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Abstract

The role of the Unified Modeling Language (UML) is to model interactive systems, whose
behaviors emerge from the interaction of their components with each other and with the environment.
Unlike traditional (algorithmic) computation, interactive computation involves infinite and dynamic
(late binding) input/output streams. Algorithmic tools and models do not suffice to express the
behavior of today’s interactive systems, which are capable of self-reconfiguring and adapting to their
environment.

Whereas procedural languages may express precise designs of closed processes, UML provides
support for the inherently open-ended preliminary steps of system analysis and specification, which
are becoming increasingly complex. Interactive systems require dynamic models where interaction has
first-class status, and where the environment is modeled explicitly, as actors whose roles constrain the
input patterns.

UML’s interaction-based approach to system modeling fits well with the encapsulation-based OO
approach to implementation. By coupling these approaches, the software engineering process can
provide a complete solution to system design and implementation. A theoretical framework for
modeling interactive computing can strengthen the foundations of UML and guide its evolution.

1. Introduction

The Unified Modeling Language (UML) emerged in response to a need for a notation (a visual
language) that can express the behaviors of today’s inferactive computing systems and that can guide
in constructing them. In the UML framework, software design entails building an object-oriented
representation of a system, as well as of its environment, e.g. its users (modeled as actors).
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Interactive systems such as modeled with UML represent a new paradigm in computation that
inherently cannot be modeled using traditional, or algorithmic, tools. At the heart of the new
computing paradigm is the notion that a system’s job is not to transform a single static input to an
output, but rather fo provide an ongoing service [We2]. The service-providing nature of present-day
systems was specifically noted by the Object Management Group (OMG) in defining the UML
standard [OMG1].

When a system is viewed as a service provider, the interaction between the system and its
environment becomes an integral part of the computing process. UML presents a uniform domain-
independent framework for modeling the different interactions present in today’s systems: interactions
among objects or software components, interactions between users and applications, interactions over
networks (including the Internet), and interactions among embedded devices.

Programs that work non-interactively, transforming a given input to an output by a series of steps,
represent the traditional, or algorithmic paradigm of computation (Figure 1). Theoretical tools for
modeling algorithmic computation include Turing Machines [HU], recursive function theory, and the
lambda calculus, which all define the same set of computable functions [Ba]. Algorithmic computation
is present throughout interactive systems modeled by UML, at the low implementation level, but the
entire system cannot be expressed by such computation. Models of interactive computation are more
recent; they include the Calculus of Concurrent Systems (CCS) [Mi], input/output automata [LMWF],
and Sequential Interaction Machines [WG2, WG3] that maintain persistent state information between
interaction steps.

question answer
—_—

Figure 1. Algorithmic computation

A software system modeled by UML is a computing entity. System components and objects are also
computing entities:

Computing entity: a finitely specifiable software system, component, or object that is being
modeled by UML. Entities may contain sub-entities, or be a part of a larger entity.

Once a system is implemented, its external behavior emerges out of its interactions with its
environment:

Environment of an entity: the producer of inputs for the computing entity, and the consumer of
its outputs; it is outside the entity, interacting with it via inputs and outputs.

Actor: an active role player in a given entity’s environment; for a system, actors are usually
system users, but they may be other systems, software or hardware.

The desired behavior of a computing entity is determined by the service that it provides to its
environment, whether it is the user or other computing entities.

A system’s internal behavior, which affects the external behavior indirectly by affecting the values of
outputs, emerges out of the internal interactions among its components. In this sense, systems and their
components are like organizations and their subunits (departments, teams, or individuals), which
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function through the interactions among these subunits, and between the organization and the external
world.

Given the similarity between software systems and business organizations, it is not surprising that
UML is also applied to model organizations in the context of business process reengineering [Ja2].
However, the present work’s focus is on software systems. We discuss how:

through use case diagrams and other interaction-based diagrams, UML models a system whose
behavior is defined by its observable external interaction with its environment (actors);

subsystems, and objects internal to a system, have their own interactions with their environments,
modeled in UML with state, activity, and interaction diagrams;

UML models external occurrences with events, which may trigger actions;

concurrency and parallelism can give rise to multi-actor interaction, which is a richer kind of
behavior than sequential interaction and is modeled in UML in various ways;

UML reflects a paradigm shift from algorithms toward interaction;

interaction machines provide a theoretical foundation for formalizing interactive computation.

2. The behavior of systems

The service-providing role of systems and subsystems modeled by UML is explicitly noted by
OMG [OMGT1]. In requesting an instance of service, the actor is not concerned with the
implementation details or the internal computations of the system, within the active sub-system
boundary. Nobel prize winner Herbert Simon noted thirty years ago that computers, just like
mechanical systems and social organizations, are defined by their behavior, not their internal structure:

“almost no interesting statement that one can make about an operating computer bears any
particular relation to the specific nature of the hardware. A computer is an organization of
elementary functional components in which, to a high approximation, only the function performed
by those components is relevant to the behavior of the whole system.” [Si]

When discussing computers, Simon mostly referred to hardware systems. Computing at that time
followed a strictly algorithmic paradigm, with procedural code executed in batch mode. It was hard if
not impossible to visualize today’s software systems, which UML was created to model, ones that fit
Simon’s notion of a complex system — an interactive system whose behavior emerges out of its
interactions. By shifting the focus to the relationships between actors and the entity (computing agent),
UML is able to specify software systems that fit Simon’s description of a complex system.

The use-case concept models a system and its behavior by specifying the nouns, the actors and the
entities, rather that the verbs, or procedures. This is an object-oriented approach to design. A system or
subsystem is specified through its external behavior rather than its internal structure; externally
determined patterns of interaction are not constrained by any specific algorithm specification. The
modeling is at the level of interfaces, which specify interactions. The behavior is not modeled
explicitly, but emerges as a result of interactions between the system and its environment.

The implementation/interface distinction corresponds to the duality of internal hidden structure
(configuration and values) versus external observable behavior (external interactions). This duality
holds both for actors in the environment and the entities in the computing system:

The internal structure of an actor is not necessarily known to the entity with which the actor
interacts, and vice versa.
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Two systems or interactive entities may be considered equivalent if a bisimulation (observational
equivalence) relation exists between them [Mil]. This is a relative notion of equivalence, defined in
terms of observable behavior, first proposed by Moore [Mo] in the context of finite transducers,
which can be considered the simplest interactive systems [GK]. When two entities have the same
observable behavior with respect to their environment, they are indistinguishable, or equivalent. By
explicitly modeling the external behavior of actors vis-a-vis the computing system, UML has the
capability to specify when two systems are equivalent, i.e. when their behavior is indistinguishable.
Equivalent systems can be substituted for each other, allowing for component interchangeability.
Providing the notion of equivalence goes a long way towards the formalization of interactive
computing.

By focusing on the behavior, UML abstracts away the implementation details. On the other hand,
object-oriented (OO) programming languages specify the implementation of interactive systems,
components, and objects; their encapsulation mechanism is central to this implementation. However,
the specification stops at the system’s boundaries, without a way to model its interactions with the
environment. Thus, they do not have the capability to specify equivalence of computing systems they
implement.

The interaction-based UML approach to system modeling fits well with the encapsulation-based
OO approach to implementation. By marrying these approaches, the software engineering process can
provide a complete solution to system design and implementation.

3. Three views of system models

Object models have many “small” objects with sequential interface and interaction protocols. That
is to say, the input tokens (events and messages) are supplied via a single stream which serializes the
order in which the tokens are received by the computing entity. The entity must act on each input
before consuming the next one. On the other hand, applications like distributed airline reservation
systems have “heavy” components with multiple interfaces and concurrent interaction protocols.

The gap between static structure and dynamic behavior is greater for interactive computing entities
such as objects than for algorithms, due to two distinct levels of execution dynamics: the external
dynamics of operation execution is entirely separate from that of inner procedural algorithm execution.
To account for this, UML provides several views of system modeling: a static view for describing
static object structure, a dynamic view that describes interactions, and a functional view that describes
transformation behavior of operations [Re, Jal, Ru]:

static view: describes relations among interactive components (nouns); static
description of objects, operations, and relations among objects by class
diagrams, object diagram, and component diagrams,

dynamic view: describes interactions within the system (interobject
dynamics) with use case, sequence, collaboration, and state-transition
Behavioral diagrams;

modeling functional view: describes behavior of specific functions or methods (intra-
object dynamics); modeling algorithmic transformation behaviors with
activity diagrams, state diagrams and narratives.

Structural
modeling

Figure 2: The three views
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These three views represent projections of the system onto different conceptual dimensions,
similarly to database views. Together, they provide a robust modeling framework that can be coupled
with a variety of objectoriented programming environments, as pointed out by Jacobson [Jal]. They
reflect the fact that nouns (agents, entities) provide a more direct and more expressive model of the
real world than verbs (procedures, methods) and the further fact that nouns are modeled
computationally by the patterns of actions (verbs) that they support. UML supports modeling of nouns
and their actions along all three dimensions: the object model expresses relations among nouns, the
dynamic model expresses patterns of interaction, and the functional model specifies the effect of
individual actions.

The threeview approach to system design clearly indicates the role of algorithms as lowlevel
transformation specifications of primitive elements of interaction patterns. Interactive computation can
be broken up into algorithmic steps, but viewing it as nothing more than that would “miss the forest
for the trees”.

Though there is a resemblance among static, dynamic, and functional models and corresponding
levels of modeling for algorithms (see Figure 2), it is only superficial. Consider state diagrams in
UML. Like flow diagrams, they have a starting state and depict flows of control. But flow diagrams
have actions as nodes and control paths as edges, while state diagrams have internal object states as
nodes and observable input/output actions as edges. The state transitions in state diagrams represent a
change in internal action state in response to an external event. State diagrams also resemble
deterministic finite automata (DFAs). UML state transitions may involve input or output; thus they are
transducers, not recognizers or generators. Also, both the number of different transition labels and the
number of different states in state diagrams is not finitely bounded, as it is for DFAs.

Similarly, object interaction histories are very different from algorithm execution histories.
Algorithm execution histories specify internal instruction sequences, while system interaction histories
specify observable events in real or artificial worlds.

An interaction history, which is a trace of interactions during a single (finite) computation, can be
viewed as a test case for the system, analogous to instruction execution histories of algorithm
computations.

Just as no amount of testing can prove correctness of algorithms, interaction histories can only show
the existence of desirable behaviors and cannot prove absolute correctness.

General patterns of interaction depend both on the system and its environment. Because the
behavior of actors in the environment is not completely known, these patterns are not finitely
describable. The behavior of entities that interact with open environments that change unpredictably
during the process of computation cannot be described by algorithms [We3]. This impossibility result
is in spite of the finiteness of the UML model for the system whose behavior we are trying to describe.

The problem of driving from one’s work to home provides an illustration. This problem can be
solved by combining algorithmic knowledge (a highlevel mental map) with interactive visual feedback
of road conditions and topography. In a toy world without traffic or bad weather, interactive feedback
could be replaced by an algorithmic specification of the problem. In this case, it is possible to provide
enough information up-front so that a blindfolded person can know when to turn the steering wheel or
to slow down without any feedback. However, in the real world where every pothole and pebble
affects the car’s trajectory in a chaotic fashion, the complexity of such an algorithmic specification is
enormous. The presence of traffic and the effect of weather conditions make the algorithmic
specification impossible.

Before UML, the non-algorithmic aspect of interactive system behavior forced the literature on
design patterns [GHJV] to resort to informal verbal descriptions of problem and solution structure, by
specifying reusable patterns of object and component interaction. Design patterns are behaviorally
simple interaction patterns, but interaction patterns are too low level to capture userlevel regularities
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(they are the machine language of design patterns). UML provides a higher level notation for
describing design patterns.

The fact that interactive systems cannot be described algorithmically, in a formalism that is
equivalent to Turing computability, is an incompleteness result. The incompleteness of interactive
systems implies that proving correctness is not merely hard but impossible. We must be satisfied
showing the existence of desirable behaviors through test cases (sequential interaction histories in the
case of UML) and cannot hope to prove the nonexistence of all incorrect behaviors.

4. Modeling interaction in UML

4.1 Use cases: a system and its environment

One of the driving notions behind UML is use cases. Use cases encapsulate units of service in a
computing entity: a system, a subsystem, or a class. They are descriptions of a category of externally
required functionality embodied in transactions or interactions, involving actors. A use case is an
abstraction representing the input sources of the system; usually, this means the users, though other
sources of input are possible. Use cases restrict or constrain the user, known as actor, to a particular
role, e.g. customer, vendor, line supervisor. The actor interacts with the system by exchanging
messages. [OMG1]

A use case can be clearly distinguished from a subroutine call or a step in an algorithm. The step is
chosen deterministically by the system design, whereas the use case instance is initiated by the
external actor. To the system, the structure or state of the actor is unknown.

“Since an actor is outside the entity [in a use case], its internal structure is not defined, but only its
external view as seen from the entity.” [OMG1]

As aresult, the actor’s decisions driving the course of the computation are seen by the system as
arbitrary. To the system, the actor acts as a non-deterministic source of inputs.

The system must be designed without having complete knowledge of its environment

Likewise, to the actor, the system is defined by its behavior rather than by its internal structure. The
actor is not presumed to have any information about the implementation of the system. Systems that
have the same behavior appear equivalent, or interchangeable, to users (see section 2).

The actor may dynamically change during the computation. For example, it might be influenced by
the system’s outputs. Thus the system can in no way necessarily anticipate messages from the actor. In
a real-world setting, most users will in fact generate system input that is affected by earlier system
output. The semantics of the interaction sequence thus may include a bi-directional relation of
causality between system input and system output. This is an interactive phenomenon, contradicting a
basic premise of algorithmic computation, where input entirely precedes the processing and the output
of a computation.

4.2 Collaboration diagrams: internal vs. external interaction

We now turn to internal interactions within a computing entity. Here the actors are internal; they are
computing entities within the modeled system, components or objects. Unlike external actors, internal
actors are under the control of the system; their behavior is specified by the system. Internal
interaction is symmetric (mutual), where the entities serve as each other’s actors. From the system’s



An Interactive Viewpoint on the Role of UML 7

point of view, there is no inherent distinction between actors and “actees” for these interactions. This
symmetry is reflected in UML collaboration and sequence diagrams that model internal interactions.

UML’s support of collaboration is an important feature. A collaboration defines a set of roles and
specifies the interactions of the entities that are playing those roles [OMG1]. Collaboration can be
viewed as a constraint on behavior, for computing entities as well as human beings; for example, the
need for collaboration in the workplace or family constrains our behavior [We2]. The simplest
collaboration diagram may simply define a path between interacting objects to denote that instances of
the classes exchange messages in the collaboration.

Sequence diagrams focus on time sequencing rather than role playing. They depict the time-ordering
of the message passing between interacting entities over their lifetime, focusing on the control aspect.
In either collaboration or sequence diagrams, there is no built-in duality of entity vs. environment. For
each entity, the others form its environment, but the overall model takes a neutral stance. This is in
contrast to the entity-centric asymmetric point of view taken in use cases, where the actors are not
necessarily under the system’s control (e.g., they can be human beings, or physical sensors).

Use cases can also be applied to modeling internal interactions; from a computing entity’s point of
view, interactions with internal agents are no different than with external ones. Use cases specify
proper entity behavior in response to the actors, but they make no guarantees about the actors’
behavior. Some behaviors such as collaboration cannot be modeled with use cases. It is not enough to
hope that the actors will collaborate; the model must explicitly specify it. This can only be done when
the model can assume that all parties to the interactions are under the system’s control.

5. Event-driven computing

A notion supported by UML, inherited from the Common Object Resource Broker Architecture
(CORBA), is that of an event. In a single-user GUI-driven system (such as one with the
model/view/controller architecture), the system receives events from an event stream and handles each
one in turn. In a system modeled by UML, events can also be internal to the system, triggering
changes to components and objects. Events act as input tokens for the entities; when the same event
affects multiple entities, it acts as input for each of them.

Events decouple control from statement execution to a greater extent than procedure calling; the
analogy here is to asynchronous vs. synchronous computation. Exceptions in traditional programming
languages are a restricted form of events that cause the normal flow of control to be modified when
exceptional actions are required. Event models elevate the exception mechanism to be the primary
control structure and generalize it so that occurrence of an event can cause multiple components to be
notified of its occurrence.

Streams are distinct from strings or sequences due to their dynamic nature; each element in the
stream is not available until the previous one is processed; this is known as a lazy evaluation
mechanism. Lazy evaluation allows each input token to be produced interactively, after the previous
token has been processed. As a result, an interactive input stream between an actor and the system is
theoretically infinite: it can always be dynamically extended. For example, the user of a workstation
may choose to work a little longer before logging off. This is analogous to interactive hardware
devices (transducers), which generally do not enforce a finite restriction on the length of input: they
stop only when the power is turned off. The fact that UML can model open-ended event loops means
that it can model non-algorithmic behaviors. Algorithms, defined as plans for finite processes, cannot
express computation over dynamically supplied infinite input streams; by definition, they have finite
input and output. A stream of input or output tokens, defined as stream = (token, stream), is an
element of a non-well-founded set defined by coinductive, rather than inductive, methods [BM, JR,
Rul, WG3].
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6. Concurrency and multi-actor interaction

Once we accept the idea that interactive behaviors are richer than algorithms, we can distinguish
two levels of interactive expressiveness, sequential vs. multi-actor. In a sequential interactive entity
such as an abstract data type, there is a single input (event) stream, representing non-concurrent
interaction with a single actor. A multi-actor interactive entity processes multiple concurrent
interaction streams, each one representing interaction with a separate autonomous actor. The actors
interact with the entity simultaneously and independently (autonomously), without necessarily any
awareness of the presence of other actors. Moreover, the number of actors can change dynamically:
actors can start and terminate their interaction with the entity without the awareness of other actors.

A multi-actor interactive entity is a composite entity, with multiple sub-entities. Some of its sub-
entities interact with these external actors, while others only interact internally. Just as actors can come
and go, so can these sub-entities; they can be born or die. Interaction streams, too, can be created,
rerouted, or destroyed. As a result, the design of multi-actor interactive entities involves active
management of interaction, at a level unseen in sequential interaction.

The need for active management of interaction, and for dynamic reconfiguration of interactive
entities, makes multi-actor interaction harder to formalize and to model than sequential interaction. On
the other hand, it allows the set of behaviors for multi-actor systems to be strictly richer than for
sequential systems. Evidence for greater expressiveness of multi-agent interaction comes from
transaction theory (where the class of non-serializable transactions is known to be richer than the
serializable transactions), and from concurrency theory (where true concurrency is not believed to be
reducible to interleaving concurrency) [Pr].

Multi-agent interaction precisely defines concurrent distributed systems: it is precisely the
interactive aspect of concurrent and distributed computation that makes it more expressive, and more
difficult to formalize [WG3]. When a modeling notation includes restrictions on concurrent behavior
that force it to become serializable, its expressiveness is reduced. It is challenging to find clean
notations for specifying concurrent behaviors that capture the full expressiveness of these behaviors.
UML provides support for concurrency (multi-agent interaction), but it is not surprising that there are
weaknesses with this support [MM], since the nature of multi-actor interaction is still poorly
understood.

Work is under way to use wireless communication and the Internet to enable richer interaction
among embedded sensors and controllers, such as those inside cars and appliances, so the streams of
data flowing past each device can be harnessed to the benefit of other devices in the network. This is
the theme of a recent issue of the Communications of the ACM [EGH]. Although this phenomenon has
been labeled “beyond interaction” (where interaction is presumed to be associated with human-
computer communication [Te]), communication among embedded devices fits precisely into out
notion of interaction, and can in principle be modeled by a language like UML.

7. A paradigm shift

The need for new notations for modeling software and information systems arose from the ever-
increasing level of complexity of today’s systems. The rise of the world-wide web compounded our
expectations of software systems, providing them with a virtual environment far more complex than
heretofore. As the level of complexity increased, so did the level of abstraction. Structured
programming’s emphasis on the sequence-branch-loop trio of control structures gave rise to structured
flow-charting. Top-down design gave rise to module-hierarchy diagramming. Object-based
programming brought forth class diagrams. The entity-relationship diagram came in part out of the
linking of database relations.
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UML developed as these approaches showed their limits at modeling distributed concurrent systems
that offer replication and load balancing while trying to ensure security and fault tolerance [OMG?2].
What is modeled today are systems that offer tangible user services, not just transform data, and where
interaction is pervasive.

The interactive, indeed multi-interactive, aspects of today’s computing were highlighted by Cris
Kobryn, one of those involved in UML’s development. He noted that UML emerged under the
impetus of the urgent need to add a superstructure for interprocess communication and distributed
system services to the infrastructure supplied by the widely-used Common Object Resource Broker
Architecture (CORBA). CORBA’s IDL could not specify use cases, collaborations, state transitions,
and work flows that can be found in a complex system, such as an interactive software system or a
business organization [Ko].

The paradigm shift from algorithms to interaction is intimately related to the evolution of practical
computing. The technology shift from batch-oriented, procedural mainframe-based technology of the
1960s to object-oriented, GUI-driven, distributed workstation-based technology of today and to
mobile, embedded, pervasive computing agents of tomorrow is fundamentally a shift from algorithms
to interaction.

yesterday: batch-oriented, procedural mainframe-based technology
today: object-oriented, GUI-driven, distributed workstation-based technology
tomorrow: mobile, embedded, pervasive, adaptable computing agents

The implicit contract between computing entities (such as systems or objects) and their clients
(users or other entities) has changed from a sales-like contract to transform inputs to outputs to a
marriage-like contract to provides continuing services over time [We2]. Computing agents express
persistent services over time (marriage) which cannot be modeled by time-independent input-output
actions (sales). The folk wisdom that marriage contracts transcend sales contracts translates to the
formal result that interactive systems cannot be modeled by algorithms.

Expressiveness, or power, of finite computing agents is defined in terms of the agent’s ability to
make observational distinctions about its environment. This notion of expressiveness applies equally
to people and to computers. People who see are more expressive than otherwise-identical blind people
because they can make visual distinctions, while telescopes and microscopes increase expressiveness
by allowing people to make still finer distinctions.

The ability of interactive agents to make finer distinctions than algorithmic processes is illustrated
by question answering. Interactive questioning forces the answerer to commit to earlier answers
before seeing later questions; it also allows the questioner to base later questions on the answers to
earlier ones. For example, if an investigator (questioner) is interrogating a suspect (answerer), the
investigator can learn more by interactive questioning with follow-up questions than by asking the
suspect to fill in a questionnaire, which has the status of a multi-part single question. As a result, it is
possible to imagine cases where suspects can fill out any questionnaire without implicating
themselves, but where an interactive interrogation can exploit weaknesses in their story to establish
their guilt.

The idea that interaction is not expressible by or reducible to algorithms was first proposed by
Wegner in 1992 at the closing conference of the fifth-generation computing project in the context of
logic programming [We4]. Reactiveness of logic programs, realized by commitment to a course of
action, analogous to the suspect’s commitment to earlier answers, was shown to be incompatible with
logical completeness, realized by backtracking. The fifth-generation project’s failure of achieving its
maximal objective of reducing computation to first-order logic can be attributed to theoretical
impossibility rather than to lack of cleverness of researchers.
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Brooks’ belief that there is no silver bullet for system specification [Br] can be restated in terms of
the impossibility of algorithmic specification of interactive systems. In fact, a proof of irreducibility of
interactive specifications to algorithms can actually be interpreted as a proof of the nonexistence of
silver bullets. The irreducibility of interaction to algorithms also explains Rentsch’s comment that
“Everyone is in favor of [object-oriented programming] but no one knows just what it is.” [Ren] If
“knowing what it is” means reducing object-oriented programming to algorithms then the reduction is
bound to fail. But if we enlarge the class of things that “count” as explanations of object-oriented
programming to include interactive models such as specified with UML, then we can succeed.

8. Interaction machines: a model of interactive computation

Interactive computational models provide a formal framework for interactive computation, just as
Turing Machines (TMs) model algorithmic computation. TMs have a tape, which initially contains a
finite input string, and a state transition mechanism that reads a character from the tape, performs a
state transition, optionally writes a character on the tape, and repositions the reading head. When the
machine halts (goes into a “halting” state), the contents of the tape represents its output.

Sequential interaction machines (SIMs) model objects and software components. Persistent Turing
Machines, which are a canonical version of a SIM, extend the Turing machine model by treating each
Turing computation as a “macrostep” in an interactive computational process over a dynamically
generated stream of input strings. Another essential extension is a persistent internal worktape, so the
initial TM configuration (which includes the contents of this tape) changes for every macrostep:

OUW outputy OUW
S S S

—> C_1|—»C_1—>
stateg state; state, e

inW inputy inputy

Figure 3. Sequential interaction

SIMS model sequential interactive entities such as abstract data types, where there is a single input
(event) stream, representing non-concurrent interaction with a single actor. A multi-actor interactive
entity, whether it is a system or a component, processes multiple concurrent interaction streams, each
one representing interaction with a separate autonomous actor. Multi-actor interaction machines
(MIMs) are more expressive than SIMs. Multi-actor interaction is more expressive than sequential
interaction, explaining why true concurrent distributed computation cannot always be simulated by
interleaving computations.

A computing system is said to be open if the course of its computation can be affected by external
events, and closed otherwise. The distinction between closed and open systems is precisely that
between algorithmic and interactive computing. Turing machines are closed systems because their
rules of engagement require all inputs to be supplied on an input tape before the beginning of the
computation. Algorithms are closed because they shut out the world during computation. Interactive
computing is open in allowing external agents to observe and influence computation.

Any open system can be closed by constraining its rules of engagement to be independent of
external effects. If two interactive (open) subsystems only interact with each other, then the system or
subsystem which results from their composition is closed. This closed system may be algorithmic, if
both subsystems are finitely specifiable and effective. Twocomponent systems where each acts as a
constraint on the other arise in control theory: one component is the system being controlled while the
other is a controller.
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Models of interaction provide a unifying conceptual framework for the description and analysis of
object and componentbased architectures. They are a tool for exploring software design models like
UML, models of distributed object and interoperability like CORBA, design patterns, coordination
languages like Linda and Gamma, and Al models of planning and control.

The irreducibility of interactive systems to algorithms was noticed by [MP] for reactive systems, by
[Mil] in the context of process models, and by [We3] in the context of interaction machines. This
approach in [We3] differs from related work by focusing on models of interaction and notions of
expressiveness that are language-independent as well as domain-independent. Subsequent work
[WG2, WG3, Go], has led to the development of persistent Turing machines (PTMs) as a canonical
model of sequential computation, of an expressiveness hierarchy for sequential computation, and of
the result that multi-stream interaction machines (MIMs) are more expressive than sequential
interaction machines (SIMs).

Turing’s proof that algorithms, Turing Machines (TMs), and the lambda calculus are equally
expressive [Tul], suggested that the question of expressiveness of computing had been settled once
and for all (Church’s thesis), and channeled research to questions of design, performance, and
complexity for a fixed notion of computability. But as a result of the irreducibility of interaction to
algorithms, we know that software systems cannot be modeled by TMs, and their behavior cannot
inherently be expressed by first-order logic. New classes of models are needed to express the
technology of interaction, and UML fills that need.

9. Conclusion

UML provides a solution to the challenge posed by Milner in 1975, that functions cannot express
meanings of processes [Mi2, We3]. UML models nonalgorithmic computation of interactive systems
that operate in open noncomputable environments.

Interactive computational models are common nowadays in software engineering, operating
systems, and artificial intelligence. The evolution in Al from logic and search to agentoriented models
is not merely a tactical change but is a strategic paradigm shift from algorithms to more expressive
interactive models that fundamentally increases expressive power. The reasoning/interaction
dichotomy is precisely that between “good oldfashioned” AI (GOFAI) and “modern” agentoriented
Al This paradigm shift is evident not only in research (such as the StarLogo system [St]) but also in
textbooks that systematically reformulate Al in terms of intelligent agents [RN]. UML might prove
useful in the Al area, for intelligent agent design.

With the systems modeled by UML, we see a re-introduction of side effects, once banished (“Goto
considered harmful”). Side effects were shunned because they produced nonformalizable behavior.
Formalizability, or the ability to formally prove various properties of the system, is an attractive
feature of algorithmic computation, and it was felt that any computation with side effects could (and
should) be transformed to an equivalent one without. With interactive computation, side effects are
inevitable; e.g., invoking a method changes the state of the method’s owner. Rather than view
interactive computation as “undesirable” due to its nonformalizability, we must take it as a challenge
to find new, non-algorithmic, tools and methods for formalizing computation, ones where side effects
have a place.

It’s interesting to note that Turing’s seminal paper [Tul] was not intended to establish TMs as a
comprehensive model for computing but on the contrary to show undecidability and other limitations
of TMs. Turing actually mentioned irreducibility to TMs of interactive choice machines (c-machines)
as a presumably well-known fact [Tul]. However, he did not proceed any further with a theory for
such a machine. This early reference to interactive computation has basically gone ignored by the
community that Turing founded.
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It is tempting to assume that interactive models of computation such as c-machines have not been
studied due to lack of their intellectual merit. However, there is a different explanation: that the theory
community has lacked the proper conceptual tools to make progress on these ideas. The claim that
interactive computation is more expressive than algorithms opens up a research area that had been
considered closed. Much work needs to be done on both the foundations and applications of
interactive computing, to provide a systematic foundation for interactive software technology [Wel].
UML provides a large step forward with motivating and enabling this work.
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