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Executable UML is here.  While it is possible today to add code to UML diagrams and 
then execute them, in so doing you must make a series of decisions about implementation that 
may not be correct, appropriate, or even knowable.  Executable UML models systems at a higher 
level of abstraction, thus avoiding the costs involved in a premature design. 

Executable UML offers the benefits of early verification through simulation, the ability to 
translate the UML model directly into efficient code, and the ability to delay implementation 
decisions until the last minute. 

This paper describes the components of executable UML and how they fit together.  
Special attention will be paid to translating an executable UML model into code and what 
decisions need to be made and what time during the process. 
 

1. Unified Modeling Language 
 
“The Unified Modeling Language is a language for specifying, constructing, visualizing, and 
documenting the artifacts of a software-intensive system” or so says the UML Summary [1].  
UML, until quite recently, has not attempted to be executable.  In this paper, we examine what is 
being done to make the UML executable, how execution fits into the UML, various forms of 
execution that may be based on an executable UML, and what this all means for real-time and 
embedded systems engineers. 
 
So what does the UML do, if it doesn’t execute?  It addresses the following development tasks: 

• Requirement’s gathering and analysis (i.e. the external usage of the system) 
• System modeling (how a particular domain operates in terms of data, control and 

algorithm),  
• System deployment (allocation of system functionality to processors, tasks and classes) 

 
Of these, requirement’s gathering is not an automatable or executable task—it is a human and 
creative one that cannot be automated.  System modeling, on the other hand, can be made to have 
a semantics for execution. (System deployment describes allocations of system functionality.)  
 
Because of the broad range of tasks taken on by the UML, the UML has many diagramming 
notations.  Here are a few: 

Use Case Diagram: system stimulus-response model (used in requirements gathering) 
Static Structure Diagram: package, class, and object diagrams (used in system modeling) 
State Diagram: control for dynamic behavior (used in system modeling) 
Activity Diagram: workflow of activities (used in system modeling) 
Sequence Diagram: dynamic interactions with time (used in system modeling) 
Collaboration Diagram: dynamic interactions without time (used in system modeling) 
Component Diagram: software components (used in system deployment) 
Deployment Diagram: allocation of components to processing elements (used in system 
deployment) 
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Some of these diagrams are just views of other diagrams.  For example, a collaboration diagram 
showing asynchronous communication can be built from the state charts and the signals they send 
and receive.  Consequently, we may classify some diagrams as essential in that: they capture the 
complete scope and behavior of the system and support model translation to code; and some as 
derived: diagrams that show additional views of the essential models.  Auxiliary diagrams can be 
used to augment the construction of the essential models.  
The careful reader will have noted that these diagrams are just notation, not semantics.  To be 
more precise, the UML defines the static semantics of the notation, but not the executable, or 
dynamic semantics.  Moreover, we have used “model” for the underlying abstractions and 
“diagram” for a representation of those abstractions. 
 
As a result, a UML diagram cannot be executed. It cannot be verified and 100% code generation 
cannot be achieved.   

2. Execution 
 
Model-based execution is the logical next step.  In the 1960’s we learned how to compile 
assembly language into machine language.  Twenty years later, we learned how to do the same 
for high-level languages such as C.  Now it is time to compile models so that developers work at 
a more productive level of abstraction, and automate tedious manual tasks.  This allows the 
developer to focus on solving application and product problems, not on implementation details. 
 
Model-based execution relies on the ability to compile or interpret the model.  A model compiler 
can then focus on uniformly solving implementation problems.  
 
Execution is a form of code generation.  Bell, in [2], identifies three forms of code generation.  
The first is structural code generation, which uses the diagram to generate class headers and the 
like, but the user has to fill in the code for the functions.  There are therefore two sources for the 
code, the code generated from the diagrams (usually just class headers/structs, include files and 
the like), and hand-written code.  Therein lies the problem: the two sources must be kept in synch 
somehow.  If you change the headers as a result of writing detailed code, it is impossible to 
regenerate the code from the diagram.   
 
Behavioral code generation solves the “unsynchronized code” problem by adding code directly to 
the diagram.  Tools that support behavioral code generation usually generate code from a state 
chart, rather than just allowing the developer to specify the code for the functions.  For behavioral 
code generation we therefore need to have an agreed execution semantics for the state chart.   
Because behavioral code generation links the logic to the diagram, it enables early error detection 
through verification, and reuse of the model compiler.  This is a Good Thing, and it is fair to call 
this form of code generation “executable.”  But there is a one-to-one correspondence between 
elements on the state chart and the generated code.  Although it is possible to add code to UML 
diagrams and then execute them, in so doing you must make a series of decisions about 
implementation that may not be correct, appropriate, or even knowable.  The code generation 
system is closed, and the performance is determined by the model compiler.  If the performance is 
inadequate, the developer generally has to distort the application model. 
 
In translative code generation the model compiler is open.  This approach relies on subject matter 
separation—the complete separation of the application model from the model compiler.  The 
model compiler comprises a set of reusable execution engine components, such as inter-task 
communication and list libraries, and a set of rules that direct the generation.  The rules are 
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completely open, so they may be used to generate C, C++, Ada, Forth, even VHDL.  We discuss 
the details of the model compiler and rules below in Section 6. 
 

3. The Executable Model 
 
The executable model is based on a limited subset of UML assembled in a particular way so that 
the diagrams have meaning.  For example, in UML one may build a statechart for a class, an 
object, a method, a use case, a component, a package—just about anything.  While the execution 
semantics of the state chart are defined in isolation, this leaves open the question of how the 
various elements relate to one another. 
 
Executable UML comprises only three diagrams, the class diagram, which outlines the conceptual 
entities in the domain, a state chart for each class that models the lifecycle of each object, and An 
activity for each state—the set of actions that establish the state. 
 
The classes must be abstracted based on both similar behavior and characteristics.  This 
requirement allows a state chart to be built for each class that applies uniformly to each object, 
avoiding logic to determine what type of object each action is executing on.   
 
The state chart captures the lifecycle of each object.  There is one state chart per class because the 
behavior of each object is exactly the same.  In some cases, there is no need to build a state chart 
because the only operations are synchronous data access under the control of other objects.  For 
other classes that manage contention, we build a single state chart for the class as a whole.  
Conceptually, then, a class may have no state charts, or one chart that applies uniformly to each 
object, and an (optional) other that apples to the class as a whole. 
 
An activity is a collection of actions that is executed on entry to a state.  An activity is almost the 
same as an action, except that an activity allows for parameters, while actions rely on data flows.  
Specifically, when an event is received by a state chart, the event may carry data other than the 
target object, such as the phone numbers involved in a call.  This “supplemental data” is made 
available to all actions in the activity on data flows.  Activities on state charts do not have return 
parameters.  All data must (logically) be stored as attributes of objects (a model compiler could 
optimize this), before the activity completes. 
 
An executable model operates on data about objects.  Each class defines attributes for objects, 
and each attribute may have an initial value for each object.  When the model executes, each 
object has its own state, and each object executes concurrently and asynchronously with respect 
to all others.  Each state chart instance, then, is in its own (just one) state, either executing an 
activity to completion, or not.  The actions inside activities may read data through (logically) 
encapsulated functions of other classes at the same time as the target object is executing an 
activity.  It is the modeler’s responsibility to avoid data access conflict by synchronizing the 
behavior of the various objects, if required, using a state chart. 
 
The state charts recognize events.  Each event may be a signal sent from another object, from the 
outside, or it can be the result of a “deferred event” that signals expiry of a timer or of some 
absolute time. 
 
Thus, an executable UML “program” comprises a collection of concurrently executing state 
machines communicating by sending signals.  This highly concurrent model can re reorganized to 
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be fully synchronous or distributed without changing its behavior.  Indeed, it is possible to 
reorganize the model so that some states are executed periodically in a separate task, and the 
attributes of a single object are stored in multiple processors.  So long as the behavior is the same. 
 

4. The Action Model 
4.1 Requirements 
 
Until recently, the UML had an under-developed model of actions.  The model comprised seven 
actions, including create an instance, send a signal, destroy an instance, terminate an instance 
(don’t ask what the difference is), and my personal favorite, “uninterpreted string.” 
 
In 1998, the Object Management Group developed a Request for Proposal for a precise Action 
Semantics [3] that laid out the requirements.  One of these key requirements is that the semantics 
should require the definition only of required sequencing, and should not over-constrain 
sequence.  Specifically, this means that the sequential nature of today’s third-generation 
programming languages is often over-constrained.  Consider for example two statements a = b; 
and x = y;   In a third=generation program, there is a sequence for these two statements, so that 
a = b; must execute before x = y; logically, there is no reason why one should execute before 
the other.   
 
On the other hand, in the fragment x = 2 * a; and b = x * x, its meaning is different 
depending on which statement executes first.  If x = 2 * a should execute before b = x * 
x, the fragment will yield a value for b of 4a2.  In this case, x is just a convenience, and could 
be replaced with its value 2a.  Alternatively, one could think of x as being a name for a data flow 
between the two statements.  Of course, the meaning is completely different if executed in the 
other order.  The goal of the requirement is to make the sequencing explicit so that some model 
compilers can optimize the execution of the statements, possibly even executing one of them on 
another processor.  
 
Second, the action model should separate functional computation from data access.  The intent of 
this requirement is to allow the statement of a function to be reusable regardless of where the data 
came from.  Today we often express functions and data access code together.  For example, if we 
track the time of each of the last ten calls on a cell phone, as well as the total of the ten, it is not 
uncommon to loop through the last ten calls, adding each one to the sum.  This approach is 
efficient, but it relies on knowing how those call times are stored in some data structure.  If we 
change the storage scheme, it has the unhappy effect of invalidating the algorithm.  To avoid this 
problem, the action semantics requires that the data access is specified first, then the data values 
are presented as if they were just n elements to a function that sums.  This allows a model 
compiler to optimize the solution based on the selection of the data structure.  It also allows a 
model compiler to select a data structure to optimize the execution of the algorithms. 
 
Third, the action model should manipulate only UML elements.  This means two things.  First the 
action model must know about classes, attributes, and other UML concepts.  We can think of 
these elements as being ‘pre-declared.’  Second, only UML elements are permitted.  No pointers, 
no arrays, no magic, except as explicitly modeled in UML.  This has the effect of restricting the 
generality and so making a specification language. 
 
The action model is therefore software-platform independent. It makes no assumptions about the 
organization of the software, only of the specification.   



 

Copyright 2004-2013 © Stephen J Mellor  Version 1.3 - 5 - 

 
The action model does not require the specification of a notation.  Any action language that 
conforms to the semantics is acceptable.  This allows terse notations, verbose notations and even 
graphical ones.   
 
 
4.2 The Result 
 
In mid-2001, a consortium of companies made a proposal that satisfies the requirements of the 
RFP.  This was accepted later that year, thus endowing UML with a semantics for actions. In the 
remainder of this section, we describe a few salient features. 
 
In a distributed systems environment, time is relative due to transmission delay.  The UML action 
model defines its semantics by assuming the only guarantee is the sequencing of signals between 
sender and receiver pairs.  This is especially important for many real-time systems, even small, 
embedded systems that need to coordinate hardware and software.  These systems cannot 
possibly assume a single synchronized sequential flow of control, for the simple reason that there 
isn’t one. 
 
Actions can execute as operations in classes, on entry to or exit from a state, and on a transition.  
Each such grouping is called an activity.  Each activity runs to completion, which means that, 
from the point of view of other objects, each activity finishes before another can be processed.  
These rules are still quite loose (in the action semantics), but they allow for the concurrent 
execution of synchronous invocations on an object at the same time that a state chart executes.  
The state chart semantics specify execution of the activity on exit from a state, then the transition 
activity, then the activity on entry to a state for flat state charts.  For hierarchical state charts the 
rules are more complex, and I personally remain unconvinced that they are fully defined in a 
standard manner.  Certainly, I can’t retain the rules long enough to work it out. 
 
The foundation for actions is a data flow model close to that proposed in Shlaer and Mellor [4].  
Shlaer-Mellor allows for data flows comprising multiple data elements, while the action 
semantics allow for results to be generated on pins connected by data/object flows.  
Consequently, there can be several flows between the same two actions. 
 
A value on an output pin can only be written once, but read many times, which is just another 
way of saying that the action semantics rely on data flow.  Re-consider for example the code 
fragment from above: x = 2 * a; b = x * x.  As we indicated earlier, the assignment to x is 
not necessary.  Were we to replace x with x’, the meaning of the fragment would be exactly the 
same.  We can always (logically) replace a data flow with another variable, thus leading to the 
original statement that we can write once, but read many times.  This property corresponds to the 
“Static Single Assignment” property in programming language theory. 
 
Control flows impose sequence on actions.  They can be combined with data flows.   
 
Actions may be composed (recursively) for control, for conditionals, for loops, or for any other 
arbitrary reason. 
 
All data access is modeled explicitly using actions. This facilitates re-organization of actions in 
an implementation. (See the requirement to separate data access from functional computation 
above.) 
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The submission does not define primitives, such as addition, multiplication, string concatenation, 
Bessel functions, and the like.  There are actions to invoke these primitive actions and other 
actions that are not modeled further. 
 
Some actions act on collections.  A collection is a fancy UML term for either a set, in which each 
element is required to be distinct, or a bag, in which there is no such requirement.  Four types of 
action are defined on collections.  Filter takes a collection of elements and a test on some value 
to produce a subset of elements, only those for which the test is true.  For example,  

ReadAll( Switch.Circuit )| Filter( Circuit.Status != #Busy) 
reads all the circuits connected to a switch, “pipes” the result to a filter that passes only those 
circuits for which the status is not busy.  (Syntax is not specified in the standard.) 
 
 

5. The Repository 
 
To capture semantics, as distinct from notation, the meaning of the model, as distinct to the 
diagrams, must be captured in a repository of some sort.  The logical structure of the repository 
mirrors the semantic rules described in the sections above, including the semantics of actions. 
 
The executable UML metamodel is a model of executable UML using UML.  It has classes such 
as Class, Attribute, Event, Signal, State, Action, CreateAction, ReadAction—all of the concepts 
we have discussed to define UML in English. 
 
When we draw a class such as Batch in a developer model, this creates, presumably using some 
model building tool, an instance of the class Class, with data describing the class so created, such 
as a Name (“Batch”), a description, and the like.  (It could also have graphical information that 
describes the location of the box and so on, but that is not of concern to us in the semantics.)  
Similarly, when we create an attribute amountOfBatch of the Batch class, this creates an instance 
of the class Attribute with name (amountOfBatch), the class it describes (a reference to Batch), a 
type (amount), and so on. 
 
The precise structure of the repository is important to the developers of model building tools and 
if you, or a model compiler builder, need to traverse the repository to produce code. 
 

6. Model Compilers 
 
A model compiler comprises two main components, an execution engine and a set of rules. A 
model compiler relies on the existence of some repository and some language that can traverse an 
arbitrary repository and produce text.  The rule language is processed by a “generator.” 
 
An execution engine is a specific set of reusable components that, when taken together, are 
capable of executing an arbitrary executable UML model.  The execution engine will therefore 
contain ways of storing instances in some form, possibly as objects, but not necessarily; some 
way of sending signals, some way of recognizing event, some way of reading an attribute, and so 
forth.  The selection of the elements in the execution engine determine the system properties, 
such as concurrency and sequentialization, multi-processing and multi-tasking, persistence, data 
organization and data structure choices.  These choices, together with the pattern of usages in the 
application, determine the performance of the system. 
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The second part of the model compiler is a set of rules.  As an example, the rule below generates 
code for private data members of a class by selecting all related attributes and iterating over them.  
All lines beginning with a period (‘.’) are commands to the generator, which traverses a 
repository containing the executable model and performs text substitutions.   
 
.Function PrivateDataMember( class Class ) 
.select many PrivateDataMember from instances of Attribute related to Class 
.for each PrivateDataMember 
${PrivateDataMember.Type} ${ PrivateDataMember.Name}; 
.endfor 
 
${PrivateDataMember.Type} recovers the type of the attribute, and substitutes it on the 
output stream.  Similarly, the fragment ${ PrivateDataMember.Name} substitutes the name 
of the attribute.  Finally, the lone ; is just text, copied without change onto the output stream. 
 
For a more complete example, consider: 
 
.select many stateS related to instances of  

class->[R13]StateChart ->[R14]State  
where (isFinal == False); 

public: 
  enum states_e 
    { NO_STATE = 0 , 
.for each state in stateS       .if ( not last stateS ) 
           ${state.Name } , 
       .else 
           NUM_STATES = ${state.Name} 
       .endif; 
.endfor; 
}; 
which produces: 
 
public: 
  enum states_e 
    {  NO_STATE = 0 , 
       Ready , 
       Executing , 
       NUM_STATES = Complete 
    }; 
In the rule, we used italics for instance references, which are like variables that refer to instances 
in the repository;  underlining to refer to names of classes and attributes in the repository; and 
capitalization to distinguish between collections of instances vs. individual ones.   
 
You may wonder what the code is that is produced is for.  It is an enumeration states with a 
variable num_states automatically set to be the count for the number of elements in the 
enumeration.  This enumeration is used to dimension an array that contains the pointers to the 
activity to be executed.  You may not like this code.  Cool:  to change it all you have to do is 
modify the rule and regenerate.  Every single place where this code was written will then be 
changed. 
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While the “result” is only about half the size of the rule, the rule can generate any number of 
these enumerations., all in the same way, all conforming to your coding standards, all equally 
right—or wrong. 
 

7. Model Driven Architecture 
 
Executable UML only carries us so far.  We need also be able to interchange the models between 
tools.  XML is a data interchange tool that relies on data type definitions (DTDs) to define the 
semantics of the interchanged data.  This definition, for the UML in XML, is called XMI.  
However, XMI is still insufficient because it allows any syntactically correct UML model to be 
interchanged, and what we need is to be able to interchange standard semantics for execution. 
 
Executable UML enables a market in model compilers, because a standard interchange 
mechanism for standard semantics means that any vendor who builds a model compiler will have 
access to all executable UML models. 
Each model compiler can then target a specific platform.  For example, one model compiler can 
target small embedded systems generating highly optimized C straight onto the silicon without an 
operating system, while another can generate multi-tasking C++ with persistence capabilities.  
Still others can generate VHDL from executable UML models. 
 
 
8. What To Take Away 
 
Executable UML models systems at a higher level of abstraction, thus avoiding the costs involved 
in making premature design decisions.  This higher level of abstraction has to have rules, rules 
that make the models simple and regular, and thus amenable to compilation.  There is no need to 
make executable UML have notations for every single packaging, every single, design construct, 
and every single way of describing behavior.  Rather, executable UML contains only what is 
required for a specification language. 
 
The basic structure of an executable UML model is that each class has a state chart, and activities 
containing actions hang off a limited number of places in a state chart.  The action semantics are a 
part of UML (or should be by the time you read this!) 
 
A model compiler is a executable UML compiler comprising an execution engine and a set of 
rules.  The rules read the repository to produce code. Model compilers, like programming 
language compilers, can be bought as object code, or they may be bought as source, offering the 
modifiability of the rules to make the generated code more efficient. 
 
To make a market in model compilers, there has to be interchangeability of models, then every 
model compiler will be able to compile every executable UML model.  It also enables other tools: 
tolls that check for reachability or decideability, tools that can transform models by, for example, 
combining state machines or breaking them apart, and so on.  This will, if all goes well, 
fundamentally change how we build software. 
 
Finally, you have to see a complete example of an Executable UML model, Leon Starr’s 
excellent book Executable UML [6] 
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