
Using UML for Automatic Test Generation

Alessandra Cavarra
Jim Davies

Oxford University
Computing Laboratory

ale@comlab.ox.ac.uk,
jdavies@comlab.ox.ac.uk

Thierry Jeron
Laurent Mounier

IRISA / INRIA Rennes/
VERIMAG–Centre Equation

thierry.jeron@irisa.fr,
laurent.mounier@imag.fr

Alan Hartman
Sergey Olvovsky

IBM Haifa
Research Laboratory

hartman@il.ibm.com,
olvovsky@il.ibm.com

ABSTRACT
This paper presents an architecture for model-based testing
using a profile of the Unified Modeling Language (UML).
Class, object, and state diagrams are used to define essential
models: descriptions that characterise the entire range of
possible behaviours, in terms of the actions and events of
the model. Object and state diagrams are used to introduce
test directives.
Models written in this profile may be compiled into a tool

language: the Intermediate Format (IF). Descriptions writ-
ten in IF can be animated, verified, and used to generate
tests. As well as illustrating the testing tool adopted, the
paper defines the profile for UML, explains testing direc-
tives, the basis of the compilation into IF and of the test
generation process, and reports upon the problems encoun-
tered.

1. INTRODUCTION
Software systems are extremely complex; the amount of

information contained in a system implementation is hard
to comprehend in its entirety. As we cannot test without
first understanding what the implementation is supposed to
do, we need a way to manage this complexity. A well-known
technique to do this is the creation of a suitable model of
the system.
The suitability of a model depends upon the intended ap-

plication. Clearly, we must include every piece of informa-
tion that is relevant to our purpose, but we must also try to
exclude any piece of information that is not. A model with
too much information may be difficult to comprehend, and
too complex for automated software engineering. A model
that is entirely suitable for one purpose may be less suitable
for another: some vital piece of information may be miss-
ing. If we have several purposes in mind, then we may need
several different models of the same system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA 2002 Rome, Italy
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

In this paper, we describe a modelling architecture for
the purposes of model-based verification and testing. We ex-
plain how the resulting models can be translated—automati-
cally—into a language of state machines, animated, verified,
and used as a basis for automatic test generation. Models
and test directives are described using the Unified Model-
ing Language (UML) [12], although the architecture could
be applied to any modeling language with a suitable, state-
machine semantics.
This work is being carried out as part of the EU-funded

AGEDIS project [20]; the acronym is formed from the phrase
Automated Generation and Execution of test suites for DIs-
tributed component-based Software. The project involves
seven industrial and academic research centres. The work is
coordinated by IBM Research, Haifa; the academic contrib-
utors are the University of Oxford, IRISA, and the Univer-
sité Joseph Fourier, Grenoble. The industrial partners are
France Telecom, IBM Hursley (UK); Intrasoft International
(Luxembourg); and imbus AG (Germany).
The aim of the project is to develop methods and tools for

the automation of software testing, with particular empha-
sis on the testing of distributed, component-based systems;
the project started in November 2000, and is expected to
run until October 2003. The academic contribution is to
define the modelling language, describe a suitable seman-
tics, address the problems of complexity, and to design and
implement the new test generation tool from the existing
ones.
We begin with a description of the architecture itself. In

Section 3, we define a UML profile for test models. In Sec-
tion 4, we introduce test directives and describe the language
for test directives. In Section 5, we explain how models are
compiled into the Intermediate Format (IF). In Section 6
we explain the principles behind the use of these models for
the generation of test suites. We end with a discussion of
related and future work. Finally, an example is presented in
Appendix A.

2. ARCHITECTURE
The first component of the architecture is the system

model, written in UML; this is a collection of class, state,
and object diagrams:

• the class diagram identifies the entities in the system;

• the state diagrams—one for each class—explain how
these entities may evolve;

• the object diagram specifies an initial configuration.

System model

UML

class diagram

object diagram

state diagrams

State machine

IF

Test directives UML object diagrams state diagrams

Test suite / result

ATS

compile

generate /
model-check

System implementation

test

Figure 1: An architecture for automatic test gener-
ation

The second component, again written in UML, is the test
directive; this consists of particular object and state dia-
grams:

• the object diagrams are used to express test constraints
and coverage criteria;

• the state diagrams specify test purposes.

The system model and the test directives can be con-
structed using any of the standard toolsets, such as Rational
Rose [5], Together Control Center [22], or Objecteering [19].
The compiler takes the model and produces a collection of

extended interacting state machines, written in the Interme-
diate Format (IF) language [2]. The form of each machine
is dictated by the state diagrams of the model, their inter-
action mimics the action–event mechanism of UML.
An IF representation can be animated, verified, or model-

checked using the tools of the CAESAR/ALDEBARAN De-
velopment Package (CADP) [9]. In this case, the test di-
rective describes a test upon the model, a property to be
checked, and the output is either a confirmation that the
property holds, or an explanation of why it does not.
Alternatively, an IF representation can be provided as in-

put to the TGV (Test Generation with Verification) tool [18].
In this case, the state diagram component of the test direc-
tive is used to guide the exploration of the underlying transi-
tion system, constructed—on-the-fly, if necessary—from the
IF state machine description. The output of the test genera-
tion is an abstract test suite (ATS) containing the sequence
of simulations and observations (with the associated verdict)
a test engine should perform to run the test against a system
implementation. Several formats are available to represent
the ATS (for instance TTCN is one of the standard used in
the telecommunication industry).

3. THE AGEDIS MODELLING LANGUAGE
In the sequel, we refer to the subset of UML that we have

chosen as the AGEDIS Modelling Language (AML).

3.1 Choosing UML
A primary consideration in choosing this language was

accessibility, or ease of use. It must be within reach of the
ordinary practitioner—modeller or tester—in the software
industry. This led us to a graphical notation, based upon
an existing, industry-standard modelling language: UML
was the best candidate.

Another consideration was domain appropriateness, a com-
bination of adequacy and abstraction. The chosen subset of
UML must be rich enough to describe the properties that
we wish to test. At the same time, it should not include
any unnecessary constructs, complication, or complexity: it
should be as simple as possible.
Closely related is a consideration of compositionality, or

scalability. It should be possible to combine models of com-
ponents to produce a model of a complete system. The exist-
ing semantics of UML does not present enough information
to achieve this; we have extended it with an explanation of
message passing and interaction.
(Although the semantics has been extended, to produce a

precise, complete interpretation of those parts of UML that
we need, the syntax of the language has not: we are working
entirely within the accepted UML syntax; the additional
information required can be supplied using standard UML
constructs and mechanisms.)
The UML [12] is a set of techniques for specification,

visualisation, and documentation. The language is based
primarily upon object-oriented methodology; however, con-
cepts were added from Harel’s language of StateCharts [13],
Petri Nets, Message Sequence Charts and SDL.
An important aspect of UML is the presence of variation

points in the language semantics: the definition of the lan-
guage is intentionally incomplete; further interpretation is
required before a model written in UML can be used as a
basis for formal analysis or automatic test generation.
Also required is instantiation. UML does not include a

language of data types and operations; instead, these are
written in the target language of the specification, normally
an imperative programming language. If we wish to compile
our models, we must define a target language.

3.2 Target language
We will use IF itself as our target language. Operations,

actions, and data types will all be written using a basic sub-
set of IF syntax, accessible to anyone who has some famil-
iarity with imperative programming languages. There are
two obvious advantages to this choice:

• our diagrams will use the same target language, whether
the language of implementation is C, C++, or Java;

• the compiler can focus upon the translation of state
machines, and the interpretation of UML actions; it
does not need to translate primitives.

The translation from the implementation language of an
API—whether it is C, C++, or Java—to this syntax is easily
automated. The only aspect that invites user intervention
is the choice of data representation.
The primitive types defined for IF include the standard C

datatypes, integers, arrays, and records. So user interven-
tion is not required ; however, it may be desirable.

3.3 Class diagrams
A class is a description of a set of objects that share the

same attributes, operations, relationships, and semantics.
In a class diagram, each class is drawn as a rectangle with
three compartments: the top compartment holds the class
name, the middle holds a list of attributes; the bottom holds
a list of operations.
In our profile, attributes may be observable: the values of

observable attributes may be inspected at any point during

a test. By default, attributes are not observable: we indicate
that they are by adding a tag.
Operations may also be observable, in that the occurrence

of the operation (and any return value) will be recorded in
any projected model. Furthermore, they may be control-
lable, indicating that they may be called from outside the
system—during a test; we may use another tag to indicate
this.
We use associations in place of data attributes of class

type. In a class diagram, an association is represented as a
solid line between classes. Associations may be annotated
with roles—an attribute name at one end reveals the (for-
mal) name used for an object of the closer class, within the
context of an object of the other class.

3.4 Object diagrams
An object diagram shows the state of the system at a

certain point in time, as a collection of objects, each in a
particular state. We will use object diagrams to describe
the initial configuration of the system model, to specify a
starting configuration in a test directive and to flag config-
urations for inclusion or exclusion in a test model.
The object diagram notation is similar to the class nota-

tion. The state of an object may be constrained using an
assertion, a state name from the corresponding state dia-
gram, or by constraining the values of its attributes.
The presence of a link between objects indicates that com-

munication is possible. A link may be decorated with infor-
mation about roles: an attribute name at one end of a link
reveals the name used, within the context of the closer ob-
ject, for the object at the other end.
We will annotate the object diagram representing the ini-

tial state of the system by the stereotype <<initial>>.

3.5 State diagrams
A state diagram shows how an object will react to the

arrival of an event. Each reaction may be a sequence of ac-
tions, possibly accompanied by a transition from one named
state to another. An event represents the receipt of a signal,
or the effect of an operation call. An action represents the
sending of a signal, or the call of an operation.
To simplify the presentation, we may factor some of the

transition information into a state:

• actions that are common to every incoming transition
may be included as entry actions for that state;

• actions that are common to every outgoing transition
may be included as exit actions.

If the only transition(s) that do not mention a particular
action are self-transitions, then we may make these internal
transitions, and proceed with the factorisation.
A transition may be annotated with an event, a guard,

and an action expression. The transition begins, or fires,
with the occurrence of the trigger event. If there is a guard,
it is evaluated before the action list is considered—should
it prove to be false, no change in state will take place; in a
sense, the transition is cancelled.
If there is no guard, or if the guard is true, then the exit

actions of the source state are performed, followed by the
actions of the transition itself, and then, finally, the entry
actions of the target state.
If two outgoing transitions are enabled at the same time—

either because they are both labelled with the same event,

initial state

sequential
composite
state

State 1

entry / actionA
exit / actionB
event1 / actionC

State 2

entry / actionE
exit / actionF

event2 / actionD

simple state

State 3
final state

event3[guard] / actionG

event4

event5

Figure 2: A UML state diagram

or because neither requires an event, and both guards are
true—then either may fire. State diagrams cope easily with
the phenomenon of nondeterminism.

3.6 Actions
A call action is an action in which a stimulus—a call

event—is created that can trigger an action sequence in an-
other object. Call actions are synchronous: the caller waits
for the event to be processed before resuming execution. A
call action may have a return value.
A send action also creates a stimulus—this time, a signal

event. Send actions are asynchronous: the caller proceeds
without waiting for the event to be processed. An object can
send a signal event to any object for which it has a reference,
including itself. A send action has no return value.
Send actions need not correspond to operations in the re-

ceiving object. This means that we require a class diagram
to explain the structure of signal events (the structure of a
call event is already described by the signature of the corre-
sponding operation, given in the main class diagram).
In this class diagram, we may include a tag in each name

compartment to indicate whether these events are observable
or controllable—can be sent by the environment. To indicate
that these are classes of signal events, we label each class
with the stereotype <<signal>>.
Both send and call actions begin with the name of the

target object, which must be within the scope of the state
diagram. It could be one of the declared attribute names,
but it is more likely to be a role name, at the far end of a
link or association.
In the case of an object diagram, the role name is not

needed to identify the callee object unless the object has
been left anonymous, or is known by a different name inside
the state diagram of the current object. Role names are
not needed in class diagrams unless the object performing a
particular role can be created during the test phase—in this
case, it can’t be named in the initial object diagram.

4. TEST DIRECTIVES
We use the term “test directive” to denote the collection

of information that, when combined with the system model,
defines the test suite that will be generated.
Test directives are a formal expression of some testing

requirements. They are crucial in an automated test gen-
eration process since they allow the user to guide the test
generator during the test selection phase. Therefore they
should offer a sufficient level of expressiveness (which model
elements we can refer to, which primitives are allowed to
describe the test requirements, etc).
We propose here three kinds of test directives: test pur-

poses, test constraints and coverage criteria. In general, test
directives provided by the user will come in form of combina-
tions of test purposes, test constraints, and coverage criteria.

4.1 Test constraints
Test constrains are used to describe additional restric-

tions, steering the test generator during the selection of rele-
vant execution sequences. Test constraints may be described
by object diagrams or included in a test purpose diagram
(see section 4.3).
Whereas in a test purpose diagram constraints are spec-

ified explicitly by boolean expressions, when an object dia-
gram is used constraints are given by the system configura-
tion the diagram represents.
We propose four kinds of test constraints:

• start to give a global constraint on the start state of
the expected test case. The test case starts in a state
S where the configuration given by the diagram holds.

• include to express that at least one state of the se-
quences of the specification selected for test genera-
tion must satisfy the constraint given by the object
diagram;

• exclude to express that no state of the sequences of the
specification selected for test generation should satisfy
the the constraint given by the object diagram;

• end to give a global constraint on the termination state
of the expected test case.

Accordingly, we stereotype object diagrams modelling test
constraints <<start>>, <<include>>, <<exclude>>, <<end>>.

4.2 Coverage criteria
Coverage criteria describe coverage requirements when gen-

erating sets of test cases. They are used to generate a set
of test cases with respect to a given coverage constraint. A
coverage criterion is expressed as a set of expressions over
object variables. For each reachable combination of these
expression values, a test case is generated in which at least
one state of the selected sequences satisfies the given con-
straint. This coverage can therefore be viewed as a set of
include constraints, producing multiple test cases satisfying
all the include predicates. In addition, projection coverage
criteria statement may appear inside test purpose specifi-
cations. We adopt projected state and transition coverage
criteria as described in [7].

4.3 Test purposes
A test purpose is a description of a pattern of behaviour.

As with the patterns of behaviour in the model itself, it can
be expressed as a UML state diagram. The main differences
are:

• The test purpose is a description of system behaviour,
so we have events and actions from different classes
appearing in the same state diagram.

• Test purposes can include global constraints, obser-
vations, coverage criteria, and global preamble and
postamble constraints.

• The trigger and action expressions that decorate tran-
sitions can include regular expressions. They do not

represent processing of events by the local machine;
they match transitions of the model. Transition may
also have local coverage information.

• In order to provide additional information for the test
generator, states may have special labels and be anno-
tated by local constraints, observation, and coverage
criteria.

We will label any state diagram that forms part of a test
directive with the stereotype <<test purpose>> (there is
no need to stereotype the state diagrams used to define the
system model).

Combining test directives. Test purposes may be com-
bined to test constraints and coverage criteria both globally
(at the diagram level) and locally (at the state/transition
level).
Globally, such combinations are shown by means of notes

attached to the test purposes diagram. In particular, a test
purpose can be annotated with a note containing the follow-
ing information

• start/ bool-expression defines the beginning of a
test cases: the test case starts in a state S where the
given boolean expression holds. The part of test case
leading from the initial state to state S is called pream-
ble.

• include/ bool-expr_1...bool-expr_n to impose that
at least one state of the sequences of the specification
selected for test generation must satisfy the given con-
straints.

• exclude/ bool-expr_1...bool-expr_n expresses that
no state of the sequences of the specification selected
for test generation should satisfy the given constraints.

• end/ bool-expression defines the end of a test case,
i.e. the test case ends in a state S where the given
boolean expression holds. The sequence leading from
the state where the verdict has been established to
state S is called postamble.

• cover/ expr_1,..expr_n ["when" bool-expression]
selects test cases containing all the reachable combina-
tions of expressions expr_1,..expr_n provided that
bool-expression is satisfied.

States. States are part of the functional test purpose. Each
state may be annotated by local constraints, observation,
and coverage criteria, according to the following syntax:

exclude/ bool-expr_1, ...bool-expr_n
observe/ var1, ...varn ["when" bool-expression]
cover/ expr_1, ...expr_n ["when" bool-expression]

We use the following reserved labels to indicate some spe-
cial states:

• #init simply indicates the test purpose initial state;

• #accept indicates a successful termination of the test,
i.e. the termination of test sequences one wants to
include in the test selection;

• #reject indicates a rejecting state, it allows to exclude
some behaviours from the test selection;

• #start to indicate the initial state of the actual test
case;

• #end denotes the test purpose final state.

State

/bool-expr_1...
/ var1...varn bool-expr

exclude
observe w hen
cover

bool-expr_n

/ expr_1...expr_n bool-exprw hen

Triggers and guards. The generation tool will explore a
combination of the model and the test purpose. In this com-
bination, a transition occurs for the test purpose whenever
a matching transition occurs for the model.

transition-label ::= trigger ["["guard"]"]

guard ::= bool-expression |
"cover" expr_1, ...expr_n

["when" bool-expression]

trigger ::= "otherwise" |
regular-expression-on-model-events

Regular expression labels are supposed to match with
specification transition labels. During test generation, spec-
ification and test purpose are strongly synchronised. A tran-
sition of the test purpose is required to match a transition of
the specification. The otherwise label denotes a transition
that is to be fired if in the test purpose there is no transition
synchronising with the specification.
We indicate that an event is to be received by a compo-

nent’s state machine by prefixing the event with a question
mark (?); e.g. ?obj.ev() means that event ev must be re-
ceived by obj. To express that an event is to be sent to a
component, we prefix the event with an exclamation mark
(!); e.g. !obj.ev() means that event evmust be sent to obj.
To express that an object obj1 calls an operation of another
object, say obj2, arising an event we write obj1!obj2.op().
Finally, to express that an object obj2 receives an operation
call from another object obj1, we write obj1?obj2.op().
Parameters of input/output events can be either explicit

values, or wild cards. In particular, we use "*" to indicate
an arbitrary number of elements and "_" to indicate exactly
one element. Regular expressions are expressed according
to the following notation.

• An event can be preceded and followed by any other
event, or alternatively by a particular one (in this lat-
ter case we need to match a sequence of events). We
write *{a,b,c} to indicate that events a, b, and cmust
occur, but any other event can also occur.

• All or some of the parameters of a given event are
irrelevant. We write ev(_,x,_) to indicate that the
first and third parameters are irrelevant, whereas the
second one must be x. We write ev(*) to indicate that
the event’s parameter can have any value.

• The object instance performing a given operation is ir-
relevant. We specify this as *className3.operation().

State1

State2

?obj1.B(_,_,_)[obj1.x > obj2.y]

!obj1.A(_,obj1.x)

State3

obj2!obj3.C(_)[obj3.z obj3.w]and

#accept

Figure 3: A test purpose

For instance, the test purpose in fig. 3 generates test cases
by selecting execution sequences in the system model as
follows: after an arbitrary number of transitions not per-
forming “!obj1.A(_,obj1.x)”, the action occurs in a tran-
sition (the first parameter being any value). Then, again
after an arbitrary number of transitions not labelled with
“?obj2.B(_,_,_)”, we reach a state in which the condi-
tion “obj1.x > obj2.y” holds, and from which the event
“?obj2.B(_,_,_)” is received (for any parameter values).
Finally, last transition in the test purpose fires if the con-
dition “obj3.z and obj3.w” holds and in the system spec-
ification obj2 calls method C (with any parameter value) of
object obj3.
Guards are boolean expressions over objects attributes.

They are specified using IF enriched with (universal and
existential) quantifiers over system objects.

5. COMPILATION
The Intermediate Format (IF) language was developed

to sit between high-level specification languages, such as
Sdl [15], Promela [14] or Lotos [4], and tool-specific in-
ternal representations. IF representations can be passed be-
tween tools, and translated into other languages: for ex-
ample, Sdl specifications can be analysed using the Spin
model-checker [14]. Moreover, translating high-level lan-
guages into IF may also allow to extend (or fix) some (open)
parts of their semantics: for example IF is used to give a
precise timed semantics to Sdl [3].
The choice of using IF as an intermediate format between

the AML modelling language and the test generation tool is
motivated by several arguments:

• First of all, it allows us to re-use some of the tools
already developed within the IF environment. In par-
ticular the existing IF simulation engine, able to gen-
erate on-the-fly the underlying labelled transition sys-
tems associated to an IF description, will be used as a
front-end of the test generation tool.

• Moreover, using IF offers a relative flexibility when
defining the AML semantics: for a given AML con-

struct, several translation schemes can be foreseen, in-
dependently of the simulation engine. Thus, it be-
comes easy to define the AML semantics in an incre-
mental way, and to extend the compiler accordingly.

• Finally, the potential loss of efficiency caused by the
use of an intermediate representation (instead of per-
forming the simulation directly at the AML level) is
largely compensated by the optimisation tools avail-
able at the IF level. In fact, previous experience with
Sdl demonstrated that using IF and static analysis
techniques gave us a much more efficient simulator
than the already existing ones. In particular model-
based test generation can be advantageously combined
with slicing techniques[1]

In IF, each of the objects in our specification is represented
as an extended finite state machine, or process instance. The
state of each process—the values of local variables—is pri-
vate; processes evolve and communicate by sending and re-
ceiving asynchronous signals along specified signalroute in-
stances. Process and signalroute instances can be either
created statically (at system initialisation), or dynamically
(at run-time). A signalroute can be reliable or lossy, peer-
to-peer or multicast, FIFO or multiset, timely or delayed.
As in UML, the arrival of a signal may trigger a transi-

tion between states, accompanied by a specified sequence of
actions. This sequence may involve sending signals to other
processes, or changing the values of local variables.
The process of compilation revolves around the state dia-

grams of our model; each of these will be transformed into
an IF process. The initial (or start) object diagram for the
model (or test directive) defines the initial configuration of
processes. The class diagram provides information about
data types and operations.
The translation into IF defines an effective semantics for

the UML language of state diagrams. We need to define:

• an IF signal for each operation;

• an acknowledgment signal, including a return value
parameter, for each synchronous operation (since com-
munications are always asynchronous in IF);

• a process for each object in the model;

• a communication buffer for each object.

5.1 States
Each state in a state diagram is translated into an IF

control state, with stability and initiality attributes. If a
state is marked as unstable, then any transaction through
this state—a transition to, and a transition from—is treated
as atomic, across the system. If a state is marked as initial,
then it is treated as an initial state of the process.
A start state in a state diagram becomes an :init state

in IF; a finish state becomes a state with no transitions.
To translate a simple state, we append the entry actions
to every incoming transition; prepend the exit actions to
every outgoing transition; transform any internal transition
into an external, self transition, but without entry or exit
actions.

5.2 Transitions
Having mapped the object states into IF, we can construct

a transition in IF for each transition in the state diagram:

from currentState
input operationName from thisBuffer
if guard
do action ;

[output ack(returnValue) to callerBuffer]
to newState

The output clause is used only in response to synchronous
operations, modeled as call actions.

5.3 Events
A call event represents an operation invocation in which

the caller will be notified of completion, and provided with
any return value. We translate call events into IF signal
inputs:

input operation-name (reference-list)
from buffer

where operation-name is an operation of the current object;
reference-list is a list of variables in which the received
parameters are stored, buffer the name of the buffer from
which the event will be read.
To achieve synchronisation with the caller object, we add

a symmetrical action after every signal input representing
a call event, sending an appropriate completion or return
signal to the caller.
A signal event represents the reception of a UML signal—

used to model asynchronous communication. We translate
signal events directly into IF signal inputs:

input signal (reference-list)
from buffer

but this time there is no matching acknowledgement action.

5.4 Guards
These are translated into post guarded inputs where the

received parameters can be tested; this guard is evaluated
if the input is received and, if false, the execution of the
transition is disabled, restricting the values that the process
is willing to accept. In our modeling language, guards will
be expressed by IF expressions.

5.5 Actions
To translate a call action, we must add an additional,

stable state to the IF representation of the object. This is
the state in which the object has issued the call, but the
operation has yet to return. If the state diagram has a
transition from State1 to State2, labelled with call action
a, then we obtain an IF representation of the form

from State1
input event from callerBuffer
if guard
do action ;
to StateX

from StateX
input ack_a from calleeBuffer
to State2

Each send action becomes an IF output:

output signal(parameters) to targetBuffer

This has the effect of appending the specified signal to the
buffer associated with the target object.

6. TEST GENERATION
The AGEDIS test generation tool is based on the princi-

ples of two existing tools TGV [17] and GOTCHA-TCBeans [7].
These tools have different principles, summarised below; we
describe how these principles are adapted and combined in
the AGEDIS test generation tool.

6.1 TGV
TGV is a test generation tool developed by Verimag and

Irisa [17] and based on a sound testing theory [23]. The
theory and test generation algorithms ensure that no con-
formant implementation can be rejected by a test case and
that it is theoretically possible to generate a test case that
can reject any non-conformant implementation. Models of
specifications are IOLTS (Input Output Labelled Transition
Systems) produced by simulation, where inputs, outputs and
internal events are distinguished. The behaviour of the im-
plementation under test is unknown (black box) but we sup-
pose that it can be modelled by an IOLTS. A conformance
relation ioco defines the correct implementations I with re-
spect to a given specification S. To allow the detection of
incorrect quiescence of I (by timers in test cases), ioco is
defined in terms of traces of the suspension automata δ(I)
and δ(S). δ(S) is built from S by the addition of loops
labelled by a new output δ in each quiescent state, i.e. a
livelock, a deadlock, or an absence of output. Now, I ioco S
if after every trace of δ(S) (including δ), the outputs of I
are included in those of S.
The two main inputs of TGV are the IOLTS of the spec-

ification S and a test purpose TP used for test selection.
TP is a complete automaton with Accept and Reject states.
Accept states are used to select behaviours of S one wants
to test, while Reject states may prune the exploration of
S. Labels of TP are regular expressions matching S’s labels
and a particular label ∗ meaning “otherwise”.
The test generation process is composed of three oper-

ations. A product S × TP which synchronises on com-
mon actions is used to mark states of S with Accept and
Reject states of TP . This operation may also unfold S.
The second operation computes the suspension automaton
δ(S × TP) and determinises it while propagating the mark-
ing on state sets. The result is a deterministic IOLTS SPvis,
with same observable traces as δ(S) and where Accept and
Reject states mark behaviours accepted or rejected by TP .
A selection operation then builds two possible objects: a
complete test graph CTG consisting of all traces leading to
accept (to which a Pass verdict is associated), plus diver-
gences on these traces by outputs of S (giving rise to an
Inconclusive verdict); alternatively a test case TC (a sub-
graph of CTG) is obtained by the additional constraint that
test cases never have controlability conflicts, i.e. choices be-
tween an output and another action. In both cases, in any
state of CTG or TC where an output of S is observable,
Fail verdicts are implicit on all unspecified outputs. Finally
a mirror image of CTG and TC is applied which inverts
inputs and outputs.
To our knowledge, TGV is the only test generation tool

that can generate test cases with loops, while others are
restricted to sequences or trees. TGV also accepts optional
files which define the test architecture. A rename file is used
to rename labels of S, a hide file specifies unobservable ac-
tions of S, and an IO file distinguishes inputs from outputs
among observable actions. All three files support regular ex-

pressions. Some additional options may be used to tune the
test generation process: exploration depth, computation of
postambles, priorities on the order of exploration of transi-
tions, synthesis of timer operations (start, cancel, timeout).
In order to avoid state explosion, the specification S can

be given implicitly by a simulation API (functions for S’s
traversal). In this case, the test generation operations are
not applied in sequence but on-the-fly (except for some cases
of conflict resolution) and only the necessary parts of S, of
S × TP and of PSvis are built.
Consequently, TGV can be used for different specification

languages, as soon as a simulation API can be produced by a
compiler of this language. This has been done for SDL with
ObjectGeode (Telelogic), Lotos with the CAESAR compiler
(Inria Grenoble), UML with the Umlaut tool and IF with
the IF2C compiler. TGV also accepts specifications in the
form of explicit graphs in the BCG and Aldebaran formats.
Test cases are produced in BCG or Aldebaran format, and
in pseudo-TTCN for SDL specifications.

6.2 GOTCHA
GOTCHA is a test generation tool developed by the IBM

Research Laboratory in Haifa. It is an extension of the Murφ
model checker. The main differences with TGV are the fol-
lowing: The specification model describes the observable
behaviour of the system, not its internal behaviour. The
model is a finite state machine with edges labelled with in-
puts and states labelled with both a control state and the
values of observable variables.
The test generation process is based on a traversal of the

finite state machine directed by coverage criteria and test
constraints. Coverage criteria are based on an abstract state
space defined by expressions on subsets of variables and con-
trol states. This abstract state graph is conceptual and not
built explicitly. A state coverage criterion is a boolean ex-
pression on an abstract state while a transition coverage
criterion is a pair of boolean expressions on the source and
target states of an abstract transition. Both criteria are
transformed into a finite set of coverage tasks that instanti-
ate the conditions. The first phase of test generation deter-
mines which of the specified coverage tasks are reachable,
and chooses a random representative of each reachable task.
The test generation engine then covers each of these tasks
by a set of paths in the specification.
Test constraints may be used to restrict test sequences

and limit the reachable set of states and transitions in the
finite state machine. It is possible to forbid the traversal
of a state which satisfies a condition or to forbid certain
paths which satisfy boolean conditions on their beginning,
middle, end, and length. Several traversal strategies can be
used, including on-the-fly and coverage directed traversal.
Test cases computed by GOTCHA are sequences composed
of actions and expected values of observable variables. Non-
deterministic transitions in a test case are dealt with by the
use of an ”inconclusive” outcome, as well as the ”pass” and
”fail” outcomes for a test case.

6.3 Principles of the AGEDIS test generation
tool

In the AGEDIS project, we are developing a test gen-
eration engine which combines the principles of TGV and
GOTCHA, namely test selection using test purposes, test
constraints, and coverage criteria. Test cases allow a com-

bination of observations: outputs as in TGV, but also val-
ues of variables defined as observable at the AML level as
in GOTCHA. The input of the test generation process is
an IF model, obtained by translation from an AML model.
This model contains the specification of the system, test
directives and the test architecture. Additionally, a map-
ping between AML and IF objects is generated, allowing
the description of test cases in terms of AML objects. The
test architecture consists of a list of controllable signals and
calls and a list of observable signals, calls and variables cor-
responding to the IO and hide files of TGV. In the sequel,
we focus on the different test directives and how they are
used for test generation.

6.3.1 Test generation
The test generation engine will be mostly based on TGV,

but it has to be extended in several ways to cope with test
directives.
Since test directives refer to specification variables and

control states in boolean predicates or guards, they must be
compiled and linked with the IF specification of the system
into a simulation API. The simulation API used by the test
generation engine consists of functions for the construction
and observation of the product between the specification and
test directives.
The product between the specification and test purpose

is different from TGV. In order to avoid unnecessary inter-
mediate states, a transition of the specification may consist
of an atomic sequence of actions, possibly starting with an
input, and followed by outputs and/or internal actions. As
a transition of a test purpose contains only one action (ob-
servable or not), this transition matches a transition of the
specification which contains this event. Hiding according to
the test architecture, is also treated differently as we have
to hide some actions in a transition, but not necessarily all
actions.
In TGV, S and S × TP are IOLTS where states are just

identifiers. In AGEDIS, values of variables may be observ-
able, so states of S and S × TP carry a vector of values of
observable variables. After determinisation, as a state is a
set of states, it carries a set of vectors of values which defines
the set of correct observations of the observable variables.
This set is attached to the corresponding state of the test
case, if this one is selected. All other observations lead to a
fail verdict.
The test selection process incorporates TGV and GOTCHA

mechanisms. For each test purpose it builds one test case (or
the complete test graph), also satisfying the test constraints.
In the case of a coverage criteria, it builds a set of test cases
or a test graph covering all reachable coverage tasks. To
avoid redundancy in the computation, all test purposes and
coverage criteria can be processed together. Breadth first
and depth first traversal strategies, both on-the-fly, are pos-
sible.

7. DISCUSSION
The work described here is still in progress. An architec-

ture has been defined, and the AML to IF compiler is being
written. Moreover, some modelling with AML is currently
being done by our industrial partners.

7.1 Conclusion and related work
The prospect of some degree of automation in the testing

process is clearly an attractive one. Computing is becoming
more pervasive, and more critical to our lives; at the same
time, designs are becoming more complex, and interactions
between components are becoming harder to measure and
predict. Software testing is becoming more difficult, and
more expensive.
A considerable amount of research has been carried out

into the application of Finite State Machine (FSM) nota-
tions to testing, and test generation, particularly with re-
gard to the testing of communicating systems [10]. This
research solves fundamental problems in testing, but does
not attempt to address the problems of scale and complex-
ity encountered in modern software engineering.
Other research, from theories of testing for StateCharts [13]

and methods for behavioural model generation [6], through
to toolkits for automated testing [11], and packages for gen-
erating input sequences for testing user interfaces [21], has
taken a more pragmatic, industrial approach. Of these,
only one [11] presents an architecture: a precursor to that
adopted for the AGEDIS project.
There already exist tools for the generation of test cases

from UML models. Umlaut/TGV [16] is such a tool: Um-
laut provides a simulation API used by TGV for test gen-
eration This tool suffers from limitations in the considered
UML subset and TGV limitations in the expression of test
directives.
The main advantage of the AGEDIS test generation tool

is its ability to combine different test directives: coverage
criteria, test purposes and test constraints. This allows the
user to tune the selection of test cases with respect to the
budget of the test campaign. Moreover, a hierarchy of test
suites can be constructed with the property that the larger
the test suite, the greater the coverage of the implemen-
tation. This hierarchy is particularly useful in regression
testing. TestComposer (Telelogic) already combines cover-
age and test purposes for SDL but coverage is limited to
branch coverage.
There are several reports of success in automated test case

generation. One of the examples [8] includes the comment:

However, questions remained about the scalabil-
ity of the approach . . . A state-machine based ap-
proach . . . would perhaps be more appropriate in
such circumstances.

The focus of our research is exactly this: we are working
towards scalable methods for automated test generation, us-
ing object-oriented principles, and building on fundamental
research from the world of finite state machines.

Acknowledgements
The authors wish to acknowledge Marius Bozga and Charles
Crichton for their helpful comments and contribution.

8. REFERENCES
[1] M. Bozga, J.Cl. Fernandez, and L. Ghirvu. Using

Static Analysis to Improve Automatic Test
Generation. In S. Graf and M. Schwartzbach, editors,
Proceedings of TACAS’00 (Berlin, Germany), LNCS,
pages 235–250. Springer, March 2000.

[2] M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P.
Krimm, and L. Mounier. IF: An Intermediate
Representation and Validation Environment for

Timed Asynchronous Systems. In J.M. Wing,
J. Woodcock, and J. Davies, editors, Proceedings of
FM’99 (Toulouse, France), volume 1708 of LNCS,
pages 307–327. Springer, September 1999.

[3] M. Bozga, S. Graf, L. Mounier, I. Ober, J.L. Roux,
and D. Vincent. Timed Extensions for SDL. In
Proceedings of SDL FORUM’01, LNCS, 2001. to
appear.

[4] Ed Brinksma and Tommaso Bolognesi. Introduction
to the ISO specification language LOTOS. Computer
Networks and ISDN Systems, 14(1), 1987.

[5] Rational Software Corporation. Rational rose. June
2001, ”http://www.rational.com”.

[6] Ibrahim Khalil Ibrahim El-Far. Automated
construction of software behavior models. Master’s
thesis, American University of Beirut, 1995.

[7] E. Farchi, A. Hartman, and S. Pinter. Using a
model-based test generator to test for standard
conformance. IBM System Journal - special issue on
Software Testing, 41(1):89–110, 2002.
http://www.research.ibm.com/journal/sj41-1.thml.

[8] M. S. Feather and B. Smith. Automatic generation of
test oracles—from pilot studies to application.
Automated Software Engineering, 8(1):31–61, January
2001.

[9] J. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu,
L. Mounier, and M. Sighireanu. CADP: A protocol
validation and verification toolbox, 1996.

[10] B. Gregor and V. Petrenko. Protocol testing: review
of methods and relevance for software testing, 1994.

[11] I. Gronau, A. Hartman, A. Kirshin, K. Nagin, and
S. Olvovsky. A methodology and architecture for
automated software testing.
http://www.haifa.il.ibm.com/projects/verification/
gtcb/papers/gtcbmanda.pdf, 2000.

[12] Object Management Group. Unified Modeling
Language (UML) 1.4 draft, February 2001.
http://www.omg.org/cgi-bin/doc?ad/2001-02-13.

[13] David Harel and Eran Gery. Executable object
modeling with statecharts. In Proceedings of
the 18th International Conference on Software
Engineering, pages 246–257. IEEE Computer Society
Press, 1996.
citeseer.nj.nec.com/article/harel97executable.html.

[14] Gerard J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–295,
May 1997.

[15] ITU-T. Recommendation Z.100. Specification and
Description Language (SDL). Technical Report Z-100,
International Telecommunication Union –
Standardization Sector, Genève, November 1999.

[16] T. Jéron, J.-M. Jézéquel, and A. Le Guennec.
Validation and test generation for object-oriented
distributed software. In IEEE Proc. Parallel and
Distributed Software Engineering, PDSE’98, Kyoto,
Japan, April 1998.

[17] T. Jéron and P. Morel. Test generation derived from
model-checking. In Nicolas Halbwachs and Doron
Peled, editors, CAV’99, Trento, Italy, volume 1633 of
LNCS, pages 108–122. Springer-Verlag, July 1999.

[18] D. Lee and M. Yannakakis. Principles and Methods of

Testing Finite State Machines - A Survey. Proceedings
of the IEEE, 84(8):1090–1123, August 1996.

[19] UML Modeler. Objecteering.
”http://www.softeam.fr/us/produits.htm”.

[20] The AGEDIS project, 2000. ”http://www.agedis.de”.
[21] S. Rosaria and Microsoft Corporation H. Robinson,

Intelligent Search Test Group. Applying models in
your testing process. Information and Software
Technology, 42:815–824, 2000.

[22] TogetherSoft. Together control centre. June 2001,
”http://www.togethersoft.com”.

[23] J. Tretmans. Test generation with inputs, outputs and
repetitive quiescence. Software—Concepts and Tools,
17(3):103–120, 1996.

APPENDIX

A. EXAMPLE
In this example, we consider the alternating bit protocol, a

simple yet effective protocol for managing the retransmission
of lost messages. Consider a transmitter and a receiver,
and assume that their communication channel is lossy. The
alternating bit protocol works as follows.
Each data message sent by the transmitter contains a

protocol bit, False or True. The transmitter receives this
message from its environment.
When the transmitter sends a message for the first time,

the number of transmission attempts is set to zero. Then, it
sends it repeatedly (with its corresponding bit), each time
incrementing the number of attempts made and reporting
to its environment the number of attempts made, until re-
ceiving an acknowledgment (Ack) from the receiver that
contains the same protocol bit as the message being sent.
When the receiver receives a message, it sends an Ack to

the transmitter and includes the protocol bit of the mes-
sage received. The first time the message is received, the
protocol delivers the message for processing. Subsequent
messages with the same bit are simply acknowledged.
When the transmitter receives an acknowledgment con-

taining the same bit as the message it is currently transmit-
ting, it stops transmitting that message, flips the protocol
bit, and repeats the protocol for the next message.
In the following, we show the AML specification of the

protocol and some test purposes. A test case produced by
TGV for the test purpose 1 is given.

A.1 Graphical model

Transm itter Receiver

Env1 Env2

b,c : boolean
m : Data
attem pt: integer

b,c : boolean
m : Data

Figure 4: alternating bit protocol class diagram

transm itter:Transm itter receiver:Receiver<<lossy>>

e1: Env1 e2: Env2

Figure 5: alternating bit protocol object diagram

<<enum eration>>
Data

0
1
2
3

Figure 6: alternating bit protocol data class diagram

<<Signal>>
Put

{observable,controllable}

d:Data

<<Signal>>
Ack

{observable}

b:boolean

<<Signal>>
Sdt

d:Data
b:boolean

<<Signal>>
Get

{observable}

d:Data

<<Signal>>
Next

{observable}

<<Signal>>
Report

{observable}

attem pt: integer

Figure 7: alternating bit protocol signal diagram

Produce

Report(attem pt)/

/ .Put(m)transm itter Next()/

Idle

Figure 8: Env1 state diagram

/b := false

Idle

after(t)/
attem pt := attem pt +1;
.Report(attem pt);

.Sdt(m ,b)
e1
receiver

Busy
Ack(c)

Put(m)/attem pt := 0
.Sdt(m ,b)receiver

[c=b]/b := b;
.Next()
not

e1

[c<>b]/attem pt:=attem pt+1;
.Report(attem pt);

.Sdt(m ,b)
e1
receiver

Figure 9: transmitter state diagram

/ c := false

Idle
Sdt(m ,c)

[b<>c]/ .Ack(c)transm itter not

[b=c]/ .Ack(c);
.Get(m);

c := c

transm itter
e2

not

Figure 10: receiver state diagram

A.2 Test Purposes

State1

! .Put(_)transm itter

! .Put(0)transm itter

? .Get(_)e2

? .Get(0)e2

#accept

#init

Figure 11: Test purpose 1

0

1

?put{0} ;
 OUTPUT

2

 !ack{f};
 INPUT

3

 !report{1};
 INPUT

4

 !get{0};
 INPUT (PASS)

5

 !ack{f};
 INPUT

6

 !report{2};
 INPUT

7

 !get{0};
 INPUT (PASS)

8

 !ack{f};
 INPUT

9

 !report{3};
 INPUT

10

 !get{0};
 INPUT (PASS)

11

LOCK;
 INPUT

 (INCONCLUSIVE)

12

 !ack{f};
 INPUT

13

 !get{0};
 INPUT (PASS)

Figure 12: Test case obtained from Test Purpose 1

State1

! Put(1)transm itter.

? .Get(1)e2

#accept

exclude/
.attem pt <> 1transm itter

#init

Figure 13: Test purpose 2

State1

? Put(1)transm itter.

! .Get(1)e2

#accept

exclude/
.attem pt >1transm itter

#init

Figure 14: Test purpose 3

? .Get(1)e2

#accept

State1

cover/ .attem pttransm itter

#init

? Put(1)transm itter.

Figure 15: Test purpose 4

State1

? .Get(1)e2
[covertransm itter.b]/

#accept

#init

? Put(1)transm itter.

Figure 16: Test purpose 5

