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Conjugated Systems

• Conjugated double bonds are separated by one 
single bond.

• Isolated double bonds are separated by two or more 
single bonds.

• Conjugated double bonds are more stable than 
isolated ones.
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Heat of Hydrogenation of 
Conjugated Bonds

 For conjugated double bonds, the heat of 
hydrogenation is less than the sum for the individual 
double bonds. 

 The more stable the compound, the less heat 
released during hydrogenation, 

 Conjugated double bonds have extra stability.
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Relative Stabilities

twice 1-pentene

more substituted
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Structure of 1,3-Butadiene

 Single bond is shorter than 1.54 Å.
 Electrons are delocalized over molecule.
 There is a small amount of overlap across the central 

C—C bond, giving it a partial double bond character.
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Molecular Orbitals (MOs)
 Pi molecular orbitals are the sideways 

overlap of p orbitals.
 p orbitals have two lobes.  Plus (+) and 

minus (-) indicate the opposite phases of 
the wave function, not electrical charges.

 When lobes overlap constructively (+ and +, 
or - and -), a bonding MO is formed.

 When + and - lobes overlap,  waves cancel 
out and a node forms; antibonding MO.
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Ethylene Pi MOs

 The combination of two p orbitals must give two molecular 
orbitals.

 Constructive overlap is a bonding MO.
 Destructive overlap is an antibonding MO.    
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� 1 MO for 1,3-Butadiene

 Lowest energy.
 All bonding 

interactions.
 Electrons are 

delocalized over 
four nuclei.  
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� 2 MO for 1,3-Butadiene

 Two bonding 
interactions.

 One antibonding 
interaction.

 A bonding MO.
 Higher energy than

 � 1 MO and not as 
strong.
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� 3* MO for 1,3-Butadiene

 Antibonding MO.
 Empty at ground 

state.
 Two nodes.
 Vacant in the 

ground state.
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� 4* MO for 1,3-Butadiene

 Strongly 
antibonding.

 Very high.
 Vacant at ground 

state.  
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MO for 1,3-Butadiene and Ethylene

 The bonding MOs of 
both 1,3-butadiene and 
ethylene are filled and 
the antibonding MOs 
are empty.  

 Butadiene has lower 
energy than ethylene.  

 This lower energy is the 
resonance stabilization 
of the conjugated diene.
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Conformations of 
1,3-Butadiene

 The s-trans conformer is more stable than the 
s-cis by 12 kJ/mol (2.8 kcal/mol).

 Easily interconvert at room temperature.
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Allylic Cations

 The positive charge is delocalized over two 
carbons by resonance giving the allyl cation 
more stability than nonconjugated cations.
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Stability of Carbocations

 Stability of 1� allylic �  2� carbocation.
 Stability of 2� allylic �  3� carbocation.
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1,2- and 1,4-Addition
to Conjugated Dienes

 Electrophilic addition to the double bond 
produces the most stable intermediate.

 For conjugated dienes, the intermediate 
is a resonance-stabilized allylic cation.

 Nucleophile adds to either Carbon 2 or 4, 
both of which have the delocalized 
positive charge.                                  
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1,2- and 1,4-Addition to Dienes

 Addition of HBr to 1,3-butadiene produces 3-
bromo-1-butene (1,2-addition) and 1-bromo-
2-butene (1,4-addition).
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Mechanism of 1,2- and 1,4-
Addition
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Kinetic Versus Thermodynamic 
Control
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Kinetic Versus 
Thermodynamic Control 

(Continued) 

Major product 
at 40�C

Major product 
at -80�C
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Kinetic Control at -80°C

 Transition state for the 1,2-addition has a lower Ea 
because it is a more stable secondary carbocation.

 The 1,2-addition will be the faster addition at any 
temperature.

 The nucleophilic attack of the bromide on the allylic 
carbocation is irreversible at this low temperature.

 The product that forms faster predominates (kinetic 
product).

 Because the kinetics of the reaction determines the 
product, the reaction is said to be under kinetic 
control.
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Thermodynamic Control at 40°C

 The 1,2-addition is still the faster addition, but 
at 40°C, the bromide attack is reversible.

 An equilibrium is established, which favors 
the most stable product:

 The 1,4-addition is the most stable product 
(thermodynamic product) because it has a 
more substituted double bond.

 Because the thermodynamics of the reaction 
determines the product, the reaction is said to 
be under thermodynamic control.
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Allylic Radicals

 Stabilized by resonance.
 Radical stabilities: 1� < 2� < 3� < 1� allylic.
 Substitution at the allylic position competes 

with addition to double bond.
 To encourage substitution, use a low 

concentration of reagent with light, heat, or 
peroxides to initiate free radical formation. 
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Mechanism of Allylic Bromination
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Bromination Using N-
Bromosuccinimide (NBS)

 NBS provides a low, constant concentration of Br2.

 NBS reacts with the HBr by-product to produce Br2 
and to prevent HBr addition across the double bond.
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Allyl System

 Geometric structure of 
the allyl cation, allyl 
radical, and allyl anion.

 The three p orbitals of 
the allyl system are 
parallel to each other, 
allowing for the 
extended overlap 
between C1–C2 and 
C2–C3.
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MOs for the Allylic Systems
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SN2 Reactions of Allylic Halides
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SN2 Reactions

 Allylic halides and tosylates are highly 
reactive substrates for SN2 reactions.

 The transition state is stabilized through 
conjugation with the p orbitals of the pi bond.

 Allylic halides and tosylates react with 
Grignards and organolithiums:

H2C═CHCH2Br + CH3Li   H2C═CHCH2CH3  +  LiBr 
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Diels–Alder Reaction

 Named after Otto Diels and Kurt Alder.  They 
received the Nobel prize in1950.

 Produces a cyclohexene ring.
 The reaction is between a diene with an 

electron-deficient alkene (dienophile).
 The Diels-Alder is also called a [4+2] 

cycloaddition because a ring is formed by the 
interaction of four pi electrons of the alkene 
with two pi electrons of the alkene or alkyne.
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Mechanism of the Diels–Alder 
Reaction

 One-step, concerted mechanism.  
 A diene reacts with an electron-poor alkene 

(dienophile) to give cyclohexene or 
cyclohexadiene rings. 
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Examples of 
Diels–Alder Reactions
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Stereochemical Requirements

 Diene must be in s-cis conformation.
 Diene’s C1 and C4 p orbitals must 

overlap with dienophile’s p orbitals to 
form new sigma bonds.

 Both sigma bonds are on same face of 
the diene: syn stereochemistry. 
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Orbital Overlap of the Diels–Alder 
Reaction
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S-Cis Conformation of the Diene

 The s-cis conformation can rotate around the C—C 
single bond to get the more stable s-trans 
conformation.

 The s-trans conformation is 12 kJ/mol more stable 
than the s-cis.
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Diels–Alder Rate for Dienes

 Cyclopentadiene undergoes the Diels–Alder reaction 
readily because of its fixed s-cis conformation.  

 When the diene is sterically hindered, the reaction slows 
down even though the conformation can be s-cis. 

 S-trans dienes cannot undergo the Diels–Alder reaction.
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Stereochemistry of the 
Diels–Alder Reaction
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Endo Rule

 The p orbitals of the electron-withdrawing 
groups on the dienophile have a secondary 
overlap with the p orbitals of C2 and C3 in the 
diene.
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Examples of Endo Rule
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Unsymmetrical Reagents: 
1,4-Product
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Unsymmetrical Reagents: 
1,2-Product
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Predict the products of the following proposed Diels–Alder reactions.

Solved Problem 1

Solution
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Predict the products of the following proposed Diels–Alder reactions.

Solved Problem 1 (Continued)

Solution (Continued)
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Pericyclic Reactions

 Diels–Alder reaction is an example of a 
pericyclic reaction.

 Woodward and Hoffmann predicted 
reaction products using their theory of 
conservation of orbital symmetry.

 MOs must overlap constructively to 
stabilize the transition state.
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Symmetry-Allowed Reaction

 Diene contributes electrons from its highest energy 
occupied orbital (HOMO).

 Dienophile receives electrons in its lowest energy 
unoccupied orbital (LUMO).
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“Forbidden” Cycloaddition

 [2 + 2] cycloaddition of two ethylenes to form 
cyclobutene has antibonding overlap of HOMO and 
LUMO. 
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Photochemical Induction

 Absorption of correct energy photon will promote an 
electron to an energy level that was previously 
unoccupied.
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[2 + 2] Cycloaddition

   Photochemically 
allowed, but 
thermally forbidden.
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Ultraviolet Spectroscopy

 200–400 nm photons excite electrons 
from a �  bonding orbital to a � * 
antibonding orbital.

 Conjugated dienes have MOs that are 
closer in energy.

 A compound that has a longer chain of 
conjugated double bonds absorbs light 
at a longer wavelength.



�  �  � * for Ethylene and Butadiene
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  Obtaining a UV Spectrum

 The spectrometer measures the intensity 
of a reference beam through solvent only 
(Ir) and the intensity of a beam through a 
solution of the sample (Is).

 Absorbance is the log of the ratio Ir/Is
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The UV Spectrum
 Usually shows broad peaks.

 Read � max from the graph.

 Absorbance, A, follows Beer’s Law:
          A = � cl
where �  is the molar absorptivity, c is 
the sample concentration in moles per 
liter, and l is the length of the light path 
in centimeters.
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UV Spectrum of Isoprene
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Sample UV Absorptions
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   Woodward–Fieser Rules
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These compounds are an isolated diene, two conjugated dienes, and a conjugated triene. The isolated 
diene will have the shortest value of � max (185 nm), close to that of cyclohexene (182 nm).

The second compound looks like 3-methylenecyclohexene (232 nm) with an additional alkyl 
substituent (circled). Its absorption maximum should be around (232 + 5) nm, and 235 nm must be the 
correct value.

The third compound looks like 1,3-cyclohexadiene (256 nm), but with an additional alkyl 
substituent (circled) raising the value of � max so 273 nm must be the correct value. 

The fourth compound looks like 1,3-cyclohexadiene (256 nm), but with an additional 
conjugated double bond (circled) and another alkyl group (circled). We predict a value of � max about 35 
nm longer than for 1,3-cyclohexadiene, so 300 nm must be the correct value.

Rank the following dienes in order of increasing values of � max. (Their actual absorption maxima are 
185 nm, 235 nm, 273 nm, and 300 nm.)

Solved Problem 2

Solution
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