Microsoft

Mastering C# 2008 HaNoi University of Technology

Microsoft® .

Understanding Object-Oriented
Programming

Hands-on Lab



Mastering C# 2008 HaNoi University of Technology

Lab Objective

Estimated time to complete this lab: 60 minutes

Goals of this activity:
Learn how inheritance works
Understand rules of construction with inheritance
Learn the difference between static and dynamic binding
Learn how to define an interface
Learn how to implement an interface
Learn how to use interfaces to create plug compatible code
Create a delegate

Create a listener class with static and instance methods that match your delegate
signature

Invoke the listener functions via your delegate

This lab consists of the following exercises:

Inheritance and Construction

More Inheritance

Defining and implementing an interface
Writing the Client Code

Working only with Interfaces

Starting out

Task 1 — Inheritance and Construction

Create a console application and add a few classes to it.

Criteria:

1. First, set the provided class for your console application to be called Client.

2. Create two other classes, name one "Base" and the other "Derived". In the Base
class provide a constructor which takes no arguments. In the implementation of the
constructor simply write out to the console "in base constructor".

3. Next, add a method to the Base class called Method1 that returns a void and
takes no arguments. In the implementation of this method write out to the console "in



Mastering C# 2008 HaNoi University of Technology

base.method1".
Your Base class should look like the following:

class Base

{

public Base()

{

Console.WriteLine("In Base Constructor!");

}
public void Method1()

{
Console.WriteLine("In Base.Methodl");

}
}

4. Next, add another class called Derived that inherits from base. You don't need write
any code in the derived class to test things out.
5. Now add code to the main method in the client class that will declare a reference of

of the type Base but instanciate an instance of the type Derived. Then try calling
Method]1. Be sure and test everything out!
Y our main method should look like the following:

Base b;
b = new Derived();

//call inherited implementation for method1 on Derived instance.
b.Method1();

6. Compile your application and test.

Notes:
* This is a very simple example using inheritance

Task 2 — More Inheritance

In this section you will simply explore making things slightly more
complex by adding another class, more constructors and working with
static and dynamic binding.

Criteria:
1. Go modify Methodl in the Base class by marking it "virtual". Then in the



Mastering C# 2008 HaNoi University of Technology

Derived class override the implementation of Method1, making sure to mark the method
as "override" in the Derived class. In the implementation of the Derived.Method1 write
out to the console "in derived method1". Try and run your application again, you should
now see that the new overriden method is called.

2. Now we want to see how the rules of construction work. In the Derived class add a
constructor that takes a string as an argument and provide an implementation that writes out to the
console. Also, create another class and name it "MoreDerived" and make sure this class inherits from
Derived. Once you have done this you will notice that if you try to compile the compiler complains
because there is no default constructor in Derived that takes no arguments so the compiler can't
generate a constructor for you in MoreDerived and chain the call to Derived because it doesn't
know what to pass to the constructor. Fix the MoreDerived class by adding a constructor
that and manually chain a call to the Derived constructor. The code for the two classes
should look something like the following:

class Derived : Base

{
public Derived(string var)
{
Console.WriteLine("In Derived constructor. Constructor
parameter value:{0}", var);
}
public override void Methodi()
{
Console.WriteLine("In Base.Methodl");
}
}

class MoreDerived : Derived

base
public MoreDerived(): base("DEFAULT")
{
Console.WriteLine("In MoreDerived Constructor!");
}
}

//notice the use of the base keyword to chain the construction to the

3. Test out your application by modifying the client to create an instance of more
derived and verify that the constructors are called as expected. Your client should look
something like the following:

Base b = new MoreDerived();
b.Methodl();

4. Now it's time to look at static binding. Add a method called Method?2 that returns a
void and takes no arguments to both the Base class and the Derived class, be sure you DO
NOT use the virtual and override key words. In the implementations simply write out to
the console your class name and method name.

Modify the client class to declare two references, one of the Base type and one of the



Mastering C# 2008 HaNoi University of Technology

Derived type. Instanciate an instance of the derived type and assign the instance to both
references. Then using each reference, make a call to each Method2. Your code should
look lik the following:




Mastering C# 2008 HaNoi University of Technology

Console.WriteLine("In Derived.Method2");

b
¥

5. Now test things out. What you should notice is that even though you only have
one instance, a derived type, you get two different implementations when you call

Method2 depending on which reference type you use. This happens because the method
implementation to call is determine statically at compile time. You will also notice the
compiler produces a warning on the method2 suggesting you mark the method in the
Derived type with the "new" keyword. This is just ensuring you understand that you are
getting static binding not the more desirable dynamic binding.

Next add a line to the base constructor that calls this.Method1(), where will this call go if
method] is virtual? The answer depends on what instance type "this" really points to as
it's dynamically bound.

Notes:
* This is a good way to see how inheritance can easily get very complex.

Overview

In this sample you will create a console application that contains 3 classes and 1
interface. One of the classes will be the Client class with a Main entry point, the other
two classes will provide different ways to implement the same interface. The point of the
two different implementations is to see the advantage of NOT marking your interface
implementations public.

Task 3 — Defining and implementing an interface

Working with Interfaces by defining and implementing them.

Criteria:

* Make a new console application by opening VS.NET and chosing "New project" and selecting
C# as the language and Console Application for your project template.

* Rename the provided class to be called "Client"

1. Create an interface called I[Human that has one method, Speak that takes a string as a parameter
and one property Name as a string. Your interface should look like the following:

//declare interface
public interface [Human




Mastering C# 2008 HaNoi University of Technology

{
void Speak(string Message);
string Name{ get;set; }

}

2. Create two classes, name them Theodore and Kirk.

In the Theodore class you will add the implementation by using VS.NET to stub out the method and
property signatures for you. To do this simply add the ": [Human" to the class and then go to the class
view from VS.NET, navigate to the Theodore class,Bases and Interfaces and then right click on the
IHuman interface and choose "Add" and select "Implement Interface". The VS.NET IDE will provide
an empty stub of the interface implementation. Notice that all implementation is public. Provide an
actual implementation for the class.

Your Theodore class should look something like the following:

public class Theodore : [Human

{

private string m_Name;

public void Speak(string Message)
{

Console.WriteLine("Hi my name is {0}.\n" + Message, m_Name);

}

public string Name

{
get

{

return m_Name;

}

set

m_Name = value;

}
}
}

Task 4 — Writing the Client Code

Writting the client code to test out your interface implementations.
Yo u will do all your work in the Main method of the Client class for
this part.

Criteria:

1. In the Main method add code that declares both a Theodore reference and a
[Human reference.

2. Instanciate an instance of the Theodore class and assign it to the Theodore
reference and then add calls to set the name property and make the instance speak. Notice



Mastering C# 2008 HaNoi University of Technology

that you can use a class base reference, ignoring the fact that an interface has even been
implemented.

3. Next, assign the instance to the [Human reference you declared and then make
calls to set the name property and speak methods using the interface. This is the goal
when using interfaces. Your client code should look something like the following:

Notes:
* You will need to do a cast operation when assigning the interface reference that
points to an instance of Theodore to the Theodore reference variable

Task 5 — Working only with Interfaces

Implement the interface on the Kirk class just as you did on the
Theodore class, however do not use VS.NET to stub out the
implementation!




Mastering C# 2008 HaNoi University of Technology

string I[Human.Name

{
get

{

return m_Name;

}

set

Name = value;

{
m_
}
}
}

2. Next modifiy the client code in Main to work with the interface and the Kirk instance. Be sure to
try and work directly with a class based reference and notice that you can't call any of the interface
methods with the class reference, only the interface reference.

Notes:
* If you're going to use interfaces it's better to not mark them public so that clients don't end up
hard coded against a class based reference!



Mastering C# 2008 HaNoi University of Technology

Overview :

To understand how to create a delegate, implement a method that can be invoked by the
delegate and invoke the method through and instance of the delegate.

You will be creating an new Console application project using VS.NET and all of your work
will be performed in that one project.

Task 6 — Starting out

Create a new console application project and rename the provided class
to be called the Client class. The client class will be used to create an instance
of the listener class, the delegate class and tie the two together in order to

invoke the delegate.

Criteria:

1. Make a new console application by opening VS.NET and chosing new project and
selecting C# as the language and Console Application for your project template.

2. Change the provided class name from Class1 to Client

3. Create a delegate with the following signature

delegate void NotifyMe(string sInfo);

4. Create a class called Listener and add a static method called GetNotified that matches
the signature of the delegate you just defined. Also, create a static method called
GetNotifiedAgain that also matches the signature of the delegate. Add some implementation to
your events that simply write out the data passed in to the console. Your Listener class should
look like the following:

/finstance function that matches signature of delegate above
public void GetNotified(string sInfo)

{

Console.WriteLine("I got notified with the following information {0}",sInfo);

}




Mastering C# 2008 HaNoi University of Technology

//static function that matches signature of delegate above
public static void GetNotifiedAgain(string sInfo)

5. Next, modify the Client class by adding a static method called InvokeDelegate that
takes a NotifyMe delegate as a parameter. Be sure and invoke the delegate in the
implementation. Your method should look like the following:

6. Now go to your Client class and add code to Main to create an instance of your
delegate, passing the Listener.GetNotifiedAgain method to the constructor and then call the
InvokeDelegate function and test your application. Your client code will look something like
the following:




Mastering C# 2008 HaNoi University of Technology

/land invokes the delegate

static void Main(string[] args)

{

/luse static function of Listener class for delegate //call

/lcreate instance of Notify delegate and point it at //static function to call
NotifyMe d = new NotifyMe(Listener.GetNotifiedAgain);

/linvoke the delegate function

/Inotice function being called below takes a delegate //that can point
/lto ANY function on any class - this is loosly coupled!
InvokeDelegate(d);

/linvoke delegate using Instance function

/[create listener instance

Listener Isnr = new Listener();

/lcreate delegate and point to listener instance method

NotifyMe d2 = new NotifyMe(Isnr.GetNotified);

/linvoke just like before

InvokeDelegate(d2);

}
}

Notes:

* This sample assumes you are a little familiar with VS.NET



	Understanding Object-Oriented Programming
	Hands-on Lab
	Lab Objective
	Goals of this activity:

	Task 1 – Inheritance and Construction
	Criteria:
	Task 2 – More Inheritance
	Criteria:
	Overview
	Task 3 – Defining and implementing an interface
	Task 4 – Writing the Client Code
	Criteria:
	Task 5 – Working only with Interfaces
	Task 6 – Starting out


