
Facility Location and the Geometric

Minimum-Diameter Spanning Tree

Joachim Gudmundsson

Herman J. Haverkort

Sang-Min Park

Chan-Su Shin

Alexander Wolff

institute of information and computing sciences, utrecht university

technical report UU-CS-2003-006

www.cs.uu.nl

Abstract

Let P be a set of n points in the plane. The geometric minimum-diameter spanning
tree (MDST) of P is a tree that spans P and minimizes the Euclidian length of the longest
path. It is known that there is always a mono- or a dipolar MDST, i.e. a MDST with one
or two nodes of degree greater 1, respectively. The more difficult dipolar case can so far
only be solved in slightly subcubic time.

This paper has two aims. First, we present a solution to a new data structure for
facility location, the minimum-sum dipolar spanning tree (MSST), that mediates between
the minimum-diameter dipolar spanning tree and the discrete two-center problem (2CP)
in the following sense: find two centers p and q in P that minimize the sum of their distance
plus the distance of any other point (client) to the closer center. This is of interest if the
two centers do not only serve their customers (as in the case of the 2CP), but frequently
have to exchange goods or personnel between themselves. We show that this problem can
be solved in O(n2 log n) time and that it yields a factor-4/3 approximation of the MDST.

Second, we give two fast approximation schemes for the MDST, i.e. factor-(1 + ε)
approximation algorithms. One uses a grid and takes O∗(E6−1/3 + n) time, where E =

1/ε and the O∗-notation hides terms of type O(logO(1) E). The other uses the well-
separated pair decomposition and takes O(nE3 + En log n) time. A combination of the
two approaches runs in O∗(E5 +n) time. Both schemes can also be applied to MSST and
2CP.

1 Introduction

The MDST can be seen as a network without cycles that minimizes the maximum travel time
between any two sites connected by the network. This is of importance e.g. in communication
systems where the maximum delay in delivering a message is to be minimized. Ho et al.
showed that there always is a mono- or a dipolar MDST [HLCW91]. For a different proof, see
[HT95]. Ho et al. also gave an O(n log n)-time algorithm for the monopolar and an O(n3)-
time algorithm for the dipolar case [HLCW91]. In addition, they showed that the problem
becomes considerably easier when allowing Steiner points, i.e. to find a spanning tree with
minimum diameter over all point sets P ′ that contain the input point set P . The reason is
that there always is a minimum-diameter Steiner tree that is monopolar and whose pole is
the center of the smallest enclosing circle of P . Thus the minimum-diameter Steiner tree can
be determined in linear time [HLCW91].

The cubic time bound for the dipolar case was recently improved by Chan [Cha02] to
Õ(n3−cd), where cd = 1/((d + 1)(dd/2e + 1)) is a constant that depends on the dimension d
of the point set and the Õ-notation hides factors that are o(nε) for any fixed ε > 0. In the
planar case cd = 1/6. Chan speeds up the exhaustive-search algorithm of Ho et al. by using
new semi-dynamic data structures. Note however that cd tends to 0 with increasing d, while
the asymptotic running time of the algorithm of Ho et al. does not depend on the dimension.

Note that in the dipolar case the objective is to find the two poles x, y ∈ P of the tree
such that the function rx + |xy| + ry is minimized, where |xy| is the Euclidean distance of
x and y, and rx and ry are the radii of two disks centered at x and y whose union covers
P . On the other hand the discrete k-center problem is to determine k points in P such that
the union of k congruent disks centered at the k points covers P and the radius of the disks
is minimized. This is a typical facility location problem: there are n supermarkets and in
k of them a regional director must be placed such that the maximum director-supermarket
distance is minimized. This problem is NP-hard provided that k is part of the input [GJ79].

1

Thus, the main research on this problem has focused on small k, especially on k = 1, 2. For
k = 1, the problem can be solved in O(n log n) time using the farthest-point Voronoi diagram
of P . For k = 2, the problem becomes considerably harder. Using the notation from above,
the discrete two-center problem consists of finding two centers x, y ∈ P such that the function
max{rx, ry} is minimized. Agarwal et al. [ASW98] gave the first subquadratic-time algorithm
for this problem. It runs in O(n4/3 log5 n) time.

In this paper we are interested in (a) a new facility location problem that mediates between
the minimum-diameter dipolar spanning tree (MDdST) and the two-center problem and (b)
fast approximations of the computationally expensive MDdST. As for our first aim we ob-
serve the following. Whereas the MDdST minimizes |xy|+ (rx + ry), the discrete two-center
problem is to minimize max{rx, ry}, which means that the distance between the two centers
is not considered at all. If, however, the two centers need to communicate with each other for
cooperation, then their distance should be considered as well—not only the radius of the two
disks. Therefore our aim is to find two centers x and y that minimize |xy|+max{rx, ry}, which
is a compromise between the two previous objective functions. We will refer to this problem as
the discrete minimum-sum two-center problem and call the resulting graph the minimum-sum
dipolar spanning tree (MSST). As it turns out, our algorithm for the MSST also constitutes
a compromise, namely in terms of runtime between the subcubic-time MDdST-algorithm and
the superlinear-time 2CP-algorithm. More specifically, in Section 2 we will describe an algo-
rithm that solves the discrete minimum-sum two-center problem in the plane in O(n2 log n)
time using O(n2) space. For dimension d < 5 a variant of our algorithm is faster than the
more general Õ(n3−cd)-time MDST-algorithm of Chan [Cha02] that can easily be modified to
compute the MSST instead.

In Section 3 we turn to our second aim, approximations for the MDST. To our knowledge
nothing has been published on that field so far.1 We combine a slight modification of the
MSST with the minimum-diameter monopolar spanning tree (MDmST). We identify two
parameters that depend on the MDdST and help to express a very tight estimation of how
well the two trees approximate it. It turns out that at least one of them is a factor-4/3
approximation of the MDST.

Finally, in Section 4 we show that there are even approximating schemes for the MDdST.
More precisely, given a set P of n points and some ε > 0 we show how to compute a dipolar
tree whose diameter is at most (1 + ε) times as long as the diameter of a MDdST. Our
first approximation scheme uses a grid of O(E) × O(E) square cells (where E = 1/ε) and
runs Chan’s exact algorithm [Cha02] on one representative point per cell. The same idea has
been used before [BHP99, Cha00] to approximate the diameter of a point set, i.e. the longest
distance between any pair of the given points. Our scheme takes O∗(E6 + n) time, where the
O∗-notation hides terms of type O(logO(1) E).

Our second approximation scheme is based on the well-separated pair decomposition
[CK95] of P and takes O(E3n + En log n) time. Well-separated pair decompositions make it
possible to consider only a linear number of pairs of points on the search for the two poles
of an approximate MDdST. If we run our second scheme on the O(E2) representative points
in the grid mentioned above, we get a new scheme with a running time of O∗(E5 + n). Both
schemes can also be adjusted to approximate the MSST and the 2CP in linear time.

We will refer to the diameter dP of the MDST of P as the tree diameter of P . We assume

1Very recently we were informed of [SKB+02] where the authors give an approximation scheme for the
MDST that runs in O(ε−3 + n) time using O(n) space.

2

that P contains at least four points.

2 The Minimum-Sum Dipolar Spanning Tree

It is simple to give an O(n3)-time algorithm for computing the MSST. Just go through all
O(n2) pairs {p, q} of input points and compute in linear time the point mpq whose distance
to the current pair is maximum. In order to give a faster algorithm for computing the MSST,
we need a few definitions. Let hpq be the open halfplane that contains p and is delimited by
the perpendicular bisector bpq of p and q. Note that hpq, hqp, and bpq partition the plane.
Let Tpq be the tree with dipole {p, q} where all other points are connected to the closer
pole. (Points on bpq can be connected to either p or q.) Clearly the tree Tpq that minimizes
|pq|+ min{|pmpq|, |qmpq|} is a MSST.

The first important idea of our algorithm is to split the problem of computing all points
of type mpq into two halves. Instead of computing the point mpq farthest from the pair {p, q},
we compute for each ordered pair (p, q) the point fpq ∈ P \hqp that is farthest from p ignoring
the halfplane of q, see Figure 1. We call fpq the q-farthest point from p. Now we want to
find the tree Tpq that minimizes |pq| + max{|pfpq|, |qfqp|}. This strategy enables us to reuse
information.

Our algorithm consists of two phases. In phase I we go through all points p in P . The
central (and time-critical) part of our algorithm is the computation of fpq for all q ∈ P \ {p}.
In phase II we then use the above form of our target function to determine the MSST.

The second important observation that helped us to reduce the running time of the central
part of our algorithm is the following. Let p be fixed. Instead of going through all q ∈ P \{p}
and computing fpq we characterize all q for which the q-farthest point fpq of p is identical:

Lemma 2.1 If x ∈ P is the farthest point from p ∈ P , then x is the q-farthest point from p
if and only if q 6∈ D(x, p), where D(a, b) (for points a 6= b) is the open disk that is centered at
a and whose boundary contains b.

Proof: Since x is farthest from p, x is q-farthest from p if and only if x ∈ hpq. This is
the case iff the angle α = ∠pcx in the midpoint c of pq is at most 90 degrees, see Figure 2.
Due to the Theorem of Thales this is equivalent to c 6∈ D(m, p), where m is the midpoint of
px. Finally this is equivalent to q 6∈ D(x, p), since d(p, q) = 2d(p, c) and D(x, p) is the result
of scaling D(m, p) relative to p by a factor of 2. �

p

q

fpq

bpq

hqp

p

q

xm

c
D(m, x)

D(x, p)

α p
q1q2

q3

D1

D2

D3

Figure 1: The q-farthest point fpq

from p is farthest from p among all
points closer to p than to q.

Figure 2: If x is farthest from
p then x is q-farthest from p
iff q 6∈ D(x, p).

Figure 3: Labeling
points with their q-
farthest point.

3

Using the above characterization we can label all points q ∈ P \ {p} with the q-farthest
point fpq as follows. We first sort P in order of “decreasing” (i.e. non-increasing) distance
from p. Let q1, q2, . . . , qn = p be the resulting order. Label all points in the complement
of D(q1, p) with q1. Then label all unlabeled points in the complement of D(q2, p) with q2.
Continue this process until all points are labeled. Figure 3 visualizes the first three steps of
this process. In that figure the areas shaded light, medium, and dark correspond to the areas
in which all points are labeled with q1, q2, and q3, respectively.

It remains to show how all points q ∈ P \ {p} can be labeled with fpq efficiently. One
approach would be to use dynamic circular range searching, which is equivalent to halfspace
range searching in R

3 [AM95]. The necessary data structure can be build in O(n1+ε) time and
space. After each query with a disk D(qi, p) all points that are not returned must be deleted.
The total time for querying and updating is also O(n1+ε). This would yield an O(n2+ε)-time
algorithm. We will show that we can do better in the plane. However, it is not clear how
our results can be generalized to higher dimensions. For dimensions d ∈ {3, 4} computing the
MSST with range searching takes O(n2.5+ε) time [AM95] and thus is still faster than Chan’s
Õ(n3−cd)-time algorithm [Cha02], where cd = 1/((d + 1)(dd/2e+ 1)).

Lemma 2.2 Given a set P of n points in the plane and given n disks D1, . . . , Dn that all
touch a point p, there is a data structure that allows to determine in O(log2 n) time for each
point q ∈ P the smallest integer i such that q ∈ D1 ∩ . . .∩Di−1 and q 6∈ Di if such an integer
exists. The data structure needs O(n log n) preprocessing time and space.

Proof: To simplify the presentation we assume n = 2k. We build a complete binary tree
B with k levels over n leaves with labels 1, . . . , n, see Figure 4. Each inner node v with left
child l and right child r is labeled by a set of consecutive integers {a(v), . . . , b(v)} ⊂ {1, . . . , n}
that is recursively defined by a(v) = a(l) and b(v) = a(r) − 1. For each leaf w we set
a(w) = b(w) = label(w). Note that the root is labeled {1, . . . , n/2}. In Figure 4 [a, b] is
shorthand for {a, . . . , b}.

A query with a point q ∈ P consists of following a path from the root to a leaf whose
label i is the index of the q-furthest point from p, in other words pi = fpq. In each inner node
v the path of a query with point q is determined by testing whether q ∈ Da(v) ∩ . . . ∩Db(v).
If yes the next node of the query path is the right child, otherwise the left child. (Why such
a query in deed gives the desired answer can be proven by induction over k.)

A query time of O(log2 n) can be achieved by storing in each internal node v a decompo-
sition of Da(v)∩ . . .∩Db(v) into at most b(v)−a(v)+2 vertical strips. The strips are bounded
by all verticals through the endpoints of the arcs that for the boundary of Da(v) ∩ . . .∩Db(v).
In this decomposition q can then be located in O(log n) time, and this has to be done O(log n)
times on the way from the root to a leaf.

In order to construct the tree B we first build a tree B′. The tree B′ is also a binary tree
over {1, . . . , n}, but in B′ each internal node v is labeled with the set of the labels of all leaves
in the subtree rooted at v. The tree B′ can be built in a bottom-up fashion since we can
construct D1 ∩ . . . ∩ D2m from D1 ∩ . . . ∩ Dm and Dm+1 ∩ . . . ∩ D2m by a merge-sort style
procedure in O(m) time. Note that each disk contributes at most one piece to the boundary
of the intersection. Hence the construction of B′ takes O(n log n) time (and space) in total.

From B′ we obtain B in three steps. First we make the left child of the root of B′ the root
of B. Second for each node v we change the pointer from the right child of v to the left child
of the sister of v, see the dotted arrows in Figure 5. Third, we make each leaf node w with

4

1 2 3 4 5 6 7 8

[1, 1] [3, 3] [5, 5] [7, 7]

9 10 11 12

[9, 9] [11, 11]

[1, 2] [5, 6] [9, 10]

[1, 4] [9, 12]

[1, 8]

13 14 15 16

[13, 13][15, 15]

[13, 14]

no yes

1 2 3 4 5 6 7 8

[1, 2] [3, 4] [5, 6] [7, 8]

9 10 11 12

[9, 10] [11, 12]

[1, 4] [5, 8] [9, 12]

[1, 8] [9, 16]

[1, 16]

13 14 15 16

[13, 14][15, 16]

[13, 16]

root of B

Figure 4: The binary search tree B. Label
[a, b] at node v means that the test q ∈ Da ∩
Da+1 ∩ . . .∩Db is performed at v for a query
point q.

Figure 5: The auxiliary tree B′ for the con-
struction of B (see dotted arrows).

label i in B′ an internal node with label {i} in B and add to w a left child with label i and a
right child with label i + 1 as new leaves. The vertical decomposition of each internal node v
can then be computed in time linear in the size of the complexity of Da(v) ∩ . . .∩Db(v). Thus
the construction of B takes O(n log n) time and space. �

The time complexity for querying the data structure can be reduced from O(log2 n) to
O(log n) by applying fractional-cascading techniques [CG86]. The time we need to reorganize
the tree B to support fractional cascading is proportional to its space consumption, which is
O(n log n) since there are O(n) items on each level.

Theorem 2.3 There is an algorithm that computes a MSST in O(n2 log n) time using
quadratic space.

Proof: With the procedure described before Lemma 2.2 we can compute, for each
p ∈ P , all points fpq that are q-farthest from p in O(n log n) time using the data structure of
Lemma 2.2 and fractional cascading. Thus we can compute all points of type fpq in O(n2 log n)
time. Since we can only determine the MSST after computing all points of type fpq we must
store them explicitly, which requires quadratic space. �

3 Approximating the minimum-diameter spanning tree

We first make the trivial observation that the diameter of any monopolar tree on P is at
most twice as long as the tree diameter dP of P . We use the following notation. Let Tdi be a
fixed MDdST and Tmono a fixed MDmST of P . The tree Tdi has minimum diameter among
those trees with vertex set P in which all but two nodes—the poles—have degree 1. The tree
Tmono is a minimum-diameter star with vertex set P . Let x and y be the poles of Tdi, and let
δ = |xy| be their distance. Finally let rx (ry) be the length of the longest edge in Tdi incident
to x (y) without taking into account the edge xy. Thus disks of radius rx and ry centered at
x and y, respectively, cover P . Wlog. we assume rx ≥ ry.

Ho et al. showed that in the dipolar case (i.e. if there is no monopolar MDST), the disk
centered at y cannot be contained by the one centered at x. We will need this stability lemma
below.

Lemma 3.1 (Stability lemma [HLCW91]) rx < δ + ry.

5

In order to get a good approximation of the MDST, we slightly modify the algorithm
for the MSST described in Section 2. After computing the O(n2) points of type fpq, we go
through all pairs {p, q} and consider the tree Tpq with dipole {p, q} in which each point is
connected to its closer dipole. In Section 2 we were searching for a tree of type Tpq that
minimizes |pq| + max{|fpqp|, |qfqp|}. Now we go through all trees Tpq to find the tree Tbisect

with minimum diameter, i.e. the tree that minimizes |pq|+ |fpqp|+ |qfqp|. Note that the only
edge in Tpq that crosses the perpendicular bisector of pq is the edge pq itself. This is of course
not necessarily true for the MDdST Tdi. We will show the following:

Lemma 3.2 Given a set P of n points in the plane there is a tree with the following two
properties: it can be computed in O(n2 log n) time using O(n2) storage, and its diameter is
at most 4/3 · dP .

Proof: Due to Theorem 2.3 it suffices to show the approximation factor. We will first
compute upper bounds for the approximation factors of Tbisect and Tmono and then analyze
where the minimum of the two takes its maximum.

For the analysis of Tbisect consider the tree Txy whose poles are those of Tdi. The diameter
of Txy is an upper bound for that of Tbisect. Let r′x (r′y) be the length of the longest edge of
Txy incident to x (y) without taking into account the edge xy. Note that r′x = |xfxy| and
r′y = |yfyx|.

Now we compare the diameter of Txy to that of Tdi. Observe that max{r′x, r′y} ≤ rx. This is
due to our assumption rx ≥ ry and to the fact that fxy and fyx have at most distance rx from
both x and y. This observation yields diam Txy = r′x+δ+r′y ≤ 2 max{r′x, r′y}+δ ≤ 2rx+δ.
Now we define two constants α and β that only depend on Tdi. Let

α =
δ

rx + ry
and β =

rx

ry
.

Note that α > 0 and β ≥ 1. Introducing α and β yields

diam Tbisect

diam Tdi
≤ diam Txy

diam Tdi
≤ 2rx + δ

rx + δ + ry
=

α(1 + β) + 2β

(1 + α)(1 + β)
=: fbisect(α, β),

since 2rx = 2β(rx + ry)/(1 + β) and δ = α(rx + ry). The function fbisect(α, β) is an upper
bound for the approximation factor that Tbisect achieves.

rx δ ryx

Dx,δ+ry

Figure 6: Approximating Tdi with Tmono.

Now we apply our α-β-analysis to Tmono. The stability lemma rx < δ + ry [HLCW91]
implies that all points in P are contained in the disk Dx,δ+ry

of radius δ + ry centered at x,
see Figure 6. Due to that, the diameter of a monopolar tree T that spans P and is rooted at

6

x is at most twice the radius of the disk. We know that diam Tmono ≤ diam T since Tmono is
the MDmST of P . Thus

diam Tmono ≤ 2(δ + ry) = 2α(rx + ry) +
2

1 + β
(rx + ry),

since δ = α(rx + ry) and 1 + β = (rx + ry)/ry. Using diam Tdi = (1 + α)(rx + ry) yields

diam Tmono

diam Tdi
≤ 2α(1 + β) + 2

(1 + α)(1 + β)
=: fmono(α, β),

and the function fmono(α, β) is an upper bound of Tmono’s approximation factor.

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

β

α

g sta
b

gequal

Tmono

Tbisect

Figure 7: Our bound for Tmono is better above gequal; that for Tbisect is better below. To the
left of gstab the tree Tmono is optimal.

In order to compute the maximum of the minimum of the two bounds we first analyze
where fbisect ≤ fmono. This is always the case if α ≥ 2 but also if α < 2 and β ≤ gequal(α) :=
α+2
2−α . See Figure 7 for the corresponding regions. Since neither fbisect nor fmono have any local
or global maxima in the interior of the (α, β)-range we are interested in, we must consider
their boundary values.

1. For β ≡ 1 the tree Tbisect is optimal since fbisect(α, 1) ≡ 1.

2. Note that the stability lemma rx ≤ δ + ry is equivalent to β ≤ gstab(α) := α+1
1−α , see

Figure 7. Along the graph of gstab the tree Tmono is optimal since fmono(α, gstab(α)) ≡ 1.

3. Along gequal both functions equal (3α + 2)/(2α + 2). This expression increases mono-
tonically from 1 towards 4/3 when α goes from 0 towards 2.

The partial derivatives show that fmono increases while fbisect decreases monotonically when
α goes to infinity. Thus the maximum of min(fmono, fbisect) is indeed attained at gequal. �

7

4 Approximation schemes for the MDST

In this section we give some fast approximation schemes for the MDST, i.e. factor-(1 + ε)
approximation algorithms. The first scheme uses a grid, the second and third the well-
separated pair decomposition, and the forth is a combination of the first and the third method.
The reason for this multitude of approaches is that we want to take into account the way the
running time depends not only on n, the size of the point set, but also on ε, the approximation
factor.

Chan [Cha00] uses the following notation. Let E = 1/ε and let the O∗-notation be a
variant of the O-notation that hides terms of type O(logO(1) E). (Such terms come into play
e.g. when the use of the floor function is replaced by binary search with precision ε.) Then
a linear-time approximation scheme (LTAS) of order c is a scheme with a running time of
the form O∗(Ecn) for some constant c. A strong LTAS of order c has a running time of
O∗(Ec + n). Our best scheme for approximating the MDST is a strong LTAS of order 5.

4.1 A grid-based approximation scheme

The idea of our first scheme is based on a grid which has been used before e.g. to approximate
the diameter of a point set [BHP99, Cha00], i.e. the longest distance between any pair of the
given points. We lay a grid of O(E)×O(E) cells over P , choose an arbitrary representative
point for each cell and use the exact algorithm of Ho et al. [HLCW91] to compute the MDST
TR of the set R of all representative points. By connecting the remaining points in P \ R to
the pole adjacent to their representatives, we get a dipolar tree Tε whose diameter is at most
(1 + ε) times the tree diameter dP of P .

The details are as follows. Let M = maxp,q∈P {|x(p)x(q)|, |y(p)y(q)|} be the edge length
of the smallest enclosing square of P and let l = εM/(10

√
2) be the edge length of the square

grid cells. Clearly M ≤ dP . Since each path in Tε is at most by two edges of length l
√

2 longer
than the corresponding path in TR we have diam Tε ≤ diam TR +2l

√
2 ≤ diam TR +εdP /5.

To see that diam Tε ≤ (1 + ε) dP it remains to prove:

Lemma 4.1 diam TR ≤ (1 + 4ε/5) dP .

Proof: Let TP be a MDST of P that is either mono- or dipolar. Such a tree always
exists according to [HLCW91].

Case I: TP is monopolar. Let x ∈ P be the pole of TP and let ρp ∈ R be the representative
point of p ∈ P . Due to the definition of TR we have

diam TR ≤ min
x′∈R

max
s6=t∈R

|sx′|+ |x′t| ≤ max
s6=t∈R

|sρx|+ |ρxt|.

(The first two terms are equal if there is a monopolar MDST of R, the last two terms are
equal if there is a MDmST of R with pole ρx.) By triangle inequality

diam TR ≤ max
s6=t∈R

|sx|+ |xρx|+ |ρxx|+ |xt|,

i.e. we maximize the length of the polygonal chain (s, x, ρx, x, t) over all s 6= t ∈ R. By
appending edges to points a and b ∈ P in the grid cells of s and t, respectively, the length of
the longest chain does not decrease, even if we now maximize over all a, b ∈ P with a 6= b.

diam TR ≤ max
a6=b∈P

|aρa|+ |ρax|+ 2|xρx|+ |xρb|+ |ρbb|.

8

Using |aρa|, |xρx|, |ρbb| ≤ l
√

2 and the triangle inequalities |ρax| ≤ |ρaa| + |ax| and |xρb| ≤
|xb|+ |bρb| yields diam TR ≤ 6l

√
2 + maxa6=b∈P |ax|+ |xb| = (1 + 3ε/5)dP .

Case II: TP is dipolar. The analysis is very similar to case I, except the chains consist of
more pieces. This yields diam TR ≤ 8l

√
2 + diam TP = (1 + 4ε/5) dP . �

Theorem 4.2 A spanning tree TP of P with diam TP ≤ (1 + 1/E) · dP can be computed in
O∗(E6−1/3 + n) time using O∗(E2 + n) space.

Proof: In order to determine the grid cell of each point in P without the floor function,
we do binary search—once on an x- and once on a y-interval of size M until we have reached
a precision of l, i.e. we need O(log E) steps for each point. Using Chan’s algorithm [Cha02]
to compute TR takes Õ(|R|3−1/6) time and Õ(|R|) space, where |R| = O(E2). �

4.2 The well-separated pair decomposition

Our second scheme uses the well-separated pair decomposition of Callahan and Kosaraju [CK95].
We briefly review this decomposition below.

Definition 4.3 Let τ > 0 be a real number, and let A and B be two finite sets of points in
R

d. We say that A and B are well-separated w.r.t. τ , if there are two disjoint d-dimensional
balls CA and CB both of radius r such that A ⊂ CA, B ⊂ CB, and the distance between CA

and CB is at least equal to τr.

The parameter τ will be referred to as the separation constant. The following lemma
follows easily from Definition 4.3.

Lemma 4.4 Let A and B be two finite sets of points that are well-separated w.r.t. τ , let x
and p be points of A, and let y and q be points of B. Then (i) |xy| ≤ (1 + 2/τ) · |xq|, (ii)
|xy| ≤ (1 + 4/τ) · |pq|, (iii) |px| ≤ (2/τ) · |pq|, and (iv) the angle between the line segments pq
and py is at most arcsin(2/τ).

Definition 4.5 Let P be a set of n points in R
d, and τ > 0 a real number. A well-separated

pair decomposition (WSPD) for P (w.r.t. τ) is a sequence of pairs of non-empty subsets of
P , (A1, B1), (A2, B2), . . . , (A`, B`), such that

1. Ai and Bi are well-separated w.r.t. τ for i = 1, 2, . . . , `, and

2. for any two distinct points p and q of P , there is exactly one pair (Ai, Bi) in the sequence
such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai and p ∈ Bi,

The integer ` is called the size of the WSPD. Callahan and Kosaraju show that a WSPD
of size ` = O(τ 2n) can be computed using O(n log n + τ 2n) time and space.

9

4.3 A straight-forward approximation scheme

The approximation algorithm consists of two subalgorithms: the first algorithm computes a
MDmST and the second computes an approximation of the MDdST. We always output the
one with smaller diameter. According to [HLCW91] there exists a MDST that is either a
monopolar or a dipolar tree. The MDmST can be computed in time O(n log n), hence we will
focus on the problem of computing a MDdST. Let dmin be the diameter of a MDdST and
let Spq denote a spanning tree with dipole {p, q} whose diameter is minimum among all such
trees. For any dipolar spanning tree T with dipole {u, v} let ru(T) (rv(T)) be the length of
the longest edge of T incident to u (v) without taking into account the edge uv. When it is
clear which tree T we refer to, we will use ru and rv.

Observation 4.6 Let (A1, B1), . . . , (A`, B`) be a WSPD of P w.r.t. τ , and let p and q be
any two points in P . Then there is a pair (Ai, Bi) such that for every point u ∈ Ai and every
point v ∈ Bi the inequality diam Suv ≤ (1 + 8/τ) · diam Spq holds.

Proof: According to Definition 4.5 there is a pair (Ai, Bi) in the WSPD such that
p ∈ Ai and q ∈ Bi. If u is any point in Ai and v is any point in Bi, then let T be the
tree with poles u and v where u is connected to v, p and each neighbor of p in Spq except
q is connected to u, and q and each neighbor of q in Spq except p is connected to v. By
Lemma 4.4(ii) |uv| ≤ (1+4/τ)|pq| and by Lemma 4.4(iii) ru ≤ |up|+ rp ≤ 2|pq|/τ + rp. Since
diam T = ru + |uv|+ rv we have

diam T ≤
(

rp + 2
|pq|
τ

)

+

(

|pq|+ 4
|pq|
τ

)

+

(

rq + 2
|pq|
τ

)

<

(

1 +
8

τ

)

· diam Spq.

The lemma follows due to the minimality of Suv. �

A first algorithm is now obvious. For each of the O(τ 2n) pairs (Ai, Bi) in a WSPD of P
w.r.t. τ = 8E pick any point p ∈ Ai and any point q ∈ Bi, sort P according to distance from
p, and compute Spq in linear time by checking every possible radius of a disk centered at p as
in [HLCW91].

Lemma 4.7 A dipolar tree T with diam T ≤ (1 + 1/E)· dmin can be computed in
O(E2n2 log n) time using O(E2n + n log n) space.

4.4 A fast approximation scheme

Now we describe a more involved algorithm. It is faster than the previous algorithm for
n = Ω(E). We will prove its correctness in Section 4.5.

Theorem 4.8 A dipolar tree T with diam T ≤ (1+1/E) ·dmin can be computed in O(E3n+
En log n) time using O(E2n + n log n) space.

The idea of the algorithm is again to check a linear number of pairs of points, using the
WSPD, but to speed up the computation of the disks around the two poles. Note that we
need to find a close approximation of the diameters of the disks to be able to guarantee a
(1+ ε)-approximation of the MDdST. Obviously we cannot afford to try all possible disks for
all possible pairs of poles. Instead of checking the disks we will show in the analysis that it
suffices to check a constant number of partitions of the points among the poles. The partition

10

of points is done by cuts that are orthogonal to the line through the poles. We cannot afford
to do this for each possible pair. Instead we select a constant number of orientations and use
a constant number of orthogonal cuts for each orientation. For each cut we calculate for each
point in P the approximate distance to the farthest point on each side of the cut. Below we
give a more detailed description of the algorithm. For its pseudocode refer to Algorithm 1.

Phase 1: Initializing. Choose an auxiliary positive constant κ < min{0.9ε, 1/2}. As will
be clear later, this parameter can be used to fine-tune which part of the algorithm contributes
how much to the uncertainty and to the running time. In phase 3 the choice of the separation
constant τ will depend on the value of κ and ε.

Definition 4.9 A set of points P is said to be l-ordered if the points are ordered with respect
to their orthogonal projection onto the line l.

Let li be the line with angle iπ/γ to the horizontal line, where γ = d4/κe. This implies that
for an arbitrary line l there exists a line li such that ∠lil ≤ π/(2γ). For i = 1, . . . , γ, let Fi

be a list of the input points sorted according to the li-ordering. The time to construct these
lists is O(γn log n).

For each li, rotate P and li such that li is horizontal. For simplicity we denote the points
in P from left to right on li by p1, . . . , pn. Let di denote the horizontal distance between p1

and pn. Let bij , 1 ≤ j ≤ γ, be a marker on li at distance jdi/(γ + 1) to the right of p1. Let
Lij and Rij be the set of points in P to the left and to the right of the vertical βij through
bij , respectively.

For each marker bij on li we construct γ pairs of lists, denoted L′
ijk and R′

ijk, where
1 ≤ k ≤ γ. The list L′

ijk (R′
ijk) contains the points in Lij (Rij) sorted according to the

lk-ordering. Such a list can be constructed in O(n) time since the ordering is given by Fk:
we just have to filter out the points in Fk that are on the “wrong” side of βij . (Actually
it is not necessary to store the whole lists L′

ijk and R′
ijk: we only need to store the first

and the last point in each list.) Hence the total time complexity needed to construct the
lists is O(γ3n + γn log n), see lines 1–17 in Algorithm 1. These lists will help us to compute
an approximate farthest neighbor in Lij and Rij for each point p ∈ P in time O(γ), as we
describe below.

Phase 2: Computing approximate farthest neighbors. Let the approximate distance
of a point q from p be the maximum distance among all projections of q onto the lines lk. Now
let the approximate farthest neighbor N(p, i, j, L) of p be the point q ∈ Lij with maximum
approximate distance from p. Each N(p, i, j, L) can be computed in time O(γ) by taking the
farthest point from p over all first and last elements of L′

ijk with k = 1, . . . , γ. Define and

compute N(p, i, j, R) analogously. Hence the total time complexity of phase 2 is O(γ3n), as
there are O(γ2n) triples of type (p, i, j). The error we make by using approximate farthest
neighbors is small:

Observation 4.10 If p is any point in P , pL the point in Lij farthest from p and pR the
point in Rij farthest from p, then

(a) |ppL| ≤ (1 + κ/24) · |pN(p, i, j, L)| and
(b) |ppR| ≤ (1 + κ/24) · |pN(p, i, j, R)|.

11

Algorithm 1 Approx-MDdST(P, ε)

Phase 1: initializing
1: choose κ ∈ (0,min{0.9ε, 1/2}); set γ ← d4/κe
2: for i← 1 to γ do
3: li ← line with angle iπ/γ to the horizontal
4: Fi ← li-ordering of P
5: end for i
6: for i← to γ do
7: rotate P and li such that li is horizontal
8: let p1, . . . , pn be the points in Fi from left to right
9: di ← |p1.x− pn.x|

10: for j ← 1 to γ do
11: bij ← marker on li at distance jdi/(γ + 1) to the right of p1

12: for k ← 1 to γ do
13: L′

ijk ← lk-ordered subset of Fk to the left of bij

14: R′

ijk ← lk-ordered subset of Fk to the right of bij

15: end for k
16: end for j
17: end for i
Phase 2: computing approximate farthest neighbors
18: for i← 1 to γ do
19: for j ← 1 to γ do
20: for k ← 1 to n do
21: N(pk, i, j, L)← pk {dummy}
22: for l← 1 to γ do
23: pmin ← first point in L′

ijl; pmax ← last point in L′

ijl

24: N(pk, i, j, L)← point in {pmin, pmax, N(pk, i, j, L)} furthest from pk

25: end for l
26: end for k
27: repeat lines 20–26 with R instead of L
28: end for j
29: end for i
Phase 3: testing pole candidates
30: τ = 8(1+ε

(1+ε−(1+κ)(1+κ/24) − 1)

31: build WSPD for P with separation constant τ
32: d←∞ {smallest diameter so far}
33: for each pair (A,B) in WSPD do
34: choose any two points u ∈ A and v ∈ B
35: find li with the smallest angle to the line through u and v
36: D ←∞ {approximate diameter of tree with poles u and v, ignoring |uv|}
37: for j ← 1 to γ do
38: D←min{D, |N(u, i, j, L)u|+|vN(v, i, j, R)|, |N(u, i, j, R)u|+|vN(v, i, j, L)|}
39: end for j
40: if D + |uv| < d then u′ ← u; v′ ← v; d← D + |uv| end if
41: end for (A,B)
42: compute T ← Su′v′

43: return T

12

Proof: Due to symmetry it suffices to check (a). If the algorithm did not select pL as
farthest neighbor it holds that for each of the lk-orderings there is a point farther from p than
pL. Hence pL must lie within a symmetric 2γ-gon whose edges are at distance |pN(p, i, j, L)|
from p. This implies that |ppL| ≤ |pN(p, i, j, L)|/ cos(π/(2γ)) ≤ |pN(p, i, j, L)|/ cos(πκ/8)
using γ = d4/κe. Thus it remains to show that 1/ cos(πκ/8) ≤ 1+κ/24. Since cos x ≥ 1−x2/2
for any x, the claim is true if 1 − π2κ2/128 ≥ 1/(1 + κ/24). This inequality holds for all
0 < κ ≤ 1/2. �

Phase 3: Testing pole candidates. Compute the WSPD for P with separation constant
τ . To be able to guarantee a (1 + ε)-approximation algorithm the value of τ will depend on
ε and κ as follows:

τ = 8

(

1 + ε

1 + ε− (1 + κ)(1 + κ/24)
− 1

)

.

Note that the above formula implies that there is a trade-off between the values τ and κ,
which can be used to fine-tune which part of the algorithm contributes how much to the
uncertainty and to the running time. Setting for instance κ to 0.9ε yields for ε small 16/ε +
15 < τ/8 < 32/ε + 31, i.e. τ = Θ(1/ε). For each pair (A, B) in the decomposition we
select two arbitrary points u ∈ A and v ∈ B. Let l(u,v) be the line through u and v.
Find the line li that minimizes the angle between li and l(u,v). That is, the line li is a
close approximation of the direction of the line through u and v. From above we have that
li is divided into γ + 1 intervals of length di/(γ + 1). For each j, 1 ≤ j ≤ γ, compute
min(|N(u, i, j, L)u| + |vN(v, i, j, R)|, |N(u, i, j, R)u| + |vN(v, i, j, L)|). The smallest of these
O(γ) values is saved, and is a close approximation of diam Suv − |uv|, which will be shown
below.

The number of pairs in the WSPD is O(τ 2n), which implies that the total running time of
the central loop of this phase (lines 33–41 in Algorithm 1) is O(γ · τ 2n). Building the WSPD
and computing Su′v′ takes an extra O(τ 2n + n log n) time. Thus the whole algorithm runs in
O(γ3n+ γτ2n+ γn log n) time and uses O(n log n+ γ2n+ τ2n) space. Setting κ = 0.9ε yields
γ = O(E) and τ = O(E) and thus the time and space complexities we claimed.

4.5 The proof of correctness for Theorem 4.8

It remains to prove that the diameter of the dipolar tree that we compute is indeed at most
(1 + ε) dmin.

From Observation 4.6 we know that we will test a pair of poles u and v for which
diam Suv ≤ (1 + 8/τ) dmin = 1+ε

(1+κ)(1+κ/24) dmin. The equality actually explains our choice
of τ . In this section we will prove that our algorithm always computes a dipolar tree whose
diameter is at most (1 + κ)(1 + κ/24) diam Suv and thus at most (1 + ε) dmin.

Consider the tree Suv. For simplicity we rotate P such that the line l through u and v is
horizontal and u lies to the left of v, as illustrated in Figure 8a. Let δ = |uv|. Our aim is to
prove that there exists an orthogonal cut that splits the point set P into two sets such that
the tree obtained by connecting u to all points to the left of the cut and connecting v to all
points to the right of the cut will give a tree whose diameter is a (1 + κ)-approximation of
diam Suv. Since the error introduced by approximating the farthest neighbor distances is not
more than a factor of (1 + κ/24) according to Observation 4.10, this will prove the claim in
the previous paragraph.

13

(b)

δ

u v

rv
rκ

ru

s
t

s′
t′

s
t

s′
t
′

(a)

Cu

Cv

Cκ

s

s′

t

t′

t

t
′

s

s′

cl cr

π(s)

π(t)

π(t′)

π(s′)

a

Figure 8: A valid cut.

Denote by Cu and Cκ the circles with center at u and with radius ru and rκ = ru + κz
respectively, where z = diam Suv = δ + ru + rv. Denote by Cv the circle with center at v and
with radius rv. Let s and s′ (t and t′) be two points on Cu (Cv) such that if Cu (Cκ) and Cv

intersect then s and s′ (t and t′) are the two intersection points, where s (t) lies above s′ (t′).
Otherwise, if Cu (Cκ) and Cv do not intersect, then s = s′ (t = t′) is the intersection of the
line segment (u, v) and Cu (Cv), see Figure 8a.

We say that a cut with a line lκ is valid iff all points in P to the left of lκ are contained in
Cκ and all points of P to the right of lκ are contained in Cv. A valid cut guarantees a dipolar
tree whose diameter is at most δ + rκ + rv = (1 + κ) · diam Suv.

We will prove that the algorithm above always considers a valid cut. For simplicity we
assume that ru(Suv) ≥ rv(Suv). We will show that there always exists a marker bij on li such
that cutting li orthogonally through bij is valid. Actually it is enough to show that the two
requirements below are valid for any Suv. For a point p, denote the x-coordinate and the
y-coordinate of p by p.x and p.y, respectively. For simplicity we set u = (0, 0).

(i)
z

γ + 1
· 1

cos π
2γ

≤ 1

2
(t.x− s.x), and

(ii) tan
π

2γ
≤ t.x− s.x

2(ru(Suv) + rv(Suv))
.

The reason for this will now be explained. First we need to define some additional points.
The reader is encouraged to study Figure 8 for a visual description. Let s = (s.x, ru),
s′ = (s′.x,−ru), t = (t.x, rv) and t

′
= (t′.x,−rv). Let a be the perpendicular bisector of the

projections of s and t on the x-axis and let π be the orthogonal projection of the plane on a.
Now we can define cl to be the intersection point of the lines (s, π(t

′
)) and (s′, π(t)), and cr

to be the intersection point of the lines (t, π(s′)) and (t
′
, π(s)).

It now follows that any bisector l′ that intersects the three line segments (s, t), (cl, cr) and
(s′, t

′
), will be a valid cut. This follows since all points to the left of l′ will be connected to

u and all points to the right of l′ will be connected to v, and the diameter of that tree will,
obviously, be bounded by δ + (ru(Suv) + κz) + ru(Suv) which is a (1 + κ)-approximation of
diam Suv.

From the algorithm we know that (a) there is a line li such that ∠(li, l(u,v)) ≤ π/(2γ),
and that (b) there are γ orthogonal cuts of li that define equally many partitions of P . The

14

distance between two adjacent orthogonal cuts of li is at most z/(γ + 1). This implies that
the length of the largest interval on l(u,v) that is not intersected by any of these orthogonal
cuts is at most

1

cos π
2γ

· z

γ + 1
.

Hence requirement (i) ensures that for every Suv the distance |clcr| = (t.x − s.x)/2 must be
large enough to guarantee that there is an orthogonal cut of li that intersects it.

An orthogonal cut of li has an angle of at least π/2 − π/(2γ) to l(u,v). To ensure that
an orthogonal cut of li that intersects the line segment clcr also passes between s and t and
between s′ and t

′
it suffices to add requirement (ii).

It remains to prove the following lemma which implies that for every Suv there is a valid
orthogonal cut.

Lemma 4.11 For any u, v ∈ P (u 6= v) the tree Suv fulfills requirements (i) and (ii).

Proof: The tree Suv can be characterized by the relationship of the two ratios

α :=
δ

ru + rv
and F :=

1 + κ/2

1− κ/2
.

We distinguish three cases: (1) α < 1, (2) 1 ≤ α ≤ F , and (3) α > F . For each of these three
cases we will show that Suv fulfills the two requirements.

Case 1: Using the following two straight-forward equalities, s.x2 +s.y2 = r2
u and (δ−s.x)2 +

s.y2 = r2
v , we obtain that s.x = (δ2 + r2

u − r2
v)/(2δ). A similar calculation for t.x yields

t.x = (δ2 + r2
κ − r2

v)/(2δ). Inserting these values gives t.x−s.x = (κ2z2 + 2κzru)/(2δ). The
fact that α ≤ F allows us to further simplify the expression for t.x−s.x by using the following
two expressions:

z

δ
=

δ + ru + rv

δ
= 1 +

ru + rv

δ
≥ 2

1 + κ/2
, and

ru

δ
≥ 1− κ/2

2(1 + κ/2)
.

From this we obtain that

t.x− s.x =
κz

2

(

κz

δ
+

2ru

δ

)

>
κz

2
.

This fulfills requirement (i) since

z

γ + 1
· 1

cos π
2γ

≤ κz

4
≤ 1

2
(t.x− s.x). (1)

For requirement (ii) note that tan π/(2γ) ≤ 2κ tan π/16 < 2κ/5. Since κ ≤ 1/2 we get that
z/δ ≥ 2/(1 + κ/2) ≥ 8/5. Combining this inequality, Equality 1, and our assumption that
ru ≥ rv shows that requirement (ii) is also fulfilled:

t.x− s.x

2(ru + rv)
≥ κz

4δ

(

2ru + κz

ru + rv

)

≥ κz

4δ
≥ 2κ

5
.

Case 2: In this case we argue in the same manner as in the previous case. Using the fact
that s.x = ru and t.x = (δ2 + r2

κ − r2
v)/(2δ) yields

t.x− s.x ≥ κz

2

(

κz

δ
+

2ru

δ

)

>
κz

2
.

15

The rest of the proof is exactly as in case 1.

Case 3: The first requirement is already shown to be fulfilled since t.x−s.x ≥ δ−ru−rv ≥
κz/2, hence it remains to show requirement (ii). We have

t.x− s.x

2(ru + rv)
≥ δ − (ru + rv)

2(ru + rv)

plugging in the values gives κ/(2− κ), which is at least 2κ/5. The lemma follows. �

The lemma says that for every dipole {u, v} there exists a line a such that the dipolar tree
obtained by connecting all the points on one side of a to u and all the points on the opposite
side to v, is a (1 + κ)-approximation of Suv.

4.6 Putting things together

Combining grid- and WSPD-based approach yields a strong LTAS of order 5:

Theorem 4.12 A spanning tree T of P with diam T ≤ (1 + 1/E) dP can be computed in
O∗(E5 + n) time using O(E4 + n) space.

Proof: Applying Algorithm 1 to the set R ⊆ P of the O(E2) representative points takes
O(E3|R| + E|R| log |R|) time using O(E2|R| + |R| log |R|) space according to Theorem 4.8.
Connecting the points in P \ R to the poles adjacent to their representative points yields a
(1 + ε)-approximation of the MDdST of P within the claimed time and space bounds as in
Section 4.1. The difference is that now the grid cells must be slightly smaller in order to
compensate for the fact that we now approximate the MDdST of R rather than compute it
exactly. A (1 + ε)-approximation of the MDmST of P can be computed via the grid and an
exact algorithm of Ho et al. [HLCW91] in O∗(E2 + n) time using O(E2 + n) space. Of the
two trees the one with smaller diameter is a (1 + ε)-approximation of the MDST of P . �

Conclusions

On the one hand we have presented a new planar facility location problem, the discrete
minimum-sum two-center problem that mediates between the discrete two-center problem
and the minimum-diameter dipolar spanning tree. We have shown that there is an algorithm
that computes the corresponding MSST in O(n2 log n) time and that a variant of this tree is
a factor-4/3 approximation of the MDST. Is there a near quadratic-time algorithm for the
MSST that uses o(n2) space?

On the other hand we have given a number of fast approximation schemes for the MDST.
The fastest is a combination of a grid-based approach with an algorithm that uses the well-
separated pair decomposition. It computes in O∗(ε−5 + n) time a tree whose diameter is
at most (1 + ε) times that of a MDST. Such an algorithm is called a strong linear-time
approximation scheme of order 5. Spriggs et al. [SKB+02] recently improved our result by
giving a strong LTAS of order 3 whose space consumption is linear in n and does not depend
on ε. Is order 3 optimal? Is there an exact algorithm that is faster than Chan’s [Cha02]? Is
there a non-trivial lower bound on the computation time needed for the exact MDST?

Our scheme also works for higher-dimensional point sets, but the running time increases
exponentially with the dimension. Linear-time approximation schemes for the discrete two-
center problem and the MSST can be constructed similarly.

16

Acknowledgments

We thank an anonymous referee of an earlier version of this paper for suggesting Theorem 4.2.
We also thank Pankaj K. Agarwal for pointing us to [Cha02] and Timothy Chan for sending
us an updated version of [Cha02].

References

[AM95] Pankaj K. Agarwal and Jǐŕı Matoušek. Dynamic half-space range reporting and
its applications. Algorithmica, 13:325–345, 1995.

[ASW98] Pankaj K. Agarwal, Micha Sharir, and Emo Welzl. The discrete 2-center problem.
Discrete & Computational Geometry, 20, 1998.

[BHP99] Gill Barequet and Sariel Har-Peled. Efficiently approximating the minimum-
volume bounding box of a point set in three dimensions. In Proc. 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pages 82–91, Balti-
more MA, 17–19 January 1999.

[CG86] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data struc-
turing technique. Algorithmica, 1(3):133–162, 1986.

[Cha00] Timothy M. Chan. Approximating the diameter, width, smallest enclosing cylin-
der, and minimum-width annulus. In Proc. 16th Annual Symposium on Compu-
tational Geometry (SoCG’00), pages 300–309, New York, 12–14 June 2000. ACM
Press.

[Cha02] Timothy M. Chan. Semi-online maintenance of geometric optima and measures.
In Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages
474–483, San Francisco, 6–8 January 2002.

[CK95] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential fields.
Journal of the ACM, 42(1):67–90, January 1995.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[HLCW91] Jan-Ming Ho, D. T. Lee, Chia-Hsiang Chang, and C. K. Wong. Minimum diame-
ter spanning trees and related problems. SIAM Journal on Computing, 20(5):987–
997, October 1991.

[HT95] Refael Hassin and Arie Tamir. On the minimum diameter spanning tree problem.
Information Processing Letters, 53(2):109–111, 1995.

[SKB+02] M. J. Spriggs, J. M. Keil, S. Bespamyatnikh, M. Segal, and J. Snoeyink. Com-
puting a (1+ε)-approximate geometric minimum-diameter spanning tree. Private
communication, 2002.

17

