
Exploring a Model-Oriented and Executable 
Syntax for UML Attributes 

Omar Badreddin, Andrew Forward, Timothy C. Lethbridge1

                                                             
Omar Badreddin, Andrew Forward, Timothy C. Lethbridge 
School of Electrical Engineering and Computer Science, University of Ottawa, Canada K1N 6N5 
e-mail: obadr024@eecs.uottawa.ca, aforward@eecs.uottawa.ca, tcl@eecs.uottawa.ca  

 

Abstract   Implementing UML attributes directly in an object-oriented language may 
not appear to be complex, since such languages already support member variables. 
The distinction arises when considering the differences between modelling a class and 
implementing it. In addition to representing attributes, member variables can also 
represent association ends and internal data including counters, caching, or sharing of 
local data. Attributes in models also support additional characteristics such as being 
unique, immutable, or subject to lazy instantiation. In this paper we present modeling 
characteristics of attributes from first principles and investigate how attributes are 
handled in several open-source systems. We look code-generation of attributes by 
various UML tools. Finally, we present our own Umple language along with its code 
generation patterns for attributes, using Java as the target language. 

Key words Attributes, UML, Model Driven Design, Code Generation, Umple, Model-
Oriented Programming Language. 

1 Introduction 

A UML attribute is a simple property of an object. For example, a Student object 
might have a studentNumber and a name. Attributes should be contrasted with 
associations (and association ends), which represent relationships among objects. 

Constraints can be applied to attributes; for example, they can be immutable or 
have a limited range. In translating UML attributes into languages like Java it is 
common to generate accessor (get and set) methods to manage access. 



In this paper, we study the use of attributes in several systems and discuss how to 
represent attributes in a model-oriented language called Umple. Umple allows models 
to be described textually as an extension to Java, PHP, Ruby or C++. We present 
code-generation patterns for attributes as used by Umple for the Java language. 

1.1 A Quick Look at Umple 

Umple is a set of extensions to existing object-oriented languages that provides a 
concrete syntax for UML abstractions like attributes, associations, state machines. To 
distinguish between Umple and Java, the Umple examples use dashed borders in 
shading, and Java examples use solid-line borders with no shading. 

Figure 1 is a snippet of Umple on the left, with its corresponding UML diagram on 
the right. Methods have been left out of this example; this illustrates one of the 
features of Umple, the ability to use it incrementally, first to create high level models, 
and later on to add more and more implementation detail until the system is complete. 

 
class Student {} 
class CourseSection {} 
class Registration {  
  String grade; 

    * -- 1 Student; 
    * -- 1 CourseSection;  

} 

 

 
Fig 1. Umple class diagram for part of the student registration system 

Figure 1 shows two associations and an attribute so that the reader can see how they 
are defined in Umple. The remainder of the paper focuses exclusively on attributes.  

One of our motivations is our previous research [1] indicating that most developers 
remain steadfastly code-centric; hence visual modeling tools are not being adopted as 
widely as might be desired. Another motivation is that there is much repetitive code in 
object-oriented programs. We wish to incorporate abstractions to promote 
understandability and reduce code volume [2]. 

An Umple program contains algorithmic methods that look the same as their Java 
counterparts. Constructors, instance variables and code for manipulating attributes, 
associations, and state machines are generated. 



Umple is intended to be simple from the programmer’s perspective because there is 
less code to write and there are fewer degrees of freedom than in Java or UML. 
Despite the restrictions in Umple, it is designed to have ample power to program most 
kinds of object-oriented systems. The current version of Umple is written in itself. 

Please refer to [3] for full details about Umple. The Umple language can be 
explored in an online editor [3], which includes many examples.  

2. Attributes in Practice: A Study of Seven Systems 

To ground our work in the pragmatics of industrial software development, we 
analyzed how real projects implement attributes. This will help us identify code-
generation patterns and areas where Umple could be improved. 

Key goals of our empirical analysis of software attributes are to determine how 
attributes are defined, accessed and used in practice, and also to find attribute patterns 
that can enhance the vocabulary with which attributes are defined in Umple 

For our research, we considered seven open-source software projects. The criteria 
by which the projects were selected are described below, followed by a review of the 
results and the implications for building a model-oriented syntax to describe attributes.  
We sampled existing software systems by selecting a random sample of projects from 
selected repositories. A candidate repository contained at least 1000 full projects in 
Java or C#. We analyzed 33 repositories, and selected three that met our criteria 

Candidate projects were selected by randomly picking a repository, then randomly 
selecting a language (Java, or C#), and finally randomly selecting one of the first 1000 
projects. The 7 projects analysed include: from GoogleCode: fizzbuzz, ExcelLibrary, 
ndependencyinjection and Java Bug Reporting Tool; from SourceForge: jEdit and 
Freemaker; and from Freecode (formerly Freshmeat): Java Financial Library.  

We documented all member variables. For each we recorded the project, 
namespace, object type, variable name, and other characteristics presented in Table 1. 

2.1 Analysis and results 

We used reverse engineering tools to extract member variables from source code, and 
manually inspected each attribute. We identified 1831 member variables in 469 
classes. Of the member variables identified, 620 were static (class variables) and 1211 
were instance variables. Table 2 gives a distribution of the types of static variables. 



Table 1 Categorizing member variables.  

Category Values Description 
Set in Constructor No, Yes Is the member variable set in the object’s constructor? 
Set Method None, Simple, 

Custom 
Is the variable public, or does it have a setter method? If so, is 
there custom behavior apart from setting the variable (such as 
validating constraints, managing a cache or filtering the input) 

Get Method None, Simple, 
Custom 

Is the variable public, or does the variable have a getter method? 
If so, does it have any custom behavior like returning defaulted 
values, using cached values or filtering the output. 

Notes Free Text Other characteristics such as whether the variable is static, read-
only, or derived. 

Table 2. Distribution of static (class) variables.  

Object Type Frequency % Description 
Integer 431 69% All whole number types including primitive integers, 

unsigned, and signed numbers. 
String 53 9% All string and string builder objects. 
Boolean 29 5% All True/False object types. 
Other 107 17% All other object and data types 
Total 620 100%  

 
Out of the 620 static members analyzed, 90% were read-only constants, 69% were 

publically visible, and 83% were written in ALL_CAPS, a common style for static 
variables. From this point onwards, we will focus on the instance variables. 

Table 3 gives the distribution of all instance members (i.e. non-static variables) for 
the five basic attribute types. The ‘other’ includes custom data types, plus types 
corresponding to classes like Address. Member variables consist of attributes, 
associations and internal data. To help determine which variables are most likely 
attributes; we used a two-phased approach. First, we analyzed whether the variables 
were included in the object’s constructor and whether the member variable had get and 
set accessor methods. This analysis is shown in Table 4. 

Only 3% of the variables were initialized during construction, could be overwritten 
in set method, and accessed in a get method. The most common occurrence was no 
access to a variable at all (not in constructor, and also no accessor methods). The 
second most common was a variable whose value was set only after construction. 

To filter out potential internal data (local variables), we removed from our potential 
attributes list all variables that did not have get. We also visually inspected the list and 
observed that most no-getter variables were cached objects and results (i.e. size or 
length), or user-interface controls. In total, 637 member variables were removed 



during this process. We also filtered out five member variables with the word cache, 
or internal in their name; as they most likely also refer to internal data. 

Table 3. Distribution of instance variable types.  

Object Type # of Variables % Description 
Integer 326 27% All whole number types including primitive 

integers, unsigned, and signed numbers. 
String 169 14% All string and string builder objects. 
Boolean 121 10% All True/False object types. 
Double 12 1% All decimal object types like doubles, and floats 
Date / Time 9 1% All date, time, calendar object types. 
Other 574 47% All other data types 
Total 1211 100%  

 
To find variables representing attributes, as opposed to associations, we worked 

recursively. An attribute is considered to have as its type either: a) a simple data type 
identified in the first five rows of Table 3, or b) a class that only itself contains 
instance variables meeting conditions a and b, with the proviso that in this recursive 
search process, if a cycle is found, then the variable is deemed an association. This 
approach was partially automated (identifying and removing 12 association member 
variables) where both ends of the association were defined within the system. The 
remaining variables were inspected manually, and subjective judgments were made to 
categorize the variable type as entity or complex. An entity class is one that is 
comprised of only primitive data types, or associations to other entity classes. A 
complex class is comprised of primitive data, as well as associations to other complex 
classes. Table 5 was used to help distinguish class categories. 

Table 4. Analyzing all instance variables for presence in the constructor and get/set methods. 

Constructor Setter Getter Freq % Likelihood of being an attribute 
(High, Medium, Low) 

Yes Yes Yes 32 3% High, full variable access 
Yes Yes No 8 1% Low, no access to variable 
Yes No Yes 44 4% High, potential immutable variable 
Yes No No 160 13% Low, more likely an internal configuration 
No Yes Yes 318 26% High, postpone setting variable 
No Yes No 41 3% Low, no access to variable 
No No Yes 179 15% Medium, no access to set the variable 
No No No 429 35% Low, no access at all to set/get variable 
Total 1211 100%    



Table 5. Entity versus complex object type criteria hinds. 

Entity Class Complex Class 
Properties, Formats, Types and Data Nodes, Worksheets 
Files, Records, and Directories Writers, Readers 
Colors, Fonts, and Measurements Engines, Factories and Strategies 
Indices, Offsets, Keys and Names Proxies, Wrappers, and Generic Objects 
 Actions, Listeners, and Handlers 
 Views, Panes and Containers 

 
This process identified internal, attribute and association variables. Once complete, 

we were left with 457 potential attributes. The distribution of attribute types is shown 
in Table 6. As expected, most potential attributes are integers, strings and Booleans.  

Table 6. Distribution of attribute types.  

Object Type Freq. % Description 
Integer 200 44% All whole number types (e.g. integers, signed, and unsigned). 
String 102 22% All string and string builder objects. 
Boolean 67 15% All True/False object types. 
Double 6 1% All decimal object types like doubles, and floats 
Date / Time 5 1% All date, time, calendar object types. 
Other 77 17% All other data types 
Total 457 100%  

 
Table 7 divides attributes into 4 categories. Only 29 attributes (6%) had 

immutable-like qualities (available in the constructor, with no setter). About 31% of 
the attributes were managed internally with no setter and not available in the 
constructor. Finally, only about 11% of the attributes were available in the object’s 
constructor. 

Table 7. Constructor and Access Method Patterns (all attributes have a get method). 

Constructor Setter Frequency % Probable Intention 
Yes Yes 23 5% Fully editable 
Yes No 29 6% Immutable 
No Yes 262 57% Lazy / postponed initialization 
No No 143 31% Derived or calculated attribute 
Total 457 100%   

 



Implementation of set and get methods: As described in Table 1, a set or get 
method, if present, can be simple or custom. Table 8 illustrates the frequency of the 
various combinations of attribute set and get methods. 

Table 8. Distribution of attribute properties based on type of setters and getters. 

Setter Getter Frequency % 
Simple Simple 250 55% 
Simple Custom 1 0% 
Custom Simple 9 2% 
Custom Custom 25 5% 
None Simple 46 10% 
None Custom 126 28% 
Total 457 100%  

 
Over 55% of attributes had simple set / get mechanisms, 10% had simple get 

methods with no set method, and the remaining 35% had at least some custom set or 
get method. 

 
Attribute Multiplicities: We distinguished between one (0..1 or 1) and many (*) 
based on the attribute type. List structures and object types with a plural noun (e.g. 
Properties) were identified as many, all other structures were identified as one.   

Overall 93% of attributes had a multiplicity of one, leaving only 7% with a many 
multiplicity. To more finely categorize the multiplicity types would be too subjective, 
as the multiplicity constraints are programmed in diverse ways. 

 
Characteristics of custom access methods: The following custom set method 
implementations were observed: having a caching mechanism, lazy loading, updating 
multiple member variables at once, and deriving the underlying member variable’s 
value based on the provided input. 

The following custom get method implementations were observed: constant values 
returned, default values returned if the attribute had not been set yet, lazy loading of 
attribute data, attribute values derived from other member variable(s), and the attribute 
value returned from a previously cached value. A summary of the implementation 
types for set and get methods is in Table 9. 

Table 9. Distribution Set and Get Method implementations. 

Method Implementation Description Freq. % 
Derived Set Input filtered prior to setting variable’s value 4 1% 
Other Custom Set  Caching / updating multiple members at once 30 7% 
Derived Get Based on a cache, or other member variables 105 23% 



Other Custom Get Custom constraints applied to variable 28 6% 
Constant Get Always returns the same value 19 4% 

 
The frequencies in Table 9 are based on the total number of attributes and not 

simply those attributes with custom set or get methods. The most interesting 
observation from this table is that almost a quarter of all attributes were somehow 
derived from other data of the class. 

2.2 Key findings 

Key findings based on the results above include 
• Simple set and get methods: Many attributes follow a simple member variable get 

and set approach, suggesting that such behavior could be the default, helping to 
reduce the need for explicit setters and getters. 

• Immutable attributes: Few attributes are set during construction, implying a 
separation between building objects and populating their attributes. Despite this, 
we believe it is still important to allow attributes to be immutable and, hence, set 
only in the constructor. Immutability helps ensure the proper implementation of 
hash codes and equality; for example, to allow consistent storage and retrieval 
from hash tables. It is also important for asynchronous and distributed processing 
where tests need to be done to see if one object is the same as another. 

• Attribute multiplicities: Attribute multiplicities are almost always ‘one’ (93%).  
Based on this, Umple only supports the generic ‘many’ multiplicity and not 
specific numeric multiplicities as found in associations. 

• Static attributes: Class level attributes (i.e. static) were mostly written in 
ALL_CAPS (83%); a convention that could be added directly to a language, 
removing the need for the ‘static’ keyword. 
 
By analyzing existing projects we were able to align our model-oriented language 

Umple with the observed trends in representative software projects. This alignment 
will be expanded upon in the next section. We were also able to provide code 
generation that is aligned to industry practice – in order to help make the quality of the 
generated code similar in style and quality to code that a software developer would 
write him or herself.  



3 Umple Syntax for Attributes 

In this section we show how the Umple language (introduced in Section 1) allows the 
programmer to specify attributes, with common characteristics found in practice as 
presented in the last section. In UML, attributes represent a special subset of semantics 
of UML associations, although pragmatically we have found it more useful in Umple 
to consider them as entirely separate entities. 

The main features of Umple’s syntax for attributes, and its code generation, result 
from answering the following three questions. 
• Q1: Is the attribute value required upon construction? 
• Q2: Can the attribute value change throughout the lifecycle of the object? 
• Q3: What traits / constraints limit the value and accessibility of the attribute? 
 
As we discuss in Section 4, most current code generators provide the most liberal 

answers to the questions above: no, the value is not required upon construction, yes the 
attribute value can change, and no there are no constraints on or special traits of the 
attribute. In UML, you can add OCL constraints to answer Q3, but there is no straight-
forward way to specify answers to Q1 and Q2. 

As observed in the previous section (see Table 7), the answer to Q1 is usually ‘no’ 
(89%), and the answer to Q2 is split between ‘yes’ (62%) and ‘no’ (38%). 

The answer to Q3 is none half the time (55%) – in other words most attributes have 
straightforward set and get behavior. The other half, there are a large number of 
possible characteristics to consider, since each project has unique constraints under 
which an attribute much conform. Two of the characteristics observe reasonably 
frequently are uniqueness and default values; we discuss these in Section 3.3 

In the work below, we show that these answers above could be reflected in a 
model-oriented syntax, and in generated code. We also determined which scenarios do 
not make semantic or pragmatic sense; to further simplify the attribute syntax. Further 
discussion of code generation in Umple is in Section 5. 

 
Is the attribute specified in the constructor (Q1)?: First, let us consider attributes 
that are available in the constructor (Q1.Yes). By default an attribute’s value is 
required at construction, and the syntax to describe this scenario is to declare the 
attribute with no extra adornment. E.g. 

 
String x; 
Integer y; 

 



For attributes that are not to be set during construction (Q1.No) the Umple syntax is 
to provide an initial value (which can be null) to the attribute, as shown below. 

 
String x = "Open"; 
Integer y = 1; 
String z = null; 
String p = nextValue(); 

 
The initialized value follows the semantics of the target language (e.g. Java or 

PHP). It can either be a constant as we see for x and y, uninitialized as we see for z or 
an arbitrary method call (that the developer must define) as in the case of p. 
 
Can the attribute change after construction (Q2)? By default in Umple, an 
attribute’s value can change after construction (Q2.Yes), requiring no additional 
syntax to describe this scenario. A set method is generated in this case. 

Attributes that cannot change after construction (Q2.No) are marked ‘immutable’; 
the value set in the constructor cannot then be changed. No set method is generated. 

 
immutable String x; 

 
As we discussed in Section 2, immutability is very useful to provide consistent 

semantics for equality and hashing, although not many attributes exhibited the 
immutable property. Part of the issue being the difficulty in specifying immutable 
attributes in the languages we studied (Java and C#). 

There are instances where an attribute should be immutable, but it might be the case 
where the value is not available at the time of construction. Examples of this include 
application frameworks where the creation of an object is controlled by the framework 
and is outside the developer’s control. In these cases, an initially empty object is 
provided to the application, to be immediately populated with the attribute data that 
cannot then be changed. Therefore, to support this case in Umple, we allow immutable 
attributes to delay instantiation by using the lazy keyword. 

 
lazy immutable y; 

 
As in Section 3.1 the use of this syntax means that no argument is created in the 

constructor for the attribute. The generated code will contain a flag to track whether 
the object has been set yet, only allowing a single set to occur. We elaborate on 
immutability and the underlying executable implementation in Section 5.2. 
 



What other characteristics does the attribute possess (Q3)? The potential 
characteristics are limitless. In our analysis of existing software we found three 
somewhat-common patterns that are incorporated into Umple. 

Before we consider these patterns, we should recognize that many attributes have 
no explicit constraints. In general, a property like a name (or jobTitle) has no 
constraints apart from those enforced by the underlying language (i.e. type checking).  

The first characteristic we considered is uniqueness. In databases, guaranteeing 
uniqueness allows for efficient searching and equality assertions; many domains also 
have data that is unique by design (e.g. flight numbers in an airline). In some cases, 
objects are automatically assigned a unique identifier upon creation, whereas in others 
uniqueness is checked whenever the attribute is set. 

In UML, an attribute’s uniqueness can be specified with a qualifier, which is really 
a special type of attribute. Below is an example Airline that has many RegularFlights. 

 

 
Fig. 2: Unique flightNumber on the airline association 

Two RegularFlights of the same Airline should not have the same flightNumber. It 
is also possible to allow for global uniqueness within a system, for example an 
ipAddress attribute should perhaps be unique throughout the entire application. 

In the cases above, the developer must define unique attributes. The example below 
provides a mechanism to allow the underlying system to manage the generation of 
valid and unique identifiers, within or outside the context of an association. The 
Umple syntax to describe the constraints above is shown below. 

 
unique Integer flightNumber on airline; 

unique String ipAddress; 

 
Uniqueness for integer attributes can also be managed automatically in Umple 

using the autounique keyword.  
 
autounique Integer flightNumber on airline; 

 
A defaulted value ensures an attribute is never null. Any time the internal value of 

the attribute is null the get method returns the default value. 
 
defaulted type = “Long”; 



 
Not all attributes conform to a standard set/get semantics. In addition, many 

member variables are not attributes, but are support variables used internally [4]. In 
Umple, the syntax for internal attributes is shown below. Internal attributes do not 
form part of the constructor and do not have accessor methods, allowing developers to 
manage this data in the way they see fit. 

internal Integer cachedSize = 0; 

 
Finally, let us consider a many multiplicity. Using square bracket [] syntax, 

attributes can also be represented as multiple instances of the attribute type. 
 
String[] names; 

4 Generating Code for Attributes: Existing Tools 

After investigating how attributes are used in practice, we studied the code generation 
patterns of existing tools to see how they implement attributes. The UML modeling 
tools considered were identified from a Gartner report [5] and an online list of UML 
tools [6]. We selected four open source projects and one closed source application to 
analyze. ArgoUML and StarUML are two of the most active open source UML 
modeling tools and RSA has the largest market share; using popular tools helps to 
ensure that our study is relevant [5, 7].  

Table 10. UML code generation tools. 

Tool Version Source 
ArgoUML 0.26.2 argouml.tigris.org 
StarUML 5.0.2.1570 staruml.sourceforge.net 
BOUML 4.11 bouml.free.fr 
Green 3.1.0 green.sourceforge.net 
RSA 7.5 ibm.com/software/awdtools/architect/swarchitect 
 
Table 11 lists tools not considered either because they did not provide code 

generation (at all, or of class diagrams), or did not run in our environment. 
For the tools listed in Table 10, we used a Student class with two attributes, an 

integer representing an id, and a list of names (represented as simple strings). 
 



class Student { 
  Integer id; 
  String[] names 
} 

 
Figure 3: Student class with a simple id attribute and a list attribute 

Table 11. Additional UML tools not considered for our case study. 

Tool Version Source 
Acceleo 2.5.1 acceleo.org 
Jink UML 0.745 code.google.com/p/jink-uml 
Hugo 0.51 pst.ifi.lmu.de/projekte/hugo 
Umbrello 2.0 uml.sourceforge.net 
Umlet 9.1 umlet.com 
Fujaba 5.0.1 wwwcs.upb.de/cs/fujaba/ 
Modelio 1.0.0 modeliosoft.com 
Topcased 1.2.0 topcased.org 
NetBeans UML Modeling 6.7 netbeans.org 
Papyrus 1.11.0 papyrusuml.org 
 

ArgoUML: An open source modeling platform that provides code generation for Java, 
C++, C#, PHP4 and PHP5. Below is the code generated from Figure 3. 

 
import java.util.Vector; 
public class Student { 
  public Integer id; 
  public Vector names; } 

 
The generated code provides public access to set and get the attributes; a pattern not 

often used in practice as it breaks encapsulation by fully exposing the internals of the 
class. The attributes are made directly available without the inclusion of accessor 
methods. 
 
StarUML: This is an open source modeling tool. Its generated code is almost identical 
to that of ArgoUML, except that the import clause was missing, and names is declared 
erroneously as a String. StarUML’s generated code hence does not account for the 
many multiplicity, resulting in unusable generated code. 
 
Bouml: This is another free tool based on UML 2 that provides source code generation 
for C++, Java, Idl, PHP and Python. Its code is very similar to the two systems above, 



with the primary difference being that the attributes are declared as private and 
genericity is used: 

 
class Student { 
  private int id; 
  private List<String> names; 
} 

 
The Bouml source code does not provide any mechanism to set or get the attributes; 

this code must be written by hand after code generation.  
 
Green UML: This is another UML editor that can generate source code from a class 
diagram.  

 
import java.util.List; 
public class Student { 
  int id; 
  List<String> courses; 
  public Student() {} } 

 
Although Green UML does attempt to provide some additional source code 

generation to manage the various types of association multiplicities available; the 
results provide little if any added benefit in representing the model’s intentions. 
 
Rational Software Architect (RSA) and RSA Real-Time: IBM’s Rational Software 
Architect is a full-fledged development environment that supports model-driven 
development including source code generation from UML diagrams. Its code for 
Figure 3 is as follows: 

 
import java.util.Set; 
public class Student { 
  public Integer id; 
  public Integer getId() { return id; } 
  public void setId(Integer id) { this.id = id; } 
  private Set<String> courses; 
  public Set<Student> getCourses() { return courses; } 
  public void setCourses(Set<Student> courses)  

{ this. courses = courses; } 
} 

 
RSA’s model transformation into Java provided flexibility regarding the template 

patterns including (a) which Java collection to use, and (b) whether or not to include 
get/set methods. RSA Real Time generated the same code as RSA for class diagrams. 



After reviewing several code generators it became apparent that an opportunity 
exists to provide better support for aligning the modeling’s world of access and 
multiplicity constraints directly in the generated code, alleviating the 
modeller/developer from code duplication to ensure consistency between the model 
and the code. As an Umple model is the Umple code, such consistency is easily 
achieved with adequate code-generation capabilities. 

5 Generating Code for Attributes using Umple 

As seen earlier, existing code generating tools do not consider the many complicated 
facets of implementing attributes in a target language like Java. In this section, we 
demonstrate code generation patterns based on Umple attributes and generated into 
Java code. 

The following example shows how one would declare attributes in the first steps of 
modeling a system using Umple. For conciseness, we have omitted the code comments 
and some additional methods not related to the attributes in the generated Java.  

5.1 Basic Attributes 

At the core of an Umple attribute is a name. The implications on code generation 
include a parameter in the constructor, a default type of String and a simple set and get 
method to manage access to the attribute. The attribute code in Umple is shown below, 
and code generated in Java follows. 

 
class Student { name; } 

 
public class Student { 
  private String name; 
  public Student(String aName) { name = aName; } 
  public boolean setName(String aName) { 
    name = aName; 
    return true; } 
  public String getName() { return name; } } 

 
The syntax is similar to RSA generated code, and to the simple cases observed in 

the open source projects. As seen Section 2, few attributes are set in the constructor. In 



Umple, this can be achieved by specifying an initial value as shown below. The 
generated code in Java would only differ in the constructor, and follows. 

 
class Student { name = “Unknown”; } 

 
public Student() { name = “Unknown”; } 

 
Please note the initial value can be null, or some user defined function written in 

the underlying target language (i.e. Java). 

5.2 Immutable Attributes 

If a Student variable was declared immutable, as presented in Section 3, the resulting 
Java code would be the same as the basic attribute implementation, except that there 
would be no setName method.  

By default, immutable attributes must be specified on the constructor, and no setter 
method is provided. But, Umple also supports lazy instantiation of immutable objects 
as shown below and discussed in Section 3. 

 
class Student { lazy immutable name;} 

 
By declaring a lazy immutable attribute we follow the same convention whereby 

the name attribute will not appear in the constructor; but we also provide a set method 
that can only be called once. 

 
public class Student { 
  private String name; 
  private boolean canNameBeSet; 
  public Student() { canNameBeSet = true; } 
  public boolean setName(String aName) { 
    if (!canNameBeSet) { return false; } 
    canNameBeSet = false; 
    name = aName; 
    return true; } 

public String getName() { return name; } } 

 
The implementation above includes an additional check canNameBeSet to ensure 

that the variable is only set once, but should be used with caution in threaded access to 
avoid issues from parallel processing conflicts. 



5.3 Defaulted Attributes 

As discussed in Section 3, a defaulted attribute provides an object with a default 
configuration that can be overwritten.  The code generated for Java follows. 

 
class Student { defaulted name = “Unknown”; } 

 
public class Student { 
  private String name; 
  public Student(String aName) { name = aName; } 
  public boolean setName(String aName) { 
    name = aName; 
    return true; } 

public String getName() { 
    if (name == null) { return “Unknown”; } 
    return name; } } 

 
Below are the subtle differences between initialized and defaulted attributes. First, a 

defaulted attribute is specified in the constructor, an initialized attribute is not. Second, 
a defaulted value is guaranteed tp be non-null, an initialized attribute only guarantees 
an attribute in set to particular value in the constructor (and can change afterwards). 

5.4 Unique Attributes 

The Umple language currently only supports code generation for autounique attributes 
as shown below.  The code generated for Java follows. 

 
class Student { autounique id;} 

 
public class Student { 
  private static int nextId = 1; 
  private int id; 
  public Student() { id = nextId++; } 

public int getId() { return id; } } 

 
The implementation is constrained to non-distributed systems; but allows for a 

simple mechanism to uniquely identify an object.  



5.5 Constant Class Attributes 

A constant class level attribute is identified using the convention of ALL_CAPS. The 
UML modeling standard is to underline; a convention that is difficult to achieve in a 
development environment as most developer code is written in plain text. The code 
generated for Java follows. 

 
class Student { Integer MAX_PER_GROUP = 10; } 

 
public class Student { public static final int MAX_PER_GROUP = 10; } 

5.6 Injecting Constraints using Before/After 

To support vast array of other types of custom implementations of set and get 
methods, as well as provide a generic mechanism for managing pre and post-
conditions of an attribute, we introduce the before and after keywords available in the 
Umple language.   Let us begin with a simple example. 

 
class Operation { 
  name; 

before getName { 
  if (name == null) { /* long calculation and store value */ } 
} 
after getName { 
  if (name == null) { throw new RuntimeException(“Error”); } 
} 

} 

 
In the code above, we are caching the derivation of the complex process to 

determine the value of name.  The code is also verifying that the getName method 
always returns a value (never null).  The code provided in the before block will be run 
prior to desired operation (i.e. getName) and the code block provided in the after block 
runs after (or just before returning) from the desired operation. The code generated for 
Java for the getName method is shown below. 

 
public String getName() 
{ 
  if (name == null) { /* long calculation and store value */ } 
  String aName = name; 
  if (name == null) { throw new RuntimeException("Error"); } 



  return aName; 
} 

 
The before and after mechanisms can be used with any Attribute A summary of the 

operations is described  below. 
Before and after can be applied to associations, and constructors as well.  This 

mechanism can, for example, provide additional constraints to a class, or to initialize 
several internal variables.  

Table 12: Applying before and after operations to Attributes  

Operation Applies To (UB = Upper Bound) 
setX Attributes (UB <= 1) 
getX Attributes 
addX List Attributes (UB > 1) 
removeX List Attributes (UB > 1) 
getXs  List Attributes (UB > 1) 
numberOfXs List Attributes (UB > 1) 
indexOfX List Attributes (UB > 1) 

 
An operation can have several before and after invocations.  This chaining effect 

allows each statement to focus on a particular aspect of the system such as a 
precondition check of inputs, or a post-condition verification of the state of the system. 

It should be noted that the syntax of Umple’s before and after mechanism is 
purposely generic with a relatively fine-grained level of control.  The intent of this 
mechanism is to act as a building block to include additional constraint-like syntaxes 
for common conditions such as non-nullable, boundary constraints and access 
restrictions.  By including before and after code injections at the model level, 
additional code injection facilities are possible at the model level, without having to 
modify the underlying code generators. For example, the immutable property 
discussed is implemented internally (i.e. Umple is built using Umple) using before 
conditions on the set methods. 

6 Related Work 

There is literature on code generation from UML [8-11].  In [8], an abstract class is 
generated for the set and get methods and an instantiable class implements operations.  
This adds a layer of complexity. Umple provides a more direct approach, and the 



generated code more closely resembles that which would be written by hand. Whereas 
the approach above seems guided more by the limitations of using UML. 

Jifeng, Liu, and Qin [12] present an object-oriented language that supports a 
number of features like subtypes, visibility, inheritance, and dynamic binding. Their 
textual object-oriented language is an extension of standard predicate logic [13]. The 
approach to Umple was not to create a new language, but rather to enhance existing 
ones with a more model-oriented syntax and behaviour. 

Reverse engineering tools tend to generate a UML attribute when they encounter a 
member variable, a practice widely adopted by software modeling tools. Sutton and 
Maletic [14] advocate that attributes reflect a facet of the class interface that can be 
read or written rather than representing the implementation details of a member 
variable. They present their findings on the number of class entities, attributes and 
relationships that were recovered using several reverse engineering tools, revealing the 
inconsistencies in the reverse engineering approaches. They present their prototype 
tool, pilfer, that creates UML models that reflect the abstract design rather than 
recreating the structure of the program. 

Gueheneuc [15] has analyzed existing technology and tools in reverse engineering 
of Java programs, and highlights their inability to abstract relationships that must be 
inferred from both the static and dynamic models of the Java programs. They 
developed PADL (Pattern and Abstract-level Description Language) to describe 
programs in class diagrams. However, their proposed approach requires the 
availability and analysis of both static and dynamic models to build the class diagrams.  
In another study [16], two commercial reverse engineering tools (Together and Rose) 
are compared to research prototypes (Fujaba and Idea); they note that different tools 
resulted in significantly different elements recovered from the source code. 

Lange and Chaudron [17] conducted an empirical analysis of three software 
systems and identified violations to a number of well-formedness rules.  In one of the 
systems, 67% of attributes were declared as public without using setters and getters. 

Experimentation with Umple [18] users reveals evidence that software developer 
comprehension of the code is enhanced when compared to traditional object oriented 
code [19-21]. Umple was deployed and evaluated in open source projects [22] 

In most of the cases above, automated analysis done by reverse engineering tools 
resulted in vastly different perceptions about the systems being studied. Our approach, 
although subjective at times and error prone due to several manual steps throughout 
the process, attempts to provide a structured approach to reviewing, categorizing and 
understanding how attributes are used in practice. 



7 Threats to Validity 

Our empirical investigation of existing implementation of attributes has two main 
threats of validity; Firstly, to what extent are the seven selected projects representative 
of typical uses of attributes; and secondly, to what extent are attribute patterns affected 
by the capabilities provided by the existing programming languages. 

To mitigate the risks of non-representation we were diligent to select projects in a 
random fashion from a large group of projects written in different languages (yet 
languages that we were experienced in).  The process to select projects was well 
documented and can easily be repeated for future studies into this subject. 

The second threat is to what extent the capabilities of the underlying programming 
language affects the types of patterns that can be observed. This threat is somewhat of 
an extension to our first threat, and is more difficult to mitigate, as we cannot 
understand what we do not know. One way to better deal with this would be to repeat 
the study using different programming languages with different attribute semantics. 

8 Conclusion 

This paper analyzed the syntax, semantics and pragmatics of attributes. We studied 
how attributes are used in practice; and discovered the difficulty in extracting 
modeling abstractions from analyzing source code. Our approach used manual 
inspection, which, although subject to human error is probably comparable to analysis 
by automated tools since there are so many special cases to be considered. 

We demonstrated how attributes are represented in the Umple model-oriented 
language and showed the code-generation patterns used to translate Umple into Java. 
When compared to the code generated for attributes by existing tools, we believe our 
patterns have a lot to offer. 
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