
Modeling Role-Based Access Control Using
Parameterized UML Models

Dae-Kyoo Kim, Indrakshi Ray, Robert France, Na Li

Computer Science Department
Colorado State University

Fort Collins, CO 80523, USA
Fax: +1 970 491 2466

(dkkim, iray, france, na)@cs.colostate.edu

Abstract. Organizations use Role-Based Access Control (RBAC) to protect com-
puter-based resources from unauthorized access. There has been considerable
work on formally specifying RBAC policies but there is still a need for RBAC
policy specification techniques that can be integrated into software design meth-
ods. This paper describes a method for incorporating specifications of RBAC
policies into UML design models. Reusable RBAC policies are specified as pat-
terns and are expressed using UML template diagrams. Incorporating RBAC poli-
cies into an application specific model involves instantiating the patterns and
composing the instantiations with the model. The method also includes a tech-
nique for specifying patterns of RBAC violations. Developers can use the pat-
terns to identify policy violations in their models. The method is illustrated using
a small banking application.

1 Introduction

Access control policies are constraints that protect computer-based information re-
sources from unauthorized access. Role-Based Access Control (RBAC) [8] is used by
many organizations to protect their information resources from unauthorized access.
RBAC policies are defined in terms of permissions that are associated with roles as-
signed to users. A permission determines what operations a user assigned to a role can
perform on information resources.

Work on formalization of RBAC policies has resulted in the development of new
specification notations (e.g., see [1]), but there is still a need for policy specification
approaches that can be integrated with design techniques used in industry. The Unified
Modeling Language (UML) is considered to be the industry de-facto standard for mod-
eling software-based systems. Use of the UML to specify RBAC policies eases the task
of incorporating the policies into UML application models.

This paper describes a method that integrates RBAC policy specification and UML
design modeling. The method includes (1) a technique for specifying generic RBAC
policies as patterns that can be instantiated to produce application-specific design struc-
tures that specify the RBAC constraints, (2) techniques for systematically incorporating
design structures produced by RBAC policy patterns into UML design models, and (3)
a technique for specifying design structures that violate RBAC constraints as patterns.

Generic RBAC policies are specified by patterns expressed as UML diagram templates.
Instantiating a RBAC pattern to produce an application-specific RBAC design structure
involves binding the template parameters to application-specific design elements.

The RBAC patterns can be used to support at least two approaches to incorporating
RBAC constraints into a UML design model: (1) The templates can be used to produce
an initial design structure that is then extended to address other design concerns; and
(2) the design structures produced by the templates can be merged with a previously
developed application design model, referred to as the primary model, to obtain a design
model that specifies RBAC constraints.

The method also provides a technique for specifying RBAC constraint violations as
patterns. The violation patterns are expressed as template object diagrams, and can be
used to check for the presence of violations in designs. To ease the task of checking for
violations using the patterns we have developed an approach to visualizing application-
specific RBAC constraints as object diagrams.

An overview of RBAC is given in Section 2. In Section 3 we present a generic
RBAC model expressed as a class diagram template, and give examples of object dia-
gram templates that describe patterns of policy violations. Section 4 describes how the
RBAC pattern can be incorporated into a primary model. Section 5 gives examples of
application-specific RBAC policies expressed as object diagrams. Section 6 illustrates
how the violation patterns described by object diagram templates can be used to detect
violations in application-specific RBAC policies. An overview of related work is pro-
vided in Section 7. The paper concludes with a discussion of current limitations of the
approach and our plans to address the limitations.

2 Overview of RBAC

RBAC constraints can be organized as follows: Core RBAC, Hierarchical RBAC, Static
Separation of Duty Relations, and Dynamic Separation of Duty Relations.

Core RBAC embodies the essential aspects of RBAC. The constraints specified by
Core RBAC are present in any RBAC model. The Core RBAC requires that users be
assigned to roles (job function), roles be associated with permissions (approval to per-
form an operation on an object), and users acquire permissions by being assigned to
roles. The Core RBAC does not place any constraint on the cardinalities of the user-
role assignment relation or the permission-role association. Core RBAC also includes
the notion of user sessions. A user establishes a session during which he activates a
subset of the roles assigned to him. Each user can activate multiple sessions; however,
each session is associated with only one user. The operations that a user can perform in
a session depend on the roles activated in that session and the permissions associated
with those roles.

Hierarchical RBAC adds features supporting role hierarchies. Hierarchies are used
to describe a structure of roles in an organization. Role hierarchies define an inheritance
relation among the roles. Role r1 inherits from role r2 only if all permissions of r2
are also permissions of r1 and all users of r1 are also users of r2. The inheritance
relationship is reflexive, transitive and anti-symmetric.

Static Separation of Duty (SSD) relations are necessary to prevent conflict of in-
terests that arise when a user gains permissions associated with conflicting roles (roles
that cannot be assigned to the same user). SSD relations are specified for any pair of
roles that conflict. The SSD relation places a constraint on the assignment of users to
roles, that is, assignment to a role that takes part in an SSD relation prevents the user
from being assigned to the related conflicting role. The SSD relationship is symmetric,
but it is neither reflexive nor transitive. SSD may exist in the absence of role hierarchies
(referred to as SSD RBAC), or in the presence of role hierarchies (referred to as hier-
archical SSD RBAC). The presence of role hierarchies complicates the enforcement of
the SSD relations: before assigning users to roles not only should one check the direct
user assignments but also the indirect user assignments that occur due to the presence
of the role hierarchies.

Dynamic Separation of Duty (DSD) relations aim to prevent conflict of interests as
well. The DSD relations place constraints on the roles that can be activated in a user’s
session. If one role that takes part in a DSD relation is activated, the user cannot activate
the related (conflicting) role in the same session. A model of RBAC is shown in Fig. 1.

user_sessions session_roles

USERS
Permission Assignment

(PA)(UA)
User Assignment

Role HierarchySSD
(RH)

DSD

ROLES

SESSIONS

OPS OBS

PRMS

Fig. 1. RBAC

The RBAC in Fig. 1 consists of: 1) a set of users (USERS) where a user is an intelli-
gent autonomous agent, 2) a set of roles (ROLES) where a role is a job function, 3) a set
of objects (OBS) where an object is an entity that contains or receives information, 4) a
set of operations (OPS) where an operation is an executable image of a program, and 5)
a set of permissions (PRMS) where a permission is an approval to perform an operation
on objects. The cardinalities of the relationships are indicated by the absence (denoting
one) or presence of arrows (denoting many) on the corresponding associations. For ex-
ample, the association of user to session is one-to-many. All other associations shown
in the figure are many-to-many. The association labeled Role Hierarchy defines the in-
heritance relationship among roles. The association labeled SSD specifies the roles that
conflict with each other. The association labeled DSD specifies the roles that cannot be
activated within a session by the same user.

3 A Reusable RBAC Model

In this section a RBAC pattern is described as a UML template class diagram. A class
diagram is obtained from a template diagram by binding the parameters to values. Fig. 2
shows a class diagram template describing hierarchical RBAC with SSD and DSD. The
symbol “

�
” is used to indicate parameters. We use this notation when there is a large

number of parameters because the standard UML parameter notation is cumbersome.

|Name: |String

|GrantPermission (|p : |Permission)

|CheckAccess (|obj : |Object,
|RevokePermission (|p : |Permission)

|DeleteSSDRole(|r : |Role)
|CheckSSD(|r : |Role): |Boolean

|AddSSDRole(|r : |Role)

|a

|UserSessions

1

{|o.lower = 1} {|q.lower = 1}

|Session

|d

|op:|Operation) : |Boolean
|CheckAccess(|obj:|Object,
|DropActiveRole(|r : |Role)
|AddActiveRole(|r : |Role)

|User

|DeassignRole (|r: |Role)

|op : |Operation): |Boolean

|j

junior

|i |h |s|r

|DSD

senior

|e

|Activates

|AddDSDRole(|r : |Role)

|DeleteDSDRole(|r : |Role)

|CheckDSD(|r : |Role): |Boolean

|DeleteInheritance(|r : |Role)

|AddInheritance(|r : |Role)

|RoleHierarchy|SSD

|PermAssignment

|n

|op : |Operation) : |Boolean
|AssignRole (|r: |Role)

|q|ExecuteOn

|p

|Operation

|f
|o

|Object

|DeleteSession(|s : |Session)
|CreateSession(): |s : |Session |UserAssignment

|m

|l|k

|g

|c|b |CheckAccess(|obj : |Object,

|Permission

|Role

Fig. 2. A RBAC Class Diagram Template

The class diagram template shown in Fig. 2 consists of class and association tem-
plates. A class template is a class descriptor with parameters. Class templates are as-
sociated with attribute templates (e.g.,

�
Name : String in Role) and operation templates

(e.g.,
�
GrantPermission in Role). Association templates (e.g.,

�
UserAssignment) con-

sist of parameters for association names and association-end multiplicities. The OCL
constraints in Fig. 2 restrict the values that can be bound to association-end multiplicity
parameters. For example, � �

o.lower = 1 � restricts the multiplicities that can be bound
to the parameter o to ranges that have a lower bound of 1. The multiplicity “1” on the
UserSessions association-end attached to User is strict: a session can only be associated
with one user.

The User class template defines classes that describe users. A user can create a new
session (CreateSession), delete a session (DeleteSession), associate self with a new role

(AssignRole) and remove an associated role (DeassignRole). A UserSessions link (i.e.,
an instance of an association obtained by binding the parameters of UserSessions to
values) is created by a CreateSession operation (i.e., an operation obtained by binding
the operation template parameters to values) and deleted by a DeleteSession operation.
The operation AssignRole creates a UserAssignment link; the DeassignRole removes a
UserAssignment link.

The class template Role is used to produce classes representing roles with behavior
that (1) associates a new permission with the role (GrantPermission), (2) deletes an ex-
isting permission associated with the role (RevokePermission), (3) adds an immediate
inheriting role (AddInheritance), (4) deletes an immediate inheriting role (DeleteInher-
itance), (5) adds a role to the set of conflicting roles (AddSSDRole), (6) deletes a role
from the existing set of conflicting roles (DeleteSSDRole), (7) checks whether the role
is in an SSD relationship with a given role in the presence of hierarchies (CheckSSD),
(8) checks whether the role has a given permission (CheckAccess), (9) checks whether
the role is in a DSD relation with a given role (CheckDSD), (10) deletes a DSD relation
between the role and a given role (DeleteDSDRole), and (11) adds a DSD relation with
a given role (AddDSDRole). The class template Session is associated with the template
operations: AddActiveRole (activates a role in a session), DropActiveRole (deactivates
a role in a session), and CheckAccess (checks whether the role has the permission to
perform an operation on an object).

The class template Permission is associated with an operation template, CheckAc-
cess, that checks whether the role has the permission to perform the operation on the
object.

Each operation template is associated with an OCL template expression that pro-
duces OCL pre- and post-conditions when the template parameters are bound to values.
Pre- and post-condition templates associated with the CreateSession and GrantPermission
operation templates are given below:

context
�
User::

�
CreateSession():(

�
s:

�
Session)

post: result =
�
s and�

s.oclIsNew() = true and self.
�
Session � includes(

�
s)

context
�
Role::

�
GrantPermission (

�
p:

�
Permission)

post: self.
�
Permission � includes(

�
p)

We express RBAC constraints that restrict SSD and DSD relationships as OCL tem-
plate expressions. Examples of these constraints are given below:

– SSD constraint. A user cannot be assigned to two roles that are involved in an SSD
relation.

context
�
User inv:

self.
�
Role � forAll(r1, r2

�
r1.

�
SSD � excludes(r2))

– Hierarchical SSD constraint. There cannot be roles in an SSD relation which have
the same senior role.

context
�
Role inv:

let allSenior(r1) = r1.senior � union(r1.senior � collect(r2
�

allSenior(r2)))
in

self.
�
SSD � forAll(r1

�
allSenior(r1) � excludesAll(allSenior(self))

– DSD constraint. A user cannot activate two roles in DSD relation within a session.
context

�
User inv:�

self.
�
Session.

�
Activates � forAll(r1, r2

�
r1.

�
DSD � excludes(r2))

4 Applying the RBAC Model

To illustrate our approach we use a simple banking application taken from [5]. The
application is used by various bank officers to perform transactions on customer deposit
accounts, customer loan accounts, ledger posting rules, and general ledger reports. The
transactions include 1) create, delete, or modify customer deposit accounts, 2) create,
delete, or modify customer loan accounts, 3) modify the ledger posting rules, and 4)
create general ledger report. A class diagram (the primary model) for the application is
shown in Fig. 3. Class attributes and operations are not shown in the diagram.

Account

* *

*

*

*

CustomerDeposit
Account

BankObject
* executesOn

regulatesPostingOf

isInputOf

LedgerPostingRule GeneralLedgerReport

Transaction

Create ModifyDeleteLoanAccount

Fig. 3. A Partial View of a Banking System Primary Model

Access control policies are not specified in the primary model. RBAC features can
be incorporated into the primary model by composing an instantiation of the RBAC
template in Fig. 2 with the primary model. The composition is carried out as follows:

1. Instantiating the RBAC template : To incorporate RBAC features into a primary
model, the modeler must first instantiate the RBAC template model by binding pa-
rameters to elements representing concepts in the domain of the primary model. Some

of these model elements may be elements in the primary model. Class diagrams ob-
tained from the RBAC class diagram template are referred to as context-specific RBAC
diagrams. Fig. 4 shows a context-specific RBAC class diagram for the banking appli-
cation. In the diagram, BankRole, BankObject, and Transaction are respectively bound
to Role, Object, and Operation parameters in the RBAC template diagram.

createSession(): BankSession

1..*

1..*

deleteDSDRole(r: BankRole)
addDSDRole(r: BankRole)
checkDSD(r: BankRole): Boolean

SSD

op: Transaction) : Boolean
checkAccess(obj: BankObject,

1..*

1..*

Permission

1..*

deleteSSDRole(r: BankRole)

*

junior

BankRole

addActiveRole(r: BankRole)

**

DSD

* senior

RoleHierarchy

1..*

BankSession

op:Transaction): Boolean

1..*

deleteSession(s: BankSession)

deassignRole (r: BankRole)
assignRole(r: BankRole)

BankUser

1..*

1

checkAccess(obj:BankObject,
dropActiveRole(r: BankRole)

1..*

*

1..*

BankObject

1..*

*
Transaction

*

addSSDRole(r: BankRole)
checkSSD(r: BankRole): Boolean
deleteInheritance(r: BankRole)
addInheritance(r: BankRole)

op: Transaction): Boolean)
checkAccess(obj: BankObject,

* name: String

grantPermission (p: Permission)
revokePermission (p: Permission)

Fig. 4. A Context-Specific RBAC Class Diagram

2. Merging the context-specific diagram with the primary model : The view defined
by the context-specific RBAC diagram is merged with the view defined in the primary
model to obtain a composed model. Elements in the instance and the primary model are
merged if and only if they have the same syntactic type (i.e., UML metamodel class)
and name. Model elements in the context-specific RBAC diagram that do not exist in the
primary model are added to the primary model. For example, if the RBAC diagram has
a class with an operation that has the same name, but different signature as a primary
model operation in a matching class, the operation is included in the composed model,
resulting in an overloaded operation. However, if the RBAC diagram has a class with an
operation with the same name and signature as a primary model operation in a matching
class, either one of the operation names must be changed or the operation specifications
must be logically composed to produce a consistent operation specification. In the first
case, the developer must specify the new name of the operation and in the second case

the developer must specify the logical operator to be used in the composition. These
developer inputs are expressed as composition directives: A directive allows a developer
to vary how RBAC and primary model elements are merged. For more on merging rules
and composition directives see [9, 10].

The result of the composition is a composed model in which access control features
specified by the context-specific RBAC model are incorporated into the primary model.
The composed model for the banking system is shown in Fig. 5. The BankObject and
Transaction classes in the context-specific RBAC diagram are merged with BankObject
and Transaction classes in the primary model, and BankUser, BankRole, BankSession,
and Permission are the RBAC classes that are included in the composed model.

addDSDRole(r: BankRole)

checkDSD(r: BankRole): Boolean

op: Transaction) : Boolean
1..*

checkAccess (obj: BankObject,

Permission

1..*

grantPermission (p: Permission)

SSD

1..*

1..*

createSession(): BankSession

deleteSSDRole(r: BankRole)

deleteSession(s: BankSession)
op: Transaction): Boolean)

addInheritance(r: BankRole)
deleteInheritance(r: BankRole)
checkSSD(r: BankRole): Boolean
addSSDRole(r: BankRole)

*

*

1..*

name: String

BankRole

junior

*

BankUser

assignRole(r: BankRole)

deleteDSDRole(r: BankRole)

**

DSD

* senior

RoleHierarchy

1..*

1..*

1..*

BankSession

op:Transaction): Boolean
checkAccess(obj:BankObject,
dropActiveRole(r: BankRole)
addActiveRole(r: BankRole)

1..* 1..*

*

*

*

*

Transaction

1..*

* *
BankObject

isInputOf

regulatePosingOf

1..*

checkAccess(obj: BankObject,

Create Modify Delete

Account General
Ledger
Report

Ledger
Posting
Rule

Customer
Account Account

Loan

revokePermission (p: Permission)

deassignRole(r: BankRole)

*

Fig. 5. Composed Model

5 Describing Application-Specific RBAC Policies Using Object
Diagrams

Application-specific RBAC policies constrain how system users access system resources.
They determine 1) the assignment of roles to system users, 2) the permissions associ-

ated with roles in the systems, 3) the inheritance relationships between roles, and 4) the
SSD and DSD relationships between roles. In this section we illustrate how application-
specific RBAC policies can be described by object diagrams.

The RBAC model supports the specification of four types of policies: 1) core poli-
cies that conform to core RBAC, that is, policies that determine user-role and role-
permission assignments, 2) hierarchical policies that conform to hierarchical RBAC,
that is, policies that determine inheritance relationships between roles, 3) SSD policies
that conform to SSD RBAC, that is, policies that determine what roles are conflicting,
and 4) DSD policies that conform to DSD RBAC, that is, policies that determine what
roles to be activated in a session. A set of application-specific RBAC policies for the
banking system is given below:

Core policies: The roles of the banking system (instances of BankRole) are teller,
customerRerviceRep, accountant, accountingManager and loanOfficer. The permis-
sions assigned to these roles are given below:

P1 A teller can modify customer deposit accounts.
P2 A customer service representative can create or delete customer deposit accounts.
P3 An accountant can create general ledger reports.
P4 An accounting manager can modify ledger-posting rules.
P5 A loan officer can create and modify loan accounts.

Fig. 6 shows the object diagrams describing policies P1 to P5 respectively.
Hierarchical policies: A role hierarchy defines inheritance relationships between

roles. Through the inheritance relationship, a senior role inherits the permissions of its
junior roles and any user assigned to the senior role is also assigned to the junior roles.
The hierarchical policies in the banking application are stated below:

H1 Customer service representative role is senior to the teller role.
H2 Accounting manager role is senior to the accountant role.

Fig. 7(a),(b) describe policies H1 and H2 respectively.
SSD policies: SSD policies prevent a user from being assigned to two conflicting

roles. For the banking system the following pairs of roles are conflicting:
� (teller, accountant), (teller, loanOfficer),
(loanOfficer, accountant), (loanOfficer, accountingManager),
(customerServiceRep, accountingManager) � The object diagram in Fig. 8 describes the
SSD RBAC policies.

DSD policies: DSD policies prevent a user from playing a role in a session, if an-
other role in a DSD relation has been activated. For the banking system the following
pair of roles are in DSD relation:

� (customerServiceRep, loanOfficer) � The object diagram in Fig. 9 describes the DSD
RBAC policy.

6 Identifying Conflicts in Application-Specific RBAC Policies

In this section we show how RBAC violation patterns expressed as object diagram tem-
plates can be used to identify conflicts in application-specific policies. If a violation

P4

:LedgerPostingRule

:Modify:PermissionaccountingManager : Role

:CustomerDepositAccount

:Create

:Delete

:PermissioncustomerServiceRep : Role

P2

:GeneralLedgerReport

:Create:Permissionaccountant : Role

:Modify:Permissionteller : Role

P1

P5

P3

:Modify

:Create

:LoanAccount

:PermissionloanOfficer : Role

:CustomerDepositAccount

Fig. 6. Object Diagrams describing Core RBAC Policies

(a) (b)

RoleHierarchyRoleHierarchy

seniorsenior

accountingManager : RolecustomerServiceRep : Role

juniorjunior

accountant : Roleteller : Role

Fig. 7. Object Diagrams for Hierarchical Policies

pattern exists in an object diagram describing an application-specific policy, then a con-
flict exists.

Fig. 10 shows object diagram templates that when instantiated produce object struc-
tures that violate RBAC constraints. Fig. 10(a) describes structures in which a user is

SSDSSD

SSD
accountingManager : Role

SSD
accountant : Roleteller : Role

loanOfficer : Role

SSD

customerServiceRep : Role

Fig. 8. Object Diagram for SSD Policies

customerServiceRep : Role

loanOfficer : Role

DSD

Fig. 9. Object Diagram for DSD Policy

assigned to roles in an SSD relationship (violation of the SSD constraint). Fig. 10(b)
describes structures in which two roles in an SSD relationship have a common senior
role and structures in which a senior role is in an SSD relationship with a junior role
(both are violations of the hierarchical SSD constraint). Fig. 10(c) describes structures
in which a user in a session activates two roles that are in a DSD relationship (a vio-
lation of the DSD constraint). We illustrate how these object diagram templates can be
used to identify conflicts in application models later in this paper.

Fig. 11 shows the object diagram that integrates the policies shown in Fig. 7, Fig. 8,
and Fig. 9. The reader can visually check that the pattern described by object diagram
template in Fig. 10(b) does not occur in Fig. 11.

Formally, an object diagram has the violation described by a violation pattern if
there exists a binding that produces an object structure contained in the object diagram.
To illustrate how conflicts can be identified, consider the case in which the following
policy is added to the set of policies described in the previous section: “The branch man-
ager role is senior to all the other roles in the bank.” Fig. 12 shows the result of including
this policy in the banking application’s policy set. A number of occurrences of the pat-
tern described in Fig. 10(b) can be found in Fig. 12. For example, if we assign a user to
the branch manager role, the user is also assigned to the roles customerServiceRep and
accountingManager through inheritance. However, the roles customerServiceRep and
accountingManager are in an SSD relation.

|u : |User|s : |Session

<<invalid>>

|UserAssignment

|UserAssignment

|DSD
|UserSession

|r2 : |Role

|UserAssignment

|SSD

senior

|r3 : |Role

|RoleHierarchy

junior

|SSD

senior

junior

<<invalid>>

|r2 : |Role

|RoleHierarchy

(b) Violations of Hierarchial SSD Constraint

(c) Violation of DSD Constraint

(a) Violation of SSD Constraint

|Activates

|Activates

<<invalid>>

|UserAssignment

|r1 : |Role

<<invalid>>

junior
|SSD

senior

|r2 : |Role

|r1 : |Role

|r2 : |Role

|r1 : |Role

|r1 : |Role

|u : |User

Fig. 10. RBAC Constraints

7 Related Work

Tidswell and Jaeger [21] propose an approach to visualizing access control constraints.
They point out the need for visualizing constraints and the limitations of previous work
on expressing constraints. A drawback of their work is that they created a new notation
for specifying constraints and it is not clear how the new notation can be integrated
with other widely-used design notations. The approach described in this paper utilizes
a popular standardized modeling language (the UML) and also integrates the policy
specification activity with UML design modeling activities.

senior
RoleHierarchy

junior

senior

loanOfficer : RoleSSD SSD

SSDDSD

SSD

SSD

junior

RoleHierarchy

customerServiceRep : Role

accountant : Role

accountingManager : Role

teller : Role

Fig. 11. Combined Object Diagram

A large volume of research (e.g., see [2–4, 6, 7, 11, 12, 14] exists in the area of ac-
cess control policy specification. Formal logic-based techniques (e.g., see [2–4, 6, 11,
14]) are often used to specify security policies. The use of mathematical concepts and
notation that are not familiar to software developers makes them difficult to use and un-
derstand. Other researchers have used high-level languages to specify policies [12, 13,
19, 20]. Although high-level languages are easier to understand than formal logic-based
approaches, they are not analyzable.

Some work has been done on modeling system security using UML. Jurjens [15]
proposes UMLsec, a UML profile for modeling and evaluating security aspects based
on the multi-level security model. Lodderstedt et al. propose SecureUML [17], an ex-
tension of the UML that defines security concepts based on RBAC. These approaches
mainly focus on extending the UML notation to better reflect security concerns. The
approach described in this paper tackles the complementary task of capturing RBAC
policies in patterns that can be reused by developers of secure systems.

8 Conclusion

The work described in this paper focuses on specifying only the static structure of
RBAC. A complete RBAC model should also include descriptions of the patterns of
behavior supported by RBAC. In previous work (e.g., see [9, 16]) we developed tem-
plate forms of interaction diagrams that can be used to specify interaction patterns.
The interaction patterns can be used to characterize families of allowed and prohibited
behaviors. We are also developing template forms of other UML behavioral models.

The use of violation patterns to identify policy conflicts, while useful, has its lim-
itations. Checking for the presence of a pattern in an object diagram specifying a set
of policies is essentially a search for a subgraph in an object diagram, which is known
as subgraph isomorphism problem. Detecting subgraph isomorphism can be a difficult
task [18]. Our work in this area focuses on identifying alogorithms to support practical
application of this technique.

Validation of the method is needed. To support planned validation activities we are
developing a tool set that allows developers to create and instantiate UML diagram
templates, and to compose template instantiations with UML design models.

juniorjunior

SSD

RoleHierarchy RoleHierarchy

accountingManager : Role

juniorjunior

loanOfficer : Role

senior senior

(a) Conflicting Policies

(b) Detecting Conflict

RoleHierarchyseniorbranchManager : Role

senior

junior

RoleHierarchy

senior

customerServiceRep : Role

RoleHierarchy

junior

SSD

SSD

DSD SSD

SSDSSD loanOfficer : Role

senior

junior

RoleHierarchy

senior

teller : Role

accountingManager : Role

accountant : Role

branchManager : Role

RoleHierarchy

Conflict

Fig. 12. Violation Pattern Occurrence: Hierarchical SSD

References

1. G.J. Ahn and R. Sandhu. Role-based Authorization Constraints Specification. ACM Trans-
actions on Information and Systems Security, 3(4):207–226, November 2000.

2. S. Barker. Security Policy Specification in Logic. In Proceedings of the International Con-
ference on Artificial Intelligence, pages 143–148, Las Vegas, NV, 2000.

3. S. Barker and A. Rosenthal. Flexible Security Policies in SQL. In Proceedings of the 15th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security, Niagara-on-
the-Lake, Canada, 2001.

4. E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-Based Access Control
Model. In Proceedings of the 5th ACM Workshop on Role-Based Access Control, pages
21–30, Berlin, Germany, 2000.

5. R. Chandramouli. Application of XML Tools for Enterprise-Wide RBAC Implementation
Tasks. In Proceedings of 5th ACM workshop on Role-based Access Control, Berlin, Ger-
many, July 2000.

6. F. Chen and R. Sandhu. Constraints for Role-Based Access Control. In Proceedings of the
1st ACM Workshop on Role-Based Access Control, Gaithersburg, MD, 1995.

7. N. Damianou and N. Dulay. The Ponder Policy Specification Language. In Proceedings of
the Policy Workshop, Bristol, U.K., 2001.

8. D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST
Standard for Role-Based Access Control. ACM Transactions on Information and Systems
Security, 4(3), August 2001.

9. Geri Georg, Robert France, and Indrakshi Ray. An Aspect-Based Approach to Modeling
Security Concerns. In Proceedings of the Workshop on Critical Systems Development with
UML, Dresden, Germany, 2002.

10. Geri Georg, Indrakshi Ray, and Robert France. Using Aspects to Design a Secure System.
In Proceedings of the Interational Conference on Engineering Complex Computing Systems
(ICECCS 2002), Greenbelt, MD, December 2002. ACM Press.

11. R. J. Hayton, J. M. Bacon, and K. Moody. Access Control in Open Distributed Environment.
In IEEE Symposium on Security and Privacy, pages 3–14, Oakland, CA, May 1998.

12. M. Hitchens and V. Varadarajan. Tower: A Language for Role-Based Access Control. In
Proceedings of the Policy Workshop, Bristol, U.K., 2001.

13. J. A. Hoagland, R. Pandey, and K. N. Levitt. Security Policy Specification Using a Graph-
ical Approach. Technical Report CSE-98-3, Computer Science Department, University of
California Davis, July 1998.

14. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Expressing Au-
thorizations. In IEEE Symposium on Security and Privacy, pages 31–42, Oakland, CA, May
1997.

15. J. Jurjens. UMLsec: Extending UML for Secure Systems Development. In Proceedings
of Fifth International Conference on the Unified Modeling Language, pp. 412-425, pages
412–425, Dresden, Germany, October 2002.

16. Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. Using Role-Based Mod-
eling Language (RBML) as Precise Characterizations of Model Families. In Proceedings of
the Interational Conference on Engineering Complex Computing Systems (ICECCS 2002),
Greenbelt, MD, December 2002. ACM Press.

17. T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-Based Modeling Language
for Model-Driven Security. In Proceedings of Fifth International Conference on the Unified
Modeling Language, pages 426–441, Dresden, Germany, October 2002.

18. B.T. Messmer and H. Bunke. Subgraph Isomorphism in Polynomial Time. In Lecture Notes
in Computer Science Graph Theory - ECCV’98, Springer-Verlag, Berlin, 1998.

19. OASIS. XACML Language Proposal, Version 0.8. Technical report, Organization for the
Advancement of Structured Information Standards, January 2002. Available electronically
from http://www.oasis-open.org/committees/xacml.

20. C. Ribeiro, A. Zuquete, and P. Ferreira. SPL: An Access Control Language for Security
Policies with Complex Constraints. In Proceedings of the Network and Distributed System
Security Symposium, San Diego, CA, February 2001.

21. J. E. Tidswell and T. Jaeger. An Access Control Model for Simplifying Constraint Expres-
sion. In Proceedings of 7th ACM conference on Computer and communications security,
pages 154–163, Athens, Greese, November 2000.

