
35

CHAPTER 4

THE IR1 ITERATIVE-REFINEMENT ALGORITHM

Our three general iterative-refinement-strategy-algorithms first compute an unconstrained

MST, and then iteratively refine this MST by edge-replacement until the diameter

constraint is satisfied. General iterative-refinement-algorithm IR1, which we present in

this chapter, iteratively penalizes the edges near the center of the MST by increasing their

weight and then recomputes the MST. This attempts to lower the diameter by breaking

up long paths from the middle, replacing them by shorter ones.

4.1 The Algorithm

The heart of Algorithm IR1 is a problem-specific penalty function. A penalty function

succinctly encodes how many edges to penalize, which edges to penalize, and what the

penalty amount must be, where the penalty is an increase in edge weight. In each

iteration of IR1, as described in Algorithm 1, an MST of the graph with the current

weights is computed, and then a subset of tree edges are penalized (using the penalty

function), so that they are discouraged from appearing in the MST in the next iteration.

36

Obviously, an edge at the center of a long path is a good candidate to be penalized, since

Figure 4.1 An example of cycling in IR1

w1 < w2 < w3 < w4 < w5 < w6

w1

w4 w6

w3

w2

w5

(a)

(b)

(e)(d)

(c)

37

it would split each of the longest paths in the current tree into two subpaths of equal

length. However, penalizing only one edge per iteration may not be sufficient, as

illustrated by the example of Figure 4.1.

ALGORITHM 1 (IR1(G, k)).
begin

fails := 0;
G’ := G;
Tmin := MST of G;
T := Tmin;
while (((diameter of T) > k) and (fails ≤ 15)) do

G’ := G’ with edges closest to the center of Tmin penalized;
Tmin := MST of G’ ; /* computed using the new edge-weights */
if (((diameter of Tmin) < (diameter of T))

or (((diameter of Tmin) = (diameter of T)) and (W(Tmin) < W(T))))
then begin

T := Tmin;
fails := 0;

end
else

fails := fails + 1;
end while
return T

end.

For this complete graph and a specified diameter bound of 2, the MST is the path

(w1, w3, w2), shown in Figure 4.1(b). After penalizing the center edge, w3, and

recomputing the MST, we get the path (w1, w4, w2), shown in Figure 4.1(c). The center

edge w4 on this path is penalized next, producing the path in Figure 4.1(d). The algorithm

fails to reduce the diameter of this tree as well, producing the tree in Figure 4.1(e), which,

in the next iteration, regenerates the original MST. The iterative refinement cycles

38

among these paths of diameter 3, and never finds any of the four spanning trees of

diameter 2.

However, if two edges are penalized in every iteration, there is no cycling for this

example. The solution is found in three iterations, as shown in Figure 4.2. Such is the

case for every edge-weighted graph with n = 4. But for n = 5, penalizing two edges per

iteration may not be sufficient.

To reduce the possibility of cycling, the number of edges to be penalized per iteration

should increase with n. However, it must be kept in mind that penalizing too many edges

may result in the solution being too far from optimal. This is because in the space of all

nn – 2 labeled spanning trees, the iterative refinement in such a case would jump (in a

single iteration) from one tree to another, which is many edges different, thereby missing

a number of feasible solutions with perhaps smaller weight. Therefore, the number of

edges penalized must be a slow-growing function of n, say log2 n. All the edges

penalized should be close to the center of the current spanning tree where the center of a

tree consists either of one node or one edge, depending on whether its diameter is even or

odd. The edges to be penalized should be the ones incident to the center. If more edges

are required to be penalized (when the degree of the center node is less than log2 n), then

the edges at distance two from the center node should be chosen, and so on. A tie can be

broken by choosing the higher-weight edge to penalize.

Another issue to consider in designing a penalty function is the penalty amount. To

be effective without causing overflow, the penalty value must relate to the range of the

weights in the spanning tree. Let W(l) denote the current weight of an edge l being

39

penalized, and wmax and wmin denote the largest and the smallest edge-weight,

Figure 4.2 Finding an approximate DCMST(2) by penalizing 2 edges per iteration

w1 < w2 < w3 < w4 < w5 < w6

w1

w4 w6

w3

w2

w5

(a)

(b) (c)

(d)

40

respectively, in the current MST. Also, let distc(l) denote the distance of an edge l from

the center node, plus one. When the center is a unique node, vc, all the edges l incident to

vc have distc(l) = 1, the ones at distance one from vc have distc(l) = 2, and so on. When

the center is an edge lc, it has distc(lc) = 1, an edge l incident to only one end-point of the

center edge has distc(l) = 2, and so on. Therefore, the penalty amount imposed on the

tree edge l is given by:

⎭
⎬
⎫

⎩
⎨
⎧

−
−

ε,
wwldistc

wwlW
MAX

)()(
))((

minmax

maxmin ,

where ε > 0 is a minimum mandatory penalty imposed on an edge, chosen to be

penalized. This minimum penalty ensures that the iterative refinement makes progress in

every iteration, and does not stay at the same spanning tree by imposing zero penalties to

all the edges (in situations, for example, when all the penalized edges have weights equal

to wmin). In a typical implementation, in which weights are stored as integer values, the

value of ε may be set to 1.

Clearly, the penalty amount is proportional to the weight of the penalized edge and

inverse-proportional to its distance from the center of the current MST. The penalty

amount can be as high as wmax/distc(l), and it decreases as the penalized edge becomes

farther away from the center of the tree. This was done because replacing an edge with a

small distc(l) in the current tree can break a long path into two significantly shorter

subpaths, rather than a short subpath and a long one. Also, an edge with a smaller weight

is penalized by a smaller amount than one with a larger weight if they have the same

41

value of distc(.) to makes it less likely for the larger-weight edge to appear in the next

MST.

4.2 Implementation

We parallelized Algorithm IR1 and implemented it on the MasPar MP-1. We ran the

code for IR1 on random graphs with up to 3000 nodes, whose minimum spanning trees

are forced to be Hamiltonian paths, and whose edge weights were randomly selected

numbers between 1 and 1000. The tree weights resulting from IR1 are reported as factors

of the unconstrained MST weight. The average constrained spanning-tree weights with

diameter n/10 were 1.068, 1.036, and 1.024 for n = 1000, 2000, and 3000, respectively.

This indicates remarkable performance of this iterative-refinement algorithm when the

diameter constraint is a large fraction of the number of nodes. The algorithm was also

fast, as it reduced the diameter of a 3000-node complete graph from 2999 to 103 in about

15 minutes. Nonetheless, this iterative-refinement algorithm was not able to obtain

approximate DCMST(k) when k is a small fraction of the number of nodes, such as n/20.

Thus, it should be used only for large values of k.

42

4.3 Convergence

One problem with the approach of Algorithm IR1 is that it recomputes the MST in every

iteration, which sometimes reproduces trees that were already examined, even when the

replacement increases the diameter. Algorithm IR1 terminates when the current MST

diameter is no more than k, or when it cannot improve the current MST further. The

latter case is identified by 15 consecutive iterations that reduce neither the diameter nor

the weight of the current MST. Our empirical study showed that allowing IR1 to

continue past 15 consecutive non-improving iterations did not result in better solutions

when the edge weights ranged from 1 to 10000. When it was allowed to run for 500

iterations (regardless of non-improving iterations), Algorithm IR1 succeeded in finding a

solution when the diameter constraint k ≥ n/10, but failed to find a DCMST when k was a

small constant. We present a different iterative-refinement algorithm in the next chapter

that avoids the cycling problem, and produces solutions with smaller values of k.

43

CHAPTER 5

THE IR2 ITERATIVE-REFINEMENT ALGORITHM

The next iterative-refinement algorithm, IR2, does not recompute the MST in every

iteration; rather, a new spanning tree is computed by modifying the previously computed

one. The modification performed does not regenerate previously generated trees and it

guarantees the algorithm will terminate. Unlike IR1, this algorithm removes one edge at

a time and prevents cycling by moving away from the center of the spanning tree

whenever cycling becomes imminent. Figure 5.1 illustrates how this technique prevents

cycling for the original graph of Figure 4.1. After computing the MST, the algorithm

considers the middle edge (shown in bold) as the candidate for removal, as in Figure

5.1(b). But this edge does not have a replacement that can reduce the diameter, so the

algorithm considers edges a little farther away from the center of the tree. The edge

shown in bold in Figure 5.1(c) is the highest-weight such edge. As seen in Figure 5.1(d),

the algorithm is able to replace it by another edge, and that reduces the diameter. This

algorithm guarantees that the diameter does not increase in any iteration and in fact can

reduce the diameter to a small constant (less than 1% of the number of nodes in the

graph).

IR2 starts by computing the unconstrained MST for the input graph G = (V, E). Then,

in each iteration, it removes one edge that breaks a longest path in the spanning tree and

44

replaces it by a non-tree edge without increasing the diameter. The algorithm requires

computing eccentricity values for all nodes in the spanning tree in every iteration.

The initial MST can be computed using Prim's algorithm. The initial eccentricity

values for all nodes in the MST can be computed using a preorder tree-traversal where

each node visit consists of computing the distances from that node to all other nodes in

the spanning tree. This requires a total of O(n2) computations. As the spanning tree

changes, we only recompute the eccentricity values that change. After computing the

w1

w3

w2

w5

w1 < w2 < w3 < w4 < w5 < w6

(a)

w4
w6

(b) (c) (d)

Figure 5.1 An example of IR2

45

MST and the initial eccentricity values, the algorithm identifies one edge to remove from

the tree and replaces it by another edge from G until the diameter constraint is met or the

algorithm fails. When implemented and executed on a variety of inputs, we found that

this process required no more than 3n iterations. Each iteration consists of two parts. In

the first part, described in Section 5.1, we find an edge whose removal can contribute to

reducing the diameter, and in the second part, described in Section 5.2, we find a good

replacement edge. The IR2 algorithm is shown in Algorithm 2, and its two different

edge-replacement subprocedures are shown in Algorithms 3 and 4. We use eccT(u) to

denote the eccentricity of node u with respect to spanning tree T; the maximum distance

from u to any other node in T. The diameter of a spanning tree T is given by

MAX{eccT(u)} over all nodes u in T.

46

ALGORITHM 2 (IR2(G, T, k)).
begin

if (T is undefined)
then

T := MST of G;
compute eccT (z) for all z in V; /* G = (V, E) */
C := ∅;
move := false;
repeat

diameter :=)}({ zeccMAX T
Vz∈

;

if (C = ∅)
then

if (move = true)
then begin

move := false;
C := edges (u, z) that are one edge farther from the

center of T than in the previous iteration;
end

else
C := edges (u, z) at the center of T;

repeat
(x, y) := highest weight edge in C;
/* This splits T into two trees: subtree1 and subtree2 */

until ((C = ∅) or ()}({
1

ueccMAX T
subtreeu∈

=)}({
2

zeccMAX T
subtreez ∈

));

if (C = ∅)
then /* no good edge to remove was found */

move := true;
else begin

remove (x, y) from T;
get a replacement edge and add it to T;
recompute eccT (z) for all z in V;

end
until ((diameter ≤ k) or (edges to be removed are farthest from center of T));
return T

end.

47

5.1 Selecting Edges for Removal

To reduce the diameter, the edge removed must break a longest path in the tree and

should be near the center of the tree. The center of spanning tree T can be found by

identifying the nodes u in T with eccT(u) = ⎡diameter/2⎤, the node (or two nodes) with

minimum eccentricity.

Since we may have more than one edge candidate for removal, we keep a sorted list

of candidate edges. This list, which we call C, is implemented as a max-heap sorted

according to edge weights, so that the highest-weight candidate edge is at the root.

Removing an edge from a tree does not guarantee breaking all longest paths in the

tree. The end nodes of a longest path in T have maximum eccentricity, which is equal to

the diameter of T. Therefore, we must verify that removing an edge splits the tree T into

two subtrees, subtree1 and subtree2, such that each of the two subtrees contains a node v

with eccT(v) equal to the diameter of the tree T. If the highest-weight edge from heap C

does not satisfy this condition, the algorithm removes it from C and considers the next

highest. This process continues until the algorithm either finds an edge that breaks a

longest path in T or the heap, C, becomes empty.

If the algorithm goes through the entire heap, C, without finding an edge to remove, it

must consider edges farther from the center. This is done by identifying the nodes u with

eccT(u) = ⎡diameter/2⎤ + bias, where bias is initialized to zero, and incremented by 1

every time the algorithm goes through C without finding an edge to remove. Then, the

48

algorithm recomputes C as all the edges incident to set of nodes u. Every time the

algorithm succeeds in finding an edge to remove, bias is reset to zero.

This method of examining edges helps prevent cycling since we consider a different

edge every time until an edge that can be removed is found. But to guarantee the

prevention of cycling, always select a replacement edge that reduces the length of a path

in T. This will ensure that the refinement process will terminate, since it will either

reduce the diameter below the bound, k, or bias will become so large that the algorithm

tries to remove the edges incident to the end-points of the longest paths in the tree.

In the worst case, computing heap C examines many edges in T, thereby requiring

O(n) comparisons. In addition, sorting C will take O(n log n) time. A replacement edge

is found in O(n2) time since the algorithm must recompute eccentricity values for all

nodes to find the replacement that helps reduce the diameter. Therefore, the iterative

process, which removes and replaces edges for n iterations, will take O(n3) time in the

worst case. Since heap C has to be sorted every time it is computed, the execution time

can be reduced by a constant factor if we prevent C from becoming too large. This is

achieved by an edge-replacement method that keeps the tree T fairly uniform so that it

has a small number of edges near the center, as we will show in the next section. Since C

is constructed from edges near the center of T, this will keep C small.

49

5.2 Selecting a Replacement Edge

When an edge is removed from a tree T, the tree T is split into two subtrees: subtree1 and

subtree2. Then, we select a non-tree edge to connect the two subtrees in a way that

reduces the length of at least one longest path in T without increasing the diameter. The

diameter of T will be reduced when all longest paths have been so broken. We develop

two methods, ERM1 and ERM2, to find such replacement edges.

5.2.1 Edge-Replacement Method ERM1

The first edge-replacement-method, shown in Algorithm 3, selects a minimum-weight

edge (a, b) in G connecting a central node a in subtree1 to a central node b in subtree2.

Among all edges that can connect subtree1 to subtree2, no other edge (c, z) will produce

a tree such that the diameter of (subtree1 ∪ subtree2 ∪ {(c, z)}) is smaller than the

diameter of (subtree1 ∪ subtree2 ∪ {(a, b)}). However, such an edge (a, b) is not

guaranteed to exist in incomplete graphs.

50

ALGORITHM 3 (ERM1(G, T, subtree1, subtree2, move)).
begin

recompute eccsubtree1(.) and eccsubtree2(.) for all nodes in each subtree;
m1 :=)}({

1
ueccMIN subtreesubtreeu 1∈

;

m2 :=)}({
2

ueccMIN subtreesubtreeu 2∈
;

(a, b) := minimum-weight edge in G that has:
(a ∈ subtree1) and (b ∈ subtree2) and (eccsubtree1(a) = m1)
and (eccsubtree2(b) = m2);

if (such an edge (a, b) is found)
then

add edge (a, b) to T;
else begin

add the removed edge (x, y) back to T;
move := true;

end
if ((C = ∅) or (bias = 0))

then begin
move = true;
C = ∅;

end
return edge (a, b)

end.

Since there can be at most two central nodes in each subtree, there are at most four

edges to select from. The central nodes in the subtrees can be found by computing

eccsubtree1(.) and eccsubtree2(.) in each subtree, then taking the nodes v with

eccsubtree(v) = MIN{eccsubtree(u)} over all nodes u in the subtree that contains v. This

selection can be done in O(n2) time.

Finally, the boolean variable move is set to true every time an edge incident to the

center of the tree is removed. This causes the removal of edges farther from the center of

the tree in the next iteration of the algorithm, which prevents removing the recently added

edge, (a, b).

51

This edge-replacement method seems fast at the first look, because it selects one out

of four edges. However, in the early iterations of the algorithm, this method creates

nodes of high degree near the center of the tree, which causes C to be very large. This, as

we have shown in the previous section, causes the time complexity of the algorithm to

increase by a constant factor. Furthermore, having at most four edges from which to

select a replacement often causes the tree weight to increase significantly.

5.2.2 Edge-Replacement Method ERM2

The second edge-replacement-method, shown in Algorithm 4, computes eccsubtree1(.) and

eccsubtree2(.) values for each subtree individually, as in ERM1. Then, the two subtrees are

joined as follows. Let the removed edge (x, y) have x ∈ subtree1 and y ∈ subtree2. The

replacement edge will be the smallest-weight edge (a, b) which (i) guarantees that the

new edge does not increase the diameter, and (ii) guarantees reducing the length of a

longest path in the tree at least by one. We enforce condition (i) by:

eccsubtree1(a) ≤ eccsubtree1(x) AND eccsubtree2(b) ≤ eccsubtree2(y) ,

and condition (ii) by:

eccsubtree1(a) < eccsubtree1(x) OR eccsubtree2(b) < eccsubtree2(y) .

If no such edge (a, b) is found, we must remove an edge farther from the center of the

tree, instead.

52

ALGORITHM 4 (ERM2(G, T, subtree1, subtree2, x, y, move)).
begin

recompute eccsubtree1(.) and eccsubtree2(.) for all nodes in each subtree;
m1 := eccsubtree1(x);
m2 := eccsubtree2(y);
(a, b) := minimum-weight edge in G that has:

(a ∈ subtree1) and (b ∈ subtree2) and (eccsubtree1(a) ≤ m1)
and (eccsubtree2(b) ≤ m2) and ((eccsubtree1(a) < m1 or (eccsubtree2(b) < m2));

if (such an edge (a, b) is found)
then

add edge (a, b) to T;
else begin

add the removed edge (x, y) back to T;
move := true;

end
return edge (a, b)

end.

Since ERM2 is not restricted to the centers of the two subtrees, it works better than

ERM1 on incomplete graphs. In addition, it can produce DCMSTs with smaller weights

because it selects a replacement from a large set of edges, instead of 4 or fewer edges as

in ERM1. The larger number of edges increases the total time complexity of IR2 with

ERM2 by a constant factor over IR2 with ERM1. However, this method does not create

nodes of high degree near the center of the tree as in ERM1. This helps keep the size of

heap C small in the early iterations, reducing the time complexity of IR2 by a constant

factor.

53

1

3

5

7

9

11

13

15

17

19

21

100 200 300 400 500 1000

Number of Nodes (n)

(S
pa

nn
in

g
Tr

ee
 W

ei
gh

t)
 /

(M
ST

 W
ei

gh
t

DCMST(3)

Special-Case Approx.
DCMST(4)

IR2-ERM1: Approx.
DCMST(10)

IR2-ERM2: Approx.
DCMST(10)

Figure 5.2 Weight quality of approximate solution, in randomly weighted
complete-graphs with Hamiltonian-path MSTs, produced by IR2 using two
different edge-replacement methods

5.3 Implementation

First, we parallelized Algorithm IR2 and implemented it on the MasPar MP-1, using

complete random-graphs and complete graphs forced to have Hamiltonian-path MSTs,

where edge weights were randomly selected integers between 1 and 1000. We also

implemented IR2 sequentially on a PC with a Pentium III / 500 MHz processor using

random-graphs and graphs forced to have Hamiltonian-path MSTs, where edge weights

54

were randomly selected integers between 1 and 10000, and the graph densities ranged

from 20% to 100%. All input graphs had orders ranging from 50 to 2000, where 20

different graphs were generated for each order, density, and type of graphs. As expected,

IR2 did not enter an infinite loop, and it always terminated within 3n iterations.

The weight quality of approximate DCMST(10) successfully obtained by this

iterative-refinement algorithm using the two different edge replacement methods, ERM1

and ERM2, for graphs with Hamiltonian-path MSTs is shown in Figure 5.2. The diagram

shows the weight of the computed approximate DCMST as a multiple of the weight of

the unconstrained MST. It is clear that IR2 produced approximate solutions lower than

the upper bounds, and IR2 using ERM2 produced lower weight solutions than IR2 using

ERM1. As expected, the time required by IR2 using ERM1 to obtain approximate

DCMSTs was greater than the time required by IR2 using ERM2. In addition, ERM1

required more memory space than ERM2, because the size of C when we use ERM1 is

significantly larger than its size when ERM2 is used. This is caused by the creation of

high-degree nodes by ERM1, as explained in Section 5.2. For the remainder of this

dissertation, we will discuss the behavior of Algorithm IR2 only using ERM2 as the

edge-replacement method.

When IR2 (using ERM2) was tested on random complete-graphs, the weight quality

of approximate DCMST(10) produced by IR2 exceeded the weight of approximate

DCMST(4) produced by the special-case algorithm when the edge weights were

randomly selected integers between 1 and 1000, but not when the range of edge weights

was 1 to 10000. In the latter case, IR2 also produced approximate DCMST(5) with

55

weight lower than the approximate DCMST(4) produced by the special-case algorithm.

No spanning tree of diameter 3 was found in our samples of sparse graphs, and therefore,

the special-case heuristic did not obtain any spanning trees of diameter 4 in those graphs.

The average time required to produce approximate solutions with n = 2000 for

DCMST(5) and DCMST(10), respectively, was 1924 and 1296 seconds in random

complete-graphs, and 1231 and 538 seconds in random graphs with 20% density. The

average weight of solutions with n = 2000 for DCMST(5) and DCMST(10), respectively,

as a factor of the unconstrained MST weight, was 159 and 48 in random complete-graphs

and 29 and 10.8 in random graphs with 20% density. In random graphs of all tested

densities, the weight of solutions, as a factor of the unconstrained-MST weight, increased

with n.

In graphs with Hamiltonian-path MSTs, the weight of approximate DCMST(10)

produced by IR2 (using ERM2) was lower than the weight of approximate DCMST(4)

produced by the special-case algorithm, regardless of the range of edge weights. The

upper bounds (trees of diameter 3 and 4) were not available for sparse graphs of this type,

either. The average time required by IR2 to produce approximate solutions, in graphs

with Hamiltonian MSTs, with n = 2000 for DCMST(5) and DCMST(10), respectively,

was 1488 and 1038 seconds in random complete-graphs, and 3038 and 1053 seconds in

random graphs with 20% density. The average weight of solutions as a factor of the

unconstrained MST weight, was approximately 26 and 9 for DCMST(5) and

DCMST(10), respectively, in random complete-graphs, independent of n. In random

graphs with 20% density, the weight of solution, as a factor of the unconstrained MST

56

weight, decreased with n. The weights of DCMST(5) and DCMST(10), respectively, as a

factor of MST weight, was 44.6 and 18.9 for n = 50 and 21.5 and 11.1 for n = 2000.

The weight of solutions, as a factor of MST weight, in our samples of graphs with

Hamiltonian-path MSTs did not increase with n because of the way these graphs were

generated. To force a randomly generated graph to have a Hamiltonian-path MST, we

randomly selected edges to include in the Hamiltonian path and randomly assigned them

integer weights between 1 and 100. The rest of the edges were randomly generated

integer-weights between 101 and 10000. Therefore, the average weight of an MST-edge

is 50, and the average weight of a non-MST edge is 5050. However, there are only (n –

1) edges in the MST and there are O(n2) non-tree edges in the rest of the graph. Thus, as

n increases, the ratio:

(average weight of a non-MST edge) / (average weight of an MST edge)

decreases. This effect becomes clearer as the number of edges exceeds 10000.

Consequently, we evaluate the solutions' weights in this type of graphs based on the

upper and lower bounds (whenever available) calculated for the same set of graphs.

However, the time taken by the algorithm can be compared with other types of graphs,

where it can be seen that IR2 requires a longer time to obtain a solution when the

diameter of the unconstrained MST is larger.

With all input graphs used for IR2, the weights of solutions and time required to

obtain them increased whenever the diameter bound, k, was decreased. The quality of

IR2 will be discussed further, in Chapter 8, when it is compared to the other algorithms

we developed for the DCMST problem.

57

5.4 Convergence

As was shown in Sections 5.2 and 5.3, Algorithm IR2 is guaranteed to terminate, but it is

not guaranteed to produce a solution. The failure rate of IR2 does not depend on what

fraction of n the value of the bound on diameter, k, is. Rather, it depends on how small

the constant, k, is. To see this, we must take a close look at the way we move away from

the center of the tree while selecting edges for removal. Note that the algorithm will fail

only when it tries to remove edges incident to the end-points of the longest paths in the

spanning tree. Also note that the algorithm moves away from the center of the spanning

tree every time it goes through the entire set C without finding a good replacement edge,

and it returns to the center of the spanning tree every time it succeeds. Thus, the only

way the algorithm fails is when it is unable to find a good replacement edge in

⎡diameter/2⎤ consecutive attempts, each of which includes going through a different set

of C. Empirical results show that it is unlikely that the algorithm will fail for 8

consecutive times, which makes it suitable for finding an approximate DCMST when the

value of k is a constant greater than or equal to 15.

When the input graphs were forced to have Hamiltonian-path MSTs, Algorithm IR2

was unable to find a spanning tree with diameter no more than 10 in some cases. In

graphs with 100 ≤ n ≤ 2500, our empirical results show a failure rate of 10% for k = 10

and 15% for k = 5. The success rate of IR2 (using ERM2) with (unrestricted) random

complete-graphs was 90% for n ≥ 200. In all graphs, the times required by IR2 to obtain

a solution increased when the value of k was decreased.

58

When tested on incomplete graphs, Algorithm IR2 (using ERM2) was more than 65%

successful in obtaining an approximate DCMST(5) for random graphs and graphs with

Hamiltonian-path MSTs, where the density was at least 20% and n ≥ 500. The success

rate dropped slowly as the density of the input graph was decreased. For the same types

of graphs and the same densities, the success rate also dropped when n was reduced

below 500, where Algorithm IR2 becomes only 30% successful in finding an

approximate DCMST(5) in graphs with n = 50 and density = 20%. This is

understandable since the number of edges grows faster than the number of nodes. For

example, when density is 20%, there are 24950 edges in a graph of 500 nodes, but only

245 edges in a graph of 50 nodes.

We measured and analyzed the time taken by IR2 to terminate. We measured the

time taken by IR2 (using ERM2) to terminate successfully on the Pentium III / 500 MHz

machine, and we obtained the following equations using a polynomial-fit program.

When using complete random-graphs, IR2 required (0.111n3 + 62.7n2 – 29583.7n +

2170981) and (0.0736n3 – 21.5n2 + 10100n – 1230000) microseconds for k = 5 and

k = 10, respectively. For random graphs with 20% density, IR2 required (0.191n3 +

77.2n2 – 42250.8n + 3152147) and (0.0639n3 +9.55 n2 – 5573.5n – 342626)

microseconds for k = 5 and k = 10, respectively. This shows that the time required by

IR2 for this type of graphs is almost unaffected by the change in graph density. When

using complete graphs with Hamiltonian-path MSTs, IR2 required (0.187n3 + 50.2n2 –

28288.1n + 2119730) and (0.121n3 + 22n2 – 11709.6n + 74699121) microseconds for

k = 5 and k = 10, respectively. For graphs with Hamiltonian-path MSTs and 20%

59

density, IR2 required (0.248n3 + 38.4n2 – 26746.2n + 2120446) and (0.181n3 – 133.8n2 +

71780.63n – 7707461) microseconds for k = 5 and k = 10, respectively. This shows that,

in this type of graphs, the time required by IR2 increases slightly when the graph density

is reduced.

