
Translating Fusion/UML to Object-Z

Margot Bittner, Florian Kammüller
Technische Universität Berlin

Institut für Softwaretechnik und Theoretische Informatik
�margot,flokam�@cs.tu-berlin.de

Abstract

We present an extension of the development method Fu-
sion/UML that translates the results of analysis and de-
sign into the formal specification language Object-Z. The
extended process establishes a consistency relationship be-
tween analysis and design. Furthermore, a formal specifi-
cation for the implementation is produced.

1. Introduction

Fusion [C�94] is a method for the analysis and the de-
sign of object-oriented software systems. It has contributed
to the development of the UML. However, as we find, the
current Unified Process, that is, the recommended method
for the engineering of systems in the language UML, has
not preserved much of the initial appeal of Fusion. Hence,
we use a combination of the UML language with the Fu-
sion process in teaching and projects. This method is now
extended by an additional translation step into the object-
oriented specification language Object-Z [S00] establishing
a connection of engineering methods and formal specifica-
tion which in turn renders possible formal refinement proofs
and mechanical verification, e.g. [SKS02].

In co-design it seems crucial to establish a formal spec-
ification of the design of an embedded system. Although
the Fusion/UML method is primarily aimed at the develop-
ment of software designs, it establishes a clear picture of
the system borderline and the interfaces to other systems.
Therefore, we believe that the current extension by a trans-
lation step into a formal specification language contributes
to the issues of co-design.

2. Fusion/UML

The method Fusion/UML is separated in two phases:
analysis and design. Each phase guides the construction
of models expressed as UML diagrams. There are six mod-
els for the analysis: (system) class model, use case model,

time-line model, life cycle model, and operation model. The
design models are four: object interaction model, reference
model, class interface model, and inheritance model. The
Fusion method gives a firm guideline in which order to de-
velop the models and what information to carry on from
step to step supporting the check of consistencies between
the various views. The main models are briefly introduced
in the following by means of an example of a very simple
saving account.

For the analysis, the information gathered from the use
cases, time-lines, and life-cycle models eventually enables
to develop the initial class model further into the system
class model determining not only the static structure but
also the borderline between the system and the actors. As
an example, consider the diagram depicted in Figure 1. The

Customer
�

�

Bank
bankcode

�
�

System

Card
nr

� Has � Account
balance

Figure 1. system class model for account

final result for the dynamic part of the analysis is the oper-
ation model. For example, the operation model for the bank
system contains a system operation that enables a customer
to pay into his account.

Operation = deposit
Description = A customer pays an amount into his account.
Input = amnt � �� acc � �
Reads = c � Card with c�nr � acc� Has
Changes = a � Account with �c� a� � Has
Sends = � Customer � �trans ok�
Pre = true
Post = a�balance� � a�balance � amnt �

is sent �trans ok�

The design has to be consistent with the analysis, in par-
ticular, for all system operations defined during the analysis,
the object interaction model has to define object interaction
graphs describing the execution of the system operations
on the objects in the system. The object interaction graph
of the operation deposit is shown in Figure 2.

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

:Customer

deposit�amnt� acc�
�

c � Card

�c�nr � acc�

1 � add�amnt�
�

a � Account

��c� a� � Has�
2: send to�trans ok�
�

Figure 2. object interaction for deposit

3. Translation into Object-Z

The schematic process of translation into Object-Z is de-
termined by a set of general translation rules. Starting from
the system class model, these rules mainly use the opera-
tion model and the object interaction model as input to pro-
duce sets of classes in Object-Z. The schematic translation
is here merely illustrated by showing its result when applied
to the running example. For a full account of the set of rules
and the general translation scheme see [BKa03]. Firstly,
we show the translated system operation deposit being part
of the one class SystemOP representing the system as it is
viewed after the analysis phase. SystemOP comprises sets
of system classes, their associations and operations. Actor
specifications are separate classes but adhere to the inter-
faces defined by the operations.

SystemOP

cards � �Card
accounts � �Account
Has � Card � Account

deposit
��accounts�
amnt�� acc� � �
m� � Report

� c � cards� a � accounts �
c�nr � acc� �
�c� a� � Has �
a�balance� � a�balance � amnt� �
m� � trans ok

For the design, the object interactions are translated into
the controller Card and the collaborator Account.

Card

a � Account
nr � �

deposit �� ���a� amnt�� acc� � � � self �nr � acc�	
� a�add

Account

balance � �

add
��balance�
amnt� � �

balance� � balance � amnt�

3.1. Refinement

The class SystemOP of the analysis is refined by several
controller classes of the design – in our example Card and
Account. To summarize those in one structure, the represen-
tation of the system in Object-Z contains a class SystemOI

that entails sets of references to the controller classes and
the associations. The refinement condition

SystemOP � SystemOI

enables to verify that the axiomatic descriptions in the op-
eration model conform to their representations in the ob-
ject interaction model. Hence, Object-Z refinement ensures
consistency between analysis and design in addition to the
classical verification of system implementations.

4. Conclusions

Fusion/UML is a mature method to guide the process
of designing systems. It supports the checking of consisten-
cies inside and between the involved models. The presented
translation into Object-Z, however, enables the schematic
derivation of a formal specification. The formal specifica-
tion reflects the results of the design. It enables the consis-
tency check between analysis and design.

References

[BKa03] M. Bittner and F. Kammüller. Controlling Con-
sistency in UML with Fusion and Object-Z. Tech-
nical Report 2003-6, TU-Berlin, 2003.

[C�94] D. Coleman et al. Object-Oriented Development
– the Fusion Method. Prentice-Hall, 1994.

[S00] Graeme Smith. The Object-Z Specification Lan-
guage. Kluwer Academic Publishers, 2000.

[SKS02] G. Smith, F. Kammüller, T. Santen. Encoding
Object-Z in Isabelle/HOL. The Z and B User’s
Conference, Volume 2272 of LNCS, 2002.

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

