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Abstract In this paper, a queueing system with two pri-
ority classes of customers is investigated. In the queueing
system, customers of high priority can preempt the service
of customers of low priority. Customers can wait in buffers
of finite size. A congestion control mechanism is proposed
to model various practical problems. The steady-state prob-
abilities are computed with the help of the framework of
quasi-birth–death processes using the theory of generalized
invariant subspace. Performance measures of interest are also
derived and demonstrated by numerical results.

Keywords Priority · Feedback control · Queue · QBD

1 Introduction

The preemptive queue with two priority classes has been
treated in earlier works [10,11,13] because it can be used for
the performance evaluation of practical systems. Customers
of two classes (high and low priority) arrive into the sys-
tem. A server has a service capacity of multiple identical
service units. Each high-priority customer requires a single
service unit. The system works under the preemptive disci-
pline, i.e. an admitted high-priority customer immediately
gets service upon his arrival either by getting an idle service
unit or by occupying service unit being used by low-priority
customers. High-priority customers are served according to
the first in first out (FIFO) and low-priority customers are
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served according to the processor sharing (PS) principle.
Furthermore, the service capacity for low-priority customers
depends on the number of high-priority customers in the
system.

To take into account practical aspects, buffers of finite size
for both two classes of customers are assumed in this paper.
Furthermore, a proposed queue includes a congestion control
mechanism. Once the number of low-priority customers in
the system reaches the first control threshold, the arrival rate
of low-priority customers is reduced to a guarantee arrival
rate. If the number of low-priority customers is above the
second control threshold, each arriving batch of low-priority
customers will be discarded with a certain probability. There-
fore, the proposed queue can be used to model Differentiated
Service Architecture [14] in IP networks.

We show that this queue can be analyzed within the frame-
work of Quasi Birth and Death (QBD) processes [4,5,7,8].
Closed-form expressions are given for the mean number of
customers of each class, the batch and the customer loss prob-
ability of each class and the mean system time of customers.

The rest of the paper is organized as follows. In Sect. 2, a
queue with two priority classes is discussed in details. Finally,
numerical results illustrating the operation of the system are
presented in Sect. 3. The paper ends with some conclusions
in Sect. 4.

2 A system model and performance analysis

The system consists of a server and two finite queues. The
service capacity of the server is assumed to be composed of
N service units. There are two categories of customers: high
priority (HP) and low priority (LP).

We assume that the interarrival times of batches of HP
customers follow an exponential distributions with parameter
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λHP. The size of the buffer for storing HP customers is KHP.
The batch size is upper-bounded by H (note that KHP ≥ H ).
A batch of b, 1 ≤ b ≤ H , HP customers occurs with prob-
ability hb, where

∑H
b=1 hb = 1. Each HP customer requires

a single service unit. The service time of a HP customer has
an exponential distribution with rate μHP. High-priority cus-
tomers are served according to the FIFO principle.

Let I (t) denote the number of high-priority customers in
the system at time t, 0 ≤ I (t) ≤ N = N + KHP. Upon the
arrival of a batch of b HP customers at time t ,

– if all the N service units are occupied by high-priority
customers, then the batch or a portion of the batch is put
into the buffer of size KHP, or the whole batch is rejected.
A decision regarding the batch depends on the occupation
level of the buffer and an applied admission rule.

– if the number i of service units occupied by other high-
priority customers is less than N (i.e., i < N ) and b ≤
N − i, i HP customers is immediately served. Note that
it is assumed that high-priority customers are allowed to
push out low-priority customers being in service upon the
arrival of high-priority customers.

– if the number i of service units occupied by other high-
priority customers is less than N (i.e., i < N ) and if b >

N − i , the server is occupied by N − i HP customers from
the batch and b − N + i HP customers will be tried to be
placed in the buffer.

Two admission rules can be considered for the placement
of customers into the buffer: whole batch acceptance (WBA)
or partially batch acceptance (PBA). WBA means that the
whole batch will be dropped if the system is not able to accept
the whole batch. Under PBA only the part of batch is dropped,
for which available room cannot be assured.

Batches of low-priority customers arrive according to a
Poisson process. The batch size is upper-bounded by L . A
batch of b, 1 ≤ b ≤ L , LP customers occurs with proba-
bility lb, where

∑L
b=1 lb = 1. The service discipline of LP

customers is processor sharing, a low-priority batch will get
service immediately if there is service capacity not used by
HP customers. Otherwise the batch is put into a buffer of
size KLP. Due to the preemptive nature of the system, low-
priority customers under service may be pushed back into
waiting room by high-priority customers. It is highly recom-
mended that once a customer has been accepted into system,
it will not be lost because of the aforementioned push-back
mechanism. Therefore, at any time we require that no more
than KLP of low-priority customers (either being in service
or waiting in queue) are in the system. Let J (t) be the number
of low-priority customers in the system, 0 ≤ J (t) ≤ KLP. If
there are i high-priority and j low-priority customers in the
system (0 ≤ i ≤ N + KHP, j ≥ 1), then each of the low-
priority customers receives service at rate max(N−i,0)

j μLP.

Table 1 Parameters of the considered queue

λHP Arrival rate of high-priority batches

λLP Minimum arrival rate of low-priority batches

H Upper bound of high-priority batches

L Upper bound of low-priority batches

KHP Buffer size for the high-priority class

KLP Buffer size for the low-priority class

m1 The first control level for low-priority class

m2 The second control level KLP − m2

pdropp Dropping probability used for overload control

It is assumed that batches of low-priority customers arrive
at rate λL P, j for level j (0 ≤ j < m1). When the number
of low-priority customers in the system reaches the level m1,
its (batch) arrival rate is forced to reduce from λL , j to the
guarantee value λLP. From the context of congestion control,
it is natural to assume λLP,0 ≥ λLP,1 ≥ · · · ≥ λLP.

The second control level is set to j = KLP − m2. That
means whenever the difference between the number of low-
priority customers and the waiting room’s capacity drops
below m2, each low-priority arrival batch will be discarded
with the pre-defined probability pdropp. The main parameters
of the queue are summarized in Table 1.

The system is two-dimensional Markov process (I (t),
J (t)) = (i, j) with the state space {(i, j) : 0 ≤ i ≤
KHP + N , 0 ≤ j ≤ KLP}. Let pi, j denote the steady state
probability of the state (i, j) as

pi, j = lim
t→∞ Pr(I (t) = i, J (t) = j), (i = 0, . . . , N

+KHP; j = 0, 1, . . . , KLP).

We introduce the following vectors

v j = (p0, j , p1, j , . . . , pN , j ) for j = 0, 1, . . . KLP.

In what follows, we provide an analysis for the WBA rule.
Note that the analysis for the PBA rule can be performed in
the same way. For the WBA rule, the generator matrix of this
process will have the form shown in Fig. 1.

For 0 ≤ j ≤ KLP, we define the following matrix
A j = A j − D A j − C j −∑L

s=1 B j−s,s , where D A j is matrix
whose diagonal elements are the sum of the elements in the
corresponding row of A j .

The balance equations of the system are written as

L∑

s=1

v j−s B j−s,s + v jA j + v j+1C j = 0, (1)

and the normalization equation is

KLP∑

j=0

v j e = 1.0, (2)

where e is the unit vector.
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Fig. 1 The block structure of
the generator matrix of the
queueing system
(m1 = 3, m2 = 4, L = 2)

Fig. 2 Examples of transition
matrices

For M1 = m1 + L ≤ j ≤ M2 = min(KL −1, KL −m2),
the Eq. (1) include only j-independent coefficient matrices
and have a common form

L∑

s=1

v j−s Bs + v jA + v j+1C1 = 0. (3)

The examples of these matrices are shown in Fig. 2.
In the literature so far, attention is mainly focused on the

steady-state analysis of infinite QBD-M processes [1,3,9]
performed by a direct approach with spectral expansion
method proposed in [3] or an indirect approach with reblock-
ing technique applied in [12].
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To cope with the numerical problem, we apply the the-
ory of generalized invariant subspace [2]. Recall that with
the theory of generalized invariant subspace, we are able to
compute matrices U = [U1 U2 ] and V = [ V1 V2 ], which
makes the following decomposition possible

U−1 EV =
[

E11 0
0 E22

]

and U−1GV =
[

G11 0
0 G22

]

(4)

where matrices E and G are constructed from the QBD-M
process as follows

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . . . . −D0
I 0 . . . . . . −D1
0 I . . . . . . −D2
.
.
.

.

.

.
. . .

0 0 . . . I −Dy−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I
I

. . .

I
Dy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

matrix Di (i = 0, 1, . . . , L + 1) is the coefficient matrix of
v j−L+i in the balance equations.

Let ms and mu denote the number of singularities of matrix
pencil λE − G, which lie inside and outside the open unit
disk, respectively. Note that the singularities of the matrix
pencil λE −G, i.e. the roots of det (λE −G) = 0 are exactly
the roots of the equation det (D(λ)) = 0, where D(λ) =
D0 + D1λ + . . . + DL+1λ

L+1. As a consequence, we have
ms + mu = m = (L + 1) × (N + 1). Matrices U1, V1 are of
size m × mu , matrices U2, V2 are of size m × ms , matrices
E11, G11 are of size mu × mu and matrices E22, G22 are of
size ms × ms , respectively.

Let define the following partition and matrices

U−1 =
[

X1

X2

]

, F1 = E11G−1
11 , F2 = G22 E−1

22 ,

Tn = (n-th pos.)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

I
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for 0 ≤ n ≤ L (6)

matrices F1 and F2 are of size mu ×mu and ms ×ms , respec-
tively. Let define the grouping

wk = [ vM1−L+k . . . vM1+k ] (7)

for 0 ≤ k ≤ K = M2 − M1 + 1 and

[ pk qk ] = wk[U1 U2 ] (8)

The vectors pk and qk (0 ≤ k ≤ K ) are of size mu and ms ,
respectively. It can be easily checked that

wk+1 E = wk G 0 ≤ k ≤ K (9)

By post-multiplying the Eq. (9) by matrix V and combining
with Eq. (4), we obtain two un-couple generalized difference
equations for pk and qk

pk+1 E11 = pk G11 0 ≤ k < K (10)

qk+1 E22 = qk G22 0 ≤ k < K (11)

This follows that the next two expression hold

pk = pK F K−k
1 and qk = q0 Fk

2 (12)

We are now able to express the level probability vectors as

vM1−L+k = wk T0

= pK F K−k
1 X1T0 + q0 Fk

2 X2T0 for 0≤k ≤ K

(13)

and

vM1−L+K+n = wK Tn

= pK X1Tn + q0 F K
2 X2Tn for 0 ≤ n ≤ L

(14)

With the Eqs. (13) and (14), the unknown probability vectors
we have to compute now are v0, . . . , vM1−L−1, pK , q0 and
vM2+2, . . . , vK, i.e. there are (M1 − L) + y + (K − M2 −
1) = M1 + K − M2 unknown vectors, each of size N + 1.
To get these unknown vectors, we have vector Eq. (1) for
j = 0, . . . , M1 − 1 (the first M1 equations) and for j =
M2 + 1, . . . ,K (the last K − M2 equations). However, only
M1 +K− M2 −1 of these equations are linearly independent
due to the fact that the generator matrix of the Markov process
is singular. This means one equation must be replaced by the
normalized Eq. (2). Using Eqs. (13) and (14), the equivalent
form of (2) is

M1−L−1∑

j=0

v j e +
K∑

j=M2+2

v j e

+ pK

[
K∑

k=0

F1
K−k X1T0 +

L∑

n=1

X1Tn

]

e

+ q0

[
K∑

k=0

Fk
2 X2T0 +

L∑

n=1

F K
2 X2Tn

]

e = 1 (15)

What remains to be clarified is how to determine the values
of mu and ms . For this aim, we take a corresponding infinite
QBD-M process, which possesses the same balance equa-
tions (3) with the same level-independent coefficient matri-
ces A, Bi (1 ≤ i ≤ L).

Using the interpretation of stability formulated in previ-
ous works (see [3,6]), stability condition of the correspond-
ing infinite QBD-M process is checked by evaluating the
inequality
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v

(
L∑

s=1

s Bs

)

e < v (C1) e (16)

where v is a vector of size N + 1 and is the solution of the
equations

v

(

A +
L∑

s=1

Bs + C1

)

= 0; v.e = 1 (17)

If the inequality (16) is fulfilled, then it is known from [3]
that the det (D(λ)) = 0 equation has exactly L ∗ (N + 1)

roots inside the unit disk. In this case, we have mu = (N +1)

and ms = L ∗ (N + 1). Also from [3], the case in which the
inequality does not hold implies that mu = (N + 1) + 1 and
ms = L ∗ (N + 1) − 1.

2.1 Average number of customers

Denote π = ∑KLP
j=0 v j and let πi be the i th element of

vector π .
For the high-priority class, the average number of cus-

tomers in the queue is computed as

Ehigh =
N+KHP∑

i=N

(i − N )πi . (18)

The average number of low-priority customers in the sys-
tem is calculated as

Elow =
KLP∑

j=0

jv j e. (19)

2.2 Batch loss probability

This parameter is defined as a probability that an arriving
batch is rejected due to the lack of storage and/or due to the
dropping control level. For the high-priority class, batch of
size k is rejected only if the number of high-priority cus-
tomers in the system is more than (N + KHP) − k upon his
arrival. Using PASTA (Poisson Arrivals See Time Average)
property, the loss probability for high-priority batch of size
k is

P(HP batch of size k loss) =
N+KHP∑

i=(N+KHP−k+1)+
πi , (20)

where (x)+ = max(x, 0).
The batch loss priority for the high-priority class is

P(HP batch loss)=
H∑

k=1

hk

⎛

⎝
N+KHP∑

i=(N+KHP−k+1)+
πi

⎞

⎠ . (21)

For the low-priority class, a batch of size k is always
dropped with probability pdropp if there are more than

KLP − m2 low-priority customers in the system. Moreover,
this batch is also dropped if it observes more than KLP − k
customers in the system. Therefore, two kinds of batch loss
probability can be introduced. The first one, referred as the
blocking probability, is caused merely by a finite buffer and
is derived in the same way we have done for the high-priority
class.

P(1)(LP batch of size k loss) =
KLP∑

j=(KLP−k+1)+
v j .e, (22)

P(1)(LP batch loss)=
L∑

k=1

lk

⎛

⎝
KLP∑

j=(KLP−k+1)+
v j .e

⎞

⎠ . (23)

The second kind of loss is caused by the interaction of the
control feedback level and a finite buffer. This is referred to
as the overall batch loss probability and is computed as

P(2)(LP batch of size k loss) =
KLP∑

j=(KLP−k+1)+
v j .e

+ �(k≤m2−1) pdropp

⎛

⎝
KLP−k∑

j=KLP−m2+1

v j e

⎞

⎠ , (24)

P(2)(LP batch loss)

=
L∑

k=1

lk .

⎡

⎣
KLP∑

j=(KLP−k+1)+
v j .e

+ �(k≤m2−1).pdropp

⎛

⎝
KLP−k∑

j=KLP−m2+1

v j e

⎞

⎠

⎤

⎦ , (25)

where �X denotes the indication function, which is 0 if event
X is false and 1 otherwise.

2.3 Customer loss probability

Let the average arrival batch size of the high-priority and
the low-priority class be h and l, respectively. It is clear that
h = ∑H

i=1 i.hi and l = ∑L
i=1 i.li . The probability that a

customer arrives in a batch with size k is equal to k.hk/h
(high-priority case) and k.lk/l (low-priority case). When the
WBA rule is applied, the probability that the customer in
batch of size k is dropped is equal to the probability that the
batch itself is dropped. Therefore, it follows that

P(customer loss)=
bmax∑

k=1

k.rk

b
.P(batch of size k loss). (26)

The expression above is valid for any class of customers. For
the high-priority class, we have to make bmax = H, b =
h, rk = hk and use the Eq. (20). For the two kinds of low-
priority loss, bmax = L , b = l, rk = lk substitutions and Eqs.
(22) or (24) are used.
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2.4 Average queueing and system times

Applying Little’s formula, the mean waiting time of a high-
priority customer is written as

Whigh = Ehigh

hλH (1 − P(HP customer loss))
. (27)

For the low-priority customer, the mean system time is cal-
culated again by Little’s theorem

Slow = Elow

l
(∑KLP

j=0 λL , j v j e
) (

1 − P(2)(LP customer loss)
) .

(28)

2.5 System time distribution

For high-priority class, define the Laplace transform

Si (s)=
⎧
⎨

⎩

(
NμH

s+NμH

)i−N (
μH

s+μH

)
for N < i ≤ N + K H

μH
s+μH

for i ≤ N

(29)

If a high-priority customer arrives in kth position of batch
of size r and sees i other high-priority customers in the sys-
tem (provided that a batch is accepted), then the Laplace
transform of the system time distribution of that customer is
given by Si+k(s). Since the probability of being in position
k in batch of size r is ξk = 1

r and the distribution of batch
size is known, the total probability rule yields

SH P (s)=
N+K H∑

i=0

πi

⎛

⎝
H∑

r=1

�{r+i≤N+K H }hr

⎛

⎝
r∑

k=1

ξk Si+k(s)

⎞

⎠

⎞

⎠

(30)

The derivation of system time distribution for low-priority
customer is done in two steps. First, for the sake of convenient
interpretation, we renumber the states of the QBD-M process,
i.e. each (i, j) state now corresponds to state with assigned
index j ∗ (N + 1) + i . With this “transformation”, each
state of the process can be accessed not by a couple of index
numbers, but by only one. Given a state having index k, an
original couple of indexes are

j =
[

k

N + 1

]

(31)

i = k − j ∗ (N + 1) (32)

where [x] denotes the greatest integer, which is less than or
equal to x . Let us denote the steady-state probability vector
of the process by γ , which is in fact a rewritten version of all
vectors v j calculated in the previous section.

Second, the technique of Markov driven workload process
is utilized to determine the system time distribution. Recall

that the service capacity for low-priority customers are evenly
shared between them and it depends on the number of high-
priority customers. In other words, one can consider a work-
load process controlled by our original Markov process.
When a driving Markov process is in state k, the workload
process accomplishes service at rate rk = max(N−i,0)

j where
i and j are determined from k as in the expression (31)
and (32).

When a low-priority customer arrives, it brings its service
requirement x . This customer will leaves the system when
the workload process defined above accomplishes a work
amount of x . The fact that the customer arrives alone or in
batch with other ones does not matter at this point, because the
essence here is upon an arrival a workload process changes
its service rate due to the state change of a driving Markov
process. That is the information of possible batch arrivals
is indeed included in the generator matrix of the driving
process.

Since the service requirement x is exponentially distrib-
uted with parameter μL , the Laplace transform of the density
function of system time can be derived and appears to corre-
spond to phase time distribution

SL P (s) = pR[s I − (Q − μL R)]−1 RμLe (33)

where Q is the generator matrix of the driving Markov
process, R is a diagonal matrix where the entry (k, k) gives
the service rate in state k, and pR = γ R

γ Re is a row initial prob-
ability vector seen by the entering customer. The phase type
distribution has the initial probability pR , transient matrix
Q − μL R and vector RμLe of rates to the absorbing state.

3 Numerical results

In what follows, unless otherwise stated, the parameter set
N = 10, μLP = 1, λLP = 2, μHP = 2, λHP = 4, KLP =
50, H = L = 2 is applied. The distribution of batch sizes is
assumed to be uniform.

The impact of the dropping probability (pdropp) on per-
formance measures related to the low-priority class is shown
in Figs. 3 and 4 for m1 = 3, KHP = 10. In Fig. 3, both
the blocking and the overall loss probability are plotted as a
function of the dropping probability. The first observation is
that increasing the dropping probability of arriving batches
increases slightly the overall and at the same time reduces
significantly the blocking probability. The later performance
measure is in connection with the mean queue length, which
decreases with the dropping probability as shown in Fig. 4.

The second observation from the figures is that the smaller
the control level KLP −m2 is chosen, the better performance
is obtained from the aspect of the mean queue length and the
blocking probability, at the same time, the worse the perfor-
mance becomes from the aspect of overall loss probability. A
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trade-off between the increase of overall customer loss proba-
bility and the reduction of mean queue length (and through it,
the mean system time) should be carefully considered when
choosing an appropriate control level KLP − m2.

Figures 5 and 6 illustrate the effect of buffer size (KHP) for
customers of high priority on the queueing performance. The
system parameters are N = 5, m1 = 5, m2 = 8, pdropp =
0.01. The maximum size of arriving batches is chosen in
sequence to be 2, 4 and 8. Obviously, increasing the buffer
size reduces the batch loss probability as well as customer
loss probability as Fig. 5 shows. The decreasing rate is quite
fast when the maximum batch size is small (corresponding to
small offered traffic) and seems to slow down when the max-
imum batch size (so as the offered traffic) becomes greater.
Note that if reducing the batch (customer) loss probability is
performed by increasing the storage requirement then it also
implies the increasing of mean queue length and through it
the mean queueing delay, especially in the case of heavy
traffic load. This situation is depicted in Fig. 6.
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Now we discuss the influence of offered traffic on the
queueing performance with respect to interaction between
two classes. The system parameters are m1 = 5, m2 = 8,

KHP = 10, pdropp = 0.01, μLP = 1. The offer traffic is
increased by varying λHP/μHP meanwhile rLP = λLP/μLP

is fixed. Figures 7 and 8 clearly indicate the impact of the pre-
emptive principle. As high-priority customers have the right
to occupy service capacity over low-priority customers, the
offered traffic of high priority first forces more customers of
low priority to disclaim their service capacity and return to
waiting condition. Until a certain value of λHP/μHP, there is
no customer of the high-priority class in the queue and no
high-priority customer loss at all. Further the increase of the
offered traffic of high-priority customers causes the occu-
pancy of buffers and initiates lost events relating to both two
classes. However, due to the preemptive service discipline,
the mean number of low-priority customers in the queue, as
well as the customer loss probability of the low-priority class
are increasing at a greater rate than the corresponding ones
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Fig. 7 Mean queue length versus offered traffic
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Fig. 8 Customers loss probability versus offered traffic

for the high-priority class. It is also worth emphasizing that
the offered load of the low-priority class (expressed by para-
meter rL ) does not have any effect on the performance of the
high-priority class. That is why for different values of rL ,
the mean number and the loss probability of high-priority
customers remains the same as plotted in Figs. 7 and 8.

4 Conclusion

In this paper, the steady-state analysis of a queue with two
priority classes has been performed. To model some practical
problems, additional extensions have been considered, such
as finite capacity of buffers, batch arrival condition and level-
dependent feedback control.

We have shown that the steady-state probabilities can be
computed using the theory of generalized invariant subspace.
Using the presented methodology, a performance trade-off
can be achieved regarding the application of congestion con-
trol for networks.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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