
67

Refactoring With UML

Dave Astels
Saorsa Development Inc.

 P.O. Box 397
 Wolfville, Nova Scotia
 Canada, B0P 1X0
 +1 902 542 0365
 dave@saorsa.com

Abstract
Refactoring is a core eXtreme Programming practice. It
involves, at the lowest level, moving pieces of code
about. As such is generally done using a text editor or
text based development environment, with or without
explicit refactoring support. This works well for small
granularity refactorings. In this paper I propose using a
Unified Modeling Language (UML) tool as an aid in
finding smells and performing some of the larger granu-
larity refactorings. Working in UML is also advanta-
geous when performing some of the smaller refactorings,
but does not apply to refactorings involving blocks of
code smaller than an individual class member. The pur-
pose of this paper is to give a taste of what is possible
when you use UML as a tool for refactoring, not to be an
exhaustive catalogue.

Keywords
Refactoring, Unified Modeling Language, UML, visual

INTRODUCTION
In the Smalltalk arena the Refactoring Browser has been
available for some time, and now we are seeing refactor-
ing support becoming available in Java development
tools. These editor/browser based tools work well for
small granularity refactoring (e.g. Extract Method, Re-
name Member) but aren't as intuitive or as easy to use for
larger granularity refactorings such as Extract Hierarchy.
The approach I propose in this paper is to use a Unified
Modeling Language (UML) tool to perform these large
refactorings, as well as aid in detecting code smells.

You need a UML tool that bases it's class diagram di-
rectly on code, and allows you to manipulate the code by
directly manipulating the diagram. The tool I use is To-
gether. Licensed versions of recent releases of Together
have other features that aid in refactoring and smell de-
tection, however, most of what I discuss in this paper can
be performed using older releases, including the free
whiteboard editions.

I propose three main reasons why refactoring in UML
works and is worth exploring:

1.many people are visually oriented and like to be able to
visualize the classes and their relationships;

2.being able to directly manipulate code at a higher level
of granularity (i.e. methods, variables, and classes
rather than characters) can make refactoring more ef-
ficient. This increase in efficiency is due to being able

to quickly grab & move something directly that
would entail selecting a run of text, and possibly mul-
tiple runs (consider performing Move Field when you
want to include a possible accessor and/or mutator);
and

3.being able to visualize code, specifically the content of
classes and the relationships between them, can help
in detecting smells.

REFACTORING
Refactoring is finally getting the attention it deserves. As
defined by Fowler, and others, it provides a common
language of patterns for manipulating source in such a
way that the behavior is preserved.

Refactoring provides four major benefits. Specifically,
it:

•improves the design of software,

•makes the code easier to understand,

•helps you find trouble, and

•speeds you up.

UNIFIED MODELING LANGUAGE
UML provides many different types of diagrams two of
which prove especially useful for refactoring: Class, and
Sequence. Class diagrams give a static view of the sys-
tem (what classes make up the system, their contents, and
their relationships), while sequence diagrams give a dy-
namic view of a specific sequence of.

SMELL DETECTION
Before we can refactor we need to know what to refactor
and how we should proceed (i.e. which refactoring is
indicated). This is done by detecting smells in the code.
In [1], Beck and Fowler describe a code smell as "certain
structure in code that suggest the possibility of refactor-
ing". In many cases, visualizing code using UML dia-
grams makes these structures more evident.

The following sections provide several examples of using
UML to detect some common smells. This selection of
examples is by no means complete, and should be con-

68

sidered a example of what can be learned from examining
visualized code.

 Data Class
To recognize a data class on a class diagram look for
classes that contain significantly more data than behav-
iour. One thing to be careful of is accessor and mutator
methods (i.e. getters and setters). They need to be disre-
garded when evaluating the size of the operations section
of a class, as they are just to provide external access to
the data, and are not behaviour. Classes that have getters
and setters for most or all of their data members should
jump out as data classes.

Together has a nice feature to help with this. By turning
on JavaBean recognition, you can have Together group
appropriately named attributes, accessors and mutators as
a single property. Be careful, however, because a prop-
erty is some combination of appropriately named attrib-
ute, getter, and setter. It doesn't necessarily imply an
attribute. Figure 1 shows the difference in the appear-
ance of a specific class (taken from an actual project).

Figure 1. Class with properties showing bean recognition

Another indication of a data class is the presence of pub-
lic attributes. Public attributes are a code stink. Classes
with public attributes are often degenerate data classes,
typically containing little, if any, behaviour. An example
is shown in Figure 2.

Figure 2. A public data class

Large Class
Finding large classes is very easy when looking at a class
diagram with all members shown (you may want to hide
accessors and mutators if possible). Details are not im-
portant, in fact getting an overview in which you can see
the relative sizes of the classes is most illuminating.
Consider Figure 3 (taken from an actual project).

Figure 3. Large Class

You can immediately see that the central class is large
relative to the others. This is not conclusive proof that
refactoring is required, but it gives you an indication that
there may be a problem. It may be that the surrounding
classes are inordinately small, which is also a smell. In
any case, the significant difference in the relative sizes of
the classes is the important thing.

Another smell indicated by Figure 3 is that the large class
may be acting as a controller for the surrounding classes
when it should be delegating more to them.

Lazy Class
In many ways this is the opposite of a Large Class. Lazy
classes are small, having few methods and little behav-
iour. They stand out in a class diagram because they are
so small.

Middle Man
A Middle Man is a class that sits between two others and
most just forwards method calls. Middle Men can be
found by looking at a sequence diagram that involves
them. See Figure 4 for a simplified example. A Middle
Man is apparent by the pattern of messages simply being
delegated to another class.

Figure 4. The sequence pattern for Middle Man

REFACTORINGS
In this section I will explore how several refactorings can
be made easier by performing them in UML. The refac-
torings that this applies most to are those that involve
multiple classes. One reason working in a class diagram
can make these easier to perform is that you have all the
classes in front of you at the same time.

69

Move Method
Here is a case where the direct manipulation of a class
diagram really speeds things up. You simply grab the
method in the diagram and drag-n-drop it onto the class
where it should be.

Move Field
This works the same as moving a method. If your UML
tool supports the ability to group attributes and the asso-
ciates accessors/mutators, you get the added ability to
drag along the supporting code as well.

Make Inner Class Freestanding
This is a refactoring I've thrown in because it so nicely
shows the power of the technique. In Together, inner
classes are shown in a section of their own in the class
box. See Figure 5 for an example. The Java correspond-
ing to the diagram is;

public class Outer {
 public class Inner {
 }
}

Figure 5. Example of an inner class

When the inner class would benefit from being freestand-
ing it can be dragged out and dropped on the background
of the diagram. All references are updated as required.

Replace Inheritance With Delegation
A good UML tool will allow you to manipulate the links
between classes as well as the classes themselves. You
perform this refactoring by removing the inheritance link,
adding an association, and adding a delegating method.

Replace Delegation With Inheritance
This is the opposite of the last refactoring. You need to
remove the delegating method and the association. Fi-
nally add the inheritance link.

REFACTORING TO PATTERNS
This section is specific to the use of Together, as far as I
know. Together supports the automation of design pat-
terns in two modes of operation:

1.building a pattern instance from scratch, creating the
required classes, and

2.applying a pattern to existing classes.

As Gamma points out [5] and Kerievsky expands upon
[6], patterns should be a target for refactoring, i.e. some-
thing that the design evolves into, not something that is
chosen up front. This is especially important if you are
doing XP. For this reason I won’t explore mode 1, as it
is a BDUF (Big Design Up Front) practice.

As an example of what is possible with this capability, I
will show how a small piece of a design (I'll use the com-

posite example from [5]). could be refactored into a
composite. For reasons of simplicity and space, class
members not related to the pattern are left out. Figure 6
shows the before state, a simple graphics structure. Your
task involves in making Pictures nestable. The compos-
ite pattern is a natural for this. Figure 7 shows the sec-
tion of the pattern dialog that allows you to configure the
Composite pattern, selecting which classes fill which
roles in the pattern. Figure 8 shows the result. This facil-
ity must be used with care, in keeping with YAGNI (i.e.
"You Aren't Going to Need It").

Figure 6. Before applying the Composite pattern

Figure 7. Composite pattern settings dialog

Figure 8. After applying the composite pattern

INFORMATION AND QUESTIONS
I hope this article makes you consider the value of using
UML diagrams when performing smell detection and
refactoring. As developers we are used to working with

70

textual source code. And as it says in [7], plain text is
best. Sometimes, though, it can be enlightening to look
at things in a different way. Viewing your code as a class
or sequence diagram can cause things to jump out at you
that you may not otherwise see (or not see as easily). In
order to be able to do this in an effective and low cost
manner, you need a UML tool that can generate diagrams
from code, and allow you to control the level of detail
and granularity so that you are not swamped with infor-
mation. To enable you to perform refactorings directly on
a UML diagram the tool needs to keep the code and
model in sync, in realtime. These features are becoming
more common in the available UML tools.

Using UML in the way presented here embodies the
Agile Modeling idea of modeling to understand [AM].
The more ways you use to look at your code, the more
information you can get out of it. The more information
you have, the more courageous you can be, and the faster
you can go.

Just as it makes sense to have code standards to make
your code easier to understand and extract information
from, it makes sense to have some standards when you
are making UML diagrams. A well laid out diagram will
communicate more easily to others as well as better en-
able the detection of graphical patterns that indicate code
smells. Evitts [2] presents several useful patterns that
you can apply when making diagrams (e.g. "Inheritance
Goes Up"). Scott Ambler has also set up a site for
"Online Tips and Techniques for creating better UML
diagrams" [8].

As mentioned in the introduction, recent releases of To-
gether have other features that enhance smell detection
and refactoring. The latest version adds some explicit
refactoring capabilities.

For some time Together has included an auditing capabil-
ity which is valuable for smell detection. Many standard
audit functions are included such as checking for public
fields and coupling complexity. These can be used to
guide you to areas in the code that may benefit from
refactoring. Alas, auditing is only available in licensed
versions.

On the Saorsa website (www.saorsa.com) I have put an

HTML version of this paper which includes screen-
capture animations showing the various refactorings
being performed. It is hard to show in a paper how easily
some of these refactorings are performed, so I invite you
to visit our site and view the animations. I consider it a
living document, and will be extending it with other
refactorings.

ACKNOWLEDGEMENTS
There are a few people who I must acknowledge:

Michele Marchesi - for encouraging me to submit a pa-
per;

Miroslav Novak - for inspiring the topic;

Scott Ambler - who taught me that modeling could be
agile and used in the context of XP; and

Peter Coad, Dietrich Carrissius, and their team - for envi-
sioning and creating the Together line of development
tools, which makes possible many new and different
ways to work with code.

REFERENCES
1. Agile Modeling website, www.agilemodeling.com

2. P. Evitts. A UML Pattern Language. MacMillian
Technical Publishing, 2000

3. M. Fowler. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley, 1999

4. M. Fowler with K. Scott. UML Distilled - 2nd ed.
Addison-Wesley, 2000

5. E. Gamma, R. Helm, R. Johnson, J Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995

6. J. Kerievsky. Patterns and XP. in Extreme Program-
ming Examined, G. Succi, M. Marchesi ed., Addison-
Wesley, 2001

7. D. Thomas, A. Hunt. The Pragmatic Programmer.
Addison-Wesley, 2000

8. Modeling Style website, www.modelingstyle.info

