Chapter 7

Cryptography Basics and Methods

Overview of Cryptography

- Understanding Physical Cryptography
- Understanding Mathematical Cryptography
- Understanding Quantum Cryptography

Understanding Physical Cryptography

- Physical cryptography refers to any method that doesn't alter the value using a mathematical process.
- Physical methods also include a method of encryption called steganography
- Cipher is a method used to encode characters to hide their value.
- Ciphering is the process of using a cipher to encode a message.

Understanding Physical Cryptography

- The three primary types of ciphering methods
 - Substitution: is a type of coding or ciphering system that changes one character or symbol into another
 - Character substitution can be a relatively easy method of encrypting information
 - Transposition: (transposition code) involves transposing or scrambling the letters in a certain manner.
 - Typically, a message is broken into blocks of equal size, and each block is then scrambled.
 - Steganography: is the process of hiding one message in another.
 - Prevents analysts from detecting the real message.
 - You could encode your message in another file

Understanding Mathematical Cryptography

- Mathematical cryptography deals with using mathematical processes on characters or messages
- Hashing: refers to performing a calculation on a message and converting it into a numeric hash value
- Hash value
- Checksum
- One-way process

Understanding Mathematical Cryptography

A simple hashing process

Message: this

ASCII Values: 116 104 105 115

Calculated Values: 232 208 210 230

Hash Value Calculation: (232+208+210+230)/10

Hash Value: 88

Understanding Physical Cryptography

Working with Passwords

- Many password-generation systems are based on a one-way hashing approach.
- Passwords should be as long and as complicated as possible.
- Most security experts believe a password of 10 characters is the minimum that should be used if security is a real concern.
- Mathematical methods of encryption are primarily used in conjunction with other encryption methods as part of authenticity verification.

Understanding Quantum Cryptography

- Quantum cryptography is a relatively new method of encryption.
- It may now be possible to create unbreakable ciphers using quantum methods.
- The process depends on a scientific model called the Heisenberg Uncertainty Principle for security
- A message is sent using a series of photons.

Understanding Physical Cryptography

Quantum cryptography being used to encrypt a message

Cryptographic Algorithms

- The Science of Hashing
- Symmetric Algorithms
- Asymmetric Algorithms

The Science of Hashing

- Hashing is the process of converting a message, or data, into a numeric value
- The numeric value that a hashing process creates is referred to as a hash total or value
- Hashing functions
 - A one-way hash doesn't allow a message to be decoded back to the original value.
 - A two-way hash allows a message to be reconstructed from the hash

The Science of Hashing

- Secure Hash Algorithm (SHA): was designed to ensure the
- integrity of a message.
 - The SHA is a one-way hash that provides a hash value that can be used with an encryption protocol.
 - Produces a 160-bit hash value.
 - SHA has been updated; the new standard is SHA-1.
- Message Digest Algorithm (MDA): creates a hash value and uses a one-way hash.
 - The hash value is used to help maintain integrity.
 - There are several versions of MD
 - the most common are MD5, MD4, and MD2.

Key Based Encryption/Decryption

Symmetric Case: both keys are the same or derivable from each other.

Asymmetric Case: Keys are different and not derivable from each other.

Symmetric Algorithms

- Symmetric algorithms require both ends of an encrypted message to have the same key and processing algorithms.
- Symmetric algorithms generate a secret key that must be protected.
- The disclosure of a private key breaches the security of the encryption system.
- If a key is lost or stolen, the entire process is breached.

Secrete Key Cryptography

K is the secret key shared by both the sender (S) and receiver (R).

Private Key Cryptosystem (Symmetric)

Symmetric Algorithms

- DES The Data Encryption Standard (DES) has been used since the mid-1970s.
 - It was the primary standard used in government and industry until it was replaced by AES.
 - It's a strong and efficient algorithm based on a 56-bit key.
- AES Advanced Encryption Standard (AES) has replaced DES as the current standard;
 - Uses the Rijndael algorithm.
 - It was developed by Joan Daemen and Vincent Rijmen.
 - It supports key sizes of 128, 192, and 256 bits, with 128 bits being the default.

Asymmetric Algorithms

- Asymmetric algorithms use two keys to encrypt and decrypt data.
- These keys are referred to as the public key and the private key.
- The public key can be used by the sender to encrypt a message
- The private key can be used by the receiver to decrypt the message.
- The algorithms used in this two-key process are complicated.

Asymmetric Algorithms

Asymmetric Algorithms

- RSA is named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.
 - The RSA algorithm is an early public-key encryption system that uses large integer numbers as the basis of the process.
- **Diffie-Hellman** Dr. W. Diffie and Dr. M. E. Hellman conceptualized the Diffie-Hellman key exchange.
 - They are considered the founders of the public/private key concept;
 - their original work envisioned splitting the key into two parts.
 - This algorithm is used primarily to send keys across public networks

- A cryptographic system is a system, method, or process that is used to provide encryption and decryption.
- These systems may be hardware, software, or manually performed processes.
- Cryptographic systems exist for the same reasons that security exists: to provide confidentiality, integrity, authentication, non-repudiation, and access control.

Confidentiality

- One of the major reasons to implement a cryptographic system is to ensure the confidentiality of the information being used.
- This confidentiality may be intended to prevent the unauthorized disclosure of information in a local network.
- A cryptographic system must do this effectively in order to be of value.

Integrity

- providing assurance that a message wasn't modified during transmission
- Integrity can be accomplished by adding information such as checksums or redundant data that can be used as part of the decryption process.
- These two additions to the message provide a two-way check on the integrity of the message.
- A common method of verifying integrity involves adding a message authentication code (MAC) to the message.
- The MAC is derived from the message and a key.

Using Digital Signatures

- A digital signature is similar in function to a standard signature on a document.
- This signature validates the integrity of the message and the sender.
- The message is encrypted using the encryption system, and a second piece of information, the digital signature, is added to the message
- The digital signature is derived from a hash process known only by the originator

Digital Signatures

- A digital signature is a protocol the produces the same effect as a real signature.
 - It is a mark that only sender can make
 - Other people can easily recognize it as belonging to the sender.
- Digital signatures must be:
 - Unforgeable: If P signs message M with signature S(P,M), it is impossible for someone else to produce the pair [M, S(P,M)].
 - Authentic: R receiving the pair [M, S(P,M)] can check that the signature is really from P.

Digital Signature Process

- Authentication
- Non-Repudiation
- Access Control

Public Key Infrastructure

- The *Public Key Infrastructure (PKI)* is a first attempt to provide all the aspects of security to
- messages and transactions that have been previously discussed.
- The need for universal systems to support e-commerce, secure transactions, and information privacy is one aspect of the issues being addressed with PKI.
- PKI is a two-key—asymmetric—system.

Public Key Infrastructure

- As defined by Netscape:
 - "Public-key infrastructure (PKI) is the combination of software, encryption technologies, and services that enables enterprises to protect the security of their communications and business transactions on the Internet."
 - Integrates digital certificates, public key cryptography, and certification authorities
- Two major frameworks
 - X.509
 - PGP (Pretty Good Privacy)

Certification Authorities (CAs)

Certification Authorities (cont.)

- Guarantee connection between public key and end entity
 - Man-In-Middle no longer works undetected
 - Guarantee authentication and non-repudiation
 - Privacy/confidentiality not an issue here
 - Only concerned with linking key to owner
- Distribute responsibility
 - Hierarchical structure

Digital Certificates

- Introduced by IEEE-X.509 standard (1988)
- Originally intended for accessing IEEE-X.500 directories
 - Concerns over misuse and privacy violation gave rise to need for access control mechanisms
 - X.509 certificates addressed this need
- From X.500 comes the Distinguished Name (DN) standard
 - Common Name (CN)
 - Organizational Unit (OU)
 - Organization (O)
 - Country (C)
- Supposedly enough to give every entity on Earth a unique name

Obtaining Certificates

Obtaining Certificates

- 1. Alice generates A_{priv}, A_{pub} and A_{ID}; Signs {A_{pub}, A_{ID}} with A_{priv}
 - Proves Alice holds corresponding A_{priv}
 - Protects {A_{pub}, A_{ID}} en route to CA
- 2. CA verifies signature on {A_{pub}, A_{ID}}
 - Verifies A_{ID} offline (optional)
- 3. CA signs {A_{pub}, A_{ID}} with CA_{priv}
 - Creates certificate
 - Certifies binding between A_{pub} and A_{ID}
 - Protects {A_{pub}, A_{ID}} en route to Alice
- 4. Alice verifies {A_{pub}, A_{ID}} and CA signature
 - Ensures CA didn't alter {A_{pub}, A_{ID}}
- 5. Alice and/or CA publishes certificate

PKI: Benefits

- Provides authentication
- Verifies integrity
- Ensures privacy
- Authorizes access
- Authorizes transactions
- Supports non-repudiation

PKI: Risks

- Certificates only as trustworthy as their CAs
 - Root CA is a single point of failure
- PKI only as secure as private signing keys
- DNS not necessarily unique
- Server certificates authenticate DNS addresses, not site contents
- CA may not be authority on certificate contents
 - i.e., DNS name in server certificates
- •

Implementing Trust Models

- Four main types of trust models are used with PKI:
 - Hierarchical
 - Bridge
 - Mesh
 - Hybrid

Preparing for Cryptographic Attacks

- Attacking the Key Key attacks are typically launched to discover the value of a key by attacking the key directly.
- These keys can be passwords, encrypted messages, or other key-based encryption information.
- An attacker might try to apply a series of words, commonly used passwords, and other randomly selected combinations to crack a password.
- A key attack tries to crack a key by repeatedly guessing the key value to break a password.

Preparing for Cryptographic Attacks

- Attacking the Algorithm The programming instructions and algorithms used to encrypt information are as much at risk as the keys.
- If an error isn't discovered and corrected by a program's developers, an algorithm might not be able to secure the program.
- Many algorithms have wellpublicized back doors

Preparing for Cryptographic Attacks

- Intercepting the Transmission The process of intercepting a transmission may, over time, allow attackers to inadvertently gain information about the encryption systems used by an organization.
- The more data attackers can gain, the more likely they are to be able to use frequency analysis to break an algorithm.