Computer Communications and Networks

Bogdan Ciubotaru
Gabriel-Miro Muntean

Advanced Network
Programming —
Principles and
Techniques

@ Springer

Computer Communications and Networks

For further volumes:
www.springer.com/series/4198

http://www.springer.com/series/4198

The Computer Communications and Networks series is a range of textbooks, monographs
and handbooks. It sets out to provide students, researchers and non-specialists alike with
a sure grounding in current knowledge, together with comprehensible access to the latest
developments in computer communications and networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach, so that
even the most complex of topics is presented in a lucid and intelligible manner.

Bogdan Ciubotaru + Gabriel-Miro Muntean

Advanced Network
Programming —
Principles and
Techniques

Network Application Programming
with Java

@ Springer

Bogdan Ciubotaru

School of Electronic Engineering
Dublin City University

Dublin, Ireland

Gabriel-Miro Muntean

School of Electronic Engineering
Dublin City University

Dublin, Ireland

Series Editor

A.J. Sammes

Centre for Forensic Computing
Cranfield University
Shrivenham campus

Swindon, UK

ISSN 1617-7975 Computer Communications and Networks

ISBN 978-1-4471-5291-0 ISBN 978-1-4471-5292-7 (eBook)
DOI 10.1007/978-1-4471-5292-7

Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013944962

© Springer-Verlag London 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Bogdan Ciubotaru:

This book is dedicated to my wonderful
daughter Ilinca-Meda and my lovely wife
Madalina who have supported me
throughout this effort, encouraged me, and
blessed me with their love.

Gabriel-Miro Muntean:

This book is dedicated to my wonderful
children Daniel-Sasha and
Alexandra-Nadia who are smart, playful and
happy, and make me feel very proud being
their father, to my parents Dora-Aurelia and
Ivo who gave me the most important gifts of
wisdom and knowledge and are always
encouraging me, and last, but not least, to my
lovely wife Cristina, a true life partner of
mine.

Thank you very much!

Preface

This book on Advanced Network Programming Principles and Techniques covers in
detail network architectures, including the latest wireless heterogeneous networks,
communication protocol models, and protocols and support for communication-
based services. Network programming techniques are introduced in this book, in-
cluding server-side and client-side programming solutions, advanced client—server
communication models (i.e., socket-based, Remote Method Invocation, applet—
servlet communication), network-based data storage, and multimedia transfer.

Advanced Network Programming Principles and Techniques is a useful asset for
any reader interested in computer networking whether they are interested in under-
standing the underlying architectures and paradigms or are application developers
looking for useful examples to build communication-based programs. Additionally,
this book is an excellent companion to any network programming module taught at
the third level institutions worldwide.

To all the readers of this book, the authors hope it will be of great help and wish
them “happy reading”.

Dublin Bogdan Ciubotaru
Ireland Gabriel-Miro Muntean
March 2013

vii

Acknowledgements

Many thanks to Irina Tal and Cristina Muntean who have extensively contributed
with their comments which helped make this book better.

ix

Authors

Bogdan Ciubotaru received his Ph.D. degree from Dublin City University, Ireland
in 2011 for research in the area of quality-oriented mobility management for mul-
timedia applications and B.Eng. and M.Sc. degrees from “Politehnica” University
of Timisoara, Romania in 2004 and 2005, respectively. Dr. Bogdan Ciubotaru was
an IRC Postdoctoral research fellow with the Performance Engineering Laboratory,
School of Electronic Engineering, Dublin City University (DCU), Ireland. Currently
he is with Everseen Ltd, Ireland. His research interests include wireless mobile net-
works, multimedia streaming over wireless access networks as well as wireless sen-
sor networks and embedded systems. He is a member of IEEE and ACM Institute,
Ireland.

Gabriel-Miro Muntean received his Ph.D. degree from Dublin City University
(DCU), Ireland in 2003 for research in the area of quality-oriented adaptive mul-
timedia streaming and B.Eng. and M.Eng. degrees from “Politehnica” University of
Timisoara, Romania in 1996 and 1997, respectively. He is Senior Lecturer with the
School of Electronic Engineering at Dublin City University, Ireland, co-Director of
the DCU Performance Engineering Laboratory, Director of the Network Innovations
Centre, RINCE Institute, Ireland, and Consultant Professor with Beijing University
of Posts and Telecommunications, China. His research interests include quality-
oriented and performance-related issues of adaptive multimedia delivery, perfor-
mance of wired and wireless communications, energy-aware networking and per-
sonalised e-learning. Dr. Gabriel-Miro Muntean has published over 180 papers in
prestigious international journals and conferences, has authored two other books
and 12 book chapters and has edited four other books. Dr. Muntean is an Associate
Editor of the IEEE Transactions on Broadcasting, Associate Editor of the IEEE
Communications Surveys and Tutorials, and reviewer for other important interna-
tional journals, conferences and funding agencies. He is a member of ACM, ACM
SIGMOBILE, IEEE, and IEEE Broadcast Technology Society.

xi

Contents

1 Introduction. 1
2 Network Architectures 3
2.1 Imtroduction 3

2.2 Network Topologies 4
22.1 RingTopology 4

222 StarTopology i e 4

223 BusTopology 6

224 TreeTopology o i 6

225 MeshTopology 7

2.2.6 Ad-HocTopology 8

2.3 Network Components 9

2.4 Network Types and Communication Technologies 13
2.4.1 Personal AreaNetworks 15

2.42 Local AreaNetworks 16

2.4.3 Metropolitan Area Networks 18

244 Wide AreaNetworks. 22

245 Thelnternet 24

2.5 Conclusionso 26
References e 27

3 Network Communications Protocols and Services 29
3.1 Introduction 29

3.2 ProtocolHierarchy 29
3.2.1 Network Reference Models 29

3.2.2 Layered Communication Paradigm 32

3.23 TransportLayer 34

324 ApplicationLayer 37

33 Services e 41
3.3.1 ElectronicMail 41

332 TheWorldWideWeb 44

3.3.3 Multimedia-Based Services 46

Xiv

Contents

34 Conclusions e 51
Referenceso 51
Basic Network Programming 53
4.1 Introduction 53
4.2 Multi-programming and Multi-tasking 53
4.3 ProCesses v v v it e e e e e e e e e e 55
44 Threads. 57
4.5 Multi-threading oL o 57
4.6 Multi-threadinginJava 58
4.6.1 Extending Thread Class 59
4.6.2 Implementing Runnable Interface 61

4.7 Inter-thread and Inter-process Communication 65
4.7.1 Inter-thread Communication 65
4.7.2 Producer—-Consumer Problem 66

4.7.3 Inter-process Communication 71

48 Conclusions e 71
References 72
Socketso 73
5.1 Introduction 73
5.2 Socket Definitionand Types 73
5.3 Socket-Based Network Communications 74
53.1 UDPSockets. 75

532 TCPSockets 81

54 Conclusions 87
Referenceso 87
Socket-Based Client—-Server Communication 89
6.1 Introduction 89
6.2 Basic Client-Server Application Programming 90
6.3 Multi-threaded Server Applications 91
6.4 Unicast, Multicast, and Broadcast Communications 98
6.5 Conclusion 100
Support for Communication-Based Services 101
7.1 Introduction 101
7.2 Control and Diagnostic Services 102
7.2.1 Packet InterNet Groper 102

7.2.2 Internet Control Message Protocol 102

723 PINGJavaExample 103

7.3 Electronic Mail Services 106
7.3.1 SMTPJavaExample. 110

7.3.2 POP3JavaExample 119

7.4 File Transfer Protocol Service 125
7.4.1 Simple FTP Java Client Example 126

7.5 Web Content Transfer Service 130

Contents XV

10

7.5.1 HTTP Java Client Example 133
7.6 Java Database Connectivity Services 135
7.6.1 JDBC Architecture 136
7.6.2 JDBC Database Access 137
7.6.3 JDBC Transactions 141
7.64 JDBCMetadata 142
7.7 Multimedia Content Delivery Services 144
7.7.1 Protocols Specific to Real-Time Data Delivery 145
7.7.2 Multimedia Delivery over Cellular Networks 150
7.7.3 DVB-based Multimedia Delivery 151
7.7.4 Multimedia Delivery over WLAN 152
7.8 Adaptive Multimedia Delivery 153
7.9 Conclusion 154
References 154
Server-Side Network Programming 157
8.1 Introduction 157
8.2 Non-Java Server-Side Network Programming Solutions 158
8.2.1 Common Gateway Interface 158
8.2.2 Hypertext Pre-processor 159
83 JavaServlets 161
8.3.1 ServletOverview 161
832 ServletLife-Cycle 163
8.3.3 Servlet Programming 164
84 JavaServerPages L. 187
85 Conclusion L 191
Client-Side Network Programming 193
9.1 Introduction 193
9.2 Web Documents Classification 193
9.3 StaticDocuments 195
9.3.1 HyperText Markup Language 196
9.3.2 Extensible Markup Language 199
9.4 Active Documents oL o 207
9.4.1 JavaScript 207
942 JavaApplets 213
9.5 Conclusion 220
References 221
Advanced Client-Server Network Programming 223
10.1 Introduction 223
10.2 Remote Method Invocation 224
10.2.1 RMI Strategy A—Using a Common Class 228
10.2.2 RMI Strategy B—Using Separate Instances 232
10.3 Applet-Servlet Communication 235

10.3.1 Applet—Servlet Communication—Exchanging Text 238

XVvi Contents

10.3.2 Applet—Servlet Communication—Exchanging Objects . . . 240

10.4 Conclusion e 243
References 244
11 Conclusion 245

Chapter 1
Introduction

Abstract Currently, computer networking has already become ubiquitous, the num-
ber of diverse devices is increasing constantly, as are also their capabilities, the range
of applications and network-based services is expanding, and user expectations are
rapidly evolving. This is the context in which the authors set the scene for this net-
work programming book in its introductory chapter.

The past decades have seen an unprecedented evolution in computer networks. If
originally a network has interconnected few computers in a research lab and then
has linked computing machines across several university campuses, nowadays the
Internet interconnects network devices worldwide. In the developed world, wired
broadband Internet access is available in most homes and office buildings and di-
verse wireless broadband and cellular network technologies enable network access
anywhere and anytime, in private and public places alike. Although lagging behind
in developing countries or rural areas, network connectivity is becoming available
in wireless forms (terrestrial or satellite) to an increasing population, even in the
most remote places.

Due to the wide availability of the Internet access, both the range and popularity
of communicating network applications has increased dramatically. Applications
such as simple Web browsing or file transfer, although still used today, have been
shadowed by the increasingly popular rich-media-based applications, ranging from
video conferencing to video on demand, IP television, and online gaming.

Services such as electronic mail, online data storage, virtual servers, and work-
stations, as well as a wide range of utility and entertainment applications, are also
growing in popularity among the Internet users.

Furthermore, mobile and hand-held devices are becoming increasingly capa-
ble both in terms of computational power and communication capabilities. Smart-
phones and light portable PCs such as netbooks are highly attractive to all users, in-
cluding very young ones. As these devices are usually equipped with multiple tech-
nology wireless interfaces, they can easily communicate over the Internet, opening
the door for a wide range of applications.

This book approaches the very active field of computer networks and network
application programming. This field is extremely vast from both theoretical and
practical points of view. The amount of information available to a reader willing to

B. Ciubotaru, G.-M. Muntean, Advanced Network Programming — Principles and 1
Techniques, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5292-7_1, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5292-7_1

2 1 Introduction

explore this field of computer networks and network programming is overwhelming
and any help in filtering or organizing the information is highly useful.

This is the context in which this book proposes a novel practical approach in
which the reader is introduced gradually to basic and more advanced computer net-
working concepts. Side-by-side there are theoretical descriptions of these concepts
and practical examples and step-by-step discussions.

An extensive and comprehensive set of practical code examples are presented
with detailed comments and explanations. The reader benefits from a well organized
approach to teaching computer network concepts and network programming tech-
niques which is useful for both readers with a more theoretical interest and readers
mostly interested in practical aspects.

The authors have a vast research and development experience in the area of wired
and wireless networking. They have been involved in various research projects in the
area of wired and wireless networks with focus from low power wireless sensor net-
works to high performance state-of-the-art wireless heterogeneous environments.
The authors have almost 200 top international publications, including books, book
chapters, and journal and conference papers addressing various aspects of network-
ing starting from low layer protocol design to high layer application development.
They have also been involved in application development projects using both wire-
less and wired network infrastructure for communication.

Noteworthy is that the authors are teaching various courses in the area of com-
puter networks to both undergraduate and postgraduate students. They have de-
signed this book in order to act as a significant reference to network programming
modules taught at their university, and also at other third level institutions world-
wide.

Advanced Network Programming Principles and Techniques introduce you to
the most up-to-date network architectures, protocols, and paradigms, as well as net-
work programming techniques. This book discusses basic and advanced principles
of computer networking, including architectures, communication protocols, and net-
work programming techniques and models. The code examples are extremely useful
for understanding the practical aspects of computer networking and of communica-
tion services offered by various operating systems, and for learning how to develop
network-based applications.

Chapter 2
Network Architectures

Abstract The networks have evolved significantly since the first network archi-
tecture has been proposed. Lately, the architecture is seen more as a framework
which specifies not only the network topology, network type, network components,
and their functionality, but also presents data communication protocols, data for-
mats used, and supported services. This chapter introduces network topologies, net-
work types, and network components, and discusses several network communica-
tion technologies.

2.1 Introduction

Designing network architectures and proposing or improving various data commu-
nication protocols were at the center of extensive research and development interest.
Various network architectures have been proposed since 1950s when the first archi-
tecture involving several communication links only used to connect central proces-
sors to remote peripherals (e.g., printers). The networks have evolved significantly
since, and currently a network architecture is seen as a framework which specifies
not only network topology, network type, network components, and their function-
ality, but also presents data communication protocols available, data formats em-
ployed, and a set of services supported. Often billing aspects are also considered.

The first two chapters of this book discuss network architectures and data com-
munication protocols focusing on two directions. This chapter details network
topologies, types, components, and communications technologies, and the next
chapter presents communication protocols and services, respectively.

Network components include many network devices which enable data exchange
between different network parts alongside end-user devices. Network topologies
indicate how network devices are interconnected by links and how all these are
arranged to form a functional communication network. When discussing network
types, one refers to the classification of networks based on various aspects, including
size, communication technology, etc., and when mentioning network components,
the focus is on both network links and network devices. Communication technolo-
gies are concerned with the mechanisms employed to exchange data between inter-
connected network or user devices via the communication links, whereas protocols
are seen as formal mechanisms to exchange messages between network compo-

B. Ciubotaru, G.-M. Muntean, Advanced Network Programming — Principles and 3
Techniques, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5292-7_2, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5292-7_2

4 2 Network Architectures

nents. A protocol architecture includes all the protocols used to transport messages
over a certain network infrastructure and indicates the way these protocols interact
with each other. Although there is a thin line separating services from protocols, the
latter are seen mostly application-linked and related to the network interface with
end-users or devices.

All these aspects are of extreme importance for application developers, especially
when performance constraints are involved. This chapter introduces network archi-
tectures’ major aspects with the focus on existing and future network technologies.

2.2 Network Topologies

A network topology refers to the arrangement of nodes (i.e., network devices,
servers, and host machines) and links between them to form a computer network.
Nowadays, various types of topologies have been proposed and are in use. Among
these topologies, most known are ring, star, bus, tree, mesh, and ad-hoc. These will
be discussed in detail next.

2.2.1 Ring Topology

In a ring topology, each node is connected with exactly two other nodes forming
a single data path in a form of a ring. Such a network arrangement is presented in
Fig. 2.1.

In the basic ring network topology, the messages (data bits) travel in one direction
only. Each node has a dual role, as a host and as a relay. As a host, each node will
send data messages to other nodes and will receive messages addressed to it. As a
relay, each node forwards messages addressed to other nodes to the next node on
the ring.

The main issue concerning ring networks is their reliability. If a single link is
broken, the communication between certain nodes is impeded. Dual ring solutions,
where communication is possible both clockwise and anticlockwise, have been pro-
posed to improve reliability through redundancy. The increase in redundancy comes
with higher deployment and maintenance costs.

Standardization related to the ring topology includes the Token Ring protocol
(IEEE 802.5), initially proposed by IBM. Apart from the specifications of the pro-
tocol, IEEE 802.5 also includes details on the data formats.

2.2.2 Star Topology

In a star topology, every host is connected to a central network component (denoted
as hub), which may be a network hub, a switch, or a router, as illustrated in Fig. 2.2.

2.2 Network Topologies 5

Fig. 2.1 Ring topology

Fig. 2.2 Star topology

This topology is very popular for home networks where various devices such as
desktop PCs, laptops, and mobile devices are connected to a local router, which is
further connected to the broadband modem.

In terms of link failure, star topologies are more robust. If a certain link fails, only
the hosts using those links will be disconnected from the network, while all the other
hosts will not experience any disruptions in communications. The negative aspects
of a star topology include the existence of a single point of failure and increased

[2 Network Architectures

Fig. 2.3 Bus topology

(BUS

deployment costs. The latter has been mitigated with the latest advancements in
wireless networking.

2.2.3 Bus Topology

In a bus topology, a common backbone link is used to connect all the devices in
the network with each other, as presented in Fig. 2.3. The hosts compete for ac-
cessing the backbone (a single cable) for data transmissions, which is a common
communication medium.

When a host gains access to the medium, it sends data messages which are then
received by all the hosts connected to the same backbone. However, only the host to
which the messages are addressed will react to these messages, while the rest of the
hosts will discard them.

The bus-based interconnection of hosts in a local network has been highly pop-
ular in the past when a small number of devices have required wired network con-
nectivity. Today there are many diverse devices in need for network connectivity.
Howeyver, bus networks work the best when a limited number of hosts are connected
to the common bus and their efficiency is affected severely when a large number of
stations require network access. This is mainly determined by the contention-based
access to the common medium. As a consequence, bus topologies are less popular
nowadays, in the context of the increasing demand for network connectivity and
large growth of data traffic.

Standardization efforts related to the bus topology include the Token Bus pro-
tocol (IEEE 802.4) and the Fiber Distributed Data Interface (RFC 1188), which
extends the token bus approach.

2.2.4 Tree Topology

The tree topology consists of a combination of bus and star topologies. As it can be
seen in Fig. 2.4, the hosts are connected to a network hub which is further connected

2.2 Network Topologies 7

Fig. 2.4 Tree topology

to other hubs in a tree-like structure. Each hub acts as a root and router for a tree of
hosts.

Routing messages in ring, bus, and star topologies is performed by broadcasting
the messages to all hosts connected in the network. When tree topologies are used,
messages originating at a host travel up the tree as far as necessary and then down
the structure towards the destination host. Routing solutions become more important
when tree topologies are involved, as efficiency is of high importance. In general,
tree topologies support more scalable networks than bus and ring topologies. How-
ever, their maintenance may incur higher costs.

2.2.5 Mesh Topology

In a full mesh network topology, each host or network device is directly connected to
any other device or host within that network. Although extremely robust, in general
mesh topologies are very expensive, as they involve a high level of redundancy. This
makes them less used for wired connectivity.

However, mesh topologies are most popular for wireless networks, as wire-
less links can be easily and cost effectively established and maintained. Full mesh
topologies are also used for backbone networks.

Using partial mesh topologies is a more cost effective option. In such a topology,
some of the devices are connected in a full mesh manner, while others are only
connected to one or two devices.

There are several advantages brought by mesh topologies. Mesh networks can
withstand high data traffic, as multiple independent paths can be formed to connect
different devices within the network. Robustness is another advantage of mesh net-
works. Expansion and modification of the networks can also be done with minimum
traffic disruption.

8 2 Network Architectures

Fig. 2.5 Mesh topology

However, as already mentioned, the main disadvantage of the mesh networks is
related to the high redundancy which leads to high costs of deployment and mainte-
nance.

A full mesh topology is presented in Fig. 2.5.

2.2.6 Ad-Hoc Topology

Lately there is an increased effort put on providing support for user mobility, and
wireless connectivity already enables this. A step further is performed by wireless
ad-hoc networks in which each node (potentially mobile in this case) dynamically
establishes a communication link with the devices in its proximity. Each mobile
node has a dual role, both as a mobile host and as a mobile router.

Ad-hoc networks do not rely on any infrastructure. Remote hosts communicate
over dynamically formed paths based on links established between neighboring
nodes. The messages travel over multiple links in an multi-hop manner in order
to reach their destination. Such a network is graphically depicted in Fig. 2.6, but its
topology is dynamically changing.

The main advantage of this type of network is its ease of deployment, low cost,
and flexibility. As there is no previously deployed infrastructure, the network is
formed on the go, as mobile hosts come and go. As each host in the network also
acts as a router, the network range is also variable, adding scalability to the list of
advantages.

Despite the advantages, ad-hoc networks suffer from unpredictable routes and
data throughput. Due to host/router mobility, each route can be broken at any time
due to a mobile device on the route moving away or going off-line.

2.3 Network Components 9

Fig. 2.6 Ad-hoc topology

Furthermore, host mobility complicates paths formation, maintenance, and rout-
ing messages between senders and receivers, affecting both delivery efficiency and
performance.

2.3 Network Components

Regardless of the network architecture employed, the major network components
are their nodes and the inter-connecting links.

Based on the physical media used for data transmission between devices, the
networks links may use: twisted pair, coaxial cable, fiber optics, as well as wireless
media such as radio waves, microwaves, infra-red, and even visible light waves.
Note that all these media have different characteristics which highly influence the
communication properties and consequently determine their usage.

A twisted pairs cable consists of two insulated copper wires twisted together in a
helical form. This cable was at the base of the first widely distributed network which
enabled both telephony and later on basic data communications at very low bitrates.

A coaxial cable consists of a stiff copper core covered in a insulating material.
The insulator is further surrounded by a cylindrical conductor, usually in the form of
a mesh. This outer conductor is further protected by a plastic insulator. By making
use of coaxial cables, the data transmission rate was improved, the interference was
reduced and networks offering richer services such as cable TV were supported.

Fiber communications are very popular mainly due to their large bandwidth and
low effect of interferences. They are performed over fiber optic cables which consist
of three elements: a glass core, a glass cladding and some plastic cover. The glass
core is the main light propagation medium and is at the center of the fiber cable. The
plastic cover is like a shell and is used to protect the fiber. The glass cladding has
a lower refraction index and is introduced to keep the light within the core and the
plastic cover.

10 2 Network Architectures

Device A Device B
Es »
Application Application
Presentation Presentation
Session Session
Transport Transport
Network Network
Data Link Data Link
Physcical Repeater Physcical

Fig. 2.7 Repeaters operate at physical layer

Wireless communication networks use modulated electromagnetic waves to send
messages between directly linked devices. These devices can communicate directly
among themselves in a distributed manner, forming ad-hoc networks or rely on a
centralized network device to handle inter-end-device communication in the infras-
tructure mode. Among wireless networks, some use line-of-sight, others non-line-
of-sight transmissions; some use low-latency channels (e.g., satellite communica-
tions), others fast communication channels; some use low frequency channels, de-
spite the low bandwidth (e.g., military use), others high frequency-high bandwidth,
etc.

In terms of network nodes, most visible are the end-user devices which range
from smartphones, netbooks, and laptops to desktops and even servers. Lately, di-
verse consumer devices have also been enabled to exchange data via the networks.
This is in the context of smart homes, but the trend is set to continue, supporting
also networked device control.

The classic network nodes, also known as inter-networking devices, consist of in-
termediate devices which provide various support for data exchange and enable net-
working. Each type of inter-networking device is deployed at different network lay-
ers and provides different services. The most known are repeaters, bridges, routers,
and gateways.

A repeater is a network device which amplifies, reshapes, and/or retimes the in-
put signal in order to increase the distance, improve the signal quality, and boost
efficiency of transmitted data. As repeaters do not attempt to make sense of the con-
tent of the data transmitted in any way, performing on the physical signal only, they
are seen as operating at the physical network layer, as shown in Fig. 2.7. Repeaters’
reshaping function is illustrated in Fig. 2.8.

A bridge is a network device which reduces the amount of traffic on a LAN
by dividing it into two segments or enables communication between two LANs
by inter-connecting them. Bridges filter data traffic at network boundary and take

2.3 Network Components 11

0

Regenerated Corrupted
signal signal

Fig. 2.8 Repeaters operate at physical layer

Device A Device B
A A
Application Application
Presentation Presentation
Session Session
Transport Transport
Network Network
Data Link —— Bridge — Data Link
Physcical Physcical

Fig. 2.9 Bridges operate at data link layer

STA1to {
STA4

Fig. 2.10 Bridges filter the traffic between network segments

decisions whether or not to allow traffic passage. As bridges require some network-
related information, they operate at the level of frames at the data link network layer,
as illustrated in Fig. 2.9. A very important task bridges do when dividing networks
into segments is confining local traffic to the various network segments, supporting
overall network scalability and increasing communication efficiency. An equally im-
portant task bridges do when enabling inter-LAN communication is accommodating
data exchange despite having different frame formats, payload sizes, data rates, bit
order of addresses, usage of priority bits, existence of acknowledgments or negative
acknowledgments (ACK/NACK), etc. The principle of bridges performing traffic

12 2 Network Architectures

Device A Device B
» !
Application Application
Presentation Presentation
Session Session
Transport Transport
Network — Router = Network
Data Link Data Link
Physcical Physcical

Fig. 2.11 Routers operate at network layer

Fig. 2.12 Routers
interconnect and enable data
exchange between different
networks

filtering and reducing the amount of data exchanged across two network segments
is shown in Fig. 2.10.

A router is a network device which inter-connects different networks and relays
packets from a network to another according to their destination address. Routers
communicate with each other and are involved in network information collection
which they store in forwarding tables. Based on this information, the routers run
routing algorithms to determine the best path between any two hosts and forward
the data packets on those paths. Routers are active at the network layer as shown in
Fig. 2.11 and are deployed as illustrated in Fig. 2.12.

2.4 Network Types and Communication Technologies 13

Device A Device B
A A
Application e GAtEWaY Application
Presentation Presentation
Session Session
Transport Transport
Network Network
Data Link Data Link
Physcical Physcical

Fig. 2.13 Gateways operate at application layer

University Campus

Company Campus

Fig. 2.14 Gateways interconnect and control data exchange between different networks

A gateway is a network device which extends the functionality of a router to
include the application layer as illustrated in Fig. 2.13. Modifications of the data
packets could include filtering or blocking certain type of traffic, changing values in
the header and/or trailer fields, adjustments of data rates, modifications in the size
of packets, applying security, etc. An example of gateway deployment is presented
in Fig. 2.14.

2.4 Network Types and Communication Technologies

Networks differ in many aspects, not only in their topology, from communication
technology to range. In this context, there are many criteria which can be used to
classify the networks.

14 2 Network Architectures

Fig. 2.15 Broadcast
networks

Based on their transmission technology, the networks can be classified as broad-
cast or point-to-point networks.

In a broadcast network, all nodes share the same communication medium. A mes-
sage sent by a node is heard by all other nodes connected to the network. This con-
stitutes a major advantage of the broadcast networks as it allows the possibility to
send the same message to all receivers attached to the network in the most efficient
manner. A well known example of a broadcast network is the television network as
presented in Fig. 2.15. The same content (TV channels) is delivered to all devices
attached to the network, a mechanism suitable for distribution of highly popular
non-interactive services.

As opposed to broadcast networks, point-to-point networks use many connec-
tions to link individual pairs of devices. A message travels from the source to its
destination by traversing multiple interconnected devices. All these intermediate
devices and the links connecting them form a communication route. A source node
may be connected to a destination node by multiple routes, as presented in Fig. 2.16.
Choosing the right route for message transportation is very important in point-to-
point networks. These networks are suitable for delivering differentiated content
based on various requests.

However, potentially the most important criterion for classifying networks is their
scale. In general, the network scale dictates the transmission technology used and
often the corresponding communication protocols.

Based on their scale, networks can be classified as personal area networks, local
area networks, metropolitan area networks, wide area networks, and the Internet.
Next these network categories are discussed in detail.

2.4 Network Types and Communication Technologies 15

Sender Router

Receiver

Fig. 2.16 Point-to-point networks

Fig. 2.17 Personal area
network

2.4.1 Personal Area Networks

Personal Area Networks, or PANS, use short range transmission technologies (1 m)
and are usually intended to serve one person, hence their name.

An example of a PAN is presented in Fig. 2.17. In this case, wireless communica-
tion technology is used to link various peripherals, such as a printer, scanner, as well
as keyboard and mouse with the computer. Moreover, devices such as smartphones
and video cameras can also be connected to computers forming PANs.

16 2 Network Architectures

Wireless Personal Area Networks (WPANS) are increasingly popular, and the
IEEE 802.15 Working Group has been established especially in order to standardize
WPAN technologies. Their work has resulted in several standards, among which
most important are briefly introduced next.

IEEE 802.15.1 (2002, 2005) standardizes the well known Bluetooth wireless
communication technologies used by many portable devices to interconnect or com-
municate with peripherals or personal computers.

IEEE 802.15.2 (2003) address the coexistence of WPANs with other wireless
networks such as wireless local area networks.

IEEE 802.15.3 (2003), IEEE 802.15.3b (2005), IEEE 802.15.3c (2009) address
the physical and MAC layers for high-rate WPANS.

IEEE 802.15.4 (2011) specifies the MAC and PHY layer for low-rate, low-range,
and low-power wireless network communications. Based on this standard, protocols
such as Zigbee and 6LoWPAN define the network layer specialized on ad-hoc net-
working and the application layer targeting WPAN networks.

IEEE 802.15.5 (2009) provides an architectural framework for mesh networks
deployed on low-power wireless communication technologies.

IEEE 802.15.6 (2012) is focused on low-power and short-range wireless tech-
nologies to be used around the human body or even in the human body for specific
medical applications.

IEEE 802.15.7 (2011) targets the standardization of short-range wireless optical
communication based on visible light.

2.4.2 Local Area Networks

Local area networks (LANs) are usually contained within a single building, campus
or geographical area, up to a few kilometers in size. LANs are usually privately
owned and their main purpose is to interconnect computers and resources such as
printers and data storage units belonging to a single functional unit such as an office
building, factory, school or university.

LANSs are usually small in size, and LAN communications benefit from short
delays and reduced error rates. Typical data transmission rates range between 10 and
100 Mbps with newer technologies reaching transmission speeds of up to 10 Gbps.

The most popular technology for LANS is Ethernet, standardized as IEEE 802.3.
Other technologies such as token ring, token bus, and FDDI can also be used.

Often Ethernet uses a star topology, where multiple computers are interconnected
using wires (usually twisted pairs) or fiber optics to a central active network device.

Fast, Gigabit, and 10 Gigabit Ethernet refer to Ethernet networks capable of
reaching transmission speeds of up to 100 Mbps, 1 Gbps, and 10 Gbps, respectively,
over twisted wired cables or fiber optics.

Figure 2.18 illustrates three typical LAN topologies.

Wireless Local Area Networks (WLANS) are increasingly popular, mostly due
to the reduced cost of deployment and maintenance and their support for mobility.

2.4 Network Types and Communication Technologies 17

Fig. 2.18 Local area network

Currently, the IEEE 802.11 family of standards has been widely adopted and
is being heavily used worldwide for WLANSs. This family (also known as WiFi)
includes the original standard and various extensions which address different issues
including higher bit rates, QoS support, security, etc.

The standards for wireless access networks usually cover the physical layer and
the medium access control protocol (MAC) sub-layer. The original IEEE 802.11
standard first released in 1997 [1] supports data rates up to 2 Mbps and was initially
developed for best effort traffic only.

Each host connected to a certain IEEE 802.11 access point shares the wireless
medium with the other mobile hosts associated with the same access point. This
leads to race conditions for medium access which determine high collision rates and
consequently low data rates, especially when the number of mobile hosts involved
in simultaneous data communications increases.

The IEEE 802.11 MAC layer provides mechanisms for medium access coor-
dination, including the Distributed Coordination Function (DCF) and the partially
centralized Point Coordination Function (PCF).

A group of mobile stations connected to a single Access Point (AP) form the
basic building block defined by this standard as a Basic Service Set (BSS). The
geographical area covered by a BSS is called a Basic Service Area (BSA). Connect-

18 2 Network Architectures

ing several BSSs through a Distribution System (DS) determines the creation of an
Extended Service Set (ESS).

The first IEEE 802.11 extension, IEEE 802.11b [2] increased the maximum data
rate to 11 Mbps, which was a huge step forward. Following additional efforts, the
data rate was further increased to 54 Mbps in the IEEE 802.11a and IEEE 802.11g
standard extensions [3, 4].

Maintaining high QoS levels by using the two coordination methods, DCF and
PCEF, is difficult, thus novel QoS enhancements for IEEE 802.11 MAC layer were
standardized by IEEE 802.11e [5].

Consequently, two new mechanisms are described by the new standard, namely
the Hybrid Coordination Function (HCF) and the Enhanced Distributed Coordina-
tion Function (EDCF). HCF is based on PCF, and EDCF relies on its implementa-
tion on DCF. Further enhancements brought by this standard extension are block ac-
knowledgments which allows acknowledging more then one MAC frame by sending
only one acknowledgment packet and No Ack which allows time critical data frames
not to be acknowledged. To enhance QoS provisioning for time sensitive and band-
width hungry applications, traffic prioritization was proposed for IEEE 802.11 [6].
Four traffic categories are defined: voice, video, best effort, and background, and in
this order, IEEE 802.11e offers prioritization support.

The emerging IEEE 802.11n standard [7] aims at providing even higher bitrates,
of up to 600 Mbps. The data rate enhancement approach of IEEE 802.11n is ori-
ented on improving MAC layer techniques, unlike other IEEE 802.11 which aim
at increasing the data rates at the physical layer. IEEE 802.11n uses the same QoS
support techniques proposed for IEEE 802.11e.

The currently under study IEEE 802.11 VHT (Very High Throughput) [8] aims
at offering data rates of up to 1 Gbps for low velocity mobile hosts.

The IEEE 802.11 family supports limited host mobility except for the IEEE
802.11s standard [9, 10] which specifies support for wireless mesh networks and
which addresses host mobility within the wider range mesh network.

IEEE 802.11p standardizes wireless access in vehicular environments which rep-
resents a short to medium range communication service providing high data transfer
rates for roadside-to-vehicle or vehicle-to-vehicle data communications.

The IEEE 802.11 family groups several other standards addressing various as-
pects of wireless data networks, including security, management, and compatibility.
A more detailed overview of IEEE 802.11 family of standards can be found in [11].

Tables 2.1 and 2.2 summarize the characteristics of the most important IEEE
802.11 standards and extensions, including maximum data rates and frequencies.

2.4.3 Metropolitan Area Networks

Metropolitan Area Networks (MANSs) usually cover an area the size of a city. Fig-
ure 2.19 graphically depicts a MAN interconnecting various areas of a city. Origi-
nally, MANs have been developed to distribute television services over the cable TV

2.4 Network Types and Communication Technologies 19

Table 2.1 1EEE 802.11 family of standards

Standard Bitrate Frequency Description

802.11 1 Mb/s (2 Mb/s) 2.4 GHz Initial standard

802.11b 11 Mb/s 2.4 GHz Data rate enhancement
802.11a 54 Mb/s 5 GHz Data rate enhancement
802.11g 54 Mb/s 2.4 GHz Backward compatibility
802.11n 600 Mb/s 2.4 and 5 GHz Data rate enhancement
802.11p 27 Mb/s 5.9 GHz Vehicular communication
802.11ac (VHT) 1 Gb/s <6 GHz Data rate enhancement
802.11ad (VHT) 1 Gb/s 60 GHz Data rate enhancement

Table 2.2 1EEE 802.11

family of standards Standard Description

802.11e Extension for QoS support

802.11aa Extension for audio/video streaming
802.11r Handoft support

802.11s Transparent multi-hop operation (Mesh)

802.11u Interworking with external networks (cellular)

network. The development and increased popularity of the Internet has determined
the operators to adapt the cable TV network for the delivery of Internet services.

Several technologies have been used for implementing MANSs. These technolo-
gies include Asynchronous Transfer Mode (ATM), Fiber Distributed Data Interface
(FDDI), and Switched Multi-megabit Data Service (SMDS). These technologies are
currently in the process of being replaced by Ethernet-based solutions.

Wireless MAN links interconnecting local area networks have been built based
on either microwave, radio, or infra-red laser communication technologies.

Distributed Queue Dual Bus (DQDB), standardized as IEEE 802.6, has been
developed specifically for MANs. This technology offers communication infras-
tructure over long distances, up to 160 km. The operating speed ranges from 34 to
155 Mbps.

Wireless Metropolitan Area Networks (WMANs) were developed to cover whole
cities and to interconnect LANs or WLANSs as well as individual users, both static
and mobile. WMANS use two types of connectivity: line of sight, when there is
a requirement for communication success such as no obstacles between senders
and receivers can exist, and non-line of sight, when senders and receivers are not
required to see each other in a straight line for communications.

Companies producing equipment for WMANSs have formed the Worldwide Inter-
operability for Microwave Access (WiMAX) forum concerned with the standardiza-
tion and technology development in this area of wireless communications.

20 2 Network Architectures

Metropolitan

Area Network

Residential Area
Office Buildings

Fig. 2.19 Metropolitan area network

Specific to WMANS is the IEEE 802.16 family of standards. The IEEE 802.16 is
based on two systems: the Multichannel Multipoint Distribution System (MMDS)
and Local Multipoint Distribution System (LMDS) [12].

The MMDS system offers better coverage (i.e., typical cell radius is 50 km), but
the throughput is quite low, between 0.5 and 30 Mbps. LMDS has lower coverage
(e.g., 3 to 5 km radius), but provides higher bandwidth (e.g., 34 to 38 Mbps with an
increase to 36 Gbps for the newer versions).

IEEE 802.16 provides QoS provisioning support. This is achieved mainly trough
connections, service flows, and service scheduling. QoS provisioning is negotiated
at the initiation of the session, and QoS requirements are mapped on the QoS param-
eters in the IEEE 802.16 MAC layer. Mobility is supported in the new IEEE 802.16e
standard which permits mobile hosts to change their base station while the data con-
nection is still active. Both soft and hard handover mechanisms are supported, while
several enhancement solutions are being proposed [13].

WiMAX is relatively popular as a wireless broadband solution, with several types
of mobile devices already having WiMAX interfaces. However, new technologies
are already threatening WiMAX.

High Performance Radio Access (HiperACCESS) standardized by ETSI offers
non-line of sight broadband wireless access using frequencies between 11 and
43.5 GHz. The typical cell radius is 5 km, and the data rates per cell ranges be-
tween 25 and 100 Mbps [14].

High Performance Radio Metropolitan Access Network (HiperMAN), also stan-
dardized by ETSI, offers broadband connectivity targeting residential and small of-

2.4 Network Types and Communication Technologies 21

fice areas. HiperMAN works in the frequency bands below 11 GHz and offers non-
line of sight connectivity with aggregated data rates of up to 25 Mbps [15].

WiBro is another WMAN solution developed in Korea which offers broadband
connectivity to both stationary and mobile users. WiBro operates in the 2.3-2.4 GHz
frequency band offering data rates of up to 50 Mbps [16]. The major advantage of
WiBro over the other WMAN technologies is the mobility feature which is very
well developed.

High Altitude Platforms (HAP) [17] use a quasi-stationary aerial platform
equipped with wireless transceivers offering broadband wireless access with data
rates of 120 Mbps or up to 10 Gbps in some configurations. This type of wireless
technology offers good coverage with better line of sight connections.

IEEE 802.22 Wireless Regional Area Network (WRAN) offers data rates up to
18 Mbps for rural and remote areas using the unoccupied TV channels between 54
and 862 MHz [18].

Cellular networks which initially offered only voice services are already offering
broadband Internet access through the current third generation (3G) and the future
fourth generation (4G) networks.

The first to provide mobile communication services were the first generation
(1G) cellular networks which supported only analog voice calls and very limited
data applications. This technology was replaced by the second generation cellular
networks (2G) which is entirely digital and apart from voice communication also
supports low bit rate data communication in the form of Short Message Service,
Multimedia Message Service.

The current cellular network technologies can be grouped in two main families:
Global System for Mobile Communications (GSM) based on time division, multiple
access (TDMA), and code division multiple access (CDMA) [19].

The maximum bit rate in GSM was 9.6 kbps; however, throughput enhancement
solutions have been developed for this standard including the 2.5G General Packet
Radio Service (GPRS) and the 2.75G Enhanced Data Rates for GSM Evolution
(EDGE).

GPRS supports theoretical data rates around 114 kbps, but in reality the through-
put reaches values around 40 kbps only. EDGE is the first to open the door for
multimedia applications over cellular networks. It supports theoretical throughputs
around 400 kbps.

The third generation cellular network (3G) supports voice and continues the im-
provement of the data communication rates.

In the GSM category, the Universal Mobile Telecommunications System (UMTS)
makes use of wideband CDMA (WCDMA) and High-Speed Packet Access (HSPA)
technologies in order to support bit rates of up to 2 Mbps.

The CDMA-based standards for 3G networks include the CDMA2000 family
among which CDMA 1xRTT, supports average data rate of 40-80 kbps with peak
data rate of 150 kbps. CDMA 2000 1xEV-DO supports only data communications
with maximum data rates of 2.4 Mbps.

As the demand for higher bandwidth and QoS support is increasing with the in-
creased popularity of bandwidth-hungry, real-time applications, the forth generation
network (4G) is in the process of being defined and standardized.

22 2 Network Architectures

The technologies which are principal candidates for 4G networks are Long-Term
Evolution (LTE), Ultra Mobile Broadband (UMB), and 802.16m (WiMAX II) [19].

LTE is developed based on the GSM technology with data rates around 250
Mbps. LTE will support QoS provisioning for real-time applications like multimedia
streaming [20].

UMB is developed based on the CDMA technology and provides data rates up to
288 Mbps. UMB incorporates control mechanisms which optimize data transmis-
sion in order to meet the QoS requirements of various user applications [21]. UBM
also supports inter-technology handover with CDMA2000 standards [21].

IEEE 802.16m (WiMAX 1I) is developed based on the WiMAX standard with
adaptation for cellular networks. 802.11m aims at supporting higher data rates and
QoS support for various multimedia services. The data rate is expected to reach
100 Mbps for mobile users and 1 Gbps for static users.

2.4.4 Wide Area Networks

Wide Area Networks (WANSs) usually cover larger geographical areas such as a
whole country or even a continent. The biggest WAN known today is the Internet,
spanning the whole globe. However, a typical WAN may interconnect several LANSs,
MANsS, or even other WANS, providing the backbone infrastructure to transport data
between the interconnected networks.

As it can be seen in Fig. 2.20, a WAN may use several technologies for the
communication subsystem.

Wired infrastructure, including fiber optics or telephone lines, as well as wireless
technologies, including terrestrial or satellite-based communication systems, can be
used for data transfer within a WAN.

In general, a WAN consists of two basic elements: communication lines (i.e.,
copper wires, optical fibers, radio links) and switching elements (i.e., routers).

The switching element connects two or more communications lines. Whenever
data is received by the switching element on a communication line, it decides on
which line the data should be forwarded and transmits the messages on that partic-
ular line.

For long distance communications over wired links, WANs tend to use technolo-
gies such as Multiprotocol Label Switching (MPLS), Asynchronous Transfer Mode
(ATM), Frame Relay, and X.25.

Similar to the wired WANSs, the Wireless Wide Area Networks have the largest
coverage area among the wireless networks. WWANSs can be used as separate net-
works or as interconnection backbones for MANS.

WWANS are usually satellite networks, but terrestrial versions are also consid-
ered. A terrestrial WWAN is standardized by the IEEE 802.20 [22]. This standard
targets high mobility users with speeds of up to 250 km/h. QoS preservation meth-
ods as well as handover management schemes are supported by this technology.

Satellite WWANS have the advantages of global coverage, high mobility sup-
port and broadcast capabilities [12]. Initially satellite networks had only broadcast

2.4 Network Types and Communication Technologies 23

Wide Area

Communication
Subsystem

Metropolitan Area Network

Fig. 2.20 Wide area network

capabilities, but within the Next Generation Satellite System (NGSS) unicast and
multicast is also provided.

The Digital Video Broadcasting (DVB) standard family started first by support-
ing digital video and data broadcasting through the satellite networks. DVB-S (satel-
lite) enables down-link data transfer with rates of up to 45 Mbps only. The newer
DVB-S2 increases the downlink rate to 60 Mbps. For uplink DVB-RCS (return
channel satellite) standard was developed supporting rates of up to 2 Mbps.

Apart from the satellite versions (DVB-S) DVB has also standardized a terrestrial
wireless data service through the DVB-T, and more recently DVB-T2.

DVB-T offers much flexibility in terms of data rates. Depending on the particular
configuration of the various parameters specific to the wireless transmission it offers
a wide range of bitrates starting from 3.7 up to 31 Mbps [23].

Although DVB-T broadcasts multimedia content to static and mobile users, in-
cluding vehicular receivers, it is not optimized for highly mobile handheld devices.

Consequently, DVB team has developed DVB-H (handheld) [24] for multime-
dia content delivery to mobile devices. DVB-H is developed based on the DVB-T
(terrestrial), whose infrastructure it uses. Similar to DVB-T, DVB-H offers one way
(downlink) point-to-multipoint data communication over wireless links with indoor
and outdoor coverage. Considering the limited radio capabilities of a mobile hand-
held device as well as the higher error rates due to device mobility, DVB-H incor-
porates powerful error correction mechanisms. Time-multiplexing technologies are
used to improve power consumption to cope with the energy constraints of battery

24 2 Network Architectures

powered handheld devices. Seamless handover between base stations is also sup-
ported, and loss is highly reduced due to the time-slicing techniques used for power
efficiency even with only one radio interface [25].

DVB-H supports mainly downlink communication, interactivity being achieved
through separate backward point-to-point channels using other wireless data com-
munication technologies like GPRS or UMTS. Supporting mainly broadcast ser-
vices, DVB-H scales well offering downlink data rates between 3.3 and 31.6 Mbps.
DVB-H specifies only the protocol layers below the network layer.

DVB-H provides an Internet Protocol (IP) interface for higher transport layers
which is defined by the IP-based Data Broadcast (IP Datacast) specification. IP Dat-
acast also offers the option of accessing an external cellular network for the back-
ward channels and to create the so-called hybrid networks [26].

2.4.5 The Internet

The Internet can be best described as a network of networks. The Internet is not a
single network, but instead a collection of a vast diversity of networks in terms of
topologies and communication technologies which use, however, a common set of
protocols to offer certain services.

Figure 2.21 schematically presents an overview of the Internet structure. As it
can be seen in the figure, networks such as LANs owned by universities or small
communities, regional Internet Service Provider (ISP) distribution networks, cel-
lular networks, offering also data services, can be interconnected via backbones
allowing for the creation of a global inter-network.

To describe how user hosts are interconnected and are allowed to communicate
over the Internet, we will start from the client location. The client PC or home LAN
router will be connected to the ISP modem/router which is designed to interconnect
the user’s LAN with the ISP Point of Presence (PoP) over the telephone lines or
cable network. At the PoP level, the signals originating at the home are sent to the
ISP’s regional network.

Often, the local telecommunication company or the cable TV operator is also the
ISP, so the telephone or cable networks and ISP regional networks are overlapping.

Except for the cable and telephone lines, home users my be offered access to the
ISP core network using fiber or wireless links such as WiMAX or cellular.

The ISP’s regional network consists of interconnected routers and links spread
across the area served the ISP. The ISP regional network is further connected to the
backbone network owned by a backbone operator. Backbone operators are compa-
nies owning and operating large international networks consisting of thousands of
routers interconnected by high-bandwidth fiber optical links. These backbone net-
works can transport huge amounts of traffic and usually link countries and even
continents.

The end user usually does not get direct access to a backbone. The ISP regional
networks or distribution networks are connected to the backbones. However, large

2.4 Network Types and Communication Technologies 25

/

£

Satellite “
Q

(®

Network Access Point|) ' ,

& " Server Farm
I —&
@ @

Local Area Network
Fig. 2.21 Overview schematic of the Internet

corporations may be connected directly to the backbone, especially those operating
high capacity server farms capable of handling millions of service requests and high
amount of data traffic.

Various backbones exist, interconnecting all regions of the world, and being oper-
ated by various companies. In order to reach a global coverage, all these backbones
are interconnect at Network Access Points (NAP). These NAPs basically consist of
a high speed LAN interconnecting routers corresponding to different backbones.

Moreover, NAPs are not the only technique to interconnect backbones. Private
peering is a well known technique where various routers belonging to distinct back-
bones have direct links between them allowing data packets to be exchanged be-
tween distinct backbones.

26 2 Network Architectures

Local Area Network
Server Farm

Fig. 2.22 Data communication in the Internet

Figure 2.22 describes how data is exchanged between two hosts over the Internet.
As it can be observed in the figure, if two hosts communicate and are connected to
the same ISP regional network then the traffic is routed within the ISP network only.

If, for example, a host accesses a service (e.g., a website) located on a server farm,
the traffic will be routed from the ISP’s network to the corresponding backbone and
then through the farm’s local network to the destination server.

If two hosts are connected to distinct ISP networks which are further connected
to distinct backbones, the data packets will travel from the ISP regional network
to the backbone, and then over the NAP to the other backbone and further to the
destination ISP’s regional network.

2.5 Conclusions

This chapter introduced the various network topologies used today, presented the
major network components, and discussed various criteria used to classify the net-
works. Among the criteria identified, coverage area is accepted as one of the most
relevant and with the greatest impact on network cost, complexity, and performance.
Various network types identified based on size have been discussed along with the
specific communication technologies used by each type of network.

References 27

Although the technologies and network characteristics discussed so far represent
the foundation of any network, there is still a need for additional support to provide
robust and performance-oriented network communications.

There is a need for a set of protocols to govern the way data is produced, format-
ted, transported, and consumed by various interconnected nodes communicating to
each other and a set of services to be offered to the end-users.

The next chapter introduces these protocols and presents major network-based
services.

References

1. IEEE (June 1999) IEEE standard for local and metropolitan area networks specfic
requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specfications

2. IEEE (September 1999) IEEE standard for local and metropolitan area networks specfic
requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specfications high speed physical layer extension in the 2.4 GHz band

3. IEEE (1999) IEEE standard for local and metropolitan area networks specific requirements—
Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications
high speed physical layer in the 5 GHz band

4. IEEE (June 2003) IEEE standard for local and metropolitan area networks specific
requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications amendment 4: further higher data rate extension in the 2.4 GHz band

5. IEEE (2005) IEEE standard for local and metropolitan area networks specific requirements—
Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications
MAC enhancements for QoS

6. Xiao Y (2005) Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e
wireless LANs. IEEE Trans Wirel Commun 4(4):1506-1515

7. IEEE (September 2008) IEEE draft standard for local and metropolitan area network-specific
requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications mendment 5: enhancements for higher throughput

8. Eastwood L, Migaldi S, Xie Q, Gupta V (2008) Mobility using IEEE 802.21 in a het-
erogeneous IEEE 802.16/802.11-based, IMT-advanced (4G) network. IEEE Wirel Commun
15(2):26-34

9. IEEE (December 2009) IEEE draft standard for information technology—telecommunications
and information exchange between system—LAN/MAN specific requirements—Part 11:
Wireless medium access control (MAC) and physical layer (PHY) specifications: amendment
10: mesh networking

10. Hiertz G, Denteneer D, Max S, Taori R, Cardona J, Berlemann L, Walke B (2010) IEEE
802.11s: the WLAN mesh standard. IEEE Wirel Commun 17(1):104-111

11. Hiertz G, Denteneer D, Stibor L, Zang Y, Costa X, Walke B (2010) The IEEE 802.11 universe.
IEEE Commun Mag 48(1):62-70

12. Kuran MS, Tugcu T (2007) A survey on emerging broadband wireless access technologies.
Comput Netw 51(11):3013-3046

13. Lee DH, Kyamakya K, Umondi J (2006) Fast handover algorithm for IEEE 802.16e broadband
wireless access system. 6 pp

14. ETSI (March 2002) Broadband radio access net-works (BRAN) HIPERACCESS system
overview

15. ETSI (March 2001) Broadband radio access networks (BRAN); Functional requirements for
fixed wireless access systems below 11 GHz: HIPERMAN

28

16.
17.

18.
19.
20.
21.
22.
23.
24.
25.

26.

2 Network Architectures

Kim D (2005) Wibro overview and tta activities. Technical report, TTA

Cianca E, Prasad R, De Sanctis M, De Luise A, Antonini M, Teotino D, Ruggieri M (2005)
Integrated satellite-hap systems. IEEE Commun Mag 43(supl 12):33-39

Chouinard G (2005) Status of work in the IEEE 802.22 WG. Technical report

Ortiz S (2007) 4G wireless begins to take shape. Computer 40(11):18-21

Anas M, Rosa C, Calabrese F, Michaelsen P, Pedersen K, Mogensen P (2008) Qos-aware
single cell admission control for utran LTE uplink, pp 2487-2491

Gozalvez J (2007) Ultra mobile broadband [mobile radio]. IEEE Veh Technol Mag 2(1):51—
55

Bolton W, Xiao Y, Guizani M (2007) IEEE 802.20: mobile broadband wireless access. IEEE
Wirel Commun 14(1):84-95

Ladebusch U, Liss C (2006) Terrestrial DVB (DVB-T): a broadcast technology for stationary
portable and mobile use. Proc IEEE 94(1):183-193

DVB (November 2004) Transmission system for handheld terminals (DVB-H), ETSI EN
302304 v1.1.1

Kornfeld M, Daoud K (2008) The DVB-H mobile broadcast standard [standards in a nutshell].
IEEE Signal Process Mag 25(4):118-122, 127

Kornfeld M, May G (2007) DVB-H and IP datacast mdash; broadcast to handheld devices.
IEEE Trans Broadcast 53(1):161-170

Chapter 3
Network Communications Protocols and
Services

Abstract As the previous chapter has introduced network topologies, types, com-
ponents, and major communication technologies, this chapter completes the net-
work architecture description by presenting network protocols and various services
supported by the current networks. The hierarchical organization of network pro-
tocols is detailed focusing on the most known reference models and the layered
communication paradigm. Furthermore, the various protocol layers are detailed, es-
pecially at transport and application layers which involve protocols and services
mostly detailed in this book. Last, but not least, the principles of the most popu-
lar network-based services are summarized, including electronic mail, Web, and the
increasingly popular multimedia-based services.

3.1 Introduction

The previous chapter has introduced existing network topologies and communica-
tion technologies used to enable data exchange between network-interconnected re-
mote hosts. Although communication technologies and network infrastructures are
at the basis for message exchange between nodes, in order to fully support data ex-
change, a set of protocols has to govern the way messages are sent, routed, received,
and interpreted by the communicating parties and the network devices. This chapter
presents some of the most important communication protocols and discusses major
network services.

3.2 Protocol Hierarchy

3.2.1 Network Reference Models

In order to reduce design complexity and allow for a better standardization process,
network protocols are organized in layers (or levels), each layer providing a set
of services to the layer immediately above and relying on services from the layer
below.

B. Ciubotaru, G.-M. Muntean, Advanced Network Programming — Principles and 29
Techniques, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5292-7_3, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5292-7_3

30 3 Network Communications Protocols and Services

Fig. 3.1 OSI and TCP/IP 0SI Model TCP/IP Model
reference models Application
Presentation Application
Session
Transport Transport
Network Internet
Data Link
Host-to-Network
Physical

The layered network architecture is organized in reference models; among these
the most well known are the ISO Open System Interconnection (OSI) reference
model and the TCP/IP reference model.

The OSI model is a theoretical model, and the protocols associated with its layers
are rarely used. However, the model itself is widely used to present the concepts used
in networking.

As opposed to the OSI, the TCP/IP model is less used for theoretical purposes,
but the protocols associated with it are widely used in practice.

Figure 3.1 graphically shows the layers included in each reference model.

The OSI reference model includes seven layers: Physical, Data Link, Network,
Transport, Session, Presentation, and Application. There layers are briefly intro-
duced next.

e The Physical layer is responsible for transmitting raw bits over a communication
channel.

e The Data Link layer is in charge of several tasks such as reliability, flow control,
and medium access control for point-to-point data communication.

e The Network layer is mainly in charge of routing packets through sub-nets.

e The Transport layer offers end-to-end data communication services to upper lay-
ers.

e The Session layer allows users to establish sessions between them, each session
offering services such as dialog control and synchronization.

e The Presentation layer is concerned with the syntax and semantics of the infor-
mation (data) exchanged.

e The Application layer contains a variety of protocols specific to user applications.

Unlike OSI, the TCP/IP reference model has only four layers: Host-to-Network,
Internet, Transport, and Application.

e The Host-to-Network layer corresponds to the Data Link and Physical layers from
the OSI model, but the TCP/IP reference model does not detail this layer. How-
ever, the protocols used at this layer are specific to the network technology used
to interconnect the physical user devices and network devices.

e The Internet layer corresponds to the Network Layer of the OSI reference model
and similar to it, it is in charge of routing data packets through the sub-nets to

3.2 Protocol Hierarchy 31

Fig. 3.2 A more realistic TCP/IP Model
TCP/IP reference model

Application

Transport

Internet

Logical Link Control Device
Driver

Network Adapter

their destination. The widest used protocol residing at this layer is the Internet
Protocol (IP).

e The Transport layer of the TCP/IP reference model corresponds with the same
layer of the OSI model and offers similar services. The protocols residing at this
layer are the Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP).

e The Application layer of the TCP/IP model is similar to the corresponding layer
of the OSI model. Protocols residing at this layer include but are not limited
to File Transport Protocol (FTP), electronic mail protocols (SMTP, IMAP, POP),
Hypertext Transfer Protocol (HTTP), Domain Name System (DNS), Secure Shell
(SSH), etc.

A more realistic reference model for TCP/IP is presented in Fig. 3.2. Although
controversial, the host-to-network layer of the initial TCP/IP reference model has
been split in two by some network specialists. These sub-layers are the Device
Driver and Network Adapter sub-layers.

The Network Adapter layer corresponds to the physical layer of the OSI reference
model and mainly consists of the hardware implementation of network interfaces.

The Device Driver layer contains two sub-layers, namely the Logical Link Con-
trol and the Medium Access Control. The Logical Link Control (LLC) offers the
upper layers and the operating system access to the device driver. The Medium
Access Control (MAC) is responsible for reporting and setting the device status,
package outgoing data received from LLC in the format required by the network
adapter, sending outgoing data at the appropriate time, receiving incoming data and
unpacking it before verifying its integrity, and delivering it to the LLC sub-layer.

Figure 3.3 schematically presents the structure of the TCP/IP reference model
and some of the network technologies and protocols involved.

32 3 Network Communications Protocols and Services

Application
ETR HTTP DNS SSH SMTP I
Transport
TCP UDP
Network
Data Link
IEEE 802.3 IEEE 802.11 IEEE 802.16 GSM/CDMA
(LAN) (WLAN) (WMAN) (Cellular)

Physical

Fig. 3.3 Protocols and Networks specific to TCP/IP reference models

Data
User 1 t I User 2
T
| lication
Application | App?eade, m I Application
|
Transport | Application Data
Transport Header | Header Transport
Internet | Transport | Application
Internet Header | Header | Header | D2 Intemet
H-to-N | Internet | Transport | Application Data H-to-N . .
Header | Header | Header Header Trailer Device Driver
|
Network Adapter | = | Network Adapter
Bits ‘

Fig. 3.4 TCP/IP reference model, data flow diagram

3.2.2 Layered Communication Paradigm

As mentioned in the previous sections, the layers of any reference model, including
the TCP/IP model, rely on the services provided by the layers above and provide a
set of services to the upper layer.

For example, the application layer protocols such as FTP use transport layer pro-
tocols such as TCP to carry the content of the files being transferred. The interaction
between layers is done using dedicated interfaces which advertise the services pro-
vided by the particular layer.

Figure 3.4 schematically presents the data flow through the TCP/IP protocol hi-
erarchy.

3.2 Protocol Hierarchy 33

User 1 § I User 2
‘ \
I
lication | I lication
App I Network Device I i
{ Internet | Transport | Applicatio Data I
Transport I Header | Header |nHeader } Transport
I
:
I I
Internet \ st } Internet
|
; Device Driver }
Device Driver | | I } Device Driver
I Network Adapter |
I
I
Network Adapter | - + Network Adapter

Fig. 3.5 TCP/IP reference model, data flow diagram through network devices

To exemplify, we consider two users, User 1 and User 2, exchange files using
FTP. We assume that User 2 has an FTP server and the file repositories and User 1
has an FTP client and requests a certain file to be retrieved.

Figure 3.4 illustrates the file transfer process. The content of the file represents
the Data. It is handed over to the application layer FTP protocol which adds its spe-
cific headers (Application Header). The FTP protocol may split the original file into
chunks for transmission. FTP then hands over the data including the FTP headers to
the transport protocol (i.e., TCP). The transport protocol splits the application data
into packets, adds its own headers (transport layer headers) and hands over the pack-
ets to the Internet Protocol (i.e., IP). The Internet Protocol further adds its specific
headers and injects the packets in the network, where the packets are routed towards
the destination. The packets are sent via the network by being handed over to the
Host-to-Network layer. This layer further adds its headers and trailers and manages
the transmission of the raw bits representing the data packets to the next neighbor
machine. The next neighbor machine is usually a network device mainly the LAN
router. At the router level, the TCP/IP reference model is deployed up to the Inter-
net level. As it can be seen in Fig. 3.5, at the network device level, the raw bits are
decoded up to the Internet protocol level where routing is performed. The Internet
layer changes the headers accordingly and re-injects the packets in the network by
sending them to the next hop on the path towards the destination. At the receiver
side, as it is presented in Fig. 3.4, the raw bits are received and are delivered from
the physical layer across the layers to the user application. It can be seen that each
layer removes its own headers before sending the data to the immediate upper layer.

From an application network programming perspective, all the details concern-
ing layers below the application layer are hidden. For example, as it can be seen
in Fig. 3.6, applications can use Sockets for accessing the data transport services
offered by the transport layer. In these circumstances, next we discuss application
and transport layer issues, ignoring the lower layers.

34 3 Network Communications Protocols and Services

Data
User 1 t I User 2
LI
I
I

Application [
Application pﬁm, Data | Application
Socket | ! Socket

Fig. 3.6 TCP/IP reference model, transport layer programming interface

Fig. 3.7 TCP packet

structure SOURCE PORT DESTINATION PORT
SEQUENCE NUMBER
ACKNOWLEDGEMENT NUMBER
Otl:?;gT RESERVED WINDOW SIZE
CHECKSUM URGENT POINTER
OPTIONS

3.2.3 Transport Layer

Transport layer protocols provide end-to-end data transmission and optionally pro-
vide functions such as congestion avoidance, reliability and flow control. Transport
Control Protocol (TCP) [1] and User Datagram Protocol (UDP) [2] are two de-facto
protocols employed at the TCP/IP transport layer. These two protocols are designed
and widely deployed in wired network communication environments.

3.2.3.1 Transport Control Protocol

Transport Control Protocol (TCP) [1, 3] is a reliable, connection-oriented, conges-
tion controlled byte stream data transfer protocol. A TCP packet consists of a 20
byte header followed by a payload as illustrated in Fig. 3.7.

The header includes a number of fields that enable the provision of key services.
TCP uses 16 bit source and destination port number fields for multiplexing data to

3.2 Protocol Hierarchy 35

various sending and receiving processes. The 32 bit sequence number field identi-
fies the byte in the stream that the first byte of data in the segment represents. This
field enables the reordering of out-of-order packets. The 32 bit acknowledgment
field contains the sequence number of the next data segment the receiver expects
to receive. This allows the sender to identify packets that have not been received,
yet. These two fields are essential for providing a reliable delivery service. The 4 bit
data offset/header length field specifies the length of the header. The 6 bit field is
reserved for future use. Next, there are 6 flag bits. URG (U) is used to determine
if the value in the urgent pointer field is valid. If set, the urgent pointer contains a
sequence number offset, which corresponds to a TCP segment that contains urgent
data and it should be expedited to its destination. ACK indicates if the acknowledg-
ment number field is significant. It is used to by the receiver to inform the server that
the packets it received are in order and intact. PSH is used to minimize the amount
of buffering used before passing the data in this packet to the receiving process. The
RST flag used to reset the connection, while the SYN and FIN flags are used for
establishing and closing the TCP connection. The 16 bit window size field speci-
fies the number of bytes each end of the connection is willing to accept, beginning
with the one specified by the acknowledgment number. This field enables connec-
tion flow control. Finally, a checksum field covers the header and payload of the
TCP segment.

Flow control is achieved by TCP using the window size field. This field identi-
fies the number of bytes, starting with the byte acknowledged, that the receiver is
willing to accept. If a receiver is busy or does not want to receive more data from
the sender, this value can be set to 0. In addition to the flow control based on the
window size, the current TCP standard (RFC 2581 [4]) uses a complex congestion
control mechanism which involves four algorithms: Slow Start, Congestion Avoid-
ance, Fast Retransmit, and Fast Recovery. The slow start algorithm employed by
TCP tries to avoid congestion by starting the transmission at a low rate and fast in-
creasing the rate until there is the first indication that the available bandwidth limit is
being reached. Congestion avoidance further increases the rate gradually to a level
acceptable given the existing bandwidth resources. Both slow start and congestion
avoidance employ an Additive Increase Multiplicative Decrease (AIMD) approach,
enabling the rate of transmitted data to increase incrementally, while the network is
still capable of sustaining the current rate (i.e., no packet loss occurs). As soon as
this rate exceeds the available network bandwidth (i.e., lost packets are detected),
the sender dramatically reduces the data rate. Fast retransmit and fast recovery al-
gorithms were introduced in order to speed up data delivery following loss and the
consequent TCP drastic reduction in transmission rate.

TCP is used for a number of best effort applications, which rely on application-
layer protocols such as the Hypertext Transfer Protocol (HTTP) for Web browsing
and File Transfer Protocol (FTP) for file transfer. These applications are not time
critical, but require guarantees that the integrity of the received data is maintained.
For this reason TCP is not the preferred choice for streaming media. Streaming
media requires video to be delivered in a timely manner and maintain relatively
stable throughput, while also tolerate some loss. Some researchers proposed using

36 3 Network Communications Protocols and Services

Fig. 3.8 Datagram structure

SOURCE PORT NUMBER DESTINATION PORTNUMBER]

LENGTH CHECKSUM

[
{
[DATA
[

DATA

TCP for streaming media more than 10 years ago [5], but did not receive great
attention at the time. However, the latest developments in network technologies have
made TCP to be considered again for streaming multimedia, including as part of
commercial implementations such as Apple’s HTTP Live Streaming (HLS) [6] or
the latest standard on Dynamic Adaptive Streaming over HTTP (DASH) [7].

3.2.3.2 User Datagram Protocol

User Datagram Protocol (UDP) [2] is a connectionless transport protocol. It pro-
vides the basic functionality required for applications to send encapsulated IP data-
grams without having to establish a connection. A UDP datagram (see Fig. 3.8)
consists of an 8 byte header followed by a payload.

The header consists of four 2 byte fields: source port, destination port, length, and
checksum. The source and destination port fields provide required information to
allow transport layer daemon processes to route packets to their correct destination
application. This multiplexing/demultiplexing feature is the main benefit UDP has
over raw IP datagrams. The 16-bit length field specifies the length of the datagram
in bytes of the entire datagram (header and data). The field size sets a theoretical
limit of 65,527 bytes for the data carried by a single UDP datagram. Finally, a 16-
bit checksum field is used for error-checking of the header and data. UDP does not
provide any reliability or congestion control features. As a result applications using
this protocol must generally be willing to accept or deal with loss, duplication or
out-of-order delivery and rely on network-based mechanisms to minimize potential
of congestion collapse. The majority of applications using UDP often do not require
reliability mechanisms and may even be hindered by them. Applications requiring
high degrees of reliability should use a reliable protocol (e.g., TCP). These charac-
teristics make UDP well suited for real-time multimedia streaming applications.

3.2.3.3 TCP/IP and Wireless Networks

As opposed to wired communications where packets not acknowledged by recipient
within the expected deadline are supposed to be lost due to network congestion and
buffer overflow, packet loss in wireless communications may be caused by interfer-
ence, noisy channel, etc., which does not necessarily imply congestion.

UDP is a datagram-oriented protocol that provides no delivery guarantee to upper
layers, and does not provide any support mechanism for congestion detection or

3.2 Protocol Hierarchy 37

reliability control. This is why UDP is not suitable for use for services requiring
transport reliability such as e-mail or file transfer applications.

Several studies [8§—10] on the performance evaluation of these two protocols have
shown that there are various performance issues when using them for data transport
over wireless communication networks.

Several variants of TCP have been proposed, each making improvements in terms
of energy consumption, network throughput, and reliability.

TCP Tahoe [4, 11] mainly contributes in the design of slow start, congestion
avoidance, and fast retransmission, and is the first protocol to include congestion
control and thus is energy efficient for bursty error which happens quite often in
wireless sensor networks. TCP Reno [12] implements the three functions of Tahoe
and adds additional fast recovery mechanism. TCP New-Reno [13] modifies the fast
recovery scheme. The fast recovery function detects packet loss and initiates retrans-
mission without the timeout signal required by traditional retransmission policies.
In this case, it provides shorter delay and better quality for multimedia streaming
applications. SACK [14] uses selective ACK instead of cumulative ACK to indicate
successful transmission of specific packet, thus the sender is able to figure out which
packets are lost and save the energy for redundant retransmission; and simulation re-
sults show that incorporating SACK in TCP achieves better performance in terms
of packet delay and throughput [15]. SACK is supposed to be energy efficient as
it decreases the number of unnecessary retransmissions; however, the study in [16]
points out that the energy gain is neutralized by the extra overhead. Vegas [17] mod-
ifies the congestion control scheme and adapts the transmission rate at the sender
side according to the observed Round Trip Time (RTT), and WestwoodNR [18] dif-
ferentiates the causes of packet loss, i.e., traffic congestion or error-prone wireless
channel, and adapts the congestion window size at the sender side accordingly.

3.2.4 Application Layer

The application layer provides most of the functionality required by the user in terms
of its direct interaction with the network-based services. The lower layers, including
the transport layer, provide data transport services to the application layer. Although
the transport layer protocols support data exchange services, their functionality is
still too basic for the applications layer. As a consequence various protocols have
been developed and deployed at the application layer in order to support the re-
quirements of the highly diverse user applications. Some of these protocols will be
discussed in this section.

3.2.4.1 The Domain Name System
In order to initiate a TCP connection or to send UDP datagrams to a host in the

network, one needs to know the host’s IP address. The main disadvantages of ad-
dressing a host by its IP address include the less user-friendly format of IP addresses

38 3 Network Communications Protocols and Services

Fig. 3.9 DNS resource
record structure [Domain Name | TimetoLive | Class Type I Value]

(i.e., numerical form) and the possibility that a host will have its address changed
by the network administrator.

To solve this issue, textual names (i.e., domain names) have been introduced to
decouple the name of a host from its IP address. Consequently, user applications will
address a specific host by its name and not its I[P address. However, the underling
network still uses IP addresses to exchange and route data packets.

The Domain Name System, best known as DNS, is a distributed system storing
records about domain names and host machines. A standard DNS resource record
contains the fields presented in Fig. 3.9, which are briefly introduced next.

The Domain Name represents the domain the record refers to and is the main
query parameter when a DNS server is interrogated for particular records.

The Time to Live parameter is an indicator of how stable the record is expected
to be. This is mainly relevant for cached records which may soon become outdated.

Class is usually “IN” for Internet information. Other codes can be used for non-
Internet information.

The Type denotes the king of recorder, among other one of the most important is
“A” which represents the IP address.

The Value can be a number, a domain name, or an ASCII string.

The following is an example of a DNS record specifying the IP of the host to
which the domain pel.eeng.dcu.ie refers to. The time to live for this record is 86400
seconds which represents 24 hours. This is a stable record. For less stable records,
the time to live field may be set to 60 seconds.

pel.eeng.dcu.ie 86400 IN A 10.10.105.189

Theoretically, a single server could store the DNS records for the whole Internet.
In reality, this would quickly lead to this server being overloaded by a huge amount
of requests and eventually fail. Moreover, having one single server delivering DNS
service poses significant reliability problems risking to bring the whole Internet ac-
tivity to a halt.

As a consequence, the DNS space is organized in a tree-like structure as illus-
trated in Fig. 3.10.

The top-level contains generic domains such as .com, .edu, .net, etc., and country
domains such as .us, fr, .ie, .de, etc. Each of the top-level domains is the root of a
tree of sub-domains. A leaf domain is a domain that does not have any sub-domains
and may represent a host or a organization with hundreds of hosts.

The domain name tree is organized in zones and each of these zones is served by
a primary name server and several secondary ones.

There are two types of queries supported by named servers. To exemplify, we
consider the host in Fig. 3.10, running a client application willing to initiate a
TCP connection with a server running on the host represented by the domain name

3.2 Protocol Hierarchy 39

root

Generic top-level Country top-level

domains

Name Server

Fig. 3.10 DNS space

pel.eeng.dcu.ie. The client application will call a resolver procedure passing the do-
main name as a parameter. The resolver will use UDP to send local name server a
request for the IP corresponding to pel.eeng.dcu.ie. Assuming this domain has never
been accessed from the host machine before, the local name server will not have any
records of it.

Depending on the type of query (recursive or non-recursive) the local name server
will forward the query to the top-level name server (i.e., ie) or will reply with the
address of the top-level name server.

For the rest of the example will assume the query is recursive. The local name
server forwards the query to the .ie name server. The top-level server does not have
records of the leaf domains but has records of the next level sub-domains. Conse-
quently, it forwards the request to dcu domain server which further forwards the
request to eeng name server. The eeng name server retrieves the authoritative record
from its database and forwards it to the originator of the query which further returns
the record towards the local name server of the client host. The local name server
sends the record to the resolver of client application. The authoritative record comes
from the server that manages the domain (i.e., eeng name server) is always up to
date. In the context of the presented example, the client host’s local name server
caches the record for quick future name resolution (the cached record will be kept
for as long as the Time to Live parameter specifies, in order to avoid stalled data).

40 3 Network Communications Protocols and Services

Client Server

[User Interface]

Network

M Control Connection
<::(> Data Connection

Fig. 3.11 FTP session

3.2.4.2 File Transfer Protocol

File transfers account for large amounts of data exchange over the Internet. File
transfers involve clients transferring file content in a reliable manner and efficiently
to and from servers, but also data exchange between peers in peer-to-peer settings.
In general, file transfers are performed using the File Transfer Protocol (FTP).

FTP was developed in 1985 and is still widely used today. The protocol has been
first defined in RFC 959, but then several extensions have been proposed to enhance
flexibility and security (RFC 1579, RFC 2228) [19-21]. FTP works on top of TCP
and in general uses port 21; however, the administrator may choose to use different
ports.

The client connects to the server and sends commands, and the server responds
with command status messages. In general, each session involves at least one file
transfer. The basic principle of file transfers using FTP is outlined in Fig. 3.11.

FTP involves two connections: control and data connections. FTP commands and
replies are exchanged via the control connection, while data is exchanged over the
data connection. Control connection must be working when the data is transferred.
In practice, a single connection is used for both data and control.

Commands can be grouped in three categories.

e Access control commands include:

— USER—indicates the user;

— PASS—indicates the password;

— CWD—<change directory;

— CDUP—-change directory to parent;
— QUIT—logout.

3.3 Services 41

e Transfer parameter commands include:

PORT—publish local data port;

— PASV—server passive (listen);

TYPE—indicate data representation (A-ASCII, E-EBCDIC, I-Image, L-
Local);

MODE—indicate transfer mode (S-Stream, B-Block, C-Compressed);
STRU—establish file structure (F-FILE, R-RECORD, P-PAGE).

e Service commands include:

— RETR—retrieve file;

— STOR—send and store the file remotely;
— APPE—send file and append;

— DELE—delete the file;

— MKD—make a new directory;

— RMD—remove a directory;

— PWD—print working directory;

— LIST—list files.

Every command must generate at least one reply from the server. This enables
the synchronization of requests sent by clients and actions performed by the server
and also allows the clients to know the server status. In general, the reply is a single
line; however, multiple lines are also accepted. The reply must contain a three digit
status code which enables machines to assess server status and a text message which
describes the server status in human language.

There are several issues when using FTP for file transfers. Security is an impor-
tant issue for many companies that have installed firewalls. Firewalls prevent unau-
thorized users from getting access to the networks. However, firewalls may also
inadvertently prevent valid users from accessing some resources. When FTP is in-
volved the network administrators must design rules for classes of FTP connections
which may be a costly and error prone process.

Another issue is standardization. There are many FTP client applications with
different interpretations of the FTP protocol. Consequently, FTP server administra-
tors must know how to support all of these different client classes.

An alternative to FTP is Web-based file transfer. A Web-based file transfer client
runs within the Web browser. There is no need for any software to install, license
to purchase or software to maintain. Additionally, there is no need to set-up firewall
rules for each user class.

3.3 Services

3.3.1 Electronic Mail

Nowadays, the e-mail service is one of the most used means of electronic com-
munications. It involves users sending messages to other users via the network. In

42 3 Network Communications Protocols and Services

Network
’ POP3

SMTP

- . _IMAP §
D o —

POP3

IMAP E-Mail E-Mail SMTP

Server Server

Fig. 3.12 E-mail message exchange
Fig. 3.13 E-mail message
format [Envelope Header Body]

practice, client machines enable messages to be written and sent to local e-mail
hosts (e-mail servers), which communicate with remote clients’ e-mail hosts. Re-
mote clients enable the contact with the remote e-mail servers for the messages to
be retrieved and then read by the remote users.

The e-mail system is composed of a User Agent (UA) and a Message Transfer
Agent (MTA). The UA allows users to send and retrieve messages and may also
provide a graphical user interface. The MTA transfers the messages from the source
to the destination.

The e-mail system requires several services to be provided by the two agent com-
ponents: UA and MTA. Composition is provided by UA and refers to the creation of
messages and reply messages. Transfer is ensured by MTA and refers to delivering
the messages from source to destination. Reporting, also provided by MTA, involves
informing the sender about the status of the messages sent. Displaying is provided
by UA through the user interface and involves displaying the message so that it can
be accessed by the user. Depending on the type of content, sometimes the messages
need to be converted before displaying. Often another program is invoked, such as
plug-in (embedded in the mail client application) or application (independent from
the mail client application). Disposition, managed by the UA, refers to what the
remote user does with the message (e.g., save, delete, etc.).

Figure 3.12 shows the basic principle of the e-mail service.

The e-mail message structure involves an envelope, a header, and a body, as
outlined in Fig. 3.13 and is formalized in RFC 822 and RFC 2822. The envelope
encapsulates the message and contains all info required to transport the message
such as destination address, priority, and security level. The header contains the
control information required to display the message (e.g., date, subject). The body
represents the content useful to the human user.

Multipurpose Internet Mail Extensions (MIME) is a standard (RFC 1341,
RFC 2045-2049) that extends the format (RFC 822) of the e-mail messages to sup-
port extra features and encoding rules for non-ASCII messages. These features in-
clude characters with accents (e.g., in French, German, etc.), text in non-Latin al-

3.3 Services 43

phabets (e.g., Cyrilic, Hebrew, etc.), text in non-alphabetic languages (e.g., Chinese,
Japanese), non-text data (e.g., multimedia, images, audio).
MIME defines five new message headers. The new headers include:

MIME-Version—Indicates MIME version;

Content-Description—String describing the content;

Content-Id—Unique identifier;

Content-Transfer-Encoding—How body is wrapped for transmission (e.g., 7-bit
ASCII, 8-bit codes, base64 binary, etc.);

e Content-Type—Type and format of content, RFC 2045 defines 7 types, including
Text (Plain, Enriched), Image(Gif, Jpeg), Audio (Basic), Video (Mpeg) Applica-
tion, Message (RFC 822, Partial, External-body), Multipart.

Messages not including MIME-Version header are assumed to be in English plain
text.

Simple Mail Transfer Protocol (SMTP), standardized in RFC 821, allows mes-
sages to be sent from UA to MTA. SMTP works on top of TCP and in general uses
port 25.

The client initiates the TCP connection with the server and waits for the server to
state it is ready. After the server confirms it is ready, the communication sequence
commences. The client sends commands and the server responds with command
status messages. Status messages include ASCII encoded numeric codes and details
in text. The order of the commands is very important for the success of the message
sending operation.

The SMTP commands include:

o HELO—identifies client;

o MAIL FROM:—starts a mail transfer session and identifies the mail sender;

e RCPT TO:—identifies one recipient; there may be multiple RCPT TO: com-
mands;

e DATA—sender ready to transmit a series of lines of text, each ending with
CR&LF. A line containing only a period “.” indicates the end of the data;

o QUIT—request to finish the session and close the connection.

Extended SMTP (ESMTP) was defined in RFC 2821. EHLO is the new com-
mand for identifying the client. Only ESMTP servers accept extended hellos. An
SMTP server rejects this command, thus the client will know what type of server it
communicates with. Other set of commands and parameters are defined, too.

Post-Office Protocol version 3 (POP3), standardized in RFC 1939, allows mes-
sages to be accessed by the client software (UA) on the e-mail server (MTA).

POP3 works on top of TCP and in general uses port 110. The protocol message
sequence includes the following stages. After the client connects to the server, it
waits for the server to state it is ready. Once the server confirms its availability, the
client starts sending commands, which determine the server to perform actions and
respond with status messages.

POP3 requires sequential passing through three states: authorization, transaction,
and update.

44 3 Network Communications Protocols and Services

Table 3.1 IMAP vs. POP3
Protocol RFC TCP Port Email store Email read Mailboxes Partial message

POP3 1939 110 Client Offline Simple No
IMAP 2060 143 Server Online Multiple Yes

During the authorization phase the client sends username and password details
to the server. The following commands are involved:

o USER username—identifies the username;
e PASS password—indicates the password.

During the transaction phase the client retrieves the list of messages or a par-
ticular one. The client may mark for deletion some of the messages. The following
commands are involved:

o LIST—lists e-mails received in order;
e RETR no—retrieves message number no;
e DELE no—marks for deletion message number no.

During the update phase, the QUIT command is sent (QUIT starts the update),
and the server finishes deleting all the messages marked for deletion, then it sends a
disconnect message and disconnects the client.

POP3 allows the client to download the messages locally (on the client machine)
and manipulate them offline.

Internet Message Access Protocol IMAP), standardized in RFC 2060, is also
used to access the e-mail messages on the server.

IMAP works on top of TCP and in general listens at port 143. The protocol mes-
sage sequence includes the following stages. After the client connects to the server,
it waits for the server to state it is ready. After the server confirms its status, the client
sends commands and the server responds with status messages, after performing the
required actions.

IMAP assumes that the server keeps all messages and the client accesses them
online. IMAP enables the user to use multiple mailboxes and permits e-mail access
from multiple locations.

Specific commands are defined by IMAP for searching messages, reading mes-
sages or part of them, creating, manipulating multiple mailboxes, addressing an e-
mail by attributes (e.g., from source), etc.

Table 3.1 summarizes the main differences between IMAP and POP3.

3.3.2 The World Wide Web

The World Wide Web or the Web, as it is widely known, represents a framework
allowing client machines to access linked documents spread over millions of servers
all over the Internet.

Figure 3.14 show the principle of accessing web documents over the Internet.

3.3 Services 45

Request Request

Document Document

>

Web Client
(Client Browser)

Web Server
Document
Storage & Generation

Fig. 3.14 World Wide Web document delivery process

The web documents or web pages, or just pages, consist of a collection of text,
images, and lately video content. A web page may also contain links to other web
pages. These links are called hyperlinks and can be attached to most of the elements
of a web page but mostly to text and images.

The web pages are displayed on the client machine by an application called a
browser. Internet Explorer, Firefox, and Chrome are among the most popular.

Web content transfer accounts for most data transfers over the Internet. It involves
communications between Web clients (browsers) and Web servers where clients
request a piece of Web content from servers and the servers respond delivering it
(Fig. 3.14). In general, a series of response requests are part of a web communication
session.

The web pages are stored or generated by a web server and are delivered to the
client on request. The protocol used by the web client (browser) to interact with a
web-server is Hypertext Transfer Protocol (HTTP). HTTP is standardized in RFC
1945 and RFC 2616, and works in general on top of TCP. HTTP uses in general port
80, but other ports can be used as well. There may be one (HTTP v.1.0) or multiple
simultaneous connections (HTTP v. 1.1) initiated by the client to the server. Client
sends commands and server responds with command status messages. In general,
each session involves at least one request response.

Web pages or documents can be classified into three categories: Static, Active,
and Dynamic.

Static documents are identically delivered at every request and to any user. These
documents are modified by replacing the original file on the server. These documents
are created using languages such as HTML, XML, XHTML, CSS, XSL, and are
easy to create. Fast to retrieve, these documents do not require much processing on
the server or client. Being static, these types of documents can be cached on the
client’s machine or in nearby servers for faster delivery.

Despite the performance advantages, static documents are difficult to maintain
consistent and up to date, offer little user personalization and are not suitable to
create large sites.

Active documents are static documents containing executable code which is exe-
cuted at the client, basically by the browser. Most common executable code executed
at the client side is Javascript and Java Applets.

46 3 Network Communications Protocols and Services

Request Request

- .
Content Delivery

<

Media Client
Media Player & Browser

R
Content Delivery

Media Server
Content Storage

Fig. 3.15 Multimedia content delivery process

Among the advantages are user interactivity, limited user personalization, data
display customization, cache friendly, and distributed resource requirements (the
code runs on the client machine hence no server resource is required).

Among the disadvantages is the fact that the user runs unknown code which may
pose security issues. Also, running code on the client machine may lead to increased
delays depending on the performance of the machine used.

Dynamic documents are generated on the fly by the server, at client request.
This type of document enables user personalization, supports database access, data
display customization and can use time and date sensitive code.

Among the disadvantages of using dynamic documents are their complexity, high
resource requirements on the server side and the fact that they are not cache friendly.

Among the most popular technologies for dynamic documents processing are
Hypertext Processor (PHP), Java Servlets, and Java Server Pages (JSP).

3.3.3 Multimedia-Based Services

Multimedia represents content of different forms including text, images, audio,
video, and animations. Multimedia content is increasingly popular nowadays and
accounts for a high share of the data traffic transported over the Internet.

Even the web documents discussed in the previous section contain at least some
images and text, which turns them into multimedia content.

However, multimedia applications include a wide range of scenarios from IP
Television-to-media streaming to hand-held devices to delivering web documents
including images and embedded video or animations.

At its basics, a multimedia application involves various types of content trans-
ferred over the network between a media server (can be a web server) and a media
client, as presented in Fig. 3.15.

As mentioned before, multimedia includes various forms of content, each type
have different requirements in terms of network bandwidth and timely delivery.

Text, usually requires low bandwidth and no real-time constraints. Text is usu-
ally required for subtitles, annotations, and meta-data as well as standard content

3.3 Services 47

Server Client

Media Decoder

Decompress

Media Encoder
Compression

r ~
L J

Fig. 3.16 Steps involved by multimedia content delivery process

in web document. Audio requires relatively low bandwidth and has real-time con-
straints. Still images require higher bandwidths (depending on the size and encoding
of the image) and no real-time constraints. Animation consists of a set of still im-
ages displayed successively and require higher bandwidth (depending on the size
and encoding of the image) and no real-time constraints.

One of the most prevailing form of content involved by multimedia applications
is video content. Video content consists of a sequence of still images named frames
displayed in a predefined order and at precise timing to create the illusion of mo-
tion. It requires high bandwidth and has real-time constraints. The raw frames of a
video clip would require a huge amount of data storage, even for today standards,
and would be impractical to transfer over the network. To exemplify, a 120 minute
video in standard VGA (640 x480) resolution at 25 frames per second requires about
154 gigabytes of storage.

In order to reduce the amount of data and make video storage and streaming
effective, compression techniques have to be used. Consequently, during video en-
coding, compression algorithms are employed to reduce the amount of data required
to store and transport the video data.

As a consequence, streaming video content from a server to a client involves three
main steps: compression, encapsulation, and transport. The process is illustrated in
Fig. 3.16.

Video compression relies on a good understanding of the human psycho-visual
perception system which allows for the exploitation of redundancies in the video
signals. Compression can be lossless or lossy, depending of the possibility to recover
the original image identically or not.

Video compression standards have been developed by the Moving Picture Ex-
perts Group (MPEG) and International Telecommunication Union (ITU).

MPEG compression standards include:

e MPEG-1—Combined audio—video signal, average bit-rate of 1 Mbps in Standard
input format (SIF), 352 x 288 pixels at 25 frames/s or 352 x 240 pixels at 29.97
frames/s;

o MPEG-2—Compression of standard definition (SD) and high definition (HD) in-
terlaced video signals. Very high bitrates (up to 20 Mbps) and high picture quality;

48

3 Network Communications Protocols and Services

o MPEG-3—Addressed HDTV compression, was discontinued;
o MPEG-4—Consists of two distinct compression algorithms: MPEG-4 Part 2 (Vi-

sual) and MPEG-4 Part 10 (AVC).
ITU compression standards include the H.26x family:

ITU-T R. H.261—Teleconferencing and videophone applications, ISDN lines as
the transport network infrastructure. Bitrates range from 40 Kbps to 2 Mbps in
multiplies of 64 Kbps;

e ITU-T R. H.262—It is identical with the MPEG-2 standard;
e ITU-T R. H.263—Similar to H.261, provides better performance and flexibility.

Low bit-rate (below 64 Kbps), however, this target has been relaxed;

ITU-T R. H.264—Identical with MPEG-4 (AVC). Has become a key technology
for multimedia applications. H.264 provides good video quality while substan-
tially reducing the bit rates and latency.

Proprietary compression solutions include:

VC-1 SMPTE 421M—-Standardized by the Society of Motion Picture and Televi-
sion Engineers (SMPTE). Video codec specification in the next generation optical
media formats, such as HD-DVD and Blu-ray. It is developed by Microsoft and
was originally known as the Microsoft Windows Media 9;

Audio Video Coding Standard (AVS)—Audio Video coding Standard Workgroup
of China. AVS Part 2 designed for HDTV. AVS Part7 (AVS-P7) for low complex-
ity, low picture resolution applications for the mobile environment;

e Apple QuickTime—Developed by Apple;
e Real Media—Developed by Progressive Networks.

Compression converts data to be stored efficiently. Encapsulation wraps the com-

pressed data in a container which specifies how the data should be stored, trans-
ported, and displayed. Encapsulated multimedia content includes video and audio
streams, meta-data, subtitles, and synchronization information. Multimedia con-
tainer formats include audio container formats and flexible container formats.

Audio container formats include:

e Audio Interchange File Format (AIFF) (Mac OS);
o Waveform Audio File Format (WAV) (Windows);
e MPEG-1 or MPEG-2 Audio Layer III (MP3).

Flexible containers include audio, video and other types of data:

3GP—3G Mobile phones (Third Generation Partnership Project);

AVI—Audio Video Interleave (Microsoft Windows container);

FLV—Internet video delivery with Flash Player (Adobe Systems);
MOV—AQuickTime File Format (Apple Inc.);

MPEG-TS—MPEG-2 transport stream for digital broadcasting and for trans-
portation over unreliable media;

MP4—MPEG-4 Part 14, audio and video container for MPEG-4.

3.3 Services 49

Criginal Frames

[-’;\ooess Unit I Access Unit I Access Unit I Access Unit \J

Elementary Stream (ES)

Fig. 3.17 MPEG-2 elementary stream

Elementary Stream (ES)

[Access Unit I Access Unit I Access Unit I Access Unit]

'

Packetized Elementary Stream (PES)
| PESPacket | PESPacket | PESPacket | PESPacket |

Fig. 3.18 MPEG-2 packetized elementary stream

To exemplify we present the MPEG-2 encapsulation process.

The original video frames are first compressed by the MPEG-2 video compressor.
The result is split in access units. An access unit represents the fundamental unit
of encoding; for video this is usually an encoded frame. The process is shown in
Fig. 3.17.

The compressed content stored in access units is further split into a Packetized
Elementary Stream.

The format of the packets is presented in Fig. 3.18.

The payload contains an integral number of access units. The header consists of
a packet start code prefix (3 bytes), stream ID (1 byte), PES packet length (2 bytes),
optional PES header (variable length), and stuffing bytes.

The optional PES header includes:

e Data Alignment Indicator—The payload starts with video or audio;
e Copyright Information—Copyright protected;

50 3 Network Communications Protocols and Services

Video Packetized Elementary Stream (PES)

[PES Packet I PES Packet I PES Packet]—p

Audio Packetized Elementary Stream (PES)
|

Transport Packet

Fig. 3.19 MPEG-2 streaming process

e Presentation Time Stamp (PTS)—synchronizes a set of elementary streams and
controls the playback rate;

e Elementary Stream Clock Reference (ESCR);

e Flementary Stream Rate—the ES encoding rate;

e CRC—Monitors errors in the previous PES packet.

Multimedia content delivery or transport may use one of three major techniques:
broadcast, unicast, or multicast content delivery.

Broadcasting is cost-effective in terms of bandwidth and resource utilization.
However, video-on-demand-like services decrease broadcasting popularity.

Unicast supports video-on-demand services as well as broadcast services. Net-
work resources are used only when necessary and support content adaptation for
each user separately.

Multicast is beneficial for group content delivery in applications such as video
conferencing. However, the management of multicast groups is difficult and com-
plex.

The process of streaming the packetized elementary streams is presented in
Fig. 3.19. The packetized elementary stream is further split into transport packets,
each consisting of a header and a payload.

The transport packets have fixed sizes of 188 bytes and a payload of 184 bytes.
The header of 4 bytes consists of:

Synchronization byte—0x47 (0100 0111);

Three flag bits—Transport error, Payload Start Indicator, Priority;
Packet Identifier (PID)—13 bits;

Scrambling control—?2 bits, used for payload encryption.
Adaption Control (2 bits):

— 01—No adaptation field, payload only;
— 10—Adaptation field only, no payload;

3.4 Conclusions 51

— 11—Adaptation field followed by payload;
— 00—RESERVED.

e Continuity Counter (4 bits).

Multimedia content can be distributed over any transport protocol such as TCP
and UDP. For real-time multimedia streaming, where a certain level of packet loss
is acceptable, UDP is preferred over TCP. TCP’s congestion control and reliability
may affect the real-time delivery of transport stream packets. In the context of real-
time streaming of video or audio data, a packet arriving late is as good as a lost
packet.

Congestion represents a major issue especially in the context of bandwidth-
hungry multimedia applications. Adaptive multimedia streaming applications al-
ter both the encoding and transmission process parameters in order to reduce the
amount of data required to describe the content and consequently to be delivered in
order to match the available network capacity.

Protocols specific to real-time data delivery were also developed.

Real-time Transport Protocol (RTP) is used for delivering multimedia data over
the IP networks. RTP uses transport layer protocols such as UDP and is considered
an application layer protocol which delivers multimedia data itself.

Real-time Transport Control Protocol (RTCP) controls data delivery over RTP.
RTP and RTCP use different port numbers (even and odd). RTCP delivers control
packets carrying information such as throughput, loss, and jitter, information which
is not used by RTP, but it is usable by the application directly (bit-rate adaptation).
In this context, RTP cannot guarantee the Quality of Service (QoS) at all.

Real Time Streaming Protocol (RTSP) enables a client to have the features of a
VCR, such as play, stop, and pause. It is used in conjunction with RTP for delivering
multimedia data.

3.4 Conclusions

This chapter has presented the network protocol stacks for the theoretical ISO OSI
reference model and the practical TCP/IP model, and has described the layer-based
hierarchical data delivery paradigm. As network programming mostly concerns ap-
plication and transport layers, most relevant protocols at these layers were presented.

The chapter has also described in details services as highly important compo-
nents of the network framework and has discussed the e-mail, World Wide Web,
and multimedia-based services as the most relevant.

The next chapter introduces basic network programming aspects in the context
of supporting these services.

References

1. Postel J (1981) Transmission control protocol. Edited by Jon Postel. Available at http://rfc.
sunsite.dk/rfc/rfc793.html

http://rfc.sunsite.dk/rfc/rfc793.html
http://rfc.sunsite.dk/rfc/rfc793.html

52

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

3 Network Communications Protocols and Services

Postel J (August 1980) User datagram protocol. RFC 768, Internet engineering task force
Ramakrishnan K, Floyd S, Black D (2001) The addition of explicit congestion notification
(ECN) to IP

Allman M, Paxson V, Stevens W (1999) TCP congestion control

Krasic C, Li K, Walpole J (2001) The case for streaming multimedia with TCP. In: 8th inter-
national workshop on interactive distributed multimedia systems (iDMS 2001), pp 213-218
Pantos R (October 2012) E.W.M.: Apple’s http live streaming. Technical report, International
internet draft

Stockhammer T (2011) Dynamic adaptive streaming over http —: standards and design princi-
ples. In: Proceedings of the second annual ACM conference on multimedia systems. MMSys
’11. ACM, New York, NY, pp 133-144

Sandeep (2001) An experimental study of TCP’s energy consumption over a wireless link. In:
European personal mobile communications conference, IEEE

Zorzi M, Rao RR (2001) Energy efficiency of TCP in a local wireless environment. Mob Netw
Appl 6:265-278

Giannoulis S, Antonopoulos C, Topalis E, Athanasopoulos A, Prayati A, Koubias S TCP vs.
UDP performance evaluation for CBR traffic on wireless multihop networks

Jacobson V (1995) Congestion avoidance and control. SIGCOMM Comput Commun Rev
25:157-187

Jacobson V (April 1990) Modified TCP congestion avoidance algorithm. end2end-interest
mailing list

Hoe JC (June 1995) Start-up dynamics of TCP’s congestion control and avoidance schemes.
Master’s thesis, Massachusetts Institute of Technology

Mathis M, Mahdavi J, Floyd S, Romanow A (October 1996) TCP selective acknowledgment
options. RFC 2018 (proposed standard)

Fall K, Floyd S (1996) Simulation-based comparisons of Tahoe, Reno and SACK TCP. SIG-
COMM Comput Commun Rev 26:5-21

Seddik-Ghaleb A, Ghamri-Doudane Y, Senouci SM (2006) A performance study of tcp vari-
ants in terms of energy consumption and average goodput within a static ad hoc environment.
In: Proceedings of the 2006 international conference on wireless communications and mobile
computing. IWCMC ’06. ACM, New York, NY, pp 503-508

Brakmo LS, O’Malley SW, Peterson LL (1994) In: TCP Vegas: new techniques for congestion
detection and avoidance, pp 24-35

Mascolo S, Casetti C, Gerla M, Sanadidi MY, Wang R (2001) TCP westwood: bandwidth
estimation for enhanced transport over wireless links. In: Proceedings of the 7th annual inter-
national conference on mobile computing and networking. MobiCom ’01. ACM, New York,
NY, pp 287-297

Postel J, Reynolds J (October 1985) File transfer protocol. RFC 959 (standard) Updated by
RFCs 2228, 2640, 2773, 3659, 5797

Bellovin S (1994) Firewall-friendly FTP

Horowitz M, Lunt S (October 1997) FTP security extensions. RFC 2228 (proposed standard)

Chapter 4
Basic Network Programming

Abstract This chapter introduces some of the basic principles used for develop-
ing network-based applications. Multi-programming and multi-tasking paradigms
are introduced as two of the basic concepts of programming. Threads and pro-
cesses are discussed, emphasizing multi-threaded application development in Java.
Inter-thread and inter-process communication techniques and paradigms are also
presented, as some of the basic mechanisms for network applications communica-
tion.

4.1 Introduction

Network application programming uses high level programming languages and in-
volves a set of principles and techniques. Implementation requires access to vari-
ous APIs and support from different application development environments. This
chapter introduces some of the basic principles used for developing network-based
applications using Java programming language. However, the basic concepts and
techniques remain the same regardless of the programming language employed and
represent the basis for building data communication-based applications.

This chapter discusses the concept of multi-programming, which involves multi-
tasking, and presents how it is implemented in standard operating systems. Multi-
programming is a very important technique to both achieve computation parallelism
and exploit the multi-core architectures of most of the current processors. The chap-
ter also describes some basic aspects of the multi-programming paradigm includ-
ing processes, threads, inter-thread communication and synchronization, and inter-
process communications.

4.2 Multi-programming and Multi-tasking

Originally, uni-programming was the solution of choice for technical reasons. It
involves only one user program running on any computer at a time. This was a
feasible solution for the early computers which were, in fact, processing machines
dedicated to performing a single critical task such as bulk data processing, statistical
data analysis, or enterprise resource planning.

B. Ciubotaru, G.-M. Muntean, Advanced Network Programming — Principles and 53
Techniques, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5292-7_4, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5292-7_4

54 4 Basic Network Programming

Processor Time Allocation

Process 3

1
focess 2 : Process 2
|

I]
| |
I 1

I I I |
[Processor Time >

Fig. 4.1 Multi-tasking paradigm

Processes

The development of personal computers, and the related diversification in ap-
plication types determined a definite trend towards widening of user process-
ing requirements. This has lead to uni-programming becoming deprecated. Multi-
programming has emerged as a processor allocation paradigm where multiple user
programs run on the same computer at the same time.

The main problem with multi-programming is the limited number of CPUs (of-
ten a single one) the host machine has. Current CPU architectures involve multiple
processing units (cores), which increase the parallel processing capacity of the ma-
chine. However, the number of independent processing cores still does not match
the number of user programs running at the same time. This is an obvious situa-
tion which requires an allocation solution such as all the programs to be able to
access the CPU. However, the more user programs run simultaneously on the same
machine, the higher the pressure put on the allocation of CPU time.

In this context, the solution to the multi-programming problem is represented by
the multi-tasking paradigm. Multi-tasking creates the illusion of concurrency (par-
allel execution of user programs) by allocating chunks of processor time to each of
the running applications sequentially. Originally, each application has been associ-
ated with sequential tasks and a single process to run them. However, application
development and deployment has moved forward and further benefits from the al-
ready described processing parallelism by assigning the same application’s tasks to
multiple processes which can individually request CPU time.

This software approach to achieve parallel processing requires that the operating
systems perform fast switching of CPU between different processes. As a conse-
quence, at any given time a single process only runs on any one processing unit
(core). Consequently, the number of processes which run in parallel on a machine
is equal to the existing number of processing units on that machine. However, the
fast switching between processes creates the illusion (from user perspective) of all
processes running in parallel.

Figure 4.1 graphically presents an illustration of the multi-tasking concept. In
this figure, three distinct processes are allocated processor time by a single core
CPU in a round-robin manner.

4.3 Processes 55

Fig. 4.2 Process state
[Running ’

transition

A process is a running program sequence along with all the resources that its code
can affect (also known as process context). The process context includes the pro-
cess state, an image of the executable machine code corresponding to the program,
allocated memory, descriptors of resources used by the process such as file descrip-
tors or handlers, security attributes such as process owner and process permissions,
and last, but not least, processor state like content of registers and physical memory
addressing.

The process state represents the status of the process with respect to processor
time usage. A process may be in one of three states:

4.3 Processes

e Running—The process is using the CPU (it has been allocated processor time and
the processes machine code is physically executed by the processor).

e Blocked—The process is unable to run until some external event occurs (e.g.,
data is received from the network). CPU could be free during this period if none
of the existing processes is in position to run.

e Ready (Runnable)—The process is ready to run (does not have to wait for any
event to occur), but it is temporarily stopped by the operating system to let other
processes run on the same CPU.

Figure 4.2 graphically presents the state transitions occurring during the lifetime
of a process. Depending on the operating system’s scheduling algorithm and the
particularities of the process (user application), the status of the process will period-
ically oscillate between the three states described in the figure.

Figure 4.2 illustrates all possible state transitions which may occur in the follow-
ing situations:

e Transition 1—QOccurs when a process cannot continue, as it is waiting for some
external event. For example, when a process initiates a connection to the server,
the process will be blocked until the server replies.

e Transition 2—Caused by the process scheduler when it decides to temporarily
stop the execution of the current process and give another process the chance to
run. The process is interrupted and its state is saved in order to resume operation
from the same point it was interrupted without any disruption.

e Transition 3—Caused by the process scheduler when it decides to give a ready
process the chance to run. Transitions 2 and 3 are basically creating the illusion
of processing parallelism.

56 4 Basic Network Programming

Fig. 4.3 Process scheduling
[Scheduler]

Process 2 l Process 4
| CPU
(Core)

Ready Processes

e Transition 4—Occurs when the external event that the blocked process was wait-
ing for (such as the arrival of some input messages) occurs. This transition is
usually triggered by a processor interruption signal generated by the correspond-
ing I/0 peripheral or a network interface.

When multiple processes are in the READY state, the operating system must de-
cide which one of them to run first. It employs a scheduling algorithm to determine
the processes which will be allocated processor time and in what order. Schedul-
ing algorithms, as graphically depicted in Fig. 4.3, also determine when to stop one
process and give CPU time to another process. Scheduling algorithms may do this
voluntary (“non-preemptive scheduling”) or forced (“preemptive scheduling”).

Non-preemptive scheduling involves the processes giving up processor time will-
ingly to allow other processes to run. This usually happens when the currently run-
ning process has to switch to the BLOCKED state, while waiting for external event.
When preemptive scheduling is used, the currently running process is forced into
the READY state to allow other processes to run. Preemptive scheduling can be
performed according to a scheduling policy.

There are various scheduling policies including:

e Priority scheduling—processes with higher priority will be allocated processor
time more often. Process priority is an important feature when critical applica-
tions are running on the host machine. Moreover, when less important tasks or
less time-critical applications run (e.g., operating system updates), they may be
allocated lower priority in order to minimize the impact on other running appli-
cations.

o First come—first served—the first process in the queue of READY process will
be allocated processor time. This treats all the process equally, and there is no
method to prioritize critical processes.

e Shortest job first—the process requiring less processor time will be given prior-
ity. This leaves longer processes with lower priority and may jeopardize to some
extent their operation if many light processes are running at the same time.

e Shortest remaining job first—the processes requiring the shortest time to com-
plete will be given the highest priority. This approach involves giving priority

4.4 Threads 57

Fig. 4.4 Thread scheduling

Ready Processes

to processes which are about to finish their operation, leading to a faster de-
congestion of the process queue.
e Round-robin—equal processor time slices are assigned to all processes.

4.4 Threads

A thread is a sequence of a program that performs certain tasks and executes within
a process. Often threads are seen as lightweight processes, as they have their own
stack, but share memory and data as well as descriptors of resources with other
threads within the same process.

Similar to processes, threads may be allocated different priorities depending on
their role within the application process. Thread priority can be associated to the
thread during its creation and can be changed during the operation of the thread.

Threads can run in preemptive mode (operating system interrupts thread execu-
tion at regular intervals to give processing time to other threads) or in cooperative
mode (a thread can access the CPU for as long as it needs).

Threads and their scheduling to access the processor time is illustrated in Fig. 4.4.

4.5 Multi-threading

Multi-threading provides another level of parallelism for task execution, with less
overhead. When multiple threads exist, different tasks can be performed in paral-
lel using common data and resources. Thread context switching is less complex and
faster than process context switching, making multi-treading an efficient way to em-
ulate parallelism. Thread switching efficiency is mainly determined by the fact that
threads own less resources than processes which need to be saved prior to switch-
ing the context (they share resources such as memory and descriptors with other
threads).

58 4 Basic Network Programming

Fig. 4.5 Multi-threading

G"’lﬁ:‘:f:'wu“ | DiskSaveData |
‘ (thread)
(thread) | |

In general, a process consists of many threads, each running at the same time
within the process context and performing a unique task. An example of multi-
threading is graphically presented in Fig. 4.5. In this example, a word processor
application (process) may use multiple threads, each performing a particular task.
The graphical user interface (GUI) is running a separate thread, the data processing
module has its own thread as well as the module dealing with saving data on the
disk.

Despite the evident benefits multi-threading brings, in terms of application de-
sign, the number of threads should be kept to the minimum, in order not to overload
the system with non-necessary context switches. Additionally, threads should be
employed when there are clear benefits from using parallel processing only, as in-
volving multi-threading in a highly sequential series of tasks only adds complexity
to otherwise a simple solution.

Thread priorities have to be managed according to the application purpose and
requirements. A thread which manages time-critical tasks should be given higher
priority than the other threads. Such an example is the graphical user interface
(GUI) which should be allocated a dedicated thread with a higher priority than other
threads in order to keep the interaction with the user within the corresponding real-
time requirements.

4.6 Multi-threading in Java

Java provides built-in support for multi-threaded programming. It offers two meth-
ods for using threads within an application. A thread can be created by extending
the Thread class, or by implementing the Runnable interface. Both are equally ef-
ficient in terms of using the threads, but the latter is sometimes preferred as it both
provides a clearer separation between the behavior of the thread and the thread itself
and enables better reuse.

Next these two approaches are shown in a hands-on manner by providing the
step-by-step solution design and implementation when trying to perform parallel
activities within the same application.

4.6 Multi-threading in Java 59

4.6.1 Extending Thread Class

This example will both count and repeatedly display Hello! messages, while availing
from processing parallelism.

e Step 1—Divide application work in tasks and allocate each of them to a thread:

/*CountThread does the countingx/
/+*HelloThread does the printing=*/

e Step 2—CountThread extends the Thread class:

/*CountThread increments a value and prints it.=x/
class CountThread extends Thread
{
/+*time the thread is paused for (in ms).x/
int pause;
/+*number of times the message is printed.=*/
private static final int TIMES = 10;

/+*run() is the method doing the actual thread task.=x/
public void run()
{
/+*1 1s incremented and printed within
the for loop.=*x/
for (int i=0; i1<TIMES; 1i++)
{
try
{
/+*print the value of 1.%*/
System.out.println (i) ;

/*generate a random sleep interval.sx/
pause = (int) (Math.random() =* 3000);

/*put the thread to sleep.=*/
sleep (pause) ;
}
catch (InterruptedException e)
{
/*print the exception message when necessary.x*/
System.out.println(e.toString()) ;

60 4 Basic Network Programming

e Step 3—HelloThread extends the Thread class:

/+*HelloThread prints "Hello!" at random intervals.x*/
class HelloThread extends Thread
{

/+time the thread is paused for (expressed in ms).x/
int pause;

/+number of times the message is printed.x/

private static final int TIMES = 10;

/+*run() is the method doing the actual thread task.=x/
public void run()

{

/+*"Hello" is printed TIMES times.x/
for (int 1=0; i<TIMES; i++)
{
try
{
/*print the message.x*/
System.out.println("Hello!") ;

/*generate a random sleep interval.sx/
pause = (int) (Math.random() =* 3000);

/+*put the thread to sleep.x*/
sleep (pause) ;

}

catch (InterruptedException e)

{
/*print the exception message.=*/
System.out.println(e.toString()) ;

}

e Step 4—Instantiate the two thread classes and start their execution:

/*main thread application.x/
public class ThreadHelloCount
{
public static void main(String[] args)
{
/*create the CountThread thread.x*/
CountThread count = new CountThread() ;

4.6 Multi-threading in Java 61

/*create the HelloThread thread.*/
HelloThread hello = new HelloThread() ;

/+*start the CountThread instance.x/
count.start () ;

/*start the HelloThread instance.=*/
hello.start () ;

Note that when dividing application work in tasks with the aim to have them
associated with threads for parallel execution, each task has to be able to execute
independently from the other tasks because otherwise the execution concurrency
provides no benefit to the overall application. The run() method of the Thread class
is overridden here to perform the core activity of the tasks. The run() method is
invoked by the start() method, when the thread is started. The two threads execute
loops in which counting and/or printing occurs. After each iteration, a call to the
sleep() method determines the threads to suspend their execution. As a result the
threads will be in the BLOCKED state until the sleep duration of time indicated
when sleep() was called elapses and the threads return to the READY state. This al-
lows the scheduler to perform its scheduling activity and have the threads interleave
their execution. However, no activity is performed before the two thread classes are
instantiated and their start() methods are called. This is done in the main() method
of the main thread application class ThreadHelloCount.

4.6.2 Implementing Runnable Interface

Next is an example of multi-threading using implementations of the Runnable in-
terface to create threads. The example will perform in parallel repeat printing of the
current date and repeat display of a user message.

e Step 1—Divide application work in tasks and allocate each of them to a class:

/+xDateRunnable does the current date and time printingx/
/+*MsgRunnable does the user message printingx*/

e Step 2—DateRunnable implements the Runnable interface:

import java.util.Date;

/+*Prints date and time at random intervals.x/
class DateRunnable implements Runnable

{

62 4 Basic Network Programming

/*current date.x*/

private Date date;

/+*number of times the message is printed.x/
private static final int TIMES = 10;

/*constructor for the DateRunnable class.=x*/
public DateRunnable (Date aDate)
{

date = aDate;

/+*run() 1is the method that does the thread task.=*/
public void run()

{
/+the for loop prints the message TIMES times.=x/

for (int i=0; i<TIMES; i++)
{

try

{

/*create a new Date object =*/
/+*containing the current date.=x*/
Date nowDate = new Date() ;

/+*prints the date provided (date) */
/+*and the current date.x/
System.out.println("started:"

+ date + " now:" + nowDate) ;

/+*generate a random wait interval.=*/
int pause = (int) (Math.random() = 3000);

/+xthe thread will sleep.=*/
Thread.sleep (pause) ;

}
catch (InterruptedException e)

{
/+*print the exception message. */
System.out.println(e.toString());

}

e Step 3—MsgRunnable implements the Runnable interface:

/+*MsgRunnable prints a user message at random

4.6 Multi-threading in Java 63

rintervals.*/

class MsgRunnable implements Runnable

{

/*message to be printed. s/

private String message;

/+*number of times the message is printed.x/
private static final int TIMES = 10;
/+*constructor for the MsgRunnable class.x*/
public MsgRunnable(String aMessage)

{

message = aMessage;

/+*run() 1is the method that does the thread task.=*/
public void run()

{
/+the for loop will iterate TIMES times to print

the message./
for (int i1=0; 1i<TIMES; i++)
{

try

{
/*print the message.x*/
System.out.println (message) ;

/+*generate a random wait interval.=*/
int pause = (int) (Math.random() x 3000);

/+xthe thread will sleep.x*/
Thread.sleep (pause) ;
}

catch (InterruptedException e)

{

/+*print the exception message. */
System.out.println(e.toString()) ;

e Step 4—Instantiate the two runnable classes, create threads, and start their execu-
tion:

import java.util.Date;

/+*main thread application.=*/

64 4 Basic Network Programming

public class RunnableMsgDate
{
public static void main(String[] args)
{
/*create runnable objects=*/
MsgRunnable mr = new MsgRunnable("Hello!");
DateRunnable dr = new DateRunnable (new Date());

/*create thread objectsx/
Thread mt = new Thread(mr) ;
Thread dt = new Thread(dr) ;

/*start threadsx/
mt.start () ;
dt.start () ;

The same comments stand regarding the division of application work in indepen-
dent tasks for thread-based parallel execution in order to avail from any performance
benefits. In this example, the run() method of the Runnable interface is implemented
in a runnable class in order to execute the tasks when invoked. The runnable class
needs to be instantiated, then associated with a thread before the thread execution
start will determine the run() method to be invoked (by the Thread’s start() method).
The two runnable classes execute loops in which the current date or a user message is
printed. After each iteration, a call to the Thread’s sleep() method determines execu-
tion suspension for the period of time indicated as a parameter in the sleep() method
call. When this period elapses, the associated threads return to the READY state and
are eligible for execution scheduling by the scheduler. However, thread executions
start only after the two runnable classes get instantiated, two thread classes are cre-
ated and associated with the corresponding runnable instances and the two thread
start() methods are called. This is done in the main() method of the main thread
application class RunnableMsgDate.

There are several important methods of the Thread class which are used for deal-
ing with threads:

e void start()—Causes the thread to start its execution (JVM calls thread’s run()
method);

o void run()—Executes thread’s task. If the thread was constructed from another
Runnable object, it calls automatically that object’s run() method,;

e void setName(String name) and String getName()—Change and retrieve the name
of the Thread when called;

e int getPriority() and void setPriority(int)—Get and set thread’s priority. The pos-
sible values are between 1 and 10;

4.7 Inter-thread and Inter-process Communication 65

Fig. 4.6 Inter-thread
communication

Ready Processes

e static void sleep(long) and static void sleep(long, long)—Cause the thread to cease
execution for the specified number of milliseconds and milliseconds + nanosec-
onds, respectively.

e static void yield()—Causes the thread to temporarily pause and allows other
threads to execute;

e void join(long millisec)—It is usually invoked by the parent thread causing it to
block until the child thread terminates or the specified number of milliseconds
pass.

e boolean isAlive()—Return true if the thread is alive.

The only method of the Runnable interface is void run() and it requires imple-
mentation as can be seen in the example already presented.

4.7 Inter-thread and Inter-process Communication

4.7.1 Inter-thread Communication

The inter-thread communication focuses on exchanging data between different
threads. As threads execute on the same machine and they share the process data
space, inter-thread communication is mostly performed using common data vari-
ables. The principle of inter-thread communication is graphically presented in
Fig. 4.6.

As multiple threads executing in parallel may access and modify the same data
variables, the results may not be predictable. In order to solve this issue, only one
thread is allowed to modify the data at a time (inter-thread synchronization is re-
quired). There are various mechanisms available to enable inter-thread communica-
tion and they are presented in details in [1], including:

e Shared memory;
e Semaphores;
e Message passing;

66 4 Basic Network Programming

Thread 1 Thread 2
(Producer) [rmd__ - --_’ (Coéiﬂ

Fig. 4.7 Consumer—producer problem

e Signals;
e Named pipes.

4.7.2 Producer—Consumer Problem

A basic thread synchronization scenario is the producer—consumer problem, as pre-
sented in Fig. 4.7. Some threads store items in a queue (producers), while other
threads collect items from the queue (consumers) and use them. The queue is a
shared memory space and needs to be protected from access by the multiple pro-
ducer and consumer threads. Next this mechanism will be described in the context
of the solution.

An example of inter-thread communication synchronization based on the produ-
cer—consumer problem.

e Step 1—Divide the problem and solution in producer, consumer, and shared queue
classes:

/*class implementing the shared queuex/

class SynchQueue;

/+xclass extending Thread dealing with the producerx/
class Producer extends Thread;

/+xclass extending Thread dealing with the consumerx/
class Consumer extends Thread;

e Step 2—Design the shared queue class:

/+*class implementing the shared queuex/

class SynchQueue {
/+*indicate the location of queue’s front and back.x*/
/+xthe consumer reads from the frontx/
/+the producer writes to the back.x/

private int front = 0, back = 0;
/+*indicates the number of items in the queue.x/
private int noltems = 0;

/*queue bufferx/

private int[] tabItems;

/+*maximum number of items in the queue.x*/
private int maxnoItems;

4.7 Inter-thread and Inter-process Communication

/*SynchQueue constructor.x/
public SynchQueue (int maxsize)
{

maxnoltems = maxsize;

tabItems = new int[maxnoItems];

/*returns the number of items in the queue.=*/
public int queueSize() { return noltems; }

/*method used to insert elements in the queue.x/
public synchronized void insert (int item)
{
/*check for space availability.x/
while (nolItems == maxnoltems)
{
try
{
/+*waits for consumers to free space.x/
wait () ;
}
catch(InterruptedException ex) {};
}
/+*insert the item at the back.x/
tabItems[back] = item;
/+*move the back index one step.=*/
back = (back + 1) \% maxnoltems;
/+xincrement the number of items.=x/
noltems += 1;
/+*notify all threads waiting=*/
/+for the object that it is free.=*/
notifyall () ;

/+method used to remove objects from the queue.*/
public synchronized int remove ()

{

int item;
/+*wait 1f the queue is empty.*/
while (noItems == 0)
{
try
{

wait () ;

68 4 Basic Network Programming

}
catch(InterruptedException ex)
{
}i
}
/+*retrieve the item at the front.x*/
item = tabItems|[front];
/+*move the from index one step.=*/

front = (front + 1) \% maxnoltems;
/*decrease the number of items.x/
noltems -= 1;

/*notify all threads waiting=/
/*as space has been freed.x*/
notifyAll () ;

return item;

}

e Step 3—Design the consumer class extending Thread:

/*the consumer thread class.x/
class Consumer extends Thread
{
/*the queue member. x/
private SynchQueue synQue;

/*constructor takes the queue as a parameter.x/
public Consumer (SynchQueue que)
{
synQue = que;
}
/*run() method performs the consumer task.=x/
public void run()
{
int item = 0;
do
{
/+*retrieve an item from the queue.=*/
item = synQue.remove () ;
/+print the thread name and the item.x/
System.out.println
("Consumer:" + this + " value:" + item);
}
while (item != -1);
/+xiterate until the value ofx*/

4.7 Inter-thread and Inter-process Communication
/+the item retrieved is -1.x/

}

e Step 4—Design the producer class extending Thread:

/*the producer thread class.=x*/
class Producer extends Thread
{
/+*the queue member. */
private SynchQueue synQue;
/+*min and max values for the items.x*/
private int minItem, maxItem;

/+*constructor taking the queue and =*/
/+*min and max no item values as parameters.x/
public Producer (SynchQueue que, int min, int no)
{

synQue = que;

minItem = min; maxItem = min + no;

/*run() method performs the producer task.x*/
public void run()
{
/+*1loop used to generate items.=*/
for (int item = minItem; item <= maxItem; item ++)
{
/+*print the item and thread name.*/
System.out.println
("Producer:" + this + " value:" + item);
/*insert the item in the queue.x/
synQue.insert (item) ;

}

e Step 5—Design the producer-consumer class:

/*Creates a number of producers (noProd)x/
/+*and consumers (noCons) and one synchronized queue. */
/+*Starts them and eventually terminates the processx*/
/*by inserting 1 items in the queue noCons times.*/
class MultiProdCons
{

public static void main(String[] args)

{

69

70

4 Basic Network Programming

/+*number of consumers and producers.x/
int noCons = 3, noProds = 4;

/*create the 5 element queue.x/
SynchQueue sque = new SynchQueue(5) ;

/*create the consumers and producers.x/
Consumer[] cons = new Consumer [noCons];

Producer[] prods = new Producer [noProds];

/*start the consumers.x/

for (int 1 = 0; i < noCons; i += 1)

{ cons[i] = new Consumer (sque) ;
cons[i].start();

}

/*start the producers.x/

for (int 1 = 0; 1 < noProds; i += 1)

{ prods[i] = new Producer (sque, i=*100,
prods[i].start();

}

/*wait for the producers to finish.x/

for (int i = 0; i < noProds; i += 1)

{ try { prods[i].join(); }

catch(InterruptedException ex) {};

/+*insert -1 in the queue for=*/
/+*each consumer to terminate.*/

for (int 1 = 0; i < noCons; 1 += 1)
{
sque.insert(-1);
}
/+*walit for the consumers to terminate.x*/
for (int i = 0; i < noCons; 1 += 1)
{ try { cons[i].join(); }

catch(InterruptedException ex) {};

}

50) ;

System.out.println("successful completion");

4.8 Conclusions 71

The key aspect in the solution to the producer—consumer problem is the synchro-
nized use of the queue. Java has a very strong mechanism which labels a code se-
quence with the keyword synchronized and prevents multiple threads from execut-
ing the code in parallel, protecting the integrity of the shared variables and memory
space. When any thread is executing the synchronized method, all other threads that
invoke any of the synchronized methods for the same object suspend their execu-
tion (enter the BLOCKED state) until the first thread finishes the execution of the
synchronized method. Once this happens, another thread is allowed to execute the
synchronized code in an exclusive manner, and so on.

The second aspect worth mentioning is the mechanism introduced to prevent con-
sumer threads from using processing resources while there are no items to be re-
trieved from the queue (the queue is empty) and producers from executing when
there is no space in the queue to place their products (the queue is full). When the
queue is empty, calls to the waif() method send the consumer threads attempting to
fetch items to the BLOCKED state. Similarly, calls to the waif() method send the
producers attempting to generate items to the BLOCKED state when the queue is
full. However, an item produced and placed in the queue or an item retrieved from
the queue by a consumer determines calls to notifyall() enabling threads to exit from
their BLOCKED state and enter READY state, waiting for the scheduler to give them
processor time and resume execution. In this way, both processing concurrency and
efficiency is achieved.

4.7.3 Inter-process Communication

Inter-process communication focuses on exchanging data between different pro-
cesses. Communicating processes can run on the same machine or on different ma-
chines. Communication between processes that run on the same machine is similar
to inter-thread communication. However, as the processes do not share the same data
space, there is a need for the processes to share some memory with each other first.
Communication between processes that run on different machines involves commu-
nication via networks (networking).

These inter-communicating processes must run on machines that are inter-
connected via a network (wired or wireless), and the data is exchanged using pro-
tocols, organized hierarchically in a protocol stack.

The principle of inter-process communication when the processes are running on
the same machine or on separate machines is presented in Fig. 4.8.

4.8 Conclusions

This chapter has discussed multi-programming and multi-tasking as very important
aspects of the current computational complexityand diversity of applications by mak-
ing use of computation parallelism and exploiting the multi-core architectures of

72 4 Basic Network Programming

r

)

(Thread 1)
)

Machine 1 Machine 2

L

Fig. 4.8 Inter-process communication: (a) via shared memory, (b) involving networking

many existing processors. The chapter has also discussed processes, threads, inter-
thread communication and synchronization, and inter-process communication, and
has provided examples described step-by-step which help the readers understand the
major issues encountered.

References

1. Tanenbaum AS (2007) Modern operating systems, 3rd edn. Prentice Hall, Upper Saddle River,
NJ

Chapter 5
Sockets

Abstract In order to support the inter-process communication, specific support has
to be provided by both the operating system and the programming language used.
This chapter presents and discusses sockets, as one of the major solutions employed
by network programming for the inter-process communications. Sockets provide the
application developer with direct basic access to transport protocols, offering data
packet transport services between a sender and a receiver host over the network,
while hiding the complexity and implementation details of the protocol stack below.
Sockets’ examples are presented in details when two of the most popular transport
protocols are employed in turn: the Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

5.1 Introduction

This chapter presents and discusses sockets, as one of the major solutions employed
by network programming for inter-process communications. Sockets provide the
application developer the direct basic access to transport protocols, offering data
packet transport services between a sender and a receiver host over the network,
while hiding the complexity and implementation details of the protocol stack below.
Sockets examples are presented in details when the two most popular transport pro-
tocols used in the Internet are employed in turn: the Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP).

5.2 Socket Definition and Types

Sockets are network communication link end-points between two applications (i.e.,
server and client). They offer basic transport data communication support and hide
lower layer implementation details. They provide a higher level of abstraction for the
communication infrastructure beneath and enable support for fast and easy network-
based applications development.

The basic principle of socket-based data communication is graphically presented
in Fig. 5.1.

B. Ciubotaru, G.-M. Muntean, Advanced Network Programming — Principles and 73
Techniques, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5292-7_5, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5292-7_5

74 5 Sockets

Data
User 1 t I User 2

e | Application | _
Application | Header | Application
| |

Socket Socket

Fig. 5.1 Socket-based network data communication

There are two type of sockets that can be used for application development: trans-
port layer sockets and application layer sockets.

Transport layer sockets make use of transport-layer protocols such as the Trans-
mission Control Protocol (TCP) [2] and User Datagram Protocol (UDP) [1]. UDP
is a connectionless non-reliable transmission of datagrams protocol, similar to the
postal service. TCP is a connection-based reliable, orderly transmission of data
packets, similar to the telephone service.

Application layer sockets make use of application-layer protocols such as the
Hypertext Transfer Protocol (HTTP) [3] and Simple Mail Transfer Protocol (SMTP)
[4]. HTTP is a TCP-based web page delivery service, while SMTP is a TCP-based
e-mail delivery service.

5.3 Socket-Based Network Communications

The network communication using sockets involves several basic steps which have
to be followed by the application developer in order to have a functional transport
mechanism between the two communicating parties.

The first step involves creating and opening sockets. Each communicating party
requires a separate socket. When creating/opening a socket, the important parame-
ters to be provided include the IP address, port number, and communication protocol
(TCP or UDP).

The second step involves establishing contact or associating the socket with an-
other socket. In order to be able to communicate, the sockets have to use the same
protocol. In general, the client knows the server’s IP address, port number, and the
protocol used and contacts it using these details. Depending on the protocol, it can
either request a service or establish a connection.

5.3 Socket-Based Network Communications 75

The third step consists of exchanging data between the two parties and represents
the main stage of network application’s communication tasks. This step usually hap-
pens recursively. Information is sent and received by the two communicating sock-
ets.

The last step involves closing and destroying the sockets which closes the com-
munication end-point. After this step the socket cannot be used for communication
any more.

5.3.1 UDP Sockets

When using UDP sockets the connection between the client and the server is not
maintained throughout the communication session. Each datagram packet is sent as
an isolated transmission when necessary. There are no guarantees that the packets
arrive in order at the destination or that the packets arrive at the destination at all.

5.3.1.1 UDP Sockets—Server Side

Java UDP server communication steps include the following:

e Step 1—Create a datagram socket object.

DatagramSocket dgramSocket =
new DatagramSocket (portno) ;
/%1024 <= portno <= 65535%/

e Step 2—Create a buffer to store the incoming datagrams:

byte[] buffer = new byte[256];
/*=128 <= byte value <= 127%/

e Step 3—Create a datagram packet object for incoming datagrams:

DatagramPacket inPkt =
new DatagramPacket (buffer, buffer.length);

e Step 4—Accept an incoming datagram:
dgramSocket.receive (inPkt) ;
e Step 5—Get sender’s address and port number from the datagram:

InetAddress cliAddress = inPkt.getAddress() ;
int cliPort = inPkt.getPort();

e Step 6—Retrieve the data from the buffer:

String msgIn =
new String(inPkt.getData(), 0, inPkt.getLength());

76 5 Sockets

e Step 7—Create the response datagram:

msgOut = ("Message " + numMessages + ":" + messageln);
DatagramPacket outPkt =
new DatagramPacket (msgOut.getBytes(),
msgOut.length(),
cliAddress,
cliPort) ;

e Step 8—Send the response datagram:

dgramSocket.send (outPkt) ;

e Step 9—Repeat communication if necessary:

while(condition) ;

e Step 10—Close the datagram socket:

dgramSocket.close() ;

Java UDP socket communication may throw exceptions that need to be caught
and treated. The following example shows how to catch exceptions thrown by the
UDP sockets.

try{
/+attempt to create the socketx*/
dgramSocket = new DatagramSocket (PORT) ;

catch (SocketException e) {
/+this exception may be triggered when=/
/+the port is already in use.*/
System.out.println("Unable to attach to port!");
System.exit (1) ;

The following example illustrates the use of sockets to create a server application
using the UDP protocols for data transport.
Server UDP Socket Communication Example:

import java.io.x;
import java.net.x;

/*UDP server class.x*/
public class UDPEchoServer

Code Listing 5.1 UDPEchoServer.java

5.3 Socket-Based Network Communications 77

{
/*port used by the server.x*/
private static final int PORT = 1234;

/+the datagram socket specific to UDP.=x*/
private static DatagramSocket dgramSocket;
/+*incoming and outgoing packets objects.x/
private static DatagramPacket inPkt, outPkt;
/*packet data buffer.=x/

private static bytel[] buffer;

public static void main(String[] args)

{
System.out.println("Opening port...\n");
try
{
/*create the datagram socketx/
dgramSocket = new DatagramSocket (PORT) ;
}
catch (SocketException e)
{
/+xhandle potential exceptions.x*/
System.out.println("Error attach port!");
System.exit (1) ;
}

run() ;

/*run () performs the main task of the server.x/
private static void run() {
try |
/+*buffers for the messages to be sent and received.x/
String msgIn,msgOut;
/+number of messages.x*/
int numMsgs = 0;
do {
/*create the packet buffer.x/
buffer = new byte[256];

/*create the incoming packet.=*/
inPkt = new DatagramPacket (buffer,buffer.length);

/*receive the packet from the client.=*/
dgramSocket.receive (inPkt) ;

Code Listing 5.1 (Continued)

78

5 Sockets

/+*retrieve the sender’s IP address.*/
InetAddress cliAddress = inPkt.getAddress() ;

/+*retrieve the sender’s port number.x/
int cliPort = inPkt.getPort();

/*store the content of the message.x*/
msgln =

new String (inPkt.getData(),0,inPkt.getLength());
System.out.println("Message received.");
/*increment the message number. */
numMsgs++;

/*generate the outgoing message.*/

msgOut = ("Msg "+numMsgs+ ": "+msgln);

/*create the outgoing packet.*/

outPkt = new DatagramPacket (msgOut.getBytes(),
msgOut.length(),cliAddress, cliPort) ;

/+*send the outgoing packet to the client.=*/
dgramSocket.send (outPkt) ;
} while(true);

}

catch (IOException e) {

e.printStackTrace() ;
}

finally{

/+*close the socket and release its resources.*/
dgramSocket.close() ;

Code Listing 5.1 (Continued)

5.3.1.2 UDP Sockets—Client Side

Java UDP client communication steps include:

e Step 1—Create a datagram socket object:

DatagramSocket dgramSocket = new DatagramSocket;
/+*a default port no will be selectedx/

e Step 2—Create the outgoing datagram:

5.3 Socket-Based Network Communications

BufferedReader userkEntry =
new BufferedReader (new InputStreamReader (System.in)) ;

System.out.print ("Enter message: ");
String msg = userEntry.readLine();

DatagramPacket outPkt =
new DatagramPacket (msg.getBytes(),
msg.length(), host, portno);

e Step 3—Send the response datagram:

dgramSocket.send (outPkt) ;

e Step 4: Create a buffer to store the incoming datagrams:

byte[] buffer = new byte[256];

e Step 5—Create a datagram packet object for incoming datagrams:

DatagramPacket inPkt =
new DatagramPacket (buffer, buffer.length);

e Step 6—Accept an incoming datagram:
dgramSocket.receive (inPkt) ;

e Step 7—Retrieve the data from the buffer:

String msglIn =
new String(inPkt.getData(), 0, inPkt.getLength()) ;

e Step 8—Close the datagram socket:
dgramSocket.close() ;
Next a client UDP socket communication example is presented.

import java.io.x;
import java.net.=*;

/*UDP client classx/
public class UDPEchoClient

/*server IPx/
private static InetAddress host;

Code Listing 5.2 UDPEchoClient.java

79

80

5 Sockets

/*server portx*/
private static final int PORT = 1234;

/*datagram socket=/
private static DatagramSocket dgramSocket;

/+*incoming and outgoing packets.x*/
private static DatagramPacket inPkt, outPkt;

/*packet bufferx/
private static byte[] buff;

/*messages content storagex/
private static String msg = "", msgIn = "";

public static void main(String[] args)
{
try
{
host = InetAddress.getLocalHost() ;
/*or get InetAddress of serverx/
}
catch (UnknownHostException e)
{
/+handle exceptionx/
System.out.println("Host not found!");
System.exit (1) ;
}

run() ;

private static void run() {
try |
/*create datagram socketx*/
dgramSocket = new DatagramSocket () ;
/*create the buffer reader to read from the
consolex*/
BufferedReader userEntry = new BufferedReader (
new InputStreamReader (System.in)) ;
do {
System.out.print ("Enter message: ");

Code Listing 5.2 (Continued)

5.3 Socket-Based Network Communications 81

/+xread user entryx/
msg = userEntry.readLine() ;
/+*send messages until BYE is sentx/

if

}

(!msg.equals ("BYE")) {

/+*create the packetx/

outPkt = new DatagramPacket (msg.getBytes(),
msg.length(), host, PORT);

/*send the packetx/

dgramSocket.send (outPkt) ;

/+*allocate packet buffer*/
buff = new byte[256];
/*create incoming packetx/
inPkt = new DatagramPacket (buff, buff.length);
/*receive incoming packetx*/
dgramSocket.receive (inPkt) ;
/*store packet contentx*/
msgIn = new String(inPkt.getDatal(),

0, inPkt.getLength()) ;
System.out.println("SERVER: " + msgln);

} while (!msg.equals("BYE"));

catch (IOException e) {
e.printStackTrace ()

}

’

finally{
/+*close the socket and release its resources*/
dgramSocket.close() ;

}

Code Listing 5.2 (Continued)

5.3.2 TCP Sockets

As TCP is a connection-oriented protocol, when TCP sockets are used, connec-
tions are established between client and server hosts. Client and server TCP sockets
are created first and are bound for the duration of the data communication session.
Following connection establishment, TCP packets are sent to the partner’s socket.

82 5 Sockets

These packets are guaranteed to arrive (if lost, retransmission occurs) and are re-
ceived in order at the destination.

Exchanging messages using TCP sockets involves a set of steps that must be
followed by the application developer. Next these steps are presented, with the focus
on server and client side, respectively.

5.3.2.1 TCP Sockets—Server Side

Java TCP server communication steps:

e Step 1—Create a TCP server socket object.

ServerSocket servSock = new ServerSocket (portno) ;
/%1024 <= portno <= 65535%/

e Step 2—Set the server to wait (block) for clients to connect.

Socket sock = servSock.accept () ;
/+*sock 1s a socket object.x*/

e Step 3—Set input and output streams.

BufferedReader in =
new BufferedReader (
new InputStreamReader (sock.getInputStream())) ;

PrintWriter out =
new PrintWriter (sock.getOutputStream(), true);

e Step 4—Send and receive data.

out.println("Waiting...");
String msg = in.readLine() ;

e Step 5—Close the connection.
sock.close() ;

Server TCP Socket Communication Example:

import java.io.x;
import java.net.x;

/*TCP-based echo serverx/
public class TCPEchoServer

{

Code Listing 5.3 TCPEchoServer.java

5.3 Socket-Based Network Communications 83

/xserver socketx/

private static ServerSocket servSock;
/*xserver portx/

private static final int PORT = 1234;

public static void main(String[] args)
{
System.out.println("Opening port\n") ;
try
{
/*Create the server socketx/
servSock = new ServerSocket (PORT) ;
}
catch (SocketException e)

{

/+*handle potential exceptionsx/
System.out.println("Error attach port!");
System.exit (1) ;

}

catch (IOException e)

{
/+*handle potential exceptionsx/
System.out.println("Error create socket!");
System.exit (1) ;

/+perform the echo service indefinitelyx/
do {
run() ;

}

while (true);

private static void run() {

/+data socketx*/

Socket sock = null;

try {
/*listen for incoming connections=*/
link = servSock.accept();
/+*create a socket buffer readerx/
BufferedReader in = new BufferedReader (

new InputStreamReader (sock.getInputStream())) ;

/*create the socket writerx/

Code Listing 5.3 (Continued)

84 5 Sockets

PrintWriter out = new PrintWriter (
sock.getOutputStream() , true) ;

int numMsgs = 0;

/+*read from the data socketx/

String msg = in.readLine() ;

while (!msg.equals("BYE"))

{
System.out.println("Message received.");
numMsgs++;
out.println("Message " + numMsgs + ": " + msg);

msg = in.readLine();
}
out.println(numMsgs + " messages received.");
}
catch (IOException e) {
e.printStackTrace() ; }
finally{
/+*close the socketx/
try {
sock.close();
} catch (IOException e) {
e.printStackTrace() ;

Code Listing 5.3 (Continued)

5.3.2.2 TCP Sockets—Client Side

Java TCP client communication steps:
e Step 1—Create a TCP client socket and establish a connection to the server.

InetAddress srvIPAddr;

int srvPortNo = 1234;

Socket sock = new Socket (srvIPAddr.getLocalHost (),
srvPortNo) ;

/+*sock 1s a socket object=*/

5.3 Socket-Based Network Communications 85

e Step 2—Set input and output streams.

BufferedReader in =
new BufferedReader (
new InputStreamReader (sock.getInputStream())) ;

PrintWriter out =
new PrintWriter (sock.getOutputStream(), bAutoFlush);

e Step 3—Send and receive data.

out.println("Waiting for data");
String msgIn = in.readLine() ;

e Step 4—Close the connection.

sock.close() ;

Client TCP socket communication example:

import java.io.x;
import java.net.=*;

/*TCP client classx*/
public class TCPEchoClient
{
/*server IPx/
private static InetAddress host;
/*server portx*/
private static final int PORT = 1234;

public static void main(String[] args)

{

System.out.println("Opening port\n") ;

try

{
/*create server IP address objectx/
host = InetAddress.getLocalHost () ;

}

catch (UnknownHostException e)

{
System.out.println("Host not found!");
System.exit (1) ;

}

run() ;

}
Code Listing 5.4 TCPEchoClient.java

86

private static void run()

{

Socket link = null;
try

{

/+xcreate data socketx/

sock = new Socket (host, PORT);

/*create socket reader and writerx/
BufferedReader in = new BufferedReader (new

5 Sockets

InputStreamReader (sock.getInputStream()));

PrintWriter out = new PrintWriter(
sock.getOutputStream(), true);

/*Set up stream for user entryx*/
BufferedReader reader =
new BufferedReader (new
InputStreamReader (System.in)) ;

/*storage for message and response messagex/

String msgOut, msgln;

do

{
System.out.print ("Enter message: ");
/+*read user messagex/
msgOut = reader.readLine();

/*send the messagex/
out.println (msgOut) ;

/*read the responsex*/

msgIn = in.readLine() ;

System.out.println("SERVER> " + msgln);
} while (!message.equals("BYE"));

catch (IOException e)

{

e.printStackTrace() ;

finally

{

/*close the data socketx*/

Code Listing 5.4 (Continued)

5.4 Conclusions 87

try {
sock.close() ;

} catch (IOException e) {
e.printStackTrace () ;

Code Listing 5.4 (Continued)

5.4 Conclusions

This chapter has introduced sockets as the most popular solution for inter-process
communications. Sockets have been introduced at the application and transport
layer, respectively, allowing for network programming to focus on higher layer as-
pects, while the implementation details of the lower layer protocol stack are hidden.
The chapter has described the socket-based network programming stages step-by-
step with the help of examples. The sockets examples presented in details employ
in turn TCP and UDP, respectively.

References

—

Postel J (August 1980) User datagram protocol. RFC 768, Internet engineering task force

2. Postel J (1981) RFC 793—Transmission control protocol (TCP). RFC 793

3. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T (1999) RFC
2616—Hypertext transfer protocol (HTTP/1.1). RFC 2616

4. Klensin J (2008) RFC 5321—Simple mail transfer protocol (SMTP). RFC 5321

Chapter 6
Socket-Based Client—Server Communication

Abstract Sockets offer the basic mechanisms for data communication between two
processes, each running on a distinct machine. This chapter describes the socket-
based client-server communication mechanism and details the basics of client—
server applications programming, including multi-threaded servers. Unicast, mul-
ticast, and broadcast communication paradigms are also introduced in this chapter.

6.1 Introduction

Client—server is a request-response remote communication model that involves pro-
cesses requesting services from other processes which offer these services via the
network.

The processes offering services by executing certain tasks following remote pro-
cess requests are known as servers. In general, the servers receive requests from
remote processes, execute the tasks associated with these services, and dispatch
responses back to the requesting entities. Examples of services include database
information retrieval and updates, file system access services, and dedicated user-
application tasks.

The processes that contact the servers and request them to perform services are
known as clients. In general, client processes manage user-interfaces, validate data
entered by users, dispatch requests to servers, collect servers’ responses, and process
and/or display the information received.

The client and server definitions were introduced in relation to service requesting
and service providing processes, but they can equally be used for applications and
machines. Server applications run in general on powerful computers which are often
located in dedicated places such as data centers. Client applications usually run on
user devices which may be desktop-PCs, laptop-PCs, netbooks, gaming consoles,
or mobile hand-held devices. The machines which host client applications are often
referred to as clients, and the computers which run server applications are known
as servers. Although theoretically both the server and the client applications may
run on the same physical machine, this is almost never the case, mostly due to the
different requirements in terms of processing power of these machines.

Both client-side and server-side machines may run in parallel several client and
server applications, respectively.

B. Ciubotaru, G.-M. Muntean, Advanced Network Programming — Principles and 89
Techniques, Computer Communications and Networks,
DOI 10.1007/978-1-4471-5292-7_6, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5292-7_6

90 6 Socket-Based Client—Server Communication

ServerSocket

ServerSocket ‘ P
accept Nl

| client | — Disia axch
| DataSocket | i

Server
Client

Fig. 6.1 Client-server communication steps

For example, a standard client machine would normally run several applications
such as a web browser, an e-mail client, and maybe a media player receiving a video
stream over the Internet. All these applications act as clients accessing services and
content (e.g., web documents, e-mail messages, and multimedia content) from re-
mote server applications.

Similarly, server machines may run several applications in parallel. A good ex-
ample would be a data center server machine running a web server (e.g., Apache)
and a database server (e.g. MySQL) in parallel. Although the scope is common for
the two services (web content delivery and database services), they represent dis-
tinct applications running on the same physical hardware platform. However, most
of the time there is a dedicated server machine (or servers) which runs a server ap-
plication, offering a single service of which multiple client applications can avail.
The next sections will present step-by-step socket-based network programming so-
lutions to implement such a client—server paradigm. The chapter discusses unicast,
multicast, and broadcast communications and presents in this context relevant data
transfer application examples.

6.2 Basic Client-Server Application Programming

Server and client applications often use sockets to initiate communication sessions
and perform data and/or message exchange in a request-response manner. Basic
socket-based solutions enable one connection to be established between a client and
a server at a time only. The idea behind this simple solution is graphically illustrated
in Fig. 6.1 and is described step-by-step in the context of both UDP and TCP socket-
based connectivity.

However, in most cases servers need to deal with multiple clients at a time, and
consequently more advanced solutions are required. A very good option which pro-

6.3 Multi-threaded Server Applications 91

vides good scalability is to make use of a thread-based approach for building the
server application.

6.3 Multi-threaded Server Applications

A server application capable of handling multiple simultaneous clients can be built
by making use of both multi-threading support and socket-based communications.
Although theoretically infinite, the number of clients that a server can handle si-
multaneously is, in fact, limited. Indeed, the processing resources of the operating
system and the physical machine on which the server application runs, as well as
transport capacity of the network over which data is exchanged, limit the number of
independent communication sessions established and managed simultaneously. We
will present this approach in the context of a multi-threaded TCP server application
example, which simply echoes the message received from the client application.

This multi-threaded TCP server application makes use of a specially built socket
communicating thread class which, given the communication socket-based link has
been established, exchanges messages with the client application. The major steps
for building this server application component are as follows:

e Step 1—Create a server class which extends Thread.
public class SingleTCPEchoServer extends Thread
e Step 2—Get a handle to an already established communicating socket.
/+*private socket variablex/
private static Socket sock;
/*set the data socketx/
sock = s;
e Step 3—Create reader and writer objects for socket communication.

/*BufferReader used to read data from data socketx/
private BufferedReader in;

/*PrinterWriter used to write to the data socketx/
private PrintWriter out;

/+*create the BufferReader for reading from socket=*/

in = new BufferedReader (new InputStreamReader (
sock.getInputStream())) ;

/+*create the PrintWriter for socket writingx/

out = new PrintWriter (sock.getOutputStream(), true) ;

e Step 4—Override run() to receive and send data.

/+*read message from the data socket (client) */

92 6 Socket-Based Client—Server Communication
String msg = in.readLine() ;
/+*send the reply message to the clientx/
out.println("Message " + numMessages + ": " + msg);
e Step 5—Start the thread.

/*call the run() methodx/
start () ;

e Step 6—Deal with potential exceptions.

try{ [...] }
catch (IOException e) { [...] }

The full thread-based TCP socket server application example is presented next.
import java.io.x;
import java.net.Socket;
/*single-threaded server class=*/
/+handles client communicationx/

public class SingleTCPEchoServer extends Thread {

/+xclient data socketx/
private static Socket sock;

/*server portx*/
private static final int PORT = 1234;

/*BufferReader used to read data from data socketx/
private BufferedReader in;

/*PrinterWriter used to write to the data socket=*/
private PrintWriter out;

/+*Constructor for the single threaded serverx/
public SingleTCPEchoServer (Socket s)
throws IOException {

/+xset the data socketx/
sock = s;

/+*create the BufferReader from data socketx/

Code Listing 6.1 SingleTCPEchoServer.java

6.3 Multi-threaded Server Applications

in = new BufferedReader (new InputStreamReader (
sock.getInputStream())) ;

/*create the PrintWriter for data socketx/
out = new PrintWriter (
sock.getOutputStream (), true) ;

/+*If any of the above calls throws an exception,
the caller will close the socket.
Otherwise the thread will close it.x/

/+*call the run() methodx*/
start () ;

/*run () method performs the actual taskx*/
public void run()
{
try {
int numMessages = 0;

/+*read message from the data socket (client) */
String msg = in.readLine();

/+verify i1f the message is BYEx*/

while (!msg.equals("BYE"))

{

System.out.println("Message received.");

/+*count the number of messages receivedx*/
numMessages++;

/+*send the reply message to the clientx/
out.println("Message " + numMessages +
n : n + msg) ;

/*read the next messagex*/
msg = in.readLine();

/+*at this point BYE has been received=*/

/*the server reports the number of received
messages*/

out.println(numMessages + " messages received.");

}
Code Listing 6.1 (Continued)

93

94 6 Socket-Based Client—Server Communication

catch (IOException e)

{
e.printStackTrace () ;
}
finally
{
try
{
System.out.println("\n Closing connection");
/*close the data socketx/
sock.close();
}
catch (IOException e)
{
System.out.println("Unable to disconnect!");
System.exit (1) ;
}
}

} /*run()*/
} /*xSingleTCPEchoServersx/

Code Listing 6.1 (Continued)

The multi-threaded TCP server application is, in fact, a dispatcher which creates a
ServerSocket at the server which waits for incoming connection requests from client
applications. This wait is performed through a blocking call to accept(). As soon as
a client request is received, the call to accept() completes, and a new single TCP
server application thread, built as already described, will be created. If successful in
establishing the connection with the client, accept() returns a communicating Socket
which is passed as a parameter to the newly created single TCP thread, enabling
direct communication between this newly created server thread and the client. After
the new thread is started, the multi-threaded server application call again accept()
waiting for another client connection request. This sequence of operations continues
over and over again and is limited just by hardware and software resources of the
server machine. This process is illustrated in Fig. 6.2 and described step-by-step
next.

e Step 1—Create a server socket at a given port number.

/+*The server socket is defined as a class member. x/
private static ServerSocket servSock;

/+*Create the server socket to listen on PORT«*/
servSock = new ServerSocket (PORT) ;

6.3 Multi-threaded Server Applications 95

Server

Figure 6.2 Multi-threaded server paradigm

e Step 2—In a loop wait for client connection requests.

do
{

/*Blocks until a connection occurs.=*/
Socket socket = servSock.accept();

[...]

} while (true);
e Step 3—For each client create a thread server to communicate via socket.

do {
[...]

/*Create a thread server to handle the client.=*/
new SingleTCPEchoServer (socket) ;
} while (true);

e Step 4—Deal with potential exceptions.

try{ [...1 }
catch (IOException e) { [...] }

The complete multi-threaded TCP socket-based server application example is
provided below.

import java.io.x;
import java.net.=*;

Code Listing 6.2 MultiTCPEchoServer.java

96 6 Socket-Based Client—Server Communication

/+*Class implementing the multi-threaded echo server.x/
/+*This server receives a message from the clients

*and replies with the same message back.

*/
public class MultiTCPEchoServer {

/*The server socket is defined as a class member.x/
private static ServerSocket servSock;

/*The port number is defined as a member.x/

/*The server will listen on this port.=*/

private static final int PORT = 1234;

/+*Data socket is defined as a member.x*/
/*Socket to be used for =/
/+*communication with the client.x*/
Socket sock = null;

/*Constructor. */
public MultiTCPEchoServer () { }

/+*The main function to be run
when the server application stars.x/
public static void main (String[] args)
throws IOException
{
System.out.println("Opening port\n") ;

try

{
/+xCreate the server socket to listen on PORTx*/
servSock = new ServerSocket (PORT) ;

}
catch (IOException e)
{
/+*Handles potential exceptions
xthrown while the server socket is created.x/
/+*Most common exception is triggered
when the chosen port is already used=/
System.out.println("Port error!");
System.exit (1) ;

Code Listing 6.2 (Continued)

6.3 Multi-threaded Server Applications 97

/*At this point the server socket
was successfully created./
try
{
/+*main server loop.x/
do
{
/+xServer accepts connections from client.x/
/+*The Accept method blocks
+*until a connection occurs.x/
Socket socket = servSock.accept();
try
{
/+*Create a single-threaded server.x/
/+*This will handle the client.x*/
new SingleTCPEchoServer (socket) ;

catch (IOException e)

{
/+*Handle potential exceptions.*/
/*As the creation of the
*single-threaded server failed,
*communication with the client can not start,
*so the data socket is closed.

*/
socket.close();
}
} while (true);
}
finally
{

/+xWhen the server end its operation,
xthe server socket is closed.
*/

servSock.close() ;

Code Listing 6.2 (Continued)

This multi-threaded TCP socket-based server application example works with a
TCP socket-based client application similar to the one presented in the chapter on
Sockets when discussing TCP connectivity.

98 6 Socket-Based Client—Server Communication

6.4 Unicast, Multicast, and Broadcast Communications

Unicast refers to one-to-one communication and in general is performed by the
sender following a receiver request.

Broadcast communication is when a single sender transmits data to all the devices
connected to the network having an IP address in a certain range. This transmission
can target all local subnet devices, all nodes in the local network, etc.

Multi-casting involves one-to-many communications between a sender and a set
of receivers. These receivers must belong to a multicast group, which has to be
established prior to any data communication. This multicast group (defined using a
class D IP address) has to be established with network support. Unfortunately, not
all networks enable multicast transmissions. All class D IP addresses are multicast
addresses and range from 224.0.0.0 to 235.255.255.255. Any such IP address can be
allocated to the newly formed multicast group, provided that it has not been already
used in the same network domain.

The sender has to send data to the multicast group IP address. The receivers need
to join the multicast group in order to receive data from the transmitting sender.
However, the sender is not required to join the multicast group in order to transmit
data.

All members of the multicast group will receive a copy of the data transmitted by
the server. This is enabled by the multicast-enabled routers which support multicast
tree-like routing of packets by multiplicating data packets and sending them towards
the receivers which belong to the multicast group. In order to stop receiving data,
the clients have to leave the multicast group.

As TCP is a point-to-point protocol and is most suitable for unicast transmissions,
it cannot be used for multi-cast data delivery. Instead, UDP is the transport protocol
used for multicast datagram packet distribution.

In terms of implementation, broadcast data transmission can be seen as an exten-
sion of multi-cast. In order to achieve broadcasting, all connected devices need to
join the same multicast group, and consequently they will all receive a copy of the
packets sent by the sender. In this context, broadcast data communications represent
a special case of multicast and will not be dealt with separately.

In order to receive data from the server in a multicast manner, several steps have
to be performed by the application. In the following paragraphs, these steps are
detailed in the context of multicast receiver and sender applications, respectively.

Java multicast receiving data application:

e Step 1—Define port and address of multicast group to join:

/+multicast group port numbersx/

/+the server will send data to this port=*/
int PORT = 5000;

/+multicast group IP address=/

String GROUP = "225.4.5.6";

6.4 Unicast, Multicast, and Broadcast Communications 99

e Step 2—Create MulticastSocket object and bind it to port PORT

/+*MulticastSocket is a specific class
*implementing multicast communication endpointsx/
MulticastSocket ms = new MulticastSocket (PORT) ;

e Step 3—Join the multicast group with address GROUP

/+*MulticastGroup class provides joinGroup method
used to join the group using its IP=/
ms.joinGroup (InetAddress.getByName (GROUP)) ;

e Step 4—Create a DatagramPacket and receive a packet.

/*allocate the packet bufferx/
byte buf[] = bytel[1024];
/*create the packetx/
DatagramPacket pack =

new DatagramPacket (buf, buf.length);
/+xreceive a packet from the multicast socketx/
ms.receive (pack) ;

e Step 5—Use the data received (print it on screen).

/+print the details of the sender (server)x/
System.out.println("Received data from: "

+ pack.getAddress () .toString() + ":"

+ pack.getPort() + " with length: "

+ pack.getLength());
/+*print the messagex/
System.out.write (pack.getData(), O,

pack.getLength()) ;

/+*print a new line to separate the messages.*/
System.out.println() ;

e Step 6—Leave the multicast group and close the socket.

/+*use leaveGroup to leave the multicast group=/
ms . leaveGroup (InetAddress.getByName (group)) ;
/*close the multicast socketx/

ms.close();

On the sender side, the application has to follow another set of steps in order to
be able to send data to a multicast group. In the following paragraphs, these steps
are detailed.

Java multicast sending data application:

e Step 1—Define port, address of multicast group to send to and time-to-live.

/+xport number to which the packets will be sendx/
int PORT = 5000;

100 6 Socket-Based Client—Server Communication

/+the multicast group IP addressx*/
String GROUP = "225.4.5.6";
/*time-to-live for packets sent

to the multicast group=/

byte TTL = 3;

/+*Note: The TTL sets the IP time-to-live
specifying over how many "hops"

the packets will be forwarded in the
MulticastGroup before they expire.x*/

e Step 2—Create MulticastSocket object.

/+*create the multicast socketx/
MulticastSocket ms = new MulticastSocket () ;

e Step 3—Create a DatagramPacket and copy some data in it.

/*create the packet bufferx/

byte buf[] = bytel[1024];

/*generate a message into the bufferx/

for (int 1 = 0; i < buf.length; i++)
buf[i] (byte)i;

/*create the datagram packetx/

/+the multicast IP address is used
+*for the creation of this packetx/

DatagramPacket pack =
new DatagramPacket (buf, buf.length,

InetAddress.getByName (GROUP), PORT) ;

e Step 4—Send the DatagramPacket to the multicast group.

/+*send the packet specifying
the TTL as a parameterx*/
ms.send (pack, TTL) ;

e Step 5—Close the socket.

/+*close the multicast socketx/
ms.close();

6.5 Conclusion

This chapter has introduced the client—server communication paradigm and in its
context has presented a step-by-step socket-based network programming example
to implement a relevant application. The chapter then discussed unicast, multicast,
and broadcast communications and presented a multi-cast data transfer application
example which can also be used for data broadcast.

