Excel
 Function DICTIONARY

Peter Noneley - Cardiff, Wales peter.noneley@cdffcom-tr.wales.nhs.uk noneley@hotmail.com

Select An Option - Then click OK
What the dictionary can be used for.
O How to use the dictionary.
O View the Function List.
O Analysis ToolPak.
O Change the colour settings.

What Is In The Dictionary?

This workbook contains 173 worksheets, each explaining the purpose and usage of particular Excel functions.

There are also a number of sample worksheets which are simple models of common applications, such as Timesheet and Date Calculations.

Formatting

Each worksheet uses the same type of formatting to indicate the various types of entry.

North
100
100
100
300

=SUM(C13:C15)

Text headings are shown in grey.
Data is shown as purple text on a yellow background.
The results of Formula are shown as blue on yellow.
The formula used in the calulations is shown as blue text.
The Arial font is used exclusivley throughout the workbook and should display correctly with any installation of Windows.

Each sheet has been designed to be as simple as possible, with no fancy macros to accomplish the desrired result.

Printing

Each worksheet is set to print on to A4 portrait.
The printouts will have the column headings of $A, B, C \ldots$ and the row numbers $1,2,3 \ldots$ which will assist with the reading of the formula.
The ideal printer would be a laser set at 600dpi.
If you are using a dot matrix or inkjet, it may be worth switching off the colours before printing, as these will print as dark grey. (See the sheet dealing with Colour settings).

Protection

Each sheet is unprotected so that you will be able to change values and experiment with the calculations.

Macros

There are only a few very simple macros which are used by the various buttons to naviagte through the sheets. These have been written very simply, and do not make any attempt to change your current Toolbars and Menus.

What Do The Buttons Do ?

View

View

This button will display the worksheet containing the function example.

1. Click on the function name, then
2. Click on the View button.

Category

Category

This describes the category the function is a member of.

Click this button to sort alphabetically.

Sort-

Sort

This button sorts the list of functions into alphabetical order.

Location

Location

This shows where the function is stored in Excel.

Built-in indicates that the function is part of Excel itself.

Analysis ToolPak indicates the function is stored in the Analysis ToolPak add-in.

Click this button to sort alphabetically.

Using Different Monitor Settings

Each sheet has been designed to fit within the visible width of monitors with a low resolution of 640×480. This ensures that you do not need to scroll from left and right to see all the data.

The colours are best suited to monitors capable of 256 colours.
On monitors using just 16 colours the greys may look a bit rough!
You can switch colours off and on using the button below.

$$
\pm \text { Colour On } \quad \begin{aligned}
& \text { This may take a } \\
& \text { few minutes on } \\
& \text { any computer! }
\end{aligned}
$$

Sample Colour Scheme

	North	South	East	West	Total
Alan	100	100	100	100	400
Bob	100	100	100	100	400
Carol	100	100	100	100	400
Total	300	300	300	300	1200

Analysis ToolPak

What Is The Analysis ToolPak?
The Analysis ToolPak is an add-in file containing
extra functions which are not built in to Excel.
Analysis ToolPak
The functions cover areas such as Date and Check For Analysis ToolPak
Mathematical operations.
Load the Analysis ToolPak
The Analysis ToolPak must be added-in to Excel before these functions will be available.

UnLoad the Analysis ToolPak

Any formula using these functions without the ToolPak loaded will show the \#NAME error.

Sort View	Category	Location	
Y - Project Dates	Sample	Sample	Example using date calculation.
Y - Timesheet	Sample	Sample	
Y ABS	Mathematical	Built-in	Returns the absolute value of a number
Y AND	Logical	Built-in	Returns TRUE if all its arguments are TRUE
AVEDEV	Statistical	Built-in	Returns the average of the absolute deviations of data points from their me
Y AVERAGE	Statistical	Built-in	Returns the average of its arguments
Y BIN2DEC	Engineering	Analysis ToolPak	Converts a binary number to decimal
Y CEILING	Mathematical	Built-in	Rounds a number to the nearest integer or to the nearest multiple of signific
Y CELL	Information	Built-in	Returns information about the formatting, location, or contents of a cell
Y CHAR	Text	Built-in	Returns the character specified by the code number
Y CHOOSE	Lookup	Built-in	Chooses a value from a list of values
Y CLEAN	Text	Built-in	Removes all nonprintable characters from text
Y CODE	Text	Built-in	Returns a numeric code for the first character in a text string
- COLUMN	Lookup	Built-in	Returns the column number of a reference
- COLUMNS	Lookup	Built-in	Returns the number of columns in a reference
Y COMBIN	Mathematical	Built-in	Returns the number of combinations for a given number of objects
Y CONCATENATE	Text	Built-in	Joins several text items into one text item
Y CONVERT	Engineering	Analysis ToolPak	Converts a number from one measurement system to another
Y CORREL	Statistical	Built-in	Returns the correlation coefficient between two data sets
Y COUNT	Statistical	Built-in	Counts how many numbers are in the list of arguments
Y COUNTA	Statistical	Built-in	Counts how many values are in the list of arguments
Y COUNTBLANK	Information	Built-in	Counts the number of blank cells within a range
Y COUNTIF	Mathematical	Built-in	Counts the number of nonblank cells within a range that meet the given crit
- CUMIPMT	Financial	Analysis ToolPak	Returns the cumulative interest paid between two periods
- CUMPRINC	Financial	Analysis ToolPak	Returns the cumulative principal paid on a loan between two periods
Y DATE	Date	Built-in	Returns the serial number of a particular date
Y DATEVALUE	Date	Built-in	Converts a date in the form of text to a serial number
Y DAVERAGE	Database	Built-in	Returns the average of selected database entries
Y DAY	Date	Built-in	Converts a serial number to a day of the month
Y DAYS360	Date	Built-in	Calculates the number of days between two dates based on a 360-day yea
Y DB	Financial	Built-in	Returns the depreciation of an asset for a specified period using the fixed-d
Y DCOUNT	Database	Built-in	Counts the cells that contain numbers in a database
Y DCOUNTA	Database	Built-in	Counts nonblank cells in a database
- DDB	Financial	Built-in	Returns depreciation of an asset for a specified period using the double-de
Y DEC2BIN	Engineering	Analysis ToolPak	Converts a decimal number to binary
Y DEC2HEX	Engineering	Analysis ToolPak	Converts a decimal number to hexadecimal
Y DELTA	Engineering	Analysis ToolPak	Tests whether two values are equal
Y DGET	Database	Built-in	Extracts from a database a single record that matches the specified criteria
Y DMAX	Database	Built-in	Returns the maximum value from selected database entries
Y DMIN	Database	Built-in	Returns the minimum value from selected database entries
Y DOLLAR	Text	Built-in	Converts a number to text, using currency format
- DPRODUCT	Database	Built-in	Multiplies the values in a particular field of records that match the criteria in
- DSTDEV	Database	Built-in	Estimates the standard deviation based on a sample of selected database
- DSTDEVP	Database	Built-in	Calculates the standard deviation based on the entire population of selecte
Y DSUM	Database	Built-in	Adds the numbers in the field column of records in the database that match
- DVAR	Database	Built-in	Estimates variance based on a sample from selected database entries
- DVARP	Database	Built-in	Calculates variance based on the entire population of selected database er
Y EDATE	Date	Analysis ToolPak	Returns the serial number of the date that is the indicated number of month
- EFFECT	Financial	Analysis ToolPak	Returns the effective annual interest rate
Y EOMONTH	Date	Analysis ToolPak	Returns the serial number of the last day of the month before or after a spe
Y ERROR.TYPE	Information	Built-in	Returns a number corresponding to an error type
Y EVEN	Mathematical	Built-in	Rounds a number up to the nearest even integer
Y EXACT	Text	Built-in	Checks to see if two text values are identical
Y FACT	Mathematical	Built-in	Returns the factorial of a number
- FALSE	Logical	Built-in	Returns the logical value FALSE
Y FIND	Text	Built-in	Finds one text value within another (case-sensitive)
Y FIXED	Text	Built-in	Formats a number as text with a fixed number of decimals
Y FLOOR	Mathematical	Built-in	Rounds a number down, toward zero
Y FORECAST	Statistical	Built-in	Returns a value along a linear trend
Y FREQUENCY	Statistical	Built-in	Returns a frequency distribution as a vertical array
- FV	Financial	Built-in	Returns the future value of an investment
Y GCD	Mathematical	Analysis ToolPak	Returns the greatest common divisor
Y GESTEP	Engineering	Analysis ToolPak	Tests whether a number is greater than a threshold value
Y GROWTH	Statistical	Built-in	Returns values along an exponential trend
Y HEX2DEC	Engineering	Analysis ToolPak	Converts a hexadecimal number to decimal
Y HLOOKUP	Lookup	Built-in	Looks in the top row of an array and returns the value of the indicated cell
Y HOUR	Date	Built-in	Converts a serial number to an hour
- HYPERLINK	Lookup	Built-in	Creates a shortcut or jump that opens a document stored on a network ser
Y IF	Logical	Built-in	Specifies a logical test to perform
Y INDEX	Lookup	Built-in	Uses an index to choose a value from a reference or array
Y INDIRECT	Lookup	Built-in	Returns a reference indicated by a text value
Y INFO	Information	Built-in	Returns information about the current operating environment
Y INT	Mathematical	Built-in	Rounds a number down to the nearest integer
Y ISBLANK	Information	Built-in	Returns TRUE if the value is blank
Y ISERR	Information	Built-in	Returns TRUE if the value is any error value except \#N/A
Y ISERROR	Information	Built-in	Returns TRUE if the value is any error value
Y ISEVEN	Information	Analysis ToolPak	Returns TRUE if the number is even
Y ISLOGICAL	Information	Built-in	Returns TRUE if the value is a logical value
Y ISNA	Information	Built-in	Returns TRUE if the value is the \#N/A error value
Y ISNONTEXT	Information	Built-in	Returns TRUE if the value is not text
Y ISNUMBER	Information	Built-in	Returns TRUE if the value is a number
Y ISODD	Information	Analysis ToolPak	Returns TRUE if the number is odd
Y ISREF	Information	Built-in	Returns TRUE if the value is a reference

Sort View	Category	Location	
Y ISTEXT	Information	Built-in	Returns TRUE if the value is text
Y LARGE	Statistical	Built-in	Returns the k-th largest value in a data set
Y LCM	Mathematical	Analysis ToolPak	Returns the least common multiple
Y LEFT	Text	Built-in	Returns the leftmost characters from a text value
Y LEN	Text	Built-in	Returns the number of characters in a text string
- LINEST	Statistical	Built-in	Returns the parameters of a linear trend
- LOGEST	Statistical	Built-in	Returns the parameters of an exponential trend
Y LOOKUP (vector)	Lookup	Built-in	Looks up values in a vector or array
Y LOWER	Text	Built-in	Converts text to lowercase
Y MATCH	Lookup	Built-in	Looks up values in a reference or array
Y MAX	Statistical	Built-in	Returns the maximum value in a list of arguments
- MDETERM	Mathematical	Built-in	Returns the matrix determinant of an array
Y MEDIAN	Statistical	Built-in	Returns the median of the given numbers
Y MID	Text	Built-in	Returns a specific number of characters from a text string starting at the po
Y MIN	Statistical	Built-in	Returns the minimum value in a list of arguments
Y MINUTE	Date	Built-in	Converts a serial number to a minute
Y MINVERSE	Mathematical	Built-in	Returns the matrix inverse of an array
Y MMULT	Mathematical	Built-in	Returns the matrix product of two arrays
Y MOD	Mathematical	Built-in	Returns the remainder from division
Y MODE	Statistical	Built-in	Returns the most common value in a data set
Y MONTH	Date	Built-in	Converts a serial number to a month
Y MROUND	Mathematical	Analysis ToolPak	Returns a number rounded to the desired multiple
Y N	Information	Built-in	Returns a value converted to a number
Y NA	Information	Built-in	Returns the error value \#N/A
Y NETWORKDAYS	Date	Analysis ToolPak	Returns the number of whole workdays between two dates
Y NOT	Logical	Built-in	Reverses the logic of its argument
Y NOW	Date	Built-in	Returns the serial number of the current date and time
- NPV	Financial	Built-in	Returns the net present value of an investment based on a series of period
Y ODD	Mathematical	Built-in	Rounds a number up to the nearest odd integer
- OFFSET	Lookup	Built-in	Returns a reference offset from a given reference
Y OR	Logical	Built-in	Returns TRUE if any argument is TRUE
- PERCENTILE	Statistical	Built-in	Returns the k-th percentile of values in a range
- PERCENTRANK	Statistical	Built-in	Returns the percentage rank of a value in a data set
Y PERMUT	Statistical	Built-in	Returns the number of permutations for a given number of objects
Y PI	Mathematical	Built-in	Returns the value of Pi
Y POWER	Mathematical	Built-in	Returns the result of a number raised to a power
Y PRODUCT	Mathematical	Built-in	Multiplies its arguments
Y PROPER	Text	Built-in	Capitalises the first letter in each word of a text value
- PV	Financial	Built-in	Returns the present value of an investment
Y QUARTILE	Statistical	Built-in	Returns the quartile of a data set
Y QUOTIENT	Mathematical	Analysis ToolPak	Returns the integer portion of a division
Y RAND	Mathematical	Built-in	Returns a random number between 0 and 1
Y RANDBETWEEN	Mathematical	Analysis ToolPak	Returns a random number between the numbers you specify
Y RANK	Statistical	Built-in	Returns the rank of a number in a list of numbers
Y REPLACE	Text	Built-in	Replaces characters within text
Y REPT	Text	Built-in	Repeats text a given number of times
Y RIGHT	Text	Built-in	Returns the rightmost characters from a text value
Y ROMAN	Mathematical	Built-in	Converts an arabic numeral to roman, as text
Y ROUND	Mathematical	Built-in	Rounds a number to a specified number of digits
Y ROUNDDOWN	Mathematical	Built-in	Rounds a number down, toward zero
Y ROUNDUP	Mathematical	Built-in	Rounds a number up, away from zero
- ROW	Lookup	Built-in	Returns the row number of a reference
- ROWS	Lookup	Built-in	Returns the number of rows in a reference
- SEARCH	Text	Built-in	Finds one text value within another (not case-sensitive)
Y SECOND	Date	Built-in	Converts a serial number to a second
Y SIGN	Mathematical	Built-in	Returns the sign of a number
Y SLN	Financial	Built-in	Returns the straight-line depreciation of an asset for one period
Y SMALL	Statistical	Built-in	Returns the k-th smallest value in a data set
Y STDEV	Statistical	Built-in	Estimates standard deviation based on a sample
- STDEVA	Statistical	Built-in	Estimates standard deviation based on a sample, including numbers, text,
Y STDEVP	Statistical	Built-in	Calculates standard deviation based on the entire population
- STDEVPA	Statistical	Built-in	Calculates standard deviation based on the entire population, including nur
Y SUBSTITUTE	Text	Built-in	Substitutes new text for old text in a text string
Y SUBTOTAL	Mathematical	Built-in	Returns a subtotal in a list or database
Y SUM	Mathematical	Built-in	Adds its arguments
- SUM with OFFSET	Lookup		
Y SUMIF	Mathematical	Built-in	Adds the cells specified by a given criteria
Y SUMPRODUCT	Mathematical	Built-in	Returns the sum of the products of corresponding array components
Y SYD	Financial	Built-in	Returns the sum-of-years' digits depreciation of an asset for a specified per
Y T	Text	Built-in	Converts its arguments to text
Y TEXT	Text	Built-in	Formats a number and converts it to text
Y TIME	Date	Built-in	Returns the serial number of a particular time
Y TIMEVALUE	Date	Built-in	Converts a time in the form of text to a serial number
Y TODAY	Date	Built-in	Returns the serial number of today's date
Y TRANSPOSE	Lookup	Built-in	Returns the transpose of an array
Y TREND	Statistical	Built-in	Returns values along a linear trend
Y TRIM	Text	Built-in	Removes spaces from text
- TRUE	Logical	Built-in	Returns the logical value TRUE
Y TRUNC	Mathematical	Built-in	Truncates a number to an integer
Y TYPE	Information	Built-in	Returns a number indicating the data type of a value
Y UPPER	Text	Built-in	Converts text to uppercase
Y VALUE	Text	Built-in	Converts a text argument to a number
Y VAR	Statistical	Built-in	Estimates variance based on a sample

Sort	Category	Location	
Y VARP	Statistical	Built-in	Calculates variance based on the entire population
- VDB	Financial	Built-in	Returns the depreciation of an asset for a specified or partial period using a
Y VLOOKUP	Lookup	Built-in	Looks in the first column of an array and moves across the row to return the
Y WEEKDAY	Date	Built-in	Converts a serial number to a day of the week
Y WORKDAY	Date	Analysis ToolPak	Returns the serial number of the date before or after a specified number of
Y YEAR	Date	Built-in	Converts a serial number to a year
Y YEARFRAC	Date	Analysis ToolPak	Returns the year fraction representing the number of whole days between §

Notes.
Column A:
I used this to keep track of the my progress. A letter Y indicates that its been finished. This column would have been removed if I had ever completed the project.

Usage:

1. Click a function name in column B.
2. Then click on the View button at the top.

Protection:
Some of sheets may be protected, but there is no password. You may find that the macros reprotect the sheets at some stage.
If there are any passwords, try 'rainbow', I use that as a working password during project development.

Analysis ToolPak
Remember that these functions will not work unless the toolpak is loaded. See the Analysis Toolpak sheet for more details.
(Does anyone know how to change the colour of the tab for the sheet names?)

End

	A	B	C	D	E	F	G	H	1	J	K	L	L	M			
1	AVERAGEA																
2																	
3				Mon	Tue	Wed	Thu	Fri	Sat	Sun	Average	$\begin{aligned} & =\text { =AVERAGE(D4:J4) } \\ & \text { =AVERAGE(D5:J5) } \end{aligned}$					
4			Temp C	30	31	32	29	26	28	27	\#MACRO?						
5			Rain cm	0	0	0	4	6	3	1	2						
6																	
7				Mon	Tue	Wed	Thu	Fri	Sat	Sun	Average	=AVERAGE(D8:J8)					
8			Temp C	30		32	29	26	28	27	28.66666667						
9			Rain cm	0		0	$4{ }^{4} 6$		3	1	2.3333333333	=AVERAGE(D9:J9)					
10												$\begin{aligned} & =\text { =AVERAGE(D12:J12) } \\ & =\text { =AVERAGE(D13:J13) } \end{aligned}$					
11				Mon	Tue	Wed	Thu	Fri	Sat	Sun	Average						
12			Temp C	30	No	32	29	26	28	27	28.66666667						
13			Rain cm	0	Reading	0	4	6	3	1	2.3333333333						
14	What Does It Do ?																
15																	
16	This function calculates the average from a list of numbers. If the cell is blank or contains text, the cell will not be used in the average calculation. If the cell contains zero 0 , the cell will be included in the average calculation.																
17																	
18																	
19																	
20	Syntax																
21	=AVERAGE(Range1,Range2,Range3... through to Range30)																
22																	
23	Formatting																
24																	

	A	B	C	D	E	F	G	H	I	J
1	MAXA									

	A	B	B	C	D	E	E	F	G	H	I								
1	BIN2DEC																		
2				Binary Number Decimal Equivalent															
3																			
4				0	0	=BIN2DEC(C4)													
5				1	1	=BIN2DEC(C5)													
6				10	2	=BIN2DEC(C6)													
7				11	3	=BIN2DEC(C7)													
8				111111111	511	=BIN2DEC(C8)													
9				1111111111	-1	=BIN2DEC(C9)													
10				1111111110	-2	=BIN2DEC(C10)													
11				1111111101	-3	=BIN2DEC(C11)													
12				1000000000	-512	=BIN2DEC(C12)													
13				11111111111	Err:502	=BIN2DEC(C13)													
14																			
15	What Does It Do ?																		
16	This function converts a binary number to decimal.																		
17	Negative numbers are represented using two's-complement notation.																		
18																			
19	Syntax																		
20	=BIN2DEC(BinaryNumber)																		
21	The binary number has a limit of ten characters.																		
22																			
23	Formatting																		
24	No special formatting is needed.																		

	A	B	C	D	E	F	G	H					
55			Wood	5000	600	9	$\begin{aligned} & =\text { =CEILING(D55/E55,1) } \\ & \text { =CEILING(D56/E56,1) } \end{aligned}$						
56			Cement	2000	350	6							
57													
58													
59	Example 3												
60	The following tables were used by a shopkeeper to calculate the selling price of an item. The shopkeeper buys products by the box.												
61													
62	The cost of the item is calculated by dividing the Box Cost by the Box Quantity. The shopkeeper always wants the price to end in 99 pence.												
63													
64													
65	Table 1 shows how just a normal division results in varying Item Costs.												
66													
67		Table 1											
68		Item	Box Qnty	Box Cost	Cost Per Item	=D69/C69							
69		Plugs	11	£20	1.81818								
70		Sockets	7	£18.25	2.60714	=D70/C70							
71		Junctions	5	£28.10	5.62000	=D71/C71							
72		Adapters	16	£28	1.75000	$=D 72 / C 72$							
73													
74													
75		Table 2 shows how the =CEILING() function has been used to raise the Item Cost to											
76		always end in 99 pence.											
77													
78		Table 2											
79		Item	In Box	Box Cost	Cost Per Item	Raised Cost							
80		Plugs	11	£20	1.81818	1.99							
81		Sockets	7	£18.25	2.60714	2.99							
82		Junctions	5	£28.10	5.62000	5.99							
83		Adapters	16	£28	1.75000	1.99							
84		=INT(E83)+CEILING(MOD(E83,1),0.99)											
85													
86		Explanation											
87		=INT(E83)			Calculates the integer part of the price.								
88		$=\mathrm{MOD}(\mathrm{E} 83,1)$			Calculates the decimal part of the price.								
89		=CEILING(MOD(E83),0.99)			Raises the decimal to 0.99								

	A	B	C	D	E	F	G	H
57		Degree Fahrenhei	F		Tablespoon	tbs		
58		Degree Kelvin	K		Fluid ounce	Oz		
59					Cup	cup		
60		Force			Pint	pt		
61		Newton	N		Quart	qt		
62		Dyne	dyn		Gallon	gal		
63		Pound force	lbf		Liter	1		
64								
65		Energy			Power			
66		Joule	J		Horsepower	HP		
67		Erg	e		Watt	W		
68		Thermodynamic calorie	C					
69		IT calorie	cal		Magnetism			
70		Electron volt	eV		Tesla	T		
71		Horsepower-hour	HPh		Gauss	ga		
72		Watt-hour	Wh					
73		Foot-pound	flb					
74		BTU	BTU					
75		These characters can be used as a prefix to access further units of measure. Using "c" as a prefix to meters " m " will allow centimetres " $\mathbf{c m}$ " to be calculated.						
76								
77								
78								
79								
80		Prefix	Multiplier	Abbreviation		Prefix	Multiplier	Abbreviation
81		exa	1.00E+18	E		deci	1.00E-01	d
82		peta	1.00E+15	P		centi	1.00E-02	c
83		tera	$1.00 \mathrm{E}+12$	T		milli	1.00E-03	m
84		giga	$1.00 \mathrm{E}+09$	G		micro	1.00E-06	u
85		mega	$1.00 \mathrm{E}+06$	M		nano	1.00E-09	n
86		kilo	$1.00 \mathrm{E}+03$	k		pico	$1.00 \mathrm{E}-12$	p
87		hecto	$1.00 \mathrm{E}+02$	h		femto	1.00E-15	f
88		dekao	$1.00 \mathrm{E}+01$	e		atto	1.00E-18	a

	A	B	C	D	E	F	G	H	I	J									
1	DCOUNT																		
2	This is the Database range.	This is the Database range.																	
3	Product		Wattage	Hours	Brand	Unit Cost	Box Quantity	$\begin{array}{\|c} \hline \hline \text { Boxes In } \\ \text { Stock } \end{array}$	Value Of Stock										
4		Bulb	200	3000	Horizon	£4.50	4	3	$£ 54.00$										
5		Neon	100	2000	Horizon	£2.00	15	2	£60.00										
6		Spot	60						£0.00										
7		Other	10	8000	Sunbeam	£0.80	25	6	£120.00										
8		Bulb	80	1000	Horizon	£0.20	40	3	£24.00										
9		Spot	100	unknown	Horizon	£1.25	10	4	$£ 50.00$										
10		Spot	200	3000	Horizon	£2.50	15	1	£37.50										
11		Other	25	unknown	Sunbeam	£0.50	10	3	£15.00										
12		Bulb	200	3000	Sunbeam	£5.00	3	2	£30.00										
13		Neon	100	2000	Sunbeam	£1.80	20	5	£180.00										
14		Bulb	100	unknown	Sunbeam	£0.25	10	5	£12.50										
15		Bulb	10	800	Horizon	£0.20	25	2	£10.00										
16		Bulb	60	1000	Sunbeam	£0.15	25	1	£3.75										
17		Bulb	80	1000	Sunbeam	£0.20	30	2	$£ 12.00$										
18		Bulb	100	2000	Horizon	£0.80	10	5	£40.00										
19		Bulb	40	1000	Horizon	£0.10	20	5	£10.00										
20	Count the number of products of a particular Brand which have a Life Hours rating.																		
21																			
22		Type the brand name :																	
23					$\begin{aligned} & \hline \hline \text { Brand } \\ & \hline \text { Horizon } \end{aligned}$	These two cells are the Criteria range.													
24																			
25	The COUNT value of Horizon is :																		
26					$=$ DCOUNT(B3:I19,D3,E23:E24)														
27	What Does It Do ?																		
28																			
29	This function examines a list of information and counts the values in a specified column. It can only count values, the text items and blank cells are ignored.																		
30																			
31																			
32	Syntax																		
33	=DCOUNT(DatabaseRange,FieldName,CriteriaRange)																		
34	The DatabaseRange is the entire list of information you need to examine, including the field names at the top of the columns.																		
35																			
36	The FieldName is the name, or cell, of the values to Count, such as "Value Of Stock" or I3.																		
37	The CriteriaRange is made up of two types of information. The first set of information is the name, or names, of the Fields(s) to be used as the basis for selecting the records, such as the category Brand or Wattage.																		
38																			
39																			
40	The second set of information is the actual record, or records, which are to be selected, such as Horizon as a brand name, or 100 as the wattage.																		
41																			
42	Formatting																		
43																			
44	No special formatting is needed.																		
45	Examples																		
46																			
47	The count of a particular product, with a specific number of boxes in stock.																		
48																			
49																			
50					Product	Boxes In Stock													
51					Bulb	5													
52	The number of products is :																		
53					3 =DCOUNT		(B3:I19, H 3	,E50:F51)											
54																			

	A	B	C	D	E	F	F	G	H	
1	DEC2BIN									
2					$=\mathrm{DEC2BIN}(\mathrm{C} 4)$					
3			Decimal Number ${ }^{\text {Dinary Equivalent }}$							
4			0	0						
5			1	1	$=\mathrm{DEC2BIN}(\mathrm{C5})$					
6			2	10	$=\mathrm{DEC2BIN}(\mathrm{C6})$					
7			3	11	=DEC2BIN(C7)					
8			511	111111111	=DEC2BIN(C8)					
9			512	Err:502	$=\mathrm{DEC2BIN}(\mathrm{C} 9)$					
10			-1	1111111111						
11			-2	1111111110	$=\mathrm{DEC2BIN}(\mathrm{C} 11)$					
12			-3	1111111101	$=\mathrm{DEC2BIN}(\mathrm{C} 12)$					
13			-511	1000000001	$=\mathrm{DEC2BIN}(\mathrm{C} 13)$					
14			-512	1000000000	= DEC2BIN(C14)					
15										
16			Decimal Number	Places To Pad	Binary Equivalent					
17			1	1		=DEC2BIN(C17,D17)				
18			1	2	01	=DEC	C2	8,D		
19			1	3		=DEC2		9,D		
20			1	9	000000001	=DEC2		2,		
21			-1	1	1111111111	$=\mathrm{DEC2BIN}(\mathrm{C} 21, \mathrm{D} 21)$				
22										
23	What Does It Do ?									
24	This function converts a decimal number to its binary equivalent.									
25	It can only cope with decimals ranging from -512 to 511.									
26	The result can be padded with leading 0 zeros, although this is ignored for negatives.									
27										
28	Syntax									
29										
30	The PlacesToPad is optional.									
31										
32	Formatting									
33	No special formatting is needed.									

	A	B	C	D	E		F	G	H	I	J							
1	DOLLAR																	
2																		
3			Original Number	Converted To Text	-DOLIAR(C4)													
4			10	\$10.00														
5			10	\$10	$=$ DOLLAR(C5,0)													
6			10	\$10.0	= DOLLAR(C6,1)													
7			10	\$10.00	$=$ DOLLAR(C7,2)													
8			10.25	\$10.25	= DOLLAR(C8)													
9			10.25	\$10	$=$ DOLLAR(C9,0)													
10			10.25	\$10.3	=DOLLAR(C10,1)													
11			10.25	\$10.25	$=$ DOLLAR(C11,2)													
12	What Does It Do?																	
13																		
14	This function converts a number into a piece of text formatted as currency.																	
15																		
16	Syntax																	
17	=DOLLAR(Number,DecimalPlaces)																	
18	Number : This is the number which needs to be converted.																	
19	DecimalPlaces: This is the amount of decimal places needed in the converted number.																	
20																		
21	Formatting																	
22	No special formatting is needed.																	
23	The result will be shown as a text entry.																	

	A	B	C	C	D	E	F	G	G	H	I	J							
56	($£ 54.50$ =DSUM(B3:I19,"Value Of Stock",E49:F50)																		
57																			
58	The total Value Of Stock of a Bulb equal to a particular Wattage.																		
59																			
60																			
61						Bulb	100												
62	Total Value Of Stock is : $£ 52.50$ =DSUM(B3:I19,"Value Of Stock",E60:F61)																		
63																			
64																			
65	The total Value Of Stock of a Bulb less than a particular Wattage.																		
66																			
67						Product Wattage													
68						Bulb	<100												
69	Total Value Of Stock is :					£56.00 =DSUM(B3:I19,"Value Of Stock",E67:F68)													
70																			

	A	B	C	D	E	F	G	H	I	J
1	Eastern data. Used by the example for the =INDIRECT() function.									
2										
3										
4			Jan	Feb	Mar	Total				
5		Alan	1000	2000	3000	6000				
6		Bob	4000	5000	6000	15000				
7		Carol	7000	8000	9000	24000				
8		Total	12000	15000	18000	45000				

	A	B	C	D	E	F	G		
1	FIND								
2 Cor									
3	Text Letter To Find Position Of Letter								
4			Hello	e	2				
5			Hello	H	1	=FIND(D4,C4)$=$ FIND(D5,C5)			
6			Hello	0	5	$=F I N D(D 6, C 6)$			
7			Alan Williams	a	3	$=\mathrm{FIND}(\mathrm{D} 7, \mathrm{C} 7)$			
8			Alan Williams	a	11	$=$ FIND(D8,C8,6)			
9			Alan Williams	T	\#VALUE!	$=F I N D(D 9, C 9)$			
10									
11	What Does It Do?								
12	This function looks for a specified letter inside another piece of text.								
13	When the letter is found the position is shown as a number.								
14	If the text contains more than one reference to the letter, the first occurrence is used.								
15	An additional option can be used to start the search at a specific point in the text, thusenabling the search to find duplicate occurrences of the letter.								
16									
17	If the letter is not found in the text, the result \#VALUE is shown.								
18									
19	Syntax								
20	=FIND(LetterToLookFor,TextToLookInside,StartPosition)								
21	LetterToLookFor: This needs to be a single character.								
22	TextToLookInside : This is the piece of text to be searched through.								
23	StartPosition : This is optional, it specifies at which point in the text the search should begin.								
24									
25	Formatting								
26	No special formatting is needed, the result will be shown as a number.								

	A	B	C	D	E		F	G	H	I	J							
1	FIXED																	
2	Original Converted No Text Number To																	
3					=FIXED(C4)													
4			10	10.00														
5			10	10	=FIXED(C5,0)													
6			10	10.0	$=$ FIXED (C6,1)													
7			10	10.00	=FIXED(C7,2)													
8			10.25	10.25	=FIXED(C8)													
9			10.25	10	=FIXED(C9,0)													
10			10.25	10.3	$=\operatorname{FIXED}(\mathrm{C} 10,1)$													
11			10.25	10.25	=FIXED(C11,2)													
12			1000	1,000.00	=FIXED													
13			1000.23	1,000	$=F I X E D(C 13,0)$													
14			1000.23	1000	=FIXED(C14,0,TRUE)													
15																		
16	What Does It Do ?																	
17	This function converts a numeric value to text. During the conversion the value can be rounded to a specific number of decimal places, and commas can be inserted at the 1,000's.																	
18																		
19																		
20																		
21	Syntax																	
22	=FIXED(NumberToConvert,DecimalPlaces,Commas)																	
23	If DecimalPlaces places is not specified the function will assume 2.																	
24	The Commas option can be TRUE for commas or FALSE for no commas. If the Commas is not specified the function will assume TRUE.																	
25																		
26																		
27	Formatting																	
28	No special formatting is needed.																	
29	Note that any further formatting with the Format, Cells, Number command will not have any effect.																	

	A	B	C	D	E	F	G	H	I
1 FLOOR	FLOOR								
2	Number Rounded Down								
3									
4			1.5	1					
5			2.3	2	$=F L O O R(C 5,1)$				
6			2.9	2	$=F L O O R(C 6,1)$				
7			123	100	$=F L O O R(C 7,50)$				
8			145	100	$=\mathrm{FLOOR}(\mathrm{C} 8,50)$				
9			175	150	$=F L O O R(C 9,50)$				
10									
11	What Does It Do?								
12	This function rounds a value down to the nearest multiple specified by the user.								
13									
14	Syntax								
15	=FLOOR(NumberToRound,SignificantValue)								
16									
17	Formatting								
18	No special formatting is needed.								
19									
20	Example								
21	The following table was used to calculate commission for members of a sales team.								
22	Commission is only paid for every $£ 1000$ of sales. The =FLOOR() function has been used to round down the Actual Sales to the nearest 1000, which is then used as the basis for Commission.								
23									
24									
26			Name	Actual Sales	Relevant Sales	Commission			
27			Alan	£23,500	£23,000	£230			
28			Bob	£56,890	£56,000	£560			
29			Carol	£18,125	£18,000	£180			
30					=FLOOR(D29,1000				

	A	B	C	D	E	F	G	H	I
60		Excellent	E	6	\{=FREQUENCY(CODE(UPPER(B67:171)),CODE(UPPER(C60:C64)))\} $\{=F R E Q U E N C Y(C O D E(U P P E R(B 67: 171)), C O D E(U P P E R(C 60: C 64)))\}$ $\{=F R E Q U E N C Y(C O D E(U P P E R(B 67: 171)), C O D E(U P P E R(C 60: C 64)))\}$ $\{=F R E Q U E N C Y(C O D E(U P P E R(B 67: 171)), C O D E(U P P E R(C 60: C 64)))\}$ $\{=F R E Q U E N C Y(C O D E(U P P E R(B 67: 171)), C O D E(U P P E R(C 60: C 64)))\}$				
61		Very Good	V	8					
62		Average	A	9					
63		Poor	P	8					
64		Disgusting	D	9					
65									
66		Customer Ratings							
67		V	D	V	A	p	A	D	D
68		V	P	a	D	A	P	V	d
69		A	V	E	P	p	E	D	A
70		A	E	d	V	D	P	a	E
71		V	e	P	P	A	V	E	D

This example shows how the =FREQUENCY() function has been used to calculate how often certain numbers appear in the Lottery results.

Table 1 is a record of all the results from the past seven weeks.
Table 1

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
1st Number	3	36	5	3	2	41	45
2nd Number	6	3	19	37	23	15	4
3rd Number	15	44	35	20	47	29	44
4th Number	32	15	32	46	6	45	23
5th Number	37	31	13	22	49	13	43
6th Number	5	22	30	8	49	11	46
Bonus Ball	17	13	15	25	18	17	1

Table 2 is the list of possible number from 1 to 49, and how many appearances each number has made during the past seven weeks.

Table 2

Lottery Number	How Many Appearances	
1	1	\{=FREQUENCY(C10:I16,B24:B72)\}
2	1	$\{=F R E Q U E N C Y(C 10: I 16, B 24: B 72)\}$
3	3	$\{=F R E Q U E N C Y(C 10: I 16, B 24: B 72)\}$
4	1	$\{=F R E Q U E N C Y(C 10: I 16, B 24: B 72)\}$
5	2	
6	2	
7	0	
8	1	

Special tip!

To count how many unique numbers in a range use the following formula. It has to be entered, as an array, so press Ctrl+Shift+Enter rather than, ust Enter alone.

Unique values. \square
=SUM(1/COUNTIF(C10:I16,C10:I16))

34	0
35	1
36	1
37	2
38	0
39	0
40	0
41	1
42	0
43	1
44	2
45	2
46	2
47	1
48	0
49	2

	A	B	C	D	E	F	G	H	1	J
1	GROWTH									
2										
3			Size Of Sales Team	Known Performance						
4			10	£50,000						
5			20	£60,000						
6			30	£70,000						
7			40	£75,000						
8			50	£80,000						
9			60	£82,000						
10			70	£84,000						
11			80	£86,000						
12										
13			90	56,263						
14			100							
15			110							

	A	B	C	D	E	F	G	H	I	J
118				Glass	0\%	12\%	15\%			
119										
120					Orders Table					
121			Item	Units	Unit Cost	Discount	Total			
122			Brick	100	£2	6\%	£188			
123			Wood	200	£1	3\%	£194			
124			Glass	150	£3	12\%	£396			
125			Brick	225	£2	6\%	£423			
126			Wood	50	£1	0\%	£50			
127			Glass	500	£3	15\%	£1,275			
128										
129			Unit Cost	= HLOO	JP(C127,E1	11:G112,2,F	ALSE)			
130										
131			Discount	= HLOO	JP(D127,E1	15:G118,M	TCH(C127	116:	+1	

	A	B	C	D	E	F	G	H	I
1	HOUR								
2									
3			Number	Hour					
4			21:15	21	=HOUR				
5			0.25	6	=HOUR(C5)				
6	What Does It Do?								
7									
8	The function will show the hour of the day based upon a time or a number.								
9									
10	Syntax								
11	=HOUR(Number)								
12									
13	Formatting								
14	The result will be shown as a normal number between 0 and 23.								

	A	B	C	D	E	F
1						
2						
3			System Information	=INFO("directory")		
4		Current directory				
5		Available bytes of memory	Err:502	= INF	va	
6		Memory in use	Err:502	$=1 \mathrm{NFO}$	se	
7		Total bytes of memory	Err:502		=INFO("numfile")	
8		Number of active worksheets	1	= 1 N $=1 \mathrm{~N}$		
9		Cell currently in the top left of the window	Err:502	= INF$=1 \mathrm{NF}$	INFO("origin")	
10		Operating system	Windows (32-bit) NT 5.01		sio	
11		Recalculation mode	Automatic	=INFO("recalc")		
12		Excel version	341m1(Build:9593)	$=I N F O(" r e l e a s e ")$$=$ INFO("system")		
13		Name of system. (PC or Mac)	LINUX			
14						
15	What Does It Do?					
16	This function provides information about the operating environment of the computer.					
17						
18	Syntax					
19	=INFO(text)					
20	text : This is the name of the item you require information about.					
21						
22	Formatting					
23		The results will be shown as text or a number	epending upon what was rear	quested		

	A	B	C	D	E	F	G	H	I
1	ISEVEN								
2									
3			Number	Is it Even					
4			1	0	=ISEVEN(C4)				
5			2	1	=ISEVEN(C5)				
6			2.5	1	=ISEVEN(C6)				
7			2.6	1	=ISEVEN(C7)				
8			3.5	0	=ISEVEN(C8)				
9			3.6	0	=ISEVEN(C9)				
10			Hello	\#VALUE!	=ISEVEN(C10)				
11			1-Feb-98	0	=ISEVEN(C11)				
12			1-Feb-96	1	=ISEVEN(C12)				
13									
14									
15	What Does It Do ?								
16	This function tests a number to determine whether it is even.								
17	An even number is shown as TRUE an odd number is shown as FALSE.								
18	Note that decimal fractions are ignored.								
19	Note that dates can be even or odd.								
20	Note that text entries result in the \#VALUE! error.								
21									
22	Syntax								
23	=ISEVEN(CellToTest)								
24									
25	Formatting								
26	No special formatting is required.								

	A	B	C	D	E	F	G	H	I	J						
1	ISNA															
2																
3			Number	Result	=ISNA(C4)											
4			1	FALSE												
5			Hello	FALSE	= ISNA(C5)											
6				FALSE	=ISNA(C6)											
7			1-Jan-98	FALSE	=ISNA(C7)											
8			\#N/A	TRUE	=ISNA(C8)											
9																
10																
11	What Does It Do?															
12	This function tests a cell to determine whether it contains the Not Available error \#N/A.															
13	The \#N/A is generated when a function cannot work properly because of missing data.															
14	The \#N/A can also be typed in to a cell by the user to indicate the cell is currently empty, but will be used for data entry in the future.															
15																
16	The function is normally used with other functions such as the =IF() function.															
17																
18	Syntax															
19	=ISNA(CellToTest)															
20																
21	Formatting															
22	No special formatting is needed.															

	A	B	C	D	E	F	G	H	I	J						
1 ISODD	ISODD															
2																
3			Number	Is it Odd	=ISODD(C4)											
4			1	1												
5			2	0	$=$ ISODD(C5)											
6			2.5	0	$=$ ISODD(C6)											
7			2.6	0	=ISODD(C7)											
8			3.5	1	=ISODD(C8)											
9			3.6	1	=ISODD(C9)											
10			Hello	\#VALUE!	=ISODD(C10)											
11			1-Feb-98	1	=ISODD(C11)											
12			1-Feb-96	0	=ISODD(C12)											
13																
14																
15	What Does It Do ?															
16	This function tests a number to determine whether it is odd.															
17	An odd number is shown as TRUE an even number is shown as FALSE.															
18	Note that decimal fractions are ignored.															
19	Note that dates can be odd or even.															
20	Note that text entries result in the \#VALUE! error.															
21																
22	Syntax															
23	=ISODD(CellToTest)															
24																
25	Formatting															
26	No special formatting is required.															

	A	B	C	D	E	F	G	H	I	J					
1	LCM														
2															
3			Numbers		$\begin{gathered} \text { Least } \\ \text { Common } \\ \text { Multiple } \\ \hline \end{gathered}$	= LCM(C4, ${ }^{\text {4 }}$)									
4			6	20	60										
5			12	18	36	$=\mathrm{LCM}(\mathrm{C} 5, \mathrm{D} 5)$									
6			34	96	1632	$=\operatorname{LCM}(\mathrm{C6}, \mathrm{D6)}$									
7	What Does It Do ?														
8															
9	This function calculate the Least Common Multiple, which is the smallest number that can be divided by each of the given numbers.														
10															
11	Syntax														
12															
13	=LCM(Number1,Number2,Number3... through to Number29)														
14															
15	Formatting														
16	No special formatting is needed.														

	A	B	C	D	E	F	G	H	I	J
59		Bob	100							
60		Carol	100							
61		David	100							
62		Eric	100							
63		Fred	100							
64										
65		Formatting								
66		No special formatting is needed.								
67										
68		Problems								
69		The list of information to be looked through must be sorted in ascending order, otherwise errors will occur, either as \#N/A or incorrect results.								
70										
71										
72		Table 1 shows the Name column sorted alphabetically, the results of using $=\operatorname{LOOKUP}()$ will be correct.								
73										
74										
75		Table 2 shows the same data, but not sorted. Sometimes the results will be correct, but other								
76		times the result will be an \#N/A error or incorrect figure.								
77										
78		Table 1					Table 2			
79		Name	Jan	Feb	Mar		Name	Jan	Feb	Mar
80		Alan	10	80	97		David	40	110	51
81		Bob	20	90	69		Eric	50	120	77
82		Carol	30	100	45		Alan	10	80	97
83		David	40	110	51		Bob	20	90	69
84		Eric	50	120	77		Carol	30	100	45
85		Francis	60	130	28		Francis	60	130	28
86		Gail	70	140	73		Gail	70	140	73
87										
88		Name :	Eric				Name	Eric		
89										
90		Value	77				Value	77		
91		=LOOKUP(C88,B80:E86)						LOOK	88,G8	

	A	B	C	D	E	E	F	G	H
1	LOWER								
2	Upper Case Text Lower Case								
3									
4			ALAN JONES	alan jones					
5			BOB SMITH	bob smith	=LOWER(C5)				
6			CAROL WILLIAMS	carol williams	=LOWER(C6)				
7			CARDIFF	cardiff	=LOWER(C7)				
8			ABC123	abc123	=LOWER(C8)				
9									
10	What Does It Do ?								
11	This function converts all characters in a piece of text to lower case.								
12									
13	Syntax								
14	=LOWER(TextToConvert)								
15									
16	Formatting								
17		No spe	formatting is needed						

	A	B	C	D	E	F	G	H	I	
1	MAX									
2										
3	Values							Maximum	$=\mathrm{MAX}(\mathrm{C} 4: \mathrm{G} 4)$	
4			120	800	100	120	250	800		
5										
6			Dates					Maximum	$=\mathrm{MAX}(\mathrm{C} 7: G 7)$	
7			1-Jan-98	25-Dec-98	31-Mar-98	27-Dec-98\|	4-Jul-98	27-Dec-98		
8	What Does It Do ?									
9										
10	This function picks the highest value from a list of data.									
11										
12	Syntax									
13	=MAX(Range1,Range2,Range3... through to Range30)									
14										
15	Formatting									
16	No special formatting is needed.									
17										
18	Example									
19	In the following example the =MAX() function has been used to find the highest value for each region, month and overall.									
20										
21								$=\operatorname{MAX}(\mathrm{C} 23: E 23)$		
22		Sales	Jan	Feb	Mar		Region Max			
23		North	£5,000	£6,000	£4,500		£6,000			
24		South	£5,800	£7,000	£3,000		£7,000			
25		East	£3,500	£2,000	£10,000		£10,000			
26		West	£12,000	£4,000	£6,000		£12,000			
27										
28		Month Max	£12,000	£7,000	£10,000					
29	Overall Max £12,000 =MAX(E23:E26)									
30										
31	=MAX(C23:E26)									

	A	B	C	D	E	F	G	H	I	
1	MIN									
2										
3	Values							Minimum	$=\mathrm{MIN}(\mathrm{C} 4: \mathrm{G} 4)$	
4			120	800	100	120	250	100		
5										
6			Dates					Maximum	$=\mathrm{MIN}(\mathrm{C} 7: G 7)$	
7			1-Jan-98	25-Dec-98	31-Mar-98\|	27-Dec-98\|	4-Jul-98	1-Jan-98		
8	What Does It Do ?									
9										
10	This function picks the lowest value from a list of data.									
11										
12	Syntax									
13	=MIN(Range1,Range2,Range3... through to Range30)									
14										
15	Formatting									
16	No special formatting is needed.									
17										
18	Example									
19	In the following example the $=\mathrm{MIN}()$ function has been used to find the lowest value for each region, month and overall.									
20										
21								$=\operatorname{MIN}(C 23: E 23)$		
22		Sales	Jan	Feb	Mar		Region Min			
23		North	£5,000	£6,000	£4,500		£4,500			
24		South	£5,800	£7,000	£3,000		£3,000			
25		East	£3,500	£2,000	£10,000		£2,000			
26		West	£12,000	£4,000	£6,000		£4,000			
27										
28		Month MIN	£3,500	£2,000	£3,000					
29	Overall MIN £2,000 $\quad=$ MIN(E23:E26)									
30										
31	=MIN(C23:E26)									

	A	B	C	D	E	F	G	H	I	J				
1	MMULT													
2														
3	What Does It Do ?													
4	This function multiplies one range of values with another range of values. The ranges do not have to be of equal size. The dimensions of the result range is in direct proportion to dimensions of the two input ranges. It is an Array function and must be entered using the Ctrl+Shift+Enter combination.													
5														
6														
7														
8														
9	Syntax													
10	=MMULT(Range1,Range2)													
11														
12	Formatting													
13	No special formatting is needed.													
14														
15	Example													
16	The following tables were used by a company producing boxes of chocolates.													
17	The types of chocolate produced were Milk, Dark and White.													
18	The company boxed the chocolates in three differing mixtures of Milk, Dark and White.													
19	In the run up to Christmas customers ordered various quantities of each box.													
20	The chocolate company now needed to know what quantity of each type of chocolate to produce.													
21	The =MMULT() function was used to multiply the contents of boxes by the customer orders. The result of the $=\mathrm{MMULT}()$ is the total number of each type of chocolate to produce.													
22														
23														
24		Chocolates in the box												
25		Size	Milk	Dark	White									
26		Giant	50	50	50									
27		Standard	30	20	10									
28		Economy	20	5	5									
29		Customers Orders												
30														
31			Giant	Standard	Economy									
32			300	400	500									
33														
34		Quantity To Produce												
35			Milk	Dark	White									
36			37,000	25,500	21,500									
37														
38			\{=MMUL	T(C32:E32,	C26:E28)\}									
39				all three ce										
40														
41	How It Was Done													
42	Cells C36 to E36 were selected.													
43	The formula =MMULT(C32:E32,C26:E28) was typed, (but not yet entered).													
44	The keys Ctrl+Shift+Enter were pressed to confirm the entry as an array.													
45	The formula then showed the correct result.													
46														
47	Getting The Dimensions Correct													
48	The dimensions of the Result range are directly related to the two input ranges.													
49	The number of rows in the Result should be equal to the rows in Range1.													
50	The number of columns in the Result should be equal to the columns in Range2.													
51														
52	Example 2													
53	The following tables were used by the chocolate company to calculate the amount of ingredients needed to produce batches of chocolate.													
54														
55	The company has four factories, each of which has to order enough Butter, Eggs and Sugar to ensure they can meet production targets.													
56														
57														

	A	B	C	D	E	F	G	H	I	J
58										
59		Range 1 contains the planned production of Milk and Dark chocolate for each factory.								
60		Range 2 contains the amount Butter, Eggs and Sugar needed to make 1 unit of Milk or Plain.								
61										
62		The Result range shows the quantities of each ingredient that will have to be ordered to meet the production target.								
63										
64		Note the depth of the Result is the same as the depth of Range 1, and the width of								
65		the Result is the same as the width of Range 2.								
66										
67		Range 1				Range 2				
68		Production	Milk	Dark		Ingredients	Butter	Eggs	Sug	
69		Factory 1	20	0		Milk	1	3	10	
70		Factory 2	20	1		Dark	2	2	5	
71		Factory 3	10	5						
72		Factory 4	20	10						
73		Result								
74										
75		Ingredients To Order		Butter	Eggs	Sugar				
76			Factory 1	20	60	200				
77			Factory 2	22	62	205				
78			Factory 3	20	40	125				
79			Factory 4	40	80	250				
80										
81				\{=MMU	T(C69:D72	,G69:I70)\}				
82					In all cells					
83										
84										
85										
86		Hint								
87		To get a feel for how the =MMULT() function operates, set all values in Range1 and Range2 to zero 0 , then change a single value in each.								
88										

	A	B	C	D	E	F
1	NETWORKDAYS					
2						
3						
4						
5						
6						
7						
8						
9	This function will calculate the number of working days between two dates. It will exclude weekends and any holidays. Syntax					
10						
11						
12						
13	Syntax$=$ NETWORKDAYS(StartDate,EndDate,Holidays)					
14	Holidays : This is a list of dates which will be excluded from the calculation, such as Xmas and Bank holidays. Formatting					
15						
16						
17						
18	The result will be shown as a number.Note					
19						
20						
21	The calculation does not include the last day. The result of using 1-Jan-98 and 5-Jan-98 will give a result of 4 . To correct this add 1 to the result. =NETWORKDAYS(Start,End,Holidays)+1					
22						
23						
24	Example					
25	The following example shows how a list of Holidays can be created.					
26 ,						
27		Start Date	End Date	Work Days		
28		Mon 02-Mar-98	Fri 06-Mar-98	5	=NETWORK	AYS(B28,C28,C33:C37)
29		Mon 02-Mar-98	Fri 13-Mar-98	10	=NETWORK	AYS(B29,C29,C33:C37)
30		Mon 27-Apr-98	Fri 01-May-98	4	=NETWORK	AYS(B30,C30,C33:C37)
31						
32			Holidays			
33		Bank Holiday	1-May-98			
34		Xmas	25-Dec-98			
35		New Year	1-Jan-97			
36		New Year	1-Jan-98			
37		New Year	1-Jan-99			

	A	B	C	D	E	F	G	H	1	J
1	Northern data. Used by the example for the =INDIRECT() function. Alan									
2										
3										
4			Jan	Feb	Mar	Total				
5		Alan	10	20	30	60				
6		Bob	40	50	60	150				
7		Carol	70	80	90	240				
8		Total	120	150	180	450				
9										

	A	B	C	D	E	E	F	G	H	I						
1	ODD															
2	Number Rounded To Next Odd 2															
3					=ODD(C4)											
4			2	3												
5			2.4	3	$=O D D(C 5)$											
6			2.9	3	$=O D D(C 6)$											
7			3	3	$=O D D(C 7)$											
8			3.4	5	=ODD(C8)											
9			3.9	5	$=O D D(C 9)$											
10	What Does It Do ?															
11																
12	This function rounds a number up to the next highest whole odd number.															
13																
14	Syntax															
15	=ODD(NumberToBeRounded)															
16																
17	Formatting															
18	No special formatting is needed.															

	A	B	C	D	E	F	G	G	H	I	J					
1	OR															
2																
3			Order No.	Cost	Payment Type	Handling Charge	=IF(OR(E4="Visa" E4="Delta") 50,									
4			AB001	1000	Cash	£-										
5			AB002	1000	Visa	£5	=IF(OR(E5="Visa",E5="Delta"),5,0)									
6			AB003	2000	Cheque	£-	$=I F(O R(E 6=$ "Visa",E6="Delta"),5,0)									
7			AB004	5000	Delta	£5	$=I F(O R(E 7=$ "Visa",E7="Delta"),5,0)									
8																
9	What Does It Do?															
10	This function tests two or more conditions to see if any of them are true. It can be used to test that at least one of a series of numbers meets certain conditions. Normally the $\operatorname{OR}()$ function would be used in conjunction with a function such as $=\operatorname{IF}()$.															
11																
12																
13	Normally the OR() function would be used in conjunction with a function such as $=\mathrm{IF}()$.															
14	Syntax															
15	=OR(Test1,Test2)															
16	Note that there can be up to 30 possible tests.															
17																
18	Formatting															
19	When used by itself it will show TRUE or FALSE.															
20																
21	Example															
22	The following table shows a list of orders taken by a company.															
23	A handling charge of $£ 5$ is made on all orders paid by Visa or Delta cards. The $=O R()$ function has been used to determine whether the charge needs to be applied.															
24																
25																
26			Order No.	Cost	Payment Type	Handling Charge	=IF(OR(E27="Visa",E27="Delta"),5,0)									
27			AB001	1000	Cash	£-										
28			AB002	1000	Visa	£5										
29			AB003	2000	Cheque	£-										
30			AB004	5000	Delta	£5										

Ordering Stock

Ordering Stock

Ordering Stock

Ordering Stock

	A	B	C		D	E	F	G	H	I	J
1											
2		Box size	Sample		Packer1	Packer2	Packer3	Packer4			
3		Small		1	10	10	10	10			
4		Medium		1	20	20	20	21			
5		Large		1	30	28	35	30			
6		Small		2	11	9	10	10			
7		Medium		2	21	20	0	20			
8		Large		2	31	28	30	30			
9		Small		3	8	10	12	10			
10		Medium		3	22	20	20	19			
11		Large		3	32	28	30	30			
12											
13		Box size	Sample		Packer1	Packer2	Packer3	Packer4			

	A	B	C	D	E	F	G	H	I	J	J	K												
1 QUARTILE	QUARTILE																							
2																								
3		Values		Quarter No. ${ }^{\text {Quartile }}$																				
4		1		0 1 1 25 2 50 3 75 4 100 =QUARTILE(C4:C8,E4) =QUARTILE(C4:C8,E5) =QUARTILE(C4:C8,E6) =QUARTILE(C4:C8,E7) =QUARTILE(C4:C8,E8)																				
5			25																					
6			50																					
7			75																					
8			100																					
9				100																				
10																								
11			Values					Quarter No.	Quartile	=QUARTILE(C12:F16,H12)														
12			817	104	640	767		0	104															
13			748	756	369	703		1	285.75	=QUARTILE(C12:F16,H13)														
14			372	993	294	261		2	489	=QUARTILE(C12:F16,H14)														
15			487	384	185	491		3	750	$\begin{aligned} & =\text { QUARTILE(C12:F16,H15) } \\ & =\text { QUARTILE(C12:F16,H16) } \end{aligned}$														
16			140	607	894	182		4	993															
17																								
18	What Does It Do ?																							
19	This function examines a group of values and then shows the values which are of the upper limits of the 1st, 2nd, 3rd and 4th quarters of the data.																							
20																								
21	The Quartile of 0 (zero) is actually lowest value, which can be obtained using the $=\mathrm{MIN}()$ function.																							
22	The Quartile of 4 is actually highest value, which can be obtained using the $=\operatorname{MAX}()$ function.																							
23																								
24	Syntax																							
25	=QUARTILE(RangeToBeExamined,QuartileValue)																							
26	The QuartileValue can only be $0,1,2,3$ or 4 .																							
27																								
28	Formatting																							
29	No special formatting is needed.																							

	A	B	C	D	E	F	G	H	I
59			Diamond 12	0.8650148		31	0.8848762573		
60			Hearts 3	0.9870746		5	0.3110829443		
61			Hearts 5	0.978668		18	0.0080744335		
62			Hearts 8	0.7768479		39	0.9859633525		
63			Hearts 1	0.3219001		23	0.9456980899		
64			Diamond 13	0.2078835		12	0.3782628835		
65			Hearts 9	0.4398061		11	0.4887692509		
66			Clubs 4	0.7451766		20	0.5289476831		
67			Diamond 5	0.864932		33	0.9198535294		
68			Spades 4	0.0512094		42	0.7542455564		
69			Clubs 1	0.6281117		24	0.0033390275		
70			Spades 8	0.4593342		2	0.2089281585		
71			Hearts 7	0.8393873		14	0.7511957688		
72			Diamond 1	0.395923		25	0.8895608587		
73			Clubs 2	0.3648194		9	0.6826240746		
74			Hearts 2	0.6356397		38	0.8553897683		
75			Diamond 11	0.1496977		15	0.0396350459		
76			Clubs 7	0.2160027		28	0.2902380968		
77			Spades 12	0.8101549		17	0.2616397636		
78			Spades 10	0.3922416		6	0.6744086584		
79			Clubs 11	0.5961337		22	0.7025088677		
80			Diamond 2	0.9045237		46	0.9118331475		
81			Diamond 10	0.3890311		36	0.3348255507		
82			Spades 9	0.9796037					
83			Spades 11	0.2078206					
84			Hearts 12	0.1370164					

	A	B	C	D	E	F	G	H	I
55		David	1:02	1	=RANK(C55,C53:C58,1)				
56		Brian	1:36	5	=RANK(C56,C53:C58,1)				
57		Sue	1:27	3	=RANK(C57,C53:C58,1)				
58		Alex	1:03	2	=RANK(C58,C53:C58,1)				

	A	B	C	D	E	F	G	H	H	I			
1	REPLACE												
2													
3			Original Text	Start Position	Characters To Replace	New Character	Modified Text	=REPLACE(C4,D4,E4,F4)					
4			ABCDEFGH	2	1	X	AxCDEFGH						
5			ABCDEFGH	2	5	X	AxGH	=REPLACE(C5,D5,E5,F5)					
6			ABCDEFGH	2	1	hello	AhelloCDEFGH	$\begin{aligned} & =\text { REPLACE(C6,D6,E6,F6) } \\ & =\text { REPLACE(C7,D7,E7,F7) } \end{aligned}$					
7			ABCDEFGH	2	5	hello	AhelloGH						
8													
9	What Does It Do ?												
10	This function replaces a portion of text with a new piece of text. You need to specify where the replacement should start, how many characters to remove and what the new replacement text should be.												
11													
12													
13													
14	Syntax												
15	=REPLACE(OriginalText,StartPosition,NumberOfCharactersToReplace,NewText)												
16													
17	Formatting												
18													

	A	B	C	D	E	F		G	H	I
1	RIGHT									
2										
3			Original Text	Number Of Characters Required	Right String					
4			Alan Jones	1	S	=RIG	H			
5			Alan Jones	2	es	=RIGH				
6			Alan Jones	3	nes	=RIGH	+			
7			Cardiff	6	ardiff	=RIGH	H			
8			ABC123	4	C123	= RIGH	H			
9										
10	What Does It Do ?									
11	This function displays a specified number of characters from the right hand side of a piece of text.									
12										
13										
14	Syntax									
15	=RIGHT(OriginalText,NumberOfCharactersRequired)									
16										
17	Formatting									
18	No special formatting is needed.									
19										
20	Example									
21	The following table was used to extract the second name of a person from their full name.									
22	The =FIND() function locates the position of the space between the first and second name.									
23	The length of the second name is calculated by subtracting the position of the space from the overall length of the full name.									
24										
25	The = RIGHT() function can then extract the second name.									
26										
27			Full Name	Second Name	=RIGHT(C28,LEN(C28)-FIND(" " C28))					
28			Alan Jones	Jones						
29			Bob Smith	Smith	=RIGHT(C29,LEN(C29)-FIND(" ",C29))					
30			Carol Williams	Williams	=RIGHT(C30,LEN(C30)-FIND(" ",C30))					

	A	B	C	D	E	F	G	H	I
1	ROUND								
2									
3			Number	$\begin{array}{c\|} \hline \text { Places To } \\ \text { Round } \\ \hline \end{array}$	Rounded Number				
4			1.47589	0	$1=R O U N D(C 4, D 4)$				
5			1.47589	1	1.5	=ROUND(C5,D5)			
6			1.47589	2	1.48	$=$ ROUND (C6,D6)			
7			13643.47589	-1	13640	$=\text { ROUND }(C 7, D 7)$			
8			13643.47589	-2	13600	=ROUND(C8,D8)			
9			13643.47589	-3	14000	$=$ ROUND (C9,D9)			
10									
11	What Does It Do ?								
12	This function rounds a number to a specified amount od decimal places.If 0 is used the number is rounded to the nearest whole number.								
13									
14	If a negative amount of rounding is used the figures to the left of the decimal point are rounded.								
15									
16									
17	=ROUND(NumberToRound,DecimalPlacesToUse)								
18									
19	Formatting								
20	No special formatting is needed.								

	A	B	C	D	E	F	F	G	H	I	J
1	ROUNDDOWN										
2											
3			Number	$\begin{gathered} \text { Places To } \\ \text { Round } \end{gathered}$	Rounded Down						
4			1.47589	0	1	=ROU	UN	N(
5			1.47589	1	1.4	=ROU	UN	N(
6			1.47589	2	1.47	=ROU	UN	NN			
7			13643.476	-1	13640	=ROU	UN	N			
8			13643.476	-2	13600	=ROU	UN	N(
9			13643.476	-3	13000	=ROU	UN	NN(
10	What Does It Do ?										
11											
12	This function rounds a number down to a specified amount of decimal places. If 0 is used the number is rounded down to the nearest whole number.										
13											
14	If a negative amount of rounding is used the figures to the left of the decimal point are rounded.										
15											
16	Syntax										
17	=ROUNDDOWN(NumberToRound,DecimalPlacesToUse)										
18											
19	Formatting										
20	No special formatting is needed.										

	A	B	C	D	E	F	G	H	I	J
1	Southern data. Used by the example for the =INDIRECT() function.									
2										
3										
4			Jan	Feb	Mar	Total				
5		Alan	100	200	300	600				
6		Bob	400	500	600	1500				
7		Carol	700	800	900	2400				
8		Total	1200	1500	1800	4500				

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
1	SUBTOTAL																			
2																				
3		Name	Jan	Feb	Mar	Qtr1	Apr	May	Jun	Qtr2	Jul	Aug	Sep	Qtr3	Oct	Nov	Dec	Qtr4	Total	
4		Alan	10	10	10	30	20	20	20	60	30	30	30	90	40	40	40	120	300	
5		Bob	10	10	10	30	20	20	20	60	30	30	30	90	40	40	40	120	300	
6		Carol	10	10	10	30	20	20	20	60	30	30	30	90	40	40	40	120	300	

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
1	SUBTOTAL Sheet 2																
2																	
3		Item	Area	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	otal	
4		Wood	East	10	10	10	20	20	20	30	30	30	40	40	40	300	
5		Glass	East	10	10	10	20	20	20	30	30	30	40	40	40	300	
6		Brick	East	10	10	10	20	20	20	30	30	30	40	40	40	300	
7			East Total	30	30	30	60	60	60	90	90	90	120	120	120	900	
8		Wood	North	10	10	10	20	20	20	30	30	30	40	40	40	300	
9		Glass	North	10	10	10	20	20	20	30	30	30	40	40	40	300	
10		Brick	North	10	10	10	20	20	20	30	30	30	40	40	40	300	
11			North Total	30	30	30	60	60	60	90	90	90	120	120	120	900	
12		Wood	South	10	10	10	20	20	20	30	30	30	40	40	40	300	
13		Glass	South	10	10	10	20	20	20	30	30	30	40	40	40	300	
14		Brick	South	10	10	10	20	20	20	30	30	30	40	40	40	300	
15			South Total	30	30	30	60	60	60	90	90	90	120	120	120	900	
16		Wood	West	10	10	10	20	20	20	30	30	30	40	40	40	300	
17		Glass	West	10	10	10	20	20	20	30	30	30	40	40	40	300	
18		Brick	West	10	10	10	20	20	20	30	30	30	40	40	40	300	
19			West Total	30	30	30	60	60	60	90	90	90	120	120	120	900	
20			Grand Total	120	120	120	240	240	240	360	360	360	480	480	480	3600	

	A	B	C	D	E	F		G	H	I	J
1	SUM (Running Total)										
2	Using =SUM() For A Running Total										
3											
4											
5											
6			Month	Sales	Running Total						
7			Jan	10	10						
8			Feb	50	60	=SUM(\$D\$7:D8)					
9			Mar	30	90	=SUM(\$D\$7:D9)					
10			Apr	20	110	=SUM (\$D\$7:D10)					
11			May		110	=SUM(\$D\$7:D11)					
12			Jun		110	=SUM(\$D\$7:D12)					
13			Jul		110	=SUM (\$D\$7:D13)					
14			Aug		110	=SUM(\$D\$7:D14)					
15			Sep		110	=SUM (\$D\$7:D15)					
16			Oct		110	=SUM (\$D\$7:D16)					
17			Nov		110	=SUM (\$D\$7:D17)					
18			Dec		110	=SUM(\$D\$7:D18)					
19											
20			Type the formula =SUM(\$D\$7:D7) in cell E7 and then copy down the table.								
21			It works because the first reference uses dollar symbols \$ to keep \$D\$7 static								
22			as the formula is copied down. Each occurrence of the $=$ SUM () then adds all the numbers from the first cell down.								
23											
24											
25			The function can be tidied up to show 0 zero when there is no adjacent value								
26			by using the $=\mathrm{IF}()$ function.								
27											
28			Month	Sales	$\begin{gathered} \text { Runnin } \\ \text { Total } \end{gathered}$						
29			Jan	10	10	=SUM(IF(D7,\$D\$7:D7,0))					
30			Feb	50	60	$=\text { SUM }(I F(D 8, \$ D \$ 7: D 8,0))$					
31			Mar	30	90	=SUM(IF(D9,\$D\$7:D9,0))					
32			Apr	20	110	=SUM(IF(D10,\$D\$7:D10,0))					
33			May		0	=SUM(IF(D11,\$D\$7:D11,0))					
34			Jun		0	=SUM(IF(D12,\$D\$7:D12,0))					
35			Jul		0	The =SUM() only takes place when					
36			Aug		0	there is data in column D . Otherwise the value 0 zero is entered.					
37			Sep		0						
38			Oct		0						
39			Nov		0						
40			Dec		0						

	A	B	C	D	D E	F	G	H	I	J
1	SUM and the =OFFSET function									
2			Sometimes it is necessary to base a calculation on a set of cells in different locations. An example would be when a total is required from certain months of the year, such as the last 3 months in relation to the current date.							
3										
4										
5										
6										
7			One solution would be to retype the calculation each time new data is entered, but this would be time consuming and open to human error.							
8										
9			A better way is to indicate the start and end point of the range to be calculated by using the =OFFSET() function.							
10										
11										
12			The =OFFSET() picks out a cell a certain number of cells away from another cell. By giving the =OFFSET() the address of the first cell in the range which needs to be totalled, we can then indicate how far away the end cell should be and the =OFFSET() will give us the address of cell which will be the end of the range to be totalled.							
13										
14										
15										
16										
17										
18			The =OFFSET() needs to know three things;							
19			1. A cell address to use as the fixed point from where it should base the offset.							
20			2. How many rows it should look up or down from the starting point. 3. How many columns it should look left or right from the starting point.							
21										
22										
23			Total		Jan	Feb	Mar	Apr	May	
24			10		10	400	500	600	700	
25			$=\text { SUM (E24:OFFSET(E24,0,0)) }$							
26										
27			results in the range being summed as E24:E24.							
28										
29			410		10	400	500	600	700	
30			=SUM(E29:OFFSET(E29,0,1))							
31			This example uses E29 as the starting point and offsets 1 col to pick out cell F29 resulting in a the range E29:F29 being summed.							
32										
33										
34			910		10	400	500	600	700	
35			$=\text { SUM }(\mathrm{E} 34: \text { OFFSET }(\mathrm{E} 34,0,2))$ This example uses E34 as the starting point and offsets 2 cols to pick out							
36										
37			cell G34 resulting in a the range E34:G34 being summed.							
38										
39			Using =OFFSET() Twice In A Formula							
40										
41			The following examples use $=$ OFFSET() to pick both the start and end of the range which needs to be totalled.							
42										
43										
44			Total		Jan	Feb	Mar	Apr	May	
45			400		10	400	500	600	700	
46			=SUM(OFFSET(E45,0,1):OFFSET(E45,0,1))							
47			The cell E45 has been used as the starting point for both offsets and each has been offset by just 1 column. The result is that just cell F45 is used as the range $F 45$:F45 for the sum function to calculate.							
48										
49										
50										
51			900		10	400	500	600	700	
52			=SUM(OFFSET(E51,0,1):OFFSET(E51,0,2))							
53			The cell E51 has been used as the starting point of both offsets, the first offset is offset by 1 column, the second by 2 columns. The result is the range F51:G51 which is then totalled.							
54										
55										
56			1500							
57					10	400	500	600	700	

Item	Sold	price
Tyres	5	100
Filters	2	10
Bulbs	3	2

Total Sales Value : 526 =SUMPRODUCT(D4:D6,E4:E6)

What Does It Do ?

This function uses at least two columns of values.
The values in the first column are multipled with the corresponding value in the second column. The total of all the values is the result of the calculation.

Syntax

=SUMPRODUCT(Range1, Range, Range3 through to Range30)
Formatting
No special formatting is needed.

Example

The following table was used by a drinks merchant to keep track of stock.
The merchant needed to know the total purchase value of the stock, and the potential value of the stock when it is sold, takinging into account the markup percentage.

The =SUMPRODUCT() function is used to multiply the Cases In Stock with the Case Price to calculate what the merchant spent in buying the stock.

The =SUMPRODUCT() function is used to multiply the Cases In Stock with the Bottles In Case and the Bottle Setting Price, to calculate the potential value of the stock if it is all sold.

Product	Cases In Stock	Case Price	Bottles In Case	Bottle Cost	Markup	Bottle Selling Price
Red Wine	10	$£ 120$	10	$£ 12.00$	25%	$£ 15.00$
White Wine	8	$£ 130$	10	$£ 13.00$	25%	$£ 16.25$
Champagne	5	$£ 200$	6	$£ 33.33$	80%	$£ 60.00$
Beer	50	$£ 24$	12	$£ 2.00$	20%	$£ 2.40$
Lager	100	$£ 30$	12	$£ 2.50$	25%	$£ 3.13$

Total Value Of Stock :	$£ 7,440$
$=$ =SUMPRODUCT(C35:C39,D35:D39)	
$=$ Total Selling Price Of Stock :	$£ 9,790$
$=$ SUMPRODUCT(C35:C39,E35:E39,H35:H39)	

	A	B	B	C	D	E	F	F	G	H	I	J
1	T											
2												
3					Cell To Test	Result						
4					Hello	Hello	=T(D4)					
5					10		=T(D5					
6					1-Jan-98		=T(D6)					
7							=T(D7					
8												
9	What Does It Do ?											
10	This function examines an entry to determine whether it is text or not.											
11	If the value is text, then the text is the result of the function											
12	If the value is not text, the result is a blank.											
13	The function is not specifically needed by Excel, but is included for compatibility with other spreadsheet programs.											
14												
15												
16	Syntax											
17	=T(CellToTest)											
18												
19	Formatting											
20		No spe	eci	matt	is needed.							

	A	B	C	D	E	E	F	G	H	I	J							
1	TEXT																	
2																		
3			Original Number	Converted To Text														
4			10	10.00														
5			10	£10.00	=TEX	X	. 00											
6			10	10	=TEXT(C6,"0")													
7			10	£10	=TEXT(C7,"£0")													
8			10.25	10.3	=TEXT(C8,"0.0")													
9			10.25	£10.3	=TEXT(C9,"£0.0")													
10																		
11	What Does It Do ?																	
12	This function converts a number to a piece of text.																	
13	The formatting for the text needs to be specified in the function.																	
14																		
15	Syntax																	
16	=TEXT(NumberToConvert,FormatForConversion)																	
17																		
18	Formatting																	
19	No special formatting is required.																	

	A	B	C	D	E	F	G	H	I	J
59										
60										
61										
62										
63		This example shows how the $=\mathrm{VLOOKUP}()$ is used to pick the cost of a spare part for different makes of cars.								
64										
65		The =VLOOKUP() scans down row headings in column F for the spare part entered in column C .								
66		When the make is found, the =VLOOKUP() then scans across to find the price, using the result of the $=\mathrm{MATCH}()$ function to find the position of the make of car.								
67										
68										
69		The functions use the absolute ranges indicated by the dollar symbol . This ensures that when the formula is copied to more cells, the ranges for $=\mathrm{VLOOKUP}()$ and $=\mathrm{MATCH}()$ do not change.								
70										
71										
72										
73		Maker	Spare	Cost		Lookup Table				
74		Vauxhall	Ignition	£50		-	Vauxhall	Ford	VW	
75		VW	GearBox	£600		GearBox	500	450	600	
76		Ford	Engine	£1,200		Engine	1000	1200	800	
77		VW	Steering	£275		Steering	250	350	275	
78		Ford	Ignition	£70		Ignition	50	70	45	
79		Ford	CYHead	£290		CYHead	300	290	310	
80		Vauxhall	GearBox	£500						
81		Ford	Engine	£1,200						
82		=VLOOKUP(C81,F75:I79,MATCH(B81,G74:I74,0)+1,FALSE)								
83										
84										
85		Example 3								
86		In the following example a builders merchant is offering discount on large orders.								
87		The Unit Cost Table holds the cost of 1 unit of Brick, Wood and Glass.								
88		The Discount Table holds the various discounts for different quantities of each product.								
89		The Orders Table is used to enter the orders and calculate the Total.								
90										
91		All the calculations take place in the Orders Table.								
92		The name of the Item is typed in column C of the Orders Table.								
93										
94		The Unit Cost of the item is then looked up in the Unit Cost Table.								
95		The FALSE option has been used at the end of the function to indicate that the product								
96		names down the side of the Unit Cost Table are not sorted.								
97		Using the FALSE option forces the function to search for an exact match. If a match is								
98		not found, the function will produce an error.								
99		=VLOOKUP(C126,C114:D116,2,FALSE)								
100										
101		The discount is then looked up in the Discount Table								
102		If the Quantity Ordered matches a value at the side of the Discount Table the =VLOOKUP will								
103		look across to find the correct discount.								
104		The TRUE option has been used at the end of the function to indicate that the values								
105		down the side of the Discount Table are sorted.								
106		Using TRUE will allow the function to make an approximate match. If the Quantity Ordered does not match a value at the side of the Discount Table, the next lowest value is used.								
107										
108		Trying to match an order of 125 will drop down to 100, and the discount from								
109		the 100 row is used.								
110		=VLOOKUP(D126,F114:I116,MATCH(C126,G113:I113,0)+1,TRUE)								
111										
112						Discount Table				
113		Unit Cost Table				Brick		00d	\|Glass	
114			Brick	£2		1	0\%		0\%	
115			Wood	£1		100	6\%		12\%	
116			Glass	£3		300	8\%		15\%	
117										

	A	B	C	D	E	F	G	H	I	J
118										
119			Orders Table							
120			Item	Units	Unit Cost	Discount	Total			
121			Brick	100	£2	6\%	£188			
122			Wood	200	£1	3\%	£194			
123			Glass	150	£3	12\%	£396			
124			Brick	225	£2	6\%	£423			
125			Wood	50	£1	0\%	£50			
126			Glass	500	£3	15\%	£1,275			
127										
128	Formula for :									
129		Unit Cost	=VLOOKUP(C126,C114:D116,2,FALSE)							
130		Discount	=VLOOKUP(D126,F114:I116,MATCH(C126,G113:I113,0)+1,TRUE)							
131		Total	=(D126*E126)-(D126*E126*F126)							

	A	B	C	D	E	F	G	H	I	J
1	YEAR									
2										
3			Date	Year						
4			25-Dec-98	1998	=YEAR					
5										
6	What Does It Do?									
7	This function extracts the year number from a date.									
8	Syntax									
9										
10	=YEAR(Date)									
11										
12	Formatting									
13	The result is shown as a number.									

	A	B	C	D	E	F	G	H			
1	YEARFRAC										
2											
3			Start Date	End Date	Fraction						
4			1-Jan-98	1-Apr-98	0.25	=YEARFR					
5			1-Jan-98	31-Dec-98	1	=YEARFRAC(C5,D5)					
6			1-Jan-98	1-Apr-98	25\%	=YEARFRAC(C6,D6)					
7											
8	What Does It Do?										
9	This function calculates the difference between two dates and expresses the result as a decimal fraction.										
10											
11											
12	Syntax										
13	=YEARFRAC(StartDate,EndData,Basis)										
14	Basis : Defines the calendar system to be used in the function.										
15	0 : or omitted USA style 30 days per month divided by 360.										
16	$1: 29$ or 30 or 31 days per month divided by 365.										
17	$2: 29$ or 30 or 31 days per month divided by 360.										
18	3 : 29 or 30 Or 31 days per month divided by 365.										
19	4 : European 29 or 30 or 31 days divided by 360.										
20											
21	Formatting										
22	The result will be shown as a decimal fraction, but can be formatted as a percent.										
23											
24	Example										
25	The following table was used by a company which hired people on short term contracts for a part of the year.										
26											
27	The Pro Rata Salary which represents the annual salary is entered.										
28	The Start and End dates of the contract are entered.										
29	The =YEARFRAC() function is used to calculate Actual Salary for the portion of the year.										
30											
31		Start	End	Pro Rata Salary	Actual Salary	=YEARFRAC(B32,C32+1,4)*D32					
32		1-Jan-98	31-Dec-98	£12,000	£12,000						
33		1-Jan-98	31-Mar-98	£12,000	£3,000	=YEARFRAC(B33,C33+1,4)*D33					
34		1-Jan-98	30-Jun-98	£12,000	£6,000	$=$ YEARFRAC(B34,C34+1,4)*D34					
35	Note The extra 1 has been added to the End date to compensate for the fact that the =YEARFRAC() function calculates from the Start date up to, but not including, the End date.										
36											
37 38											

