

United Nations Centre for Trade Facilitation and Electronic Business

UN/CEFACT
UML Profile for Core Components (UPCC)

 Version 1.0
Final Specification

2008-01-16

Techniques and Methodologies
Group (TMG)

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 2 of 40

Table of Contents

1 This Document..4
1.1 Context ..4
1.2 Conventions...4

2 Project Team Participants ...5
2.1 Disclaimer..5
2.2 Contact Information...5

3 Introduction...6
3.1 Summary of Contents of Document ..6
3.2 Audience..6
3.3 Related Documents..6

4 Objectives..7
4.1 Goals 7
4.2 Requirements...7
4.3 Caveats and Assumptions..7

5 Overview...8
5.1 The model interchange problem..8
5.2 The UML profile approach..8

6 Core Component Module..10
6.1 Conceptual Metamodel..10
6.2 Relationships and dependencies ..10
6.3 Overview ...10
6.4 Common Stereotypes...11

6.4.1 Stereotypes and Tag Definitions (normative) ..11
6.4.2 Constraints (normative)..14
6.4.3 Common Stereotypes – Mapping to CCTS..17

6.5 Data Types Stereotypes ...19
6.5.1 Stereotypes and Tag Definitions (normative) ..19
6.5.2 Constraints (normative)..21
6.5.3 Data Type Stereotypes - Mapping to CCTS ..23

6.6 Management Stereotypes...24
6.6.1 Stereotypes and Tag Definitions (normative) ..24
6.6.2 Constraints (normative)..26
6.6.3 Packages & Namespace Conventions for libraries ..28

6.7 OCL methods used in the UPCC Profile...28
6.8 Context Package – UML Profile ...33
6.9 Relationship to UMM..33

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 3 of 40

7 Example ..34
7.1 Structure ..34
7.2 PRIMLibrary ...34
7.3 ENUMLibrary ...34
7.4 CDTLibrary ...35
7.5 QDTLibrary...35
7.6 CCLibrary..36
7.7 BIELibrary...37
7.8 DocLibrary ..38
7.9 Proposed link to UMM artefacts (UMM Foundation 1.0 – Final Specification)38

8 Recommended XMI-interchange-format for Core-Components UML-models based on
UPCC: EMF UML2 XMI-format ...39

9 Conformance Criteria..39
9.1 Product Classes..39
9.2 Profiles and Levels ..40

10 Reference Implementations...40

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 4 of 40

1 This Document

1.1 Context

UN/CEFACT metamodels for business information (CCTS) and business process modelling (UMM)
provide conceptual metamodels. For these to be usable with common modelling tools that support UML
and to be able to use UML infrastructure for validation the conceptual models need to be mapped to the
UML meta-model. This document provides a mapping of the CCTS to UML as a formal UML profile.

1.2 Conventions

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as
described in [RFC2119] as quoted here:
• MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute

requirement of the specification.
• MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute

prohibition of the specification.
• SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons

in particular circumstances to ignore a particular item, but the full implications MUST be understood
and carefully weighed before choosing a different course.

• SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable or even useful,
but the full implications should be understood and the case carefully weighed before implementing
any behavior described with this label.

• MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor
may choose to include the item because a particular marketplace requires it or because the vendor
feels that it enhances the product while another vendor may omit the same item. An implementation
that does not include a particular option MUST be prepared to interoperate with another
implementation which does include the option, though perhaps with reduced functionality. In the
same vein an implementation that does include a particular option MUST be prepared to interoperate
with another implementation which does not include the option (except, of course, for the feature the
option provides).

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 5 of 40

2 Project Team Participants

2.1 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily
those of their employers. The authors and their employers specifically disclaim responsibility for any
problems arising from correct or incorrect implementation or use of this specification.

2.2 Contact Information

Project Team Lead Steve Capell steve.capell@redwahoo.com
Editor Jens Dietrich jens.dietrich@gmx.de

Contributors Fabian Büttner green@tzi.de

 Mike Conroy michael.conroy@wanadoo.fr

Philipp Liegl philipp.liegl@gmx.at

 Harry Moyer harry.moyer@redwahoo.com

 Joern Guy Süss joern.guy.suess@web.de

 Christian Senf christian.senf@sysedv.tu-berlin.de

 Anders Tell anderst@toolsmiths.se

Jim Wilson jim.wilson@cidx.org

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 6 of 40

3 Introduction

3.1 Summary of Contents of Document

3.2 Audience

The target audience for this document includes members of the UN/CEFACT TMG, other UN/CEFACT
working groups, the UN/CEFACT Forum management group, and the wider community of modeling tool
vendors.

3.3 Related Documents

UN/CEFACT Specifications

UMM Base Module 1.0
http://www.untmg.org/dmdocuments/UMM_Base_Module_V10_Specification_20061006.pdf

UMM Foundation Module 1.0
http://www.untmg.org/dmdocuments/UMM_Foundation_Module_V10_Specification_20061006.pdf

CCTS 2.01
http://www.untmg.org/dmdocuments/CCTS_v201_2003_11_15.pdf

ATG2 XML NDR
http://www.disa.org/cefact-groups/atg/downloads/XML%20Naming%20And%20Design%20Rules%20V2.0.pdf

OMG Specifications

UML 2.0 http://www.omg.org/cgi-bin/doc?formal/05-07-04
 http://www.omg.org/cgi-bin/doc?formal/05-07-05

UML 1.4.2 (ISO) http://www.omg.org/cgi-bin/doc?formal/04-07-02

MOF 1.3 http://www.omg.org/cgi-bin/doc?formal/00-04-03

XMI 1.2 http://www.omg.org/cgi-bin/doc?formal/2002-01-01

XMI 2.1 http://schema.omg.org/spec/XMI/2.1

Other Related Documents

Eclipe eCore http://www.eclipse.org/emf/2002/Ecore

Eclipse UML2 Project http://www.eclipse.org/uml2/2.0.0/UML

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 7 of 40

4 Objectives

4.1 Goals
The business goals of this specification are:

• To make CCTS compliant information modelling accessible to a broad user base through
standard UML tool support.

• To support easy interchange of information models between different UML tools.
• To support validation of the structure and semantics of information models against the CCTS.

These goals are achieved through the development of a formal UML profile for CCTS that includes
stereotypes, tagged values and OCL constraints.

4.2 Requirements

This specification is guided by the following key requirements:

• That accessibility to a large community through availability of high quality tools is the key
objective.

• That the UML profile should minimise complexity for the business user.
• That the UML profile provides a complete representation of data required by CCTS
• The UML profile for core components complements the base and foundation profiles for UMM.
• The UML profile may need to define different levels of compliance – depending on the

requirements of the modeler and the capabilities of the tool.
• The UML profile shall be implementable by the widest group of tool vendors.
• The UML profile will support the generation of XML schema from the model that are compliant

with ATG2 XML Naming and Design Rules .

4.3 Caveats and Assumptions
This specification makes the following assumptions:

• That the XMI generated by modeling tools will be compliant with the proposed Eclipse UML2
reference implementation based on XMI 2.1 (http://schema.omg.org/spec/XMI/2.1) and UML 2.0
(http://www.eclipse.org/uml2/2.0.0/UML)

• That most modeling tools do not evaluate OCL constraints against model data. Accordingly, vali-
dation of CCTS semantics as defined by the OCL constraints in this specification will normally
only be possible using either an external validation service or a custom plug-in.

• The UML profile does not specify requirements for diagram interchange.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 8 of 40

5 Overview

5.1 The model interchange problem

The OMG XML Metadata Interchange (XMI) specification has been defined to support exchange of
model data between different tools. However:

• There are several version of XMI and different tools may support different versions.
• The XMI is just a description of a model instance in terms of the reference UML meta-model. But

since there are several version of the UML reference model, files exported from one tool may not
be understood by another.

• The objective being to use UML as a notation to describe information and process models, the de-
scription of entities such as “BCC”, “ABIE”, “Transactions”, “roles”, etc is not uniform between
different tools since they are not UML concepts. So one modeler might choose to represent a
BBIE in one way while a different modeler will choose to represent the same BIE using a differ-
ent UML model element. Consequently models will not be re-usable amongst different users and
the goal of generating deployment schema like ATG2 XSD, BPSS or BPEL from models cannot
be realized.

Consequently, to obtain a consistant interchange at the Model level it is necessary to:

• Specify the supported UML versions that will be used. This specification supports UML 1.4.2
(which is also the ISO standard version) and UML2.0.

• Define precise mappings from CCTS / UMM concepts to corresponding UML elements and to
provide these as a “UML profile” that consists of stereotypes, tagged values and OCL constraints.
That is the purpose of this specification.

• Propose an XMI implementation as a reference that ensures consistent model exchange.

This specification shall therefore deliver:

• A normative specification (this document) that defines the UML profile for CCTS as a set of
model diagrams showing stereotypes and tagged values plus a set of OCL constraints that describe
the semantic restrictions imposed by CCTS.

• An XMI file containing the UML profile for Core Components that can be imported into any com-
pliant modeling tool.

5.2 The UML profile approach

The approach taken by this specification to deliver on the goal of interchange of structurally and
semantically valid information models is shown in the diagram below.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 9 of 40

 UML Modelling tool

CCTS Compliant
UML Model

XMI Template

CCTS Compliant
XMI File

uses

Is an
instance

of

(Stereotypes, Tagged values
OCL Constraints)

CCTS v2.0.1
Specification

Generated from
(according to

ATG2 XML NDR)

Deployment schema
(XSD)

UML profile for
CCTS

UML
Meta-Model

represents

TBG17 Core
Component Libraryincludes

Validation Service

ICG Repository

Import
Based onComplies with

Interchange with
other tools

Validates

Figure 2 – UML Profile Usage

• The CCTS v2.01 is the reference for the structurual and semantic constraints that the UML profile
should reflect.

• The UML profile is provided as an XMI Template file in the recommended XMI-interchange
format (EMF UML2 XMI). .

• Modellers shall use the template together with library components (that also conform to this
profile) to build their CCTS compliant information models.

• An interoperable XMI representation of the model can be generated from tools that support the
XMI-Format accepted by the Eclipse UML2 reference implementation based on XMI 2.1
(http://schema.omg.org/spec/XMI/2.1) and UML 2.0 (http://www.eclipse.org/uml2/2.0.0/UML)
This Format will be referred to as “EMF UML2 XMI”. The XMI can be sent to a validation
service, submitted to a repository, or exchanged with other modellers.

• ATG2 XML NDR compliant deployment schema can be generated directly from the model.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 10 of 40

6 Core Component Module

This section is normative. This section provides the detailed definition of the UML profile for Core

Components.

6.1 Conceptual Metamodel

The conceptual meta-model to which this profile must comply is defined in the Core Component

Technical Specification Version 2.1 and is not reproduced here.

6.2 Relationships and dependencies

<<profile>>

UMLProfileforCoreComponents_V1.0
<<profile>>

UMMBaseModule_V1.0
<<use>>

The CCTS module uses the RegistryObject and BusinessLibraryPackage elements from the UMM Base

Module.

6.3 Overview

The below figure gives an overwiev of all Stereotypes of the UPPC. The referred acronyms are described

later in this chapter .

CodelistEntry

ENUMLibrary

PRIMLibrary

DOCLibrary

QDTLibrary

CDTLibrary

BIELibrary

CCLibrary

basedOn

ENUM

ASBIE

ASCC

PRIM

BBIE

ABIE

RSM

CON

BCC

ACC

QDT

SUP

CDT

BIE
CC

<<profile>>

UMLProfileforCoreComponents_V1.0

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 11 of 40

6.4 Common Stereotypes

6.4.1 Stereotypes and Tag Definitions (normative)

The following diagram shows a visualization of the Common Stereotypes to provide an overview of the

defined elements. Note that the diagram shows only the structure of the UML Profile. Additional

constraints to define compliance with the semantics of the CCTS meta-model are provided in a

subsequent section.

<<stereotype>>
BIE

[Element]

-dictionaryEntryName : String [1]
-remarks : String [0..*]
-examples : String [0..*]

<<stereotype>>
CC

[Element]

-dictionaryEntryName : String [1]
-remarks : String [0..*]
-examples : String [0..*]

<<stereotype>>
RegistryObject

[Element]
(Profiles (Metamodels).UMMBaseModule_V1.0)

-baseURN : String [1]
-businessTerm : String [0..*]
-status : String [0..1]
-version : String [0..1]

<<stereotype>>
ABIE

[Class]

-position : Integer [1]

<<stereotype>>
ASBIE

[Association]

<<stereotype>>
ASCC

[Association]

<<stereotype>>
BBIE

[Property]

-position : Integer [1]

<<stereotype>>
BCC

[Property]

<<stereotype>>
RSM

[Class]

<<stereotype>>
basedOn

[Dependency]

<<stereotype>>
QDT

[Class]

<<stereotype>>
CDT

[Class]

<<stereotype>>
ACC

[Class]

The sections below provide details on each stereotype of the Common Stereotypes. Both abstract and

concrete stereotypes are described. However OCL constraints are only defined for concrete elements

because these are the only ones that will exist in an actual instance model.

6.4.1.1 CC
Stereotype CC (Abstract)

Base Class Element (from UML 1.4.2 / 2.0 meta-model)

Parent RegistryObject (from UMM base module)

Description The CC (Core Component) element is a superclass to provide attributes common to BCC, ASCC,
ACC, and CDT types.

Tag Definitions

Tag Definition Type Multi-
plicity Description

dictionaryEntryName string 1:1 Official Name of the Core Component.

remarks string 0:1 Additional remarks to describe the CC.

examples string 0:1 Examples to describe the CC.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 12 of 40

6.4.1.2 BIE
Stereotype BIE (Abstract)

Base Class Element (from UML 1.4.2 / 2.0 meta-model)

Parent RegistryObject (from UMM base module)

Description The BIE (Business Information Entity) element is a superclass to provide attributes common to BBIE,
ASBIE, ABIE and QDT types.

Tag Definitions

Tag Definition Type Multi-
plicity Description

dictionaryEntryName string 1:1 Official Name of the Core Component

remarks string 0:1 Additional remarks to describe the BIE.

examples string 0:1 Examples to describe the CC.

6.4.1.3 BCC
Stereotype BCC

Base Class Attribute (from UML 1.4.2 / 2.0 meta-model)

Parent CC

Description The BCC (Basic Core Component) is a singular business characteristic of an ACC (Aggregate Core
Component).

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.4.1.4 ACC
Stereotype ACC

Base Class Class (from UML 1.4.2 / 2.0 meta-model)

Parent CC

Description The ACC (Aggregate Core Component) is a collection of related business information that together
carry a distinct meaning.

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.4.1.5 ASCC
Stereotype ASCC

Base Class Association (from UML 1.4.2 / 2.0 meta-model)

Parent CC

Description The ASCC (Association Core Component) represents a complex characteristic of an associated ACC.
The ACC describes the structure of the ASCC.

Tag Definitions Tag Definition Type Multi-
plicity Description

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 13 of 40

N/A

6.4.1.6 BBIE
Stereotype BBIE

Base Class Attribute (from UML 1.4.2 / 2.0 meta-model)

Parent BIE

Description
The BBIE (Basic Business Information Entity) is a singular business characteristic of an ABIE in a
specific business context. It is related to the BCC from which it is derived and is linked to a Data Type
that describes its values.

Tag Definitions

Tag Definition Type Multi-
plicity Description

position integer 1:1 The position of the BBIE element within an
ABIE and platform specific artefacts (e.g.
XML schema) generated from the model.

6.4.1.7 ABIE
Stereotype ABIE

Base Class Class (from UML 1.4.2 / 2.0 meta-model)

Parent BIE

Description
The ABIE (Aggregate Business Information Entity) is a collection of related business information that
together express a business meaning in a specific context. An ABIE is related to the ACC from which
it is derived.

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.4.1.8 RSM
Stereotype RSM

Base Class Class (from UML 1.4.2 / 2.0 meta-model)

Parent RegistryObject (from UMM Base Module)

Description An RSM is a Rootschema Module. A Class stereotyped with RSM becomes a root element in platform
specific artefacts (like XML schema) generated from the model.

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.4.1.9 ASBIE
Stereotype ASBIE

Base Class Association (from UML 1.4.2 / 2.0 meta-model)

Parent BIE

Description The ASBIE (Association Business Information Entity) represents a complex business characteristic of

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 14 of 40

an associated ABIE that describes it’s structure. An ASBIE is related to the ASCC from which it is
derived.

Tag Definitions

Tag Definition Type Multi-
plicity Description

position integer 1:1 The position of the ASBIE element within
an ABIE and platform specific artefacts (e.g.
XML schema) generated from the model.

6.4.1.10 basedOn
Stereotype basedOn

Base Class Dependency (from UML 1.4.2 / 2.0 meta-model)

Parent N/A

Description

The basedOn stereotype is used to define the relationships between

• A QDT and the CDT upon which it is based

• An ABIE and the ACC upon which it is based

Tag Definitions

Tag Definition Type Multi-
plicity Description

fractionDigits string 0:1

length string 0:1

maxExclusive string 0:1

maxInclusive string 0:1

maxLength string 0:1

minExclusive string 0:1

minInclusive string 0:1

minLength string 0:1

pattern string 0:1

totalDigits string 0:1

whiteSpace string 0:1

The tags can be used to restrict the content
component of a QDT based on a CDT (e.g.
a QDT based on CDT “Text” can be
restricted to a length of 4).

6.4.2 Constraints (normative)

A BCC type must be typed with a class of stereotype <<CDT>>.

UML 1.4
context Attribute
 inv BCC_CDT:
 self.isBCC() implies
 self.type.oclAsType(ModelElement).isCDT()

UML 2.0
context Property
 inv BCC_CDT:
 self.isBCC() implies self.type.isCDT()

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 15 of 40

An ACC must contain only BCCs and ASCCs. There must be at least one BCC or ASCC.

UML 1.4
context Class
 inv ACC_AtLeastOneBCCorASCCandNothingElse:
 self.isACC() implies
 self.ownedAttribute->exists(a |
 a.isBCC() or (a.association.isDefined and a.association.isASCC()))
 and self.ownedAttribute->forAll(a | a.isBCC()
 (a.association.isDefined and a.association.isASCC()))

UML 2.0
context Class
 inv ACC_AtLeastOneBCCorASCCandNothingElse:
 self.isACC() implies
 self.ownedAttribute->exists(a |
 a.isBCC() or (a.association.isDefined and a.association.isASCC()))
 and self.ownedAttribute->forAll(a | a.isBCC()
 (a.association.isDefined and a.association.isASCC()))

A BBIE type must be typed with a class of stereotype either <<QDT>> or <<CDT>>.

UML 1.4
context Attribute
 inv BBIE_QDT:
 self.isBBIE() implies
 self.type.oclAsType(ModelElement).isCDT() or
 self.type.oclAsType(ModelElement).isQDT()

UML 2.0
context Property
 inv BBIE_QDT:
 self.isBBIE() implies (self.type.isCDT() or self.type.isQDT())

An ABIE must contain only BBIEss and ASBIEs. There must be at least one BBIE or ASBIE.

UML 1.4
context Class
 inv ABIE_AtLeastOneBBIEorASBIEandNothingElse:
 self.isABIE() implies
 self.ownedAttribute->exists(a |
 a.isBBIE() or (a.association.isDefined and a.association.isASBIE()))
 and self.ownedAttribute->forAll(a | a.isBBIE()
 (a.association.isDefined and a.association.isASBIE()))

UML 2.0
context Class
 inv ABIE_AtLeastOneBBIEorASBIEandNothingElse:
 self.isABIE() implies
 self.ownedAttribute->exists(a |
 a.isBBIE() or (a.association.isDefined and a.association.isASBIE()))
 and self.ownedAttribute->forAll(a | a.isBBIE()
 (a.association.isDefined and a.association.isASBIE()))

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 16 of 40

An ABIE must have a dependancy of stereotype <<basedOn>> with an ACC as the target.

UML 1.4
context Class
 inv ABIE_basedOnACC:
 self.isABIE() implies
 self.supplierDependency->one(isBasedOnToACC())

UML 2.0
context NamedElement
 inv ABIE_basedOnACC:
 self.isABIE() implies self.clientDependency->exists(isBasedOnToACC())

The originating association end of a stereotype ASCC must be set to AggregationKind::composite

UML 1.4
context Association
 inv ASCCAssociationEnd_composite:
 self.isASCC() implies
 self.isComposition()

UML 2.0
context Class
 inv ASCCAssociationEnd_composite:
 self.isASCC() implies
 self.memberEnd->exists(e|e.aggregation=#composite)

For each ACC/ABIE, all navigable properties (attributes and association ends) must have unique names.

UML 1.4
context Class
 inv propertiesOfACCOrABIEHaveUniqueNames:
 self.isACC() or self.isABIE() implies
 self.attribute->forAll(p1,p2 | p1.name = p2.name implies p1=p2)

UML 2.0
context Class
 inv propertiesOfACCOrABIEHaveUniqueNames:
 self.isACC() or self.isABIE() implies
 self.attribute->forAll(p1,p2 | p1.name = p2.name implies p1=p2)

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 17 of 40

6.4.3 Common Stereotypes – Mapping to CCTS

CCTS Construct UML Implementation

Parent objects - properties inherited by CDT, QDT, ACC, BCC, ASCC, ABIE, BBIE, ASBIE

Registry Class -
Definition

Implemented using the UML 1.4.2 “Comment” element.

UML modelling tools normally implement the “Comment” element as a notes
area on data entry window for all model elements. Accordingly business
users may find it simpler to use the notes field for CCTS definitions.

Registry Class –
Dictionary EntryName

Tagged value with name = “dictionaryEntryName”.

Implemented at CC/BIE level because registry object is re-used by UMM
Foundation. Note that no extra information is introduced by this tagged value
because the dictionary entry name is already derivable from class, attribute,
and data type names. Business users may prefer to leave this value out and
then apply a transform to the resulting XMI.

Core Component Elements

Aggregate Core
Component – Object
Class Term

Name of a UML class with stereotype <<ACC>>.

Note that this is just the object class term and should not include the
“.Details” suffix.

Basic Core Component –
property term

Name of an UML attribute with stereotype <<BCC>>.

Note that this is just the property term and should not include the object class
or representation terms.

Special Note: in the rare case where an ACC has two BCCs with the same
property term then the representation term should be added to the UML
attribute name in order to ensure uniqueness of UML attributes in a class.

Basic Core Component -
cardinality

UML cardinality of an attribute with stereotype <<BCC>>.

Basic Core Component –
representation term

UML type of an attribute with stereotype <<BCC>>.

The type of the BCC must be another class of stereotype <<CDT>> (Core
Data Type). Note that the representation term is equal to the name of the
CDT class.

Association Core
Component – property
term

Target role name of an aggregation of stereotype <<ASCC>>.

Note that the name is just the property term and not the dictionary entry
name.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 18 of 40

Business Information Entity Elements

ABIE / BBIE / ASBIE /
QDT
Qualifier Terms

The qualifier prefix (characters before the underscore) of the ABIE, BBIE,
ASBIE and QDT name.

Aggregate Business
Information Entity –
Object class term

Name of a UML class with stereotype <<ABIE>> (without qualifier prefix if
it exists)

Note: The ABIE class name is the qualified object class term - shall be equal
to the object class name of the ACC upon which this ABIE is based with an
optional prefix equal to the qualifier term.

Basic Business
Information Entity –
property term

Name of a UML attribute with stereotype <<BBIE>> (without qualifier
prefix if it exists)

Note: The BBIE attribute name is the qualified property term - shall be equal
to the property name of the BCC upon which this BBIE is based with an
optional prefix equal to the qualifier term.

Special Note: in the rare case where an ABIE has two BBIEs with the same
property term then the representation term should be added to the UML
attribute name in order to ensure uniqueness of UML attributes in a class.

Basic Business
Information Entity –
representation term

UML type of an attribute with stereotype <<BBIE>>.

The type of the BBIE must be another class of stereotype <<CDT>> (Core
Data Type) or <<QDT>> (Qualified Data Type).

Note that the representation term is equal to the name of the CDT class (or
QDT class without qualifier term)

Association Business
Information Entity –
property term

UML aggregation source role name of an aggregation of stereotype
<<ASBIE>>.

Note that the name is just the property term and not the dictionary entry
name.

“basis” relationship
between ABIE and ACC

UML Dependency of stereotype <<basedOn>> between ABIE and ACC with
target ACC.

“basis” relationship
between BBIE and BCC

No explicit association.

BBIE property terms are the same as BCC property terms and are unique
within the aggregate. Therefore the explicit dependency between ABIE and
ACC is sufficient to infer this relationship.

Practical note: in most modeling tools a dependency between attributes is not
supported. Workarounds are generally inconvenient to the modeler.

“basis” relationship No explicit association.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 19 of 40

between ASBIE and
ASCC ASBIE property terms are the same as ASCC property terms and are unique

within the aggregate. Therefore the explicit dependency between ABIE and
ACC is sufficient to infer this relationship

6.5 Data Types Stereotypes

6.5.1 Stereotypes and Tag Definitions (normative)

The following diagram shows a visualization of the Data Types Stereotypes to provide an overview of the

defined elements. Note that the diagram shows only the structure of the UML Profile. Additional

constraints to define compliance with the semantics of the CCTS meta-model are provided in a

subsequent section.

<<stereotype>>
RegistryObject

[Element]
(Profiles (Metamodels).UMMBaseModule_V1.0)

-baseURN : String [1]
-businessTerm : String [0..*]
-status : String [0..1]
-version : String [0..1]

<<stereotype>>
BIE

[Element]

-dictionaryEntryName : String [1]
-remarks : String [0..*]
-examples : String [0..*]

<<stereotype>>
CC

[Element]

-dictionaryEntryName : String [1]
-remarks : String [0..*]
-examples : String [0..*]

<<stereotype>>
CodelistEntry

[EnumerationLiteral]

-codeName : String

<<stereotype>>
SUP

[Property]

<<stereotype>>
ENUM

[Enumeration]

<<stereotype>>
QDT

[Class]

<<stereotype>>
CDT

[Class]

<<stereotype>>
CON

[Property]

<<stereotype>>
PRIM

[Class]

The sections below provide details on each stereotype of the Data Types Stereotypes. Both abstract and

concrete stereotypes are described. However OCL constraints are only defined for concrete elements

because these are the only ones that will exist in an actual instance model.

6.5.1.1 CDT
Stereotype CDT

Base Class Class (from UML 1.4.2 / 2.0 meta-model)

Parent CC

Description The CDT (Core Data Type) element is a complex data type that must be one of the approved Core
Component Types listed in the CCTS v 2.0.1 section 8.

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 20 of 40

6.5.1.2 QDT
Stereotype QDT

Base Class Class (from UML 1.4.2 / 2.0 meta-model)

Parent BIE

Description The QDT (Qualified Data Type) element is a complex data type. It is a restriction of a corresponding
CDT (Core Data Type) element.

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.5.1.3 CON
Stereotype CON

Base Class Attribute (from UML 1.4.2 / 2.0 meta-model)

Parent N/A

Description The CON (Content Component) element carries the actual content. The type of the CON element shall
be a class of stereotype <<PRIM>>.

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

6.5.1.4 SUP
Stereotype SUP

Base Class Attribute (from UML 1.4.2 / 2.0 meta-model)

Parent N/A

Description The SUP (Supplementary Component) element provides additional meaning to the content component
of a CDT or QDT.

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

6.5.1.5 PRIM
Stereotype PRIM

Base Class Class (from UML 1.4.2 / 2.0 meta-model)

Parent N/A

Description The PRIM (Primitive Type) represents one of the CCTS defined primitive types. All CON and SUP
typs must be drawn from the collection of objects of stereotype PRIM.

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 21 of 40

6.5.1.6 ENUM
Stereotype ENUM

Base Class Enumeration (from UML 1.4.2 / 2.0 meta-model)

Parent N/A

Description The ENUM (Enumeration Type) represents an enumeration type. The ENUM stereotype is used to
define a restriction on either a content- or supplementary component of a QDT.

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

6.5.1.7 CodelistEntry
Stereotype CodelistEntry

Base Class EnumerationLiteral (from UML 1.4.2 / 2.0 meta-model)

Parent N/A

Description The CodelistEntry is used to stereotype entries of an enumeration with stereotype ENUM.

Tag Definitions
Tag Definition Type Multipli

city Description

CodeName String 0:1 The CodeName carries the name of a certain
code (like “France” in a country code list).

6.5.2 Constraints (normative)

A CDT or QDT must contain exactly one content component (an attribute of stereotype <<CON>>)

UML 1.4
context Classifier
 inv CDT_OneCON:
 self.isCDT or self.isQDT() implies
 self.typedFeature->select(attribute | attribute.isCON())->
 size() = 1

UML 2.0
context Class
 inv CDT_OneCON:
 self.isCDT() or self.isQDT() implies self.ownedAttribute-
 >select(property |
 property.isCON())->size() = 1

A CDT or QDT must not contain any attributes other than those of stereotype <<CON>> or <<SUP>>.

UML 1.4
context Classifier
 inv CDT_onlyCONorSUP:
 self.isCDT or self.isQDT() implies
 self.typedFeature->select(attribute | not attribute.isCON() or

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 22 of 40

 attribute.isSUP())->size()=0

UML 2.0
context Class
 inv CDT_onlyCONorSUP:
 self.isCDT() or self.isQDT() implies self.ownedAttribute-
 >select(property |
 not (property.isCON() or property.isSUP()))->size()=0

A QDT must have a dependency (with stereotype <<basedOn>>) with one CDT with target CDT.

UML 1.4
context Class
 inv QDT_CDTdependency:
 self.isQDT() implies
 self.supplierDependency->one(isBasedOnToCDT())

UML 2.0
context NamedElement
 inv QDT_CDTdependency:
 self.isQDT() implies self.clientDependency->exists(isBasedOnToCDT())

The type of CDT attributes must be a class of stereotype <<PRIM>>.

UML 1.4
context Classifier
 inv CDT_onlyPRIM:
 self.isCDT() implies
 self.typedFeature->forAll(attribute | attribute.isPRIM())

UML 2.0
context Class
 inv CDT_onlyPRIM:
 self.isCDT() implies self.ownedAttribute->forAll(property | prop
 erty.type.isPRIM())

The type of QDT attributes must be a class of stereotype either <<PRIM>> or <<ENUM>>

UML 1.4
context Classifier
 inv QDT_onlyPRIMorENUM:
 self.isQDT() implies
 self.typedFeature->forAll(attribute | attribute.isPRIM() or
 attribute.isENUM())

UML 2.0
context Class
 inv QDT_onlyPRIMorENUM:
 self.isQDT() implies self.ownedAttribute->forAll(property |

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 23 of 40

 property.type.isPRIM() or property.type.isENUM())

6.5.3 Data Type Stereotypes - Mapping to CCTS

CCTS Construct UML Implementation

Data Types

Core Component Type –
Representation Term

Name of a UML class with stereotype <<CDT>>.

Data Type –
Representation Term

Name of a UML class with stereotype <<QDT>> (without qualifier prefix if
it exists).

Note: The QDT class name is the qualified representation term - shall be
equal to the class name of the CDT upon which this QDT is based with an
optional prefix equal to the qualifier term.

Data Type – Qualifier
Term

The qualifier prefix (characters before the underscore) of the QDT name.

Basis relatiosnhip
between Date Type and
Core Component Type

UML association of stereotype <<basedOn>>.

Content Component UML attribute of stereotype <<CON>> of class <<CDT>> or <<QDT>>

Supplementary
Component

UML attribute of stereotype <<SUP>> of class <<CDT>> or <<QDT>>

CCTS Primitive type UML class of stereotype <<PRIM>>.

CCTS restriction UML OCL constraint on class of stereotype <<QDT>>.

CCTS restrictions act on either content or supplementary components of a
QDT and the purpose is to restrict the corresponding CON/SUP of the related
CDT. In this profile we use UML contraints at class level (improves
visibility on the diagram) expressed using OCL. The OCL constraint itself
identifies the CON/SUP on which it acts. A set of “template” OCL
constraints that correspond to the allowed CCTS restriction types is provided
in this specification. UML constraint “name” is taken from the CCTS
controlled list and the UML constraint “body” is the OCL expression.

CCTS restriction of type
“enumeration”

UML class of stereotype <<ENUM>>.

Note that, so far as CCTS is concerned, “enumeration” is just one of the
allowed primitives. In this profile, the enumerated primitive type is
represented as a class of stereotype <<ENUM>> for convenience and
readability purposes.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 24 of 40

6.6 Management Stereotypes

6.6.1 Stereotypes and Tag Definitions (normative)

The following diagram shows a visualization of the Management Stereotypes to provide an overview of

the defined elements. Note that the diagram shows only the structure of the UML Profile. Additional

constraints to define compliance with the semantics of the CCTS meta-model are provided in a

subsequent section.

<<stereotype>>
BusinessLibraryPackage

[Package]
(Profiles (Metamodels).UMMBaseModule_V1.0)

-copyright : String [0..*]
-owner : String [0..*]
-reference : String [0..*]

<<stereotype>>
QDTLibrary
[Package]

<<stereotype>>
CCLibrary
[Package]

<<stereotype>>
BIELibrary
[Package]

<<stereotype>>
CDTLibrary
[Package]

<<stereotype>>
DOCLibrary
[Package]

<<stereotype>>
ENUMLibrary

[Package]

<<stereotype>>
PRIMLibrary

[Package]

The sections below provide details on each stereotype of the Management Stereotypes. Both abstract and

concrete stereotypes are described. However OCL constraints are only defined for concrete elements

because these are the only ones that will exist in an actual instance model.

6.6.1.1 CC Library
Stereotype CCLibrary

Base Class Package (from UML 1.4.2 / 2.0 meta-model)

Parent Management::BusinessLibraryPackage

Description The CCLibrary is a container for Core Components.

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.6.1.2 BIELibrary
Stereotype BIELibrary

Base Class Package (from UML 1.4.2 / 2.0 meta-model)

Parent Management::BusinessLibraryPackage

Description The BIELibrary is a container for Business Information Entities (BIEs).

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 25 of 40

6.6.1.3 CDTLibrary
Stereotype CDTLibrary

Base Class Package (from UML 1.4.2 / 2.0 meta-model)

Parent Management::BusinessLibraryPackage

Description The CDTLibrary is a container for the Core Data Types (CDT).

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.6.1.4 QDTLibrary
Stereotype QDTLibrary

Base Class Package (from UML 1.4.2 / 2.0 meta-model)

Parent Management::BusinessLibraryPackage

Description The QDTLibrary is a container for Qualified Data Types (QDT).

Tag Definitions
Tag Definition Type Multi-

plicity Description

N/A

6.6.1.5 DOCLibrary
Stereotype DOCLibrary

Base Class Package (from UML 1.4.2 / 2.0 meta-model)

Parent Management::BusinessLibraryPackage

Description The DOCLibrary is a container for the assembled business documents stereotyped with “RSM”
which are constructed from reusable ABIEs.

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

6.6.1.6 PRIMLibrary
Stereotype PRIMLibrary

Base Class Package (from UML 1.4.2 / 2.0 meta-model)

Parent Management::BusinessLibraryPackage

Description The PRIMLibrary is a container for the UN/CEFACT primitive types.

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 26 of 40

6.6.1.7 ENUMLibrary
Stereotype ENUMLibrary

Base Class Package (from UML 1.4.2 / 2.0 meta-model)

Parent Management::BusinessLibraryPackage

Description The ENUMLibrary is a container for enumerated types which represent code lists.

Tag Definitions
Tag Definition Type Multipli

city Description

N/A

6.6.2 Constraints (normative)

A CDTLibrary shall only contain classes of stereotype <<CDT>>.

UML 1.4
context Type
 inv CDTLibrary_onlyCDTs:
 self.isCDTLibrary() implies
 self.contents->forAll(isCDT())

UML 2.0
context Type
 inv CDTLibrary_onlyCDTs:
 self.owner.isCDTLibrary() implies self.isCDT()

.

A QDTLibrary shall only contain classes of stereotype <<QDT>>.

UML 1.4
context Type
 inv QDTLibrary_onlyQDTs:
 self.isQDTLibrary() implies
 self.contents->forAll(isQDT())

UML 2.0
context Package
 inv QDTLibrary_onlyQDTs:
 self.owner.isQDTLibrary() implies self.isQDT()

A CCLibrary shall only contain classes of stereotype <<ACC>> and associations of stereotype <<ASCC>>.

UML 1.4
context Type
 inv CCLibrary_onlyCCs:
 self.isCCLibrary() implies
 self.contents->select(content | content.isACC() or
 content.isASCC())->size()=
 self.contents->size()

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 27 of 40

UML 2.0
context Type
 inv CCLibrary_onlyCCs:
 self.owner.isCCLibrary() implies (self.isACC() or self.isASCC())

A BIELibrary shall only contain classes of stereotype <<ABIE>> and associations of stereotype <<ASBIE>>.

UML 1.4
context Type
 inv BIELibrary_onlyBIEs:
 self.isBIELibrary() implies
 self.contents->select(content | content.isABIE() or
 content.isASBIE())->size()=
 self.contents->size()

UML 2.0
context Type
 inv BIELibrary_onlyBIEs:
 self.owner.isBIELibrary() implies (self.isABIE() or self.isASBIE())

A ENUMLibrary shall only contain classes of stereotype <<ENUM>>.

UML 1.4
context Type
 inv ENUMLibrary_onlyENUMs:
 self.contents->forAll(isENUM())

UML 2.0
context Type
 inv ENUMLibrary_onlyENUMs:
 self.owner.isENUMLibrary() implies self.isENUM()

A DOCLibrary shall only contain classes of stereotype <<RSM>> or <<ABIE>> and accociations of stereotype
<<ASBIE>>.

UML 1.4
context Type
 inv DOCLibrary_onlyDOCs:
 self.isDOCLibrary() implies
 self.contents->select(content | content.isRSM() or content.isABIE() or
 content.isASBIE())->size()=
 self.contents->size()

UML 2.0
context Type
 inv DOCLibrary_onlyDOCs:
 self.owner.isDOCLibrary() implies (self.isRSM() or self.isABIE() or
 self.isASBIE())

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 28 of 40

6.6.3 Packages & Namespace Conventions for libraries

The UPCC package structure has been designed such that one model package maps to one XML

namespace in deployment. The Library stereotype inherits the “baseURN” tagged value from the registry

object stereotype. Since the “baseURN” is mandatory according to the UMM Base Module it shall be

present and accurate for all Library packages.

6.6.3.1 BIE Library Conventions

The name of a BIE library package can be any meaningful string but is recommended to be equal to the

local name part of the baseURN. So for example, an ABIE library package might have

baseURN=”http://www.eurofer.org/EuroferXML/Ordering” . The name of the package would be

“EuroferXML/Ordering” and it would be located in a higher level package with name (and baseURN)

equal to “http://www.eurofer.org/” . In this way, the URN of any package within a nested library can be

read by concatenating package names.

For CEFACT BIE libraries, the BaseURN naming MUST follow the namespace rules defined by the

ATG2 XML Naming and Design Rules Specification:

<cefact namespace>:<type>:<status>:<name>:<version> For example:

urn:un:unece:uncefact:data:standard:TBG1ReusableABIELibrary:1p.0p.1

6.6.3.2 CC Library Conventions

The core component library baseURN is defined by CEFACT and will always be the same (but with

different version numbers). For example:

urn:un:unece:uncefact:data:standard:CoreComponentLibrary:0p.8p.2

6.7 OCL methods used in the UPCC Profile

1. Global OCL definitions used in the UPCC standard

UML 1.4
package Foundation::Core
 context ModelElement

 --Returns true if the element is a BCC
 def:
 let isBCC : Boolean =
 self.hasStereotype('BCC') and
 self.oclIsKindOf(Attribute)

 --Returns true if the element is a BBIE
 def:
 let isBBIE : Boolean =
 self.hasStereotype('BBIE') and
 self.oclIsKindOf(Attribute)

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 29 of 40

 --Returns true if the element is a CON
 def:
 let isCON : Boolean =
 self.hasStereotype('CON') and
 self.oclIsKindOf(Attribute)

 --Returns true if the element is a SUP
 def:
 let isSUP : Boolean =
 self.hasStereotype('CON') and
 self.oclIsKindOf(Attribute)

 --Returns true if the element is a ACC
 def:
 let isACC : Boolean =
 self.hasStereotype('ACC') and
 self.oclIsKindOf(Class)

 --Returns true if the element is a ABIE
 def:
 let isABIE : Boolean =
 self.hasStereotype('ABIE') and
 self.oclIsKindOf(Class)

 --Returns true if the element is an ASCC
 def:
 let isASCC : Boolean =
 self.hasStereotype('ASCC') and
 self.oclIsKindOf(Association)

 --Returns true if the element is an ASBIE
 def:
 let isASBIE : Boolean =
 self.hasStereotype('ASBIE') and
 self.oclIsKindOf(Association)

 --Returns true if the element is a CDT
 def:
 let isCDT : Boolean =
 self.oclIsKindOf(Class) and
 self.hasStereotype('CDT')

 --Returns true if the element is a QDT
 def:
 let isQDT : Boolean =
 self.oclIsKindOf(Class) and
 self.hasStereotype('QDT')

 --Returns true if the element is a PRIM
 def:
 let isPRIM : Boolean =
 self.oclIsKindOf(Class) and
 self.hasStereotype('PRIM')

 --Returns true if the element is an ENUM
 def:
 let isENUM : Boolean =
 self.oclIsKindOf(Class) and
 self.hasStereotype('ENUM')

 --Returns true if the package is a CDTLibrary
 def:

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 30 of 40

 let isCDTLibrary : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('CDTLibrary')

 --Returns true if the package is a QDTLibrary
 def:
 let isQDTLibrary : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('QDTLibrary')

 --Returns true if the package is a CCLibrary
 def:
 let isCCLibrary : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('CCLibrary')

 --Returns true if the package is a BIELibrary
 def:
 let isBIELibrary : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('BIELibrary')

 --Returns true if the package is a ENUMLibrary
 def:
 let isENUMLibrary : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('ENUMLibrary')

 --Returns true if the package is a DOCLibrary
 def:
 let isDOCLibrary : Boolean =
 self.oclIsKindOf(Package) and
 self.hasStereotype('DOCLibrary')

 --Returns true if the element has a stereotype equal to the
 --passed string
 def:
 let hasStereotype(st : String) : Boolean =
 self.stereotype->select(self.name=st)->notEmpty()

 --checks if a dependency is stereotyped as basedOn and leads to
 --an ACC
 def:
 let isBasedOnToACC : Boolean =
 self.oclIsKindOf(Dependency) and
 self.hasStereotype('basedOn') and
 self.oclAsType(Dependency).client->
 select(client | client.isACC())->size()=1

 -- checks if a dependency is stereotyped as basedOn and leads
 --to a CDT
 def:
 let isBasedOnToCDT : Boolean =
 self.oclIsKindOf(Dependency) and
 self.hasStereotype('basedOn') and
 self.oclAsType(Dependency).client->
 select(client | client.isCDT())->size()=1

 -- returns true if the association type is "Composition"
 def:
 let isComposition() : Boolean =
 self.oclIsKindOf(AssociationEnd) and

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 31 of 40

 self.oclAsType(AssociationEnd).aggregation =
 AggregationKind::composite

endpackage

UML 2.0
package Classes::Kernel
 context Element

 --Returns true if the element is a BCC
 def:
 let isBCC : Boolean =
 self.oclAsType(Property).extension_BCC.isDefined

 --Returns true if the element is a BBIE
 def:
 let isBBIE : Boolean =
 self.oclAsType(Property).extension_BBIE.isDefined

 --Returns true if the element is a CON
 def:
 let isCON : Boolean =
 self.oclAsType(Property).extension_CON.isDefined

 --Returns true if the element is a SUP
 def:
 let isSUP : Boolean =
 self.oclAsType(Property).extension_SUP.isDefined

 --Returns true if the element is a ACC
 def:
 let isACC : Boolean =
 self.oclAsType(Class).extension_ACC.isDefined

 --Returns true if the element is a ABIE
 def:
 let isABIE : Boolean =
 self.oclAsType(Class).extension_BIE.
 self.oclAsType(Class).extension_ABIE.isDefined

 --Returns true if the element is an ASCC
 def:
 let isASCC : Boolean =
 self.oclAsType(Association).extension_ASCC.isDefined

 --Returns true if the element is an ASBIE
 def:
 let isASBIE : Boolean =
 self.oclAsType(Class).extension_BIE.
 self.oclAsType(Association).extension_ASBIE.isDefined

 --Returns true if the element is a SUP
 def:
 let isRSM : Boolean =
 self.oclAsType(Class).extension_RSM.isDefined

 --Returns true if the element is a CDT
 def:
 let isCDT : Boolean =
 self.oclAsType(Class).extension_CDT.isDefined

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 32 of 40

 --Returns true if the element is a QDT
 def:
 let isQDT : Boolean =
 self.oclAsType(Class).extension_BIE.
 self.oclAsType(Class).extension_QDT.isDefined

 --Returns true if the element is a PRIM
 def:
 let isPRIM : Boolean =
 self.oclAsType(Class).extension_PRIM.isDefined

 --Returns true if the element is an ENUM
 def:
 let isENUM : Boolean =
 self.oclAsType(Class).extension_ENUM.isDefined

 --Returns true if the package is a CDTLibrary
 def:
 let isCDTLibrary : Boolean =
 self.oclAsType(Package).extension_RegistryObject.
 oclIsKindOf(UMLprofileforCoreComponents20070928__CDTLibrary)

 --Returns true if the package is a QDTLibrary
 def:
 let isQDTLibrary : Boolean =
 self.oclAsType(Package).extension_RegistryObject
 .oclIsKindOf(UMLprofileforCoreComponents20070928__QDTLibrary)

 --Returns true if the package is a CCLibrary
 def:
 let isCCLibrary : Boolean =
 self.oclAsType(Package).extension_RegistryObject
 .oclIsKindOf(UMLprofileforCoreComponents20070928__CCLibrary)

 --Returns true if the package is a BIELibrary
 def:
 let isBIELibrary : Boolean =
 self.oclAsType(Package).extension_RegistryObject
 .oclIsKindOf(UMLprofileforCoreComponents20070928__BIELibrary)

 --Returns true if the package is a ENUMLibrary
 def:
 let isENUMLibrary : Boolean =
 self.oclAsType(Package).extension_RegistryObject
 .oclIsKindOf(UMLprofileforCoreComponents20070928__ENUMLibrary)

 --Returns true if the package is a DOCLibrary
 def:
 let isDOCLibrary : Boolean =
 self.oclAsType(Package).extension_RegistryObject
 .oclIsKindOf(UMLprofileforCoreComponents20070928__DOCLibrary)

 -- checks if a dependency is stereotyped as basedOn and leads to an ACC
 def:
 let isBasedOnToACC : Boolean =
 self.oclIsKindOf(Dependency) and
 self.oclAsType(Dependency).extension_basedOn.isDefined and
 self.oclAsType(Dependency).supplier->select(supplier | sup
 plier.isACC())->size()=1

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 33 of 40

 -- checks if a dependency is stereotyped as basedOn and leads to a CDT
 def:
 let isBasedOnToCDT : Boolean =
 self.oclIsKindOf(Dependency) and
 self.oclAsType(Dependency).extension_basedOn.isDefined and
 self.oclAsType(Dependency).supplier->select(supplier | sup
 plier.isCDT())->size()=1

 -- checks if a dependency is stereotyped as basedOn
 def:
 let isBasedOn : Boolean =
 self.oclIsKindOf(Dependency) and
 self.oclAsType(Dependency).extension_basedOn.isDefined

 -- checks if a dependency is stereotyped as basedOn
 def:
 let realAttributes : Sequence(Property =
 self.ownedAttribute->select(attr|attr.association.isUndefined)

endpackage

6.8 Context Package – UML Profile

UML based concepts to represent context will be added based on the results of the Unified Context

Methodology (UCM) project from TMG.

6.9 Relationship to UMM

The UMM Business Transaction View package contains sub packages of type

<<BusinessInformationView>>. This package should contain only a class of stereotype

<<InformationEnvelope>> element that has an association to an RSM in a <<DOCLibrary>> package1.

The <<DocLibrary>> package, in turn contains one or more assemply documents (RSM) that are

constructed from ABIEs in packages of stereotype <<BIELibrary>>

This approach is designed to separate three key namespaces:

• The namespace of the UMM Business process (typically realized in a BPSS, WS-CDL or abstract
BPEL schema).

• The namespace of the Business Information that is used in the business process (typically realised
as an XSD schema)

• The namespace of the ABIE library components that are used to build the business information
(typically realised as re-usable XSD schema that are imported into the root schema)

1 A final solution to message assembly will be provided by the Core Components Message Assembly Project (CCMA) project.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 34 of 40

7 Example

This section is informative. It is provided as a guide to the business modeller on best practices for CCTS
modelling using this UML profile, illustrated with examples.

7.1 Structure

An information model based on the UML profile for CCTS can contain UML packages with the
stereotypes “DocLibrary”, “BIELibrary”, “CCLibrary”, QDTLibrary”, “CDTLibrary”, “ENUMLibrary”
and “PRIMLibrary”. These packages can be further structured within packages with stereotype
“BusinessLibraryPackage”. The following figure shows the packages of an example model based on the
UML profile for CCTS. This example will be explained in the subsequent sections.

7.2 PRIMLibrary

The package with the stereotype “PRIMLibrary” contains the fixed set of CEFACT primitive types as
defined in the CCTS. The CEFACT primitive types are later on used to provide primitive types for the
content components (CON) and supplementary components (SUP) of the core data types (CDT) and
qualified data types (QDT) and are represented as UML classes with the stereotype “PRIM”:

7.3 ENUMLibrary

The package with the stereotype “ENUMLibrary” contains the enumerations (code lists) that are used
within the model. Enumerations may later on used to restrict the content component (CON) of qualified
data types (QDT) and are represented as UML enumerations with the stereotype “ENUM”. Note that in
most cases enumerations will be maintained in XML-Schemas and not in the UML model (in UML only
for rather short lists like a gender code or restricted country codelists).

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 35 of 40

7.4 CDTLibrary

The package with the stereotype “CDTLibrary” contains the fixed set of core component types as defined
in the CCTS. The core component types are later on used to derive qualified data types (QDT) by
restriction and are represented as UML classes with the stereotype “CDT” containing exactly one content
component as a UML attribute with the stereotype “CON” and one to many supplementary components
as UML attributes with the stereotype “SUP”.

7.5 QDTLibrary

The package with the stereotype “QDTLibrary” contains the qualified data types (QDT) used within the
model. The qualified data types are derived by restriction from CDTs and are represented as UML classes
with the stereotype “QDT” containing exactly one content component as a UML attribute with the
stereotype “CON” and zero to many supplementary components as UML attributes with the stereotype
“SUP”.

The fact that a QDT is derived from a CDT is represented as a UML dependency with stereotype
“basedOn” between a QDT and a CDT. The name of a QDT contains the name of the CDT it is based on
prefixed by zero to many semantic qualifiers separated with underscore as defined in the CCTS.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 36 of 40

<<CDT>>
Code

(un:unece:uncefact.data:standard:CDTLibrary:1.0.0)

<<CON>>-Content : String [1]
<<SUP>>-CodeName : String [0..1]
<<SUP>>-CodeListName : String [0..1]
<<SUP>>-CodeListIdentifier : String [0..1]
<<SUP>>-CodeListVersionIdentifier : String [0..1]
<<SUP>>-CodeListURI : String [0..1]
<<SUP>>-CodeListSchemeURI : String [0..1]
<<SUP>>-CodeListAgencyName : String [0..1]
<<SUP>>-CodeListAgencyIdentifier : String [0..1]
<<SUP>>-LanguageIdentifier : String [0..1]

<<QDT>>
Street_Code

<<CON>>-Content [1]
<<SUP>>-CodeName : String [0..1]
<<SUP>>-CodeListURI : String = http://www.myProject.com/codelists

<<QDT>>
Gender_Code

<<CON>>-Content : GenderCodeContent [1]
<<SUP>>-CodeName : String [0..1]

<<basedOn>> <<basedOn>>

A qualified datatype based on CDT “Code” can for example be restricted by assigning a specific
(runtime-) codeliste to the content component (like GenderCodeContent in Gender_Code) or by providing
a URL in the supplementary component “CodeListURI” which points to a place where the respective
codelist can be found.

Note that the qualified data types in the example are restricted by means of:
• restriction of the content component (CON) by assigning an enumeration from an “ENUMLibrary”,
• restriction of the content component (CON) by assigning a written constraint,
• removing supplementary components (SUP) or
• assigning default values to supplementary components (SUP).

If there is no additional support from the UML tool in use, a QDT is created by
• copy (duplicate) the (to be restricted) CDT into a package with stereotype “QDTLibrary”,
• change the stereotype from CDT to QDT,
• draw a dependency with the stereotype “basedOn” between the QDT and the CDT it is based on and
• define the QDT by restricting it and optionally adding semantic qualifiers.

7.6 CCLibrary
The package with the stereotype “CCLibrary” contains aggregate core components represented as UML
classed with stereotype “ACC” consisting of basic core components represented as UML attributes with
stereotype “BCC” and association core components represented as UML compositions with stereotype
“ASCC”. Aggregate core components are generic information objects as defined in the CCTS. The
aggregate core components (ACC) are later on used to derive aggregate business information entities
(ABIE) by restriction. The name of a class with stereotype “ACC” is the object class term as defined in
the CCTS while the names the attributes with stereotype “BCC” are the property terms and the target
roles of compositions with stereotype “ASCC” are the representation terms (not the dictionary entry
names respectively). The types of the attributes with stereotype “BCC” are taken from the “CDTLibrary”.
The given example uses a small part of the library published by TBG17:

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 37 of 40

7.7 BIELibrary

The package with the stereotype “BIELibrary” contains aggregate business information entities
represented as UML classed with stereotype “ABIE” consisting of basic business information entities
represented as UML attributes with stereotype “BBIE” and association business information entities
represented as UML compositions with stereotype “ASBIE”.

ABIEs are are reusable information objects that are derived by restriction from ACCs. The fact that an
ABIE is derived from an ACC is represented as a UML dependency with stereotype “basedOn” between
an ABIE and an ACC.

The names of ABIEs, BBIEs and ASBIEs contain the name of the respective ACC, BCC and ASCC they
are based on prefixed by zero to many semantic qualifiers separated with underscore as defined in the
CCTS.

Note that the classes with stereotype “ABIE” can be restricted by means of:
• restricted number of attributes (BBIEs) and compositions (ASBIEs),
• restricted multiplicity of attributes (BBIEs) and compositions (ASBIEs) and
• restricted data types using qualified data types (QDT) as restricted CDTs to type attributes (BBIEs).

If there is no additional support from the UML tool in use, an ABIE is created by
• copy (duplicate) the (to be restricted) ACC into a package with stereotype “ABIELibrary”,
• define the ABIE by restricting it (e.g. set multiplicity by defining a single UML Multiplicity Range

for the attribute, change the data type by assigning the type of the attribute to a class stereotyped with
“QDT”),

• add semantic qualifiers,
• change the remaining stereotypes from ACC to ABIE, from BCC to BBIE and from ASCC to ASBIE

and
• draw a dependency with the stereotype “basedOn” between the ABIE and the ACC it is based on.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 38 of 40

7.8 DocLibrary
The package with the stereotype “DocLibrary” contains the business information assembled from
reusable ABIEs as Root Schema Modules (RSM) to be exchanged in a given business scenario.

7.9 Proposed link to UMM artefacts (UMM Foundation 1.0 – Final Specification)

Business information from a “DOCLibrary” can be used as part of an UMM collaboration model within
the “BusinessInformationView” (see UMM Foundation Module 1.0 for further information):

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 39 of 40

8 Recommended XMI-interchange-format for Core-Components UML-models
based on UPCC: EMF UML2 XMI-format

The XMI-specification is a procedure that defines how an instance of an arbitrary MOF meta model is to
be stored as an XML representation. Thus XMI varies with the MOF version, the UML version and the
version of the XMI standard used. All combinations of these factors represent legal and practiced versions
of UML XMI. Two MOF versions of the 1.x variety, potentially four UML Versions of the 1.x variety
and two revisions of the XMI standard can provide up to 16 different legal types of XMI.

In order to achieve interoperability there must be a point of reference to define a notion of correctness for
XMI-encoded UML and thus UPCC-based Core Component models.

One manner of solving this problem is to define constraints on XMI using an XML-based mechanism
such as DTD, Schema or relax-ng and publish these constraints as a "XMI-Profile". Vendors may then
implement this XMI-flavour to ensure compliance. It is important to note, that such an approach defines
one specific combination of UML, XMI and MOF which might already exclude certain tools from being
capable of ensuring interoperability. In addition, if the underlying UML is restricted to only cover a
certain area of the UML (e.g. class diagrams), as has been done in other specifications, implicit semantic
constraints on the language are implicitly introduced. This is explicitly prohibited by the OMG document
defining the use of profiles. To comply with an approach along the lines of such a specifications, vendors
are forced to write transformations and filters to alter their XMI in this very specific manner.
Consequently, it is not certain that vendors will be inclined to implement such a complex and costly
transformation for the UN/CEFACT market.

Therefore the current specification refers to an existing XMI-flavour that is already recognised and
accepted by the marketplace in order to define the UPCC XMI for the exchange of Core-Components
models.

Since the Eclipse Modeling Framework (EMF) gains more and more traction, the XMI-Format accepted
by the Eclipse UML2 reference implementation based on XMI 2.1 (http://schema.omg.org/spec/XMI/2.1)
and UML 2.0 (http://www.eclipse.org/uml2/2.0.0/UML) is used as the UPCC reference. This format is
referred to as “EMF UML2 XMI” in this document.

Tests in Implementation Verification have shown that UPCC-profiled UML models can be exchanged
between different UML tools based on EMF UML2 XMI (including Magic Draw 12.5, IBM Rational
Software Modeler 7.0, Visual Paradigm 6.0 SP2, Omondo Eclipse UML Studio Edition 2.1.0, Papyrus
UML 1.72). Models from Enterprise-Architect 6.x and 7 can be exported in EMF UML2 XMI-format
based on an external export filter from http://www.openarchitectureware.org (not tested).

9 Conformance Criteria

This section is normative.

Conformance statements conform to the requirements of the W3C QA guidelines:

http://www.w3.org/TR/2004/WD-qaframe-spec-20041122/

9.1 Product Classes

The following types of product may claim comliance with this specification:
• UML Modelling tools from tool vendors may claim compliance.
• UML Model instances from working groups (eg TBG) may claim compliance.

2 The test setup included the export of a fully profiled Core-Component model from Magic Draw in EMF UML2 XMI-format and the import

into the other mentioned UML tools.

UML Profile for Core Components (UPCC) – Version 1.0 – Final Specification - 2008-01-16

Page 40 of 40

• External Validation services (eg ICG repository service) may claim compliance.

9.2 Profiles and Levels

The W3C Quality Assurance guidelines allow the specification of different level of compliance. For
UPCC this can mean

• Compliance only with the structural components (stereotypes & tagged values).

• Or compliance with the comlete specification including the semantic constraints defined by the OCL
constraints.

10 Reference Implementations

Two reference implementations of the UPCC specification have been developed as part of the

Implementation Verification phase of this project:

• University of Vienna / Research Studios Austria: Impementation based on a plug-in for the UML-tool

Enterprise Architect (“UMM Add-In”). The UMM Add-In supports validation of UML-models in

Enterprise Architect (EA) format against the UPCC-constraints (implemented based on the EA-API)

and generation of ATG NDR conformant XML-Schemas and can be downloaded at

http://ummaddin.researchstudio.at/).

• Germany-Online Standardization project: Implementation based on the Eclipse Modeling Framework

(EMF) and the Eclipse UML2-project (“XGenerator”). The XGenerator supports validation of UML

models in EMF UML2 XMI-format against the UPCC-constraints (implemented as OCL in an

external text file included at runtime) and generation of XML-Schema, docbook and other

deployment artefacts based on Velocity templates. XGenerator is availabe at http://sourceforge.net/.

The Eclipse-based reference implementation is publicly available as open source and can consequently be

used as a point of reference for validation of UPCC conformant models and also as a validation service.

