
Chương 5 Thiết kế hệ vi xử lý

5.6 Giao tiếp bộ hiển thị (Display) 5.6.2 Giao tiếp với LCD

LCD controller

3

void WriteChar(char c){

RS = 1;	
DATA_BUS	= c;
EnableLCD(45);

/* indicate data being sent */ /* send data to LCD */ /* toggle the LCD with appropriate delay */

CODES						
I/D = 1 cursor moves left	DL = 1 8-bit					
I/D = 0 cursor moves right	DL = 0 4-bit					
S = 1 with display shift	N = 1.2 rows					
S/C =1 display shift	N = 0.1 row					
S/C = 0 cursor movement	F = 1 5x10 dots					
R/L = 1 shift to right	F = 0 5x7 dots					
R/L = 0 shift to left						

RS	R/W	DB ₇	DB_6	DB_5	DB ₄	DB ₃	DB ₂	DB_1	DB ₀	Description	
0	0	0	0	0	0	0	0	0	1	Clears all display, return cursor home	
0	0	0	0	0	0	0	0	1	*	Returns cursor home	
0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and/or specifies not to shift display	
0	0	0	0	0	0	1	D	С	В	ON/OFF of all display(D), cursor ON/OFF (C), and blink position (B)	
0	0	0	0	0	1	S/C	R/L	*	*	Move cursor and shifts display	
0	0	0	0	1	DL	Ν	F	*	*	Sets interface data length, number of display lines, and character font	
1	0	WRITE DATA						Writes Data			

LCD Operation

LCD is gaining popular and replacing LEDs (7-segment ...), due to

- 1. declining price
- 2. the ability to display numbers, characters, and graphics
- 3. relieving the CPU task by incorporating a refreshing controller
- 4. ease of programming for characters and graphics (OLED is the coming display)

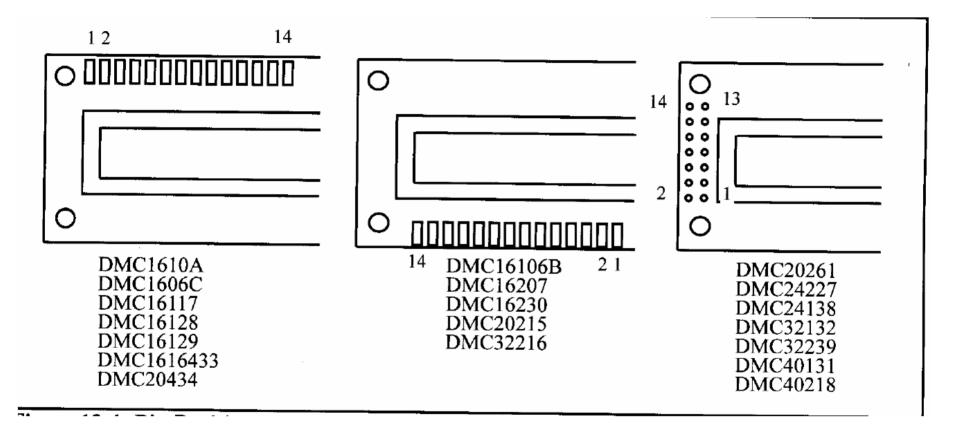
LCD Pin Descriptions

- 14-pin LCD module is discussed here, table 12-1 lists pin's function, Fig 12-1 shows the pin positions for various LCDs
- Vcc, Vss provide +5V and ground
- Vee is used for contrast controlling
- RS (register select) is used to select the instruction command code register (RS = 0) or data register (RS = 1)
- LCD command codes is listed at table 12-2
- R/W (read/write) allows user to write to (R/W = 0) or read from (R/W = 1) information
- E (enable) latch information at data pins; when data is supplied to data pins, a high-to-low pulse must be applied to this pin
- D0-D7 are the 8-bit data pins; send information to LCD (R/W = 0) and read contents of LCD internal registers (R/W = 1)
- to display letters and numbers, ASCII codes are sent while RS = 1

Pin	Symbol	I/O	Description
1	V _{SS}		Ground
2	V _{CC}		+5V power supply
3	V _{EE}		Power supply
			to control contrast
4	RS	Ι	RS=0 to select
			command register,
			RS=1 to select
		_	data register
5	R/W	Ι	R/W=0 for write,
			R/W=1 for read
6	E	I/O	Enable
$\frac{\frac{6}{7}}{\frac{8}{9}}$	DB0	I/O	The 8-bit data bus
8	DB1	I/O	The 8-bit data bus
9	DB2	I/O	The 8-bit data bus
10	DB3	I/O	The 8-bit data bus
11	DB4	I/O	The 8-bit data bus
12	DB5	I/O	The 8-bit data bus
13	DB6	I/O	The 8-bit data bus
14	DB7	I/O	The 8-bit data bus

Table 12-1. Pin Descriptions for LCD

Table 12-2: LCD Command Codes


Code Command to LCD Instruction

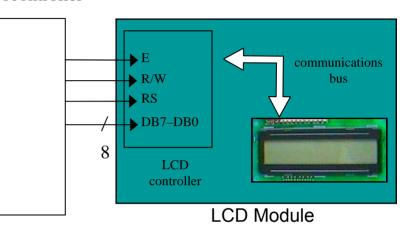
(Hex) Register

- 1 Clear display screen
- 2 Return home
- 4 Decrement cursor (shift cursor to left)
- 6 Increment cursor (shift cursor to right)
- 5 Shift display right
- 7 Shift display left
- 8 Display off, cursor off
- A Display off, cursor on
- C Display on, cursor off
- E Display on, cursor blinking
- F Display on, cursor blinking
- 10 Shift cursor position to left
- 14 Shift cursor position to right
- 18 Shift the entire display to the left
- 1C Shift the entire display to the right
- 80 Force cursor to beginning of 1st line
- C0 Force cursor to beginning of 2nd line
- 38 2 lines and 5x7 matrix

Note: This table is extracted from Table 12-4.

Pin diagrams

– RS = 0, the command code register is selected, we can send instruction to LCD to perform clear, shift, blink …

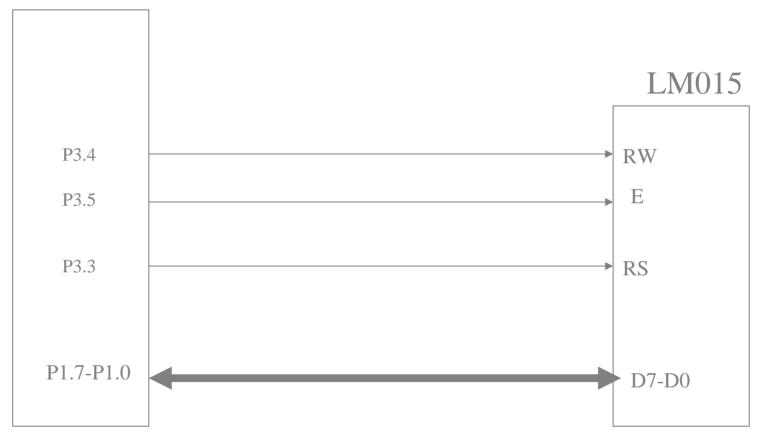

- when RS = 0, and R/W = 1, D7 is busy flag, when D7 = 0, LCD is ready to receive new information; it is recommended to check the busy flag before writing any data to the LCD

LCD Interfacing

- Liquid Crystal Displays (LCDs) have become a cheap and easy way to display text for an embedded system
 - Various configurations (1 line by 20 characters upto 8 lines by 80 characters).
- LCD needs a driving circuit to work.
- Driving circuit and LCD are often integrated into a single chip Hitachi LM015 can display one line of 16 characters
- The display has one register into which commands are sent and one register into which data to be displayed are sent
- Two registers are differentiated by the RS input
- Data lines (DB7-DB0) are used to transfer both commands (clearing, cursor positioning, etc) and data (character to be displayed)

Alphanumeric LCD Interfacing

- Pinout
 - 8 data pins D7:D0
 - RS: Data or Command Register Select
 - R/W: Read or Write
 - E: Enable (Latch data)
- **RS** Register Select
 - RS = 0 \rightarrow Command Register
 - RS = 1 \rightarrow Data Register
- **R/W** = 0 \rightarrow Write, R/W = 1 \rightarrow Read
- E Enable
 - Used to latch the data present on the data pins.
- D0 D7
 - Bi-directional data/command pins.
 - Alphanumeric characters are sent in ASCII format.



LCD Commands

- The LCD's internal controller can accept several commands and modify the display accordingly. These commands would be things like:
 - Clear screen
 - Return home
 - Decrement/Increment cursor
- After writing to the LCD, it takes some time for it to complete its internal operations. During this time, it will not accept any new commands or data.
 - We need to insert time delay between any two commands or data sent to LCD

11

Interfacing LCD with 8051

Interfacing LCD with 8051

In main program:

MOV A, COMMAND CALL CMD CALL DELAY MOV A, ANOTHER_CMD CALL CMD CALL CMD CALL DELAY MOV A, #'A' CALL DATA CALL DELAY MOV A, #'B' CALL DATA CALL DELAY

Command and Data Write Routines

DATA:	SETB CLR	P3.3 P3.4 P3.5	; A is ascii data ; RS=1 data ; RW=0 for write ; H->L pulse on E
CMD:	MOV	P1, A	; A has the cmd word

- CLR P3.3 ; RS=0 for cmd
- CLR P3.4 ; RW=0 for write
- SETB P3.5 ; H->L pulse on E

```
CLR P3.5
```

```
RET
```

Sending code or data to the LCD with checking busy flag

The above code showed how to send commands to the LCD without checking the busy flag. Notice that we must put a long delay in between issuing data or commands to the LCD. However, a much better way is to monitor the busy flag before issuing a command or data to the LCD. This is shown below.

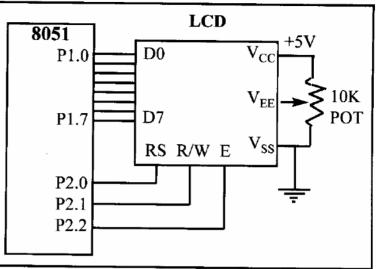


Figure 12-2. LCD Connection

```
; Check busy flag before sending data, command to LCD
;P1=data pin
;P2.0 connected to RS pin
;P2.1 connected to R/W pin
;P2.2 connected to E pin
        ORG
                 A,#38H ;init. LCD 2 lines,5x7 matrix
        MOV
        ACALL
                 COMMAND
                              ; issue command
        MOV
                 A,#OEH
                              ;LCD on, cursor on
        ACALL
                 COMMAND
                              ; issue command
        MOV
                 A,#01H
                              ;clear LCD command
        ACALL
                 COMMAND
                              ; issue command
        MOV
                 А,#Обн
                              ;shift cursor right
        ACALL
                 COMMAND
                              ; issue command
        MOV
                              ;cursor: line 1, pos. 6
                 A,#86H
        ACALL
                 COMMAND
                              ;command subroutine
```

14

	MOV ACALL	A,#'N' DATA DISPLAY	;display letter N
	MOV ACALL	A, #'O' DATA DISPLAY	;display letter O
HERE:	SJMP	HERE	;STAY HERE
COMMAND:	ACALL	READY	; is LCD ready?
	MOV	P1,A	;issue command code
	CLR	P2.0	;RS=0 for command
	CLR	P2.1	;R/W=0 to write to LCD
			;E=1 for H-to-L pulse
	CLR	P2.2	;E=0 ,latch in
	RET		
DATA_DIS	PLAY:		
	ACALL	READY	;is LCD ready?
	MOV	P1,A	;issue data
	SETB	P2.0	;RS=1 for data
	CLR	P2.1	;R/W=0 to write to LCD
		P2.2	;E=1 for H-to-L pulse
	CLR	P2.2	;E=0, latch in
	RET		

```
READY:
                             ;make P1.7 input port
            P1.7
    SETB
                             ;RS=0 access command reg
           P2.0
    CLR
                             ;R/W=1 read command reg
     SETB P2.1
;read command reg and check busy flag
                             ;E=1 for H-to-L pulse
          P2.2
BACK:CLR
                             ;E=0 H-to-L pulse
          P2.2
     SETB
                             ;stay until busy flag=0
             P1.7,BACK
     JB
     RET
     END
```

Notice in the above program that the busy flag is D7 of the command register. To read the command register we make R/W = 1, RS = 0, and a H-to-L pulse for the E pin will provide us the command register. After reading the command register, if bit D7 (the busy flag) is high, the LCD is busy and no information (command or data) should be issued to it. Only when D7 = 0 can we send data or commands to the LCD. Notice in this method that there are no time delays used since we are checking the busy flag before issuing commands or data to the LCD.

LCD data sheet

In the LCD, one can put data at any location. The following shows address locations and how they are accessed.

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	Α	Α	Α	Α	Α	Α	Α

where AAAAAAA = 0000000 to 0100111 for line 1 and AAAAAAA = 1000000 to 1100111 for line 2. See Table 12-3.

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Line 1 (min)	1	0	0	0	0	0	0	0
Line 1 (max)	1	0	1	0	0	1	1	1
Line 2 (min)	1	1	0	0	0	0	0	0
Line 2 (max)	1	1	1	0	0	1	1	1

Table 12-3: LCD Addressing

The upper address range can go as high as 0100111 for the 40-character-wide LCD while for the 20-character-wide LCD it goes up to 010011 (19 decimal = 10011 binary). Notice that the upper range 0100111 (binary) = 39 decimal which corresponds to locations 0 to 39 for the LCDs of 40x2 size.

From the above discussion we can get the addresses of cursor positions for various sizes of LCDs. See Figure 12-3. Note that all the addresses are in hex. Figure 12-4 gives a diagram of LCD timing. Table 12-4 provides a detailed list of LCD commands and instructions. Table 12-2 is extracted from this table.

LCD

LCD LCD	C0 80 80 C0	C1 81 81	C2 82 82	<u>C3</u> 83	84 85 <u>C4 C5</u> <u>throug</u> h	C6	through through	
LCD	80	81					<u>enrougn</u>	01
	-		82	0.0				
	C0		÷ —	83	through		······································	
		<u>C1</u>	C2	C3				
LCD	80	81	82	83	through			
	C0	C1	C2	C3	-			
	94	95	96	97	-			
	D4	D5	D6	D7	-			
LCD	80	81	82	83	through	A7		
	C0	<u>C1</u>	C2	C3	-			
	CD	94 D4 CO C0	94 95 D4 D5 CD 80 81 C0 C1	94 95 96 <u>D4 D5 D6</u> CD 80 81 82 <u>C0 C1 C2</u>	94 95 96 97 <u>D4 D5 D6 D7</u> CD 80 81 82 83 <u>C0 C1 C2 C3</u>	C0 C1 C2 C3 through 94 95 96 97 through D4 D5 D6 D7 through CD 80 81 82 83 through C0 C1 C2 C3 through	C0 C1 C2 C3 through D3 94 95 96 97 through A7 D4 D5 D6 D7 through E7 CD 80 81 82 83 through A7 C0 C1 C2 C3 through E7	C0 C1 C2 C3 through D3 94 95 96 97 through A7 D4 D5 D6 D7 through E7 CD 80 81 82 83 through A7 C0 C1 C2 C3 through E7

Figure 12-3 Cursor Addresses for Some LCDs

LCD Timing

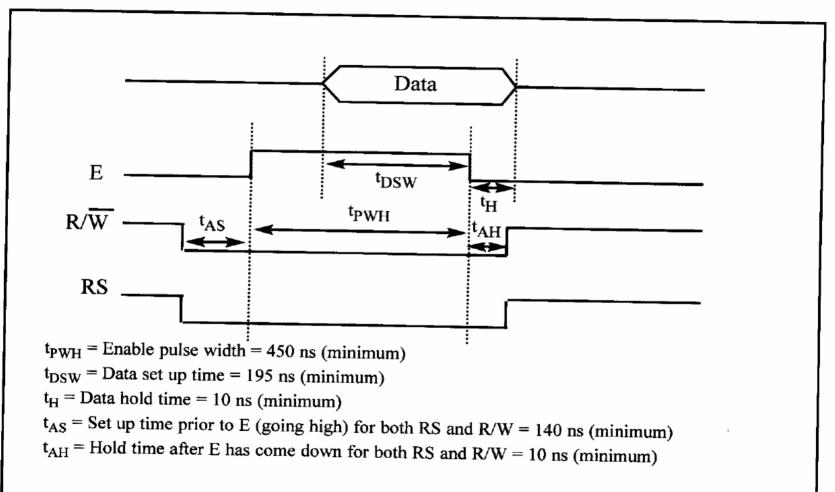


Figure 12-4: LCD Timing

Instruction	RS R/W DB7 DB6 DB6 DB3 DB3 DB3 DB1 DB1 DB1	Description	Execution Time (Max)
Clear Display	0 0 0 0 0 0 0 0 0 1	Clears entire display and sets DD	1.64 ms
		RAM address 0 in address counter	
Return Home	0 0 0 0 0 0 0 0 1 -	Sets DD RAM address 0 as address	1.64 ms
		counter. Also returns display being	
		shifted to original position. DD RAM	
		contents remain unchanged.	
Entry Mode	0 0 0 0 0 0 0 01 1/DS ·	Sets cursor move direction and specifies	40 µs
Set		shift of display. These operations are	
		performed during data write and read.	
Display On/	0 0 0 0 0 0 1 D C B	Sets On/Off of entire display (D),	40 µs
Off Control		cursor On/Off (C), and blink of curso	r
		position character (B).	
Cursor or	0 0 0 0 0 1 S/C R/L	Moves cursor and shifts display with-	- 40 μs
Display Shift		out changing DD RAM contents.	
Function Set	00001DLNF	Sets interface data length (DL), num-	40 µs
		ber of display lines (L) and character	
		font (F).	
		CODAN ALL CODAN AN	10

Set CG RAM	Ω	0	0 1	AGC	Sets CG RAM address. CG RAM data	40 µs
Address	Ŭ	Ŭ	0 1		is sent and received after this setting.	-
Set DD RAM	0	0	1	ADD	Sets DD RAM address. DD RAM data	40 µs
Address					is sent and received after this setting.	
Read Busy	0	1	BF	AC	Reads Busy flag (BF) indicating inter-	40 µs
Flag & Address					nal operation is being performed and	
					reads address counter contents.	
Write Data	1	0		Write Data	Writes data into DD or CG RAM.	40 µs
CG or DD RAM					,	. <u> </u>
Read Data	1	1		Read Data	Reads data from DD or CG RAM.	40 µs
CG or DD RAM						
		_				

Notes:

1. Execution times are maximum times when fcp or fosc is 250 kHz. 2. Execution time changes when frequency changes. Ex: When fcp or fosc is 270 kHz: 40 μ s × 250 / 270 =37 μ s.

3. Abbreviations:

DD RAM	Display data RAM		
	Classic and the DAM		
CG RAM	Character generator RAM		
ACC	CG RAM address		
ADD	DD RAM address, corresponds to o	cursor add	iress
AC	Address counter used for both DD	and CG R	AM addresses.
1/D = 1	Increment	1/D = 0	Decrement
S =1	Accompanies display shift		
S/C = 1	Display shift;		Cursor move
R/L = 1	Shift to the right;	R/L = 0	Shift to the left
DL = 1	8 bits, $DL = \vec{0}$: 4 bits		
N = 1	1 line, $N = 0$: 1 line		
$\mathbf{F} = 1$	$5 \ge 10 \text{ dots}, F = 0 : 5 \ge 7 \text{ dots}$		
BF = 1	Internal operation;	BF = 0 (Can accept instruction

Stepper Motors

- more accurately controlled than a normal motor allowing fractional turns or n revolutions to be easily done
- low speed, and lower torque than a comparable
 D.C. motor
- useful for precise positioning for robotics
- Servomotors require a position feedback signal for control

Stepper Motor Diagram

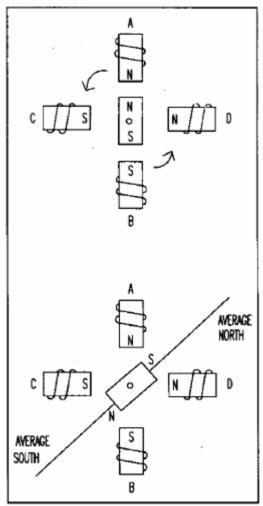


Figure 4-38. Rotor Alignment

(Courtesy of Superior Electric Company)

Stepper Motor Step Angles

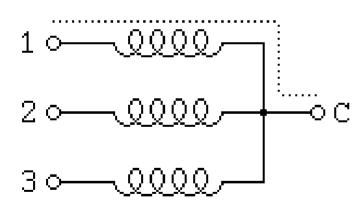
Table 4-12: Stepper Motor Step Angles

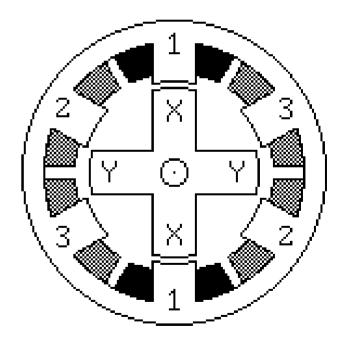
Step Angle	Steps Per Revolution
0.72	500
1.8	200
2	180
2.5	144
5	72
7.5	48
15	24

Terminology

• Steps per second, RPM

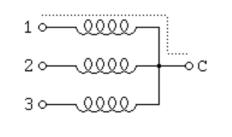
- SPS = (RPM * SPR) /60

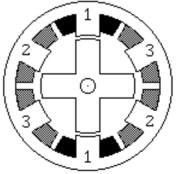

- Number of teeth
- 4-step, wave drive 4-step, 8-step
- Motor speed (SPS)
- Holding torque


Stepper Motor Types

-Variable Reluctance

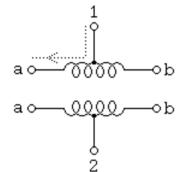
-Permanent Magnet


Variable Reluctance Motors

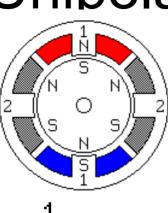


Variable Reluctance Motors

- This is usually a four wire motor the common wire goes to the +ve supply and the windings are stepped through
- Our example is a 30° motor
- The rotor has 4 poles and the stator has 6 poles
- Example



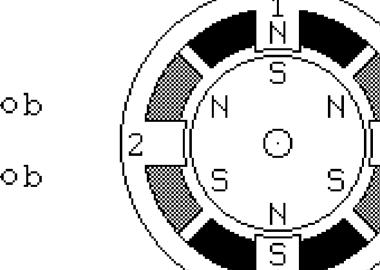
Variable Reluctance Motors


- To rotate we excite the 3 windings in sequence
 - W1 1001001001001001001001001
 - W2 0100100100100100100100100
 - W3 0010010010010010010010010
- This gives two full revolutions

Unipolar Motors

аo

ao



7

n

<u>QQQ</u>

0 2

7

Unipolar Motors

- To rotate we excite the 2 windings in sequence
 - W1a 1000100010001000100010001
 - W1b 0010001000100010001000100
 - W2a 0100010001000100010001000
 - W2b 0001000100010001000100010
- This gives two full revolutions

Basic Actuation Wave Forms

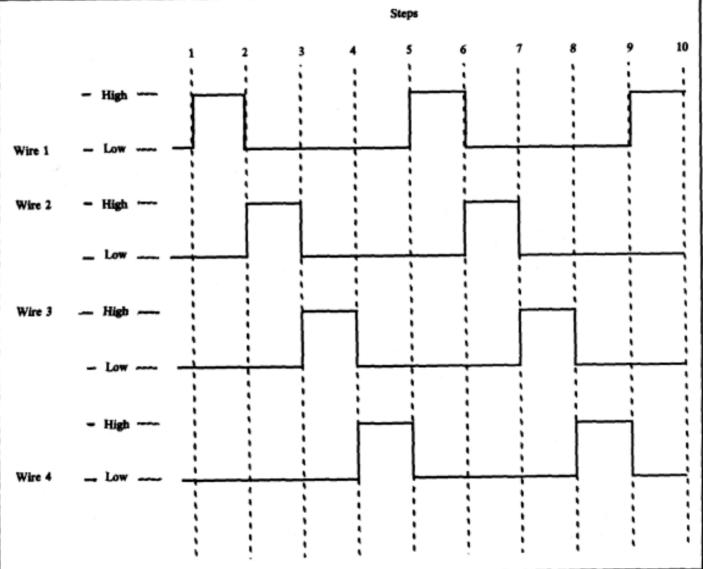


Fig. 14-4. The basic wave-step actuation sequence of a four-phase stepper motor.

Unipolar Motors

- To rotate we excite the 2 windings in sequence
 - W1a 1100110011001100110011001
 - W1b 0011001100110011001100110
 - W2a 0110011001100110011001100
 - W2b 1001100110011001100110011
- This gives two full revolutions at 1.4 times greater torque but twice the power

Fnhanced Waveforms

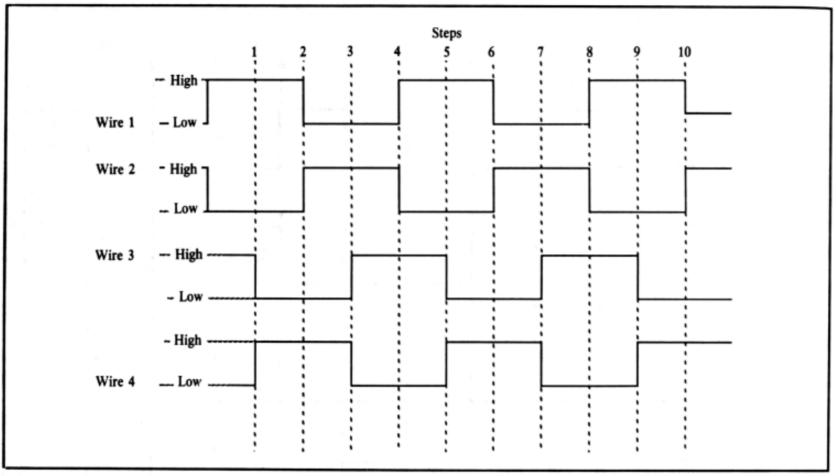
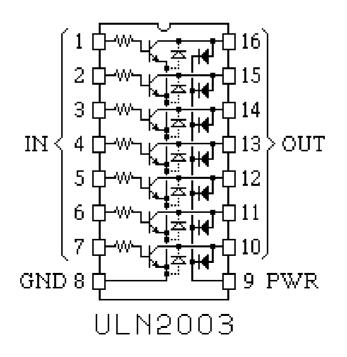


Fig. 14-5. The enhanced on-on/off-off actuation sequence of a four-phase stepper motor.


- better torque
- more precise control

Unipolar Motors

- The two sequences are not the same, so by combining the two you can produce half stepping
 - W1a 11000001110000011100000111
 - -W1b-00011100000111000001110000
 - W2a 01110000011100000111000001
 - W2b 00000111000001110000011100

Motor Control Circuits

 For low current options the ULN200x family of Darlington Arrays will drive the windings direct.

Interfacing to Stepper Motors

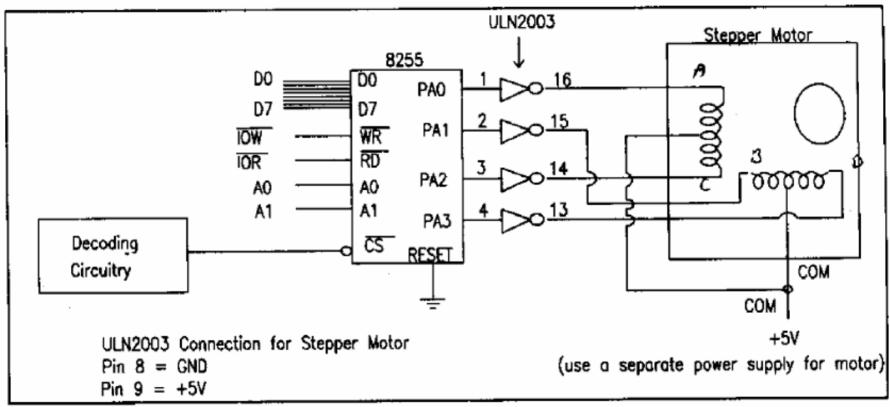


Figure 4-40. 8255 Connection to Stepper Motor

Example (với 80x86)

. .

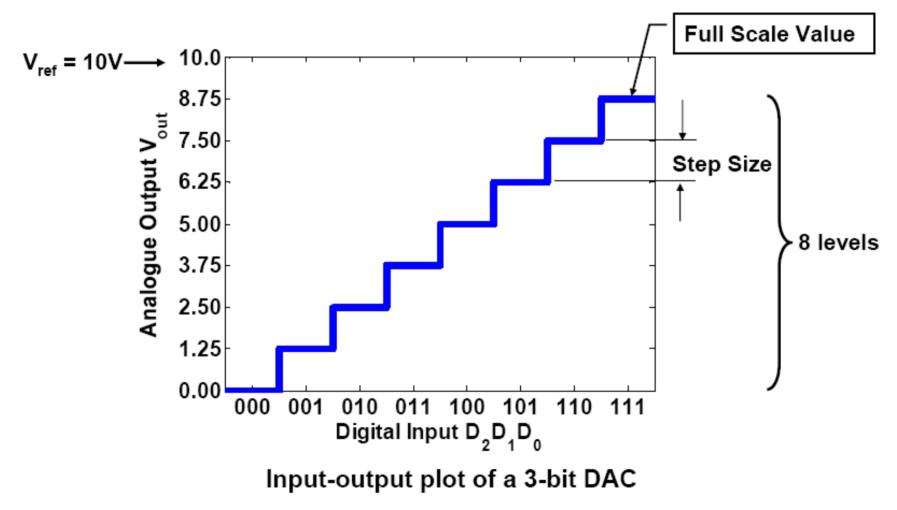
	MOV MOV	AL,80H DX,303H	;control word for all 8255 ports as out ;control reg address of 8255 on PC Trainer
	OUT	DX,AL	to control reg
	MOV	BL,66H	or BL=33H, BL=99H or BL=0CCH
AGAIN:	MOV	AH,01	;check the key press
	INT	16H	using INT 16
	JNZ	EXIT	stop if any key pressed
	MOV	AL,BL	otherwise send pulse to stepper motor;
	MOV	DX,300H	port A address of 8255 on PC Trainer;
	OUT	DX,AL	
	MOV	CX.0FFFFH	(change this value to see rotation speed)
HERE:	LOOP	HERE	;wait for delay
	ROR	BL,1	;rotate for next step
	JMP	AGAIN	;and continue until a key is pressed

EXIT:

Giao tiếp với DAC

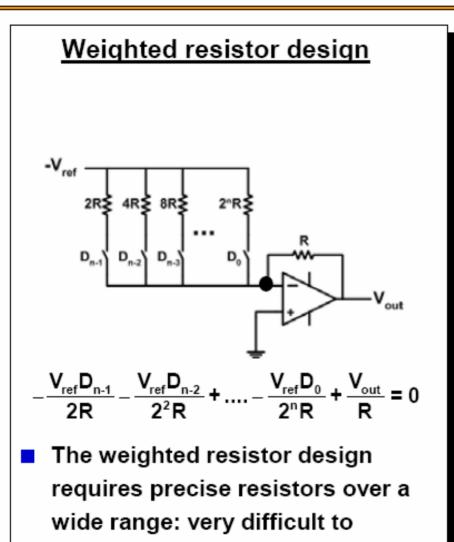
Digital-to-analog converters

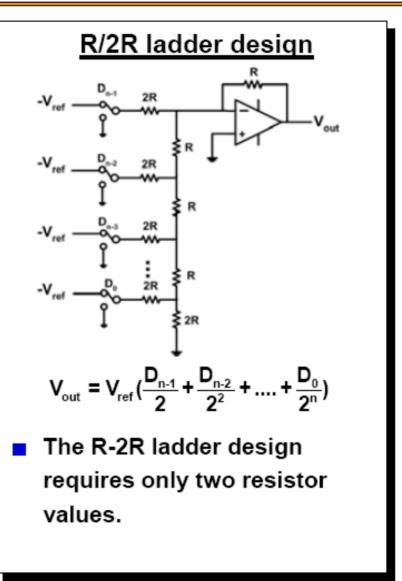
- A digital-to-analogue converter (DAC) translates a digital value to analogue signals.
- The analogue output of an DAC is proportional to its digital input.
- The analogue signals could be voltage or current.
- Digital input can be entered via either a parallel or serial interface.


- Examples of DAC ICs
 - DAC0800: current mode, 8-bit, parallel interface.
 - MAX5521: voltage mode, 10-bit, serial interface.

- Let's consider a n-bit voltage-mode DAC.
- Let $d = D_{n-1}D_{n-2}...D_0$ be the digital input to the DAC.
- Let V_{ref} be the input reference voltage.
- The output voltage produced by the DAC is

$$V_{out} = V_{ref} \left(\frac{D_{n-1}}{2} + \frac{D_{n-2}}{2^2} + \dots + \frac{D_2}{2^{n-2}} + \frac{D_1}{2^{n-1}} + \frac{D_0}{2^n} \right)$$


In other words,


$$V_{out} = d \times \frac{V_{ref}}{2^n}$$

DAC designs

achieve.

Parameters of a DAC

Number of bits: n = 8, 10, 12, 13, 14, etc.

A larger n means smoother output.

■ Full scale value: maximum output (i.e. when d = 2ⁿ – 1)

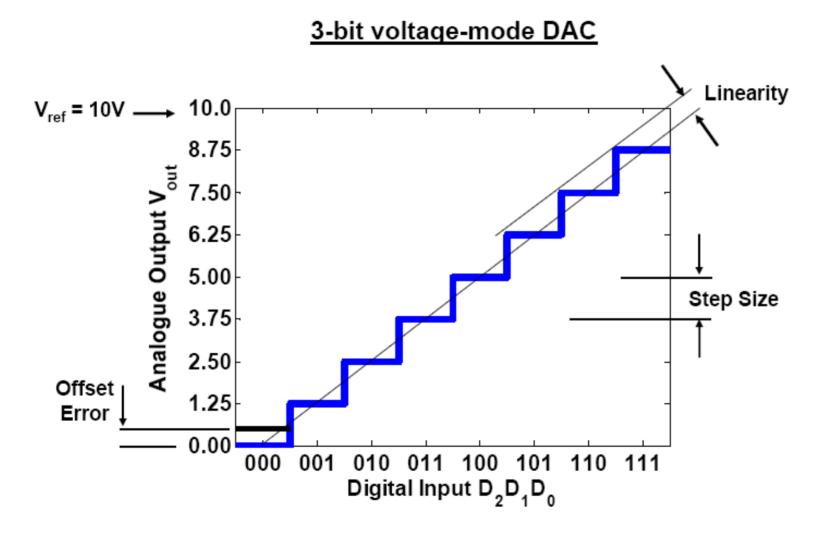
$$V_{FS} = V_{ref} \times \frac{2^n - 1}{2^n}$$

Step size (resolution): the smallest change that can be produced

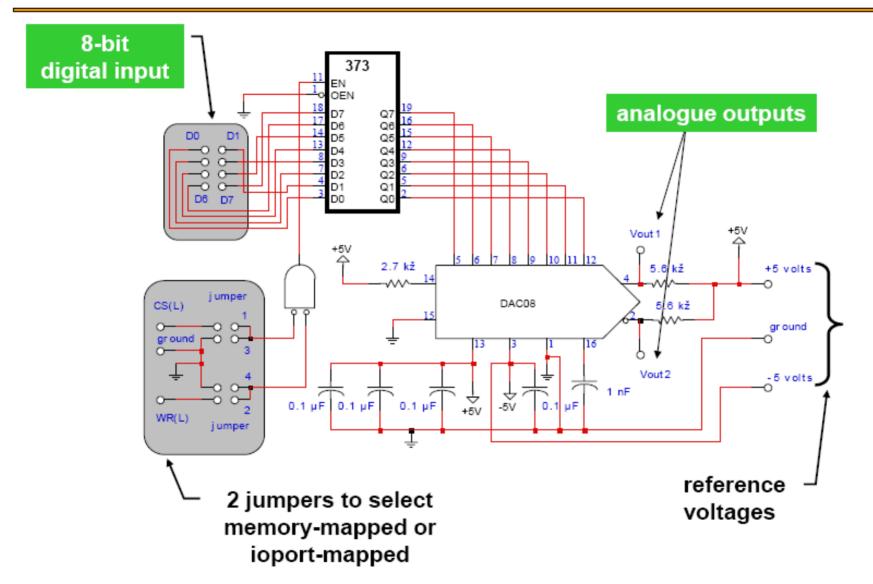
step size =
$$\frac{V_{ref}}{2^n}$$

Quantization error is half of the step size.

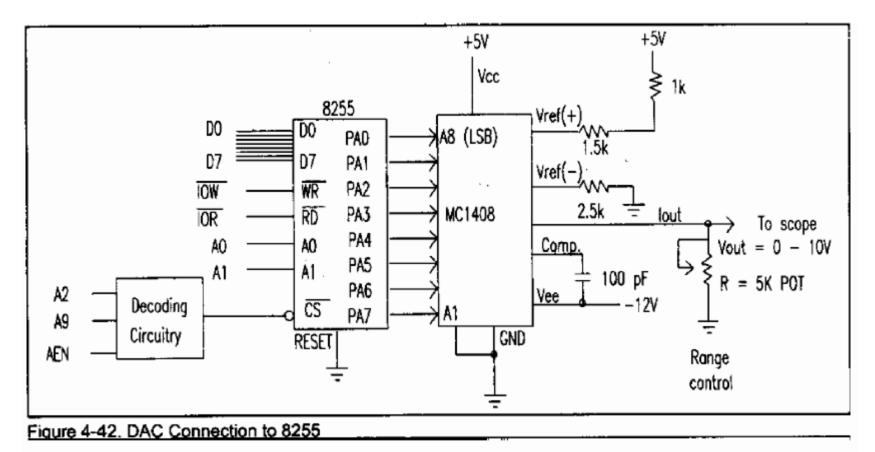
Percentage resolution:


percentage resolution =
$$\frac{step \ size}{V_{FS}} = \frac{100\%}{2^n - 1}$$

Parameters of a DAC


Settling time: time between the application of input and the output settling to within a specified band of the final value.

- Offset error: the nonzero DAC output when a 0 output is requested (by putting d = 0).
- Full scale error: the maximum deviation of the actual FS output from the expected FS output.
- Linearity: maximum deviation from the best-bit line for of inputoutput plot.
- Monotonic: increasing or decreasing input-output function.


Parameters of a DAC

DAC board

Digital to Analog Converter

Resolution: 8 bit

Example – Step Ramp

Example 4-18

In order to generate a stair-step ramp, set up the circuit in Figure 4-42 and connect the output to an oscilloscope. Then write a program to send data to the DAC to generate a stair-step ramp.

Solution:

Contactorio			
	MOV	AL,80H	all ports as output;
	MÖV	DX,303H	;control reg address of PC Trainer
	OUT	DX,AL	
Al:	MOV	AH,01	check for key press
	INT	16H	using PC BIOS INT 16
	JNZ	STOP	stop if any key is pressed
	SUB	AL,AL	other wise generate a stair-step ramp
	MOV	DX,300H	
A2:	OUT	DX,AL	
	INC	AL	;next step
	CMP	AL,0	;
	JZ	A1	if zero check for the key press
	MOV	CX.02FFH	delay (for fast CPUs increase value in CX)
WT:	LOOP	WT	;let DAC recover
	JMP	A2	create next step
STOP:	MOV	AH,4CH	go to DOS
	INT	21H	

Giao tiếp với ADC

An ADC samples an analogue signal at discrete times and converts the sampled signal to digital form.

 Used with transducers, ADCs allow us to monitor real-world inputs and perform control based on the inputs.

- Examples of ADC ICs
 - ADC0804: 8-bit, successive approximation
 - Maxim104: 8-bit, flash type

ADC applications

Local positioning sensor for object tracking

- The Receiver Signal Strength Indicator (RSSI) output of an FM receiver is measured.
- The RSSI output voltage is inversely proportional to the distance.

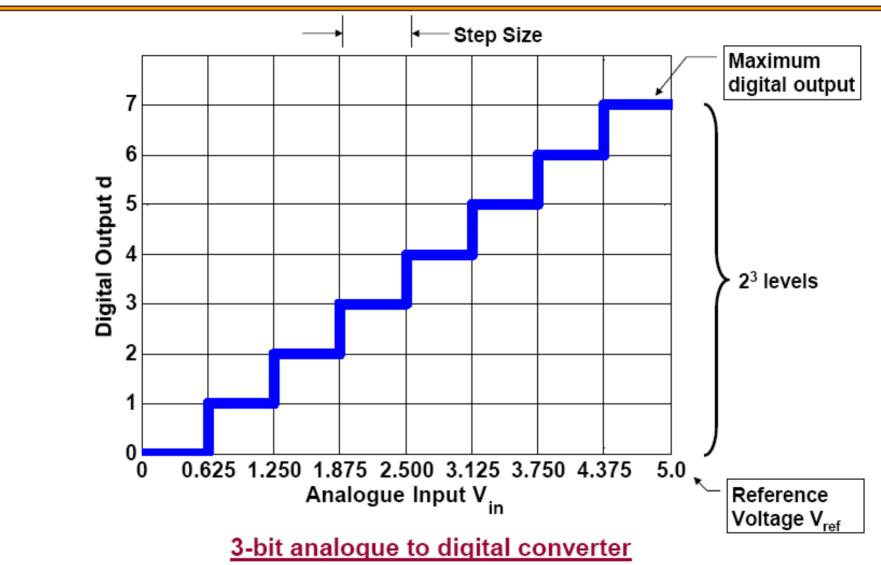
Temperature sensor for controlling shower water

- We can measure the output voltage of a thermistor.
- The thermistor's resistance depends on its temperature.

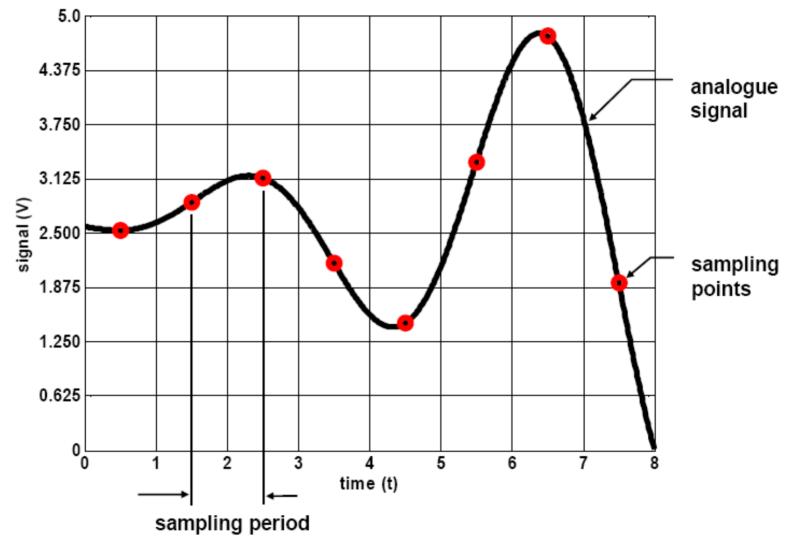
Electric fence monitoring

- Measure the voltage level of an electric fence.
- Determine if the fence is being tampered.

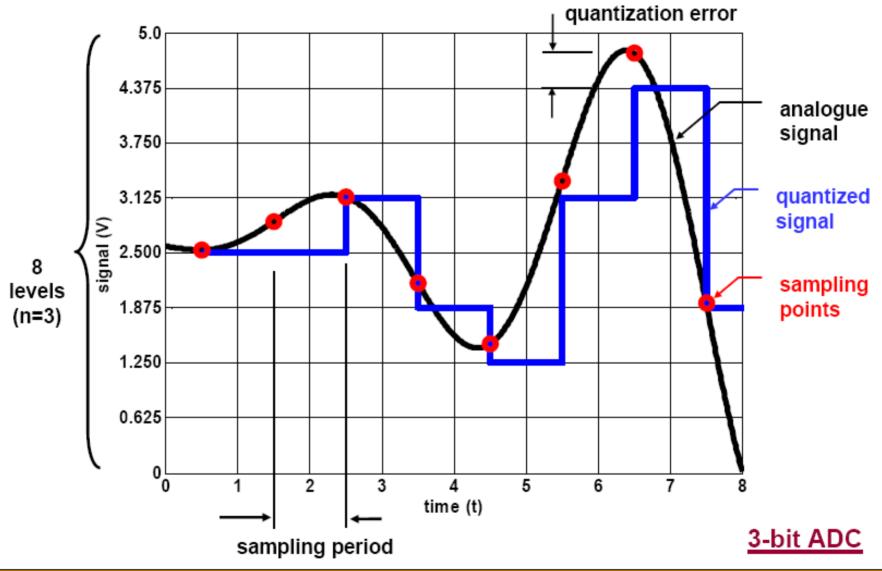
ADC conversion equation


- Let's consider an n-bit ADC.
- Let V_{ref} be the reference voltage.
- Let V_{in} be the analogue input voltage.
- The ADC's digital output, d = D_{n-1}D_{n-2} ...D₀, is given as

$$d = floor[\frac{V_{in}}{step \ size}]$$

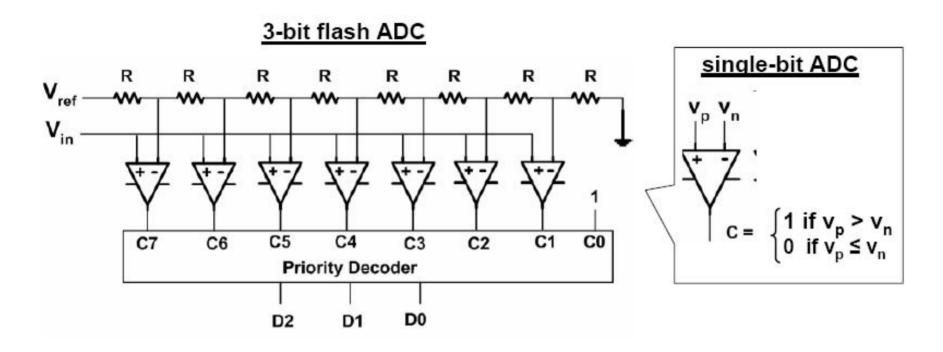

The step size (resolution) is the smallest change in input that can be discerned by the ADC:

step size =
$$\frac{V_{ref}}{2^n}$$


ADC input-output characteristics

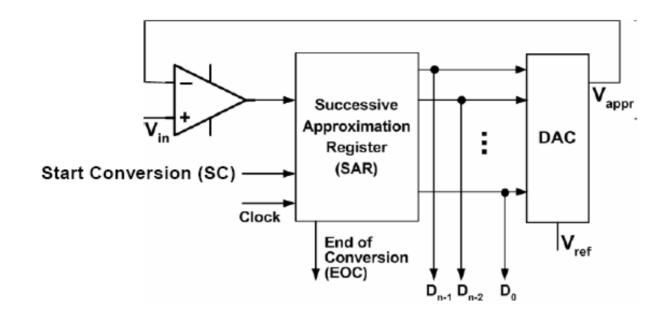
Sampling an analogue signal

Quantizing a sampled signal


Parameters of an ADC

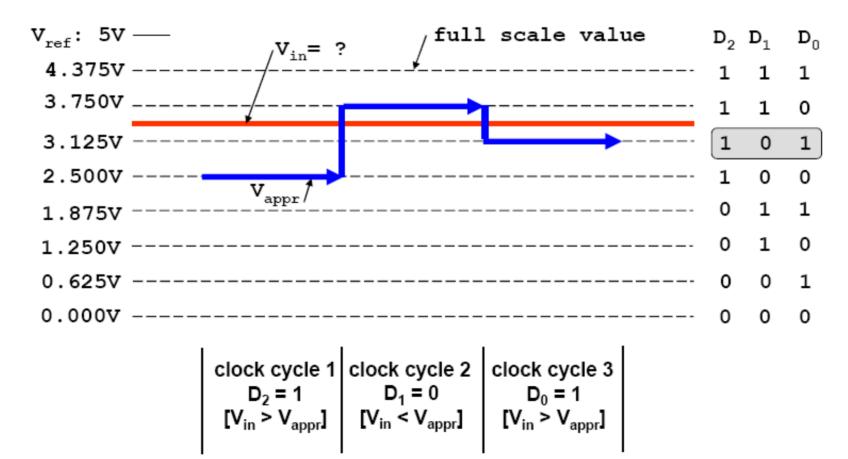
- Number of bits n: The higher the number of bits, the more precise the digital output.
- <u>Quantisation error</u> E_q: the average difference between the analogue input and the quantized value. The quantization error of an ideal ADC is half of the step size.

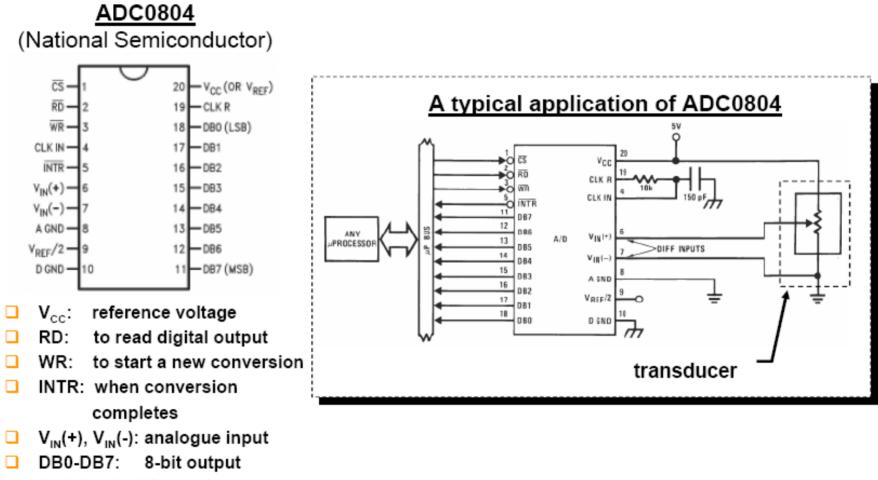
Sample time T_{ASM}: a sampling capacitor must be charged for a duration of t_{ASM} before conversion taking place.


Conversion time T_{CONV}: time taken to convert the voltage on the sampling capacitor to a digital output.

ADC designs: flash ADC

- A n-bit flash ADC uses 2ⁿ-1 comparators and a priority decoder.
- Advantage: the fastest type of ADC.
- Disadvantages: limited resolution, expensive, and large power consumption.


ADC designs: successive-approximation ADC


- Quite fast, one of the most widely used design for ADCs.
- A DAC is used to generate approximations of the input voltage.
- A comparator is used to compare V_{in} and V_{appr}.
- In each cycle, SAR finds one output bit using comparator's output.
- To start conversion, set SC = 1. When conversion ends, EOC = 1.

Successive-approximation ADC

Binary search for a 3-bit ADC

Example of ADC ICs

CLK IN, CLK R: clock signal

Analog to Digital

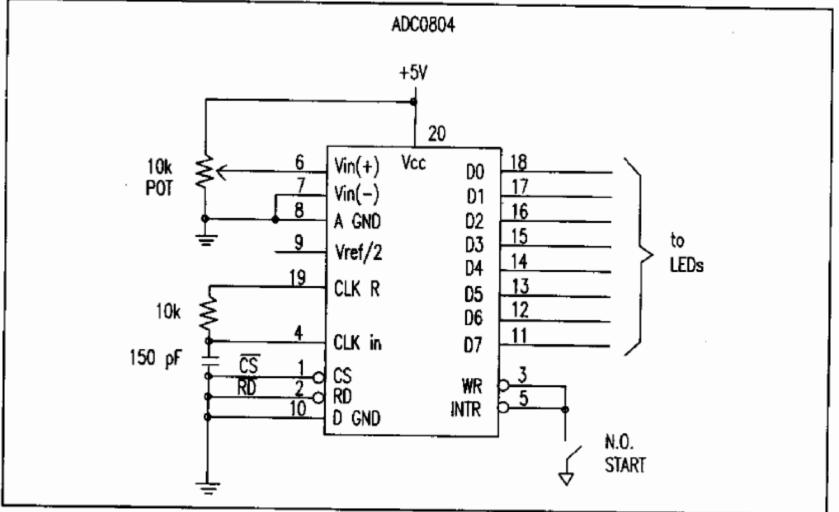


Figure 4-44. Testing 804 in Free Running Mode

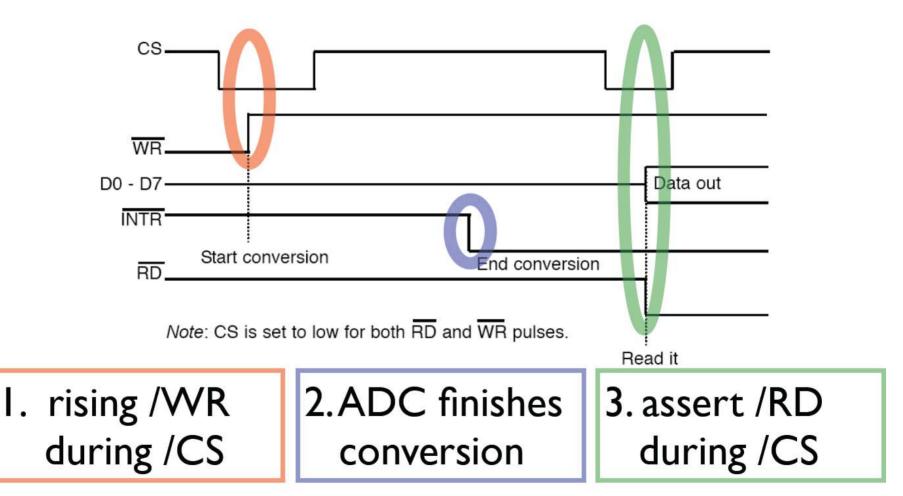
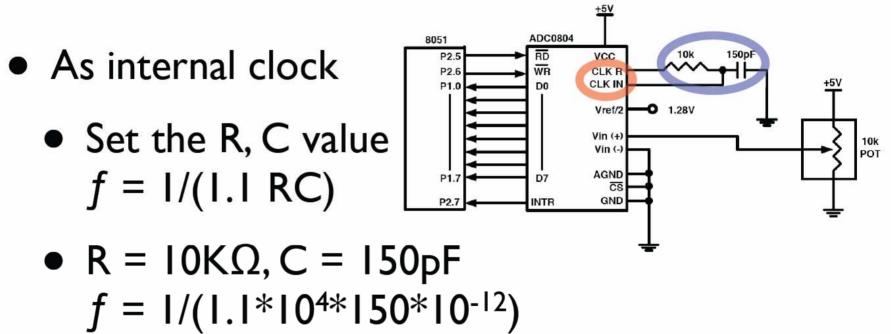

V_{in} Range

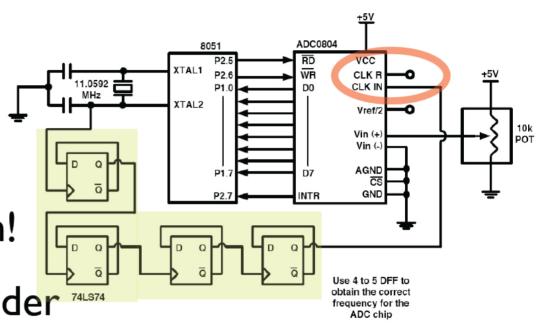
Table 4-16: Vref/2 Relation to Vin Range

Vref/2(V)	Vin(V)	Step Size (mV)
not connected*	0 to 5	5/256 = 19.53
2	0 to 4	4/255 = 15.62
1.5	0 to 3	3/256 = 11.71
1.28	0 to 2.56	2.56/256 = 10
1	0 to 2	2/256 = 7.81
0.5	0 to 1	1/256 = 3.90


Notes: $V_{CC} = 5V$ * When not connected (open), $V_{ref}/2$ is measured at 2.5 volts for $V_{CC}=5V$. Step size (resolution) is the smallest change that can be discerned by an ADC.

Timing Diagram for ADC transaction

Could also assert /CS the whole time w/out pulsing! $_{64}$


CLK IN and CLK R

- = 606060.6 => 606KHz, or 1.65µs cycle time
- Can also take external clock

External clocking scheme for ADC0804

- Could use the same crystal as for 8051
- Issue: freq too high!
- Solution: clock divider
 - cascaded D-flipflops: next one is clocked by the prev's Q, each feeds /Q to its own D

Assembly for ADC0804

			, C	S _	
RD	RD BIT P2.5			assume /CS=0 the whole time	e!
WR	WR BIT P2.6		W D0 - D	·R	Data out
INTR	BIT I	P2.7			Data Out
MYDA	ta equ	I PI	Ā	D Start conversion End conversion	
	SETB	INTR		;; make it input	Read it
BACK:	CLR	WR		;; pulse WR by lowering first	
	SETB	WR		;; conv starts on rising edge	
HERE:	JB	INTR, H	ERE	;; poll for /INR to go low	
	CLR	RD		;; assert output enable	
	MOV	A, MYD/	ATA	;; read conv value from port	
	ACALL	CONVE	RSION	;; Chap.6 routine to ASCII	
	ACALL	DATA_E	DISPLAY	;; Chap. 12 routine to display	
	SETB	RD		;; de-assert output enable	
	SJMP	BACK		;; do it again	

Interfacing ADC

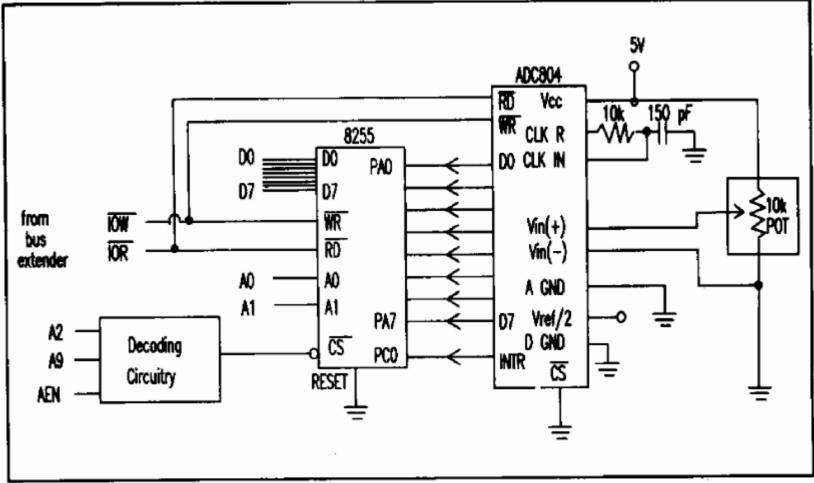
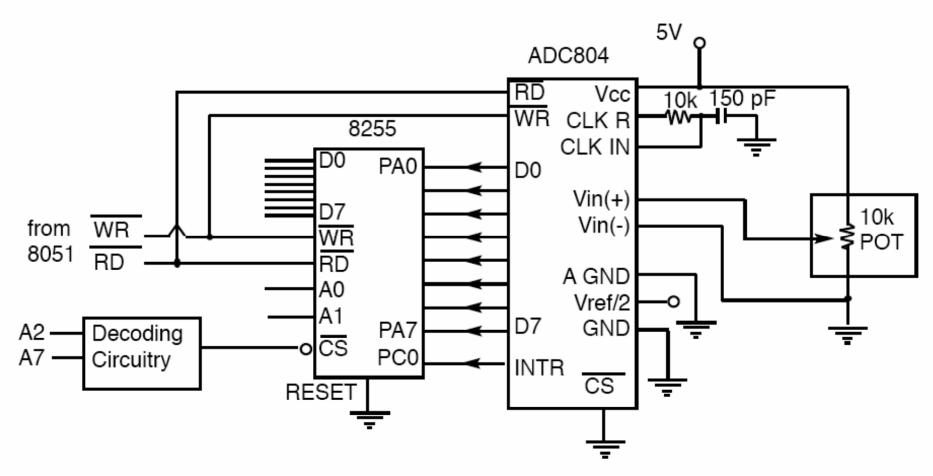


Figure 4-46. 8255 Connection to ADC804

Example (với 80x86)


Example 4-20

Examine the ADC804 connection to the 8255 of the PC Interface Trainer in Figure 4-46. Write a program to monitor INTR and bring in analog input into register AL.

Solution:

	MOV	AL,99H	;ports A and C as input
	MOV	DX,303H	;control port address of PC Trainer
	OUT	DX,AL	;initialize ports
A1:	MOV	DX,302H	port C address of PC Trainer
	IN	AL,DX	;get INTR status
	AND	AL,00000001	mask all except PC0
	CMP	AL,00000001	is it end of conversion (or INTR low)?
	JE	Al	;if no keep checking PC0
	;the co	nversion is finish	hed, next get the data from port A
	MOV	DX,300H	port A address of PC Trainer
	IN	AL,DX	8-bit binary data representing analog input
			now AL has the analog input

8051 giao tiếp với ADC

Temperature Sensor

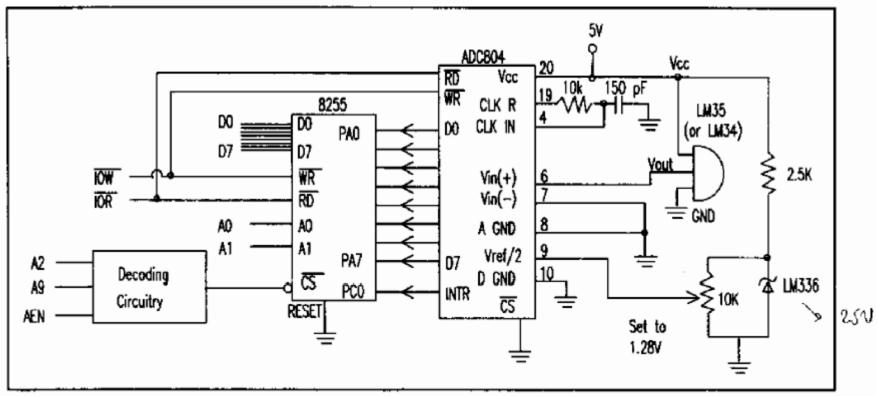
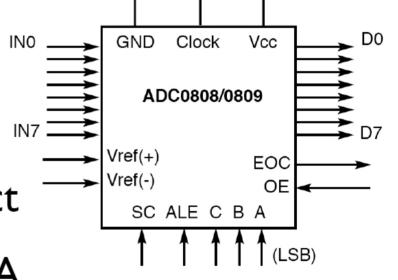
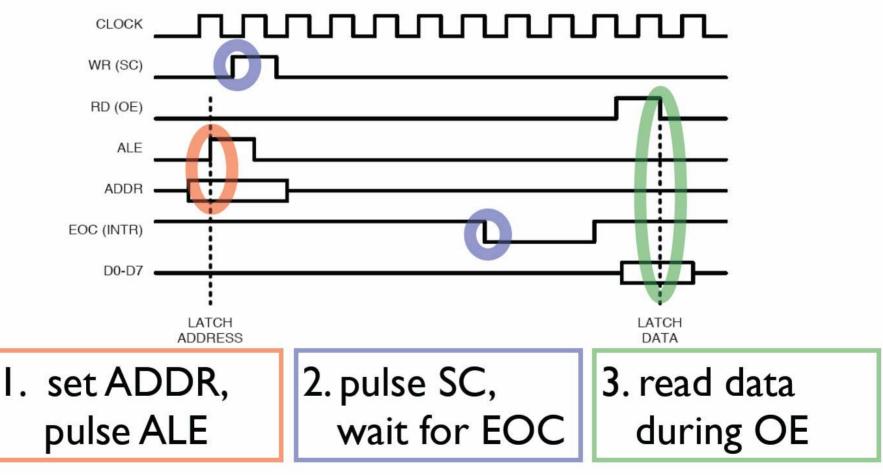


Figure 4-47. Temperature Sensor Connection to ADC804

Table 4-20:	Temp.	vs.	VOUT	of	the	804	

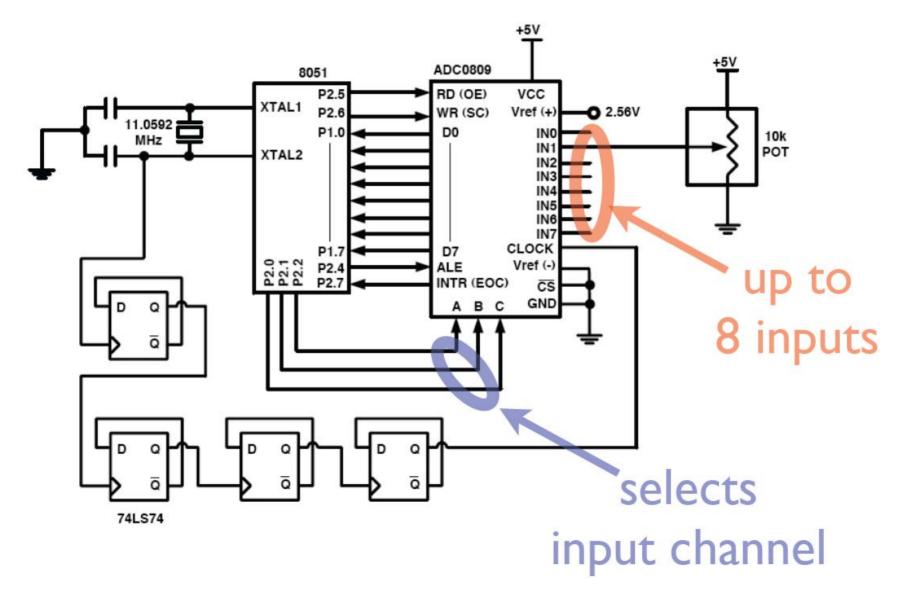

		ADC804 Vout	
Temperature (C)	V _{in} (mV)	D7 D0	
0	0	0000 0000	
1	10	0000 0001	
2	20	0000 0010	
3	30	0000 0011	
10	100	0000 1010	
30	300	0001 1110	

ADC0808/0809: multi-(analog)-channel


- 8 analog input lines
 - Selected by 3-bit, internally share I ADC
 - Conceptually, analog multiplexor on input
 - ALE latches the address
- 8-bit output port
 - similar to the single-channel ADC

Pin interface on ADC0808/0809

- IN0..IN7: analog input channels
- SC, EOC: (=WR, INTR) start conv, end-of-conv
- OE: (=RD) output enable IN7
- CBA: 3-bit channel select
- ALE: clock for latching CBA
- V_{ref}(+), V_{ref}(-): max and "gnd"



Timing Diagram for the ADC0809

ADDR is formed by C B A

Schematic for 8051 connected to ADC0809 up to 8 inputs selects input

Reference voltages

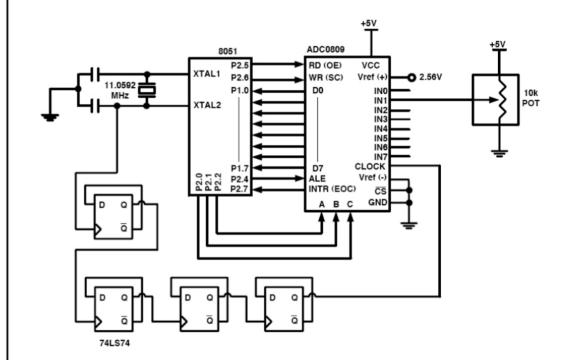
- V_{ref}/2 (e.g., ADC0804): <u>half the max voltage</u> e.g., V_{ref}/2=2.5V => max voltage = 5.0V => each step is 5.0V / 2⁸ = 19.53mV
 - Assumes same GND as signal source
- V_{ref}(+), V_{ref}(-) (e.g., ADC0808/0809)
 - V_{ref}(-) serves as GND for signal source possible to tie V_{ref}(-) to same GND
 - voltage step = $(V_{ref}(+)-V_{ref}(-)) / 2^8$

Single-ended vs Differential Pair input

- <u>Single ended</u>: relative to (common) GND
 - Problem: ground noise, ~10mV
- <u>Differential pair</u>: V_{in}(+),V_{in}(-)
 - Advantages: no ground noise, also "common mode noise rejection"

Digital vs Analog Ground

11.0592 📥


- AGND: analog
- GND: digital
- Digital => noisy due to frequent switching
- Analog: sensitive to noise
- Solution: separate AGND & GND
- Keep analog signal lines short

Assembly for ADC0809

ALE	BIT P2.4	
OE	BIT P2.5	
SC	BIT P2.6	
EOC	BIT P2.7	
ADDR_A	BIT P2.0	
ADDR_B	BIT P2.1	
ADDR_C	BIT P2.2	
MYDATA	EQU PI	
ORG	0H	
SETB	EOC ;; inp	
CLR	ALE	
CLR	SC	
CLR	OE	

Assembly for ADC0809 (2/2)

BACK:	CLR	ADDR_C		HERE:	JB	EOC, HERE	
	CLR	ADDR_B	;; sel ch=l	HEREI:	JNB	EOC, HEREI	
	SETB	ADDR_A			SETB	OE	
	ACALL	DELAY			ACALL	DELAY	
	SETB	ALE	;; latch addr		MOV		
	ACALL	DELAY				A, MYDATA	
	SETB	SC	;; start		CLR	OE	
	ACALL	DELAY			ACALL	CONVERSION	
	CLR	ALE			ACALL	DATA_DISPLAY	
	CLR	SC			SJMP	ВАСК	

Table 10-6: DB-25

Printer Pins

2

Pin Description

Printer Connection

3 Data bit 1

Data bit 0

- 4 Data bit 2
- 5 Data bit 3
- 6 Data bit 4
- 7 Data bit 5
- 8 Data bit 6
- 9 Data bit 7
- 10 Acknowledge
- 11 Busy
- 12 Out of paper
- 13 Select
- 14 Auto feed
- 15 Error
- 16 Initialize printer
- 17 Select input
- 18 Ground
- 19 Ground
- 20 Ground
- 21 Ground
- 22 Ground
- 23 Ground
- 24 Ground

25 Ground

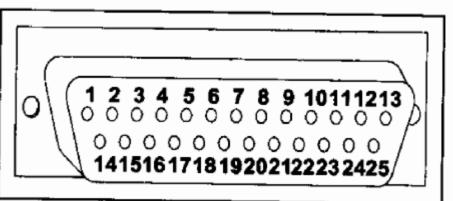
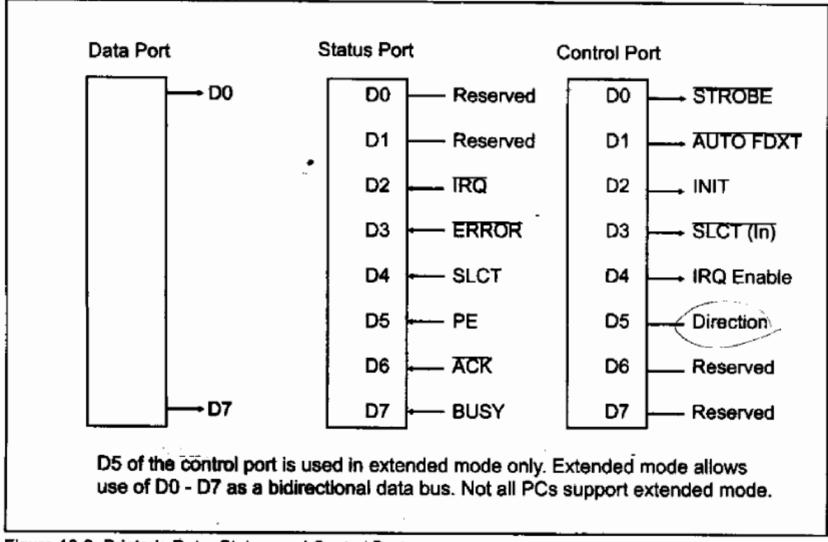


Figure 10-8. DB-25P (Male) Printer Conhector (Reprinted by permission from "IBM Technical Reference" c. 1988 by International Business Machines Corporation)

IO Base Address for LPT

- -d 0040:0008
- LPT: 03BC, 0378, 0278
- 3 I/O ports
 - LPT data lines
 - LPT status lines
 - LPT control lines


Table 10-7: BIOS I/O Base Addresses for LPT

I/O Base Address	LPT
	LPT1_
0040:000A - 0040:000B	LPT2
0040:000C - 0040:000D	
0040:000E - 0040:000F	

Table 10-8: IBM PC Printer Ports and Their Functions

Line Printer	Data Port (R/W)	Status Port (Read Only)	Control Port (R/W)
LPT 1	03BCH	03BDH	03BEH
LPT 2	0378H	0379H	037AH
LPT 3	0278H	0279H	027AH

Printer's Ports

Useful Links

- http://www.kmitl.ac.th/~kswichit/
- <u>http://www.8052.com/codelib.phtml</u>
- http://www.circuits-city.com/
- <u>http://www.ikalogic.com/cat_microcontrolle</u> <u>rs.php</u>