the select and reject and is written as one of:

collection->collect( v : Type | expression-with-v )
collection->collect( v | expression-with-v )
collection->collect( expression )

The value of the reject operation is the collection of the results of all the evaluations of expression-with-v. 

An example: specify the collection of birthDates for all employees in the context of a company. This can be written in the 
context of a Company object as one of:

self.employee->collect( birthDate )
self.employee->collect( person | person.birthDate )
self.employee->collect( person : Person | person.birthDate )

An important issue here is that the resulting collection is not a Set, but a Bag. When more than one employee has the 
same value for birthDate, this value will be an element of the resulting Bag more than once. The Bag resulting from the 
collect operation always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following expression results in the 
Set of different birthDates from all employees of a Company:

self.employee->collect( birthDate )->asSet()

Shorthand for Collect
Because navigation through many objects is very common, there is a shorthand notation for the collect that makes the 
OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will automatically be interpreted as a collect over 
the members of the collection with the specified property. 

For any propertyname that is defined as a property on the objects in a collection, the following two expressions are 
identical:
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collection.propertyname
collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname (par1, par2, ...)
collection->collect (propertyname(par1, par2, ...))

7.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation in OCL allows specifying a 
Boolean expression, which must hold for all objects in a collection:

collection->forAll( v : Type | boolean-expression-with-v )
collection->forAll( v | boolean-expression-with-v )
collection->forAll( boolean-expression )

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is true for all elements of 
collection. If the boolean-expression-with-v is false for one or more v in collection, then the complete expression 
evaluates to false. For example, in the context of a company:

context Company 
inv: self.employee->forAll( age <= 65 )
inv: self.employee->forAll( p | p.age <= 65 )
inv: self.employee->forAll( p : Person | p.age <= 65 )

These invariants evaluate to true if the age property of each employee is less or equal to 65. 

The forAll operation has an extended variant in which more then one iterator is used. Both iterators will iterate over the 
complete collection. Effectively this is a forAll on the Cartesian product of the collection with itself.

context Company inv: 
self.employee->forAll( e1, e2 : Person |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is semantically equivalent to:

context Company inv: 
self.employee->forAll (e1 | self.employee->forAll (e2 |
                     e1 <> e2 implies e1.forename <> e2.forename))

7.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for which a constraint holds. The 
exists operation in OCL allows you to specify a Boolean expression which must hold for at least one object in a 
collection:

collection->exists( v : Type | boolean-expression-with-v )
collection->exists( v | boolean-expression-with-v )
collection->exists( boolean-expression )

This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is true for at least one 
element of collection. If the boolean-expression-with-v is false for all v in collection, then the complete expression 
evaluates to false. For example, in the context of a company:

context Company inv: 
self.employee->exists( forename = 'Jack' )
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context Company inv: 
self.employee->exists( p | p.forename = 'Jack' )

context Company inv: 
self.employee->exists( p : Person | p.forename = 'Jack' )

These expressions evaluate to true if the forename property of at least one employee is equal to ‘Jack.’

7.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject, select, forAll, exists, collect, 
can all be described in terms of iterate. An accumulation builds one value by iterating over a collection.

collection->iterate( elem : Type; acc : Type = <expression> |
expression-with-elem-and-acc )

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumulator. The 
accumulator gets an initial value <expression>. When the iterate is evaluated, elem iterates over the collection and the 
expression-with-elem-and-acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its 
value is assigned to acc. In this way, the value of acc is built up during the iteration of the collection. The collect 
operation described in terms of iterate will look like:

collection->collect(x : T | x.property)
-- is identical to:
collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)
{
   acc = value;
   for(Enumeration e = collection.elements() ; e.hasMoreElements(); ){
       elem = e.nextElement();
       acc  = <expression-with-elem-and-acc>
   }
   return acc;
}

Although the Java pseudo code uses a ‘next element’, the iterate operation is defined not only for Sequqnce, but for each 
collection type. The order of the iteration through the elements in the collection is not defined for Set and Bag. For a 
Sequence the order is the order of the elements in the sequence.

7.7 Messages in OCL
This section contains some examples of the concrete syntax and explains the finer details of the message expression. In 
earlier versions the phrase "actions in OCL" was used, but message was found to capture the meaning more precisely.

7.7.1 Calling operations and sending signals

To specify that communication has taken place, the hasSent (‘^’) operator is used: 

context Subject::hasChanged()
post:  observer^update(12, 14)
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The observer^update(12, 14) results in true if an update message with arguments 12 and 14 was sent to observer during 
the execution of the operation. Update() is either an Operation that is defined in the class of observer, or it is a Signal 
specified in the UML model. The argument(s) of the message expression (12 and 14 in this example) must conform to the 
parameters of the operation/signal definition.

If the actual arguments of the operation/signal are not known, or not restricted in any way, it can be left unspecified. This 
is shown by using a question mark. Following the question mark is an optional type, which may be needed to find the 
correct operation when the same operation exists with different parameter types.

context Subject::hasChanged()
post:  observer^update(? : Integer, ? : Integer)

This example states that the message update has been sent to observer, but that the values of the parameters are not 
known.

OCL also defines a special OclMessage type. One can get the actual OclMessages through the message operator: ^^. 

context Subject::hasChanged()
post:  observer^^update(12, 14)

This results in the Sequence of messages sent. Each element of the collection is an instance of OclMessage. In the 
remainder of the constraint one can refer to the parameters of the operation using their formal parameter name from the 
operation definition. If the operation update has been defined with formal parameters named i and j, then we can write:

context Subject::hasChanged()
post: let messages : Sequence(OclMessage) = observer^^update(? : Integer, ? : Integer) in
      messages->notEmpty() and
      messages->exists( m | m.i > 0 and m.j >= m.i )

The value of the parameter i is not known, but it must be greater than zero and the value of parameter j must be larger or 
equal to i..

Because the ^^ operator results in an instance of OclMessage, the message expression can also be used to specify 
collections of messages sent to different targets. For an observer pattern we can write: 

context Subject::hasChanged()
post:  let messages : Sequence(OclMessage) =
                    observers->collect(o | o^^update(? : Integer, ? : Integer) ) in
       messages->forAll(m | m.i <= m.j )

Messages is now a set of OclMessage instances, where every OclMessage instance has one of the observers as a target. 

7.7.2 Accessing result values

A signal sent message is by definition asynchronous, so there never is a return value. If there is a logical return value it 
must be modeled as a separate signal message. Yet, for an operation call there is a potential return value. This is only 
available if the operation has already returned (not neccesary if the operation call is aynchronous), and it specifies a return 
type in its definition. The standard operation result() of OclMessage contains the return value of the called operation. If 
getMoney(...) is an operation on Company that returns a boolean, as in Company::getMoney(amount : Integer) : 
Boolean, we can write:

context Person::giveSalary(amount : Integer)
post: let message : OclMessage = company^getMoney(amount) in
      message.hasReturned()                           -- getMoney was sent and returned
      and
      message.result() = true                         -- the getMoney call returned true
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As with the previous example we can also access a collection of return values from a collection of OclMessages. If 
message.hasReturned() is false, then message.result() will be undefined.

7.7.3 An example

This section shows an example of using the OCL message expression.

The Example and Problem
Suppose we have build a component, which takes any form of input and transforms it into garbage (aka encrypts it). The 
component GarbageCan uses an interface UsefulInformationProvider which must be implemented by users of the 
component to provide the input. The operation getNextPieceOfGarbage of GarbageCan can then be used to retrieve the 
garbled data. Figure 4 shows the component’s class diagram. Note that none of the operations are marked as queries.

Figure 4 - OclMessage Example

When selling the component, we do not want to give the source code to our customers. However, we want to specify the 
component’s behavior as precisely as possible. So, for example, we want to specify, what getNextPieceOfGarbage does. 
Note that we cannot write:

context GarbageCan::getNextPieceOfGarbage() : Integer 
post: result = (datasource.getNextPieceOfData() * .7683425 + 10000) / 20 + 3

because UsefulInformationProvider::getNextPieceOfData() is not a query (e.g., it may increase some internal pointer 
so that it can return the next piece of data at the next call). Still we would like to say something about how the garbage is 
derived from the original data.

The solution
To solve this problem, we can use an OclMessage to represent the call to getNextPieceOfData. This allows us to check for 
the result. Note that we need to demand that the call has returned before accessing the result: 

context GarbageCan::getNextPieceOfGarbage() : Integer 
post: let message : OclMessage = datasource^^getNextPieceOfData()->first() in
      message.hasReturned()
      and
      result = (message.result() * .7683425 + 10000) / 20 + 3
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7.8 Resolving Properties
For any property (attribute, operation, or navigation), the full notation includes the object of which the property is taken. 
As seen in Section 7.3.3, self can be left implicit, and so can the iterator variables in collection operations. At any place 
in an expression, when an iterator is left out, an implicit iterator-variable is introduced. For example in: 

context Person inv:
employer->forAll( employee->exists( lastName = name) )

three implicit variables are introduced. The first is self, which is always the instance from which the constraint starts. 
Secondly an implicit iterator is introduced by the forAll and third by the exists. The implicit iterator variables are 
unnamed. The properties employer, employee, lastName and name all have the object on which they are applied left out. 
Resolving these goes as follows:

•  at the place of employer there is one implicit variable: self : Person. Therefore employer must be a property of self.

•  at the place of employee there are two implicit variables: self : Person and iter1 : Company. Therefore employer 
must be a property of either self or iter1. If employee is a property of both self and iter1 then it is defined to belong 
to the variable in the most inner scope, which is iter1.

•  at the place of lastName and name there are three implicit variables: self : Person , iter1 : Company and iter2 : Person. 
Therefore lastName and name must both be a property of either self or iter1 or iter2. In the UML model property name 
is a property of iter1. However, lastName is a property of both self and iter2. This is ambiguous and therefore the last-
Name refers to the variable in the most inner scope, which is iter2.

Both of the following invariant constraint are correct, but have a different meaning:

context Person
inv: employer->forAll( employee->exists( p | p.lastName = name) ) 
inv: employer->forAll( employee->exists( self.lastName = name) ) 
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8 Abstract Syntax
This section describes the abstract syntax of the OCL. In this abstract syntax a number of metaclasse from the UML 
metamodel are imported. These metaclasses are shown in the models with the annotation ’(from <UML package>)’ and 
shown with a transparant fill color. All metaclasses defined as part of the OCL abstract syntax are shown with a light gray 
background.

8.1 Introduction
The abstract syntax as described below defines the concepts that are part of the OCL using a MOF compliant metamodel. 
The abstract syntax is divided into several packages.

• The Types package describes the concepts that define the type system of OCL. It shows which types are predefined in 
OCL and which types are deduced from the UML models.

• The Expressions package describes the structure of OCL expressions.

8.2 The Types Package
OCL is a typed language. Each expression has a type which is either explicitly declared or can be statically derived. 
Evaluation of the expression yields a value of this type. Therefore, before we can define expressions, we have to provide 
a model for the concept of type. A metamodel for OCL types is shown in this section. Note that instances of the classes 
in the metamodel are the types themselves (e.g. Integer) not instances of the domain they represent (e.g. -15, 0, 2, 3).

The model in Figure 5 shows the OCL types. The basic type is the UML Classifier, which includes all subtypes of 
Classifier from the UML infrastructure. 

In the model the CollectionType and its subclasses and the TupleType are special. One can never instantiate all collection 
types, because there is an infinite number, especially when nested collections are taken in account. Users will never 
instantiate these types explicitly. Conceptually all these types do exist, but such a type should be (lazily) instantiated by a 
tool, whenever it is needed in an expression.

In comparison with UML 1.4 the type OclType has been removed from the type hierarchy. This means that a Classifier is 
not a valid OCL expression any more.
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BagType
BagType is a collection type which describes a multiset of elements where each element may occur multiple times in the 
bag. The elements are unordered. Part of a BagType is the declaration of the type of its elements.

CollectionType
CollectionType describes a list of elements of a particular given type. CollectionType is an abstract class. Its concrete 
subclasses are SetType, SequenceType and BagType types. Part of every collection type is the declaration of the type of 
its elements, i.e. a collection type is parameterized with an element type. In the metamodel, this is shown as an 
association from CollectionType to Classifier. Note that there is no restriction on the element type of a collection type. 
This means in particular that a collection type may be parameterized with other collection types allowing collections to be 
nested arbitrarily deep.

Associations
• elementType The type of the elements in a collection. All elements in a collection must conform to 

this type.

Figure 5 - Abstract syntax kernel metamodel for OCL Types
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OclMessageType
OclMessageType describe ocl messages. Like to the collection types, OclMessageType describes a set of types in the 
standard library. Part of every OclMessageType is a reference to the declaration of the type of its operation or signal, i.e. 
an ocl message type is parameterized with an operation or signal. In the metamodel, this is shown as an association from 
OclMessageType to Operation and to Signal. OclMessageType is part of the abstract syntax of OCL, residing on M2 
level. Its instances, called OclMessage, and  subtypes of OclMessage, reside on M1 level. 

Associations
• referredSignal The Signal that is sent by the message. 

• referredOperation The Operation that is called by the message.

OclModelElementType
OclModelElementType represents the types of elements that are ModelElements in the UML metamodel. It is used to 
be able to refer to states and classifiers in e.g. oclInState(...) and oclIsKindOf(...)

OrderedSetType
OrderedSetType is a collection type which describes a set of elements where each distinct element occurs only once in 
the set. The elements are ordered by their position in the sequence. Part of an OrderedSetType is the declaration of the 
type of its elements.

SequenceType
SequenceType is a collection type which describes a list of elements where each element may occur multiple times in the 
sequence. The elements are ordered by their position in the sequence. Part of a SequenceType is the declaration of the 
type of its elements.

SetType
SetType is a collection type which describes a set of elements where each distinct element occurs only once in the set. 
The elements are not ordered. Part of a SetType is the declaration of the type of its elements.

TupleType
TupleType (informaly known as record type or struct) combines different types into a single aggregate type. The parts of 
a TupleType are described by its attributes, each having a name and a type. There is no restriction on the kind of types 
that can be used as part of a tuple. In particular, a TupleType may contain other tuple types and collection types. Each 
attribute of a TupleType represents a single feature of a TupleType. Each part is to uniquely identified by its name.

VoidType
VoidType represents a type that conforms to all types. The only instance of VoidType is OclVoid, which is further defined 
in the standard library. Furthermore OclVoid has exactly one instance called OclUndefined. 

8.2.1 Type Conformance

The type conformance rules are formally underpinned in the Semantics section of the specification. To ensure that the 
rules are accessible to UML modellers they are specified in this section using OCL. For this, the additional operation 
conformsTo(c : Classifier) : Boolean is defined on Classifier. It evaluates to true, if the self Classifier conforms to the 
argument c. The following OCL statements define type conformance for individual types.
UML OCL 2.0 Adopted Specification        35



BagType
[1] Different bag types conform to each other if their element types conform to each other.

context BagType 
inv: BagType.allInstances()->forAll(b | 
            self.elementType.conformsTo(b.elementType) implies self.conformsTo(b)) 

Classifier
[1] Conformance is a transitive relationship.

context Classifier
inv Transitivity: Classifier.allInstances()->forAll(x|Classifier.allInstances()
                  ->forAll(y| 
                      (self.conformsTo(x) and x.conformsTo(y)) implies self.conformsTo(y)))

[2] All classifiers except collections conform to OclAny.

context Classifier 
inv: (not self.oclIsKindOf (CollectionType)) implies 
      Primitive.allInstances()->forAll(p | (p.name = 'OclAny') implies self.conformsTo(p))

[3] Classes conform to superclasses and interfaces that they realize.
context Class 
inv : self.generalization.parent->forAll (p | 
          (p.oclIsKindOf(Class) or p.oclIsKindOf(Interface)) implies 
                                                self.conformsTo(p.oclAsType(Classifier)))

[4] Interfaces conforms to super interfaces.
context Interface 
inv : self.generalization.parent->forAll (p | 
              p.oclIsKindOf(Interface) implies self.conformsTo(p.oclAsType(Interface)))

[5] The Conforms operation between Types is reflexive, a Classifier always conform to itself.
context Classifier
inv: self.conformsTo(self)

[6] The Conforms operation between Types is anti-symmetric.
context Classifier
inv: Classifier.allInstances()->forAll(t1, t2 |
           (t1.conformsTo(t2) and t2.conformsTo(t1)) implies t1 = t2)

CollectionType
[1] Specific collection types conform to collection type.

context CollectionType 
inv: -- all instances of SetType, SequenceType, BagType conform to a 
     -- CollectionType if the elementTypes conform 
        CollectionType.allInstances()->forAll (c | 
                c.oclIsTypeOf(CollectionType) and 
                self.elementType.conformsTo(c.elementType) implies 
                          self.conformsTo(c))

[2] Collections do not conform to any primitive type.

context CollectionType 
inv: Primitive.allInstances()->forAll (p | not self.conformsTo(p))

[3] Collections of non-conforming types do not conform.
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context CollectionType 
inv: CollectionType.allInstances()->forAll (c |
    (not self.elementType.conformsTo (c.elementType)) implies (not self.conformsTo (c)))

OrderedSetType
[1] Different ordered set types conform to each other if their element types conform to each other.

context OrderedSetType 
inv: OrderedSetType.allInstances()->forAll(s | 
                  self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

Primitive
[1] Integer conforms to real.

context Primitive 
inv: (self.name = 'Integer') implies 
         Primitive.allInstances()->forAll (p | (p.name = 'Real') implies 
                                                         (self.conformsTo(p))))

SequenceType
[1] Different sequence types conform to each other if their element types conform to each other.

context SequenceType 
inv: SequenceType.allInstances()->forAll(s | 
               self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

SetType
[1] Different set types conform to each other if their element types conform to each other.

context SetType 
inv: SetType.allInstances()->forAll(s | 
                  self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

TupleType
[1] Tuple types conform to each other when their names and types conform to each other.  Note that allAttributes is an addi-

tional operation in the UML 1.4.
context TupleType 
inv: TupleType.allInstances()->forAll (t | 
       ( t.allAttributes()->forAll (tp | 
          -- make sure at least one tuplepart has the same name 
          -- (uniqueness of tuplepart names will ensure that not two 
          -- tupleparts have the same name within one tuple) 
          self.allAttributes()->exists(stp|stp.name = tp.name) and 
          -- make sure that all tupleparts with the same name conforms. 
          self.allAttributes()->forAll(stp | (stp.name = tp.name) and
                                                               stp.type.conformsTo(tp.type)) 
       ) 
       implies 
            self.conformsTo(t) 
     ) ) 

VoidType
[1]  Void conforms to all other types.
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context VoidType 
inv: Classifier.allInstances()->forAll (c | self.conformsTo (c))

8.2.2 Well-formedness Rules for the Types Package

BagType
[1] The name of a bag type is “Bag” followed by the element type’s name in parentheses.

context BagType
inv: self.name = ’Bag(’ + self.elementType.name + ’)’

CollectionType
[1] The name of a collection type is “Collection” followed by the element type’s name in parentheses.

context CollectionType
inv: self.name = ’Collection(’ + self.elementType.name + ’)’

Classifier
[1] For each classifier at most one of each of the different collection types exist.

context Classifier
inv: collectionTypes->select(oclIsTypeOf(CollectionType))->size() <= 1
inv: collectionTypes->select(oclIsTypeOf(BagType       ))->size() <= 1
inv: collectionTypes->select(oclIsTypeOf(SequenceType  ))->size() <= 1
inv: collectionTypes->select(oclIsTypeOf(SetType       ))->size() <= 1

OclMessageType
[1] OclMessageType has either a link with a Signal or with an operation, but not both.

context OclMessageType
inv: referredOperation->size() + referredSignal->size() = 1 

[2] The parameters of the referredOperation become attributes of the instance of OclMessageType.
context OclMessageType
inv: referredOperation->size() = 1 implies
         self.feature = referredOperation.parameter.asAttribute()    

[3] The attributes of the referredSignal become attributes of the instance of OclMessageType.
context OclMessageType
inv: referredSignal->size() = 1 implies 
         self.feature = referredSignal.feature

OrderedSetType
[1] The name of a set type is “OrderedSet” followed by the element type’s name in parentheses.

context OrderedSetType
inv: self.name = ’OrderedSet(’ + self.elementType.name + ’)’

SequenceType
[1] The name of a sequence type is “Sequence” followed by the element type’s name in parentheses.

context SequenceType
inv: self.name = ’Sequence(’ + self.elementType.name + ’)’
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SetType
[1] The name of a set type is “Set” followed by the element type’s name in parentheses.

context SetType
inv: self.name = ’Set(’ + self.elementType.name + ’)’

TupleType
[1] The name of a tuple type includes the names of the individual parts and the types of those parts.

context TupleType
inv: name =
  ’Tuple(’.concat (
    Sequence{1..allAttributes()->size()}->iterate (pn; s: String = ’’ |
      let p: Attribute = allAttributes()->at (pn) in (
        s.concat (
          (if (pn>1) then ’,’ else ’’ endif)
          .concat (p.name).concat (’:’)
          .concat (p.type.name)
        )
      )
    )
  ).concat (’)’)

[2] All parts belonging to a tuple type have unique names.
context TupleType
inv: -- always true, because attributes must have unique names.

[3] A TupleType instance has only features that are Attributes (tuple parts).

context TupleType
inv: feature->forAll (f | f.oclIsTypeOf(Attribute))
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8.3 The Expressions Package
This section defines the abstract syntax of the expressions package. This package defines the structure that OCL 
expressions can have. An overview of the inheritance relationships between all classes defined in this package is shown 
in Figure 12 on page 60. 

8.3.1 Expressions Core

Figure 6 shows the core part of the Expressions package. The basic structure in the package consists of the classes 
OclExpression, PropertyCallExp and VariableExp. An OclExpression always has a type, which is usually not 
explicitly modeled, but derived. Each PropertyCallExp has exactly one source, identified by an OclExpression. In this 
section we use the term ’property’, which is a generalization of Feature, AssociationEnd and predefined iterating OCL 
collection operations.

Figure 6 -  The basic structure of the abstract syntax kernel metamodel for Expressions
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A ModelPropertyCallExp generalizes all propertycalls that refer to Features or associations or AssociationEnds in 
the UML metamodel. In Figure 9 on page 47 the various subtypes of ModelPropertyCallExp are defined.

Most of the remainder of the expressions package consists of a specification of the different subclasses of 
PropertyCallExp and their specific structure. From the metamodel it can be deduced that an OCL expression always starts 
with a variable or literal, on which a property is recusively applied.

IfExp
An IfExp is defined in Section 8.3.3 (“If Expressions”), but included in this diagram for completeness.

IterateExp
An IterateExp is an expression which evaluates its body expression for each element of a collection. It acts as a loop 
construct that iterates over the elements of its source collection and results in a value. An iterate expression evaluates its 
body expression for each element of its source collection. The evaluated value of the body expression in each iteration-
step becomes the new value for the result variable for the succeding iteration-step. The result can be of any type and is 
defined by the result association. The IterateExp is the most fundamental collection expression defined in the OCL 
Expressions package. 

Associations
• result The VariableDeclaration that represents the result variable.

IteratorExp
An IteratorExp is an expression which evaluates its body expression for each element of a collection. It acts as a loop 
construct that iterates over the elements of its source collection and results in a value. The type of the iterator expression 
depends on the name of the expression, and sometimes on the type of the associated source expression. The IteratorExp 
represents all other predefined collection operations that use an iterator. This includes select, collect, reject, forAll, exists, 
etc. The OCL Standard Library defines a number of predefined iterator expressions. Their semantics is defined in terms 
of the iterate expression in , see Section 11.8, “Predefined Iterator Expressions,” on page 149.

LiteralExp
A LiteralExp is an expression with no arguments producing a value. In general the result value is identical with the 
expression symbol. This includes things like the integer 1 or literal strings like ’this is a LiteralExp’.

LoopExp
A LoopExp is an expression that respresent a loop construct over a collection. It has an iterator variable that represents 
the elements of the collection during iteration. The body expression is evaluated for each element in the collection. The 
result of a loop expression depends on the specific kind and its name.

Associations
• iterators The VariableDeclarations that represents the iterator variables. These variables are, 

each in its turn, bound to every element value of the source collection while evaluating 
the body expression.

• body The OclExpression that is evaluated for each element in the source collection.
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ModelPropertyCallExp
A ModelPropertyCall expression is an expression that refers to a property that is defined for a Classifier in the UML 
model to which this expression is attached. Its result value is the evaluation of the corresponding property. In Section 
8.3.2 (“Model PropertyCall Expressions”) the various subclasses of ModelPropertyCallExp are defined.

OclExpression
An OclExpression is an expression that can be evaluated in a given environment. OclExpression is the abstract 
superclass of all other expressions in the metamodel. It is the top-level element of the OCL Expressions package. Every 
OclExpression has a type that can be statically determined by analyzing the expression and its context. Evaluation of an 
expression results in a value. Expressions with boolean result can be used as constraints, e.g. to specify an invariant of a 
class. Expressions of any type can be used to specify queries, initial attribute values, target sets, etc..

The environment of an OclExpression defines what model elements are visible and can be referred to in an expression. 
At the topmost level the environment will be defined by the ModelElement to which the OCL expression is attached, for 
example by a Classifier if the OCL expression is used as an invariant. On a lower level, each iterator expression can also 
introduce one or more iterator variables into the environment. the environment is not modeled as a separate metaclass, 
because it can be completely derived using derivation rules. The complete derivation rules can be found in chapter 9 
(“Concrete Syntax”). 

Associations
• appliedProperty The property that is applied to the instance that results from evaluating this OclExpres-

sion.

• type The type of the value that is the result of evaluating the OclExpression.

• parentOperation The OperationCallExp where this OclExpression is an argument of. See  Figure 9 on 
page 47.

• initializedVariable The variable of which the result of this expression is the initial value.

OclMessageExp
OclMessageExp is defined in Section 8.3.4 (“Message Expressions”), but included in this diagram for completeness.

PropertyCallExp
A PropertyCallExp is an expression that refers to a property (operation, attribute, association end, predefined iterator for 
collections). Its result value is the evaluation of the corresponding property. This is an abstract metaclass.

Associations
• source The result value of the source expression is the instance that performs the property call.

VariableDeclaration
A VariableDeclaration declares a variable name and binds it to a type. The variable can be used in expressions where 
the variable is in scope. This metaclass represents amongst others the variables self and result and the variables defined 
using the Let expression.
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Associations
• initExpression The OclExpression that represents the initial value of the variable. Depending on the role 

that a variable declaration plays, the init expression might be mandatory.

• type The Classifier which represents the type of the variable.

Attributes
• varName The String that is the name of the variable.

VariableExp
A VariableExp is an expression which consists of a reference to a variable. References to the variables self and result or 
to variables defined by Let espressions are examples of such variable expressions.

Associations
• referredVariable The VariableDeclaration to which this variable expression refers. In the case of a self 

expression the variable declaration is the definition of the self variable.
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8.3.2 Model PropertyCall Expressions

A ModelPropertyCallExp can refer to any of the subtypes of Feature as defined in the UML kernel. This is shown in 
Figure 9 by the three different subtypes, each of which is associated with its own type of ModelElement.

AssociationEndCallExp
An AssociationEndCallExp is a reference to an AssociationEnd defined in a UML model. It is used to determine 
objects linked to a target object by an association. The expression refers to these target objects by the role name of the 
association end connected to the target class.

Figure 7 - Abstract syntax metamodel for ModelPropertyCallExp in the Expressions package
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Associations
• referredAssociationEnd The AssociationEnd to which this AssociationEndCallExp is a reference. This refers 

to an AssociationEnd of an Association that is defined in the UML model. 

AssociationClassCallExp
An AssociationClassCallExp is a reference to an AssociationClass defined in a UML model. It is used to determine 
objects linked to a target object by an association class. The expression refers to these target objects by the name of the 
target associationclass.

Associations
• referredAssociationClass The AssociationClass to which this AssociationClassCallExp is a reference. This 

refers to an AssociationClass that is defined in the UML model.

AttributeCallExp
An AttributeCallExpression is a reference to an Attribute of a Classifier defined in a UML model. It evaluates to the 
value of the attribute.

Associations
• referredAttribute The Attribute to which this AttributeCallExp is a reference.

NavigationCallExp
A NavigationCallExp is a reference to an AssociationEnd or an AssociationClass defined in a UML model. It is used 
to determine objects linked to a target object by an association. If there is a qualifier attached to the source end of the 
association then additional qualifiers expressions may be used to specify the values of the qualifying attributes.

Associations
• qualifiers The values for the qualifier attributes if applicable.

• navigationSource The source denotes the AssociationEnd at the end of the object itself. This is used to 
resolve ambiguities when the same Classifier participates in more than one Association-
End in the same association. In other cases it can be derived.

OperationCallExp
A OperationCallExp refers to an operation defined in a Classifier. The expression may contain a list of argument 
expressions if the operation is defined to have parameters. In this case, the number and types of the arguments must match 
the parameters.

Associations
• arguments The arguments denote the arguments to the operation call. This is only useful when the 

operation call is related to an Operation that takes parameters.

• referredOperation The Operation to which this OperationCallExp is a reference. This is an Operation of 
a Classifier that is defined in the UML model.
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8.3.3 If Expressions

This section describes the if expression in detail. Figure 8 shows the structure of the if expression.

IfExp
An IfExp results in one of two alternative expressions depending on the evaluated value of a condition. Note that both 
the thenExpression and the elseExpression are mandatory. The reason behind this is that an if expression should always 
result in a value, which cannot be guaranteed if the else part is left out.

Associations
• condition The OclExpression that represents the boolean condition. If this condition evaluates to 

true, the result of the if expression is identical to the result of the thenExpression. If this 
condition evaluates to false, the result of the if expression is identical to the result of the 
elseExpression

• thenExpression The OclExpression that represents the then part of the if expression.

• elseExpression The OclExpression that represents the else part of the if expression.

8.3.4 Message Expressions

In the specification of communication between instances we unify the notions of asynchronous and synchronous 
communication. The structure of the message expressions is shown in Figure 9.

OclMessageExp
An OclMessageExp is an expression that results in an collection of OclMessage value. An OclMessage is the 
unification of a signal sent, and an operation call. The target of the operation call or signal sent is specified by the target 
OclExpression. Arguments can be OclExpressions, but may also be unspecified value expressions for arguments whose 
value is not specified. It covers both synchronous and asynchronous actions. See [Kleppe2000] for a complete description 
and motivation of this type of expression, also called "action clause".

Figure 8 - Abstract syntax metamodel for if expression 
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Associations
• target The OclExpression that represents the target instance to which the signal is sent.

• arguments The SignalArgs that represents the parameters to the Operation or Signal. The number 
and type of arguments should conform to those defined in the Operation or Signal. The 
order of the arguments is the same as the order of the parameters of the Operation or the 
attributes of a Signal.

• calledOperation If this is a message to request an operation call, this is the requested CallAction.

• sentSignal If this is a UML signal sent, this is the SendAction.

Figure 9 - The abstract syntax of Ocl messages
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OclMessageArg
An OclMessageArg is an argument of an OclMessageExp. It is either an OclExpression, or an UnspecifiedValueExp. 
An OclExpression is used to specify the exact value of the parameter. An UnspecifiedValueExp is used when one does 
not want, or is not able to specify the exact value of the parameter at the time of sending of the message. An 
OclMessageArg has either a specified or an unspecified value.

Associations
• expression The OclExpression that represents an actual parameters to the Operation or Signal. 

• unspecified The UnspecifiedValueExp that represents a random value that conforms to the type of this 
expression.

UnspecifiedValueExp
An UnpecifiedValueExp is an expression whose value is unspecified in an OCL expression. It is used within OCL 
messages to leave parameters of messages unspecified.

8.3.5 Literal Expressions

This section defines the different types of literal expressions of OCL. It also refers to enumeration types and enumeration 
literals. Figure 10 shows all types of literal expressions.

BooleanLiteralExp
A BooleanLiteralExp represents the value true or false of the predefined type Boolean.

Attributes
• booleanSymbol The Boolean that represents the value of the literal.

CollectionItem
A CollectionItem represents an individual element of a collection.

CollectionKind
A CollectionKind is an enumeration of kinds of collections.

CollectionLiteralExp
A CollectionLiteralExp represents a reference to collection literal.

Attributes
• kind The kind of collection literal that is specified by this CollectionLiteralExp.

CollectionLiteralPart
A CollectionLiteralPart is a member of the collection literal.

Associations
• type The type of the collection literal.
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CollectionRange
A CollectionRange represents a range of integers.

EnumLiteralExp
An EnumLiteralExp represents a reference to an enumeration literal.

Associations
• referredEnumLiteral The EnumLiteral to which the enum expression refers.

IntegerLiteralExp
A IntegerLiteralExp denotes a value of the predefined type Integer.

Figure 10 - Abstract syntax metamodel for Literal expression

LiteralExp

EnumLiteralExp

EnumLiteral
(from Core)

1+referredEnumLiteral 1

Enumeration
(from Core) 0 ..n

1 +litera l
0 ..n+enumeration

1

NumericLiteralExp S tringLitera lExp
stringSymbol : String

IntegerLiteralExp
integerSymbol : Integer

RealLiteralExp
realSymbol : Real

BooleanLiteralExp
booleanSymbol : Boolean

CollectionKind
<<enumeration>>

Collection
Set
Bag
Sequence

CollectionRange

OclExpression
1
0..1

+first 1
0..1

1
0..1

+last 1
0..1

CollectionItem

1

0..1

+item

1

0..1

CollectionLiteralExp
kind : CollectionK ind

Classifier
(from Core)

CollectionLiteralPart

0..n+parts 0..n {ordered}

1+type 1

Variab leDeclaration

TupleLiteralExp

0..n+tuplePart 0..n

PrimitiveLiteralExp
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Attributes
• integerSymbol The Integer that represents the value of the literal.

NumericLiteralExp
A NumericLiteralExp denotes a value of either the type Integer or the type Real.

PrimitiveLiteralExp
A PrimitiveLiteralExp literal denotes a value of a primitive type.

Attributes
• symbol The String that represents the value of the literal.

RealLiteralExp
A RealLiteralExp denotes a value of the predefined type Real.

Attributes
• realSymbol The Real that represents the value of the literal.

StringLiteralExp
A StringLiteralExp denotes a value of the predefined type String.

Attributes
• stringSymbol The String that represents the value of the literal.

TupleLiteralExp
A TupleLiteralExp denotes a tuple value. It contains a name and a value for each part of the tuple type.

8.3.6 Let expressions

This section defines the abstract syntax metamodel for Let expressions. The only addition to the abstract syntax is the 
metaclass LetExp as shown in Figure 11. The other metaclasses are re-used from the previous diagrams.

Note that Let expressions that take arguments are no longer allowed in OCL 2.0. This feature is redundant. Instead, a 
modeler can define an additional operation in the UML Classifier, potentially with a special stereotype to denote that this 
operation is only ment to be used as a helper operation in OCL expressions. The postcondition of such an additional 
operation can then define its result value. Removal of Let functions will therefore not affect the expressibility of the 
modeler. Another way to define such helper operations is through the <<definition>> constraint, which reuses some of the 
concrete syntax defined for Let expressions (see Section 12.5, “Definition,” on page 157), but is nothing more than an 
OCL-based syntax for defining helper attributes and operations.

LetExp
A LetExp is a special expression that defined a new variable with an initial value. A variable defined by a LetExp cannot 
change its value. The value is always the evaluated value of the initial expression. The variable is visible in the in 
expression.
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Associations
• variable The VariableDeclaration that defined the variable.

• in The OclExpression in whose environment the defined variable is visible.

8.3.7 Well-formedness Rules of the Expressions package

The metaclasses defined in the abstract syntax have the following well-formednes rules:

AttributeCallExp
The type of the Attribute call expression is the type of the referred attribute.

context AttrubuteCallExp
inv: type = referredAttribute.type

BooleanLiteralExp
[1] The type of a boolean Literal expression is the type Boolean.

context BooleanLiteralExp
inv: self.type.name = ’Boolean’

CollectionLiteralExp
[1] ’Collection’ is an abstract class on the M1 level and has no M0 instances.

context CollectionLiteralExp
inv: kind <> CollectionKind::Collection

[2] The type of a collection literal expression is determined by the collection kind selection and the common supertype of all
elements. Note that the definition below implicitly states that empty collections have OclVoid as their elementType.

context CollectionLiteralExp
inv: kind = CollectionKind::Set       implies type.oclIsKindOf (SetType     )
inv: kind = CollectionKind::Sequence  implies type.oclIsKindOf (SequenceType)
inv: kind = CollectionKind::Bag       implies type.oclIsKindOf (BagType     )

Figure 11 - Abstract syntax metamodel for let expression
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inv: type.oclAsType (CollectionType).elementType = parts->iterate (p; c : Classifier = OclVoid | c.commonSuperType (p.type))

CollectionLiteralPart
No additional well-formedness rules.

CollectionItem
[1] The type of a CollectionItem is the type of the item expression.

context CollectionItem
inv: type = item.type

CollectionRange
[1] The type of a CollectionRange is the common supertype of the expressions taking part in the range.

context CollectionRange
inv: type = first.type.commonSuperType (last.type)

EnumLiteralExp
[1] The type of an enum Literal expression is the type of the referred literal.

context EnumLiteralExp
inv: self.type = referredEnumLiteral.enumeration

IfExp
[1] The type of the condition of an if expression must be Boolean.

context IfExp
inv: self.condition.type.oclIsKindOf(Primitive) and self.condition.type.name = ’Boolean’

[2] The type of the if expression is the most common supertype of the else and then expressions.
context IfExp
inv: self.type = thenExpression.type.commonSuperType(elseExpression.type)

IntegerLiteralExp
[1] The type of an integer Literal expression is the type Integer.

context IntegerLiteralExp
inv: self.type.name = ’Integer’

IteratorExp
[1] If the iterator is ’forAll’, ’isUnique’, or ’exists’ the type of the iterator must be Boolean.

context IteratorExp
inv: name = ’exists’ or name = ’forAll’ or name = ’isUnique’
     implies type.oclIsKindOf(Primitive) and type.name = ’Boolean’

[2] The result type of the collect operation on a sequence type is a sequence, the result type of ’collect’ on any other collec-
tion type is a Bag. The type of the body is always the type of the elements in the return collection.
context IteratorExp
inv: name = ’collect’ implies
     if source.type.oclIsKindOf(SequenceType) then
       type = expression.type.collectionType->select(oclIsTypeOf(SequenceType))->first()
     else
       type = expression.type.collectionType->select(oclIsTypeOf(BagType))->first()
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     endif

[3] The ’select’and ’reject’ iterators have the same type as its source.
context IteratorExp
inv: name = ’select’ or name = ’reject’ implies type = source.type

[4] The type of the body of the select, reject,exists and forAll must be boolean.
context IteratorExp
inv: name = ’exists’ or name = ’forAll’ or name = ’select’ or name = ’reject’
     implies body.type.name = ’Boolean’

IterateExp
[1] The type of the iterate is the type of the result variable.

context IterateExp
inv: type = result.type

[2] The type of the body expression must conform to the declared type of the result variable.

context IterateExp
body.type.conformsTo(result.type)

[3] A result variable must have an init expression.
context IterateExp
inv: self.result.initExpression->size() = 1

LetExp
[1] The type of a Let expression is the type of the in expression.

context LetExp
inv: type = in.type

LiteralExp
No additional well-formedness rules.

LoopExp
[1] The type of the source expression must be a collection.

context LoopExp
inv: source.type.oclIsKindOf (CollectionType)

[2] The loop variable of an iterator expression has no init expression.
context LoopExp
inv: self.iterators->forAll(initExpression->isEmpty())

[3] The type of each iterator variable must be the type of the elements of the source collection.
context IteratorExp
inv: self.iterators->forAll(type = source.type.oclAsType (CollectionType).elementType)

ModelPropertyCallExp
No additional well-formedness rules.
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NumericLiteralExp
No additional well-formedness rules. 

OclExpression
No additional well-formedness rules. 

OclMessageArg
[1] There is either an expression or an unspecified value.

context OclMessageArg
inv: expression->size() + unspecified->size() = 1

OclMessageExp
[1] If the message is a call action, the arguments must conform to the parameters of the operation.

context OclMessageExp
inv: calledOperation->notEmpty() implies
        arguments->forall (a | a.getType().conformsTo 
             (self.calledOperation.operation.parameter->
                    select( kind = ParameterDirectionKind::in )
                                 ->at (arguments->indexOf (a)).type))

[2] If the message is a send action, the arguments must conform to the attributes of the signal.

context OclMessageExp
inv: sentSignal->notEmpty() implies
        arguments->forall (a | a.getType().conformsTo 
             (self.sentSignal.signal.feature.oclAsType(StructuralFeature) )
                                 ->at (arguments->indexOf (a)).type))

[3] If the message is a call action, the operation must be an operation of the type of the target expression.
context OclMessageExp
inv: calledOperation->notEmpty() implies
       target.type.allOperations()->includes(calledOperation.operation)

[4] An OCL message has either a called operation or a sent signal.
context OclMessageExp
inv: calledOperation->size() + sentMessage->size() = 1

[5] The target of an OCL message cannot be a collection.
context OclMessageExp
inv: not target.type.oclIsKindOf (CollectionType)

OperationCallExp
[1] All the arguments must conform to the parameters of the referred operation

context OperationCallExp
inv: arguments->forall (a | a.type.conformsTo 
                                         (self.refParams->at (arguments->indexOf (a)).type))

[2] There must be exactly as many arguments as the referred operation has parameters.

context OperationCallExp
inv: arguments->size() = refParams->size()

[3] An additional attribute refParams lists all parameters of the referred operation except the return and out parameter(s).
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context OperationCallExp
def: refParams: Sequence(Parameter) = referredOperation.parameters->select (p |  
                              p.kind <> ParameterDirectionKind::return or
                              p.kind <> ParameterDirectionKind::out)

PropertyCallExp
No additional well-formedness rules. 

RealLiteralExp
[1] The type of a real Literal expression is the type Real.

context RealLiteralExp
inv: self.type.name = ’Real’

StringLiteralExp
[1] The type of a string Literal expression is the type String.

context StringLiteralExp
inv: self.type.name = ’String’

TupleLiteralExp
[1] The type of a TupleLiteralExp is a TupleType with the specified parts.

context TupleLiteralExp
inv: type.oclIsKindOf (TupleType)
     and
     tuplePart->forAll (tlep | 
           type.oclAsType (TupleType).allAttributes()->exists (tp | tlep.attribute = tp))
     and
       tuplePart->size() = type.oclAsType (TupleType).allAttributes()->size()

[2] All tuple literal expression parts of one tuple literal expression have unique names.
context TupleLiteralExp
inv: tuplePart->isUnique (attribute.name)

TupleLiteralExpPart
[1] The type of the attribute is the type of the value expression.

context TupleLiteralExpPart
inv: attribute.type = value.type

UnspecifiedValueExp
No additional well-formedness rules.

VariableDeclaration
[1] For initialized variable declarations, the type of the initExpression must conform to the type of the declared variable.

context VariableDeclaration
inv: initExpression->notEmpty() implies initExpression.type.conformsTo (type)

VariableExp
[1] The type of a VariableExp is the type of the variable to which it refers.
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context VariableExp
inv: type = referredVariable.type

8.3.8 Additional Operations on UML metaclasses

In the chapters “Abstract Syntax,” “Concrete Syntax,” “The Use of Ocl Expressions in UML Models,” and appendix  
“Semantics Described using UML” many additional operations on UML metaclasses are used. They are defined in this 
section. The next section defines additional operations for the OCL metaclasses

Classifier
The operation commonSuperType results in the most specific common supertype of two classifiers.

context Classifier
def: commonSuperType (c : Classifier) : Classifier =
    Classifier.allInstances()->select (cst |
        c.conformsTo (cst) and
        self.conformsTo (cst) and
        not Classifier.allInstances()->exists (clst |
          c.conformsTo (clst) and
          self.conformsTo (clst) and
          clst.conformsTo (cst) and
          clst <> cst
        )
      )->any (true)

The following operations have been added to Classifier to lookup attributes, associationEnds and operations.

context Classifier
def: lookupAttribute(attName : String) : Attribute =
                          self.allAttributes->any(me | me.name = attName)
def: lookupAssociationEnd(name : String) : AssociationEnd =
                          self.allAssociationEnds->any (ae | ae.name = name)
def: lookupAssociationClass(name : String) : AssociationClass =
                          self.allAssociationClasses->any (ae | ae.name = name)
def: lookupOperation (name: String, paramTypes: Sequence(Classifier)): Operation =
                          self.allOperations->any (op | op.name = name and
                                                op.hasMatchingSignature(paramTypes))
def: lookupSignal (sigName: String, paramTypes: Sequence(Classifier)): Operation =
                         self.allReceptions.signal->any (sig | sig.name = sigName and
                                                sig.hasMatchingSignature(paramTypes))

Operations allAttributes, allOperations, etc. are defined in the UML semantics. The operation allReceptions is missing 
and defined here. The operation allReceptions results in a Set containing all Signals that the Classifier has as Receptions 
itself and all its inherited Attributes.

context Classifier

def: allReceptions : set(Reception) =
                       self.allFeatures->select(f | f.oclIsKindOf(Reception))

Operation
An additional operation is added to Operation, which checks whether its signature matches with a sequence of Clasifiers. 
Note that in making the match only parameters with direction kind ‘in’ are considered. 
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context Operation
def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boolean =
     -- check that operation op has a signature that matches the given parameter lists
     = let sigParamTypes: Sequence(Classifier) = self.allAttributes.type in
           (
             ( sigParamTypes->size() = paramTypes->size() ) and
             ( Set{1..paramTypes->size()}->forAll ( i |
                 paramTypes->at (i).conformsTo (sigParamTypes->at (i))
               )
             )
           )

Parameter
The operation asAttribute results in an attribute that has the same name, type, etc. as the parameter.

context Parameter::asAttribute(): Attribute
pre: -- none
post: result.name                      = self.name
post: result.type                      = self.type
post: result.multiplicity              = 1
post: result.targetscope               = ScopeKind::instance
post: result.ownerscope                = ScopeKind::instance
post: result.ordering                  = OrderingKind::unordered
post: result.visibility                = VisibilityKind::private
post: result.stereotype.name           = ’OclHelper’

An additional class operation is added to Parameter to return a Parameter. 

context Parameter::make(n : String, c : Classifier, k : ParameterDirectionKind) :Parameter
post: result.name = n
post: result.kind = k
post: result.type = c
post: result.stereotype.name = ’OclHelper’

Signal
An additional operation is added to Signal, which checks whether its signature matches with a sequence of Clasifiers. 
Note that in making the match the parameters of the signal are its attributes. 

context Signal
def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boolean =
     -- check that signal has a signature that matches the given parameter lists
     = let opParamTypes: Sequence(Classifier) = self.parameter->select (p | p.kind <>
                                                  ParameterDirectionKind::return).type in
           (
             ( opParamTypes->size() = paramTypes->size() ) and
             ( Set{1..paramTypes->size()}->forAll ( i |
                 paramTypes->at (i).conformsTo (opParamTypes->at (i))
               )
             )
           )

State
The operation getStateMachine() returns the statemachine to which a state belongs.
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context State::getStateMachine() : StateMachine
post: result =
      if statemachine->notEmpty() then
         stateMachine
      else
         -- must be part of a composite state
         state.container.getStateMachine()
      endif

Transition
The operation getStateMachine() returns the statemachine to which a transition belongs.

context Transition::getStateMachine() : StateMachine
post: result =
      if statemachine->notEmpty() then
         stateMachine
      else
         -- state is not empty
         state.getStateMachine()
      endif

8.3.9 Additional Operations on OCL metaclasses

In chapters “Abstract Syntax,” “Concrete Syntax,” “The Use of Ocl Expressions in UML Models,” and appendix  
“Semantics Described using UML” many additional operations on OCL metaclasses are used. They are defined in this 
section. The previous section defines additional operations for the UML metaclasses

OclExpression
The following operation returns an operation call expression for the predefined atPre() operation with the self expression 
as its source.

OclExpression::withAtPre() : OperationCallExp
post: result.name = ’atPre’
post: result.arguments->isEmpty()
post: result.source = self

The following operation returns an operation call expression for the predefined asSet() operation with the self expression 
as its source.

OclExpression::withAsSet() : OperationCallExp
post: result.name = ’asSet’
post: result.arguments->isEmpty()
post: result.source = self

OclMessageArg
An additional operation is added to oclMessageArg to return the type of the argument. 

context OclMessageArg
def: getType() : Classifier = if unspecified->notEmpty()
                                   then unspecified.type
                                   else expression.type
                                   endif
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TupleType
An additional class operation is added to Tuple to return a new tuple. The name of a tupletype is defined in the abstract 
syntax chapter and need not to be specified here. 

context TupleType::make(atts : sequence(Attribute) ) : TupleType
post: result.features = atts
post: result.stereotype.name = ’OclHelper’

VariableDeclaration
An additional operation is added to VariableDeclaration to return a corresponding Parameter. 

context VariableDeclaration::asParameter() : Parameter
post: result.name = self.varName
post: result.kind = ParameterKind::in
post: result.type = self.type

An additional operation is added to VariableDeclaration to return a corresponding Attribute. 

context VariableDeclaration::asAttribute() : Attribute
post: result.name                      = self.varName
post: result.type                      = self.type
post: result.multiplicity              = 1
post: result.targetscope               = ScopeKind::instance
post: result.ownerscope                = ScopeKind::instance
post: result.ordering                  = OrderingKind::unordered
post: result.visibility                = VisibilityKind::private
post: result.constraint.bodyExpression = self.initExpression
post: result.stereotype.name           = ’OclHelper’
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8.3.10 Overview of class hierarchy of OCL Abstract Syntax metamodel

Figure 12 - Overview of the abstract syntax metamodel for Expressions
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9 Concrete Syntax
This section describes the concrete syntax of the OCL. This allows modelers to write down OCL expressions in a 
standardized way. A formal mapping from the concrete syntax to the abstract syntax from Chapter 8 (“Abstract Syntax”) 
is given. Although not required by the UML 2.0 for OCL RFP, Section 9.6 describes a mapping from the abstract syntax 
to the concrete syntax. This allows one to produce a standard human readable version of any OCL expression that is 
represented as an instance of the abstract syntax.

Section 9.1 (“Structure of the Concrete Syntax”) describes the structure of the grammar and the motivation for the use of 
an attribute grammar.

9.1 Structure of the Concrete Syntax
The concrete syntax of OCL is described in the form of an a full attribute grammar. Each production in an attribute 
grammar may have synthesized attributes attached to it. The value of synthesized attributes of elements on the left hand 
side of a production rule is always derived from attributes of elements at the right hand side of that production rule. Each 
production may also have inherited attributes attached to it. The value of inherited  attributes of elements on the right 
hand side of a production rule is always  derived from attributes of elements on the left hand side of that production. 

In the attribute grammar that specifies the concrete syntax, every production rule is denoted using the EBNF formalism 
and annotated with synthesised and inherited attributes, and disambiguating rules. There are a number of special 
annotations:

Synthesized attributes. Each production rule has one synthesized attribute called ast (short for abstract syntax tree), 
that holds the instance of the OCL Abstract Syntax that is returned by the rule. The type of ast is different for every rule, 
but it always is an element of the abstract syntax. The type is stated with each production rule under the heading "Abstract 
Syntax Mapping". The ast attribute constitutes the formal mapping from concrete syntax to abstract syntax. 

The motivation for the use of an attribute grammar is the easiness of the construction and the clarity of this mapping. 
Note that each name in the EBNF format of the production rule is postfixed with ’CS’ to clearly distinguish between the 
concrete syntax elements and their abstract syntax counterparts.

Inherited attributes. Each production rule has one inherited attribute called env (short for environment), that holds a 
list of names that are visible from the expression. All names are references to elements in the model. In fact, env is a 
name space environment for the expression or expression part denoted according to the production rule. The type of the 
env attribute is Environment, as shown in Figure 13 on page 62. A number of operations are defined for this type. Their 
definitions and more details on the Environment type can be found in Section 9.4 (“Environment definition”). The manner 
in which both the ast and env attributes are determined, is given using OCL expressions. 

Note that the contents of the env attribute are fully determined by the context of the OCL expression. When an OCL 
expression is used as an invariant to class X, its environment will be different than in the case the expression is used as a 
postcondition to an operation of class Y. In Chapter 12 (“The Use of Ocl Expressions in UML Models”) the context of 
OCL expressions is defined in detail.

Multiple production rules. For some elements there is a choice of multiple production rules. In that case the EBNF 
format of each production rule is prefixed by a capital letter between square brackets. The same prefix is used for the 
corresponding determination rules for the ast and env attributes.
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Multiple occurences of production names. In some production rules the same element name is used more than once. 
To distinguish between these occurences the names will be postfixed by a number in square brackets, as in the following 
example.

 CollectionRangeCS ::= OclExpressionCS[1] ’..’ OclExpressionCS[2]

Disambiguating rules. Some of the production rules are syntactically ambiguous. For such productions disambiguating 
rules have been defined. Using these rules, each production and thus the complete grammar becomes nonambiguous. For 
example in parsing a.b(), there are at least three possible parsing solutions:

1. a is a VariableExpr             (a reference to a let or an iterator variable)

2. a is an AttributeCallExp     (self is implicit)

3. a is a NavigationCallExp    (self is implicit)

A decision on which grammar production rule to use, can only be made when the environment of the expression is taken 
into account. The disambiguating rules describe these choices based on the environment and allow unambiguous parsing 
of a.b(). In this case the rules (in plain English) would be:

• If a is a defined variable in the current scope, a is a VariableExp.

• If not, check self and all iterator variables in scope. The inner-most scope for which as is either 

Figure 13 - The Environment type
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• an attribute with the name a, resulting in an AttributeCallExp,

• or an opposite association-end with the name a, resulting in a NavigationCallExp,

• defines the meaning of a.b().

• If neither of the above is true, the expression is illegal / incorrect and cannot be parsed.

Disambiguating rules may be based on the UML model to which the OCL expresion is attached (e.g does an attribute 
exist or not). Because of this, the UML model must be available when an OCL expression is parsed, otherwise it cannot 
be validated as a correct expression. The grammar is structured in such a way that at most one of the production rules will 
fullfil all the disambiguating rules, thus ensuring that the grammar as a whole is unambiguous. The disambiguating rules 
are written  in OCL, and use some metaclasses and additional operations from the UML 1.4 semantics.

9.2 A Note to Tool Builders

9.2.1 Parsing

The grammar in this chapter might not prove to be the most efficient way to directly construct a tool. Of course, a tool-
builder is free to use a different parsing mechnism. He can e.g. first parse an OCL expression using a special concrete 
syntax tree, and do the semantic validation against a UML model in a second pass. Also, error correction or syntax 
directed editing might need hand-optimized grammars. This document does not prescribe any specific parsing approach. 
The only restriction is that at the end of all processing a tool should be able to produce the same well-formed instance of 
the abstract syntax, as would be produced by this grammar.

9.2.2 Visibility

The OCL specification puts no restrictions on visibility. In OCL, all modelelements are considered visible. The reason for 
this is to allow a modeler to specify constraints, even between ‘hidden’ elements. At the lowest implementation level this 
might be useful.

As a separate option OCL tools may enforce all UML visibility rules to support OCL expressions to be specified only 
over visible modelelements. Especially when a tool needs to generate code for runtime evaluation of OCL expressions, 
this visibility enforcement is necessary.

9.3 Concrete Syntax

ExpressionInOclCS
The ExpressionInOcl symbol has been added to setup the initial environment of an expression.

ExpressionInOclCS ::= OclExpressionCS

Abstract syntax mapping
ExpressionInOclCS.ast : OclExpression

Synthesized attributes
ExpressionInOclCS.ast = OclExpressionCS.ast
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Inherited attributes
The environment of the OCL expression must be defined, but what exactly needs to be in the environment depends on the 
context of the OCL expression. The following rule is therefore not complete. It defines the env attribute by adding the self 
variable to an empty environment, as well as a Namespace containing all elements visible from self. (In Section 12.2, 
“The ExpressionInOcl Type,” on page 155 the contextualClassifier will be defined for the various places where an ocl 
expression may occur.) In the context of a pre- or postcondition, the result variable as well as variable definitions for any 
named operation parameters can be added in a similar way. 

OclExpressionCS.env = 
      ExpressionInOclCS.contextualClassifier.namespace.getEnvironmentWithParents()
                 .addElement (’self’, ExpressionInOclCS.contextualClassifier, true)

OclExpressionCS
An OclExpression has several production rules, one for each subclass of OclExpression. Note that UnspecifiedValueExp 
is handled explicitly in OclMessageArgCS, because that is the only place where it is allowed.

[A] OclExpressionCS ::= PropertyCallExpCS
[B] OclExpressionCS ::= VariableExpCS
[C] OclExpressionCS ::= LiteralExpCS
[D] OclExpressionCS ::= LetExpCS
[E] OclExpressionCS ::= OclMessageExpCS
[F] OclExpressionCS ::= IfExpCS

Abstract syntax mapping
OclExpressionCS.ast : OclExpression

Synthesized attributes
[A] OclExpressionCS.ast = PropertyCallExpCS.ast
[B] OclExpressionCS.ast = VariableExpCS.ast
[C] OclExpressionCS.ast = LiteralExpCS.ast
[D] OclExpressionCS.ast = LetExpCS.ast
[E] OclExpressionCS.ast = OclMessageExpCS.ast
[F] OclExpressionCS.ast = IfExpCS.ast

Inherited attributes
[A] PropertyCallExpCS.env   = OclExpressionCS.env
[B] VariableExpCS.env       = OclExpressionCS.env
[C] LiteralExpCS.env        = OclExpressionCS.env
[D] LetExpCS.env            = OclExpressionCS.env
[E] OclMessageExpCS.env     = OclExpressionCS.env
[F] IfExpCS.env             = OclExpressionCS.env

Disambiguating rules
The disambiguating rules are defined in the children.

VariableExpCS
A variable expression is just a name that refers to a variable.

VariableExpCS ::= simpleNameCS
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Abstract syntax mapping
VariableExpCS.ast : VariableExpression

Synthesized attributes
VariableExpCS.ast.referredVariable =
               env.lookup(simpleNameCS.ast).referredElement.oclAsType(VariableDeclaration)

Inherited attributes
-- none

Disambiguating rules
[1] simpleName must be a name of a visible VariableDeclaration in the current environment.

env.lookup (simpleNameCS.ast).referredElement.oclIsKindOf (VariableDeclaration)

simpleNameCS
This production rule represents a single name. No special rules are applicable.  The exact syntax of a String is undefined 
in UML 1.4, and remains undefined in OCL 2.0. The reason for this is internationalization.

simpleNameCS ::= <String>

Abstract syntax mapping
simpleNameGr.ast : String

Synthesized attributes
simpleNameGr.ast = <String>

Inherited attributes
-- none

Disambiguating rules
-- none

pathNameCS
This rule represents a path name, which is held in its ast as a sequence of Strings.

pathNameCS ::= simpleNameCS (’::’ pathNameCS )?

Abstract syntax mapping
pathNameCS.ast : Sequence(String)

Synthesized attributes
pathNameCS.ast = Sequence{simpleNameCS.ast}->union(pathNameCS.ast)

Inherited attributes
-- none
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Disambiguating rules
-- none

LiteralExpCS
This rule represents literal expressions.

[A] LiteralExpCS ::= EnumLiteralExpCS
[B] LiteralExpCS ::= CollectionLiteralExpCS
[C] LiteralExpCS ::= TupleLiteralExpCS
[D] LiteralExpCS ::= PrimitiveLiteralExpCS

Abstract syntax mapping
LiteralExpCS.ast : LiteralExp

Synthesized attributes
[A] LiteralExpCS.ast = EnumLiteralExpCS.ast
[B] LiteralExpCS.ast = CollectionLiteralExpCS.ast
[C] LiteralExpCS.ast = TupleLiteralExpCS.ast
[D] LiteralExpCS.ast = PrimitiveLiteralExpCS.ast

Inherited attributes
[A] EnumLiteralExpCS.env       = LiteralExpCS.env
[B] CollectionLiteralExpCS.env = LiteralExpCS.env
[C] TupleLiteralExpCS.env      = LiteralExpCS.env
[D] PrimitiveLiteralExpCS.env  = LiteralExpCS.env

Disambiguating rules
-- none

EnumLiteralExpCS
The rule represents Enumeration Literal expressions.

EnumLiteralExpCS ::= pathNameCS ’::’ simpleNameCS

Abstract syntax mapping
EnumLiteralExpCS.ast : EnumLiteralExp

Synthesized attributes
EnumLiteralExpCS.ast.type = 
           env.lookupPathName (pathNameCS.ast).referredElement.oclAsType (Classifier)
EnumLiteralExpCS.ast.referredEnumLiteral = 
           EnumLiteralExpCS.ast.type.oclAsType (Enumeration).literal->
                                         select (l  | l.name = simpleNameCS.ast )->any(true)

Inherited attributes
-- none

Disambiguating rules
[1] The specified name must indeed reference an enumeration:
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not EnumLiteralExpCS.ast.type.oclIsUndefined() and 
    EnumLiteralExpCS.ast.type.oclIsKindOf (Enumeration)

CollectionLiteralExpCS
This rule represents a collection literal expression.

CollectionLiteralExpCS ::= CollectionTypeIdentifierCS 
                           ‘{‘ CollectionLiteralPartsCS? ‘}’

Abstract syntax mapping
CollectionLiteralExpCS.ast : CollectionLiteralExp

Synthesized attributes
CollectionLiteralExpCS.ast.parts = CollectionLiteralPartsCS.ast
CollectionLiteralExpCS.ast.kind  = CollectionTypeIdentifierCS.ast 

Inherited attributes
CollectionTypeIdentifierCS.env = CollectionLiteralExpCS.env
CollectionLiteralPartsCS.env   = CollectionLiteralExpCS.env

Disambiguating rules
[1] In a literal the collectiuon type may not be Collection

CollectionTypeIdentifierCS.ast <> ’Collection’

CollectionTypeIdentifierCS
This rule represent the type indentifier in a collection literal expression. The Collection type is an abstract type on M1 
level, so it has no corresponding literals.

[A] CollectionTypeIdentifierCS ::= ’Set’
[B] CollectionTypeIdentifierCS ::= ’Bag’
[C] CollectionTypeIdentifierCS ::= ’Sequence’
[D] CollectionTypeIdentifierCS ::= ’Collection’
[E] CollectionTypeIdentifierCS ::= ’OrderedSet’

Abstract syntax mapping
CollectionTypeIdentifierCS.ast : CollectionKind

Synthesized attributes
[A] CollectionTypeIdentifierCS.ast = CollectionKind::Set
[B] CollectionTypeIdentifierCS.ast = CollectionKind::Bag
[C] CollectionTypeIdentifierCS.ast = CollectionKind::Sequence
[D] CollectionTypeIdentifierCS.ast = CollectionKind::Collection
[E] CollectionTypeIdentifierCS.ast = CollectionKind::OrderedSet

Inherited attributes
-- none
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Disambiguating rules
-- none

CollectionLiteralPartsCS 
This production rule describes a sequence of items that are the contents of a collection literal.

CollectionLiteralPartsCS[1] = CollectionLiteralPartCS
                              ( ’,’ CollectionLiteralPartsCS[2] )?

Abstract syntax mapping
CollectionLiteralPartsCS[1].ast : Sequence(CollectionLiteralPart)

Synthesized attributes
CollectionLiteralPartsCS[1].ast = 
            Sequence{CollectionLiteralPartCS.ast}->union(CollectionLiteralPartsCS[2].ast)

Inherited attributes
CollectionLiteralPartCS.env     = CollectionLiteralPartsCS[1].env
CollectionLiteralPartSCS[2].env = CollectionLiteralPartsCS[1].env

Disambiguating rules
-- none

CollectionLiteralPartCS
[A] CollectionLiteralPartCS ::= CollectionRangeCS
[B] CollectionLiteralPartCS ::= OclExpressionCS

Abstract syntax mapping
CollectionLiteralPartCS.ast : CollectionLiteralPart

Synthesized attributes
[A] CollectionLiteralPartCS.ast = CollectionRange.ast
[B] CollectionLiteralPartCS.ast.oclIsKindOf(CollectionItem) and
    CollectionLiteralPartCS.ast.oclAsType(CollectionItem).OclExpression = 
                                                          OclExpressionCS.ast

Inherited attributes
[A] CollectionRangeCS.env = CollectionLiteralPartCS.env
[B] OclExpressionCS.env   = CollectionLiteralPartCS.env

Disambiguating rules
-- none

CollectionRangeCS
CollectionRangeCS ::= OclExpressionCS[1] ’..’ OclExpressionCS[2]
68                 UML OCL 2.0 Adopted Specification



Abstract syntax mapping
CollectionRangeCS.ast : CollectionRange

Synthesized attributes
CollectionRangeCS.ast.first = OclExpressionCS[1].ast
CollectionRangeCS.ast.last  = OclExpressionCS[2].ast

Inherited attributes
OclExpressionCS[1].env = CollectionRangeCS.env
OclExpressionCS[2].env = CollectionRangeCS.env

Disambiguating rules
-- none

PrimitiveLiteralExpCS
This includes Real, Boolean, Integer and String literals. Exprecially String literals must take internationalisation into 
account and might need to remain undefined in this specification.

[A] PrimitiveLiteralExpCS ::= IntegerLiteralExpCS
[B] PrimitiveLiteralExpCS ::= RealLiteralExpCS
[C] PrimitiveLiteralExpCS ::= StringLiteralExpCS
[D] PrimitiveLiteralExpCS ::= BooleanLiteralExpCS

Abstract syntax mapping
PrimitiveLiteralExpCS.ast : PrimitiveLiteralExp

Synthesized attributes
[A] PrimitiveLiteralExpCS.ast = IntegerLiteralExpCS.ast
[B] PrimitiveLiteralExpCS.ast = RealLiteralExpCS.ast
[C] PrimitiveLiteralExpCS.ast = StringLiteralExpCS.ast
[D] PrimitiveLiteralExpCS.ast = BooleanLiteralExpCS.ast

Inherited attributes
-- none

Disambiguating rules
-- none

TupleLiteralExpCS
This rule represents tuple literal expressions.

TupleLiteralExpCS ::= ‘Tuple’ ‘{‘ variableDeclarationListCS ‘}’

Abstract syntax mapping
TupleLiteralExpCS.ast : TupleLiteralExp

Synthesized attributes
TupleLiteralExpCS.tuplePart = variableDeclarationListCS.ast
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Inherited attributes
variableDeclarationListCS[1].env = TupleLiteralExpCS.env

Disambiguating rules
[1] The initExpression and type of all VariableDeclarations must exist.

TupleLiteralExpCS.tuplePart->forAll( varDecl |
    varDecl.initExpression->notEmpty() and not varDecl.type.oclIsUndefined() )

IntegerLiteralExpCS
This rule represents integer literal expressions.

IntegerLiteralExpCS ::= <String>

Abstract syntax mapping
IntegerLiteralExpCS.ast : IntegerLiteralExp

Synthesized attributes
IntegerLiteralExpCS.ast.integerSymbol = <String>.toInteger()

Inherited attributes
-- none

Disambiguating rules
-- none

RealLiteralExpCS
This rule represents real literal expressions.

RealLiteralExpCS ::= <String>

Abstract syntax mapping
RealLiteralExpCS.ast : RealLiteralExp

Synthesized attributes
RealLiteralExpCS.ast.realSymbol = <String>.toReal()

Inherited attributes
-- none

Disambiguating rules
-- none

StringLiteralExpCS
This rule represents string literal expressions.
70                 UML OCL 2.0 Adopted Specification



StringLiteralExpCS ::= ’’’ <String> ’’’

Abstract syntax mapping
StringLiteralExpCS.ast : StringLiteralExp

Synthesized attributes
StringLiteralExpCS.ast.symbol = <String>

Inherited attributes
-- none

Disambiguating rules
-- none

BooleanLiteralExpCS
This rule represents boolean literal expressions.

[A] BooleanLiteralExpCS ::= ’true’
[B] BooleanLiteralExpCS ::= ’false’

Abstract syntax mapping
BooleanLiteralExpCS.ast : BooleanLiteralExp

Synthesized attributes
[A] BooleanLiteralExpCS.ast.booleanSymbol = true
[B] BooleanLiteralExpCS.ast.booleanSymbol = false

Inherited attributes
-- none

Disambiguating rules
-- none

PropertyCallExpCS
This rule represents property call expressions.

[A] PropertyCallExpCS ::= ModelPropertyCallExpCS
[B] PropertyCallExpCS ::= LoopExpCS

Abstract syntax mapping
PropertyCallExpCS.ast : PropertyCallExp

Synthesized attributes
[A] PropertyCallExpCS.ast = ModelPropertyCallCS.ast
[B] PropertyCallExpCS.ast = LoopExpCS.ast

Inherited attributes
[A] ModelPropertyCallCS.env  = PropertyCallExpCS.env
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[B] LoopExpCS.env            = PropertyCallExpCS.env

Disambiguating rules
The disambiguating rules are defined in the children.

LoopExpCS
This rule represents loop expressions.

[A] LoopExpCS ::= IteratorExpCS
[B] LoopExpCS ::= IterateExpCS

Abstract syntax mapping
LoopExpCS.ast : LoopExp

Synthesized attributes
[A] LoopExpCS.ast = IteratorExpCS.ast
[B] LoopExpCS.ast = IterateExpCS.ast

Inherited attributes
[A] IteratorExpCS.env  = LoopExpCS.env
[B] IterateExpCS.env   = LoopExpCS.env

Disambiguating rules
-- none

IteratorExpCS
The first alternative is a straightforward Iterator expression, with optional iterator variable.  The second and third 
alternatives are so-called implicit collect iterators. B is for operations and C for attributes, D for navigations and E for 
associationclasses.

[A] IteratorExpCS ::= OclExpressionCS[1] ’->’ simpleNameCS
                     ’(’ (VariableDeclarationCS[1],
                          (’,’ VariableDeclarationCS[2])? ’|’ )? 
                         OclExpressionCS[2]
                     ’)’
[B] IteratorExpCS ::= OclExpressionCS ’.’ simpleNameCS ’(’argumentsCS?’)’
[C] IteratorExpCS ::= OclExpressionCS ’.’ simpleNameCS
[D] IteratorExpCS ::= OclExpressionCS ’.’ simpleNameCS
                                                         (’[’ argumentsCS ’]’)?
[E] IteratorExpCS ::= OclExpressionCS ’.’ simpleNameCS
                                                         (’[’ argumentsCS ’]’)?

Abstract syntax mapping
IteratorExpCS.ast : IteratorExp

Synthesized attributes
-- the ast needs to be determined bit by bit, first the source association of IteratorExp
[A] IteratorExpCS.ast.source        = OclExpressionCS[1].ast 
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-- next the iterator association of IteratorExp
-- when the variable declaration is present, its ast is the iterator of this iteratorExp      
-- when the variable declaration is not present, the iterator has a default name and 
-- type 
-- In any case, the iterator does not have an init expression
[A] IteratorExpCS.ast.iterators->at(1).name = if VariableDeclarationCS[1]->isEmpty()
                                  then ’’
                                  else VariableDeclarationCS[1].ast.name
                                  endif
[A] IteratorExpCS.ast.iterator->at(1).type = 
                        if VariableDeclarationCS[1]->isEmpty() or 
                          (VariableDeclarationCS[1]->notEmpty() and
                           VariableDeclarationCS[1].ast.type.oclIsUndefined() )
                        then
                           OclExpressionCS[1].type.oclAsType (CollectionType).elementType
                        else
                           VariableDeclarationCS[1].ast.type
                        endif
- The optional second iterator
[A] if VariableDeclarationCS[2]->isEmpty() then
       IteratorExpCS.ast.iterators->size() = 1
    else 
       IteratorExpCS.ast.iterators->at(2).name = VariableDeclarationCS[2].ast.name
       and
       IteratorExpCS.ast.iterators->at(2).type = 
                        if VariableDeclarationCS[2]->isEmpty() or 
                          (VariableDeclarationCS[2]->notEmpty() and
                           VariableDeclarationCS[2].ast.type.oclIsUndefined() )
                        then
                           OclExpressionCS[1].type.oclAsType (CollectionType).elementType
                        else
                           VariableDeclarationCS[2].ast.type
                        endif
    endif
[A] IteratorExpCS.ast.iterators->forAll(initExpression->isEmpty())
-- next the name attribute and body association of the IteratorExp
[A] IteratorExpCS.ast.name   = simpleNameCS.ast and
[A] IteratorExpCS.ast.body   = OclExpressionCS[2].ast 

-- Alternative B is an implicit collect of an operation over a collection 
[B] IteratorExpCS.ast.iterator.type =
                            OclExpressionCS.ast.type.oclAsType (CollectionType).elementType
[B] IteratorExpCS.ast.source  = OclExpressionCS.ast
[B] IteratorExpCS.ast.name    = ’collect’
[B] -- the body of the implicit collect is the operation call referred to by ’name’
    IteratorExpCS.ast.body.oclIsKindOf (OperationCallExp) and
    let body : OperationCallExp = IteratorExpCS.ast.body.oclAsType(OperationCallExp)
    in
    body.arguments = argumentsCS.ast
    and
    body.source.oclIsKindOf(VariableExp)
    and
    body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
    and
    body.referredOperation = 
              OclExpressionCS.ast.type.oclAsType (CollectionType ).elementType
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                           .lookupOperation( simpleNameCS.ast,
                                             if (argumentsCS->notEmpty()) 
                                             then arguments.ast->collect(type)
                                             else Sequence{} endif)

-- Alternative C/D is an implicit collect of an association or attribute over a collection 
[C, D] IteratorExpCS.ast.iterator.type =
                            OclExpressionCS.ast.type.oclAsType (CollectionType).elementType
[C, D] IteratorExpCS.ast.source  = OclExpressionCS.ast
[C, D] IteratorExpCS.ast.name    = ’collect’
[C] -- the body of the implicit collect is the attribute referred to by ’name’
    let refAtt : Attribute = OclExpressionCS.ast.type.oclAsType (CollectionType).
                                              elementType.lookupAttribute( simpleNameCS.ast),
    in
    IteratorExpCS.ast.body.oclIsKindOf (AttributeCallExp) and
    let body : AttributeCallExp = IteratorExpCS.ast.body.oclAsType(AttributeCallExp)
    in
      body.source.oclIsKindOf(VariableExp)
      and
      body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
      and
      body.referredAttribute = refAtt
[D] -- the body of the implicit collect is the navigation call referred to by ’name’
    let  refNav : AssociationEnd = OclExpressionCS.ast.type.oclAsType (CollectionType).
                                      elementType.lookupAssociationEnd(simpleNameCS.ast)
    in
      IteratorExpCS.ast.body.oclIsKindOf (AssociationEndCallExp) and
      let body : AssociationEndCallExp =
                                 IteratorExpCS.ast.body.oclAsType(AssociationEndCallExp)
      in
        body.source.oclIsKindOf(VariableExp)
        and
        body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
        and
        body.referredAssociationEnd = refNav
        and
        body.ast.qualifiers = argumentsCS.ast
[E] -- the body of the implicit collect is the navigation to the association class
    -- referred to by ’name’
    let  refClass : AssociationClass =
                OclExpressionCS.ast.type.oclAsType (CollectionType).
                                      elementType.lookupAssociationClass(simpleNameCS.ast)
    in
      IteratorExpCS.ast.body.oclIsKindOf (AssociationClassCallExp) and
      let body : AssociationClassCallExp =
                                 IteratorExpCS.ast.body.oclAsType(AssociationClassCallExp)
      in
        body.source.oclIsKindOf(VariableExp)
        and
        body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
        and
        body.referredAssociationClass = refNav
        and
        body.ast.qualifiers = argumentsCS.ast
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Inherited attributes
[A] OclExpressionCS[1].env    = IteratorExpCS.env
[A] VariableDeclarationCS.env = IteratorExpCS.env
-- inside an iterator expression the body is evaluated with a new environment that
-- includes the iterator variable.
[A] OclExpressionCS[2].env    =                       
       IteratorExpCS.env.nestedEnvironment().addElement(VariableDeclarationCS.ast.varName,
                                                        VariableDeclarationCS.ast,
                                                        true)
[B] OclExpressionCS.env    = IteratorExpCS.env
[B] argumentsCS.env        = IteratorExpCS.env
[C] OclExpressionCS.env    = IteratorExpCS.env
[D] OclExpressionCS.env    = IteratorExpCS.env

Disambiguating rules
[1] [A] When the variable declaration is present, it may not have an init expression.

VariableDeclarationCS->notEmpty() implies
                                  VariableDeclarationCS.ast.initExpression->isEmpty()

[2] [B] The source must be of a collection type.
OclExpressionCS.ast.type.oclIsKindOf(CollectionType)

[3] [C] The source must be of a collection type.
OclExpressionCS.ast.type.oclIsKindOf(CollectionType)

[4] [C] The referred attribute must be present.
refAtt->notEmpty()

[5] [D] The referred navifation must be present.
refNav->notEmpty()

IterateExpCS
IterateExpCS ::= OclExpressionCS[1] ’->’ ’iterate’ 
                 ’(’ (VariableDeclarationCS[1] ’;’)? 
                      VariableDeclarationCS[2] ’|’ 
                      OclExpressionCS[2]
                 ’)’

Abstract syntax mapping
IterateExpCS.ast : IterateExp

Synthesized attributes
-- the ast needs to be determined bit by bit, first the source association of IterateExp
IterateExpCS.ast.source   = OclExpressionCS[1].ast
-- next the iterator association of IterateExp
-- when the first variable declaration is present, its ast is the iterator of this
-- iterateExp, when the variable declaration is not present, the iterator has a default
-- name and type, 
-- in any case, the iterator has an empty init expression.
IterateExpCS.ast.iterator.name = if VariableDeclarationCS[1]->isEmpty() then ’’
                                 else VariableDeclarationCS[1].ast.name
                                 endif
IterateExpCS.ast.iterator.type = 
                       if VariableDeclarationCS[1]->isEmpty() or 
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                         (VariableDeclarationCS[1]->notEmpty() and 
                          VariableDeclarationCS[1].ast.type.oclIsUndefined() )
                       then
                          OclExpressionCS[1].type.oclAsType (CollectionType).elementType
                       else
                          VariableDeclarationCS[1].ast.type
                       endif
IterateExpCS.ast.iterator.initExpression->isEmpty()
-- next the name attribute and body and result association of the IterateExp
IterateExpCS.ast.result   = VariableDeclarationCS[2].ast 
IterateExpCS.ast.name     = ’iterate’
IterateExpCS.ast.body     = OclExpressionCS[2].ast

Inherited attributes
OclExpressionCS[1].env       = IteratorExpCS.env
VariableDeclarationCS[1].env = IteratorExpCS.env
VariableDeclarationCS[2].env = IteratorExpCS.env
-- Inside an iterate expression the body is evaluated with a new environment that includes
-- the iterator variable and the result variable.
OclExpressionCS[2].env       =                       
       IteratorExpCS.env.nestedEnvironment().addElement
                                       (VariableDeclarationCS[1].ast.varName,
                                        VariableDeclarationCS[1].ast, 
                                        true).addElement
                                       (VariableDeclarationCS[2].ast.varName,
                                        VariableDeclarationCS[2].ast, 
                                        true)

Disambiguating rules
[1] A result variable declaration must have a type and an initial value

not VariableDeclarationCS[2].ast.type.oclIsUndefined() VariableDeclarationCS[2].ast.initExpression->notEmpty()

[2] When the first variable declaration is present, it may not have an init expression.
VariableDeclarationCS[1]->notEmpty() implies 
                                  VariableDeclarationCS[1].ast.initExpression->isEmpty()

VariableDeclarationCS
In the variable declaration, the type and init expression are optional. When these are required, this is defined in the 
production rule where the variable declaration is used.

VariableDeclarationCS ::= simpleNameCS (’:’ typeCS)?
                          ( ’=’ OclExpressionCS )?

Abstract syntax mapping
VariableDeclarationCS.ast : VariableDeclaration

Synthesised attributes
VariableDeclarationCS.ast.name           = simpleNameCS.ast
VariableDeclarationCS.ast.initExpression = OclExpressionCS.ast
-- A well-formed VariableDeclaration must have a type according to the abstract syntax.
-- The value OclUndefined is used when no type has been given in the concrete syntax.
-- Production rules that use this need to check on this type.
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VariableDeclarationCS.ast.type = if typeCS->notEmpty() then
                                    typeCS.ast
                                 else
                                    OclUndefined
                                 endif

Inherited attributes
OclExpressionCS.env = VariableDeclarationCS.env
typeCS.env          = VariableDeclarationCS.env

Disambiguating rules
-- none

TypeCS
A typename is either a Classifier, or a collection of some type.

[A] typeCS ::= pathNameCS
[B] typeCS ::= collectionTypeCS
[C] typeCS ::= tupleTypeCS

Abstract syntax mapping
typeCS.ast : Classifier

Synthesised attributes
[A] typeCS.ast =
       typeCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier)
[B] typeCS.ast = CollectionTypeCS.ast
[C] typeCS.ast = tupleTypeCS.ast

Inherited attributes
[B] collectionTypeCS.env = typeCS.env
[C] tupleTypeCS.env      = typeCS.env

Disambiguating rules
[1] [A] pathName must be a name of a Classifier in current environment.

typeCS.env.lookupPathName(pathNameCS.ast).referredElement.oclIsKindOf (Classifier)

collectionTypeCS
A typename is either a Classifier, or a collection of some type.

collectionTypeCS ::= collectionTypeIdentifierCS ’(’ typeCS ’)’

Abstract syntax mapping
typeCS.ast : CollectionType

Synthesised attributes
collectionTypeCS.ast.elementType = typeCS.ast
-- We know that the ’ast’ is a collectiontype, all we need to state now is which
-- specific collection type it is.
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kind = CollectionKind::Set        implies collectionTypeCS.ast.oclIsKindOf (SetType     )
kind = CollectionKind::Sequence   implies collectionTypeCS.ast.oclIsKindOf (SequenceType)
kind = CollectionKind::Bag        implies collectionTypeCS.ast.oclIsKindOf (BagType     )
kind = CollectionKind::Collection implies collectionTypeCS.ast.oclIsKindOf
                                                                         (CollectionType)
kind = CollectionKind::OrderedSet        implies collectionTypeCS.ast.oclIsKindOf 
                                                                         (OrderedSetType)

Inherited attributes
typeCS.env = collectionTypeCS.env

Disambiguating rules
-- none

tupleTypeCS
This represents a tuple type declaration.

tupleTypeCS ::= ’Tuple’ ’(’ variableDeclarationListCS? ’)’

Abstract syntax mapping
typeCS.ast : TupleType

Synthesised attributes
typeCS.ast =  TupleType::make( variableDeclarationListCS->collect( v | v.asAttribute() ))

Inherited attributes
variableDeclarationListCS.env = tupleTypeCS.env

Disambiguating rules
[1] Of all VariableDeclarations the initExpression must be empty and the type must exist.

variableDeclarationListCS.ast->forAll( varDecl |
    varDecl.initExpression->notEmpty() and varDecl.type->notEmpty() )

variableDeclarationListCS
This production rule represents the formal parameters of a tuple or attribute definition.

variableDeclarationListCS[1] = VariableDeclarationCS  
                                (’,’variableDeclarationListCS[2] )?

Abstract syntax mapping
variableDeclarationListCS[1].ast : Sequence( VariableDeclaration )

Synthesized attributes
variableDeclarationListCS[1].ast = Sequence{VariableDeclarationCS.ast}
                                   ->union(variableDeclarationListCS[2].ast)

Inherited attributes
VariableDeclarationCS.env         = variableDeclarationListCS[1].env
variableDeclarationListCS[2].env  = variableDeclarationListCS[1].env
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Disambiguating rules
-- none

ModelPropertyCallExpCS
A ModelPropertCall expression may have three different productions. Which one is chosen depends on the 
disambiguating rules defined in each of the alternatives.

[A] ModelPropertyCallExpCS ::= OperationCallExpCS
[B] ModelPropertyCallExpCS ::= AttributeCallExpCS
[C] ModelPropertyCallExpCS ::= NavigationCallExpCS

Abstract syntax mapping
ModelPropertyCallExpCS.ast : ModelPropertyCallExp

Synthesised attributes
The value of this production is the value of its child production.
[A] ModelPropertyCallExpCS.ast = OperationCallExpCS.ast
[B] ModelPropertyCallExpCS.ast = AttributeCallExpCS.ast
[C] ModelPropertyCallExpCS.ast = NavigationCallExpCS.ast

Inherited attributes
[A] OperationCallExpCS.env  = ModelPropertyCallExpCS.env
[B] AttributeCallExpCS.env  = ModelPropertyCallExpCS.env
[C] NavigationCallExpCS.env = ModelPropertyCallExpCS.env

Disambiguating rules
These are defined in the children.

OperationCallExpCS
An operation call has many different forms. A is used for infix, B for using an object as an implicit collection. C is a 
straightforward operation call, while D has an implicit source expression. E and F are like C and D, with the @pre 
addition. G covers the class operation call.  Rule H is for unary prefix expressions.

[A] OperationCallExpCS ::= OclExpressionCS[1]
                                              simpleNameCS OclExpressionCS[2]
[B] OperationCallExpCS ::= OclExpressionCS ’->’ simpleNameCS ’(’
                                                               argumentsCS? ’)’
[C] OperationCallExpCS ::= OclExpressionCS ’.’ simpleNameCS
                                                            ’(’ argumentsCS? ’)’
[D] OperationCallExpCS ::= simpleNameCS  ’(’ argumentsCS? ’)’
[E] OperationCallExpCS ::= OclExpressionCS ’.’ simpleNameCS
                                            isMarkedPreCS ’(’ argumentsCS? ’)’
[F] OperationCallExpCS ::= simpleNameCS isMarkedPreCS ’(’ argumentsCS? ’)’
[G] OperationCallExpCS ::= pathNameCS  ’(’ argumentsCS? ’)’
[H] OperationCallExpCS ::= simpleNameCS OclExpressionCS
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Abstract syntax mapping
OperationCallExpCS.ast  : OperationCallExp

Synthesised attributes
-- this rule is for binary operators as ’+’, ’-’, ’*’ etc. It has only one argument.
[A] OperationCallExpCS.ast.arguments  = Sequence{OclExpression2[2].ast}
    OperationCallExpCS.ast.source     = OclExpressionCS[1].ast
    OperationCallExpCS.ast.referredOperation = 
               OclExpressionCS.ast.type.lookupOperation ( 
                                           simpleNameCS.ast,
                                           Sequence{OclExpression[2].ast.type} )

-- The source is either a collection or a single object used as a collection.
[B] OperationCallExpCS.ast.arguments = argumentsCS.ast
-- if the OclExpressionCS is a collectiontype, then the source is this OclExpressionCS.
-- Otherwise, the source must be build up by defining a singleton set containing
-- the OclExpressionCS. This is done though inserting a call to the standard
-- operation "asSet()"
   OperationCallExpCS.ast.source =
                     if OclExpressionCS.ast.type.oclIsKindOf(CollectionType) 
                     then OclExpressionCS.ast
                     else OclExpressionCS.ast.withAsSet()
                     endif
---- The referred operation:
   OperationCallExpCS.ast.referredOperation = 
       if OclExpressionCS.ast.type.oclIsKindOf (CollectionType) 
       then  -- this is a collection operation called on a collection
         OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
                                                  if (argumentsCS->notEmpty()) 
                                                  then argumentsCS.ast->collect(type)
                                                  else Sequence{} endif )
       else
        -- this is a set operation called on an object => implicit Set with one element
        SetType.allInstances()->any (st | 
            st.elementType = OclExpressionCS.ast.type).lookupOperation (
                                           simpleNameCS.ast,
                                           if (argumentsCS->notEmpty()) 
                                           then argumentsCS.ast->collect(type)
                                           else Sequence{} endif ) 
    endif

[C] OperationCallExpCS.ast.referredOperation = 
                OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
                                                          if argumentsCS->notEmpty() 
                                                          then arguments.ast->collect(type)
                                                          else Sequence{} endif)
    OperationCallExpCS.ast.arguments = argumentsCS.ast
    OperationCallExpCS.ast.source    = OclExpressionCS.ast

[D] OperationCallExpCS.ast.arguments         = argumentsCS.ast and
    OperationCallExpCS.ast.referredOperation =
                              env.lookupImplicitOperation(simpleName.ast, 
                                                          if argumentsCS->notEmpty() 
                                                          then arguments.ast->collect(type)
                                                          else Sequence{} endif)
    OperationCallExpCS.ast.source = env.lookupImplicitSourceForOperation(
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                                                          simpleName.ast, 
                                                          if argumentsCS->notEmpty() 
                                                          then arguments.ast->collect(type)
                                                          else Sequence{} endif)

[E] -- incorporate the isPre() operation.
    OperationCallExpCS.ast.referredOperation = 
                OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
                                                          if argumentsCS->notEmpty() 
                                                          then arguments.ast->collect(type)
                                                          else Sequence{} endif)
    OperationCallExpCS.ast.arguments = argumentsCS.ast
    OperationCallExpCS.ast.source    = OclExpressionCS.ast.withAtPre()

[F] -- incorporate atPre() operation with the implicit source 
    OperationCallExpCS.ast.arguments         = argumentsCS.ast and
    OperationCallExpCS.ast.referredOperation =
                              env.lookupImplicitOperation(simpleName.ast, 
                                                          if argumentsCS->notEmpty() 
                                                          then arguments.ast->collect(type)
                                                          else Sequence{} endif)
                              )
    OperationCallExpCS.ast.source =  
                     env.lookupImplicitSourceForOperation(simpleName.ast, 
                                                          if argumentsCS->notEmpty() 
                                                          then arguments.ast->collect(type)
                                                          else Sequence{} endif)
                              ).withAtPre()

[G] OperationCallExpCS.ast.arguments         = argumentsCS.ast and
    OperationCallExpCS.ast.referredOperation = 
                                       env.lookupPathName(pathName.ast, 
                                                          if argumentsCS->notEmpty() 
                                                          then arguments.ast->collect(type)
                                                          else Sequence{} endif)
    OperationCallExpCS.ast.source->isEmpty() 
-- this rule is for unary operators as ’-’ and ’not’ etc. It has no argument.
[H] OperationCallExpCS.ast.arguments->isEmpty()
    OperationCallExpCS.ast.source     = OclExpressionCS.ast
    OperationCallExpCS.ast.referredOperation = 
               OclExpressionCS.ast.type.lookupOperation ( 
                                           simpleNameCS.ast,
                                           Sequence{} )

Inherited attributes
[A] OclExpressionCS[1].env = OperationCallExpCS.env
[A] OclExpressionCS[2].env = OperationCallExpCS.env
[B] OclExpressionCS.env    = OperationCallExpCS.env
[B] argumentsCS.env        = OperationCallExpCS.env
[C] OclExpressionCS.env    = OperationCallExpCS.env
[C] argumentsCS.env        = OperationCallExpCS.env
[D] argumentsCS.env        = OperationCallExpCS.env
[E] OclExpressionCS.env    = OperationCallExpCS.env
[E] argumentsCS.env        = OperationCallExpCS.env
[F] argumentsCS.env        = OperationCallExpCS.env
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Disambiguating rules
[1] [A] The name of the referred Operation must be an operator

Set{’+’,’-’,’*’,’/’,’and’,’or’,’xor’,’=’,’<=’,’>=’,’<’,’>’}->includes(simpleNameCS.ast)

[2] [A,B,C,D,E,F] The referred Operation must be defined for the type of source
not OperationCallExpCS.ast.referredOperation.oclIsUndefined()

[3] [C] The name of the referred Operation cannot be an operator.
Set{’+’,’-’,’*’,’/’,’and’,’or’,’xor’,’=’,’<=’,’>=’,’<’,’>’}->excludes(simpleNameCS.ast)

AttributeCallExpCS
This production rule results in an AttributeCallExp. In production [A] the source is explicit, while production [B] is used 
for an implicit source. Alternative C covers the use of a classifier scoped attribute.

[A] AttributeCallExpCS ::= OclExpressionCS ’.’ simpleNameCS isMarkedPreCS?
[B] AttributeCallExpCS ::= simpleNameCS isMarkedPreCS?
[C] AttributeCallExpCS ::= pathNameCS

Abstract syntax mapping
AttributeCallExpCS.ast : AttributeCallExp

Synthesised attributes
[A] AttributeCallExpCS.ast.referredAttribute =
                                OclExpressionCS.ast.type.lookupAttribute(simpleNameCS.ast)
[A] AttributeCallExpCS.ast.source = if isMarkedPreCS->isEmpty() 
                                    then  OclExpressionCS.ast
                                    else  OclExpressionCS.ast.withAtPre()    
                                    endif  

[B] AttributeCallExpCS.ast.referredAttribute =   
                                             env.lookupImplicitAttribute(simpleNameCS.ast)
[B] AttributeCallExpCS.ast.source = 
                      if isMarkedPreCS->isEmpty()
                      then env.findImplicitSourceForAttribute(simpleNameCS.ast)
                      else env.findImplicitSourceForAttribute(simpleNameCS.ast).withAtPre()
                      endif

[C] AttributeCallExpCS.ast.referredAttribute =   
                           env.lookupPathName(pathNameCS.ast).oclAsType(Attribute)

Inherited attributes
[A] OclExpressionCS.env = AttributeCallExpCS.env

Disambiguating rules
[1] [A, B] ’simpleName’ is name of an Attribute of the type of source or if source is empty the name of an attribute of ’self’ or

any of the iterator variables in (nested) scope. In OCL: 
not AttributeCallExpCS.ast.referredAttribute.oclIsUndefined()

[2] [C] The pathName refers to a class attribute. 
env.lookupPathName(pathNameCS.ast).oclIsKindOf(Attribute)
and
AttributeCallExpCS.ast.referredAttribute.ownerscope = ScopeKind::instance  
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NavigationCallExpCS
This production rule represents a navigation call expression.

[A] NavigationCallExpCS ::= AssociationEndCallExpCS
[B] NavigationCallExpCS ::= AssociationClassCallExpCS

Abstract syntax mapping
NavigationCallExpCS.ast : NavigationCallExp

Synthesised attributes
The value of this production is the value of its child production.
[A] NavigationCallExpCS.ast = AssociationEndCallExpCS.ast
[B] NavigationCallExpCS.ast = AssociationClassCallExpCS.ast

Inherited attributes
[A] AssociationEndCallExpCS.env    = NavigationCallExpCS.env
[B] AssociationClassCallExpCS.env  = NavigationCallExpCS.env

Disambiguating rules
These are defined in the children.

AssociationEndCallExpCS
This production rule represents a navigation through an association end. Rule A is the default, rule B is used with an 
implicit source, while rule C is used with qualifiers.

[A] AssociationEndCallExpCS ::= OclExpressionCS ’.’ simpleNameCS
                                          (’[’ argumentsCS ’]’)? isMarkedPreCS?
[B] AssociationEndCallExpCS ::= simpleNameCS 
                                          (’[’ argumentsCS ’]’)? isMarkedPreCS?

Abstract syntax mapping
AssociationEndCallExpCS.ast : AssociationEndCallExp

Synthesised attributes
[A] AssociationEndCallExpCS.ast.referredAssociationEnd =
                             OclExpressionCS.ast.type.lookupAssociationEnd(simpleNameCS.ast)
    AssociationEndCallExpCS.ast.source = if isMarkedPreCS->isEmpty() 
                                    then  OclExpressionCS.ast
                                    else  OclExpressionCS.ast.withAtPre()    
                                    endif  
[A] AssociationEndCallExpCS.ast.qualifiers = argumentsCS.ast

[B] AssociationEndCallExpCS.ast.referredAssociationEnd =   
                                          env.lookupImplicitAssociationEnd(simpleNameCS.ast)
    AssociationEndCallExpCS.ast.source = 
                 if isMarkedPreCS->isEmpty()
                 then env.findImplicitSourceForAssociationEnd(simpleNameCS.ast)
                 else env.findImplicitSourceForAssociationEnd(simpleNameCS.ast).withAtPre()
                 endif
[B] AssociationEndCallExpCS.ast.qualifiers = argumentsCS.ast
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Inherited attributes
[A] OclExpressionCS.env = AssociationEndCallExpCS.env
[A, B] argumentsCS.env  = AssociationEndCallExpCS.env

Disambiguating rules
[1] [A,B] ’simpleName’ is name of an AssociationEnd of the type of source or if source is empty the name of an Associatio-

nEnd of ’self’ or any of the iterator variables in (nested) scope. In OCL: 
not AssociationEndCallExpCS.ast.referredAssociationEnd.oclIsUndefined()

AssociationClassCallExpCS
This production rule represents a navigation to an association class.

[A] AssociationClassCallExpCS ::= OclExpressionCS ’.’ simpleNameCS
                                          (’[’ argumentsCS ’]’)? isMarkedPreCS?
[B] AssociationClassCallExpCS ::= simpleNameCS 
                                          (’[’ argumentsCS ’]’)? isMarkedPreCS?

Abstract syntax mapping
AssociationClassCallExpCS.ast : AssociationClassCallExp

Synthesised attributes
[A] AssociationClassCallExpCS.ast.referredAssociationClass =
                         OclExpressionCS.ast.type.lookupAssociationClass(simpleNameCS.ast)
    AssociationClassCallExpCS.ast.source = if isMarkedPreCS->isEmpty() 
                                    then  OclExpressionCS.ast
                                    else  OclExpressionCS.ast.withAtPre()    
                                    endif  
[A] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast

[B] AssociationClassCallExpCS.ast.referredAssociationClass =   
                                       env.lookupImplicitAssociationClass(simpleNameCS.ast)
    AssociationClassCallExpCS.ast.source = 
             if isMarkedPreCS->isEmpty()
             then env.findImplicitSourceForAssociationClass(simpleNameCS.ast)
             else env.findImplicitSourceForAssociationClass(simpleNameCS.ast).withAtPre()
             endif
[B] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast

Inherited attributes
[A] OclExpressionCS.env = AssociationClassCallExpCS.env
[A, B] argumentsCS.env  = AssociationClassCallExpCS.env

Disambiguating rules
[1] ’simpleName’ is name of an AssociationClass of the type of source. 

not AssociationClassCallExpCS.ast.referredAssociationClass.oclIsUndefined()

isMarkedPreCS
This production rule represents the marking @pre in an ocl expression.

isMarkedPreCS ::= ’@’ ’pre’
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Abstract syntax mapping
isMarkedPreCS.ast : Boolean

Synthesised attributes
self.ast = true

Inherited attributes
-- none

Disambiguating rules
-- none

argumentsCS
This production rule represents a sequence of arguments.

argumentsCS[1] ::= OclExpressionCS ( ’,’ argumentsCS[2] )?

Abstract syntax mapping
argumentsCS[1].ast : Sequence(OclExpression)

Synthesised attributes
argumentsCS[1].ast = Sequence{OclExpressionCS.ast}->union(argumentsCS[2].ast)

Inherited attributes
OclExpressionCS.env = argumentsCS[1].env
argumentsCS[2].env  = argumentsCS[1].env

Disambiguating rules
-- none

LetExpCS
This production rule represents a let expression. The LetExpSubCS nonterminal has the purpose of allowing directly 
nested let expressions with the shorthand syntax, i.e. ending with one ’in’ keyword.

LetExpCS ::= ’let’ VariableDeclarationCS 
                   LetExpSubCS  

Abstract syntax mapping
LetExpCS.ast : LetExp

Synthesised attributes
LetExpCS.ast.variable = VariableDeclarationCS.ast
LetExpCS.ast.in       = LetExpSubCS.ast

Inherited attributes
LetExpSubCS.env = LetExpCS.env.nestedEnvironment().addElement(
                                             VariableDeclarationCS.ast.varName, 
                                             VariableDeclarationCS.ast, 
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                                             false) 

Disambiguating rules
[1] The variable name must be unique in the current scope

LetExpCS.env.lookup (VariableDeclarationCS.ast.varName).oclIsUndefined()

[2] A variable declaration inside a let must have a declared type and an initial value.
not VariableDeclarationCS.ast.type.oclIsUndefined() and
VariableDeclarationCS.ast.initExpression->notEmpty()

LetExpSubCS
[A] LetExpSubCS[1] ::= ’,’ VariableDeclarationCS LetExpSubCS[2]
[B] LetExpSubCS    ::= ’in’ OclExpressionCS

Abstract syntax mapping
LetExpSubCS.ast : OclExpression

Synthesised attributes
[A] LetExpSubCS[1].ast.oclAsType(LetExp).variable      = VariableDeclarationCS.ast
[A] LetExpSubCS[1].ast.oclAsType(LetExp).OClExpression = LetExpSubCS[2].ast

[B] LetExpSubCS.ast = OclExpressionCS.ast

Inherited attributes
[A] VariableDeclarationCS.env = LetExpSubCS[1].env
[A] LetExpSubCS[2].env = LetExpSubCS[1].env.nestedEnvironment().addElement(
                                             VariableDeclarationCS.ast.varName, 
                                             VariableDeclarationCS.ast, 
                                             false) 

[B] OClExpressionCS.env = LetExpSubCS.env

Disambiguating rules
[A] The variable name must be unique in the current scope
LetExpSubCS[1].env.lookup (VariableDeclarationCS.ast.varName).oclIsUndefined()
[A] A variable declaration inside a let must have a declared type and an initial value.
not VariableDeclarationCS.ast.type.oclIsUndefined() and
VariableDeclarationCS.ast.initExpression->notEmpty()

OclMessageExpCS
The message Name must either be the name of a Signal, or the name of an Operation belonging to the target object(s).

[A] OclMessageExpCS ::= OclExpressionCS ’^^’ 
                        simpleNameCS ’(’ OclMessageArgumentsCS? ’)’

[B] OclMessageExpCS ::= OclExpressionCS ’^’ 
                        simpleNameCS ’(’ OclMessageArgumentsCS? ’)’

Abstract syntax mapping
[A] OclMessageExpCS.ast : OclMessageExp
[B] OclMessageExpCS.ast : OclMessageExp
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Synthesised attributes
[A] OclMessageExpCS.ast.target    = OclExpressionCS.ast 
[A] OclMessageExpCS.ast.arguments = OclMessageArgumentsCS.ast

-- first, find the sequence of types of the operation/signal parameters
[A] let params : Sequence(Classifier) = OclMessageArguments.ast->collect(messArg |
                                            messArg.getType() ),

-- try to find either the called operation or the sent signal
[A]     operation : Operation = OclMessageExpCS.ast.target.type.
                                              lookupOperation(simpleNameCS.ast, params),     
        signal : Signal = OclMessageExpCS.ast.target.type.
                                              lookupSignal(simpleNameCS.ast, params)
    in
    OclMessageExpCS.ast.calledOperation = if operation->isEmpty()
                                          then OclUndefined
                                          else = operation
                                          endif
    OclMessageExpCS.ast.sentSignal = if signal->isEmpty()
                                     then OclUndefined
                                     else signal
                                     endif
[B]
-- OclExpression^simpleNameCS(OclMessageArguments) is identical to
-- OclExpression^^simpleNameCS(OclMessageArguments)->size() = 1
-- actual mapping: straigthforward, TBD...

Inherited attributes
OclExpressionCS.env       = OclMessageExpCS.env
OclMessageArgumentsCS.env = OclMessageExpCS.env

Disambiguating rules
-- none

OclMessageArgumentsCS
OclMessageArgumentsCS[1] ::= OclMessageArgCS
                          ( ’,’ OclMessageArgumentsCS[2] )? 

Abstract syntax mapping
OclMessageArgumentsCS[1].ast : Sequence(OclMessageArg)

Synthesised attributes
OclMessageArgumentsCS[1].ast = 
                Sequence{OclMessageArgCS.ast}->union(OclMessageArgumentsCS[2].ast)

Inherited attributes
OclMessageArgCS.env          = OclMessageArgumentsCS[1].env
OclMessageArgumentsCS[2].env = OclMessageArgumentsCS[1].env

Disambiguating rules
-- none
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OclMessageArgCS
[A] OclMessageArgCS ::= ’?’ (’:’ typeCS)?
[B] OclMessageArgCS ::= OclExpressionCS 

Abstract syntax mapping
OclMessageArgCS.ast : OclMessageArg

Synthesised attributes
[A] OclMessageArgCS.ast.expression->isEmpty()
[A] OclMessageArgCS.ast.unspecified->notEmpty()
[A] OclMessageArgCS.ast.type = typeCS.ast

[B] OclMessageArgCS.ast.unspecified->isEmpty()
[B] OclMessageArgCS.ast.expression = OclExpressionCS.ast

Inherited attributes
OclExpressionCS.env = OclMessageArgCS.env

Disambiguating rules
-- none

IfExpCS
IfExpCS ::= ’if’   OclExpression[1]
            ’then’ OclExpression[2]
            ’else’ OclExpression[3]
            ’endif’

Abstract syntax mapping
IfExpCS.ast : IfExp

Synthesised attributes
IfExpCS.ast.condition      = OclExpression[1].ast
IfExpCS.ast.thenExpression = OclExpression[2].ast
IfExpCS.ast.elseExpression = OclExpression[3].ast

Inherited attributes
OclExpression[1].env = IfExpCS.env
OclExpression[2].env = IfExpCS.env
OclExpression[3].env = IfExpCS.env

Disambiguating rules
-- none
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9.3.1 Comments

It is possible to include comments anywhere in a text composed according to the above concrete syntax. There will be no 
mapping of any comments to the abstract syntax. Comments are simply skipped when the text is being parsed. There are 
two forms of comments, a line comment and a paragraph comment. The line comment starts with the string ‘--’ and ends 
with the next newline. The paragraph comment starts with the string ‘/*’, and ends with the string ‘*/’. Paragraph 
comments may be nested. 

9.3.2 Operator Precedence

In the grammar, the precedence of the operators from highest to lowest is as follows:

• @pre 

• dot and arrow operations: ‘.’ and ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’ 

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parentheses ‘(’ and ‘)’ can be used to change precedence.

9.4 Environment definition
The Environment type used in the rules for the concrete syntax is defined according to the following invariants and 
additional operations. A diagrammatic view can be found in Figure 13 on page 62. Environments can be nested, denoted 
by the existence of a parent environment. Each environment keeps a list of named elements, that have a name a reference 
to a ModelElement. 

9.4.1 Environment

The definition of Environment has the following invariants and specifications of its operations.

[1]  The attribute EMPTY_ENV is really just a helper to avoid having to say new Environment (...).
context Environment
inv EMPTY_ENV_Definition: EMPTY_ENV.namedElements->isEmpty()

[2] Find a named element in the current environment, not in its parents, based on a single name.
context Environment::lookupLocal(name : String) : NamedElement
post: result = namedElements->any(v | v.name = name)

[3] Find a named element in the current environment or recursively in its parent environment, based on a single name.
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context Environment::lookup(name: String) : ModelElement
post: result = if not lookupLocal(name).oclIsUndefined() then
                  lookupLocal(name).referredElement
               else
                  parent.lookup(name)
               endif

[4] Find a named element in the current environment or recursively in its parent environment, based on a path name.
context Environment::lookupPathName(names: Sequence(String)) : ModelElement
post: let firstNamespace : ModelElement = lookupLocal( names->first() ).referredElement
in
      if firstNamespace.isOclKind(Namespace)
          -- indicates a sub namespace of the namespace in which self is present
      then 
          result = self.nestedEnvironment().addNamespace( 
                               firstNamespace ).lookupPathName( names->tail() )
      else
          -- search in surrounding namespace 
          result = parent.lookupPathName( names )
      endif

[5] Add a new named element to the environment. Note that this operation is defined as a query operation so that it can be
used in OCL constraints.
context Environment::addElement (name : String,
                                 elem : ModelElement, imp : Boolean) : Environment
pre : -- the name must not clash with names already existing in this environment
      self.lookupLocal(name).oclIsUndefined()
post: result.parent = self.parent and
      result.namedElements->includesAll (self.namedElements) and
      result.namedElements->count (v | v.oclIsNew()) = 1 and
      result.namedElements->forAll (v | v.oclIsNew() implies
                                             v.name = name and v.referredElement = elem)
                                             and
                                             v.mayBeImplicit = imp )

[6] Combine two environments resulting in a new environment. Note that this operation is defined as a query operation so
that it can be used in OCL constraints.
context Environment::addEnvironment(env : Environment) : Environment
pre : -- the names must not clash with names already existing in this environment
      enf.namedElements->forAll(nm | self.lookupLocal(nm).oclIsUndefined() )
post: result.parent = self.parent and
      result.namedElements = self.namedElements->union(env.namedElements)

[7] Add all elements in the namespace to the environment.
context Environment::addNamespace(ns: Namespace) : Environment
post: result.namedElements = ns.getEnvironmentWithoutParents().namedElements->union(
                                                                  self.namedElements)
post: result.parent = self.parent
      

[8] This operation results in a new environment which has the current one as its parent.
context Environment::nestedEnvironment() : Environment
post: result.namedElements->isEmpty()
post: result.parent = self
post: result.oclIsNew()
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[9] Lookup a given attribute name of an implicitly named element in the current environment, including its parents.
context Environment::lookupImplicitAttribute(name: String) : Attribute
pre: -- none
post: result =
               lookupImplicitSourceForAttribute(name).referredElement.oclAsType(Attribute)

[10] Lookup the implicit source belonging to a given attribute name in the current environment, including the parents.
context Environment::lookupImplicitSourceForAttribute(name: String) : NamedElement
pre: -- none
post: let foundElement : NamedElement =
        namedElements->select(mayBeImplicit)
            ->any( ne | not ne.getType().lookupAttribute(name).oclIsUndefined() ) in
      result = if foundAttribute.oclIsUndefined() then
                  self.parent.lookupImplicitSource ForAttribute(name)
               else
                  foundElement
               end

[11] Lookup up a given association end name of an implicitly named element in the current environment, including its parents.
context Environment::lookupImplicitAssociationEnd(name: String) : AssociationEnd
pre: -- none
post: let foundAssociationEnd : AssociationEnd =
        namedElements->select(mayBeImplicit)
             ->any( ne | not ne.getType().lookupAssociationEnd(name).oclIsUndefined() ) in
      result = if foundAssociationEnd.oclIsUndefined() then
                  self.parent.lookupImplicitAssociationEnd(name)
               else
                  foundAssociationEnd
               end

[12] Lookup up an operation of an implicitly named element with given name and parameter types in the current environment,
including its parents.
context Environment::lookupImplicitOperation(name: String,
                                             params : Sequence(Classifier)) : Operation
pre: -- none
post: let foundOperation : Operation =
        namedElements->select(mayBeImplicit)
          ->any( ne | not ne.getType().lookupOperation(name, params).oclIsUndefined() ) in
      result = if foundOperation.oclIsUndefined() then
                  self.parent.lookupImplicitOperation(name)
               else
                  foundOperation
               end

9.4.2 NamedElement

A named element is a modelelement which is referred to by a name. A modelement itself has a name, but this is not 
always the name which is used to refer to it.

The operation getType() returns the type of the referred modelelement.

context NamedElement::getType() : Classifier
pre: -- none
post: referredElement.oclIsKindOf(VariableDeclaration) implies 
                    result = referredElement.oclAsType(VariableDeclaration).type    
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post: referredElement.oclIsKindOf(Classifier) implies 
                    result = referredElement    
post: referredElement.oclIsKindOf(State) implies 
                    result = -- TBD: when aligning with UML 2.0 Infrastructure 

9.4.3 Namespace

The following additional operation returns the information of the contents of the namespace in the form of an 
Environment object, where Environment is the class defined in this chapter. Note that the parent association of 
Environment is not filled.

Because the definition of this operation is completely dependent on the UML metamodel, and this model will be 
considerably different in the 2.0 version, the definition is left to be done.

context Namespace::getEnvironmentWithoutParents() : Environment
post: self.isTypeOf(Classifier)  implies -- TBD when aligning with UML 2.0 Infrastrcuture
      -- include all class features and contained classifiers 
post: self.isTypeOf(Package)     implies -- TBD when aligning with UML 2.0 Infrastrcuture 
      -- include all classifiers and subpackages
post: self.isTypeOf(StateMachine)implies -- TBD when aligning with UML 2.0 Infrastrcuture
      -- include all states
post: self.isTypeOf(Subsystem)   implies -- TBD when aligning with UML 2.0 Infrastrcuture
      -- include all classifiers and subpackages 

The following operation returns an Environment that contains a reference to its parent environment, which is itself created 
by this operation by means of a recursive call, and therefore contains a parent environment too.

context Namespace::getEnvironmentWithParents() : Environment
post: result.NamedElements = self.getEnvironmentWithoutParents()
post: if self.namespace->notEmpty() -- this namespace has an owning namespace
      then result.parent = self.namespace.getEnvironmentWithParents()
      else result.parent = OclUndefined
      endif

9.5 Concrete to Abstract Syntax Mapping
The mapping from concrete to abstract syntax is described as part of the grammar. It is described by adding a synthesized 
attribute ast to each production which has the corresponding metaclass from the abstract syntax as its type. This allows 
the mapping to be fully formalized within the attribute grammar formalism.

9.6 Abstract Syntax to Concrete Syntax Mapping
IIt is often useful to have a defined mapping from the abstract syntax to the concrete syntax. This mapping can be defined 
by applying the production rules in Section 9.3 (“Concrete Syntax”) from left to right. As a general guideline nothing will 
be implicit (like e.g implicit collect, implicit use of object as set, etc.), and all iterator variables will be filled in 
completely. The mapping is not formally defined in this document but should be obvious.
92                 UML OCL 2.0 Adopted Specification



10 Semantics Described using UML
This chapter describes the semantics of the OCL using the UML itself to describe the semantic domain and the mapping 
between semantic domain and abstract syntax. It explains the semantics of OCL in a manner based on the report 
Unification of Static and Dynamic Semantics for UML [Kleppe2001], which in its turn is based on the MML report 
[Clark2000]. The main difference between Appendix A (“Semantics”), which describes the semantics in a formal manner, 
and this chapter is that this chapter defines a semantics for the ocl message expression.

10.1 Introduction
In Section 8.3 (“The Expressions Package”) an OCL expression is defined as: "an expression that can be evaluated in a 
given environment", and in Section 8.2 (“The Types Package”) it is stated that an "evaluation of the expression yields a 
value". The ‘meaning’ (semantics) of an OCL expression, therefore, can be defined as the value yielded by its evaluation 
in a given environment. 

In order to specify the semantics of OCL expressions we need to define two things: (1) the set of possible values that 
evaluations of expressions may yield, and (2) evaluations and their environment. The set of possible values is called the 
semantic domain. The set of evaluations together with their associations with the concepts from the abstract syntax 
represent the mapping from OCL expressions to values from the semantic domain. Together the semantic domain and the 
evaluations with their environment will be called domain in this chapter.

The semantic domain is described in the form of a UML package, containing a UML class diagram, classes, associations, 
and attributes. The real semantic domain is the (infinite) set of instances that can be created according to this class 
diagram. To represent the evaluation of the OCL expressions in the semantic domain a second UML package is used. In 
it, a set of so-called evaluation classes is defined (in short eval). Each evaluation class is associated with a value (its result 
value), and a name space environment that binds names to values. Note that the UML model comprising both packages, 
resides on layer 1 of the OMG 4-layered architecture, while the abstract syntax defined in Chapter 8 (“Abstract Syntax”), 
resides on layer 2.

The semantics of an OCL expression is given by association: each value defined in the semantic domain is associated 
with a type defined in the abstract syntax, each evaluation is associated with an expression from the abstract syntax. The 
value yielded by an OCL expression in a given environment, its ‘meaning’, is the result value of its evaluation within a 
certain name space environment. The semantics are also described in the form of a UML package called "AS-Domain-
Mapping". Note that this package links the domain on layer 1 of the OMG 4-layered architecture with the abstract syntax 
on layer 2. The AS-Domain-Mapping package itself can not be positioned in one of the layers of the OMG 4-layered 
architecture. Note also that this package contains associations only, no new classes are defined.

Figure 14 on page 94 shows how the packages defined in this chapter relate to each other, and to the packages from the 
abstract syntax. It shows the following packages:

• The Domain package describes the values and evaluations. It is subdivided into two subpackages: 

• The Values package describes the semantic domain. It shows the values OCL expressions may yield as result.

• The Evaluations package describes the evaluations of OCL expressions. It contains the rules that determine the 
result value for a given expression. 

• The AS-Domain-Mapping package describes the associations of the values and evaluations with elements from the 
abstract syntax. It is subdivided into two subpackages: 
UML OCL 2.0 Adopted Specification        93



• The Type-Value package contains the associations between the instances in the semantics domain and the types in the 
abstract syntax.

• The Expression-Evaluation package contains the associations between the evaluation classes and the expressions in the 
abstract syntax.

10.2 The Values Package
OCL is an object language. A value can be either an object, which can change its state in time, or a data type, which can 
not change its state. The model in Figure 15 on page 95 shows the values that form the semantic domain of an OCL 
expression. The basic type is the Value, which includes both objects and data values. There is a special subtype of Value 
called UndefinedValue, which is used to represent the undefined value for any Type in the abstract syntax. 

Figure 14 - Overview of packages in the UML-based semantics

Ocl-AbstractSyntax

OCL-AS-Domain-Mapping
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Figure 16 on page 96 shows a number of special data values, the collection and tuple values. To distinguish between 
instances of the Set, Bag, and Sequence types defined in the standard library, and the classes in this package that represent 
instances in the semantic domain, the names SetTypeValue, BagTypeValue, and SequenceTypeValue are used, instead of 
SetValue, BagValue, and SequenceValue.  

The value resulting from an ocl message expression is shown in Figure 17 on page 98. It links an ocl message value to the 
snapshot of an object.

10.2.1 Definitions of concepts for the Values package.

The section lists the definitions of concepts in the Values package in alphabetical order.

BagTypeValue
A bag type value is a collection value which is a multiset of values, where each value may occur multiple times in the 
bag. The values are unordered. In the metamodel, this list of values is shown as an association from CollectionValue (a 
generalization of BagTypeValue) to Element.

CollectionValue
A collection value is a list of values. In the metamodel, this list of values is shown as an association from 
CollectionValue to Element.

Associations
• elements The values of the elements in a collection.

DomainElement
A domain element is an element of the domain of OCL expressions. It is the generic superclass of all classes defined in 
this chapter, including Value and OclExpEval. It serves the same purpose as ModelElement in the UML meta model.

Figure 15 - The kernel values in the semantic domain
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Element
An element represents a single component of a tuple value, or collection value. An element has an index number, and a 
value. The purpose of the index number is to uniquely identify the position of each element within the enclosing value, 
when it is used as an element of a SequenceValue.

LocalSnapshot
A local snapshot is a domain element that holds for one point in time the subvalues of an object value. It is always part 
of an ordered list of local snapshots of an object value, which is represented in the metamodel by the associations pred, 
succ, and history. An object value may also hold a sequence of OclMessageValues, which the object value has sent, and a 
sequence of OclMessageValues, which the object value has received. Both sequences can change in time, therefore they 
are included in a local snapshot. This is represented by the associations in the metamodel called inputQ, and outputQ.

A local snapshot has two attributes, isPost and isPre, that indicate whether this snapshot is taken at postcondition or 
precondition time of an operation execution. Within the history of an object value it is always possible to find the local 
snapshot at precondition time that corresponds with a given snapshot at postcondition time. The association pre (shown in 
Figure 17 on page 98) is redundant, but added for convenience.

Figure 16 - The collection and tuple values in the semantic domain
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Associations
• bindings The set of name value bindings that hold the changes in time of the subvalues of the asso-

ciated object value.

• outputQ The sequence of OclMessageValues that the associated ObjectValue at the certain point in 
time has sent, and are not yet put through to their targets.

• inputQ The sequence of OclMessageValues that the associated ObjectValue at the certain point in 
time has received, but not yet dealt with.

• pred The predecessor of this local snapshot in the history of an object value.

• succ The successor of this local snapshot in the history of an object value.

• pre If this snapshot is a snapshot at postcondition time of a certain operation execution, then 
pre is the associated snapshot at precondition time of the same operation in the history of 
an object value.

NameValueBinding
A name value binding is a domain element that binds a name to a value.

ObjectValue
An object value is a value that has an identity, and a certain structure of subvalues. Its subvalues may change over time, 
although the structure remains the same. Its identity may not change over time. In the metamodel, the structure is shown 
as a set of NameValueBindings. Because these bindings may change over time, the ObjectValue is associated with a 
sequence of LocalSnapshots, that hold a set of NameValueBindings at a certain point in time. 

Associations
• history The sequence of local snapshots that hold the changes in time of the subvalues of this 

object value.

OclMessageValue
An ocl message value is a value that has as target and as source an object value. An ocl message value has a number of 
attributes. The name attribute corresponds to the name of the operation called, or signal sent. The isSyncOperation, 
isAsyncOperation, and isSignal attributes indicate respectively whether the message corresponds to a synchronous 
operation, an asynchrounous operation, or a signal.

Associations
• arguments A sequence of name value bindings that hold the arguments of the message from the 

source to the target.

• source The object value that has sent this signal.

• target The object value for which this signal has been intended.

• returnMessage The ocl message value that holds the values of the result and out parameters of a synchro-
nous operation call in its arguments. Is only present if this message represents a synchro-
nous operation call.

OclVoidValue
An undefined value is a value that represents void or undefined for any type.
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PrimitiveValue
A primitive value is a predefined static value, without any relevant substructure (i.e., it has no parts). 

SequenceTypeValue
A sequence type value is a collection value which is a list of values where each value may occur multiple times in the 
sequence. The values are ordered by their position in the sequence. In the metamodel, this list of values is shown as an 
association from CollectionValue (a generalization of SequenceTypeValue) to Element. The position of an element in 
the list is represented by the attribute indexNr of Element.

SetTypeValue
A set type value is a collection value which is a set of elements where each distinct element occurs only once in the set. 
The elements are not ordered. In the metamodel, this list of values is shown as an association from CollectionValue (a 
generalization of SetTypeValue) to Element.

StaticValue
A static value is a value that will not change over time.1

1. As StaticValue is the counterpart of the DataType concept in the abstract syntax, the name DataValue would be preferable. Because this 
name is used in the UML 1.4 specification to denote a model of a data value, the name StaticValue is used here.

Figure 17 - The message values in the semantic domain
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TupleValue
A tuple value (also known as record value) combines values of different types into a single aggregate value. The 
components of a tuple value are described by tuple parts each having a name and a value. In the metamodel, this is shown 
as an association from TupleValue to NameValueBinding.

Associations
• elements The names and values of the elements in a tuple value.

Value
A part of the semantic domain.

10.2.2 Well-formedness rules for the Values Package

BagTypeValue
No additional well-formedness rules. 

CollectionValue
No additional well-formedness rules. 

DomainElement
No additional well-formedness rules. 

Element
No additional well-formedness rules.  

EnumValue
No additional well-formedness rules. 

LocalSnapshot
[1] Only one of the attributes isPost and isPre may be true at the same time.

context LocalSnapshot
inv: isPost implies isPre = false
inv: ispre implies isPost = false

[2] Only if a snapshot is a postcondition snapshot it has an associated precondition snapshot.
context LocalSnapshot
inv: isPost implies pre->size() = 1
inv: not isPost implies pre->size() = 0
inv: self.pre->size() = 1 implies self.pre.isPre = true

NameValueBinding
No additional well-formedness rules. 

ObjectValue
[1] The history of an object is ordered. The first element does not have a predecessor, the last does not have a successor.
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context ObjectValue 
inv: history->oclIsTypeOf( Sequence(LocalSnapShot) )
inv: history->last().succ->size = 0
inv: history->first().pre->size = 0

OclMessageValue
[1] Only one of the attributes isSyncOperation, isAsyncOperation, and isSignal may be true at the same time.

context OclMessageValue
inv: isSyncOperation implies isAsyncOperation = false and isSignal = false
inv: isAsyncOperation implies isSyncOperation = false and isSignal = false
inv: isSignal implies isSyncOperation = false and isAsyncOperation = false

[2] The return message is only present if, and only if the ocl message value is a synchronous operation call.
context OclMessageValue
inv: isSyncOperation implies returnMessage->size() = 1
inv: not isSyncOperation implies returnMessage->size() = 0

OclVoidValue
No additional well-formedness rules. 

PrimitiveValue
No additional well-formedness rules. 

SequenceTypeValue
[1] All elements belonging to a sequence value have unique index numbers.

self.element->isUnique(e : Element | e.indexNr)

SetTypeValue
[1] All elements belonging to a set value have unique values. 

self.element->isUnique(e : Element | e.value)

StaticValue
No additional well-formedness rules. 

TupleValue
[1] All elements belonging to a tuple value have unique names.

self.elements->isUnique(e : Element | e.name)

Value
No additional well-formedness rules. 

10.2.3 Additional operations for the Values Package

LocalSnapshot
[1] The operation allPredecessors returns the collection of all snapshots before a snapshot, allSuccessors returns the 

 collection of all snapshots after a snapshot. 
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context LocalSnapshot 
def: let allPredecessors() : Sequence(LocalSnapshot) =
         if pred->notEmpty then
            pred->union(pred.allPredecessors())
         else
            Sequence {}
         endif
def: let allSuccessors() : Sequence(LocalSnapshot) =
         if succ->notEmpty then
            succ->union(succ.allSuccessors())
         else
            Sequence {}

         endif 

ObjectValue
[1] The operation getCurrentValueOf results in the value that is bound to the name parameter in the latest snapshot in the 

  history of an object value. Note that the value may be the UndefinedValue.
context ObjectValue::getCurrentValueOf(n: String): Value
pre: -- none
post: result = history->last().bindings->any(name = n).value

[2] The operation outgoingMessages results in the sequence of OclMessageValues that have been in the output queue of 
   the object between the last postcondition snapshot and its associated precondition snapshot.

context OclExpEval::outgoingMessages() : Sequence( OclMessageValue )
pre: -- none
post:
let end: LocalSnapshot =

history->last().allPredecessors()->select( isPost = true )->first() in
let start: LocalSnapshot = end.pre  in
let inBetween: Sequence( LocalSnapshot ) = 

start.allSuccessors()->excluding( end.allSuccessors())->including( start ) in
result = inBetween.outputQ->iterate ( 
-- creating a sequence with all elements present once
m : oclMessageValue; 
res: Sequence( OclMessageValue ) = Sequence{}
| if not res->includes( m )

then res->append( m )
else res
endif )

endif

TupleValue
[1] The operation getValueOf results in the value that is bound to the name parameter in the tuple value.

context TupleValue::getValueOf(n: String): Value
pre: -- none
post: result = elements->any(name = n).value

10.2.4 Overview of the Values package

Figure 18 on page 102 shows an overview of the inheritance relationships between the classes in the Values package.
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10.3 The Evaluations Package
This section defines the evaluations of OCL expressions. The evaluations package is a mirror image of the expressions 
package from the abstract syntax. Figure 19 on page 103 shows how the environment of an OCL expression evaluation is 
structured. The environment is determined by the placement of the expression within the UML model as discussed in 
Chapter 12 (“The Use of Ocl Expressions in UML Models”). The calculation of the environment is done in the 
ExpressionInOclEval, which will be left undefined here.

 Figure 20 on page 104 shows the core part of the Evaluations package. The basic elements in the package are the classes 
OclEvaluation, PropertyCallExpEval and VariableExpEval. An OclEvaluation always has a result value, and a name 
space that binds names to values. In Figure 21 on page 106 the various subtypes of model propertycall evaluation are 
defined.

Most of the OCL expressions can be simply evaluated, i.e. their value can be determined based on a non-changing set of 
name value bindings. Operation call expressions, however, need the execution of the called operation. The semantics of 
the execution of an operation will be defined in the UML infrastructure. For our purposes it is enough to assume that an 

Figure 18 - The inheritance tree of classes in the Values package
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operation execution will add to the environment of an OCL expression the name ‘result’ bound to a certain value. In order 
not to become tangled in a mix of terms, the term evaluation is used in the following to denote both the ‘normal’ OCL 
evaluations and the executions of operation call expressions.

In sections 10.3.2 (“Model PropertyCall Evaluations”) to 10.3.6 (“Let expressions”) special subclasses of OclExpEval 
will be defined.

10.3.1 Definitions of concepts for the Evaluations package

The section lists the definitions of concepts in the Evaluations package in alphabetical order.

EvalEnvironment
A EvalEnvironment is a set of NameValueBindings that form the environment in which an OCL expression is evaluated. 
A EvalEnvironment has three operations which are defined in the section (“Additional operations of the Evaluations 
package”).

Associations
• bindings The NameValueBindings that are the elements of this name space.

IterateExpEval
An IterateExpEval is an expression evaluation which evaluates its body expression for each element of a collection 
value, and accumulates a value in a result variable. It evaluates an IterateExp.

IteratorExpEval
An IteratorExp is an expression evaluation which evaluates its body expression for each element of a collection.  

Figure 19 - The environment for ocl evaluations

DomainElement

NameValueBindingOclExpEvalExpressionInOclEval

0..1 1+context0..1 1

EvalEnvironment
0..n

+bindings

0..n1 11

+environment

1

1 0..11

+beforeEnvironment

0..1
1+environment1
UML OCL 2.0 Adopted Specification        103



ExpressionInOclEval
An ExpressionInOclEval is an evaluation of the context of an OCL expression. It is the counterpart in the domain of the 
ExpressionInOcl metaclass defined in Chapter 12 (“The Use of Ocl Expressions in UML Models”). It is merely included 
here to be able to determine the environment of an OCL expression.

LiteralExpEval
A Literal expression evaluation is an evaluation of a Literal expression.

LoopExpEval
A loop expression evaluation is an evaluation of a Loop expression.

Associations
• bodyEvals The oclExpEvaluations that represent the evaluation of the body expression for each ele-

ment in the source collection.

• iterators The names of the iterator variables in the loop expression.

Figure 20 - Domain model for ocl evaluations                  
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ModelPropertyCallExpEval
A model property call expression evaluation is an evaluation of a ModelPropertyCallExp. In Figure 21 on page 106 the 
various subclasses of ModelPropertyCallExpEval are shown.

Operations
• atPre The atPre operation returns true if the property call is marked as being evaluated at pre-

condition time.

OclExpEval
An ocl expression evaluation is an evaluation of an OclExpression. It has a result value, and it is associated with a set of 
name-value bindings, called environment. These bindings represent the values that are visible for this evaluation, and the 
names by which they can be referenced. A second set of name-value bindings is used to evaluate any sub expression for 
which the operation atPre returns true, called beforeEnvironment.

Note that as explained in chapters 9 (“Concrete Syntax”) and 12 (“The Use of Ocl Expressions in UML Models”), these 
bindings need to be established, based on the placement of the OCL expression within the UML model. A binding for an 
invariant will not need the beforeEnvironment, and it will be different from a binding of the same expression when used 
as precondition.

Associations
• environment The set of name value bindings that is the context for this evaluation of an ocl expression.

• beforeEnvironment The set of name value bindings at the precondition time of an operation, to evaluate any 
sub expressions of type ModelPropertyCallExp for which the operation atPre returns true.

• resultValue The value that is the result of evaluating the OclExpression.

OclMessageExpEval
An ocl message expression evaluation is defined in Section 10.3.4 (“Ocl Message Expression Evaluations”), but included 
in this diagram for completeness.

PropertyCallExpEval
A property call expression evaluation is an evaluation of a PropertyCallExp.

Associations
• source The result value of the source expression evaluation is the instance that performs the prop-

erty call.

VariableDeclEval
A variable declaration evaluation represents the evaluation of a variable declaration. Note that this is not a subtype of 
OclExpEval, therefore it has no resultValue.

Associations
• name The name of the variable.

• initExp The value that will be initially bound to the name of this evaluation.
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VariableExpEval
A variable expression evaluation is an evaluation of a VariableExp, which in effect is the search of the value that is bound 
to the variable name within the environment of the expression.

Associations
• variable The name that refers to the value that is the result of this evaluation.

10.3.2 Model PropertyCall Evaluations

The subtypes of ModelPropertyCallExpEval are shown in Figure 21, and are defined in this section in alphabetical 
order.

Figure 21 - Domain model for ModelPropertyCallExpEval and subtypes       
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AssociationClassCallExpEval
An association end call expression evaluation is an evaluation of a AssociationClassCallExp, which in effect is the search 
of the value that is bound to the associationClass name within the expression environment.

Associations
• referredAssociationClass The name of the AssociationClass to which the corresponding AssociationClassCallExp 

is a reference.

AssociationEndCallExpEval
An association end call expression evaluation is an evaluation of a AssociationEndCallExp, which in effect is the search 
of the value that is bound to the associationEnd name within the expression environment.

Associations
• referredAssociationEnd The name of the AssociationEnd to which the corresponding NavigationCallExp is a 

reference.

AttributeCallExpEval
An attribute call expression evaluation is an evaluation of an AttributeCallExp, which in effect is the search of the value 
that is bound to the attribute name within the expression environment.

Associations
• referredAttribute The name of the Attribute to which the corresponding AttributeCallExp is a reference.

NavigationCallExpEval
A navigation call expression evaluation is an evaluation of a NavigationCallExp.

Associations
• navigationSource The name of the AssociationEnd of which the corresponding NavigationCallExp is the 

source.

OperationCallExp
An operation call expression evaluation is an evaluation of an OperationCallExp.

Associations
• arguments The arguments denote the arguments to the operation call. This is only useful when the 

operation call is related to an Operation that takes parameters.

• referredOperation The name of the Operation to which this OperationCallExp is a reference. This is an 
Operation of a Classifier that is defined in the UML model.

10.3.3 If Expression Evaluations

If expression evaluations are shown in Figure 22, and defined in this section.
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IfExpEval
An IfExpEval is an evaluation of an IfExp.

Associations
• condition The OclExpEval that evaluates the condition of the corresponding IfExpression.

• thenExpression The OclExpEval that evaluates the thenExpression of the corresponding IfExpression.

• elseExpression The OclExpEval that evaluates the elseExpression of the corresponding IfExpression.

10.3.4 Ocl Message Expression Evaluations

Ocl message expressions are used to specify the fact that an object has, or will sent some message to another object at a 
some moment in time. Ocl message expresssion evaluations are shown in Figure 23 on page 109, and defined in this 
section.

OclMessageArgEval
An ocl message argument evaluation is an evaluation of a OclMessageArg. It represents the evaluation of the actual 
parameters to the Operation or Signal. An argument of a message expression is either an ocl expression, or a variable 
declaration.

Associations
• variable The OclExpEval that represents the evaluation of the argument, in case the argument is a 

VariableDeclaration.

• expression The OclExpEval that represents the evaluation of the argument, in case the argument is 
an OclExpression.

Figure 22 - Domain model for if expression  
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OclMessageExpEval
An ocl message expression evaluation is an evaluation of a OclMessageExp. As explained in [Kleppe2000] the only 
demand we can put on the ocl message expression is that the OclMessageValue it represents (either an operation call, or  
a UML signal), has been at some time between ‘now’ and a reference point in time in the output queue of the sending 
instance. The ‘now’ timepoint is the point in time at which this evaluation is performed. This point is represented by the 
environment link of the OclMessageExpEval (inherited from OclExpEval).

Associations
• target The OclExpEval that represents the evaluation of the target instance or instances on 

which the action is perfomed.

• arguments The OclMessageArgEvals that represent the evaluation of the actual parameters to the 
Operation or Message. 

UnspecifiedValueExpEval
An unspecified value expression evaluation is an evaluation of an UnSpecifiedValueExp. It results in a randomly picked 
instance of the type of the expression.

10.3.5 Literal Expression Evaluations

This section defines the different types of literal expression evaluations in OCL, as shown in Figure 24 on page 110. 
Again it is a complete mirror image of the abstract syntax.

BooleanLiteralExpEval
A boolean literal expression evaluation represents the evaluation of a boolean literal expression.

Figure 23 - Domain model for message evaluation    
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CollectionItemEval
A collection item evaluation represents the evaluation of a collection item.

CollectionLiteralExpEval
A collection literal expression evaluation represents the evaluation of a collection literal expression.

CollectionLiteralPartEval
A collection literal part evaluation represents the evaluation of a collection literal part.

CollectionRangeEval
A collection range evaluation represents the evaluation of a collection range.

Figure 24 - Domain model for literal expressions
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EnumLiteralExpEval
An enumeration literal expression evaluation represents the evaluation of an enumeration literal expression.

IntegerLiteralExpEval
A integer literal expression evaluation represents the evaluation of a integer literal expression.

NumericLiteralExpEval
A numeric literal expression evaluation represents the evaluation of a numeric literal expression.

PrimitiveLiteralExpEval
A primitive literal expression evaluation represents the evaluation of a primitive literal expression.

RealLiteralExpEval
A real literal expression evaluation represents the evaluation of a real literal expression.

StringLiteralExpEval
A string literal expression evaluation represents the evaluation of a string literal expression.

TupleLiteralExpEval
A tuple literal expression evaluation represents the evaluation of a tuple literal expression.

TupleLiteralExpPartEval
A tuple literal expression part evaluation represents the evaluation of a tuple literal expression part.

10.3.6 Let expressions

Let expressions define new variables. The structure of the let expression evaluation is shown in Figure 25.

Figure 25 - Domain model for let expression   
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LetExpEval
A Let expression evaluation is an evaluation of a Let expression that defines a new variable with an initial value. A Let 
expression evaluation changes the environment of the in expression evaluation.

Associations
• variable The name of the variable that is defined.

• in The expression in whose environment the defined variable is visible.

• initExpression The expression that represents the initial value of the defined variable.

10.3.7 Well-formedness Rules of the Evaluations package

The metaclasses defined in the evaluations package have the following well-formednes rules. These rules state how the 
result value is determined. This defines the semantics of the OCL expressions.

AssociationClassCallExpEval
[1] The result value of an association class call expression is the value bound to the name of the association class to which it

refers. Note that the determination of the result value when qualifiers are present is specified in Section 10.4.3 (“Well-
formedness rules for the AS-Domain-Mapping.exp-eval Package”). The operation getCurrentValueOf is an operation
defined on ObjectValue in Section 10.2.3 (“Additional operations for the Values Package”).
context AssociationClassCallExpEval inv: 
qualifiers->size = 0 implies
     resultValue =   
              source.resultValue.getCurrentValueOf(referredAssociationClass.name)

AssociationEndCallExpEval
[1] The result value of an association end call expression is the value bound to the name of the association end to which it

refers. Note that the determination of the result value when qualifiers are present is specified in Section 10.4.3 (“Well-
formedness rules for the AS-Domain-Mapping.exp-eval Package”). 

context  AssociationEndCallExpEval inv: 
qualifiers->size = 0 implies
     resultValue =

           source.resultValue.getCurrentValueOf(referredAssociationEnd.name)

AttributeCallExpEval
[1] The result value of an attribute call expression is the value bound to the name of the attribute to which it refers.

context AttributeCallExpEval inv: 
resultValue = if source.resultValue->isOclType( ObjectValue) then
                 source.resultValue->asOclType( ObjectValue )
                                    .getCurrentValueOf(referredAttribute.name)
              else -- must be a tuple value
                 source.resultValue->asOclType( TupleValue )
                                    .getValueOf(referredAttribute.name)
              endif

BooleanLiteralExpEval
No extra well-formedness rules. The manner in which the resultValue is determined is given in Section 10.4.3 (“Well-
formedness rules for the AS-Domain-Mapping.exp-eval Package”).
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CollectionItemEval
[1]  The value of a collection item is the result value of its item expression. The environment of this item expression is equal

to the environment of the collection item evaluation.
context CollectionItemEval 
inv: element = item.resultValue
inv: item.environment = self.environment

CollectionLiteralExpEval
[1]  The environment of its parts is equal to the environment of the collection literal expression evaluation.

context CollectionLiteralExpEval 
inv: parts->forAll( p | p.environment = self.environment )

[2] The result value of a collection literal expression evaluation is a collection literal value, or one of its subtypes.
context CollectionLiteralExpEval inv:
resultValue.isOclKind( CollectionValue )

[3] The number of elements in the result value is equal to the number of elements in the collection literal parts, taking into
account that a collection range can result in many elements.

context CollectionLiteralExpEval inv:
resultValue.elements->size() = parts->collect( element )->size()->sum()

[4] The elements in the result value are the elements in the collection literal parts, taking into account that a collection range
can result in many elements.
context CollectionLiteralExpEval inv:
let allElements = parts->collect( element )->flatten() in
    Sequence{1..allElements->size()}->forAll( i: Integer |
                resultValue.elements->at(i).name = ’’ and
                resultValue.elements->at(i).value = allElements->at(i) and
                self.kind = CollectionKind::Sequence implies
                     resultValue.elements->at(i).indexNr = i )

CollectionLiteralPartEval
No extra well-formedness rules. The manner in which its value is determined is given by its subtypes.

CollectionRangeEval
[1]  The value of a collection range is the range of integer numbers between the result value of its first expression and its last

expression. 
context CollectionRangeEval 
inv: element.isOclType( Sequence(Integer) ) and
     element = getRange( first->asOclType(Integer), last->asOclType(Integer) )

EnumLiteralExpEval
No extra well-formedness rules.

EvalEnvironment
[1] All names in a name space must be unique.

context EvalEnvironment inv:
bindings->collect(name)->forAll( name: String | bindings->collect(name)->isUnique(name))
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ExpressionInOclEval
No extra well-formedness rules.

IfExpEval
[1] The result value of an if expression is the result of the thenExpression if the condition is true, else it is the result of the

elseExpression.
context IfExpEval inv:
resultValue = if condition then thenExpression.resultValue else elseExpression.resultValue

[2] The environment of the condition, thenExpression and elseExpression are both equal to the environment of the if expres-
sion.
context IfExpEval 
inv: condition.environment = environment
inv: thenExpression.environment = environment
inv: elseExpression.environment = environment

IntegerLiteralExpEval
No extra well-formedness rules. The manner in which the resultValue is determined is given in Section 10.4.3 (“Well-
formedness rules for the AS-Domain-Mapping.exp-eval Package”).

IterateExpEval
[1] All sub evaluations have a different environment. The first sub evaluation will start with an environment in which all iter-

ator variables are bound to the first element of the source, plus the result variable which is bound to the init expression of
the variable declaration in which it is defined.

context IterateExpEval
inv: let bindings: Sequence( NameValueBindings ) =
         iterators->collect( i | 
              NameValueBinding( i.varName, source->asSequence()->first() )
     in
        bodyEvals->at(1).environment = self.environment->addAll( bindings )
           ->add( NameValueBinding( result.name, result.initExp.resultValue ))

[2] The environment of any sub evaluation is the same environment as the one from its previous sub evaluation, taking 
  into account the bindings of the iterator variables, plus the result variable which is bound to the result value of the last 
   sub evaluation.
inv: let SS: Integer = source.value->size() 
in if iterators->size() = 1 then
         Sequence{2..SS}->forAll( i: Integer |
             bodyEvals->at(i).environment = bodyEvals->at(i-1).environment

             ->replace( NameValueBinding( iterators->at(1).varName,
                                                source.value->asSequence()->at(i)))
                   ->replace( NameValueBinding( result.varName, 
                                                bodyEvals->at(i-1).resultValue ))) 
   else -- iterators->size() = 2              
         Sequence{2..SS*SS}->forAll( i: Integer |

           bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
             ->replace( NameValueBinding( iterators->at(1).varName, 

                        source->asSequence()->at(i.div(SS) + 1) ))
             ->replace( NameValueBinding( iterators->at(2).varName, 

                        source.value->asSequence()->at(i.mod(SS))))
                   ->replace( NameValueBinding( result.varName, 
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                                                bodyEvals->at(i-1).resultValue )))
   endif

[3] The result value of an IteratorExpEval is the result of the last of its body evaluations.
context IteratorExpEval 
inv: resultValue = bodyEvals->last().resultValue

IteratorExpEval
The IteratorExp in the abstract syntax is merely a placeholder for the occurence of one of the predefined iterator 
expressions in the standard library (see Chapter 11 (“The OCL Standard Library”)). These predefined iterator expressions 
are all defined in terms of an iterate expression. The semantics defined for the iterate expression are sufficient to define 
the iterator expression. No well-formedness rules for IteratorExpEval are defined.

LetExpEval
[1] A let expression results in the value of its in expression.

context LetExpEval inv:
resultValue = in.resultValue

[2] A let expression evaluation adds a name value binding that binds the variable to the value of its initExpression, to the
environment of its in expression.

context LetExpEval
inv: in.environment = self.environment

->add( NameValueBinding( variable.varName, variable.initExpression.resultValue ))

[3] The environment of the initExpression is equal to the environment of this Let expression evaluation.
context LetExpEval
inv: initExpression.environment = self.environment

LiteralExpEval
No extra well-formedness rules.

LoopExpEval
The result value of a loop expression evaluation is determined by its subtypes.

[1] There is an OclExpEval (a sub evaluation) for combination of values for the iterator variables. Each iterator variable 
  will run through every element of the source collection.
context LoopExpEval
inv: bodyEvals->size() = 
                   if iterators->size() = 1 then
                         source.value->size() 
                   else -- iterators->size() = 2 
                         source.value->size() * source.value->size()
                   endif

[2] All sub evaluations (in the sequence bodyEvals) have a different environment. The first sub evaluation will start with 
  an environment in which all iterator variables are bound to the first element of the source. Note that this is an 
  arbitrary choice, one could easily well start with the last element of the source, or any other combination.

context LoopExpEval
inv: let bindings: Sequence( NameValueBindings ) =
         iterators->collect( i | 
              NameValueBinding( i.varName, source->asSequence()->first() )
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     in
        bodyEvals->at(1).environment = self.environment->addAll( bindings )

[3] All sub evaluations (in the sequence bodyEvals) have a different environment. The environment is the same 
  environment as the one from the previous bodyEval, where the iterator variable or variables are bound to the 
   subsequent elements of the source. 
context LoopExpEval
inv: 
let SS: Integer = source.value->size() 
in if iterators->size() = 1 then
         Sequence{2..SS}->forAll( i: Integer |
             bodyEvals->at(i).environment = bodyEvals->at(i-1).environment

             ->replace( NameValueBinding( iterators->at(1).varName, 
                        source.value->asSequence()->at(i) ))) 
   else -- iterators->size() = 2              
         Sequence{2..SS*SS}->forAll( i: Integer |

           bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
             ->replace( NameValueBinding( iterators->at(1).varName, 

                        source->asSequence()->at(i.div(SS) + 1) ))
             ->replace( NameValueBinding( iterators->at(2).varName, 

                        source.value->asSequence()->at(i.mod(SS)) )) ) ))
   endif

ModelPropertyCallExpEval
Result value is determined by its subtypes.

[1] The environment of an ModelPropertyCall expression is equal to the environment of its source.
context ModelPropertyCallExpEval inv: 
environment = source.environment

NavigationCallExpEval
[1] When the navigation call expression has qualifiers, the result value is limited to those elements for which the 

  qualifier value equals the value of the attribute.
-- To be done.

NumericLiteralExpEval
No extra well-formedness rules. Result value is determined by its subtypes.

OclExpEval
The result value of an ocl expression is determined by its subtypes.

[1] The environment of an OclExpEval is determined by its context, i.e. the ExpressionInOclEval.
context OclExpEval
inv: environment = context.environment

[2] Every OclExpEval has an environment in which at most one self instance is known.
context OclExpEval
inv: environment->select( name = ’self’ )->size() = 1

OclMessageExpEval
[1] The result value of an ocl message expression is an ocl message value.
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context OclMessageExpEval
inv: resultValue->isTypeOf( OclMessageValue )

[2] The result value of an ocl message expression is the sequence of the outgoing messages of the ‘self’ object that 
   matches the expression. Note that this may result in an empty sequence when the expression does not match to any 
   of the outgoing messages.
context OclMessageExpEval
inv: resultValue = 
        environment.getValueOf( ’self’ ).outgoingMessages->select( m |
             m.target = target.resultValue and
             m.name = self.name and
             self.arguments->forAll( expArg: OclMessageArgEval | 
                not expArg.resultValue.oclIsUndefined() implies
                   m.arguments->exists( messArg | messArg.value = expArg.value ))

[3] The source of the resulting ocl message value is equal to the ‘self’ object of the ocl message expression.
context OclMessageExpEval
inv: resultValue.source = environment.getValueOf( ’self’ )

[4] The isSent attribute of the resulting ocl message value is true only if the message value is in the outgoing messages 
   of the ‘self’ object.
context OclMessageExpEval
inv: 
if resultValue.oclIsUndefined()
       resultValue.isSent = false
else
       resultValue.isSent = true
endif

[5] The target of an ocl message expression is an object value.
context OclMessageExpEval
inv: target.resultValue->isTypeOf( ObjectValue )

[6] The environment of all arguments, and the environment of the target expression are equal to the environment of 
   this ocl message value.
context OclMessageExpEval
inv: arguments->forAll( a | a.environment = self.environment )
inv: target.environment = self.environment

OclMessageArgEval
[1] An ocl message argument evaluation has either an ocl expression evaluation, or an unspecified value expression 

 evaluation, not both.
context OclMessageArgEval inv:
expression->size() = 1 implies unspecified->size() = 0
expression->size() = 0 implies unspecified->size() = 1

[2] The result value of an ocl message argument is determined by the result value of its expression, or its unspecified 
   value expression. 

context OclMessageArgEval inv:
if expression->size() = 1 
then resultValue = expression.resultValue
else resultValue = unspecified.resultValue
endif
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[3] The environment of the expression and unspecified value are equal to the environment of this ocl message argument.
context OclMessageArgEval
inv: expression.environment = self.environment
inv: unspecified.environment = self.environment

OperationCallExpEval
The definition of the semantics of the operation call expression depends on the definition of operation call execution in 
the UML semantics. This is part of the UML infrastructure specification, and will not be defined here. For the semantics 
of the OperationCallExp it suffices to know that the execution of an operation call will produce a result of the correct 
type. The latter will be specified in Section 10.4 (“The AS-Domain-Mapping Package”).

[1] The environments of the arguments of an operation call expression are equal to the environment of this call.
context  OperationCallExpEval inv: 
arguments->forall( a | a.environment = self.environment )

PropertyCallExpEval
The result value and environment are determined by its subtypes.

[1] The environment of the source of an property call expression is equal to the environment of this call.
context  PropertyCallExpEval inv: 
source.environment = self.environment

PrimitiveLiteralExpEval
No extra well-formedness rules. The result value is determined by its subtypes.

RealLiteralExpEval
No extra well-formedness rules. The manner in which the resultValue is determined is given in Section 10.4.3 (“Well-
formedness rules for the AS-Domain-Mapping.exp-eval Package”).

StringLiteralExpEval
No extra well-formedness rules. The manner in which the resultValue is determined is given in Section 10.4.3 (“Well-
formedness rules for the AS-Domain-Mapping.exp-eval Package”).

TupleLiteralExpEval
[1] The result value of a tuple literal expression evaluation is a tuple value whose elements correspond to the parts of the 

  tuple literal expression evaluation.
context TupleLiteralExpEval inv:
resultValue.isOclType( TupleValue ) and
tuplePart->size() = resultValue.elements->size() and
Sequence{1..tuplePart->size()}->forAll( i: Integer |
                resultValue.elements->at(i).name = tuplePart.name and
                resultValue.elements->at(i).value = tuplePart.initExpression.resultValue )

UnspecifiedValueExpEval
The result of an unspecified value expression is a randomly picked instance of the type of the expression. This rule will 
be defined in 10.4.3 (“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”).
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VariableDeclEval
No extra well-formedness rules.

VariableExpEval
[1] The result of a VariableExpEval is the value bound to the name of the variable to which it refers.

context VariableExpEval inv: 
resultValue = environment.getValueOf(referredVariable.varName)

Additional operations of the Evaluations package

EvalEnvironment
[1] The operation getValueOf results in the value that is bound to the name parameter in the bindings of a name space. 

 Note that the value may be the UndefinedValue.
context EvalEnvironment::getValueOf(n: String): Value
pre: -- none
post: result = bindings->any(name = n).value

[2] The operation replace replaces the value of a name, by the value given in the nvb parameter.

context EvalEnvironment::replace(nvb: NameValueBinding): EvalEnvironment
pre: -- none
post: result.bindings = self.bindings

->excluding( self.bindings->any( name = nvb.name) )->including( nvb )

[3] The operation add adds the name and value indicated by the NameValueBinding given by the nvb parameter.

context EvalEnvironment::add(nvb: NameValueBinding): EvalEnvironment
pre: -- none
post: result.bindings = self.bindings->including( nvb )

[4] The operation addAll adds all NameValueBindings in the nvbs parameter.
context EvalEnvironment::add(nvbs: Collection(NameValueBinding)): EvalEnvironment
pre: -- none
post: result.bindings = self.bindings->union( nvbs )

CollectionRangeEval
[1] The operation getRange() returns a sequence of integers that contains all integer in the collection range.

context CollectionRangeEval::getRange(first, last: Integer): Sequence(Integer)
pre: -- none
post: result = if first = last then
                  first->asSequence()
               else
                  first->asSequence()->union(getRange(first + 1, last))

              endif

10.3.8 Overview of the Values package

Figure 26 on page 120 shows an overview of the inheritance relationships between the classes in the Values package.
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10.4 The AS-Domain-Mapping Package
The figures on page 121 and page 122 show the associations between the abstract syntax concepts and the domain 
concepts defined in this chapter. Each domain concept has a counterpart called model in the abstract syntax. Each model 
has one or more instances in the semantic domain. Note that in particular every OCL expression can have more than one 
evaluation. Still every evaluation has only one value. For example, the "asSequence" applied to a Set may have n! 
evaluations, which each give a different permutation of the elements in the set, but each evaluation has exactly one result 
value.

Figure 26 - The inheritance tree of classes in the Evaluations package
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Figure 27 - Associations between values and the types defined in the abstract syntax.
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10.4.1 Well-formedness rules for the AS-Domain-Mapping.type-value Package

CollectionValue
[1] All elements in a collection value must have a type that conforms to the elementType of its corresponding CollectionType.

context CollectionValue inv:
elements->forAll( e: Element | e.value.model.conformsTo( model.elementType ) )

DomainElement
No additional well-formedness rules.

Element
No additional well-formedness rules.

EnumValue
No additional well-formedness rules.

ObjectValue
[1] All bindings in an object value must correspond to attributes or associations defined in the object’s Classifier.

context ObjectValue inv:
history->forAll( snapshot | snapshot.bindings->forAll( b |
           self.model.allAttributes()->exists (attr | b.name = attr.name)
           or
           self.model.allAssociationEnds()->exists ( role | b.name = role.name) ) )

OclMessageValue
No additional well-formedness rules.

PrimitiveValue
No additional well-formedness rules.

SequenceTypeValue
No additional well-formedness rules.

SetTypeValue
No additional well-formedness rules.

StaticValue
No additional well-formedness rules.

TupleValue
[1] The elements in a tuple value must have a type that conforms to the type of the corresponding tuple parts.

context TupleValue inv:
elements->forAll( elem | 

let correspondingPart: Attribute = 
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self.model.allAttributes()->select( part | part.name = elem.name ) in
elem.value.model.conformsTo( correspondingPart.type ) )

UndefinedValue
No additional well-formedness rules.

Value
No additional well-formedness rules.

10.4.2 Additional operations for the AS-Domain-Mapping.type-value Package

Value
[1] The additional operation isInstanceOf returns true if this value is an instance of the parameter classifier.

context Value::isInstanceOf( c: Classifier ): Boolean
pre: -- none
post: result = self.model.conformsTo( c )

10.4.3 Well-formedness rules for the AS-Domain-Mapping.exp-eval Package

AssociationClassCallExpEval  
[1] The string that represents the referredAssociationClass in the evaluation must be equal to the name of the referredAssoci-

ationClass in the corresponding expression.
context AssociationClassCallExpEval inv:
referredAssociationClass = model.referredAssociationClass.name

[2] The result value of an association class call expression evaluation that has qualifiers, is determined according to the fol-
lowing rule. The ‘normal’ determination of result value is already given in section 10.3.7 (“Well-formedness Rules of the
Evaluations package”).
let 
-- the attributes that are the formal qualifiers. Because and association class has two or
-- more association ends, we must select the qualifiers from the other end(s), not from
-- the source of this expression. We allow only 2-ary associations.
   formalQualifiers : Sequence(Attribute) =       
              self.model.referredAssociationClass.connection->any( c | 
                                         c <> self.navigationSource).qualifier.asSequence() ,  

-- the attributes of the class at the qualified end. Here we already assume that an
-- AssociationEnd will be owned by a Classifier, as will most likely be the case in the 
-- UML 2.0 Infrastructure.
   objectAttributes: Sequence(Attribute) =
              self.model.referredAssociationClass.connection->any( c | 
                     c <> self.navigationSource).owner.feature->select( f | 
                           f.isOclType( Attribute ).asSequence() ,  

-- the rolename of the qualified association end
   qualifiedEnd: String = self.model.referredAssociationClass.connection->any( c | 
                     c <> self.navigationSource).name ,  

-- the values for the qualifiers given in the ocl expression
   qualifierValues : Sequence( Value ) = self.qualifiers.asSequence() 
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-- the objects from which a subset must be selected through the qualifiers
   normalResult =   
              source.resultValue.getCurrentValueOf(referredAssociationClass.name)

in                                                 
-- if name of attribute of object at qualified end equals name of formal qualifier then
-- if value of attribute of object at qualified end equals the value given in the exp
-- then select this object and put it in the resultValue of this expression.

qualifiers->size <> 0 implies
normalResult->select( obj | 
     Sequence{1..formalQualifiers->size()}->forAll( i |     
          objectAttributes->at(i).name = formalQualifiers->at(i).name and
          obj.qualifiedEnd.getCurrentValueOf( objectAttributes->at(i).name ) = 

                                                     qualifiersValues->at(i) ))

AssociationEndCallExpEval  
[1] The string that represents the referredAssociationEnd in the evaluation must be equal to the name of the referredAssocia-

tionEnd in the corresponding expression.
context AssociationEndCallExpEval inv:
referredAssociationEnd = model.referredAssociationEnd.name

[2] The result value of an association end call expression evaluation that has qualifiers, is determined according to the fol-
lowing rule. The ‘normal’ determination of result value is already given in section 10.3.7 (“Well-formedness Rules of the
Evaluations package”).
let 
-- the attributes that are the formal qualifiers 
   formalQualifiers : Sequence(Attribute) = self.model.referredAssociationEnd.qualifier ,  

-- the attributes of the class at the qualified end
   objectAttributes: Sequence(Attribute) =
      (if self.resultValue.model.isOclKind( Collection ) implies
      then self.resultValue.model.oclAsType( Collection ).elementType->
                                         collect( feature->asOclType( Attribute ) )
      else self.resultValue.model->collect( feature->asOclType( Attribute ) )
      endif).asSequence() ,

-- the values for the qualifiers given in the ocl expression
   qualifierValues : Sequence( Value ) = self.qualifiers.asSequence() 

-- the objects from which a subset must be selected through the qualifiers
   normalResult =   
              source.resultValue.getCurrentValueOf(referredAssociationEnd.name)

in                                                 
-- if name of attribute of object at qualified end equals name of formal qualifier then
-- if value of attribute of object at qualified end equals the value given in the exp
-- then select this object and put it in the resultValue of this expression.

qualifiers->size <> 0 implies
normalResult->select( obj |
     Sequence{1..formalQualifiers->size()}->forAll( i |     
          objectAttributes->at(i).name = formalQualifiers->at(i).name and
          obj.getCurrentValueOf( objectAttributes->at(i).name ) = 
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                                                     qualifiersValues->at(i) ))

AttributeCallExpEval  
[1] The string that represents the referredAttribute in the evaluation must be equal to the name of the referredAttribute in the

corresponding expression.
context AttributeCallExpEval inv:
referredAttribute = model.referredAttribute.name

BooleanLiteralExpEval
[1] The result value of a boolean literal expression is equal to the literal expression itself (‘true’ or ‘false’). Because the

booleanSymbol attribute in the abstract syntax is of type Boolean as defined in the MOF, and resultValue is of type Primi-
tive as defined in this chapter, a conversion is neccessary. For the moment, we assume the additional operation MOF-
booleanToOCLboolean() exists. This will need to be re-examined when the MOF and/or UML Infrastructure submissions
are finalised.

context BooleanLiteralExpEval inv:
resultValue = model.booleanSymbol.MOFbooleanToOCLboolean()

CollectionItemEval
No extra well-formedness rules.

CollectionLiteralExpEval
No extra well-formedness rules.

CollectionLiteralPartEval
No extra well-formedness rules.

CollectionRangeEval
No extra well-formedness rules.

EvalEnvironment 
Because there is no mapping of name space to an abstract syntax concept, there are no extra well-formedness rules.

LiteralExpEval  
No extra well-formedness rules.

LoopExpEval
No extra well-formedness rules.

EnumLiteralExpEval  
[1] The result value of an EnumLiteralExpEval must be equal to one of the literals defined in its type.

context EnumLiteralExpEval inv:
model.type->includes( self.resultValue )
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IfExpEval
[1] The condition evaluation corresponds with the condition of the expression, and likewise for the thenExpression and the

else Expression.

context IfExpEval inv:
condition.model = model.condition
thenExpression.model = model.thenExpression
elseExpression.model = model.elseExpression

IntegerLiteralExpEval
context IntegerLiteralExpEval inv:
resultValue = model.integerSymbol

IterateExpEval
[1] The model of the result of an iterate expression evaluation is equal to the model of the result of the associated IterateExp.

context IterateExpEval
inv: result.model = model.result )

IteratorExpEval
No extra well-formedness rules.

LetExpEval  
[1] All parts of a let expression evaluation correspond to the parts of its associated LetExp.

context LetExpEval inv:
in.model = model.in and
initExpression.model = model.initExpression and
variable = model.variable.varName

LoopExpEval
[1] All sub evaluations have the same model, which is the body of the associated LoopExp.

context LoopExpEval
inv: bodyEvals->forAll( model = self.model )

ModelPropertyCallExpEval  
No extra well-formedness rules.

NumericLiteralExpEval
No extra well-formedness rules.

NavigationCallExpEval  
[1] The string that represents the navigation source in the evaluation must be equal to the name of the navigationSource in the

corresponding expression.
context NavigationCallExpEval inv:
navigationSource = model.navigationSource.name

[2] The qualifiers of a navigation call expression evaluation must correspond with the qualifiers of the associated expression.

context NavigationCallExpEval inv:
Sequence{1..qualifiers->size()}->forAll( i |
UML OCL 2.0 Adopted Specification        127



         qualifiers->at(i).model = model.qualifiers->at(i).type )

OclExpEval  
[1] The result value of the evaluation of an ocl expression must be an instance of the type of that expression.

context OclExpEval
inv: resultValue.isInstanceOf( model.type )

OclMessageExpEval
[1] An ocl message expression evaluation must correspond with its message expression.

context OclMessageExpEval
inv: target.model = model.target
inv: Set{1..arguments->size()}->forall (i | arguments->at(i) = model.arguments->at(i) ) 

[2] The name of the resulting ocl message value must be equal to the name of the operation or signal indicated in the message
expression.

context OclMessageExpEval inv: 
if model.operation->size() = 1 
then resultValue.name = model.operation.name
else resultValue.name = model.signal.name
endif

[3] The isSignal, isSyncOperation, and isAsyncOperation attributes of the result value of an ocl message expression evalua-
tion must correspond to the operation indicated in the ocl message expression.
context OclMessageExpEval 
inv: if model.calledOperation->size() = 1 

then model.calledOperation.isAsynchronous = true implies
resultValue.isAsyncOperation = true

else -- message represents sending a signal
resultValue.isSignal = true

endif

[4] The arguments of an ocl message expression evaluation must correspond to the formal input parameters of the operation,
or the attributes of the signal indicated in the ocl message expression.
context OclMessageExpEval 
inv: model.calledOperation->size() = 1 implies
       Sequence{1.. arguments->size()} ->forAll( i |
          arguments->at(i).variable->size() = 1 implies
               model.calledOperation.operation.parameter->
                    select( kind = ParameterDirectionKind::in )->at(i).name = 
                                                        arguments->at(i).variable
          and  
          arguments->at(i).expression->size() = 1 implies 
               model.calledOperation.operation.parameter->
                    select( kind = ParameterDirectionKind::in )at(i).type = 
                                                              arguments->at(i).expression.model
inv: model.sentSignal->size() = 1 implies
       Sequence{1.. arguments->size()} ->forAll( i |
          arguments->at(i).variable->size() = 1 implies
               model.sentSignal.signal.feature->select( 
                                             arguments->at(i).variable )->notEmpty()
          and  
          arguments->at(i).expression->size() = 1 implies 
               model.sentSignal.signal.feature.oclAsType(StructuralFeature).type = 
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                                             arguments->at(i).expression.model    

[5] The arguments of the return message of an ocl message expression evaluation must correspond to the names given by the
formal output parameters, and the result type of the operation indicated in the ocl message expression. Note that the Param-
eter type is defined in the UML 1.4 foundation package.
context OclMessageExpEval 
inv: let returnArguments: Sequence{ NameValueBindings ) =                       
                                        resultValue.returnMessage.arguments ,
         formalParameters: Sequence{ Parameter } =
                                        model.calledOperation.operation.parameter 
in
     resultValue.returnMessage->size() = 1 and model.calledOperation->size() = 1 implies
     -- ’result’ must be present and have correct type
          returnArguments->any( name = ’result’ ).value.model =
             formalParameters->select( kind = ParameterDirectionKind::return ).type 
     and 
     -- all ’out’ parameters must be present and have correct type      
     Sequence{1.. returnArguments->size()} ->forAll( i |
          returnArguments->at(i).name = 
             formalParameters->select( kind = ParameterDirectionKind::out )->at(i).name 
          and
          returnArguments->at(i).value.model = 
              formalParameters->select( kind = ParameterDirectionKind::out )->at(i).type )   

OclMessageArgEval
[1] An ocl message argument evaluation must correspond with its argument expression.

context OclMessageArgEval
inv: model.variable->size() = 1

implies variable->size() = 1 and variable.symbol = model.variable.name
inv: model.expression->size() = 1 

implies expression and expression.model = model.expression

OperationCallExpEval  
[1] The result value of an operation call expression will have the type given by the Operation being called, if the operation has

no out or in/out parmeters, else the type will be a tuple containing all out, in/out parameters and the result value.
context  OperationCallEval inv: 
let outparameters : Set( Parameter ) = referedOperation.parameter->select( p | 
                                  p.kind = ParameterDirectionKind::in/out or 
                                  p.kind = ParameterDirectionKind::out)
in
   if outparameters->isEmpty()
   then resultValue.model = model.referredOperation.parameter
                                  ->select( kind = ParameterDirectionKind::result ).type
   else resultValue.model.oclIsType( TupleType ) and
        outparameters->forAll( p |
             resultValue.model.attribute->exist( a | a.name = p.name and a.type = p.type ))     
   endif

[2] The string that represents the referred operation in the evaluation must be equal to the name of the referredOperation in
the corresponding expression.
context OperationCallExpEval inv:
referredOperation = model.referredOperation.name
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[3] The arguments of an operation call expression evaluation must correspond with the arguments of its associated expres-
sion.
context OperationCallExpEval inv:
Sequence{1..arguments->size}->forAll( i |
         arguments->at(i).model = model.arguments->at(i) )

PropertyCallExpEval  
[1] The source of the evaluation of a property call corresponds to the source of its associated expression.

context PropertyCallExpEval inv:
source.model = model.source

PrimitiveLiteralExpEval
No extra well-formedness rules.

RealLiteralExpEval
context RealLiteralExpEval inv:
resultValue = model.realSymbol

StringLiteralExpEval
context StringLiteralExpEval inv:
resultValue = model.stringSymbol

TupleLiteralExpEval
context TupleLiteralExpEval inv: 
model.tuplePart = tuplePart.model

UnspecifiedValueExpEval
[1] The result of an unspecified value expression is a randomly picked instance of the type of the expression.

context UnspecifiedValueExpEval
inv: resultValue = model.type.allInstances()->any( true )
inv: resultValue.model = model.type

VariableDeclEval
context VariableDeclEval inv: 
model.initExpression = initExpression.model

VariableExpEval  
No extra well-formedness rules.
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11 The OCL Standard Library
This section describes the OCL Standard Library of predefined types, their operations, and predefined expression 
templates in the OCL. This section contains all standard types defined within OCL, including all the operations defined 
on those types. For each operation the signature and a description of the semantics is given. Within the description, the 
reserved word ‘result’ is used to refer to the value that results from evaluating the operation. In several places, post 
conditions are used to describe properties of the result. When there is more than one postcondition, all postconditions 
must be true. A similar thing is true for multiple preconditions. If these are used, the operation is only defined if all 
preconditions evaluate to true.

11.1 Introduction
The structure, syntax and semantics of the OCL is defined in chapters 8 (“Abstract Syntax”), 9 (“Concrete Syntax”) and 
10 (“Semantics Described using UML”). This section adds another part to the OCL definition: a library of predefined 
types and operations. Any implementation of OCL must include this library package. This approach has also been taken 
by e.g. the Java definition, where the language definition and the standard libraries are both mandatory parts of the 
complete language definition.

The OCL standard library defines a number of types, which are shown in Figure 28 on page 132. It includes several 
primitive types: Integer, Real, String and Boolean. These are familiar from many other languages. The second part of the 
standard library consists of the collection types. They are Bag, Set, Sequence and Collection, where Collection is an 
abstract type. Note that all types defined in the OCL standard library are instances of an abstract syntax class. The OCL 
standard library exists at the modeling level, also referred to as the M1 level, where the abstract syntax is the metalevel 
or M2 level.

Next to definitions of types the OCL standard library defines a number of template expressions. Many operations defined 
on collections, map not on the abstract syntax metaclass ModelPropertyCallExp, but on the IteratorExp. For each of these 
a template expression that defines the name and format of the expression, is defined in Section 11.8 (“Predefined Iterator 
Expressions”).

11.2 The OclAny, OclVoid, and OclMessage types

11.2.1 OclAny

The type OclAny is the supertype of all types in the UML model and the primitive types in the OCL Standard Library. 
The collection types from the OCL Standard Library are not subtypes of OclAny. Properties of OclAny are available on 
each object in all OCL expressions. OclAny is itself an instance of the metatype Classifier.

All classes in a UML model inherit all operations defined on OclAny. To avoid name conflicts between properties in the 
model and the properties inherited from OclAny, all names on the properties of OclAny start with ‘ocl.’ Although 
theoretically there may still be name conflicts, they can be avoided. One can also use the oclAsType() operation to 
explicitly refer to the OclAny properties.

Operations of OclAny, where the instance of OclAny is called object.
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11.2.2 OclMessage

This section contains the definition of the standard type OclMessage. As defined in this section, each ocl message type is 
actually a template type with one parameter. ‘T’ denotes the parameter. A concrete ocl message type is created by 
substituting an operation or signal for the T.

The predefined type OclMessage is an instance of OclMessageType. Every OclMessage is fully determined by either the 
operation, or signal given as parameter. Note that there is conceptually an undefined (infinite) number of these types, as 
each is determined by a different operation or signal. These types are unnamed. Every type has as attributes the name of 
the operation or signal, and either all formal parameters of the operation, or all attributes of the signal. OclMessage is 
itself an instance of the metatype OclMessageType.

OclMessage has a number of predefined operations, as shown in the OCL Standard Library.
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Figure 28 - The types defined in the OCL standard library
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11.2.3 OclVoid

The type OclVoid is a type that conforms to all other types. It has one single instance called OclUndefined. Any 
propertycall applied on OclUndefined results in OclUndefined, except for the operation oclIsUndefined(). OclVoid is 
itself an instance of the metatype Classifier.

11.2.4 Operations and well-formedness rules

OclAny

= (object2 : OclAny) : Boolean

True if self is the same object as object2. Infix operator.
post: result = (self = object2)

<> (object2 : OclAny) : Boolean

True if self is a different object from object2. Infix operator.
post: result = not (self = object2)

oclIsNew() : Boolean

Can only be used in a postcondition. Evaluates to true if the self is created during performing the operation. I.e. it didn’t 
exist at precondition time. 

post: self@pre.oclIsUndefined()

oclIsUndefined() : Boolean
Evaluates to true if the self is equal to OclUndefined. 
post: result = self.isTypeOf( OclVoid )

oclAsType(typename : OclType) : T

Evaluates to self, where self is of the type identified by typename. Typename may be in the format 
Package::subPackage::classifier.

post: (result = self) and result.oclIsTypeOf( typeName )

oclIsTypeOf(typename : OclType) : Boolean

Evaluates to true if the self is of the type identified by typename. Typename may be in the format 
Package::subPackage::classifier.

post: -- TBD

oclIsKindOf(typename : OclType) : Boolean

Evaluates to true if the self conforms to the type identified by typename. Typename may be in the format 
Package::subPackage::classifier. 

post: -- TBD

oclIsInState(statename : OclState) : Boolean

Evaluates to true if the self is in the state indentified by statename. Statename may be in the format Class::State::subState. 
post: -- TBD
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allInstances() : Set( T )

Returns all instances of self. Type T is equal to self. May only be used for classifiers that have a finite number of 
instances. This is the case for, for instance, user defined classes because instances need to be created explicitly. This is not 
the case for, for instance, the standard String, Integer, and Real types. 

pre:  self.isKindOf( Classifier ) -- self must be a Classifier
      and -- TBD                  -- self must have a finite number of instances
                                  -- it depends on the UML 2.0 metamodel how this can be
                                  -- expressed
post: -- TBD

11.2.5 OclMessage

hasReturned() : Boolean

True if type of template parameter is an operation call, and the called operation has returned a value. This implies the fact 
that the message has been sent. False in all other cases.

post: -- 

result() : <<The return type of the called operation>>

Returns the result of the called operation, if type of template parameter is an operation call, and the called operation has 
returned a value. Otherwise the undefined value is returned. 

pre: hasReturned()

isSignalSent() : Boolean

Returns true if the OclMessage represents the sending of a UML Signal. 

isOperationCall() : Boolean

Returns true if the OclMessage represents the sending of a UML Operation call. 

11.2.6 OclVoid

oclIsUndefined() : Boolean

Evaluates to true if the object is equal to OclUndefined.

post: result = true

[1] OclVoid has only one instance.
context OclVoid inv:
OclVoid.allinstances()->size() = 1

11.3 ModelElement types
This section defines several enumeration types that allow the modeler to refer to elements defined in the UML model.
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11.3.1 OclModelElement

An OclModelElement is an enumeration. For each element in a UML model there is a corresponding enumeration literal. 
OclModelElement is itself an instance of the metatype Enumeration (from UML Core).

11.3.2 OclType

An OclType is an enumeration. For each Classifier in a UML model there is a corresponding enumeration literal.  
OclType is itself an instance of the metatype Enumeration (from UML Core).

11.3.3 OclState

An OclState is an enumeration. For each State in a UML model there is a corresponding enumeration literal. OclState is 
itself an instance of the metatype Enumeration (from UML Core).

11.3.4 Operations and well-formedness rules

This section contains thye operatiins and well-formedness rules of the model element types.

OclModelElement

= (object : OclType) : Boolean
True if self is the same object as object.

<> (object : OclType) : Boolean
True if self is a different object from object.

post: result = not (self = object)

OclType

= (object : OclType) : Boolean
True if self is the same object as object.

<> (object : OclType) : Boolean
True if self is a different object from object.

post: result = not (self = object)

OclState

= (object : OclState) : Boolean
True if self is the same object as object.

<> (object : OclState) : Boolean
True if self is a different object from object.

post: result = not (self = object)
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11.4 Primitive Types
The primitive types defined in the OCL standard library are Integer, Real, String and Boolean. They are all instance of the 
metaclass Primitive from the UML core package.

11.4.1 Real

The standard type Real represents the mathematical concept of real. Note that Integer is a subclass of Real, so for each 
parameter of type Real, you can use an integer as the actual parameter. Real is itself an instance of the metatype Primitive 
(from UML Core).

11.4.2 Integer

The standard type Integer represents the mathematical concept of integer. Integer is itself an instance of the metatype 
Primitive (from UML Core).

11.4.3 String

The standard type String represents strings, which can be both ASCII or Unicode. String is itself an instance of the 
metatype Primitive (from UML Core).

11.4.4 Boolean

The standard type Boolean represents the common true/false values. Boolean is itself an instance of the metatype 
Primitive (from UML Core).

11.5 Operations and well-formedness rules
This section contains the operatiins and well-formedness rules of the primitive types.

11.5.1 Real

Note that Integer is a subclass of Real, so for each parameter of type Real, you can use an integer as the actual parameter.

+ (r : Real) : Real
The value of the addition of self and r.

- (r : Real) : Real
The value of the subtraction of r from self.

* (r : Real) : Real
The value of the multiplication of self and r.

- : Real
The negative value of self.
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/ (r : Real) : Real
The value of self divided by r.

abs() : Real
The absolute value of self.

post: if self < 0 then result = - self else result = self endif

floor() : Integer
The largest integer which is less than or equal to self.

post: (result <= self) and (result + 1 > self)

round() : Integer
The integer which is closest to self. When there are two such integers, the largest one.

post: ((self - result).abs() < 0.5) or ((self - result).abs() = 0.5 and (result > self))

max(r : Real) : Real
The maximum of self and r.

post: if self >= r then result = self else result = r endif

min(r : Real) : Real
The minimum of self and r.

post: if self <= r then result = self else result = r endif

< (r : Real) : Boolean
True if self is less than r.

> (r : Real) : Boolean
True if self is greater than r.

post: result = not (self <= r)

<= (r : Real) : Boolean
True if self is less than or equal to r.

post: result = ((self = r) or (self < r))

>= (r : Real) : Boolean
True if self is greater than or equal to r.

post: result = ((self = r) or (self > r))

11.5.2 Integer

- : Integer
The negative value of self.
UML OCL 2.0 Adopted Specification        137



+ (i : Integer) : Integer
The value of the addition of self and i.

- (i : Integer) : Integer
The value of the subtraction of i from self.

* (i : Integer) : Integer
The value of the multiplication of self and i.

/ (i : Integer) : Real
The value of self divided by i.

abs() : Integer
The absolute value of self.

post: if self < 0 then result = - self else result = self endif

div( i : Integer) : Integer
The number of times that i fits completely within self.

pre : i <> 0
post: if self / i >= 0 then result = (self / i).floor() 
                       else result = -((-self/i).floor()) 
      endif

mod( i : Integer) : Integer
The result is self modulo i.

post: result = self - (self.div(i) * i)

max(i : Integer) : Integer
The maximum of self an i.

post: if self >= i then result = self else result = i endif

min(i : Integer) : Integer
The minimum of self an i.

post: if self <= i then result = self else result = i endif

11.5.3 String

size() : Integer
The number of characters in self.

concat(s : String) : String
The concatenation of self and s.

post: result.size() = self.size() + string.size()
post: result.substring(1, self.size() ) = self
post: result.substring(self.size() + 1, result.size() ) = s
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substring(lower : Integer, upper : Integer) : String
The sub-string of self starting at character number lower, up to and including character number upper. Character numbers 
run from 1 to self.size().

pre: 1 <= lower
pre: lower <= upper
pre: upper <= self.size()

toInteger() : Integer
Converts self to an Integer value.

toReal() : Real
Converts self to a Real value.

11.5.4 Boolean

or (b : Boolean) : Boolean
True if either self or b is true.

xor (b : Boolean) : Boolean
True if either self or b is true, but not both.

post: (self or b) and not (self = b)

and (b : Boolean) : Boolean
True if both b1 and b are true.

not : Boolean
True if self is false.

post: if self then result = false else result = true endif

implies (b : Boolean) : Boolean
True if self is false, or if self is true and b is true.

post: (not self) or (self and b) 

11.6 Collection-Related Types
This section defines the collection types and their operations. As defined in this section, each collection type is actually a 
template type with one parameter. ‘T’ denotes the parameter. A concrete collection type is created by substituting a type 
for the T. So Set (Integer) and Bag (Person) are collection types.
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11.6.1 Collection

Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence of an object in a 
collection is called an element. If an object occurs twice in a collection, there are two elements. This section defines the 
properties on Collections that have identical semantics for all collection subtypes. Some operations may be defined within 
the subtype as well, which means that there is an additional postcondition or a more specialized return value. Collection 
is itself an instance of the metatype CollectionType.

The definition of several common operations is different for each subtype. These operations are not mentioned in this 
section.

The semantics of the collection operations is given in the form of a postcondtion that uses the IterateExp ot the 
IteratorExp construct. The semantics of those constructs is defined in chapter 10 (“Semantics Described using UML”). 
In several cases the postcondtion refers to other collection operations, which in turn are defined in terms of the 
IterateExp or IteratorExp constructs.

11.6.2 Set

The Set is the mathematical set. It contains elements without duplicates. Set is itself an instance of the metatype SetType.

11.6.3 OrderedSet

The OrderedSet is a Set the elements of which are ordered. It contains no duplicates. OrderedSet is itself an instance of 
the metatype OrderedSetType.

11.6.4 Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times. There is no 
ordering defined on the elements in a bag. Bag is itself an instance of the metatype BagType.

11.6.5 Sequence

A sequence is a collection where the elements are ordered. An element may be part of a sequence more than once. 
Sequence is itself an instance of the metatype SequenceType.

11.7 Operations and well-formedness rules
This section contains the operations and well-formedness rules of the collection types.

11.7.1 Collection

size() : Integer
The number of elements in the collection self.

post: result = self->iterate(elem; acc : Integer = 0 | acc + 1)

includes(object : T) : Boolean
True if object is an element of self, false otherwise.

post: result = (self->count(object) > 0)
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excludes(object : T) : Boolean
True if object is not an element of self, false otherwise.

post: result = (self->count(object) = 0)

count(object : T) : Integer
The number of times that object occurs in the collection self.

post: result = self->iterate( elem; acc : Integer = 0 |
             if elem = object then acc + 1 else acc endif)

includesAll(c2 : Collection(T)) : Boolean
Does self contain all the elements of c2 ?

post: result = c2->forAll(elem | self->includes(elem))

excludesAll(c2 : Collection(T)) : Boolean
Does self contain none of the elements of c2 ?

post: result = c2->forAll(elem | self->excludes(elem))

isEmpty() : Boolean
Is self the empty collection?

post: result = ( self->size() = 0 )

notEmpty() : Boolean
Is self not the empty collection?

post: result = ( self->size() <> 0 )

sum() : T
The addition of all elements in self. Elements must be of a type supporting the + operation. The + operation must take one 
parameter of type T and be both associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a. Integer and Real fulfill this 
condition.

post: result = self->iterate( elem; acc : T = 0 | acc + elem )

product(c2: Collection(T2)) : Set( Tuple( first: T, second: T2) )
The cartesian product operation of self and c2.

post: result = self->iterate (e1; acc: Set(Tuple(first: T, second: T2)) = Set{} | 
                       c2->iterate (e2; acc2: Set(Tuple(first: T, second: T2)) = acc | 
                           acc2->including (Tuple{first = e1, second = e2}) ) )

11.7.2 Set

union(s : Set(T)) : Set(T)
The union of self and s.

post: result->forAll(elem | self->includes(elem) or s->includes(elem))
post: self  ->forAll(elem | result->includes(elem))
post: s     ->forAll(elem | result->includes(elem))
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union(bag : Bag(T)) : Bag(T)
The union of self and bag. 

post: result->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self->forAll(elem | result->includes(elem))
post: bag ->forAll(elem | result->includes(elem))

= (s : Set(T)) : Boolean
Evaluates to true if self and s contain the same elements.

post: result = (self->forAll(elem | s->includes(elem)) and 
                                    s->forAll(elem | self->includes(elem)) )

intersection(s : Set(T)) : Set(T)
The intersection of self and s (i.e, the set of all elements that are in both self and s).

post: result->forAll(elem | self->includes(elem) and s->includes(elem))
post: self->forAll(elem | s   ->includes(elem) = result->includes(elem))
post: s   ->forAll(elem | self->includes(elem) = result->includes(elem))

intersection(bag : Bag(T)) : Set(T)
The intersection of self and bag.

post: result = self->intersection( bag->asSet )

– (s : Set(T)) : Set(T)
The elements of self, which are not in s.

post: result->forAll(elem | self->includes(elem) and s->excludes(elem))
post: self  ->forAll(elem | result->includes(elem) = s->excludes(elem))

including(object : T) : Set(T)
The set containing all elements of self plus object.

post: result->forAll(elem | self->includes(elem) or (elem = object))
post: self-  >forAll(elem | result->includes(elem))
post: result->includes(object)

excluding(object : T) : Set(T)
The set containing all elements of self without object.

post: result->forAll(elem | self->includes(elem) and (elem <> object))
post: self-  >forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)

symmetricDifference(s : Set(T)) : Set(T)
The sets containing all the elements that are in self or s, but not in both.

post: result->forAll(elem | self->includes(elem) xor s->includes(elem))
post: self->forAll(elem | result->includes(elem) = s   ->excludes(elem))
post: s   ->forAll(elem | result->includes(elem) = self->excludes(elem))

count(object : T) : Integer
The number of occurrences of object in self.

post: result <= 1
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flatten() : Set(T2)
If the element type is not a collection type this result in the same self. If the element type is a collection type, the result 
is the set containing all the elements of all the elements of self.

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
                  self->iterate(c; acc : Set() = Set{} |
                       acc->union(c->asSet() ) )
               else
                  self
               endif

asSet() : Set(T)
A Set identical to self. This operation exists for convenience reasons.

post: result = self

asOrderedSet() : OrderedSet(T)
An OrderedSet that contains all the elements from self, in undefined order.

post: result->forAll(elem | self->includes(elem))

asSequence() : Sequence(T)
A Sequence that contains all the elements from self, in undefined order.

post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)

asBag() : Bag(T)
The Bag that contains all the elements from self.

post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)

11.7.3 OrderedSet

append (object: T) : OrderedSet(T)
The set of elements, consisting of all elements of self, followed by object.

post: result->size() = self->size() + 1
post: result->at(result->size() ) = object
post:   Sequence{1..self->size() }->forAll(index : Integer |
         result->at(index) = self ->at(index))

prepend(object : T) : OrderedSet(T)
The sequence consisting of object, followed by all elements in self.

post: result->size = self->size() + 1
post: result->at(1) = object
post:   Sequence{1..self->size()}->forAll(index : Integer |
        self->at(index) = result->at(index + 1))

insertAt(index : Integer, object : T) : OrderedSet(T)
The set consisting of self with object inserted at position index.

post: result->size = self->size() + 1
post: result->at(index) = object
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post: Sequence{1..(index - 1)}->forAll(i : Integer |
        self->at(i) = result->at(i))
post: Sequence{(index + 1)..self->size()}->forAll(i : Integer |
        self->at(i) = result->at(i + 1))

subOrderedSet(lower : Integer, upper : Integer) : OrderedSet(T)
The sub-set of self starting at number lower, up to and including element number upper.

pre : 1 <= lower
pre : lower <= upper
pre : upper <= self->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll( index |
         result->at(index - lower + 1) =
                          self->at(index))

at(i : Integer) : T
The i-th element of self.

pre : i >= 1 and i <= self->size()

indexOf(obj : T) : Integer
The index of object obj in the sequence.

pre  : self->includes(obj)
post : self->at(i) = obj

first() : T
The first element in self.

post: result = self->at(1)

last() : T
The last element in self.

post: result = self->at(self->size() )

11.7.4 Bag

= (bag : Bag(T)) : Boolean
True if self and bag contain the same elements, the same number of times.

post: result = (self->forAll(elem | self->count(elem) = bag->count(elem)) and 
                bag->forAll(elem | bag->count(elem) = self->count(elem)) )

union(bag : Bag(T)) : Bag(T)
The union of self and bag.

post: result->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self  ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: bag   ->forAll( elem | result->count(elem) = self->count(elem) + bag->count(elem))

union(set : Set(T)) : Bag(T)
The union of self and set.
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post: result->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: self  ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: set   ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))

intersection(bag : Bag(T)) : Bag(T)
The intersection of self and bag.

post: result->forAll(elem | 
      result->count(elem) = self->count(elem).min(bag->count(elem)) )
post: self->forAll(elem |
      result->count(elem) = self->count(elem).min(bag->count(elem)) )
post: bag->forAll(elem |
      result->count(elem) = self->count(elem).min(bag->count(elem)) )

intersection(set : Set(T)) : Set(T)
The intersection of self and set.

post: result->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )
post: self  ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )
post: set   ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)) )

including(object : T) : Bag(T)
The bag containing all elements of self plus object.

post: result->forAll(elem | 
        if elem = object then
           result->count(elem) = self->count(elem) + 1
        else
           result->count(elem) = self->count(elem)
        endif)
post: self->forAll(elem | 
        if elem = object then
           result->count(elem) = self->count(elem) + 1
        else
           result->count(elem) = self->count(elem)
        endif)

excluding(object : T) : Bag(T)
The bag containing all elements of self apart from all occurrences of object.

post: result->forAll(elem | 
        if elem = object then
           result->count(elem) = 0
        else
           result->count(elem) = self->count(elem)
        endif)
post: self->forAll(elem | 
        if elem = object then
           result->count(elem) = 0
        else
           result->count(elem) = self->count(elem)
        endif)

count(object : T) : Integer
The number of occurrences of object in self.
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flatten() : Bag(T2)
If the element type is not a collection type this result in the same bag. If the element type is a collection type, the result 
is the bag containing all the elements of all the elements of self.

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
                  self->iterate(c; acc : Bag() = Bag{} |
                       acc->union(c->asBag() ) )
               else
                  self
               endif

asBag() : Bag(T)
A Bag identical to self. This operation exists for convenience reasons.

post: result = self

asSequence() : Sequence(T)
A Sequence that contains all the elements from self, in undefined order.

post: result->forAll(elem | self->count(elem) = result->count(elem))
post: self  ->forAll(elem | self->count(elem) = result->count(elem))

asSet() : Set(T)
The Set containing all the elements from self, with duplicates removed.

post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)
An OrderedSet that contains all the elements from self, in undefined order, with duplicates removed.

post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))
post: self  ->forAll(elem | result->count(elem) = 1)

11.7.5 Sequence

count(object : T) : Integer
The number of occurrences of object in self.

= (s : Sequence(T)) : Boolean
True if self contains the same elements as s in the same order.

post: result = Sequence{1..self->size()}->forAll(index : Integer |
                                 self->at(index) = s->at(index))
                                 and
                                 self->size() = s->size()

union (s : Sequence(T)) : Sequence(T)
The sequence consisting of all elements in self, followed by all elements in s.

post: result->size() = self->size() + s->size()
post: Sequence{1..self->size()}->forAll(index : Integer |
                                                          self->at(index) = result->at(index))
post: Sequence{1..s->size()}->forAll(index : Integer |
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                                           s->at(index) =  result->at(index + self->size() )))

flatten() : Sequence(T2)
If the element type is not a collection type this result in the same self. If the element type is a collection type, the result 
is the seuqnce containing all the elements of all the elements of self. The order of the elements is partial.

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
                  self->iterate(c; acc : Sequence() = Sequence{} |
                       acc->union(c->asSequence() ) )
               else
                  self
               endif

append (object: T) : Sequence(T)
The sequence of elements, consisting of all elements of self, followed by object.

post: result->size() = self->size() + 1
post: result->at(result->size() ) = object
post:   Sequence{1..self->size() }->forAll(index : Integer |
         result->at(index) = self ->at(index))

prepend(object : T) : Sequence(T)
The sequence consisting of object, followed by all elements in self.

post: result->size = self->size() + 1
post: result->at(1) = object
post:   Sequence{1..self->size()}->forAll(index : Integer |
        self->at(index) = result->at(index + 1))

insertAt(index : Integer, object : T) : Sequence(T)
The sequence consisting of self with object inserted at position index.

post: result->size = self->size() + 1
post: result->at(index) = object
post: Sequence{1..(index - 1)}->forAll(i : Integer |
        self->at(i) = result->at(i))
post: Sequence{(index + 1)..self->size()}->forAll(i : Integer |
        self->at(i) = result->at(i + 1))

subSequence(lower : Integer, upper : Integer) : Sequence(T)
The sub-sequence of self starting at number lower, up to and including element number upper.

pre : 1 <= lower
pre : lower <= upper
pre : upper <= self->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll( index |
         result->at(index - lower + 1) =
                          self->at(index))

at(i : Integer) : T
The i-th element of sequence.

pre : i >= 1 and i <= self->size()
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indexOf(obj : T) : Integer
The index of object obj in the sequence.

pre  : self->includes(obj)
post : self->at(i) = obj

first() : T
The first element in self.

post: result = self->at(1)

last() : T
The last element in self.

post: result = self->at(self->size() )

including(object : T) : Sequence(T)
The sequence containing all elements of self plus object added as the last element.

post: result = self.append(object)

excluding(object : T) : Sequence(T)
The sequence containing all elements of self apart from all occurrences of object.

The order of the remaining elements is not changed.
post:result->includes(object) = false
post: result->size() = self->size() - self->count(object)
post: result = self->iterate(elem; acc : Sequence(T)
     = Sequence{}|
         if elem = object then acc else acc->append(elem) endif )

asBag() : Bag(T)
The Bag containing all the elements from self, including duplicates.

post: result->forAll(elem | self->count(elem) = result->count(elem) )
post: self->forAll(elem | self->count(elem) = result->count(elem) )

asSequence() : Sequence(T)
The Sequence identical to the object itself. This operation exists for convenience reasons.

post: result = self

asSet() : Set(T)
The Set containing all the elements from self, with duplicated removed.

post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)
An OrderedSet that contains all the elements from self, in the same order, with duplicates removed.

post: result->forAll(elem | self  ->includes(elem))
post: self  ->forAll(elem | result->includes(elem))
post: self  ->forAll(elem | result->count(elem) = 1)
post: self  ->forAll(elem1, elem2 | 
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                         self->indexOf(elem1) < self->indexOf(elem2) 
                               implies result->indexOf(elem1) < result->indexOf(elem2) )

11.8 Predefined Iterator Expressions
This section defines the standard OCL iterator expressions. In the abstract syntax these are all instances of IteratorExp. 
These iterator expressions always have a collection expression as their source, as is defined in the well-formedness rules 
in Chapter 8 (“Abstract Syntax”). The defined iterator expressions are shown per source collection type. The semantics of 
each iterator expression is defined through a mapping from the iterator to  the ’iterate’ construct. this means that the 
semantics of the iterator expressions does not need to be defined seperately in the sementics sections. 

Whenever a new itertor is added to the library, the mapping to the iterate expression must be defined. If this is not done, 
the semantics of the new iterator is undefined.

In all of the following OCL expressions, the lefthand side of the equals sign is the IteratorExp to be defined, and the 
righthand side of the equals sign is the equivalent as an IterateExp.  The names source, body and iterator refer to the 
role names in the abstract syntax:

• source The source expression of the IteratorExp

• body The body expression of the IteratorExp

• iterator The iterator variable of the IteratorExp

• result The result variable of the IterateExp

11.8.1 Extending the standard library with iterator expressions

When new iterator expressions are added to the standard library, there mapping to existing constructs should be fully 
defines. If this is done, the semantics of the new iterator expression will be defined.

11.9 Mapping rules for predefined iterator expressions
This section contains the operations and well-formedness rules of the collection types.

11.9.1 Collection

exists
Results in true if body evaluates to true for at least one element in the source collection.

source->exists(iterators | body) =
                     source->iterate(iterators; result : Boolean = false | result or body)

forAll
Results in true if the body expression evaluates to true for each element in the source collection; otherwise, result is false.

source->forAll(iterators | body ) = 
                   source->iterate(iterators; result : Boolean = true | result and body)

isUnique
Results in true if body evaluates to a different value for each element in the source collection; otherwise, result is false.

source->isUnique (iterators | body) = 
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    source->collect (iterators | Tuple{iter = Tuple{iterators}, value = body}) 
          ->forAll (x, y | (x.iter <> y.iter) implies (x.value <> y.value))

isUnique may have at most one iterator variable.

any
Returns any element in the source collection for which body evaluates to true. If there is more than one element for which 
body is true, one of them is returned. There must be at least one element fulfilling body, otherwise the result of this 
IteratorExp is OclUndefined.

source->any(iterator | body) =
       source->select(iterator | body)->asSequence()->first()

any may have at most one iterator variable.

one
Results in true if there is exactly one element in the source collection for which body is true.

source->one(iterator | body) =
      source->select(iterator | body)->size() = 1

one may have at most one iterator variable.

collect
The Collection of elements which results from applying body to every member of the source set. The result is flattened. 
Notice that this is based on collectNested, which can be of different type depending on the type of source. collectNested 
is defined individually for each subclass of CollectionType.

source->collect (iterators | body) = source->collectNested (iterators | body)->flatten()

collect may have at most one iterator variable.

11.9.2 Set

The standard iterator expression with source of type Set(T) are:

select
The subset of set for which expr is true.

source->select(iterator | body) =
         source->iterate(iterator; result : Set(T) = Set{} |
                          if body then result->including(iterator)
                                  else result
                           endif)

select may have at most one iterator variable.

reject
The subset of the source set for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)
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reject may have at most one iterator variable.

collectNested
The Bag of elements which results from applying body to every member of the source set.

source->collect(iterators | body) =
        source->iterate(iterators; result : Bag(body.type) = Bag{} |
                        result->including(body ) )

collectNested may have at most one iterator variable.

sortedBy
Results in the OrderedSet containing all elements of the source collection. The element for which body has the lowest 
value comes first, and so on. The type of the body expression must have the < operation defined. The < operation must 
return a Boolean value and must be transitive i.e. if a < b and b < c then a < c.

source->sortedBy(iterator | body) =
    iterate( iterator ; result : OrderedSet(T) : OrderedSet {} |
         if result->isEmpty() then
           result.append(iterator)
         else
           let position : Integer = result->indexOf ( 
                        result->select (item | body (item) > body (iterator)) ->first() )
           in
             result.insertAt(position, iterator)
         endif

sortedBy may have at most one iterator variable.

11.9.3 Bag

The standard iterator expression with source of type Bag(T) are:

select
The sub-bag of the source bag for which body is true.

source->select(iterator | body) =
        source->iterate(iterator; result : Bag(T) = Bag{} |
                        if body then result->including(iterator)
                                else result
                        endif)

select may have at most one iterator variable.

reject
The sub-bag of the source bag for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)

reject may have at most one iterator variable.
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collectNested
The Bag of elements which results from applying body to every member of the source bag.

source->collect(iterators | body) =
        source->iterate(iterators; result : Bag(body.type) = Bag{} |
                        result->including(body ) )

collectNested may have at most one iterator variable.

sortedBy
Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value 
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a 
Boolean value and must be transitive i.e. if a < b and b < c then a < c.

source->sortedBy(iterator | body) =
    iterate( iterator ; result : Sequence(T) : Sequence {} |
         if result->isEmpty() then
           result.append(iterator)
         else
           let position : Integer = result->indexOf ( 
                        result->select (item | body (item) > body (iterator)) ->first() )
           in
             result.insertAt(position, iterator)
         endif

sortedBy may have at most one iterator variable.

11.9.4 Sequence

The standard iterator expressions with source of type Sequence(T) are:

select(expression : OclExpression) : Sequence(T)
The subsequence of the source sequence for which body is true.

source->select(iterator | body) =
        source->iterate(iterator; result : Sequence(T) = Sequence{} |
                        if body then result->including(iterator)
                                else result
                        endif)

select may have at most one iterator variable.

reject
The subsequence of the source sequence for which body is false.

source->reject(iterator | body) =
        source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested
The Sequence of elements which results from applying body to every member of the source sequence.
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source->collect(iterators | body) = 
        source->iterate(iterators; result : Sequence(body.type) = Sequence{} |
                        result->append(body ) )

collectNested may have at most one iterator variable.

sortedBy
Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value 
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a 
Boolean value and must be transitive i.e. if a < b and b < c then a < c.

source->sortedBy(iterator | body) =
    iterate( iterator ; result : Sequence(T) : Sequence {} |
         if result->isEmpty() then
           result.append(iterator)
         else
           let position : Integer = result->indexOf ( 
                        result->select (item | body (item) > body (iterator)) ->first() )
           in
             result.insertAt(position, iterator)
         endif

sortedBy may have at most one iterator variable.
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12 The Use of Ocl Expressions in UML Models
This section describes the various manners in which OCL expressions can be used in UML models. 

12.1 Introduction
In principle, everywhere in the UML specification where the term expression is used, an OCL expression can be used. In 
UML 1.4 OCL expressions could be used e.g. for invariants, preconditions and postconditons, but other placements are 
possible too. The meaning of the value, which results from the evaluation of the OCL expression, depends on its 
placement within the UML model. 

In this specification the structure of an expression, and its evaluation are separated from the usage of the expression. 
Chapter 8 (“Abstract Syntax”) defines the structure of an expression, and appendix A (“Semantics”) defines the 
evaluation. In chapter 9 (“Concrete Syntax”) it was allready noted that the contents of the name space environment of an 
OCL expression are fully determined by the placement of the OCL expression in the model. In that chapter an inherited 
attribute env was introduced for every production rule in the attribute grammar to represent this name space environment. 

This section specifies a  number of predefined places where OCL expressions can be used, their associated meaning, and 
the contents of the name space environment. The modeler has to define her/his own meaning, if OCL is used at a place in 
the UML model which is not defined in this section.

For every occurence of an OCL expression three things need to be separated: the placement, the contextual classifier, and 
the self instance of an OCL expression. 

• The placement is the position where the OCL expression is used in the UML model, e.g. as invariant connected to class 
Person. 

• The contextual classifier defines the namespace in which the expression is evaluated. For example, the contextual clas-
sifier of a precondition is the classifier that is the owner of the operation for which the precondition is defined. Visible 
within the precondition are all model element that are visible in the contextual classifier. 

• The self instance is the reference to the object that evaluates the expression. It is always an instance of the contextual 
classifier. Note that evaluation of an OCL expression may result in a different value for every instance of the contex-
tual classifier.

In the next section a number of placements are stated explicitly. For each the contextual classifier is defined, and  well-
formedness rules are given, that exactly define the place where the OCL expression is attached to the UML model.

12.1.1 UML 2.0 Alignment

The definition of the contextualClassifier and ExpressionInOcl depends to a large extend on the UML 2.0 definition. 
Therefore this section will need to be finished after the UML 2.0 definition has been frozen. Therefore not all rules in this 
section are completely finished, they need to be re-done anyway.

12.2 The ExpressionInOcl Type
Because in the abstract syntax OclExpression is defined recursively, we need a new metaclass to represent the top of the 
abstract syntax tree that represents an OCL expression. This metaclass is called ExpressionInOcl, and it is defined to be a 
subclass of the Expression metaclass from the UML core, as shown in Figure 29. In UML (1.4) the Expression metaclass 
has an attribute language which may have the value ’OCL’. The body attribute contains a text representation of the actual 
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expression. The bodyExpression association of ExpressionInOcl is an association to the OCL expression as represented 
by the OCL Abstract syntax metamodel. The body attribute (inherited from Expression) may still be used to store the 
string representation of the OCL expression. The language attribute (also inherited form Expression) has the value ‘OCL’.

12.2.1 ExpressionInOcl

An expression in OCL is an expression that is written in OCL. The value of the language attribute is therefore always 
equal to ‘OCL’. 

Associations
• contextualClassifier The classifier that is the context of the OCL expression. Self is always an instance of this 

classifier. The contextualClassifier is always a derived association. In the remainder of 
this chapter many derivations will be given.

• bodyExpression The bodyExpression is an OclExpression that is the root of the actual OCL expression, 
which is described fully by the OCL abstract syntax metamodel.

12.3 Well-formedness rules

12.3.1 ExpressionInOcl

[1] This expression is always written in OCL
context ExpressionInOcl
inv: language = ’OCL’

Figure 29 - Metaclass ExpressionInOcl added to the UML metamodel

Expression
(from DataTypes)

+ language
+ body : String

OclExpressionExpressionInOcl
1

+bodyExpression

1

Classifier
(from  Core)

0 ..1 +contextualClassifier0..1
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12.4 Standard placements of OCL Expressions
This section defines the standard places where OCL expressions may occur, and defines for each case the value for the 
contextual classifier. Note that this list of places is not exhausting, and can be enhanced.

12.4.1 How to extend the use of OCL at other places

At many places in the UML where an Expression is used, one can write this expression in OCL. To define the use of OCL 
at such a place, the main task is to define what the contextual classifier is. When that is given, the OCL expression is fully 
defined.  This section defines a number of often used placements of OCL expressions.

12.5 Definition
A definition constraint is a constraint that is linked to a Classifier. It may only consist of one or more LetExps. The 
variable or function defined by the Let expression can be used in an identical way as an attribute or operation of the 
Classifier. Their visibility is equal to that of a public attribute or operation. The purpose of a definition constraint is to 
define reusable sub-expressions for use in other OCL expressions. 

The placement of a definition constraint in the UML metamodel is shown in Figure 30. The following well-formedness 
rule must hold. This rule also defines the value of the contextual Classifier. 

12.5.1 Well-formedness rules

[1] The ExpressinInOcl is a definition constraint if it has the stereotype <<definition>> (A) and the constraint is attached to
only one model element (B) and the constraint is attached to a Classifier (C).

context ExpressionInOcl
def: isDefinitionConstraint : Boolean =
                self.constraint.stereotype.name = ’definition’                       -- A
                and
                self.constraint.constrainedElement->size() = 1                       -- B
                and
                self.constraint.constrainedElement.any(true).oclIsKindOf(Classifier) -- C

Figure 30 - Situation of Ocl expression used as definition or invariant
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[2] For a definition constraint the contextual classifier is the constrained element.
context ExpressionInOcl
inv: isDefinitionConstraint implies
             contextualClassifier = 
                        self.constraint.constrainedElement.any(true).oclAsType(Classifier)

[3] Inside a definition constraint the use of @pre is not allowed.
context ExpressionInOcl
inv: -- 

12.6 Invariant
An invariant constraint is a constraint that is linked to a Classifier. The purpose of an invariant constraint is to specify 
invariants for the Classifier. An invariant constraint consists of an OCL expression of type Boolean. The expression must 
be true for each instance of the classifier at any moment in time. Only when an instance is executing an operation, this 
does not need to evaluate to true.

The placement of an invariant constraint in the UML metamodel is equal to the placement of a definition constraint, 
which is shown in Figure 30. The following well-formedness rule must hold. This rule also defines the value of the 
contextual Classifier.

12.6.1 Well-formedness rules

[1] The constraint has the stereotype <<invariant>> (A) and the constraint is attached to only one model element (B) the con-
straint is attached to a Classifier (C). The contextual classifier is the constrained element and the type of the OCL expres-
sion must be Boolean.
context ExpressionInOcl
inv: self.constraint.stereotype.name = ’invariant’                          -- A
     and
     self.constraint.constrainedElement->size() = 1                         -- B
     and
     self.constraint.constrainedElement.any(true).oclIsKindOf(Classifier)   -- C
     implies
         contextualClassifier =
                   self.constraint.constrainedElement->any(true).oclAsType(Classifier)
         and
         self.bodyExpression.type.name = ’Boolean’                              

[2] Inside an invariant constraint the use of @pre is not allowed.
context ExpressionInOcl
inv: -- 

12.7 Precondition
A precondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a precondition is to 
specify the conditions that must hold before the operation executes. A precondition consists of an OCL expression of type 
Boolean. The expression must evaluate to true whenever the operation starts executing, but only for the instance that will 
execute the operation.
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The placement of a precondition in the UML metamodel is shown in Figure 31. The following well-formedness rule must 
hold. This rule also defines the value of the contextual Classifier.

12.7.1 Well-formedness rules

[1] The Constraint has the stereotype <<precondition>> (A), and is attached to only one model element (B), and to a Behavio-
ralFeature (C), which has an owner (D). The contextual classifier is the owner of the operation to which the constraint is
attached, and the type of the OCL expression must be Boolean

context Expression
inv: self.constraint.stereotype.name = ’precondition’                                 -- A
     and
     self.constraint.constrainedElement->size() = 1                                   -- B
     and
     self.constraint.constrainedElement->any(true).oclIsKindOf(BehavioralFeature)     -- C 
     and
     self.constraint.constrainedElement->any(true)                                    -- D
                                      .oclAsType(BehavioralFeature).owner->size() = 1
     implies
         contextualClassifier =
                          self.constraint.constrainedElement->any(true)
                                                   .oclAsType(BehavioralFeature).owner
         and
         self.bodyExpression.type.name = ’Boolean’

[2] Inside a precondtion constraint the use of @pre is not allowed.

context ExpressionInOcl
inv: -- 

12.8 Postcondition
Like a precondition, a postcondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a 
postcondition is to specify the conditions that must hold after the operation executes. A postcondition consists of an OCL 
expression of type Boolean. The expression must evaluate to true at the moment that the operation stops executing, but 

Figure 31 - An OCL ExpressionInOcl used as a pre- or post-condition.
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only for the instance that has just executed the operation. Within an OCL expression used in a postcondition, the "@pre" 
mark can be used to refer to values at precondition time. The variable result refers to the return value of the operation if 
there is any.

The placement of a postcondition in the UML metamodel is equal to the placement of a precondition, which is shown in 
Figure 31. The following well-formedness rule must hold. This rule also defines the value of the contextual Classifier.

12.8.1 Well-formedness rules

[1] The Constraint has the stereotype <<postcondition>> (A), and it is attached to only one model element (B), that is an
BehavioralFeature (C), which has an owner (D). The contextual classifier is the owner of the operation to which the con-
straint is attached, and the type of the OCL expression must be Boolean
context Expression
inv: self.constraint.stereotype.name = ’postcondition’                                -- A
     and
     self.constraint.constrainedElement->size() = 1                                   -- B
     and
     self.constraint.constrainedElement->any(true).oclIsKindOf(BehavioralFeature)     -- C
     and
     self.constraint.constrainedElement->any(true)                                    -- D
                                      .oclAsType(BehavioralFeature).owner->size() = 1
     implies
         contextualClassifier =
              self.constraint.constrainedElement->any().oclAsType(BehavioralFeature).owner
         and
         self.bodyExpression.type.name = ’Boolean’

12.9 Initial value expression
An initial value expression is an expression that may be linked to an Attribute of a Classifier, or to an AssociationEnd. An 
OCL expression acting as the initial value of an attribute must conform to the defined type of the attribute. An OCL 
expression acting as the initial value of an association end must conform to the type of the association end, i.e. the type 
of the attached Classifier when the multiplicity is maximum one, or OrderedSet with element type the type of the attached 
Classifier when the multiplicity is maximum more than one. 

The OCL expression is evaluated at the creation time of the instance that owns the attribute for this created instance in the 
case of an inital value for an attribute. In the case of an inital value for an association end, the OCL expression is 
evaluated at the creation time of the instance of the Classifier at the other end(s) of the association.

The placement of an attribute initial value in the UML metamodel is shown in Figure 32. The following well-formedness 
rule must hold. This rule also defines the value of the contextual Classifier. 

Note – The placement of an intial value of an association end is dependent upon the UML 2.0 metamodel. So are the well-
formedness rules for this case.

12.9.1 Well-formedness rules

[1] The Expression is the initial value of an attribute (A), and the Attribute has an owner (B). The contextual classifier is the
owner of the attribute, and the type of the OCL expression must conform to the type of the attribute.

context ExpressionInOcl
inv: self.attribute->notEmpty()                                                      -- A
     and
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     self.attribute.owner->size() = 1                                                -- B
     implies
         contextualClassifier = self.attribute.owner
         and
         self.bodyExpression.type.conformsTo(self.attribute.type)

[2] Inside an initial attribute value the use of @pre is not allowed.
context ExpressionInOcl
inv: -- TBD

12.10 Derived value expression
A derived value expressionis an expression that may be linked to to an Attribute of a Classifier, or to an AssociationEnd. 
An OCL expression acting as the derived value of an attribute must conform to the defined type of the attribute. An OCL 
expression acting as the derived value of an association end must conform to the type of the association end, i.e. the type 
of the attached Classifier when the multiplicity is maximum one, or OrderedSet with element type the type of the attached 
Classifier when the multiplicity is maximum more than one. 

A derived value expression is an invariant that states that the value of the attribute or association end must always be 
equal to the value obtained from evaluating the expression.

Note – The placement of a derived value expression is dependent upon the UML 2.0 metamodel. So are the well-formedness
rules for this case.

12.11 Operation body expression
A body expression is an expression that may be linked to to an Operation of a Classifier, that is marked Query operation. 
An OCL expression acting as the body of an operation must conform to the result type of the operation. Evaluating the 
body expression gives the result of the operation at a certain point in time.

Figure 32 - Expression used to define the inital value of an attribute
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Note – The placement of an operation body expression is dependent upon the UML 2.0 metamodel. So are the well-formed-
ness rules for this case.

12.12 Guard
A guard is an expression that may be linked to a Transition in a StateMachine. An OCL expression acting as the guard of 
a transition restricts the transition. An OCL expression acting as value of a guard is of type Boolean. The expresion is 
evaluated at the moment that the transition attached to the guard is attempted.

The placement of a guard in the UML metamodel is shown in Figure 33. The following well-formedness rule must hold. 
In order to state the rule a number of additional operations are defined. The rule also defines the value of the contextual 
Classifier.

12.12.1 Well-formedness rules

[1] The statemachine in which the guard appears must have a context (A), that is a Classifier (B). The contextual classifier is
the owner of the statemachine, and the type of the OCL expression must be Boolean.
context ExpressionInOcl
inv: not self.guard.transition.getStateMachine().context.oclIsUndefined()         -- A
     and
     self.guard.transition.getStateMachine().context.oclIsKindOf(Classifier)      -- B
     implies
       contextualClassifier =

Figure 33 - An OCL expression used as a Guard expression
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            self.guard.transition.getStateMachine().context.oclAsType(Classifier) 
       and
       self.bodyExpression.type.name = ’Boolean’

[2] Inside an guard the use of @pre is not allowed.

context ExpressionInOcl
inv: -- 

12.13 Concrete Syntax of Context Declarations
This section describes the concrete syntax for specifying the context of the different types of usage of OCL expressions. 
It makes use of grammar rules defined in Chapter 9 (“Concrete Syntax”). Here too, every production rule is associated to 
the abstract syntax by the type of the attribute ast. However, we must sometimes refer to the abstract syntax of the UML 
to find the right type for each production.

Visibility rules etc. must be defined in the UML metamodel. Here we assume that every classifier has an operation 
visibleElements(), which returns an instance of type Environment, as defined in chapter 9 (“Concrete Syntax”). 

Note – The context declarations as described in this section are not needed when the OCL expressions are attached directly to
the UML model. This concerete syntax for context declarations is only there to facilitate separate OCl expressions in text files.

Because of the assumption that the concrete syntax below is used separate from the UML model, we assume the existence 
of an operation getClassifier() on the UML model that allows us to find a Classifier anywhere in the corresponding 
model. The signature of this operation is defined as follows:

context Model::findClassifier( pathName : Sequence(String) ) : Classifier

The pathName needs not be a fully qualified name (it may be), as long as it can uniquely identify the classifier 
siomewhere in the UML model.  If a classifier name occurs more than once, it needs to be qualified with its owning 
package (recusiveley) until the qualified name is unique.  If more than one classifier is found, the operation returns 
OclUndefined. The variable Model is used to refer to the UML Model. It is used as Model.findClassifier().

Likewise, we assume the existence of an operation getPackage() on the UML model that allows us to find a Package 
anywhere in the corresponding model. The signature of this operation is defined as follows:

context Model::findPackage( pathName : Sequence(String) ) : Package

In this case the pathName needs be a fully qualified name. 

Note – The rules for the synthesized and inherited attributes associated with the grammar all depend upon the UML 2.0 met-
amodel. They cannot be written until this metamodel has been stablelized. Therefore only the grammar rules are given.

12.13.1 packageDeclarationCS

This production rule represents a package declaration.

[A] packageDeclarationCS ::= ’package’ pathNameCS contextDeclCS*
                             ’endpackage’
[B] packageDeclarationCS ::= contextDeclCS*

12.13.2 contextDeclarationCS

This production rule represents all different context declarations.

[A] contextDeclarationCS ::= attrOrAssocContextCS
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[C] contextDeclarationCS ::= classifierContextDeclCS
[D] contextDeclarationCS ::= operationContextDeclCS

12.13.3 attrOrAssocContextCS

This production rule represents a context declaration for expressions that can be coupled to an attribute or association end. 
The path name refers to the "owner" of the attribute or association end, the simple name refers to its name, the type states 
its type.

attrOrAssocContextCS ::= ’context’ pathNameCS ’::’ simpleName’:’ typeCS
                          initOrDerValueCS

12.13.4 initOrDerValueCS

This production rule represents an initial or derived value expression.

[A] initOrDerValueCS[1] ::= ’init’   ’:’  OclExpression
                                       initOrDerValueCS[2]?
[B] initOrDerValueCS[1] ::= ’derive’ ’:’  OclExpression
                                       initOrDerValueCS[2]?

12.13.5 classifierContextDeclCS

This production rule represents a context declaration for expressions that can be coupled to classifiers.

classifierContextDeclCS ::= ’context’ pathNameCS invOrDefCS 

12.13.6 invOrDefCS

This production rule represents an invariant or definition.

[A] invOrDefCS[1] ::= ’inv’ (simpleNameCS)? ’:’ OclExpressionCS
                         invOrDefCS[2]
[B] invOrDefCS[1] ::= ’def’ (simpleNameCS)? ’:’ defExpressionCS
                         invOrDefCS[2]

12.13.7 defExpressionCS

This production rule represents a definition expression. The defExpressionCS nonterminal has the purpose of defining 
additional attributes or operations in OCL. They map directly to a UML attribute or operation with a constraint that 
defines the derivation of the attribute or operation result value. Note that VariableDeclarationCS has been defined in 
Chapter 9.

[A] defExpressionCS ::= VariableDeclarationCS ’=’ OclExpression
[B] defExpressionCS ::= operationCS ’=’ OclExpression

12.13.8 operationContextDeclCS

This production rule represents a context declaration for expressions that can be coupled to an operation.
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operationContextDeclCS ::= ’context’ operationCS prePostOrBodyDeclCS

12.13.9 prePostOrBodyDeclCS

This production rule represents a pre- or postcondition or body expression.

[A] prePostOrBodyDeclCS[1] ::= ’pre’ (simpleNameCS)? ’:’ OclExpressionCS
                                prePostOrBodyDeclCS[2]?
[B] prePostOrBodyDeclCS[1] ::= ’post’ (simpleNameCS)? ’:’ OclExpressionCS
                                prePostOrBodyDeclCS[2]?
[C] prePostOrBodyDeclCS[1] ::= ’body’ (simpleNameCS)? ’:’ OclExpressionCS
                                prePostOrBodyDeclCS[2]?

12.13.10 operationCS

This production rule represents an operation in a context declaration or definition expression.

[A] operationCS ::= pathNameCS ’::’ simpleNameCS ’(’ parametersCS? ’)’ ’:’
                                  typeCS? 
[B] operationCS ::= simpleNameCS ’(’ parametersCS? ’)’ ’:’ typeCS? 

12.13.11 parametersCS

This production rule represents the formal parameters of an operation .

parametersCS[1] ::= VariableDeclarationCS (’,’ parametersCS[2] )?
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13 Alignment of  OCL, UML and MOF Metamodels
This section describes the connections between the OCL and UML metamodels. 

13.1 Introduction
This chapter provides the neccesary information to align the OCL and UML 2.0 metamodels. It is meant to be  a useful 
reference to the dependencies between the UML and OCL documents that make part of the UML 2.0 standard.

All references made to metaclasses in the UML 1.4 metamodel that are used in the current definition of the abstract 
syntax of OCL (in chapter 8) are listed. These or similar metaclasses are expected to be part of the UML 2.0 metamodel. 
The references need to be aligned with the UML 2.0 metamodel as soon as that metamodel is stable.

As described in Section 2 “Conformance,” on page 1 the OCL specification will define a subset that is MOF compliant, 
while the complete specification is UML compliant. Because the MOF 2.0 Core and the UML 2.0 Infrastructure are 
devleoped in parallel with this OCL 2.0 submission, the exact MOF compliant subset of OCL cannot be defined in this 
document. This needs to be done during alignment when all submission are stable.

Another issue in alignment is where in a model OCL expressions may be used. These placements are governed by the 
references made in the UML 2.0 metamodel to the metaclasses Expression, Constraint, and similar metaclasses. In 
Chapter 12 a number of placements in the model where OCL expressions can be useful, have been described, but others 
may be added. The UML 2.0 metamodel should provide a way to link to an OCL expression in these cases. This chapter 
lists the contexts already foreseen, and indicates the expectations on the UML 2.0 metamodel in each case.

Finally, this chapter lists a number of aspects of the UML 2.0 metamodel that are not required but convenient in the 
specification of OCL.

13.2 Use of the UML Metamodel
The metaclasses from the UML 1.4 metamodel that are listed in Table 6, are referenced in the abstract syntax of this 
submission. These or similar classes are expected to be part of the UML 2.0 metamodel. The list is divided into classes 
that should be present in a core metamodel, and metaclasses that should be present in an extension to this core that deals 
with states and messaging. Preferably the core metaclasses are present in the infrastructure of UML, and in the core of the 
MOF.

Potentially there is an overlap between the UML 2.0 infrastructure submissions and this submission in the definition of 
literal expressions. A final issue is that this submission would be helped if there is a way in the UML to define template 
classes. This feature is used in the definition of the OCL standard library to define collection types..

Table 6 - Overview of UML 1.4. metaclasses used in this submission

Metaclass Expected in 
MOF and UML

Expected in UML Needed for state and 
message values

Assumptions

AssociationClass X

AssociationEnd X

Attribute X

Classifier X
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13.3 Use of the OCL metamodel in the UML metamodel
OCL expressions can be used anywhere in the model where a value needs to be specified. Table 7 lists a number of places 
in a model, where we expect OCL expressions will be useful. This list is not exhaustive, other uses of OCL expressions 
can be added. For some cases this submission defines a special concrete syntax, in case the OCL expression is added to 
the model not in a diagram, but in another (text) file. The UML 2.0 metamodel needs to link the mentioned metaclasses 
in some manner to the metaclass Expression, or to another metaclass suitable to hold an OCL expression. 

DataType X

Enumeration X

EnumLiteral X

ModelElement X

Primitive X

StructuralFeature X

Operation X X Operations have Parameters 
and each parameter has a 
direction kind (Parameter-
DirectionKind).

CallAction X

SendAction X

Signal X Signals have attributes.

Table 7 - Overview of places in a model where an OCL expression may be used

Related UML 
metaclasses

Function of 
expression

Concrete syntax defined in 
OCL 2.0 submission

Attribute inital value X

Attribute derivation rule X

AssociationEnd inital value X

AssociationEnd derivation rule X

Classifier invariant X

Classifier, Attribute definition of new 
attribute

X

Classifier, Operation definition of new 
operation

X

Table 6 - Overview of UML 1.4. metaclasses used in this submission

Metaclass Expected in 
MOF and UML

Expected in UML Needed for state and 
message values

Assumptions
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13.4 Wishlist
This section lists a number of items that would be convenient for this submission, if present in the UML 2.0 metamodel.

1. It would be convenient if there is a way to learn from a Classifier whether it uses value identity or reference identity.

2. This submission defines a number of additional operations to metaclasses in the UML 1.4 metamodel. It would be 
convenient if the UML 2.0 metamodel would provide those operations, specially they appear to be useful in other 
submissions, like the Superstructure submission. In this submission the following additional operations are defined 
on Classifier:

• commonSuperType: results in the most specific common supertype of two classifiers

• lookupAttribute

• lookupAssociationEnd

• lookupAssociationClass

• lookupOperation

• lookupSignal

• allRecptions

Operation precondition X

Operation postcondition X

Operation body expression X

AssociationEnd value of multiplicity

Guard specification of 
condition

Message specification of source

Message specification of target

Message specification of 
condition

Message actual parameter value

Action specification of target

Action actual parameter value

Change Event condition

Use Case precondition

Use Case postcondition

Table 7 - Overview of places in a model where an OCL expression may be used

Related UML 
metaclasses

Function of 
expression

Concrete syntax defined in 
OCL 2.0 submission
UML OCL 2.0 Adopted Specification        169



• On Operation:
•hasMatchingSignature

• On Parameter:
•asAttribute
•make

• On Signal
•hasMatchingSignature

• On State and on Transition:
•getStateMachine
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SEMANTICS

A SEMANTICS

This section formally defines the syntax and semantics of OCL. Most of the material in this section is based on
work presented in [Ric02]. This section is organized as follows. Section A.1 defines the concept of object models.
Object models provide information used as context for OCL expressions and constraints. Section A.2 defines the
type system of OCL and the set of standard operations. Finally, Section A.3 defines the syntax and semantics of
OCL expressions.

A.1 OBJECT MODELS

In this section, the notion of anobject modelis formally defined. An object model provides the context for OCL
expressions and constraints. A precise understanding of object models is required before a formal definition of
OCL expressions can be given. Section A.1.1 proceeds with a formal definition of the syntax of object models.
The semantics of object models is defined in Section A.1.2. This section also defines the notion of system states
as snapshots of a running system.

A.1.1 SYNTAX OF OBJECT MODELS

In this section, we formally define the syntax of object models. Such a model has the following components:

• a set of classes,

• a set of attributes for each class,

• a set of operations for each class,

• a set of associations with role names and multiplicities,

• a generalization hierarchy over classes.

Additionally, types such asInteger, String, Set(Real) are available for describing types of attributes and operation
parameters. In the following, each of the model components is considered in detail. The following definitions are
combined in Section A.1.1.7 to give a complete definition of the syntax of object models. For naming model com-
ponents, we assume in this section an alphabetA and a set of finite, non-empty namesN ⊆ A+ over alphabetA
to be given.

A.1.1.1 TYPES

Types are considered in depth in Section A.2. For now, we assume that there is a signatureΣ = (T,Ω) with T
being a set of type names, andΩ being a set of operations over types inT . The setT includes the basic types
Integer, Real, Boolean, andString. These are the predefined basic types of OCL. All type domains include an
undefined value that allows to operate with unknown or “null” values. Operations inΩ include, for example, the
usual arithmetic operations+,−, ∗, /, etc. for integers. Furthermore, collection types are available for describing
collections of values, for example,Set(String), Bag(Integer), andSequence(Real). Structured values are described
by tuple types with named components, for example,Tuple(name:String, age:Integer).
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SEMANTICS

A.1.1.2 CLASSES

The central concept of UML for modeling entities of the problem domain is the class. A class provides a common
description for a set of objects sharing the same properties.

DEFINITION A.1 (CLASSES)
The set of classes is a finite set of names CLASS⊆ N . �

Each classc ∈ CLASS induces anobject typetc ∈ T having the same name as the class. A value of an object type
refers to an object of the corresponding class. The main difference between classes and object types is that the
interpretation of the latter includes a special undefined value.

Note that for a definition of the semantics of OCL, UML’s distinction between classes and interfaces does not
matter. OCL specifies constraints for instances of a given interface specification. Whether this specification is
stated in the form of a class or interface definition makes no difference.

A.1.1.3 ATTRIBUTES

Attributes are part of a class declaration in UML. Objects are associated with attribute values describing properties
of the object. An attribute has a name and a type specifying the domain of attribute values.

DEFINITION A.2 (ATTRIBUTES )
Let t ∈ T be a type. The attributes of a classc ∈ CLASS are defined as a set ATTc of signaturesa : tc → t where
the attribute namea is an element ofN , andtc ∈ T is the type of classc. �

All attributes of a class have distinct names. In particular, an attribute name may not be used again to define another
attribute with a different type.

∀t, t′ ∈ T : (a : tc → t ∈ ATTc anda : tc → t′ ∈ ATTc) =⇒ t = t′

Attributes with the same name may, however, appear in different classes that are not related by generalization.
Details are given in Section A.1.1.6 where we discuss generalization. The set of attribute names and class names
need not be disjoint.

A.1.1.4 OPERATIONS

Operations are part of a class definition. They are used to describe behavioral properties of objects. The effect of an
operation may be specified in a declarative way with OCL pre- and postconditions. Section A.3 discusses pre- and
postconditions in detail. Furthermore, operations performing computations without side effects can be specified
with OCL. In this case, the computation is determined by an explicit OCL expression. This is also discussed
in Section A.3. Here, we focus on the syntax of operation signatures declaring the interface of user-defined
operations. In contrast, other kinds of operations which are not explicitly defined by a modeler are, for example,
navigation operations derived from associations. These are discussed in the next section and in Section A.2.

DEFINITION A.3 (OPERATIONS)
Let t andt1, . . . , tn be types inT . Operations of a classc ∈ CLASS with typetc ∈ T are defined by a set OPc of
signaturesω : tc × t1 × · · · × tn → t with operation symbolsω being elements ofN . �

The name of an operation is determined by the symbolω. The first parametertc denotes the type of the class
instance to which the operation is applied. An operation may have any number of parameters but only a single
return type. In general, UML allows multiple return values. We currently do not support this feature in OCL.
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SEMANTICS

A.1.1.5 A SSOCIATIONS

Associations describe structural relationships between classes. Generally, classes may participate in any number
of associations, and associations may connect two or more classes.

DEFINITION A.4 (ASSOCIATIONS)
The set of associations is given by

i. a finite set of names ASSOC⊆ N ,

ii. a functionassociates :

{
ASSOC→ CLASS+

as 7→ 〈c1, . . . , cn〉 with (n ≥ 2)
.

�

The functionassociates maps each association nameas ∈ ASSOCto a finite list〈c1, . . . , cn〉 of classes participat-
ing in the association. The numbern of participating classes is also called thedegreeof an association; associations
with degreen are calledn-ary associations. For many problems the use of binary associations is often sufficient.
A self-association(or recursive association)sa is a binary association where both ends of the association are at-
tached to the same classc such thatassociates(sa) = 〈c, c〉. The functionassociates does not have to be injective.
Multiple associations over the same set of classes are possible.

ROLE NAMES

Classes may appear more than once in an association each time playing a different role. For example, in a self-
association PhoneCall on a classPersonwe need to distinguish between the person having the role of a caller and
another person being the callee. Therefore we assign each class participating in an association a unique role name.
Role names are also important for OCL navigation expressions. A role name of a class is used to determine the
navigation path in this kind of expressions.

DEFINITION A.5 (ROLE NAMES )
Let as ∈ ASSOCbe an association withassociates(as) = 〈c1, . . . , cn〉. Role names for an association are defined
by a function

roles :

{
ASSOC→ N+

as 7→ 〈r1, . . . , rn〉 with (n ≥ 2)

where all role names must be distinct, i.e.,

∀i, j ∈ {1, . . . , n} : i 6= j =⇒ ri 6= rj .

�

The functionroles(as) = 〈r1, . . . , rn〉 assigns each classci for 1 ≤ i ≤ n participating in the association a unique
role nameri. If role names are omitted in a class diagram, implicit names are constructed in UML by using the
name of the class at the target end and changing its first letter to lower case. As mentioned above, explicit role
names are mandatory for self-associations.
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Additional syntactical constraints are required for ensuring the uniqueness of role names when a class is part of
many associations. We first define a functionparticipating that gives the set of associations a class participates
in.

participating :


CLASS→ P(ASSOC)
c 7→ {as | as ∈ ASSOC∧ associates(as) = 〈c1, . . . , cn〉

∧ ∃i ∈ {1, . . . , n} : ci = c}

The following functionnavends gives the set of all role names reachable (ornavigable) from a class over a given
association.

navends :


CLASS× ASSOC→ P(N )
(c, as) 7→ {r | associates(as) = 〈c1, . . . , cn〉

∧ roles(as) = 〈r1, . . . , rn〉
∧ ∃i, j ∈ {1, . . . , n} : (i 6= j ∧ ci = c ∧ rj = r)}

The set of role names that are reachable from a class along all associations the class participates in can then be
determined by the following function.

navends(c) :

{
CLASS→ P(N )
c 7→

⋃
as∈participating(c) navends(c, as)

MULTIPLICITIES

An association specifies the possible existence of links between objects of associated classes. The number of links
that an object can be part of is specified withmultiplicities. A multiplicity specification in UML can be represented
by a set of natural numbers.

DEFINITION A.6 (M ULTIPLICITIES )
Let as ∈ ASSOC be an association withassociates(as) = 〈c1, . . . , cn〉. The functionmultiplicities(as) =
〈M1, . . . ,Mn〉 assigns each classci participating in the association a non-empty setMi ⊆ N0 with Mi 6= {0} for
all 1 ≤ i ≤ n. �

The precise meaning of multiplicities is defined as part of the interpretation of object models in Section A.1.2.

REMARK : AGGREGATION AND COMPOSITION

Special forms of associations are aggregation and composition. In general, aggregations and compositions impose
additional restrictions on relationships. An aggregation is a special kind of binary association representing apart-
of relationship. The aggregate is marked with a hollow diamond at the association end in class diagrams. An
aggregation implies the constraint that an object cannot be part of itself. Therefore, a link of an aggregation may
not connect the same object. In case of chained aggregations, the chain may not contain cycles.

An even stronger form of aggregation is composition. The composite is marked with a filled diamond at the
association end in class diagrams. In addition to the requirements for aggregations, a part may only belong to at
most one composite.

These seemingly simple concepts can have quite complex semantic issues [AFGP96, Mot96, Pri97, GR99, HSB99,
BHS99, BHSOG01]. Here, we are concerned only with syntax. The syntax of aggregations and compositions is
very similar to associations. Therefore, we do not add an extra concept to our formalism. As a convention,
we always use the first component in an association for a class playing the role of an aggregate or composite.
The semantic restrictions then have to be expressed as an explicit constraint. A systematic way for mapping
aggregations and compositions to simple associations plus OCL constraints is presented in [GR99].
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A.1.1.6 GENERALIZATION

A generalization is a taxonomic relationship between two classes. This relationship specializes a general class into
a more specific class. Specialization and generalization are different views of the same concept. Generalization
relationships form a hierarchy over the set of classes.

DEFINITION A.7 (GENERALIZATION HIERARCHY )
A generalization hierarchy≺ is a partial order on the set of classes CLASS. �

Pairs in≺ describe generalization relationships between two classes. For classesc1, c2 ∈ CLASS with c1 ≺ c2,
the classc1 is called achild classof c2, andc2 is called aparent classof c1.

FULL DESCRIPTOR OF A CLASS

A child class implicitly inherits attributes, operations and associations of its parent classes. The set of properties
defined in a class together with its inherited properties is called afull descriptor in UML. We can formalize the
full descriptor in our framework as follows. First, we define a convenience function for collecting all parents of a
given class.

parents :

{
CLASS→ P(CLASS)
c 7→ {c′ | c′ ∈ CLASS∧ c ≺ c′}

The full set of attributes of classc is the set ATT∗c containing all inherited attributes and those that are defined
directly in the class.

ATT∗c = ATTc ∪
⋃

c′∈parents(c)

ATTc′

We define the set of inherited user-defined operations analogously.

OP∗c = OPc ∪
⋃

c′∈parents(c)

OPc′

Finally, the set of navigable role names for a class and all of its parents is given as follows.

navends∗(c) = navends(c) ∪
⋃

c′∈parents(c)

navends(c′)

DEFINITION A.8 (FULL DESCRIPTOR OF A CLASS )
The full descriptor of a classc ∈ CLASS is a structure FDc = (ATT∗c , OP∗c ,navends∗(c)) containing all attributes,
user-defined operations, and navigable role names defined for the class and all of its parents. �

The UML standard requires that properties of a full descriptor must be distinct. For example, a class may not
define an attribute that is already defined in one of its parent classes. These constraints are captured more precisely
by the following well-formedness rules in our framework. Each constraint must hold for each classc ∈ CLASS.

1. Attributes are defined in exactly one class.

∀(a : tc → t, a′ : tc′ → t′ ∈ ATT∗c) :
(a = a′ =⇒ tc = tc′ ∧ t = t′) (WF-1)
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2. In a full class descriptor, an operation may only be defined once. The first parameter of an operation signature
indicates the class in which the operation is defined. The following condition guarantees that each operation
in a full class descriptor is defined in a single class.

∀(ω : tc × t1 × · · · × tn → t, ω : tc′ × t1 × · · · × tn → t′ ∈ OP∗c) :
(tc = tc′) (WF-2)

3. Role names are defined in exactly one class.

∀c1, c2 ∈ parents(c) ∪ {c} :
(c1 6= c2 =⇒ navends(c1) ∩ navends(c2) = ∅) (WF-3)

4. Attribute names and role names must not conflict. This is necessary because in OCL the same notation is
used for attribute access and navigation by role name. For example, the expressionself.x may either be
a reference to an attributex or a reference to a role namex .

∀(a : tc → t ∈ ATT∗c) : ∀r ∈ navends∗(c) :
(a 6= r) (WF-4)

Note that operations may have the same name as attributes or role names because the concrete syntax of OCL
allows us to distinguish between these cases. For example, the expressionself.age is either an attribute or role
name reference, but a call to an operation age without parameters is written asself.age() .

A.1.1.7 FORMAL SYNTAX

We combine the components introduced in the previous section to formally define the syntax of object models.

DEFINITION A.9 (SYNTAX OF OBJECT MODELS )
The syntax of an object model is a structure

M = (CLASS, ATTc, OPc, ASSOC, associates, roles,multiplicities,≺)

where

i. CLASS is a set of classes (Definition A.1).

ii. ATTc is a set of operation signatures for functions mapping an object of classc to an associated attribute
value (Definition A.2).

iii. O Pc is a set of signatures for user-defined operations of a classc (Definition A.3).

iv. A SSOCis a set of association names (Definition A.4).

(a) associates is a function mapping each association name to a list of participating classes
(Definition A.4).

(b) roles is a function assigning each end of an association a role name (Definition A.5).

(c) multiplicities is a function assigning each end of an association a multiplicity specification
(Definition A.6).

v. ≺ is a partial order on CLASS reflecting the generalization hierarchy of classes (Definitions A.7 and A.8).

�
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A.1.2 INTERPRETATION OF OBJECT MODELS

In the previous section, the syntax of object models has been defined. An interpretation of object models is
presented in the following.

A.1.2.1 OBJECTS

The domain of a classc ∈ CLASS is the set of objects that can be created by this class and all of its child classes.
Objects are referred to by unique object identifiers. In the following, we will make no conceptual distinction
between objects and their identifiers. Each object is uniquely determined by its identifier and vice versa. Therefore,
the actual representation of an object is not important for our purposes.

DEFINITION A.10 (OBJECT IDENTIFIERS )
i. The set of object identifiers of a classc ∈ CLASS is defined by an infinite setoid(c) = {c1, c2, . . . }.

ii. The domain of a classc ∈ CLASS is defined asICLASS(c) =
⋃
{oid(c′) | c′ ∈ CLASS∧ c′ � c}.

�

In the following, we will omit the index for a mappingI when the context is obvious. The concrete scheme for
naming objects is not important as long as every object can be uniquely identified, i.e., there are no different objects
having the same name. We sometimes use single letters combined with increasing indexes to name objects if it is
clear from the context to which class these objects belong.

GENERALIZATION

The above definition implies that a generalization hierarchy induces a subset relation on the semantic domain of
classes. The set of object identifiers of a child class is a subset of the set of object identifiers of its parent classes.
With other words, we have

∀c1, c2 ∈ CLASS : c1 ≺ c2 =⇒ I(c1) ⊆ I(c2) .

From the perspective of programming languages this closely corresponds to the domain-inclusion semantics com-
monly associated with subtyping and inheritance [CW85]. Data models for object-oriented databases such as the
generic OODB model presented in [AHV95] also assume an inclusion semantics for class extensions. This re-
quirement guarantees two fundamental properties of generalizations. First, an object of a child class has (inherits)
all the properties of its parent classes because itis an instance of the parent classes. Second, this implies that an
object of a more specialized class can be used anywhere where an object of a more general class is expected (prin-
ciple of substitutability) because it has at least all the properties of the parent classes. In general, the interpretation
of classes is pairwise disjoint if two classifiers are not related by generalization and do not have a common child.

A.1.2.2 L INKS

An association describes possible connections between objects of the classes participating in the association. A
connection is also called a link in UML terminology. The interpretation of an association is a relation describing
the set of all possible links between objects of the associated classes and their children.

OCL 2.0 REVISED SUBMISSION VERSION1.5, JUNE 3, 2002 A-7



SEMANTICS

DEFINITION A.11 (L INKS )
Each associationas ∈ ASSOCwith associates(as) = 〈c1, . . . , cn〉 is interpreted as the Cartesian product of the
sets of object identifiers of the participating classes:IASSOC(as) = ICLASS(c1)× · · · × ICLASS(cn). A link denoting
a connection between objects is an elementlas ∈ IASSOC(as). �

A.1.2.3 SYSTEM STATE

Objects, links and attribute values constitute the state of a system at a particular moment in time. A system is in
different states as it changes over time. Therefore, a system state is also called a snapshot of a running system.
With respect to OCL, we can in many cases concentrate on a single system state given at a discrete point in time.
For example, a system state provides the complete context for the evaluation of OCL invariants. For pre- and
postconditions, however, it is necessary to consider two consecutive states.

DEFINITION A.12 (SYSTEM STATE )
A system state for a modelM is a structureσ(M) = (σCLASS, σATT, σASSOC).

i. The finite setsσCLASS(c) contain all objects of a classc ∈ CLASS existing in the system state:
σCLASS(c) ⊂ oid(c).

ii. FunctionsσATT assign attribute values to each object:σATT(a) : σCLASS(c) → I(t) for each
a : tc → t ∈ ATT∗c .

iii. The finite setsσASSOC contain links connecting objects. For eachas ∈ ASSOC: σASSOC(as) ⊂ IASSOC(as).
A link set must satisfy all multiplicity specifications defined for an association (the functionπi(l) projects
theith component of a tuple or listl, whereas the function̄πi(l) projectsall but theith component):

∀i ∈ {1, . . . , n},∀l ∈ σASSOC(as) :
|{l′ | l′ ∈ σASSOC(as) ∧ (π̄i(l′) = π̄i(l))}| ∈ πi(multiplicities(as))

�
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A.2 OCL T YPES AND OPERATIONS

OCL is a strongly typed language. A type is assigned to every OCL expression and typing rules determine in
which ways well-formed expressions can be constructed. In addition to those types introduced by UML models,
there are a number of predefined OCL types and operations available for use with any UML model. This section
formally defines the type system of OCL. Types and their domains are fixed, and the abstract syntax and semantics
of operations is defined.

Our general approach to defining the type system is as follows. Types are associated with a set of operations.
These operations describe functions combining or operating on values of the type domains. In our approach, we
use a data signatureΣ = (T,Ω) to describe the syntax of types and operations. The semantics of types inT
and operations inΩ is defined by a mapping that assigns each type a domain and each operation a function. The
definition of the syntax and semantics of types and operations will be developed and extended in several steps. At
the end of this section, the complete set of types is defined in a single data signature.

Section A.2.1 defines the basic typesInteger, Real, BooleanandString. Enumeration types are defined in Sec-
tion A.2.3. Section A.2.4 introduces object types that correspond to classes in a model. Collection and tuple
types are discussed in Section A.2.5. The special typesOclAnyandOclStateare considered in Section A.2.6.
Section A.2.7 introduces subtype relationships forming a type hierarchy. All types and operations are finally
summarized in a data signature defined in Section A.2.8.

A.2.1 B ASIC TYPES

Basic types areInteger, Real, BooleanandString. The syntax of basic types and their operations is defined by a
signatureΣB = (TB,ΩB). TB is the set of basic types,ΩB is the set of signatures describing operations over basic
types.

DEFINITION A.13 (SYNTAX OF BASIC TYPES )
The set of basic typesTB is defined asTB = {Integer, Real, Boolean, String}. �

Next we define the semantics of basic types by mapping each type to a domain.

DEFINITION A.14 (SEMANTICS OF BASIC TYPES )
LetA∗ be the set of finite sequences of characters from a finite alphabetA. The semantics of a basic typet ∈ TB

is a functionI mapping each type to a set:

• I(Integer) = Z ∪ {⊥}

• I(Real) = R ∪ {⊥}

• I(Boolean) = {true, false} ∪ {⊥}

• I(String) = A∗ ∪ {⊥}.

�

The basic typeInteger represents the set of integers,Real the set of real numbers,Booleanthe truth values true
and false, andStringall finite strings over a given alphabet. Each domain also contains a special undefined value
which is motivated in the next section.
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A.2.1.1 ERROR HANDLING

Each domain of a basic typet contains a special value⊥. This value represents an undefined value which is useful
for two purposes.

1. An undefined value may, for example, be assigned to an attribute of an object. In this case the undefined value
helps to model the situation where the attribute value is not yet known (for example, the email address of a
customer is unknown at the time of the first contact, but will be added later) or does not apply to this specific
object instance (e.g., the customer does not have an email address). This usage of undefined values is well-
known in database modeling and querying with SQL [Dat90, EN94]), in the Extended ER-Model [Gog94],
and in the object specification language TROLLlight [Her95].

2. An undefined value can signal an error in the evaluation of an expression. An example for an expression
that is defined by a partial function is the division of integers. The result of a division by zero is undefined.
The problems with partial functions can be eliminated by including an undefined value⊥ into the domains
of types. For all operations we can then extend their interpretation to total functions.

The interpretation of operations is considered strict unless there is an explicit statement in the following. Hence, an
undefined argument value causes an undefined operation result. This ensures the propagation of error conditions.

A.2.1.2 OPERATIONS

There are a number of predefined operations on basic types. The setΩB contains the signatures of these operations.
An operation signature describes the name, the parameter types, and the result type of an operation.

DEFINITION A.15 (SYNTAX OF OPERATIONS )
The syntax of an operation is defined by a signatureω : t1 × · · · × tn → t. The signature contains the operation
symbolω, a list of parameter typest1, . . . , tn ∈ T , and a result typet ∈ T . �

Table A.1 shows a schema defining most predefined operations over basic types. The left column contains partially
parameterized signatures inΩB. The right column specifies variations for the operation symbols or types in the
left column.

The set of predefined operations includes the usual arithmetic operations+,−, ∗, /, etc. for integers and real
numbers, division (div) and modulo (mod) of integers, sign manipulation (−, abs), conversion ofRealvalues to
Integervalues (floor, round), and comparison operations (<,>,≤,≥).

Operations for equality and inequality are presented later in Section A.2.2, since they apply to all types. Boolean
values can be combined in different ways (and, or, xor, implies), and they can be negated (not). For strings
the length of a string (size) can be determined, a string can be projected to a substring and two strings can be
concatenated (concat). Finally, assuming a standard alphabet like ASCII or Unicode, case translations are possible
with toUpper and toLower.

Some operation symbols (such as+ and−) are overloaded, that is there are signatures having the same operation
symbol but different parameters (concerning number or type) and possibly different result types. Thus in general,
the full argument list has to be considered in order to identify a signature unambiguously.

The operations in Table A.1 all have at least one parameter. There is another set of operations inΩB which do not
have parameters. These operations are used to produce constant values of basic types. For example, the integer
value12 can be generated by the operation12 :→ Integer. Similar operations exist for the other basic types. For
each value, there is an operation with no parameters and an operation symbol that corresponds to the common
notational representation of this value.
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Signature Schema parameters
ω : Integer× Integer→ Integer ω ∈ {+,−, ∗, max, min}

Integer× Real→ Real
Real× Integer→ Real
Real× Real→ Real

ω : Integer× Integer→ Integer ω ∈ {div, mod}
/ : t1 × t2 → Real t1, t2 ∈ {Integer, Real}
− : t → t t ∈ {Integer, Real}

abs :t → t

floor : t → Integer
round :t → Integer

ω : t1 × t2 → Boolean ω ∈ {<,>,≤,≥},
t1, t2 ∈ {Integer, Real,

String, Boolean}
ω : Boolean× Boolean→ Boolean ω ∈ {and, or,

xor, implies}
not : Boolean→ Boolean
size :String→ Integer

concat :String× String→ String
toUpper :String→ String
toLower : String→ String

substring :String× Integer× Integer→ String

Table A.1: Schema for operations on basic types

A.2.1.3 SEMANTICS OF OPERATIONS

DEFINITION A.16 (SEMANTICS OF OPERATIONS )
The semantics of an operation with signatureω : t1 × · · · × tn → t is a total functionI(ω : t1 × · · · × tn → t) :
I(t1)× · · · × I(tn) → I(t). �

When we refer to an operation, we usually omit the specification of the parameter and result types and only use
the operation symbol if the full signature can be derived from the context.

The next example shows the interpretation of the operation+ for adding two integers. The operation has two
argumentsi1, i2 ∈ I(Integer). This example also demonstrates the strict evaluation semantics for undefined
arguments.

I(+)(i1, i2) =

{
i1 + i2 if i1 6= ⊥ andi2 6= ⊥,

⊥ otherwise.

We can define the semantics of the other operations in Table A.1 analogously. The usual semantics of the boolean
operations and, or, xor, implies, and not, is extended for dealing with undefined argument values. Table A.2 shows
the interpretation of boolean operations following the proposal in [CKM+99] based on three-valued logic.

Since the semantics of the other basic operations forInteger, Real, andStringvalues is rather obvious, we will not
further elaborate on them here.
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b1 b2 b1 andb2 b1 or b2 b1 xor b2 b1 impliesb2 not b1

false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false ⊥ false ⊥ ⊥ true true
true ⊥ ⊥ true ⊥ ⊥ false
⊥ false false ⊥ ⊥ ⊥ ⊥
⊥ true ⊥ true ⊥ true ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table A.2: Semantics of boolean operations

A.2.2 COMMON OPERATIONS ON ALL TYPES

At this point, we introduce some operations that are defined on all types (including those which are defined in
subsequent sections). The equality of values of the same type can be checked with the operation=t: t × t →
Boolean. Furthermore, the semantics of=t is defined to be strict. For two valuesv1, v2 ∈ I(t), we have

I(=t)(v1, v2) =


true if v1 = v2, andv1 6= ⊥ andv2 6= ⊥,

⊥ if v1 = ⊥ or v2 = ⊥,

false otherwise.

A test for inequality6=t: t × t → Booleancan be defined analogously. It is also useful to have an operation that
allows to check whether an arbitrary value is well-defined or undefined. This can be done with the operations
isDefinedt : t → Booleanand isUndefinedt : t → Booleanfor any typet ∈ T . The semantics of these operations
is given for anyv ∈ I(t) by:

I(isDefinedt)(v) = (v 6= ⊥)
I(isUndefinedt)(v) = (v = ⊥)

A.2.3 ENUMERATION TYPES

Enumeration types are user-defined types. An enumeration type is defined by specifying a name and a set of
literals. An enumeration value is one of the literals used for its type definition.

The syntax of enumeration types and their operations is defined by a signatureΣE = (TE ,ΩE). TE is the set of
enumeration types andΩE the set of signatures describing the operations on enumeration types.

DEFINITION A.17 (SYNTAX OF ENUMERATION TYPES )
An enumeration typet ∈ TE is associated with a finite non-empty set of enumeration literals by a function
literals(t) = {e1t , . . . , ent}. �

An enumeration type is interpreted by the set of literals used for its declaration.

DEFINITION A.18 (SEMANTICS OF ENUMERATION TYPES )
The semantics of an enumeration typet ∈ TE is a functionI(t) = literals(t) ∪ {⊥}. �
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A.2.3.1 OPERATIONS

There is only a small number of operations defined on enumeration types: the test for equality or inequality of
two enumeration values. The syntax and semantics of these general operations was defined in Section A.2.2 and
applies to enumeration types as well.

In addition, the operation allInstancest :→ Set(t) is defined for eacht ∈ TE to return the set of all literals of the
enumeration:

∀t ∈ TE : I(allInstancest()) = literals(t)

A.2.4 OBJECT TYPES

A central part of a UML model are classes that describe the structure of objects in a system. For each class, we
define a corresponding object type describing the set of possible object instances. The syntax of object types and
their operations is defined by a signatureΣC = (TC ,ΩC). TC is the set of object types, andΩC is the set of
signatures describing operations on object types.

DEFINITION A.19 (SYNTAX OF OBJECT TYPES )
LetM be a model with a set CLASS of class names. The setTC of object types is defined such that for each class
c ∈ CLASS there is a typet ∈ TC having the same name as the classc. �

We define the following two functions for mapping a class to its type and vice versa.

typeOf : CLASS→ TC

classOf : TC → CLASS

The interpretation of classes is used for defining the semantics of object types. The set of object identifiers
ICLASS(c) was introduced in Definition A.10 on page 7.

DEFINITION A.20 (SEMANTICS OF OBJECT TYPES )
The semantics of an object typet ∈ TC with classOf(t) = c is defined asI(t) = ICLASS(c) ∪ {⊥}. �

In summary, the domain of an object type is the set of object identifiers defined for the class and its children. The
undefined value that is only available with the type – not the class – allows us to work with values not referring
to any existing object. This is useful, for example, when we have a navigation expression pointing to a class with
multiplicity 0..1 . The result of the navigation expression is a value referring to the actual object only if a target
object exists. Otherwise, the result is the undefined value.

A.2.4.1 OPERATIONS

There are four different kinds of operations that are specific to object types.

• Predefined operations: These are operations which are implicitly defined in OCL for all object types.

• Attribute operations: An attribute operation allows access to the attribute value of an object in a given system
state.
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• Object operations: A class may have operations that do not have side effects. These operations are marked in
the UML model with the tagisQuery. In general, OCL expressions could be used to define object operations.
The semantics of an object operation is therefore given by the semantics of the associated OCL expression.

• Navigation operations: An object may be connected to other objects via association links. A navigation
expression allows to follow these links and to retrieve connected objects.

PREDEFINED OPERATIONS

For all classesc ∈ CLASS with object typetc = typeOf(c) the operations

allInstancestc :→ Set(tc)

are inΩC . The semantics is defined as

I(allInstancestc :→ Set(tc)) = σCLASS(c) .

This interpretation of allInstances is safe in the sense that its result is always limited to a finite set. The extension
of a class is always a finite set of objects.

ATTRIBUTE OPERATIONS

Attribute operations are declared in a model specification by the set ATTc for each classc. The set contains
signaturesa : tc → t with a being the name of an attribute defined in the classc. The type of the attribute ist. All
attribute operations in ATTc are elements ofΩC . The semantics of an attribute operation is a function mapping an
object identifier to a value of the attribute domain. An attribute value depends on the current system state.

DEFINITION A.21 (SEMANTICS OF ATTRIBUTE OPERATIONS )
An attribute signaturea : tc → t in ΩC is interpreted by an attribute value functionIATT(a : tc → t) : I(tc) → I(t)
mapping objects of classc to a value of typet.

IATT(a : tc → t)(c) =

{
σATT(a)(c) if c ∈ σCLASS(c),
⊥ otherwise.

�

Note that attribute functions are defined for all possible objects. The attempt to access an attribute of a non-existent
object results in an undefined value.

OBJECT OPERATIONS

Object operations are declared in a model specification. For side effect-free operations the computation can often
be described with an OCL expression. The semantics of a side effect-free object operation can then be given by
the semantics of the OCL expression associated with the operation. We give a semantics for object operations in
Section A.3 when OCL expressions are introduced.
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NAVIGATION OPERATIONS

A fundamental concept of OCL is navigation along associations. Navigation operations start from an object of
a source class and retrieve all connected objects of a target class. In general, everyn-ary association induces a
total of n · (n − 1) directed navigation operations, because OCL navigation operations only consider two classes
of an association at a time. For defining the set of navigation operations of a given class, we have to consider all
associations the class is participating in. A corresponding function namedparticipating was defined on page 4.

DEFINITION A.22 (SYNTAX OF NAVIGATION OPERATIONS )
LetM be a model

M = (CLASS, ATTc, OPc, ASSOC, associates, roles,multiplicities,≺) .

The setΩnav(c) of navigation operations for a classc ∈ CLASS is defined such that for each association
as ∈ participating(c) with associates(as) = 〈c1, . . . , cn〉, roles(as) = 〈r1, . . . , rn〉, andmultiplicities(as) =
〈M1, . . . ,Mn〉 the following signatures are inΩnav(c).

For all i, j ∈ {1, . . . , n} with i 6= j, ci = c, tci = typeOf(ci), andtcj = typeOf(cj)

i. if n = 2 andMj − {0, 1} = ∅ thenrj(as,ri)
: tci → tcj ∈ Ωnav(c),

ii. if n > 2 or Mj − {0, 1} 6= ∅ thenrj(as,ri)
: tci → Set(tcj ) ∈ Ωnav(c).

All navigation operations are elements ofΩC . �

As discussed in Section A.1, we use unique role names instead of class names for navigation operations in order
to avoid ambiguities. The index of the navigation operation name specifies the association to be navigated along
as well as the source role name of the navigation path. The result type of a navigation over binary associations is
the type of the target class if the multiplicity of the target is given as0..1 or 1 (i). All other multiplicities allow
an object of the source class to be linked with multiple objects of the target class. Therefore, we need a set type to
represent the navigation result (ii). Non-binary associations always induce set-valued results since a multiplicity
at the target end is interpreted in terms ofall source objects. However, for a navigation operation, only a single
source object is considered.

Navigation operations are interpreted by navigation functions. Such a function has the effect of first selecting all
those links of an association where the source object occurs in the link component corresponding to the role of the
source class. The resulting links are then projected onto those objects that correspond to the role of the target class.

DEFINITION A.23 (SEMANTICS OF NAVIGATION OPERATIONS )
The set of objects of classcj linked to an objectci via associationas is defined as

L(as)(ci) = {cj | (c1, . . . , ci, . . . , cj , . . . , cn) ∈ σASSOC(as)}

The semantics of operations inΩnav(c) is then defined as

i. I(rj(as,ri)
: tci → tcj )(ci) =

{
cj if cj ∈ L(as)(ci),
⊥ otherwise.

ii. I(rj(as,ri)
: tci → Set(tcj ))(ci) = L(as)(ci).

�
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A.2.5 COLLECTION AND TUPLE TYPES

We call a type that allows the aggregation of several values into a single value a complex type. OCL provides
the complex typesSet(t), Sequence(t), andBag(t) for describing collections of values of typet. There is also
a supertypeCollection(t) which describes common properties of these types. The OCL collection types are ho-
mogeneous in the sense that all elements of a collection must be of the same typet. This restriction is slightly
relaxed by the substitution rule for subtypes in OCL (see Section A.2.7). The rule says that the actual elements of
a collection must have a type which is a subtype of the declared element type. For example, aSet(Person) may
contain elements of typeCustomeror Employee.

A.2.5.1 SYNTAX AND SEMANTICS

Since complex types are parameterized types, we define their syntax recursively by means of type expressions.

DEFINITION A.24 (TYPE EXPRESSIONS)
Let T̂ be a set of types andl1, . . . , ln ∈ N a set of disjoint names. The set of type expressionsTExpr(T̂ ) over T̂ is
defined as follows.

i. If t ∈ T̂ thent ∈ TExpr(T̂ ).

ii. If t ∈ TExpr(T̂ ) thenSet(t), Sequence(t), Bag(t) ∈ TExpr(T̂ ).

iii. If t ∈ TExpr(T̂ ) thenCollection(t) ∈ TExpr(T̂ ).

iv. If t1, . . . , tn ∈ TExpr(T̂ ) thenTuple(l1 : t1, . . . , ln : tn) ∈ TExpr(T̂ ).

�

The definition says that every typet ∈ T̂ can be used as an element type for constructing a set, sequence, bag, or
collection type. The components of a tuple type are marked with labelsl1, . . . , ln. Complex types may again be
used as element types for constructing other complex types. The recursive definition allows unlimited nesting of
type expressions.

For the definition of the semantics of type expressions we make the following conventions. LetF(S) denote the
set of all finite subsets of a given setS, S∗ is the set of all finite sequences overS, andB(S) is the set of all finite
multisets (bags) overS.

DEFINITION A.25 (SEMANTICS OF TYPE EXPRESSIONS)
Let T̂ be a set of types where the domain of eacht ∈ T̂ is I(t). The semantics of type expressionsTExpr(T̂ ) over

T̂ is defined for allt ∈ T̂ as follows.

i. I(t) is defined as given.

ii. I(Set(t)) = F(I(t)) ∪ {⊥},
I(Sequence(t)) = (I(t))∗ ∪ {⊥},
I(Bag(t)) = B(I(t)) ∪ {⊥}.

iii. I(Collection(t)) = I(Set(t)) ∪ I(Sequence(t)) ∪ I(Bag(t)).

iv. I(Tuple(l1 : t1, . . . , ln : tn)) = I(t1)× · · · × I(tn) ∪ {⊥}.
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�

In this definition, we observe that the interpretation of the typeCollection(t) subsumes the semantics of the set,
sequence and bag type. In OCL, the collection type is described as a supertype ofSet(t), Sequence(t) andBag(t).
This construction greatly simplifies the definition of operations having a similar semantics for each of the concrete
collection types. Instead of explicitly repeating these operations for each collection type, they are defined once
for Collection(t). Examples for operations which are “inherited” in this way are the size and includes operations
which determine the number of elements in a collection or test for the presence of an element in a collection,
respectively.

A.2.5.2 OPERATIONS

CONSTRUCTORS

The most obvious way to create a collection value is by explicitly enumerating its element values. We therefore
define a set of generic operations which allow us to construct sets, sequences, and bags from an enumeration of
element values. For example, the set{1, 2, 5} can be described in OCL by the expressionSet {1,2,5 }, the list
〈1, 2, 5〉 by Sequence {1,2,5 }, and the bag{{2, 2, 7}} by Bag{2,2,7 }. A shorthand notation for collections
containing integer intervals can be used by specifying lower and upper bounds of the interval. For example, the
expressionSequence {3..6 } denotes the sequence〈3, 4, 5, 6〉. This is only syntactic sugar because the same
collection can be described by explicitly enumerating all values of the interval.

Operations for constructing collection values by enumerating their element values are calledconstructors. For
typest ∈ TExpr(T̂ ) constructors inΩTExpr(T̂ ) are defined below. A parameter listt × · · · × t denotesn (n ≥ 0)
parameters of the same typet. We define constructors mkSett, mkSequencet, and mkBagt not only for any typet
but also for any finite numbern of parameters.

• mkSett : t× · · · × t → Set(t)

• mkSequencet : t× · · · × t → Sequence(t)

• mkBagt : t× · · · × t → Bag(t)

The semantics of constructors is defined for valuesv1, . . . , vn ∈ I(t) by the following functions.

• I(mkSett)(v1, . . . , vn) = {v1, . . . , vn}

• I(mkSequencet)(v1, . . . , vn) = 〈v1, . . . , vn〉

• I(mkBagt)(v1, . . . , vn) = {{v1, . . . , vn}}

A tuple constructor in OCL specifies values and labels for all components, for example,Tuple {number:3,
fruit:’apple’, flag:true }. A constructor for a tuple with component typest1, . . . , tn ∈ TExpr(T̂ )
(n ≥ 1) is given in abstract syntax by the following operation.

• mkTuple: l1 : t1 × · · · × ln : tn → Tuple(l1 : t1, . . . , ln : tn)

The semantics of tuple constructors is defined for valuesvi ∈ I(ti) with i = 1, . . . , n by the following function.

• I(mkTuple)(l1 : v1, . . . , ln : vn) = (v1, . . . , vn)

Note that constructors having element values as arguments are deliberately defined not to be strict. A collection
value therefore may contain undefined values while still being well-defined.
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COLLECTION OPERATIONS

The definition of operations of collection types comprises the set of all predefined collection operations. Operations
common to the typesSet(t), Sequence(t), andBag(t) are defined for the supertypeCollection(t). Table A.3 shows
the operation schema for these operations. For allt ∈ TExpr(T̂ ), the signatures resulting from instantiating the
schema are included inΩTExpr(T̂ ). The right column of the table illustrates the intended set-theoretic interpretation.
For this purpose,C,C1, C2 are values of typeCollection(t), andv is a value of typet.

Signature Semantics
size :Collection(t) → Integer |C|

count :Collection(t)× t → Integer |C ∩ {v}|
includes :Collection(t)× t → Boolean v ∈ C

excludes :Collection(t)× t → Boolean v /∈ C

includesAll : Collection(t)× Collection(t) → Boolean C2 ⊆ C1

excludesAll :Collection(t)× Collection(t) → Boolean C2 ∩ C1 = ∅
isEmpty :Collection(t) → Boolean C = ∅

notEmpty :Collection(t) → Boolean C 6= ∅
sum :Collection(t) → t

∑|C|
i=1 ci

Table A.3: Operations for typeCollection(t)

The operation schema in Table A.3 can be applied to sets (sequences, bags) by substitutingSet(t) (Sequence(t),
Bag(t)) for all occurrences of typeCollection(t). A semantics for the operations in Table A.3 can be easily defined
for each of the concrete collection typesSet(t), Sequence(t), andBag(t). The semantics for the operations of
Collection(t) can then be reduced to one of the three cases of the concrete types because every collection type is
either a set, a sequence, or a bag. Consider, for example, the operation count: Set(t)× t → Integerthat counts the
number of occurrences of an elementv in a sets. The semantics of count is

I(count: Set(t)× t → Integer)(s, v) =


1 if v ∈ s,

0 if v /∈ s,

⊥ if s = ⊥.

Note that count is not strict. A set may contain the undefined value so that the result of count is 1 if the undefined
value is passed as the second argument, for example, count({⊥},⊥) = 1 and count({1},⊥) = 0.

For bags (and very similar for sequences), the meaning of count is

I(count: Bag(t)× t → Integer)({{v1, . . . , vn}}, v)

=


0 if n = 0,

I(count)({{v2, . . . , vn}}, v) if n > 0 andv1 6= v,

I(count)({{v2, . . . , vn}}, v) + 1 if n > 0 andv1 = v.

As explained before, the semantics of count for values of typeCollection(t) can now be defined in terms of the
semantics of count for sets, sequences, and bags.

I(count: Collection(t)× t → Integer)(c, v)

=


I(count: Set(t)× t → Integer)(c, v) if c ∈ I(Set(t)),
I(count: Sequence(t)× t → Integer)(c, v) if c ∈ I(Sequence(t)),
I(count: Bag(t)× t → Integer)(c, v) if c ∈ I(Bag(t)),
⊥ otherwise.
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SET OPERATIONS

Operations on sets include the operations listed in Table A.3. These are inherited fromCollection(t). Operations
which are specific to sets are shown in Table A.4 whereS, S1, S2 are values of typeSet(t), B is a value of type
Bag(t) andv is a value of typet.

Signature Semantics
union : Set(t)× Set(t) → Set(t) S1 ∪ S2

union : Set(t)× Bag(t) → Bag(t) S ∪B

intersection :Set(t)× Set(t) → Set(t) S1 ∩ S2

intersection :Set(t)× Bag(t) → Set(t) S ∩B

− : Set(t)× Set(t) → Set(t) S1 − S2

symmetricDifference :Set(t)× Set(t) → Set(t) (S1 ∪ S2)− (S1 ∩ S2)
including : Set(t)× t → Set(t) S ∪ {v}
excluding :Set(t)× t → Set(t) S − {v}

asSequence :Set(t) → Sequence(t)
asBag :Set(t) → Bag(t)

Table A.4: Operations for typeSet(t)

Note that the semantics of the operation asSequence is nondeterministic. Any sequence containing only the ele-
ments of the source set (in arbitrary order) satisfies the operation specification in OCL.

BAG OPERATIONS

Operations for bags are shown in Table A.5. The operation asSequence is nondeterministic also for bags.

Signature Semantics
union : Bag(t)× Bag(t) → Bag(t) B1 ∪B2

union : Bag(t)× Set(t) → Bag(t) B ∪ S

intersection :Bag(t)× Bag(t) → Bag(t) B1 ∩B2

intersection :Bag(t)× Set(t) → Set(t) B ∩ S

including : Bag(t)× t → Bag(t) B ∪ {{v}}
excluding :Bag(t)× t → Bag(t) B − {{v}}

asSequence :Bag(t) → Sequence(t)
asSet :Bag(t) → Set(t)

Table A.5: Operations for typeBag(t)

SEQUENCE OPERATIONS

Sequence operations are displayed in Table A.6. The intended semantics again is shown in the right column of
the table.S, S1, S2 are sequences occurring as argument values,v is a value of typet, andi, j are arguments of
type Integer. The length of sequenceS is n. The operator◦ denotes the concatenation of lists,πi(S) projects
theith element of a sequenceS, andπi,j(S) results in a subsequence ofS starting with theith element up to and
including thejth element. The result is⊥ if an index is out of range.S − 〈v〉 produces a sequence equal toS but
with all elements equal tov removed. Note that the operations append and including are also defined identically
in the OCL standard.
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Signature Semantics
union : Sequence(t)× Sequence(t) → Sequence(t) S1 ◦ S2

append :Sequence(t)× t → Sequence(t) S ◦ 〈e〉
prepend :Sequence(t)× t → Sequence(t) 〈e〉 ◦ S

subSequence :Sequence(t)× Integer× Integer→ Sequence(t) πi,j(S)
at : Sequence(t)× Integer→ t πi(S)

first : Sequence(t) → t π1(S)
last : Sequence(t) → t πn(S)

including : Sequence(t)× t → Sequence(t) S ◦ 〈e〉
excluding :Sequence(t)× t → Sequence(t) S − 〈e〉

asSet :Sequence(t) → Set(t)
asBag :Sequence(t) → Bag(t)

Table A.6: Operations for typeSequence(t)

FLATTENING OF COLLECTIONS

Type expressions as introduced in Definition A.24 allow arbitrarily deep nested collection types. We pursue the
following approach for giving a precise meaning to collection flattening. First, we keep nested collection types
because they do not only make the type system more orthogonal, but they are also necessary for describing the
input of the flattening process. Second, we define flattening by means of an explicit function making the effect of
the flattening process clear. There may be a shorthand notation omitting the flatten operation in concrete syntax
which would expand in abstract syntax to an expression with an explicit flattening function.

Flattening in OCL does apply to all collection types. We have to consider all possible combinations first. Table A.7
shows all possibilities for combiningSet, Bag, andSequenceinto a nested collection type. For each of the different
cases, the collection type resulting from flattening is shown in the right column. Note that the element typet can
be any type. In particular, ift is also a collection type the indicated rules for flattening can be applied recursively
until the element type of the result is a non-collection type.

Nested collection type Type after flattening
Set(Sequence(t)) Set(t)
Set(Set(t)) Set(t)
Set(Bag(t)) Set(t)
Bag(Sequence(t)) Bag(t)
Bag(Set(t)) Bag(t)
Bag(Bag(t)) Bag(t)
Sequence(Sequence(t)) Sequence(t)
Sequence(Set(t)) Sequence(t)
Sequence(Bag(t)) Sequence(t)

Table A.7: Flattening of nested collections.

A signature schema for a flatten operation that removes one level of nesting can be defined as

flatten: C1(C2(t)) → C1(t)

whereC1 andC2 denote any collection type nameSet, Sequence, or Bag. The meaning of the flatten operations
can be defined by the following generic iterate expression. The semantics of OCL iterate expressions is defined in
Section A.3.1.2.
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<collection-of-type-C1(C2(t))>->iterate(e1 : C2(t);
acc1 : C1(t) = C1 {} |
e1->iterate(v : t;

acc2 : C1(t) = acc1 |
acc2->including(v)))

The following example shows how this expression schema is instantiated for a bag of sets of integers, that is,
C1 = Bag, C2 = Set, andt = Integer. The result of flattening the valueBag{Set {3,2 },Set {1,2,4 }} is
Bag{1,2,2,3,4 }.

Bag{Set {3,2 },Set {1,2,4 }}->iterate(e1 : Set(Integer);
acc1 : Bag(Integer) = Bag {} |
e1->iterate(v : Integer;

acc2 : Bag(Integer) = acc1 |
acc2->including(v)))

It is important to note that flattening sequences of sets and bags (see the last two rows in Table A.7) is potentially
nondeterministic. For these two cases, the flatten operation would have to map each element of the (multi-) set
to a distinct position in the resulting sequence, thus imposing an order on the elements which did not exist in the
first place. Since there are types (e.g. object types) which do not define an order on their domain elements, there
is no obvious mapping for these types. Fortunately, these problematic cases do not occur in standard navigation
expressions. Furthermore, these kinds of collections can be flattened if the criteria for ordering the elements is
explicitly specified.

TUPLE OPERATIONS

An essential operation for tuple types is the projection of a tuple value onto one of its components. An element of
a tuple with labeled components can be accessed by specifying its label.

• elementli : Tuple(l1 : t1, . . . , li : ti, . . . , ln : tn) → ti

• I(elementli : Tuple(l1 : t1, . . . , li : ti, . . . , ln : tn) → ti)(v1, . . . , vi, . . . , vn) = vi

A.2.6 SPECIAL TYPES

Special types in OCL that do not fit into the categories discussed so far areOclAny, OclStateandOclVoid.

• OclAnyis the supertype of all other types except for the collection types. The exception has been introduced
in UML 1.3 because it considerably simplifies the type system [CKM+99]. A simple set inclusion seman-
tics for subtype relationships as proposed in the next section would not be possible due to cyclic domain
definitions ifOclAnywere the supertype ofSet(OclAny).

• OclStateis a type very similar to an enumeration type. It is only used in the operation oclInState for referring
to state names in a state machine. There are no operations defined on this type.OclStateis therefore not
treated specially.

• OclVoid is the subtype of all other types. The only value of this type is the undefined value. Notice that there
is no problem with cyclic domain definitions as⊥ is an instance of every type.
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DEFINITION A.26 (SPECIAL TYPES)
The set of special types isTS = {OclAny, OclVoid}.

Let T̂ be the set of basic, enumeration, and object typesT̂ = TB ∪ TE ∪ TC . The domain of OclAny is given as
I(OclAny) =

(⋃
t∈T̂ I(t)

)
∪ {⊥}.

The domain of OclVoid isI(OclVoid) = {⊥}. �

Operations onOclAny include equality (=) and inequality (<>) which already have been defined for all types
in Section A.2.2. The operations oclIsKindOf, oclIsTypeOf, and oclAsType expect a type as argument. We
define them as part of the OCL expression syntax in the next section. The operation oclIsNew is only allowed in
postconditions and will be discussed in Section A.3.2.

For OclVoid, the constant operation undefined:→ OclVoid results in the undefined value⊥. The semantics is
given byI(undefined) = ⊥.

A.2.7 TYPE HIERARCHY

The type system of OCL supports inclusion polymorphism [CW85] by introducing the concept of atype hierarchy.
The type hierarchy is used to define the notion oftype conformance. Type conformance is a relationship between
two types, expressed by theconformsTo ()operation from the abstract syntax metamodel. A valid OCL expression
is an expression in which all the types conform. The consequence of type conformance can be loosely stated as: a
value of a conforming typeB may be used wherever a value of typeA is required.

The type hierarchy reflects the subtype/supertype relationship between types. The following relationships are
defined in OCL.

1. Integeris a subtype ofReal.

2. All types, except for the collection and tuple types, are subtypes ofOclAny.

3. Set(t), Sequence(t), andBag(t) are subtypes ofCollection(t).

4. OclVoid is subtype of all other types.

5. The hierarchy of types introduced by UML model elements mirrors the generalization hierarchy in the UML
model.

Type conformance is a relation which is identical to the subtype relation introduced by the type hierarchy. The
relation is reflexive and transitive.

DEFINITION A.27 (TYPE HIERARCHY )
Let T be a set of types andTC a set of object types withTC ⊂ T . The relation≤ is a partial order onT and is
called thetype hierarchyoverT . The type hierarchy is defined for allt, t′, t′′ ∈ T and alltc, t′c ∈ TC , n,m ∈ N as
follows.

i. ≤ is (a) reflexive, (b) transitive, and (c) antisymmetric:

(a) t ≤ t

(b) t′′ ≤ t′ ∧ t′ ≤ t =⇒ t′′ ≤ t

(c) t′ ≤ t ∧ t ≤ t′ =⇒ t = t′.

ii. Integer≤ Real.
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iii. t ≤ OclAnyfor all t ∈ (TB ∪ TE ∪ TC).

iv. OclVoid≤ t.

v. Set(t) ≤ Collection(t),
Sequence(t) ≤ Collection(t), and
Bag(t) ≤ Collection(t).

vi. If t′ ≤ t thenSet(t′) ≤ Set(t), Sequence(t′) ≤ Sequence(t), Bag(t′) ≤ Bag(t), and
Collection(t′) ≤ Collection(t).

vii. If t′i ≤ ti for i = 1, . . . , n andn ≤ m then
Tuple(l1 : t′1, . . . , ln : t′n, . . . , lm : t′m) ≤ Tuple(l1 : t1, . . . , ln : tn).

viii. If classOf(t′c) ≺ classOf(tc) thent′c ≤ tc.

�

If a typet′ is a subtype of another typet (i.e. t′ ≤ t), we say thatt′ conformsto t. Type conformance is associated
with the principle of substitutability. A value of typet′ may be used wherever a value of typet is expected. This
rule is defined more formally in Section A.3.1 which defines the syntax and semantics of expressions.

The principle of substitutability and the interpretation of types as sets suggest that the type hierarchy should be
defined as a subset relation on the type domains. Hence, for a typet′ being a subtype oft, we postulate that the
interpretation oft′ is a subset of the interpretation oft. It follows that every operationω accepting values of typet
has the same semantics for values of typet′, sinceI(ω) is already well-defined for values inI(t′):

If t′ ≤ t thenI(t′) ⊆ I(t) for all typest′, t ∈ T .

A.2.8 DATA SIGNATURE

We now have available all elements necessary to define the final data signature for OCL expressions. The signature
provides the basic set of syntactic elements for building expressions. It defines the syntax and semantics of types,
the type hierarchy, and the set of operations defined on types.

DEFINITION A.28 (DATA SIGNATURE )
Let T̂ be the set of non-collection types:̂T = TB ∪ TE ∪ TC ∪ TS . The syntax of a data signature over an object
modelM is a structureΣM = (TM,≤,ΩM) where

i. TM = TExpr(T̂ ),

ii. ≤ is a type hierarchy overTM,

iii. ΩM = ΩTExpr(T̂ ) ∪ ΩB ∪ ΩE ∪ ΩC ∪ ΩS .

The semantics ofΣM is a structureI(ΣM) = (I(TM), I(≤), I(ΩM)) where

i. I(TM) assigns eacht ∈ TM an interpretationI(t).

ii. I(≤) implies for all typest′, t ∈ TM thatI(t′) ⊆ I(t) if t′ ≤ t.

iii. I(ΩM) assigns each operationω : t1 × · · · × tn → t ∈ ΩM a total function
I(ω) : I(t1)× · · · × I(tn) → I(t).

�
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A.3 OCL E XPRESSIONS AND CONSTRAINTS

The core of OCL is given by an expression language. Expressions can be used in various contexts, for example,
to define constraints such as class invariants and pre-/postconditions on operations. In this section, we formally
define the syntax and semantics of OCL expressions, and give precise meaning to notions like context, invariant,
and pre-/postconditions.

Section A.3.1 defines the abstract syntax and semantics of OCL expressions and shows how other OCL constructs
can be derived from this language core. The context of expressions and other important concepts such as invariants,
queries, and shorthand notations are discussed. Section A.3.2 defines the meaning of operation specifications with
pre- and postconditions.

A.3.1 EXPRESSIONS

In this section, we define the syntax and semantics of expressions. The definition of expressions is based upon
the data signature we developed in the previous section. A data signatureΣM = (TM,≤,ΩM) provides a set of
typesTM, a relation≤ on types reflecting the type hierarchy, and a set of operationsΩM. The signature contains
the initial set of syntactic elements upon which we build the expression syntax.

A.3.1.1 SYNTAX OF EXPRESSIONS

We define the syntax of expressions inductively so that more complex expressions are recursively built from simple
structures. For each expression the set of free occurrences of variables is also defined. Also, each section in the
definition corresponds to a subclass of OCLExpression in the abstract syntax. The mapping is indicated.

DEFINITION A.29 (SYNTAX OF EXPRESSIONS)
Let ΣM = (TM,≤,ΩM) be a data signature over an object modelM. Let Var = {Vart}t∈TM be a family of
variable sets where each variable set is indexed by a typet. The syntax of expressions over the signatureΣM is
given by a set Expr= {Exprt}t∈TM and a functionfree : Expr→ F(Var) that are defined as follows.

i. If v ∈ Vart thenv ∈ Exprt andfree(v) := {v}. This maps into theVariableExp class in the abstract
syntax.

ii. If v ∈ Vart1 , e1 ∈ Exprt1 , e2 ∈ Exprt2 thenlet v = e1 in e2 ∈ Exprt2 and
free(let v = e1 in e2) := free(e2)− {v}. This maps intoLetExpression in the abstract syntax.v = e1 is
theVariableDeclaration referred through thevariableassociation;e2 is theOclExpressionreferred
through association endin. e1 is theOclExpressionreferred from theVariableDeclaration through the
initExpressionassociation.

iii. (a) If t ∈ TM andω :→ t ∈ ΩM thenω ∈ Exprt andundefined ∈ ExprOclVoid andfree(ω) := ∅ and
free(undefined) := ∅. This maps into theConstantExpclass and its subclasses from the abstract
syntax.

(b) If ω : t1 × · · · × tn → t ∈ ΩM andei ∈ Exprti for all i = 1, . . . , n thenω(e1, . . . , en) ∈ Exprt and
free(ω(e1, . . . , en)) := free(e1) ∪ · · · ∪ free(en). This maps intoModelPropertyCallExp and its
subclasses, withe1 representing thesourceande2 to en thearguments.
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iv. If e1 ∈ ExprBooleanande2, e3 ∈ Exprt thenif e1 then e2 elsee3 endif ∈ Exprt and
free(if e1 thene2 elsee3 endif) := free(e1) ∪ free(e2) ∪ free(e3). This corresponds to theIfExpression in
the abstract syntax.e1 is theOclExpressionreferred throughcondition, e2 corresponds to the
thenExpressionassociation, ande3 maps into theOclExpressionelseExpression.

v. If e ∈ Exprt andt′ ≤ t or t ≤ t′ then(e asTypet′) ∈ Exprt′ , (e isTypeOf t′) ∈ ExprBoolean,
(e isKindOf t′) ∈ ExprBooleanandfree((e asTypet′)) := free(e), free((e isTypeOft′)) := free(e),
free((e isKindOf t′)) := free(e). This maps into some special instances of
OclOperationWithTypeArgument .

vi. If e1 ∈ ExprCollection(t1), v1 ∈ Vart1 , v2 ∈ Vart2 , ande2, e3 ∈ Exprt2 thene1 → iterate(v1; v2 = e2 | e3)
∈ Exprt2 andfree(e1→ iterate(v1; v2 = e2 | e3)) := (free(e1) ∪ free(e2) ∪ free(e3))− {v1, v2}. This is a
representation of theIterateExp. e1 is thesource, v2 = e2 is theVariableDeclaration which is referred to
through theresultassociation in the abstract syntax.v1 corresponds to theiterator VariableDeclaration.
Finally, e3 is theOclExpressionbody. Instances ofIteratorExp are defined in the OCL Standard Library.

An expression of typet′ is also an expression of a more general typet. For allt′ ≤ t: if e ∈ Exprt′ thene ∈ Exprt.
�

A variable expression (i) refers to the value of a variable. Variables (including the special variableself ) may
be introduced by the context of an expression, as part of an iterate expression, and by a let expression. Let
expressions (ii) do not add to the expressiveness of OCL but help to avoid repetitions of common sub-expressions.
Constant expressions (iiia) refer to a value from the domain of a type. Operation expressions (iiib) apply an
operation fromΩM. The set of operations includes:

• predefined data operations:+, - , * , <, >, size , max

• attribute operations:self.age , e.salary

• side effect-free operations defined by a class:
b.rentalsForDay(...)

• navigation by role names:self.employee

As demonstrated by the examples, an operation expression may also be written in OCL path syntax as
e1.ω(e2, . . . , en). This notational style is common in many object-oriented languages. It emphasizes the role
of the first argument as the “receiver” of a “message”. Ife1 denotes a collection value, an arrow symbol is used in
OCL instead of the period:e1 → ω(e2, . . . , en). Collections may be bags, sets, or lists.

An if-expression (iv) provides an alternative selection of two expressions depending on the result of a condition
given by a boolean expression.

An asType expression (v) can be used in cases where static type information is insufficient. It corresponds to
the oclAsType operation in OCL and can be understood as a cast of a source expression to an equivalent ex-
pression of a (usually) more specific target type. The target type must be related to the source type, that is, one
must be a subtype of the other. The isTypeOf and isKindOf expressions correspond to theoclIsTypeOf and
oclIsKindOf operations, respectively. An expression(e isTypeOft′) can be used to test whether the type of the
value resulting from the expressione has the typet′ given as argument. An isKindOf expression(e isKindOf t′) is
not as strict in that it is sufficient for the expression to become true ift′ is a supertype of the type of the value ofe.
Note that in previous OCL versions these type casts and tests were defined as operations with parameters of type
OclType. Here, we technically define them as first class expressions which has the benefit that we do not need the
metatypeOclType. Thus the type system is kept simple while preserving compatibility with standard OCL syntax.
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An iterate expression (vi) is a general loop construct which evaluates an argument expressione3 repeatedly for
all elements of a collection which is given by a source expressione1. Each element of the collection is bound in
turn to the variablev1 for each evaluation of the argument expression. The argument expressione3 may contain
the variablev1 to refer to the current element of the collection. The result variablev2 is initialized with the
expressione2. After each evaluation of the argument expressione3, the result is bound to the variablev2. The final
value ofv2 is the result of the whole iterate expression.

The iterate construct is probably the most important kind of expression in OCL. Many other OCL constructs (such
asselect , reject , collect , exists , forAll , andisUnique ) can be equivalently defined in terms of
an iterate expression (see Section A.3.1.3).

Following the principle of substitutability, the syntax of expressions is defined such that wherever an expression
e ∈ Exprt is expected as part of another expression, an expression with a more special typet′, (t′ ≤ t) may be
used. In particular, operation arguments and variable assignments in let and iterate expressions may be given by
expressions of more special types.

A.3.1.2 SEMANTICS OF EXPRESSIONS

The semantics of expressions is made precise in the following definition. A context for evaluation is given by an
environmentτ = (σ, β) consisting of a system stateσ and a variable assignmentβ : Vart → I(t). A system
stateσ provides access to the set of currently existing objects, their attribute values, and association links between
objects. A variable assignmentβ maps variable names to values.

DEFINITION A.30 (SEMANTICS OF EXPRESSIONS)
Let Env be the set of environmentsτ = (σ, β). The semantics of an expressione ∈ Exprt is a functionI[[ e ]] :
Env→ I(t) that is defined as follows.

i. I[[ v ]](τ) = β(v).

ii. I[[ let v = e1 in e2 ]](τ) = I[[ e2 ]](σ, β{v/I[[ e1 ]](τ)}).

iii. I[[ undefined]](τ) = ⊥ andI[[ ω ]](τ) = I(ω)

iv. I[[ ω(e1, . . . , en) ]](τ) = I(ω)(τ)(I[[ e1 ]](τ), . . . , I[[ en ]](τ)).

v. I[[ if e1 thene2 elsee3 endif]](τ) =


I[[ e2 ]](τ) if I[[ e1 ]](τ) = true,

I[[ e3 ]](τ) if I[[ e1 ]](τ) = false,

⊥ otherwise.

vi. I[[ (e asTypet′) ]](τ) =

{
I[[ e ]](τ) if I[[ e ]](τ) ∈ I(t′),
⊥ otherwise.

I[[ (e isTypeOft′) ]](τ) =

{
true if I[[ e ]](τ) ∈ I(t′)−

⋃
t′′<t′ I(t′′),

false otherwise.

I[[ (e isKindOf t′) ]](τ) =

{
true if I[[ e ]](τ) ∈ I(t′),
false otherwise.

vii. I[[ e1→ iterate(v1; v2 = e2 | e3) ]](τ) = I[[ e1→ iterate′(v1 | e3) ]](τ ′) whereτ ′ = (σ, β′) andτ ′′ = (σ, β′′)
are environments with modified variable assignments

β′ := β{v2/I[[ e2 ]](τ)}
β′′ := β′{v2/I[[ e3 ]](σ, β′{v1/x1})}

and iterate′ is defined as:
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(a) If e1 ∈ ExprSequence(t1) then

I[[ e1 → iterate′(v1 | e3) ]](τ ′) =


I[[ v2 ]](τ ′)

if I[[ e1 ]](τ ′) = 〈〉,
I[[ mkSequencet1(x2, . . . , xn) → iterate′(v1 | e3) ]](τ ′′)

if I[[ e1 ]](τ ′) = 〈x1, . . . , xn〉.
(b) If e1 ∈ ExprSet(t1) then

I[[ e1 → iterate′(v1 | e3) ]](τ ′) =


I[[ v2 ]](τ ′)

if I[[ e1 ]](τ ′) = ∅,
I[[ mkSett1(x2, . . . , xn) → iterate′(v1 | e3) ]](τ ′′)

if I[[ e1 ]](τ ′) = {x1, . . . , xn}.
(c) If e1 ∈ ExprBag(t1) then

I[[ e1 → iterate′(v1 | e3) ]](τ ′) =


I[[ v2 ]](τ ′)

if I[[ e1 ]](τ ′) = ∅,
I[[ mkBagt1(x2, . . . , xn) → iterate′(v1 | e3) ]](τ ′′)

if I[[ e1 ]](τ ′) = {{x1, . . . , xn}}.

�

The semantics of a variable expression (i) is the value assigned to the variable. A let expression (ii) results in the
value of the sub-expressione2. Free occurrences of the variablev in e2 are bound to the value of the expressione1.
An operation expression (iv) is interpreted by the function associated with the operation. Each argument expression
is evaluated separately. The stateσ is passed to operations whose interpretation depends on the system state. These
include, for example, attribute and navigation operations as defined in Section A.2.4.

The computation of side effect-free operations can often be described with OCL expressions. We can extend the
definition to allow object operations whose effects are defined in terms of OCL expressions. The semantics of a
side effect-free operation can then be given by the semantics of the OCL expression associated with the operation.
Recall that object operations in OPc are declared in a model specification. Letoclexp : OPc → Expr be a
partial function mapping object operations to OCL expressions. We define the semantics of an operation with an
associated OCL expression as

I[[ ω(p1 : e1, . . . , pn : en) ]](τ) = I[[ oclexp(ω) ]](τ ′)

wherep1, . . . , pn are parameter names, andτ ′ = (σ, β′) denotes an environment with a modified variable assign-
ment defined as

β′ := β{p1/I[[ e1 ]](τ), . . . , pn/I[[ en ]](τ)} .

Argument expressions are evaluated and assigned to parameters that bind free occurrences ofp1, . . . , pn in the ex-
pressionoclexp(ω). For a well-defined semantics, we need to make sure that there is no infinite recursion resulting
from an expansion of the operation call. A strict solution that can be statically checked is to forbid any occurrences
of ω in oclexp(ω). However, allowing recursive operation calls considerably adds to the expressiveness of OCL.
We therefore allow recursive invocations as long as the recursion is finite. Unfortunately, this property is generally
undecidable.

The result of an if-expression (v) is given by the then-part if the condition is true. If the condition is false, the else-
part is the result of the expression. An undefined condition makes the whole expression undefined. Note that when
an expression in one of the alternative branches is undefined, the whole expression may still have a well-defined
result. For example, the result of the following expression is1.
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if true then 1 else 1 div 0 endif

The result of a cast expression (vi) using asType is the value of the expression, if the value lies within the domain
of the specified target type, otherwise it is undefined. A type test expression with isTypeOf is true if the expression
value lies exactly within the domain of the specified target type without considering subtypes. An isKindOf type
test expression is true if the expression value lies within the domain of the specified target type or one of its
subtypes. Note that these type cast and test expressions also work with undefined values since every value –
including an undefined one – has a well-defined type.

An iterate expression (vii) loops over the elements of a collection and allows the application of a function to each
collection element. The function results are successively combined into a value that serves as the result of the
whole iterate expression. This kind of evaluation is also known in functional style programming languages asfold
operation (see, e.g., [Tho99]).

In Definition A.30, the semantics of iterate expressions is given by a recursive evaluation scheme. Information is
passed between different levels of recursion by modifying the variable assignmentβ appropriately in each step.
The interpretation of iterate starts with the initialization of the accumulator variable. The recursive evaluation
following thereafter uses a simplified version of iterate, namely an expression iterate′ where the initialization of the
accumulator variable is left out, since this sub-expression needs to be evaluated only once. If the source collection
is not empty, (1) an element from the collection is bound to the iteration variable, (2) the argument expression is
evaluated, and (3) the result is bound to the accumulator variable. These steps are all part of the definition of the
variable assignmentβ′′. The recursion terminates when there are no more elements in the collection to iterate over.
The constructor operations mkSequencet, mkBagt, and mkSett (see page 17) are inΩM and provide the abstract
syntax for collection literals likeSet {1,2 } in concrete OCL syntax.

The result of an iterate expression applied to a set or bag is deterministic only if the inner expression is both
commutative and associative.

A.3.1.3 DERIVED EXPRESSIONS BASED ON ITERATE

A number of important OCL constructs such asexists , forAll , select , reject , collect , and
isUnique are defined in terms of iterate expressions. The following schema shows how these expressions can
be translated to equivalent iterate expressions. A similar translation can be found in [Cla99].

I[[ e1→exists(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = false| v2 or e3) ]](τ)

I[[ e1→ forAll (v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = true | v2 ande3) ]](τ)

I[[ e1→select(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = e1 |

if e3 thenv2 elsev2→excluding(v1) endif) ]](τ)

I[[ e1→ reject(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = e1 |

if e3 thenv2→excluding(v1) elsev2 endif) ]](τ)

I[[ e1→collect(v1 | e3) ]](τ) =
I[[ e1→ iterate(v1; v2 = mkBagtype-of-e3

() | v2→ including(e3)) ]](τ)

I[[ e1→ isUnique(v1 | e3) ]](τ) =
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I[[ e1→ iterate(v1; v2 = true | v2 ande1→count(v1) = 1) ]](τ)

A.3.1.4 EXPRESSION CONTEXT

An OCL expression is always written in some syntactical context. Since the primary purpose of OCL is the
specification of constraints on a UML model, it is obvious that the model itself provides the most general kind
of context. In our approach, the signatureΣM contains types (e.g., object types) and operations (e.g., attribute
operations) that are “imported” from a model, thus providing a context for building expressions that depend on the
elements of a specific model.

On a much smaller scale, there is also a notion of context in OCL that simply introduces variable declarations.
This notion is closely related to the syntax for constraints written in OCL. A context clause declares variables in
invariants, and parameters in pre- and postconditions.

A context of an invariantis a declaration of variables. The variable declaration may be implicit or explicit. In the
implicit form, the context is written as

context C inv :
<expression>

In this case, the<expression> may use the variableself of typeC as a free variable. In the explicit form,
the context is written as

context v1 : C1, . . . , vn : Cn inv :
<expression>

The<expression> may use the variablesv1, . . . , vn of typesC1, . . . , Cn as free variables.

A context of a pre-/postconditionis a declaration of variables. In this case, the context is written as

context C :: op(p1 : T1, . . . , pn : Tn) : T
pre : P
post : Q

This means that the variableself (of typeC) and the parametersp1, . . . , pn may be used as free variables in the
preconditionP and the postconditionQ. Additionally, the postcondition may useresult (of typeT) as a free
variable. The details are explained in Section A.3.2.

A.3.1.5 INVARIANTS

An invariant is an expression with boolean result type and a set of (explicitly or implicitly declared) free variables
v1 : C1, . . . , vn : Cn whereC1, . . . , Cn are classifier types. An invariant

context v1 : C1, . . . , vn : Cn inv :
<expression>

is equivalent to the following expression without free variables that must be valid in all system states.
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C1.allInstances->forAll( v1 : C1 |
...
Cn.allInstances->forAll( vn : Cn |

<expression>
)
...

)

A system state is called valid with respect to an invariant if the invariant evaluates to true. Invariants with undefined
result invalidate a system state.

A.3.2 PRE- AND POSTCONDITIONS

The definition of expressions in the previous section is sufficient for invariants and queries where we have to
consider only single system states. For pre- and postconditions, there are additional language constructs in OCL
which enable references to the system state before the execution of an operation and to the system state that results
from the operation execution. The general syntax of an operation specification with pre- and postconditions is
defined as

context C :: op(p1 : T1, . . . , pn : Tn)
pre : P
post : Q

First, the context is determined by giving the signature of the operation for which pre- and postconditions are
to be specified. The operationop which is defined as part of the classifierC has a set of typed parameters
PARAMSop = {p1, . . . , pn}. The UML model providing the definition of an operation signature also specifies the
direction kind of each parameter. We use a functionkind : PARAMSop → {in, out, inout, return} to map each
parameter to one of these kinds. Although UML makes no restriction on the number of return parameters, there is
usually only at most one return parameter considered in OCL which is referred to by the keywordresult in a
postcondition. In this case, the signature is also written asC :: op(p1 : T1, . . . , pn−1 : Tn−1) : T with T being the
type of theresult parameter.

The precondition of the operation is given by an expressionP , and the postcondition is specified by an expres-
sionQ. P andQ must have a boolean result type. If the precondition holds, the contract of the operation guarantees
that the postcondition is satisfied after completion ofop . Pre- and postconditions form a pair. A condition defaults
to true if it is not explicitly specified.

A.3.2.1 EXAMPLE

Before we give a formal definition of operation specifications with pre- and postconditions, we demonstrate the
fundamental concepts by means of an example. Figure A.1 shows a class diagram with two classesA andB that are
related to each other by an association R. ClassA has an operationop() but no attributes. ClassB has an attributec
and no operations. The implicit role namesa andb at the link ends allow navigation in OCL expressions from aB
object to the associatedA object and vice versa.

Figure A.2 shows an example for two consecutive states of a system corresponding to the given class model. The
object diagrams show instances of classesA andB and links of the association R. The left object diagram shows
the state before the execution of an operation, whereas the right diagram shows the state after the operation has
been executed. The effect of the operation can be described by the following changes in the post-state: (1) the
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op()
c : Integer

R
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Figure A.1: Example class diagram

a : A b1 : B

c = 1

R

(a) Pre-state with ob-
jectsa andb1.

a : A b1 : B

b2 : B

c = 2

c = 0R

(b) Post-state. Ob-
ject b2 did not exist in
the pre-state.

Figure A.2: Object diagrams showing a pre- and a post-state

value of the attributec in objectb1 has been incremented by one, (2) a new objectb2 has been created, (3) the link
betweena andb1 has been removed, and (4) a new link betweena andb2 has been established.

For the following discussion, consider the OCL expressiona.b.c wherea is a variable denoting the objecta.
The expression navigates to the associated object of class B and results in the value of the attributec. Therefore,
the expression evaluates to1 in the pre-state shown in Figure A.2(a). As an example of how the OCL modifier
@pre may be used in a postcondition to refer to properties of the previous state, we now look at some variations of
the expressiona.b.c that may appear as part of a postcondition. For each case, the result is given and explained.

• a.b.c = 0
Because the expression is completely evaluated in the post-state, the navigation froma leads to theb2 object.
The value of the attributec of b2 is 0 in Figure A.2(b).

• a.b@pre.c = 2
This expression refers to both the pre- and the post-state. The previous value ofa.b is a reference to
objectb1. However, since the@pre modifier only applies to the expressiona.b , the following reference to
the attributec is evaluated in the post-state ofb1, even thoughb1 is not connected anymore toa. Therefore,
the result is2.

• a.b@pre.c@pre = 1
In this case, the value of the attributec of objectb1 is taken from the pre-state. This expression is semantically
equivalent to the expressiona.b.c in a precondition.

• a.b.c@pre = ⊥
The expressiona.b evaluated in the post-state yields a reference to objectb2 which is now connected toa.
Sinceb2 has just been created by the operation, there is no previous state ofb2. Hence, a reference to the
previous value of attributec is undefined.

Note that the@pre modifier may only be applied to operations not to arbitrary expressions. An expression such
as(a.b)@pre is syntactically illegal.

OCL provides the standard operationoclIsNew for checking whether an object has been created during the
execution of an operation. This operation may only be used in postconditions. For our example, the following
conditions indicate that the objectb2 has just been created in the post-state andb1 already existed in the pre-state.
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• a.b.oclIsNew = true

• a.b@pre.oclIsNew = false

A.3.2.2 SYNTAX AND SEMANTICS OF POSTCONDITIONS

All common OCL expressions can be used in a preconditionP . Syntax and semantics of preconditions are defined
exactly like those for plain OCL expressions in Section A.3.1. Also, all common OCL expressions can be used in
a postconditionQ. Additionally, the@pre construct, the special variableresult , and the operationoclIsNew
may appear in a postcondition. In the following, we extend Definition A.29 for the syntax of OCL expressions to
provide these additional features.

DEFINITION A.31 (SYNTAX OF EXPRESSIONS IN POSTCONDITIONS )
Let op be an operation with a set of parameters PARAMSop. The set of parameters includes at most one parameter
of kind “return”. The basic set of expressions in postconditions is defined by repeating Definition A.29 while
substituting all occurrences of Exprt with Post-Exprt. Furthermore, we define that

• Each non-return parameterp ∈ PARAMSop with a declared typet is available as variable:p ∈ Vart.

• If PARAMSop contains a parameter of kind “return” and typet thenresult is a variable:result ∈ Vart.

• The operationoclIsNew : c → Booleanis in ΩM for all object typesc ∈ TM.

The syntax of expressions in postconditions is extended by the following rule.

vii. If ω : t1 × · · · × tn → t ∈ ΩM andei ∈ Post-Exprt′ for all i = 1, . . . , n then
ω@pre(e1, . . . , en) ∈ Post-Exprt.

�

All general OCL expressions may be used in a postcondition. Moreover, the basic rules for recursively constructing
expressions do also apply. Operation parameters are added to the set of variables. For operations with a return
type, the variableresult refers to the operation result. The set of operations is extended byoclIsNew which is
defined for all object types. Operationsω@preare added for allowing references to the previous state (vii). The rule
says that the@pre modifier may be applied to all operations, although, in general, not all operations do actually
depend on a system state (for example, operations on data types). The result of these operations will be the same
in all states. Operations which do depend on a system state are, e.g., attribute access and navigation operations.

For a definition of the semantics of postconditions, we will refer toenvironmentsdescribing the previous state
and the state resulting from executing the operation. An environmentτ = (σ, β) is a pair consisting of a system
stateσ and a variable assignmentβ (see Section A.3.1.2). The necessity of including variable assignments into
environments will be discussed shortly. We call an environmentτpre = (σpre, βpre) describing a system state and
variable assignments before the execution of an operation apre-environment. Likewise, an environmentτpost =
(σpost, βpost) after the completion of an operation is called apost-environment.

DEFINITION A.32 (SEMANTICS OF POSTCONDITION EXPRESSIONS )
Let Env be the set of environments. The semantics of an expressione ∈ Post-Exprt is a functionI[[ e ]] :
Env× Env → I(t). The semantics of the basic set of expressions in postconditions is defined by repeating
Definition A.30 while substituting all occurrences of Exprt with Post-Exprt. References toI[[ e ]](τ) are replaced
by I[[ e ]](τpre, τpost) to include the pre-environment. Occurrences ofτ are changed toτpost which is the default
environment in a postcondition.
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• For allp ∈ PARAMSop : I[[ p ]](τpre, τpost) = βpost(p).

– Input parameters may not be modified by an operation:
kind(p) = in impliesβpre(p) = βpost(p).

– Output parameters are undefined on entry:
kind(p) = out impliesβpre(p) = ⊥.

• I[[ result ]](τpre, τpost) = βpost(result ).

• I[[ oclIsNew ]](τpre, τpost)(c) =

{
true if c /∈ σpre(c) andc ∈ σpost(c),
false otherwise.

vii. I[[ ω@pre(e1, . . . , en) ]](τpre, τpost) = I(ω)(τpre)(I[[ e1 ]](τpre, τpost), . . . , I[[ en ]](τpre, τpost))

�

Standard expressions are evaluated as defined in Definition A.30 with the post-environment determining the context
of evaluation. Input parameters do not change during the execution of the operation. Therefore, their values are
equal in the pre- and post-environment. The value of theresult variable is determined by the variable assignment
of the post-environment. TheoclIsNew operation yields true if an object did not exist in the previous system
state. Operations referring to the previous state are evaluated in context of the pre-environment (vii). Note that
the operation arguments may still be evaluated in the post-environment. Therefore, in a nested expression, the
environment only applies to the current operation, whereas deeper nested operations may evaluate in a different
environment.

With these preparations, the semantics of an operation specification with pre- and postconditions can be precisely
defined as follows. We say that a preconditionP satisfiesa pre-environmentτpre – written asτpre |= P – if the
expressionP evaluates to true according to Definition A.30. Similarly, a postconditionQ satisfies a pair of pre-
and post-environments, if the expressionQ evaluates to true according to Definition A.32:

τpre |= P iff I[[ P ]](τpre) = true

(τpre, τpost) |= Q iff I[[ Q ]](τpre, τpost) = true

DEFINITION A.33 (SEMANTICS OF OPERATION SPECIFICATIONS )
The semantics of an operation specification is a setR ⊆ Env× Env defined as

[[ context C :: op(p1 : T1, . . . , pn : Tn)
pre: P
post: Q ]] = R

whereR is the set of all pre- and post-environment pairs such that the pre-environmentτpre satisfies the precondi-
tion P and the pair of both environments satisfies the postconditionQ:

R = {(τpre, τpost) | τpre |= P ∧ (τpre, τpost) |= Q}

�

The satisfaction relation forQ is defined in terms of both environments since the postcondition may contain
references to the previous state. The setR defines all legal transitions between two states corresponding to the
effect of an operation. It therefore provides a framework for a correct implementation.
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DEFINITION A.34 (SATISFACTION OF OPERATION SPECIFICATIONS )
An operation specification with pre- and postconditions is satisfied by a programS in the sense of total correctness
if the computation ofS is a total functionfS : dom(R) → im(R) and graph(fS) ⊆ R. �

In other words, the programS accepts each environment satisfying the precondition as input and produces an
environment that satisfies the postcondition. The definition ofR allows us to make some statements about the
specification. In general, a reasonable specification implies a non-empty setR allowing one or more different im-
plementations of the operation. IfR = ∅, then there is obviously no implementation possible. We distinguish two
cases: (1) no environment satisfying the precondition exists, or (2) there are environments making the precondition
true, but no environments do satisfy the postcondition. Both cases indicate that the specification is inconsistent
with the model. Either the constraint or the model providing the context should be changed. A more restrictive
definition might even prohibit the second case.
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Appendix B - Interchange Format

B.1 This appendix is intentially left blank.
This section contains the interchange format for OCL. This XMI DTD should be generated from the metamodel. 

Note – This needs to be done when the final submission is finished. 

Note – Note that even the concrete syntax could be used as a simple interchange format, because it only consists of standard
text strings. However. accepting tools would need to (re)parse the concrete syntax. The benefit will be that tools that do not
support OCL (it is a optional compliance point within UML) can still create and interchange OCL as text. 
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