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ABSTRACT: By applying a nonholonomic constraints and Lagrange equation for nonholonomic 

system, a method is given to model and control the 4-wheel skid-steering mobile robot which tracks a 

given trajectory. First at all, a fundamental of nonholonomic system is introduced. Next, the skid 

steering robot’s kinematic model and dynamic model are considered. To control the robot tracking a 

trajectory, a new algorithm is given by applying feedback linearization and PD control. In addition, 

simulation results show the good performance in tracking trajectories. 

Keywords: tracking control, skid steering robot, nonholonomic constraints. 

1. INTRODUCTION 

The skid steering robot is considered as all-

terrain vehicle, and has many advantages than 

other off-road robots, for example, a high 

maneuverability, high-power, an ability of 

working in hard environmental conditions but 

the mechanism is quite simple. The following 

figure and table show major steering types and 

a steering system evaluation [1]. 

 

Fig. 1 Kinematics of major steering types 

 

 

 

 

 

 



Science & Technology Development, Vol 13, No.K4- 2010 
 

Trang 84 

Table 1. A steering system evaluation 

 
 

The skid steering robot is navigated by the 

angular velocity difference between left wheels 

and right wheels [2]. Because of lateral 

skidding, velocity constraints occurring in skid 

steering robot are quite different from the ones 

met in other mobile platforms wheels are not 

supposed to skid. An example for this steering 

type is ATRV-J robot designed by Irobot 

company.  

Recently, Kozlowski et al. (2004) 

developed the skid steering robot’s model 

based on Dixon’s kinematic controller [3], [4], 

[5]. Kozlowski extended new time 

differentiable and time-varying control scheme 

based on the strategy of forcing some 

transformed states to track an exogenous 

exponentially decaying signal produced by a 

tunable oscillator [6], [7]. 

In this paper, a new control algorithm 

based on feedback linearization and PD control 

is presented. It allows us to control a reference 

point fixing in the 4 wheel skid steering mobile 

robot tracks a given trajectory. The first 

advantage of the algorithm is kinematics and 

dynamics can be studied separately. For 

example, the angular velocity of each wheel 

can be determined without the inertia moment 

and the mass of the robot. Furthermore, this 

algorithm can be applied to not only the 4 

wheel skid-steering mobile robot but also all 

types of the mobile robot whose equations of 

motion are similar to equation‘s Lagrange. 

Fields of application of the skid steering robot 

can be extended. For instance, the manipulator 

or GPR radar can be stuck on the robot to 

inspect the geology. 

2. NONHOLONOMIC SYSTEM 

Major wheeled mobile robot is a typical 

example of mechanical systems with 

nonholonomic constraints. Although navigation 

and planning of mobile robots have been 

investigated extensively over the past decade, 

the work on dynamic control of mobile robots 

with nonholonomic constraints is much more 

recent. 

We consider mechanical systems that are 

subject to nonholonomic constraints 

characterized by the following equation: 

( ) 0A q q =&     (1) 
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Where q is the n-dimensional generalized 

coordinates 

A(q) is an m x n dimensional matrix  

Because the constraints are assumed to be 

nonholonomic, (1) is not integrable.  It will be 

assumed that these constraints are independent. 

In another words, A(q) has rank m. 

Using the vector λ of Lagrange multiplier, 

the equations of motion of nonholonomically 

constrained systems are governed by: 

( ) ( , ) ( ) ( ) ( )TM q q V q q G q E q u A q λ+ + = +&& & (

2) 

Where: M(q) is the n x n dimensional 

positive definite inertia matrix.  

),( qqV &   is the n dimensional velocity-

dependent force vector. 

G(q) is the gravitational force vector. 

u is the r dimensional vector of actuator 

force/torque  

E(q) is the n x r dimensional matrix 

mapping the actuator space into the generalized 

coordinate.  

It has been established that nonholonomic 

system described by the constraint equation (1) 

and the motion equation (2). [8] 

3. MODEL OF A SKID STEERING 
MOBILE ROBOT 

3.1 Kinematic model 

 

Fig. 2. The robot in the inertial frame 

 

Fig. 3. Schematic of the skid steering robot. 

The notation is shown in fig. 2, 3. 

Select the inertial frame (COM lx ly lz ), 
where COM is center of mass. 

Let (X, Y, Z) to be robot’s barycentric 
coordinates in the world frame,  

0

x

y

v
v v

 
 =  
    ,   

0
0ω
ω

 
 =  
    ,  

X
q Y

θ

 
 =  
    

Note: ω θ= & 
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Fig. 4. Velocities of one wheel. 

 
Fig. 5. Wheel velocities. 

We have: 

os sin
.

sin os
x

y

vcX
vcY

θ θ
θ θ

−     
=     

    

&
&

(3) 

The i-th wheel rotates with an angular 

velocity ( )i tω ,where i=1;2;3;4. 

The longitudinal velocity can be obtained: 

ix ix . iv r ω= (4) 

In contrast to most wheeled mobile robot, 

the lateral velocity of the skid steering robot 

iyv
 is generally nonzero.  

The radius vector ix     d
T

i iyd d =   and 

      d
T

c cx cyd d =   are defined with respect 

to the local frame from the instantaneous center 

of rotation (IRC). 

Thus: 

i

i c

v v
d d

ω= =
(5) 

Or  

ix

ix

iy yx

iy yC xC

v vvv
d d d d

ω= = = =
− − (6) 

Coordinates of ICR in the local frames: 

ICR ( ir ir ,    yc cx )   =  ( ),     -dxC yCd−
 

Writing (6) as follows:  

ir ir

yx

c c

vv
y x

ω= − =
(7) 

Otherwise, from the figure 4 we have: 

1 2

3 4

1 4

2 3

y y Cy

y y Cy

x x Cx

x x Cx

d d d c

d d d c

d d d a
d d d b

= = +

= = −

= = −
= = + (8) 

Hence,

1 2

3 4

2 3

1 4

L x x

R x x

F y y

B y y

v v v
v v v
v v v
v v v

= =
 = =
 = =
 = = (9) 

And, 

ir

ir

1
1

.
0
0

L

R x

cF

cB

cv
cv v

x bv
x av

ω

−  
       =     − +  
   − −    (10) 

Assuming that 1 2 3 4r r r r r= = = =  
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Because 1 2x xv v= and this is a skid-

steering robot, the angular velocity of the first 

wheel equals the angular velocity of the second 

wheel. 

So, let Lω  , Rω  be respectively angular 

velocities of lefts and right wheels. We can 

write: 

1 .L L

R R

v
vr

ω
ω

   
=   

    (11) 

Combining (10) and (11), a control input at 

kinematic level is defined as: 

2.

2.

L R

x

L R

v
r

c

ω ω

η
ω ωω

+ 
  

= =    − +   
   (12) 

To complete the kinematic model, 

nonholonomic constraint is considered. 

From (6), the velocity constraint 

characterized by: ir . 0y cv x θ+ =&
(13) 

Thus,

[ ]irsin os . 0
T

cc x X Yθ θ θ − = 
&& &

 

Or, A (q). q&=0(14) 

The kinematic equation of the robot is 

obtained: ( ).q S q η=& (15) 

Where S is the following matrix 

ir

ir

os sin
( ) sin os

0 1

c

c

c x
S q x c

θ θ
θ θ

 
 = − 
   (16) 

which satisfies ( ). ( ) 0T TS q A q = (17) 

3.2 Dynamic model 

 
Fig. 6. The forces acting on one wheel. 

Wheel forces are depicted in Fig.6 

The active force is obtained 

i
iF

r
τ

=
(18) 

Neglecting additional dynamic properties, 

we obtain the following equation of 

equilibrium: 

1 2

4 3

4

1

. .
. .

i
i

N a N b
N a N b

N mg
=

=
=

=∑
                             (19) 

Where m denotes the robot mass and g is 

the gravity acceleration. Using the symmetry 

along the longitudinal midline, we obtain 

1 4

2 3

2( )

2( )

bN N mg
a b
aN N mg

a b

 = = +

 = =
 +          (20) 

The friction acting one wheel is obtained: 

( ) . .sgn( ) ( )f C vF Nσ µ σ µ σ= +
     (21) 

Where  σ  denotes the linear 

velocity. 

N is force perpendicular to the surface. 
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Cµ , vµ  are respectively the coefficients 

Coulumb and viscous friction. 

In the dynamic model of this robot, the 

following relation is valid:
.C vNµ µ σ?

. 

Consequently, the term .vµ σ  can be 

neglected. 

The following function is considered to 

approximate the function 

sgn( )σ :

2ˆsgn( ) arctan( . )skσ σ
π

=
 

where the constant sk satisfies the 

relations: 1sk ?  and 

2lim .arctan( . ) sgn( )
S

sk
k σ σ

π→∞
=

(22) 

Applying to the skid steering robot, the 

force friction for one wheel can be written as: 

ˆ. . ( )li lci yiF mg sgn vµ=
(23) 

ˆ. . ( )si sci xiF mg sgn vµ= (24) 

where lciµ and sciµ denote respectively the 

coefficients of the lateral and longitudinal 

forces. 

It is assumed that the potential energy of 

the robot 0∏ =  because of the planar motion. 

Neglecting the energy of rotating wheels, the 

kinetic energy of this robot can be rewritten: 

2 2 21 1( ) .
2 2

T m X Y I θ= + + && &
       (25) 

Hence, 

( ) .
mX

d T mY M q
dt q

Iθ

 
∂  = = ∂   

&&
&& &&

& &&
     (26) 

Where, 

0 0
0 0
0 0

m
M m

I

 
 =  
                 (27) 

Considering the forces causing the 

dissipation of energy: 

4 4

1 1
( ) os . ( ) sin . ( )rx si xi li yi

i i
F q c F v F vθ θ

= =

= −∑ ∑&
 (28) 

4 4

1 1
( ) sin . ( ) os. ( )ry si xi li yi

i i
F q F v c F vθ

= =

= +∑ ∑&
 (29) 

The resistant of moment around the center 

of mass can be obtained as 

[ ]
1 1 4 4 2 2 3 3

1 1 2 2 3 3 4 4

( ) .[ ( ) ( )] [ ( ) ( )]

            ( ) ( ) ( ) ( )
r l y l y l l l l

s x s x s x s x

M q a F v F v b F v F v

c F v F v F v F v

= − + + +

+ − − + +

&

Letting 

( ) [F (q)    F (q)    M (q)]T
rx ry xR q = & & &&

(30) 

Consequently, the active force generated 

by actuators can be calculated in the inertial 

frame as follow: 

4

1
4

1

os .

F sin .

x i
i

y i
i

F c F

F

θ

θ

=

=

=

=

∑

∑
                            (31) 

The active torque around the center of 

mass is obtained: 

'
1 2 3 4( )M c F F F F= − − + +          (32) 

The vector of active forces has the 

following form: 
'[ ]T

x yF F F M=
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Using (18), (31), (32), we get: 

4

1
4

1

1 2 3 4

os .

1 sin .

( )

i
i

i
i

c

F
r

c

θ τ

θ τ

τ τ τ τ

=

=

 
 
 
 

=  
 

− − + + 
 
 

∑

∑

          (33) 

The term τ is defined by: 

1 2

3 4

τ τ
τ

τ τ
+ 

=  +   (34) 

os os
1( ) sin sin

c c
B q

r
c c

θ θ
θ θ

 
 =  
 −               (35) 

We have: ( ).F B q τ=                  (36) 

Using (26), (30), (36), and equation’s 

Lagrange we get: 

( ). ( ) ( ).M q q R q B q τ+ =&& &          (37) 

Eq. (37) describes only the dynamic of a 

free body and does not include the 

nonholonomic constraint (14). Therefore, the 

constraint has to be imposed on (37). To solve 

this problem, a vector of Lagrange multiplier 

λ  is considered [2], and (37) becomes as 

following equation: 

( ). ( ) ( ). ( ).TM q q R q B q A qτ λ+ = +&& &      (38) 

Multiplying from the left side by ( )TS q , and 

simplifying by using eq. (15), and the 

following equation,  

                   ( ). ( ).q S q S qη η= +& &&&           (39) 

we obtain:   . . .M C R Bη η τ+ + =&       (40) 

Where, 

ir
ir

0
.T

c
c

C S MS m x
x
θ

θ
 

= =  − 

&
&

& &       (41) 

2
ir

0
0 .

T

c

m
M S MS

m x I
 

= =  +        (42) 

ir

( )
. ( )

rxT

c ry r

F q
R S R

x F q M
 

= =  + 

&
&

      (43) 

1 11TB S B
c cr

 
= =  −                      (44) 

4. CONTROL LAW 

4.1 Operational Constraint 

Let ox be an arbitrary constant which 

sacrifices: ox ∈ (-a, b) 

The constraint equation (13) is rewritten 

as:           
. 0y ov x θ+ =&

                           (45) 

Let S be a 3x2 dimensional matrix which 

sacrifices the equation (17) 

0

os .sin
( ) sin . os

0 1

oc x
S q x c

θ θ
θ θ

 
 = − 
                (46) 

4.2 Control Algorithm 

Let k be the state space vector 

[ ]xk X Y vθ ω=
                      (47) 

To simplify the formula (15), (40), the 

matrix  
1

2 ( . )f M C Rη
−

= − −                       (48) 

is introduced, where 
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0
0

0
.TC S MS m x

x
θ

θ
 

= =  − 

&
&

& &
           (49) 

2
0

0
0 .

T m
M S MS

m x I
 

= =  +           (50) 

0

( )
. ( )

rxT

ry r

F q
R S R

x F q M
 

= =  + 

&
&

           (51) 

1 11TB S B
c cr

 
= =  −                        (52) 

Combining (15) and (40), the kinematic 

equation and the dynamic equation are written: 

1
2

0.
.

.

S
k

f M B

η
τ−

  
= +   

    
&

                  (53) 

This state equation can be further 

simplified as: 

 

. 0
.

0
S

k u
I

η   
= +   

   
&

                             (54) 
1

2( . )( )M B u fτ
−

= −                              (55) 

Let a reference point be denoted in the 

local inertial frame by ( ),c c
r rx y

. The robot 

is controlled so that the reference point tracks 

the given trajectory. 

The world coordinates of the reference 

point are obtained as: 

. os .sin
sin os

c c
r c r r

c c
r c r r

X X x c y
Y X x y c

θ θ
θ θ

 = + −


= + +         (56) 

The output equation is obtained:       

[ ]( ) T
r ry h q X Y= =

                    (57) 

( ) . .h qy q
q

η
 ∂

= = Φ ∂ 
& &

                   (58) 

where 

os sin sin os
sin os os sin

c c
o r r

c c
o r r

c x x y c
x c x c y

θ θ θ θ
θ θ θ θ

 − −
Φ =  − + −  (59) 

By taking
c

o rx x≠ , Φ is regular. 

From (58) we get: 

. .y η η= Φ + Φ& &&&                                 (60) 

Hence,  

1( )u η η−= Φ − Φ&                             (61) 

Let 
dy  be a desired trajectory, 

and yye d −=  be a feedback error. 

( ) ( )d d d
d py y K y y K y yη= = + − + −&& && & &

(62) 

By using equations (54), (55), (61), (62), a 

new algorithm has been presented. It is easy to 

control the angular velocities of wheels in other 

that a skid steering robot tracks a given 

trajectory. 

5. SIMULATION RESULTS 

To validate the performance of the control 

algorithm, the motion of skid steering mobile 

robot is simulated by Matlab. The robot is 

designed to track a given trajectory. The 

advantage of the algorithm is the angular 

velocity of each wheel can be determined 

without the inertia moment and the mass of the 

robot. Therefore, dynamic parameters aren’t 

considered for simplicity. The dimensions’ 

robot are chosen as 1( )a b c m= = = . The 

robot starts at location (-3; 8) with the 
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angle 2
πθ =

, the horizontal velocity 0xv =  

,and the angular velocity 0ω = . The 

reference point is the center of mass 

0c c
r rx y= = . The constant ox is chosen as 

follow 3.2( )ox m=  

Case 1: A desired trajectory is given by: 

4* ( )
2* ( )

x t m
y t m

 =


=  

The controller parameters are chosen as 

follow: 52, 15P Dk k= =  

 
(a) 

 
(b) 

Fig. 7 The simulation result of case 1. (a) robot trajectory, and (b) tracking error. 

Figure 7(a) shows the reference trajectory, 

and figure 7(b) shows the tracking error in the 

fixed frame. It is clearly seen from the plots 

that the reference point’s trajectory (robot 

trajectory) quickly converges to the given 

trajectory (desired trajectory). 

Case 2: A desired trajectory is given by: 
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The controller parameters are chosen as 

follow: 10, 5P Dk k= =  

 
(a) 

 
(b) 

Fig. 8 The simulation result of case 2. (a) robot trajectory, and (b) tracking error. 

Similarly, the reference point’s trajectory 

quickly converges to the given trajectory. 

6. CONCLUSION 

In this paper, a new algorithm of trajectory 

tracking control for 4-wheel skid steering 

mobile robot is presented. The output equation 

is chosen to be the coordinates of the reference 

point fixing in the robot. Because the mobile 

robot is subject to nonholonomic constraints, 

dynamics system is nonlinear (see eq. 40). 

However, the number of output coordinates 

equals the number of input commands. Thus, 

one can use nonlinear state feedback law in 

order to transform the nonlinear robot 

kinematics, dynamics into a linear system. The 
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effectiveness of this algorithm is validated by 

simulations on two different trajectories.  

In the future, we will integrate this 

algorithm with stepper motor control to design 

completely a skid steering mobile robot as well 

as apply a Lyapunov stability analysis to 

guarantee the stability of this controller. 

ĐIỀU KHIỂN THEO QUĨ ĐẠO MỘT RÔBỐT DI ĐỘNG LÁI TRƯỢT 4 BÁNH 

Đặng Văn Nghìn(1), Nguyễn Văn Quốc Khánh(2) 

(1) Viện Cơ Tin học Tp.HCM 

(2) Trường Đại học Bách Khoa, ĐHQG-HCM 

 

TÓM TẮT: Bằng cách áp dụng ràng buộc nonholonomic và phương trình Lagrange cho hệ 

thống nonholonomic, một phương pháp được đưa ra để mô hình và điều khiển robot di động lái trượt 4 

bánh chạy theo quỹ đạo cho trước. Đầu tiên, các cơ sở của hệ thống nonholonomic được giới thiệu. 

Tiếp theo, mô hình động học và động lực học của robot lái trượt được khảo sát. Để điều khiển robot dò 

theo quỹ đạo, một giải thuật mới được đưa ra bằng cách ứng dụng tuyến tính hóa hồi tiếp và bộ điều 

khiển PD. Hơn nữa, kết quả mô phỏng đã chứng tỏ tính hiệu quả của thuật toán. 

Từ khóa: sự điều khiển đồng chỉnh, robot lái trượt, ràng buộc nonholonomic. 
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