

Bridging the gap between Acme and UML 2.0 for CBD
Miguel Goulão

Departamento de Informática
Faculdade de Ciências e Tecnologia - UNL

2825 Monte de Caparica, Portugal

miguel.goulao@di.fct.unl.pt

Fernando Brito e Abreu
Departamento de Informática

Faculdade de Ciências e Tecnologia - UNL
2825 Monte de Caparica, Portugal

fba@di.fct.unl.pt
ABSTRACT
Architecture Description Languages (ADLs) such as Acme (a
mainstream second generation ADL which contains the most
common ADL constructs) provide formality in the description of
software architectures, but are not easily reconciled with day-to-
day development concerns, thus hampering their adoption by a
larger community. UML, on the other hand, has become the de
facto standard notation for design modeling, both in industry and
in academia. In this paper we map Acme modeling abstractions
into UML 2.0, using its new component modeling constructs, its
lightweight extension mechanisms and OCL well-formedness
rules. The feasibility of this mapping is demonstrated through
several examples. This mapping bridges the gap between
architectural specification with Acme and UML, namely allowing
the transition from architecture to implementation, using UML
design models as a middle tier abstraction.

Keywords
Component-based architectures, component specification, ADLs,
Acme, UML.

1. INTRODUCTION
Software architectural descriptions provide an abstract repre-
sentation of the components of software systems and their inter-
actions. There are three main streams of architectural description
techniques: ad-hoc, OO techniques and ADLs.

Ad-hoc notations lack formality, preventing architectural
descriptions from being analyzed for consistency or completeness
and for being traced back and forward to actual implementations
[2].

To overcome those drawbacks, one can use ADLs, such as Aesop
[3], Adage [4], C2 [5], Darwin [6], Rapide [7], SADL [8], UniCon
[9], MetaH [10], or Wright [11]. Although with a considerable
overlap on the core, each ADL focuses on different aspects of
architectural specification, such as modeling the dynamic
behavior of the architecture, or modeling different architectural
styles. This diversity provides different approaches to solve
specific families of problems. However, the interchange of
information between different ADLs becomes a major drawback.
Developing a single ADL providing all the features of the various
ADLs would be a very complex endeavor. Instead, an ADL called
Acme [12] emerged as a generic language which can be used as a
common representation of architectural concepts in the
interchange of information between specifications with different
ADLs [13].

Although ADLs allow for architecture in-depth analysis, their
formality is not easily reconciled with day-to-day development
concerns. OO approaches to modeling, on the other hand, are
more widely accepted in industry. In particular, the UML [14] has

become both a de jure and de facto standard. Using it to describe
software architectures could bring economy of scale benefits,
better tool support and interoperability, as well as lower training
costs.

OO methods have some advantages in the representation of
component-based systems, when compared to ADLs. There is a
widespread notation, an easier mapping to implementation, better
tools support and well-defined development methods. But they
also have some shortcomings. For instance, they are less
expressive than ADLs when representing connections between
components.
Several attempts to map ADLs to UML have been made in the
past, as we will see in section 2. One motivation for such attempts
is to bring architectural modeling to a larger community, through
the use of mainstream modeling notations. Another is to provide
automatic refinement mechanisms for architectures. UML can be
used as a bridge from architectural to design elements [15]. In this
paper we will present a more straightforward mapping from Acme
to UML, when compared to previous attempts, due to the usage of
the new UML 2.0 metamodel.
We will represent the concepts covered by Acme using the can-
didate UML 2.0 metamodel, which has been partially approved by
the OMG recently. It includes UML’s infrastructure [16],
superstructure [17] and OCL 2.0 [18]. This increases our model-
ing power due to the new features of the upcoming standard
version, mainly in what concerns the representation of
components, ports, interfaces (provided or required), and the
hierarchical decomposition of components.

This paper is organized as follows. Related work is discussed in
section 2. Section 3 contains a formal specification of the map-
ping between Acme and UML. Section 4 includes a discussion of
the virtues and limitations of that mapping. Section 5 summarizes
the conclusions and identifies further work.

2. RELATED WORK
A number of mappings among the concepts expressed in ADLs
and their representation with UML have been attempted.
A possible strategy is to use UML “as is”, in the mapping. In [19],
UML is used to express C2 models. In [2], Garlan presents several
UML metamodel elements as valid options to express each of the
structural constructs defined in Acme. Each mapping becomes the
best candidate depending on the goals of the translation from
Acme to UML. The semantic mismatch between the ADL and
UML concepts is the main drawback of this strategy.
An alternative is to modify the UML metamodel, to increase the
semantic accuracy of the mapping [20]. Unfortunately, this drives
us away from the standard, and consequently sacrifices existing
tool support.
An interesting compromise is to use UML’s extension mecha-

nisms to mitigate conceptual mismatches, while maintaining
compatibility with the standard metamodel. Examples of this
strategy can be found in [15] (C2SADEL to UML), [1] (Acme to
UML-RT), and [21] (C2 and Wright to UML). The latter uses
OCL constraints on the metamodel elements which is close to the
one proposed in this paper, but requires a mapping for each ADL
and uses an older and notably less expressive version of UML).
The approach discussed in this paper bridges the gap between
software architecture and design using an OO modeling notation.
All of the above mentioned mappings were performed with UML
1.x, whereas in our paper we use the new UML 2.0 metamodel
elements, which enhance the language’s suitability for
component-based design.

3. MAPING ACME INTO UML
From now on we will assume the reader is familiar with Acme,
UML and OCL. Due to space constraints, we omit the OCL
definition of predicates such as IsAcmeComponent(), Is-
AcmeConnector(), IsAcmePort(), IsAcmeRole(), Is-

AcmeProperty() and others with self explanatory names that
will be used in our mapping presentation. HasNoOtherInter-
faces() is a predicate that denotes that no other interfaces
except for the ones defined in ports will be available for a par-
ticular component.

3.1 Components
An Acme component has ports, which act as the component
interfaces, properties, a representation with several bindings
(defined as rep-maps) and a set of design rules. The closest
concept in UML is the one of component. To avoid mixing
Acme’s components with other concepts that we will also repre-
sent with UML components, we created a stereotype for Acme
components named <<AcmeComponent>>, using Component as
the base class. Invariant 1 assures these components only have
interfaces through Acme ports or properties.
context Component inv: -- Invariant 1
 self.IsAcmeComponent() implies
 self.ownedPort->forAll(ap|
 ap.IsAcmePort() or
 ap.IsAcmeProperty()) and
 self.HasNoOtherInterfaces()

3.2 Ports
Acme’s ports identify points of interaction between a component
and its environment. They can be as simple as operation
signatures, or as complex as collections of procedure calls with
constraints on the order in which they should be called. UML
ports are features of classifiers that specify distinct points of
interaction between the classifier (in this case, the component)
and its environment (in this case, the rest of the system). UML
ports have required and provided interfaces, which can be asso-
ciated to pre and post conditions. We use a combination of UML
port and corresponding required and provided interfaces to
express Acme’s port concept. Acme ports can only be used with
Acme components and they have one provided and one required
interface.
context Port inv: -- Invariant 2
 self.IsAcmePort() implies
 self.owner.IsAcmeComponent() and
 (self.required->size()=1) and
 (self.provided->size()=1)

3.3 Connectors
Acme connectors represent interactions among components.
They are viewed as first class elements in the architecture com-
munity. Representing them using UML’s assembly connector
would be visually appealing, but we would loose expressiveness
because Acme connectors may be much more complex than a
simple interfaces’ match. They can be, for example, a protocol, or
a SQL link between two components (a client and a database).
Moreover, when reusing components built by different teams it is
normal that their interfaces do not match exactly. The connector
may provide the required glue between the components and this
must be made explicit in the design. In order to represent the
concept of connector, which has no semantic equivalent in UML,
we use a stereotyped component named <<AcmeConnector>>
and ensure that it has no other interfaces than the ones defined
through its roles and properties.
context Component inv: -- Invariant 3
 self.IsAcmeConnector() implies
 self.ownedPort->forAll(ap|
 ap.IsAcmeRole() or
 ap.IsAcmeProperty()) and
 self.HasNoOtherInterfaces()

Although representing a connector with a stereotyped component
clutters the outcoming design, it offers the ability to represent the
connector as a first class design element, with flexibility in the
definition of any protocols it may implement. Consider the
example in Figure 1, where the components client and server
have interfaces that do not match, but the rpc connector
implements a protocol to make both components interact. We
have included provided and required interfaces in both ends of the
connector, to illustrate that it provides bi-directional communi-
cation abilities.

Figure 1 – Using the <<AcmeConnector>>

<<AcmeComponent>>
:client

PIsend_request

<<AcmeConnector>>
:rpc

<<AcmeComponent>>
:serv er

send_request

caller

receiv e_request

callee

PIreceiv e_request

<<AcmeSy stem>>
:simple_cs

RIsend_request

RIreceiv e_request

// Original Acme specification
System simple_cs = {
 Component client = {Port sendRequest}
 Component server = {Port receiveRequest}
 Connector rpc = {Roles{caller, callee}}
 Attachments {
 client.send-request to rpc.caller ;
 server.receive-request to rpc.callee }
}

3.4 Roles
In Acme, roles are related to connectors the same way as ports are
related to components. Thus, it makes sense to represent Acme
roles as constrained UML ports, through the use of the
<<AcmeRole>> stereotype.
context Port inv: -- Invariant 4
 self.IsAcmeRole() implies
 self.owner.IsAcmeConnector() and
 (self.required->size()=1) and
 (self.provided->size()=1)

3.5 Systems
An Acme system represents a graph of interacting components.
The UML’s concept of package (with the standard <<subsys-
tem>> stereotype) represents a set of elements, rather than the
structure containing them and is not suitable for defining system-

level properties. To avoid such problems we use the constrained
component stereotype <<AcmeSystem>>, with the following
constraints:
context Component inv: -- Invariant 5
 self.IsAcmeSystem() implies
 self.contents()->select(el|
 el.IsKindOf(Component))->asSet()
 ->forAll(comp|
 comp.IsAcmeComponent() or
 comp.IsAcmeConnector())
context Component inv: -- Invariant 6
 self.IsAcmeSystem() implies
 self.contents()->select(el|
 el.IsKindOf(Port))->asSet()
 ->forAll(prt|
 prt.IsAcmePort() or
 prt.IsAcmeRole() or
 prt.IsAcmeProperty())
context Component inv: -- Invariant 7
 self.IsAcmeSystem() implies
 self.ownedPort->forAll(ap|
 ap.IsAcmePort() or
 ap.IsAcmeRole() or
 ap.IsAcmeProperty()) and
 self.HasNoOtherInterfaces()

3.6 Representations
Acme’s representations provide the mechanism to add detail to
components and connectors. Acme rep-maps are used to show
how higher and lower-level representations relate to each other.
We will use the features for packaging components of UML 2.0 to
express representations. UML provides two wiring elements (in
the UML specification, they are referred to as “specialized con-
nectors”): assembly and delegation. The former provides a
containment link from the higher level component to its
constituent parts, while the latter provides the wiring from higher
level provided interfaces to lower level ones, and from lower level
required interfaces to higher level ones. A delegation
corresponds to Acme’s rep-map concept. To ensure components
are connected to other components through connectors, we need
to constrain all assembly connectors to link ports to roles.
context connector inv: -- Invariant 8
 self.kind = #assembly implies
 self.end->(exists(cp|cp.role.IsAcmePort())
 and exists(cr|cr.role.IsAcmeRole()))

Figure 2 depicts the specification of server. The wiring between
the internal structure of server – a system which contains a
topology with three components and the connectors among them
– and the server’s own ports is achieved with the usage of the
<<delegate>> connectors. Although Acme explicitly uses the
concepts of representation and system for defining subsystems,
we make them implicit in our mapping. Making them explicit
would not improve the expressiveness of the resulting design and
would clutter the diagram by creating an extra level of
indirection.

Figure 2 – Detailing a component specification

<<AcmeComponent>>
:serv er

receiv e_request

<<AcmeComponent>>
:connectionManager

external_socket

<<AcmeComponent>>
:security Manager

<<AcmeConnector>>
:clearanceRequest

requestor

grantor

security CheckIntf

<<AcmeComponent>>
:database

<<AcmeConnector>>
:SQLQuery

caller

callee

dbQuery Intf

<<AcmeConnector>>
:security Query

requestorsecurity Manager

security Authorization query Intf

credentialQuery security ManagementIntf

<<delegate>>

// Original Acme specif ication extract
Component serv er = {
 Port receiv eRequest;
 Representation serv erDetails = {
 Sy stem serv erDetailsSy s = {
 Component connectionManager = {
 Ports { externalSocket; security CheckIntf ; dbQuery Intf } }
 Component security Manager = {...}
 Component database = {...}
 Connector SQLQuery = { Roles { caller; callee } }
 Connector clearanceRequest = { Roles { requestor; grantor } }
 Connector security Query = { Roles { security Manager; requestor } }
 Attachments {
 connectionManager.security CheckIntf to clearanceRequest.requestor;
 security Manager.security Authorization to clearanceRequest.grantor;
 ...}
 Bindings { connectionManager.externalSocket to serv er.receiv eRequest }
}

3.7 Properties
Properties represent semantic information about a system and its
architectural elements. To allow automatic reasoning on them,
using OCL, we can make these properties available outside the
component’s internal scope. Ports can be typed with a provided
interface that allows the component user to access its properties.
The downsides of representing Acme properties as UML ports are
that by doing so we are cluttering the design and extending the
interfaces provided by the design element. An
<<AcmeProperty>> port owns a single provided interface that
must provide get and set operations for the property’s value and
type.
context Port inv: -- invariant 9
 self.IsAcmeProvided() implies
 (self.required->IsEmpty()) and
 (self.provided->size()=1)

3.8 Constraints (invariants and heuristics)
Constraints allow the specification of claims on how the archi-
tecture and its components are supposed to behave. While in-
variants are conditions that must hold at all times, heuristics are
constraints that should hold, although breaking them is possible.
In UML, we can express design constraints through OCL. These
constraints can be pre-conditions, post-conditions or invariants.
Acme’s notion of invariant can be directly mapped to its OCL
counterpart. However, there is no direct UML semantic equivalent
for the notion of heuristic. This could be circumvented by creating
the <<AcmeConstraint>> stereotype as a specialization of
the UML Constraint metaclass. The former would have an
enumerated attribute with two allowed values: invariant and
heuristic.

3.9 Styles and Types
An architectural style defines a vocabulary of design elements and
the rules for composing them. It is used in the description of
families of architectures. Since we have created stereotypes for
the several UML constructs used in this Acme to UML mapping,
we can now specify architectural styles using these stereotyped
elements.

Figure 3- The pipe and filter family

<<AcmeComponent>>
FilterT

<<AcmeComponent>>
UnixFilterT

stdin stdout

stdin stdout

stderr

<<AcmeConnector>>
PipeT

source sink

PipeFilterFam

[1] All the connectors used in Pipe and Filter
sy stems must conf orm to the PipeT connector ty pe.

context Component inv:
self.IsAcmeComponent()
 implies
 IsKindOf(PipeT)

<<AcmeProperty >>
throughput

<<AcmeProperty >>
implementationFile

<<AcmeProperty >>
buf f erSize

Figure 3 represents the pipe and filter family, an architectural
style that defines two types of components, FilterT and Unix-
FilterT, a specialization of FilterT. The architectural style is
defined by means of a UML package, as the family definition
does not prescribe a particular topology. It does, however, es-
tablish an invariant that states that all the connectors used in a
pipe and filter system must conform to PipeT.

4. DISCUSSION
The presented mapping from Acme to UML is more straight-
forward than previous approaches. This mainly results from the
increased expressiveness provided by the new UML 2.0 design
elements. From a structural viewpoint, representing a topology is
fairly simple when using UML. This is mainly due to the relative
closeness of the sort of structural information that we want to
express both at the architectural and design levels. In both cases
we have to identify components and the connections among them,
possibly at different levels of abstraction.
However, while a connector is regarded as a first class design
element by the architecture community, it has no direct mapping
in UML 2.0. Our proposal is to promote connectors to first class
design elements, by representing them as stereotyped
components. This seems to be a good option, considering that the
evolution of CBD should provide us with an increasing number of
off-the-shelf components and that, the complexity of building
component-based software is shifting to the production of glue
code. Representing connectors as stereotyped components gives
us the extra flexibility to meet this challenge.
The representation of properties is not an easy nut to crack.
Perhaps they could be more suitably defined at the meta-level,
rather than using the <<AcmeProperty>> ports for this purpose,
but this still requires further research.
Heuristics are also complex to map directly to UML, as UML
provides no direct representation for this concept, although we
can use OCL to deal with this problem.
Since Acme does not provide a direct support for component
dynamics specification, in this paper we do not address it.
Nevertheless, we could use properties to annotate the architectural
entities with information on their expected behavior. For instance,
a connector may have a property specifying its protocol with
some formalism (e.g. Wright). We could use UML’s behavioral
modeling features similarly, thus complementing the structural

information in the mapped specification with a behavioral
specification of the design elements used.

5. CONCLUSIONS
We have shown the feasibility of expressing architectural infor-
mation expressed in Acme using the UML 2.0. It is possible to
obtain a mapping from a given ADL to UML, through a two-step
approach. We could first map the architecture from the original
ADL to Acme and then use the mapping proposed in this paper to
obtain the corresponding specification in UML. Details lost in the
ADL to Acme conversion can always be added later to the
resulting UML specification.
The proposed mapping builds upon the added expressiveness of
UML 2.0 for architectural concepts, when compared to UML’s
previous versions. The availability of components with ports
typed by provided and required interfaces has proved to be a step
forward in the exercise of bridging the gap between architectural
and design information. This improves traceability between archi-
tectural description and its implementation, using the design as a
middle layer between them. This traceability is relevant for
keeping the consistency between the architecture, design and
implementation of a software system.
The proposed mapping focuses mainly on structural aspects and
design constraints. Although it also points out to ways of dealing
with the definition of system properties, including semantics and
behavioral specification, further research is required to provide
more specific guidance on these aspects.

REFERENCES
[1] S.-W. Cheng and D. Garlan, "Mapping Architectural Con-

cepts to UML-RT", PDPTA'2001, Monte Carlo Resort, Las
Vegas, Nevada, USA, 2001.

[2] D. Garlan and A. J. Kompanek, "Reconciling the Needs of
Architectural Description with Object-Modeling Notations",
<<UML>> 2000, York, UK, 2000.

[3] D. Garlan, R. Allen, and J. Ockerbloom, "Exploiting style in
architectural desing environments", SIGSOFT'94: The
Second ACM Symposium on the Foundations of Software
Engineering, 1994.

[4] L. Coglianese and R. Szymanski, "DSSA-ADAGE: An
Environment for Architecture-based Avionics Develop-
ment", AGARD'93, 1993.

[5] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor,
"Using object-oriented typing to support architectural
design in the C2 style", SIGSOFT'96: Fourth ACM Sym-
posium on the Foundations of Software Engineering, 1996.

[6] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, "Speci-
fying distributed software architectures", Fifth European
Software Engineering Conference, ESEC'95, 1995.

[7] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D.
Brian, and W. Mann, "Specification and analysis of system
architecture using Rapide", IEEE Transactions on Software
Engineering, vol. 21, No.4, pp. 336-355, 1995.

[8] M. Moriconi, X. Qian, and R. Riemenschneider, "Correct
architecture refinement", IEEE Transactions on Software
Engineering, vol. 21, No. 4, pp. 356-373, 1995.

[9] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young,
and G. Zelesnik, "Abstractions for Software Architecture
and Tools to support them", IEEE Transactions on Software
Engineering, vol. 21, No. 4, pp. 314-335, 1995.

[10] P. Binns and S. Vestal, "Formal real-time architecture
specification and analysis", Tenth IEEE Workshop on Real-
Time Operating Systems and Software, New York, USA,
1993.

[11] R. Allen and D. Garlan, "A Formal Basis for Architectural
Connection", ACM Transactions on Software Engineering
and Methodology, vol. 6, pp. 213-249, 1997.

[12] D. Garlan, R. T. Monroe, and D. Wile, "Acme: Architec-
tural Description of Component-Based Systems", in
Foundations of Component Based Systems, G. T. Leavens
and M. Sitaraman, Eds.: Cambridge University Press, 2000,
pp. 47-68.

[13] M. R. Barbacci and C. B. Weinstock, "Mapping MetaH into
ACME", Carneggie Mellon University / Software
Engineering Institute, Technical Report CMU/SEI-98-SR-
006, July 1998.

[14] OMG, "OMG Unified Modeling Language Specification.
Version 1.5", Object Management Group March 2003.

[15] A. Egyed and N. Medvidovic, "Consistent Architectural
Refinement and Evolution using the Unified Modeling
Language", 1st Workshop on Describing Software Archi-
tecture with UML, co-located with ICSE 2001, Toronto,
Canada, 2001.

[16] U2-Partners, "3rd revised submission to OMG RFP ad/00-
09-01: Unified Modeling Language: Infrastructure - version
2.0", U2-Partners January 2003.

[17] U2-Partners, "2nd revised submission to OMG RFP ad/00-
09-02: Unified Modeling Language: Superstructure -
version 2.0", U2-Partners January 2003.

[18] Boldsoft, Rational, IONA, and Adaptive, "Response to the
UML 2.0 OCL RfP (ad/2000-09-03) - Revised Submission,
Version 1.6 - OMG Document ad/2003-01-07", OMG 2003.

[19] N. Medvidovic and D. S. Rosenblum, "Assessing the
Suitability of a Standard Design Method for Modeling
Software Architectures", First Working IFIP Conference on
Software Architecture, 1999.

[20] B. Selic, "On Modeling Architectural Structures with
UML", ICSE 2002 Workshop Methods and Techniques for
Software Architecture Review and Assessment, Orlando,
Florida, USA, 2002.

[21] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.
Rosenblum, "Integrating Architecture Description Lan-
guages with a Standard Design Method", International
Conference on Software Engineering (ICSE98), Kyoto,
Japan, 1998.

