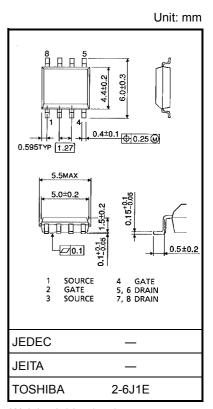
TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSII)

TPC8303

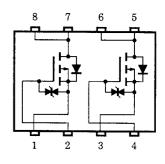
Lithium Ion Battery Applications Portable Equipment Applications Notebook PCs

• Low drain-source ON resistance : $RDS(ON) = 27 \text{ m}\Omega \text{ (typ.)}$


• High forward transfer admittance : $|Y_{fs}| = 7 \text{ S (typ.)}$

• Low leakage current $: I_{DSS} = -10 \mu A \text{ (max) (V}_{DS} = -30 \text{ V)}$

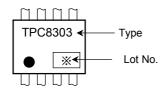
• Enhancement-mode : $V_{th} = -0.8 \sim -2.0 \text{ V (V}_{DS} = -10 \text{ V, I}_{D} = -1 \text{ mA)}$


Maximum Ratings (Ta = 25°C)

Char	acteristics	Symbol	Rating	Unit	
Drain-source vol	tage	V _{DSS}	-30	V	
Drain-gate voltag	ge (R _{GS} = 20 kΩ)	V _{DGR}	-30	V	
Gate-source volt	age	V _{GSS}	±20	V	
	DC (Note 1)	I _D	-4.5	Α	
Drain current	e voltage V_{DSS} -30 poltage $(R_{GS} = 20 \text{ k}\Omega)$ V_{DGR} -30 voltage V_{GSS} ± 20 t DC $(Note 1)$ I_D -4.5 Pulse $(Note 1)$ I_{DP} -18 Single-device operation $(Note 3a)$ $P_{D}(1)$ 1.5 Single-device value at dual operation $(Note 3a)$ $P_{D}(2)$ 1.0 Single-device value at dual operation $(Note 3a)$ $P_{D}(2)$ 0.75 Single-device value at dual operation $(Note 3a)$ $P_{D}(2)$ 0.45 avalanche energy $(Note 4)$ E_{AS}	A			
Drain power dissipation (t = 10s) (Note 2a)	operation	P _{D (1)}	1.5	w	
	at dual operation	P _{D(2)}	1.0	vv	
Drain power dissipation (t = 10s) (Note 2b)	operation	P _{D (1)}	0.75	W	
	at dual operation	P _{D (2)}	0.45		
Single pulse ava		E _{AS}	26	mJ	
Avalanche curre	nt	I _{AR}	-4.5	Α	
	lue at operation	E _{AR}	0.10	mJ	
Channel tempera	ature	T _{ch}	150	°C	
Storage tempera	ture range	T _{stg}	-55~150	°C	

Weight: 0.08 g (typ.)

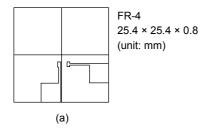
Circuit Configuration

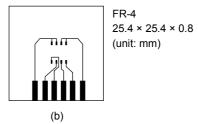

Note: For (Note 1), (Note 2a), (Note 2b), (Note 3a), (Note 3b), (Note 4) and (Note 5), please refer to the next page.

This transistor is an electrostatic sensitive device. Please handle with caution.

Thermal Characteristics

Characteristics	Symbol	Max	Unit		
Thermal resistance, channel to ambient (t = 10s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	83.3	°C/W	
	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	125		
The sum of an eight and a change in a constant	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	167	C/VV	
Thermal resistance, channel to ambient (t = 10s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	278		


Marking (Note 6)



Note 1: Please use devices on condition that the channel temperature is below 150°C.

Note 2:

- a) Device mounted on a glass-epoxy board (a)
- b) Device mounted on a glass-epoxy board (b)

Note 3:

- a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.)
- b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.)

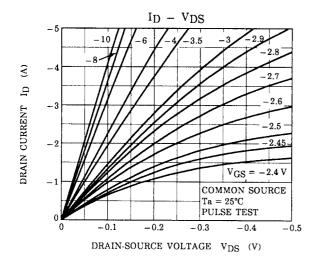
Note 4: V_{DD} = -24 V, T_{ch} = 25°C (initial), L = 1.0 mH, R_G = 25 Ω , I_{AR} = -4.5 A

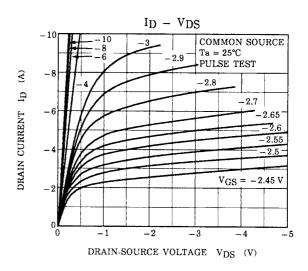
Note 5: Repetitive rating: pulse width limited by maximum channel temperature

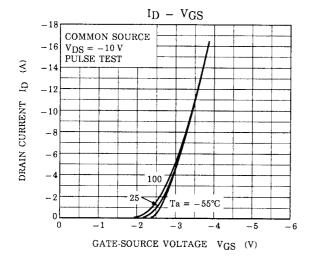
Note 6: ● on lower left of the marking indicates Pin 1.

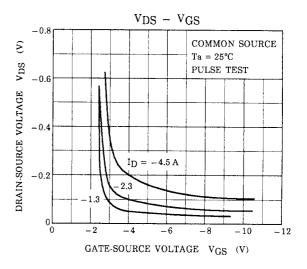
Weekly code: (Three digits)
 Week of manufacture
 (01 for first week of year, continues up to 52 or 53)
 Year of manufacture
 (One low-order digits of calendar year)

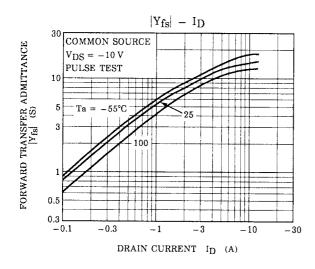
2

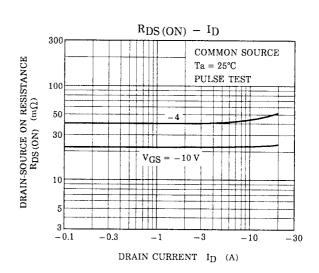

Electrical Characteristics (Ta = 25°C)

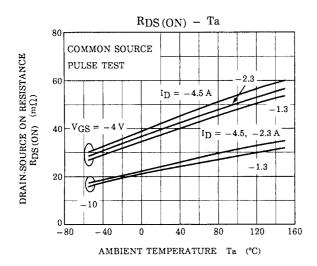

Charac	eteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	ırrent	I _{GSS}	V _{GS} = ±16 V, V _{DS} = 0 V	_	_	±10	μΑ
Drain cut-off cu	rrent	I _{DSS}	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$		_	-10	μA
Drain-source breakdown voltage		V _{(BR)DSS}	$I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$	-30	_		٧
		V _{(BR)DSX}	$I_D = -10 \text{ mA}, V_{GS} = 20 \text{ V}$	-15	_	_	
Gate threshold v	oltage/	V_{th}	$V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA}$	-0.8	_	-2.0	V
Drain-source O	N resistance	R _{DS (ON)}	$V_{GS} = -4 \text{ V}, I_D = -2.2 \text{ A}$	_	55	65	mΩ
Drain-source ON resistance		R _{DS} (ON)	V _{GS} = -10 V, I _D = -2.2 A	_	27	35	msz
Forward transfer admittance		Y _{fs}	V _{DS} = -10 V, I _D = -2.2 A	3.5	7	_	S
Input capacitance		C _{iss}		_	970	_	
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	180	_	pF
Output capacitance		Coss		_	370	_	
Switching time	Rise time	t _r	V_{GS} $\stackrel{0}{\underset{-10}{\text{V}}}$ $\stackrel{I_{D}=-2.2 \text{ A}}{\underset{VOUTE}{\overset{\circ}{\underset{-10}{\text{VOUTE}}}}}$	_	17	_	
	Turn-ON time	t _{on}	R _L = 6.8 Ω	l	20	l	ns
	Fall time	t _f		l	75	l	118
	Turn-OFF time	t _{off}	$V_{ m DD} \colon -15 m V$ Duty $\leq 1\%$, $t_{ m W} = 10 \mu m s$	_	160		
Total gate charge (Gate-source plus gate-drain)		Qg	$V_{DD} \approx -24 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -4.5 \text{ A}$		28		
Gate-source charge		Q _{gs}			16	_	nC
Gate-drain ("miller") charge		Q _{gd}			12	_	

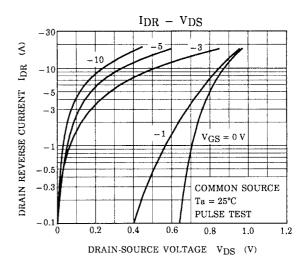

Source-Drain Ratings and Characteristics (Ta = 25°C)

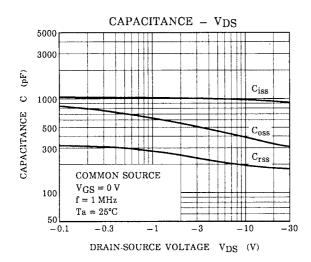

Charact	eristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	-	_	_	-18	А
Forward voltage ((diode)	V _{DSF}	I _{DR} = -4.5 A, V _{GS} = 0 V	1	_	1.2	V

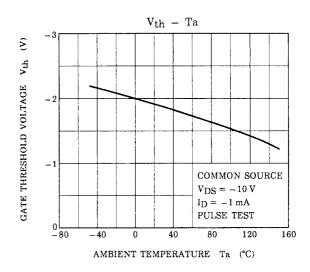

3 2003-02-18

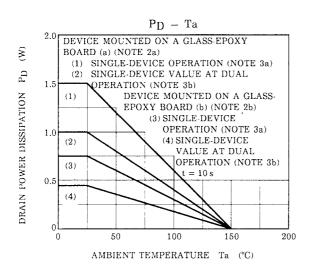


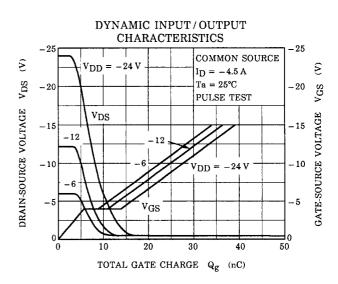


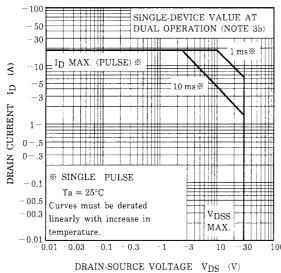


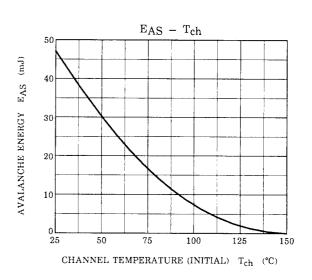


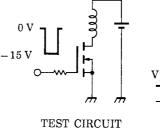


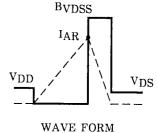

4











 $\begin{array}{l} T_{ch}=25^{\circ}C~(Initial)\\ Peak~I_{AR}=-4.5~A,~R_{G}=25~\Omega~E_{AS}=\frac{1}{2}\cdot L\cdot I^{2}\cdot (~\frac{B_{VDSS}}{B_{VDSS}-V_{DD}})\\ V_{DD}=-24~V,~L=1.0~mH \end{array}$

6 2003-02-18

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.