
Massachusetts Institute of Technology Course Notes, Week 7
6.042J/18.062J, Fall ’07: Mathematics for Computer Science October 15
Prof. Albert R. Meyer, Dr. Clifford Smyth revised October 27, 2007, 1152 minutes

Graph Matching; Digraphs

1 Bipartite Graphs

There were two kinds of vertices in the “Sex in America” graph —males and females, and edges
only went between the two kinds. Graphs like this come up so frequently they have earned a
special name —they are called bipartite graphs.

Definition 1.1. A bipartite graph is a graph together with a partition of its vertices into two sets, L
and R, such that every edge is incident to a vertex in L and to a vertex in R.

So every bipartite graph looks something like this:

Now we can immediately see how to color a bipartite graph using only two colors: let all the
L vertices be black and all the R vertices be white. Conversely, if a graph is 2-colorable, then it
is bipartite with L being the vertices of one color and R the vertices of the other color. In other
words,

“bipartite” is a synonym for “2-colorable.”

The following Lemma gives another useful characterization of bipartite graphs.

Theorem 1.2. A graph is bipartite iff it has no odd-length cycle.

The proof of Theorem 1.2 will be on a problem set.

Copyright © 2007, Prof. Albert R. Meyer. All rights reserved.

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/fall07
http://people.csail.mit.edu/meyer/
http://www-math.mit.edu/~csmyth
http://people.csail.mit.edu/meyer

2 Course Notes, Week 7: Graph Matching; Digraphs

2 Bipartite Matchings

The bipartite matching problem resembles the stable Marriage Problem in that it concerns a set of
girls and a set of at least as many boys. There are no preference lists, but each girl does have some
boys she likes and others she does not like. In the bipartite matching problem, we ask whether
every girl can be paired up with a boy that she likes.

Any particular matching problem can be specified by a bipartite graph with a vertex for each girl,
a vertex for each boy, and an edge between a boy and a girl iff the girl likes the boy. For example,
we might obtain the following graph:

Martha

Alice

Sarah

Jane
Mergatroid

Chuck

Tom

John

Michael

Now a matching will mean a way of assigning every girl to a boy so that different girls are assigned
to different boys, and a girl is always assigned to a boy she likes. For example, here is one possible
matching for the girls:

Martha

Alice

Sarah

Jane
Mergatroid

Chuck

Tom

John

Michael

Hall’s Matching Theorem states necessary and sufficient conditions for the existence of a matching
in a bipartite graph. It turns out to be a remarkably useful mathematical tool.

2.1 The Matching Condition

We’ll state and prove Hall’s Theorem using girl-likes-boy terminology. Define the set of boys liked
by a given set of girls to consist of all boys liked by at least one of those girls. For example, the set
of boys liked by Martha and Jane consists of Tom, Michael, and Mergatroid.

Course Notes, Week 7: Graph Matching; Digraphs 3

For us to have any chance at all of matching up the girls, the following matching condition must
hold:

Every subset of girls likes at least as large a set of boys.

For example, we can not find a matching if some 4 girls like only 3 boys. Hall’s Theorem says that
this necessary condition is actually sufficient; if the matching condition holds, then a matching
exists.

Theorem 2.1. A matching for a set of girls G with a set of boys B can be found if and only if the matching
condition holds.

Proof. First, let’s suppose that a matching exists and show that the matching condition holds.
Consider an arbitrary subset of girls. Each girl likes at least the boy she is matched with. Therefore,
every subset of girls likes at least as large a set of boys. Thus, the matching condition holds.

Next, let’s suppose that the matching condition holds and show that a matching exists. We use
strong induction on |G|, the number of girls. If |G| = 1, then the matching condition implies that
the lone girl likes at least one boy, and so a matching exists. Now suppose that |G| ≥ 2. There are
two possibilities:

1. Every proper subset of girls likes a strictly larger set of boys. In this case, we have some lati-
tude: we pair an arbitrary girl with a boy she likes and send them both away. The matching
condition still holds for the remaining boys and girls, so we can match the rest of the girls
by induction.

2. Some proper subset of girls X ⊂ G likes an equal-size set of boys Y ⊂ B. We match the
girls in X with the boys in Y by induction and send them all away. We will show that the
matching condition holds for the remaining boys and girls, and so we can match the rest of
the girls by induction as well.

To that end, consider an arbitrary subset of the remaining girls X ′ ⊆ G − X , and let Y ′ be
the set of remaining boys that they like. We must show that |X ′| ≤ |Y ′|. Originally, the
combined set of girls X ∪X ′ liked the set of boys Y ∪ Y ′. So, by the matching condition, we
know: ∣∣X ∪X ′∣∣ ≤ ∣∣Y ∪ Y ′∣∣
We sent away |X| girls from the set on the left (leaving X ′) and sent away an equal number of
boys from the set on the right (leaving Y ′). Therefore, it must be that |X ′| ≤ |Y ′| as claimed.

In both cases, there is a matching for the girls. The theorem follows by induction.

The proof of this theorem gives an algorithm for finding a matching in a bipartite graph, albeit not
a very efficient one. However, efficient algorithms for finding a matching in a bipartite graph do
exist. Thus, if a problem can be reduced to finding a matching, the problem is essentially solved
from a computational perspective.

4 Course Notes, Week 7: Graph Matching; Digraphs

2.2 A Formal Statement

Let’s restate Hall’s Theorem in abstract terms so that you’ll not always be condemned to saying,
“Now this group of little girls likes at least as many little boys...”

A matching in a graph, G, is a set of edges such that no two edges in the set share a vertex. A
matching is said to cover a set, L, of vertices iff each vertex in L has an edge of the matching
incident to it.

In any graph, the set N(S), of neighbors1 of some set, S, of vertices is the set of all vertices adjacent
to some vertex in S. That is,

N(S) ::= {r | s—r is an edge for some s ∈ S} .

S is called a bottleneck if
|S| > |N(S)| .

Theorem 2.2 (Hall’s Theorem). Let G be a bipartite graph with vertex partition L,R. There is matching
in G that covers L iff no subset of L is a bottleneck.

2.2.1 An Easy Matching Condition

The bipartite matching condition requires that every subset of girls has a certain property. In gen-
eral, verifying that every subset has some property, even if it’s easy to check any particular subset
for the property, quickly becomes overwhelming because the number of subsets of even relatively
small sets is enormous —over a billion subsets for a set of size 30.

However, there is a simple property of vertex degrees in a bipartite graph that guarantees a match
and is very easy to check. Namely, call a bipartite graph degree-constrained if vertex degrees on the
left are at least as large as those on the right. More precisely,

Definition 2.3. A bipartite graph G with vertex partition L,R is degree-constrained if deg(l) ≥
deg(r) for every l ∈ L and r ∈ R.

Now we can always find a matching in a degree-constrained bipartite graph.

Lemma 2.4. Every degree-constrained bipartite graph satisifies the matching condition.

Proof. Let S be any set of vertices in L. The number of edges incident to vertices in S is exactly
the sum of the degrees of the vertices in S. Each of these edges is incident to a vertex in N(S)
by definition of N(S). So the sum of the degrees of the vertices in N(S) is at least as large as
the sum for S. But since the degree of every vertex in N(S) is at most as large as the degree of
every vertex in S, there would have to be at least as many terms in the sum for N(S) as in the
sum for S. So there have to be at least as many vertices in N(S) as in S, proving that S is not a
bottleneck. So there are no bottlenecks, proving that the degree-constrained graph satisifies the
matching condition.

1An equivalent definition of N(S) uses relational notation: N(S) is simply the image, SR, of S under the adjacency
relation, R, on vertices of the graph.

Course Notes, Week 7: Graph Matching; Digraphs 5

3 Digraphs

A directed graph (digraph for short) is formally the same as a binary relation, R, on a set, A, but we
picture the digraph geometrically by representing elements of A as points on the plane, with an
arrow from the point for a to the point for b exactly when (a, b) ∈ graph (R). The elements of A
are referred to as the vertices of the digraph, and the pairs (a, b) ∈ graph (R) are called its directed
edges. We use the notation a → b as an alternative notation for the pair (a, b).

For example, the divisibility relation on {1, 2, . . . , 12} is represented by the digraph:

12 6 1

824 10

5

7

1193

Figure 1: The Digraph for Divisibility on {1, 2, . . . , 12}.

3.1 Paths in Digraphs

Pictured with points and arrows, a length k path in a digraph looks like a line that starts at a point,
a0, and traverses k arrows between successive points, a1, a2, . . . to end at a point, ak. Note that
k may be 0 —a single vertex counts as length zero path to itself, just as for simple graphs. The
precise definitions are very similar to those for simple graphs:

Definition 3.1. A path in a digraph is a sequence of vertices a0, . . . , ak with k ≥ 0 such that ai → ai+1

is an edge for every i ≥ 0 such that i < k. The path is said to start at a0, to end at ak, and the length
of the path is defined to be k. The path is simple iff all the ai’s are different, that is, ai = aj only if
i = j.

Many of the relational properties have geometric descriptions in terms of digraphs. For example:

Reflexivity: All vertices have self-loops (a self-loop at a vertex is an arrow going from the vertex
back to itself).

Irreflexivity: No vertices have self-loops.

Asymmetry: No self-loops and at most one (directed) edge between any two vertices.

Symmetry: A binary relation R is symmetric iff aRb implies bRa for all a, b in the domain of R. So
if there is an edge from a to b, there is also one in the reverse direction. So edges may as well
be represented without arrows, indicating that they can be followed in either direction.

6 Course Notes, Week 7: Graph Matching; Digraphs

Transitivity: Short-circuits—for any path through the graph, there is an arrow from the first ver-
tex to the last vertex on the path.

We can define some new relations based on paths. Let R be the edge relation of a digraph. Define
relations R∗ and R+ on the vertices by the conditions that for all vertices a, b:

aR∗ b ::= there is a path in R from a to b,

aR+ b ::= there is a positive length path in R from a to b.

R∗ is called the path relation2 of R. It follows from the definition of path that R∗ is transitive. It
is also reflexive (because of the length-zero paths) and it contains the graph of R (because of the
length-one paths). R+ is called the positive-length path relation; it also contains graph (R) and is
transitive.

3.2 Directed Acyclic Graphs

Definition 3.2. A cycle in a digraph is a path that begins and ends at the same vertex. Note that
by convention, a single vertex is considered to be a cycle of length 0 that begins and ends at the
vertex. A directed acyclic graph (DAG) is a directed graph with no positive length cycles.

A simple cycle in a digraph is a cycle whose vertices are distinct except for the beginning and end
vertices.

DAG’s are an economical way to represent partial orders. For example, the direct prerequisite re-
lation between MIT subjects described in Week 3 Notes was used to determine the partial order of
indirect prerequisites on subjects. This indirect prerequisite partial order is precisely the positive
length path relation of the direct prerequisites.

Lemma 3.3. If D is a DAG, then D+ is a strict partial order.

Proof. We know that D+ is transitive. Also, a positive length path from a vertex to itself would be
a cycle, so there are no such paths. This means D+ is irreflexive, which implies it is a strict partial
order (see Week 3, Thursday, Recitation Problem 5).

It’s easy to check that conversely, the graph of any strict partial order is a DAG.

Problem 1. Verify that any strict partial order is a DAG.

The divisibility partial order can also be more economically represented by the path relation in a
DAG. A DAG whose path relation is divisibility on {1, 2, . . . , 12} is shown in Figure 2; the arrow-
heads are omitted in the Figure, and edges are understood to point upwards.

The minimum edge DAG whose path relation is a given finite partial order is unique, and is easy
to find. This is explained in the following problem.

Problem 2. If a and b are distinct nodes of a digraph, then a is said to cover b if there is an edge
from a to b and there is no other path from a to b. If a covers b, the edge from a to b is called a
covering edge.

2In many texts, R∗ is called the transitive closure of R.

http://courses.csail.mit.edu/6.042/fall07/ln3.pdf#partial.orders
http://courses.csail.mit.edu/6.042/fall07/rec3h.pdf

Course Notes, Week 7: Graph Matching; Digraphs 7

����
1

����
4

����
8

����
5

����
10����

6

����
3

����
12

����
7����

11

����
9

����
2.

........
........

........
.....

........
........

........
.....

........
........

........
.....

........
........
........
.....

........
........
........
.....

J
J

J
J

Z
Z

Z
Z

Z
Z

�
�

�
�

�
�

Figure 2: A DAG whose Path Relation is Divisibility on {1, 2, . . . , 12}.

(a) Show that if two DAG’s have the same positive path relation, then they have the same set of
covering edges.

(b) For any DAG, D, let D̂ be the subgraph of D consisting of only the covering edges. Show that
if D is finite, then D and D̂ have the same positive path relation, that is D+ = D̂+.

(c) Conclude that if D is a finite DAG, then D̂ is the unique DAG with the smallest number of
edges among all digraphs with the same positive path relation.

(d) Show that the previous result is not true for the infinite DAG corresponding to the total order
on the rational numbers.

4 Communication Networks

Modeling communication networks is an important application of graphs in Computer Science.
Here, vertices represent computers, processors, and switches; edges will represent wires, fiber,
or other transmission lines through which data flows. For some communication networks, like
the internet, the corresponding graph is enormous and largely chaotic. However, there do exist
more organized networks, such as certain telephone switching networks and the communication
networks inside parallel computers. For these, the corresponding graphs are highly structured. In
this section, we’ll look at some of the nicest and most commonly used communication networks.

4.1 Complete Binary Tree

Let’s start with a complete binary tree. Here is an example with 4 inputs and 4 outputs.

8 Course Notes, Week 7: Graph Matching; Digraphs

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

The kinds of communication networks we consider aim to transmit packets of data between com-
puters, processors, telephones, or other devices. The term packet refers to some roughly fixed-size
quantity of data— 256 bytes or 4096 bytes or whatever. In this diagram and many that follow, the
squares represent terminals, sources and destinations for packets of data. The circles represent
switches, which direct packets through the network. A switch receives packets on incoming edges
and relays them forward along the outgoing edges. Thus, you can imagine a data packet hopping
through the network from an input terminal, through a sequence of switches joined by directed
edges, to an output terminal.

Recall that there is a unique simple path between every pair of vertices in a tree. So the natural
way to route a packet of data from an input terminal to an output in the complete binary tree is
along the corresponding directed path. For example, the route of a packet traveling from input 1
to output 3 is shown in bold.

4.2 Latency and Diameter

Latency is a critical issue in communication networks. This is the largest delay between the time
a packet is sent from an input until it arrives at its designated output. Assuming it takes one time
unit to travel across a wire with no delays at switches, the delay of a packet is the number of wires
it crosses going from input to output, that is, the packet delay is the length of the path the packet
follows.

The latency of a network will depend on how packets are routed, but generally packets are routed
to go from input to output by the shortest path possible. With a shortest path routing, the worst
case delay is the distance between the input and output that are farthest apart. This is called the
diameter of the network. In other words, the diameter of a network3 is the maximum length of any
shortest path between an input and an output. For example, in the complete binary tree above,
the distance from input 1 to output 3 is six. No input and output are farther apart than this, so the
diameter of this tree is also six.

3The usual definition of diameter for a general graph (simple or directed) is the largest distance between any two
vertices, but in the context of a communication network we’re only interested in the distance between inputs and
outputs, not between arbitrary pairs of vertices.

Course Notes, Week 7: Graph Matching; Digraphs 9

We’re going to consider several different communication networks. For a fair comparison, let’s
assume that each network has N inputs and N outputs, where N is a power of two. For example,
the diameter of a complete binary tree with N inputs and outputs is 2 log N + 2. (All logarithms
in this lecture— and in most of Computer Science —are base 2.) This is quite good, because the
logarithm function grows very slowly. We could connect up 210 = 1024 inputs and outputs using
a complete binary tree and still have a latency of only 2 log(210) + 2 = 22.

4.3 Switch Size

One way to reduce the diameter of a network is to use larger switches. For example, in the com-
plete binary tree, most of the switches have three incoming edges and three outgoing edges, which
makes them 3 × 3 switches. If we had 4 × 4 switches, then we could construct a complete ternary
tree with an even smaller diameter. In principle, we could even connect up all the inputs and
outputs via a single monster switch:

0
1

N−1

0

1

N−1

... ...
OUTIN

This isn’t very productive, however, since we’ve just concealed the original network design prob-
lem inside this abstract switch. Eventually, we’ll have to design the internals of the monster switch
using simpler components, and then we’re right back where we started. So the challenge in de-
signing a communication network is figuring out how to get the functionality of an N ×N switch
using elementary devices, like 3 × 3 switches. Following this approach, we can build arbitrarily
large networks just by adding in more building blocks.

4.4 Switch Count

Another goal in designing a communication network is to use as few switches as possible since
routing hardware has a cost. The number of switches in a complete binary tree is 1 + 2 + 4 + 8 +
· · ·+N , since there is 1 switch at the top (the “root switch”), 2 below it, 4 below those, and so forth.
By the formula for the sum of a geometric series (see Slides 3F, Sept. 21, 2007, slide #33) the total
number of switches is 2N − 1, which is nearly the best possible with 3× 3 switches.

4.5 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At best, this switch
must handle an enormous amount of traffic: every packet traveling from the left side of the net-
work to the right or vice-versa. Passing all these packets through a single switch could take a
long time. At worst, if this switch fails, the network is broken into two equal-sized pieces. The
max congestion of a network is a measure of its bottlenecks; defining max congestion requires some
preliminary definitions.

http://courses.csail.mit.edu/6.042/fall07/slides3f.pdf

10 Course Notes, Week 7: Graph Matching; Digraphs

A permutation is a function π that maps each number in the set {0, 1, . . . , N − 1} to another num-
ber in the set such that no two numbers are mapped to the same value. In other words, π is a
bijection from {0, 1, . . . , N − 1} to itself.

For each permutation π, there is a corresponding permutation routing problem. In this problem,
one packet starts out at each input; in particular, the packet starting at input i is called packet i.
The challenge is to direct each packet i through the network from input i to output π(i).

A solution to a permutation routing problem is a specification of the path taken by each of the N
packets. In particular, the path taken by packet i from input i to output π(i) is denoted Pi,π(i). For
example, if π(i) = i, then there is an easy solution: let Pi,π(i) be the path from input i up through
one switch and back down to output i. On the other hand, if π(i) = (N − 1) − i, then each path
Pi,π(i) must begin at input i, loop all the way up through the root switch, and then travel back
down to output (N − 1)− i. These two situations are illustrated below.

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3 IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

We can distinguish between a “good” set of paths and a “bad” set based on congestion. The
congestion of a set of paths P0,π(0), . . . , PN−1,π(N−1) is equal to the largest number of paths that
pass through a single switch. For example, the congestion of the set of paths in the diagram at
left is 1, since at most 1 path passes through each switch. However, the congestion of the paths on
the right is 4, since 4 paths pass through the root switch (and the two switches directly below the
root). Generally, lower congestion is better since packets can be delayed at an overloaded switch.

By extending the notion of congestion, we can also distinguish between “good” and “bad” net-
works with respect to bottleneck problems. The max congestion of a network is the maximum over
all permutations π of the minimum over all paths Pi,π(i) of the congestion of the paths.

You may find it helpful to think about max congestion in terms of a value game. You design your
spiffy, new communication network; this defines the game. Your opponent makes the first move in
the game: she inspects your network and specifies a permutation routing problem that will strain
your network.You move second: given her specification, you choose the precise paths that the
packets should take through your network; you’re trying to avoid overloading any one switch.
Then her next move is to pick a switch with as large as possible a number of packets passing
through it; this number is her score in the competition. The max congestion of your network is the
largest score she can ensure; in other words, it is precisely the max-value of this game.

For example, if your enemy were trying to defeat the complete binary tree, she would choose a
permutation like π(i) = (N − 1)− i. Then for every packet i, you would be forced to select a path
Pi,π(i) passing through the root switch. Thus, the max congestion of the complete binary tree is
N— which is horrible!

Course Notes, Week 7: Graph Matching; Digraphs 11

Let’s tally the results of our analysis so far:

network diameter switch size # switches congestion
complete binary tree 2 log N + 2 3× 3 2N − 1 N

4.6 2-D Array

Let’s look at an another communication network. This one is called a 2-dimensional array or grid.

IN

IN

IN

IN

0

1

2

3

OUT OUT OUT OUT
0 1 2 3

Here there are four inputs and four outputs, so N = 4.

The diameter in this example is 8, which is the number of edges between input 0 and output
3. More generally, the diameter of an array with N inputs and outputs is 2N , which is much
worse than the diameter of 2 log N + 2 in the complete binary tree. On the other hand, replacing a
complete binary tree with an array almost eliminates congestion.

Theorem 4.1. The congestion of an N -input array is 2.

Proof. First, we show that the congestion is at most 2. Let π be any permutation. Define Pi,π(i) to
be the path extending from input i rightward to column π(i) and then downward to output π(i).
Thus, the switch in row i and column π(i) transmits at most two packets: the packet originating
at input i and the packet destined for column π(i).

Next, we show that the congestion is at least 2. In any permutation routing problem where π(0) =
0 and π(N − 1) = N − 1, two packets must pass through the lower left switch.

Now we can record the characteristics of the 2-D array.

network diameter switch size # switches congestion
complete binary tree 2 log N + 2 3× 3 2N − 1 N

2-D array 2N 2× 2 N2 2

12 Course Notes, Week 7: Graph Matching; Digraphs

The crucial entry here is the number of switches, which is N2. This is a major defect of the 2-D
array; a network of size N = 1000 would require a million 2 × 2 switches! Still, for applications
where N is small, the simplicity and low congestion of the array make it an attractive choice.

4.7 Butterfly

The Holy Grail of switching networks would combine the best properties of the complete binary
tree (low diameter, few switches) and of the array (low congestion). The butterfly is a widely-used
compromise between the two. Here is a butterfly network with N = 8 inputs and outputs.

001

010

011

100

101

110

111

000

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

0 1 2 3
levels

The structure of the butterfly is certainly more complicated than that of the complete binary tree
or 2-D array! Let’s work through the various parts of the butterfly.

All the terminals and switches in the network are arranged in N rows. In particular, input i is at
the left end of row i, and output i is at the right end of row i. Now let’s label the rows in binary;
thus, the label on row i is the binary number b1b2 . . . blog N that represents the integer i.

Between the inputs and the outputs, there are log(N) + 1 levels of switches, numbered from 0 to
log N . Each level consists of a column of N switches, one per row. Thus, each switch in the network
is uniquely identified by a sequence (b1, b2, . . . , blog N , l), where b1b2 . . . blog N is the switch’s row in
binary and l is the switch’s level.

All that remains is to describe how the switches are connected up. The basic connection pattern is
expressed below in a compact notation:

(b1, b2, . . . , bl+1, . . . , blog N , l)
↗
↘

(b1, b2, . . . , bl+1, . . . , blog N , l + 1)

(b1, b2, . . . , bl+1, . . . , blog N , l + 1)

Course Notes, Week 7: Graph Matching; Digraphs 13

This says that there are directed edges from switch (b1, b2, . . . , blog N , l) to two switches in the next
level. One edge leads to the switch in the same row, and the other edge leads to the switch in the
row obtained by inverting bit l +1. For example, referring back to the illustration of the size N = 8
butterfly, there is an edge from switch (0, 0, 0, 0) to switch (0, 0, 0, 1), which is in the same row, and
to switch (1, 0, 0, 1), which is the row obtained by inverting bit l + 1 = 1.

The butterfly network has a recursive structure; specifically, a butterfly of size 2N consists of two
butterflies of size N , which are shown in dashed boxes below, and one additional level of switches.
Each switch in the new level has directed edges to a pair of corresponding switches in the smaller
butterflies; one example is dashed in the figure.

001

010

011

100

101

110

111

000

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

Despite the relatively complicated structure of the butterfly, there is a simple way to route pack-
ets. In particular, suppose that we want to send a packet from input x1x2 . . . xlog N to output
y1y2 . . . ylog N . (Here we are specifying the input and output numbers in binary.) Roughly, the plan
is to “correct” the first bit by level 1, correct the second bit by level 2, and so forth. Thus, the
sequence of switches visited by the packet is:

(x1, x2, x3, . . . , xlog N , 0) → (y1, x2, x3, . . . , xlog N , 1)
→ (y1, y2, x3, . . . , xlog N , 2)
→ (y1, y2, y3, . . . , xlog N , 3)
→ . . .

→ (y1, y2, y3, . . . , ylog N , log N)

In fact, this is the only path from the input to the output!

The congestion of the butterfly network turns out to be about
√

N ; more precisely, the congestion
is
√

N if N is an even power of 2 and
√

N/2 if N is an odd power of 2, but we won’t prove this
fact.

14 Course Notes, Week 7: Graph Matching; Digraphs

Let’s add the butterfly data to our comparison table:

network diameter switch size # switches congestion
complete binary tree 2 log N + 2 3× 3 2N − 1 N

2-D array 2N 2× 2 N2 2
butterfly log N + 2 2× 2 N(log(N) + 1)

√
N or

√
N/2

The butterfly has lower congestion than the complete binary tree. And it uses fewer switches and
has lower diameter than the array. However, the butterfly does not capture the best qualities of
each network, but rather is a compromise somewhere between the two. So our quest for the Holy
Grail of routing networks goes on.

4.8 Benes̆ Network

In the 1960’s, a researcher at Bell Labs named Benes̆ had a remarkable idea. He noticed that by
placing two butterflies back-to-back, he obtained a marvelous communication network:

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

This network now has levels labeled 0, . . . , 2 log N + 1. For 1 ≤ k ≤ log N , the connections from
level k − 1 to level k are just as in the usual Benes̆ network, the connections based on bit k. The
conections from level 2 log N − k + 1 to level 2 log N − k + 2 are also the ones based on bit k.
(Informally, to make the connections from level 0 to level 2 log N + 1 one level at a time, use the
connections based on bits 1, 2, 3, . . . , log N − 1, log N, log N − 1, log N − 2, . . . , 3, 2, 1 in that order.)

This doubles the number of switches and the diameter, of course, but completely eliminates con-
gestion problems! The proof of this fact relies on a clever induction argument that we’ll come to
in a moment. Let’s first see how the Benes̆ network stacks up:

network diameter switch size # switches congestion
complete binary tree 2 log N + 2 3× 3 2N − 1 N

2-D array 2N 2× 2 N2 2
butterfly log N + 2 2× 2 N(log(N) + 1)

√
N or

√
N/2

Benes̆ 2 log N + 1 2× 2 2N log N 1

Course Notes, Week 7: Graph Matching; Digraphs 15

The Benes̆ network has small size and diameter, and completely eliminates congestion. The Holy
Grail of routing networks is in hand!

Theorem 4.2. The congestion of the N -input Benes̆ network is 1.

Proof. We use induction. Let P (a) be the proposition that the congestion of the size 2a Benes̆
network is 1.

Base case. We must show that the congestion of the size N = 21 = 2 Benes̆ network is 1. This
network is shown below:

IN

IN OUT

OUT0

1

0

1

There are only two possible permutation routing problems for a 2-input network. If π(0) = 0 and
π(1) = 1, then we can route both packets along the straight edges. On the other hand, if π(0) = 1
and π(1) = 0, then we can route both packets along the diagonal edges. In both cases, a single
packet passes through each switch.

Inductive step. We must show that P (a) implies P (a + 1), where a ≥ 1. Thus, we assume that the
congestion of an N -input Benes̆ network is 1 in order to prove that the congestion of a 2N -input
Benes̆ network is also 1.

Digression. Time out! Let’s work through an example, develop some intuition, and then com-
plete the proof. Notice that inside a Benes̆ network of size 2N lurk two Benes̆ subnetworks of size
N . (This follows from our earlier observation that a butterfly of size 2N contains two butterflies
of size N .) In the Benes̆ network shown below, the two subnetworks are in dashed boxes.

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

16 Course Notes, Week 7: Graph Matching; Digraphs

By the inductive assumption, the subnetworks can each route an arbitrary permutation with con-
gestion 1. So if we can guide packets safely through just the first and last levels, then we can
rely on induction for the rest! Let’s see how this works in an example. Consider the following
permutation routing problem:

π(0) = 1 π(4) = 3
π(1) = 5 π(5) = 6
π(2) = 4 π(6) = 0
π(3) = 7 π(7) = 2

We can route each packet to its destination through either the upper subnetwork or the lower sub-
network. However, the choice for one packet may constrain the choice for another. For example,
we can not route both packet 0 and packet 4 through the same network since that would cause two
packets to collide at a single switch, resulting in congestion. So one packet must go through the
upper network and the other through the lower network. Similarly, packets 1 and 5, 2 and 6, and
3 and 7 must be routed through different networks. Let’s record these constraints in a graph. The
vertices are the 8 packets. If two packets must pass through different networks, then there is an
edge between them. Thus, our constraint graph looks like this:

1

2

3

4

5

6

7

0

Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example, the packet des-
tined for output 0 (which is packet 6) and the packet destined for output 4 (which is packet 2) can
not both pass through the same network; that would require both packets to arrive from the same
switch. Similarly, the packets destined for outputs 1 and 5, 2 and 6, and 3 and 7 must also pass
through different switches. We can record these additional constraints in our graph with gray
edges:

1

2

3

4

5

6

7

0

Course Notes, Week 7: Graph Matching; Digraphs 17

Notice that at most one new edge is incident to each vertex. The two lines drawn between ver-
tices 2 and 6 reflect the two different reasons why these packets must be routed through different
networks. However, we intend this to be a simple graph; the two lines still signify a single edge.

Now here’s the key insight: a 2-coloring of the graph corresponds to a solution to the routing problem. In
particular, suppose that we could color each vertex either red or blue so that adjacent vertices are
colored differently. Then all constraints are satisfied if we send the red packets through the upper
network and the blue packets through the lower network.

The only remaining question is whether the constraint graph is 2-colorable, which is easy to verify:

Problem 3. Prove that if graphs G1 = (V,E1) and G2 = (V,E2) both have maximum degree 1,
then the graph G = (V,E1 ∪ E2) is 2-colorable.

For example, here is a 2-coloring of the constraint graph:

1

2

3

4

5

6

7

0

redblue

red

red

red

blueblue

blue

The solution to this graph-coloring problem provides a start on the packet routing problem:

We can complete the routing in the two smaller Benes̆ networks by induction! Back to the proof.
End of Digression.

Let π be an arbitrary permutation of {0, 1, . . . , N}. Let G1 = (V,E1) be a graph where the vertices
are packets 0, 1, . . . , N and there is an edge u—v if |u− v| = N/2. Let G2 = (V,E2) be a graph with
the same vertices and an edge u—v if |π(u)− π(v)| = N/2. But according to Problem 3, the graph
G = (V,E1 ∪ E2) is 2-colorable, so color the vertices red and blue. Route red packets through the
upper subnetwork and blue packets through the lower subnetwork. Since for each edge in E1, one
vertex goes to the upper subnetwork and the other to the lower subnetwork, there will not be any
conflicts in the first level. Since for each edge in E2, one vertex comes from the upper subnetwork
and the other from the lower subnetwork, there will not be any conflicts in the last level. We can
complete the routing within each subnetwork by the induction hypothesis P (a).

	1 Bipartite Graphs
	2 Bipartite Matchings
	2.1 The Matching Condition
	2.2 A Formal Statement
	2.2.1 An Easy Matching Condition

	3 Digraphs
	3.1 Paths in Digraphs
	3.2 Directed Acyclic Graphs

	4 Communication Networks
	4.1 Complete Binary Tree
	4.2 Latency and Diameter
	4.3 Switch Size
	4.4 Switch Count
	4.5 Congestion
	4.6 2-D Array
	4.7 Butterfly
	4.8 Benes Network

