Organic Chemistry, 7th Edition L. G. Wade, Jr.

Chapter 25 Lipids

Copyright © 2010 Pearson Education, Inc.

Introduction

- Lipids are compounds that can be extracted from cells by nonpolar organic solvents.
- Complex lipids are easily hydrolyzed.
 - Long-chain esters called fatty acids.
- Simple lipids are not easily hydrolyzed in acid or base.
 - Steroids
 - Prostaglandins
 - Terpenes

Examples of Lipids

Examples of complex lipids

Examples of simple lipids

Chapter 25

Waxes

- Esters of long-chain fatty acids with long-chain alcohols.
- Commonly found in nature.
 - *Spermaceti* is found in the head of the sperm whale.
 - Beeswax is a mixture of waxes, hydrocarbons, and alcohols that bees used to make their honeycomb.
 - Carnauba wax is a mixture of waxes of high molecular weights.

CH₃(CH₂)₂₉O
$$-C$$
-(CH₂)₂₄CH₃
a component of beeswax
CH₃(CH₂)₂₃O $-C$ -(CH₂)₂₆CH₃
a component of carnauba wax

Fatty Acids

- Unbranched carboxylic acids with 12–20 carbons.
- Most contain an even number of carbons because they are built from acetic acid units.
- Melting points increase with increasing molecular weights.
- Unsaturation greatly lowers the melting point.

Glycerides

- Fatty acid esters of the triol glycerol.
- Tryglycerides are the most common glycerides and they are used for long-term energy storage in plants and animals.
 - Fats
 - Solid at room temperature.
 - Most are derived from mammals.
 - Oils
 - Liquid at room temperature.
 - Most are derived from plants or cold-blooded animals.

Melting Points of Fatty Acids

TABLE 25-1

Structures and Melting Points of Some Common Fatty Acids

Name	Carbons	Structure	Melting Point (°C)
Saturated acids lauric acid	12	COOH	44
myristic acid	14	СООН СООН	59
palmitic acid	16	~~~~~ ^{Соон}	64
stearic acid	18	СООН СООН	70
arachidic acid	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76
<i>Unsaturated acids</i> oleic acid	18	Лана Соон	4
linoleic acid	18	Соон	-5
linolenic acid	18	Л_Л_Л_СООН	-11
eleostearic acid	18	ЛАЛА СООН	49
arachidonic acid	20	Соон	-49

Copyright © 2010 Pearson Prentice Hall, Inc.

Chapter 25

Copyright © 2010 Pearson Prentice Hall, Inc.

- The cis double bond in oleic acid lowers the melting point by 66°C.
- A cis double bond bends the molecule, so it cannot pack efficiently.
- A trans double bond has less effect.

Copyright © 2010 Pearson Prentice Hall, Inc.

 Unsaturated triglycerides have lower melting points because their unsaturated fatty acids do not pack as well in a solid lattice.

Copyright © 2010 Pearson Prentice Hall, Inc.

- Base-catalyzed hydrolysis of ester linkages in fats and oils.
- Long-chain carboxylate salts are known as soap.

Soap Structure

Copyright © 2010 Pearson Prentice Hall, Inc.

Chapter 25

Grease in Soap Solution

- In water, soap forms a cloudy solution of micelles, with the hydrophilic heads in contact with water and the hydrophobic tails clustered in the interior.
- The Na⁺ ions (not shown) are dissolved in the water surrounding the micelle.

Copyright © 2010 Pearson Prentice Hall, Inc.

Synthetic Detergents

 Synthetic detergents may have anionic, cationic, or nonionic hydrophilic functional groups.

Phospholipids

- Contain a phosphate ester bond.
- Phosphoglycerides usually have one phosphoric acid group and two fatty acids.
- The phosphate may have an additional alcohol attached by an ester linkage.

Phosphatidic Acids

Copyright © 2010 Pearson Prentice Hall, Inc.

Lipid Bilayer

Copyright © 2010 Pearson Prentice Hall, Inc.

- Phosphoglycerides can aggregate into a bilayer membrane with their polar heads exposed to the aqueous solution and the hydrocarbon tails protected within.
- This lipid bilayer is an important part of the cell membrane. It restricts the flow of water and dissolved substances.
 Chapter 25
 16

Steroids

androstane

- Polycyclic, usually all trans.
- Common structural features:
 - =O or —OH at C3.
 - Side chain at C17.
 - Double bond from C5 to either C4 or C6.

Copyright © 2010 Pearson Prentice Hall, Inc.

- In trans-decalin, the two bonds to the second ring are trans to one another, and the hydrogens on the junction are also trans.
- In cis-decalin, the bonds to the second ring are cis, and the junction hydrogens are also cis.

Cis and Trans Steroids

Copyright © 2010 Pearson Prentice Hall, Inc.

• Common steroids may have either a cis or a trans A-B ring

junction. The other junctions are normally trans.

- Common biological intermediate.
- Probably a precursor to other steroids.
- Side chain at C17 and double bond at C5–C6.

Gallstones

Copyright © 2010 Pearson Prentice Hall, Inc.

 These gallstones shown here, within the gallbladder, are composed mostly of cholesterol.

Sex Hormones

- Female hormone has an aromatic ring and one less methyl group than the male hormone.
- Testosterone is converted to estradiol in the ovaries.

Examples of Steroids

- Cortisol is the major natural hormone of the adrenal cortex.
- Fluocinolone acetonide is more potent for treating skin inflammation.
- Beclomethasone is more potent for treating asthma.

Prostaglandins

- Biochemical regulators more powerful than steroids.
- Cyclopentane ring with two long side chains trans to each other.
- Most have 20 carbon atoms.
- Derived from arachidonic acid.
- Regulate functions such as:
 - Blood pressure
 - Blood clotting
 - Allergic response
 - Digestive activity
 - Labor onset

Biosynthesis of Prostaglandins

1 means one C = C double bond)

2 means two C=C double bonds)

Copyright © 2010 Pearson Prentice Hall, Inc.

 Biosynthesis of prostaglandins begins with an enzyme-catalyzed oxidative cyclization of arachidonic acid.

Terpenes

- Composed of five carbon isopentyl (isoprene) groups.
- Isolated from the essential oils of plants.
- Pleasant taste or fragrant aroma and used as flavorings.
- Examples:
 - Anise oil
 - Bay leaves

Structure of Terpenes

an isoprene unit (may have double bonds)

- Terpenes are composed of two or more isoprene units.
- The isoprene units will maintain its isopentyl, usually with modification of the isoprene double bonds.

Classification

- Terpenes are classified by the number of carbons they contain in groups of ten.
- A monoterpene has ten carbons, two isoprene units.
- A sesquiterpene has 15 carbons, three isoprene units.
- A diterpene has 20 carbons, four isoprene units.

