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ABSTRACT 
Architecture Description Languages (ADLs) such as Acme (a 
mainstream second generation ADL which contains the most 
common ADL constructs) provide formality in the description of 
software architectures, but are not easily reconciled with day-to-
day development concerns, thus hampering their adoption by a 
larger community. UML, on the other hand, has become the de 
facto standard notation for design modeling, both in industry and 
in academia. In this paper we map Acme modeling abstractions 
into UML 2.0, using its new component modeling constructs, its 
lightweight extension mechanisms and OCL well-formedness 
rules. The feasibility of this mapping is demonstrated through 
several examples. This mapping bridges the gap between 
architectural specification with Acme and UML, namely allowing 
the transition from architecture to implementation, using UML 
design models as a middle tier abstraction.  
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1. INTRODUCTION 
Software architectural descriptions provide an abstract repre-
sentation of the components of software systems and their inter-
actions. There are three main streams of architectural description 
techniques: ad-hoc, OO techniques and ADLs. 

Ad-hoc notations lack formality, preventing architectural 
descriptions from being analyzed for consistency or completeness 
and for being traced back and forward to actual implementations 
[2]. 

To overcome those drawbacks, one can use ADLs, such as Aesop 
[3], Adage [4], C2 [5], Darwin [6], Rapide [7], SADL [8], UniCon 
[9], MetaH [10], or Wright [11]. Although with a considerable 
overlap on the core, each ADL focuses on different aspects of 
architectural specification, such as modeling the dynamic 
behavior of the architecture, or modeling different architectural 
styles. This diversity provides different approaches to solve 
specific families of problems. However, the interchange of 
information between different ADLs becomes a major drawback. 
Developing a single ADL providing all the features of the various 
ADLs would be a very complex endeavor. Instead, an ADL called 
Acme [12] emerged as a generic language which can be used as a 
common representation of architectural concepts in the 
interchange of information between specifications with different 
ADLs [13]. 

Although ADLs allow for architecture in-depth analysis, their 
formality is not easily reconciled with day-to-day development 
concerns. OO approaches to modeling, on the other hand, are 
more widely accepted in industry. In particular, the UML [14] has 

become both a de jure and de facto standard. Using it to describe 
software architectures could bring economy of scale benefits, 
better tool support and interoperability, as well as lower training 
costs.  

OO methods have some advantages in the representation of 
component-based systems, when compared to ADLs. There is a 
widespread notation, an easier mapping to implementation, better 
tools support and well-defined development methods. But they 
also have some shortcomings. For instance, they are less 
expressive than ADLs when representing connections between 
components. 
Several attempts to map ADLs to UML have been made in the 
past, as we will see in section 2. One motivation for such attempts 
is to bring architectural modeling to a larger community, through 
the use of mainstream modeling notations. Another is to provide 
automatic refinement mechanisms for architectures. UML can be 
used as a bridge from architectural to design elements [15]. In this 
paper we will present a more straightforward mapping from Acme 
to UML, when compared to previous attempts, due to the usage of 
the new UML 2.0 metamodel. 
We will represent the concepts covered by Acme using the can-
didate UML 2.0 metamodel, which has been partially approved by 
the OMG recently. It includes UML’s infrastructure [16], 
superstructure [17] and OCL 2.0 [18]. This increases our model-
ing power due to the new features of the upcoming standard 
version, mainly in what concerns the representation of 
components, ports, interfaces (provided or required), and the 
hierarchical decomposition of components.  

This paper is organized as follows. Related work is discussed in 
section 2. Section 3 contains a formal specification of the map-
ping between Acme and UML. Section 4 includes a discussion of 
the virtues and limitations of that mapping. Section 5 summarizes 
the conclusions and identifies further work. 

2. RELATED WORK 
A number of mappings among the concepts expressed in ADLs 
and their representation with UML have been attempted.  
A possible strategy is to use UML “as is”, in the mapping. In [19], 
UML is used to express C2 models. In [2], Garlan presents several 
UML metamodel elements as valid options to express each of the 
structural constructs defined in Acme. Each mapping becomes the 
best candidate depending on the goals of the translation from 
Acme to UML. The semantic mismatch between the ADL and 
UML concepts is the main drawback of this strategy. 
An alternative is to modify the UML metamodel, to increase the 
semantic accuracy of the mapping [20]. Unfortunately, this drives 
us away from the standard, and consequently sacrifices existing 
tool support.  
An interesting compromise is to use UML’s extension mecha-



 

nisms to mitigate conceptual mismatches, while maintaining 
compatibility with the standard metamodel. Examples of this 
strategy can be found in [15] (C2SADEL to UML), [1] (Acme to 
UML-RT), and [21] (C2 and Wright to UML). The latter uses 
OCL constraints on the metamodel elements which is close to the 
one proposed in this paper, but requires a mapping for each ADL 
and uses an older and notably less expressive version of UML). 
The approach discussed in this paper bridges the gap between 
software architecture and design using an OO modeling notation. 
All of the above mentioned mappings were performed with UML 
1.x, whereas in our paper we use the new UML 2.0 metamodel 
elements, which enhance the language’s suitability for 
component-based design.  

3. MAPING ACME INTO UML 
From now on we will assume the reader is familiar with Acme, 
UML and OCL. Due to space constraints, we omit the OCL 
definition of predicates such as IsAcmeComponent(), Is-
AcmeConnector(), IsAcmePort(), IsAcmeRole(), Is-

AcmeProperty() and others with self explanatory names that 
will be used in our mapping presentation. HasNoOtherInter-
faces() is a predicate that denotes that no other interfaces 
except for the ones defined in ports will be available for a par-
ticular component. 

3.1 Components 
An Acme component has ports, which act as the component 
interfaces, properties, a representation with several bindings 
(defined as rep-maps) and a set of design rules. The closest 
concept in UML is the one of component. To avoid mixing 
Acme’s components with other concepts that we will also repre-
sent with UML components, we created a stereotype for Acme 
components named <<AcmeComponent>>, using Component as 
the base class. Invariant 1 assures these components only have 
interfaces through Acme ports or properties. 
context Component inv: -- Invariant 1 
   self.IsAcmeComponent() implies  
      self.ownedPort->forAll(ap|  
         ap.IsAcmePort() or  
         ap.IsAcmeProperty()) and 
      self.HasNoOtherInterfaces()  

3.2 Ports 
Acme’s ports identify points of interaction between a component 
and its environment. They can be as simple as operation 
signatures, or as complex as collections of procedure calls with 
constraints on the order in which they should be called. UML 
ports are features of classifiers that specify distinct points of 
interaction between the classifier (in this case, the component) 
and its environment (in this case, the rest of the system). UML 
ports have required and provided interfaces, which can be asso-
ciated to pre and post conditions. We use a combination of UML 
port and corresponding required and provided interfaces to 
express Acme’s port concept. Acme ports can only be used with 
Acme components and they have one provided and one required 
interface. 
context Port inv: -- Invariant 2 
   self.IsAcmePort() implies 
      self.owner.IsAcmeComponent() and 
     (self.required->size()=1) and  
     (self.provided->size()=1) 

3.3 Connectors 
Acme connectors represent interactions among components. 
They are viewed as first class elements in the architecture com-
munity. Representing them using UML’s assembly connector 
would be visually appealing, but we would loose expressiveness 
because Acme connectors may be much more complex than a 
simple interfaces’ match. They can be, for example, a protocol, or 
a SQL link between two components (a client and a database). 
Moreover, when reusing components built by different teams it is 
normal that their interfaces do not match exactly. The connector 
may provide the required glue between the components and this 
must be made explicit in the design. In order to represent the 
concept of connector, which has no semantic equivalent in UML, 
we use a stereotyped component named <<AcmeConnector>> 
and ensure that it has no other interfaces than the ones defined 
through its roles and properties. 
context Component inv: -- Invariant 3 
   self.IsAcmeConnector() implies  
      self.ownedPort->forAll(ap|  
         ap.IsAcmeRole() or  
         ap.IsAcmeProperty()) and  
      self.HasNoOtherInterfaces() 

Although representing a connector with a stereotyped component 
clutters the outcoming design, it offers the ability to represent the 
connector as a first class design element, with flexibility in the 
definition of any protocols it may implement. Consider the 
example in Figure 1, where the components client and server 
have interfaces that do not match, but the rpc connector 
implements a protocol to make both components interact. We 
have included provided and required interfaces in both ends of the 
connector, to illustrate that it provides bi-directional communi-
cation abilities. 

Figure 1 – Using the <<AcmeConnector>> 

<<AcmeComponent>>
:client

PIsend_request

<<AcmeConnector>>
:rpc

<<AcmeComponent>>
:serv er

send_request

caller

receiv e_request

callee

PIreceiv e_request

<<AcmeSy stem>>
:simple_cs

RIsend_request

RIreceiv e_request

// Original Acme specification
System simple_cs = {
   Component client = {Port sendRequest}
   Component server = {Port receiveRequest}
   Connector rpc = {Roles{caller, callee}}
   Attachments {
      client.send-request to rpc.caller ;
      server.receive-request to rpc.callee }
}

 

3.4 Roles 
In Acme, roles are related to connectors the same way as ports are 
related to components. Thus, it makes sense to represent Acme 
roles as constrained UML ports, through the use of the 
<<AcmeRole>> stereotype. 
context Port inv: -- Invariant 4 
   self.IsAcmeRole() implies 
      self.owner.IsAcmeConnector() and 
     (self.required->size()=1) and  
     (self.provided->size()=1) 

3.5 Systems 
An Acme system represents a graph of interacting components. 
The UML’s concept of package (with the standard <<subsys-
tem>> stereotype) represents a set of elements, rather than the 
structure containing them and is not suitable for defining system-



 

level properties. To avoid such problems we use the constrained 
component stereotype <<AcmeSystem>>, with the following 
constraints: 
context Component inv: -- Invariant 5 
   self.IsAcmeSystem() implies 
      self.contents()->select(el|  
         el.IsKindOf(Component))->asSet() 
            ->forAll(comp|  
               comp.IsAcmeComponent() or  
               comp.IsAcmeConnector()) 
context Component inv: -- Invariant 6 
   self.IsAcmeSystem() implies 
      self.contents()->select(el|  
         el.IsKindOf(Port))->asSet() 
            ->forAll(prt|  
               prt.IsAcmePort() or  
               prt.IsAcmeRole() or  
               prt.IsAcmeProperty()) 
context Component inv: -- Invariant 7 
   self.IsAcmeSystem() implies  
      self.ownedPort->forAll(ap| 
         ap.IsAcmePort() or  
         ap.IsAcmeRole() or 
         ap.IsAcmeProperty()) and    
      self.HasNoOtherInterfaces() 

3.6 Representations 
Acme’s representations provide the mechanism to add detail to 
components and connectors. Acme rep-maps are used to show 
how higher and lower-level representations relate to each other. 
We will use the features for packaging components of UML 2.0 to 
express representations. UML provides two wiring elements (in 
the UML specification, they are referred to as “specialized con-
nectors”): assembly and delegation. The former provides a 
containment link from the higher level component to its 
constituent parts, while the latter provides the wiring from higher 
level provided interfaces to lower level ones, and from lower level 
required interfaces to higher level ones. A delegation 
corresponds to Acme’s rep-map concept. To ensure components 
are connected to other components through connectors, we need 
to constrain all assembly connectors to link ports to roles. 
context connector inv: -- Invariant 8 
  self.kind = #assembly implies 
    self.end->(exists(cp|cp.role.IsAcmePort())  
           and exists(cr|cr.role.IsAcmeRole()) ) 

Figure 2 depicts the specification of server. The wiring between 
the internal structure of server – a system which contains a 
topology with three components and the connectors among them 
– and the server’s own ports is achieved with the usage of the 
<<delegate>> connectors. Although Acme explicitly uses the 
concepts of representation and system for defining subsystems, 
we make them implicit in our mapping. Making them explicit 
would not improve the expressiveness of the resulting design and 
would clutter the diagram by creating an extra level of 
indirection.  

Figure 2 – Detailing a component specification 

<<AcmeComponent>>
:serv er

receiv e_request

<<AcmeComponent>>
:connectionManager

external_socket

<<AcmeComponent>>
:security Manager

<<AcmeConnector>>
:clearanceRequest

requestor

grantor

security CheckIntf

<<AcmeComponent>>
:database

<<AcmeConnector>>
:SQLQuery

caller

callee

dbQuery Intf

<<AcmeConnector>>
:security Query

requestorsecurity Manager

security Authorization query Intf

credentialQuery security ManagementIntf

<<delegate>>

// Original Acme specif ication extract
Component serv er = {
   Port receiv eRequest;
   Representation serv erDetails = {
   Sy stem serv erDetailsSy s = {
      Component connectionManager = {
      Ports { externalSocket; security CheckIntf ; dbQuery Intf  } }
      Component security Manager = {...}
      Component database = {...}
      Connector SQLQuery  = { Roles { caller; callee } }
      Connector clearanceRequest = { Roles { requestor; grantor } }
      Connector security Query  = { Roles { security Manager; requestor } }
      Attachments {
         connectionManager.security CheckIntf  to clearanceRequest.requestor;
         security Manager.security Authorization to clearanceRequest.grantor;
         ...}
      Bindings { connectionManager.externalSocket to serv er.receiv eRequest }
}

 

3.7 Properties 
Properties represent semantic information about a system and its 
architectural elements. To allow automatic reasoning on them, 
using OCL, we can make these properties available outside the 
component’s internal scope. Ports can be typed with a provided 
interface that allows the component user to access its properties. 
The downsides of representing Acme properties as UML ports are 
that by doing so we are cluttering the design and extending the 
interfaces provided by the design element. An 
<<AcmeProperty>> port owns a single provided interface that 
must provide get and set operations for the property’s value and 
type. 
context Port inv: -- invariant 9 
   self.IsAcmeProvided() implies 
     (self.required->IsEmpty()) and  
     (self.provided->size()=1) 

3.8 Constraints (invariants and heuristics) 
Constraints allow the specification of claims on how the archi-
tecture and its components are supposed to behave. While in-
variants are conditions that must hold at all times, heuristics are 
constraints that should hold, although breaking them is possible. 
In UML, we can express design constraints through OCL. These 
constraints can be pre-conditions, post-conditions or invariants. 
Acme’s notion of invariant can be directly mapped to its OCL 
counterpart. However, there is no direct UML semantic equivalent 
for the notion of heuristic. This could be circumvented by creating 
the <<AcmeConstraint>> stereotype as a specialization of 
the UML Constraint metaclass. The former would have an 
enumerated attribute with two allowed values: invariant and 
heuristic.  

3.9 Styles and Types 
An architectural style defines a vocabulary of design elements and 
the rules for composing them. It is used in the description of 
families of architectures. Since we have created stereotypes for 
the several UML constructs used in this Acme to UML mapping, 
we can now specify architectural styles using these stereotyped 
elements.  



 

Figure 3- The pipe and filter family 
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[1] All the connectors used in Pipe and Filter
sy stems must conf orm to the PipeT connector ty pe.

context Component inv:
self.IsAcmeComponent()
   implies
      IsKindOf(PipeT)

<<AcmeProperty >>
throughput

<<AcmeProperty >>
implementationFile

<<AcmeProperty >>
buf f erSize

 
Figure 3 represents the pipe and filter family, an architectural 
style that defines two types of components, FilterT and Unix-
FilterT, a specialization of FilterT. The architectural style is 
defined by means of a UML package, as the family definition 
does not prescribe a particular topology. It does, however, es-
tablish an invariant that states that all the connectors used in a 
pipe and filter system must conform to PipeT. 

4. DISCUSSION 
The presented mapping from Acme to UML is more straight-
forward than previous approaches. This mainly results from the 
increased expressiveness provided by the new UML 2.0 design 
elements. From a structural viewpoint, representing a topology is 
fairly simple when using UML. This is mainly due to the relative 
closeness of the sort of structural information that we want to 
express both at the architectural and design levels. In both cases 
we have to identify components and the connections among them, 
possibly at different levels of abstraction.  
However, while a connector is regarded as a first class design 
element by the architecture community, it has no direct mapping 
in UML 2.0. Our proposal is to promote connectors to first class 
design elements, by representing them as stereotyped 
components. This seems to be a good option, considering that the 
evolution of CBD should provide us with an increasing number of 
off-the-shelf components and that, the complexity of building 
component-based software is shifting to the production of glue 
code. Representing connectors as stereotyped components gives 
us the extra flexibility to meet this challenge. 
The representation of properties is not an easy nut to crack. 
Perhaps they could be more suitably defined at the meta-level, 
rather than using the <<AcmeProperty>> ports for this purpose, 
but this still requires further research. 
Heuristics are also complex to map directly to UML, as UML 
provides no direct representation for this concept, although we 
can use OCL to deal with this problem. 
Since Acme does not provide a direct support for component 
dynamics specification, in this paper we do not address it. 
Nevertheless, we could use properties to annotate the architectural 
entities with information on their expected behavior. For instance, 
a connector may have a property specifying its protocol with 
some formalism (e.g. Wright). We could use UML’s behavioral 
modeling features similarly, thus complementing the structural 

information in the mapped specification with a behavioral 
specification of the design elements used.  

5. CONCLUSIONS 
We have shown the feasibility of expressing architectural infor-
mation expressed in Acme using the UML 2.0. It is possible to 
obtain a mapping from a given ADL to UML, through a two-step 
approach. We could first map the architecture from the original 
ADL to Acme and then use the mapping proposed in this paper to 
obtain the corresponding specification in UML. Details lost in the 
ADL to Acme conversion can always be added later to the 
resulting UML specification.  
The proposed mapping builds upon the added expressiveness of 
UML 2.0 for architectural concepts, when compared to UML’s 
previous versions. The availability of components with ports 
typed by provided and required interfaces has proved to be a step 
forward in the exercise of bridging the gap between architectural 
and design information. This improves traceability between archi-
tectural description and its implementation, using the design as a 
middle layer between them. This traceability is relevant for 
keeping the consistency between the architecture, design and 
implementation of a software system. 
The proposed mapping focuses mainly on structural aspects and 
design constraints. Although it also points out to ways of dealing 
with the definition of system properties, including semantics and 
behavioral specification, further research is required to provide 
more specific guidance on these aspects.  
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