
Analyzing Robustness of UML State Machines

Steffen Prochnow, Gunnar Schaefer, Ken Bell, and Reinhard von Hanxleden

{spr,gsc,kbe,rvh}@informatik.uni-kiel.de
Real-Time and Embedded Systems Group, Department of Computer Science

Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24118 Kiel, Germany

Abstract. State Machines constitute an integral part of software behav-
ior specification within the UML. The development of realistic software
applications often results in complex and distributed models. Potential
errors can be very subtle and hard to locate for the developer. Thus, we
present a set of robustness rules that seek to avoid common types of er-
rors by ruling out certain modeling constructs. Furthermore, adherence
to these rules can improve model readability and maintainability. The
robustness rules constitute a general Statechart style guide for different
dialects, such as UML State Machines, Statemate, and Esterel Studio.
Based on this style guide, an automated checking framework has been
implemented as a plug-in for the prototypical Statechart modeling tool
KIEL. Simple structural checks can be formulated in a compact, abstract
manner in the OCL. The framework can also incorporate checks that go
beyond the expressiveness of OCL by implementing them directly in
Java, which can also serve as a gateway to formal verification tools; we
have exploited this to incorporate a theorem prover for more advanced
checks. As a case study, we have adopted the UML well-formedness rules;
this confirms that individual rules are easily incorporated into the frame-
work.

1 Introduction

Statecharts [1] constitute a widely accepted formalism for the specification of
reactive real-time systems. They extend the classical formalism of finite-state
machines and state transition diagrams by incorporating notions of hierarchy,
orthogonality, compound events, and a broadcast mechanism for communication
between concurrent components. Statecharts provide an effective graphical no-
tation, not only for the specification and design of reactive systems, but also
for the simulation of the modeled system behavior. They have been incorpo-
rated into the Unified Modeling Language (UML) (as object-based State Ma-
chines) [2] and are supported by several commercial tools, e. g., Esterel Studio1,
Matlab/Simulink/Stateflow2, and UML CASE tools, such as Rhapsody3 and
ArgoUML4.
1 http://www.esterel-technologies.com/products/esterel-studio/
2 http://www.mathworks.com/products/stateflow/
3 http://www.ilogix.com/
4 http://argouml.tigris.org/

The assurance of quality, i. e., ensuring readability and avoiding error-prone
constructs, is one of the most essential aspects in the development of safety-
critical reactive systems, since the failure of such systems—often attributable to
programming flaws—can cause loss of property or even human life. As Parnas
has observed, human code reviews are time-consuming and highly undependable
in revealing errors [3]. Taking part of the burden off the reviewers, as well as off
the designers, is the rationale for automated error prevention, where a computer
performs preliminary checks. Hence, this paper is a contribution to ensure certain
aspects of safety in developing Statecharts. We achieve this by applying methods
of automated error-source detection.

We propose a rule set that forms a fundamental Statechart style guide. Based
on this well-structured set of robustness rules, both syntactic and semantic, an
automated checking framework has been implemented as a plug-in for the Kiel
Integrated Environment for Layout Statechart modeling tool5. A key objective in
devising the rule set and in designing the checking framework was to not restrict
the modelers’ creativity, but to achieve more explicit, easy to comprehend, and
less error-prone models. Our approach, therefore, was developed adhering to the
following requirements:

Modularity and Configurability: All robustness checks are independently
implemented, individually selectable, and parametrizable via a preferences
management.

Extendability of the rule set: The set of checks is easily extendable by either
adding a constraint, specified in the Object Constraint Language (OCL) [4],
or by implementing a new Java class.

Automatic conformance checking: Compliance with the robustness rules
can be checked very rapidly—a key quality, imperative for end-user accep-
tance. Due to the uncoupling of the checking process from the modeling
process, the checks may be applied at all stages of system development, even
to partial system models.

Even though a wide range of applications for Statechart verification already
exists, none fulfills all needs. They are either highly specialized and therefore not
extendable or they are extendable but do not provide the possibility to check
complex problems. In contrast, we present a general approach to style checking in
Statecharts. It is easily extendable and incorporates a theorem prover to provide
for complex semantic checks. The main contributions of this paper are:

– An inspection and classification of error prevention methods for software in
general as well as with a focus on style checking in Statecharts (Section 3),

– a comparison of existing style guides and applications for textual program-
ming languages and Statecharts (Section 3.3),

– a collection of robustness rules for less error-prone Statecharts (Section 4),
– a checking framework, which automatically and quickly evaluates rules de-

fined in OCL; additionally, checks based on theorem proving are evaluated
(Section 5), and

5 http://www.informatik.uni-kiel.de/~rt-kiel/

– an experimental evaluation, based on the aforementioned checking rules,
showing the applicability and efficiency of our robustness rules (Section 7).

2 Related Work

Error prevention in software development is as old as the field of software de-
velopment itself. Therefore, many style guides for classical textual programming
languages have been developed, dealing not only with code layout, but also
with robustness aspects; e. g., MISRA proposed a C programming style [5], Sun
proposed a Java programming style6. Style guides have been developed for the
Statecharts modeling paradigm as well, e. g., by the MathWorks Automotive
Advisory Board (MAAB)7 and by Ford Motor Company8, both exclusively for
Simulink/Stateflow . Scaife et al. [6] propose the development of a safe subset of
the Stateflow language, which is considered to be less error-prone. Furthermore,
Kreppold [7] has presented a style guide for Statemate.

In the context of UML State Machines, the well-formedness rules defined
within the UML specification clarify the semantics of Statechart elements. Be-
sides the well-formedness rules, other rules for UML State Machines were for-
mulated, e. g., by Mutz [8]. For our style guide we pick up some of these rules;
furthermore, we specify dialect independent as well as dependent rules inspired
by different sources and add rules based on our own experience.

Automatically checking robustness (or soundness) of UML State Machines is
an active field of research. Pap et al. [9] have investigated applicable approaches.
The presented techniques include checks based on the OCL, graph transforma-
tion, special programs and finally reachability analysis driven tests. Richters [10]
has investigated different frameworks that can be used when it comes to working
with OCL.

A wide range of available CASE tools provide OCL support, which is gen-
erally limited to gathering constraints. Beyond, Mutz and Huhn [8, 11] have
developed the Rule Checker for the automated analysis of user-defined design
rules on UML State Machines. They pursue an interpreter-based analysis for the
evaluation of OCL. However, an interpretative approach is generally considered
less flexible and slower than an executive. Additionally, simple syntactic checks
are executed by Java programs. No sophisticated checks involving a theorem
prover are performed.

Another approach to check the style guide conformance of Statecharts is
Mint9 by Ricardo which is focused on the MAAB style guide. The checker pri-
marily aims at achieving a consistent look-and-feel, enhancing readability, and
avoiding common modeling errors. The Guideline-Checker [12], coded in Matlab,
is a no-cost/academic alternative to Mint. The range of the Guideline-Checker

6 http://java.sun.com/docs/codeconv/
7 http://www.mathworks.com/industries/auto/maab.html
8 http://vehicle.berkeley.edu/mobies/papers/stylev242.pdf
9 http://www.ricardo.com/engineeringservices/controlelectronics.aspx?

page=mint

is currently constricted to the most trivial checks, e. g., “A [state] name does
not include a blank,” or “A [state] name consists of [at least] 3 characters” [12,
page 26].

Moreover, special programs for the detection of specific problems have been
developed. Here, the State Analyzer [13], developed within DaimlerChrysler’s
R&D, is a prototypical software tool to check the “determinism” of Statemate
Statecharts. Performing an automated robustness analysis of requirements spec-
ifications, the tool verifies that for every state, the predicates (trigger and con-
dition) of multiple outgoing transitions are pairwise disjoint. The approach for
detecting non-determinism employs automated theorem proving (cf. Section 5),
i. e., proving the satisfiability of a formula consisting of the conjunction of each
pair of transition predicates. Approaches analyzing requirements specifications
are introduced by, e. g., Heitmeyer et al. [14] for the Software Cost Reduction
(SCR) formalism; Heimdahl and Leveson [15] present a similar approach for the
Requirements State Machine Language (RSML).

In summary, none of the discussed methods and tools fulfill all of our needs.
Therefore, we present a Statechart robustness analysis approach, based on the
execution of Java code synthesized from OCL rules, that combines the usabil-
ity and flexibility of OCL and—beyond the approach of Mutz and Huhn—the
mightiness of a theorem prover.

3 Errors and Error Prevention in the Modeling of
Statecharts

To support the early detection and elimination of modeling errors, a design
methodology must provide effective communication among the various design
stages of the product. This section gives an overview of common error sources
in developing Statecharts and how these may be avoided.

3.1 Sources of Errors

Errors in development of graphical models like Statecharts have a large diversity
of types and reasons. A paramount cause of producing erroneous Statecharts is
apparently a misunderstanding of the utilized modeling tools and their simula-
tion behavior. This may have its source in counterintuitive specifications of the
model semantics (e. g., unbound behavior) and a lacking comprehension of the
modeler.

Errors also originate from the often large size of graphical models: Because
of the extensive requirements in software design technology, the dimensions of
graphical models can increase enormously. Moreover, Statecharts often are of
great complexity : Because of the discrete nature of Statecharts, small changes
not always have small effects. Beyond, Statecharts represent interactive and dis-
tributed systems: large collections of interconnected components usually involve
interactive and concurrent processes. Therefore, potential errors can be very
subtle and hard to locate for human developers.

3.2 Error Prevention

The approaches to error prevention in textual and visual languages face essen-
tially the same problems. Due to this, we propose a common error prevention
taxonomy and refine it in the following for Statecharts. Software error preven-
tion in general encompasses a number of different techniques designed to identify
programming flaws. As outlined in Figure 1a, we can basically distinguish be-
tween automated error prevention and human code review. As already pointed
out, human code reviews are exceedingly time-consuming and often undepend-
able in revealing errors. However, they may find conceptual problems that are
impossible to detect automatically.

Software Error Prevention

Automated
Error Prevention

Human
Code Review

Dynamic
Testing

Static
Code Analysis

Style Checking Model Checking

Layout
Style

Robustness
Analysis

Syntactic
Robustness

Semantic
Robustness

(a) Software Error Prevention in General
and its Taxonomy.

Static Analysis of Statecharts

Correctness Style Checking
in Statecharts

Syntactic
Analysis

Semantic
Robustness

Readability Efficiency Syntactic
Robustness

(b) Taxonomy for Style Checking in
Statecharts as a Refinement of Gen-
eral Software Error Prevention.

Fig. 1: Classification of Software Error Prevention.

Automated error prevention is commonly separated into dynamic and static
methods. Dynamic testing performs code evaluation while executing the program
and attempts to detect deviations from expected behavior: Static code analysis,
on the other hand, performs an analysis of computer software without actual
execution of programs, but by assessing source or binary files to identify potential
defects. While dynamic testing requires executable code, static methods can be
applied much earlier in the development process. Static code analysis covers
aspects ranging from the behavior of individual statements and declarations to
the complete source code of a program. Use of the information obtained from the
analysis varies from highlighting possible coding errors to formal methods that

mathematically prove properties about a given program, e. g., that its behavior
matches that of its specification, commonly known as model checking.

Style checking, another aspect of static code analysis, is concerned with layout
style, i. e., common appearance, as well as syntactic and semantic style. The
latter two are often collectively referred to as robustness analysis (see below).
Style checking always requires the syntactic and semantic correctness of the
code. Robustness analysis refers to the objective of eliminating certain types
of errors and enforcing sound engineering practices. Robustness rules limit the
general range of a given modeling/programming language, as they are entirely
independent of what is being designed.

In the general context of static code analysis, one must distinguish syntactic
and semantic correctness on the one hand and style checking on the other hand.
On this foundation, as a first step toward systematically devising an extensive
style guide for Statecharts, the following taxonomy, depicted in Figure 1b, was
laid down:

Syntactic Analysis: The enforcement of syntax-related rules does, in general,
not necessitate knowledge of model semantics.
Readability (or layout style) aims at a graphical normal form, e. g., tran-

sitions connect states in a clockwise direction, charts contain a limited
number of states, etc.

Efficiency (or compactness, simplicity) emphasizes superfluous and redun-
dant elements from the Statechart model.

Syntactic Robustness aims at reducing errors due to inadvertence and en-
hancing maintainability.

Semantic Robustness: Deriving and enforcing semantic robustness rules re-
quires knowledge of specific aspects of the model semantics. Exact analysis
typically requires the use of formal verification tools.

3.3 Existing Style Guides and Applications

Style checking is based upon style guides. They constitute a set of design rules,
concerning textual programming, respectively the modeling of Statecharts. Style
guides provide general instructions on how to use languages. They are commonly
provided as (in-)formal specifications, containing lists of rules. Style guides con-
cern human languages, textual programming languages, as well as visual pro-
gramming languages, such as Statecharts. They define a subset of usable ele-
ments. The informal as well as the formal specifications are primarily opera-
tional instructions for humans. These affect the programmed or modeled result.
Beyond, formal style guides act as the configuration for automated style check-
ing, i. e., style checkers.

Since programming style often depends on the programming language, dif-
ferent coding standards and related code checking tools exist for different pro-
gramming languages. Akin to coding standards, most code checking tools are
programming language-specific. Available code checkers for C are e. g., Lint [16],

LCLint (aka. Splint) [17] and QA MISRA10; code checkers for Java are Jlint11

and Checkstyle12. Figure 2a roughly classifies these code checkers according to
their emphasis on layout style vs. robustness—a major distinction within style
checking (see Section 3.2).

Checkstyle

Lint/Splint

QA MISRA

Jlint

Layout Style

Robustness

//

OO

(a) Checking Tools for Textual Pro-
gramming Languages.

KIEL Checking

Guideline-Checker

Mint

State Analyzer

Rule Checker

Layout Style

Robustness

//

OO

(b) Checking Tools for Statecharts.

Fig. 2: Classification of Checking Tools according to their Emphasis of Layout Style vs.
Robustness.

Statechart style checking is much less developed and less sophisticated as
compared to style checking in textual computer programming. Nevertheless,
when analyzing the dynamics of reactive systems, it is all the more impor-
tant that models are designed according to approved rules. Therefore, several
Statechart modeling tools, e. g., Stateflow and Statemate, have been supple-
mented with a number of checks. Four representative checking tools—Mint and
the Guideline-Checker related to Stateflow , the State Analyzer related to State-
mate, and the Rule Checker—as well as our own robustness checker (see Sec-
tion 5), are roughly classified according to their emphasis of layout style vs.
robustness in Figure 2b.

The Guideline-Checker and the State Analyzer as well as Ricardo’s Mint all
address only a single Statechart dialect. Mint, the Guideline-Checker, and the
Rule Checker merely perform graphical and—partly trivial—syntactic checks,
but not profound semantic checks which require automated theorem proving
as realized in the State Analyzer. However, semantic checks are particularly
important since they eliminate possible non-trivial sources of error, which are
very hard to discern for humans. The rules put forth in the next section aspire
to fill this gap.

10 http://www.programmingresearch.com/
11 http://jlint.sourceforge.net/
12 http://checkstyle.sourceforge.net/

4 Statechart Style Guide

Building on the aforementioned theoretical foundation, practical experience, and
available prototypes, this section outlines a comprehensive Statechart style guide,
striving for general applicability to Statechart dialects, within the limits of the
UML State Machines specification. The rules presented below were formulated
following the advice of Buck and Rau [18]: Clarity, Minimality, Consistency,
Consensus, Flexibility, Adaptability, Stability and Testability.

As mentioned above (cf. Section 3.2), style guides for Statecharts can roughly
be divided into two parts, namely syntactical analysis on the one hand and se-
mantical analysis on the other hand. Syntactical analysis addresses the syntacti-
cal structure of Statecharts, such as layout, possible optimizations, and robust-
ness problems. Therefore, in the context of syntactical rules, one basically has to
focus on problems that deal with the relations of individual Statechart elements
to each other. Furthermore, syntactical analysis opens up two fields of possible
applications. One field analyses whether the syntactical relation of the elements
used corresponds to the rules specified by a certain dialect (i. e., syntactical cor-
rectness). Within the UML these kind of rules are called well-formedness rules.
The well-formedness rules “[. . .] specify constraints over attributes and associa-
tions defined [with]in the [Statechart] meta model” [19, Section 2.3.2.2].

Nevertheless, locating problems from the part of syntactical correctness and
syntactical robustness works the same way. Since Statecharts are directed graphs,
one can use pattern matching here. If used for locating problems one would create
a pattern that captures the problem.

In the following, we present the rules incorporated into our Statechart style
guide. Following the proposed taxonomy (see Figure 1b), the rules are grouped in
different sections. First of all, the rules dealing with the syntactical correctness,
the well-formedness rules, are presented. On that foundation, we extend the style
guide by afterwards presenting the rules for syntactical robustness. Finally, the
rules for semantical robustness are presented.

UML Well-formedness Rules

As mentioned above, syntactical correctness is mandatory for robustness. There-
fore, it is necessary to check, whether a Statechart is syntactically correct or not.
For most Statechart dialects, this is done within a dialect dependent modeling
tool. But when dealing with UML State Machines, one has to manually make
sure that the above mentioned well-formedness rules are preserved as some UML
tools do not check those rules at all. Within the UML, the well-formedness rules
themselves are described using OCL. Given a context of application and the
constraint itself, problems are detected fairly easy. In the following, we present
some examples for violations of the well-formedness rules. Section 5 elaborates
on the OCL implementation of the presented examples.

The rule CompositeState-1 denotes that “a composite can have at most one
initial vertex” [19, Section 2.12.3.1]. Detecting violations of this rule, as presented
in Figure 3a (left-hand side), is done by a two-part pattern. One part contains

a composite state with no initial vertex and the other part contains a composite
state with one initial vertex. If neither part matches the composite state is known
to have more than one initial vertex. Fixing problems detected by this check has
to be done with great care because the intended behavior has to be carefully
remodeled as Statecharts can include parts in which it is not clear what to do
as depicted in Figure 3a (right-hand side). The rule Transition-5 denotes that
“Transitions outgoing pseudostates may not have a trigger” [19, Section 2.12.3.8].
The violation detection pattern may just contain a transition with the type of
the source set to pseudostate and no trigger specified (see Figure 3b).

(a) Violations of Rule CompositeState-1. (b) Violation of Rule Transition-5.

Fig. 3: Violations of well-formedness Rules.

Syntactical Robustness Rules

The style guide for Statecharts proposed in this paper aims at covering a wide
range of dialects. Therefore, we extracted syntactical rules from various other
style guides (cf. Section 2) that are applicable to different dialects. Furthermore,
we formulated rules based on our own experience in Statechart modeling.

The rules presented below were adopted from Mutz [8, p. 144f]. All of them
apply to the area of syntactical robustness and are dialect-independent.

MiracleStates: All states except the root state and the initial states must have
at least one incoming transition. Figure 4a depicts the violation of this rule.

IsolatedStates: An even stronger version of MiracleStates is the check for iso-
lated states. A state is isolated when it has neither incoming nor outgoing
transitions.

EqualNames: Ensuring that all states are named differently simplifies the main-
tenance of a Statechart.

InitialState: Demanding that all regions respectively non-concurrent composite
states contain one initial state greatly simplifies the understanding of the
model. This rule should also be checked on dialects in which a region or
non-concurrent composite state can be entered by an interlevel transition.

OrStateCount: Checking if all non-concurrent composite states contain more
than one state delivers valuable hints for possible optimizations. Composite
states that contain only one state can be subject to dialect independent
optimizations and should be avoided from the beginning.

RegionStateCount: Closely related to OrStateCount this rule checks the number
of states within a region of a concurrent composite state. Such regions can
also be optimized and should be avoided for simplicity.

(a) Violation of the Rule MiracleStates. (b) Violation of the Rule Connectivity.

Fig. 4: Violation of Syntactical Robustness Rules.

From the Ford style guide the following rule was extracted as it is also applicable
to dialects other than Stateflow .

DefaultFromJunction: When using connective junctions to model decisions one
shall always add an outgoing transition with no label. The unlabeled transi-
tion is then the default transition. The default transition is provided so the
control flow does not stop when the other conditions do not hold.

From our own experience in modeling with Statecharts the following rules were
formulated.

TransitionLabels: Ensuring that all transitions are specified with a label makes
the understanding of the model easier. This is especially important for di-
alects in which a default signal exists as it would be assigned invisibly to an
unlabeled transition.

InterlevelTransitions: A Statechart should not contain interlevel transitions, i. e.,
transitions bypassing level borders. The benefit is that understanding a
Statechart without interlevel transitions is easier; especially novices tend to
misunderstand the so expressed behavior, e. g., the order of executed (entry)
activities and the activation of parallel areas of execution.

Connectivity : Another aspect closely related to MiracleStates are states not
connected by a sequence of transitions outgoing from any initial state. Such
States are superfluous as they will never be entered while simulation. See
Figure 4b where no path from the initial state to C1 or C2 exists. This rule
extends the already mentioned MiracleStates as it also detects states that
have incoming transitions and are still never entered as depicted in Figure 4b.

As mentioned above, locating a problem is fairly easy. However, resolving
a found problem from the field of syntactic analysis can be more difficult. De-
pending on the context in which the problem is found and the problem itself, a

different approach has to be used for each problem. Essentially, one can say that
there is no general pattern applicable to all problems. Resolving found problems
has two benefits. One benefit is that syntactical correctness of a Statechart will
be achieved. This applies especially to the well-formedness rules of the UML. The
more important benefit is, however, that the maintainability and the readability
will increase enormously.

Semantic Robustness Rules

In line with the taxonomy presented in Figure 1b, we now turn to semantic ro-
bustness rules, addressing the model’s behavior. As opposed to model checking,
however, semantic robustness analysis is concerned with the behavior of indi-
vidual statements and their interactions at a local level, e. g., determinism and
race-conditions. As, for the three rules presented below, transitions are consid-
ered pairwise, let trans1 and trans2 be the two transitions under investigation.
The label of transi is li, which consists of the predicates ei (event expression)
and ci (condition expressions) as well as an action expression ai, where i ∈ {1, 2}.

(a) State with Overlapping Transitions. (b) “Indirectly” Overlapping Transitions.

(c) Dwelling Violation. (d) Write/Write Race Condition.

Fig. 5: Application Examples of the Semantic Robustness Rules.

Transition Overlap: All transitions (directly or indirectly) outgoing from a state
should have semantically disjoint predicates [20]. Ensuring this warrants that
at most one transition is enabled at any time, i. e., no transition shadowing
can occur, leading to guaranteed deterministic behavior, independent of po-
tential transition priorities. Figure 5a depicts a basic case of two transitions

departing from a simple state. A Transition Overlap violation exists if e1 and
c1 are not disjoint from e2 and c2. Such a violation may be eliminated by,
e. g., adding ¬e2 and ¬c2 to the predicates of trans1, yielding (e1 ∧¬e2) for
the event expression and (c1 ∧¬c2) for the condition expression. In addition
to transitions departing directly from a state, transitions departing from an
enclosing state may also be enabled (see Figure 5b). Overlaps are, however,
resolved by transition priorities or hierarchy. Hence, this rule is primarily
intended for Statechart dialects that do not provide a priority mechanism,
such as Statemate.

Dwelling : The predicates of all incoming and outgoing transitions of a state
should be pairwise disjoint or at least not completely overlapping [20]. This
rule ensures that the system pauses at every state it reaches. A state in
which the system cannot pause contradicts the concept of a system state.
Careless use of Esterel Studio’s immediate flag, denoted by #, may lead to a
Dwelling violation (see Figure 5c for an example). An immediate transition
is evaluated in the same instant, in which its source state is reached; a non-
immediate transition is not evaluated until the following instant.

Race Conditions: Concurrent writing or concurrent reading and writing of a
variable should not exist in parallel states (cf. Figure 5d). Since race condi-
tions are generally not detectable, we have chosen a conservative approxima-
tion. We detect a race condition in concurrent threads, if a variable is written
in one thread and read or written in another. This rule, and the previous
rule are aimed primarily at Safe State Machines used in Esterel Studio.

5 The KIEL Modeling Environment

The Kiel Integrated Environment for Layout (KIEL) is a prototypical modeling
environment that has been developed for the exploration of complex reactive
system design [21]. As the name suggests, a central capability of KIEL is the au-
tomatic layout of graphical models. One can use KIEL to easily perform a layout
of a given Statechart. However, the tool’s main goal is to enhance the intuitive
comprehension of the behavior of the System Under Development (SUD). While
traditional Statechart development tools merely offer a static view of the SUD
during simulation, in contrast, KIEL provides a simulation based on dynamic
focus-and-context [21]. It employs a generic concept of Statecharts which can
be adapted to specific notations and semantics, and it can import Statecharts
that were created using other modeling tools. The currently supported dialects
are those of Esterel Studio, Stateflow , and the UML via the XMI format, as,
e. g., generated by ArgoUML. KIEL further provides a structure-based editor
to create Statecharts from scratch or to modify imported charts. A simulator
is also part of the tool. The robustness checker, comprising checks for the rules
presented above, has been integrated into KIEL. Figure 6 shows a screen-shot
of KIEL as it checks particularly semantic robustness rules.

Fig. 6: Screen-shot of KIEL Checking Robustness of a Statechart.

The Checking Plug-in

The checking plug-in of KIEL was designed to be very flexible in usage. All
checks have been implemented independently. Via an user interface it is easily
possible to manually select which checks to apply. It is further possible to define
Statechart dialect-specific profiles containing different sets of rules. Depending
on the model loaded into KIEL, the plug-in automatically decides which profile
to apply.

The plug-in was developed to be easily extendable. The user can extend the
rule set by either adding an appropriate OCL constraint for a syntactical check or
by adding a new Java class for semantical checks. Depending on the seriousness
of a detected problem, the robustness checker delivers two kinds of messages.
(1) Errors in modeling are violations of rules that have to be addressed because
further actions such as simulating the model is impossible. (2) Warnings indicate
that a problem was found which does not need to be fixed immediately for simu-
lation, i. e., possible sources of errors or ambiguous constructs. In the following,
an overview of the implementation of the aforementioned rules is presented.

We have chosen the OCL because, as stated by Mutz, it allows to formu-
late checks on a high level of abstraction, and neither knowledge of a program-
ming language nor of the underlying data structure is needed [8]. The executive
approach towards the evaluation of OCL is preferable to an interpretative ap-
proach as the former one proved to be more flexible and faster in execution time.

Therefore, we chose to use the Dresden OCL Toolkit version 1.313 discussed by
Richters [10] to transform OCL constraints to Java.

Our approach for the checking framework contains the possibility of returning
customized messages when a violation is found. Therefore, the OCL constraint
is wrapped by additional information as Java code snippets. The union of OCL
and Java code snippets we named KIEL wrapped OCL (KOCL). The developed
KOCL to Java translator utilizes the Dresden OCL Toolkit which is supplied
with the according meta model of the KIEL data structure. Figure 7 basically
shows how the different parts of the KOCL files are processed. The workflow
and the specified rules were described in detail elsewhere [22].

Java Code Snippet

Java Code
for Checking

OCL Constraint

Dresden
OCL-Toolkit

KIEL Datastructure
Meta-model

Fig. 7: Processing KOCL with KIEL.

As the framework is designed to handle rules formulated as OCL-constraints
we have implemented the rules elaborated above (cf. Section 4). Most of the
well-formedness rules were specified in KOCL. The rules not specified in KOCL
deal partly with features of UML diagrams. As the KIEL project so far is focused
on simulating and modifying Statecharts only, the representations of classes and
packages was left out for the sake of simplicity. Therefore, e. g., rule StateMachine
number 1 which states that “a State Machine is aggregated within either a
classifier or a behavioral feature” from the UML specification was left out.

We will not present all of the transfered rules in detail. The example presented
in the following gives an overview about how the additional information is cap-
suled within KOCL files. A relatively simple example is Rule CompositeState-1
(cf. Section 4) as specified in Figure 8a. The OCL constraint states that the set
subvertex of a composite state can contain at most one pseudostate of kind
#initial. The Dot notation is used to access members of a class. An arrow
(“->”) is used to access properties or functions on sets.

The rule specified in KOCL is presented in Figure 8b. The separation of the
message declaration, the constraint definition and the specification of the return-
ing message is clearly seen in this example. The declarations part (lines 2–4)
is designed to hold more than one message. The fails part (line 10) specifies

13 http://dresden-ocl.sourceforge.net/

which message to return if a violation of the constraint is found. It is even pos-
sible to return different messages (if defined) depending on the context in the
fails part by simply using a common if-then-else-statement. Due to the
meta model the constraint itself (lines 7–9) is even shorter than specified in the
UML.

1 self.subvertex->select(
2 v| v.oclIsKindOf(Pseudostate))->
3 select(
4 p:Pseudostate| p.kind = #initial)->
5 size <= 1

(a) The OCL Representation.

1 rule UML13CompositeStateRule1 {
2 declarations {
3 message "A composite state can have
4 at most one initial vertex.";}
5 constraint {
6 context ORState or Region;
7 "self.subnodes->select(
8 v| v.oclIsTypeOf(InitialState))->
9 size <= 1";}

10 fails {message;}
11 }

(b) The KOCL Representation.

Fig. 8: The Rule CompositeState-1.

As mentioned before, syntactic analysis is not the only field for which an
automated checking framework for Statecharts is beneficial. The presented se-
mantic rules can also be checked automatically. Although OCL is of great ben-
efit in specifying and implementing robustness checks regarding the syntax of
Statecharts, semantic analyses are generally beyond its scope because checking
a Statechart with respect to these rules typically requires extensive knowledge
of the model semantics. The Transition Overlap rule, the Dwelling rule, and the
Race Conditions rule (see Section 4) cannot be specified using OCL constraints.
Our framework still allows to incorporate such checks; for this purpose Java code
is needed to formulate theorem-proving queries and sending them to an outside
tool for analysis.

To perform the semantic robustness checks, a satisfiability modulo theories
(SMT)14 solver is needed. SMT problems are a variation of automated theorem
proving [23], which in turn is part of automated reasoning. After an evaluation of
available SMT solvers [24], CVC Lite [25] was chosen. Here, in order to determine
whether, e. g., two transitions trans1 and trans2 (cf. Section 4) have overlapping
labels, satisfiability of the formula(

(e1 ∧ c1) ∧ (e2 ∧ c2)
)

must be decided. Unsatisfiability implies that the predicates of trans1 and trans2

are disjoint. Such SMT problems are generally decidable as long as they contain
only addition but no multiplication of variables.

14 http://combination.cs.uiowa.edu/smtlib/

Further, the Simplified Wrapper and Interface Generator (SWIG) [26] was
employed to generate wrappers and interface files for CVC Lite, enabling its
immediate use from within Java. Here, the Java and C++ JNI wrappers are
produced from CVC Lite’s annotated C++ header files, as shown in Figure 9.

wrapped CVCL
libraray, JNI enabled

CVCL .h files SWIG interface
definition file

manual
annotation

Java wrapper classes
for CVCL

communication
through JNI

SWIG C++ wapper for
CVCL library

 SWIG

 gcc

CVCL
C++ library

KIEL Checking
Plug-In

 uses

(a) Outline of the SWIG Workflow, Including
the Link-Up of the CVC Lite Library to the
KIEL Checking Plug-In.

Java Wrapper Classes

Java Native Interface (JNI)

C++ Wrapper Classes

CVCL C++ library

(b) Conceptual Diagram of the Hi-
erarchical Composition of Wrap-
per Layers around the CVC Lite
Library.

Fig. 9: Interfacing of KIEL and the CVC Lite Library via JNI and SWIG.

6 Experimental Results

Finally, we show the application of the checking framework on a well known ex-
ample, the wristwatch presented by Harel [1]. As this example is well-established
we did not expect to detect real modeling errors; our focus was to quantitatively
asses the efficiency of our checking mechanism. We remodeled the wristwatch
with ArgoUML which imposed some restrictions. E. g., some transitions per-
form indexing over multiple states, which was replaced by according conditional
constructs. However, the final model retains the originally modeled behavior. So
far, the final model contains 120 transitions and 108 states.

The results from benchmarking are presented in Table 1. The number of re-
turned hints and the run-time of each check are presented. The checking times
were measured on a PC with GNU/Linux OS, a 2.6 GHz AMD Athlon 64 pro-
cessor and 2 GB of RAM.

The application of the well-formedness rules consumed the least time of all
parts. Roughly 20 milli-seconds were needed to check those rules on the chart.
Except for the check EqualNames the syntactical robustness checks roughly take
twice as much time as the well-formedness rules. The check EqualNames has a
quadratic complexity in the number of states. This is caused by limitations of the
OCL—all states have to be compared to the currently handled state. In compar-
ison to the checks dealing with syntactical robustness, except EqualNames, the
checks for semantical robustness take about 400 milli-seconds. Here, the check

Table 1: Experimental Results of Checking the Wristwatch Example.

Checks Hints Time [ms]

well-formedness checks (total) 0 20

InterlevelTransition 17 14
Connectivity 7 2
EqualNames 33 587
InitialStateCount 7 1
TransitionLabels 6 9
IsolatedStates 1 4

syntactical checks (total) 71 617

Transition Overlap 598 352
Dwelling 0 2
Race Conditions 0 1

semantical checks (total) 598 355

total 669 992

Transition Overlap returns an enormous number of hints compared to the to-
tal number of transitions. This is due to the fact that almost no transition was
designed with an opposing predicate of another outgoing transition.

As another example, the application of the framework on the Statechart
presented in Figure 10a delivered the hint that violations of the rule Dwelling
are present. Especially novices tend to produce unnecessarily large models with
needless states, for example by splitting trigger and effect into separate transi-
tions. Figure 10b shows a possible way how the violation can be fixed. Because
the Statechart is rather small, all checks were applied in about 3 milli-seconds.

(a) A Statechart with Unnecessary, Transient
States.

(b) Statechart after Removing the
Transient States b, d, and f.

Fig. 10: Example for Removing Transient States.

7 Assessment

We gained the following results during the work with the framework. Not sur-
prisingly, the time needed for specifying rules differs significantly depending on
the complexity of the problem. The fairly simple well-formedness rules from the
UML were specified in KOCL in a rather short amount of time. All in all, it
took less than one hour to specify them. The more sophisticated rules regard-
ing problems from the field of syntactical robustness took not much longer, as
the OCL proved to be an easy to apply language for these kind of problems,
too. The time needed for specifying those rules varies between two minutes and
half an hour per rule. The semantic robustness rules turned out to be the most
demanding. Roughly two weeks were needed altogether for the implementation
of the three rules presented. The main aspect of this task was to extract the
needed data and afterwards to transform the data from the Statechart to the
input language of the theorem prover.

The well-formedness rules do not necessarily improve the quality of State-
charts in the sense of robustness. Those rules apply to the field of syntactical
correctness only. Nevertheless, these rules are needed before any further checking
can be applied to a Statechart, because the robustness checks rely on the correct
syntax.

Syntactical robustness rules, however, focus on more intricate problems, but
not as sophisticated as the rules dealing with the semantical robustness. Nev-
ertheless, the information gained by applying the checks is worth it. The infor-
mation delivers sources for possible optimizations that lead to a better under-
standing of the checked Statechart. E.g., the readability of charts significantly
improves if all states are labeled with different names. Furthermore, the tests
for Connectivity and for MiracleStates may detect design flaws that may lead
to misbehavior of the modeled system. Therefore these problems should always
be corrected to fix the model and also to increase the maintainability.

The Transition Overlap and Dwelling rules certainly improve the structural
clarity of Statecharts, as all behavior is diagrammed explicitly. Especially in a
non-deterministic dialect such as Statemate, the introduction of determinism
greatly eases model comprehension. The Race Conditions rule, on the other
hand, might be too restrictive in real life. If applied, though, it leads to immense
structural improvements as potential race conditions in far apart regions of a
Statechart are eliminated a priori.

Finally, there is a trade-off between semantic robustness and minimality of
Statecharts. E. g., eliminating a Transition Overlap or Dwelling violation by
adding the negation of the predicates of one transition to the predicates of the
other transition, as suggested above, constitutes an infringement of the write
things once principle of modeling [27].

In summary, on the one hand one can say that evaluating OCL statements
as specified by the well-formedness rules turned out to be a task very fast done.
On the other hand one has to say that for statements of greater complexity the
evaluation of OCL—as in rule EqualNames—can be much more time consuming.

8 Conclusion and Further Work

As the failure of safety-critical systems can have severe consequences, error pre-
vention in the model-driven system development of such systems is vital. We
have outlined an approach to make the model-driven system development with
Statecharts less error prone, and have presented a general Statechart style guide
that is not restricted to a single dialect. We implemented a flexible robustness
checking framework within the KIEL modeling tool. The hints returned by our
checking framework do not necessarily indicate errors; this typically still requires
application-specific knowledge. However, as has been observed in earlier work,
adhering to the robustness rules reduces the chance for errors. Beyond that, they
serve to improve the readability and maintainability of a system.

Our framework permits to express robustness rules directly with the well-
established OCL formalism, which facilitates an abstract rule formulation and
allows to directly incorporate existing OCL rule sets. Our transformative ap-
proach for the evaluation of OCL statements has turned out superior to earlier,
interpretative approaches, and the expressiveness of the OCL has been suffi-
cient for most of our checks. However, the framework also allows to implement
complex semantic checks in Java directly, which we have used to incorporate an
off-the-shelf theorem prover. Our framework has been practically validated for
the checking of UML State Machines; however, the framework could easily be
adapted to other commercial Statechart modeling tools as well; provided that
an appropriate import functionality exists.

Beyond the experimental results presented in this paper, we intend to utilize
the KIEL checking framework to perform a systematic study of the effectiveness
of robustness checking, both for novice users and experienced modelers. Further-
more, we plan to implement support for the recently published version 2.0 of the
OCL, and to incorporate further rules into our checking framework.

References

[1] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3) (1987) 231–274

[2] Object Management Group: Unified Modeling Language: Superstructure, Version
2.0 (2005)

[3] Parnas, D.L.: Some theorems we should prove. In: HUG ’93: Proceedings of
the 6th International Workshop on Higher Order Logic Theorem Proving and its
Applications, London, UK, Springer-Verlag (1994) 155–162

[4] Object Management Group: (Unified Modeling Lanugage—UML Resource Page)
http://www.uml.org.

[5] Motor Industry Software Reliability Association (MISRA): MISRA-C:2004.
Guidelines for the Use of the C Language in Critical Systems. Motor Industry
Research Association (MIRA), Nuneaton CV10 0TU, UK (2004)

[6] Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maraninchi, F.: Defining and
translating a “safe” subset of simulink/stateflow into lustre. Technical Report
2004-16, Verimag, Centre Équation, 38610 Gières (2004)

[7] Kreppold, T.: Modellierung mit Statemate MAGNUM und Rhapsody in Micro C.
Berner & Mattner Systemtechnik GmbH, Otto-Hahn-Str. 34, 85521 Ottobrunn,
Germany, Dok.-Nr.: BMS/QM/RL/STM, Version 1.4 (2001)

[8] Mutz, M.: Eine durchgängige modellbasierte Entwurfsmethodik für eingebettete
Systeme im Automobilbereich. Dissertation, Technische Universität Braunschweig
(2005)

[9] Pap, Z., Majzik, I., Pataricza, A.: Checking general safety criteria on UML stat-
echarts. Lecture Notes in Computer Science 2187 (2001)

[10] Richters, M.: A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, University of Bremen (2001)

[11] Mutz, M., Huhn, M.: Automated statechart analysis for user-defined design rules.
Technical report, Technische Universität Braunschweig (2003)

[12] Moutos, M., Korn, A., Fisel, C.: Guideline-Checker. Studienarbeit, University of
Applied Sciences in Esslingen (2000)

[13] Scheidler, C.: Systems Engineering for Time Triggered Architectures. SETTA
Consortium (2002) Deliverable D7.3 – Final Document.

[14] Heitmeyer, C., Jeffords, R., Labaw, B.: Automated Consistency Checking of
Requirements Specifications. ACM Transactions on Software Engineering and
Methodology 5(3) (1996) 231–261

[15] Heimdahl, M.P.E., Leveson, N.G.: Completeness and Consistency in Hierarchical
State-Based Requirements. Software Engineering 22(6) (1996) 363–377

[16] Johnson, S.C.: Lint, a C program checker. In Thompson, K., Ritchie, D.M., eds.:
UNIX Programmer’s Manual. Seventh edn. Bell Laboratories (1979)

[17] Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19(1) (2002) 42–51

[18] Buck, D., Rau, A.: On Modelling Guidelines: Flowchart Patterns for STATE-
FLOW. Softwaretechnik-Trends 21(2) (2001) 7–12

[19] Object Management Group: Unified Modeling Language (UML) 1.3 specification
(2000) http://www.omg.org/cgi-bin/apps/doc?formal/00-03-01.pdf.

[20] Kossowan, K.: Automatisierte überprüfung semantischer modellierungsrichtlinien
für statecharts. Diplomarbeit, Technische Universität Berlin (2000)

[21] Prochnow, S., von Hanxleden, R.: Comfortable Modeling of Complex Reactive
Systems. In: Proceedings of Design, Automation and Test in Europe (DATE’06),
Munich (2006)

[22] Bell, K.: Überprüfung der Syntaktischen Robustheit von Statecharts auf der Basis
von OCL. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Institut für
Informatik und Praktische Mathematik (2006) unpublished.

[23] Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem
Proving. Revised On-Line Version (2003), Philadelphia, PA (2003)

[24] Schaefer, G.: Statechart Style Checking – Automated Semantic Robustness Anal-
ysis of Statecharts. Diploma thesis, Christian-Albrechts-Universität zu Kiel, In-
stitut für Informatik (2006)

[25] Barrett, C.W., Berezin, S.: CVC Lite: A new implementation of the Cooperat-
ing Validity Checker Category B. In Alur, R., Peled, D.A., eds.: Proceedings of
Computer Aided Verification: 16th International Conference, CAV 2004, Boston.
Volume 3114 of Lecture Notes in Computer Science., Springer (2004) 515–518

[26] Beazley, D.M.: SWIG: An easy to use tool for integrating scripting languages with
C and C++. In: Proceedings of the Fourth Annual USENIX Tcl/Tk Workshop.
(1996) 129–139

[27] Berry, G.: The Foundations of Esterel. Proof, Language and Interaction: Essays
in Honour of Robin Milner (2000) Editors: G. Plotkin, C. Stirling and M. Tofte.

