
CS880: Approximation Algorithms

Scribe: Matt Elder Lecturer: Shuchi Chawla
Topic: Lagrangian Relaxation Date: 4/26 and 4/27, 2007

We have seen many examples of the utility of linear programming. In some cases, to round an LP
solution to an integer solution demands that we relax a constraint that we prefer to maintain. The
Lagrangian technique will yield a method to maintain such constraints. This technique is especially
useful for bicriteria optimization problems, that is, problems with two objectives where we have a
fixed bound on one objective and want to optimize the other.

For example, recall the k-median problem: We are given a set of customers, a set of facilities, and a
routing cost from each customer to each facility. We want to open no more than k facilities, while
minimizing the total routing cost. Using standard LP techniques, it is difficult to round a relaxed
LP solution to an integer LP solution without using more than k facilities. Lagrangian relaxation
provides a workaround for this problem, so that we can guarantee that the final, integer solution
obeys the k-facility constraint.

To demonstrate the technique of Lagrangian relaxation, we consider a solution to the k-minimum
spanning tree problem. An approximation to k-median can be obtained in a similar way.

26.1 k-Minimum Spanning Trees

In an instance of the k-minimum spanning tree problem, we have a graph G = (V,E), a cost ce > 0
for each edge in E, and a root vertex r ∈ V . We want to find a tree that connects at least k nodes
to the root while minimizing the total cost for the tree’s edges. We are free to choose the set of k

vertices that we will connect to the root r; call this set S.

Note that the relationship between the k-MST problem and the prize-collecting Steiner tree problem
is analogous to the relationship between the k-median problem and the facility location problem.
Both k-MST and k-median contain a constant-size-set restriction, which performs the task of an
extra cost parameter in prize-collecting Steiner tree and facility location. As we will see, this
relationship is central to the idea of the Lagrangian relaxation technique.

The integer LP for k-MST is as follows:

1

yv =

{

1, v is not in the tree.

0, otherwise.

xe =

{

1, e is in the tree.

0, otherwise.
∑

e∈δ(S)

xe ≥ 1 − yv, ∀S ⊆ V \ {r} ,∀v ∈ S.

∑

v∈V

yv ≤ n − k. (∗)

minimize
∑

e∈E

cexe.

To use LP techniques, we need to relax this integer LP to a real-valued LP, and somehow still
be able to respect Constraint ∗ when we round real values back to integers. We shall do this by
introducing a family of LPs, parameterized by the Lagrange multiplier λ. We can think of varying
λ as varying the cost of omitting vertices from our tree. It’s important to note that λ is not, itself,
a variable of the LP. It is a parameter of the LP, and is constant with respect to any routine that
produces LP solutions. So, define the linear program LRλ as follows:

yv ∈ [0, 1]

xe ∈ [0, 1]
∑

e∈δ(S)

xe ≥ 1 − yv, ∀S ⊆ V \ {r} ,∀v ∈ S.

minimize
∑

e∈E

cexe + λ

(

∑

v

yv − (n − k)

)

.

The term λ (
∑

v
yv − (n − k)), above, replaces Constraint ∗ in the original LP. For any λ, the LP

LRλ has the same optimal solution as the following prize-collecting Steiner tree LP, PCSTλ:

yv ∈ [0, 1]

xe ∈ [0, 1]
∑

e∈δ(S)

xe ≥ 1 − yv, ∀S ⊆ V \ {r} ,∀v ∈ S.

minimize
∑

e∈E

cexe + λ

(

∑

v

yv

)

.

2

Allowing LP names to stand for the optimal values of their objective functions, it’s clear that
PCSTλ − λ(n − k) = LRλ. Furthermore, any solution to the k-MST problem is a feasible solution
to LRλ; when Constraint ∗ is tight, as it is for all solutions to the k-MST problem, then the objective
value of this solution is the same in both problems. So, LRλ ≤ OPT. (OPT is the optimal solution
to k-MST. Remember, that’s the problem that we’re (still) trying to approximate.)

Let PCST′

λ
be the integer solution to PCSTλ yielded by the LP-dual algorithm. If we let λ = 0,

then PCST′

λ
is a tree containing only the root because there is no penalty for leaving unused

vertices. Similarly, if we let λ = maxe ce, then PCST′

λ
will contain all vertices because the penalty

for unused vertices dominates the cost of expanding the tree. So, it seems like there should be some
moderate value of λ for which PCST′

λ
contains nearly k vertices. This need not quite be the case,

but we can use binary search to find two values of lambda, λ1 ≈ λ2, for which we get two trees T1

and T2 such that |T1| < k < |T2|. From these trees, we can interpolate a solution using exactly k

vertices. However, with luck, this interpolation may not be necessary.

Theorem 26.1.1 If PCST′

λ
has k vertices, then it gives a 2-approximation to k-MST.

Proof: Let x, y
def

= PCST′

λ
. Since PCST′

λ
has k vertices, we know that

∑

v
yv = n − k. Then, by

our analysis of Problem 4 in Homework 3,

∑

e

cexe + 2λ
∑

v

yv ≤ 2PCSTλ, so

∑

e

cexe ≤ 2

(

PCSTλ − λ
∑

v

yv

)

= 2 (PCSTλ − λ(n − k)) = 2LRλ ≤ 2OPT.

If we are unable to find a λ such that PCST′

λ
has exactly k vertices, then we need to find a way

to combine T1 and T2 into a single tree, which does not cost much more than OPT. Let λ1 = λ2;
except that they generate two different trees, we assume that the difference between λ1 and λ2 is
negligible.

Let µ1 and µ2
def

= 1 − µ1 satisfy µ1k1 + µ2k2 = k, where k1 = |T1| and k2 = |T2|. Then:

µ1 =
k2 − k

k2 − k1

µ2 =
k − k1

k2 − k1

Now, letting c(T) denote the cost of tree T , we know the following

c(T1) + 2λ(n − k1) ≤ 2PCSTλ, and

c(T2) + 2λ(n − k2) ≤ 2PCSTλ, so

µ1c(T1) + µ2c(T2) + 2λ(n − µ1k1 − µ2k2) ≤ 2PCSTλ, which yields

µ1c(T1) + µ2c(T2) ≤ 2 (PCSTλ − λ(n − k)) ≤ 2OPT.

3

If µ2 ≥ 1
2 , then c(T2) ≤ 2µ2c(T2) ≤ 4OPT. Since |T2| > k, we can simply use T2 as our solution.

Otherwise, µ1 ≥ 1
2 . Let T ′

2
def

= T2 \ T1. The following subroutine, Find-Subtree, will find a subtree
of T2 of size at least (k − k1).

Find-Subtree:

1. Exchange each undirected edge of T2 for two directed edges of the same cost, one pointing
each way. These edges form an Euler tour containing all vertices of T ′

2. Note that each vertex
appears twice in the tour.

2. From each vertex in T ′

2, start following the Euler tour in a clockwise direction until 2(k − k1)
nodes of T ′

2 are encountered, including repeats. This gives us at least 2(k2 − k1) different
subpaths of the Euler tour, two for each vertex in T ′

2.

3. Return the shortest such subtour.

Each edge of the Euler tour belongs to exactly 2(k − k1) subpaths and there are at least 2(k2 − k1)
subpaths in all. Therefore, since the cost of the entire Euler tour is 2c(T2), one of the subpaths has

length at most 2(k−k1)
2(k2−k1)

2c(T2).

So, suppose that Find-Subtree outputs the tree S. S contains at least (k − k1) distinct nodes of

T2, and costs at most 2(k−k1)
k2−k1

c(T2) = 2µ2c(T2).

We build the interpolated tree by starting with T1, adding S, and adding the shortest path from
T1 to S. The first piece has cost c(T1) and the second has cost c(S) ≤ 2µ2c(T2). If we have
preprocessed the graph to throw away all nodes whose distance to the root is greater than OPT,
we can ensure that this last path has cost no more than OPT. We don’t know what OPT is, so
we’ll need to run this entire algorithm n times; on run i we remove the i vertices farthest from the
root.

Thus:

total cost = c(T1) + c(S) + cost of shortest path (26.1.1)

≤ 2µ1c(T1) + 2µ2c(T2) + OPT (26.1.2)

≤ 4OPT + OPT (26.1.3)

= 5OPT. (26.1.4)

Thus, the technique of Lagrangian relaxation gives us this algorithm, a 5-approximation to the
k-minimum spanning tree problem.

4

