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CHUONG 1. PIEN TRUONG TINH

COULOMB’S LAW

Experiments show that the force exerted by a stationary point charge Q,
on a stationary point charge (), situated a distance r away is given by

Fon
';_"h 3
- ’ Fig. 3-1. Charges O, and Q,
v ’/-/ separated by a distance r.
o Coulomb’s law gives the force F,,
7 exerted by O, on O, if Q, is
e stationary.
Qa Qb -~
Fp=———"SrF., 3-1

4re,rs (3-1)

where the unit vector r,, points from Q, to Q,, as in Fig. 3-1. This is
¢ owlomb’s law.T The force is repulsive if the two charges have the same
sign, and attractive if they have different signs. The charges are measured
in coulombs, the force in newtons, and the distance in meters. The
constant €, is the permittivity of free space and has the following value:

€, = 8.854187817 < 107" farad/meter. (3-2)

Substituting the value of €,, we find that

Q-r-l Qb

r

E, =9 x 10°

newtons, (3-3)

where the factor of 9 is too large by about one part in a thousand.

We shall not be able to define the coulomb until Chap. 22. For the
moment, we may take the value of €, to be given, and use this law as a
provisional definition of the unit of charge.

To what extent does Coulomb’s law remain valid when @, and Q, are
not stationary?

t1) If Q, is stationary and @, is not, then Coulomb’s law applies to the
torce on Q,, whatever the velocity of Q,. This is an experimental fact.
Indeed, the trajectories of charged particles in oscilloscopes, mass
spectrographs, and ion accelerators are invariably calculated on that
EHESEN

(.2) If Q, is not stationary, Coulomb’s law is no longer strictly valid.



THE ELECTRIC FIELD STRENGTH E

The force between two electric charges Q, and @, results from the
interaction of Q, with the field of Q, at the position of Q,, or vice versa.
We thus define the electric field strength E at a point as the force

exerted on a unit test charge situated at that point. Thus, at a distance r
from charge Q,,

Fab _ Qﬂ

E, ="
Qb 4.?156.;;2

F newtons/coulomb, or volts/meter, (3-5)

where 1 volt equals 1 joule/coulomb. The field of (), is the same,
whether the test charge Q, lies in the field or not, even if Q, is larger
than Q,.

THE PRINCIPLE OF SUPERPOSITION

If there are several charges, each one imposes its own field, and the
resultant £ is simply the vector sum of all the individual E’s. This is the
principle of superposition.

For a continuous distribution of charge,. as in Fig. 3-2, the electric field
~trength at (x, ¥, z) is

_ 1 Pr .,
E—4E€0Lr2 dv’, (3-6)

where p is the volume charge density at the source point (x', y’, z'), as
i the figure, 7 is the unit vector pointing from the sowrce point
'(x’, yv', z') to the field point P(x, y, z), r is the distance between these
two points, and dv’ is the element of volume dx’" dy' dz’. If there exist
wurface distributions of charge, then we must add a similar integral, with

diF

" Pix. W 2)

Fig. 3-2. Charge distribution of volume density o occupying a volume v’. The
ciement of volume at P'(x’, ¥°, z") has a field dE at P(x, y, z).

p replaced by the surface charge density o and v’ by the area @’ of the
charged surfaces.



THE ELECTRIC POTENTIAL V AND
THE CURL OF E

Consider a test charge Q' that can move about in an electric field. The
energy ¢ required to move it at a constant velocity from a point A to a
point B along a given path is

€= - f EQ' -dl. (3-7)

A

Because of the negative sign, € is the work done against the field. We
assume that Q' is so small that it does not disturb the charge distributions
appreciably.

If the path is closed, the total work done on Q' is

= — fﬁEQ' - dl. (3-8)

Let us evaluate this integral. We first consider the electric field of a
single stationary point charge Q. Then

<J££Q* cdl = (3-9)

QQ' [r-dl
4re, % rr
Now the term under the integral on the right is simply dr/r*, or —d(1/r).
But the sum of the increments of 1/r over a closed path is zero, since r
has the same value at the beginning and at the end. So the line integral is
zero, and the net work done in moving Q' around any closed path in the
field of Q, which is fixed, is zero.

If the electric field 1s that of some fixed charge distribution, then the
line integrals corresponding to each individual charge of the distribution
are all zero. Thus, for any distribution of fixed charges,

%E - dl = 0. (3-10)

An electrostatic field is therefore conservative (Example, Sec. 1.9). This
important property follows from the fact that the Coulomb force is a
central force: the force in the field of a point charge is radial.



We can now show that the work done in moving a test charge at a
constant velocity from a point A to a point B is independent of the path.
| et m and n be any two paths leading from A to B. Then these two paths
together form a closed curve, and the work done in going from A to B
along m and then from B back to A along n is zero. Then the work done
m going from A to B is the same along m as it is along n.

Now let us choose a datum point R(x,, vy, 2y), and let us define a
scalar function V of P(x, y, z) such that

R
v,,=j E -dl. (3-11)
,

I'his definition is unambiguous because the integral is the same for all
piths leading from P to R. Then, for any pair of points A and B,

i} i}
. w-dr=v,1—v,,,=f E-di, (3-12)
A

A
as in Fig. 3-3, and therefore

E=-VV. (3-13)

I'he electric potential V(x,y, z) describes the field completely. The
negative sign makes E point toward a decrease in V.

Note that V is not uniquely defined, because point R is arbitrary. In
fact, one can add to V any quantity that is independent of the coordinates
without affecting E.

From Eq. 3-10 and from Stokes’s theorem (Sec. 1.9),

VXE=\0(. (3-14)
This 1s also obvious from the fact that
VXE=-VXVV =(. (3-15)

Remember that we are dealing here with static fields. If there were
time-dependent currents, V X E would not necessarily be zero, and — ¥V
would then describe only part of E. We shall investigate these more
complicated phenomena later.



The Electric Potential V at a Point

Equation 3-12 shows that E concerns only differences between the
potentials at two points. When one wishes to speak of the potential at a
given point, one must arbitrarily define V' in a given region of space to be
zero. In the previous section, for instance, we made V equal to zero at
point R. When the charges extend over only a finite region, it is usually
convenient to choose the potential V at infinity to be zero. Then, at
point P,

szﬂhm. (3-16)
P

The energy # required to bring a charge ¢ from a point where V is
zero, by definition, to P 1s VQ. Thus V 1s €/Q, and the unit of V is
1 joule/coulomb, or 1 volt.

If the field s that of a single point charge, then

V:F C a_ L (3-17)

dne,r*  Amegr

The sign of this V is the same as that of Q.
The principle of superposition applies to V as well as to E, and for any
charge distribution of density p,

1 dv'’
V= £, (3-18)
4mey ), 1
with r as in Fig. 3-2. The volume v’ encloses all the charges. If there are
surface charges, one adds a surface integral.



GAUSS’S LAW

Gauss’s law relates the flux of E through a closed surface to the total
charge enclosed within that surface.

Consider Fig. 3-4, in which a finite volume v bounded by a surface &«
encloses a charge . We can calculate the outward flux of E through &
as follows. The flux of E through the element of arca dsf is

¢ r-d4 (3-19)

E-dd =4m€., re

Now r - ds 1s the projection of dsf on a plane normal to . Then

E-dsd = 0

— 3-20
4me, L1 ( )

where d€2 is the solid angle subtended by dsf at the point P'.

Fig. 3-4. A point charge  located inside a volume v bounded by the surface of
arca «. Gauss’s law states that the surface integral of E - dsf over # is equal to
Q/¢€,. The vector dsd points outward.



To find the outward flux of E, we integrate over the area &, or over a
«lid angle of 4x. Thus

j E-dt=2. (3-21)

€q

If O is outside the surface at P”, the integral is equal to zero. The solid
angle subtended by any closed surface (or set of closed surfaces) is 4 at
4 point P’ inside and zero at a point P” outside.

If more than one charge resides within v, the fluxes add algebraically
«nd the total flux of E leaving v is equal to the total enclosed charge Q
Jivided by €

JE=dﬁ=—Q—. (3-22)
o

€g

his 18 Gauss’s law in integral form. ¥
[f the charge occupies a finite volume, then

j E-doA =iJ p duv, (3-23)
) »

€y

where & 1s the area of the surface bounding the volume v, and p is the
clectric charge density. We assumed that there are no surface charges on
the bounding surface.

If we apply the divergence theorem to the left-hand side, we have that

J‘ V:-Edv= 1 p du, (3-24)

€y Jy

since this equation applies to any finite volume v, the integrands are
zqual and

V-E=E (3-25)

at every point in space,



THE EQUATIONS OF POISSON AND
OF LAPLACE
Let us replace E by — ¥V in Eq. 3-25. Then

vy =2 (4-1)

€y

This is Poisson’s equation. It relates the space charge density p at a given
point to the second space derivatives of V in the region of that point.
In a region where the charge density p is zero,

vV =0, (4-2)

which is Laplace’s equation.

The general problem of finding V in the field of a given charge
distribution amounts to finding a solution to either Laplace’s or Poisson’s
equation that will satisfy the given boundary conditions.

THE POTENTIAL ENERGY € OF A CHARGE
DISTRIBUTION EXPRESSED IN TERMS OF
CHARGES AND POTENTIALS

The Potential Energy of a Set of Point Charges

Assume that the charges remain in equilibrium under the action of
both the electric forces and restraining mechanical forces.

The potential energy of the system is equal to the work performed by
the electric forces in the process of dispersing the charges out to infinity.
After dispersal, the charges are infinitely remote from each other, and
there is zero potential energy.

First, let , recede to infinity slowly, keeping the electric and the
mechanical forces in equilibrium. There is zero acceleration and zero
kinetic energy. The other charges remain fixed. The decrease in potential
energy &, is equal to @, multiplied by the potential V; due to the other
charges at the original position of Q;:

&, = Q, gz+%+-—-+%'~“). (6-1)

4.’360 !’12 !’13 rtN

All the charges except (0, appear in the series between parentheses.
With @, removed, let O, recede to infinity, to some point infinitely
distant from ,. The decrease in potential energy is now

£, = O (Q3+Q4+___+%)_ (6-2)

4rT€eg N ras Faq Fapy

The series for & has N — 2 terms. We continue the process for all the
remaining charges, until finally the Nth charge can stay in position, since
it lies in a zero field.



and the potential energy of the initial charge configuration is

=2 OV, (©-7)

The Potential Energy of a
Continuous Charge Distribution

For a continuous clectric charge distribution, we replace Q, by p dv and

the summation by an integration over any volume v that contains all the

charge:

€ =1 j Vo dv. (6-8)

This integral is equal to the work performed by the electric forces in
going from the given charge distribution to the situation where p =0
everywhere, by dispersing all the charge to infinity, or by letting positive
and negative charges coalesce, or by both processes combined.

Observe that the potential V under the integral sign does not include
the part that originates in the element of charge p dv itself. We saw in

Sec. 3.5 that the infinitesimal element of charge at a given point
contributes nothing to V.

If there are surface charge densities o, then their stored energy is

€=1 Lav dsd, (6-9)

where & includes all the surfaces carrying charge.

THE POTENTIAL ENERGY ¢ OF AN
ELECTRIC CHARGE DISTRIBUTION
EXPRESSED IN TERMS OF E

We have expressed the potential energy & of a charge distribution in
lvrms of the charge density p and the potential V. Now both p and V are

iwlated to E. So it should be possible to express & solely in terms of E.
I his is what we shall do here. We shall find that

eoE?

%’=f = dvu, (6-11)
r L 2’

where the volume v includes all the regions where E exists. Thus we can

~alculate € by assigning to each point in space an electric energy density
ol (_”EEJFZ-
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THE CONTINUITY CONDITIONS AT AN
INTERFACE

The Potential V

The potential V is continuous across the boundary between two media.
Otherwise, a discontinuity would imply an infinitely large E, which is
physically impossible.

The Normal Component of D

Consider a short imaginary cylinder spanning the interface, and of cross
section &/ as in Fig. 10-4. The top and bottom faces of the cylinder
are parallel to the boundary and close to it. The interface carries a free
surface charge density og.

According to Gauss’s law (Sec. 9.5), the net flux of D coming out of
the cylinder is equal to the enclosed free charge. Now the only flux of D
is that through the top and bottom faces because the height of the

cylinder is small. If now the area ¢ is not too large, I is approximately
uniform over it, and then

(D5, — D,,)sd = Uf&f, (D, — D) - = Ty, (10-9)

where i is the unit vector normal to the interface and pointing from
medium 2 to medium 1.

Fig. 10-4. Imaginary cylinder straddling the interface between media 1 and 2 and
delimiting an area &, The difference 1., — [2,,, between the norrmal components
of I is equal to the free surface charge density o,.

As a rule, the boundary between two dielectrics does not carry free
charges, and then the normal component of ) is continuous across the
interface. Thus the normal component of E is discontinuous.

On the other hand, if one medium is a conductor and the other a
dielectric, and if D i1s not a function of the time, then I» =0 in the
conductor and D, = g, in the dielectric. If D is a function of the time. Eq.
10.9 still applies, but D is not zero in the conductor.

11



The Tangential Component of E

Consider now the path shown in Fig. 10-5, with two sides of length L
parallel to the boundary and close to it. The other two sides are
infinitesimal. If L is short, E does not vary significantly over that
distance, and integrating over the path yields

§E cdl=F,L-E,,L. (10-10)

Now, from Sec. 3.4 this line integral is zero, and thus

E“:E\r-r, or {E|_E:}xﬁ=0, [l[]'ll)

Fig. 10-5. Closed path of in-
tegration spanning the interface
between media 1 and 2. The
tangential components of E are
equal: E,, = E,,.

with i defined as above. The tangential component of E is continuous
across any interface.

IMAGES

If an electric charge distribution lies in a uniform dielectric that is In
contact with a conducting body, then the method of images often
provides the simplest route for calculating the electric field. The method
is best explained by examples such as the two given below, but the
principle is the following.

Call the charge distribution (, the dielectric 7, and the conductor C.
One replaces C, on paper, by more dielectric D' and by a second charge
distribution ¢’ such that the original boundary conditions are not
disturbed. Then the field in D is left undisturbed, according to the
uniqueness theorem. The charge distribution Q' is said to be the image of
Q. Of course, the dielectric D can be simply air or a vacuum.

12



CHUONG 2. DONG PIEN
THE LAW OF CONSERVATION OF
ELECTRIC CHARGE

(‘onsider a closed surface of area & enclosing a volume v. The volume
harge density inside is p. Charges flow in and out, and the current
Jensity at a given point on the surface is J amperes/meter>.

[t is a well-established experimental fact that there is never any net

rcation of electric charge. Then any net outflow depletes the enclosed
Jharge Q: at any given instant,

d )
[9-a=-2 [ pav=-2. (4-24)

where the vector dsf points outward, according to the usual sign
convention.

Applying now the divergence theorem on the left, we find that

5
Jr-Jdu=—J§du. (4-25)

W have transferred the time derivative under the integral sign, but then

we must use a partial derivative because p can be a function of x, y, z, as
well as of ¢

Now the volume v is of any shape or size. Therefore

ap
F-J——E, (4-26)

F.quations 4-24 and 4-26 are, respectively, the integral and differential
lorms of the law of conservation of electric charge.

13



CONDUCTION

Semiconductors may contain two types of mobile charges: conduction
electrons and positive holes. A hole is a vacancy left by an electron
liberated from the valence bond structure in the material. A hole behaves
as a free particle of charge +e, and it moves through the semiconductor
much as an air bubble rises through water.

In most good conductors and semiconductors, the current density J is
proportional to E:

J = oE, (4-27)

where o is the electric conductivity of the material expressed in siemens
per meter, where 1 siemens' is 1 ampere/volt. This is Ohm’s law in a
more general form. As we shall see later, an electric conductivity can be
complex. We shall find a still more general form of Ohm’s law in Chap.
23.

Table 4-1 shows the conductivities of some common materials.

Ohm'’s law does not always apply. For example, in a certain type of
ceramic semiconductor, J is proportional to the fifth power of E. Also
some conductors are not isotropic.

Conduction in a Steady Electric Field
For simplicity, we assume that the charge carriers are conduction
electrons.

The detailed motion of an individual conduction electron is exceedingly
complex because, every now and then, it collides with an atom and
rebounds. The atoms, of course, vibrate about their equilibrium posi-
tions, because of thermal agitation, and exchange energy with the
conduction electrons.

However, on the average, each electron has a kinetic energy of 3k7,
where k is Boltzmann’s constant and T is the temperature in kelvins.
Thus, at room temperature, the velocity v, associated with thermal
agitation is given by

]

"’;"“ = 3T =3(1.38 X 1072 x 300) ~ 6 X 1072 joule,  (4-32)
and
12 b4 ]0-21 1/2
Uy = (m:‘ﬁ) = 10° meters/second. (4—33}

14



Under the action of a steady electric field, the cloud of conduction
electrons drifts at a constant velocity v, such that

J = oE = —Neuv,, (4-34)

where v, points in the direction opposite to J and to E, and N is the
number of conduction electrons per cubic meter.

The drift velocity is low. In copper, N =8.5x 10", If a current of
1 ampere flows through a wire having a cross section of 1 millimeter?,
J=10° and v, works out to about 10 *meter/second, or about
00 millimeters/hour! Then the drift velocity is smaller than the thermal
agitation velocity by nine orders of magnitude!

In Eq. 4-34 v, is small, but Ne is very large. In copper,

Ne = 8.5 x 10% x 1.6 x 107" = 10" coulombs/meter>. (4-35)

The low drift velocity of conduction electrons is the source of many
paradoxes. For example, a radio transmitting antenna is about 75 meters
long and operates at about 1 megahertz. How can conduction electrons
o from one end to the other and back in 1 microsecond? The answer is
that they do not. They drift back and forth by a distance of the order of 1
«tomic diameter, and that is enough to generate the required current.

The Mobility # of Conduction Electrons

I he mobility of conduction electrons

_lud_o

M — 4-36
E  Ne ( )

v, by definition, a positive quantity.{ It is independent of E in linear
vonductors., Thus

o= NeM (4-37)

where, as usual, we have taken e to be the magnitude of the electronic
harge.



The Volume Charge Density p in a Conductor

(1) Assume steady-state conditions and a homogeneous conductor.
Ihen Sp/dt=10 and, from Sec. 4.2, V-J=0. If J is the conduction
carrent density in a homogeneous conductor that satisfies Ohm’s law
J = oE, then

V-J=V.-0E=0V-E=0, V-E=0. (4-47)

BBut the divergence of E is proportional to the volume charge density p,
'tom Sec. 3.7. Thus, under steady-state conditions and in homogeneous
vonductors (o independent of the coordinates), p is zero.

As a rule, the surface charge density on a conducting body carrying a
vurrent is not zero.

(2) Now suppose that one injects charge into a piece of copper by
hombarding it with electrons. What happens to the charge density? In
that case, from Sec. 4.2,

op

v.y= -2,
I="%

(4-48)

But, from Sec. 3.7,

op

V- J=0V-E= \
Erfﬂ

(4-49)

where ¢, is the relative permittivity of the material (Sec. 9.9). Thus

d_ _op

ot €,€o

at
p=poexp(--=), (4-50)

Er e-'III

and p decreases exponentially with time.

The relative permittivity €, of a good conductor is not measurable
because conduction completely overshadows polarization. One may
presume that €, is of the order of 3, as in common dielectrics.

16



The inverse of the coefficient of ¢ in the above exponent is the
relaxation time.

We have neglected the fact that o is frequency-dependent and is thus
itself a function of the relaxation time. Relaxation times in good
conductors are, in fact, short; and p may be set equal to zero, in practice.
For example, the relaxation time for copper at room temperature is
about 4 x 10~ second, instead of =10~ '’ second according to the above

calculation.

(3) In a homogeneous conductor carrying an alternating current, p 1s
zero because Eq. 4-47 applies.

(4) In a nonhomogeneous conductor carrying a current, p is not zero.
For example, under steady-state conditions,

V-J=V.(0E)=(Vo)-E+0V-E=0 (4-51)
and
v.e=2 - _(FOE (4-52)
ErEl:I' o

(5) If there are magnetic forces on the charge carriers, then J = oE
does not apply and there can exist a volume charge density. See Sec.

22.4.1.
The Joule Effect

What is the kinetic energy gained by the conduction electrons?
Consider a cube of the conductor, with side a. Apply a voltage V
between opposite faces. The current is I. Then the kinetic energy gained
is VI, and the power dissipated as heat per cubic meter is

Vi W/l
P’=_=(_)(_._)=E'r i
a® \a/\a? (4-53)
ﬁ
=oF%= p watts/meter”. (4-54)

If E and J are sinusoidal functions of the time,

, T s
P,=E Jms=0E}, = et (4-55)

17



CHUONG 3. TU TRUONG TINH

MAGNETIC FIELDS

Imagine a set of charges moving around in space.” At any point rin space
and at any time ¢ there exists an electric field strength E(r, ) and a
magnetic flux density B(r, ¢) that arc defined as follows. If a charge
moves at velocity v at (r, ¢) in this field, then it suffers a Lorentz force

F = Q(E +v X B). (18-1)

The electric force QFE is proportional to Q but independent of v, while
the magnetic force Qu x B is orthogonal to both v and B.

MAGNETIC MONOPOLES
We assume here that magnetic fields arise solely from the motion of
electric charges.

However, Dirac postulated in 1931 that magnetic fields can also arise
from magnetic “charges,” called magnetic monopoles. Such particles have
not been observed to date (1987). The theoretical value of the elemen-
tary magnetic charge is

g =4.1356692 x 10~ '* weber,' (18-2)

where A is Planck’s constant and e is the charge of the electron. See the
table inside the back cover.
At a distance r from a stationary magnetic monopole of ‘“‘charge” Q*,
we would have that
Q*

B =
4xr’

F (18-3)

Also, the force of attraction or repulsion between two monopoles QF and
Q, would be
Q205

F = =
4.7“”.0!

r. (18-4)

A magnetic field would exert a force Q*B/u, on a monopole in free
space.

18



THE MAGNETIC FLUX DENSITY B.
THE BIOT-SAVART LAW

Fig. 18-1. Circuit C carrying a current / and a point P in its ficld. At P the
magnetic flux density is B.

I (dl’xXFr
B=E° L) (18-5)

4o Jo r

As usual, the unit vector 7 points from the source fo the point of
observation P. This is the Biot-Savart law. The integration can be carried
out analytically only for the simplest geometries. See below for the
definition of .

This integral applies to the fields of alternating currents, as long as the
time r/c, where ¢ is the speed of light, is a small fraction of one period
(Sec. 37.4).

The unit of magnetic flux density is the tesla. We can find the
dimensions of the tesla as follows. As we saw in the introduction to this
chapter, vB has the dimensions of E. Then

volt second weber

Tesla = = 3 - (18-6)
meter meter  meter
One volt-second is defined as 1 weber.
By definition,
1y =4m x 1077 weber/ampere-meter. (18-7)

This is the permeability of free space.

We have assumed a current I flowing through a thin wire. If the current
flows over a finite volume, we substitute Jd«¢' for I, J being the current
density in amperes per square meter at a point and d«’ an element of
area, as in Fig. 18-2. Then Jd«d" dl" is Jdv' and, at a point P,

19



dl’

-/
— .l-ﬂ'ﬂr

Fig. 18-2. At a given point in a volume distribution of current, the current
density is J. The vector dsf’ specifies the magnitude and orientation of the
shaded area. Shifting this element of area to the right by the distance dl’ along J
sweeps out a volume d.«’ dl’ = dv’.

,u[, J’X r

dv’, (18-8)

in which v’ is any volume enclosing all the currents and r is the distance
between the element of volume dv' and the point P.

The current density J encompasses moving free charges, polarization
currents in dielectrics (Sec. 9.3.3), and equivalent currents in magnetic
materials (Sec. 20.3).

Can this integral serve to calculate B at a point inside a current
distribution? The integral appears to diverge because r goes to zero when
dv’ is at P. The integral does not, in fact, diverge: it does apply even if
the point P lies inside the conducting body. We encountered the same
problem when we calculated the value of E inside a charge distribution in
Sec. 3.5.

Lines of B point everywhere in the direction of B. They prove to be
just as useful as lines of E. The density of lines of B is proportional to the
magnitude of B.

As with electric fields again, a great deal of convenience attends the
use of the concept of flux. The magnetic flux through a surface of area </
is

D= j B - dsf webers. (18-9)
Rl

The surface is usually open; if it is closed, then ® =0, as we shall see
below.

20



The Principle of Superposition

The above integrals for B imply that the net magnetic flux density at a
point is the sum of the B’s of the elements of current /dl’, or Jdv'. The
principle of superposition applies to magnetic fields as well as to electric

fields (Sec. 3.3): if there exist several current distributions, then the net B
1s the vector sum of the individual B’s

THE DIVERGENCE OF B

Assuming that magnetic monopoles do not exist (Sec. 18.1), or at least
that the net magnetic charge density is everywhere zero, all magnetic
fields result from electric currents, and the lincs of B for each element of

current are circles, as in Fig. 18-3. Thus the net outward flux of B
through any closed surface is zero:

I B-dsf=0. (18-18)
K-y

Applying the divergence theorem, it follows that

V-B=0. (18-19)

These are alternate forms of one of Maxwell's equations. Observe that
Eq. 18-19 establishes a relation between the space derivatives of B at a

given point. Equation 18-18, on the contrary, concerns the magnetic flux
over a closed surface.

THE VECTOR POTENTIAL A

We have just seen that V- B =0. It is convenient to set
B=V XA, (18-20)

where A is the vector potential, as opposed to V, which is the scalar

potential. The divergence of B is then automatically equal to zero because
the divergence of a curl is zero.
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Note the analogy with the relation

E=-VV (18-21)

of electrostatics.

The vector potential is an important quantity; we shall use it as often
as V.

Notice also that B is a function of the space derivatives of A, just as E
is a function of the space derivatives of V. Thus, to deduce the value of B
from A at a given point P, one must know the value of A in the region
around P.

We now deduce the integral for A, starting from the Biot-Savart law of
Sec. 18.2:

X F )
B:@IJ’ _,’du':“—'f(v—l)x;du*, (18-22
4H 1 .?"_ 4:[ N r
from Identity 16 inside the back cover. Applying now Identity 11, we find
that
1 V X
( ) xJ=¥x VX3 (18-23)
r r r

where the second term on the right is zero because J is a function of
x',y’, z', while Vinvolves derivatives with respect to x, y, z. Thus

_ M Nav=vx(P[ 4
B—4HL(FXJJU—FX(MLer), (18-24)

””fjd' (18-25)

This expression for A has a definite value for a given current distribution.
This integral, like that for B, appears to diverge inside a current-
carrying conductor, because of the r in the denominator. Actually, it is
well behaved, like the integral for V inside a charge distribution.
If a current [ flows in a circuit C that is not necessarily closed, then, at
a point P(x, y, z) in space,

and



ol [l

A=
dx Jo r '’

(18-26)

where the element dl’ of circuit Cis at P'(x’, y', '), and r is the distance
between P and P’.
These two integrals apply to the fields of alternating currents if the

time delay r/c is a small fraction of one period.
THE LINE INTEGRAL OF A -di
AROUND A CLOSED CURVE

Consider first a simple closed curve, as in Fig. 19-1(a). The line integral
of A - dl around C 1s equal to the magnetic flux linking C:

jﬁA-df=f(va)-dﬁ=jB-dﬂ=¢, (19-1)
C ) k-

where & is the area of any surface bounded by C. We have used Stokes’s
theorem.

Now suppose the coil has N turns wound close together, as in Fig.
19-1(b). Over any cross section of the coil, say at P, the various turns are
all exposed to approximately the same A. Then

%A-df=NfB-d&f=N¢b=ﬁ, (19-2)
C =

where A is the flux linkage and < is the area of any surface bounded by
the coil.

The unit of flux linkage is the weber turn.
What 1f one has a circuit such as that of Fig. 19-1(c)? Then

%A-d.':fﬂ-d,s#:n, (19-3)
(i &

except that now it is difficult to devise a surface bounded by C. Luckily

enough, this surface is of no interest because the flux linkage A is easily
measurable (Sec. 24.2).
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THE LAPLACIAN OF A
You will recall from Secs. 3.4.1 and 4.1 that

1
V=—J Pa, wviv=-L£ (19-7)
4.7'[5.[) w' T €0

The first equation relates the potential V at the point P(x, y, z) to the
complete charge distribution, p being the total volume charge density at
P'(x',y', z") and r the distance PP'. The second equation expresses the
relation between the space derivatives of V at any point to the volume
charge density p at that point.

There exists an analogous pair of equations for the vector potential A.
We have already found the integral for A in Sec. 18.4:

_e (T, )
A—4I£Irdu, (19-8)

where v’ is any volume enclosing all the currents. The x component of
this equation is

A, =4i‘§ L‘-:jfdu*. (19-9)
Then, by analogy with Eq. 19-7,
VA, = —ugJ,. (19-10)
Of course, similar equations apply to the y- and z-components, and
VA =—pyl. (19-11)

This equation applies only to static fields.
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THE DIVERGENCE OF A
We can prove that, for static fields and for currents of finite extent, the
divergence of A 1s zero. First,

V.A= f"d *=““f V-G) dv’, (19-12)

where the del operator acts on the unprimed coordinates (x, y, z) of the
field point, while J is a function of the source point (x’, y’, z'). The
integral operates on the primed coordinates. As usual, r is the distance
between these two points, and the integration covers any volume
enclosing all the currents.

We now use successively Identities 15, 16, and 6 from the back of the
front cover:

. |
v-a=10 (F—) Jdv' = —j‘if(v*l)-.rdu' (19-13)

4 J, r r

_ Mo L J v
=4 J: ( v duv'. (19-14)

In a time-independent field, dp/3d¢t =0 and, from the conservation of
charge (Sec. 4.2), V' -J =0. Therefore

—_ r i=_‘@ — ."_ _
= 411 v 4::[ -dst (19-15)

where /' is the area of the surface enclosing the volume v’. We have
used the divergence theorem to transform the first integral into the
second. The second integral is zero because, over &', J is either zero or
tangential.

THE CURL OF B

From Definitions 5, 10, and 15 on the back of the front cover
VXB=Vx(VXA)=V(V-A)— V2A. (19-16)
Thus, from Secs. 19.2 and 19.3,
VXB=u.l. (19-17)

This equation is valid only for static fields.
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AMPERE’S CIRCUITAL LAW

The line integral of B - dl around a closed curve C is important:
55 B-d.*:j (VX B) - dsd =p@f J-dst=ul.  (19-18)
[ = =

In this set of equations we first used Stokes’s theorem, .« being the area
of any surface bounded by C. Then we used the relation V X B = u,J that
we found above. Finally, [ is the net current that crosses any surface
bounded by the closed curve C. The right-hand screw rule applies to the
direction of I and to the direction of integration around C, as in Fig.
19-3(a).

This is Ampere’s circuital law: the line integral of B -dl around a
closed curve C is equal to u, times the current linking C. This result is
again valid only for constant fields.

Sometimes the same current crosses the surface bounded by C several
times. For example, with a solenoid, the closed curve C could follow the
axis and return outside the solenoid, as in Fig. 19-3(b). The total current
linking C is then the current in one turn, multiplied by the number of
turns, or the number of ampere-turns.

The circuital law can be used to calculate B, when B is uniform along
the path of integration. This law is analogous to Gauss’s law, which we
used to calculate an E that is uniform over a surface.

THE LAPLACIAN OF B

We can deduce the value of the Laplacian of B from that of the Laplacian
of A (Sec. 19.2). Since
VA = —uod, (19-22)
then
VX(V°A)=—u,VXJ. (19-23)

Now the curl of a Laplacian is equal to the Laplacian of a curl and thus
VIAVXA)=—u,VXJ. (19-24)
Finally,
FZB = —.u.uv)(.f. (19‘25)

again for static ficlds.
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THE MAGNETIC FIELD STRENGTH H.
THE CURL OF H

In Sec. 19.4 we found that, for static fields in the absence of magnetic
materials,

Henceforth we shall use J;, instead of the unadorned J, for the current
density related to the motion of free charges.
In the presence of magnetized materials,

VXB=puyl +J,). (20-11)
This equation, of course, applies only in regions where the space

derivatives exist, that is, inside magnetized materials, but not at their
surfaces. Then

VX B =ul; + VX M), (20-12)
B

v x (——M) A (20-13)
Ho

The vector within the parentheses, whose curl equals the free current
density, is the magnetic field strength:

H=3_»u (20-14)
Mo

Both H and M are expressed in amperes/meter. Thus
B = uo(H+ M) (20-15)
and, even inside magnetized materials,

VXH=1, (20-16)

for static ficlds.
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AMPERE’S CIRCUITAL LAW IN THE
PRESENCE OF MAGNETIC MATERIAL

Let us integrate Eq. 20-16 over an open surface of area ¢ bounded by a
curve C:

f(v xH)-dm'=f J, - dsd, (20-18)
) =
or, using Stokes’s theorem on the left-hand side,
9g H - dl = I, (20-19)
-

where I; is the current of free charges linking C. The right-hand screw
rule applies to the direction of integration and to the direction of z. Note
that I, does not include the equivalent currents. The term on the left is
the magnetomotance.

This is a more general form of Ampére’s circuital law of Sec. 19.5, in
that it can serve to calculate H even in the presence of magnetic
materials. It is rigorously valid, however, only for steady currents.

THE MAGNETIC SUSCEPTIBILITY ¥, AND
THE RELATIVE PERMEABILITY pu,

It is convenient to define a magnetic susceptibility y,, such that’

M=y, H. (20-21)
Then
B=u,(H+M)=puyl+ X VH = pou, H = u, (20-22)
where
=14+ xm (20-23)
18 the relative permeability and
M= Ul (20-24)

is the permeability of a material. Both y,, and u, are pure numbers.
Thus

&

M=y, 20-25
X p ( )
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BOUNDARY CONDITIONS

Both B and H obey boundary conditions at the interface between two
media. We proceed as in Sec. 10.2.

Figure 20-6(a) shows a short Gaussian volume at an interface. From
Gauss’s law, the flux leaving through the top equals that entering the
bottom and

Fig. 20-6. (a) Gaussian surface straddling the interface between media 1 and 2.
The normal components of the B’s are equal. (b) Closed path piercing the
interface. The tangential components of the H's are equal.
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Blﬂ — B:n. {20"26)

The normal component of B is therefore continuous across an interface.

Consider now Fig. 20-6(b). The small rectangular path pierces the
interface. From the circuital law of Sec. 20.6, the line integral of H - dl
around the path is equal to the current / linking the path. With the two
long sides of the path infinitely close to the interface, / is zero and the
tangential component of H is continuous across the interface:

H, = H,, (20-27)

These two equations are general.

Setting B = uH for both media, the permeabilities being those that
correspond to the actual fields, and assuming that the materials are
isotropic, then the above two equations imply that

tan 6, u,,
tan 6, W,

(20-28)

We therefore have the following rule for linear and isotropic media:
lines of B lie farther away from the normal in the medium possessing the
larger permeability. In other words, the lines “prefer’” to pass through
the more permeable medium, as in Fig. 20-7. You will recall from Sec.
10.2.4 that we had a similar situation with dielectrics.

THE MAGNETIC ENERGY DENSITY €,

EXPRESSED IN TERMS OF H AND B

I'o express the magnetic energy in terms of H and B, we use Eq. 26-9
and apply it to the loop of Fig. 26-2. The loop lies in a homogeneous,

Fig. 26-2. Single-turn loop of wire C bearing a current /. The dotted line is a
tvpical line of H. The open surface, of area &, is bounded by C, and it is
vverywhere orthogonal to H.
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isotropic, linear, and stationary (HILS) magnetic medium. This excludes
ferromagnetic media. From Ampere’s circuital law,

1= 5[: Hdl, (26-20)
-

where C' is any line of H.
Also, let o be the area of any open surface bounded by the loop C and
orthogonal to the lines of H and of B. Then

ﬁ=¢=[3-d&¢ (26-21)
- |
and
1
€ =1IA=— jg H rﬂf Bd«A. (26-22)
2 Je o

Now the lines of H and the set of open surfaces define a coordinate
system in which dI - df is an element of volume with dl and ds# both
parallel to H. Also, for each element dl along the chosen line of H, one
integrates over all the corresponding surface. Since the field extends to
infinity, this double integral is the volume integral of H - B over all space,
and

1
- =3 IH B dv. (26-23)
The magnetic energy density in nonferromagnetic media is thus
g === ——. (26-24)

The magnetic energy density varies as B®. Thus, after superposing several
fields, the total field energy is not equal to the sum of the individual

energies. See Eq. 26-12.
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CHUONG 4. TRUONG PIEN TU BIEN THIEN

MOTIONAL ELECTROMOTANCE.

THE FARADAY INDUCTION LAW

FOR v X B FIELDS

Consider a closed circuit C that moves as a whole and distorts in some
arbitrary way in a constant magnetic field, as in Fig. 23-1. Then, by
definition, the induced, or motional, electromotance 1s

1«":513__(1. X B) - dl = _jl;__ﬂ (v X dI). (23-2)

The negative sign comes from the fact that we have altered the cyclic
order of the terms under the integral sign.

Now v Xdl! 1s the area swept by the element dl in 1second. Thus
B - (v X dl) i1s the rate at which the magnetic flux linking the circuit
increases because of the motion of the element dl. Integrating over the
complete circuit, we find that the induced electromotance is proportional
to the time rate of change of the magnetic flux linking the circuit:

: dd

V=- 2 (23-3)
The positive directions for 7" and for @ satisfy the right-hand screw rule.
The current is the same as if the circuit comprised a battery of voltage 7".
This is the Faraday induction law for v XB fields. This law is
important. As far as our demonstration goes, it applies only to constant
B’s, but it 1s, in fact, general, as we see in Sec. 23.4, Quite often &P is
difficult to define; then we can integrate v X B around the circuit to

obtain V..
If C is open, as in Fig. 23-2, then current flows until the electric field

resulting from the accumulations of charge exactly cancels the v X B
field.
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FARADAY’S INDUCTION LAW FOR
TIME-DEPENDENT B’s. THE CURL OF E

Imagine now two closed and rigid circuits as in Fig. 23-6. The active

circuit a is stationary, while the passive circuit b moves in some arbitrary

way, say in the direction of a as in the figure. The current /, is constant.
From Sec. 23.2, the electromotance induced in circuit b is

dd
?f:ﬂg(uxﬂ)-d:=—?, (23-27)
b !

where @ is the magnetic flux linking 5. This seems trivial, but it is not,
because d®/dr could be the same if both circuits were stationary and if Z,
changed appropriately. This means that the Faraday induction law

dd
Yy === -
— (23-28)

applies whether there are moving conductors in a constant B or stationary
conductors in a time-varying B. However, our argument is no more than
plausible. A proper demonstration follows at the end of this chapter. It
requires relativity.

Assuming the correctness of the above result, the electromotance
induced in a rigid and stationary circuit C lying in a time-varying
magnetic field is

ﬂ:f=9‘; E »d:=f (VxE)-dst=—2P_ _[B 404 (2329
fo - dr 2 Ot
We have used Stokes’s theorem in going from the first to the second
integral, &« being an arbitary surface bounded by C. Also, we have a
partial derivative under the last integral sign, to take into account the fact
that the magnetic field can be a function of the coordinates as well as of
the time. The right-hand screw rule applies.

The path of integration need not lie in conducting material.

Observe that the above equation involves only the integral of E - di. It
does not give E as a function of the coordinates, except for simple
geometries, and only after integration.

Since the surface of area .« chosen for the surface integrals is arbitrary,
the equality of the third and last terms above means that

3B
VXE=—"—. 23-
., (23-30)

This is vet another of Maxwell’s equations. This equation, like the other
two (Eqgs. 9-15 and 18-19), is valid on the condition that all the variables
relate to the same reference frame.
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THE ELECTRIC FIELD STRENGTH E

EXPRESSED IN TERMS OF THE POTENTIALS

V AND A

An arbitrary, rigid, and stationary closed circuit C lies in a time-
dependent B. Then, from Sec. 23.4,

d
% E-dl= — f B-dsd, (23-41)
c dt Jog

where & is the area of any open surface bounded by C.
Now, from Sec. 19.1, we can replace the surface integral on the right
by the line integral of the vector potential A around C:

d 54
3§CE-dr- —EjgcA-dI——ia-dI. (23-42)

There is no objection to inserting the time derivative under the integral
sign, but then it becomes a partial derivative because A is normally a
function of the coordinates as well as of the time.

Thus

A

3‘3 (E‘ + —) . dl =0, (23-43)
c ot

where C is a closed curve, as stated above. Then, from Sec. 1.9.1, the

expression enclosed in parentheses is equal to the gradient of some

function:

cA

E + Yl vv, (23-44)
E=—FV—%, (23-45)

where V is, of course, the electric potential.

So E is the sum of two terms, — VV that results from accumulations of
charge and —38A/5t whenever there are time-dependent fields in the
given reference frame.

This is an important equation; we shall use it repeatedly. Observe that
it expresses E itself, not its derivatives or its integral, at a given point in
terms of the derivatives of V and of A in the region of that point. Its
magnetic equivalent is B = VX A (Sec. 18.4).
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The Faraday induction law, in differential form (Eq. 23-30), relates
space derivatives of E to the time derivative of B at a given point.

Observe that VV is a function of V, which depends on the positions of
the charges. However, 3A/Jr is a function of the time derivative of the
current density J, hence of the acceleration of the charges.

The relations

E=—FV—% and B=VXA (23-46)

are always valid in any given inertial reference frame.’
In a time-dependent B, the electromotance induced in a circuit C is

v=_[A.a (23-47)

c Ot
SIX KEY EQUATIONS

It is useful at this stage to group the following six equations:

(G) E=-VV- a_; , (23-46)
3B
(G) jECE -dl= - LE ddA, (23-29)
3B
(G) VXE= - a1 (23-30)

(G) B=VXA, (Sec.184) and  (23-46)
553-m=pﬂjj-dﬁ, (Sec. 19.5)
i

VXB=u,J. (Sec.19.4)

The four equations preceded by (G) are general, while the other two
apply only to slowing varying fields (Sec. 27.1). In each equation all the
terms concern the same reference frame.
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MAXWELL'S EQUATIONS IN
DIFFERENTIAL FORM

Let us group Maxwell’s four equations; we discuss them at length below.
We found them successively in Secs. 9.5, 23.4, 20.4, and 17.4:

oB

e i

V-E="—, 27-1 VXE+—= - |
Z. @ = =0 (27-2)

12 I

V-B=0, (27-3) VB H?—a—f’.=,un.f.' (27-4) |

|

The above equations are general in that the media can be
nonhomogeneous, nonlinear, and nonisotropic. However, (1) they apply
only to media that are stationary with respect to the coordinate axes,’
and (2) the coordinate axes must not accelerate and must not rotate.

These are the four fundamental egquations of electromagnetism. They
form a set of simultaneous partial differential equations relating certain
time and space derivatives at a point to the charge and current densities
at that point. They apply, whatever be the number or diversity of the
sources.

We have followed the usual custom of writing the field terms on the
left and the source terms on the right. However, this is somewhat illusory
because p and J are themselves functions of E and B. As usual,

E is the electric field strength, in volts/meter;

p = py + p, is the total electric charge density, in coulombs/meter?;

Py is the free charge density;

P = — V- P is the bound charge density;

P is the electric polarization, in coulombs/meter?;

B is the magnetic flux density, in teslas;

J=J, +3P/3t+ VX M is the total current density, in amperes/meter-;*

J; is the current density resulting from the motion of free charge;

aP/3dr is the polarization current density in a dielectric;

¥V X M is the equivalent current density in magnetized matter;

M is the magnetization, in amperes/meter;

c is the speed of light, about 300 megameters per second;

€p is the permittivity of free space, about 8.85 x 10~ '* farad/meter.
In isotropic, linear, and stationary media,

J; = oFE, P=¢eyy E, M=y H, (27-5)

where o is the conductivity, y. is the electric susceptibility, and yx,, is the
magnetic susceptibility. Also,

e, =1+ x., w, =1+ ¥m, (27-6)
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where €, is the relative permittivity and p, is the relative permeability.
Inside a source, such as a battery or a Van de Graaff generator, electric
charges are “pumped” by the locally generated electric field E, against
the electric field E of other sources, and J = o(E + E,).

Writing out p and J in full, Maxwell’s equations become

V-P

v.E=E—""" (27-7)
€o
JB
VXE+—=0, -
E E (27-8)
V:-B =0, (27-9)
1 dE oP
VXB—-—-—= ( — ) 7-

This Amperian formulation expresses the field in terms of the four vectors
E, B, P, and M.
With homogeneous, isotropic, linear, and stationary (HILS) media,

Pr

p= (Sec. 9.9) (27-11)
P=(6,—1)ecE  (Sec.9.9) (27-12)
-1
mM="Dp (e 207 (27-13)
Urlto
and
v.E=2 (27-14) Fx5+§§=0, (27-15)
€ at
SF
V-B=0, (27-16) VXB—eu—=ulp.  (21-17)

Recall that € = €., and p = p,u,, €, is frequency-dependent, and p, is
hardly definable in ferromagnetic materials. The expressions for P and
for M are not symmetrical, but P, E, and D point in the same direction,
like M, H, and B, in isotropic and linear media.

Observe that the above set of equations follows from Egs. 27-1 to 27-4
with the following substitutions:

€€, Ho—p, (27-18)
p—pn I U (27-19)
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This is a general rule for transforming an equation in terms of €,, o, P, J
to another one in terms of €, u, py, Jy.

The Minkowski formulation of Maxwell’s equations is often useful. It
expresses the same relations, but in terms of the four vectors E, D, B, H:

V-D=p, (27-20) VXE + %? 0, (27-21)
oD
V-B=0, (27-22) VXXH-— E =J,. (27-23)

In the following chapters we shall be mostly concerned with electric
and magnetic fields that are sinusoidal functions of the time. Then, for
isotropic, linear, and stationary media, not necessarily homogeneous,

V-cE=p;, (27-24) VXE +jouH =0, (27-25)
V-uH=0, (27-26) VXH-—jocE=J,  (27-27)

It is worthwhile to discuss Maxwell’s equations further, but first let us
rewrite them in integral form.

MAXWELL’S EQUATIONS IN
INTEGRAL FORM

Integrating Eq. 27-1 over a finite volume v and then applying the
divergence theorem, we find the integral form of Gauss’s law (Sec. 9.5):

1
fE-d.ﬂ=mfpdu=§, (27-28)
o €o Ny €0

where & is the area of the surface bounding the volume v and Q is the
total charge enclosed within v. See Fig. 27-1

Similarly, Eq. 27-3 says that the net outward flux of B through any
closed surface is zero, as in Fig. 27-2:

j B-dsd —0. (27-29)
=g

Equation 27-2 is the differential form of the Faraday induction law for
time-dependent magnetic fields. Integrating over an open surface of area
& bounded by a curve C gives the integral form, as in Sec. 23.4:

dA
%E ~dl = 7 f B-doA = ~ a4 (27-30)
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where A is the linking flux. See Fig. 27-3. The electromotance induced
around a closed curve C is equal to minus the time derivative of the flux
linkage. The positive directions for A and around C satisfy the right-hand
screw convention.

cE
fracif(ra®)ae e

We found two less general forms of this law in Secs. 19.5 and 20.6. The

closed curve C bounds a surface of area «f through which flows a current
of density J + €,0E/dt. See Fig. 27-4.

THE LAW OF CONSERVATION OF CHARGE

In Sec. 4.2 we saw that free charges are conserved. At that time we were
using the symbol J for the current density of free charges instead of Jy.

Let us calculate the divergence of J as defined in Sec. 27.1. We will
need the value of this divergence in the next section. First,

aP 3
V.J= F-(Jf+§+ FXM)=V-J}+§(F-P), (27-41)

the divergence of a curl being equal to zero. Thus

Spy  9Ps 3(ps + p») op
J=——_ = - 7-42
- ot ot at ot (2 )

This is a more general form of the law of conservation of charge of Sec.
4.2.

MAXWELL’'S EQUATIONS ARE REDUNDANT

Maxwell’s four equations are redundant. We saw in Secs. 17.3 and 17.4
that the equation for VX E follows from the one for V-B, and the
equation for V X B from the one for V- E. These are, respectively, the
first and second pairs.

The two equations of the first pair are also related as follows. If we
take the divergence of Eq. 27-2 and remember that the divergence of a
curl is zero, we find that

oB 3
V-E-U or aFvB—U. (27-43)
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So V- B is a constant at every point in space. Then we can set V+B =0
everywhere and for all time if we assume that, for each point in space,
V- B is zero at some time, in the past, at present, or in the future. With
this assumption, Eq. 27-3 follows from Eq. 27-2.

Similarly, taking the divergence of Eq. 27-4 and applying the law of
conservation of charge, we find

oE ap
EGF af L F * J - Es (2?-44)
d d/p p
— V.E =_-(_)J - — — . -
alVB=5c el (27-45)

The constant of integration C can be a function of the coordinates.
If we now assume that, at every point in space, at some time, V - E and
p are simultaneously equal to zero, then C is zero and we have Eq. 27-1.
So there are really only two independent equations.

DUALITY

Imagine a ficld E, B that satisfies Maxwell's equations with p, = 0, J,=0
in a given region. The medium is homogeneous, isotropic, linear, and
stationary (HILS). Now imagine a different field

E'= -KB = —KuH, (27-46)
H' = +KD = +Ke¢E, (27-47)

where the constant K has the dimensions of a velocity and is independent
of x, y, z, t. This other field also satisfies Maxwell’s equations, as you can
check by substitution into Egs. 27-20 to 27-23.

Figure 27-5 illustrates this duality property of electromagnetic fields.
One field is said to be the dual, or the dual field, of the other. Therefore,
if one field can exist, then its dual can also exist.
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THE WAVE EQUATIONS FOR E AND FOR B
Taking the curl of Eq. 27-2 and remembering that

VXVXE=-VE+V(V-E), (27-63)

then, from Eq. 27-4,

d 3 oF
— V- EY=—V X = — _). 27-64
VE-V(V-E)=2 VXB=—(uod +eopo3 ) (27-64)
Substituting now the value of the divergence of E from Eq. 27-1 and
rearranging,
E Vp aJ

V’E - €sto—=—"+ to— .
oo e, Ho 3t

(27-65)
This is the nonhomogeneous wave equation for E. The source terms are

on the right.
QOutside the sources,

3°E

F — —_—
V°E €Eollp 8:2

0. (27-66)
This is the usual wave equation. The speed of propagation, which is the
speed of light, is

1

)11"2 )

=— (27-67)
(€otto

C
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Similarly, taking the curl of Eq. 27-4 and substituting Eqs 27-2 and
27-3, we find that
3’B

V’B - €olho ?

= _ﬂ-.".F XJ, (2?'68)

which is the nonhomogeneous wave equation for B. The source term is
again on the right.
Qutside the sources,

=0. (27-69)

According to the rule given in Sec. 27-1, the wave equations for a
HILS medium are as follows:

3*E Vp 3J;

V’E—euy—=—L+ 7-7

E-enz=—"ctrg (27-70)
3’B

V°B — eu 52 —uVxJ,. (27-71)

We therefore have a wave equation for the field E, and a separate
wave equation for B. Within the wave, however, E and B are inextricably
related through Maxwell’s equations. In other words, purely electric, or
purely magnetic, waves are impossible. The fact remains that, in some
waves, the energy density can be either mostly magnetic or mostly
clectric,

If o i1s constant,

FE_ E_Vp

2
— U — — -7
VE — ep R e (27-72)
B 5B
2 — — — =) -?
VB — e 27~ OH 0 (27-73)
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CHUONG 5. SONG PIEN TU PHANG

UNIFORM PLANE ELECTROMAGNETIC
WAVES IN A GENERAL MEDIUM

A wave front is a surface of uniform phase. The wave fronts of a plane
wave are planar. A wave is uniform if a wave front is a surface of uniform
phase and uniform amplitude. We shall not be concerned with nonuni-
form waves until Chap. 31.

Uniform plane electromagnetic waves in unbounded media possess
several general properties that apply whether the wave travels in free
space or in matter. To avoid needless repetition, we start with a general
medium €,, u,, o that is homogeneous, isotropic, linear, and stationary
(HILS).

We assume a sinusoidal wave traveling in the positive direction of the
z-axis. We also assume that the E vectors are all parallel to a given
direction. In other words, we assume that the wave is linearly polarized.
[f the plane wave is not linearly polarized, then it is the sum of linearly
polarized waves.” The plane of polarization is parallel to E.

In a linearly polarized plane wave, FE and H are of the form

E=E, expj(wt—kz), H=H, expj(wt —kz)* (28-1)

where E,, and H,, are vectors that are independent of the time and of the
coordinates. If there is no attenuation, the wave number is real:

w 27 1
k‘_——_—,_ == -
v A i’

(28-2)

where v is the phase velocity, A is the wavelength, and A (pronounced
“lambda bar™) is the radian length. You can easily show by substitution
that Eqs. 28-1 are solutions of Eqs. 27-66 and 27-69.
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The Relative Orientations of £, H, and k

For this particular field,

o

O plBg. 00,8, 8.
EYA At o gy’ ezt azc- %% (28-3)

We set p, =0. We also set

J, = oF, (28-4)

on the assumption that v X B is negligible compared to E, where v is the
velocity of a conduction electron.
Then Maxwell’s equations 27-24 to 27-27 reduce to

—jkz+E=0, —jkiXE=—jouH, (28-5)
—jkz+H=0, —jkiXH = 0E + jweE (28-6)
and then to
k
- L] —— - d x 28-?
-~ k o]

$.H=0, H=—3%XE. (28-8)

wu

It follows that E and H are transverse and orthogonal. Figure 28-2 shows
the relative orientations of E, H, and k = kZ. Observe that E X H points
in the direction of propagation.

The Characteristic Impedance Z of a Medium

The ratio E/H is the characteristic impedance Z of the medium of
propagation:

k W

_ =2 (28-9)

7 = =
we—jo k

£
H
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The Wave Number &

The value of k? follows from the above equation:

k* = wlep — joou = mzfp(l - ;—"—), (28-10)
e
= w2€ltoe (1 i) (28-11)
ol o€ 14, JWE

The o terms account for Joule losses and attenuation.

The Wave Equations

We found the nonhomogenous wave equations for E and B in Sec.
27.9:

FE Vp aJ
V’E - —=—+ Uyg—, 28-
€pllo 52 € Ko ot (28-12)
3’B
FZB-"EU#U?= uoVXJ. (28-13)

We now apply the rule of Sec. 27.1 and Eq. 28-4 to obtain the
equivalent equations for a medium €, u, 0. We again set p; =0. Then

aZE W o E

V’E — = _
3'B oB
VB~ eu— 27 = —uoVXE =puo— % (28-15)

[t is the custom to write these wave equations in the form
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3’E oE

V’E — —po—= -
E — €u e po— 0, (28-16)
3’B 3B
2 - - .
VB —e€u rv il L 0, (28-17)
or,
*H cH
‘H — —uo—=20. 28-18
V‘H — eu Y no— 0 (28-18)
Then, from Sec. 28.2.1,
(—k°+ w’ep — jwop)E =0, (28-19)

and similarly for H. The expression enclosed in parentheses is equal to
zero, from Eq. 28-10.

UNIFORM PLANE WAVES IN FREE SPACE

In free space, €, =1, u, =1, 0= 0, there is no attenuation, and from Eq.

28-19,
1

e
= w(€opto)'”. (28-21)

k (28-20)

From Eq. 28-2 the speed of light is

w 1
c=—

= m = 2.99792458 x 10* meters/second. (28-22)
(8]l ¥}

This equation is remarkable. It links three basic constants of electro-
magnetism: the speed of light ¢, the permittivity of free space €, that
appears in the expression for the Coulomb force, and the permeability of
free space o from the magnetic force law.

Since uo is, by definition, exactly equal to 47 X 1077, the value of €g
follows from the value of c:

1
Eﬂ )
o

> = 8.854187817 X< 10~'* farad/meter. (28-23)

The characteristic impedance of the vacuum is

k 1 12
E @ho _ (?) (28-24)
0

ZJ —_—— = — — P‘-uc —
H we, k €0C
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= 3.767303 x 10* = 377 ohms. (28-25)
Thus, since B = u,H in free space,

E 1

B o BB .

The E and H vectors in free space are in phase because the characteristic
impedance of free space 1s real.
The electric and magnetic energy densities’ are equal:

EnEZJIZ €p (Juﬂ)
=—\{—]=1 28-27
.UHHZ."Z Ho €y ( )

At any instant the total energy density fluctuates with z as in Fig. 28-3,
and its time-averaged value at any point is

2

Ei‘n"- HI’I‘DS
= SoZms | Botme_ ¢ E2 = poHz,.. (28-28)

é 2 2

Abandoning the phasor notation for a moment,
E =E,, cos (ot — kz), H =H,, cos (wt — kz). (29-29)
The magnitude of the Poynting vector is

|#| = |E X H| = E,,H,, cos (ot — kz). (28-30)
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We shall see in Sec. 28.6 that the Poynting vector, when integrated over a
surface, yields the power flow through that surface. Power flows in the

direction of &.
Returning to phasors, the time-averaged Poynting vector is (Sec. 2.4)

#..=1Re (E X H*) (28-31)

and, for a uniform plane wave in free space,

. =1 Re (EH*) (28-32)
E2
=dceo [Enl’ 2= ceoEimt == 2 (28-33)
)
E2
~ 3;“;52 watts/meter”. (28-34)

This is the time-averaged total energy density €yEr,,, multiplied by the

speed of light c.

UNIFORM PLANE WAVES IN

NONCONDUCTORS

The situation here is the same as in free space, with € and u replacing €,
and u,. The phase velocity is now

1 ¢ c
ST e (eu) 23
where n is the index of refraction:
n = (Enu’r)uz' (28'39)

The phase velocity v is less than in free space, since both €, and u, are
larger than unity. In nonmagnetic media,

n=e". (28-40)
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As we saw in Sec. 10.1.2, €, is a function of the frequency, so n is also
frequency-dependent. As a rule, tables of n apply to optical frequencies
(=10" hertz), whereas tables of €, apply at much lower frequencies, at
best up to about 10"’ hertz. Pairs of values drawn from such tables do not
therefore satisfy the above equation.

The characteristic impedance of the medium is

3 E_ 'u\]fz_ ('ur)lfz
Z= - (t_} =377 c ohms. (28-41)

The electric and magnetic energy densities are again equal:

€E*2
uH?*/2

1, (28-42)

and the time-averaged energy density is

_ €E%, . uH?z,

E=—5 5 = €= pH . (28-43)

The Poynting vector E X H points again in the direction of propaga-
tion, and

1/2
.. =1 Re (EH"): = (-E) E2 3 (28-44)
I.-"EEZ
L, = (EJ“SQI? ==%  watts/meter’ (28-45)
1
=, €Emat = veElL (28-46)

The time-averaged Poynting vector is again equal to the phase velocity
multiplied by the time-averaged energy density.
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UNIFORM PLANE WAVES IN CONDUCTORS
The Complex Wave Number k = f8 — jo

In Sec. 28.2.3 we found that in a conducting medium
€ a
k2= (1 —j—), (28-52)

so k is complex. It is the custom to set
k=p—ja and then E=E, exp(—az)expj(wt— Bz), (28-53)

where both a and B are positive.

The quantity 1/« is the attenuation distance or the skin depth & over
which the amplitude decreases by a factor of e. The real part § of & is the
inverse of 4:

1
= 28-54
a=-, (28-54)

1 2x
S 28-55
B=2=7 (28-55)
and the phase velocity is

w
U=, 28-56
B (28-56)

Let us find & and 8 in terms of €,, u,, o, and A,. First we set

o
Y=—=
we

i
l ~377 Z 3 (28-57)

ofF |_ gk
e dE/3t|  |3D/at

This is the magnitude of the conduction current density, divided by the

magnitude of the displacement current density. As a rule, % (for
dissipation’’), is written tan /, as in Sec. 10.1.1:

% = tan I, (28-58)

where [ is here the loss angle of the medium, but we use % for
CONCISENEss.
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The permittivity € that appears above is the real part €€, (Sec.
10.1.1). One can account for conductivity either by means of a complex
permittivity (€, —je/ )¢, or by means of a real permittivity and a
conductivity o, where o = we, €,, again as in Sec. 10.1.1. Thus

G =" (28-59)

This quantity, like €; and €7, is always positive.

If &% << 1, the medium is a good dielectric; if % >>1, the medium is a
good conductor. For common types of good conductor, 0=10" (o=
5.8 x 107 for copper) and €, =1 (Sec. 4.3.6). You will remember from
Sec. 4.3.6 that €/0 is the relaxation time of a medium.

Thus
- € 1, .
= (B - o = (571 - j2), (28-60)
and
142
o (E’“’) (14 2%)2 — 1], (28-61)
Ao\ 2
1.2
B=— (Er”r) [(1+ )2 + 1], (28-62)
A, \ 2
172
k= (E";’) (1+ 2% exp (—j arctan g) (28-63)
0
The argument of the exponential function is correct because B is positive
(Sec. 2.1).
In a low-loss dielectric 9 is small, and
1/2 1/2
o (G _ (1) 0, _—
24, €, 2

(eu,)" w
= U === .
P~ B ()"

(28-65)
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In such media the conductivity hardly affects the phase velocity, but it
gives rise to an attenuation that is independent of the frequency.
In a good conductor 9 >>1 and

- €L, . a .
k*=—j@ ig =i €14, €plly = —jOUW, (28-66)
1/2
k= (%) (1)), (28-67)
1/2
e ("‘;—m) . (28-68)

The index of refraction of a good conductor

c__¢P = c(%)m (28-69)

2w
is a large quantity. It is 1.1 X 10® for copper at 1 megahertz.
The Characteristic Impedance Z of a Conductor

The characteristic impedance of a conducting medium is complex:

_E_ k _wp
Z—H— ve—jo k (28-70)

_ E)uz exp J arctan (a/B) _ 3 (_,u_r) 12 exp j arctan (a/f) i
(E 1+ @2\ 77 €, 1+ 35" ohms (28-71)
as we saw in Sec. 28.2.2. This means that E and H are not in phase:

E_ on
H B—ja’

(28-72)

where « and 8 are both positive. So E leads H by the angle
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6 = arctan —.. (28-73)

p
Figure 28-4 shows € as a function of 2.
Therefore,
E =E, exp (—az)expj(wt — B2), (28-74)
H=H, exp(—az)expj(wt— fz — 6), (28-75)
with

&__EE_(E)HZ 1 _(&])IH(E:)IQ 1
U, 1/2 1
== 37?(;) mﬁ ohms. (28-77)

From Eq. 28-8, E and H are orthogonal in a linearly polarized wave. If

the wave is not linearly polarized, then the vectors E and H are not
necessarily orthogonal.

The Energy Densities

The time-averaged electric and magnetic energy densities are in the ratio

8. €En/2_ 1
€ uHm/2  (1+ 3%

(28-78)

There is less electric energy than magnetic energy because the conduc-
tivity both decreases E and adds a conduction current to the displacement
current, which increases H.

The time-averaged total energy density is

J(€E2p, + uH2) exp (—2az) = J(eE2,)[1 + (1 + 27" exp (—2az2).
(28-79)
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THE POYNTING THEOREM

We referred to the Poynting vector
F=EXH (28-80)

in previous sections, but we said very little about it. We only stated that it
is equal to the power density in an electromagnetic wave, and that it
points in the direction of propagation.

The Poynting vector is of great theoretical and practical interest. Its
significance follows from the Poynting theorem that we now prove.

First, we have the vector identity

V- (EXH)=H-(VXE)—E-(VXH). (28-81)

In a HILS medium, Egs. 27-20 to 27-23 apply. and then

SH |
V-(EXH)=-H-p>"—E- (ea—E+Jf) (28-82)
e 31

3 (eE* uH?
= a:( —+ & )-E -1, (28-83)

We now change the signs, integrate over a volume v of finite extent and
of surface area &, and finally apply the divergence theorem on the left.
This yields the Poynting theorem:

d (EE2 uH?

(E XH)-dA dv+ | E-J;dv. (28-84)
dr 2 :

The first integral on the right gives the increase in the electric and
magnetic energy densities inside the volume v, per unit time. The second
gives that part of the field energy that dissipates as heat, again per unit
time. Then the term on the left, with its negative sign, must represent the
rate at which electromagnetic energy flows into the volume v.

Then the integral

L F-dsd = L (EXH)-dsd (28-85)

is the total power flowing out of a closed surface of area &/,
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The Poynting theorem therefore simply states that there is conserva-
tion of energy in electromagnetic fields. It is a proof of the validity of Eq.
27-23, and hence of Eq. 27-4.

For a uniform, plane, and linearly polarized wave in conducting
material, the time-averaged magnitude of the Poynting vector is

Foo =3 Re{[E,, exp (—az) expj(wt — Bz)
X H,, exp (—az) expj(—wt + Bz + 0)]} (28-86)

=3E,.H,, cos 8 exp (—2az), (28-87)
where @ is defined as in Sec. 28.5.2 and
p

(“2 + ﬁZ)le’z '

cos 6 = (28-88)

We found the ratio E,,/H,, in the previous section. If we eliminate H,,,
then

172
&, = (i) (14 D% E},  cos O exp (—2az) (28-89)

1 . 172 )
~377 (i) (1+ 2% Efp cos Oexp (—2az).  (28-90)

You can easily show that

Y. = (time-averaged energy density) X (phase velocity) (28-91)
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UNIFORM PLANE ELECTROMAGNETIC
WAVES IN GOOD CONDUCTORS.
THE SKIN EFFECT

iRecall from Sec. 28.5.1 that, in a linearly polarized, uniform plane wave
propagating in a conductor in the positive direction of the z-axis,

E =E, exp (—az)exp j(wt — Bz). (29-1)

We define a good conductor as a material such that, in the expressions
«or & and B given in Sec. 28.5.1,

[(1+2H)2+ 1]~ @', (29-2)

‘his condition is satisfied within 19 if

I
| =50, (29-3)

~r if the conduction current density is at least 50 times larger than the
lisplacement current density. But note here that o and € are functions of
1, especially at optical and x-ray frequencies. So % does not decrease
ndefinitely as 1/f, as the above equation appears to indicate.

In good conductors the wave equation 28-16 reduces to’

SE
V’E — uo 5 =0 (29-4)

and Eq. 28-10 for the wave number to

k*= —jwou. (29-5)
I'hus
B i (PO 1 _C_€ it
k=p ;cr—( 2) (1—y) 5 n_v_(ui_iﬂk_é(l J)
(29-6)
11 jwou\'?
peteanto(22)” o

where n is the index of refraction, A = A/2x, as usual, and where 6 is the
attenuation distance, defined in Sec. 28.5.1 as the distance over which the
amplitude decreases by a factor of e.
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From Eq. 28-70, the characteristic impedance of a good conductor is

zZ ——

_E_on_ (o0 in
== -( expl, (29-8)

and E leads H by /4 radian. Compare with nonconductors in which E
and H are in phase (Sec. 28.4). The difference comes from the fact that
the current that is associated with H in good conductors is the conduction
current, which is in phase with E, and not the displacement current of
nonconductors, which leads E by 90°.

Therefore
z\ 2
=F, ( ——) — —]! u
E exp [; wt 5) "3 (29-9)
H_(_f’_)mg ex ['(w:—f—f)—f} (29-10)
~ \ou e 6 4/ &)

The vectors E and H are transverse and orthogonal, say E is parallel to
the x-axis and H to the y-axis. In terms of cosine functions,

E=FE, exp (—%) COs (wt —%), (29-11)

H—(i)mE (—5) os( r—f—f) 29.12

“\op/ PP TS N TS T (29-12)
z FAE 1

=H,, exp (—3) cos (wt e E) (29-13)

Figure 29-1 shows E/E,, and H/H,, as functions of z/Z at t =0,

The amplitude of the wave decreases by a factor of (1/e)*"=2x107*
in one wavelength, and the Poynting vector by (1/e)*™=3 x 107°. This is
the skin effect.

The attenuation distance & in conductors is termed the skin depth, or
the depth of penetration. The skin depth decreases if the conductivity, the
relative permeability, or the frequency increases. Good conductors are
therefore opaque to light, except in the form of extremely thin films. It
does not follow, however, that substances that are nonconducting at low
frequencies are transparent at optical frequencies.

Table 29-1 shows the skin depth & for various conductors at four
typical frequencies. The attenuation in iron is much larger than in silver,
despite the fact that iron is a relatively poor conductor.

The phase velocity
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2 172
v, =o=wf= (J‘—’) (29-14)
B ou

~ proportional to the square root of the frequency.
In good conductors the group velocity (App. C) is twice as large as the
phase velocity:

1
v

«= 2B Tde = 20 (29-15)

i1 o and u are not frequency-dependent.
The ratio of the time-averaged electric to the time-averaged magnetic
cnergy densities 1s

€Erm/2  we 1_1
uH:. 2 o 9 50

(29-16)

I'he energy is thus essentially all magnetic. This results from the large
vonductivity o, which causes E/J; to be small. The electric field strength
i~ weak, but the current density and hence H are relatively large.

From Eqs. 29-11 and 29-13, the time-averaged value of the Poynting
vector is

. o Lo\ 22\ , .
Jw=1Re(ExH") 2 (Zm,u) Xp (_E)E’"‘z' (29-17)

REFLECTION AND REFRACTION

Medium 1 carries the incident and reflected waves. Medium 2 carries the
refracted wave. For simplicity, we assume in Secs. 30-1 and 30-2 that the
incident wave is linearly polarized. Then, in the incident wave,

E.a =E}m Cxpj(ﬂjff _k; 'r), (30‘-])

where the vector wave number k, is real and points in the direction of
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propagation of the incident wave. The magnitude of k; is n,k,, or n,/4,,
n, being the index of refraction of medium 1 and %, the radian length of a
wave of the same frequency in a vacuum. For convenience, we set the
origin of r in the interface, as in Fig. 30-1, and we take E,,, to be real.

This equation defines a plane wave for all values of 1 and r, and thus a
wave that extends throughout all time and space. However, it applies
only in medium 1.

Since the incident wave is plane, all the incident rays are parallel. By
hypothesis, the interface is plane. Now the laws of reflection and of
refraction must be the same at all points on the interface. It follows that
the reflected rays are parallel to each other. Similarly, the refracted rays
are parallel to each other. Further, since a wave front is by definition
perpendicular to a ray, we can expect the reflected and transmitted waves
to be of the form

Ex = Eg,, expj(wgt — kg - 1), (30-2)
ET:ETH! expj(wrf_kr 'r). (30-3)

What do we know about k and k;? From the wave equation 27-72
applied to medium 1, with o=0, p, =0,

VzER + E]ﬂl(ﬂzER — VZER + k%EH =0, (30'4)
where
1 ny
ky=—=—=nke=w(€u,)" 30-5
1 i A 1Ko (€11,) ( )

A similar string of equations applies to k,. Also,
K2+ k3, + k3, = kg + ki) + ke = k7, T+ ki + k. =k3.  (30-6)

The wave numbers k, and k, are real, but kg and k; are vectors that can
be complex.

The tangential component of E is continuous at the interface. This
means that the tangential component of E, + Er in medium 1, at the
interface, is equal to the tangential component of E in medium 2, at the
interface. The same applies to H. These continuity conditions will permit
us to find all the unknowns in Egs. 30-2 and 30-3.

Some relation must exist between E,, Eg, E at the interface for all ¢
and for all points r,, on the interface. Such a relation is possible only if
the three vectors are identical functions of r and r,,,. Then

;= Wg = 7. (30-7)
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All three waves are of the same frequency. This is obvious because the
waves are all superpositions of the wave emitted by the source and of
those waves emitted by the electrons executing forced vibrations in media
1 and 2. Recall from mechanics that forced vibrations are of the same
frequency as the applied force.

Also, from the above equations for the E’s,

k.f i = kR *Fie = III"."' * Bt (30'8)

Then the k’s are oriented in such a way that their components parallel to
the interface are equal. In particular, if k,, =0 as in Fig. 30-1, then

kﬁ}' = {}, kT}' -— 0, {30—9)

and k;, kg, kr are coplar.ar. The plane containing these three vectors is
called the plane of incidence. The x components of the k’s are thus all
cqual:

kr. = kr.=k;. =k, sin 6,, (30-10)

where 6, is the angle of incidence shown in Fig. 30-1.
[t is now easy to find kg:

k%, + ki, = ki. + ki, = ki (30-11)
and
ki, = ki, Kr: = —k;,. (30-12)

We choose the negative sign because the reflected wave travels away
irom the interface. It follows that, if k;, is real, as we assumed at the
beginning (there is zero attenuation in medium 1), then kg is also real,
the reflected wave is uniform, and

0, = Og. (30-13)

lhe angle of reflection is equal to the angle of incidence.

Therefore the incident, reflected, and transmitted rays are coplanar,
and the angle of reflection is equal to the angle of incidence. These are
the laws of reflection.
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SNELL'S LAW
Now return to Eq. 30-10. It says that

k.= kysin 6. (30-14)
Then
k2, = k32— k%, = k3—k}sin® 6, = kj(n3 —nisin® 6,).  (30-15)

If the term in parentheses is negative, then there is total reflection. We
disregard this possibility until Chap. 31. Otherwise, kr, is real, kis real,
and the transmitted wave is plane and uniform. If 67 is the angle of
refraction as in the figure,

sz = _kz cos 67, k;rz == kz SIn BT. (30'16)
From Eqgs. 30-14 and 30-16,
k, sin 8 =k, sin 6, or n,sin 84 = n, sin 8;. (30-17)

When an electromagnetic wave crosses an interface, there is conserva-
tion of the quantity n sin 6. This is Snell’s law.
Therefore, choosing axes as in Fig. 30-1, we find that

E,=E,, exp jlot — k,(x sin 8, — z cos 6,)], (30-18)
Eg = Eg,, exp j| ot — ky(x sin 6, + z cos 6/)], (30-19)
E,=E,,, expjlot — ko(x sin 87 — z cos 67)]. (30-20)

The laws of reflection and Snell's law are general. They apply to any
two homogeneous, isotropic, linear, and stationary (HILS) media,
whether conducting or not, with either real or complex k’s, provided that
one allows complex angles as in the next chapter.
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FRESNEL’S EQUATIONS

IFig. 30-2. The incident, reflected, and transmitted waves for an incident wave
polarized with its E field normal to the plane of incidence. The arrows show the
hirections in which the vectors are taken to be positive at the interface. The
vectors £ X H point everywhere in the direction of propagation.

H_rx + HR.r= HTx; Hf}. + HRy = HT}'* (30‘22)

Since the relation

X
g-*XxE (30-23)
wp

ol Sec. 28.2.1 applies to all three waves, we first find Ex and E; and then
Jdeduce Hg and H.

It will be convenient to divide the discussion into two parts. We
consider successively incident waves polarized with their E vectors
normal and then parallel to the plane of incidence. Any uniform plane
incident wave is the sum of two such components.

We now define our sign conventions. See Figs. 30-2 and 30-3. Observe
that the two figures agree at normal incidence. We utilize the continuity
ot E, and H, in Fig. 30-2, and the continuity of E, and H, in Fig. 30-3.
I'his will yield relations that apply again to any pair of HILS media and
to any angle of incidence.
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E Normal to the Plane of Incidence

Ihe E and H vectors of the incident wave point as in Fig. 30-2. The
miedia being isotropic, the E vectors of the other two waves are also
normal to the plane of incidence. This is because the electrons in both
media oscillate in the direction normal to the plane of incidence and
reradiate waves polarized with E normal to the plane of incidence.

If the E vectors point in the directions shown, at the interface, then the
H vectors point as shown, to orient the Poynting vectors E X H (Sec.
28.6) in the proper directions.

The continuity of the tangential component of E at the interface
requires that

E,rm + ERm = ETm (30*24)

at any given point on the interface. Similarly, for continuity of the
tangential component of H,

Hfm COs 9; - HRm: cos 9; = HTm COS BT (30’25)

or, from Sec. 28.4,

(E,rm - ERm) CQS 9;_ ETm CcOs 9]"

2 Z , (30-26)
where Z is the characteristic impedance of a medium
z=L_op_on_ op _cu (30-27)
H k nky n(w/c) n’
n being the index of refraction.
Solving,
Erm cos 0, — Z,cos 0
( R ) _ Z, 1 1 T (30-28)
E,./, Zycos0,+ Z cos0O;
%) _ 2Z,cos 6,
(E;m L Zycos 0; + Z,cos 67 (30-29)
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E Parallel to the Plane of Incidence
I'he E’s are now all in the plane of incidence, as in Fig. 30-3, and

Hf’" — Hgpm = Hyp, (30'30)
i
Epn — Egpm _ Ern,
Z - zZ, (30-31)
Also,
(E;m + Egmm) cos 6, = E,, cos 6. (30-32)
T hen
ERm) _Zyc08 07 — Z,cos 6,
( Em!, Zycos 0+ Z cos6,’ (30-33)
Erm) 27Z,cos 8,
E ). : 30-34
(Efm i Zpcos Or+ Z, cos 6, ( )

I'his is the second pair of Fresnel’s equations.
At normal incidence 6;=80r=0r=0, the plane of incidence is
undefined, and the two pairs of Fresnel’s equations are identical:

Eny Z—2Z,

= \ 30-3
E, 7, +Z, (30-35)
Ep 22,
E,. — Z+2, . (30-36)

THE COEFFICIENTS OF REFLECTION R AND
OF TRANSMISSION T

I'he coefficients of reflection and of transmission concern the flow of
cnergy across the interface. The average energy flux per unit area in a
wave is equal to the average value of the Poynting vector, as in Eq.
’%-31. We exclude total reflection as well as reflection from conducting
media. Setting u, = 1, we find that
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1 12
Eff.av = 5 (:_;) E%mﬁb
1 . 1/2
‘?R,a\r i (;1_) E?&mﬁﬁ'r
1]
1 1/2
q(-‘f;"j'",.m-r = 5 (E) E?Fmﬁh

and similarly for #fi; and fir.
The coefficients of reflection R and of transmission T are the ratios of
the average energy fluxes per unit time and per unit area at the interface:

-~ 2
R = yR.av'" _ERm
- - = 2z ¥
yf.av' n Efm

where # is the unit vector normal to the interface,

T =

yT.a\r *n
yf.av‘ n

Then, from Fresnel’s equations for nonconductors,

(rn,/n;) cos 8; — cos 9;—]2

R, = [
+ (n./n>) cos 6, + cos @1

7. __4(1/n;) cos 6, cos 67
~ 7 [(n1/n3) cos 6, + cos 6,2’

I:_CDS Bf -+ (Hlj'rn-z) COSs BT 2
R, = ] ;
cos 8, + (n,/n,) cos 6+

__4(n/ny)cos 6, cos 67
[cos 8, + (n,/n,) cos 8]

. (E,z)”z E?Fm COs 6]"_ HzE%"m cos O
€1 2 cos8; n,Ej,cosb,

(30-51)

(30-52)

(30-53)

(30-54)

(30-55)

(30-56)

(30-57)
(30-58)
(30-59)

(30-60)
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CHUONG 6. CO SOBUC XA PIEN TU

6.1 PHUONG TRINH HELMHOLTZ
By taking the curl of Eq. (2.3a), using Eq. (2.3h) and the constitutive relations
(2.4), it will be found that

VXVXE=kIE=—jou,l (2.12)

where ko= w(pqe;)"” is the free-space wave number. This is the equation that
must be solved to find the electric field directly in terms of the specified current
source J. In practice a simpler equation to solve is obtained by introducing the
vector potential A and scalar potential ®,

Since the divergence of B is identically zero, B can be expressed as

B=VxA (2.13)

because V-V x A =0. A is called the vector potential. By using Fq. (2.13) in Iq.
(2.3a), we obtain

VX (E+jwA)=0

Any function with zero curl can be expressed as the gradient of a scalar
function; thus we can assume that

E+jwA=-Vo (2.14)
In order that Eq. (2.3b) will hold, we require
VxpuH=VxVxA
= Jopo€E + pol
= Jopoe(~jo A — VD) + ol

We can now use the expansion VXV xA=9YV-A-VA 1o obtiin, after a
rearrangement of terms,

VA+kiA = ~pd + V(T A+ juopge d)
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So far only the curl of A is fixed by the relation (2.13). Thus, we are still free to
specify the divergence of A. In order to simplify the equation for A we choose

VA= —jop.ed (2.15)

which is known as the Lorentz condition. Our equation for A now becomes thé
inhomogeneous Helmholtz equation:

VA + kIA = —pd (2.16)
If Eqs. (2.14) and (2.15) are used in Eq. (2.3c), it will be found that &

satisfies a similar equation, namely,

Vb + k2 = ~ 2 (2.17)

€p

However, the charge is not an independent source term for time-varying fields,
since it is related to the current by the continuity equation (2.3€), and it is not
necessary to solve for the scalar potential ®. By using the Lorentz condition in
Eq. (2.14), we can find the electric field in terms of the vector potential A alone
by means of the relation: '

VV-A

Jwito€,

E=—jwA+

(2.18)

The simplification obtained by introducing the vector potential A may be
appreciated by considering the case of a z-directed current source J = J,a, in
which case A= A, a_ and A, is a solution of the scalar equation

(V24 kDA, = ~p,l, (2.19)

The equation satisfied by the electric field is a vector equation even when the
current has only a single component.

RADIATION FROM A SHORT CURRENT FILAMENT

Figure 2.5 shows a short, thin filament of current located at the origin and
oriented along the z axis. For this source the vector potential has only a z
component and is a solution of Eq. (2.19), that is, '

(V*+ kA, = — o,

where J, = I/dS and dS is the cross-sectional area of the current filament of
length dI. The volume dV = dSdl occupied by the current is of infinitesimal
size so the source term can be considered as located at a point. There is
spherical symmetry in the source distribution, so A, will be a function only of
the radial distance r away from the source. A, will not be a function of the
polar angle @ or the azimuth angle ¢ shown in Fig. 2.5. For values of r not
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z

1

Figure 2.5 The short current filament and the spherical coordinate system.

equal to zero, A, satisfies the equation

1 ,aA;
G5 r’ . kiA, =0 (2.20)

as obtained by expressing the Laplace operator V7 in spherical coordinates and
dropping the derivatives with respect to @ and ¢. If we make the substitution
A, = yir, then dA jdr = r"" dy/dr - r'?, and the equation obtained from Eq.
(2.20) for  becomes

d!

—--dr'f + k2 =0 (2.21)
This is a simple harmonic-motion equation with solutions C, ¢ ™ and C, ™",
where C, and C, are constants. If we choose the first solution and restore the
time factor we obtain

W(r, 1) = C, e *otier
Now k, = w/c, where ¢ = (uqe,) ' is the speed of light in free space, so
(r, 1) = C, ™" (2.22)

This is a wave solution corresponding to an outward propagating wave, since
the phase is retarded by the factor kyr and the corresponding time delay is r/c.
The other solution with the constant C, corresponds to an inward propagating
spherical wave and is not present as part of the solution for radiation from a
current element located at r = 0. Our solution for A, is now seeh'td b& of the
fﬂrm . . ' HOXERTH

e o

A, = C, (2.23)

r
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In order to relate the constant C, to the source strength, we integrate both
sides of Eq. (2.19) over a small spherical volume of radius r,, We note that
VZA, = V-VA_ so upon using the divergence theorem we obtain

J' v=A,dv=J V-VA,dV
v v
=§ VAz-arrf,sin 0de de
5

[ AV 1d
v v

Now dV = r’sin 0d0dp dr and A, varies as 1/r; consequently, if we choose r,
vanishingly small the volume integral of A, which is proportional to rl
vanishes. The volume integral of J, gives J,dSdl = Idl, which is the total

source strength. Also

aA — fkpr
VA, -a = —== —(1 + jkor)C, E—z
ar r
50
2 w
fim J f —(1+ jkor)C, e * sin 0 dB dp = —4nC, = —pol dl
ro+0
G 0

Our final solution for the vector potential is

- fhor

A = pol dl a, (2.24)

d7r

The vector potential is an outward propagating spherical wave with an am-
plitude that decreases inversely with distance. The surfaces of constant phase
or constant time delay are spheres of fixed radius r centered on the source. The
phase velocity of the wave is the speed of light ¢, or 3 X 10* m/s. The distance
that corresponds to a phase change of 2 is the wavelength A, and may be
found from the relationship kyA, = 2r; thus

Ao=Z=—S_=% (2.25)

ke w27 f
From our solution for the vector potential we can readily find the gleclh}a
magnetic field by using Eqs. (2.13) and (2.18). This evaluation is best done in
spherical coordinates, so we first express A in terms of components in spherical
coordinates by noting that (see Fig. 2.5) . _

a, =a,cos@—a,sinf
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and consequently

dl
A= #ol e *¥(a, cos @ — a, sin 0) (2.26)
47rr

We now use Eq. (2.13) to obtain

Isin @ ;jky 1
H=Lyxa=tdsing (T2 5) eva, 2.27)

Ho 4

and use Eq. (2.18) to obtain

r r

] VV-A
E=—joA+t-
J@wp o€,

_jZyl dl {'_l!:_q LA
B 27k, 6( r? r’) a

jZ,1 dl k% jko 1 ik

—_ —_—— 4 — or
47k, 9( rorror ) e

= E,a, + E,a, (2.28)

When r is large relative to the wavelength A,, the only important terms are
those that vary as 1/r. These terms make up the far zone, or radiation field, and

are

e-ﬂv .
E = jZ,I dl k,sin 8 et (2.29a)
e“ﬂu
H=jldlk,sin 6 ,—a, (2.29b)

We note that in the far zone the radiation field has transverse components
only; that is, both E and H are perpendicular to the radius vector as well as
perpendicular to each other. The ratio of E, to H, equals the intrinsic
impedance Z,= (u,/e,)'” of free space. This is a genera[ feature of the
radiation field from any antenna. In vector form, one always finds that the
radiation field in the far-zone region satisfies the relations

E=-Z,a xH (2.30a)
H= Ya xXE (2.30b6)

where Y, = Z;'. This spatial relationship is illustrated in Fig. 2.6.

We also note that both E, and H, vary as sin 6. Thus the radiated feld is
not a spherically symmetric outward -propagating wave as was found for the
vector potential. This is also a general feature of all radiation fields—the
electromagnetic radiation field can never have complete spherical symmetry.
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The complex Poynting vector for the radiation field is

ar
Ve

SEXH* = [1*Z(dl) k}sin’ 0 (2.31)

and is pure real, and directed radially outward. The radiated power per unit
area decreases as 1/r%, as expected because of the spreading out of the field as it
propagates radially outward. This is the inverse-square-law attenuation

behavior discussed in Chap. 1.

RADIATION FROM ARBITRARY CURRENT DISTRIBUTIONS

In this section we will present some useful formulas for calculating the
far-zone radiation field from an arbitrary distribution of current. Consider a
volume V with a current distribution J(r"), as shown in Fig. 2.9. The current
element J(r') dV' will contribute an amount

pol(r) dV’ o~ *oR
47R

to the total vector potential where R = |r—r'[. In the far-zone region |r| > |r|
for all r' in V. Thus all rays from the various current elements to the far-zone
field point can be considered to be parallel to each other, as shown in Fig. 2.9.
Thus a useful approximation for R is

R~r—a, v (2.47)

We can replace R by r in the amplitude term for the vector potential, since this
has a negligible effect on the amplitude of each elementary contribution when
r > r'. Hence in the far zone we obtain

— ik
o € fhor

A(r)=

"y o fkom T '
- IV J(r)e dVv (2.48)

This equation superimposes the effects of each current element and takes into

o |

x

d=r—-R=¢"-2a,

Figure 2.9 An arbitrary distribution of current.
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account the relative phase angle or path-length phase delay of each con-
tribution. Since the current elements do not, in general, contribute in phase,
‘nterference effects are produced that may be exploited to control the shape of
the radiation pattern. In the next chapter we will examine the use of such
interference effects to produce high-gain directive radiation beams.

We can find the ficlds E and H from Eq. (2.48) by using the relations (2.13)
and (2.18). When onlv the terms varying as 1/r are retained, it is found that
jkoZoe "

E{r] N A7nr

j [a, - J(r)a, — I(r)] e T dv' (2.49a)

H= Ya xE (2.49b)

The form of the integrand in this expression shows that in a given direction, as
specified by the unit vector a,, it is only the current perpendicular to a, that
contributes (o the radiation field. The reason for this is that the radiation field
along the axis of a current element is zero.

When the current is a line current I along a contour C, then Eq. (2.49a)
can be expressed in the form

i - flnr
E(r) = tkoloe J [(a, - a)a, — a}l (") ™" dl' (2.50)
dr c

where a is a unit vector along C in the direction of the current.

From Eqs. (2.49a) and (2.50) we see that the electric field has the form

ikoZo e ™
E(r) = 50— (6, ) (2.51)
4qr
where £(f, $), which is given by the integral, describes the radiation amplitude
pattern or the angular dependence of the radiation distribution in space. The
other factor e *¥/dzr is the outward-propagating spherical wave function.
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CHUONG 7. CO SO SONG PIEN TU TRONG CAC HE PINH
HUONG

GENERAL PROPERTIES OF AN
ELECTROMAGNETIC WAVE PROPAGATING
IN A STRAIGHT LINE

To simplify, we assume the six following conditions.

(1) The medium of propagation is homogeneous, isotropic, linear, and
stationary (HILS).

(2) Tt 1s nonconducting. This does not exclude metallic guides, because
the wave propagates along a metallic guide.

(3) The free charge density is zero. This makes V - E = 0.

(4) Propagation occurs in a straight line, in the positive direction of the
z-axis. There is no reflected wave traveling in the —z direction.

(5) The wave is sinusoidal.

(6) There is zero attenuation. If the guide is metallic, then its
conductivity must be infinite to avoid Joule losses. We shall see in Sec.
34.8 how to calculate attenuation with real conductors.

We may therefore write that

E=E,expj(wt —k,z)=(E,.*+E,y+E,.2)expjlowt —k,z), (33-1)
H=H,expjlowt—k,z)=(H,x+H,,y+H,.Z)expjlwt —k,z), (33-2)

where the coefficients E,,., E,,,, E,., H,,, ... are unspecified functions
of x and y. The dependence on z and ¢ appears only in the exponential
function. The wave number k. for the guided wave is real, since there is
zero attenuation, It is equal to 2x/A,, where A, is the wavelength of the
guided wave.

Let us substitute the above expressions for E and H into Maxwell’s
equations. Since V- E =10,
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IE oE
e e T L =0. 33-

Similarly, ¥ - B =0, and

odH oH
mx OOk H,,, =0. 33-
Ix 3y JkeHp: GE )

From the fact that V X E = —3RB/Jdt,

ok,

+ .-"kz Emy = _.-"w“mer (33-5)
d
—jk;Emy — 2 —jwuH,,,, (33-6)
Ix
8E,, OEm _ .
— —a . 3 _
3.1' a}, .-'tw-anrz ( 3 ?)
From VX H = 3D /3t,
oH,,. . .
+ jk.H,,, = jw€E,., (33-8)
oH
_jszmx - = ja}€Emyr (33-9)
Sx
oH,,, JdH,.. .
- = . 33-
ax 8}? waEnrz ( 10]

The Transverse Components are Functions of the
Longitudinal Components

We can now show that the four transverse components E,,., E,.,, H,.,
H,, are functions of the longitudinal components E,,., H,.. From Eqs.
33-6 and 33-8,

J

oE oH
— mz_l_ i ‘ _11
Epu k2 —Kk? (k" ax @ ¢ 3y ) (33-11)
Here
12 1
k=w(eu) “=— (33-12)

A

is the wave number of a uniform plane wave of wavelength A traveling in
the medium.
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We have assumed that k, # k for the moment. Both k& and k, are real
and positive. Similarly,

e (2 gy Ol -
E,, ey k, 3y op—=1, (33-13)
J ( ok, 5’Hm)
H,=—"|- + k, S -
T - R we 3 k. = ) (33-14)
o dE,,. BHM)
H,, = PEyE (we P +k, ay ) (33-15)

We use the subscript 1 to identify components that are perpendicular
to the direction of propagation. Thus

E, =E,&+E,5  H,, =H,%+H,5. (33-16)

More succinctly,

En = 13752 Vo Ee + 0UV X H,. ), (33-17)
H, = k2+k2 (k,V,H,, — w0eV X E,.2). (33-18)

So we need to solve the wave equation and apply the boundary
conditions only for the two longitudinal components. Once that is done,
the other four components will follow immediately.

The longitudinal component of E satisfies the wave equation 27-70 with
pr=0,J,=0. So

azEmz azEmz

+ kiE,, = —€uw’E,,,=—k’E,,, (33-19)

Ax? 3y?
or
’E 3’E
ax?z + E:’y;u + (k¥ = k2)E,,, =0, (33-20)
(V2 + k> —K)E,. =0. (33-21)
Similarly,
2 2
° af’z’” +2 af?z +(k* - kH)H,,, =0, (33-22)
(V2 4+ k2= k)H,.=0. (33-23)
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TE and TM Waves

It is convenient to consider separately three types of wave: (1) transverse
electric (TE) waves, in which E,. =0; (2) transverse magnetic (TM)
waves, with H,,, = 0; (3) transverse electric and magnetic (TEM) waves,
with E,.. =0, H,.=0.

With either TE or TM waves, it follows from Eqgs. 33-11 to 33-15 that

Eni  Eny

. 33-24
H,  Hn (33-24)

If k, is real and positive, as we have assumed, these ratios are also real
and positive. Then the components

E.=E,.expj(wt—k.z) and H,=H,, expj(wt —k.z) (33-25)

are in phase, and so are E, and —H,. This fact, together with Eq. 33-24,
implies that
ReE, RekE,
Re H, Re(—H,)’

(33-26)

and that the real parts of £, and H, are mutually orthogonal in both TE
and TM waves.

The ratio E,, /H,. . is the wave impedance. This is a real positive
quantity if there is no dissipation:

_En._ ol _ (E)‘” A
Zyg = ik \e) % (33-27)
L A, A,
—376731 x 10022 ~377%%  ohms  (e,=1,1,=1), (33-28)
Aﬂ )"{I
_Eme k(1)
Zrm = H,, | T we \€ A, (33-29)
Ao
=~ 377 T ohms (e,=1, u,=1). (33-30)

Here A and A, are the wavelengths v/f of a plane wave of the same
frequency f, and 4, is the wavelength of the guided wave.
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TEM Waves

If k&, =k in Eqgs. 33-11 to 33-15, the items in parentheses must be zero.
The simplest way of satisfying this condition is to set both E,,, and H,,,
equal to zero. We then have a TEM wave.

With TEM waves the wavelength A, of the guided wave is the same as
that of a uniform plane wave in the same medium of propagation because
k. is equal to k, so

A, =A. (33-31)

If the medium is air, then the phase velocity is ¢, whatever the geometry
of the guide and whatever the frequency. Such a guide is distortionless
because the various frequency components of a complex waveform all
travel at the same velocity.’

Setting E,,. =0, H,,. =0 in Egs. 33-6 and 33-9 gives

f 1/2 1/2
_ (K _ (u
Em.‘l. - (E) Hmyj Em].- - _("E_) Hnu- (33'32)

The wave impedance is now

Em (Eznn + Ezm}')l:.z (lu)ll;z
= _=(E 33-33
H,,~ (Haor H2)™ e 33
~377ohms (e, =1,p,=1). (33-39)

The ratio (u/€)'”? is the characteristic impedance of the medium (Sec.
28.5.2).
The electric and magnetic energy densities are equal:

eE* uH*

=5 (33-35)
Also, the average Poynting vector is

1 € 1,2
F. =i Re (EXH") =3 (;) E2; (33-36)

€ 1/2 € 1/2
= (—) E?. .z =2.65441 x 10'-"(;’) EZ.Z watts/meter’ (33-37)
u ,

= veE?, 3 = vuH?%.2, (33-38)
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where .
c
VT em)”? T (eu)? S

is the phase velocity. _ _
The magnitude of the time-averaged Poynting vector is equal to the

energy density multiplied by the phase velocity.

THE FIELD COMPONENTS OF A TE WAVE IN
A RECTANGULAR METALLIC WAVEGUIDE

We use the coordinate system of Fig. 34-2. The wave propagates in the
positive direction of the z-axis by multiple reflection on the upper and
lower walls. The figure also shows a wave front of a plane wave incident
on the top face at the angle 6.

With this mode of propagation,

Enlz = “r Ern.r = “- Hmy = {}1 — = . (34-1}

We require the three other components E,,,, H,,., H,,..

We proceed as indicated at the end of Sec. 33.1.1. First we solve the
wave equation for H,,., for the given boundary conditions. This will give
us both H,. and k,. Then the values of E,,, and H,,, will follow, from
Eqs. 33-13 and 33-14.

From Eq. 33-22,

3’H,,, 2
3.1'2 = (k; - kﬁ)H o (34'2)
where
S e L
ko= X Ae c o (34-3)
is known, for a given frequency. However,
1
k:=— (34-4)

is unknown, A, being the wavelength of the guided wave.

We expect an interference pattern of some sort in the x direction. So
H,,.. is a sinusoidal function of x, and this requires that the expression in
parentheses in Eq. 34-2 be negative. So we know that k. < k, and hence
that A. > A,, or that the wavelength measured along the guide is longer
than the wavelength of a plane wave in air. This makes the phase velocity
larger than ¢, which is correct; the group velocity will turn out to be
smaller than c.
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Thus
H

Ly

.=Mcos(kx +a), k,=+(ki—kH", (34-5)

where M is an arbitrary constant that defines the amplitude of the wave.
We now apply the boundary conditions of Sec. 33.1.4:

oH,.

3 =0 at x =0, a, (34-6)
oH,. _
By 0 aty =0, b. (34-7)

The second condition is already satisfied because 3/3y = 0. From the first
condition,

k,sina =10 and k. sin (k.a + a) =0. (34-8)
Now k, is a positive number. Therefore
a=0 and k,a=nxa, (34-9)

where n is an integer.
Observe that k,a can take on only discrete or eigen values and that
n =0 is forbidden:

n=1273,... (34-10)
So

H,.=M cos 2 (34-11)

a

and, from Eq. 34-5,
‘= [k2 (rm)z] 2 {1 = [nAo/(2a)]F} "
z - 0 = .

a Ao

(34-12)

Then, from Eqs. 33-13 and 33-14, remembering that both E,,, and 3/3y
are zero,

_ _jm,ﬂ.:) aHmz _ er.lu‘O

E,, = 2 ar k2 (—k .M sin k. x) (34-13)
= TP pinkoxr = R pn P (3419)
k., nmx a
jk.a . . nxx
H,, =" M sin (34-15)
ni a
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Fig. 34-3. The amplitude E,, = E,,, of the electric field strength for a TE wave.
(a) TE, mode, (b) TE, mode.

Figure 34-3(a) shows E,,, as a function of x for n = 1: E is zero along the
walls and maximum in the plane x =a/2. With n =2, L, 18 zero at
x=al.

The various values of n thus correspond to different modes of
propagation, denoted as TE,, TE,, etc. As we shall see below, TE, is the
only useful mode.

Summarizing,
E=0, E,=-"2Upin™™ E.=0, (34-16)
) n.T a
'k,ﬂ o k- o
Huo =M sin 2= 22 4, =0, H,.=Mcos ™~
n a ou, ' a
(34-17)
1 — [nAo/(2a))?} '
k. = { [n2y/(2a)] }_ _ (34-18)

z 7
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THE CUTOFF WAVELENGTH.
NONPROPAGATING FIELDS

From Eq. 34-18,
oy 27172 2 2112
L ) 5 R e
a c a

w > % of  Ju<2, (34-20)
!

For

k. is real and a wave can propagate unattenuated down the guide.

The wavelength 2a/n is the cutoff wavelength for the TE, mode. This
corresponds to the condition @ = w, for propagation in an ionized gas.
At that wavelength &, =0 and A, — <.

At wavelengths larger than 2a/n, k. is imaginary, there is no wave, and
the field decreases exponentially with z. There is zero power flow once
the field is established. At these longer wavelengths the field amplitude
decreases rapidly with z. For example, at twice the cutoff wavelength,
where the frequency is too low by a factor of 2,

W AT w\? 2w\2 112 W
o k=[] =g e

We choose the negative sign before the square root so that the amplitude
will decrease exponentially with z, and then

27312
exp (—jk.z) = exp (- T,:L.:, z)=exp(——]0.88i). (34-22)

The amplitude decreases by a factor of 5x10* in one free-space
wavelength A,!

The waveguide thus acts as a high-pass filter, with the lower frequency
limit fixed by the width a4, and not by b.

The free-space wavelength A, must be shorter than twice the distance
between the reflecting walls. For example, if @ = 100 millimeters, then A,
must be less than 200 millimeters and the frequency must be higher than
1.5 gigahertz (1.5 x 10° hertz).
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THE TE, MODE

In practice, one selects first the operating frequency, and then a guide
whose dimensions are such that it can carry only the n =1 mode. This
condition requires that 2a be larger than 1, as above. But @ must be less

than 4, to make TE,, TE,, ... forbidden modes. Thus the dimension a
must be such that

a<iy<2a. (34-23)

With single-mode propagation the field configuration is well defined.
Rectangular metallic waveguides are narrow band devices: for a given a,
Ay can vary by at most a factor of 2.
The antennas of Fig. 34-1 launch an assortment of modes, but only the
TE, survives.
We now write out the field components for the n=1 mode. We
simplify the notation by setting

L Loy (34-24)
: T
Then
X ,
E. =0, E, = E,, sin — expj(ot — k.z), E.=0, (34-25)
H, = — Enyk: n T expj(ot —k,z), H,=0,  (34:26)
m,‘J“ a
' A,
H.= 7E my cos ~— expjlmr —k. (z - —)] , (34-27)
T wpya a 4
where
27172 \2712
k L el LA C2D) S [1 - (113) ] ko, (34-28)
©A, Ay 2a
A, Ao (34-29)

T {1 - [AJ Q)Y
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THE PHASE, SIGNAL, AND
GROUP VELOCITIES

The phase velocity is
v, = fh, = 0k, = f (34-38)

C '

T {(1=[A/Ra)F} " sin 6

>c. (34-39)

This is the velocity at which the phase propagates down the guide. It is
larger than the speed of light ¢ because the TE, wave is the superposition
of two plane waves whose k’s are inclined as in Fig. 34-2. For example,
when the wave front AB of Fig. 34-7 moves downward at speed ¢ to
A'B', point A moves to the right at a speed v, > c.

At what velocity does a signal progress down the line? From Fig. 34-8
this is ¢ sin 6. So the signal velocity is

v, =csin 6 < ¢, v, U, = ¢, (34-40)

THE TRANSMITTED POWER

To calculate the average power transmitted through the guide we
integrate the time-averaged Poynting vector over the cross section of the

guide:

b ma b ra
PT1a,,,=j fsoa,,,dxdy=f J’%Re|(E><H*)|dxdy. (34-41)
0 -0 0

0

Here
x ¥ z
F.=3Re | O E, 0]= 1 Re (E,H:x — E}.H:.‘E), (34-42)
H 0 HI

where the components of E and of H are as in Eqs. 34-25 to 34-27. After
substituting 2 for k.A,, the expression for H, becomes

jxE,,,

H. =
Wi

cos ?expj{ms — k.z). (34-43)
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Thus the x component of the time-averaged Poynting vector is zero. The
net power flows in the direction of the z-axis and

E2k, . ,nx
—Zsin> — 2. (34-44)

F=
Y 2ou, a

We assume that E,,, is real.

The average power density ¥,, is independent of y, as expected, since
both E and H are independent of y. It is zero at x =0, x =a where E is
zero and maximum at x =a/2.

The time-averaged transmitted power is thus

E*'ZI ) a
Py = 5 f in> ™ b dx (34-45)
2mpuy Jo u
_ E:f}.k:ab _ E:,fykﬂﬂb [1 a (ﬁ)z]m (34-46)
dmlﬂu 4&]1[10 2ﬂ
o, ﬂ'b €o 172 flln 29172
PT,av - Enf} :4_ (g) [1 - (2—ﬂ) ] . {34-4?)
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