
Enhancing UML to Model Custom Security
Aspects

[Position Paper]

Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

Department of Computer Science & Engineering, The University of Connecticut,
Unit-2155, 371 Fairfield Road, Storrs, CT 06269- 2155. jaime.pavlich@uconn.edu,

{ldm,steve}@engr.uconn.edu

Abstract. Despite its widespread usage, the Unified Modeling Lan-
guage (UML) specification still lacks formal, explicit, support for ac-
cess control. This paper proposes an approach to model security as a
separate concern by augmenting UML with separate and new diagrams
for role-based, discretionary, and mandatory access controls; collectively,
these diagrams provide visual access-control aspects. Individually, each
of these diagrams contain a set of security features that augment UML
with security capabilities. The intent is to provide designers with a broad
set of security features, where they can select only the features needed by
their application, merge them into UML, and utilize the custom result to
model security aspects. This paper presents a set of features extracted
from role-based, discretionary, and mandatory access control, demon-
strates their composition into a customizable security model in UML
(including a formal basis), and illustrates the approach via a university
application.

1 Introduction

Security has become a very important issue in the development of software ap-
plications. Definition of access control policies, along with other security require-
ments, must be an integral part of the software development process, to ensure
that the proper level of security in an application is attained. Access control is
defined as: “Limiting access to information system resources only to authorized
users, programs, processes or other systems”[1]. The software development pro-
cess consists of a systematic series of tasks to create a software system: require-
ments capture, analysis, design, coding, and testing. The scope of this research
is at the design stage of the process, concentrating on modeling of access control.

To analyze the issues of modeling security, one must understand the most com-
mon security schemes that are used to conceptualize access control policies:
mandatory access control (MAC) [2], discretionary access control (DAC)[3], and



role-based access control (RBAC)[4]. MAC is well-suited to applications where
the protection of information is paramount (i.e., releasing such information would
have dire national security or financial consequences). In MAC, each object is
labeled with a classification level (e.g., top secret, secret, confidential, and un-
classified) that represents the sensitivity of their information. Each subject has
a clearance level. Security is enforced by ensuring that a subject’s clearance level
always dominates an object’s classification level. DAC targets applications that
are collaborative and dynamic. In DAC, permissions are defined between sub-
jects and objects, but a subject can be granted the permission to delegate a
subset of its own permissions to another user. RBAC groups permissions into
independent units called roles, which represent the role that a user assumes in
an organization. Roles, rather than permissions, are assigned to users (subjects)
when they initiate an interactive session with the software system. The set of
privileges granted to a user is defined by the set of permissions assigned to its
corresponding role. Security schemes such as MAC, DAC, and RBAC, specify
the basic semantics for access control, but they do not provide a visual language
to represent this information. UML [5], the dominant software and system mod-
eling approach, while an obvious candidate to provide security, lacks explicit
support for access control. Furthermore, security is a crosscutting concern that
pervades the entire application, which makes it difficult for software practition-
ers to adequately integrate security into software [6]. As a result, when designers
wish to incorporate security concerns into an application using UML, the result-
ing model is very likely to have security tangled and scattered throughout the
entire design.

Our proposed approach will address the above issues by extending UML with
security diagrams to represent MAC, DAC and RBAC policies as aspects. Fur-
thermore, the proposed approach intends to provide flexibility to the modeling
of access control: as requirements vary between applications, designers do not al-
ways need all of the features present in the notation, but only a subset of them to
suit their application needs. The approach decomposes MAC, DAC, and RBAC
into security features, which represent the minimal elements of an access con-
trol policy. Designers can select specific features and combine them (according to
rules and limits) in order to create a security aspect-modeling infrastructure that
is suitable for their requirements. Since security features comprise a small subset
of the information of an access control schema, they should be easier to under-
stand by designers. Furthermore, they assist in tracking security requirements
from models to code, reducing scattering of access-control definitions across the
application, and providing a collective view of the security policy.

This paper extends our previous work on the role-slice diagram for RBAC [7] with
additional diagrams for users, delegation, and mandatory access control features.
Most importantly, this work applies composibility to allow custom application-
level security. Section 2 describes an example that will be used to illustrate the
approach. Section 3 describes security features and the process to create custom
security aspect models. Section 4 compares the proposed approach with related
work. Section 5 concludes the paper and reviews ongoing work.



2 The University Application Example

This paper uses a simplified example of a university application. The university
application manages course, student, teacher, and public catalog information.
The security requirements are as follows: teachers have assigned a set of courses,
they can read and write the syllabus, and read the code of each course. Teachers
can see the enrolled students in each course, access their names, and assign
grades, but they cannot see in which courses students are enrolled. Students
can see their grades, enrolled courses, the teachers of those courses, read the
syllabus and code, but cannot see which students are enrolled in those courses,
or modify any information in the system. Catalog information can be acessed by
anyone; no access control is required for this information. Figure 1 shows a class
diagram of the university application. Course keeps track of all of the courses of
a university. StudentInformation manages information about students. Catalog
manages the publicly-available information about courses offered at a university.

+getCourses()

+getGrades()

+getName()

+setGrades()

StudentInformation

+getTeacher()

+getStudents()

+getSyllabus()

+getCode()

+setSyllabus(in syllabus : String)

+setCode(in code : String)

Course

+getCoursesOffered()

Catalog

Fig. 1. Class Diagram of the University Application Example.

3 Enhancing UML with Security

The core of the approach is to extend UML with security aspect modeling capa-
bilities. The extension comprises two elements: Security Features and Security
Diagrams. Security Features are components that correspond to specific elements
of access control schemes (e.g., positive permissions, delegation rules, MAC secu-
rity properties, etc.). Security Diagrams provide the notation to depict security
features as aspects separated from the main design of the application. Figure 2
shows an overview of the proposed security extensions to UML. The Role Slice
Diagram (1), which is part of previous work in [7], is a visual notation for roles,
positive and negative permissions (e.g., roles to methods), and role hierarchies.
The User Diagram (2) depicts users, positive and negative permissions (roles to
users), association to roles, and constraints over role assignment. The Delegation
Diagram (4) is a notation for rules of delegation of the DAC security scheme, and
includes user-delegation assignment (who is allowed to delegate), delegation au-
thority (can delegate), and pass-on delegation authority (can delegate the ability
to delegate). MAC Features (3) provide the constructs for the three security di-
agrams to depict Mandatory Access Control rules. Each extension is associated
with a set of Security Features, which are building blocks that correspond to
specific elements of access control schemes (e.g., roles, permissions, delegation
rules, classifications, clearances, etc.). Designers choose a subset of features, and
perform a composition (6) between their meta-models and the UML meta-model



(5) to yield an augmented meta-model (7). To create a design model for the en-
tire application (including all of the security and non-security concerns), the
composite meta-model (7) is instantiated (8) into a Main Design (9) that is the
design of the non-security concerns and Security Aspects (10) that conform the
access control policy for the application.

The main theme of this paper is the definition of the infrastructure (i.e., meta-
models and policy permissions) required to model security aspects. Section 3.1
describes example security aspects (10) of the access control policy of the univer-
sity application and the way to depict them using security extensions (1) through
(4). Section 3.2 describes the creation of its infrastructure using composition (6)
of security features.

(7) Augmented Meta-Model:
UML + Selected Security Features

(1) Role Slice Diagram

Positive Permissions (PP)

Negative Permissions (NP)

Secure Subsystem 
Infrastructure (SSI)

Selection of
Features

(3) MAC Features

Selection of
Features

Simple Security (SS)

Simple Integrity (SI)

Liberal-Star (LS)

Strict-Star-Read (SSR)

(2) User Diagram

User-Role Assignment (URA)

Separation of Duty (SOD)

Selection of
Features

(4) Delegation Diagram

Delegation Authority (DA)

Pass-On Delegation 
Authority (PODA)

Selection of
Features

(6)
Composition

(5) UML

(8) Instantiation of 
the Meta-Model

Strict-Star-Write (SSW)

(9) Main Design (10) Security Aspects
(Access Control Policy)

Positive Permissions (PP)

Negative Permissions (NP)

User-Delegation 
Assignment (UDA)

Fig. 2. Overview of the Proposed Approach.

3.1 Modeling Security Aspects

To model a security policy, designers must identify three key components: sub-
jects, objects, and permissions. Subjects are the entities that require access to
the system. The system contains a set of objects that are the entities that re-
quire protection against subjects. For the proposed approach, class methods
(operations) are the objects in the system that require protection. Permissions
determine which operations can access each subject in the system. Formally, this
is represented as follows:

Subject: A set of subjects.

Operation : A set of operations, i.e., the methods of classes.

P ⊆ Subject×Operation : A set of permissions, where 〈s, op〉 ∈ P iff. subject s
is allowed to invoke operation op.



To model the requirements of the university application, designers must choose
an access control structure that represents the three sets above, and satisfies
the security requirements. The university application has two kinds of users,
each one with different permissions: teachers and students. A role-based policy
is a good alternative to group users according to their similarities. To assign
permissions to roles, designers have two alternatives: assign positive permissions
explicitly, or use mandatory access control rules. For this example, assume that
designers choose MAC rules, assigning clearances to users, and classifications to
operations, and allowing a subject to access an operation only if its clearance
is greater than or equal to the classification of the operation. Some operations
that would be allowed by a MAC-based policy may not be permitted according
to requirements, so designers can also decide to use negative permissions to
explicitly deny them.

Figure 3 shows a role-slice diagram enhanced with MAC that represents the
roles and permissions for the university application. The Secure Subsystem, de-
pitcted as a package with the stereotype ¿SecureSubsystemÀ, comprises all of
the operations in the system that require access control. The secure subsystem
also defines their classifications (unclassified (u), confidential (c), secret(s), or
top-secret (ts)), and their access mode (read or write). Roles Teacher and Stu-
dent appear as packages with the stereotype ¿roleSliceÀ. They have assigned
a clearance and negative permissions (operations with the stereotype ¿negÀ).
Roles are connected to the secure subsystem, meaning that role permissions must
be a subset of the operations referenced by the secure subsystem. Figure 4 shows
a user diagram that depicts users as packages with the stereotype ¿userÀ; and,
users’ assigned roles as dependencies with the stereotype ¿roleAssignmentÀ.

3.2 Creating the Infrastructure to Model Security Aspects

To enable UML to define security aspect models such as the ones in Fig. 3 and
Fig. 4, and to precisely specify the permissions of a security policy (i.e., set P ),
the proposed approach uses Security Features, which represent the structure and
semantics of the minimal components of a policy. Recall that Fig. 2 showed the
set of proposed security features. The Secure Subsystem Infrastructure (SSI)
represents the operations in the system that require access control. User-Role
Assignment (URA) represents users, roles and their associations. Positive Per-
missions (PP) and Negative Permissions (NP) represent what subjects can or
can’t do in a system. Separation of Duty (SOD) constrains user-role assignment,
defining which roles cannot be simultaneously assigned to one user [4]. User Del-
egation Assignment (UDA), Delegation Authority (DA) and Pass-On Delegation
Authority (PODA) provide delegation capabilities. The remaining MAC features
provide the base elements for security-level policies (i.e., classifications and clear-
ances), and different security properties to constrain subject read and/or write
access to operations based on clearances and classifications.

A security feature has two main elements: a meta-model, defined with the Meta-
Object Facility(MOF) [8] that can be composed into the UML meta-model using



the PackageMerge relation [5]; and, an authorization constraint, which is a re-
lation that defines the way that permissions (i.e., elements of P ) are obtained
from instances of the feature’s meta-model. One reason to partition meta-models
across security features is to simplify their use by designers. According to [9] the
UML specification is difficult to understand because of its complex and large
meta-model. Using features as a semantic and structural unit that encompasses
small portions of the security meta-model may make it easier for designers to
understand them. Another important advantage (although not directly related
to modeling) is that security features improve code generation, because only the
features chosen by designers are transitioned into code. Overall, each security
feature realizes one particular security requirement, helping designers to track
security requirements down to models and code, and providing the means to
make changes without impacting the entire security of the application.

University Application Secure Subsystem

<<SecureSubsystem>>

+{accessMode=read,classification=c} getCourses()

+{accessMode=read,classification=c} getGrades()

+{accessMode=read,classification=c} getName()

+{accessMode=write,classification=s}setGrades()

StudentInformation

+{accessMode=read,classification=u} getTeacher()

+{accessMode=read,classification=c} getStudents()

+{accessMode=read,classification=u} getSyllabus()

+{accessMode=read,classification=c} getCode()

+{accessMode=write,classification=s} setSyllabus(in syllabus : String)

+{accessMode=write,classification=ts} setCode(in code : String)

Course

Teacher

<<RoleSlice>>

«neg» +getCourses()

StudentInformation

Student

<<RoleSlice>>

«neg» +getStudents()

Course

«secSubsAssignment» «secSubsAssignment»

clearance=s clearance=c

Fig. 3. A Role-Slice Diagram.

«user»
Alice

«user»
Bob

«user»
Carol

«roleAssignment»

«roleAssignment»

«roleAssignment»

«roleSlice»
Student

«roleSlice»
Teacher

Fig. 4. A User Diagram.

To enable UML to represent the security policy of the university application,
designers choose a subset of security features. The SSI feature, shown in Fig. 5
enables the secure subsystem shown in Fig. 3, and its meta-model associates sub-
jects with meta-class SecureSubsystem that references the set of operations that
require access control. To enable users, roles, and user-role associations of Fig. 4,
designers choose security feature URA, shown in Fig. 6. URA’s meta-model de-
fines meta-classes User and Role as children of Subject, which implies that users
and roles can also be assigned permissions. URA’s authorization constraint al-
lows users to access all of those operations that are allowed to their assigned roles.
To define a MAC-based policy, designers use features Simple Security (SS) and
Simple Integrity (SI), shown in Fig. 7. Both features have the same meta-model
that assigns a clearance to subjects (relation subject clearance), a classification
to operations (relation operation classification), and an access mode (i.e., read
or write) to operations. Feature SS allows access to read -operations where the
subject’s clearance is greater than or equal to the operation’s classification. Fea-



ture SI allows access to write-operations where the subject’s clearance is greater
than or equal to the operation’s classification. To explicitly deny access to chosen
operations, designers incorporate the Negative Permissions (NP) feature, shown
in Fig. 8, whose meta-model defines the relation subject denied operations be-
tween subjects and operations, and whose authorization constraint defines a set
of permissions NP that includes all of those tuples 〈s, op〉 where subject s and
operation op are associated by relation subject denied operations.

OperationSecureSubsystem

ModelElement

+secureSubsystem1 +protectedOperations *

secureSubsystem_operations

+subjects* +secureSubsystem 1

subject_secureSubsystem
Subject

SSI =
{ 〈s, op〉 |op ∈ s.secureSubsystem.protectedOperations

}

Fig. 5. Meta-Model of the SSI Feature

RoleUser

+assignedUsers* +assignedRole 1

user_role_assignment

Subject

URA =
{ 〈u, op〉 | 〈u.assignedRole, op〉 ∈ P

}

Fig. 6. Meta-Model of the URA Feature

SecurityLevel Operation

+classification

1

+operations

*

operation_classification

AccessMode

+operations *

+accessMode

1 operation_access_mode
ModelElement

+greater*+lesser *

+subjects

*

+clearance

1

subject_clearance
Subject

SS =
{ 〈s, op〉 |s.clearance ≥ op.classification ∧ op.accessMode.name = read

}

SI =
{ 〈s, op〉 |s.clearance ≥ op.classification ∧ op.accessMode.name = write

}

Fig. 7. SS and SI Features

Figure 9 shows meta-model SSI+SS+SI+NP+URA (meta-class ModelElement
not shown for space reasons), which corresponds to (7) in Fig. 2, and is the result
of the composition of all of the chosen meta-models, and the UML meta-model
(simplified for space purposes; it provides meta-classes Class, Attribute, and
Operation). A composition obtained from PackageMerge relations is the union
of the contents of the participating meta-models. If there are two meta-models
having a meta-class with the same name, the composite meta-model will contain
a meta-class with that name, and its attributes, associations, and operations will



be the union of the attributes, associations, and operations of the corresponding
meta-classes in the original meta-models.

Operation

+deniedSubject

*

+deniedOperations

*

subject_denied_operations
Subject

ModelElement

NP = {〈s, op〉 |op ∈ s.deniedOperations}

Fig. 8. Meta-Model of the NP Feature

To combine authorization constraints, designers use standard set operators. The
result will determine the final set of permissions, i.e., set P , based on the security
diagrams of Fig. 3 and Fig. 4. For this example, assume that designers choose
to combine authorization constraints as follows:

P = SSIC ∪ ((SI ∪ SS)\NP )

The final set of permissions for this custom policy includes all of the tuples 〈s, op〉
where op does not belong to the secure subsystem (SSIC): operations that do
not require access control are authorized by default (in this example, there is
only one such operation, getCoursesOffered from class Catalog, which is not
part of the secure subsystem). All of the tuples referenced by SI and SS are
also included in P , except those referenced by NP , i.e., all of the operations
that satisfy MAC simple security and simple integrity properties are authorized,
unless they are explicitly denied.

SecureSubsystem

Subject

+subjects *

+secureSubsystem

1

User Role

+assignedUsers* +assignedRole 1

Operation

+deniedSubjects* +deniedOperations *

+secureSubsystem

1

+protectedOperations

*

AccessMode

+operations *

+accessMode

1

SecurityLevel

+classification 1
+operations *

+greater*+lesser *

+subjects*

+clearance

1

subject_clearance

Attribute

Class

+owner

1

+ownedMethods

*

+owner1

+ownedAttributes*

+superclass

*

+subclass*

Fig. 9. Merged Meta-Model of SSI+SS+SI+NP+URA.

4 Related Work

This research is seeking to include security as part of the UML. In the UML
area, there have been many research efforts that involve security from different
perspectives: UMLsec [10], is an extension to UML to represent and verify secu-
rity concerns such as: fair exchange, secrecy/confidentiality, secure information
flow, and secure communication links. The UMLSec approach does not explic-
itly address access control. SecureUML [11] is an approach that extends the
UML meta-model to define RBAC policies. AuthUML [12] models RBAC poli-
cies using use cases and Horn clauses to represent the security information and



to check its consistency. AuthUML and SecureUML focus on only one access
control scheme (RBAC). In contrast, the work proposed herein augments UML
with RBAC, MAC, and DAC capabilities. Ray et al. [13] compose access con-
trol behavior into an application by using aspect-oriented modeling techniques
in UML. However, they do not provide a visual notation for security models. In
contrast, the work proposed herein extends the UML notation to represent access
control policies. The work by Doan et al. [14] extends use-case, class, and se-
quence diagrams with tagged values representing access-control attributes, such
as classification and clearance levels, lifetimes (legal time intervals for accessing
elements in the model), etc. Doan’s approach does not provide a collective view
of security at a model level. As a result, access control definitions (i.e., objects,
subjects and permissions) are scattered throughout the design. The approach
proposed in this paper solves this problem providing diagrams that concentrate
into a separate unit the security concerns of the application.

5 Conclusions and Ongoing Work

This paper has presented an approach to compose features from different security
schemes, to represent custom security aspects using specialized diagrams. This
includes an expansion of UML to include role-based, discretionary, and manda-
tory access controls, via new UML diagrams for roles, user authorizations, and
delegation, and MAC features that are applicable to multiple diagrams. As a
result, designers are able to represent access control aspects with UML-based
diagrams and an underlying scheme that combines RBAC, MAC and DAC. The
unification of these three security schemes provides designers with a broader set
of options to define security aspects than each scheme separately. To our knowl-
edge, no other approach integrates RBAC, MAC and DAC into a set of security-
specific UML-based diagrams separated from the main design. The use of se-
curity features should increase flexibility to cope with changes in requirements,
providing compositionality of the underlying security capabilities, which make it
possible to add security features without affecting the non-security aspects of the
design. The usage of existing UML mechanisms to realize this approach (MOF
and PackageMerge) should facilitate the integration of the proposed approach
with tools relying on standard practices for software development, specifically
UML CASE tools. Overall, we anticipate that this work will eventually yield an
improved secure-software-engineering process with security aspects incorporated
as an integral part of the software design and implementation process.

Ongoing research is defining additional security features and diagrams. As given
in Fig. 2, the diagrams and features represent an initial core set of capabilities;
as the work proceeds, there will be changes and refinements. In terms of com-
position, the model as given in Fig. 9 represents one option; part of the ongoing
work is to define allowable combinations of security features (since not all com-
binations make sense), and to prove that the composition of features is secure.
In addition to security support at the design level, past work [7] has explored



the transition to the implementation stage via the generation of aspect-oriented
security enforcement code for the role-slice diagram (see Fig. 3). Part of the on-
going work explores this code-generation capability for all of the security aspects
(and their composition), formalizing the transition from security features into
aspect-oriented code, and ellaborating proofs of correctness of the synthesized
code. The prototyping effort includes the implementation of meta-model com-
position and the notation for security diagrams (delegation and user diagrams,
since the role-slice diagram has been implemented). The prototype will serve to
validate the work proposed herein, and compare it against other approaches for
modeling and implementing security.

References

1. Telecom, A.: Glossary 2000. t1.523-2001 (2001)
2. Bell, D., LaPadula, L.: Secure Computer Systems: Mathematical Foundations

Model. Technical report, Mitre Corporation (1975)
3. Liebrand, M., E.H.J.P.C., Ting, T.C.: Role delegation for a distributed, unified

RBAC/MAC. In: Proceedings of Sixteenth Annual IFIP WG 11.3 Working Con-
ference on Data and Application Security. (2002)

4. Ferraiolo, D., Sandhu, R., Gavrila, S., D., K., Chandramouli, R.: Proposed NIST
Standard for Role-Based Access Control. ACM Transactions on Information and
System Security 4 (2001) 224–274

5. Object Management Group: UML 2.0 superstructure. Technical report, Object
Management Group (2005)

6. De-Win, B., Piessens, F., Joosen, W., Verhanneman, T.: The importance of the
separation-of-concerns principle in secure software engineering (2002)

7. Pavlich-Mariscal, J., Doan, T., Michel, L., Demurjian, S., Ting, T.: Role Slices:
A Notation for RBAC Permission Assignment and Enforcement. In: Proceedings
of 19th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security. (2005)

8. Object Management Group: Meta object facility (MOF) core specification. version
2.0. Technical report, Object Management Group (2006)

9. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development
using uml 2.0: Promises and pitfalls. Computer 39(2) (2006) 59

10. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Pro-
ceedings of the 5th International Conference on The Unified Modeling Language.
(2002)

11. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security. In: Engineering
Theories of Software Intensive Systems. Springer (2005)

12. Alghathbar, K., Wijesekera, D.: AuthUML: a three-phased framework to ana-
lyze access control specifications in use cases. In: Proceedings of the 2003 ACM
Workshop on Formal Methods in Security Engineering. (2003)

13. Ray, I., Li, N., Kim, D., France, R.: Using Parameterized UML to Specify and
Compose Access Control Models. In: In Proceedings of the 6th IFIP TC-11 WG
11.5 Working Conference on Integrity and Internal Control in Information Systems.
(2003)

14. Doan, T., Michel, L., Demurjian, S., Ting, T.: Stateful Design for Secure Infor-
mation Systems. In: Proceedings of 3rd International Workshop on Security in
Information Systems (WOSIS05). (2005)


