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11. Conditional and Repeated Statements and Boolean Expressions 

11.1. Comparisons and jumps 
Conditional and repeated statements are implemented with the aid of jump instructions, also called 
branch instructions. As a first example, let us consider the simplest form of conditional statement: 

IF x = y THEN StatSequence END 

Its mapping into a sequence of instructions is straightforward: 

IF x = y  EQL x, y 
   BF L 
 THEN StatSequence  code(StatSequence) 
END L ... 

Our considerations are based once again on a stack architecture. Instruction EQL tests the two operands 
for equality and replaces them on the stack by the Boolean result. The subsequent branch instruction BF 
(branch if FALSE) leads to the destination label L if this result is FALSE, and removes it from the stack. 
Similarly to EQL, conditional branch instructions are postulated for the relations 9, <, 3, #, and >. 

Unfortunately, however, such compiler_friendly computers are hardly widespread. Rather more common 
are computers whose branch instructions depend on the comparison of a register value with 0. We denote 
them as BNE (branch if not equal), BLT (branch if less than), BGE (branch if greater or equal), BLE 
(branch if less or equal), and BGT (branch if greater than). The code sequence corresponding to the 
above example is 

IF x = y  code (Ri := x - y) 
   BNE Ri, L 
 THEN StatSequence  code(StatSequence) 
END L ... 

The use of subtraction (x - y ≥ 0 standing for x ≥ y) has an implicit pitfall: subtraction may lead to 
overflow, resulting in either program termination or a wrong result. Therefore a specific comparison 
instruction CMP is used in place of subtraction, which avoids overflow, but correctly indicates whether 
the difference is either zero, positive or negative. The result is typically stored in a special register called 
condition code, consisting of the two bits denoted by N and Z, indicating whether the difference is 
negative or zero respectively. All conditional branch instructions then implicitly refer to this register as 
argument. 

IF x = y  CMP x, y 
   BNE L 
 THEN StatSequence  code(StatSequence) 
END L ... 

11.2. Conditional and repeated statements 
The question of how a Boolean value is to be represented by an item now arises. In the case of stack 
architecture the answer is easy: since the result of a comparison lies on the stack like any other result, no 
special item mode is necessary. A CMP instruction, however, requires further thought. We shall first 
restrict our consideration to the simple cases of pure comparisons without further Boolean operators. 

In the case of an architecture with a CMP scheme, it is necessary to indicate in the resulting item which 
register holds the computed difference, and which relation is represented by the comparison. For the 
latter a new attribute is required; we call the new mode Cond and its new attribute (record field) c. The 
mapping of relations to values of c is defined by 

= 0 # 1 
< 2 >= 3 
<= 4 > 5 
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The construct containing comparisons is the expression. Its syntax is 

expression  =  SimpleExpression [("=" | "#" | "<" | "<=" | ">" | ">=") SimpleExpression]. 

The corresponding, extended parser procedure is easily derived: 

PROCEDURE expression(VAR x: Item); 
 VAR y: Item; op: INTEGER; 
BEGIN SimpleExpression(x); 
 IF (sym >= eql) & (sym <= gtr) THEN 
  op := sym; Get(sym); SimpleExpression(y); Relation(op, x, y) 
 END 
END expression; 

PROCEDURE Relation(op: INTEGER; VAR x, y: Item); 
BEGIN 
 IF (x.type.form # Integer) OR (y.type.form # Integer) THEN Mark("bad type")  
 ELSE 
  IF (y.mode = Const) & (y.a = 0) THEN load(x) ELSE PutOp(CMP, x, y) END ; 
  x.c := op - eql; EXCL(regs, x.r); EXCL(regs, y.r) 
 END ; 
 x.mode := Cond; x.type := boolType 
END Relation; 

The code scheme presented at the beginning of this chapter yields the corresponding parser program for 
handling the IF construct in StatSequence: 

ELSIF sym = if THEN 
 Get(sym); expression(x); CJump(x); 
 IF sym = then THEN Get(sym) ELSE Mark("THEN?") END ; 
 StatSequence; Fixup(x.a) 
 IF sym = end THEN Get(sym) ELSE Mark("END?") END 

Procedure CJump(x) generates the necessary branch instruction according to its parameter x.c in such a 
way that the jump is taken if the specified condition is not satisfied. 

Here a difficulty becomes apparent which is inherent in all single-pass compilers. The destination 
location of branches is still unknown when the instruction is to be emitted. This problem is solved by 
adding the location of the branch instruction as an attribute to the item generated. This attribute is used 
later when the destination of the jump becomes known in order to complete the branch with its true 
address. This is called a fixup. The simple solution is possible only if code is deposited in a global array 
where elements are accessible at any time. It is not applicable if the emitted code is immediately stored 
on disk. To represent the address of the incomplete branch instruction we use the item field a. 

PROCEDURE CJump(VAR x: Item); 
BEGIN 
 IF x.type.form = Boolean THEN 
  Put(BEQ + negated(x.c), x.r, 0, 0); EXCL(regs, x.r); x.a := pc-1 
 ELSE OSS.Mark("Boolean?"); x.a := pc  
 END 
END CJump; 

PROCEDURE negated(cond: LONGINT): LONGINT; 
BEGIN 
 IF ODD(cond) THEN RETURN cond-1 ELSE RETURN cond+1 END 
END negated; 

PROCEDURE Fixup(L: LONGINT); 
BEGIN code[L] := code[L] DIV 10000H * 10000H + pc - L 
END Fixup; 
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Procedure CJump issues an error message if x is not of type BOOLEAN. Note that branch instructions 
use addresses relative to the instruction's location (PC-relative); therefore the value pc-L is used. 

Finally, we have to show how conditional statements in their general form are compiled; the syntax is 

"IF" expression "THEN" StatSequence 
{"ELSIF" expression "THEN" StatSequence} 
["ELSE" StatSequence] 
"END" 

and the corresponding code pattern is 

IF expression THEN  code(expression) 
   Bcond  L0 
   StatSequence  code(StatSequence) 
   BR  L 
ELSIF expression THEN L0 code(expression) 
   Bcond  L1 
   StatSequence  code(StatSequence) 
   BR  L 
ELSIF expression THEN L1 code(expression) 
   Bcond  L2 
   StatSequence  code(StatSequence) 
   BR  L 
….. 

ELSE StatSequence Ln code(StatSequence) 
END L ... 

from which the parser statements can be derived as part of procedure StatSeqence. Although an arbitrary 
number of ELSIF constructs can occur and thereby also an arbitrary number of jump destinations L1, L2, 
... may result, a single item variable x suffices. It is assigned a new value for every ELSIF instance. 

ELSIF sym = if THEN 
 Get(sym); expression(x); CJump(x); 
 IF sym = then THEN Get(sym) ELSE Mark("THEN ?") END ; 
 StatSequence; L := 0; 
 WHILE sym = elsif DO 
  Get(sym); FJump(L); Fixup(x.a); expression(x); CJump(x); 
  IF sym = then THEN Get(sym) ELSE Mark("THEN ?") END ; 
  StatSequence 
 END ; 
 IF sym = else THEN Get(sym); FJump(L); Fixup(x.a); StatSequence ELSE Fixup(x.a) END ; 
 FixLink(L); 
 IF sym = end THEN Get(sym) ELSE Mark("END ?") END 
 ... 

PROCEDURE FJump(VAR L: LONGINT); 
BEGIN Put(BEQ, 0, 0, L); L := pc-1 
END FJump 

However, a new situation arises in which not only a single branch refers to the destination label L at the 
end, but an entire set, namely as many as there are IF and ELSIF branches in the statement. The problem 
is elegantly solved by storing the links of the list of incomplete branch instructions in these instructions 
themselves, and to let variable L represent the root of this list. The links are established by the parameter 
of the Put operation called in FJump. It suffices to replace procedure Fixup by FixLink, in which the 
entire list of instructions to be fixed up is traversed. It is essential that variable L is declared local to the 
parser procedure StatSequence, because statements may be nested, which leads to recursive activation. In 
this case, several instances of variable L coexist representing different lists. 
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PROCEDURE FixLink(L: LONGINT); 
 VAR L1: LONGINT; 
BEGIN  
 WHILE L # 0 DO 
  L1 := code[L] MOD 10000H; Fixup(L); L := L1 
 END 
END FixLink; 

Compilation of the WHILE statement is very similar to that of the simple IF statement. In addition to the 
conditional forward jump, an unconditional backward jump is necessary. The syntax and the 
corresponding code pattern are: 

WHILE expression DO L0 code(expression) 
   Bcond  L1 
   StatSequence  code(StatSequence) 
END  BR  L0 
  L1 ... 

From this we derive the corresponding, extended parser procedure: 

ELSIF sym = while THEN 
 Get(sym); L := pc; expression(x); CJump(x); 
 IF sym = do THEN Get(sym) ELSE Mark("DO ?") END ; 
 StatSequence; BJump(L); Fixup(x.a); 
 IF sym = end THEN Get(sym) ELSE Mark("END ?") END 

PROCEDURE BJump(L: LONGINT); 
BEGIN Put(BEQ, 0, 0, L-pc) 
END BJump; 

To summarize, we display two statements using variables i and j, together with the generated code: 

IF i < j THEN i := 0 ELSIF i = j THEN i := 1 ELSE i := 2 END ; 
WHILE i > 0 DO i := i - 1 END 

   4 LDW  0, base, -4 i 
   8 LDW  1, base,  -8 j 
  12 CMP  0, 0, 1 
  16 BGE  3  (jump over 3 instructions to 28) 
  20 STW  0, base, -4 i := 0 
  24 BEQ  10  (jump over 10 instructions to 64) 
  28 LDW  0, base -4 
  32 LDW  1, base, -8 
  36 CMP  0, 0, 1 
  40 BNE  4  (jump over 4 instructions to 56) 
  44 MOVI 0, 0, 1 
  48 STW  0, base,  -4 i := 1 
  52 BEQ  3  (jump over 3 instructions to 64) 
  56 MOVI 0, 0, 2 
  60 STW  0, base, -4 i := 2 
  64 LDW  0, base, -4 
  68 BLE  5  (jump over 5 instructions to 88) 
  72 LDW   0, base, -4 
  76 SUBI  0, 0, 1 
  80 STW   0, base, -4 i := i - 1 
  84 BEQ   -5  (jump back over 5 instructions to 64) 
  88 ... 
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11.3. Boolean operations 
It is of course tempting to treat Boolean expressions in the same way as arithmetic expressions. 
Unfortunately, however, this would in many cases lead not only to inefficient, but even to wrong code. 
The reason lies in the definition of Boolean operators, namely 

p OR q =  if p then TRUE else q 
p & q =  if p then q else FALSE 

This definition specifies that the second operand q need not be evaluated if the result is uniquely given by 
the value of the first operand p. Programming language definitions even go a step further by specifying 
that in these cases the second operand must not be evaluated. This rule is postulated in order that the 
second operand may be left undefined without causing program execution to be terminated. A frequent 
example involving a pointer x is 

(x # NIL) & (x^.size > 4) 

Boolean expressions with Boolean operators therefore assume the form of conditional statements (more 
precisely, conditional expressions), and it is appropriate to use the same compilation techniques as for 
conditional statements. Boolean expressions and conditional statements merge, as the following example 
shows. The statement 

IF (x <= y) & (y < z) THEN S END 

is compiled in the same way as its equivalent formulation 

IF x <= y THEN IF y < z THEN S END END 

With the intention of deriving a suitable code pattern, let us first consider the following expression 
containing three relations connected by the & operator. We postulate the desired code pattern as shown 
below, considering only the pattern to the left for the moment. a, b, ... , f denote numeric values. The 
labels T and F denote the destinations for the cases when the expression is true or false, respectively. 

 (a < b) & (c < d) & (e < f) 

CMP a, b CMP a, b 
BGE F BGE F 
CMP c, d CMP c, d 
BGE F BGE F 
CMP e, f CMP e, f 
BGE F BLT T 
(T)  (F) 

As the left hand pattern shows, a conditional branch instruction is emitted for every & operator. The 
jump is executed if the preceding condition is not satisfied (F-jump). This results in the instructions BGE 
to represent the < relation, BNE for the = relation, and so on. 

If we consider the problem of generating the required code, we can see that the parser procedure term, as 
it is known for processing arithmetic terms, must be extended slightly. In particular, a branch instruction 
must be emitted before the second operand is processed, whereas at the end this instruction's address 
must be fixed up. The former task is performed by procedure Op1, the latter by Op2. 

 PROCEDURE term(VAR x: Item); 
  VAR y: Item; op: INTEGER; 
 BEGIN factor(x); 
  WHILE (sym >= times) & (sym <= and) DO 
   op := sym; Get(sym); 
   IF op = and THEN Op1(op, x) END ; 
   factor(y); Op2(op, x, y) 
  END 
 END term; 
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 PROCEDURE Op1(op: INTEGER; VAR x: Item);   (* x := op x *) 
  VAR t: LONGINT; 
 BEGIN 
  IF op = minus THEN ... 
  ELSIF op = and THEN 
   IF x.mode # Cond THEN loadBool(x) END ; 
   PutBR(BEQ + negated(x.c), x.a); EXCL(regs, x.r); x.a := pc-1 
  END 
 END Op1; 

If the first Boolean factor is represented by item x in mode Cond, then at the present position x is TRUE 
and the instructions for the evaluation of the second operand must follow. However, if it is not in mode 
Cond, it must be transferred into this mode. This task is executed by procedure loadBool. We assume that 
the value FALSE is represented by 0. The attribute value c = 1 therefore causes the instruction BEQ to 
become active, if x equals 0. 

PROCEDURE loadBool(VAR x: Item); 
BEGIN 
 IF x.type.form # Boolean THEN OSS.Mark("Boolean?") END ; 
 load(x); x.mode := Cond; x.c := 1 
END loadBool; 

The OR operator is treated analogously, with the difference that jumps are taken if their respective 
conditions are satisfied (T-jump). The instructions are listed in the dual list with links in the item field b. 
The postcondition of a sequence of terms connected with OR operators is FALSE. Consider again the 
left-hand code pattern only: 

(a < b) OR (c < d) OR (e < f) 

CMP a, b CMP a, b 
BLT T BLT T 
CMP c, d CMP c, d 
BLT T BLT T 
CMP e, f CMP e, f 
BLT T BGE F 
(F)  (T) 

Next, we consider the implementation of negation. Here it turns out that under the scheme presented no 
instructions need be emitted whatsoever. Only the condition value represented by the item field c has to 
be negated, and the lists of F-jumps and T-jumps need be exchanged. The result of negation is shown in 
the code patterns in Figures 11.1 and 11.2 on the right-hand side for both expressions with & and OR 
operators. The affected procedures are extended as shown below: 

PROCEDURE SimpleExpression(VAR x: Item); 
 VAR y: Item; op: INTEGER; 
BEGIN term(x); 
 WHILE (sym >= plus) & (sym <= or) DO 
  op := sym; Get(sym); 
  IF op = or THEN Op1(op, x) END ; 
  term(y); Op2(op, x, y) 
 END 
END SimpleExpression; 

PROCEDURE Op1(op: INTEGER; VAR x: Item);   (* x := op x *) 
 VAR t: LONGINT; 
BEGIN 
 IF op = minus THEN ... 
 ELSIF op = not THEN 
  IF x.mode # Cond THEN loadBool(x) END ; 
  x.c := negated(x.c); t := x.a; x.a := x.b; x.b := t 
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 ELSIF op = and THEN 
  IF x.mode # Cond THEN loadBool(x) END ; 
  PutBR(BEQ + negated(x.c), x.a); EXCL(regs, x.r); 
  x.a := pc-1; FixLink(x.b); x.b := 0 
 ELSIF op = or THEN 
  IF x.mode # Cond THEN loadBool(x) END ; 
  PutBR(BEQ + x.c, x.b); EXCL(regs, x.r); 
  x.b := pc-1; FixLink(x.a); x.a := 0 
 END 
END Op1; 

When compiling expressions with & and OR operators, care must be taken that in front of every & 
condition P, and in front of every OR condition ~P, must hold. The respective lists of jump instructions 
must be traversed (the T-list for &, the F-list for OR), and the designated instructions must be fixed up 
appropriately. This occurs through procedure calls of FixLink in Op1. As examples, we consider the 
expressions 

 (a < b) & (c < d)) OR ((e < f) & (g < h) 
 (a < b) OR (c < d)) & ((e < f) OR (g < h) 

and the resulting codes: 

 CMP a, b  CMP a, b 
 BGE F0  BLT T0 
 CMP c, d  CMP c, d 
 BLT T  BGE F 

F0 CMP e, f T0 CMP e, f 
 BGE F  BLT T 

 CMP g, h  CMP g, h 
 BGE F  BGE F 

 (T)   (T) 

It may also happen that a list of a subordinate expression may merge with the list of its containing 
expression (see F-link in the pattern for Q in Figure 11.3). This merger is accomplished by procedure 
merged(a, b), yielding as its value the concatenation of its argument lists. It is called from within 
procedure Op2. 

PROCEDURE Op2(op: INTEGER; VAR x, y: Item);   (* x := x op y *) 
BEGIN 
 IF (x.type.form = Integer) & (y.type.form = Integer) THEN 
  ... 
 ELSIF (x.type.form = Boolean) & (y.type.form = Boolean) THEN 
  IF y.mode # Cond THEN loadBool(y) END ; 
  IF op = or THEN x.a := y.a; x.b := merged(y.b, x.b); x.c := y.c 
  ELSIF op = and THEN x.a := merged(y.a, x.a); x.b := y.b; x.c := y.c 
  END 
 ELSE ... 
 END ; 
END Op2; 

11.4. Assignments to Boolean variables 
Compilation of an assignment to a Boolean variable q is certainly more complicated than commonly 
expected. The reason is the item mode Cond, which must be converted into an assignable value 0 or 1. 
This is achieved by the following code pattern: 

T ADDI 0, 0, 1 
 BEQ L 
F ADDI 0, 0, 0 
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L STW 0, q 

This causes the simple assignment  q := x < y  to appear as a disappointingly long code sequence. We 
should, however, be aware that Boolean variables (commonly called flags) occur (should occur) 
infrequently, although the notion of the type Boolean is indeed fundamental. It is inappropriate to strive 
for optimal implementation of rarely occurring constructs at the price of an intricate process. However, it 
is essential that the frequent cases are handled optimally. 

Nevertheless, we handle assignments to a Boolean item not in the Cond mode as a special case, namely 
as a conventional assignment avoiding the involvement of jumps. Hence, the assignment  p := q  results 
in the expected code sequence 

LDW 1, 0, q 
STW 1, 0, p 

As a consequence, the affected procedure Store turns out as follows: 

PROCEDURE Store(VAR x, y: Item); (* x := y *) 
BEGIN ... 
 IF y.mode = Cond THEN 
  FixLink(y.b); GetReg(y.r); Put(MOVI, y.r, 0, 1); PutBR(BEQ, 2); 
  FixLink(y.a); Put(MOVI, y.r, 0, 0) 
 ELSIF y.mode # Reg THEN load(y) 
 END ; 
 IF x.mode = Var THEN Put(STW, y.r, x.r, x.a) 
 ELSE Mark("illegal assignment") 
 END ; 
 EXCL(regs, x.r); EXCL(regs, y.r) 
END Store; 

11.5. Exercises 
11.1. Mutate the language Oberon-0 into a variant Oberon-D by redefining the conditional and the 
repeated statement as follows: 

statement  =  ... 
 "IF" guardedStatements  {"|" guardedStatements} "FI" | 
 "DO" guardedStatements  {"|" guardedStatements} "OD" . 
guardedStatements  =  condition "." statement {";" statement} . 

The new form of statement 

IF B0 . S0 | B1 . S1 |  ...  | Bn . Sn FI 

shall mean that of all conditions (Boolean expressions) Bi that are true, one is selected arbitrarily and its 
corresponding statement sequence Si is executed. If none is true, program execution is aborted. Any 
statement sequence Si will be executed only when the corrresponding condition Bi is true. Bi is therefore 
said to be the guard of Si. 

The statement 

DO B0 . S0 | B1 . S1 |  ...  | Bn . Sn OD 

shall mean that that as long as any of the conditions Bi is true, one of them is chosen arbitrarily, and its 
corresponding statement sequence Si is executed. The process terminates as soon as all Bi are false. Here 
too, the Bi function as guards. The DO-OD construct is a repetitive, nondeterministic construct. Adjust 
the compiler accordingly. 

11.2. Extend Oberon-0 and its compiler by a FOR statement: 

statement  =  [assignment | ProcedureCall | 
 IfStatement | WhileStatement | ForStatement. 
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ForStatement  =  "FOR" identifier ":=" expression "TO" expression ["BY" expression]  
 "DO" StatementSequence "END" . 

The expression preceding the symbol TO specifies the starting value, the one thereafter the ending value 
of the control variable denoted by the identifier. The expression after BY indicates the increment. If 
missing, let 1 be its default value. 

11.3. Consider the implementation of the case statement of Oberon (see Appendix A.2). Its essential 
property is that it uses a table of jump addresses for the various cases, and an indexed jump instruction. 
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12. Procedures and the Concept of Locality 

12.1. Run_time organization of the store 
Procedures, which are also known as subroutines, are perhaps the most important tool for structuring 
programs. Because of their frequency of occurrence, it is mandatory that their implementation is 
efficient. Implementation is based on the branch instruction which saves the current PC value and 
thereby the point of return after termination of the procedure, when this value is reloaded into the PC 
register. 

The question as to where the return address should be saved arises immediately. In many computers it is 
deposited in a register, and we have adopted this solution in our RISC. This guarantees the utmost 
efficiency, because no additional memory access is involved. But having to save the register's value into 
memory before the next procedure call is unavoidable, because otherwise the old return address would be 
overwritten. Thereby the return address of the first call would be lost. In the implementation of a 
compiler this link register value must be saved at the beginning of each procedure call. 

To store the link, a stack is the obvious solution. The reason is that procedure activations occur in a 
nested fashion; procedures terminate in the reverse order of their calls. The store for the return addresses 
must therefore operate according to the  first-in last-out principle. This results in the following, fixed 
code sequences at the beginning and end of every procedure. They are called the procedure's prologue 
and epilogue. Here we will use R13 for the stack pointer SP and R14 as link register LNK. R15 is 
defined as the program counter PC. 

Call  BSR P branch to subroutine 

Prologue P PSH LNK, SP, 4 push link 

Epilogue  POP LNK, SP, 4 pop link 
  RET LNK return jump 

This code pattern is valid under the assumption that the BSR instruction deposits the return address in 
R14. Note that this is specified as a hardware feature (Chapter 9), whereas the use of R13 as stack pointer 
is merely a software convention determined by the compiler design or by the underlying operating 
system. Whenever the system is started, R14 must be initialized to point to an area of memory reserved 
for the stack. 

Algol 60 introduced the very fundamental concept of local variables. It implied that every identifier 
declared had a limited range of visibility and validity. In Pascal (and also in Oberon) this range is the 
procedure body. In concrete terms, variables may be declared local to a procedure such that they are 
visible and valid within this procedure only. The intended consequence is that upon entry to the 
procedure memory is allocated automatically for these local variables, and it is released upon the 
procedure's termination. Local variables of different procedures may therefore share the same storage 
area, but never simultaneously, of course. 

At first sight this scheme seems to inflict a certain loss of efficiency upon the procedure call mechanism. 
Fortunately, however, this need not be so, because the storage blocks for the sets of local variables can be 
allocated, like return addresses, according to the stack principle. The return address may indeed also be 
considered as a (hidden) local variable, and it is only natural to use the same stack for variables and 
return addresses. The storage blocks are called procedure activation records or activation frames. 
Release of a block upon procedure termination is achieved by simply resetting the stack pointer to its 
value before the procedure call. Hence, allocation and release of local storage is optimally efficient. 

Addresses of local variables generated by the compiler are always relative to the base address of the 
respective activation frame. Since in programs most variables are local, their addressing also must be 
highly efficient. This is achieved by reserving a register to hold the base address, and to make use of the 
fact that the effective address is the sum of a register value and the instruction's address field (register 
relative addressing mode). The reserved register is called the frame pointer (FP). These considerations 
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are taken into account by the following prologue and epilogue, where R12 assumes the role of the frame 
pointer: 

Prolog P PSH LNK, SP, 4 push link 
  PSH FP, SP, 4 push FP 
  MOV FP, 0, SP FP := SP 
  SUBI SP, SP, n SP := SP-n   (n = frame size) 

Epilog  MOV SP, 0, FP SP := FP 
  POP FP, SP, 4 pop FP 
  POP LNK, SP, 4 pop link 
  RET LNK return jump 

The activation frames resulting from consecutive procedure calls are linked by a list of their base 
addresses. The list is called the dynamic link, because it denotes the dynamic sequence of procedure 
activations. Its root lies in the frame pointer register FP (see Figure 12.1). 

 
Figure 12.1. List of activation frames in the stack. 

The state of the stack before and after a procedure call is shown in Figure 12.2. Note that the epilogue 
reverts the stack to its original state by removing return address and dynamic link entry. 

 
Figure 12.2. States of the stack before and after procedure call. 

If we carefully consider the necessity of the two pointers SP and FP, we may come to the conclusion that 
FP is actually superfluous, because the variables' offset addresses could be made relative to SP instead of 
FP. This proposition, however, is valid only if the sizes of all variables are known at compile time. This 
is not so in the case of open (dynamic) arrays, as will become apparent later. But obviously the retention 
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of a second pointer (FP) requires additional storage accesses upon every procedure call and return, which 
are undesirable. 

In order to improve efficiency and in particular to reduce the length of the instruction sequences for both 
prologue and epilogue, computers with more complex instructions feature special instructions 
corresponding to prologue and epilogue. Two examples may help at this point; the second features 
special, dedicated registers for the pointers SP and FP. The number of required instructions, however, 
remains the same. 

 Motorola 680x0 National Semiconductor 32x32 

Call BSR  P BSR  P 
Prologue LINK D14, n ENTER  n 
Epilogue UNLNK  D14 EXIT 
Return jump RTD RET 

12.2. Addressing of variables 
We recall that the address of a local variable is relative to the base address of the activation frame 
containing the variable, and that this base address is held in register FP. The latter, however, holds only 
for the record activated last, and thereby only for variables which belong to the procedure in which they 
are referenced. In many programming languages procedure declarations may be nested, giving rise to 
references to variables which are local to some procedure, but not to the procedure referencing them. The 
following example demonstrates the situation, with R being local to Q, and Q and S local to P: 

 Object Level 

PROCEDURE P; P 0 
    VAR x: INTEGER; x 1 

    PROCEDURE Q; Q 1 
        VAR y: INTEGER; y 2 

        PROCEDURE R; R 2 
            VAR z: INTEGER; z 3 
        BEGIN x := y + z 
        END R; 

    BEGIN R 
    END Q ; 

    PROCEDURE S; S 1 
    BEGIN Q 
    END S; 

BEGIN Q; S 
END P; 

Let us trace the chain of calls P → Q → R. It is tempting to believe that, when accessing variables x, y, or 
z in R, their base address could be obtained by traversing the dynamic link list. The number of steps 
would be the difference between the levels of the call and of the declaration. This difference is 2 for x, 1 
for y, and 0 for z. But this assumption is wrong. R could also be reached through the call sequence P → S 
→ Q → R as shown in Figure 12.3. Access to x would then lead in two steps to the activation frame of S 
instead of P. 

Evidently, a second list of activation records is necessary which mirrors the static order of nesting rather 
than the dynamic order of calls. Hence a second link must be established upon every procedure call. The 
so-called procedure mark now contains, in addition to the return address and the dynamic link, a static 
link element. The static link of a procedure P points to the activation record of the procedure which 
contains P, that is, in which P is declared locally. It should be noted that this pointer is superfluous for 
procedures declared globally, if global variables are addressed directly, that is, without base address. 
Since this is typically the case, and since most procedures are declared globally, the additional 
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complexity caused by the static chain is acceptable. With some justification the absolute addressing of 
global variables can be considered as a special case of local variable addressing leading to an increase in 
efficiency. 

 
Figure 12.3. Dynamic and static links in the stack. 

Finally, note that access to variables via the static link list (intermediate level variables) is less efficient 
than access to strictly local variables, because every step through the list requires an additional memory 
access. Several solutions have been proposed and implemented to eliminate this loss of efficiency. They 
ultimately always rely on the mapping of the static list onto a set of base registers. We consider this as an 
optimization at the wrong place. First, registers are scarce resources which should not be given away too 
easily. And second, the copying of link elements into registers upon every call and return may easily cost 
more than it saves, in particular because references to intermediate-level variables occur quite rarely in 
practice. The optimization may therefore turn out to be quite the reverse. 

In order not to enhance the readability of the Oberon-0 compiler listed in Appendix C, the handling of 
intermediate-level variables has not been implemented. 

Global variables have fixed addresses which must also be considered relative to a frame address. Their 
absolute values are determined upon loading the code, that is, after compilation but before program 
execution. The emitted object code can therefore be accompanied by a list of addresses of instructions 
referring to global variables. The loader must then add to these addresses the base address of the 
respective frame of global variables. This fixup operation can be omitted if the computer features the 
program counter as an address register. Our RISC does exactly this by letting the PC be accessible as 
R15. The frame of global variables is placed immediately preceding the code frame. Hence, addresses of 
global variables use R15 as base address, and the address of the current instruction must be subtracted 
from the variable’s offset.  

12.3. Parameters 
Parameters constitute the interface between the calling and the called procedures. Parameters on the 
calling side are said to be actual parameters, and those on the called side formal parameters. The latter 
are in fact only place holders for which the actual parameters are substituted. Basically, a substitution is 
an assignment of the actual value to the formal variable. This implies that every formal parameter be 
represented by a variable bound to the procedure, and that every call be accompanied by a number of 
assignments called parameter substitutions. 

Most programming languages distinguish between at least two kinds of parameters. The first is the value 
parameter where, as its name suggests, the value of the actual parameter is assigned to the formal 
variable. The actual parameter is syntactically an expression. The second kind of parameter is the 
reference parameter, where, also as suggested by its name, a reference to the actual parameter is assigned 
to the formal variable. Evidently, the actual parameter must in this case be a variable, because an 
assignment to the formal parameter is permissible, and this assignment must refer to the actual variable. 
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(In Pascal, Modula, and Oberon, the reference parameter is therefore called variable parameter). The 
value of the formal variable is in this case a hidden pointer, that is, an address. 

Of course, the actual parameter must be evaluated before the substitution takes place. In the case of 
variable parameters, the evaluation takes the form of an identification of the variable, implying, for 
example, the evaluation of the index in the case of indexed variables. But how is the destination of this 
substitution to be determined? Here the stack organization of the store comes into play. The actual values 
are simply deposited in sequence on the top of the stack; no explicit destination addresses are required. 
Figure 12.4 shows the state of the stack after the deposition of the parameters, and after the call and the 
prologue. 

 
Figure 12.4. Parameter substitution. 

It now becomes evident that parameters can be addressed relative to the frame address FP, like local 
variables. If local variables have negative offsets, parameters have positive offsets. It is particularly 
worth noting that the called procedure references parameters exactly where they were deposited by the 
calling procedure. The space allocated for the parameters is regained by the epilogue simply by 
increasing the value of SP. 

Epilogue MOV SP, 0, FP SP := FP 
 POP FP, SP, 4 pop FP 
 POP LNK, SP, m+4 pop link and parameters 
 RET LNK return jump 

In the case of CISC computers with prologue and epilogue represented by special instructions, the 
required increment of SP is included in the return instruction specifying the size of the parameter block 
as parameter (RET m). 

12.4. Procedure declarations and calls 
The procedure for processing procedure declarations is easily derived from the syntax with the aid of the 
parser construction rules. The new entry in the symbol table generated for a procedure declaration 
obtains the class attribute Proc, and its attribute a is given the current value of pc, which is the entry 
address of the procedure's prologue. Thereafter, a new scope is opened in the symbol table in such a way 
that (1) new entries for local objects are automatically inserted in the new scope, and (2) at the end of the 
procedure the local objects are easily discarded and the previous scope reappears. Here too, the two 
procedures OpenScope and CloseScope embody the stack principle, and the linkage is established by a 
header element (class Head, field dsc). Objects are given an additional attribute lev denoting the nesting 
level of the declared object. Consider the following declarations: 

CONST N = 10; 
VAR x: T; 
PROCEDURE P(x, y: INTEGER); ... 

parameters parameters 
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call return
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The resulting symbol table is shown in Figure 12.5. The dsc pointer refers to P's parameters x and y. 

 
Figure 12.5. Symbol table representing two scopes. 

PROCEDURE ProcedureDecl; 
 VAR proc, obj: Object; 
  procid: Ident; 
  locblksize, parblksize: LONGINT; 

 PROCEDURE FPSection; 
  VAR obj, first: Object; tp: Type; parsize: LONGINT; 
 BEGIN 
  IF sym = var THEN Get(sym); IdentList(Par, first) ELSE IdentList(Var, first) END ; 
  IF sym = ident THEN 
   find(obj); Get(sym); 
   IF obj.class = Typ THEN tp := obj.type ELSE Mark("type?"); tp := intType END 
  ELSE Mark("ident?"); tp := intType 
  END ; 
  IF first.class = Var THEN parsize := tp.size ELSE parsize := 4 END ; 
  obj := first; 
  WHILE obj # guard DO obj.type := tp; INC(parblksize, parsize); obj := obj.next END 
 END FPSection; 

BEGIN (* ProcedureDecl *) Get(sym); 
 IF sym = ident THEN 
  procid := id; 
  NewObj(proc, Proc); Get(sym); parblksize := 8; 
  INC(level); OpenScope; proc.val := -1; 
  IF sym = lparen THEN Get(sym); 
   IF sym = rparen THEN Get(sym) 
   ELSE FPSection; 
    WHILE sym = semicolon DO Get(sym); FPSection END ; 
    IF sym = rparen THEN Get(sym) ELSE Mark(")?") END 
   END 
  END ; 
  obj := topScope.next; locblksize := parblksize; 
  WHILE obj # guard DO 
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   obj.lev := curlev; 
   IF obj.class = Par THEN 
     DEC(locblksize, 4) ELSE locblksize := locblksize - obj.type.size 
   END ; 
   obj.val := locblksize; obj := obj.next 
  END ; 
  proc.dsc := topScope.next; 
  IF sym = semicolon THEN Get(sym) ELSE Mark(";?") END; 
  locblksize := 0; declarations(locblksize); 
  WHILE sym = procedure DO 
   ProcedureDecl; 
   IF sym = semicolon THEN Get(sym) ELSE Mark(";?") END 
  END ; 
  proc.val := pc; Enter(locblksize); 
  IF sym = begin THEN Get(sym); StatSequence END ; 
  IF sym = end THEN Get(sym) ELSE Mark("END?") END ; 
  IF sym = ident THEN 
   IF procid # id THEN Mark("no match") END ; 
   Get(sym) 
  ELSE Mark("ident?") 
  END ; 
  Return(parblksize - 8); CloseScope; DEC(level) 
 END 
END ProcedureDecl; 

Within the procedure body, value parameters are treated exactly like local variables. Their entries in the 
symbol table are of class Var. A new class Par is introduced to represent reference parameters. The 
addresses (offsets) of formal parameters are derived according to the following formula, whereby the last 
parameter pn obtains the least offset, namely the size of the procedure mark (8). The size of variable 
parameters is always 4, which is the size of an address. 

adr(pi)  =  size(pi+1) + ... + size(pn) + 8 

Unfortunately, this implies that the offsets cannot be determined before the entire parameter list has been 
recognized. In the case of byte-addressed stores it is moreover advantageous always to increment or 
decrement the stack pointer by multiples of 4, such that parameters are always aligned to word 
boundaries. In the case of Oberon-0 special attention to this rule is unnecessary, because all data types 
feature a size of multiples of 4 anyway. 

Local declarations are processed by the parser procedure declarations. The code for the prologue is 
emitted by procedure Enter after the processing of local declarations. Emission of the epilogue is 
performed by procedure Return at the end of ProcedureDecl. 

PROCEDURE Enter(size: LONGINT); 
BEGIN 
 Put(PSH, LNK, SP, 4); 
 Put(PSH, FP, SP, 4); 
 Put(MOV, FP, 0, SP); 
 Put(SUBI, SP, SP, size) 
END Enter; 

PROCEDURE Return(size: LONGINT); 
BEGIN 
 Put(MOV, SP, 0, FP); 
 Put(POP, FP, SP, 4); 
 Put(POP, LNK, SP, size+4); 
 PutBR(RET, LNK) 
END Return; 
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Procedure MakeItem generates an Item corresponding to a given Object. At this point, the difference 
between the addressing of local and global variables must be taken into account. (As already mentioned, 
the handling of intermediate-level variables is not treated here.) Note, however, that reference parameters 
(class = Par) require indirect addressing. Since the RISC architecture does not explicitly feature an 
indirect addressing mode, the value of the formal parameter, which is the address of the actual parameter, 
is loaded into a register. The actual parameter is then accessed via this register, with offset 0. 

PROCEDURE MakeItem(VAR x: Item; y: Object); 
 VAR r: LONGINT; 
BEGIN x.mode := y.class; x.type := y.type; x.a := y.val; 
 IF y.lev = 0 THEN x.r := PC ELSIF y.lev = curlev THEN x.r := FP 
 ELSE Mark("level!"); x.r := 0 
 END ; 
 IF y.class = Par THEN GetReg(r); Put(LDW, r, x.r, x.a); x.mode := Var; x.r := r; x.a := 0 END 
END MakeItem; 

Procedure calls are generated within the already encountered procedure StatSequence with the aid of 
auxiliary procedures Parameter and Call: 

IF sym = ident THEN 
 find(obj); Get(sym); MakeItem(x, obj); selector(x); 
 IF sym = becomes THEN ... 
 ELSIF x.mode = Proc THEN 
  par := obj.dsc; 
  IF sym = lparen THEN Get(sym); 
   IF sym = rparen THEN Get(sym) 
   ELSE 
    LOOP expression(y); 
     IF IsParam(par) THEN Parameter(y, par.type, par.class); par := par.next 
     ELSE Mark("too many parameters") 
     END ; 
     IF sym = comma THEN Get(sym) 
     ELSIF sym = rparen THEN Get(sym); EXIT 
     ELSIF sym >= semicolon THEN Mark(") ?"); EXIT 
     ELSE Mark(") or , ?") 
     END 
    END 
   END 
  END ; 
  IF obj.val < 0 THEN Mark("forward call") 
  ELSIF ~IsParam(par) THEN Call(x) 
  ELSE Mark("too few parameters") 
  END 
 ... 

PROCEDURE Parameter(VAR x: Item; ftyp: Type; class: INTEGER); 
 VAR r: LONGINT; 
BEGIN 
 IF x.type = ftyp THEN 
  IF class = Par THEN (*Var param*) 
   IF x.mode = Var THEN 
    IF x.a # 0 THEN GetReg(r); Put(ADDI, r, x.r, x.a) ELSE r := x.r END 
   ELSE Mark("illegal parameter mode") 
   END ; 
   Put(PSH, r, SP, 4); EXCL(regs, r)  (*push*) 
  ELSE (*value param*) 
   IF x.mode # Reg THEN load(x) END ; 
   Put(PSH, x.r, SP, 4); EXCL(regs, x.r) 
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  END 
 ELSE Mark("bad parameter type") 
 END 
END Parameter; 

PROCEDURE IsParam(obj: Object): BOOLEAN; 
BEGIN RETURN (obj.class = Par) OR (obj.class = Var) & (obj.val > 0) 
END IsParam; 

PROCEDURE Call(VAR x: Item); 
BEGIN PutBR(BSR, x.a - pc) 
END Call; 

Here we tacitly assume that the entry addresses of procedures are known when a call is to be compiled. 
Thereby we exclude forward references which may, for example, arise in the case of mutual, recursive 
referencing. If this restriction is to be lifted, the locations of forward calls must be retained in order that 
the branch instructions may be fixed up when their destinations become known. This case is similar to 
the fixups required for forward jumps in conditional and repeated statements. 

In conclusion, we show the code generated for the following, simple procedure: 

PROCEDURE P(x: INTEGER; VAR y: INTEGER); 
BEGIN x := y; y := x; P(x, y); P(y, x) 
END P 

   0 PSH    LNK,  SP,       4 prologue 
   4 PSH    FP,  SP,       4 
   8 MOV    FP,   0,      SP 
  12 SUBI   SP,  SP,       0 no local variables 

  16 LDW     0,  FP,       8 
  20 LDW     1,   0,       0 
  24 STW     1,  FP,     12 x := y 

  28 LDW     0,  FP,       8 
  32 LDW     1,  FP,      12 
  36 STW     1,   0,       0 y := x 

  40 LDW     0,  FP,      12 x 
  44 PSH     0,  SP,       4 
  48 LDW     0,  FP,       8 adr(y) 
  52 PSH     0,  SP,       4 
  56 BSR                   -14 P(x, y) 

  60 LDW     0,  FP,       8  
  64 LDW     1,   0,       0 y 
  68 PSH     1,  SP,       4 
  72 ADDI    0,  FP,      12 adr(x) 
  76 PSH     0,  SP,       4 
  80 BSR                    -20 P(y, x) 

  84 MOV    SP,   0,      FP epilogue 
  88 POP    FP,  SP,       4 
  92 POP    LNK,  SP,  12 pop link and parameters 
  96 RET    LNK 

12.5. Standard procedures 
Most programming languages feature certain procedures and functions which do not need to be declared 
in a program. They are said to be predeclared and they can be called from anywhere, as they are 
pervasive. These are well-known functions, for example the absolute value of a number (ABS), type 
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conversions (ENTIER, ORD), or frequently encountered statements which merit an abbreviation and are 
available on many computers as single instructions (INC, DEC). The property common to all these so-
called standard procedures is that they correspond directly either to a single instruction or to a short 
sequence of instructions. Therefore, these procedures are handled quite differently by compilers; no call 
is generated. Instead, the necessary instructions are emitted directly into the code. These procedures are 
therefore also called in-line procedures, a term that makes sense only if the underlying implementation 
technique is understood. 

As a consequence it is advantageous to consider standard procedures as an object class of their own. 
Thereby the need for a special treatment of calls becomes immediately apparent. For Oberon-0 we 
postulate procedures Read, Write, WriteHex, and WriteLn, which on the one hand introduce elementary 
input and output facilities, and on the other hand serve to demonstrate the proposed handling of 
predeclared procedures. In this case, the term standard is admittedly misleading, whereas predeclared and 
in_line refer to the core of the subject matter. The corresponding entries in the symbol table are made 
when the compiler is initialized, namely in an outermost scope called universe which always remains 
open (see Appendix C). The new class attribute is denoted by SProc, and attribute val (a in the case of 
Items) identifies the concerned procedure. 

IF sym = ident THEN 
 find(obj); Get(sym); MakeItem(x, obj); selector(x); 
 IF sym = becomes THEN ... 
 ELSIF x.mode = Proc THEN ... 
 ELSIF x.mode = SProc THEN 
  IF obj.val <= 3 THEN param(y); TestInt(y) END ; 
  IOCall(x, y) 
 ... 

PROCEDURE IOCall(VAR x, y: Item); 
 VAR z: Item; 
BEGIN (*x.mode = SProc*) 
 IF x.a = 1 THEN (*Read*) 
  GetReg(z.r); z.mode := Reg; z.type := intType; Put(RD, z.r, 0, 0); Store(y, z) 
 ELSIF x.a = 2 THEN (*Write*) load(y); Put(WRD, 0, 0, y.r); EXCL(regs, y.r) 
 ELSIF x.a = 3 THEN (*WriteHex*) load(y); Put(WRH, 0, 0, y.r); EXCL(regs, y.r) 
 ELSE (*WriteLn*) Put(WRL, 0, 0, 0) 
 END 
END IOCall; 

The final example shows a sequence of three statements and the resulting code: 

Read(x); Write(x); WriteLn 

   4 READ    0,   0,       0 
   8 STW     0,   0,      -4 x 
  12 LDW     0,   0,      -4 x 
  16 WRD     0,   0,       0 
  32 WRL     0,   0,       0 

12.6. Function procedures 
A function procedure is a procedure whose identifier simultaneously denotes both an algorithm and its 
result. It is activated not by a call statement but by a factor of an expression. The call of a function 
procedure must therefore also take care of returning the function's result. The question therefore arises of 
which resources should be used. 

If our primary goal is the generation of efficient code with the minimal number of memory accesses, then 
a register is the prime candidate for temporarily holding the function's result. If this solution is adopted, 
we must renounce the capability of defining functions with a structured result, because structured values 
cannot be held in a register. 
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If this restriction is considered as unacceptable, a place in the stack must be reserved to hold the 
structured result. Typically, it is added to the parameter area of the activation record. The function result 
is considered as an implicit result (variable) parameter. Correspondingly, the stack pointer is incremented 
before code for the first parameter is emitted. 

At this point, all the concepts contained in the language Oberon-0 and implemented in its compiler have 
been presented. The compiler's listing is contained in full in Appendix C. 

12.7. Exercises. 
12.1. Improve the Oberon-0 compiler in such a way that the restriction that variables must be strictly 

local or entirely global can be lifted. 

12.2. Add standard functions to the Oberon-0 compiler, generating inline code. Consider ABS, INC, 
DEC. 

12.3. Replace the VAR parameter concept by the notion of an OUT parameter. An OUT parameter 
represents a local variable whose value is assigned to its corresponding actual parameter upon 
termination of the procedure. It constitutes the inverse of the value parameter, where the value of the 
actual parameter is assigned to the formal variable upon the start of the procedure. 
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13. Elementary Data Types 

13.1. The types REAL and LONGREAL 
As early as 1957 integers and real numbers were treated as distinct data types in Fortran. This was not 
only because different, internal representations were necessary, but because it was recognized that the 
programmer must be aware of when computations could be expected to be exact (namely for integers), 
and when only approximate. The fact that with real numbers only approximate results can be obtained, 
may be understood by considering that real numbers are represented by scaled integers with a fixed, 
finite number of digits. Their type is called REAL, and a real value x is represented by the pair of 
integers e and m as defined by the equation 

x  =  Be-w × m 1 ≤ m < B 

This form is called floating-point representation; e is said to be the exponent, m the mantissa. The base B 
and the bias w are fixed values for all REAL values, characterizing the chosen number representation. 
The two IEEE standards of floating-point representations feature the following values for B and w, and to 
the components e and m a bit s is added for the sign: 

Type B w Number of bits for e Number of bits for m Total 

REAL 2 127 8 23 32 
LONGREAL 2 1023 11 52 64 

The exact forms of the two types, called REAL and LONGREAL in Oberon, are specified by the 
following formulas: 

x  =  (-1)s × 2e-127 × 1.m x  =  (-1)s × 2e-1023 × 1.m 

The following examples show the floating-point representation of some selected numbers: 

Decimal s  e 1.m Binary Hexadecimal 

1.0 0  127 1.0 0 01111111 00000000000000000000000 3F80 0000 
0.5 0  126 1.0 0 01111110 00000000000000000000000 3F00 0000 
2.0 0  128 1.0 0 10000000 00000000000000000000000 4000 0000 
10.0 0  130 1.25 0 10000010 01000000000000000000000 4120 0000 
0.1 0  123 1.6 0 01111011 10011001100110011001101 3DC CCCD 
-1.5 1  127 1.5 1 01111111 10000000000000000000000 BFC0 0000 

Two examples illustrate the case of LONGREAL: 

1.0 0 1023 1.0 0 01111111111 00000000 ... 00000000 3FF0 0000 0000 0000 
0.1 0 1019 1.6 0 01111111011 10011001 ... 10011010 3FB9 9999 9999 999A 

This logarithmic form inherently excludes a value for 0. The value 0 must be treated as a special case, 
and it is represented by all bits being 0. With regard to numeric properties it constitutes a special case and 
a discontinuity. Furthermore, the IEEE standards postulate two additional special values: e = 0 (with m ≠ 
0) and e = 255 (resp. e = 1023) are considered as invalid results and they are called NaN (not a number). 

Normally, the programmer does not have to worry about these specifications, and the compiler designer 
is not affected by them. The types REAL and LONGREAL constitute abstract data types usually 
integrated in the hardware which features a set of instructions adapted to the floating-point 
representation. If this set is complete, that is, it covers all basic numeric operations, the representation 
may be considered as hidden, since no further, programmed operations depend on it. In many computers, 
instructions for floating-point operands use a special set of registers. The reason behind this is that often 
separate coprocessors, so-called floating-point units (FPUs) are used which implement all floating-point 
instructions and contain this set of floating-point registers. 
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13.2. Compatibility between numeric data types 
The values of all variables with numeric data type are numbers. Therefore there is no obvious reason not 
to declare them all as assignment compatible. But, as already outlined, numbers of different types are 
differently represented in terms of bit sequences within the computer. Hence, whenever a number of type 
T0 is assigned to a variable of type T1, a representation conversion has to be performed which takes some 
finite time. The question then arises of whether this fact should remain hidden from the programmer in 
order to avoid distraction, or whether it should be made explicit because it affects the efficiency of the 
program. The latter choice is accomplished by declaring the various types as incompatible and by 
providing explicit, predefined conversion functions. 

In any case, in order to be complete, a computer's set of instructions must also contain conversion 
instructions which convert integers into floating-point numbers and vice-versa. The same holds at the 
level of the programming language. 

In Oberon different data types may be used within an arithmetic expression, which is then said to be a 
mixed expression. In this case, the compiler must insert hidden conversion instructions yielding the 
representation required for the specified arithmetic operation to be applied. 

The definition of Oberon provides not only two, but an entire set of numeric data types. They are ordered 
in the sense that the larger type contains all values belonging to the smaller type. This notion is called 
type inclusion: 

SHORTINT ⊆ INTEGER ⊆ LONGINT ⊆ REAL ⊆ LONGREAL 

The result type of an expression is defined to be equal to the larger of the operands. This rule determines 
the conversion instructions to be inserted by the compiler. 

For the assignment, certain relaxed type compatibility rules are also postulated, relaxed relative to the 
strict rule that the type of the destination variable must be identical to that of the source expression. 
Oberon postulates that the type of the variable must include the type of the expression. The following 
examples are therefore permitted: 

VAR i, j: INTEGER; k: LONGINT; x, y: REAL; z: LONGREAL; 

i := j; INTEGER M INTEGER (no conversion) 
k := i; INTEGER M LONGINT (INTEGER to LONGINT) 
z := x; REAL M LONGREAL (REAL to LONGREAL) 
x := i; INTEGER M REAL (INTEGER to REAL) 

Conversions between integer types are simple and efficient, because they consist of a sign extension 
only. Much more involved are conversions from integer to floating-point representation. They consist of 
a normalization of the mantissa such that 1 ≤ m < 2, and the packing of sign, exponent and mantissa into 
a single word. Typically, an appropriate instruction is provided for this task. 

However, if the type of the expression is larger than the type of the destination variable, the assignment is 
sometimes impossible, as the assigned value may be outside the range specified by the variable's type. 
Therefore, a run-time range check is necessary before the conversion. This fact should be made visible in 
the source language by an explicit conversion function. Oberon features the following functions: 

SHORT INTEGER to SHORTINT 
 LONGINT to INTEGER 
 LONGREAL to REAL 
ENTIER REAL to LONGINT 
 LONGREAL to LONGINT 

ENTIER(x) yields the largest integer not greater than x. 

Oberon's type conversion rules are simple and easily explained. Nevertheless they harbour a pitfall. In a 
multiplication of two factors of type INTEGER (or REAL) in some cases it is tempting to expect a result 
of type LONGINT (resp. LONGREAL). However, in the assignments 
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k := i*j + k z := x*y + z 

the product is, according the the given rules, of type INTEGER (resp. REAL), and it is converted to its 
long variant for the subsequent addition. Computation of the product with higher precision is achieved by 
forcing the conversion to occur before multiplication: 

k := LONG(i) * LONG(j) + k z := LONG(x) * LONG(y) + z 

The simplicity of the compatibility rules is a significant advantage for the compiler designer. The 
principle of expression handling is clearly prescribed. Only the compilation procedures for expressions 
and terms, and the one for assignment have to be adjusted by introducing case discriminations. The larger 
the number of different numeric types, the more cases have to be distinguished. 

13.3. The data type SET 
The units of storage in computers consist of a small number of bits which are interpretable in different 
ways. They may represent integers with or without sign, floating-point numbers or logical data. The 
question about the way to introduce logical bit sequences in higher programming languages has been 
controversial for a long time. The proposal to introduce them as sets is due to C. A. R. Hoare (Hoare, 
1972). 

The proposal is attractive, because the set is a mathematically well-founded abstraction. It is 
appropriately represented in a computer by its characteristic function F. If x is a set of elements from the 
ordered base set M, F(x) is the sequence of truth values bi with the meaning "i is contained in x". If we 
choose a word (consisting of N bits) to represent values of type SET, the base set consists of the integers 
0, 1, ... , N-1. N is typically so small that the range of applications for the type SET is quite restricted. 
However, the basic set operations of intersection, union and difference are implementable extremely 
efficiently. Examples of sets represented by bit sequences with word length N are: 

x N-1 ... 7 6 5 4 3 2 1 0 

{0, 2, 4, 6, ...} 0 ... 0 1 0 1 0 1 0 1 
{0, 3, 6, ...} 0 ... 0 1 0 0 1 0 0 1 
{ } 0 ... 0 0 0 0 0 0 0 0 

Oberon's set operators are implemented by logical instructions available on every computer. This is 
possible due to the following properties of the characteristic function. Note that we use the Oberon 
notation for set operations, that is, x+y for the union and x*y for the intersection: 

∀i ((i ∈ x+y ) : (i ∈ x) OR (i ∈ y)) Union 
∀i ((i ∈ x*y ) : (i ∈ x) & (i ∈ y)) Intersection 
∀i ((i ∈ x-y ) : (i ∈ x) & ~(i ∈ y)) Difference 
∀i ((i ∈ x/y ) : (i ∈ x) ≠ (i ∈ y)) Symmetric difference 

Consequently, the OR instruction can be used for set union, AND for set intersection and XOR for the 
symmetric difference. The result is a very efficient implementation, because the operation is executed on 
all elements (bits) simultaneously (in parallel). Examples with the base set {0, 1, 2, 3} are: 

{0, 1} + {0, 2}  =  {0, 1, 2} 0011  OR 0101 = 0111  
{0, 1} * {0, 2}  =  {0} 0011  & 0101 = 0001 
{0, 1} - {0, 2}  =  {1} 0011  &   ~ 0101 = 0010 
{0, 1} / {0, 2}  =  {1, 2} 0011  XOR 0101 = 0110 

We conclude by showing the code representing the set expression  (a+b) * (c+d) 

LDW 1, 0, a 
LDW 2, 0, b 
OR 1, 1, 2 
LDW 2, 0, c 
LDW 3, 0, d 
OR 2, 2, 3 
AND 1, 1, 2 
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The membership test i IN x is implemented by a bit test. If such an instruction is not available, the bit 
sequence must be shifted appropriately with subsequent sign bit test. 

The type SET is particularly useful if the base set includes the ordinal numbers of a character set 
(CHAR). Efficiency is in this case somewhat reduced, because 256 bits (32 bytes) are typically required 
to represent a set value. Even in 32-bit computers 8 logical instructions are required for the execution of a 
set operation. 

13.4. Exercises 
13.1 Extend the language Oberon-0 and its compiler by the data type REAL (and/or LONGREAL) with 
its arithmetic operators +, -, * and /. The RISC architecture must be extended accordingly by a set of 
floating-point instructions and a set of floating-point registers. Choose one of the following alternatives: 

a. The result type of an operation is always that of the operands. The types INTEGER and REAL cannot 
be mixed. However, there exist the two transfer functions ENTIER(x) and REAL(i). 

b. Operands of the types INTEGER and REAL (and LONGREAL) may be mixed in expressions. 

Compare the complexities of the compilers in the two cases. 

13.2. Extend the language Oberon-0 and its compiler by the data type SET with its operators + (union), * 
(intersection) and - (difference), and with the relation IN (membership). Furthermore, set constructors are 
introduced by the following additional syntax. As an option, expressions in set constructors may be 
confined to constants. 

factor  =  number | set | ... 
set  =  "{" [element {"," element}] "}". 
element  =  expression [".." expression]. 

13.3. Extend the language Oberon-0 and its compiler by the data type CHAR with the functions ORD(ch) 
(ordinal number of ch in the character set) and CHR(k) (k-th character in the character set). A variable of 
type CHAR occupies a single byte in store. 
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14. Open Arrays, Pointers and Procedure Types 

14.1. Open arrays 
An open array is an array parameter whose length is unknown (open) at the time of compilation. Here we 
encounter for the first time a situation where the size of the required storage block is not given. The 
solution is relatively simple in the case of a reference parameter, because no storage has to be allocated 
anyway, and merely a reference to the actual array is passed to the called procedure. 

However, in order to check index bounds when accessing elements of the open array parameter, the 
length must be known. Therefore, in addition to the array's address, its length is also passed on. In the 
case of a multidimensional, open array the length is also necessary to compute element addresses. Hence, 
the length of the array in every dimension is supplied. The unit consisting of array address and lengths is 
called an array descriptor. Consider the following example: 

VAR a: ARRAY 10 OF ARRAY 20 OF INTEGER; 

PROCEDURE P(VAR x: ARRAY OF ARRAY OF INTEGER); 
BEGIN k := x[i] 
END P; 

P(a) 

A descriptor with three entries is pushed onto the stack as parameter to P (s. Figure 14.1) and the 
corresponding code is as follows: 

MVI 1, 0, 20 R1 := 20 
PSH 1, 30, 4 push len,  R14 = SP 
ADDI 1, 0, 10 R1 := 10 
PSH 1, 30, 4 push len 
ADDI 1, 0, a R1 := adr(a) 
PSH 1, 30, 4 push adr 
BSR P call 

 
Figure 14.1. Array descriptor for open array. 

If an open array parameter is passed by value, its value must be copied into its provided formal location 
just as in the case of a scalar value. This operation may, however, take considerable effort if the array is 
large. In the case of structured parameters, programmers should always use the VAR option, unless a 
copy is essential. 

Certainly the code for the copy operation is better inserted after the prologue of the procedure rather than 
in the place of the call. Consequently, the code pattern for the call is the same for value and reference 
parameters, with the exception that for the former the copy operation is omitted from the prologue. 

The formal location apparently does not hold the array, but instead the array descriptor, whose size is 
known. The space for the copy is allocated at the top of the stack, and the stack pointer is incremented (or 
decremented) by the array's size. In the case of multidimensional arrays, the size is computed (at run-
time) as the product of the individual lengths and the element size. 

adr(a)

10

20

x

+4
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Here SP is changed at run time by amounts which are unknown at compile time. Therefore it is 
impossible in the general case to operate with a single address register (SP); the frame pointer FP is 
indeed necessary. 

14.2. Dynamic data structures and pointers 
The two forms of data structures provided in Oberon are the array (all elements of the same type, 
homogeneous structure) and the record (heterogeneous structure). More complex structures must be 
programmed individually, that is, they must be generated during program execution. For this reason they 
are said to be dynamic structures. Thereby the structure's components are generated one by one; storage 
is allocated for components individually. They do not necessarily lie in contiguous locations in store. 
Relationships between components are expressed explicitly by pointers. 

For the implementation of this concept a mechanism must be available for the allocation of storage at run 
time. In Oberon, it is represented by the standard procedure NEW(x). This allocates storage to a dynamic 
variable, and assigns the address of the allocated block to the pointer variable x. From this it follows that 
pointers are addresses. Access to a variable referenced by a pointer is necessarily indirect as in the case 
of VAR parameters. In fact, a VAR parameter represents a hidden pointer. Consider the following 
declarations: 

TYPE T = POINTER TO TDesc; 
    TDesc = RECORD x, y : LONGINT END; 
VAR a, b : T; 

The code for the assignment a.x := b.y with access via pointers a and b becomes 

LDW 1, FP, b R1 := b 
LDW 2, 1, y R2 := b.y 
LDW 3, FP, a R3 := a 
STW 2, 3, x a.x := R2 

The step from the referencing pointer variable to the referenced record variable is called dereferencing. 
In Oberon the explicit dereferencing operator is denoted by the symbol ↑. a.x is evidently an 
abbreviation for the more explicit form a↑.x. The implicit dereferencing operation is recognizable when 
the selector symbol (dot) is preceded not by a record but by a pointer variable. 

Everyone who has written programs which heavily involve pointer handling knows how easily errors can 
be made with catastrophic consequences. To explain why, consider the following type declarations: 

T0 = RECORD x, y : LONGINT END ; 
T1 = RECORD x, y, z : LONGINT END; 

Let a and b be pointer variables, and let a point to a record of type T0, b to a record of type T1. Then the 
designator a.z denotes an undefined value of a non-existent variable, and a.z : = b.x stores a value to 
some undefined location, perhaps corrupting another variable allocated to this location. 

This dangerous situation is elegantly eliminated by binding pointers to a data type. This permits the 
validation of pointer values at the time of compilation without loss of run-time efficiency. This brilliant 
idea is due to C. A. R. Hoare and was implemented for the first time in Algol W (Hoare, 1972). The type 
to which a pointer is bound is called its base type. 

P0 = POINTER TO T0; 
P1 = POINTER TO T1; 

Now the compiler can check and guarantee that only pointer values can be assigned to a pointer variable 
p which points to a variable of the base type of p. The value NIL, pointing to no variable at all, is 
considered as belonging to all pointer types. Referring to the example above, now the designator a.z is 
detected as incorrect, because z is not a field of the type T0 to which a is bound. If every pointer variable 
is initialized to NIL, it suffices to precede every access via a pointer with a test for the pointer value NIL. 
In this case, the pointer points to no variable, and any designator must be erroneous. 
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Such a test is indeed quite simple, but because of its frequency it reduces efficiency. The need for an 
explicit code pattern can be circumvented by (ab)using the storage protection mechanism available on 
many computers. In this case, the test does not properly check whether a = NIL, but rather whether a.z is 
a valid, unprotected address. If as usual NIL is represented by the address 0, and if locations 0 ... N-1 are 
protected, mistaken references via NIL are caught only if their field offsets are less than N. Nevertheless, 
the method seems to be satisfactory in practice. 

The introduction of pointers requires a new class of objects in the symbol table and also a new mode of 
items. Both are to imply indirect addressing. Because VAR parameters also require indirect addressing, a 
mode indicating indirection is already present, and it is only natural to use the same mode for access via 
pointers. However, the name Ind would now appear as more appropriate than Par. 

Designator Mode 

x Var Direct addressing 
x^ Ind Indirect addressing 
x^.y Ind Indirect addressing with offset 

Hence, the (usually implied) dereferencing operator converts the mode of an item from Var to Ind. To 
summarize: 

1. The notion of a pointer is easily integrated into our system of type compatibility checking. Every 
pointer type is bound to a base type, namely the type of the referenced variable. 

2. x^ denotes dereferencing, implemented by indirect addressing. 

3. Pointers are type safe if access is preceded by a NIL test, and if pointer variables are initialized to NIL. 

Allocation of variables referenced via pointers is obtained by a call of procedure NEW(p). We postulate 
its existence as run-time support in operating systems. The size of the block to be allocated is given by 
the base type of p. 

So far, we have ignored the problem of storage reclamation. It is actually irrelevant for abstract 
programs; for concrete ones, however, it is crucial, as stores are inherently finite. Modern operating 
systems offer a centralized storage management with garbage collection. There are various schemes for 
storage reclamation; but we shall not explain them here. We restrict ourselves to the only question 
relevant to the compiler designer: which data must be provided to the garbage collector, so that at any 
time all irrelevant storage blocks can safely be identified and reclaimed? A variable is no longer relevant 
when there are no references to it, references emanating from declared pointer variables. In order to 
determine whether such references exist, the garbage collector requires the following data: 

1. the addresses of all declared pointer variables, 
2. the offsets of all pointer fields in dynamically allocated records, and 
3. the size of every dynamically allocated variable. 

This information is available at compile time, and it has to be "handed down" in such a way that it is 
available to the garbage collector at run time. In this sense compiler and system must be integrated. The 
system is here assumed to include storage management, in particular the allocator NEW and the garbage 
collector. 

In order to make this information available at run time, procedure NEW not only allocates a block of 
storage, but provides it with a type description of the allocated variable. Naturally, such a descriptor must 
be issued only once, as it need not be duplicated for every instance (variable) of the same type. 
Therefore, the block is assigned merely a pointer to the type descriptor, and this pointer remains invisible 
to the programmer. The pointer is called a type tag (s. Figure 14.2). 

The type descriptor apparently is a reduced form of the object describing the type in the compiler's 
symbol table, reduced to the data relevant for storage reclamation. This concept has the following 
consequences: 

1. The compiler must generate a descriptor for every (record) type, and it must add it to the object file. 
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2. Procedure NEW(p) obtains, in addition to the address of p, an additional, hidden parameter specifying 
the address of the descriptor of the base type of p. 

3. The program loader must interpret the added object file information and generate type descriptors. 

 
Figure 14.2. Pointer variable, referenced variable, and type descriptor. 

The type descriptor specifies the size of the variable and the offset of all pointer fields (Figure 14.3). 

 
Figure 14.3. Variable with type descriptor. 

This, however, is still insufficient. In order that data structures can be traversed, their roots have to be 
known. Therefore, the object file is also provided with a list of all declared pointer variables. This list is 
copied upon loading into memory. The list must also include the hidden pointers designating type 
descriptors. In order that descriptors do not have to be generated for all data types, Oberon restricts 
pointers to refer to records. This is justified when considering the role of records in dynamic data 
structures. 

14.3. Procedure types 
If in a language procedures can be passed as parameters, or if they can occur as values of variables, it 
becomes necessary to introduce procedure types. Which are the characteristics of such types, that is, of 
the values which variables may assume? 

Procedure types have been in use since the advent of Algol 60. There, they occurred implicitly only. A 
parameter in Algol 60 can be a procedure (formal procedure). Its type, however, is not specified; it is 
merely known that the parameter denotes some procedure or function.  The type specification is 
incomplete or missing, and this constistutes an unfortunate loophole in Algol's type system. In Pascal, it 
was retained as a concession to Algol compatibility. Modula-2, however, requires a complete, type-safe 
specification, and besides parameters, variables with procedures as their values are also allowed. Thereby 
procedure types achieve the same standing as other data types. In this respect, Oberon has adopted the 
same concept as Modula-2 (Wirth, 1982). 

What does this type-safe specification, called the procedure's signature, consist of? It contains all 
specifications necessary to validate the compatibility between actual and formal parameters, namely their 
number, the type of each parameter, its kind (value or reference) and the type of the result in the case of 
function procedures. The following example illustrates the case: 

p 
p↑

type 
descriptor 

Tag

0 
4 
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PROCEDURE F(x, y : REAL): REAL; 
BEGIN 
... 
END F 

PROCEDURE H(f: PROCEDURE (u, v : REAL): REAL); 
 VAR a, b: REAL; 
BEGIN a : = f(a + b, a - b) 
END H 

Upon compilation of the declaration of H the type compatibility between a + b and u, respectively that 
between a - b and v, is checked, as well as whether the result type of f is assignable to a. In the call H(F) 
the compatibility between the parameters, and that of the result type of the actual F and the formal f is 
verified, that is, between x and u and between y and v. Note that the identifiers u and v do not occur in the 
program, except as the names of the formal parameters of the formal procedure f. Hence, they are 
actually superfluous, but they may be useful as comments to the reader if meaningful names are chosen. 

Pascal, Modula and Oberon assume name compatibility as the basis for establishing type consistency. In 
the case of procedure parameters, an exception was made; structural compatibility suffices. If name 
compatibility were required, the type (signature) of every procedure used as an actual parameter would 
have to be given an explicit name. This was considered as too cumbersome when the language was 
designed. However, structural compatibility requires that a compiler be capable of comparing two 
parameter lists for type correspondence. 

A procedure may thus be assigned to a variable under the condition that the two parameter lists 
correspond. The assigned procedure is activated by referring to the procedure variable. The call is 
indirect. This is actually the basis of object-oriented programming, where procedures are bound to fields 
of record variables called objects. These bound procedures are called methods. In contrast to Oberon, 
methods, once declared and bound, cannot be altered. All instances of a class refer to the same methods. 

The implementation of procedure types and methods turns out to be surprisingly simple, if the problem of 
type compatibility checking is ignored. The value of a variable or record field with procedure type is 
simply the entry address of the assigned procedure. This holds only if we require that only global 
procedures, that is, procedures which are not embedded in some context, can be assigned. This readily 
acceptable restriction is explained with the aid of the following example which breaches this restriction. 
Upon execution of Q alias v the context containing variables a and b is missing. 

TYPE T = PROCEDURE (u: INTEGER); 
VAR v: T;  r: INTEGER; 

PROCEDURE P; 
 VAR a, b: INTEGER; 
 PROCEDURE Q(VAR x: INTEGER); 
 BEGIN x := a+b END Q; 
BEGIN v := Q 
END P; 

...   P; v(r)  ... 

14.4. Exercises. 
14.1. Extend the language Oberon-0 and its compiler with open arrays: 

a. for one-dimensional VAR parameters, 
b. for multi-dimensional VAR parameters, 
c. for value parameters. 

14.2. Extend the language Oberon-0 and its compiler with function procedures: 

a. for scalar result types (INTEGER, REAL, SET), 
b. for any type. 
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14.3. A certain module M manages a data structure whose details are to be kept hidden. In spite of this 
hiding it must be possible to apply any given operation P on all elements of the structure. For this 
purpose, a procedure Enumerate is exported from M, which allows P to be specified as parameter. As a 
simple example, we choose for P the counting of the elements currently in the data structure and display 
the desired solution: 

PROCEDURE Enumerate(P: PROCEDURE (e: Element)); 

PROCEDURE CountElements*; 
 VAR n: INTEGER; 
 PROCEDURE Cnt(e: Element); BEGIN n := n+1 END Cnt; 
BEGIN n := 0; M.Enumerate(Cnt); Texts.WriteInt(W, n, 6) 
END CountElements; 

Unfortunately, this solution violates a restriction postulated for the language Oberon. The restriction 
specifies that procedures used as parameters must be declared globally. This forces us to declare Cnt 
outside of CountElements and thereby also the counter variable n, although both definitely have no 
global function. 

Implement procedure types in such a way that the mentioned restriction can be lifted, and that the 
proposed solution is admissible. What is the price?  

14.4. Our RISC (see Ch. 9) features a push and a pop instruction. They are used to implement the stack 
paradigm for procedure activation frames. If we add an alternative push instruction PSHu, we can use it, 
together with the existing pop instruction, to implement fifo buffers: 

PSHu: M[R[b] div 4] := R[a]; INC(R[b], c) 

But how is the concept of buffer and the use of the buffer instructions to be represented in the language 
Oberon-0? We suggest the concept of the rider. Suppose that a rider r and a buffer B are declared as 

VAR B: ARRAY N OF INTEGER; 
 r: RIDER ON B; 

and that riders are allocated in registers. Then let the following operators be defined on riders: 

SET(r, B, i) Let rider r point at B[i] 

r^ designates the element poined at by r. After access or assignment r is advanced to 
the next element of the buffer. 

Write an appropriate module with a buffer and procedures for fetching and storing elements. Investigate 
the advantages of this concept, and also its problems. Implement it by additions to the compiler. 

14.5. Our RISC (see Ch. 9) is said to be byte-oriented. But data are always moved to and from memory in 
groups of 4 bytes, called words. Word addresses are always multiples of 4. The least two bits of 
addresses are ignored. 

Let us make use of byte addressing by extending the concept of riders (see 14.4) to buffers of bytes 
(characters). We extend the RISC’s instruction set by the two instructions PSHB and POPB. They use a 
register as a 4-byte buffer, and transfer a word from of to memoey only after every fourth access. The 
pop instruction is defined as follows: 

POPB: rotate R[a] by 8 bits to the right; 
 IF R[b] MOD 4 = 0 THEN R[a] := M[R.b DIV 4] END ; 
 R[b] := R[b] + 1 

The states of R[a] and R[b] before and after every POPB instruction are shown below. After each 
instruction, the next byte is available in the least byte of register R[a]: 

R[a] R[b] POPB R[a] R[b] 

 0 load word DCBA 1 
DCBA 1 rotate ADCB 2 
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ADCB 2 rotate BADC 3 
BADC 3 rotate CBAD 0 
CBAD 0 load word . . . 1 

Similarly, the push instruction is defined as follows: 

PSHB: rotate R[a] by 8 bits to the right; 
 IF R[b] MOD 4 = 3 THEN M[R.b DIV 4] := R[a] END ; 
 R[b] := R[b] + 1 

Before every push instruction, the next byte to be stored is placed in the least byte of the buffer register 
R[a]. The states of R[a] and R[b] before and after every POPB instruction are shown below: 

R[a] R[b] PSHB R[a] R[b] 

.  .  .  A 0 rotate A . . . 1 
A . .  B 1 rotate BA . . 2 
BA . C 2 rotate CBA . 3 
CBAD 3 store rotated word DCBA 0 

Define the byte rider construct in the language Oberon-0 and implement it by extending the compiler. 
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15. Modules and Separate Compilation 

15.1. The principle of information hiding 
Algol 60 introduced the principles of textual locality of identifiers and that of limited lifetime of the 
identified objects during execution. The range of visibility of an identifier in the text is called scope 
(Naur, 1960), and it extends over the block in which the identifier is declared. According to the syntax, 
blocks may be nested, with the consequence that the rules about visibility and scopes must be refined. 
Algol 60 postulates that identifiers declared in a block B are visible within B and within all blocks 
contained in B. But they are invisible in the environment of B. 

From this rule, the implementer concludes that storage must be allocated to a variable x local to B as 
soon as control enters B, and that storage may be released as soon as control leaves B. Not only is x 
invisible outside B, but x ceases to exist when control is outside B. This implies the significant advantage 
that storage need not remain allocated to all variables of a program. 

In some cases, however, the continued existence of a variable during a period of invisiblity is highly 
desirable. Variable x then seems to reappear with its previous value as soon as control reenters block B. 
This special case was covered in Algol 60 by the feature of own variables. But this solution was soon 
discovered to be quite unsatisfactory, in particular in connection with recursive procedures. 

An elegant and highly useful solution to the own-problem was discovered around 1972 with the structure 
of the module. It was adopted in the languages Modula (Wirth, 1977) and Mesa (Mitchell, Maybury and 
Sweet, 1978), and later under the name package in Ada. Syntactically, a module resembles a procedure 
and consists of local declarations followed by statements. In contrast to a procedure, however, a module 
is not called, but its statements are executed once only, namely when the module is loaded. The locally 
declared objects are static and remain in existence as long as the module remains loaded. The statements 
in the module body merely serve to initialize the module's variables. These variables are invisible outside 
the module; effectively they are hidden. D. L. Parnas has coined the term information hiding, and it has 
become an important notion in software construction. Oberon features the possibility of specifying 
selected identifiers declared in modules as visible in the module's environment. These identifiers are then 
said to be exported. 

The own variable x declared within the Algol procedure P now will be declared, like P itself, local to a 
module M. P is exported, but not x. In the environment of M the details of the implementation of P as 
well as the variable x are hidden, but x retains its existence and its value between calls of P. 

The desire to hide certain objects and details is particularly justified if a system consist of various parts 
whose tasks are relatively well separated, and if the parts themselves are of a certain complexity. This is 
typically the case in an organizational unit which manages a data structure. Then the data structure is 
hidden within a module, and it is accessible only via exported procedures. The programmer of this 
module postulates certain invariants, such as consistency conditions, which govern the data structure. 
These invariants can be guaranteed to hold, because they cannot be violated by parts of the system 
outside the module. As a consequence, the programmer's responsibility is effectively limited to the 
procedures within the module. This encapsulation of details solely responsible for the specified invariants 
is the true purpose of information hiding and of the module concept. 

Typical examples of modules and information hiding are the file system hiding the structure of files and 
their dictionary, the scanner of a compiler hiding the source text and its lexicographic structure, or the 
code generator of a compiler hiding the generated code and the structure of the target architecture. 

15.2. Separate compilation 
It is tempting to postulate that modules be nestable like procedures. This facility is offered for example 
by the language Modula-2. In practice, however, this flexibility has hardly been fruitful. A flat module 
structure usually suffices. Hence, we consider all modules as being global, and their environment as the 
universe. 
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Much more relevant than their nestability is the possibility of developing and compiling modules 
separately. The latter is clearly feasible only if the modules are global, that is, not nested. The reason for 
this demand is simply the fact that software is never planned, implemented and tested in straight 
sequence, but that it is developed in steps, each step incorporating some additions or adaptations. 
Software is not "written", but grows. The module concept is of fundamental importance in this 
connection, because it allows development of individual modules separately under the assumption of 
constant interfaces of their imports. The set of exported objects effectively constitutes a module's 
interface with its partners. If an interface remains unchanged, a module's implementation can be 
improved (and corrected) without needing to adapt and recompile the module's clients. This is the real 
justification for separate compilation. 

The advantage of this concept becomes particularly relevant if software is developed by teams. Once 
agreement is reached about the partitioning of a system into modules and about their interfaces, the team 
members can proceed independently in implementing the module assigned to them. Even if in practice it 
turns out that later changes in the specification of interfaces are avoidable only rarely, the simplification 
of teamwork through the concept of separate compilation of modules can hardly be overestimated. The 
successful development of complex systems crucially depends on the concept of modules and their 
separate compilation. 

At this point, the reader may think that all this is not new, that the independent programming of modules 
and their binding by the program loader, as symbolized in Figure 15.1, has been in common use since the 
era of assemblers and the first Fortran compilers. 

 
Figure 15.1. Independent compilation of modules A and B. 

However, this ignores the fact that higher programming languages offer significantly increased protection 
against mistakes and inconsistencies through their static type concept. This inestimable - but all too often 
underestimated gain - is swept aside if type consistency checks are guaranteed only within modules, but 
not across module boundaries. This implies that type information about all imported objects must be 
available whenever a module is compiled. In contrast to independent compilation (Figure 15.1), where 
this information is not available, compilation as shown in Figure 15.2 with type consistency checks 
across module boundaries is called separate compilation. 

Information about the imported objects is essentially an excerpt of the symbol table as presented in 
Chapter 8. This excerpt of the symbol table, transformed into a sequential form, is called a symbol file. 
Compilation of a module A which imports (objects from) modules B1 ... Bn now requires, in addition to 
the source text of A, the symbol files of B1 ... Bn. And in addition to the object code (A.obj) it also 
generates a symbol file (A.sym). 

 
Figure 15.2. Separate compilation of modules A and B. 
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15.3. Implementation of symbol files 
From the foregoing considerations we may first conclude that compilation of a module's import list 
causes a symbol file to be read for each module identifier in the list. The symbol table of the compiled 
module is initialized by the imported symbol files. Second, it follows that at the end of compilation the 
new symbol table is traversed, and a symbol file is output with an entry corresponding to every symbol 
table element marked for export. Figure 15.3 shows as an example the relevant excerpt of the symbol 
table during compilation of a module A importing B. Within B, T and f are marked with an asterisk for 
export. 

 
Figure 15.3. Symbol table of A with imports from B. 

Let us first consider the generation of the symbol file M.sym of a module M. At first sight, the task 
merely consists of traversing the table and emitting an entry corresponding to every marked element in 
an appropriately sequentialized form. The symbol table is essentially a list of objects with pointers to 
type structures which are trees. In this case the sequentialization of structures using a characteristic prefix 
for every element is perhaps the most appropriate technique. It is illustrated by an example in Figure 
15.4. 

VAR x: ARRAY 10 OF INTEGER; 
 b: ARRAY 8 OF ARRAY 20 OF REAL 

 
Figure 15.4. Sequentialized form of a symbol table with two arrays. 
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A problem arises because every object contains at least a pointer referring to its type. Writing pointer 
values into a file is problematic, to say the least. Our solution consists in writing the type description into 
the file the first time it is encountered when scanning the symbol table. Thereby the type entry is marked 
and obtains a unique reference number. The number is stored in an additional record field of the type 
ObjectDesc. If the type is referenced again later, the reference number is output instead of the structure. 

This technique not only avoids the repeated writing of the same type descriptions, but also solves the 
problem of recursive references, as shown in Figure 15.5. 

TYPE P = POINTER TO R; 
 R = RECORD x, y: INTEGER; next: P END 

 
Figure 15.5. Cyclic reference of type node. 

Positive values are used for reference numbers. As an indication that the reference number is used for the 
first time, and that it is therefore immediately followed by the type description, the number is given a 
negative sign. While reading a symbol file, a type table T is constructed with references to the respective 
type structures. If a positive reference number r is read, T[r] is the needed pointer; if r is negative, the 
subsequent type data is read, and the pointer referring to the newly constructed descriptor is assigned to 
T[-r]. 

 
Figure 15.6. Re_export of type A.T from module B. 

Type information can, in contrast to data about other objects, be imported and at the same time be re-
exported. Therefore it is necessary to specify the module from which the exported type stems. In order to 
make this possible, we use a so-called module anchor. In the heading of every symbol file there is a list 
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of anchor objects, one for each imported module which is re_exported, that is,. which contains a type that 
is referenced by an exported object. Figure 15.6 illustrates such a situation; module C imports modules A 
and B, whereby a variable x is imported from B whose type stems from A. The type compatibility check 
for an assignment like y := x rests on the assumption that the type pointers of x and y both refer to the 
same type descriptor. If they do not, an error is indicated. 

Hence we conclude that upon compilation of a module M, not only the symbol tables of the explicitly 
imported modules must be present, but also those of modules from which types are referenced either 
directly or indirectly. This is a cause for concern, because the compilation of any module might 
necessitate the reading of symbol files of entire module hierarchies. It might even reach down to the 
deepest level of an operating environment, from where neither variables nor procedures are imported, but 
perhaps only a single type. The result would not only be the superfluous loading of large amounts of 
data, but also a waste of much memory space. It turns out, that although our concern is justified, the 
consequences are much less dramatic than might be expected (Franz, 1993). The reason is that most 
symbol tables requested are present already for other reasons. As a consequence, the additional effort 
remains small. Nevertheless it is worth pondering over the possibility of avoiding the extra effort. Indeed, 
the first compilers for Modula and Oberon have adopted the following technique. 

Let a module M import types from modules M0, M1, and so on, either directly or indirectly. The solution 
consists of including in the symbol file of M complete descriptions of the imported types, thereby 
avoiding references to the secondary modules M0, M1, and so on. However, this fairly obvious solution 
causes complication. In the example illustrated by Figure 15.6,  the symbol file of B evidently contains a 
complete description of type T. The consistency check for the assignment y := B.x, in order to be highly 
efficient, merely compares two type pointers. The configuration shown on the right of Figure 15.6 must 
therefore be present after loading. This implies that in symbol files re-exported types not only specify 
their home module, but that when loading a symbol file a test must verify whether or not the read type is 
already present. This may be the case because the symbol file of the module defining the type has already 
been loaded, or because the type has already been read when loading other symbol files. 

At this point we also mention another, small complication in connection with types that arises because 
types may appear under different names (aliases). Although use of aliases is rare, the language definition 
(unfortunately) allows it. They are moderately meaningful only if the synonyms stem from different 
modules, as shown in Figure 15.7. 

 

 
Figure 15.7. Type with aliases. 

When loading the symbol file of B it is recognized that B.T1 and A.T0, both pointing to a type object, 
must actually point to the same object descriptor. In order to determine which of the two descriptors 
should be discarded and which one retained, type nodes (type Structure) are supplied with a back-pointer 
to the original type object (type Object), here to T0. 
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15.4. Addressing external objects 
The principal advantage of separate compilation is that changes in a module M do not invalidate clients 
of M, if the interface of M remains unaffected. We recall that the interface consists of the entire set of 
exported declarations. Changes which do not affect the interface may occur, so to say, under cover, and 
without client programmers being aware of them. Such changes must not even require recompilation of 
the clients using new symbol files. For the sake of honesty, we hasten to add that exported procedures 
must in their semantics not have altered, because compilers could not detect such changes reliably. 
Hence, if we say that an interface remains unchanged, we explicitly refer to the declarations of types and 
variables, and to the signatures of procedures, and only implicitly to their semantics. 

If in a certain module non-exported procedures and variables are changed, added or deleted, their 
addresses necessarily also change, and as a consequence so do those of other, possibly exported variables 
and procedures. This leads to a change of the symbol table, and thereby also to an invalidation of client 
modules. But this obviously contradicts the requirements postulated for separate compilation. 

The solution to this dilemma lies in avoiding the inclusion of addresses in a symbol file. This has the 
consequence that addresses must be computed when loading and binding a module. Hence, in addition to 
its address (for module-internal use), an exported object is given a unique number. This number assumes 
the place of the address in the symbol file. Typically, these numbers are allocated strictly sequentially. 

As a consequence, when compiling a client, only module specific numbers are available, but no 
addresses. These numbers must, as mentioned before, be converted into absolute addresses upon loading. 
For this task, knowledge about the positions of such incomplete address fields must be available. Instead 
of supplying the object file with a list of all locations of such addresses, the elements of this fixup list are 
embedded in the instructions at the very places of the yet unknown addreses. This mirrors the technique 
used for the completion of addresses of forward jumps (see Chapter 11). If all such addresses to be 
completed are collected in a single fixup list, then this corresponds to the Figure 15.8 (a). Every element 
must be identified with a pair consisting of a module number (mno) and an entry number (eno). It is 
simpler to provide a separate list for every module. In the object file, not just a single fixup root, but one 
for each list is required. This corresponds to the Figure 15.8 (b). Part (c) shows the extreme solution 
where a separate fixup list is specified for every imported object. Which of the three presented solutions 
is adopted, depends on how much information can be put into the place of an absolute address, by which 
it is ultimately replaced. 

 
Figure 15.8. Three forms of fixup lists in object files. 
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15.5. Checking configuration consistency 
It may seem belated if we now pose the question: Why are symbol files introduced at all? Let us assume 
that a module M is to be compiled which imports M0 and M1. A rather straightforward solution would be 
to recompile M0 and M1 immediately preceding the compilation of M, and to unite the three symbol 
tables obtained. The compilations of M0 and M1 might easily be triggered by the compilation of M 
reading the import list. 

Although the repeated compilation of the same source text is a waste of time, this technique is used by 
various commercial compilers for (extended) Pascal and Modula. The serious shortcoming inherent in 
this method, however, is not so much the additional effort needed, but the lack of a guarantee for the 
consistency of the modules being bound. Let us assume that M is to be recompiled after some changes 
had been made in the source text. Then it is quite likely that after the original formulation of M and after 
its compilation, changes have also been made to M0 and M1. These changes may invalidate M. Perhaps 
even the source versions of M0 and M1 currently available to the programmer of client M no longer 
comply with the actual object files of M0 and M1. This fact, however, cannot be determined by a 
compilation of M, but it almost certainly leads to disaster when the inconsistent parts are bound and 
executed. 

Symbol files, however, do not permit changes like source files; they are encoded and not visible through 
a text editor. They can only be replaced as a whole. In order to establish consistency, every symbol file is 
provided with a unique key. Symbol files thus make it possible to make modules available without giving 
away the source text. A client may rely on the specified interface definition and, thanks to the key, the 
consistency of the definition with the present implementations is also guaranteed. Unless this guarantee is 
provided, the entire notion of modules and separate compilation is perhaps enticing, but hardly a useful 
tool. 

 
Figure 15.9. Inconsistency of module versions. 

As an example, Figure 15.9 shows on its left side the situation upon compilation of module B, and on the 
right side that upon compilation of module C. Between the two compilations, A was changed and 
recompiled. The symbol files of B and C therefore contain module anchors of A with differing keys, 
namely 8325 in B and 8912 in C. The compiler checks the keys, notices the difference, and issues an 
error message. If, however, module A is changed after the recompilation of C (with changed interface), 
then the inconsistency can and must be detected upon loading and binding the module configuration. For 
this purpose, the same keys are also included in the respective object files. Therefore it is possible to 
detect the inconsistency of the import of A in B and C before execution is attempted. This is absolutely 
essential. 

The key and the name are taken as the characteristic pair of every module, and this pair is contained in 
the heading of every symbol and object file. As already mentioned, the names of modules in the import 
list are also supplemented by their key. These considerations lead to the structure of symbol files as 
specified in Appendix A.3. 

Unique module keys can be generated by various algorithms. The simplest is perhaps the use of current 
time and date which, suitably encoded, yield the desired key. A drawback is that this method is not 
entirely reliable. Even if the resolution of the clock is one second, simultaneous compilations on different 
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computers may generate the same key. Somewhat more significant is the argument that two compilations 
of the same source text should always generate the same key; but they do not. Hence, if a change is made 
in a module which is later detected to be in error, recompilation of the original version nevertheless 
results in a new key which lets old clients appear as invalidated. 

A better method to generate a key is to use the symbol file itself as argument, like in the computation of a 
checksum. But this method is also not entirely safe, because different symbol files may result in the same 
key. But it features the advantage that every recompilation of the same text generates the same key. Keys 
computed in this way are called fingerprints. 

15.6. Exercises 
15.1. Incorporate separate compilation into your Oberon-0 compiler. The langauge is extended to include 
an import list (see Appendix A.2) and a marker in the exported identifier's declaration. Use the technique 
of symbol files and introduce the rule that exported variables may not be assigned values from outside, 
that is, in importing modules that are considered to be read-only variables. 

15.2. Implement a fingerprint facility for generating module keys. 



 100

16. Optimizations and the Frontend/Backend Structure 

16.1. General considerations 
If we analyse the code generated by the compiler developed in the preceding chapters, we can easily see 
that it is correct and fairly straightforward, but in many instances also improvable. The reason primarily 
lies in the directness of the chosen algorithm which translates language constructs independently of their 
context into fixed patterns of instruction sequences. It hardly perceives special cases and does not take 
advantage of them. The directness of this scheme leads to results that are only partially satisfactory as far 
as economy of storage and execution speed are concerned. This is not surprising, as source and target 
languages do not correspond in simple ways. In this connection we can observe the semantic gap 
between programming language on the one hand and instruction set and machine architecture on the 
other. 

In order to generate code which utilizes the available instructions and machine resources more 
effectively, more sophisticated translation schemes must be employed. They are called optimizations, and 
compilers using them are said to be optimizing compilers. It must be pointed out that this term, although 
in widespread use, basically is a euphemism. Nobody would be willing to claim that the code generated 
by them could be optimal in all cases, that is, in no way improvable. The so_called optimizations are 
nothing more than improvements. However, we shall comply with the common vocabulary and will also 
use the term optimization. 

It is fairly evident that the more sophisticated the algorithm, the better the code obtained. In general it can 
be claimed that the better the generated code and the faster its execution, the more complex, larger and 
slower will be the compiler. In some cases, compilers have been built which allow a choice of an 
optimization level: while a program is under development, a low, and after its completion a high, degree 
of optimization is selected for compilation. As an aside, note that optimization may be selected with 
different goals, such as towards faster execution or towards denser code. The two criteria usually require 
different code generation algorithms and are often contradictory, a clear indication that there is no such 
thing as a well-defined optimum. 

It is hardly surprising that certain measures for code improvement may yield considerable gains with 
modest effort, whereas others may require large increases in compiler complexity and size while yielding 
only moderate code improvements, simply because they apply in rare cases only. Indeed, there are 
tremendous differences in the ratio of effort to gain. Before the compiler designer decides to incorporate 
sophisticated optimization facilities, or before deciding to purchase a highly optimizing, slow and 
expensive compiler, it is worth while clarifying this ratio, and whether the promised improvements are 
truly needed. 

Furthermore, we must distinguish between optimizations whose effects could also be obtained by a more 
appropriate formulation of the source program, and those where this is impossible. The first kind of 
optimization mainly serves the untalented or sloppy programmer, but merely burdens all the other users 
through the increased size and decreased speed of the compiler. As an extreme example, consider the 
case of a compiler which eliminates a multiplication if one factor has the value 1. The situation is 
completely different for the computation of the address of an array element, where the index must be 
multiplied by the size of the elements. Here, the case of a size equal to 1 is frequent, and the 
multiplication cannot be eliminated by a clever trick in the source program. 

A further criterion in the classification of optimization facilities is whether or not they depend on a given 
target architecture. There are measures which can be explained solely in terms of the source language, 
independent of any target. Examples of target_independent optimizations are suggested by the following 
well known identities: 

x + 0  =  x 
x * 2  =  x + x 
b & TRUE  =  b 
b & ~b  =  FALSE 



 101

IF TRUE THEN A ELSE B END   =   A 
IF FALSE THEN A ELSE B END   =   B 

On the other hand, there are optimizations that are justified only through the properties of a given 
architecture. For example, computers exist which combine a multiplication and an addition, or an 
addition, a comparison and a conditional branch in a single instruction. A compiler must then recognize 
the code pattern which allows the use of such a special instruction. 

Lastly, we must also point out that the more optimizations with sizeable effects that can be incorporated 
in a compiler, the poorer its original version must have been. In this connection, the cumbersome 
structures of many commercial compilers, whose origin is difficult to fathom, lead to surprisingly poor 
initial performance, which makes optimizing features seem absolutely indispensible. 

16.2. Simple optimizations 
First, let us consider optimizations that are implementable with modest effort, and which therefore are 
practically mandatory. This category includes the cases which can be recognized by inspection of the 
immediate context. A prime example is the evaluation of expressions with constants. This is called 
constant folding and is already contained in the compiler presented. 

Another example is multiplication by a power of 2, which can be replaced by a simple, efficient shift 
instruction. Also, this case can be recognized without considering any context: 

IF (y.mode = Const) & (y.a # 0) THEN 
 n := y.a; k := 0; 
 WHILE ~ODD(n) DO n := n DIV 2; k := k+1 END ; 
 IF n = 1 THEN PutShift(x, k) ELSE PutOp(MUL, x, y) END 
ELSE ... 
END 

Division (of integers) is treated in the same way. If the divisor is 2k for some integer k, the dividend is 
merely shifted k bits to the right. For the modulo operator, the least significant k bits are simply masked 
out. 

16.3. Avoiding repeated evaluation 
Perhaps the best known case among the target independent optimizations is the elimination of common 
subexpressions. At first sight, this case may be classified among the elective optimizations, because the 
reevaluation of the same subexpression can be achieved by a simple change of the source program. For 
example, the assignments 

x := (a+b)/c; y := (a+b)/d 

can easily be replaced by three simpler assignments when using an auxiliary variable u: 

u := a+b; x := u/c; b := u/d 

Certainly, this is an optimization with respect to the number of arithmetic operations, but not with respect 
to the number of assignments or the clarity of the source text. Therefore the question remains open as to 
whether this change constitutes an improvement at all. 

More critical is the case where the improvement is impossible to achieve by a change of the source text, 
as is shown in the following example: 

a[i, j] := a[i, j] + b[i, j] 

Here, the same address computation is performed three times, and each time it involves at least one 
multiplication and one addition. The common subexpressions are implicit and not directly visible in the 
source. An optimization can be performed only by the compiler. 

Elimination of common expressions is only worth while if they are evaluated repeatedly. This may even 
be the case if the expression occurs only once in the source: 
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WHILE i > 0 DO z := x+y; i := i-1 END 

Since x and y remain unchanged during the repetition, the sum need be computed only once. The 
compiler must pull the assignment to z out of the loop. The technical term for this feat is loop invariant 
code motion. 

In all the latter cases code can only be improved by selective analysis of context. But this is precisely 
what increases the effort during compilation very significantly. The compiler presented for Oberon-0 
does not constitute a suitable basis for this kind of optimization. 

Related to the pulling out of constant expressions from loops is the technique of simplifying expressions 
by using the values computed in the previous repetition, that is, by considering recurrence relations. If, 
for example, the address of an array element is given by adr(a[i]) = k*i + a0, then adr(a[i+1]) = adr(a[i]) 
+ k. This case is particularly frequent and therefore relevant. For instance, the addresses of the indexed 
variables in the statement 

FOR i := 0 TO N-1 DO a[i] := b[i] * c[i] END 

can be computed by a simple addition of a constant to their previous values. This optimization leads to 
significant reductions in computation time. A test with the following example of a matrix multiplication 
showed surprising results: 

FOR i := 0 TO 99 DO 
 FOR j := 0 TO 99 DO 
  FOR k := 0 TO 99 DO a[i, j] := a[i, j] + b[i, k] * c[k, j] END 
 END 
END 

The use of registers instead of memory locations to hold index values and sums, and the elimination of 
index bound tests resulted in a speed increased by a factor of 1.5. The replacement of indexed addressing 
by linear progression of addresses as described above yielded a factor of 2.75. And the additional use of a 
combined multiplication and addition instruction to compute the scalar products increased the factor to 
3.90. 

Unfortunately, not even consideration of simple context information suffices in this case. A sophisticated 
control and data flow analysis is required, as well as detection of the fact that in each repetition an index 
is incremented monotonically by 1. 

16.4. Register allocation 
The dominant theme in the subject of optimization is the use and allocation of processor registers. In the 
Oberon-0 compiler presented registers are used exclusively to hold anonymous intermediate results 
during the evaluation of expressions. For this purpose, usually a few registers suffice. Modern 
processors, however, feature a significant number of registers with access times considerably shorter than 
that of main memory. Using them for intermediate results only would imply a poor utilization of the most 
valuable resources. A primary goal of good code optimization is the most effective use of registers in 
order to reduce the number of accesses to the relatively slow main memory. A good strategy of register 
usage yields more advantages than any other branch of optimization. 

A widespread technique is register allocation using graph colouring. For every value occurring in a 
computation, that is, for every expression the point of its generation and the point of its last use are 
determined. They delimit its range of relevance. Obviously, values of different expressions can be stored 
in the same register, if and only if their ranges do not overlap. The ranges are represented by the nodes of 
a graph, in which an edge between two nodes signifies that the two ranges overlap. The allocation of N 
available registers to the occurring values may then be understood as the colouring of the graph with N 
colours in such a way that neighbouring nodes always have different colours. This implies that values 
with overlapping ranges are always allocated to different registers. 

Furthermore, selected, scalar, local variables are no longer allocated in memory at all, but rather in 
dedicated registers. In order to approach an optimal register utilization, sophisticated algorithms are 
employed to determine which variables are accessed most frequently. Evidently, the necessary 



 103

bookkeeping about variable accesses grows, and thereby compilation speed suffers. Also, care has to be 
taken that register values are saved in memory before procedure calls and are restored after the procedure 
return. The lurking danger is that the effort necessary for this task surpasses the savings obtained. In 
many compilers, local variables are allocated to registers only in procedures which do not contain any 
calls themselves (leaf procedures), and which therefore are also called most frequently, as they constitute 
the leaves in the tree representing the procedure call hierarchy. 

A detailed treatment of all these optimization problems is beyond the scope of an introductory text about 
compiler construction. The above outline shall therefore suffice. In any case such techniques make it 
clear that for a nearly optimal code generation significantly more information about context must be 
considered than is the case in our relatively simple Oberon-0 compiler. Its structure is not well-suited to 
achieving a high degree of optimization. But it serves excellently as a fast compiler producing quite 
acceptable, although not optimal code, as is appropriate in the development phase of a system, 
particularly for educational purposes. Section 16.5 indicates another, somewhat more complex compiler 
structure which is better suited for the incorporation of optimization algorithms. 

16.5. The frontend/backend compiler structure 
The most significant characteristic of the compiler developed in Chapters 7 _ 12 is that the source text is 
read exactly once. Code is thereby generated on the fly. At each point, information about the operands is 
restricted to the items denoting the operand and to the symbol table representing declarations. The so-
called frontend/backend compiler structure, which was briefly mentioned in Chapter 1, deviates 
decisively in this respect. The frontend part also reads the source text once only, but instead of generating 
code it builds a data structure representing the program in a form suitably organized for further 
processing. All information contained in statements is mapped into this data structure. It is called a 
syntax tree, because it also mirrors the syntactic structure of the text. Somewhat oversimplifying the 
situation, we may say that the frontend compiles declarations into the symbol table and statements into 
the syntax tree. These two data structures constitute the interface to the backend part whose task is code 
generation. The syntax tree allows fast access to practically all parts of a program, and it represents the 
program in a preprocessed form. The resulting compilation process is shown in Figure 16.1. 

 
Figure 16.1. Compiler consisting of front end and back end 

We pointed out one significant advantage of this structure in Chapter 1: the partitioning of a compiler in 
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Exactly as in a source program where statements refer to declarations, so does the syntax tree refer to 
entries in the symbol table. This gives rise to the understandable desire to declare the elements of the 
symbol table (objects) in such a fashion that it is possible to refer to them from the symbol table itself as 
well as from the syntax tree. As basic type we introduce the type Object which may assume different 
forms as appropriate to represent constants, variables, types, and procedures. Only the attribute type is 
common to all. Here and subsequently we make use of Oberon's feature called type extension (Reiser and 
Wirth, 1992). 

Object = POINTER TO ObjDesc; 
ObjDesc = RECORD type: Type END ; 
ConstDesc = RECORD (ObjDesc) value: LONGINT END ; 
VarDesc = RECORD (ObjDesc) adr, level: LONGINT END ; 

The symbol table consists of lists of elements, one for each scope (see Section 8.2). The elements consist 
of the name (identifier) and a reference to the identified object. 

Ident = POINTER TO IdentDesc; 
IdentDesc = RECORD name: ARRAY 32 OF CHAR; 
     obj: Object; next: Ident 
  END ; 
Scope = POINTER TO ScopeDesc; 
ScopeDesc = RECORD first: Ident; dsc: Scope END ; 

The syntax tree is best conceived as a binary tree. We call its elements Nodes. If a syntactic construct has 
the form of a list, it is represented as a degenerate tree in which the last element has an empty branch. 

Node = POINTER TO NodeDesc; 
NodeDesc = RECORD (Object) 
  op: INTEGER; 
  left, right: Object 
 END 

Let us consider the following brief excerpt of a program text as an example: 

VAR x, y, z: INTEGER; 
BEGIN z := x + y - 5; ... 

The front end parses the source text and builds the symbol table and the syntax tree as shown in Figure 
16.2. Representations of data types are omitted. 

 
Figure 16.2. Symbol table (below) and syntax tree (above). 
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in Figures 16.3 - 16.5. 
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Figure 16.3. Procedure call. 

 
Figure 16.4. IF and WHILE statements. 

 
Figure 16.5. Statement sequence. 

To conclude, the following examples demonstrate how the described data structures are generated. The 
reader should compare these compiler excerpts with the corresponding procedures of the Oberon-0 
compiler listed in Appendix C. All subsequent algorithms make use of the auxiliary procedure New, 
which generates a new node. 

PROCEDURE New(op: INTEGER; x, y: Object): Item; 
 VAR z: Item; 
BEGIN New(z); z.op := op; z.left := x; z.right := y; RETURN z 
END New; 

PROCEDURE factor(): Object; 
 VAR x: Object; c: Constant; 
BEGIN 
 IF sym = ident THEN x := This(name); Get(sym); x := selector(x) 
 ELSIF sym = number THEN NEW(c); c.value := number; Get(sym); x := c 
 ELSIF sym = lparen THEN Get(sym); x := expression(); 
  IF sym = rparen THEN Get(sym) ELSE Mark(22) END 
 ELSIF sym = not THEN Get(sym); x := New(not, NIL, factor()) 
 ELSE ... 
 END ; 
 RETURN x 
END factor; 
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PROCEDURE term(): Object; 
 VAR op: INTEGER; x: Object; 
BEGIN x := factor(); 
 WHILE (sym >= times) & (sym <= and) DO 
  op := sym; Get(sym); x := New(op, x, factor()) 
 END ; 
 RETURN x 
END term; 

PROCEDURE statement(): Object; 
 VAR x: Object; 
BEGIN 
 IF sym = ident THEN 
  x := This(name); Get(sym); x := selector(x); 
  IF sym = becomes THEN Get(sym); x := New(becomes, x, expression()) 
  ELSIF ... 
  END 
 ELSIF sym = while THEN 
  Get(sym); x := expression(); 
  IF sym = do THEN Get(sym) ELSE Mark(25) END ; 
  x := New(while, x, statseq()); 
  IF sym = end THEN Get(sym) ELSE Mark(20) END 
 ELSIF ... 
 END ; 
 RETURN x 
END statement 

These excerpts clearly show that the structure of the front end is predetermined by the parser. The 
program has even become slightly simpler. But it must be kept in mind that type checking has been 
omitted in the above procedures for the sake of brevity. However, as a target-independent task, type 
checking clearly belongs to the front end. 

16.6. Exercises 
16.1. Improve code generation of the Oberon-0 compiler such that values and addresses, once loaded into 
a register, may possibly be reused without reloading. For the example 

z := (x - y) * (x + y); y := x 

the presented compiler generates the instruction sequence 

LDW 1, 0, x 
LDW 2, 0, y 
SUB 1, 1, 2 
LDW 2, 0, x 
LDW 3, 0, y 
ADD 2, 2, 3 
MUL 1, 1, 2 
STW 1, 0, z 
LDW 1, 0, x 
STW 1, 0, y 

The improved version is to generate 

LDW 1, 0, x 
LDW 2, 0, y 
SUB 3, 1, 2 
ADD 4, 1, 2 
MUL 5, 3, 4 
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STW 5, 0, z 
STW 1, 0, y 

Measure the gain on hand of a reasonably large number of test cases. 

16.2. Which additional instructions of the RISC architecture of Chapter 9 would be desirable to facilitate 
the implementations of the preceding exercises, and to generate shorter and more efficient code? 

16.3. Optimize the Oberon-0 compiler in such a way that scalar variables are allocated in registers 
instead of memory if possible. Measure the achieved gain and compare it with the one obtained in 
Exercise 16.1. How are variables treated as VAR parameters? 

16.4. Construct a module OSGx which replaces OSG (see listing in Appendix C) and generates code for 
a CISC architecture x. The given interface of OSG should be retained as far as possible in order that 
modules OSS and OSP remain unchanged. 
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Appendix A 
Syntax 
A.1  Oberon-0 

ident  =  letter {letter | digit}. 
integer  =  digit {digit}. 

selector  =  {"." ident | "[" expression "]"}. 
factor  =  ident selector | integer | "(" expression ")" | "~" factor. 
term  =  factor {("*" | "DIV" | "MOD" | "&") factor}. 
SimpleExpression  =  ["+"|"-"] term {("+"|"-" | "OR") term}. 
expression  =  SimpleExpression 
 [("=" | "#" | "<" | "<=" | ">" | ">=") SimpleExpression]. 
assignment  =  ident selector ":=" expression. 
ActualParameters  =  "(" [expression {"," expression}] ")" . 
ProcedureCall  =  ident [ActualParameters]. 
IfStatement  =  "IF" expression "THEN" StatementSequence 
 {"ELSIF" expression "THEN" StatementSequence} 
 ["ELSE" StatementSequence] "END". 
WhileStatement  =  "WHILE" expression "DO" StatementSequence "END". 
statement  =  [assignment | ProcedureCall | IfStatement | WhileStatement]. 
StatementSequence  =  statement {";" statement}. 
 IdentList  =  ident {"," ident}. 
ArrayType  =  "ARRAY" expression "OF" type. 
FieldList  =  [IdentList ":" type]. 
RecordType  =  "RECORD" FieldList {";" FieldList} "END". 
type  =  ident | ArrayType | RecordType. 
FPSection  =  ["VAR"] IdentList ":" type. 
FormalParameters  =  "(" [FPSection {";" FPSection}] ")". 
ProcedureHeading  =  "PROCEDURE" ident [FormalParameters]. 
ProcedureBody  =  declarations ["BEGIN" StatementSequence] "END". 
ProcedureDeclaration  =  ProcedureHeading ";" ProcedureBody ident. 
declarations  =  ["CONST" {ident "=" expression ";"}] 
 ["TYPE" {ident "=" type ";"}] 
 ["VAR" {IdentList ":" type ";"}] 
 {ProcedureDeclaration ";"}. 
module  =  "MODULE" ident ";" declarations 
 ["BEGIN" StatementSequence] "END" ident "." . 

A.2  Oberon 
ident  =  letter {letter | digit}. 
number  =  integer | real. 
integer  =  digit {digit} | digit {hexDigit} "H". 
real  =  digit {digit} "." {digit} [ScaleFactor]. 
ScaleFactor  =  ("E" | "D") ["+" | "-"] digit {digit}. 
hexDigit  =  digit | "A" | "B" | "C" | "D" | "E" | "F". 
digit  =  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9". 
CharConstant = '"' character '"' | digit {hexDigit} "X". 
string  =  '"' {character} '"' . 
 identdef = ident ["*"]. 
qualident = [ident "."] ident. 
ConstantDeclaration  =  identdef "=" ConstExpression. 
ConstExpression  =  expression. 
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TypeDeclaration  =  identdef "=" type. 
type  =  qualident | ArrayType | RecordType | PointerType | ProcedureType. 
ArrayType  =  ARRAY length {"," length} OF type. 
length  =  ConstExpression. 
RecordType  =  RECORD ["(" BaseType ")"] FieldListSequence END. 
BaseType  =  qualident. 
FieldListSequence  =  FieldList {";" FieldList}. 
FieldList  =  [IdentList ":" type]. 
IdentList  =  identdef {"," identdef}. 
PointerType  =  POINTER TO type. 
ProcedureType = PROCEDURE [FormalParameters]. 
VariableDeclaration  =  IdentList ":" type. 
 designator  =  qualident {"." ident | "[" ExpList "]" | "(" qualident ")" | "^" }. 
ExpList  =  expression {"," expression}. 
expression  =  SimpleExpression [relation SimpleExpression]. 
relation  =  "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS. 
SimpleExpression  =  ["+"|"-"] term {AddOperator term}. 
AddOperator  =  "+" | "-" | OR . 
term  =  factor {MulOperator factor}. 
MulOperator  =  "*" | "/" | DIV | MOD | "&" . 
factor  =  number | CharConstant | string | NIL | set | 
 designator [ActualParameters] | "(" expression ")" | "~" factor. 
set  =  "{" [element {"," element}] "}". 
element  =  expression [".." expression]. 
ActualParameters  =  "(" [ExpList] ")" . 
statement  =  [assignment | ProcedureCall | 
 IfStatement | CaseStatement | WhileStatement | RepeatStatement | 
 LoopStatement | ForStatement | WithStatement | EXIT | RETURN [expression] ]. 
assignment  =  designator ":=" expression. 
ProcedureCall  =  designator [ActualParameters]. 
StatementSequence  =  statement {";" statement}. 
IfStatement  =  IF expression THEN StatementSequence 
 {ELSIF expression THEN StatementSequence} 
 [ELSE StatementSequence] END. 
CaseStatement  =  CASE expression OF case {"|" case} 
 [ELSE StatementSequence] END. 
case  =  [CaseLabelList ":" StatementSequence]. 
CaseLabelList  =  CaseLabels {"," CaseLabels}. 
CaseLabels  =  ConstExpression [".." ConstExpression]. 
WhileStatement  =  WHILE expression DO StatementSequence END. 
RepeatStatement  =  REPEAT StatementSequence UNTIL expression. 
LoopStatement  =  LOOP StatementSequence END. 
ForStatement  =  FOR ident ":=" expression TO expression [BY ConstExpression] DO 
StatementSequence END . 
WithStatement  =  WITH qualident ":" qualident DO StatementSequence END . 

ProcedureDeclaration  =  ProcedureHeading ";" ProcedureBody ident. 
ProcedureHeading  =  PROCEDURE ["*"] identdef [FormalParameters]. 
ProcedureBody  =  DeclarationSequence [BEGIN StatementSequence] END. 
ForwardDeclaration  =  PROCEDURE "^" ident ["*"] [FormalParameters]. 
DeclarationSequence  =  {CONST {ConstantDeclaration ";"} | 
    TYPE {TypeDeclaration ";"} | VAR {VariableDeclaration ";"}} 
    {ProcedureDeclaration ";" | ForwardDeclaration ";"}. 
FormalParameters  =  "(" [FPSection {";" FPSection}] ")" [":" qualident]. 
FPSection  =  [VAR] ident {"," ident} ":" FormalType. 
FormalType  =  {ARRAY OF} (qualident | ProcedureType). 
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ImportList  =  IMPORT import {"," import} ";" . 
import  =  ident [":=" ident]. 
module  =  MODULE ident ";"  [ImportList] DeclarationSequence 
    [BEGIN StatementSequence] END ident "." . 

A.3  Symbol files 
SymFile  =  BEGIN key {name key} imported modules 
 [ CONST {type name value} ] [ VAR {type name} ] constants and variables 
 [ PROC {type name {[VAR] type name} END} ] procedures, parameters 
 [ ALIAS {type name} ] [ NEWTYP {type} ] END . renamed procedures 
type  =  basicType | [Module] OldType | NewType. 
 basicType  =  BOOL | CHAR | INTEGER | REAL | ... 
NewType  =  ARRAY type name intval | DYNARRAY type name | POINTER type name 
 | RECORD type name {type name} END record types and fields 
 | PROCTYP type name {[VAR] type name END . procedure types and parameters 

Words consisting of upper-case letters denote terminal symbols. In the symbol file, they are encoded as 
integers. OldType and Module denote type and module numbers, that is, they are references to previously 
defined objects. 

Appendix B 
The ASCII Character Set 
 0 1 2 3 4 5 6 7 

 0 nul dle  0 @ P ` p 
 1 soh dc1 ! 1 A Q a q 
 2 stx dc2 " 2 B R b r 
 3 etx dc3 # 3 C S c s 
 4 eot dc4 $ 4 D T d t 
 5 enq nak % 5 E U e u 
 6 ack syn & 6 F V f v 
 7 bel etb ' 7 G W g w 
 8 bs can ( 8 H X h x 
 9 ht em ) 9 I Y i y 
 A lf sub * : J Z j z 
 B vt esc + ; K [ k { 
 C ff fs , < L \ l | 
 D cr gs - = M ] m } 
 E so rs . > N ^ n ~ 
 F si us / ? O _ o del 

Appendix C 

The Oberon-0 Compiler 
The compiler is split into three modules, namely the scanner OSS, the parser OSP, and the code 
generator OSG. Only OSG references the target architecture (see Chapter 9) by importing module RISC, 
which is an interpreter. With the aid of this interpreter, compiled code can be executed directly after 
compilation. 

In Oberon, global, parameterless procedures are said to be commands, and they can be activated by the 
user via the Oberon operating system. The command Compile in the principal module OSP initiates the 
parsing process by a call of procedure Module which corresponds to the start symbol of the syntax. The 
text to be compiled is given as parameter. According to the conventions of the Oberon system, it can be 
specified in several ways: 
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OSP.Compile name the source text is the file name 
OSP.Compile * the source text is the text in the marked viewer 
OSP.Compile @ the source text starts with the latest selection 

Successful compilation is immediately followed by the loading of the compiled code and execution of the 
compiled module's body. Here, loading is emulated by copying the instructions from array code in OSG 
into array M in RISC. The relative addresses of global variables are made absolute by adding a base 
value as is customary in program loaders. The compiler delivers the required data in the form of the table 
ref containing the addresses of all instructions to be fixed up. 

Commands are registered by the compiler in tables comname and comadr. Procedure OSP.Exec name 
searches the name in the table comname, and it supplies the corresponding address from table comadr to 
the interpreter as the starting point for execution. 

If a compiled procedure contains calls of Read, the numbers textually following the words OSP.Exec 
name are read and appear as inputs to the interpreter. For example, the procedure 

PROCEDURE Add; 
 VAR x, y, z: INTEGER; 
BEGIN Read(x); Read(y); Read(z); Write(x+y+z); WriteLn 
END Add 

activated by the Oberon command OSP.Exec Add 3 5 7 yields the output 15. 

C.1. The scanner 
MODULE OSS; (* NW 19.9.93 / 17.11.94*) 
 IMPORT Oberon, Texts; 

 CONST IdLen* = 16; KW = 34; 
  (*symbols*) null = 0; 
  times* = 1; div* = 3; mod* = 4; and* = 5; plus* = 6; minus* = 7; or* = 8; 
  eql* = 9; neq* = 10; lss* = 11; geq* = 12; leq* = 13; gtr* = 14; 
  period* = 18; comma* = 19; colon* = 20; rparen* = 22; rbrak* = 23;  
  of* = 25; then* = 26; do* = 27;  
  lparen* = 29; lbrak* = 30; not* = 32; becomes* = 33; number* = 34; ident* = 37;  
  semicolon* = 38; end* = 40; else* = 41; elsif* = 42; 
  if* = 44; while* = 46; 
  array* = 54; record* = 55; 
  const* = 57; type* = 58; var* = 59; procedure* = 60; begin* = 61; module* = 63; eof = 64; 

 TYPE Ident* = ARRAY IdLen OF CHAR; 

 VAR val*: LONGINT; 
  id*: Ident; 
  error*: BOOLEAN; 
  ch: CHAR; 
  nkw: INTEGER; 
  errpos: LONGINT; 
  R: Texts.Reader; 
  W: Texts.Writer; 
  keyTab  : ARRAY KW OF 
    RECORD sym: INTEGER; id: ARRAY 12 OF CHAR END; 

 PROCEDURE Mark*(msg: ARRAY OF CHAR); 
  VAR p: LONGINT; 
 BEGIN p := Texts.Pos(R) - 1; 
  IF p > errpos THEN 
   Texts.WriteString(W, "  pos "); Texts.WriteInt(W, p, 1); 
   Texts.Write(W, " "); Texts.WriteString(W, msg); 
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   Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf) 
  END ; 
  errpos := p; error := TRUE 
 END Mark; 

 PROCEDURE Get*(VAR sym: INTEGER); 

  PROCEDURE Ident; 
   VAR i, k: INTEGER; 
  BEGIN i := 0; 
   REPEAT 
    IF i < IdLen THEN id[i] := ch; INC(i) END ; 
    Texts.Read(R, ch) 
   UNTIL (ch < "0") OR (ch > "9") & (CAP(ch) < "A") OR (CAP(ch) > "Z"); 
   id[i] := 0X; k := 0; 
   WHILE (k < nkw) & (id # keyTab[k].id) DO INC(k) END ; 
   IF k < nkw THEN sym := keyTab[k].sym ELSE sym := ident END 
  END Ident; 

  PROCEDURE Number; 
  BEGIN val := 0; sym := number; 
   REPEAT 
    IF val <= (MAX(LONGINT) - ORD(ch) + ORD("0")) DIV 10 THEN 
     val := 10 * val + (ORD(ch) - ORD("0")) 
    ELSE Mark("number too large"); val := 0 
    END ; 
    Texts.Read(R, ch) 
   UNTIL (ch < "0") OR (ch > "9") 
  END Number; 

  PROCEDURE comment; 
  BEGIN Texts.Read(R, ch); 
   LOOP 
    LOOP 
     WHILE ch = "(" DO Texts.Read(R, ch); 
      IF ch = "*" THEN comment END 
     END ; 
     IF ch = "*" THEN Texts.Read(R, ch); EXIT END ; 
     IF R.eot THEN EXIT END ; 
     Texts.Read(R, ch) 
    END ; 
    IF ch = ")" THEN Texts.Read(R, ch); EXIT END ; 
    IF R.eot THEN Mark("comment not terminated"); EXIT END 
   END 
  END comment; 

 BEGIN 
  WHILE ~R.eot & (ch <= " ") DO Texts.Read(R, ch) END; 
  IF R.eot THEN sym := eof 
  ELSE  
   CASE ch OF 
     "&": Texts.Read(R, ch); sym := and 
   |  "*": Texts.Read(R, ch); sym := times 
   |  "+": Texts.Read(R, ch); sym := plus 
   |  "-": Texts.Read(R, ch); sym := minus 
   |  "=": Texts.Read(R, ch); sym := eql 
   |  "#": Texts.Read(R, ch); sym := neq 
   |  "<": Texts.Read(R, ch); 
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     IF ch = "=" THEN Texts.Read(R, ch); sym := leq ELSE sym := lss END 
   |  ">": Texts.Read(R, ch); 
     IF ch = "=" THEN Texts.Read(R, ch); sym := geq ELSE sym := gtr END 
   |  ";": Texts.Read(R, ch); sym := semicolon 
   |  ",": Texts.Read(R, ch); sym := comma 
   |  ":": Texts.Read(R, ch); 
     IF ch = "=" THEN Texts.Read(R, ch); sym := becomes ELSE sym := colon END 
   |  ".": Texts.Read(R, ch); sym := period 
   |  "(": Texts.Read(R, ch); 
     IF ch = "*" THEN comment; Get(sym) ELSE sym := lparen END 
   |  ")": Texts.Read(R, ch); sym := rparen 
   |  "[": Texts.Read(R, ch); sym := lbrak 
   |  "]": Texts.Read(R, ch); sym := rbrak 
   |  "0".."9": Number; 
   |  "A" .. "Z", "a".."z": Ident 
   |  "~": Texts.Read(R, ch); sym := not 
   ELSE Texts.Read(R, ch); sym := null 
   END 
  END 
 END Get; 

 PROCEDURE Init*(T: Texts.Text; pos: LONGINT); 
 BEGIN error := FALSE; errpos := pos; Texts.OpenReader(R, T, pos); Texts.Read(R, ch) 
 END Init; 

 PROCEDURE EnterKW(sym: INTEGER; name: ARRAY OF CHAR); 
 BEGIN keyTab[nkw].sym := sym; COPY(name, keyTab[nkw].id); INC(nkw) 
 END EnterKW; 

BEGIN Texts.OpenWriter(W); error := TRUE; nkw := 0; 
 EnterKW(null, "BY"); 
 EnterKW(do, "DO"); 
 EnterKW(if, "IF"); 
 EnterKW(null, "IN"); 
 EnterKW(null, "IS"); 
 EnterKW(of, "OF"); 
 EnterKW(or, "OR"); 
 EnterKW(null, "TO"); 
 EnterKW(end, "END"); 
 EnterKW(null, "FOR"); 
 EnterKW(mod, "MOD"); 
 EnterKW(null, "NIL"); 
 EnterKW(var, "VAR"); 
 EnterKW(null, "CASE"); 
 EnterKW(else, "ELSE"); 
 EnterKW(null, "EXIT"); 
 EnterKW(then, "THEN"); 
 EnterKW(type, "TYPE"); 
 EnterKW(null, "WITH"); 
 EnterKW(array, "ARRAY"); 
 EnterKW(begin, "BEGIN"); 
 EnterKW(const, "CONST"); 
 EnterKW(elsif, "ELSIF"); 
 EnterKW(null, "IMPORT"); 
 EnterKW(null, "UNTIL"); 
 EnterKW(while, "WHILE"); 
 EnterKW(record, "RECORD"); 
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 EnterKW(null, "REPEAT"); 
 EnterKW(null, "RETURN"); 
 EnterKW(null, "POINTER"); 
 EnterKW(procedure, "PROCEDURE"); 
 EnterKW(div, "DIV"); 
 EnterKW(null, "LOOP"); 
 EnterKW(module, "MODULE"); 
END OSS. 

C.2. The parser 

MODULE OSP; (* NW 23.9.93 / 9.2.95*) 
 IMPORT Viewers, Texts, Oberon, MenuViewers, TextFrames, OSS, OSG; 
 
 CONST WordSize = 4; 
 VAR sym: INTEGER; loaded: BOOLEAN; 
  topScope, universe: OSG.Object; (* linked lists, end with guard *) 
  guard: OSG.Object; 
  W: Texts.Writer; 
  
 PROCEDURE NewObj(VAR obj: OSG.Object; class: INTEGER); 
  VAR new, x: OSG.Object; 
 BEGIN x := topScope; guard.name := OSS.id; 
  WHILE x.next.name # OSS.id DO x := x.next END ; 
  IF x.next = guard THEN 
   NEW(new); new.name := OSS.id; new.class := class; new.next := guard; 
   x.next := new; obj := new 
  ELSE obj := x.next; OSS.Mark("mult def") 
  END 
 END NewObj; 
  
 PROCEDURE find(VAR obj: OSG.Object); 
  VAR s, x: OSG.Object; 
 BEGIN s := topScope; guard.name := OSS.id; 
  LOOP x := s.next; 
   WHILE x.name # OSS.id DO x := x.next END ; 
   IF x # guard THEN obj := x; EXIT END ; 
   IF s = universe THEN obj := x; OSS.Mark("undef"); EXIT END ; 
   s := s.dsc 
  END 
 END find; 
 
 PROCEDURE FindField(VAR obj: OSG.Object; list: OSG.Object); 
 BEGIN guard.name := OSS.id; 
  WHILE list.name # OSS.id DO list := list.next END ; 
  obj := list 
 END FindField; 
 
 PROCEDURE IsParam(obj: OSG.Object): BOOLEAN; 
 BEGIN RETURN (obj.class = OSG.Par) OR (obj.class = OSG.Var) & (obj.val > 0) 
 END IsParam; 
 
 PROCEDURE OpenScope; 
  VAR s: OSG.Object; 
 BEGIN NEW(s); s.class := OSG.Head; s.dsc := topScope; s.next := guard; topScope := s 
 END OpenScope; 
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 PROCEDURE CloseScope; 
 BEGIN topScope := topScope.dsc 
 END CloseScope; 
 
 (* -------------------- Parser ---------------------*) 
  
 PROCEDURE^ expression(VAR x: OSG.Item); 
  
 PROCEDURE selector(VAR x: OSG.Item); 
  VAR y: OSG.Item; obj: OSG.Object; 
 BEGIN 
  WHILE (sym = OSS.lbrak) OR (sym = OSS.period) DO 
   IF sym = OSS.lbrak THEN 
    OSS.Get(sym); expression(y); 
    IF x.type.form = OSG.Array THEN OSG.Index(x, y) ELSE OSS.Mark("not an array") END ; 
    IF sym = OSS.rbrak THEN OSS.Get(sym) ELSE OSS.Mark("]?") END 
   ELSE OSS.Get(sym); 
    IF sym = OSS.ident THEN 
     IF x.type.form = OSG.Record THEN 
      FindField(obj, x.type.fields); OSS.Get(sym); 
      IF obj # guard THEN OSG.Field(x, obj) ELSE OSS.Mark("undef") END 
     ELSE OSS.Mark("not a record") 
     END 
    ELSE OSS.Mark("ident?") 
    END 
   END 
  END 
 END selector; 
  
 PROCEDURE factor(VAR x: OSG.Item); 
  VAR obj: OSG.Object; 
 BEGIN (*sync*) 
  IF sym < OSS.lparen THEN OSS.Mark("ident?"); 
   REPEAT OSS.Get(sym) UNTIL sym >= OSS.lparen 
  END ; 
  IF sym = OSS.ident THEN find(obj); OSS.Get(sym); OSG.MakeItem(x, obj); selector(x) 
  ELSIF sym = OSS.number THEN OSG.MakeConstItem(x, OSG.intType, OSS.val); OSS.Get(sym) 
  ELSIF sym = OSS.lparen THEN 
   OSS.Get(sym); expression(x); 
   IF sym = OSS.rparen THEN OSS.Get(sym) ELSE OSS.Mark(")?") END 
  ELSIF sym = OSS.not THEN OSS.Get(sym); factor(x); OSG.Op1(OSS.not, x) 
  ELSE OSS.Mark("factor?"); OSG.MakeItem(x, guard) 
  END 
 END factor; 
  
 PROCEDURE term(VAR x: OSG.Item); 
  VAR y: OSG.Item; op: INTEGER; 
 BEGIN factor(x); 
  WHILE (sym >= OSS.times) & (sym <= OSS.and) DO 
   op := sym; OSS.Get(sym); 
   IF op = OSS.and THEN OSG.Op1(op, x) END ; 
   factor(y); OSG.Op2(op, x, y) 
  END 
 END term; 
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 PROCEDURE SimpleExpression(VAR x: OSG.Item); 
  VAR y: OSG.Item; op: INTEGER; 
 BEGIN 
  IF sym = OSS.plus THEN OSS.Get(sym); term(x) 
  ELSIF sym = OSS.minus THEN OSS.Get(sym); term(x); OSG.Op1(OSS.minus, x) 
  ELSE term(x) 
  END; 
  WHILE (sym >= OSS.plus) & (sym <= OSS.or) DO 
   op := sym; OSS.Get(sym); 
   IF op = OSS.or THEN OSG.Op1(op, x) END ; 
   term(y); OSG.Op2(op, x, y) 
  END 
 END SimpleExpression; 
  
 PROCEDURE expression(VAR x: OSG.Item); 
  VAR y: OSG.Item; op: INTEGER; 
 BEGIN SimpleExpression(x); 
  IF (sym >= OSS.eql) & (sym <= OSS.gtr) THEN 
   op := sym; OSS.Get(sym); SimpleExpression(y); OSG.Relation(op, x, y) 
  END 
 END expression; 
  
 PROCEDURE parameter(VAR fp: OSG.Object); 
  VAR x: OSG.Item; 
 BEGIN expression(x); 
  IF IsParam(fp) THEN OSG.Parameter(x, fp.type, fp.class); fp := fp.next 
  ELSE OSS.Mark("too many parameters") 
  END 
 END parameter; 
    
 PROCEDURE StatSequence; 
  VAR par, obj: OSG.Object; x, y: OSG.Item; L: LONGINT; 
   
  PROCEDURE param(VAR x: OSG.Item); 
  BEGIN 
   IF sym = OSS.lparen THEN OSS.Get(sym) ELSE OSS.Mark(")?") END ; 
   expression(x); 
   IF sym = OSS.rparen THEN OSS.Get(sym) ELSE OSS.Mark(")?") END 
  END param; 
    
 BEGIN (* StatSequence *) 
  LOOP (*sync*) obj := guard; 
   IF sym < OSS.ident THEN OSS.Mark("statement?"); 
    REPEAT OSS.Get(sym) UNTIL sym >= OSS.ident 
   END ; 
   IF sym = OSS.ident THEN 
    find(obj); OSS.Get(sym); OSG.MakeItem(x, obj); selector(x); 
    IF sym = OSS.becomes THEN OSS.Get(sym); expression(y); OSG.Store(x, y) 
    ELSIF sym = OSS.eql THEN OSS.Mark(":= ?"); OSS.Get(sym); expression(y) 
    ELSIF x.mode = OSG.Proc THEN 
     par := obj.dsc; 
     IF sym = OSS.lparen THEN OSS.Get(sym); 
      IF sym = OSS.rparen THEN OSS.Get(sym) 
      ELSE 
       LOOP parameter(par); 
        IF sym = OSS.comma THEN OSS.Get(sym) 



 117

        ELSIF sym = OSS.rparen THEN OSS.Get(sym); EXIT 
        ELSIF sym >= OSS.semicolon THEN EXIT 
        ELSE OSS.Mark(") or , ?") 
        END 
       END 
      END 
     END ; 
     IF obj.val < 0 THEN OSS.Mark("forward call") 
     ELSIF ~IsParam(par) THEN OSG.Call(x) 
     ELSE OSS.Mark("too few parameters") 
     END 
    ELSIF x.mode = OSG.SProc THEN 
     IF obj.val <= 3 THEN param(y) END ; 
     OSG.IOCall(x, y) 
    ELSIF obj.class = OSG.Typ THEN OSS.Mark("illegal assignment?") 
    ELSE OSS.Mark("statement?") 
    END 
   ELSIF sym = OSS.if THEN 
    OSS.Get(sym); expression(x); OSG.CJump(x); 
    IF sym = OSS.then THEN OSS.Get(sym) ELSE OSS.Mark("THEN?") END ; 
    StatSequence; L := 0; 
    WHILE sym = OSS.elsif DO 
     OSS.Get(sym); OSG.FJump(L); OSG.FixLink(x.a); expression(x); OSG.CJump(x); 
     IF sym = OSS.then THEN OSS.Get(sym) ELSE OSS.Mark("THEN?") END ; 
     StatSequence 
    END ; 
    IF sym = OSS.else THEN 
     OSS.Get(sym); OSG.FJump(L); OSG.FixLink(x.a); StatSequence 
    ELSE OSG.FixLink(x.a) 
    END ; 
    OSG.FixLink(L); 
    IF sym = OSS.end THEN OSS.Get(sym) ELSE OSS.Mark("END?") END 
   ELSIF sym = OSS.while THEN 
    OSS.Get(sym); L := OSG.pc; expression(x); OSG.CJump(x); 
    IF sym = OSS.do THEN OSS.Get(sym) ELSE OSS.Mark("DO?") END ; 
    StatSequence; OSG.BJump(L); OSG.FixLink(x.a); 
    IF sym = OSS.end THEN OSS.Get(sym) ELSE OSS.Mark("END?") END 
   END ; 
   IF sym = OSS.semicolon THEN OSS.Get(sym) 
   ELSIF (sym >= OSS.semicolon) & (sym < OSS.if) OR (sym >= OSS.array) THEN EXIT 
   ELSE OSS.Mark("; ?") 
   END 
  END 
 END StatSequence; 
  
 PROCEDURE IdentList(class: INTEGER; VAR first: OSG.Object); 
  VAR obj: OSG.Object; 
 BEGIN 
  IF sym = OSS.ident THEN 
   NewObj(first, class); OSS.Get(sym); 
   WHILE sym = OSS.comma DO 
    OSS.Get(sym); 
    IF sym = OSS.ident THEN NewObj(obj, class); OSS.Get(sym) 
    ELSE OSS.Mark("ident?") 
    END 
   END; 
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   IF sym = OSS.colon THEN OSS.Get(sym) ELSE OSS.Mark(":?") END 
  END 
 END IdentList; 
  
 PROCEDURE Type(VAR type: OSG.Type); 
  VAR obj, first: OSG.Object; x: OSG.Item; tp: OSG.Type; 
 BEGIN type := OSG.intType; (*sync*) 
  IF (sym # OSS.ident) & (sym < OSS.array) THEN OSS.Mark("type?"); 
   REPEAT OSS.Get(sym) UNTIL (sym = OSS.ident) OR (sym >= OSS.array) 
  END ; 
  IF sym = OSS.ident THEN 
   find(obj); OSS.Get(sym); 
   IF obj.class = OSG.Typ THEN type := obj.type ELSE OSS.Mark("type?") END 
  ELSIF sym = OSS.array THEN 
   OSS.Get(sym); expression(x); 
   IF (x.mode # OSG.Const) OR (x.a < 0) THEN OSS.Mark("bad index") END ; 
   IF sym = OSS.of THEN OSS.Get(sym) ELSE OSS.Mark("OF?") END ; 
   Type(tp); NEW(type); type.form := OSG.Array; type.base := tp; 
   type.len := SHORT(x.a); type.size := type.len * tp.size 
  ELSIF sym = OSS.record THEN 
   OSS.Get(sym); NEW(type); type.form := OSG.Record; type.size := 0; OpenScope; 
   LOOP 
    IF sym = OSS.ident THEN 
     IdentList(OSG.Fld, first); Type(tp); obj := first; 
     WHILE obj # guard DO 
      obj.type := tp; obj.val := type.size; INC(type.size, obj.type.size); obj := obj.next 
     END 
    END ; 
    IF sym = OSS.semicolon THEN OSS.Get(sym) 
    ELSIF sym = OSS.ident THEN OSS.Mark("; ?") 
    ELSE EXIT 
    END 
   END ; 
   type.fields := topScope.next; CloseScope; 
   IF sym = OSS.end THEN OSS.Get(sym) ELSE OSS.Mark("END?") END 
  ELSE OSS.Mark("ident?")   
  END 
 END Type; 
 
 PROCEDURE declarations(VAR varsize: LONGINT); 
  VAR obj, first: OSG.Object; 
   x: OSG.Item; tp: OSG.Type; L: LONGINT; 
 BEGIN (*sync*) 
  IF (sym < OSS.const) & (sym # OSS.end) THEN OSS.Mark("declaration?"); 
   REPEAT OSS.Get(sym) UNTIL (sym >= OSS.const) OR (sym = OSS.end) 
  END ; 
  LOOP 
   IF sym = OSS.const THEN 
    OSS.Get(sym); 
    WHILE sym = OSS.ident DO 
     NewObj(obj, OSG.Const); OSS.Get(sym); 
     IF sym = OSS.eql THEN OSS.Get(sym) ELSE OSS.Mark("=?") END; 
     expression(x); 
     IF x.mode = OSG.Const THEN obj.val := x.a; obj.type := x.type 
     ELSE OSS.Mark("expression not constant") 
     END; 
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     IF sym = OSS.semicolon THEN OSS.Get(sym) ELSE OSS.Mark(";?") END 
    END 
   END ; 
   IF sym = OSS.type THEN 
    OSS.Get(sym); 
    WHILE sym = OSS.ident DO 
     NewObj(obj, OSG.Typ); OSS.Get(sym); 
     IF sym = OSS.eql THEN OSS.Get(sym) ELSE OSS.Mark("=?") END ;  
     Type(obj.type); 
     IF sym = OSS.semicolon THEN OSS.Get(sym) ELSE OSS.Mark(";?") END 
    END 
   END ; 
   IF sym = OSS.var THEN 
    OSS.Get(sym); 
    WHILE sym = OSS.ident DO 
     IdentList(OSG.Var, first); Type(tp); obj := first; 
     WHILE obj # guard DO 
      obj.type := tp; obj.lev := OSG.curlev; 
      varsize := varsize + obj.type.size; obj.val := -varsize; obj := obj.next 
     END ; 
     IF sym = OSS.semicolon THEN OSS.Get(sym) ELSE OSS.Mark("; ?") END 
    END 
   END ; 
   IF (sym >= OSS.const) & (sym <= OSS.var) THEN OSS.Mark("declaration?") ELSE EXIT END 
  END 
 END declarations; 
 
 PROCEDURE ProcedureDecl; 
  CONST marksize = 8; 
  VAR proc, obj: OSG.Object; 
   procid: OSS.Ident; 
   locblksize, parblksize: LONGINT; 
    
  PROCEDURE FPSection; 
   VAR obj, first: OSG.Object; tp: OSG.Type; parsize: LONGINT; 
  BEGIN 
   IF sym = OSS.var THEN OSS.Get(sym); IdentList(OSG.Par, first) 
   ELSE IdentList(OSG.Var, first) 
   END ; 
   IF sym = OSS.ident THEN 
    find(obj); OSS.Get(sym); 
    IF obj.class = OSG.Typ THEN tp := obj.type  
    ELSE OSS.Mark("ident?"); tp := OSG.intType 
    END 
   ELSE OSS.Mark("ident?"); tp := OSG.intType 
   END ; 
   IF first.class = OSG.Var THEN 
    parsize := tp.size; 
    IF tp.form >= OSG.Array THEN OSS.Mark("no struct params") END ; 
   ELSE parsize := WordSize 
   END ; 
   obj := first; 
   WHILE obj # guard DO obj.type := tp; INC(parblksize, parsize); obj := obj.next END 
  END FPSection; 
   
 BEGIN (* ProcedureDecl *) 
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  OSS.Get(sym); 
  IF sym = OSS.ident THEN 
   procid := OSS.id; 
   NewObj(proc, OSG.Proc); OSS.Get(sym); parblksize := marksize; 
   OSG.IncLevel(1); OpenScope; proc.val := -1; 
   IF sym = OSS.lparen THEN 
    OSS.Get(sym); 
    IF sym = OSS.rparen THEN OSS.Get(sym) 
    ELSE FPSection; 
     WHILE sym = OSS.semicolon DO OSS.Get(sym); FPSection END ; 
     IF sym = OSS.rparen THEN OSS.Get(sym) ELSE OSS.Mark(")?") END 
    END 
   ELSIF OSG.curlev = 1 THEN OSG.EnterCmd(procid)  
   END ; 
   obj := topScope.next; locblksize := parblksize; 
   WHILE obj # guard DO 
    obj.lev := OSG.curlev; 
    IF obj.class = OSG.Par THEN DEC(locblksize, WordSize)  
    ELSE obj.val := locblksize; obj := obj.next 
    END 
   END ; 
   proc.dsc := topScope.next; 
   IF sym = OSS.semicolon THEN OSS.Get(sym) ELSE OSS.Mark(";?") END; 
   locblksize := 0; declarations(locblksize); 
   WHILE sym = OSS.procedure DO 
    ProcedureDecl; 
    IF sym = OSS.semicolon THEN OSS.Get(sym) ELSE OSS.Mark(";?") END 
   END ; 
   proc.val := OSG.pc; OSG.Enter(locblksize); 
   IF sym = OSS.begin THEN OSS.Get(sym); StatSequence END ; 
   IF sym = OSS.end THEN OSS.Get(sym) ELSE OSS.Mark("END?") END ; 
   IF sym = OSS.ident THEN 
    IF procid # OSS.id THEN OSS.Mark("no match") END ; 
    OSS.Get(sym) 
   END ; 
   OSG.Return(parblksize - marksize); CloseScope; OSG.IncLevel(-1) 
  END 
 END ProcedureDecl; 
 
 PROCEDURE Module(VAR S: Texts.Scanner); 
  VAR modid: OSS.Ident; varsize: LONGINT; 
 BEGIN Texts.WriteString(W, "  compiling "); 
  IF sym = OSS.module THEN 
   OSS.Get(sym); OSG.Open; OpenScope; varsize := 0; 
   IF sym = OSS.ident THEN 
    modid := OSS.id; OSS.Get(sym); 
    Texts.WriteString(W, modid); Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf) 
   ELSE OSS.Mark("ident?") 
   END ; 
   IF sym = OSS.semicolon THEN OSS.Get(sym) ELSE OSS.Mark(";?") END; 
   declarations(varsize); 
   WHILE sym = OSS.procedure DO 
    ProcedureDecl; 
    IF sym = OSS.semicolon THEN OSS.Get(sym) ELSE OSS.Mark(";?") END 
   END ; 
   OSG.Header(varsize); 
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   IF sym = OSS.begin THEN OSS.Get(sym); StatSequence END ; 
   IF sym = OSS.end THEN OSS.Get(sym) ELSE OSS.Mark("END?") END ; 
   IF sym = OSS.ident THEN 
    IF modid # OSS.id THEN OSS.Mark("no match") END ; 
    OSS.Get(sym) 
   ELSE OSS.Mark("ident?") 
   END ; 
   IF sym # OSS.period THEN OSS.Mark(". ?") END ; 
   CloseScope; 
   IF ~OSS.error THEN 
    COPY(modid, S.s); OSG.Close(S, varsize); Texts.WriteString(W, "code generated"); 
    Texts.WriteInt(W, OSG.pc, 6); Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf) 
   END 
  ELSE OSS.Mark("MODULE?") 
  END 
 END Module; 
  
 PROCEDURE Compile*; 
  VAR beg, end, time: LONGINT; 
   S: Texts.Scanner; T: Texts.Text; v: Viewers.Viewer; 
 BEGIN loaded := FALSE; 
  Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S); 
  IF S.class = Texts.Char THEN 
   IF S.c = "*" THEN 
    v := Oberon.MarkedViewer(); 
    IF (v.dsc # NIL) & (v.dsc.next IS TextFrames.Frame) THEN 
     OSS.Init(v.dsc.next(TextFrames.Frame).text, 0); OSS.Get(sym); Module(S) END 
   ELSIF S.c = "@" THEN 
    Oberon.GetSelection(T, beg, end, time); 
    IF time >= 0 THEN OSS.Init(T, beg); OSS.Get(sym); Module(S) END 
   END 
  ELSIF S.class = Texts.Name THEN 
   NEW(T); Texts.Open(T, S.s); OSS.Init(T, 0); OSS.Get(sym); Module(S) 
  END 
 END Compile; 
 
 PROCEDURE Decode*; 
  VAR V: MenuViewers.Viewer; T: Texts.Text; 
   X, Y: INTEGER; 
 BEGIN T := TextFrames.Text(""); Oberon.AllocateSystemViewer(Oberon.Par.frame.X, X, Y); 
  V := MenuViewers.New( 
    TextFrames.NewMenu("Log.Text", "System.Close  System.Copy  System.Grow  Edit.Search  
Edit.Store"), 
    TextFrames.NewText(T, 0), TextFrames.menuH, X, Y); 
  OSG.Decode(T) 
 END Decode; 
 
 PROCEDURE Load*; 
  VAR S: Texts.Scanner; 
 BEGIN 
  IF ~OSS.error & ~loaded THEN 
   Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); OSG.Load(S); loaded := TRUE 
  END 
 END Load; 
 
 PROCEDURE Exec*; 
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  VAR S: Texts.Scanner; 
 BEGIN  
  IF loaded THEN 
   Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S); 
   IF S.class = Texts.Name THEN OSG.Exec(S) END 
  END 
 END Exec; 
 
 PROCEDURE enter(cl: INTEGER; n: LONGINT; name: OSS.Ident; type: OSG.Type); 
  VAR obj: OSG.Object; 
 BEGIN NEW(obj); 
  obj.class := cl; obj.val := n; obj.name := name; obj.type := type; obj.dsc := NIL; 
  obj.next := topScope.next; topScope.next := obj 
 END enter;  
 
BEGIN Texts.OpenWriter(W); Texts.WriteString(W, "Oberon0 Compiler  9.2.95"); 
 Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf); 
 NEW(guard); guard.class := OSG.Var; guard.type := OSG.intType; guard.val := 0; 
 topScope := NIL; OpenScope; 
 enter(OSG.Typ, 1, "BOOLEAN", OSG.boolType); 
 enter(OSG.Typ, 2, "INTEGER", OSG.intType); 
 enter(OSG.Const, 1, "TRUE", OSG.boolType); 
 enter(OSG.Const, 0, "FALSE", OSG.boolType); 
 enter(OSG.SProc, 1, "Read", NIL); 
 enter(OSG.SProc, 2, "Write", NIL); 
 enter(OSG.SProc, 3, "WriteHex", NIL); 
 enter(OSG.SProc, 4, "WriteLn", NIL); 
 universe := topScope 
END OSP. 
 

C.3. The code generator 
MODULE OSG; (* NW 18.12.94 / 10.2.95 / 24.3.96 / 25.11.05*) 
 IMPORT Oberon, Texts, OSS, RISC; 
 
 CONST maxCode = 1000; maxRel = 200; NofCom = 16; 
  (* class / mode*) Head* = 0; 
   Var* = 1; Par* = 2; Const* = 3; Fld* = 4; Typ* = 5; Proc* = 6; SProc* = 7; 
   Reg = 10; Cond = 11; 
  (* form *) Boolean* = 0; Integer* = 1; Array* = 2; Record* = 3; 
 
  MOV = 0; MVN = 1; ADD = 2; SUB = 3; MUL = 4; Div = 5; Mod = 6; CMP = 7; 
  MOVI = 16; MVNI = 17; ADDI = 18; SUBI = 19; MULI = 20; DIVI = 21; MODI = 22; CMPI = 23; 
  CHKI = 24; 
  LDW = 32; LDB = 33; POP = 34; STW = 36; STB = 37; PSH = 38; 
  RD = 40; WRD= 41; WRH = 42; WRL = 43; 
  BEQ = 48; BNE = 49; BLT = 50; BGE = 51; BLE = 52; BGT = 53; BR = 56; BSR = 57; RET = 58; 
 
  FP = 12; SP = 13; LNK = 14; PC = 15;   (*reserved registers*) 
 
 TYPE Object* = POINTER TO ObjDesc; 
  Type* = POINTER TO TypeDesc; 
 
  Item* = RECORD 
   mode*, lev*: INTEGER; 
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   type*: Type; 
   a*, b, c, r: LONGINT; 
  END ; 
 
  ObjDesc*= RECORD 
   class*, lev*: INTEGER; 
   next*, dsc*: Object; 
   type*: Type; 
   name*: OSS.Ident; 
   val*: LONGINT 
  END ; 
 
  TypeDesc* = RECORD 
   form*: INTEGER; 
   fields*: Object; 
   base*: Type; 
   size*, len*: INTEGER 
  END ; 
  
 VAR boolType*, intType*: Type; 
  curlev*, pc*: INTEGER; 
  cno: INTEGER; 
  entry, fixlist: LONGINT; 
  regs: SET; (* used registers *) 
  W: Texts.Writer; 
  code: ARRAY maxCode OF LONGINT; 
  comname: ARRAY NofCom OF OSS.Ident;  (*commands*) 
  comadr: ARRAY NofCom OF LONGINT; 
  mnemo: ARRAY 64, 5 OF CHAR;  (*for decoder*) 
 
 PROCEDURE GetReg(VAR r: LONGINT); 
  VAR i: INTEGER; 
 BEGIN i := 0; 
  WHILE (i < FP) & (i IN regs) DO INC(i) END ; 
  INCL(regs, i); r := i 
 END GetReg; 
 
 PROCEDURE Put(op, a, b, c: LONGINT); 
 BEGIN (*emit instruction*) 
  IF op >= 32 THEN DEC(op, 64) END ; 
  code[pc] := ASH(ASH(ASH(op, 4) + a, 4) + b, 18) + (c MOD 40000H); 
  INC(pc) 
 END Put; 
 
 PROCEDURE PutBR(op, disp: LONGINT); 
 BEGIN (*emit branch instruction*) 
  code[pc] := ASH(op-40H, 26) + (disp MOD 4000000H); INC(pc) 
 END PutBR; 
 
 PROCEDURE TestRange(x: LONGINT); 
 BEGIN (*18-bit entity*) 
  IF (x >= 20000H) OR (x < -20000H) THEN OSS.Mark("value too large") END 
 END TestRange; 
 
 PROCEDURE load(VAR x: Item); 
  VAR r: LONGINT; 
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 BEGIN (*x.mode # Reg*) 
  IF x.mode = Var THEN 
   IF x.lev = 0 THEN x.a := x.a - pc*4 END ; 
   GetReg(r); Put(LDW, r, x.r, x.a); EXCL(regs, x.r); x.r := r 
  ELSIF x.mode = Const THEN 
   TestRange(x.a); GetReg(x.r); Put(MOVI, x.r, 0, x.a) 
  END ; 
  x.mode := Reg 
 END load; 
 
 PROCEDURE loadBool(VAR x: Item); 
 BEGIN 
  IF x.type.form # Boolean THEN OSS.Mark("Boolean?") END ; 
  load(x); x.mode := Cond; x.a := 0; x.b := 0; x.c := 1 
 END loadBool; 
 
 PROCEDURE PutOp(cd: LONGINT; VAR x, y: Item); 
 BEGIN 
  IF x.mode # Reg THEN load(x) END ; 
  IF y.mode = Const THEN TestRange(y.a); Put(cd+16, x.r, x.r, y.a) 
  ELSE 
   IF y.mode # Reg THEN load(y) END ; 
   Put(cd, x.r, x.r, y.r); EXCL(regs, y.r)  
  END 
 END PutOp; 
 
 PROCEDURE negated(cond: LONGINT): LONGINT; 
 BEGIN 
  IF ODD(cond) THEN RETURN cond-1 ELSE RETURN cond+1 END 
 END negated; 
 
 PROCEDURE merged(L0, L1: LONGINT): LONGINT; 
  VAR L2, L3: LONGINT; 
 BEGIN  
  IF L0 # 0 THEN 
   L2 := L0; 
   LOOP L3 := code[L2] MOD 40000H; 
    IF L3 = 0 THEN EXIT END ; 
    L2 := L3 
   END ; 
   code[L2] := code[L2] - L3 + L1; RETURN L0 
  ELSE RETURN L1 
  END 
 END merged; 
 
 PROCEDURE fix(at, with: LONGINT); 
 BEGIN code[at] := code[at] DIV 400000H * 400000H + (with MOD 400000H) 
 END fix; 
 
 PROCEDURE FixWith(L0, L1: LONGINT); 
  VAR L2: LONGINT; 
 BEGIN  
  WHILE L0 # 0 DO L2 := code[L0] MOD 40000H; fix(L0, L1-L0); L0 := L2 END 
 END FixWith; 
 
 PROCEDURE FixLink*(L: LONGINT); 
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  VAR L1: LONGINT; 
 BEGIN  
  WHILE L # 0 DO L1 := code[L] MOD 40000H; fix(L, pc-L); L := L1 END 
 END FixLink; 
  
 (*-----------------------------------------------*) 
 
 PROCEDURE IncLevel*(n: INTEGER); 
 BEGIN INC(curlev, n) 
 END IncLevel; 
 
 PROCEDURE MakeConstItem*(VAR x: Item; typ: Type; val: LONGINT); 
 BEGIN x.mode := Const; x.type := typ; x.a := val 
 END MakeConstItem; 
 
 PROCEDURE MakeItem*(VAR x: Item; y: Object); 
  VAR r: LONGINT; 
 BEGIN x.mode := y.class; x.type := y.type; x.lev := y.lev; x.a := y.val; x.b := 0; 
  IF y.lev = 0 THEN x.r := PC 
  ELSIF y.lev = curlev THEN x.r := FP 
  ELSE OSS.Mark("level!"); x.r := 0 
  END ; 
  IF y.class = Par THEN GetReg(r); Put(LDW, r, x.r, x.a); x.mode := Var; x.r := r; x.a := 0 END 
 END MakeItem; 
 
 PROCEDURE Field*(VAR x: Item; y: Object);   (* x := x.y *) 
 BEGIN INC(x.a, y.val); x.type := y.type 
 END Field; 
 
 PROCEDURE Index*(VAR x, y: Item);   (* x := x[y] *) 
 BEGIN 
  IF y.type # intType THEN OSS.Mark("index not integer") END ; 
  IF y.mode = Const THEN 
   IF (y.a < 0) OR (y.a >= x.type.len) THEN OSS.Mark("bad index") END ; 
   INC(x.a, y.a * x.type.base.size) 
  ELSE 
   IF y.mode # Reg THEN load(y) END ; 
   Put(CHKI, y.r, 0, x.type.len); 
   Put(MULI, y.r, y.r, x.type.base.size); 
   Put(ADD, y.r, x.r, y.r); EXCL(regs, x.r); x.r := y.r 
  END; 
  x.type := x.type.base 
 END Index; 
  
 PROCEDURE Op1*(op: INTEGER; VAR x: Item);   (* x := op x *) 
  VAR t: LONGINT; 
 BEGIN 
  IF op = OSS.minus THEN 
   IF x.type.form # Integer THEN OSS.Mark("bad type") 
   ELSIF x.mode = Const THEN x.a := -x.a 
   ELSE 
    IF x.mode = Var THEN load(x) END ; 
    Put(MVN, x.r, 0, x.r) 
   END 
  ELSIF op = OSS.not THEN 
   IF x.mode # Cond THEN loadBool(x) END ; 
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   x.c := negated(x.c); t := x.a; x.a := x.b; x.b := t 
  ELSIF op = OSS.and THEN 
   IF x.mode # Cond THEN loadBool(x) END ; 
   PutBR(BEQ + negated(x.c), x.a); EXCL(regs, x.r); x.a := pc-1; FixLink(x.b); x.b := 0 
  ELSIF op = OSS.or THEN 
   IF x.mode # Cond THEN loadBool(x) END ; 
   PutBR(BEQ + x.c, x.b); EXCL(regs, x.r); x.b := pc-1; FixLink(x.a); x.a := 0 
  END 
 END Op1; 
 
 PROCEDURE Op2*(op: INTEGER; VAR x, y: Item);   (* x := x op y *) 
 BEGIN 
  IF (x.type.form = Integer) & (y.type.form = Integer) THEN 
   IF (x.mode = Const) & (y.mode = Const) THEN 
    (*overflow checks missing*) 
    IF op = OSS.plus THEN INC(x.a, y.a) 
    ELSIF op = OSS.minus THEN DEC(x.a, y.a) 
    ELSIF op = OSS.times THEN x.a := x.a * y.a 
    ELSIF op = OSS.div THEN x.a := x.a DIV y.a 
    ELSIF op = OSS.mod THEN x.a := x.a MOD y.a 
    ELSE OSS.Mark("bad type") 
    END 
   ELSE 
    IF op = OSS.plus THEN PutOp(ADD, x, y) 
    ELSIF op = OSS.minus THEN PutOp(SUB, x, y) 
    ELSIF op = OSS.times THEN PutOp(MUL, x, y) 
    ELSIF op = OSS.div THEN PutOp(Div, x, y) 
    ELSIF op = OSS.mod THEN PutOp(Mod, x, y) 
    ELSE OSS.Mark("bad type") 
    END 
   END 
  ELSIF (x.type.form = Boolean) & (y.type.form = Boolean) THEN 
   IF y.mode # Cond THEN loadBool(y) END ; 
   IF op = OSS.or THEN x.a := y.a; x.b := merged(y.b, x.b); x.c := y.c 
   ELSIF op = OSS.and THEN x.a := merged(y.a, x.a); x.b := y.b; x.c := y.c 
   END 
  ELSE OSS.Mark("bad type") 
  END ; 
 END Op2; 
 
 PROCEDURE Relation*(op: INTEGER; VAR x, y: Item);   (* x := x ? y *) 
 BEGIN 
  IF (x.type.form # Integer) OR (y.type.form # Integer) THEN OSS.Mark("bad type")  
  ELSE PutOp(CMP, x, y); x.c := op - OSS.eql; EXCL(regs, y.r) 
  END ; 
  x.mode := Cond; x.type := boolType; x.a := 0; x.b := 0 
 END Relation; 
  
 PROCEDURE Store*(VAR x, y: Item); (* x := y *) 
  VAR r: LONGINT; 
 BEGIN 
  IF (x.type.form IN {Boolean, Integer}) & (x.type.form = y.type.form) THEN 
   IF y.mode = Cond THEN 
    Put(BEQ + negated(y.c), y.r, 0, y.a); EXCL(regs, y.r); y.a := pc-1; 
    FixLink(y.b); GetReg(y.r); Put(MOVI, y.r, 0, 1); PutBR(BR, 2); 
    FixLink(y.a); Put(MOVI, y.r, 0, 0) 
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   ELSIF y.mode # Reg THEN load(y) 
   END ; 
   IF x.mode = Var THEN 
    IF x.lev = 0 THEN x.a := x.a - pc*4 END ; 
    Put(STW, y.r, x.r, x.a) 
   ELSE OSS.Mark("illegal assignment") 
   END ; 
   EXCL(regs, x.r); EXCL(regs, y.r) 
  ELSE OSS.Mark("incompatible assignment") 
  END 
 END Store; 
 
 PROCEDURE Parameter*(VAR x: Item; ftyp: Type; class: INTEGER); 
  VAR r: LONGINT; 
 BEGIN 
  IF x.type = ftyp THEN 
   IF class = Par THEN (*Var param*) 
    IF x.mode = Var THEN 
     IF x.a # 0 THEN GetReg(r); Put(ADDI, r, x.r, x.a) 
     ELSE r := x.r 
     END 
    ELSE OSS.Mark("illegal parameter mode") 
    END ; 
    Put(PSH, r, SP, 4); EXCL(regs, r) 
   ELSE (*value param*) 
    IF x.mode # Reg THEN load(x) END ; 
    Put(PSH, x.r, SP, 4); EXCL(regs, x.r) 
   END 
  ELSE OSS.Mark("bad parameter type") 
  END 
 END Parameter; 
  
 (*---------------------------------*) 
   
 PROCEDURE CJump*(VAR x: Item); 
 BEGIN 
  IF x.type.form = Boolean THEN 
   IF x.mode # Cond THEN loadBool(x) END ; 
   PutBR(BEQ + negated(x.c), x.a); EXCL(regs, x.r); FixLink(x.b); x.a := pc-1 
  ELSE OSS.Mark("Boolean?"); x.a := pc  
  END 
 END CJump; 
  
 PROCEDURE BJump*(L: LONGINT); 
 BEGIN PutBR(BR, L-pc) 
 END BJump; 
  
 PROCEDURE FJump*(VAR L: LONGINT); 
 BEGIN PutBR(BR, L); L := pc-1 
 END FJump; 
  
 PROCEDURE Call*(VAR x: Item); 
 BEGIN PutBR(BSR, x.a - pc) 
 END Call; 
 
 PROCEDURE IOCall*(VAR x, y: Item); 
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  VAR z: Item; 
 BEGIN 
  IF x.a < 4 THEN 
   IF y.type.form # Integer THEN OSS.Mark("Integer?") END 
  END ; 
  IF x.a = 1 THEN 
   GetReg(z.r); z.mode := Reg; z.type := intType; Put(RD, z.r, 0, 0); Store(y, z) 
  ELSIF x.a = 2 THEN load(y); Put(WRD, 0, 0, y.r); EXCL(regs, y.r) 
  ELSIF x.a = 3 THEN load(y); Put(WRH, 0, 0, y.r); EXCL(regs, y.r) 
  ELSE Put(WRL, 0, 0, 0) 
  END 
 END IOCall; 
 
 PROCEDURE Header*(size: LONGINT); 
 BEGIN entry := pc; Put(MOVI, SP, 0, RISC.MemSize - size);  (*init SP*) 
  Put(PSH, LNK, SP, 4) 
 END Header; 
  
 PROCEDURE Enter*(size: LONGINT); 
 BEGIN 
  Put(PSH, LNK, SP, 4); 
  Put(PSH, FP, SP, 4); 
  Put(MOV, FP, 0, SP); 
  Put(SUBI, SP, SP, size) 
 END Enter; 
  
 PROCEDURE Return*(size: LONGINT); 
 BEGIN 
  Put(MOV, SP, 0, FP); 
  Put(POP, FP, SP, 4); 
  Put(POP, LNK, SP, size+4); 
  PutBR(RET, LNK) 
 END Return; 
  
 PROCEDURE Open*; 
 BEGIN curlev := 0; pc := 0; cno := 0; regs := {} 
 END Open; 
  
 PROCEDURE Close*(VAR S: Texts.Scanner; globals: LONGINT); 
 BEGIN Put(POP, LNK, SP, 4); PutBR(RET, LNK); 
 END Close; 
 
 PROCEDURE EnterCmd*(VAR name: ARRAY OF CHAR); 
 BEGIN COPY(name, comname[cno]); comadr[cno] := pc*4; INC(cno) 
 END EnterCmd; 
 
 (*-------------------------------------------*) 
 
 PROCEDURE Load*(VAR S: Texts.Scanner); 
 BEGIN RISC.Load(code, pc); 
  Texts.WriteString(W, "  code loaded"); Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf); 
  RISC.Execute(entry*4, S, Oberon.Log) 
 END Load; 
 
 PROCEDURE Exec*(VAR S: Texts.Scanner); 
  VAR i: INTEGER; 
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 BEGIN i := 0; 
  WHILE (i < cno) & (S.s # comname[i]) DO INC(i) END ; 
  IF i < cno THEN RISC.Execute(comadr[i], S, Oberon.Log) END 
 END Exec; 
 
 PROCEDURE Decode*(T: Texts.Text); 
  VAR i, w, op, a: LONGINT; 
 BEGIN Texts.WriteString(W, "entry"); Texts.WriteInt(W, entry*4, 6); Texts.WriteLn(W); 
  i := 0; 
  WHILE i < pc DO 
   w := code[i]; op := w DIV 4000000H MOD 40H; 
   Texts.WriteInt(W, 4*i, 4); Texts.Write(W, 9X); Texts.WriteString(W, mnemo[op]); 
   IF op < BEQ THEN 
    a := w MOD 40000H; 
    IF a >= 20000H THEN DEC(a, 40000H) (*sign extension*) END ; 
    Texts.Write(W, 9X); Texts.WriteInt(W, w DIV 400000H MOD 10H, 4); 
    Texts.Write(W, ","); Texts.WriteInt(W, w DIV 40000H MOD 10H, 4); 
    Texts.Write(W, ",") 
   ELSE a := w MOD 4000000H; 
    IF a >= 2000000H THEN DEC(a, 4000000H) (*sign extension*) END 
   END ; 
   Texts.WriteInt(W, a, 6); Texts.WriteLn(W); INC(i) 
  END ; 
  Texts.WriteLn(W); Texts.Append(T, W.buf) 
 END Decode; 
 
BEGIN Texts.OpenWriter(W); 
 NEW(boolType); boolType.form := Boolean; boolType.size := 4; 
 NEW(intType); intType.form := Integer; intType.size := 4; 
 mnemo[MOV] := "MOV "; 
 mnemo[MVN] := "MVN "; 
 mnemo[ADD] := "ADD "; 
 mnemo[SUB] := "SUB "; 
 mnemo[MUL] := "MUL "; 
 mnemo[Div] := "DIV "; 
 mnemo[Mod] := "MOD "; 
 mnemo[CMP] := "CMP "; 
 mnemo[MOVI] := "MOVI"; 
 mnemo[MVNI] := "MVNI"; 
 mnemo[ADDI] := "ADDI"; 
 mnemo[SUBI] := "SUBI"; 
 mnemo[MULI] := "MULI"; 
 mnemo[DIVI] := "DIVI"; 
 mnemo[MODI] := "MODI"; 
 mnemo[CMPI] := "CMPI"; 
 mnemo[CHKI] := "CHKI"; 
 mnemo[LDW] := "LDW "; 
 mnemo[LDB] := "LDB "; 
 mnemo[POP] := "POP "; 
 mnemo[STW] := "STW "; 
 mnemo[STB] := "STB "; 
 mnemo[PSH] := "PSH "; 
 mnemo[BEQ] := "BEQ "; 
 mnemo[BNE] := "BNE "; 
 mnemo[BLT] := "BLT "; 
 mnemo[BGE] := "BGE "; 
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 mnemo[BLE] := "BLE "; 
 mnemo[BGT] := "BGT "; 
 mnemo[BR] := "BR "; 
 mnemo[BSR] := "BSR "; 
 mnemo[RET] := "RET "; 
 mnemo[RD]  := "READ"; 
 mnemo[WRD] := "WRD "; 
 mnemo[WRH] := "WRH "; 
 mnemo[WRL] := "WRL "; 
END OSG. 
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