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Chapter 12

Decision Trees

Currently, resolving many of the basic questions on the power of Turing machines seems
out of reach. Thus it makes sense to study simpler, more limited computing devices, as a
way to get some insight into the elusive notion of efficient computation. Moreover, such
limited computational models often arise naturally in a variety of applications, even outside
Computer Science, and hence studying their properties is inherently worthwhile.

Perhaps the simplest such model is that of decision trees. Here the “complexity” measure
for a Boolean function f is the number of bits we need to examine in an input z in order
to compute f(x). This chapter surveys the basic results and open questions regarding
decision trees. Section 12.1 defines decision trees and decision tree complexity. We also
define nondeterministic and probabilistic versions of decision trees just as we did for Turing
machines; these are described in Sections 12.2 and 12.3 respectively. Section 12.4 contains
some techniques for proving lower bounds on decision trees. We also present Yao’s Min
Maz Lemma (see Note 12.8), which is useful for proving lower bounds for randomized
decision tree complexity and more generally, lower bounds for randomized complexity in
other computational models.

Decision trees and decision tree complexity

Let f:{0,1}" — {0,1} be some function. A decision tree for f is a tree for which each
internal node is labeled with some z;, and has two outgoing edges, labeled 0 and 1. Each
tree leaf is labeled with an output value 0 or 1. The computation on input z = z12z2...x,
proceeds at each node by inspecting the input bit x; indicated by the node’s label. If z; =1
the computation continues in the subtree reached by taking the 1-edge. The 0-edge is taken
if the bit is 0. Thus input z follows a path through the tree. The output value at the leaf
is f(z). For example, Figure 12.1 describes a decision tree for the majority function.

Decision trees often arise in medical setting, as a compact way to describe how to reach a
diagnosis from data of symptoms and test results. They are also used in operations research
(to describe algorithms to make business decisions) and machine learning (where the goal is
to discover such trees by looking at many examples). However, our focus is to use decision
trees as a simple computational model for which we are able to prove some non-trivial lower
bounds.

The decision tree complexity of a function is the number of bits examined by the most
efficient decision tree on the worst case input to that tree. That is, we make the following
definition:
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Figure 12.1 A decision tree for computing the majority function Maj(z1,z2,x3) on three
bits. That is, the output is 1 if at least two of the input bits are 1, and otherwise the output
is 0.

Definition 12.1 (Decision tree complexity)
The cost of tree ¢ on input x, denoted by cost(t, x), is the number of bits of x examined by
t.

The decision tree complexity of a function f, is defined as

D(f) = mi t(t
(f) min max  cos (t.x),

where 77 denotes the set of all decision trees that compute f.

Since every Boolean function f on {0,1} can be computed by the full binary tree of
depth n (and 2™ vertices), D(f) < n for every f: {0,1}" — {0,1}. We’ll be interested in
finding out for various interesting functions whether this trivial bound is the best possible
or they have more efficient decision trees.

Example 12.2
Here are some examples for the decision tree complexity of some particular func-
tions:

OR Function: Let f(x1,za,...2,) = \/?:1 ;. In this case we can show that
there is no decision tree with smaller depth than the trivial bound of n.
To do that we use an adversary argument. Let t be some decision tree
solving f. We think of an execution of ¢, where some adversary answers
t’s questions on the value of every input bit. The adversary will always
respond that z; equals 0 for the first n — 1 queries. Thus the decision tree
will be “in suspense” until the value of the nth bit is revealed, whose value
will determine whether or not the OR of the bits is 1 or 0. Thus D(f) is n.
(To state this argument another way, we have shown that if there is some
branch on which the tree asks at most n — 1 questions, then there is are two
inputs z, 2’ consistent with all the adversary’s answers such that f(z) =0
but f(2’) = 1, implying that the tree will make a mistake on one of those
inputs.)

Graph connectivity Suppose that we are given an m-vertex graph G as input,
represented as a binary string of length n = (7;) binary string, with the e
coordinate equal to 1 if the edge e is in G, and equal to 0 otherwise. We
would like to know how many bits of the adjacency matrix a decision tree
algorithm might have to inspect in order to determine whether or not G is
connected (i.e., every two points are connected by a path of edges). Once
again, we show that it’s not possible to beat the trivial (7;) bound.

We again give an adversary argument. The adversary constructs a graph,
edge by edge, as it responds to the algorithm’s queries. At each step, the
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answers to the preceding queries defines a partial graph such that it can be
extended to both a connected and disconnected graph using the edges that
have not been queried so far. Thus the algorithm (i.e., decision tree) is in
“suspense” until every single possible edge has been queried.

For every query of an edge e made by the tree, our adversary will answer 0
(i.e., that the edge is not present), unless such an answer forces the current
partial graph to become disconnected, in which case it answers 1. An easy
induction shows that this strategy ensures that the current partial graph is
a “forest” (i.e., consists of trees that are vertex-disjoint), and furthermore
this forest does not turn into a connected graph until the very last edge
gets queried. Thus the algorithm remains ”in suspense” as long as it didn’t

query all possible (7)) edges.

AND-OR Function For every k, we define fi to be the following function
taking inputs of length n = 2F:

fkfl(xl, e xzk—l) A fkfl(IQk—17 .. .I2k+1) if k is even
felxe, ..o xy) = fkfl(xl,...IQkfl)\/fkfl(IQkfl,...IQkJrl) if £k > 1 and is odd
€T; ifk=1

The AND-OR function fi can be computed by a circuit of depth k (see Fig-
ure 12.2). By contrast, its decision tree complexity is 2¥ (see Exercise 12.2).

Address function Suppose that n = k + 2% and let f be the function that
maps Ti,...,Tk,Y1,---,Yax to the input y,. That is, the function treats
the first k ~ logn bits as an index to an array specified by the last n — k
bits. Clearly, this function has a decision tree of depth k + 1 (examine the
first £ bits, and use that to find out which bit to examine among the last
n — k bits), and hence D(f) <logn + 1. On the other hand, Exercise 12.1
implies that D(f) > Q(logn).

/\/\/\/\
SN

SN N LN

x1 x2 x3 x4..x(n-1)  xn

Figure 12.2 A circuit computing the AND-OR function. The circuit has k layers of alter-
nating gates, where n = 2% ..

Certificate Complexity

We now introduce the notion of certificate complexity. This can be viewed as the non-
deterministic version of decision tree complexity, analogous to the relation between non-
deterministic and deterministic Turing machine (see Chapter 2).
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Definition 12.3 (Certificate complezity)

Let f:{0,1}" — {0,1} and = € {0,1}". A O-certificate for z is a subset S C {0,1}", such
that f(a’) = 0 for every 2’ such that 2'|s = z|s (where z|s denotes the substring of x in
the coordinates in S). Similarly, if f(z) = 1 then a 1-certificate for x is a subset S C {0,1}"
such that f(a’) =1 for every 2’ satisfying z|s = 2/|s.

The certificate complexity of f is defined as the minimum k such that every string x has a
f(z)-certificate of size at most k. (Note that a string cannot have both a O-certificate and
a 1-certificate.)

If f has a decision tree ¢ of depth k, then C(f) < k, since the set of locations examined
by ¢ on input z serves as an f(z)-certificate for x. Thus, C(f) < D(f). But sometimes
C(f) can be strictly smaller than D(f):

Example 12.4
We show the certificate complexity of some of the functions described in Exam-
ple 12.2

Graph connectivity Let f be the graph connectivity function. Recall that
for an m-vertex graph, the decision tree complexity of f is D(f) = (7;) =
W. A 1-certificate for a graph G is a set of edges whose existence
in G implies that it is connected. Thus every connected m-vertex graph
G has a l-certificate of size m — 1— any spanning tree for G will do. A
O-certificate for G is a set of edges whose non-existence forces G to be
disconnected— a cut. Since the number of edges in a cut is maximized
when its two sides are equal, every m-vertex graph has a 0O-certificate of
size at most (m/2)? = m?/4. On the other hand, for some graphs (e.g.,
the graph consisting of two disjoint cliques of size n/2) do not have smaller
O-certificate. Thus C(f) = m?/4.

AND-OR function Let f; be the AND-OR function on n = 2*-length inputs.
Recall that D(f) = 2*. We show that C(f) < 2/¥/21| which roughly equals
vn.Recall that fi is defined using a circuit of k layers. Each layer contains
only OR-gates or only AND-gates, and the layers have alternative gate
types. The bottom layer receives the bits of input « as input and the single
top layer gate outputs the answer f(xz). If f(z) = 1, we can construct a
1-certificate as follows. For every AND-gate in the tree of gates we have to
prove that both its children evaluate to 1, whereas for every OR-gate we
only need to prove that some child evaluates to 1. Thus the 1-certificate
is a subtree in which the AND-gates have two children but the OR gates
only have one each. This mean that the subtree only needs to involve 2/%/2]
input bits. If f(x) = 0, a similar argument applies, but the role of OR-gates
and AND-gates, and values 1 and 0 are reversed.

Recall in Chapter 2 (Definition 2.1) we defined NP to be the class of functions f for
which an efficient Turing machine can be convinced that f(x) = 1 via a short certificate.
Similarly, we can think of 1-certificates as a way to convince a decision tree that f(z) = 1,
and hence we have the following analogies

low decision tree complexity <~ P
low 1-certificate complexity <= NP

low O-certificate complexity <+ colNP

Thus, the following result should be quite surprising, since it shows that, unlike what is
believed to hold for Turing machines, in the decision tree world “P = NP N coNP”.
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Theorem 12.5 For function f, D(f) < C(f)?. %

PrOOF: Let f : {0,1}" — {0,1} be some function satisfying C(f) = k. For every z €
{0,1}", denote by S, the k-sized subset of [n] that is the f(x)-certificate for z. The rest of
the proof relies on the observation that every 1-certificate must intersect every 0-certificate,
since otherwise there exists a single string that contains both certificates, which is impossible.

The following decision tree algorithm determines the value of f in at most k2 queries. It
maintains a set X' consisting of all inputs that are consistent with the replies to queries so
far.

Initially X = {0,1}". If there is some b € {0,1} such that f(z) = b for every
2 € X then halt and output b. Otherwise, choose any z¢ € X such that f(z9) =0
and query all the bits in S, that have not been queried so far. Remove from X
every string 2’ € {0, 1} that is not consistent with the answers to the queries.

Because every input 2 has some certificate proving the correct answer f(x), this algorithm
will eventually output the correct answer for every input. Furthermore, each time it queries
the bits in a O-certificate, all 1-certificates effectively shrink by at least one since, as noted,
each 1-certificate must intersect each zero certificate. (Of course, the 1-certificate could
be completely eliminated if the answer to some query is inconsistent with it. The same
elimination could also happen to a 0O-certificate.) Thus in k iterations of the above step,
all 1-certificates must shrink to 0, which means that all remaining strings in X only have
0O-certificates and hence the algorithm can answer 0. Since each iteration queries at most k
bits, we conclude that the algorithm finishes after making at most k2 queries.

|

Randomized Decision Trees

As in the case of Turing machines, we can define a randomized analog of decision trees.
In a randomized decision tree, the choice of which input location to query is determined
probabilistically. An equivalent, somewhat more convenient description is that a randomized
decision tree is a probability distribution over deterministic decision trees. We will consider
randomized trees that always output the right answer, but use randomization to possibly
speed up their expected cost (this is analogous to the class ZPP of Section 7.3).

Definition 12.6 (Randomized decision trees)
For every function f, let P denote the set of probability distributions over decision trees
that compute f. The randomized tree complezity of f is defined as

R(f) = min max E [cost(t,x)]. (1)

PePy ze{0,1}" t&, P

The randomized decision tree complexity thus expresses how well the best possible prob-
ability distribution of trees will do against the worst possible input. Obviously, R(f) <
D(f)— a deterministic tree is just a special case of such a probability distribution. It’s
also not hard to verify that R(f) > C(f), because for every input z € {0,1}", every tree
t deciding f yields an f(x)-certificate of z of size cost(t,2). Thus the expectation in (1) is
bounded below by the size of the smallest certificate for z. (This is analogous to the fact
that ZPP C NP N colNP.)

Example 12.7
Consider the majority function, f = Maj(x1,xe, x3). It is straightforward to see
that D(f) = 3. We show that R(f) < 8/3. We’ll use a randomized decision
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tree that picks a random permutation of x1, xs, z3 and makes its queries by this
order, stopping when it got two identical answers. If all of 2’s bits are the same,
then this tree will always stop after two queries. If two bits are the same and
the third is different, say 1 = 1 and xo2 = x3 = 0, then the algorithm will make
two queries if it orders z last, which happens with probability 1/3. Otherwise
it makes three queries. Thus the expected cost is 2 - 1/3 4 32/3 = 8/3. Later in
Example 12.9, we'll see that in fact R(f) = 8/3.

Some techniques for decision tree lower bounds

We’ve seen the adversary method for showing lower bounds on deterministic decision tree
complexity, but it does not always seem useful, especially when considering certificate com-
plexity and randomized decision tree complexity. We now discuss some more sophisticated
techniques for showing such lower bounds. These techniques have also found other uses in
complexity theory and beyond.

Lower bounds on Randomized Complexity

Randomized decision trees are complicated creatures— distributions over decision trees—
and hence are harder to argue about than deterministic decision trees. Fortunately, Yao had
shown that we can prove lower bounds on randomized trees by reasoning about deterministic
trees. Specifically, Yao’s Min-Max Lemma (see Note 12.8) shows that for every function f
we can lower bound R(f) by k if we can find a distribution D over the inputs {0,1}" for
which we prove that E,¢ p|cost(t,z)] > k (in words, the average cost of ¢ on an input drawn
according to distribution D is at least k) for every deterministic decision tree for f. In other
words, rather than arguing about distributions on trees and specific inputs, we can also
argue about distributions on inputs and specific trees.

Example 12.9

We return to considering the function f that is the majority of three bits, and
we seek to find a lower bound on R(f). Consider a distribution over inputs
such that inputs in which all three bits match, namely 000 and 111, occur with
probability 0. All other inputs occur with probability 1/6. For any decision tree,
that is, for any order in which the three bits are examined, there is exactly a
1/3 probability that the first two bits examined will be the same value, and thus
there is a 1/3 probability that the cost is 2. There is then a 2/3 probability that
the cost is 3. Thus for every decision tree for majority, the overall expected cost
for this distribution is 8/3. This implies by Yao’s Lemma that R(f) > 8/3. By
Example 12.7, R(f) = 8/3.

Sensitivity
The sensitivity of a function is another method that allows us to prove lower bounds on

decision tree complexity.

Definition 12.10 (Sensitivity and Block Sensitivity) If f:{0,1}" — {0,1} is a function and
x € {0,1}" then the sensitivity of f on x, denoted s,(f), is the number of bit positions i
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Note 12.8 (Yao’s Min-Max Lemma)

Yao’s min-max lemma is used in a variety of settings to prove lower bounds on randomized
algorithms. Let X be a finite set of inputs and A be a finite set of deterministic algorithms
that solve some computational problem f on these inputs. For x € X and A € A, we denote
by cost(A, x) the cost incurred by algorithm A on input z (the cost could be running time,
decision tree complexity, etc..). A randomized algorithm can be viewed as a probability
distribution R on A. The cost of R on input x, denoted by cost(R, ), is Eag, r[cost(A, z)].
The randomized complexity of the problem is

min max cost(R,x) . (2)
Let D be a distribution on inputs. For any deterministic algorithm A, the cost incurred
by it on D, denoted cost(A, D), is Exe plcost(A,z)]. The distributional complexity of the
problem is
max min cost(A, D). (3)
D AcA

Yao’s Lemma says that the two quantities (2) and (3) are equal. It is easily derived from von
Neumann’s minmax theorem for zero-sum games (see Note 19.4). The switch of quantifiers
featured in Yao’s lemma is typically useful for lower bounding randomized complexity. To do
so, one defines (using some insight and some luck) a suitable distribution D on the inputs for
some function f. Then one proves that every deterministic algorithm for f incurs high cost,
say C, on this distribution. By Yao’s Lemma, it follows that the randomized complexity
then is at least C.

such that f(x) # f(2%), where 2% is o with its ith bit flipped. The sensitivity of f, denoted
by s(f), is max, {s.(f)}.

The block sensitivity of f on x, denoted bs,(f), is the maximum number b such that
there are disjoint blocks of bit positions By, Ba, ..., By such that f(x) # f(25) where
2B is o with all its bits flipped in block B;. The block sensitivity of f denoted bs(f) is

max, {bs,(f)}.

Clearly s(f) < bs(f). It is conjectured that there is a constant ¢ such that bs(f) =
O(s(f)°) for all f but this is wide open (though it is known that it must holds that ¢ > 2).
It’s not hard to show that both the sensitivity and block sensitivity of f lower bound its
deterministic decision tree complexity:

Lemma 12.11 For any function, s(f) < bs(f) < D(f). O

ProOOF: Let x be such that bs,(f) = bs(f) = s for some s and By,...,Bs be the corre-
sponding blocks. For every decision tree ¢ for f, when given b as input ¢ has to query at

least one coordinate in each of the blocks B; for i € [s] in order to distinguish between x
and 5. B

On the other hand, the sensitivity squared also upper bounds the certificate complexity
of f:

Theorem 12.12 C(f) < s(f)bs(f). &

PROOF: For any input z € {0,1}" we describe a certificate for z of size s(f)bs(f). This
certificate for an input z is obtained by considering the largest number of disjoint blocks
of variables By, Ba, ..., By, that achieve b = bs,(f) < bs(f). We'll take each B; to be of
minimal size— if f(z) # f(x5) for some strict subset B! of B; then we’ll use B/ instead.
This means that setting 2’ = a7, f(2') # f(2") for every j € B;, implying that | B;| < s(f)
for every i € [b]. Thus the certificate size is at most s(f)bs(f).

We claim that setting these variables according to x constitutes a certificate for x. Sup-
pose not, and let 2’ be an input such that f(z’) # f(x) but 2’ is consistent with the above
certificate. Let Bpi1 denote the variables that need to be flipped to make x equal /. That is,
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D(f) | Deterministic decision-tree complexity (corresponds to P)
R(f) | Randomized decision-tree complexity (corresponds to ZPP)
C(f) | Certificate complexity (corresponds to NP N coNP)

s(f) | Sensitivity of f (maximum number of bits that flip f(z))

bs(f) | Block sensitivity of f (maximum number of blocks that flip f(z))
deg(f) | Degree of multilinear polynomial for f

C(f) <R(f) < D(f) <C(f)?
s(f) < bs(f) < D(f) < bs(f)?
C(f) < s(f)bs(f)
bs(f) < 2deg(f)

D(f) < deg(f)*bs(f) < 2deg(f)*

Table 12.1 Summary of notions introduced in this chapter and relations between them.
We only proved that D(f) < bs(f)*, but the stronger relation D(f) < bs(f)? is known
[BBCTt98].

2’ = aB»+1. Then By, 1 must be disjoint from By, Ba, ... By, which contradicts b = bs,(f).
|

The degree method

Recent work on decision tree lower bounds has used polynomial representations of Boolean
functions. Recall that a multilinear polynomial is a polynomial whose degree in each variable
is 1.

Definition 12.13 An n-variate polynomial p(z1,o,...,2,) over the reals represents f :
{0,1}" — {0,1} if p(z) = f(x) for all z € {0,1}".

The degree of f, denoted deg(f), is the degree of the multilinear polynomial that repre-
sents f. (Exercise 12.7 asks you to show that the multilinear polynomial representation is
unique, so deg(f) is well-defined.)

Example 12.14
The AND of n variables x1, o, ..., x, is represented by the multilinear polyno-
mial [];_, z; and OR is represented by 1 — [T\, (1 — ;).

The degree of AND and OR is n, and so is their decision tree complexity. In fact,
deg(f) < D(f) for very function f (see Exercise 12.7). A rough inequality in the other
direction is also known, though we omit the proof.

Theorem 12.15 1. bs(f) < 2-deg(f)

2. D(f) < deg(f)*bs(f) ¢

Table 12.1 contains summary of the various complexity measures introduced in this chapter.
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WHAT HAVE WE LEARNED?

e The decision tree complexity of a function f is the number of input bits that need
to be examined to determine f’s value. There are randomized and non-deterministic
variants of this notion.

e Unlike what we believe to hold in the Turing machine model, all notions of decision
tree complexity (deterministic, randomized, and non-deterministic) are polynomially
related to one another.

e Yao’s Min-Max Lemma reduces the task of proving worst-case bounds on probabilistic
algorithms to proving average-case bounds for deterministic algorithms.

e Other techniques to prove lower bounds on decision trees include the adversary

method, sensitivity and block sensitivity, and the degree method.

Chapter notes and history

Decision trees have been used to encode decisions in medicine and operations research since the early
days of computing. Pollack [Pol65] describes algorithm to transform decision trees into computer
program, minimizing either the total program size or the the running time (i.e., decision tree
complexity). Garey[Gar72] formally defined decision trees and gave some algorithms to evaluate
them, while Hyafil and Rivest proved an early NP-completeness result for the task of finding an
optimal decision tree for a classification problem [HR76].

Buhrman and de Wolf [BAW02] give a good survey of decision tree complexity. The result that
the decision tree complexity of connectivity and many other problems is ('2‘) has motivated the
following conjecture (attributed variously to Anderaa, Karp, and Rosenberg): Fvery non-constant
monotone graph property f on m-vertex graphs satisfies D(f) = (7;). Here “monotone” means that
adding edges to the graph cannot make it go from having the property to not having the property
(e.g., connectivity). “Graph property” means that the property does not depend upon the vertex
indices (e.g., conditions such as connectivity, having a k-clique etc.. are graph properties while the
condition that vertex 1 and vertex 2 have an edge between them is not). This conjecture was shown
to be true by Rivest and Vuillemin [RV76] if m is a prime power, but in general it’s only known to
hold up to a constant factor [KSS83]; the proof uses topology and is excellently described in Du and
Ko [DKO00]. Another conjecture is that even the randomized decision tree complexity of monotone
graph properties is Q(n2) but here the best lower bound is close to n?/3 [Yao87, Kin88, Haj90]. See
[LY02] for a survey on these conjectures and the progress so far.

The notion of sensitivity was defined by Cook, Dwork and Reischuk [CDR86|, while the notion
of Block sensitivity was defined by Nisan [Nisg89], who also proved Theorem 12.12. In both cases
the motivation was to prove lower bounds for parallel random access machines.

Part 1 of Theorem 12.15 is due to Nisan and Szegedi [NS92]. Part 2 is due to Nisan and
Smolensky (unpublished), see [BAW02] for a proof.

The polynomial method for decision tree lower bounds is surveyed in [BAW02]. The method
can be used to lower bound randomized decision tree complexity (and more recently, quantum
decision tree complexity) but then one needs to consider polynomials that approzimately represent
the function.

Exercises

Suppose f is any function that depends on all its bits; in other words, for each bit position i there
is an input 2 such that f(x) # f(z*) (where z* denotes the string obtained by flipping =’s i*" bit).
Show that s(f) = Q(logn). rae1

For every k € N, let fi be the AND-OR function on strings of length 2F (see Example 12.2). Prove
that D(fx) = 2% e
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Let f be a function on n = k? variables that is the AND of & OR’s, each of disjoint k variables.
Prove that s(f) = bs(f) = C(f) = v/n,deg(f) = D(f) = n, R(f) > Q(n)

Let f be a function on n = k? variables that is the OR of k applications of g : {0, l}k — {0, 1},
each on a disjoint block of k variables, where g(z1,...,2x) = 1 if there exists ¢ € [k — 1] such that
x; = xi—1 = 1 and z; = 0 for all j # 4. Prove that s(f) = /n and bs(f) = n/2.

Show that for every f : {0,1}" — {0, 1}, there exists a unique multilinear polynomial that represents
I

Find the multilinear representation of the PARITY of n variables.

Show that deg(f) < D(f).
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Communication Complexity

Communication complexity concerns the following scenario. There are two players with
unlimited computational power, each of whom holds an n bit input, say = and y. Neither
knows the other’s input, and they wish to collaboratively compute f(x,y) where the function
£:{0,1}" x{0,1}" — {0, 1} is known to both. Furthermore, they had foreseen this situation
(e.g., one of the parties could be a spacecraft and the other could be the base station on
earth), so they had already —before they knew their inputs z, y— agreed upon a protocol
for communication.! The cost of this protocol is the number of bits communicated by the
players for the worst-case choice of inputs x, y.

Researchers have studied many modifications of the above basic scenario, including ran-
domized protocols, nondeterministic protocols, and average-case protocols. Furthermore,
lower bounds on communication complexity have uses in a variety of areas, including lower
bounds for parallel and VLSI computation, circuit lower bounds, polyhedral theory, data
structure lower bounds, and more. Communication complexity has been one of the most
successful models studied in complexity, as it strikes the elusive balance of being simple
enough so that we can actually prove strong lower bounds, but general enough so we can
obtain important applications of these lower bounds.

In this chapter we only give a very rudimentary introduction to this area. In Section 13.1
we provide the basic definition of two-party deterministic communication complexity. In Sec-
tion 13.2 we survey some of the techniques used to prove lower bounds for the communication
complexity of various functions, using the equality function (i.e., f(z,y) =1 iff z = y) as a
running example. In Section 13.3 we define multiparty communication complexity and show
a lower bound for the generalized inner product function. Section 13.4 contains a brief sur-
vey of other models studied, including probabilistic and non-deterministic communication
complexity. The chapter notes mention some of the many applications of communication
complexity.

Definition of two-party communication complexity.

Now we formalize the informal description of communication complexity given above:

1Do not confuse this situation with information theory, where an algorithm is given messages that have to
be transmitted over a noisy channel, and the goal is to transmit them robustly while minimizing the amount
of communication. In communication complexity the channel is not noisy and the players determine what
messages to send.
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Definition 13.1 (Two party communication complezity)

Let f : {0, 1}2" — {0,1} be a function. A t-round two party protocol II for computing f is
a sequence of ¢ functions Py,..., P, : {0,1}" — {0,1}". An execution of II on inputs z,y
involves the following: Player 1 computes p1 = P;(z) and sends p; to Player 2, Player 2
computes py = P»(y,p1) and sends py to Player 1, and so on. Generally, at the i round,
if ¢ is odd then Player 1 computes p; = P;(z,p1,...,pi—1) and sends p; to Player 2, and
similarly if 7 is even then Player 2 computes p; = P;(y, p1, - .., pi—1) and sends p; to Player 1.

The protocol I is valid if for every pair of inputs z, y, the last message sent (i.e., the message
pt) is equal to the value f(x,y). The communication complexity of 11 is the maximum number
of bits communicated (i.e., maximum of |py| + ...+ |p¢|) over all inputs z,y € {0,1}". The
commaunication complexity of f, denoted by C(f) is the minimum communication complexity
over all valid protocols II for f.

For every function, C'(f) < n 4+ 1 since the trivial protocol is for first player to commu-
nicate his entire input, whereupon the second player computes f(z,y) and communicates
that single bit to the first. Can they manage with less communication?

Example 13.2 (Parity)

Suppose the function f(z,y) is the parity of all the bits in x,y. Then C(f) = 2.
Clearly, C(f) > 2 since the function depends nontrivially on each input, so each
player must transmit at least one bit. The fact that C'(f) < 2 is demonstrated by
the following protocol: Player 1 sends the parity a of the bits in x and Player 2
sends a XOR’d with the parity of the bits in y.

Example 13.3 (Halting Problem)

Consider the function H:{0,1}" x {0,1}" — {0, 1} defined as follows. If z = 1"
and y = code(M) for some Turing Machine M such that M halts on = then
H(z,y) = 1 otherwise H(z,y) = 0. The communication complexity of this is
at most 2; first player sends a bit indicating whether or not his input is 1.
The second player then determines the answer and sends it to the first player.
This example emphasizes that the players have unbounded computational power,
including ability to solve the Halting Problem.

Sometimes students ask whether a player can communicate by not saying anything?
(After all, they have three options in each round: send a 0, or 1, or not send anything.) We
can regard such protocols as having one additional bit of communication, and analyze them
analogously.

Lower bound methods

Now we discuss methods for proving lower bounds on communication complexity. As a
running example in this chapter, we will use the equality function:

1 ifx=y
0 otherwise

EQ(z,y) = {

It turns out that almost no improvement is possible over the trivial n + 1 bit communi-
cation protocol for this function:
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Theorem 13.4 (Equality has linear communication complezity)
C(EQ)>n

We will prove Theorem 13.4 by several methods below.

The fooling set method

The first proof of Theorem 13.4 uses an idea called fooling sets. For any communication
protocol for any function, suppose x,z’ are any two different n-bit strings such that the
communication pattern (i.e., sequence of bits transmitted) is the same on the input pairs
(x,2) and (2/,2’). Then we claim that the players’ final answer must be the same on all
four input-pairs (x,x), (z,2'), (¢/,z), (2/,2"). This is shown by an easy induction. If player
1 communicates a bit in the first round, then by hypothesis this bit is the same whether
his input is z or z’. If player 2 communicates in the 2nd round, then his bit must also be
the same on both inputs  and 2’ since he receives the same bit from player 1. And so on.
We conclude that at the end, the players’ answer on (z,z) must agree with their answer on
(x,2").

To show C(EQ) > n it suffices to note that if a protocol exists whose complexity is at
most n — 1, then there are only 2"~! possible communication patterns. But there are 2"
choices for input pairs of the form (z,z) and so by the pigeonhole principle, there exist two
distinct pairs (2, 2) and (2/,2’) on which the communication pattern is the same. But then
the protocol must be incorrect, since EQ(z,2’) = 0 # EQ(x,«). This completes the proof.
This argument can be easily generalized as follows (Exercise 13.1):

Lemma 13.5 Say that a function f : {0,1}" x {0,1}" — {0,1} has a size M fooling set if
there is an M-sized subset S C {0,1}" x {0,1}" and a value b € {0,1} such that (1) for
every (z,y) € S, f(z,y) = b and (2) for every distinct (x,y), (z',y’) € S, either f(x,y’) #b

or f(',y) #b.
If f has a size-M fooling set then C(f) > log M. &

Example 13.6 (Disjointness)
Let z,y be interpreted as characteristic vectors of subsets of {1,2,...,n}. Let
DISJ(z,y) = 1 if these two subsets are disjoint, otherwise DISJ(z,y) = 0. As
a corollary of Lemma 13.5 we obtain that C'(DISJ) > n since the following 2"
pairs constitute a fooling set:

S:{(A,Z):AQ{I,Q,...,n}}.

The tiling method

The tiling method for lower bounds takes a more global view of the function f. Consider
the matrix of f, denoted M (f), which is a 2™ x 2™ matrix whose (z,y)’th entry is the value
f(z,y) (see Figure 13.1.) We visualize the communication protocol in terms of this matrix.
A combinatorial rectangle (or just rectangle for short) in the matrix M is a submatrix of M
that corresponds to entries in A x B where A C {0,1}", B C {0,1}", we say that A x B is
monochromatic if for all  in A and y in B, M, , is the same. If the protocol begins with the
first player sending a bit, then M (f) partitions into two rectangles of the type Ay x {0,1}",
Ay x{0,1}", where A, is the subset of the input for which the first player communicates the
bit b. Notice, Ag U A; = {0,1}". If the next bit is sent by the second player, then each of
the two rectangles above is further partitioned into two smaller rectangles depending upon
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Player 2's string

000 001 010 011 100 101 110 111

000 1
001 1 N
» 1 U
o11 1

Player 1's

string 100 MmN\ 1

101

110

111

Figure 13.1 Matrix M(f) for the equality function when the inputs to the players have 3
bits. The numbers in the matrix are values of f.

what this bit was. Finally, if the total number of bits communicated is k then the matrix
gets partitioned into 2% rectangles. Note that each rectangle in the partition corresponds
to a subset of input pairs for which the communication pattern thus far has been identical.
(See Figure 13.2 for an example.) When the protocol stops, the value of f is determined by
the sequence of bits sent by the two players, and thus must be the same for all pairs =,y in
that rectangle. Thus the set of all communication patterns must lead to a partition of the
matrix into monochromatic rectangles.

Player 2's string

000 001 010 011 100 101 110 111

o || Q0 0

Player 1's
string 100

o | 10 1 0

110

111

Figure 13.2 Two-way communication matrix after two steps. The large number labels are
the concatenation of the bit sent by the first player with the bit sent by the second player.

Definition 13.7 A monochromatic tiling of M (f) is a partition of M ( f) into disjoint monochro-
matic rectangles. We denote by x(f) the minimum number of rectangles in any monochro-
matic tiling of M (f). O

We have the following connection to communication complexity.

Theorem 13.8 (Tiling and communication complezity [AUYS3])
logy X(f) < C(f) < 16(logy x(f))*.

PROOF: The first inequality follows from our above discussion, namely, if f has communi-
cation complexity k then it has a monochromatic tiling with at most 2 rectangles. The
second inequality is left as Exercise 13.5. B
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The following observation shows that for every function f whose communication com-
plexity can be lower bounded using the fooling set method, the communication complexity
can also be lower bounded by the tiling method. Hence the latter method subsumes the
former.

Lemma 13.9 If f has a fooling set with m pairs, then x(f) > m. O

PROOF: If (21,y1) and (z2, y2) are two of the pairs in the fooling set, then they cannot be in
a monochromatic rectangle since not all of (z1,y1), (z2,92), (21, y2), (z2,y1) have the same
f value. R

The rank method

Now we introduce an algebraic method to lower bound x(f) (and hence the communication
complexity of f). Recall the notion of rank of a square matrix: the size of the largest subset
of rows that are linearly independent. The following lemma (left as Exercise 13.6) gives an
equivalent characterization of the rank:

Lemma 13.10 The rank of an n x n matrix M over a field IF, denoted by rank(M), is the
minimum value of ¢ such that M can be expressed as

where each B; is an n X n matrix of rank 1. &

Note that 0, 1 are elements of every field, so we can compute the rank of a binary matrix
over any field we like. The choice of field can be crucial; see Exercise 13.10.

Observing that every monochromatic rectangle can be viewed (by filling out entries
outside the rectangle with 0’s) as a matrix of rank at most 1 , we obtain the following
theorem:

Theorem 13.11 For every function f, x(f) > rank(M(f)). O

Example 13.12

The matrix for the equality function is simply the identity matrix, and hence
rank(M (Eq)) = 2. Thus, C(FEQ) > log x(FQ) > n, yielding another proof of
Theorem 13.4.

The discrepancy method

For this method it is convenient to transform f into a +1-valued function by using the map
b (=1)® (ie., 0 — +1,1 +— —1. Thus M(f) will also be a +1 matrix. We defined the
discrepancy of a rectangle A x B in a 2™ x 2™ matrix M to be

1
5o Z M,,| .

r€A,yeB

The discrepancy of the matrix M(f), denoted by Disc(f), is the maximum discrepancy
among all rectangles. The following easy lemma relates it to x(f).

1

Lemma 13.13 x(f) > Disc([)’
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PrOOF: If x(f) < K then there exists a monochromatic rectangle having at least 22" /K
entries. Such a rectangle will have discrepancy at least 1/K. B

Lemma 13.13 can be very loose. For the equality function, the discrepancy is at least
1—27" (namely, the discrepancy of the entire matrix), which would only give a lower bound
of 2 for x(f). However, x(f) is at least 2", as already noted.

Now we describe a method to upper bound the discrepancy using eigenvalues.

Lemma 13.14 (Eigenvalue bound) For any real matrix M, the discrepancy of a rectangle
A x B is at most Apaz(M)\/]|A||B|/2%", where Ao (M) is the magnitude of the largest
eigenvalue of M. &

PROOF: Let 15 € R?" denote the characteristic vectors of a subset S C {0,1}" (i.e., the 2"
coordinate of 15 is equal to 1 if x € S and to 0 otherwise). Note ||1s[|, = /> _,cq 1% = /[S].
_qf
Note also that for every A, B C {0,1}", > ) cp My y =1, M1p.
The discrepancy of the rectangle A x B is

1 1 1
2W]:‘:AJ\41B S 22_n/\mam(M) ‘1TA]~B‘ S 22_n/\ma;ﬂ(M) \V/ |A| |B|7

where the last inequality uses Cauchy-Schwartz. Bl

Example 13.15

The mod 2 inner product function defined as f(z,y) =2 ©y = >, z;y;(mod2)
has been encountered a few times in this book. To bound its discrepancy, let
N be the pml matrix corresponding to f (i.e., My, = (—1)*®¥). It is easily
checked that every two distinct rows (columns) of N are orthogonal, every row
has f5 norm 2/2, and that N7 = N. Thus we conclude that N? = 2] where
I is the unit matrix. Hence every eigenvalue is either +2"/2 or —2"/2, and
thus Lemma 13.14 implies that the discrepancy of a rectangle A x B is at most
2737/2, /|A[|B| and the overall discrepancy is at most 2~"/2 (since |A|,|B| <
2M).

A technique for upper bounding the discrepancy

We describe an upper bound technique for the discrepancy that will later be useful also in
the multiparty setting (Section 13.3). As in Section 13.2.4, we assume that f is a +1-valued
function. We define the following quantity:

Definition 13.16 £(f) = Ea; 45,61, Hi:1,2 Hj:l,2 flai, bj)] . &

Note that £(f) can be computed, like the rank, in time polynomial in the size of the
matrix M(f). By contrast, the definition of discrepancy involves a maximization over all
possible subsets A, B, and a naive algorithm for computing it would take time exponential
in the size of M (f). (Indeed, the discrepancy is NP-hard to compute exactly, though it can
be approximated efficiently— see the chapter notes.) The following Lemma relates these
two quantities.

Lemma 13.17
Disc(f) < E(f)"/*.
PROOF: We need to show that for every rectangle A x B,
4

EN =z || D flab)

acAbeB
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Let g, h the characteristic functions of A and B respectively. (That is g(a) equals 1 ifa € A
and 0 otherwise; h(b) equals 1 if b € B and 0 otherwise.) Then, the right hand side is simply

(Eapeqoy2[f(a,b)g(a)h(b)])". But,

g('f) - a1l-,Ea2 b1I,Eb2 H H f(ai,bj)

~ £ | (Elrtart) ) ]
> B |t atee) (Elra b)) ] (using g(a) < 1)

= E (E[f(al,b)g(al)f(azvb)g(az)o]

V

> (B [E[f(al,b)g(al)f(az,b)g(az)]]>2 (using E[X?] > E[X?)

ap,az |b

- (5| et o))

4
> ( E[f(a, b)g(a)h(b)]) . (repeating previous steps)

a,b
|

Exercise 13.12 asks you to derive a lower bound for the inner product function using this
technique. We will see another example in Section 13.3.

Comparison of the lower bound methods

The tiling argument is the strongest lower bound technique, since bounds on rank, dis-
crepancy and fooling sets imply a bound on x(f), and hence can never prove better lower
bounds than the tiling argument. Also, as Theorem 13.10, log x(f) fully characterizes the
communication complexity of f up to a constant factor. The rank and fooling set methods
are incomparable, meaning that each can be stronger than the other for some function.
However, if we ignore constant factors, the rank method is always at least as strong as
the fooling set method (see Exercise 13.8). Also, we can separate the power of these lower
bound arguments. For instance, we know functions for which a polynomial gap exists be-
tween log x(f) and logrank(M(f)). However, the following conjecture (we only state one
form of it) says that rank is in fact optimal up to a polynomial factor.

Conjecture 13.18 (log rank conjecture)
There is a constant ¢ > 1 such that C(f) = O(log(rank(M(f)))¢) for all f and all input
sizes n, where rank is taken over the reals.

Of course, the difficult part of the above conjecture is to show that low rank implies
a low-complexity protocol for f. Though we are still far from proving this, Nisan and
Wigderson have shown that at least low rank implies low value of 1/Disc(f).

Theorem 13.19 ([NW94]) 1/Disc(f) = O(rank(f)3/?). &

Multiparty communication complexity

There is more than one way to generalize communication complexity to a multiplayer setting.
The most interesting model turns out to be the “number on the forehead” model: each player
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has a string on his head which everybody else can see but he cannot. That is, there are
k players and k strings z1,...,x5, and Player i gets all the strings except for z;. The
players are interested in computing a value f(z1,w2,...,z;) where f: ({0,1}")* — {0,1}
is some fixed function. As in the 2-player case, the k players have an agreed-upon protocol
for communication (which was decided before they were given their strings), and all their
communication is posted on a “public blackboard” that all of them can see (the protocol
also determines the order in which the players write on the blackboard). The last message
sent should contain (or at least easily determine) the value f(z1,...,z)) of the function on
the inputs. By analogy with the 2-player case, we denote by Ci(f) the number of bits that
must be exchanged by the best protocol. Note that it is at most n + 1, since it suffices for
any j # i to write x; on the blackboard, at which point the ith player knows all k strings
and can determine and publish f(x1,...,xg).

Example 13.20
Consider computing the function

n
flar, w2, 23) = @D maj(z1i, vi, 23:)
i=1

in the 3-party model where x1, 2,23 are n bit strings. The communication
complexity of this function is 3: each player counts the number of i’s such that
she can determine the majority of x1;, x2;, x3; by examining the bits available to
her. She writes the parity of this number on the blackboard, and the final answer
is the parity of the players’ bits. This protocol is correct because the majority
for each row is known by either 1 or 3 players, and both are odd numbers.

Example 13.21 (Generalized Inner Product)
The generalized inner product function GIP}, ,, maps nk bits to 1 bit as follows

n k
f(xl,...wk):@/\xji. (1)

i=1 j=1

Notice, for k = 2 this reduces to the mod 2 inner product of Example 13.15.

For the 2-player model we introduced the notion of a monochromatic rectangle in order
to prove lower bounds. Specifically, a communication protocol can be viewed as a way of
partitioning the matrix M (f): if the protocol exchanges ¢ bits, then the matrix is partitioned
into 2¢ rectangles, all of which must be monochromatic if the protocol is valid.

The corresponding notion in the k-party case is a cylinder intersection. A cylinder in di-

mension i is a subset S of the inputs such that if (z1,...,z;) € Sthen (z1,..., 21,2}, Tiy1, ...

S for all o} also. A cylinder intersection is N¥_,T; where T; is a cylinder in dimension i.
Since player ’s communication does not depend upon z;, it can be viewed as partitioning
the set of inputs according to cylinders in dimension i. Thus we conclude that at the end of
the protocol, the cube {0, 1}"k is partitioned using cylinder intersections, and if the proto-
col communicates ¢ bits, then the partition consists of at most 2° monochromatic cylinder
intersections. Thus we have proved:

Lemma 13.22 If every partition of M(f) into monochromatic cylinder intersections re-
quires at least R cylinder intersections, then the k-party communication complexity is
at least [logy R], where M(f) is the k-dimensional table whose (z1,...,xs)" entry is

flz, ... xp). O

axk) S
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Discrepancy-based lower bound

In this section, we will assume as in our earlier discussion of discrepancy that the range of
the function f is {—1,1}. We define the k-party discrepancy of f by analogy to the 2-party
case

Disc(f):imqu Z flar,az, ... ak),

onk
(a1,a2,...,a)ET
where T' ranges over all cylinder intersections.
To upper bound the discrepancy we introduce the k-party analogue of £(f). Let a (k,n)-

cube be (multi) subset D of {0, 1}"* of 2% points of the form {a1, a}} x {az, ab}x - -x {ay, apt,
where each a;,a) € {0,1}". We define

&)= E [Hf(a)]-

(k,n) cube La€D

Notice that the definition of £(f) for the 2-party case is recovered when k = 2. The next
lemma is also an easy generalization.

Lemma 13.23
Disc(f) < (E(f)"/*".

The proof is analogous to the proof of Lemma 13.17 and is left as Exercise 13.14. The
only difference is that we need to repeat the basic step of that proof k times instead of 2
times.

Now we can prove a lower bound for the Generalized Inner Product (GIP) function.
Note that since we changed the range to {—1,1}, this function is now defined as

GIPk,n(x17x27"'axk) = (_1)21371 ngkwji (2)

(we can omit the reduction modulo 2 since (—1)" = (—1)™ ™04 2) for every m).

Theorem 13.24 (Lower bound for generalized inner product )
The function GI Py, has k-party communication complexity Q(n/4%).

PROOF: By Lemma 13.23 it suffices to upper bound £(GIPy,,). Using (2) we see that for
every k,n,

GIP/CJL(.”L‘l, e ,.’L‘k) = HGIPk,l(l'l,ia P ,.’L‘;@,i) .
i=1

where we define GIP; 1 (z1,...,xz1) = (=1)li<c @ Thus

E(GIPy,,) = ]I:E) [H ﬁ GIPg ()],

(k,n)-cube a€D i=1

where for a vector a = (ay,...,ax) in ({0,1}")*, a; denotes the k bit string A1y s Qi
But because each coordinate is chosen independently, the right hand side is equal to

11 E [[] GIP:1(a)] = E(GIP:1)".

i=1 (k,1) cube a€C

But £(GIP; 1) < 1—27% Indeed a random (k,1)-cube C = {a1,a}} x --- x {ax,a}} has
probability 27% to satisfy the event E that for every i the pair (a;,a}) is either (0,1) or

(0,1). But since GIP;1(a) = —1 if and only if a is the all ones vector, if E happens then
there is exactly one k-bit vector a in C' such that GIPy ;(a) = —1 and for all other vectors
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b € C, GIP;1(b) = 1. Hence if E happens then []
product is always at most 1,

acC GIPyi(a) = —1, and since this

E(GIPy)= E [J]GIPa(@)<27% —1+(1-2"F) - 1<1-27F,
(k, 1§cubc aeC

Hence E(GIP,,) < (1 — 27k < e=n/2" = 2-90/2") " Thus Disc(GIP,,,) < 2-2/4%),
implying that the k-party communication complexity of GI Py, is Q(n/4%).1

At the moment, we do not know of any explicit function f for which Cj(f) > n2-°%)
and in particular have no non-trivial lower bound for computing explicit functions f :
({0,1}")¥ — {0,1} for k > logn. Such a result could be useful to obtain new circuit lower
bounds; see Section 14.5.1.

13.4 Overview of other communication models

We outline some of the alternative settings in which communication complexity has been
studied.

Randomized protocols: One can consider randomized protocols for jointly computing
the value of a function. In such protocols, all players have access to a shared random
string r, which they use in determining their actions. We define R(f) to be the expected
number of bits communicated by the players. It turns out that randomization can
sometimes make a significant difference. For example, the equality function has a
randomized communication protocol with O(logn) complexity (see Exercise 13.15).
Nevertheless, there are techniques to prove lower bounds for such protocols as well.

Non-deterministic protocols: One can also define non-deterministic communication com-
plexity analogously to the definition of the class NP. In a non-deterministic protocol,
the players are both provided an additional third input z (“nondeterministic guess”)
of some length m that may depend on z,y. Apart from this guess, the protocol is
deterministic. We require that f(x,y) = 1 iff there exists a string z that makes the
players output 1, and the cost of the protocol is m plus the number of bits commu-
nicated. Once again, this can make a significant difference. For example both the
inequality and intersection functions (i.e., the negations of the functions EQ and the
function DISJ of Example 13.6) are easily shown to have logarithmic non-deterministic
communication complexity. Analogously to the definition of coNP, one can define the
co-non-deterministic communication complexity of f to be the non-deterministic com-
munication complexity of the function g(x,y) = 1 — f(z,y). Interestingly, it can
be shown that if f has non-deterministic communication complexity k and co-non-
deterministic communication complexity ¢, then C(f) < 10k¢, hence implying that in
the communication complexity world the intersection of the classes corresponding to
NP and coNP is equal to the class corresponding to P. In contrast, we believe that
P # NP N coNP.

Average case protocols: Just as we can study average-case complexity in the Turing
machine model, we can study communication complexity when the inputs are chosen
from a distribution D. This is defined as

Cp(f) = E  [Number of bits exchanged by P on z,y.]

min
‘Pprotocol for f (x,y)&, D

Computing a non Boolean function: Here the function’s output is not just {0,1} but
an m-bit number for some m. We discuss one example in the exercises.

Asymmetric communication: In this model the “cost” of communication is asymmetric:
there is some B such that it costs the first player B times as much to transmit a bit
than it does the second player. The goal is to minimize the total cost.
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Computing a relation: One can consider protocols that aim to hit a relation rather than
computing a function. That is, we have a relation R C {0,1}" x{0,1}" x {1,2,...,m}
and given x,y € {0,1}" the players seek to agree on any b € {1,2,...,m} such that
(x,y,b) € R. See Exercise 13.16.

These and many other settings are discussed in [KN97].

WHAT HAVE WE LEARNED?

e The communication complexity of a two input function f is the number of bits that a
player holding = and a player holding y need to exchange to compute f(z,y).

e Methods to lower bound the communication complexity of specific functions include
the fooling set, tiling, rank, and discrepancy methods. Using these methods we have
several examples of explicit functions on two n-bit inputs whose communication com-
plexity is at least n.

e The multiparty communication complexity of a k-input function f is the number of bits
that k parties need to exchange to compute f where the i*" player has all the inputs
except the i*" input. The best known lower bound of the k-party communication
complexity of an explicit function is of the form n/2~ %),

e Other models of communication complexity studies include probabilistic, non-
deterministic, and average-case communication complexity, and the communication
complexity of computing relations.

Chapter notes and history

This chapter barely scratched the surface of this self-contained mini-world within complexity theory;
an excellent and detailed treatment can be found in the book by Kushilevitz and Nisan [KN97]
(though it does not contain some of the newer results).

Communication complexity was first defined by Yao [Yao79]. Other early papers that founded
the field were Papadimitriou and Sipser [PS82], Mehlhorn and Schmidt [MS82] (who introduced the
rank lower bound) and Aho, Ullman and Yannakakis [AUY83].

We briefly discussed parallel computation in Chapter 6. Yao [Yao79] invented communication
complexity as a way to lower bound the running time of parallel computers for certain tasks. The
idea is that the input is distributed among many processors, and if we partition these processors
into two halves, we may lower bound the computation time by considering the amount of com-
munication that must necessarily happen between the two halves. A similar idea is used to prove
time/space lower bounds for VLSI circuits. For instance, in a VLSI chip that is an m x m grid, if
the communication complexity for a function is greater than ¢, then the time required to compute
it is at least ¢/m.

Communication complexity is also useful in time-space lower bounds for Turing machines (see
Exercise 13.4), and circuit lower bounds (see Chapter 14).

Data structures such as heaps, sorted arrays, lists etc. are basic objects in algorithm design.
Often, algorithm designers wish to determine if the data structure they have designed is the best
possible. Communication complexity lower bounds can be used to establish such results; see [KN97].
Streaming algorithms, in which an algorithm can only make one pass on a very large input, is
another area where communication complexity bounds imply various optimality and impossibility
results. Alon, Matias and Szegedy [AMS96] were the first to use communication complexity as a
tool for proving lower bounds on streaming algorithms. Ever since then, there has been extensive
research on both the application of communication complexity to lower bound problems in stream
algorithms, as well as in the development of new tools for communication complexity inspired
by the need to tighten existing gaps in streaming problems like frequency estimation (see e.g.,
[CSWYO01, BYJKS02]).

Yannakakis [Yan88] has shown how to use communication complexity lower bounds to prove
lower bounds on the size of polytopes representing NP-complete problems. Solving the open
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problem mentioned in Exercise 13.13 would prove a lower bound for the polytope representing
vertex cover.

Theorem 13.24 is due to Babai, Nisan and Szegedy, though our proof follows Raz’s simplification
[Raz00] of Chung’s proof [Chu90].

Computing the discrepancy (also known as the cut norm) of a given real matrix, and even
approximating it to an arbitrarily small constant is NP-hard. But it can be approximated using
semi-definite programming within some constant factor K¢; see Alon and Naor [AN04]. (K¢ is a
number between 1.5 and 1.8 that is known as Grothendieck’s constant; determining its exact value
is a major open problem.) The notion of discrepancy is known as regularity in the context of the
famous Szemerédi regularity lemma [Sze76]. In that context the parameter £(f) is analogous to the
fraction of 4-cycles in a given bipartite graph, which is again related to the regularity of the graph.
Multi-party discrepancy is related to the hypergraph regularity lemma, and the parameter £(f)
was used by Gowers [Gow07] in his proof of his lemma. A closely related group-theoretic parameter
(sometimes known as Gowers’s norm or Gowers’s uniformity) was used by Gowers [Gow01] in his
proof of the quantitatively improved version of Szemerédi’s Theorem guaranteeing the existence of
large arithmetic progression in dense sets. The book by Tau and Vu [TV06] contains an excellent
exposition of these topics.

Lovasz and Saks [LS88] have observed that the log rank conjecture is related to a conjecture
in discrete mathematics concerning chromatic number and rank of the adjacency matrix. The
original log rank conjecture was that C(f) = O(logrank(M(f))) but this was disproved by Raz
and Spieker [RS93]. A comparison of rank and fooling set arguments appears in the paper by
Dietzfelbinger, Hromkovic and Schnitger [DHS94].

In general, the complexity of computing C'(f) and Cj(f) is not understood, and this may have
some connection to why it is difficult in practice for us to prove lower bounds on these quantities.
It is also intriguing that the lower bounds that we do prove involve quantities such as rank and
fooling sets that are computable in polynomial time given M (f). (This is an instance of the more
widespread phenomenon of natural proofs encountered in Chapter 23.) In this regard, it is interest-
ing to note that the Discrepancy parameter is NP-hard to compute, but can be approximated within
a constant multiplicative factor in the 2-player setting by a polynomial-time algorithm [AN04]. By
contrast, computing the discrepancy in the 3-player setting seems very hard (though no hardness
results seem to appear anywhere); this may perhaps explain why lower bounds are so difficult in
the multiplayer setting.

One relatively recent area not mentioned in this chapter is quantum communication complexity,
where the parties may exchange quantum states with one another, see [Bra04]. Interestingly, some
techniques developed in this setting [She07] were used to obtain new Q(nl/(kfl)/fk) lower bounds
on the k-party communication complexity of the disjointness function [LS07, CA08], thus obtaining
a strong separation of non-deterministic and deterministic k-party communication complexity.

Exercises

Prove Lemma 13.5.

Prove that for every set S C {(x,z) : z € {0,1}"} and any communication protocol II that correctly
computes the equality function on n-bit inputs, there exists a pair of inputs in S on which IT uses
at least log |S] bits.

Prove that a single tape TM (one whose input tape is also its read /write work tape) takes at least
O(nz) to decide the language of palindromes PAL = {xy -+ x121 - Tp : T1, ..., 25 € {0,1}" ,n € N}
of Example 1.1. n461

If S(n) < n, show that a space S(n) TM takes at least Q(n?/S(n)) steps to decide the language
{z#x: 2 €{0,1}"}. nae

Prove the second inequality of Theorem 13.8. That is, prove that for every f:{0,1}" x {0,1}" —
{0,1}, C(f) = O(log” x(f))- maez

Prove Lemma 13.10. Hae2

Show that for almost all functions f:{0,1}" x {0,1}" — {0,1} the rank of M(f) over GF(2) is n

whereas the size of the largest fooling set is less than 3logn. This shows that the rank lowerbound
can be exponentially better than the fooling set lowerbound.

For two n X n matrices A, B, define its tensor product A ® B as the n? x n? matrix whose entries
are indexed by 4-tuples from [n]. Show that the rank of A ® B (over any field) is the product of
the ranks of A and B.
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Use the above fact to show that if a function f has a fooling set of size S then the rank method can
be used to give a lowerbound of at least 1/2[log S on the communication complexity. This shows
that the rank method is never much worse than the fooling set method.

Show that if M is 0/1 real matrix, and M’ is the 1 matrix obtained by applying the transformation
a — (—1)* to the entries of M, then rank(M) — 1 < rank(M’) < rank(M) + 1. mae2

Consider z,y as vectors over GF'(2)"™ and let f(z,y) be their inner product mod 2. Prove using the
rank method that the communication complexity is n. mae2

Let f:{0,1}" x{0,1}"™ — {0, 1} be such that all rows of M (f) are distinct. Show that C(f) > logn.

H462

Prove that £(IP) < 27", where IP is the inner product function. Derive a lower bound for the
communication complexity of IP. na4ez2

For any graph G with n vertices, consider the following communication problem: Player 1 receives
a clique C in G, and Player 2 receives an independent set I. They have to communicate in order
to determine |C' N I|. (Note that this number is either 0 or 1.) Prove an O(log?n) upper bound on
the communication complexity.

Can you improve your upper bound or prove a lower bound better than Q(logn)? (Open question)
Prove Lemma 13.23.

Prove that the randomized communication complexity of the equality function (i.e., R(EQ)) is at
most O(logn). (Note that a randomized communication protocol is allowed to output the wrong
answer with probability at most 1/3.) maez

(Karchmer-Wigderson games [KW88]) Consider the following problem about computing a relation.
Associate the following communication problem with any function f:{0,1}" — {0,1}. Player 1
gets any input x such that f(xz) = 0 and player 2 gets any input y such that f(y) = 1. They have to
communicate in order to determine a bit position ¢ such that x; # y;. Show that the communication
complexity of this problem is ezactly the minimum depth of any circuit that computes f. (The
maximum fan-in of each gate is 2.) w62

Use the previous question to show that computing the parity of n bits requires depth at least 2 log n.

Show that the following computational problem is in EXP: given the matrix M (f) of a Boolean
function, and a number K, decide if C(f) < K.

(Open since Yao [Yao79]) Can you show this problem is complete for some complexity class?

([AMS96]) A space-S(n) streaming algorithm is a space-S(n) TM M that makes only one sweep
of its input. This setup naturally occurs in many applications. Prove that there is no space-o(n)
streaming algorithm that solves the following problem: given a sequence 1, ..., Zm in [n], compute
the frequency of the most frequent element— max,cp, | {7 : ©: = x} |. Can you show that one cannot
even approzimate this problem to within a 3/4 factor in o(n)? Haez
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Chapter 14

Circuit lower bounds

Complezity theory’s Waterloo

In Chapter 2 we saw that if there is any NP language that cannot be computed by
polynomial-sized circuits then NP # P. Thus proving circuit lower bounds is a potential
approach for proving NP # P. Furthermore, there is a reason to hope that this is a viable
approach, since the Karp-Lipton Theorem (Theorem 6.19) shows that if the polynomial
hierarchy PH does not collapse then there erists an NP language that does not have
polynomial size circuits.

In the 1970s and 1980s, many researchers came to believe that proving circuit lower
bounds represented the best route to resolving P versus NP, since circuits seem easier to
reason about than Turing machines. The success in this endeavor was mixed.

Progress on general circuits has been almost nonexistent: a lower bound of n is trivial for
any function that depends on all its input bits. We are unable to prove even a superlinear
circuit lower bound for any NP problem— the best we can do after years of effort is 5n—o(n).

To make life (comparatively) easier, researchers focussed on restricted circuit classes, and
were successful in proving some good lower bounds. We prove some of the major results of
this area, specifically, for bounded depth circuits (Section 14.1), bounded depth circuits with
“counting” gates (Section 14.2), and monotone circuits (Section 14.3). In all these resuls we
have a notion of “progress” of the computation. We show that small circuits simply cannot
achieve the amount of progress necessary to compute the output from the inputs.

In Section 14.4 we indicate the questions at the frontier of circuit lower bound research,
where we are currently stuck. A researcher starting work on this area may wish to focus on
one of the open questions described there. Later in Chapter 23 we’ll explain some of the
inherent obstacles that need to be overcome to make further progress.

AC' and Hastad’s Switching Lemma

As we saw in Chapter 6, AC" is the class of languages computable by circuit families of
constant depth, polynomial size, and whose gates have unbounded fan-in. (We need to
allow the fan-in in the circuit to be unbounded since otherwise the output cannot receive
information from all input bits.)

We saw in Chapter 2 (Claim 2.13) that every Boolean function can be computed by a
circuit of depth 2 and exponential size— that is a CNF (or DNF) formula. When students
study digital logic design they learn how to do “circuit minimization” using Karnaugh
maps, and the circuits talked about in that context are depth 2 circuits. Indeed, it is easy
to show (using for example the Karnaugh map technique) that the minimum DNF or CNF
representing even very simple functions (such as the parity function described below) has to
be of exponential size. However, those techniques do not seem to generalize to even depth
3 circuits, not to mention the class AC" of (arbitrarily large) constant depth circuits of
polynomial size that we encountered in Section 6.7.1.



14.1.1

248 14 Circuit lower bounds

The burning question in the late 1970s was whether problems like Clique and TSP have
AC" circuits. In 1981, Furst, Saxe and Sipser and independently, Ajtai, showed that they
do not. In fact their lower bound applied to a much simpler function:

Theorem 14.1 ([FSSs1, Ajts3])
Let @ be the parity function. That is, for every x € {0,1}", @(z1,...,2n) = >0y 2
(mod 2). Then @ ¢ AC".

The main tool in the proof of Theorem 14.1 is the concept of random restrictions. Let
f be a function computable by a depth d circuit of polynomial size and suppose that we
choose at random a vast majority (i.e., n — n¢ for some constant ¢ > 0 depending on d) of
the input variables and fix each such variable to be either 0 or 1 at random. We’ll prove
that with positive probability, the function f subject to this restriction is constant (i.e., it
is either always zero or always one). Since the parity function cannot be made a constant
by fixing values to a subset of the variables, it follows that it cannot be computed by a
constant depth polynomial-sized circuit.

Hastad’s switching lemma

As in Section 2.3, we define a k-CNF to be a Boolean formula that is an AND of OR’s
where each OR involves at most k variables. Similarly, a k-DNF is an OR of AND’s where
each AND involves at most k variables. If f is a function on n variables and p is a partial
assignment (also known as a restriction) to the variables of f, then we denote by f|, the
restriction of f under p. That is, f|, takes an assignment 7 to the variables not assigned by
p as input, and outputs f applied to p and 7. Now we prove the main lemma about how a
circuit simplifies under a random restriction.

Lemma 14.2 (Hastad’s switching lemma [Has86])
Suppose f is expressible as a k-DNF, and let p denote a random restriction that assigns
random values to t randomly selected input bits. Then for every s > 2.

(n— t)k10)5/2

Pr[f|, is not expressible as s-CNF' | < ( (1)
P n

where f|, denotes the function f restricted to the partial assignment p.

We defer the proof of Lemma 14.2 to Section 14.1.2. We’ll typically use this lemma with
k,s constants and ¢ ~ n — y/n in which case the guaranteed bound on the probability will
be n™°¢ for some constant c¢. Note that by applying Lemma 14.2 to the function —f, we can
get the same result with the terms DNF and CNF interchanged.

Proving Theorem 14.1 from Lemma 14.2. Now we show how Hastad’s lemma implies
that parity is not in AC°. We start with any AC? circuit and assume that the circuit has
been simplified as follows (these simplifications are straightforward to do and are left as
Exercises 14.1 and 14.2): (a) All fanouts are 1; the circuit is a tree. (b) All not gates are
at the input level of the circuit; equivalently, the circuit has 2n input wires, with the last
n of them being the negations of the first n (c¢) The V and A gates alternate (i.e., at each
level of the tree there are either only V gates or only A gates). (d) The bottom level has A
gates of fan-in 1.

Let n® denote an upper bound on the number of gates in the circuit with the above
properties. We randomly restrict more and more variables, where each step with high
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probability will reduce the depth of the circuit by 1 and will keep the bottom level at a
constant fan-in. Specifically, letting n; stand for the number of unrestricted variables after
step i, we restrict n; — \/n; variables at step i + 1. Since ng = n, we have n; = n'/2". Let
k; = 10b2°. We'll show that with high probability, after the i*" restriction we’re left with a
depth-(d — i) circuit with at most k; fan-in in the bottom level. Indeed, suppose that the

bottom level contains A gates and the level above it contains V gates. The function each such
10 )ki+1/2

V gate computes is a k;-DNF and hence by Lemma 14.2, with probability 1— (W

)

which is at least 1 — 1/(10n") for large enough n, the function such a gate computes after
the i + 1! iteration will be expressible as a k;; 1-CNF. Since the top gate of a CNF formula
is A, we can merge those A gates with the A-gate above them, reducing the depth of the
circuit by one (see Figures 14.1 and 14.2). The symmetric reasoning applies in the case the
bottom level consists of V gates— in this case we use the lemma to transform the k;-CNF
of the level above it into a k;+1-DNF. Note that we apply the lemma at most once per each
of the at most n’ gates of the original circuit. By the union bound, with probability 9/10,
if we continue this process for d — 2 steps, we’ll get a depth two circuit with fan-in k = kg_o
at bottom level. That is, either a k-CNF or k-DNF formula. But such a formula can be
made constant by fixing at most k of the variables (e.g., in a DNF ensuring that the first
clause has value 1). Since the parity function is not constant under any restriction of less
than n variables, this proves Theorem 14.1. B

Figure 14.1 Circuit before Hastad switching transformation.

Figure 14.2 Circuit after Hastad switching transformation. Notice that the new layer of A
gates can be collapsed with the single A parent gate, to reduce the number of levels by one.

Proof of the switching lemma (Lemma 14.2)

Now we prove the Switching Lemma. The original proof was more complicated; this one is
due to Razborov.

We need a few definitions. Let a min-term of a function f be a partial assignment
to f’s variables that makes f output 1 irrespective of the assignments to the remaining
variables. Thus every clause in a k-DNF formula for f yields a size-k min-term of f. A
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maz-term is a partial assignment to f’s variables that makes f output 0 regardless of the
other variables. Thus every clause in a k-CNF formula for f yields a size-k max-term of
f. We will assume throughout that min-terms (respectively max-terms) are minimal, in the
sense that no assignment to a proper subset of the term’s variables would make the function
1 (respectively, 0). Thus a function that is not expressible as an s-CNF must have at least
one max-term of length s + 1 (see Exercise 14.3).

If 7 and p are restrictions on disjoint sets of variables, then we denote by mp their union
(i.e., if 7 assigns values to variables in S and p assigns values to variables in T then 7p
assigns value to variables in S U T according to either 7 or p respectively).

Let R; denote the set of all restrictions of ¢ variables, where ¢ > n/2. Note that
|R¢| = (7)2". Denote by B the set of bad restrictions— those p € R, for which f|, is
not expressible as an s-CNF. To prove the lemma we need to show that B is small, which
we do by showing a one-to-one mapping from it to the cartesian product of the set Ry of
restrictions to (t + s) variables and {0, 1} for some ¢ = O(slog k). This cartesian product
has size (,7,)2!T#20(loek) — (|1 )2!EO(). Hence the probability |B|/|Ry| of picking a bad
restriction is bounded by

(tis)2tl€0(5) o (tis)k"O(S) (2)
BE @
Intuitively, this ratio is small because k, s are thought of as constants and hence for ¢ that is
very close to n, it holds that (tfs) ~ (7)/n® and n® > k9, meaning that (2) is bounded
by n~*). Formally, we can prove the bound (1) using the approximation (M) = (ne/a)®;
we leave it as Exercise 14.4.

Thus to prove the lemma it suffices to describe the one-to-one mapping mentioned above.
Let us reason about a restriction p that is bad for the k-DNF formula f. None of the terms
of f becomes 1 under p, as otherwise f|, would be the constant function 1. Some terms
become 0, but not all, since that would also fix the overall output. In fact, since f|, is not
expressible as an s-CNF, it has some max-term, say 7, of length at least s. That is, 7 is
a restriction of some variables not set by p such that f|,. is the sero function but f|,. is
non-zero for every subrestriction 7’ of 7. The rough intuition is that the one-to-one mapping
will map p to po, where o is a suitably defined restriction of n’s variables, and hence po
restricts at least ¢t 4 s variables.

Order the terms of f in some arbitrary order t1,s,...,, and within the terms, order the
variables in some arbitrary order. By definition, pm is a restriction that sets f to 0, and
thus sets all terms of f to 0. We split 7 into m < s subrestrictions my, mo, . .. T, as follows.
Assume we have already found my,ma, ..., m_1 such that mymy---m_1 # m. Let ¢;, be the
first term in our ordering of terms that is not set to 0 under pmymo - -m;—1. Such a term
must exist since 7 is a max-term, and w7y - - - ;1 being a proper subset of it cannot be a
max-term. Let Y; be the variables of ¢;, that are set by 7 but are not set by pmy ---mi—1.
Since 7 sets the term ¢;, to 0, Y; cannot be empty. We define 7; to be the restriction that
coincides with 7 on Y; (and hence sets ¢;, to 0). We define o; to be the restriction of Y;
that keeps t;, from being 0 (such a restriction must exist since otherwise ¢;, would be 0).
This process continues until the first time where defining 7, as above would mean that
1, ..., Tm (and hence also 01,09, ...,0,,) together assign at least s variables. If necessary,
we trim 7, in some arbitrary way (i.e., make it assign values to fewer variables) so that
these restrictions together assign exactly s variables.

Our mapping will map p to (po102 ... 0m, ¢) where ¢ is an O(slog k) length string defined
below. To show that the mapping is one-to-one we need to show how to invert it uniquely.
This is harder than it looks since a priori there is no way to identify p from poios...op.
Indeed the purpose of the auxiliary information in ¢ is to help us do precisely that, as
described next.

Suppose we are given the assignment poi0s...0,. We can plug this assignment into f
and then infer which term serves as ¢;,: it is the first one to that is not fixed to 0. (It is the
first term not fixed to 0 by p, this property is maintained by o1, and o9, ..., 0, do not assign
values to variables in the term ¢;,.) Let s; be the number of variables in ;. The string ¢
will contain the number s, the indices in ¢;, of the variables in 7, and the values that m;
assigns to these variables. Note once we know ¢;, this information is sufficient to reconstruct
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1. Moreover, since each term has at most k variables, we only need O(s; log k) bits to store
this information. Having reconstructed 71, we can change the restriction poios--- 0y, to
P10 - - 0y and work out which term is t9: it is once again the first non-zero term under
the new restriction (note that m sets ¢;, to 0). The next O(sz log k) bits of ¢ will give us the
assignment o (where sy is the number of variables in m2). We continue this process until
we have processed all m terms and figured out what 7y, ...,m, are. Now we can “undo”
them to reconstruct p, thus demonstrating that the mapping is one-to-one. The total length
of auxiliary information required is O((s1 + s2+ ... + sm)logk) = O(slogk). B

Circuits With “Counters”’:ACC

After the AC® lower bounds of the previous section were proved, researchers were inspired
to extend them to more general classes of circuits. The simplest extension seemed to be to
allow gates other than V and A in the circuit, while continuing to insist that the depth stays
O(1). A simple example of such a gate is the parity gate, which computes the parity of its
input bits. Clearly, an AC circuit provided with even a single parity gate can compute
the parity function. But are there still other explicit functions that it cannot compute?
Razborov proved the first lower bound for such circuits using his Method of Approximations.
Smolensky later extended this work and clarified this method for the circuit class considered
here.

Definition 14.3 (ACC 0) For any integer m, the MOD,, gate outputs 0 if the sum of its
inputs is 0 modulo m, and 1 otherwise.

For integers my, ma,...,my > 1 we say a language L is in ACCO(my, ma,...,my) if there
exists a circuit family {C}, } with constant depth and polynomial size (and unbounded fan-in)
consisting of A, vV, = and MOD,,,,..., MOD,,, gates accepting L.

The class ACCO contains every language that is in ACCO(my,ma, ..., my) for some
k>0 and my,ma,...,mp > 1. &

Good lower bounds are known only when the circuit has one kind of modular gate.

Theorem 14.4 (Razborov-Smolensky [Raz87, Smo87])
For distinct primes p and ¢, the function MOD, is not in ACCO(q).

We exhibit the main idea of this result by proving that the parity function cannot be
computed by an ACCO0(3) circuit.
PROOF: The proof proceeds in two steps.

Step 1. In the first step, we show (using induction on h) that for any depth h MODs
circuit on n inputs and size S, there is a polynomial of degree (21)" which agrees with
the circuit on 1 — S/2! fraction of the inputs. If our circuit C' has depth d then we
set 20 = n'/2? to obtain a degree \/n polynomial that agrees with C' on 1 — S’/2"1/2d/2
fraction of inputs.

Step 2 We show that no polynomial of degree \/n agrees with M OD5 on more than 49/50
fraction of inputs.

Together, the two steps imply that S > 2”1/2d/2/50 for any depth d circuit computing
MODs, thus proving the theorem. Now we give details.
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Step 1. Consider a node v in the circuit at a depth A . (If v is an input node then

we say it has depth 0.) If g(z1, - ,x,) is the function computed at the node v, then we
desire a polynomial §(zy,--- ,x,) over GF(3) with degree (20)", such that g(z1,...,z,) =
g(x1, ..., zy) for “most” x1,...,2, € {0,1}. We will also ensure that on every input in

{0,1}" C GF(3), polynomial g takes a value in {0,1}. This is without loss of generality
since we can just square the polynomial. (Recall that the elements of GF(3) are 0,—1,1
and 02 =0,12=1and (-1)2=1.)

We construct the approximating polynomial by induction. When h = 0 the “gate” is an
input wire x;, which is exactly represented by the degree 1 polynomial x;. Suppose we have
constructed approximators for all nodes up to height h — 1 and g is a gate at height h.

1. If g is a NOT gate, then g = —f1 for some other gate f; that is at height h — 1 or less.
The inductive hypothesis gives an approximator fl for fi. Then we use g =1 — fl
as the approximator polynomial for g; this has the same degree as fl. Whenever
fi(x) = fi(z) then §(z) = g(z), so we introduced no new error.

2. If gis a MO D3 gate with inputs f1, fo, ..., fx, we use the approximation g = (Zf:o fi)?.
The degree increases to at most 2 x (21)"~1 < (21)". Since 0> = 0 and (—1)2 = 1, we
introduced no new error.

3. If g is an AND or an OR gate, we need to be more careful. We give the solution for
OR; De Morgan’s law allows AND gates to be handled similarly. Suppose g = V¥_, fi.
The naive approach would be to replace g with the polynomial 1 — Hfzo(l — fi).
Unfortunately, this multiplies the degree by k, the fan-in of the gate, which could
greatly exceed 2. The correct solution involves introducing some error.

If g = VE_ fi, then on input z, g(z) = 1 if and only if at least one of the f;’s outputs
1 on x. Furthermore, by the random subsum principle (see Claim A.31) if there is
some i such that f;(z) = 1, then the sum (over GF(3)) of a random subset of { f;(z)}
is nonzero with probability at least 1/2.

Randomly pick I subsets T3, - -+, Ty of {1,..., k}. Compute the / polynomials (3,4, )2, (X jer, )%
each of which has degree at most twice than that of the largest input polynomial. Com-

pute the OR of these [ terms using the naive approach. We get a polynomial of degree

at most 2/ x (21)"~! = (21)". For any =, the probability over the choice of subsets

that this polynomial differs from OR(f1, RN fk) is at most 2—1l So, by the probabilistic

method, there exists a choice for the [ subsets such that the probability over the choice

of 2 that this polynomial differs from OR(fy, - , fx) is at most ar- We use this choice

of the subsets to construct the approximator.

Applying the above procedure for each gate gives an approximator for the output gate
of degree (2()? where d is depth of the entire circuit. Each operation of replacing a gate by
its approximator polynomial introduces error on at most 1/2 fraction of all inputs, so the
overall fraction of erroneous inputs for the approximator is at most S/2'. (Note that errors
at different gates may affect each other. Error introduced at one gate may be canceled out
by errors at another gate higher up. Thus, we are being pessimistic in applying the union
bound to upper bound the probability that any of the approximator polynomials anywhere
in the circuit miscomputes.)

Step 2. Suppose that a polynomial f agrees with the M ODs function for all inputs in a
set G' C {0,1}". If the degree of f is bounded by /n, then we show that |G'| < (s5)2".

Consider the change of variables y; = 1+ 2; (mod 3). (Thus 0 — 1 and 1 — —1.) This
changes the input domain from {0,1} to {#1}". Under this transformation f is some other
polynomial, say say g(y1,¥2,---,Yn), which still has degree y/n. The set G’ is transformed
to a subset G of {£1}" of the same size on which g and the (transformed version) of MO D,
agree.

But it’s not hard to see that MODs is transformed to the function H?:l y;. Thus
9(y1,Y2, - - -, Yn), a degree y/n polynomial, agrees with II?" ;y; on G. This is decidedly odd,
and we show that any such G must be small. Specifically, let Fiz be the set of all functions
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S:G — {0,1,—1}. Clearly, |Fg| = 3I¢I, and we will show |Fg| < 3(%)?, whence Step 2
follows.

Lemma 14.5 For every S € Fg, there exists a polynomial gs which is a sum of monomials
ar [1;e; yi where |I| < § ++/n such that gs(x) = S(z) for all z € G. o

PROOF: Let §:GF(3)" — GF(3) be any function which agrees with S on G. Then S can
be written as a polynomial in the variables y;. However, we are only interested in its values
on (y1,Y2,...,yn) € {—1,1}", when y? = 1 and so every monomial IL;c;y!* has, without
loss of generality, r; < 1. Thus Sisa polynomial of degree at most n. Now consider any of
its monomial terms IT;cry; of degree |I| > n/2. We can rewrite it as

Wiery: = WG yillic ryi, (3)

which takes the same values as g(y1,¥2, - - ., yn);c7y; over G. Thus every monomial in S
can be replaced with a monomial with degree at most § + /n. B

To conclude, we bound the number of possible polynomials gg as in Lemma 14.5. This
number is at most 3 to the power of the number of possible monomials. But the number of
possible such monomials is

n/2+vn n
{Icl: |l <n/2+va}= > ()

" 7
i=0

Using bounds on the tail of the binomial distribution (or direct calculation) it can be shown
that this is less than é—g?". n

Lower bounds for monotone circuits

A Boolean circuit is monotone if it contains only AND and OR gates, and no NOT gates.
Such a circuit can only compute monotone functions, defined as follows.

Definition 14.6 For z,y € {0,1}", we denote x < y if every bit that is 1 in x is also 1 in y.
A function f:{0,1}" — {0,1} is monotone if f(z) < f(y) for every z < y. O

An alternative characterization is that f is monotone if for every input z, changing a
bit in « from 0 to 1 cannot change the value of the function from 1 to 0.

It is easy to check that every monotone circuit computes a monotone function, and every
monotone function can be computed by a (sufficiently large) monotone circuit. CLIQUE is a
monotone function since adding an edge to the graph cannot destroy any clique that existed
in it. It is therefore natural to try to show that CLIQUE cannot be computed by polynomial-
size monotone circuits. Razborov was first to prove such a result. This was soon improved
by Andreev and further improved by Alon and Boppana, who proved the following theorem.

Theorem 14.7 (Monotone-circuit lower bound for CLIQUE [Raz85a, And85, AB87])

Denote by CLIQUE ,, : {0,1} 2) {0, 1} be the function that on input an adjacency matrix
of an n-vertex graph G outputs 1 iff G contains a k-vertex clique.

There exists some constant € > 0 such that for every k < n'/*, there’s no monotone circuit

of size less than 2¢VF that computes CLIQUEy ,,.

Of course, we believe that the above theorem holds (at least roughly) for non monotone
circuits as well (i.e., that NP ¢ P/,.1,). In fact, one of the original hopes behind considering
monotone circuits was that there is some connection between monotone and nonmonotone
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circuit complexity. One plausible conjecture was that for every monotone function f, the
monotone circuit complexity of f is polynomially related to its general (non-monotone)
circuit complexity. Alas, this conjecture was refuted by Razborov ([Raz85b]), and in fact the
gap between the two complexities is now known to be exponential [Tar8g].

Proving Theorem 14.7

Clique indicators

To get some intuition as to why this theorem might be true, let’s show that CLIQUE, ,,
cannot be computed (or even approximated) by subexponential monotone circuits of a very
special form. For every S C [n], let Cg denote the function on {0, 1}(3) that outputs 1 on
a graph G iff the set S is a clique in G. We call Cg the clique indicator of S. Note that
CLIQUEy ,, = \/Sg[n],\S\:k Cs. We'll now prove that CLIQUEy ,, can’t be computed by an
OR of less than nVk/20 clique indicators.

Let Y be the following distribution on n-vertex graphs: choose a set K C [n] with |[K| =k
at random, and output the graph that has a clique on K and no other edges. Let A be the
following distribution on n-vertex graphs: choose a function ¢ : [n] — [k —1] at random, and
place an edge between w and v iff ¢(u) # c(v). With probability one, CLIQUE,, () =1
and CLIQUE,, ;(N) = 0. The fact that CLIQUE,, ; requires an OR of at least nVF/20 clique
indicators follows immediately from the following lemma:

Lemma 14.8 Let n be sufficiently large, k < n'/* and S C [n]. Then either Pr[Cs(N) =
1] >0.99 or Pr[Cs(Y) =1] < n—Vk/20 &

PROOF: Let ¢ = vk —1/10. If |S| < £ then by the birthday bound (see Example A.4), we
expect a random f : S — [k — 1] to have less than 0.01 collisions and hence by Markov’s
inequality the probability that f is one to one is at least 0.99. This implies that Pr[Cg(N) =
1] > 0.99.

If |S] > ¢ then Pr[Cg(Y) = 1] is equal to the probability that S C K for a random
K C [n] of size k. This probability is equal to (Z:f) / (Z) which, by the formula for the

‘
binomial coefficients, is less than (%) < 0T < g VE/20 (for sufficiently large n). B

Approximation by clique indicators.

Together with Lemma 14.8, the following lemma implies Theorem 14.7:

Lemma 14.9 Let C be a monotone circuit of size s < 2VF/2. Then, there exist sets
Si,..., Sy, withm < nV*/20 guch that

Gl;“ry[\_/ Cs,(G) = C(G)] >0.9 (4)
GlgﬂrN[\/ Cs,(G) < C(G)] >0.9 (5)
(6)

&

PROOF: Set £ = vk/10, p = 10v/klogn and m = (p — 1)/, Note that m < nV*¥/20. We
can think of the circuit C' as a sequence of s monotone functions fi, ..., fs from {0, 1}(3)
to {0,1} where each function fj is either the AND or OR of two functions fi/, fr for
E', k" <k or is the value of an input variable x,, for u,v € [n] (i.e., fx = Cgypy). The
function that C computes is fs. We'll show a sequence of functions fi, ..., fs such that
each function f; is (1) an OR of at most m clique indicators Cg,,...,Cg, with |[S;] < ¢
and (2) fi approzimates fi, in the sense that the two agree with good probabiity on inputs
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drawn from the distributions ) and N. (Thus conditions (4) and (5) are a special case of
this notion of approximation.) We call any function fj, satisfying (1) an (£, m)-function.

We construct the functions fl, R fs by induction. For 1 < k < s, if f is an input
variable then we let fi, = fi. If fr = fir V for then we let fi U frr and if f;C = [ A frr then
we let fis M frr, where the operations U, 1 will be defined below. We’ll prove that for every
f.9:{0, 1}(2) —{0,1} (a) if f and g are (m, £)-functions then so is f L g (resp. fMg) and
(b) Proe,y[fUg (G) < fVg (G)] < 1/(10s) (resp. Pree,y[fT1g (G) < FAg ()] < 1/(105)
and Prge v[fUg (G) > fvg (G)] <1/(10s) (vesp. Prge, y[fMg (G) < fAg (G)] < 1/(10s)).
The lemma will then follow by showing using the union bound that with probability > 0.9
the equations of Condition (b) hold for all f1,..., fs. We'll now describe the two operations
U, M. Condition (a) will follow from the definition of the operations, while Condition (b)
will require a proof.

The operation fUg. Let f,g be two (m,¢)-functions: that is f = \/;, Cg, and g =
\/;.n:1 Cr; (if f or g is the OR of less than m clique indicators we can add duplicate sets
to make the number m). Consider the function h = Cz, V ---V Cyg, ~where Z; = S; and
Zm+j =T for 1 <i,j < m. The function h is not an (m, £)-function since it is the OR of 2m
clique indicators. We make it into an (m, £)-function in the following way: as long as there
are more than m distinct sets, find p subsets Z;,, ..., Z; that are in a sunflower formation.
That is, there exists a set Z C [n] such that for every 1 < j,j" < p, Z;; N Zi, = Z. (The
name “sunflower” comes from viewing the sets Z;, \ Z,...,Z; \ Z as the petals of a sunflower
with center Z.) Replace the functions Cz, ,...,Cz, in the function h with the function Cz.
Once we obtain an (m, ¢)-function h’ we define f L g to be h'. We won’t get stuck because
of the following lemma (whose proof we defer):

Lemma 14.10 (Sunflower lemma [ER60]) Let Z be a collection of distinct sets each of car-
dinality at most £. If |Z| > (p — 1)%4! then there exist p sets Z1,...,Z, € Z and a set Z
such that Z; N Z; = Z for every 1 <1i,5 < p. O

The operation fMg. Let f,g be two (m,/)-functions: that is f = \/"; Cg, and g =
V2, Cr;. Let h be the function \/,, ., Cs,ur,. We perform the following steps on h: (1)
Dlscard any function Cz for |Z] > (. (2) Reduce the number of functions to m by applying
the sunflower lemma as above.

Proving Condition (b). To complete the proof of the lemma, we prove the following four
equations:

* Proey[fUg (G) < fvg (G)] <1/(10s).
IfZ C Z,...,Z, then for every i, Cz, (G) implies that Cz(G) and hence the operation
fUg can’t introduce any “false negatives”.

* Prge n[fUg (G) > fVg (G)] < 1/(10s).

We can introduce a “false positive” on a graph G only if when we replace the clique
indicators for a sunflower Z, ..., Z, with the clique indicator for the common intersec-
tion Z, it is the case that Cz(G) holds even though Cyz, (G) is false for every i. Recall
that we choose G €, N by choosing a random function ¢ : [n] — [k — 1] and adding
an edge for every two vertices u,v with ¢(u) # ¢(v). Thus, we get a false positive if
¢ is one-to-one on Z (we denote this event by B) but not one-to-one on Z; for every
1 < i < p (we denote these events by Ay,...,A,). We'll show that the intersection of
B and Ay, ..., A, happens with probability at most 277 which (by the choice of p) is
less than 1/(10m?s). Since we apply the reduction step at most m times the equation
will follow.

For every i, Pr[A;|B] < 1/2. Indeed, since |Z;| = ¢ < +/k — 1/10, the birthday bound
says that Pr[4;] < 1/2 and conditioning on having no collisions in Z only makes
this event less likely. Conditioned on B, the events Ay, ..., A, are independent, since
they depend on the values of ¢ on disjoint sets, and hence Pr[A; A--- A A, A B] <
Pr[A; A--- ANAp|B] = [T5, Pr[A,|B] < 277.
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* Prae y[fNg (G) < fAg (G)] < 1/(10s).
By the distributive law f A g =V, ;(Cs; A Cry). A graph G in the support of Y
consists of a clique over some set K. For such a graph Cg, A Cr; holds iff S;,T; C K
and thus Cg, A Cr; holds iff Cs,u7, holds. We can introduce a false negative when
we discard functions of the form Cz for |Z] > ¢, but by Lemma 14.8, for such sets
Z, Pr[Cz(Y) = 1] < n=V*/20 < 1/(10sm?). The equation follows since we discard at
most m? such sets.

* Prae n[fMg (G) > fAg (G)] < 1/(10s).
Since Cgyr implies both Cg and Cp, we can’t introduce false positives by moving
from f A g to \/i)j Cs,ur;. We can’t introduce false positives by discarding functions
from the OR. Thus, the only place where we can introduce false positives is where we
replace the clique indicators of a sunflower with the clique indicator of the common
intersection. We bound this probability in the same way as this was done for the L
operator.

Proof of the sunflower lemma (Lemma 14.10). The proof is by induction on ¢. The
case £ = 1 is trivial since distinct sets of size 1 must be disjoint (hence forming a sunflower
with center Z = (). For £ > 1 let M be a maximal subcollection of Z containing only
disjoint sets. We can assume that | M| < p since otherwise M is already a sufficiently large
sunflower. Because of M’s maximality for every Z € Z there exists © € UM = UpyemM
such that x € Z. Since | U M| < (p — 1)¢, by averaging there’s an © € UM that appears in
at least a m fraction of the sets in Z. Let Z1,..., Z; be the sets containing x, and note

that ¢ > (p — 1)*~1(¢ — 1)!. Thus, by induction there are p sets among the £ — 1-sized sets
Zi\A{z}, -+, Z; \ {z} that form a sunflower, adding back = we get the desired sunflower
among the original sets. Note that the statement (and proof) assume nothing about the
size of the universe the sets in Z live in. H

Circuit complexity: The frontier

Now we sketch the “frontier” of circuit lower bounds, namely, the dividing line between what
we can prove and what we cannot. Along the way we also define multi-party communication,
since it may prove useful for proving some new circuit lower bounds.

Circuit lower bounds using diagonalization

We already mentioned that the best lower bound on circuit size for an NP problem is
5n — o(n). For PH better lower bounds are known: Exercises 6.5-6.6 of Chapter 6 asked
you to show using diagonalization that for every k& > 0, some language in PH (in fact in
3%) requires circuits of size Q(n*). One imagines that classes “higher up” than PH should
have even harder languages. Thus a natural open question is:

Frontier 1: Does NEXP have languages that require super-polynomial size circuits?

If we go a little above NEXP, we can actually prove a super-polynomial lower bound:
we know that MAgxp ;{ P/, where MAEgxp is the set of languages accepted by a one
round proof system with an all powerful prover and an exponential time probabilistic verifier.
(This is the exponential time analog of the class MA defined in Section 8.2.) This follows
from the fact that if MAgxp C P/, then in particular PSPACE C P,,,,. However,
by IP = PSPACE (Theorem 8.19) in this case PSPACE = MA (the prover can send in
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one round the circuit for computing the prover strategy in the interactive proof). By simple
padding this implies that MAgxp equals the class of languages in exponential space, which
can be directly shown to not contain P/, using diagonalization. Interestingly, this lower
bound does not relativize— there is an oracle under which MANgxp C P/, [BFT9S].
(The result that IP = PSPACE used in the proof also does not relativize.)

Status of ACC versus P

The result that PARITY is not in ACO separates NC1 from ACO0. The next logical step
would be to separate ACCO from NC1. Less ambitiously, we would like to show even a
function in P or NP that is not in ACCO.

The Razborov-Smolenksy method seems to fail when we allow the circuit even two types
of modular gates, say MODs and MODs. In fact if we allow the bounded depth circuit
modular gates that do arithmetic mod ¢, when ¢ is not a prime —a prime power, to be
exact— we reach the limits of our knowledge. (The exercises ask you to figure out why the
proof of Theorem 14.4 does not seem to apply when the modulus is a composite number.)
To give one example, it is consistent with current knowledge that the CLIQUE function can
be computed by linear size circuits of constant depth consisting entirely of M ODg gates.
The problem seems to be that low-degree polynomials modulo m where m is composite are
surprisingly expressive [BBR92].

Frontier 2: Show CLIQUE is not in ACCO0(6).

Or even less ambitiously:

Frontier 2.1: Exhibit a language in NEXP that is not in ACCO0(6).

It is worth noting that thus far we are talking about non-uniform circuits (to which The-
orem 14.4 also applies). Stronger lower bounds are known for uniform circuits: Allender and
Gore [AG94] have shown that a decision version of the Permanent (and hence the Permanent
itself) requires exponential size “Dlogtime-uniform” ACCQO circuits. (A circuit family {C,, }
is Dlogtime uniform if there exists a deterministic Turing machine M that given a number
n and a pair of gates g, h determines in O(logn) time what types of gates g and h are and
whether g is h’s parent in C,,.)

But going back to non-uniform ACCO0, we wish to mention an alternative representation
of ACCO circuits that may be useful in further lower bounds. A symmetric gate is a gate
whose output depends only on the number of inputs that are 1. For example, majority and
mod gates are symmetric. Yao has shown that ACCO circuits can be simplified to give an
equivalent depth 2 circuits with a symmetric gate at the output (Figure 14.3). Beigel and
Tarui subsequently improved Yao’s result:

Theorem 14.11 ([Yao90, BT91]) If f € ACCO, then f can be computed by a depth 2 circuit
C with a symmetric gate with quasipolynomial (i.e., 9log” ™) fan-in at the output level and
A gates that has polylogarithmic fan-in at the input level. &

We will revisit this theorem below in Section 14.5.1.

Linear Circuits With Logarithmic Depth

When we restrict circuits to have bounded fan-in we necessarily need to allow them to have
nonconstant (in fact, Q(logn)) depth to allow the output to depend on all bits of the input.
With this in mind, the simplest interesting circuit class seems to be the class of bounded
fan-in circuits having O(n) size and O(logn) depth.

Frontier 3: Find an explicit n-bit Boolean function that cannot be computed by circuits
of O(n) size and O(logn) depth.
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Figure 14.3 The depth 2 circuit with a symmetric output gate from Theorem 14.11.

Polylogarithmic Fan-In

Subfrontier: Find such a function which is not Boolean and maps {0,1}" to {0,1}".

(Note that by counting one can easily show that some function on n bits requires su-
perpolynomial size circuits and hence bounded fan-in circuits with more than logarithmic
depth; see the exercises in Chapter 6. Hence we want to show this for an explicit function,
e.g. CLIQUE.)

Valiant thought about this problem in the '70s. His initial candidates for lower bounds
boiled down to showing that a certain graph called a superconcentrator needed to have
superlinear size. He failed to prove this and instead ended up proving that such supercon-
centrators do exist! However a side product of Valiant’s investigations was the following
important lemma concerning depth-reduction for such circuits.

Lemma 14.12 ([Val75a]) In any directed acyclic graph with m edges and depth d, there is
a set S of km/ [logd| edges whose removal leaves the graph with depth at most d/2%~1. ¢

PROOF SKETCH: Sort the graphs into d levels such that if w© is an edge, then u is at a
lower level than v. Letting ¢ = [log d], we can use the binary basis to represent every level
as an (-bit string. We label each edge u v with the number i € [(] such that i is the most
significant bit in which the levels of u and v differ. We let I be the k “least popular” labels,
and let S be the set of edges that are labeled with a number in I. Clearly, |S| < km/Z.
Moreover, it can be shown that every path longer than 2=% < d/2F~! must contain more
than ¢ — k distinct labels (and hence an edge in S). We leave completing this proof as
Exercise 14.10. B

This lemma can be applied as follows. Suppose we have an O(n)-size circuit C' of depth
clogn with n inputs {z1,...,2,} and n outputs {y1,...,yn,}, and suppose 2¥ ~ c/e where
e > 0 is arbitrarily small. One can find O(n/loglogn) edges in C' whose removal results in
a circuit with depth at most elogn. But then, since C' has bounded fan-in, we must have
that each output 7; is connected to at most 2¢1°8™ = n¢ inputs. So each output y; in C is
completely determined by n® inputs and the values of the removed wires. So the removed
wires somehow allowed some kind of “compression” of the truth tables of y1,y2,...,y,. We
do not expect this to be the case for any reasonably complex function. Surprisingly, no one
has been able to exhibit an explicit function for which this is not the case.

Branching Programs
Just as circuits are used to investigate time requirements of Turing Machines, branching

programs are used to as a combinatorial tool to investigate space complexity. A branching
program on n input variables z1, xa, ..., z, is a directed acyclic graph all of whose nodes of
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nonzero outdegree are labeled with a variable z;. It has two nodes of outdegree zero that
are labeled with an output value, ACCEPT or REJECT. The edges are labeled by 0 or 1.
One of the nodes is designated the start node. A setting of the input variables determines
a way to walk on the directed graph from the start node to an output node. At any step, if
the current node has label z;, then we take an edge going out of the node whose label agrees
with the value of x;. The branching program is deterministic if every nonoutput node has
exactly one 0 edge and one 1 edge leaving it. Otherwise it is nondeterministic. The size of
the branching program is the number of nodes in it. The branching program complexity of
a language is defined analogously with circuit complexity. Sometimes one may also require
the branching program to be leveled, whereby nodes are arranged into a sequence of levels
with edges going only from one level to the next. Then the width is the size of the largest
level.

Theorem 14.13 If S(n) > logn and L € SPACE(S(n)) then L has branching program
complexity at most ¢°™) for some constant ¢ > 1. &

PROOF: Essentially mimics our proof of Theorem 4.2 that SPACE(S(n)) € DTIME(20(5(™)),
The nodes of the branching program correspond to the configurations of the space-bounded
TM, and it is labeled with variable x; if the configuration shows the TM reading the ith bit

in the input. W

A similar result holds for NDTMs and nondeterministic branching program complexity.

Frontier 4 : Describe a problem in P (or even NP) that requires branching programs of
size greater than n!*¢ for some constant ¢ > 0.

There is some evidence that branching programs are more powerful than one may imag-
ine. For instance, branching programs of constant width (reminiscent of a TM with O(1)
bits of memory) seem inherently weak. Thus the next result is unexpected.

Theorem 14.14 (Barrington [Bar86]) A language has polynomial size, width 5 branching
programs iff it is in NC1. &

14.5 Approaches using communication complexity

Here we outline a concrete approach (rather, a setting) in which better lower bounds may
lead to a resolution of some of the questions above. It relates to generalizations of com-
munication complexity introduced earlier. Mostly we will use multiparty communication
complezity, (in the “number on the forehead model” defined in Section 13.3), though Sec-
tion 14.5.4 will use communication complexity of a relation.

14.5.1 Connection to ACCQO0 Circuits

Suppose f(x1,...,x,) has a depth-2 circuit with a symmetric gate with fan-in N at the
output and A gates with fan-in k& — 1 at the input level (see Figure 2). Razborov and
Wigderson [RW93] observed that in this case f’s k-party communication complexity is at
most klog N. To see this, first partition the A gates amongst the players. Each bit is not
known to exactly one player, so the input bits of each A gate are known to at least one
player; assign the gate to such a player with the lowest index. Players then broadcast how
many of their gates output 1. Since this number has at most log IV bits, the claim follows.

Our hope is to employ this connection with communication complexity in conjunction
with Theorem 14.11 to obtain lower bounds on ACCO circuits. For example, note that
by Theorem 13.24, there is an explicit n-bit function requiring Q(n/4%) k-party communi-
cation complexity, and hence this function cannot by computed by a polynomial (or even
quasipolynomial) depth-2 circuit as above with bottom fan-in & — 1 < logn/4. However,
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Figure 14.4 1f f is computed by the above circuit, then f has a k-party protocol of com-
plexity klog N.

k-1 Fan-In

this is not enough to obtain a lower bound on ACCO circuits since we need to show that k
is not polylogarithmic to employ Theorem 14.11. But a k-party communication complexity
lower bound of Q(n/ poly(k)) for say the CLIQUE function would close Frontier 2.

Connection to Linear Size Logarithmic Depth Circuits

Suppose that f : {0,1}" x {0,1}!°8™ — {0, 1}" has bounded fan-in circuits of linear size and
logarithmic depth. If f(x,j,i) denotes the ith bit of f(x,j), then Valiant’s Lemma implies
that f(z,7,47) has a simultaneous 3-party protocol—that is, a protocol where all parties
speak only once and write simultaneously on the blackboard (i.e., non-adaptively)—where,

e (z,j) player sends O(n/loglogn) bits;

e (z,4) player sends n° bits; and

e (i,j) player sends O(logn) bits.
So, if we can show that a function does not have such a protocol, then we would have a lower
bound for the function on linear size logarithmic depth circuits with bounded fan-in. For
example even the simple function f(z,j,i) = ;g:, where j @1 is the bitwise xor, not known

to have such a protocol, and hence may not be computable by a bounded fan-in circuit of
linear size and logarithmic depth.

Connection to branching programs

The notion of multiparty communication complexity (at least the “number on the forehead”
model discussed here) was invented by Chandra, Furst and Lipton [CFL83] for proving lower
bounds on branching programs, especially the constant-width branching programs discussed
in Section 14.4.4.

Karchmer-Wigderson communication games and depth lower bounds

The result that PARITY is not in ACO separates NC1 from ACO0. The next step would be
to separate NC2 from NCI1. (Of course, ignoring for the moment the issue of separating
ACCO from NC1.) Karchmer and Wigderson described how communication complexity
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can be used to prove lower bounds on the minimum depth required to compute a function.
They showed the following result about monotone circuits, whose proof we omit:

Theorem 14.15 ([Kwss]) Detecting whether a graph has a perfect matching is impossible
for monotone circuits of bounded fan-in and depth O(logn) &

However, we do describe the basic Karchmer-Wigderson game used to prove the above
result, since it is relevant for nonmonotone circuits as well. For a function f:{0,1}" — {0, 1}
this game is defined as follows.

There are two players, ZERO and ONE. Player ZERO receives an input x such that
f(x) =0 and Player ONE receives an input y such that f(y) = 1. They communicate bits
to each other, until they can agree on an i € {1,2,...,n} such that x; # y;.

The mechanism of communication is defined similarly as in Chapter 13; there is a protocol
that the players agree on in advance before receiving the input. Note that the key difference
from the scenario in Chapter 13 is that the final answer is not a single bit, and furthermore,
the final answer is not unique (the number of acceptable answers is equal to the number of
bits that z,y differ on). Sometimes this is described as computing a relation. The relation
in this case consists of all triples (z,y,¢) such that f(z) =0, f(y) =1 and z; # y;.

We define Cxw (f) as the communication complexity of the above game; namely, the
maximum over all z € f~1(0),y € f~1(1) of the number of bits exchanged in computing
an answer for x,y. The next theorem shows that this parameter has a suprising alternative
characterization. It assumes that circuits don’t have NOT gates and instead the NOT gates
are pushed down to the inputs using De Morgan’s law. (In other words, the inputs may
be viewed as x1,x2,...,Zn, T1, T2, . .., Ty.) Furthermore, AND and OR gates have fan-in 2.
(None of these assumptions is crucial and affects the theorem only marginally.)

Theorem 14.16 ([Kwss]) Cxw (f) is exactly the minimum depth among all circuits that
compute f. &

PRroOOF: First, we show that if there is a circuit C of depth K that computes f then
Crxw(f) < K. Each player has a copy of C, and evaluates this circuit on the input given
to him. Of course, it evaluates to 0 for Player ZERO and to 1 for Player ONE. Suppose
that the top gate is an OR. Then for Player ONE at least one of the two incoming wires
to this gate must be 1, and so in the first round, Player ONE sends one bit communicating
which of these wires it was. Note that this wire is 0 for Player ZERO. In the next round
the players focus on the gate that produced the value on this wire. (If the top gate is an
AND on the other hand, then in the first round Player ZERO speaks, conveying which of
the two incoming wires was 0. This wire will be 1 for Player ONE.) This goes on and
the players go deeper down the circuit, always maintaining the invariant that the current
gate has value 1 for Player ONE and 0 for Player ZERO. Finally, after at most K steps
they arrive at an input bit. According to the invariant being maintained, this bit must be
1 for Player ONE and 0 for Player ZERO. Thus they both know an index ¢ that is a valid
answer.

For the reverse direction, we have to show that if Cxw (f) = K then there is a circuit
of depth at most K that computes f. We prove a more general result. For any two disjoint
nonempty subsets A C f71(0) and B C f~1(1), let Cxw (A, B) be the communication
complexity of the Karchmer-Wigderson game when x always lies in A and y in B. We show
that there is a circuit of depth C'xw (A, B) that outputs 0 on every input from A and 1 on
every input from B. Such a circuit is called a distinguisher for sets A, B. The proof is by
induction on K = Ckw (A, B). The base case K = 0 is trivial since this means that the
players do not have to communicate at all to agree on an answer, say i. Hence x; # y; for
all x € A,y € B, which implies that either (a) z; = 0 for every € A and y; = 1 for every
y € Bor (b) z; =1 for every x € A and y; = 0 for every y € B. In case (a) we can use the
depth 0 circuit ; and in case (b) we can use the circuit Z; to distinguish A, B.

For the inductive step, suppose Cxw (A, B) = K, and at the first round Player ZERO
speaks. Then A is the disjoint union of two sets Ag, A1 where Ay is the set of inputs in
A for which Player ZERO sends bit b. Then Cxw(Ap, B) < K — 1 for each b, and the
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inductive hypothesis gives a circuit C}, of depth at most K — 1 that distinguishes A;, B. We
claim that Cy A C; distinguishes A, B (note that it has depth at most K). The reason is
that Co(y) = C1(y) = 1 for every y € B whereas for every z € A, Co(z) A Ci(x) = 0 since
if x € Ay then Cy(xz) =0. B

Thus we have the following frontier.

Frontier 5: Show that some function f in P (or even NEXP!) has Crw (f) = Q(lognloglogn).

Karchmer, Raz, and Wigderson [KRW95] describe a candidate function that may work.
It uses the fact that a function on k bits has a truth table of size 2%, and that most functions
on k bits are hard (e.g., require circuit size (2*/k), circuit depth Q(k), etc.). They define
the function by assuming that part of the n-bit input encodes a very hard function, and this
hard function is applied to the remaining input in a “tree” fashion.

For any function ¢:{0,1}* — {0,1} and s > 1 define g°: {0, 1}ks — {0,1} as follows. If
s =1 then ¢°® = g. Otherwise express the input = € {0, 1}ks as x1xox3 - - - T where each
x; € {0, 1}ks " and define

9% @1z - ay) = g(g°C D (@1)g” ™ (@) -+ "7 ().

Clearly, if g can be computed in depth d then g°® can be computed in depth sd. But, it
seems hard to reduce the depth beyond that for an arbitrary choice of the function g.
Now we describe the KRW candidate function f:{0,1}" — {0,1}. Let k = |log % | and

s be the largest integer such that k* < n/2 (thus s = 9(102318;0271)') For any n-bit input z,

let g, be the function whose truth table is the first 2% bits of 2. Let z|2 be the string of the
last k° bits of . Then

f(x) = g2°(xl2).

According to our earlier intuition, when the first 2* bits of x represent a really hard
function —as they must for many choices of the input— then ¢g2°(z|2) should require depth

O(sk) = Q(lggg{zgn). Of course, proving this seems difficult.

This type of complexity questions, whereby we are asking whether s instances of a
problem are s times as hard as a single instance, are called direct sum questions. Similar
questions have been studied in a variety of computational models, and sometimes counter-
intuitive results have been proven for them. One example is that by a counting argument
there exists an n x n matrix A over {0,1}, such that the smallest circuit computing the
linear function v — Av for v € {0,1}" is of size Q(n?). However, computing this function
on n independent instances vy, ...,v, can be done significantly faster than n3 steps using
fast matrix multiplication [Str69] (the current record is roughly O(n?-3%) [cW90]).

Chapter notes and history

Shannon defined circuit complexity, including monotone circuit complexity, in 1949. The topic was
studied in Russia since the 1950s. (See Trakhtenbrot [Tra84] for some references.) Savage [Sav72]
was the first to observe the close relationship between time required to decide a language on a TM
and its circuit complexity, and to suggest circuit lower bounds as a way to separate complexity
classes. A burst of results in the 1980s, such as the separation of P from ACO0 [FSS81, Ajt83]
and Razborov’s separation of monotone NP from monotone P/, [Raz85a] raised hopes that a
resolution of P versus NP might be near. These hopes were dashed by Razborov himself [Raz89]
when he showed that his method of approximations was unlikely to apply to nonmonotone circuits.
Later Razborov and Rudich [RR94] formalized what they called natural proofs to show that all lines
of attack considered up to that point were unlikely to work. (See Chapter 23.)

Our presentation in Sections 14.2 and 14.3 closely follows that in Boppana and Sipser’s excellent
survey of circuit complexity [BS90], which is still useful and current 15 years later. (It omits
discussion of lower bounds on algebraic circuits; see [Raz04a] for a recent result.)
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Hastad’s switching lemma [H&s86] is a stronger form of results from [FSS81, Ajt83, Yao85].
The Razborov-Smolensky method of using approximator polynomials is from [Raz87], strength-
ened in [Smo87]. Valiant’s observations about superlinear circuit lower bounds are from a 1975
paper [Val75b] and an unpublished manuscript—lack of progress on this basic problem gets more
embarrassing by the day!.

The 5n — o(n) lower bound on general circuits is by Iwama and Morizumi, improving on a
previous 4.5n — o(n) by Lachish and Raz; the full version of both results is [ILMRO5].

Barrington’s theorem is a good example of how researchers’ intuition about circuits can some-
times be grossly incorrect. His theorem can be seen as a surprisingly simple way to compute
NCI1 functions, and has proved very influential in cryptography research (e.g., see [GMWS87, Kil88,
AIKO04]).

Exercises

14.1 Suppose that f is computable by an ACP circuit C of depth d and size S. Prove that f is computable
by an ACY circuit C’ of size < 10S and depth d that does not contain NOT gates but instead has
n additional inputs that are negations of the original n inputs. mae2

14.2 Suppose that f is computable by an ACP circuit C of depth d and size S. Prove that f is computable
by an ACP circuit C’ of size < (105)? and depth d where each gate has fan-out 1.

14.3 Prove that if all the max-terms of a Boolean function f are of size at most s then f is expressible
as an s-CNF. naez

14.4 Prove that for t > n/2, (
(Section 14.1.2). mae2

14.5 Show that ACCO0 C NCI1.

14.6 Identify reasons why the Razborov-Smolensky method does not work when the circuit has MOD
m gates, where m is a composite number.

) < (7;)(@(717;15))k Use this to complete the proof of Lemma 14.2

14.7 Show that representing the OR of n variables x1,x2, ..., 2, exactly with a polynomial over GF(q)
where ¢ is prime requires degree exactly n.

14.8 The Karchmer-Wigderson game can be used to prove upper bounds, and not just lower bounds.
Show using this game that PARITY and MAJORITY are in NC1.

14.9 Show that for every constant ¢, if a language is computed by a polynomial-size branching program
of width ¢ then it is in NCI1.

14.10 Complete the full proof of Valiant’s Lemma (Lemma 14.12). 462
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Chapter 15

Proof complexity

In defining NP we sought to capture the phenomenon whereby if certain statements (such as
”this Boolean formula is satisfiable”) are true, then there is a short certificate to this effect.
Furthermore, we introduced the conjecture NP # coNP according to which certain types of
statements (such as “this Boolean formula is not satisfiable”) do not have short certificates
in general. In this short chapter we are interested in investigating this phenomenon more
carefully, especially in settings where the existence of a short certificate is not obvious.

We start in Section 15.1 with some motivating examples. In Section 15.2 we formalize the
notion of a proof system using a very simple example, propositional proofs. We also prove
exponential lower bounds for the resolution proof system using two methods that serve as
simple examples of important techniques in proof complexity. Section 15.3 surveys some
other proof systems that have been studied, and lower bounds known for them. Finally,
Section 15.4 presents some metamathematical ruminations about whether proof complexity
can shed some light on the difficulty of resolving P versus NP. There is a related, equally
interesting question of finding short certificates assuming they exist, which we will mostly
ignore except in the chapter notes.

Some examples

We start with a few examples, many of which were studied before the notion of computa-
tional complexity arose. Consider the following computational tasks:

1. Infeasibility of systems of linear inequalities. You are given a system

(a1, x) < by
(a,x) < by

(am,x) < b,

where a; € R™ and b; € R for every i¢. Prove that there is no non-negative vector
x € R" satisfying this system.

2. Infeasibility of systems of linear inequalities over the integers. The same
setting as above, but with each a; € Z™ and b; € Z, and the solution x also has to be
in Z".

3. Infeasibility of systems of polynomial equations. Given a system of polynomials
g1(x1, @, xn), 92(21, 2, . T )y e ooy G (21, T2, . . ., @y) With Teal coefficients, cer-
tify that the system g;(x1,...,2,) =0 Vi=1,2,...,m has no common solution.

4. Contradictions. Given a Boolean formula ¢ in n variables, certify that it has no
satisfying assignment.
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5. Nontrivial words in a finitely presented group. We are given a group over finite

set S (meaning every group element is a word of the form s{'s5> - - - s where n is any
positive integer and each p; is an integer, possibly negative). The group is implicitly
described by means of a finite set of relations of the type s{'s5? - - sf» = e where each

si €S, p; € Z and e € S is some designated identity element. These relations imply
that given a word w, it is nontrivial to know whether it simplifies to e by repeatedly
applying the relations. If a word can be simplified to e, then this has a finite proof,
namely, the sequence of relations that need to be applied during the simplification.
We are interested in the problem where, given a word w, we have to certify that it is
not equal to e (i.e., is nontrivial).

In each of the above examples, there seems to be no obvious short certificate. But
sometimes such intuition can lead us astray. For instance, an old result called Farkas’
Lemma (see Note 19.4) implies that there is indeed a short certificate for the first problem:
the system is infeasible if and only if there is a combination of the inequalities that leads
to a clear contradiction, in other words a y € R™ such that > " ; y;a; is non-negative but
>, yibi < 0. The “size” of such a certificate y is small— it can be represented using a
number of bits that is polynomial in the number of bits used to represent the inputs a;’s
and b;’s.

The next three problems are coNP-hard (and the word problem is undecidable in general
and coNP-hard for specific groups; see chapter notes) and therefore if NP # coNP we do
not expect short proofs for them. Nevertheless, it is interesting to study the length of the
shortest proof for specific instances of the problem. For instance, certifying unsatisfiability
(or the computationally equivalent problem of certifying tautologyhood, see Example 2.21) is
a natural problem that arises in fields such as artificial intelligence and formal verification of
computer systems and circuits, and there we are interested in the tautologyhood of a single,
carefully constructed, instance. In fact, in our metamathematical musings in Section 15.4
you can read about a single formula (or family of formulae) related to the P versus NP
question that we complexity theorists suspect is a tautology but whose tautologyhood seems
difficult to prove. Similarly, in algebraic geometry, one may be interested in understanding
the behavior of a single system of equations.

We note that there are languages / decision problems that are unconditionally proven
not to have short certificates, namely languages outside of coNP (such languages can be
shown to exist by diagonalization arguments a la Chapter 3). Also, a famous language that
does not have any finite certificate at all is the language of true statements on the natural
numbers in first-order logic (this is the famous Goddel’s incompleteness theorem, see also
Section 1.5.2).

Propositional calculus and resolution

Propositional logic formalizes simple modes of reasoning that have been used in philosophy
for two millennia. The basic object of study is the Boolean formula, and an important
task is to verify that a given formula is a tautology (i.e., evaluates to TRUE on every
assignment). For convenience, we study the complement problem of verifying that the
formula is a contradiction, namely, has no satisfying assignment. We also study this only for
CNF formulae as we know how to reduce the general case to it. Specifically, to verify that
a general Boolean formula v is a tautology, it suffices to use our reduction from Chapter 2
to transform —) into an equivalent CNF formula (with additional new variables) and verify
that this new formula is a contradiction.

Now we describe a simple procedure called resolution that tries to produce a proof that
a given formula is a contradiction. Let ¢ be a CNF formula on the variables z1, o, ..., Zy.
Denote by C1,...,C,, the clauses of p. For j =m +1,m + 2, ..., the resolution procedure
derives a new clause C; that is implied by the previous clauses Ci,...,Cj_; using the
following rule: suppose that there is a variable z; and clauses C, D such that both the clause
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x; V C and —x; V D have been derived before (i.e., are in {C1,...,Cj_1}) then C; = C'V D.
Note that the procedure may have many possible choices for C; (the proof will be the
sequence of choices). The procedure ends when it had derived an obvious contradiction:
namely both the clause x; and —x; for some variable x;. The resolution refutation for ¢ is a
sequence of clauses C1, ..., Cr containing such an obvious contradiction where C,...,C),
are ¢’s clauses and for j > i, C; is derived from C,...,C;_; using the above rule. Clearly,
every clause we derive is in fact logically implied by the previous ones, and hence resolution
is a sound proof system: there exists a resolution refutation for ¢ only if = is a tautology. It
is also not to hard to show that resolution is complete: if = is a tautology then there exists
a resolution refutation for ¢ of length 2°(™ (see Exercise 15.1). The question is whether
there are formulae that require such long refutations, or perhaps every unsatisfiable formula
has a polynomial-sized refutation? Since Boolean unsatisfiability is coNP-complete and we
believe that NP # colNP, we believe that the answer is NO. Below we prove this is indeed
the case.

Lower bounds using the bottleneck method

We describe Haken’s bottleneck technique [Hak85] for proving lower bounds for resolution.
We will also encounter a version of the restriction idea used earlier in Chapter 6 in context
of circuit lower bounds.

The tautology considered here is elementary yet basic to mathematics: the pigeonhole
principle. Colloquially, it says that if you put m pigeons into n holes, where m > n, then at
least one hole must contain more than one pigeon. Mathematically, it asserts that there is
a no one-to-one and onto mapping from a set of size m to a set of size n. Though obvious,
this principle underlies many nontrivial facts in mathematics such as the famous Minkowski
convez body theorem. (See Chapter notes.) Thus it is plausible that a simple proof system
like resolution would have trouble proving it succinctly, and this is what we will show.

The propositional version of the pigeonhole principle consists of the class of tautologies
{=PHP;] : m > n} where —PHP]" is the following CNF formula. For integers i < m,j <n
its has a variable P;; which is supposed to be assigned “true” if pigeon ¢ is assigned to hole
j. It has m + (g‘)n < m? clauses, which are: (i) Pi1 V PiaV -V P, for each i < m; this
says that the ith pigeon is assigned to some hole. (ii) =P, V —P;, for eachi,j < m, k <n;
this says that the kth hole does not get both the ith pigeon and the jth pigeon. Thus the
entire ensemble of this type of clauses says that no hole gets more than 1 pigeon.

Theorem 15.1 For any n > 2, every resolution refutation of ~PHP,,_, has size at least
on/20 O

We will think of “testing” a resolution refutation by assigning values to the variables.
A correct refutation proof shows that no assignment can satisfy all the given set of clauses.
We will allow refutations that only show that a certain subset of assignments cannot satisfy
all the given clauses. In other words, when we substitute any assignment from this subset,
the refutation correctly derives a contradiction. Of course, the refutation may not correctly
derive a contradiction for other assignments, so this is a relazation of the notion of resolution
refutation. However, any lower bound for this relaxed notion will also apply to the general
notion.

The set of assignments used to test the proof will correspond to mappings that map
n — 1 pigeons to n — 1 holes in a one-to-one manner, and leave the nth pigeon unassigned.
In other words, the set of variable P;;’s that are assigned true constitute a matching of size
n — 1. There are n! such assignments. If the index of the sole unassigned pigeon is k we call
such an assignment k-critical.

Restricting attention to these test assignments simplifies notation since it allows us to
make all clauses in the refutation monotone; i.e., with no occurence of negated variables.
For each clause C' in the resolution proof we produce a monotonized clause by replacing each
negated variable = P;; by V;.; Fj;. It is easily checked that after this transformation the new
clause is satisfied by exactly the same set of test assignments as the original clause. The
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next lemma (proved a little later) shows that monotonized refutations must always have a
large clause.

Lemma 15.2 Every monotonized resolution refutation of ~PHP]._; must contain a clause
with at least 2n?/9 variables. &

With this lemma in hand, we can prove Theorem 15.1 as follows. Say that a clause in
the monotonized refutation is large if it has at least n?/10 variables. Let L be the number
of large clauses; the lemma shows that L > 1. We define a restriction to some of the
variables that greatly reduces the number of large clauses. Averaging shows that there
exists a variable P;; that occurs in 1/10th of the large clauses. Define a restriction such that
P;=1and P, jy =0 for j/ # j and Py ; = 0 for i’ # i. This sets all monotonized clauses
containing F;; to true, which means they can be removed from the resolution proof, leaving
at most 9/10L large clauses. Furthermore, one pigeon and one hole have been removed from
contention by the restriction, so we now have a monotonized resolution proof for ﬂPHPZ:%.
Repeating the above step ¢ = log;q/9 L times, we obtain a monotonized resolution proof
for —=PHP”~% , that has no large clauses. The proof of Theorem 15.1 follows by noticing
that if L < 2"/2% then t < n/3, and so we have a monotonized refutation of ~PHP~!_,
with no clauses larger than n?/10, which is less than 2(n —t)2/9, and hence this contradicts
Lemma 15.2.

Thus to finish we prove Lemma 15.2.

PROOF: (or Lemma 15.2) For each clause C' in the monotonized refutation, let

witness(C) = {i : there is an i-critical assignment « falsifying C'} .

The complezity of a clause, comp(C) is |witness(C')|. Whenever resolution is used to
derive clause C' from two previous clauses C’,C” then comp(C) < comp(C”’) + comp(C”)
since every assignment that falsifies C' must falsify at least one of C’,C”. Thus if C is the
first clause in the refutation whose complexity is > n/3 then n/3 < comp(C) < 2n/3. We
show that such a C' is large.

Specifically, we show that if comp(C') = ¢ then it contains at least t(n—t) distinct literals,
which finishes the proof since t(n — t) > 2n?/9.

Fix any i € witness(C) and any i-critical assignment « that falsifies C. For each j &
witness(C), consider the j-critical assignment o’ obtained by replacing ¢ by j, that is, if
a mapped pigeon j to hole I then o’ leaves j unassigned and maps pigeon 7 to [. Since
j & witness(C), this j-critical assignment must satisfy C' and so we conclude that C' contains
variable P; ;. By running over all n — ¢ values of j ¢ witness(C) and using the same «, we
conclude that C' contains n — t distinct variables of the type P;;. Repeating the argument
for all ¢ € witness(C') we conclude that C' contains at least ¢(n — t) variables. B

Interpolation theorems and exponential lower bounds for resolution

This section describes a different lower bound technique for resolution that uses an inter-
esting idea called the Interpolation theorem, which plays a role in several results in proof
complexity. The lower bound is also interesting because it uses the lower bound for mono-
tone circuits presented in Chapter 14.

First we state the classical (and folklore) version of the Interpolation theorem.

Theorem 15.3 (Classical Interpolation Theorem)

Let ¢ be a Boolean formula over the variables x1,...,x,,21,...,2; and ¥ be a Boolean
formula over the variablesyi, ..., Ym, 21, - - - , 2. (i-€., the only shared variables are z1, . .., zi,).
Then o(x,z) V¢ (y, z) is a tautology if and only if there is a Boolean function I : {0,1}* —
{0,1} such that

(p(x,2) V I(2)) A (P(y,2) V ~I(2)) (1)

is a tautology.
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PROOF: It’s easy to see that (1) is a tautology if and only if for every fixed assignment ¢
to the z variables, either p(x,c) is a tautology or ¢ (y,c) is a tautology. Hence if (1) is a
tautology then ¢(x,z) V 1(y,z) is true for every assignment to the x,y,z variables. On
the other hand, suppose that there exists some ¢ such that neither ¢(x,¢) nor ¥(y, c) are
tautologies. Then this means that there are assignments a to the x variables, b to the y
variables such that both ¢(a,c) and ¥ (b, c) are false. B

We will be interested in a quantitative version of this interpolation theorem that up-
per bounds the computational complexity of I(-) as a function of the size of the smallest
resolution refutation.

Theorem 15.4 (Feasible Interpolation Theorem,)
In the setting of Theorem 15.3, if = (p(x,z) V (y,z)) has a resolution refutation of size S,
then a function I satisfying the conditions of Theorem 15.3 can be computed by a circuit of
size O(S?).

Furthermore, if the variables of z appear only positively in 1 then the above circuit is
monotone (i.e., contains no negation gates). Similarly, if the variables of z appear only
negatively in o then the above circuit is monotone.

PROOF: To prove Theorem 15.4 we need to show how, given a length S resolution refutation
for =(p(x,2) V ¥ (y,z)) and an assignment ¢ to the z variables, we can find in O(S?) time
a value I(c) € {0,1} such that if I(c) = 0 then (x,c) is a tautology and if I(c) = 1 then
P(y,c) is a tautology. (We know such a value I(c) exists by Theorem 15.3.)

We show, given C, how to compute I(c) by transforming the size S refutation of
—=(p(x,2) V(y,2z)) to a refutation of either —p(x,c) or a refutation of —)(y,c) in O(S?)
time. To do so, we “strip” the clauses of z variables. That is, we will transform the resolution
refutation C1,...,Cs of ~(p(x,2) V 1(y,z)) into a valid resolution refutation C1,...,Cs
of =(p(x,¢) V 1(y,c)) where each clause C; contains either only x variables (i.e., is an
“x-clause”) or only y variables (is a y-clause). But since at the end we derive either a
contradiction of the form z; and —x; or a contradiction of the form y; and —y; it follows
that we have proven that one of these formulae is a contradiction.

We do this transformation step by step. Suppose that clauses C, . . ., Cj 1 were “stripped”
of the z variables to obtain Cj, ... 07 1, and furthermore each clause C contains either
only x-variables or only y-variables, and we now want to “strip” the clause C;. It is of
the form C'V D where the clauses C' = w VvV C and D' = —w V D were derived before for
some variable w. By induction we have already obtained “stripped” versions C' and D of
the clauses C’, D’. If C and D are both x-clauses then w must be an x-variable contained
in both! and we proceed with the usual resolution rule. The case that C and D are both
y-clauses is treated similarly. If C is a x-clause and D is a y-clause, then w must be a
z-variable, in which case we can just plug in its value according to ¢ and so if w = 0 we
simply set C C and if w =1 we set C’ D. We think of the last step in the refutation
as containing the empty clause (the one obtamed by using the resolution rule on two clauses
containing a variable w and its negation —w). Since the clause C'j is implied by C; for every
7, the last step in the stripped version contains the empty clause as well, implying that the
new resolution proof also ends with an obvious contradiction.

We leave the “furthermore” part as Exercise 15.2. However, note that it makes sense
since if the z variables appear only positively in ¢ then changing any of them from zero
to one is only more likely to make ¢ a tautology and hence change I(c) from zero to one.
Similar reasoning applies if the z variables only appear negatively in . B

We are now ready to prove a lower bound on resolution:

1We maintain the invariant that we never remove an x-variable from an x-clause or a y-variable from a
y-clause.
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Theorem 15.5 (Exponential resolution lower bound) )
There is a constant € such that if for every n € N we let ¢y, 1y, : {0, 1}O(n ) {0,1} be the
following Boolean functions:

e ¢, (x,z) = TRUE iff the string x represents a clique of size n'/* in the graph represented
by z.

e Y, (y,z) = TRUE iff the string y represents a proper n'/* — 1 coloring for the graph
represented by z.

Then, the smallest resolution refutation for ¢, (x,z) A ¥, (y,z) has size at least gen'/®

Note that because a graph with a k-clique has no k — 1 coloring, the formula ¢, (x,z) A
Y¥n(y,z) is indeed unsatisfiable. Also, it is not hard to express both ¢, and 1, as O(n?)-
sized CNF's such that ,, contains the z variables positively and 1),, contains them negatively
(Exercise 15.3).

Theorem 15.5 follows immediately from Theorem 15.4 and the proof of Theorem 14.7
that gave an exponential lower bound for the monotone circuit complexity of the clique
function. This is because that proof actually showed that for k < n'/%, there is no 20(Vk)_
sized monotone circuit that distinguishes between graphs having a k-clique and graphs whose
chromatic number is at most £k — 1. W

Other proof systems: a tour d’horizon

Now we briefly explain some other proof systems that have been considered. Several of these
are related to the computational problems we mentioned in Section 15.1.

Cutting Planes: This proof system addresses the problem of certifying infeasibility of
a set of linear inequalities with integer coefficients and variables. As mentioned in the
introduction, this problem is coNP-complete. For instance, given any 3CNF formula ¢ we
can represent it by such a set so that the formula is a contradiction iff this set is infeasible. To
do so, for each Boolean variable z; in ¢ put an integer variable X; satisfying 0 < X; <1 (in
other words, X; € {0,1}). For a clause z; Vx; Vx, write a linear inequality X; +X,+ X5 > 1.
(If any variable x; appears negated in the clause, use 1 — X; in the corresponding inequality.)

The cutting planes proof system, given an infeasible set of linear inequalities with integer
variables and coefficients, produces a proof of infeasibility by deriving the inequality 0 > 1
in a finite number of steps. It produces a sequence of inequalities I > 0,lo > 0,...Ip > 0
where the rth inequality is either (a) an inequality appearing in the linear system, (b)
aly, + Bl, > 0 where «, 3 are nonnegative integers and u, v < r, or (c) is derived from some
l,, for u < r using the following rule: if [,, has the form

n
Zaixi —b Z O,
=1

where the numbers a1, as, ..., a, have a greatest common divisor D that is at least 2 (i.e.,
is nontrivial) then the new inequality is

° a; b
Zii—[=1>0.

(The interesting case is when D does not divide b, and hence [b/D] is different from b/D.)
There is an interpolation theorem for cutting planes and it has been used to prove expo-
nential lower bounds in [BPR97, Pud97].
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Nullstellensatz and Polynomial calculus. These concern infeasibility of sets of equations
defined by polynomials. Note that we can also represent infeasibility of 3SAT by such
equations. For each variable x; in the 3CNF formula, have a variable X; and an equation
X2 — X; = 0, thus ensuring that every solution satisfies X; € {0,1}. We can then transform
each clause to a degree-3 equation. For example the clause x; V x; V T, is transformed to
the equation (1 — X;)(1 — X;) X = 0.

Hilbert’s Nullstellensatz is a basic result in algebra that gives an exact criterion for infea-
sibility: a set of equations p1(X1,..., X,) = 0,p2(X1, Xo, ..., Xpn) =0,...,pn(X1,..., Xon) =
0 in a field F is infeasible iff there exist polynomials g1, g2, ..., gm such that

Zgi(Xl,...,Xn)pi(Xl,...,Xn) =1 (2)

Notice, these g;’s (if they exist) prove that there can be no assignment of Xi,..., X,
that satisfies all the p;’s, since plugging in any such assignment into (2) would lead to the
contradiction 0 = 1. Thus the nontrivial part of Hilbert’s theorem is the fact that such g;’s
exist for every infeasible set. (Note that in general the ¢;’s may have coefficients in some
extension field, but in this particular case where the set of polynomials includes X;(X; — 1)
for all ¢ the solution if any must be 0/1 and then g;’s also must have coefficients in the field.)

Now we define the Nullstellensatz proof system. The axioms are the p;’s and the proof
of infeasibility is a sequence of g;’s that satisfy (2). Hilbert’s theorem shows that this proof
system is sound and complete. We assume that all polynomials are written out explicitly
with all coefficients, and the size of the proof is the number of bits required to write these
coefficients.

Polynomial calculus is similar, except the g;’s can be computed using a straight-line
computation instead of being explicitly written out with all coefficients. (Recall that every
polynomial can be computed by a straight line program.) Concretely, a refutation in Poly-
nomial calculus is a finite sequence of polynomials f1, f2, ..., fr such that each f, is either
(a) one of the input polynomials p;, (b) af, + S f, where «, 8 are constants and u,v < r,
or (¢) z;f, where z; is a variable and u < r. The size of the refutation is 7' and the degree
is the maximum degree of any f,.

Exponential lower bounds for the above two proof systems are proved by proving a lower
bound of n*(M) on the degree; such lower bounds were first proven in [BCE+95].

Frege and Extended Frege: The Frege proof system is a general system of reasoning in
predicate calculus using a finite set of axiom schemes and inference rules. Resolution is a
special case, where all formulae used in the proof are clauses (i.e., disjunctions). An inter-
mediate family is bounded depth Frege, where all formulae used in the proof have bounded
depth. Ajtai [Ajt88] gave the first lower bounds for bounded depth Frege systems using a
clever restriction argument inspired by the restriction argument for ACO that is described
in Chapter 14.

Extended Frege is a variant whereby the proof is allowed to introduce new variables
Y1, Y2, ..., and at any step declare that y; = v for some formula 1. The advantage of this is
that now we can use y; as a bona-fide variable in rules such as resolution, potentially saving
a lot of steps. (In general, allowing a proof system to introduce new variables can greatly
add to its power.)

No lower bounds are known for Frege and Extended Frege systems, and it is known that
existing techniques such as interpolation theorems will likely not work (assuming reasonable
complexity assumptions such as "RSA cryptosystem is secure”).

15.4 Metamathematical musings

Several researchers suspect that the P versus NP question may be independent of the
axioms of mathematics. Even if it is not independent, it sure seems difficult to prove for
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us. Could this question can be a source of tautologies that are difficult to prove in concrete
proof systems?

For instance, consider resolution and Frege-like systems for certifying tautologies. We
can try to consider the minimum proof size required for a concrete propositional formula
that says “SAT instances of size n cannot be solved by circuits of size n'°°.” This formula
(first defined in [Raz98]) has O(n'%®) variables denoted Z and has the form

Z is an encoding of an n-input circuit of size n'%

= circuit Z does not compute SAT. (3)

Note that the conclusion part of (3) is an OR over all 2™ inputs of size n and it says that
the value computed by circuit Z on one of these inputs is not the true value of SAT. Thus
such a formula has size 20" and we think it is a tautology for large enough n. The trivial
proof of tautologyhood has size 20("100), however, which is superpolynomial in the size of
the formula. Can we show that the proof complexity of this formula is superpolynomial for
resolution and Frege systems? Razborov [Raz98] showed a superpolynomial lower bound for
Polynomial Calculus. He also proposed a different encoding of the above formula for which
even resolution lower bounds seemed difficult.

Raz showed that this formula is either not a tautology or requires resolution proofs of
superpolynomial size [Raz01, Raz03a, Raz04b]. But similar lower bounds for much stronger
systems, say Frege, have not been obtained.

Independence from weak theories of arithmetic. Most results in mathematics can be
derived using popular axiomatic systems such as Zermelo-Fraenkel (with axiom of choice)
or Peano Arithmetic. But many results in combinatorics, since they have a more finitary
character, do not seem to require the full power of these axiomatic systems. Instead, one
can use weaker axiomatic systems such as the PV system of Cook [Coo75] or the "Bounded
Arithmetic” hierarchy S} of Buss [Bus90]. Researchers who wish to prove the independence
of P versus NP from say Peano Arithmetic should perhaps first try to prove independence
from such weaker theories. There are deep connections between these theories and the
Extended Frege proof system, and lower bounds for the ”circuit lower bound formulae” for
Extended Frege will imply such independence (see the survey [Raz04c]).

WHAT HAVE WE LEARNED?

e Proof complexity aims at proving lower bounds on proof size for tautological formulae
in various proof systems.

e Assuming that NP # coNP then for every complete proof and efficiently verifiable
proof system there should exist tautological formulae that do not have polynomial-
sized proofs.

e For some proof systems, such as Resolution, Polynomial Calculus and Cutting Plane,
there are known exponential lower bounds on proof sizes of various tautologies. How-
ever, no super-polynomial lower bounds are known for the Frege and Extended Frege
proof systems.

Chapter notes and history

Since proof systems are “‘nondeterministic”, there is in general no obvious algorithm to produce a
short proof (if one exists). Nevertheless, heuristic algorithms exist for producing short proofs for
many of these systems, and these heuristics are extremely important in practice. In fact, in most
cases, the definition of the proof system was inspired by the corresponding heuristic algorithm.
Thus proof size lower bounds for all these proof systems prove lower bounds on running times of
the corresponding heuristic algorithm.
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For instance, the definition of resolution is inspired by the Davis-Putnam heuristic [DP60],
which inspired a slew of other heuristics such as “resolve the two clauses that produces the smallest
resolvent.” Haken [Hak85] gave the first superpolynomial lower bounds on the running time of such
heuristics; see also [Urq87, CS88] for extensions of this work.

Similarly, the definition of the cutting plane proof system by Chvatal [Chv73] was inspired by
Gomory’s cutting plane method [Gom63], an important heuristic in commercial software for integer
programming.

The word problem for finitely presented groups was articulated by mathematician Dehn in the
early 20th century, who gave algorithms for it in many interesting groups. Novikov showed in
1955 that the problem is undecidable in general. Recent work shows that the word problem is in
NP-complete for some groups [SBR02], implying that the problem of deciding that a given word is
not trivial is coNP-complete. See the book [BMMS00] for a survey.

The feasible interpolation theorem and its use in lower bounds was developed in the string of
papers [Kra94, Raz95a, BPR97, Kra97, Pud97].

The polynomial calculus is related to algorithms for solving systems of polynomial equations
by computing Groebner bases.

The pigeon hole principle is a source of hard-to-prove tautologies for several weak proof systems
including resolution and the polynomial calculus. However, it has a polynomial sized proof in the
Frege system.

See the book by Krajicek [Kra95] for an introduction to proof complexity and bounded arith-
metic.

Exercises

Prove that if ¢ is an unsatisfiable CNF formula on n variables, then there exists a 2¢("-length
resolution refutation for . Haez2

Complete the proof of Theorem 15.4 by showing:

(a) If ¢ contains the z variables only positively (without negations) then the algorithm for com-
puting I(c) can be implemented by an O(S?)-sized monotone circuit.

H462
(b) If ¢ contains the z variables only negatively (always with negations) then then the algorithm
for computing I(c) can be implemented by an O(S?)-sized monotone circuit. maes

Show that both the functions ¢, and 1, described in the statement of Theorem 15.5 can be
expressed by CNF formulae of size O(n?). Furthermore, show that the formula ¢, contains the z
variables only positively and the formula ,, contains them only negatively.

Prove that the cutting plane proof system is sound and complete. mass
Write down the tautology described in words in (3).

Write down a tautology expressing the pigeonhole principle mentioned in the chapter notes. mna4es
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Chapter 16

Algebraic computation models

“Is Horner’s rule optimal for the evaluation of a polynomial?”

Ostrowski (1954)

The Turing machine model captures computations on bits (equivalently, integers), but
many natural and useful algorithms are most naturally described as operating on uncount-
able sets such as the real numbers R or complex numbers C. A simple example is Newton’s
method for finding roots of a given real-valued function f. It iteratively produces a sequence
of candidate solutions xg, x1, 2, . .., € R where x;41 = 2; — f(x;)/f’(x;). Under appropriate
conditions this sequence can be shown to converge to a root of f. Likewise, a wide variety of
algorithms in numerical analysis, signal processing, computational geometry, robotics, and
symbolic algebra typically assume that a basic computational step involves an operation
(+, x,/) in some arbitrary field F. Such algorithms are studied in a field called computer
algebra [vzGG99].

One could defensibly argue that allowing arbitrary field operations in an algorithm is
unrealistic (at least for fields such as R) since real-life computers can only do arithmetic using
finite precision. Indeed, in practice algorithms like Newton’s method have to be carefully
implemented within the constraints imposed by finite precision arithmetic. In this chapter
though, we take a different approach and study models which do allow arithmetic operations
on real numbers (or numbers from fields other than R). Such an idealized model may not be
directly implementable but it provides a useful approximation to the asymptotic behavior as
computers are allowed to use more and more precision in their computations. Furthermore,
from the perspective of lower bounds, one can hope that techniques from well-developed
areas of mathematics such as algebraic geometry and topology may prove handy. As we’ve
seen in Chapter 14, so far we have not been able to prove strong lower bounds for Boolean
circuits.

Example 16.1 (Pitfalls awaiting designers of such models)

Devising a meaningful, well-behaved model of algebraic computation is not an
easy task: allowing (arbitrary precision) arithmetic on real numbers as a basic
step can quickly lead to unrealistically strong models. For instance, with n
iterations of the basic operation & « 22 one can compute 22", a number with
2™ bits. In fact, Shamir has shown how to factor any integer N in poly(log N)
time on any model that allows arithmetic (including the mod operation) with
arbitrary precision (see Exercise 16.10) whereas factoring is a notoriously hard
problem for classical TMs.

Furthermore, a real number can encode infinite amount of information. For
example, a single real number is enough to encode the answer to every instance
of SAT (or any other language, in general). Thus, we have to be careful in defining
a model that allows even a single hardwired real number in its programs. By
contrast, we can easily allow a normal Turing Machine to have any constant
number of integers built into its program.
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The usual way to avoid such pitfalls is to restrict the algorithm’s ability to access in-
dividual bits. Alternatively, when the goal is proving non-trivial lower bounds it is OK to
consider unrealistically powerful models. After all, lower bounds for unrealistically powerful
models will apply to more realistic (and hence, weaker) models as well.

This chapter is a sketchy introduction to algebraic complexity. It introduces three al-
gebraic computation models: algebraic circuits, algebraic computation trees, and algebraic
Turing Machines. The algebraic TM is closely related to the standard Turing Machine
model and allows us to study the issues such as decidability and complexity for inputs over
arbitrary fields just we did them earlier for inputs over {0, 1}. We introduce an undecidable
problem (namely, deciding membership in the Mandelbrot set) and an NP-complete prob-
lem (decision version of Hilbert’s Nullstellensatz) in this model. In general, there seems to
be a close connection between algebraic complexity and complexity in the Turing machine
world; see Section 16.1.4.

Throughout this chapter, we will consider algorithms that get as input a tuple of numbers
over a field or a ring F (typically R or C). The input (z1,2,...,2,) € F" is said to have
size n. A language over a field/ring F is a subset of U, >1F".

Algebraic straight-line programs and algebraic circuits

In this section we define two simple models of algebraic computation, which turn out to be
equivalent. Different authors sometimes prefer one model over the other for reasons of taste
or ease of notation. We will also define analogues of P and NP for these models, and survey
the known results, including notions of reductions and completeness for these classes.

Algebraic straight line programs

An algebraic straight line program over field F (or more generally, ' could be a ring) is
defined by analogy with Boolean straight line programs (see Note 6.4). It is reminiscent
of a fragment of a standard programming language like C or C++, but it has only simple
“assignment” statements; no looping or conditional (e.g., if-then-else) statements. The
formal definition follows:

Definition 16.2 (Algebraic straight-line program over )

An algebraic straight line program of length T with input variables x1,x2,...,x, € F and
built-in constants ci,ca, . .., c, € F is a sequence of T' statements of the form y; = z;, OP z;,
fori=1,2,...,T where OP is one of the field operations + or x and each of z;,, z;, is either

an input variable, or a built-in constant, or y; for j < i. For every setting of values to the
input variables, the straight-line computation consists of executing these simple statements
in order, finding values for y1, ¥y, ..., yr. The output of the computation is the value of yr.
We can analogously define straight line programs with multiple outputs.

Example 16.3 (Polynomial evaluation)

For any a € F the function ), a'x; is computable by a straight line program of
length at most 3n — 2. We provide the program with a single built-in constant,
namely, a. The inputs are x1,x2,...,2,. (These inputs are being thought of
as the coefficients of a degree n — 1 polynomial, which is being evaluated at the
constant a.) Then computing a, a?,a,...,a" takes n — 1 steps. Multiplying a’
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with z; for i = 1,2,...,n takes another n steps. Accumulating the sum }, alz;
takes another n — 1 steps.

As is clear, the model defined above is nonuniform, since a different straight line program
could be used for each input length. As usual, we are interested in asymptotic complex-
ity, that is, the length (as a function of n) of the shortest family of algebraic straight line
programs that compute a family of functions {f,} where f, is a function of n variables.
Exercise 16.1 asks you to show that straight line programs over GF(2) are essentially equiv-
alent to Boolean circuits, and the same is true for circuits over any finite field. Thus, the
case when F is infinite is usually of greatest interest.

Recall that the degree of a multivariate polynomial p(x1,...,2,) is defined to be the
maximum degree among all its monomials, where the degree of the monomial ¢ [, :Cf is
>, di. As the following lemma shows, every straight line program computes a multivariate
polynomial of degree related to its length.

Lemma 16.4 The output of a straight line program of length T with variables x1,xs, ..., T,
is a polynomial p(x1, T2, ..., 2,) of degree at most 27" &

PROOF: Follows by an easy induction. Each input variable x; is a polynomial of degree 1,
and every step either adds two previous polynomials, or multiplies them. The degree of the
product of two polynomials is at most the sum of their degrees. Hence the degree can at
most double at each of the T steps. B

What if we allow the division operator + as a standard operation in a straight line
program? Since there is no way for the program to test a value for being nonzero, it
could divide by 0 and then the output could be undefined. Another subtlety is that even
division by a nonzero polynomial p(z) could lead to undefined result if 2 is a root of p.
Nevertheless, if we consider the formal object being computed, it is well-defined: the next
lemma shows that this formal object is a rational function, that is, a function of the type
flxr, 2o, ... xn)/g(x1, ..., xn) wWhere f, g are polynomials. The degree of the rational func-
tion f/g is the sum of degrees of f and g. We omit the (easy) proof.

Lemma 16.5 If + (only by nonzero polynomials and scalars) is allowed as an elementary
operation, then for every straight line program II of size t there exists a rational function r
of degree at most 27 that agrees with Il on every input value on which II is defined. O

Strassen [Str73] gave a general method to transform programs that use division into
programs that do not use this operator and have similar size, see also Remark 16.8 below.

16.1.2 Examples

Here are some examples for interesting functions that are computable by polynomial length
algebraic straight line programs.

POLYNOMIAL MULTIPLICATION Given (ag, a1, ...,a,) and (bg, b1, ...,b,) compute the prod-
uct of the polynomials El a;x" and Zj bz, in other words the vector (co, ¢1, . . ., Can—1)
where ¢, = Eiﬂ.:k a;b;. Using the ideas of Example 16.3, one obtains a trivial al-

gorithm with straight line complexity O(n?). Using the Fast Fourier Transform (next
example), this can be improved to O(nlogn) for fields that have a primitive mth root
of unity, where m is the smallest power of 2 greater than 2n. The idea is to evaluate
the polynomials at m points using the FFT, multiply these values, and use interpola-
tion (inverse FFT) to recover the ¢;’s. A similar approach also works for all fields but
with slightly higher O(nlognloglogn) run time (Schoenhage and Strassen [SS71]).

FasT FOURIER TRANSFORM The discrete fourier transform of a vector x = (x0,X1,...,Xp—1) €
C™ is the vector M - x, where M is the n x n matrix whose (7, j)th entry is w* where
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w is a primitive nth root of 1 (i.e., a complex number satisfying w™ = 1 and not
satisfying w” # 1 for any nonzero r < n). See Section 10.6.1.

The trivial idea for a straight line program is to do something like Polynomial Evalu-
ation (the first example above) for each row of M where w is a built-in constant; this
would give a straight line program of length O(n?). Surprisingly, one can do much bet-
ter: there is a program of length O(nlogn) to compute the discrete Fourier transform
using the famous fast fourier transform algorithm due to Cooley and Tukey [CT65]
outlined in Section 10.6.1. It is not known if this algorithm is optimal, though Mor-
genstern [Mor73] has shown that it is optimal in a more restricted model where the only
“built in” constants are 0, 1. Some extensions of this result are also known, see [Cha94].

MATRIX MULTIPLICATION The matriz multiplication problem is to compute, given two nxn
matrices X = (X; ;) and Y = (Y; ;) their product, which is the n x n matrix Z such
that

Zij = ZXi,kYk,j (1)
k=1

The equation (1) yields an straight-line program for this problem of size O(n?). (As
mentioned above, the definition of straight-line programs can be easily generalized
to handle multiple outputs.) It may seem “obvious” that this is the best one can
do, as each of the n? outputs requires n operation to compute. However, starting
with the work of Strassen in 1969 [Str69], a series of surprising new algorithms have
been discovered with complexity O(n“) for w < 3 (see Exercise 16.4). The current
record is w ~ 2.376.. [CW90]. It is known that the complexity of matric multiplication is
equivalent to several other linear algebra problems (see the survey [v2G88]). Raz [Raz02]
has proven that in the model where the only built-in constants are 0, 1, straight-line
programs for matrix multiplication must have size at least Q(n?logn).

DETERMINANT The determinant of an n x n matrix X = (X; ;) is defined as

det(X) = Z (—1)9m) ﬁXi,a(i) :

oESy i=1

where S, is the set of all n! permutations on {1,2,...,n} and sgn(o) is the parity of
the number of transposed pairs in o (i.e., pairs (7, j) with ¢ > j but (i) < o(j)). The
determinant can be computed using the familiar Gaussian elimination algorithm, but
in fact there are improved algorithms (see Exercise 16.6) that also take small depth
(as defined below in Section 16.1.3).

The determinant function is a good illustration of how the polynomial defining a function
may have exponentially many terms —in this case n!-—but nevertheless be computable
with a polynomial length straight line program. The status of lower bounds for algebraic
straight line programs is very bad, as the reader probably expects by now. We do know
that computing the middle symmetric polynomial requires Q(nlogn) operations but do not
know of any better bounds for any ezplicit polynomial [BCS97].

Algebraic circuits

An algebraic circuit over a field F is defined by analogy with a Boolean circuit (see Chap-
ter 6). It consists of a directed acyclic graph. The leaves are called input nodes and labeled
T1,T2,...,Ty; these take values in F rather than being Boolean variables. We also allow the
circuit to have k additional special input nodes that are labeled with arbitrary constants
c1,. ..,z from the field. Each internal node, called a gate, is labeled with one of the arith-
metic operations {+, x } rather than with the Boolean operations V, A, = used in Boolean
circuits. We consider only circuits with a single output node and with the in-degree of each
gate being 2. The size of the circuit is the number of gates in it. The depth of the circuit is
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the length of the longest path from input to output in it. One can also consider algebraic
circuits that allow division (=) at the gates. An algebraic formula is a circuit where each
gate has out-degree equal to 1.

To evaluate a circuit, we perform each gate’s operation by applying it on the numbers
present on the incoming wires (= edges), and then passing this output to all its outgoing
wires. The output of the circuit is the number present on the wire of its output node at the
end of this process. The next lemma (left as an easy Exercise 16.7) shows that this model
is equivalent to algebraic straight-line programs.

Lemma 16.6 Let f: F" — F be some function. If f has an algebraic circuit of size S then
it has an algebraic circuit of size 3S. If f is computable by an algebraic circuit of size S
then it is computable by an algebraic straight line program of length S. Moreover, if the
circuit is a formula then the equivalent straight line program is use once (i.e., every variable
y; that is not an input occurs on the right hand side of an assignment only once). &

Note that the equivalence is only up to a small constant factor (3) because in a circuit
we don’t allow parallel edges and hence the operation z +— 2 will require first copying « by
adding to it zero.

Analogs of P, NP for algebraic circuits

There are functions which are conjectured to require superpolynomial or even exponential
algebraic circuit complexity. The permanent (see Sections 8.6.2 and 17.3.1) is one such
function. For an n x n matrix X, the permanent of X is defined as

perm(X) = Y [ Xiwo() -

oc€eSy, i=1

At first sight seems the permanent seems very similar to the determinant. However, unlike
the determinant that has a polynomial-time algorithm (and also a polynomial length alge-
braic straight-line program), the permanent is conjectured to not have such an algorithm.
(As shown in Chapter 17, the permanent is #P-complete, which in particular means that
it does not have a polynomial-time algorithm unless P = NP.)

Valiant [Val79a] defined analogs of P and NP for algebraic circuits, as well as as a notion
of reducibility. The determinant and permanent functions turn out to play a vital role in
this theory, since they are complete problems for the following important classes.

Definition 16.7 (AlgP, . , AlgNP, . )

Let F be a field, we say that a family of polynomials {p,},, .y (where p, takes n variables
over IF) has polynomially-bounded degree if there is a constant ¢ such that for every n the
degree of p, is at most cn®.

The class AlgP, . (or AlgP]/Fpoly when we wish to emphasize the underlying field) contains
all polynomially-bounded degree families of polynomials that are computable by algebraic
circuits (using no +) of polynomial size and polynomial degree.

The class AlgNP,  is the class of polynomially-bounded degree families {pn} that are
definable as

pn(Il,IQ,...,In): § gm(xlax%---wrnaenJrlv---vem)v
ee{o_’l}m—n

where g,,, € AlgP, ., and m is polynomial in n.

Many texts use the names VP and VNP for the classes AlgP,  —and AIgNP, . .
where V stands for Valiant, who defined these classes and proved several fundamental results
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on their properties. We chose to use the notation AlgP/poly, AlgNP/poly to emphasize the
non-uniformity of these classes.

Remark 16.8

Disallowing the + operation in the definition of AlgP, , may seem like a strong restriction,
but Strassen [Str73] has shown that for infinite fields, the class AlgP, ,  is unchanged
whether or not =+ is allowed. Similarly, the class AIgNP,_ is unchanged if we require gy,
to have polynomial formula size in addition to being in AlgP/Poly [Val79a].

Example 16.9

To illustrate the definition of AlgNP, ,we show that permanent is in AlgNP, .
A permutation on [n] will be represented by an n x n permutation matriz whose
each entry is 0/1 and whose each row/column contains exactly one 1. The crux
of the proof is to express the condition that values to some n? variables form a
permutation.

For any set of n variables ¢y, co,...,c, let the polynomial Exactly-one be such
that for any 0/1 assignment to the ¢;’s this polynomial is 1 if exactly one of ¢;’s

is 1, and zero otherwise.

Exactly-one(cy, o,y ..., ¢p) = Zci H(l —¢j).

i<n i

Now define a polynomial Is-permutation with n? binary variables o4 for 1 <
1,7 < n that verifies that each row and column contains exactly one 1.

Is-permutation(c H Exactly-one(oi1, 042, - - ., 0in )Exactly-one(o1i, 02y - - -, Oni ).

7

Finally, let Permpoly be a polynomial of n? variables o;; for 1 <4,j < n and n?
variables X;; for 1 <4, j <n defined as

Permpoly (o, X) = Is-permutation(o HZXUU”

Clearly, Permpoly € AlgP, . Finally, the permanent of X can be written as
Z Permpoly(c, X),
oce{0,1}"*

we have shown that the permanent function is in AlgNP, . .

The definition of AlgNP, . is somewhat unexpected and merits some discussion.
Valiant was motivated by the view that + is the algebraic analog of the Boolean OR.
Recall that a language A is in NP if there is a language B € P such that z € A &
Je s.t.(z,e) € B. Thus the definition of NP involves 3 ¢ j3m-n, which is equivalent to
an OR, viz, \/ee{O 1ym—-n. Thus the algebraic analog is the operation Zee{o 1pm=ns and this
is the deﬁnlng feature of AlgNP, . Note that this makes AIgNP, closer to #P in
spirit than to NP.

Now we arrive at a key notion: reduction between algebraic problems that preserve al-
gebraic circuit complexity. As usual, we want a reduction f from problem A to problem
B to satisfy the property that an efficient algorithm (i.e., polynomial-length straight line
program or polynomial size circuit) for B should give us an efficient algorithm for A. Some
thought suggests that it suffices to let the reduction be an arbitrary polynomially-bounded
degree family that is computable by a polynomial-length straight-line program. The defi-
nition suggested by Valiant is much stricter: it requires the reduction to be an extremely
trivial “change of variables.” Obviously, the stricter the definition of reduction, the harder
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it is to prove completeness results. So the fact that such a simple reduction suffices here
is surprising. (Of course, if we think about most classical NP-completeness results from
the 1970s, they also involve simple local transformations using gadgets, instead of arbitrary
polynomial-time transformations.)

Definition 16.10 (Projection reduction) A function f(x1,...,x,) is a projection of a func-
tion g(y1,Y2, .., Ym) if there is a mapping o from {y1,y2,...,ym} to {0,1, 21,22, ...,2,}

such that f(x1,za,...,2,) = g(c(y1),0(y2), ..., 0(ym))-
We say that f is projection-reducible to g if f is a projection of g. O

Example 16.11
The function f(z1,x2) = x1 + z2 is projection reducible to g(y1,y2,y3) = y3ys +
yo since f(x1,x2) = g(1, 21, 22).

One way to think of a projection reduction is that if we had a silicon chip for computing g
then we could convert it to a chip for f by appropriately hardwiring its input wires, feeding
either some x; or 0 or 1 into each input wire. The next theorem shows that a chip for the
Determinant or Permanent would be fairly “universal” in that it can be made to compute
large families of other functions. Its proof uses clever gadget constructions, and is omitted
here.

Theorem 16.12 (Completeness of determinant and permanent [Val79a])

For every field F and every polynomial family on n variables that is computable by an
algebraic formula of size u is projection reducible to the Determinant function (over the
same field) on u + 2 variables.

For every field except those that have characteristic 2, every polynomial family in
AlgNP, . is projection reducible to the Permanent function (over the same field) with
polynomially more variables.

Moreover, it was shown by Valiant et al [VSBR81] that every function in AlgP, ,, hasan

algebraic formula of size 90 (log*n) (see also Exercise 16.6). Thus separating AlgP, . and
AlgNP, . will follow from this purely mathematical conjecture that makes no mention of
computation:

Conjecture 16.13 (Valiant)
For every field that does not have characteristic 2, the n x n permanent cannot be obtained

as a projection of the m x m determinant where m = 20(log” n)

Conjecture 16.13 is a striking example of the close connection between computational
complexity and interesting questions in pure mathematics. Another intriguing fact is that
that it is necessary to show AlgP, . # AlgNP,  before one can show P # NP (see
Chapter notes).

Algebraic Computation Trees

Now we move to a more powerful computational model, the algebraic computation tree.
This can be defined for computations over an arbitrary ring (see the comments after Defini-
tion 16.15) but for simplicity we define it for for computations on real-valued inputs. This
model augments the straight line program model (with =) with the ability to do conditional
branches based upon whether or not a variable y, is greater than 0. Depending upon the
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result of this comparison, the computation proceeds in one of two distinct directions. Thus
the overall structure is a binary tree rather than a straight line (as the name suggests). The
ability to branch based upon a variable value is somewhat reminiscent of a Boolean decision
tree of Chapter 12 but here the variables (indeed, also the input) are real numbers instead
of bits.

Formally, the model can be used to solve decision problems on real inputs; it computes
a Boolean-valued function f:R"™ — {0,1} (i.e., a language).

Example 16.14 (Some decision problems)
The following examples illustrate some of the languages (over real numbers)
whose complexity we might want to study.

ELEMENT DISTINCTNESS Given n numbers x1,xs,...,x,, determine whether
they are all distinct. This is equivalent to the question whether [], £ (z; —

;) # 0.

REAL-VALUED SUBSET SUM Given a list of n real numbers z1, ..., z,, determine

whether there is a subset S C [n] such that ), g 2; = 1.

As motivation for the definition of the model, consider the trivial algorithm for Element Distinctness:

sort the numbers in O(nlogn) steps and then check in another O(n) steps if any two ad-
jacent numbers in the sorted order are the same. Is this trivial algorithm actually optimal,
or can we solve the problem in o(nlogn) steps? The answer must clearly depend on the
computational model we allow. The algebraic computation tree model studied in this sec-
tion is powerful enough to implement known algorithms for the problem. As we will see
in Section 16.2.1 below, it turns out that in this model the above trivial algorithm for
Element Distinctness is optimal up to constant factors.

Recall that comparison-based sorting algorithms only ask questions of the type “Is z; >
x;7”, which is the same as asking whether x; — z; > 0. The left hand side term of this
last inequality is a linear function. We can imagine other algorithms that may use more
complicated functions. In Algebraic Computation Trees, we allow a) the ability to use any
rational function and b) the introduction of new variables together with the ability to do
arithmetic on them and ask questions about them. The cost is the number of arithmetic
operations and branching steps on the worst case input.
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Figure 16.1 An Algebraic Computation Tree

Definition 16.15 (Algebraic Computation Tree over R)
An Algebraic Computation Tree is a way to represent a function f:R™ — {0, 1} by showing
how to compute f(x1,22,...,2,) for any input vector (x1,xo,...,x,). It is a binary tree
where each of the nodes is of one of the following types:

e Leaf labeled “Accept” or “Reject”.

e Computation node v labeled with y,, where y, = y, OP vy, and y,,y, are either
one of {x1,2a,...,2,} or the labels of ancestor nodes and the operator OP is in

{+7_7 X7+7\/_}'

e Branch node with out-degree 2. The branch that is taken depends on the evaluation
of some condition of the type y, = 0 or y,, > 0 or y,, < 0 where v, is either one of
{z1,z2,...,x,} or the labels of an ancestor node in the tree.

The computation on any input (21,2, ..., 2,) follows a single path from the root to a leaf,
evaluating functions at internal nodes (including branch nodes) in the obvious way, until it
reaches a leaf. It reaches a leaf marked “Accept” iff f(x1,x2,...,2,) = 1. The complexity
of the computation on the path is measured using the following costs (which reflect real-life
costs to some degree):

e +, — are free.

o X,/ and branch nodes are charged unit cost.

The depth of the tree is the maximum cost of any path in it.

This definition allows y/ as an elementary operation, which may not make sense for all
fields (such as the rational numbers). The notion of algebraic computation tree extends to
arbitrary ordered fields by omitting the |/ @s an operation. The notion also extends to fields
that are not ordered by only allowing decision nodes that have a 2-way branch based upon
whether or not a variable is = 0.

A fragment of an algebraic computation tree is shown in Figure 16.1.

Definition 16.16 (algebraic computation tree complexity)
Let f:R™ — {0,1}. The algebraic computation tree complexity of f is

AC(f) = min {depth of T'}
computation
tree T for f
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Figure 16.2 A computation path p of length d defines a set of constraints over the n input
variables z; and d additional variables y;, which correspond to the nodes on p.

The algebraic computation tree model is much more powerful than a real-life program-
ming language. The reason is that a tree of depth d could have 2¢ nodes, so a depth d
algebraic computation tree would yield (in the worst case) only a classical algorithm with
a description of size 2¢. This is why the following theorem (whose proof we omit) does not
imply an efficient algorithm for the NP-complete subset sum problem:

Theorem 16.17 (Meyer auf der Heide [adH88]) The real number version of SUBSET SUM can
be solved using an algebraic computation tree of depth O(n®). &

This theorem suggests that Algebraic Computation Trees are best used to investigate
lower bounds such as nlogn or n? rather than something more ambitious like a super-
polynomial lower bound for the real number version of SUBSET SUM.

The topological method for lower bounds

To prove lower bounds for the minimum cost of an algebraic computation tree algorithm for
a function f, we will use the topology of the sets f~1(1) and f~1(0), specifically, the number
of connected components.

Definition 16.18 (connected components) A set S C R™ is connected if for all x,y € S there
is path p from x to y that lies entirely in S (in other words, a continuous function mapping
[0,1] € R to R™ such that f(0) = x, f(1) =y and f(t) € S for all ¢ € [0,1]). A connected
component of W C R”™ is a connected subset of W that is not a proper subset of any other
connected subset of W. We let #(W) denote the number of connected components of W.{

The following theorem relates the number of connected components to the algebraic
computation tree complexity:

Theorem 16.19 (Topological lower bound on algebraic tree complexity [BOS3])
For every f : R™ — {0, 1},

4C(f) = 9(Tog (max {#(/ (1), £®"\ /(1)) = n)

Before proving this theorem, let us first use it to prove the promised lower bound for
Element Distinctness. This bound follow directly from the following theorem, since logn! =
Q(nlogn).
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Theorem 16.20 Let W = {(z1,...,2,)] H#j (x; —xj) # 0}. Then,

#(W) = n! ¢
PROOF: For each permutation o let
W, = {(:101, .. .,.’L‘n) | To(l) <To2) < ... < xg(n)}.

That is, let W, be the set of n-tuples (x1,...,x,) which respect the (strict) order given by
o. Note that W, C W for all . It suffices to prove for all ¢’ # o that the sets W, and W,
are not connected.

For any two distinct permutations o and ¢’, there exist two distinct ¢, j with 1 < 14,7 < n,
such that o=1(i) < o=1(j) but ¢’~*(¢) > 0’1 (j). Thus, in W,, we have X; — X, > 0 while in
Wq we have X; — X; > 0. Consider any path from W, to W, . Since X; — X; has different
signs at the endpoints, the intermediate value principle says that somewhere along the path
this term must become 0. That point can belong in neither W, nor W,., so Definition 16.18
then implies that W, and W,  cannot be connected. W

Now we turn to the proof of Theorem 16.19. This theorem is proved in two steps. First,
we try to identify the property of functions with algebraic computation tree complexity:
they can be defined as solution sets of a “few” systems of equations.

Lemma 16.21 If f:R™ — {0, 1} has a decision tree of depth d then f~*(1) (and also f~1(0))
is a union of at most 2¢ sets C1,Cs, ..., C R"™ where C; can be described as follows: there
is a system of up to d equations of the form

p’ir(ylv"'vydv'rlv"'axn)Mov

where p;, for r < d is a degree 2 polynomial, < is in {<, > = #}, and y1,...,Yyq are new
variables. Then C; is the set of (x1,x2,...,x,) for which there are some y1,¥ya, ..., yq such
that (y1,...,Yd, 21, ..,2Tn) IS a solution to the above system. Additionally, we may assume
without loss of generality (at the cost of doubling the number of y;’s) that there are no #
constraints in this system of equations. &

PROOF: The tree has 2¢ leaves, so it suffices to associate a set C; with each leaf, which
is the set of (z1,z2,...,2,) that end up at that leaf. Associate a variable y1,y2,...,%q4
with the (at most) d computation or branching nodes appearing along the path from root
to this leaf. For each computation node, we associate an equation with it in the obvious
way (see Figure 16.2). For example, if the node computes y, = y, + Y, then it implies
the constraint y,vy., — v, = 0. For each branch node, we associate an obvious inequality.

Thus any (z1,z2,...,2,) that end up at the leaf is a vector for which there exist values
of y1,y2, ..., such that the combined vector is a solution to this system of d equations and
inequalities.

”

To replace the “#” constraints with “=" constraints we take a constraint like

Pi(y1s -, Ym) # 0,

introduce a new variable z; and impose the constraint

Wi, Yms2zi) =1 —2pi(Y1, ..., ym) = 0.

(This transformation, called Rabinovitch’s trick, holds for all fields.) Notice, the maximum
degree of the constraint remains 2, because the trick is used only for the branch y, # 0
which is converted to 1 — 2,1, = 0.

Similarly, the constraint p;(y1,...,ym) > 0 is handled by introducing a new variable z;
and imposing the constraint p;(y1,...,ym) = z2. B

We find Rabinovitch’s trick useful also in Section 16.3.2 where we prove a completeness
result for Hilbert’s Nullstellensatz.

Now to prove lower bounds on AC(W) via the topological argument, we need some result
about the number of connected components of the set of solutions to an algebraic system.
The following is a central result in mathematics.
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>

Figure 16.3 Projection can merge but not add connected components

Theorem 16.22 (Consequence of Milnor-Thom Theorem) If S C R™ is defined by degree d
constraints with m equalities and h inequalities then

#(S) < d(2d —1)nth=t ¢

Note that the above upper bound is independent of m. Now we can prove Ben-Or’s
Theorem.

PROOF OF THEOREM 16.19: Suppose that the depth of a computation tree for W is d,
so that there are at most 2% leaves. We will use the fact that if S C R™ and S|y is the
set of points in S with their last n — k coordinates removed (i.e., projection on the first k
coordinates) then #(S|;) < #(S) (Figure 16.3).

For every leaf there is a set of degree 2 constraints. So, consider a leaf ¢ and the
corresponding constraints Cy, which are in variables y1,...,yq4, Z1,...,Z,. Let Wy, CR™ be
the subset of inputs that reach ¢ and S, C R"t¢ the set of points that satisfy the constraints
C¢. Note that Wy = Cy|,, i.e., Wy is the projection of Cp onto the first n coordinates. So, the
number of connected components in Wy is upperbounded by #(C;). By Theorem 16.22 it
holds that #(C,) < 2- gntd=1 < gntd  Therefore the total number of connected components
is at most 293"+ so d > Q(log(#(W))) — O(n). By repeating the same argument for
R™ — W we have that d > Q(log(#(R" —W))) — O(n). R

The Blum-Shub-Smale Model

The models for algebraic complexity introduced so far were nonuniform. Now we introduce
a uniform model due to Blum, Shub and Smale [BSS89]. This involves Turing Machines that
compute over some arbitrary field or ring F (e.g., F = R, C, GF(2)); the input is a string
in F” for n > 1 and the output is Accept/Reject. Each cell can hold an element of F, and
initially, all but a finite number of cells are “blank.” Thus the model is a generalization
of the standard Turing Machine model with bit operations, which can be seen as operating
over the field GF(2); see Exercise 16.9. The machine has a finite set of internal states. Each
state belongs to one of the following three categories:

e Shift state: move the head to the left or to the right of the current position.

e Branch state: if the content of the current cell is a then goto state q; else goto state
qz.
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e Computation state: This state has a hardwired function f associated with it. When
the machine is in this state, it reads the contents of the current cell, say a € FU{blank},
and replaces it with a new value f(a). If F is a ring, f is a polynomial over F, while if
F is a field then we allow f to be any rational function of the form g/h where g, h are
polynomials and & is non-zero. In either case, f is represented using a constant number
of elements of F. These can be viewed as “hardwired” constants for the machine.

Note that in our standard model of the TM, the computation and branch operations
can be executed in the same step, whereas here they have to be performed separately. This
is purely for notational ease. But, now in order to branch, the machine has to be able to
“remember” the value it just read one step ago. For this reason the machine has a single
“register” onto which it can copy the contents of the cell currently under the head, and
whose value can be used in the next step.

Like other models for algebraic complexity we have studied, the BSS model seems more
powerful than real-world computers. For instance, by repeating the operation z « x2, the
BSS machine can compute and store in one cell (without overflow) the number 2" in n
steps.

However, the machine has only limited ability to benefit from such computations because
it can only branch using tests like “Is the content of this cell equal to a?” The slight variant
of this test, featuring an inequality test: “Is the content of the cell greater than a?” would
give the machine much more power, including the ability to decide every language in P/,
(thus in particular, an undecidable language) in polynomial time. The reason is that the
circuit family of a language in P/, circuit family can be represented by a single real number
that is a hardwired “constant” into the Turing machine (specifically, as the coefficient of
some polynomial p(z) belonging to a state). The individual bits of this coefficient can be
accessed by dividing by 2 an appropriate number of times and then using the branch test
to check if the number is greater than 0. (The details are left as Exercise 16.12.) Thus the
machine can extract the polynomial length encoding of each circuit.

Similarly, if we allow rounding (computation of |z]) as a basic operation then it is
possible to factor integers in polynomial time on the BSS model, using the ideas of Shamir
mentioned earlier (see Exercise 16.10).

Note also that the BSS model is closely related to a more classical model: algebraic
circuits with “branch” gates and a “uniformity” condition (so the circuits for different input
sizes have to be constructible by some conventional Turing machine).

Complexity Classes over the Complex Numbers

It is now time to define some complexity classes related to the BSS model. For simplicity
we restrict attention to machines over the field C. As usual, the complexity of these Turing
Machines is defined with respect to the input size (i.e., number of cells occupied by the
input). The following complexity classes correspond to P and NP over C:

Definition 16.23 (P, NP¢) P¢ contains every language over C that can be decided by a
BSS Turing Machine over C in polynomial time. A language L is said to be in NP if there
exists a language Lo € P¢ and a number d > 0, such that an input z is in L iff there exists
a string (y1,...,Ype) in €™ such that (z,y) isin L. &

It is also interesting to study the complexity of standard languages (i.e., whose inputs
are bit strings) with respect to this model. Thus, we make the following definition:

0-1-NP¢ = {LN{0,1}" | L € NP¢}

Note that the input for a 0-1-NP¢ machine is binary but the nondeterministic “witness”
may consist of complex numbers. Trivially, NP is a subset of 0-1-NP¢. The reason is that
even though the “witness” for the BSS machine consists of a string of complex numbers, the
machine can first check if they are all 0 or 1 using equality checks. Having verified that the
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witness is actually a Boolean string, the machine continues as a normal Turing Machine to
verify it.

Is 0-1-NP¢ much larger than NP? We know that that 0-1-NP¢ C PSPACE. In 1997
Koiran [Koi97] proved that if one assumes the Riemann hypothesis, then 0-1-NP¢ C AM.
As shown in Chapter 20 (see Exercise 20.7), under reasonable assumptions AM = NP and
so Koiran’s result suggests that it’s likely that 0-1-NP¢ = NP.

Complete problems and Hilbert’s Nullstellensatz

The language HN¢ is defined as the decision version of Hilbert’s Nullstellensatz over C.
(We encountered this principle in Section 2.7 and it also appears in Section 15.3.) The
input consists of m polynomials pi,ps,...,p, of degree d over x1,...,z,. The output is
“yes” iff the polynomials have a common root ay, ..., a,. Note that this problem is general
enough to encode SAT, since we can represent each clause by a polynomial of degree 3:

zVyVze (1—-2)(1—-y)(1—2)=0.

Next we use this fact to prove that the language 0-1-HN¢ (where the polynomials have 0-1
coefficients) is complete for 0-1-NP¢.

Theorem 16.24 ([BSSs9]) 0-1-HN¢ is complete for 0-1-NP¢. O

PROOF SKETCH: It is straightforward to verify that 0-1-HN¢ is in 0-1-NP¢ . To prove the
hardness part we imitate the proof of the Cook-Levin Theorem (Theorem 2.10). Recall that
there we reduced every NP-computation into an AND of many local tests, each depending
on only a constant number of variables. Here, we do the same, reasoning as in the case of
algebraic computation trees (see Lemma 16.21) that we can express these local checks with
polynomial constraints of bounded degree. The computation states ¢ «— ¢(a,b)/r(a,b) are
easily handled by setting p(c) = ¢(a,b) — cr(a,b). For the branch states p(a,b) # 0 we can
use Rabinovitch’s trick to convert them to equality checks g(a,b,z) = 0. Thus the degree
of our constraints depends upon the degree of the polynomials hardwired into the machine.
Also, the polynomial constraints use real coefficients (involving real numbers hardwired into
the machine). Converting these polynomial constraints to use only 0 and 1 as coefficients
requires work. The idea is to show that the real numbers hardwired into the machine have
no effect since the input is a binary string. We omit this argument here. l

Decidability Questions: Mandelbrot Set

Since the Blum-Shub-Smale model is more powerful than the ordinary Turing Machine, it
makes sense to also revisit decidability questions. In this section we mention an interesting
undecidable problem for this model: membership problem for the Mandelbrot set, a famous
fractal. The chapter notes mention one motivation for studying such questions, connected
to Roger Penrose’s claim that Artificial Intelligence is impossible.

Definition 16.25 (Mandelbrot set decision problem) Let Po(Z) = Z? + C. Then, the Man-
delbrot set is defined as

M = {C € C | the sequence Pc(0), Pc(Pc(0)), Po(Pc(Pc(0))) ... is bounded }. &

Note that the complement of M is recognizable if we allow inequality constraints. This
is because the sequence is unbounded iff some number Pg(O) has complex magnitude greater
than 2 for some k (exercise!) and this can be detected in finite time. However, detecting
that PL(0) is bounded for every k seems harder. Indeed, we have:

Theorem 16.26 M is undecidable by a machine over C. O
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PROOF SKETCH: The proof uses some mathematical tools that are beyond the scope of
this book and hence we only give a rough sketch here. The proof uses the topology of the
Mandelbrot set, and the notion of Hausdorff dimension. A ball of radius 7 in a metric space
is a set of the form B(xg,r) = {y : dist(zo,y) < r}. Very roughly speaking, the Hausdorff
dimension of a space is d if as r — 0 then the minimum number of balls of radius r required
to cover a set grows as 1/rd as r goes to 0.

Let N be any TM over the complex numbers that supposedly decides this set. Consider
T steps of the computation of this TM. Reasoning as in Theorem 16.24 and in our theorems
about algebraic computation trees, we conclude (see also Exercise 16.11) that the sets of
inputs accepted in T steps is a finite union of semialgebraic sets (i.e., sets defined using
solutions to a system of polynomial equations). Hence the language accepted by A is a
countable union of semi-algebraic sets, which is known to imply that its Hausdorff dimension
is 1. But it is known that the Mandelbrot set has Hausdorff dimension 2, hence M cannot
decide it. W

WHAT HAVE WE LEARNED?

e [t is possible to study computational complexity in more algebraic settings where a
basic operation is over a field or ring. We saw analogs of Boolean circuits, straight
line programs, decision trees, and Turing machines.

e One can define complete problems in some algebraic complexity classes, and even study
decidability.

e Proving lower bounds for algebraic computation trees involves interesting topological
methods involving the number of connected components in the set of solutions to a
system of polynomial equations.

e There are interesting connections between algebraic complexity and the notions of
complexity used in the rest of the book. Two examples: (a) Valiant’s result that the
permanent is complete for AlgNP, . : (b) complexity classes defined using the BSS
model of TMs using complex-valued inputs have connections to standard complexity
classes.

Chapter notes and history

It is natural to consider the minimum number of arithmetic operations required to produce a
desired output from the input. The first formalization of this question appears to be by A. Scholz
in 1937 [Sch37], roughly contemporaneous with Turing’s work on undecidability. The notion of a
straight line program goes back to Ostrowski’s [Ost54] investigation of the optimality of Horner’s
rule for evaluating a polynomial. The formal definitions of the straight line program and algebraic
computation tree models first appear in Strassen [Str72] and Rabin [Rab72] respectively, though
Rabin restricted attention to linear functions instead of general polynomials. The work of Strassen
in the 1960s and 1970s did much to establish algebraic complexity theory. Volume 2 of Knuth’s
book from 1969 [Knu69] gives a nice survey of the state of knowledge at that time. Algebraic
computation trees attracted attention in computational geometry, where three-way branching on a
linear function can be interpreted as the query that asks wheter a point € R™ is on the hyperplane
defined by the linear function, or to the left/right of it.

The classes AlgP, , and AlgNP,  were defined by Valiant [Val79a], though he used the term
“P-definable” for AlgNP, , and AlgP for AlgP, . . Later works also used the names VNP
and VP for these classes. The theory was fleshed out by Skyum and Valiant [SV85], who also gave
an extension of Valiant’s theory of completeness via projections to the standard NP class. This
extension relies on the observation that the Cook-Levin reduction itself is a projection reduction.
One interesting consequence of this extended theory is that it shows AlgP, ., 7 = AlgNP, .
must necessarily be resolved before resolving P? = NP.
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The NC algorithm for computing the determinant mentioned in Section 16.1.4 is due to
Csanky [Csa76]. It works for fields of characteristic 0. Many generalizations of this algorithm
exist. The fact that determinant has algebraic formulae of size 2°°V(1°™ is due to Valiant et
al. [VSBR81]. In fact, they show a general transformation of any algebraic circuit of size S comput-
ing a polynomial f to a circuit computing f of depth O(log Slogdeg(f)). (The depth of a circuit
is, as usual, the length of longest path from input to output in the graph).

The problem of proving lower bounds on algebraic computation trees has a long history, and
Ben-Or’s theorem (Theorem 16.19) falls somewhere in the middle of it. More recent work by Bjorner
et al [BLY92] and Yao [Yao94] shows how to prove lower bounds for cases where the # (W) parameter
is small. These rely on other topological parameters associated with the set, such as Betti numbers.

A general reference on algebraic complexity (including algorithms and lower bounds) is the 1997
book by Biirgisser et al. [BCS97]. A good modern survey of computer algebra is the book by von
zur Gathen and Gerhad [vzGG99].

One important topic not covered in the chapter is Strassen’s lower bound technique for algebraic
circuits based upon the notion of degree of an algebraic variety. It leads to optimal Q(nlogn) lower
bounds for several problems. A related topic is the famous Baur-Strassen lemma which shows
that one can compute the partial derivatives of f in the same resources required to compute f.
See [BCS97] for details on both.

The best survey of results on the BSS model is the book by Blum et al. [BCSS97]. The question of
decidability of the Mandelbrot fractal set is from Roger Penrose’s controversial criticism of Artificial
Intelligence [Pen89]. The full story of this debate is long, but in a nutshell, one of the issues Roger
Penrose raised was that humans have an intuitive grasp of many things that seem beyond the
capabilities of the Turing machine model. He mentioned computation over R — exemplified by our
definition of the Mandelbrot set— as an example. He suggested that such mathematical objects are
beyond the purview of computer science —he suggested that one cannot talk about the decidability
of such sets. The BSS work shows that actually such questions can be easily studied using simple
variations of the TM model. A careful evaluation of the BSS model appears in a recent survey
of Braverman and Cook [BC06], who point out some of its conceptual limitations, and propose
modeling real computations using a bit-based model (i.e., closer to the standard TM).

Exercises

Show for every finite field F there is a constant ¢ such that for every Boolean function f : {0,1}" —
{0,1} with Boolean circuit complexity .S, the size of the smallest algebraic circuit over F that
computes S is between S/c and ¢- S.

Sketch the O(nlogn) size straight line program for the fast fourier transform.

Sketch a algorithm for multiplying two degree n univariate polynomials with complex coefficients
in O(nlogn) operations (+ and X) over the complex numbers.

([str69])

(a) Prove that for every w > 2, if there exists k € N and an algebraic straight-line program Il
that computes the matrix multiplication of k X k& matrices using at most k“ multiplication
gates, then for every n € N there is an algebraic straight program of size O(n*) that computes
matrix multiplication for n X n matrices. maes

(b) Prove that there exists an algebraic straight-line program using 7 multiplication gates that
computes the matrix multiplication of 2 x 2 matrices. Conclude that there is an algebraic
straight-line program of size O(n*%') for multiplying n x n matrices. Haes

Prove that any function that can be computed by an algebraic circuit of depth d can be computed
by an algebraic formula of size O(2%).

([Berch]) In this exercise we show a small depth polynomial-size algebraic circuit for the determinant.
Such a circuit can also be obtained by following the Gaussian elimination and using Stassen’s [Str73]
technique of eliminating division operations.

(a) Show that there is an O(n®)-size algebraic circuit of O(logn) depth to multiply two n x n
matrices.

(b) Show that for every i € [n] there is an O(n?®)-size algebraic circuit of depth O(log®n) that
computes M" for any n X n matrix M.
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(c) Recall that for a matrix A, the characteristic polynomial p4 is defined as pa(z) = det(A—zI),
prove that if A = Ai’l 2 (Where M is an (n — 1) X (n — 1) matrix, r is an n — 1-dimensional
row vector, ¢ is an n — 1-dimensonal column vector) then pa = Cps (treating p, ¢ as column

vectors ordered from highest to lowest coefficient), where C' is the following (n— 1) x n matrix:

0 i<j
1 i1 =7

Cij = Y
—Aia i=j+1

—rMI72%¢ > +2
H463

(d) Prove that the determinant can be computed by an algebraic circuit of size poly(n) and depth
O(log2 n). (By making various optimizations the size of the circuit can be made as small as
O(n“t17¢) for every constant ¢ > 0, where w is the number such that there is an O(n*)-sized
O(logn) depth algebraic circuit for matrix multiplication.)

Prove Lemma 16.6
Suppose we are interested in the problem of computing the number of Hamilton cycles in graphs.

Model this as an algebraic computational problem and show that this function is in AlgNP, .
H463

Show that the BSS model over the field GF(2) is equivalent to the standard TM model.

(Shamir [Sha79]) Show that any computational model that allows arithmetic (including “mod” or
integer division) on arbitrarily large numbers can factor any given integer n in poly(logn) time.
H463

Show that if a function f:R™ — {0,1} can be computed in time 7" on algebraic TM then it has an
algebraic computation tree of depth O(T).

Prove that if we give the BSS model (over R) the power to test “a > 07” with arbitrary precision,
then all of P/, can be decided in polynomial time. (Hint: the machine’s “program” can contain
a constant number of arbitrary real numbers.)
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Chapter 17

Complexity of counting

“It is an empirical fact that for many combinatorial problems the detection of
the existence of a solution is easy, yet no computationally efficient method is
known for counting their number.... for a variety of problems this phenomenon
can be explained.”

L. Valiant 1979

The class NP captures the difficulty of finding certificates. However, in many contexts,
one is interested not just in a single certificate, but actually in counting the number of
certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that
captures this notion.

Counting problems arise in diverse fields such as such as statistical estimation, statistical
physics, network design, and economics, often in situations having to do with estimations of
probability. Counting problems are also studied in a field of mathematics called enumera-
tive combinatorics, which tries to obtain closed-form mathematical expressions for counting
problems. To give an example, in 1847 Kirchoff showed how the resistance of a network can
be determined by counting the number of spanning trees in it, for which he gave a formula
involving a simple determinant computation. Results in this chapter will show that for
many other natural counting problems, such efficiently computable expressions are unlikely
to exist.

In Section 17.1 we give an informal introduction to counting problems and how they
arise in statistical estimation. We also encounter an interesting phenomenon: a counting
problem can be difficult even though the corresponding decision problem is easy.

Then in Section 17.2 we initiate a formal study of counting problems by defining the class
#P. The quintessential problem in this class is #SAT, the problem of counting the number
of satisfying assignments to a Boolean formula. We then introduce #P-completeness and
prove the #P-completeness of an important problem, computing the permanent of a 0,1
matrix.

We then consider whether #P is related to the concepts we have studied before. Sec-
tion 17.4 shows a surprising result of Toda: an oracle for #SAT can be used to solve every
problem in PH in polynomial time. The proof involves an interesting probabilistic argu-
ment, even though the statement of the Theorem involves no probabilities.

Examples of Counting Problems

In counting problems the output is a number rather than just 0,1 as in a decision problem.
Counting analogues of the usual decision problems are of great interest in complexity theory.
We list a couple of examples.

e #CYCLE is the problem of computing, given a directed graph G, the number of sim-
ple cycles in G. (A simple cycle is one that does not visit any vertex twice.) The
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corresponding decision problem of deciding if the graph has a cycle is trivial and can
be solved in linear time.

e #SAT is the problem of computing, given a Boolean formula ¢, the number of satis-
fying assignments for ¢. Here of course, the corresponding decision problem is NP-
complete, so presumably the counting problem is even harder.

17.1.1 Counting problems and probability estimation

Counting problems often arise in situations where we have to do estimations of probability.

Example 17.1

In the GraphReliability problem we are given a directed graph on n nodes. Sup-
pose we are told that each node can fail with probability 1/2 and want to compute
the probability that node 1 has a path to n.

A moment’s thought shows that under this simple node failure model, the re-
maining graph is uniformly chosen at random from all induced subgraphs of the
original graph. Thus the correct answer is

1
2—n(number of subgraphs in which node 1 has a path to n.)

Again, it is trivial to determine the ezistence of a path from 1 to n.

Example 17.2 (Mazimum Likelihood Estimation in Bayes Nets)

Suppose some data is generated by a probabilistic process but some of the data
points are missing. This setting is considered in a variety of fields including
machine learning and economics. In maximum likelihood estimation we try to
come up with the most likely value of the missing data points.

A simple model of data generation is Bayes Net, and we restrict attention to
a particularly simple example of a Bayes Net. There are n hidden variables
Z1,...,2, € {0,1}, whose values are picked be nature by tossing n fair random
coins independently. These values are hidden from us. The values actually
available to us are m wvisible random variables y1,¥2,...,Yyn, each of which is
an OR of up to 3 hidden variables or their negations. We observe that all of
Y1, Y2, ..., Yn are 1. We now have to estimate the a posteriori probabilty that
T is 1.

Of course, a complexity theorist can immediately realize that an OR of 3 literals
is a 3CNF clause, and thus recast the problem as follows: we are given a 3CNF’
Boolean formula with n variables and m clauses. What is the fraction of satis-
fying assignments that have z; = 17 This problem turns out to be equivalent to
#SAT (see Exercise 17.1 and also the Chapter Notes).

Example 17.3 (Estimation problems in statistical physics)

One of the most intensively studied models in statistical physics is the Ising
model, introduced in the 1920s by Lenz and Ising to study ferromagnetism. An
instance of the model is given by a set of n sites, a set of interaction energies Vj;
for each unordered pair of sites 7, j, a magnetic field intensity B, and an inverse
temperature 3. A configuration of the system defined by these parameters is
one of 2™ possible assignments o of +1 spins to each site. The energy of a
configuration o is given by the Hamilton H (o) defined by:

H(U):—Z%jUin—BZUk. (1)
{i.7} k
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The important part of this sum is the first term, consisting of a contribution from
pairs of sites. The importance of this expression comes from the Gibbs distri-
bution, according to which the probability that the system is in configuration o
is proportional exp(—(BH (¢)). This implies that the probability of configuration
o is 1/Z x exp(—FH/(0)), where the normalizing factor Z, called the partition
function of the system, is

Z= Y exp(—BH(0)).

oe{1,1}"

Computing the exact partition function also turns out to be equivalent to #SAT
(see Chapter notes).

Counting can be harder than decision

What is the complexity of #SAT and #CYCLE? Clearly, if #SAT has a polynomial-time
algorithm then SAT € P and so P = NP. How about #CYCLE? The corresponding decision
problem —given a directed graph decide if it has a cycle—can be solved in linear time by
breadth-first-search. The next theorem suggests that the counting problem may be much

harder.
u Vv
1 2 m

Figure 17.1 Reducing Ham to #CYCLE: by replacing every edge in G with the above
gadget to obtain G’, every simple cycle of length £ in G becomes (2™)¢ simple cycles in G”.

Theorem 17.4 If #CYCLE has a polynomial-time algorithm, then P = NP. O

PrOOF: We show that if #CYCLE can be computed in polynomial time, then Ham € P,
where Ham is the NP-complete problem of deciding whether or not a given digraph has a
Hamiltonian cycle (i.e., a simple cycle that visits all the vertices in the graph). Given a
graph G with n vertices, we construct a graph G’ such that G has a Hamiltonian cycle iff
G’ has at least n™” cycles.

To obtain G, replace each edge (u,v) in G by the gadget shown in Figure 17.1. The
gadget has m = nlogn levels. It is an acyclic digraph, so cycles in G’ correspond to cycles
in GG. Furthermore, there are 2™ directed paths from u to v in the gadget, so a simple cycle
of length £ in G yields (2™)¢ simple cycles in G’.

Notice, if G has a Hamiltonian cycle, then G’ has at least (2™)" > n™" cycles. If G has
no Hamiltonian cycle, then the longest cycle in G has length at most n — 1. The number of
cycles is bounded above by n" 7. So G’ can have at most (2™)" "1 x n"~! < n" cycles. B

The class #P

We now try to capture the above counting problems using the complexity class #P. Note
that it contains functions whose output is a natural number, and not just 0/1.
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Definition 17.5 (#P)
A function f : {0,1}" — N is in #P if there exists a polynomial p : N — N and a
polynomial-time TM M such that for every z € {0,1}":

f@) = [{v e 0.0 s M(ay) = 1]

Of course, the definition implies that f(x) can be expressed using poly(|z|) bits.

As in case of NP, we can also define #P using non-deterministic TMs. That is, #P
consists of all functions f such that f(x) is equal to the number of paths from the initial
configuration to an accepting configuration (in brief, “accepting paths”) in the configuration
graph Gz, of a polynomial-time NDTM M on input = (see Section 4.1.1). Clearly, all the
counting problems in Section 17.1 fall in this class.

The big open question regarding #P is whether all problems in this class are efficiently
solvable. We define FP to be the set of functions from {0,1}" to {0,1}" equivalently, from
{0,1}" to N) computable by a deterministic polynomial-time Turing machine, is the analog
of efficiently computable functions (i.e., the analog of P for functions with more than one
bit of output). Then the question is whether #P = FP. Since computing the number of
certificates is at least as hard as finding out whether a certificate exists, if #P = FP then
NP = P. We do not know whether the other direction also holds: whether NP = P implies
that #2P = FP. We do know that if PSPACE = P then #P = FP, since counting the
number of certificates can be done in polynomial space.

The class PP: decision-problem analog for #P.

Similar to the case of search problems, even when studying counting complexity, we can
often restrict our attention to decision problems. The following is one such problem:

Definition 17.6 (PP ) A language L is in PP if there exists a polynomial-time TM M and
a polynomial p : N — N such that for every z € {0,1}",

1
ve L |{ue o, Mw,u) =1} = e 5

That is, for = to be in L it does not need just one certificate (as is the case in NP— see
Definition 2.1) but rather a majority of certificates.

Lemma 17.7 PP =P < #P = FP &

PROOF: The non-trivial direction is that if PP = P then ##P = FP. Let f be a function in
#P. Then for every input z, f(x) there is some polynomial-time TM M such that f(z) the
number #/(x) of strings u € {0,1}" such that M (x,u) = 1, where m is some polynomial
in |z| that is the length of certificates that M takes.

For every two TM’s My, M; taking m-bit certificates denote in this proof by “My+ M;”
the TM M’ that takes n+ 1 bit certificate where M'(x,bu) = My(x,u). Then #1401, () =
#u,(x) + #ar, (x). Also, for N € {0..2m}, we denote by My the TM that on input
xz,u outputs 1 iff the string u, when considered as a number, is smaller than N. Clearly
#ny () = N. If PP = P then we can determine in polynomial time if

#umy+m(x) =N+ F#u(z) > 2. (2)

Thus, to compute #(x) we can use binary search to find the smallest N that makes satisfy
(2), which will equal 2™ — # /(z). B

Intuitively speaking, PP corresponds to computing the most significant bit of functions
in #P: if the range is [0, N — 1] we have to decide whether the function value is > N/2.
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One can also consider decision problems corresponding to the least significant bit; this is
called ®P (see Definition 17.15 below).

Another related class is BPP (see Chapter 7), where we are guaranteed that the fraction
of accepting paths of an NDTM is either > 2/3 or < 1/3 and have to determine which is
true. But PP seems very different from BPP because the fraction of accepting paths in
the two cases could be > 1/2 or < 1/2 — exp(—n), and the lack of a “gap” between the
two cases means that random sampling would require exp(n) trials to distuinguish between
them. (By contrast, the sampling problem for BPP is easy, and we even think it can be
replaced by a deterministic algorithm; see Chapter 20.)

#P completeness.

Now we define #P-completeness. Loosely speaking, a function f is #P-complete if it is
in #P and a polynomial-time algorithm for f implies that #P = FP. To formally define
#P-completeness, we use the notion of oracle TMs, as defined in Section 3.4. Recall that
a TM M has oracle access to a language O C {0,1}" if it can make queries of the form
“Is ¢ € O?7” in one computational step. We generalize this to non-Boolean functions by
saying that M has oracle access to a function f : {0,1}" — {0,1}", if it is given access to
the language O = {(z,i) : f(z); = 1}. We use the same notation for functions mapping
{0,1}" to N, identifying numbers with their binary representation as strings. For a function
f:{0,1}" — {0,1}", we define FP/ to be the set of functions that are computable by
polynomial-time TMs that have oracle access to a function f.

Definition 17.8 A function f is #P-complete if it is in #P and every g € #P is in FP/¢
If f € FP then FP/ = FP. Thus the following is immediate.
Proposition 17.9 If f is #P-complete and f € FP then FP = #P. &

Counting versions of many NP-complete languages such as 3SAT,Ham, and CLIQUE
naturally lead to #P-complete problems. We demonstrate this with #SAT:

Theorem 17.10 #SAT is #P-complete &

PRrROOF: Consider the Cook-Levin reduction from any L in NP to SAT we saw in Section 2.3.
This is a polynomial-time computable function f : {0,1}" — {0,1}" such that for every
z € {0,1}", x € L & f(x) € SAT. However, the proof that the reduction works actually
gave us more information than that. In Section 2.3.6 we saw that it provides a Levin
reduction, by which we mean the proof showed a way to transform a certificate that x is
in L into a certificate (i.e., satisfying assignment) showing that f(z) € SAT, and also vice
versa (transforming a satisfying assignment for f(z) into a witness that z € L).

In fact, for the reduction in question, this mapping from the certificates of x to the
assignments of f(x) is one-to-one and onto (i.e., a bijection). Thus the number of satisfying
assignments for f(x) is equal to the number of certificates for z. Such reductions are called
parsimonious. (More generally, the definition allows the witness mapping to be k-to-1 or
1-to-k, so the number of witnesses for the two problems are still the same up to scaling by
k.l

As shown below, there are #P-complete problems for which the corresponding decision
problems are in fact in P.
Permanent and Valiant’s Theorem

Now we study another problem. The permanent of an n x n matrix A is defined as

perm(4) = Z HAi,U(i) (3)

€S, i=1
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where S,, denotes the set of all permutations of n elements. Recall that the expression for
the determinant is similar

det(A) = > sgn(o) [ [ Aiow)
=1

g€eSy,

except for an additional “sign” term.' This similarity does not translate into computational
equivalence: the determinant can be computed in polynomial time, whereas computing the
permanent seems much harder, as we see below. (For another perspective on the hardness
of the permanent see Chapter 16.)

The permanent function can also be interpreted combinatorially. First, suppose the
matrix A has each entry in {0,1}. Then it may be viewed as the adjacency matrix of a
bipartite graph G(X,Y, E), with X = {z1,..., 2.}, Y = {y1,...,yn} and {x;,y;} € E iff
A;j = 1. For each permutation o the term [, Aoy is 1 iff o is a perfect matching
(which is a set of n edges such that every node is in exactly one edge). Thus if A is a
0,1 matrix then perm(A) is simply the number of perfect matchings in the corresponding
graph G. Note that the whether or not a perfect matching ewists can be determined in
polynomial time. In particular, computing perm(A) is in #P. If A is a {—1,0,1} matrix,
then perm(A) = HU i Aioy = 1}‘ - HU i Aoy = —1}’. Thus one can make
two calls to a #SAT oracle to compute perm(A4). Finally, if A has general integer entries
(possibly negative) the combinatorial view of perm(A) is as follows. Consider matrix A as
the the adjacency matrix of a weighted n-node complete digraph with self loops and 0 edge
weights allowed. Associate with each permutation o a cycle cover, which is a subgraph on
the same set of vertices but only a subset of the original edges, where each node has in-
degree and out-degree 1. Such a subgraph must decompose into disjoint cycles. The weight
of the cycle cover is the product of the weights of the edges in it. Then perm(A) is equal
to the sum of weights of all possible cycle covers. Using this observation one can show that
computing the permanent is in FP#*AT (see Exercise 17.2).

The next theorem came as a surprise to researchers in the 1970s, since it implies that if
perm € FP then P = NP. Thus, unless P = NP, computing the permanent is much more
difficult then computing the determinant.

Theorem 17.11 (Valiant’s Theorem [Val79b])
perm for 0,1 matrices is #P-complete.

Theorem 17.11 involves very clever gadget constructions. As warmup, we introduce a
simple idea.

Convention: In drawings of gadgets in the rest of the chapter, the underlying graph is
a complete digraph, but edges that are missing from the figure have weight 0 and hence
can be ignored while considering cycle covers. Unmarked edges have weight +1. We will
also sometimes allow parallel edges (with possibly different weights) from a node to another
node. This is not allowed per se in the definition of permanent, where there is a single edge
of weight A; ; from ¢ to j. But since we are describing reductions, we have the freedom
to later replace each parallel edge of weight w by a path of length 2 whose two edges of
weight 1 and w. This just requires adding a new node (not connected to anything else) in
the middle of each parallel edge.

't is known that every permutation o € S, can be represented as a composition of transpositions,
where a transposition is a permutation that only switches between two elements in [n] and leaves the other
elements intact (one proof for this statement is the Bubblesort algorithm). If 71,...,7m is a sequence of
transpositions such that their composition equals o, then the sign of o is equal to (—1)™. It can be shown
that the sign is well-defined in the sense that it does not depend on the representation of o as a composition
of transpositions. NEED TO MOVE THIS WHERE FIRST USED.
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1 ¢ A weight= -1 ° a4
A P,
[ ]

E

weight= +1

Figure 17.2 The above graph G consists of two vertex-disjoint subgraphs, one called G’ and
the other is the “gadget” shown. The gadget has only two cycle covers of nonzero weight,
namely, weight —1 and 1. Hence the total weight of cycle covers of G is zero regardless
of the choice of G’ since for every cycle cover of weight w in G’, there exist two covers of
weight +w and —w in the graph G.

Example 17.12

Consider the graph in Figure 17.2. Even without knowing what the subgraph
G’ is, we show that the permanent of the whole graph is 0. For each cycle cover
in G’ of weight w there are exactly two cycle covers for the three nodes, one
with weight +w and one with weight —w. Any non-zero weight cycle cover of
the whole graph is composed of a cycle cover for G’ and one of these two cycle
covers. Thus the sum of the weights of all cycle covers of G is 0.

PROOF OF VALIANT’S THEOREM (THEOREM 17.11): We reduce the #P-complete problem
#3SAT to perm. Given a Boolean 3C'N F' formula ¢ with n variables and m clauses, first we
shall show how to construct an integer matrix, or equivalently, a weighted digraph G’, with
some negative entries such that perm(G’) = 43™ . (#¢), where #¢ stands for the number
of satisfying assignments of ¢. Later we shall show how to to get a digraph G with weights
0,1 from G’ such that knowing perm(G) allows us to compute perm(G’).

The main idea is that our construction will result in two kinds of cycle covers in the
digraph G’: those that correspond to satisfying assignments of ¢ (we will make this precise)
and those that don’t. Using reasoning similar to that used in Example 17.12; we will use
negative weights to ensure that the contribution of the cycle covers that do not correspond
to satisfying assignments cancels out. On the other hand, we will show that each satisfying
assignment contributes 43™ to perm(G’), and so perm(G’) = 43™ . (#¢).

To construct G’ from ¢, we combine three kinds of gadgets shown in Figure 17.3. There
is a variable gadget for each variable, a clause gadget for each clause, and a way to connect
them using gadgets called XOR gadgets. All are shown in Figure 17.3.

XOR gadget. Suppose we have a weighted digraph H and wish to ensure for some pair of
— —

edges uu' and vv’, ezactly one of these edges is present in any cycle cover that counts
towards the final sum. To do so, we can construct a new digraph H’ in which this
pair of edges is replaced by the XOR gadget of Figure 17.3.

Every cycle cover of H of weight w that uses exactly one of the edges ﬁ and ﬁ is
mapped to a set of cycle covers in H' whose total weight is 4w (i.e., the set of covers
that enter the gadget at u and exit at «’ or enter it at v and exit it at v'), while
all the other cycle covers of H’ have total weight 0 ( this uses reasoning similar to
Example 17.12, see Exercise 17.3).

Variable gadget. The variable gadget has both internal edges (that are not involved with
any other part of the graph) and external edges (that will be connected via XOR
gadgets to other edges of the graph). We partition the external edges to “true”
edges and “false” edges. The variable gadget has only two possible cycle covers,
corresponding to an assignment of 0 or 1 to that variable. Assigning 1 corresponds
to using cycle taking all the “true” external edges, and covering all other vertices
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Figure 17.3 The gadgets used in the proof of Valiant’s Theorem (Theorem 17.11).
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with self loops. Similarly, assigning 0 correspond to taking all the “false” external
edges. Each external edge of a variable gadget is associated with a clause in which the
variable appears— a true edge is associated with a clause where the variables appears
in a positive (non-negated) form, while a false edge is associated with a clause where
the variable appears in negated form.

Clause gadget. The clause gadget consists of four vertices. The edges labeled with “ex-
ternal edge” are the only ones that will connect to the rest of the graph. Specifically,
the external edge will connect via a XOR gadget with an external edge of a variable
gadget corresponding to one of the three variables in the clause. The only possible
cycle covers of the Clause gadget are those that omit at least one external edge. Also
for a given proper subset of the three external edges there is a unique cycle cover of
weight 1 that contains them.

The overall construction is shown at the bottom of Figure 17.3. If a clause C' contains
the variable x then we connect the corresponding external edge of C’s gadget with the
corresponding (true) external edge of z’s gadget using the XOR gadget (if C' contains the
negation of  then the edge corresponding to X in z’s gadget will be a false external edge).

To analyze this construction, note that because each variable gadget has exactly two
cycle covers corresponding to the 0 and 1 assignments, there is a one-to-one correspondence
between assignments to the variables x4, ..., z, and the cycle covers of the variable gadgets
of G’. Now for every such assignment x, let Cx denote the set of cycle covers in G’ that
cover the variable gadgets according to the assignment x. That is, we cover variable x;’s
gadget using the true external edges if x; = 1 and cover it using the false external edges if
x; = 0. Let w(x) denote the total weight of assignments in Cx. It suffices to show that if x
is a satisfying assignment then w(x) = 43™, and if x is not satisfying then w(x) = 0.

Indeed, by the properties of the XOR gadget and the way we connected clauses and
variables, if x; = 1 then in cycle covers in Cx the corresponding external edge has to be
omitted in the gadget of every clause in which x; appears positively, and has to be included
for clauses containing z; negatively, and similarly if z; = 0 then the corresponding edges
have to be included or omitted accordingly. (More accurately, covers without this property
do not contribute toward the final sum.) But because every cover for the clause gadget has
to omit at least one external edge, we see that unless every clause has a literal that evaluates
to “true” in the assignment x (i.e., unless x satisfies ¢) then the total weight of covers in Cx
is zero. If x does satisfy ¢ then this total weight will be 43 (since x determines a unique
cycle cover for all clause gadgets that passes through the XOR gadget exactly 3m times).
Thus perm(G’) = 43 (#¢).

Reducing to the case of 0,1 matrices. This transformation goes in two steps. First we
create a graph G” with edge weights in {—1,0,1} and the same permanent as G’. Then we
remove negative weights to create a graph G whose permanent contains enough information
to compute perm(G’) = perm(G”). The transformations may blow up the number of vertices
by a factor O(nL?logn), where L is the number of bits required to describe all the weights
in G.

Notice, an edge whose weight is a power of 2, say 2¥, can be replaced by a path (consisting
of new nodes not connected to anything else) of &k edges, each of weight 2. Similarly, an
edge whose weight is 2% + 2K can be replaced by two parallel paths of weight 2* and ok
respectively. Combining these observations, we can replace an edge whose weight is not a
power of 2 by a set of parallel paths determined by its binary expansion; the total number
of nodes in these paths is quadratic in the number of bits required to represent the original
weight. This gives a graph G with weights in {—1,0,1} and at most O(L?) new vertices.

To get rid of the negative weights, we use modular arithmetic. The permanent of an
n-vertex graph with edge weights in {41} is a number z in [—n!, +n!] and hence it suffices to
compute this permanent modulo 2™ + 1 where m = n?. But —1 = 2™ (mod 2™ +1), so the
permanent modulo 2™+ 1 is unchanged if we replace all weight —1 edges with edges of weight
2™, Such edges can be replaced by an unweighted subgraph of size O(m) = O(nlogn) as
before. Thus we obtain a graph G with all weights 0,1 and whose permanent can be used



17.3.2

304 17 Complexity of counting

to compute the original permanent (specifically, by taking the remainder modulo 2™ + 1).
The number of new vertices is at most O(nL?logn). B

Approximate solutions to #P problems

Since computing exact solutions to #P-complete problems is presumably difficult, a nat-
ural question is whether we can approzimate the number of certificates in the sense of the
following definition.

Definition 17.13 Let f:{0,1}" — N and a < 1. An algorithm A is an a-approzimation for
fif for every z, af (z) < A(z) < f(x)/a. O

Not all #P problems behave identically with respect to this notion. Approximating
certain problems within any constant factor a > 0 is NP-hard (see Exercise 17.4). For
other problems such as 0/1 permanent, there is a Fully polynomial randomized approximation
scheme (FPRAS), which is an algorithm which, for any €, §, computes a (1—¢)-approximation
to the function with probability 1 — ¢ (in other words, the algorithm is allowed to give an
incorrect answer with probability ¢) in time poly(n,log1/d,log1/e). Such approximation
of counting problems is sufficient for many applications, in particular those where counting
is needed to obtain estimates for the probabilities of certain events (e.g., see our discussion
of the graph reliability problem in Example 17.1). Interestingly, if P = NP then every
#P problem has an FPRAS (and in fact an FPTAS: i.e., a deterministic polynomial-time
approximation scheme), see Exercise 17.5.

Now we explain the basic idea behind the approximation algorithm for the permanent
—as well as other similar algorithms for a host of #P-complete problems. This is only a
sketch; the Chapter notes contain additional references.

One result that underlies these algorithms is due to Jerrum, Valiant and Vazirani [JVV86].
It shows that under fairly general conditions there is a close connection (in the sense the
two are interreducible in polynomial time) between

1. having an approximate formula for the size of a set S and

2. having an efficient algorithm for generating a uniform random (or approximately uni-
form) element of S.

The basic idea is a counting version of the downward self-reducibility idea we saw in Chap-
ter 2.

Suppose we are trying to use sampling to do approximate counting and S is a subset
of {0,1}". Let S = Sy U S; where S, is the subset of strings in S whose first bit is 1. By
sampling a few random elements of S we can estimate p; = |S1|/ |S] up to some reasonabable
accuracy. Then we fix the first bit of the string, and use our algorithm recursively to estimate
|S1] and multiply it by our estimate of 1/p; to obtain an estimate |S].

To produce a random sample from .S using approximate counting, one again proceeds in
a bit by bit fashion, and reverses the above argument. First we estimate |S1],|S| and use
their ratio to estimate p;. Produce a bit b by tossing a random coin with bias p1; i.e., if the
coin comes up heads make the bit 1 else make it 0. Then make b the first bit of the sample
and recursively use the same algorithm to produce a sample from Sy

The main point is that in order to do approximate counting it suffices to draw a random
sample from S. All the algorithms try to sample from S using the Markov Chain Monte
Carlo method. One defines a connected d-uniform digraph on S, and does a random walk on
this graph. Since the graph is d-regular for some d, the stationary distribution of the walk
is uniform on S. Under appropriate conditions on the expansion of the graph (establishing
which is usually the meat of the argument) the walk “mixes” and the sample becomes close
to uniform.
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Toda’s Theorem: PH C pP#oAT

An important open question in the 1980s concerned the relative power of the polynomial-
hierarchy PH and the class of counting problems #P. Both are natural generalizations of
NP, but it seemed that their features— alternation and the ability to count certificates,
respectively — are not directly comparable to each other. Thus it came as big surprise when
in 1989 Toda showed:

Theorem 17.14 (Toda’s Theorem [Tod91])
PH C P#AT,

That is, we can solve any problem in the polynomial hierarchy given an oracle to a
#P-complete problem.

Note that we already know, even without Toda’s theorem, that if #P = FP then
NP = P and so PH = P. However, this does not imply that any problem in PH can be
computed in polynomial-time using an oracle to #SAT. For example, one implication of
Toda’s theorem is that a subexponential (i.e., 2"0(1)—time) algorithm for #SAT will imply
such an algorithm for any problem in PH. Such an implication is not known to hold from
a 27" _time algorithm for SAT.

To prove Toda’s theorem, we first consider formulae with odd number of satisfying
assignments. The following is the underlying complexity class.

Definition 17.15 A language L is in the class ®P (pronounced “parity P”) iff there is a
polynomial time NTM M such that « € L iff the number of accepting paths of M on input
z is odd. O

As in the proof of Theorem 17.10, the fact that the standard NP-completeness reduction
is parsimonious implies the following problem & SAT is @P-complete (under many-to-one
Karp reductions):

Definition 17.16 (@ quantifier and @ SAT)

Define the quantifier @ as follows: for every Boolean formula ¢ on n variables.
@D. (o1 (2) is true if the number of z’s such that ¢(z) is true is odd.” The language
@ SAT consists of all the true quantified Boolean formula of the form €D, ¢ (g 1;» () where
¢ is an unquantified Boolean formula (not necessarily in CNF form).

“Note that if we identify true with 1 and 0 with false then @, (o 13 ¢() = > 40,13 ¢(®) (mod 2).
Also note that B, 10,13 (@) =Dy cq01)  Papefoy (1 Tn).

@P can be considered as the class of decision problems corresponding to the least signifi-
cant bit of a #P-problem. One imagines that therefore it is not too powerful. For instance,
it is even unclear whether we can reduce NP to this class. The first half of Toda’s proof
shows, surprisingly, a randomized reduction from PH to @& SAT. The second half is going
to be a clever “derandomization” of this reduction, and is given in Section 17.4.4.

Lemma 17.17 (Randomized reduction from PH to @ SAT)

Let ¢ € N be some constant. There exists a probabilistic polynomial-time algorithm A that
given a parameter m and any quantified Boolean formula v of size n with with ¢ levels of
alternations, runs in poly(n,m) times and atisfies

Y is true = Pr[A(¢) € @ SAT] >1—-2""™
Y is false = Pr[A(y) € @ SAT] <27™.
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Of course, to reduce PH to @& SAT we better first figure out how to reduce NP to
@ SAT, which is already unclear. This will involve a detour into Boolean formulae with
unique satisfying assignments.

A detour: Boolean satisfiability with unique solutions

Suppose somebody gives us a Boolean formula and promises us that it has either no satisfying
assignment, or a unique satisfying assignment. Such formulae arise if we encode some classic
math problems using satisfiability (see e.g. the number-theoretic DISCRETE LOG problem
in Chapter 9 that is the basis of some encryption schemes). Let USAT be the language
of Boolean formulae that have a unique satisfying assignment. Is it still difficult to decide
satisfiability of such special instances (in other words, to answer “yes” if the formula is in
USAT and “no” if the formula is in SAT, and an arbitrary answer in every other case)? The
next result of Valiant and Vazirani shows that if we had a polynomial-time algorithm for
this problem then NP = RP. This was a surprise to most researchers in the 1980s.

Theorem 17.18 (Valiant- Vazirani Theorem [VV86])
There exists a probabilistic polynomial-time algorithm f such that for every n-variable
Boolean formula ¢

@ € SAT = Pr[f(¢) € USAT]| >
© & SAT = Pr[f(¢) € SAT| =

L
8n
0

We emphasize that the conclusion in the second part is not just that f(¢) ¢ USAT but in
fact f(p) & SAT.

The proof of Theorem 17.18 uses the following lemma on pairwise independent hash
functions, which were introduced in Section 8.2.2:

Lemma 17.19 (Valiant- Vazirani Lemma) Let H,, i, be a pairwise independent hash function
collection from {0,1}" to {0,1}* and S C {0,1}" such that 2¥=2 < |S| < 2¥=1. Then,
heulzirn,k[there is a unique x € S satistying h(zx) = 0%] > 3 o
PROOF: For every z € S, let p = 27% be the probability that h(z) = 0F when h €, Ho k-
Note that for every z # 2/, Pr[h(z) =0F A h(z') =0*] = p?>. Let N be the random variable

denoting the number of € S satisfying h(z) = 0*. Note that E[N] = |S|p € [, 1]. By the
inclusion-exclusion principle

N 2 12 Y Pl =0 - Y Pt =0t Ane) =0 = Islp - (15 )

zeS rz<z'eS

and by the union bound we get that Pr[N > 2] < (/§/)p?. Thus

1
HW—u—mwzu—mwzmzwm—%f%fzmpLWﬁ :

where the last inequality is obtained using the fact that + < |S|p < 1. W
Now we prove Theorem 17.18.
PROOF OF THEOREM 17.18: Given a formula ¢ on n variables, choose k at random from

{2,...,n+ 1} and a random hash function h €, H,, . Consider the statement

Jreqoay (@) A (h(z) = 0F). (4)

If ¢ is unsatisfiable then (4) is false since no x satisfies p(x). If ¢ is satisfiable, then with
probability at least 1/8n there exists a unique assignment x satisfying (4). After all if S is the
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set of satisfying assignments of o, then with probability 1/n, k satisfies 2872 < | S| < 2+—1
conditioned on which, with probability 1/8, there is a unique = such that p(z) A h(x) = 0".

The idea of the preceding paragraph is implemented as follows. The reduction consists of
using the Cook-Levin transformation to express the (deterministic) computation inside the
3% sign in (4). Write a formula 7 on variables z € {0,1}",y € {0,1}" (for m = poly(n))
such that h(z) = 0 if and only if there exists a unique y such that 7(z,y) = 1. Here
the y variables come from the need to represent a TM’s computation in the Cook-Levin
reduction?. The output Boolean formula is

¥ =px) NT(2,y).

where x,y are the variables. B

Properties of P and proof of Lemma 17.17 for NP, coNP

In Lemma 17.17 the reduction is allowed to fail only with extremely low probability 27,
where m is arbitrary. If we are willing to settle for a much higher failure probability, then
the Valiant-Vazirani trivially implies a reduction from NP to & SAT. Specifically, in the
conclusion of Theorem 17.18 the formula has a unique satisfying assignment in the first
case, and 1 is an odd number. In the second case of the conclusion the formula has no
satisfying assignment, and 0 is an even number. Thus the following is a trivial corollary of
Theorem 17.18

Corollary 17.20 (Consequence of Valiant-Vazirani) There exists a probabilistic polynomial-
time algorithm A such that for every n-variable Boolean formula ¢

¢ € SAT = Pr[A(p) € ® SAT] > &

© & SAT = Pr[A(p) € ® SAT| =0 o

It is an open problem to boost the probability of 1/8n in the Valiant-Vazirani reduction
to USAT (Theorem 17.18) to even a constant, say 1/2. However, such a boosting is indeed
possible for @ SAT, since it turns out to be much more expressive than USAT. Let us
examine some facts about the @ quantifier.

For a Boolean formula ¢ on n variables, let #(¢) denote the number of satisfying assign-
ments of ¢. Given two formulae ¢, 1 on variables z € {0,1}",y € {0,1}"" we can construct
in polynomial-time an n + m variable formula ¢ - ¢ and a (max{n,m} + 1)-variable for-
mula ¢ + 1 such that #(p - ¥) = #(¢)#(¥) and #(¢ + ¥) = #(¢) + #(¢). Indeed, take
(- ¥)(@,y) = (x) Ap(y) and

(e+¥)(2) = ((z0 = 0)A@(21, - -, 20))V((20 = D)A(zmg1 = 0)A- - Az = 0)AY(21, - - -, 2m)) s

where we are assuming m < n. For a formula ¢, we use the notation ¢ + 1 to denote the
formula ¢ + 1 where 1 is some canonical formula with a single satisfying assignment.

Since the product of numbers is even iff one of the numbers is even, and since adding
one to a number flips the parity, for every two formulae ¢, as above

(EPe@) A (EPrw) «Ple-v)(y) (5)
P o) = Ple+1)(,2) (6)
(B e@) v @Bew) e @e+1) - @ +1)+1)(x,y,2) (7)

z,Y,2

2For some implementations of hash functions, such as the one described in Exercise 8.4, one can construct
such a formula directly without using the y variables or going through the Cook-Levin reduction.
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The meaning of the observation in (6) is that @P is closed under complementation,
namely, for any ¢ we can write another formula ¢ in polynomial time such that =&, ¢(x)
is equivalent to €, ¥(y). The meaning of observations in (5) and (7) is that a polynomial
number of ANDs and ORs of & SAT instances can also be converted in polynomial time to
a single @ SAT instance that is equivalent.

Now we prove Lemma 17.17 for NP and coNP (i.e., when the formula ¢ has a single
V or 3 quantifier). In fact it suffices to give a reduction from just NP. Since @P is closed
under complementation, that same reduction will be a probabilistic reduction of coNP to
&P, and hence to P.

PRrROOF: (Lemma 17.17; when ¢ has only 3 quantifier) Suppose ¢ is a Boolean formula,
i.e., a quantified formula with one 3 quantifier. The idea for reducing it to @ SAT is the
obvious one: run the reduction of Corollary 17.20 R = O(mn) times, each time producing
a €@ formula. The final formula is the OR of these formulae. If the original formula was
satisfiable then this new formula is true with probability at least 1 — (1 —1/8n)% =1—-2"™,
and if the original formula was not satisfiable, this new formula is never true. Finally, apply
the observation in (7) R times to turn this new formula into a single @ formula, while
possibly blowing up the formula’s size by a polynomial factor. H

Proof of Lemma 17.17; general case

The proof of the general case involves an induction on ¢, the number of quantifier alternations
in ¢. The base case ¢ = 1 (i.e., NP or coNP) was already proved. To prove the general
case, we need a more abstract version of the Valiant-Vazirani lemma, where we observe
that the reduction never looks at what formula it is working with, so this formula could
be an arbitrary Boolean function. (Using terminology from Chapter 3, the Valiant-Vazirani
lemma relativizes.)

Lemma 17.21 (Valiant- Vazirani, oblivious version) There is a probabilistic polynomial-time
procedure that, given input 1", produces a Boolean formula 7(x,y) where z is a vector of
n Boolean variables and y is also a vector of Boolean variables, such that for any Boolean
function 3:{0,1}" — {0,1},

50, 8(e1) = P wn,) A (B) = 1] > o ®)
3y, Blar) = Pr{E r(a1,9) A (B(z1) =1)] = 0. 9)
@1,y %

Now we can prove Lemma 17.17.

PROOF: (Lemma 17.17) Let ¢ have ¢ quantifier alternations. As observed in Section 17.4.2,
@ SAT is closed under complementation, so we may assume wlog that the first quantifier is
an 3. Thus
Y = 3111/)(171)

where ¥(z1) is a quantified Boolean formula with at most ¢ — 1 quantifier alternations,
in which the variables in x; are free. Suppose x7 consists of n Boolean variables. By
the inductive hypothesis, there is a randomized reduction such that for each value of z;
it produces a @ SAT formula ((z1) = $,9(z,21) that is equivalent to the formula ()
with probability at least 1 — 2~ (™*2) Now imagine running the reduction of Lemma 17.21
K = O(mn) times with independent random bits, and let 71 (z1,y), 72(x1,¥), - .., Tk (1, Y)
be the Boolean formulae produced. Consider the formula

K

a= \/ (7 (z1,9) A B(z1)).

j=1

If 3,,8(x1) is true then according to Lemma 17.21, Pr[a is true] > 1 — (1 — 1/8n)K =
1 — 290 Conversely if 3,, B(x1) is false then Pr[a is true] = 0.
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To finish, note that since the inductive hypothesis implies 3(x1) is a @ SAT instance,
we can convert « also into a @ SAT instance (with polynomial blowup in size) by using the
transformations of Section 17.4.2. The two sources of error are: (a) the conversion of ()
into an equivalent @ SAT instance, which by the inductive hypothesis fails with probability
2-(m+2) and (b) the Valiant-Vazirani error when we replace 3,, to construct « as above,
which also has failure probability 2~ (™*+2). Thus the overall error probability is 2 x 2~ ("+2),
which is less than 277, B

Step 2: Making the reduction deterministic

Now we derandomize the randomized reduction of Lemma 17.17 to complete the proof of
Toda’s Theorem (Theorem 17.14). The following deterministic reduction will be the key
tool.

Lemma 17.22 There is a (deterministic) polynomial-time transformation T that, for every
formula Boolean « formula (3 = T (a, 1%) is such that

a € @ SAT =#(3) = =1 (mod 2°H1)
ad ®SAT =#(8) =0 (mod 2¢F1) &

PROOF: Recall that for every pair of formulae ¢,7 we defined formulas ¢ + 7 and ¢ - 7
satisfying #(p + 7) = #(¢) + #(7) and #(p - 1) = #(¢)#(7), and note that these formulae
are of size at most a constant factor larger than ¢, 7. Consider the formula 473 + 374 (where
73 for example is shorthand for 7 - (7 - 7)). One can easily check that

#(r) =—1 (mod 2¥) =#(473 +37r%) = -1 (mod 22) (10)
#(r) =0 (mod 2¥) =#(47r* +3r) =0 (mod 2)2" (11)

Let 1o = avand 941 = 493 + 3¢}, Let 8 = Yriog(e+1)]- Repeated use of equations (10), (11)
shows that if # (1) is odd, then #(8) = —1 (mod 2¢*1) and if #(v)) is even, then #(3) = 0
(mod 2¢+1). Also, the size of 3 is only exp(O(log¢)) times larger than size of a, so the
reduction runs in time polynomial in the input length. H

PROOF OF THEOREM 17.14 USING LEMMAS 17.17 AND 17.22.: Let f be the reduction in
Lemma 17.17 obtained by setting the parameter m = 2. Since it is a randomized reduction,
we may think of it as a deterministic function taking two inputs, the quantified formula )
and the random string r. Let R be the number of bits in the random string. Then let T" be
the reduction in Lemma 17.22 obtained by setting ¢ = R + 2, and which therefore runs in
poly(R, | f(¥)|) time.

Consider the combined reduction T o f (i.e., apply f followed by T') as a deterministic
function applied to the input ¢, 7, and focus on the value of the following sum modulo 2¢*1:

ST #To f(w,r). (12)

re{0,1}7

If ¢ is true then at least 3/4 of the terms are —1 modulo 2*! and the remaining terms
are 0 modulo 2¢*!. Thus the sum modulo 2°*! lies between —2% and —[3/4 x 2] in this
case.

If ¢ is false on the other hand then at least 3/4 of the terms are 0 modulo 2¢*! and the
remaining terms are —1 modulo 2°7*. Thus the sum modulo 2“1 is between —[1 x 2%]
and 0 in this case.

Since 21 > 2742 these two ranges are disjoint. So if we can somehow evaluate the
expression in (12) using a query to a #SAT oracle, we can tell which of the two ranges its
value lies in, and hence determine if 1 is true.

But it is straightforward to come up with such a query for the #SAT oracle using the
Cook-Levin construction to express the deterministic computation represented by T o f.
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Specifically, denote the vector of variables of the Boolean formula T'o f (¢, r) by y. We write
a Boolean formula T'(r, y, z) that is 1 for an assignment (r, y, z) iff y is a satisfying assignment
T o F(p,r). Such a formula can be written by applying the Cook-Levin construction on the
circuit that first computes T o f(p,r) (where ¢ is “hardwired” into the circuit), and then
substitutes the assignment y into this formula. The variables z correspond to values of inner
wires of this circuit, and since the circuit is deterministic, its value is uniquely determined
given y, 7.

Hence #(I'(r,y, z)) mod 2/ is exactly (12), and so the query for the #SAT oracle is to
ask for #(T"). B

WHAT HAVE WE LEARNED?

e The class #P consists of functions that count the number of certificates for a given
instance. If P # NP then it is not solvable in polynomial time.

e Counting analogs of many natural NP-complete problems are #P-complete, but there
are also #P-complete counting problems for which the corresponding decision problem
is in P. For example the problem perm of finding the permanent of a matrix —
equivalent to counting the number of perfect matchings in a graph —is #P-complete,
whereas deciding whether a graph has a perfect matching is in P.

e Surprisingly, counting is more powerful than alternating quantifiers: we can solve every
problem in the polynomial hierarchy using an oracle to a #P-complete problem.

e The classes PP and &P contain the decision problems that correspond to the most

significant and least significant bits (respectively) of a #P function. The class PP is
as powerful as #P itself, in the sense that if PP = P then #P = FP. We do not
know if this holds for &P but do know that every language in PH randomly reduces
to @P.

17.5 Open Problems

e What is the exact power of @SAT and #SAT ?

e What is the average case complexity of n x n permanent modulo small prime, say 3 or
5 7 Note that for a prime p > n, random self reducibility of permanent implies that
if permanent is hard to compute on the worst case for randomized algorithms, then it
is hard to compute on 1 — O(n/p) fraction of inputs, i.e. hard to compute on average
(see Theorem 8.33).

Chapter notes and history

The definition of #P as well as several interesting examples of #P problems appeared in Valiant’s
seminal paper [Val79c]. The #P-completeness of the permanent is from his other paper [Val79b].
The #P-completeness of computing the partition function of the Ising model (Example 17.3) is
due to Jerrum and Sinclair [JS93], where an FPRAS for the problem is also given. The #P-
completeness of bayes net max likelihood estimation (Example 17.2) first appears in Roth [Rot93].
Dagum and Luby [DL93] had showed that even approximating the probabilities is NP-hard. Welsh’s
book [Wel93] shows the rich mathematical structure of the class #P and the mathematical problems
(involving knot theory, graph colorings, tilings etc.) it captures.

For an introduction to FPRAS’s for computing approximations to many counting problems,
see the relevant chapter in Vazirani [Vaz01] (an excellent resource on approximation algorithms in



17.1
17.2
17.3

17.4

17.5

17.6

17.7

Exercises 311

general) and the survey article by Jerrum and Sinclair [Hoc97]. The FPRAS for the permanent
problem is due to Jerrum, Sinclair, and Vigoda [JSVO01].

Toda’s Theorem is proved in [Tod91]. This result had a very beneficial effect on complexity
theory, because it showed the power of using arithmetic arguments in reasoning about complexity
classes (a theme developed further in Chapters 8 and 11).

In addition to classes covered in this chapter such as #P, ®P, etc., many other complexity
classes also involve some notion of counting. See the survey by Fortnow [For97b].

Exercises

Show that the problem of Example 17.2 is indeed equivalent to #SAT and hence #P-complete.

Show that computing the permanent for matrices with integer entries is in FP#5AT,

Complete the analysis of the XOR gadget in the proof of Theorem 17.11. Let G be any weighted
— —
graph containing a pair of edges uu’ and vv’, and let G’ be the graph obtained by replacing these
edges with the XOR gadget. Prove that every cycle cover of GG of weight w that uses exactly one of
—_—
the edges uu’ is mapped to a set of cycle covers in G’ whose total weight is 4w, and all the other
cycle covers of G’ have total weight 0.

Show that if there is a polynomial-time algorithm that approximates #CYCLE within a factor 1/2,
then P = NP.

Show that if NP = P then for every f € #P there is a randomized polynomial-time algorithm that
approximates f within a factor of 1/2. Can you show the same for a factor of 1 — ¢ for arbitrarily
small constant ¢ > 07 Can you make these algorithms deterministic?

Note that we do not know whether P = NP implies that exact computation of functions in #P
can be done in polynomial time. mn4es

Show that every for every language in AC? there is a depth 3 circuit of nP°Y1°8™) gize that decides
it on 1 — 1/ poly(n) fraction of inputs and looks as follows: it has a single @ gate at the top and
the other gates are V, A of fan-in at most poly(logn). maes

Improve Theorem 10.23 to show that BQP C P#P. e
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Chapter 18

Average Case Complexity: Levin’s
Theory

So far we only studied the complexity of algorithms that solve computational task on every
possible input; that is, worst-case complexity. With few exceptions (such as Chapter 9)
most complexity classes we defined also concerned worst-case complexity; NP-completeness
being a canonical example.

One frequent objection to this whole framework is that practitioners are only interested in
instances of the problem that arise “in practice,” and the worst-case behavior of algorithms
may never be encountered. Of course, it is not always easy to quantify what these real-life
instances are. Algorithm designers have tried to formalize this in various ways and to design
efficient algorithm that work for “many” or “most” of these instances —this body of work
is known variously as average-case analysis or analysis of algorithms. It has been discovered
that several NP-hard problems are actually quite easy on the “average” graph, depending
upon how one formulates “average.” One way to formalize an ”average” graph is that it is
generated randomly. The simplest model of generating an n-vertex random graph is to toss
an unbiased coin for each of the (g) potential edges to decide whether or not to include it in

the graph. This method ends up generating each n-vertex graph with probability 2~ (%), (If
each edge is picked with probability p instead of 1/2, then the resulting distribution is called
G(n,p), also well-studied.) On such random graphs, many NP-complete problems are easy.
3-COLOR can be solved in linear time with high probability. CLIQUE and INDSET can be
solved in n21°8™ time which is only a little more than polynomial and much less than 2",
the running time of the best algorithms on worst-case instances. At the same time, our
study of one-way functions in Chapter 9 also suggests that not all NP problems are easy
on random instances.

The question arises whether we can come up with a theory analogous to NP-completeness
for average-case complexity, and to identify problems that are ‘hardest” or “complete” with
respect to some appropriate notion of reducibility. This chapter surveys such a theory due to
L. Levin (the same person involved in the Cook-Levin Theorem). For simplicity we restrict
our study to decision problems.

The first goal in this theory is to make precise what we mean by “average” instances of a
problem. This is done by assuming that inputs are drawn from a specific distribution. But
then the question arises: what is the class of distributions that arise “in practice”? Levin
makes a daring suggestion: we allow any distribution from which we can draw samples
in polynomial time (P-samplable distribution) . Levin’s reasoning was that the “real-life”
instances must be produced by the actions of the world around us. If we believe in the
strong form of the Church-Turing thesis (Section 1.6.1) then the world can be simulated
on a Turing machine, and it is fair to assume that the “computation” that produced our
instance was not very complicated, i.e., efficient. Hence we can assume the time to produce
the instance was polynomial in the instance size. See Section 18.2 for details.

Thus an “average case problem” consists of a decision problem together with a distribu-
tion on inputs that is poly-time samplable. Then the question arises how one should define
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an “efficient algorithm” for such an average-case problem —in other words, the analog of
the class P. This turns out to be slightly subtle, and we give the precise definition of the
class distP in Section 18.1. In Section 18.3 we try to define an analog of NP-completeness
for average-case complexity. This has some subtleties, especially the notion of “reduction”
needed. We define the class distNP— the average-case analog of NP— a corresponding
notion of distNP-completeness and show that there exist a few problems that are distNP
complete. However, unlike the case of NP completeness, we do not have a rich variety of
natural problems that have been proven distNP complete.

Finding out the true average case complexity of NP problems is one of complexity
theory’s most important goals. In Section 18.4 we examine our current knowledge in this
area, and how it connects to the broader study of complexity.

Distributional Problems and distP

The average case complexity of a problem is only well-defined with respect to a particular
distribution on inputs. We now make this more precise:

Definition 18.1 (Distributional problem,)
A distributional problem is a pair (L, D) where L C {0,1}" is a language, and D = {D,,} is
a sequence of distributions, with D,, being a distribution over {0,1}".

Example 18.2
Here are some examples for distributional problems.

Planted clique Let G, , be the distribution over n-vertex graph where each
edge is chosen to appear in the graph independently with probability p. This
distribution is clearly P-computable. The most common case is p = 2, in
which case every graph in G, ;, has equal probability and we call a graph
drawn from this distribution a “random graph”.

Let k : N — N be some function such that k(n) < n. A naive way to give
an average-case analog of the CLIQUE problem would be to decide whether
a random graph has a k(n)-clique. However, it turns out this problem
is not so difficult, since with very high probability the clique number of
a random graph is equal to an easily computable value (roughly equal to
2logn) [BET76, Mat76].!

Thus, the “right” average-case analog of the k(n)-clique problem uses the
following distribution D,,. With probability 1/2 output a random n-vertex
graph and with probability 1/2 choose a random k(n)-sized subset S of the
vertices and output a random graph conditioned on S being a clique in
the graph. The problem is to decide whether the given graph has a clique
of size at least k(n). Note that for k(n) > 2logn, the probability that a
random graph has such a clique is very small. Using spectral methods, it is
known how to solve this problem efficiently for k(n) ~ /n [Kuc95, AKS98].
But for, say k(n) = n%9 the problem is wide open.

Random 3SAT A random 3CNF formula on n vertices and m clauses can
be obtained by choosing each clause as the OR of three random literals.
Clearly, the larger the number m of clauses, the less likely the formula to

IFor infinitely many n’s, with probability 1 — o(1) the clique number of a random n-vertex graph will
be equal to g(n) where g(n) = |2(logn — loglogn + log(e) + 1)]. For every n with probability 1 — o(1) this
number will be in the set {g(n) — 1, g(n), g(n) + 1}. See also Exercise 18.2.
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be satisfiable. If can be easily shown that there exists constant ¢; < ¢
such that if the number of clauses m is less than ¢;n then the formula will
be satisfiable with very high probability and if m > con then it will be
unsatisfiable with very high probability (e.g., ¢1 = 1,c2 = 8 will do). In
fact, it was shown by Friedgut [Fri99] that there is a function f(n) (where
cin < f(n) < ea(n) for every n) such that for every € > 0, if the number
of clauses m is smaller than (1 —¢€) f(n) then the formula will be satisfiable
with high probability, and if his number is larger than (1 + €)f(n) then it
will be unsatisfiable with high probability. It is believed that f(n) = ¢*n
for some constant ¢* ~ 4.26. For m that is very close to this value, the
problem of determining satisfiability of a random n-variable m-clause 3SCNF
formula seems hard. In fact, because in this chapter we require average-case
algorithms to always output the correct answer (see Definition 18.4 below),
the problem remains hard for much larger value m. At the moment no
expected polynomial-time algorithm is known even in the case of m = n'!,
despite the fact that such a formula will be unsatisfiable with overwhelming
probability (some partial progress was made in [GK01, FO04, FKOO06]).

Decoding a random linear code Let A be an m x n matrix over GF(2),
where m > n (say, m = 10n). The decoding problem of A is to find,
given a vector z € GF(2)™, the closest vector y to z such that y is in the
image of A (i.e., y = Ax for some x € GF(2)"). (This is motivated by
considering A as the generating matrix for an error correcting code; see
also Section 19.2.) There are efficient algorithms to do this for matrices A
of various special forms, but for a random matrix A no efficient algorithm
is known. This problem is also known as the problem of learning parity
with noise.

The decoding problem is of course a search problem. Fix ¢ > 0 to some
constant. The following analogous decision problem (L, D,,) is not known
to be in distP. We let (a) L contain all pairs (A,y) such that y is within
Hamming distance at most em to a vector in A’s image and (b) the dis-
tribution D,, outputs with probability 1/2 a random m x n matrix A and
a random vector y €, GF(2)™, and with probability 1/2, a random m x n
matrix A, and y = Ax + e where x is chosen at random in GF(2)" and e
is a random vector in GF(2)™ having exactly |em| entries equal to 1.
Both these problems are related to the subset sum problem and problems
on discrete lattices in R™ that have proven useful in cryptography; see the
notes to Chapter 9.

Our next step is to define the class distP— the average-case analog of P— that aims
to capture the set of distributional problems (L, D) that are efficiently solvable.? For every
algorithm A and input z, let time4(x) denote the number of steps A takes on input x.
A natural candidate definition is to say that (L, D) is solvable in polynomial-time on the
average if there is an algorithm A such that A(x) = L(x) for every x and a polynomial p
such that for every n, E.¢ p, [timea(z)] < p(n).

Unfortunately, it turns out that this definition is not robust in the following sense:
if we change the model of computation to a different model with quadratic slow down
(for example, change from multiple tape Turing machines to one-tape Turing machines)
then a polynomial-time algorithm can suddenly turn into an exponential-time algorithm, as
demonstrated by the following simple claim:

Claim 18.3 There is an algorithm A such that for every n we have E,¢ 0,1y~ [timea(z)] <
n+1 but Eye (0,13 [time? ()] > 2™. O

2In this chapter we restrict ourselves to deterministic algorithms, although the theory extends naturally
to probabilistic algorithms, yielding average-case analogs of classes such as BPP, RP,coRP and ZPP.
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ProOF: Consider an algorithm A that halts in n steps on every input except for the all-zeros
input, on which it runs for 2™ steps. The expected running time of A is (1—2"")n427"2" <
n + 1. On the other hand, if we square the running time then the expectation becomes
(1—-2"")p2 427122 > 2" N

This motivates the following definition:

Definition 18.4 (Polynomial on average and distP)
A distributional problem (L, D) is in distP if there is an algorithm A for L and constants
C and € > 0 such that for every n

Le“‘(:”)e} <C. (1)

&, Dy |: n

Notice that P C distP: if a language can be decided deterministically by an algorithm
A in time O(]z|°), then timea(x)'/¢ = O(|z|) and the expectation in (1) is bounded by
a constant regardless of the distribution. Second, the definition is robust to changes in
computational models: if the running times get squared, we just multiply ¢ by 2 and the
expectation in (1) is again bounded.

Another feature of this definition is that there is a high probability that the algorithm
runs in polynomial time. Indeed, by Markov’s inequality, (1) implies that for every K > 1,
Pr[% > KC| = Prftimes(x) > (KCn)Y/] is at most 1/K.

Finally, we note that the definition is robust to minor changes. For instance, for every
d > 0, the following condition is equivalent to (1): there exist ¢, C' such that

time4 (z)¢
B [7”1 ] <c, (2)

see Exercise 18.6.

Formalization of “real-life distributions”

Real-life problem instances arise out of the world around us (images that have to be un-
derstood, a building that has to be navigated by a robot, etc.), and the world does not
spend a lot of time tailoring instances to be hard for our algorithm —arguably, the world is
indifferent to our algorithm. One may formalize this indifference in terms of computational
ease, by hypothesizing that the instances are produced by an efficient algorithm (see also
the discussion of Section 1.6.3). We can formalize this in two ways.

Polynomial time computable (or P-computable) distributions. Such distributions
have an associated deterministic polynomial time machine that, given input x €
{0,1}", can compute the cumulative probability up, (z), where

po.(x) = Y Pify]
ye{0,1} y<a "

Here Prp, [y] denotes the probability assigned to string y and y < x means y either
precedes x in lexicographic order or is equal to x.

Denoting the lexicographic predecessor of x by = — 1, we have
bra] = pp, (2) — pp, (z = 1),

which shows that if up, is computable in polynomial time, then so is Prp [z]. The
converse is known to be false if P # NP (Exercise 18.3). The uniform distribution is
P-computable as are many other distributions that are defined using explicit formulae.



18.3 distNP and its complete problems 317

Polynomial time samplable (or P-samplable) distributions. These distributions have
an associated probabilistic polynomial time machine that can produce samples from
the distribution. Specifically, we say that D = {D,,} is P-samplable if there is a poly-
nomial p and a probabilistic p(n)-time algorithm S such that for every n, the random
variables A(1™) and D,, are identically distributed.

If a distribution is P-computable then it is P-samplable, but the converse is not true
if P # P#P (see exercises 18.4-18.5). In this chapter we mostly restrict attention to P-
computable distributions, but the theory can be extended to P-samplable distributions; see
Section 18.3.2.

18.3 distNP and its complete problems

The following complexity class is at the heart of our study of average case complexity; it is
the average-case analog of NP.

Definition 18.5 (The class distNP)
A distributional problem (L, D) is in distNP if L € NP and D is P-computable.

We now define reduction between distributional problems:

Definition 18.6 (Average-case reduction)

We say that a distributional problem (L, D) average-case reduces to a distributional problem
(L', D"), denoted by (L,D) <, (L',D’), if there is a polynomial-time computable f and
polynomials p, g : N — N satisfying:

1. (Correctness) For every x € {0,1} . € L < f(z) € L'

2. (Length regularity) For every z € {0,1}, |f(z)| = p(|z]).

3. (Domination) For every n € N and y € {0, 1}’ Pr[y = f(D,)] < q(n) Prly = D, (my)-

The first condition is the standard reduction condition, ensuring that a decision algorithm
for L’ easily converts into a decision algorithm for L. The second condition is technical, and
is used to simplify the definition and also to show that the reducibility relation is transitive
(see Exercise 18.7). We now motivate the third condition, which says that D’ “dominates”
(up to a polynomial factor) the distribution f(D) obtained by applying f on D. Realize
that the goal of the definition is to ensure that “if (L, D) is hard, then so is (L', D’)”, or
equivalently, the contrapositive “if (L', D’} is easy, then so is (L, D).” Thus if an algorithm
A’ is efficient for problem (L’,D’), then it would be nice if the “obvious” algorithm for
the problem (L, D) worked: namely, on input « obtained from the distribution D, compute
y = f(x) and run algorithm A’ on y. A priori, one cannot rule out the possibility that A’
is very slow on some input that is unlikely to be sampled according to distribution D’ but
which has a high probability of showing up as f(z) when we sample = according to D. The
domination condition rules this possibility out:

Theorem 18.7 If (L, D) <, (L', D'} and (L', D') € distP then (L, D) € distP. o

PROOF: Suppose that A’ is a polynomial-time algorithm for (L', D’). That is, there are
constants C, e > 0 such that for every m

E[timeA/(Dfm)e] S C (3)

m
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Let f be the reduction from (L,D) to (L', D’) and let A be the “obvious” algorithm for
deciding L: given input x it computes f(x) and then outputs A’(f(z)). Since A decides L,
all that is left to show is that A runs in time polynomial on the average with respect to the
distribution D.

For simplicity, assume that for every z, |f(z)| = |z|? and that computing f on length
n inputs is faster than the running time of A’ on length n? inputs and hence time(z) <
2timea/ (f(x)). (The proof easily extends when we drop these assumptions.) We prove the
Lemma by showing that

E[(%timeA(D)e)] <,

q(n)n
where ¢ denotes the polynomial occuring in the domination condition. By Exercise 18.6,
this suffices to show that (L, D) € distP.
Indeed, by the definition of A and our assumptions,

(3time(Dy))* ime 4/ ()¢
E[W] < Yy Prly= f(Dn)]%
ye{0,1}"
< Z Prly = ;d]t'mefl‘# (by domination)
ve{0.13™
t' , D/ €
— E[me“‘nignd)] <Chby(3). 1

A complete problem for distNP

Of course, Theorem 18.7 is useful only if we can find reductions between interesting problems.
Now we show that this is the case: we exhibit a problem (albeit an artificial one) that is
complete for distNP. We say that (L', D’) is distNP-complete if (L', D’) is in distNP and
(L,D) <, (L', D’ for every (L, D) € distNP. We have the following theorem:

Theorem 18.8 (Existence of a distNP-complete problem [Levs6])
Let U contain all tuples (M, z,1") where there exists a string y € {0,1}* such that the
non-deterministic TM M outputs 1 on input x within t steps.

For every n, we let U, be the following distribution on length n tuples (M, x,1%): the string
representing M is chosen at random from all strings of length at most logn, t is chosen at
random in the set {0,...,n —|M|} and z is chosen at random from {0, 1}"7t7|M‘. This
distribution is polynomial-time computable (Exercise 18.8).3

Then, (U,U) is distNP-complete.

The problem U is of course NP-complete via a trivial reduction: given a language L
decidable by a p(n)-time NDTM M, we can reduce L to U by mapping the string z into
the tuple (M, z,1!). However, this reduction does not necessarily work as an average case
reduction, since it may not satisfy the domination condition. The problem is that we need
to reduce every distributional problem (L, D) to (U,U) and will run into trouble if D has any
“peaks”, namely inputs = of length n that are obtained with significantly higher than 27"
probability in D, whereas the output of the reduction is a predetermined string (M, z, 1*)
whose probability in U, is no more than 27".

The obstacle is surmounted using the following lemma, which shows that for polynomial-
time computable distributions, we can apply a simple transformation on the inputs such that
the resulting distribution has no “peaks.”

3Strictly speaking, the inputs might be represented by a few more than n bits to account for separators
etc.. but these details can be easily taken care of and are ignored below.
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Lemma 18.9 (Peak Elimination) Let D = {D,} be a P-computable distribution. Then,
there is a polynomial-time computable function g : {0,1}" — {0,1}" such that:

1. g is one-to-one: g (x) = g (z) iff z = z.
2. For every z € {0,1}", |g(z)] < |z| + 1.
3. For every string y € {0,1}", Prly = g(Dy,)] < 27+, O

PROOF: For any string x € {0,1}", define h(z) to be the largest common prefix of the
binary representations of up, (r) and up, (x — 1). Note that if Prp, [x] > 27% then since
up, () — up, (x — 1) = Prp, (), the values pp, (z) and pp, (x — 1) must differ in the
somewhere in the first & bits, implying that |h(z)| < k. Note also that because D is P-
samplable, the function h is computable in polynomial time. Furthermore, h is one-to-one
because only two binary strings s; and ss can have the longest common prefix z; a third
string s3 sharing z as a prefix must have a longer prefix with either s; or ss.
Now define for every z € {0,1}"

Ox if Prp, [x] <277
g(x) = .
1h(x) otherwise

Clearly, ¢ is one to one and satisfies |g(z)| < |z| + 1. We now show that Pr[y =
9(D,)] < 27" for every y € {0,1}""'. If y is not g(z) for any z, this is trivially true since
Pryop(y) = 0. If y = 0z, where Prp (z) < 271%I) then Pryop(y) < 27 Y1 and we also have
nothing to prove. Finally, if y = g(x) = 1h(z) where Prp (z) > 271%|, then as already noted,
|h(z)| < log1/Prp(x) and so Pryep(y) = Prp(z) <27+ B

Now we are ready to prove Theorem 18.8.

PROOF OF THEOREM 18.8: Let (L,D) be in distNP and let M be the polynoimal-time
non-deterministic TM M accepting L. Define the following NDTM M’: on input y, guess
x such that y = g(x) (where g is the function obtained by Lemma 18.9) and execute M (z).
Let p be the polynomial running time of M’.

To reduce (L, D) to (U,U), we simply map every string = into the tuple (M’, g(x), 1¥)
where k = p(n) + logn + n — |M’| — |g(x)] (we may assume that for sufficiently large n,
the description length |M’| of M’ is at most logn). This reduction obviously satisfies the
length regularity requirement. Also, because the function g is one-to-one, it satisfies the
correctness condition as well. Hence, all that is left is to show the domination condition.

But indeed by Lemma 18.9, the probability that a length m tuple (M’ y, 1) is obtained
by the reduction is at most 271¥/*1. Yet this tuple is obtained with probability at least
2~ logmg—ly| ﬁ by U, and hence the domination condition is satisfied.l

The proof relies crucially on the fact that every TM can be described by a string of con-
stant size (i.e., independent of the input length). In fact, the proof suffers a loss exponential
in this constant in the probability of hard instances. Since this constant may be quite large
for typical NP languages, this would be a consideration in practice.

P-samplable distributions

Arguably some distributions arising in nature could be samplable even if they are not com-
putable. Define sampNP to be the set of distributional problems (L, D) such that L € NP
and D is P-samplable, and say that (L', D’) is sasmpNP-complete if (L', D’) € sampNP and
(L,D) <, (L', D') for every (L,D) € sampNP. Fortunately, we can transform results such
as Theorem 18.8 to sampINP-completeness via the following result:

Theorem 18.10 ([1Loo]) If (L, D) is distNP-complete then it is also sampNP-complete. <

The (omitted) proof uses techniques from derandomization, and specifically the leftover
hash lemma (Lemma 21.26).
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Philosophical and practical implications

The reader has seen many complexity classes and conjectures by now, so it may be useful
to consider all possible scenarios for the world of complexity. Impagliazzo [Imp95a] has
partitioned these scenarios nicely under highly memorable names. At the moment, we do
not know which of the scenarios is true true (i.e., which of the following worlds is the one
we live in):

Algorithmica: Algorithmica is the world where P = NP or its moral equivalent (e.g.,
NP C BPP). To be more concrete, let’s define Algorithmica as the world where
there exists a simple and magical linear time algorithm for the SAT problem. As
discussed in Section 2.7.3, this world is a computational utopia. We would be able
to automate various tasks that currently require significant creativity: engineering,
programming, mathematics, and perhaps even writing, composing, and painting. On
the other hand, this algorithm could also be used to break cryptographic schemes, and
hence almost all of the cryptographic applications currently used will disappear.

Heuristica: Heuristica is the world where P # NP and yet distNP,sampNP C distP.
That is, we have an efficient and magical algorithm that “almost” solves every NP
problem. There may exist inputs on which it fails or runs for a long time, but it’s hard
to find such inputs, and we almost never encounter them in real life. In some respects,
Heuristica is very similar to Algorithmica— after all, it seems hard to distinguish
between the two if we can’t find an input on which the algorithm magical algorithm
fails! Indeed, many applications of NP = P still hold in this world, including solving
NP-optimization problems, coming up with short mathematical proofs, and breaking
cryptographic schemes. However, some applications might not hold. In particular,
even though we know that if P = NP then the polynomial hierarchy PH collapses to
P (see Theorem 5.4), we don’t have an analogous result for average case complexity.

Pessiland: Pessiland is the world where distNP and sampINP are not in distP, but still
there do not exist any one-way functions (see Chapter 9). Impagliazzo called this world
Pessiland because in some sense it is the worst possible world. On the one hand, we
don’t have any of the exciting algorithmic wonders of Algorithmica and Heuristica, but
on the other hand, we don’t have most of cryptography either. (Recall from Chapter 9
that one-way functions are known to be essential to most cryptographic applications.)

Minicrypt: Minicrypt is the world where one-way functions exist (and hence distNP ¢
distP, see Exercise 18.10), but all the highly structured problems in NP such as in-
tegers factoring etc are solvable in polynomial time. More formally, this is the world
where although one-way functions exist, there are no public key encryption schemes
or key exchange protocols. While many cryptographic applications (private key en-
cryption, pseudorandom generators and functions, digital signatures) are achievable
using only one-way functions, there are several important and exciting ones (public
key encryption, secure multiparty computation) that are not known to be achievable
using such functions.

Cryptomania: Cryptomania is the world where the problem of factoring large integers
(or some other highly structured problem such as discrete log, shortest lattice vector
etc..) is exponentially hard on the average case. Most researchers believe this is the
world we live in. While we don’t have general purpose algorithms in this world, and
have to resort to heuristics, approximations, creativity and hard work to solve many
important computational tasks, we do seem to have a host of exciting cryptographic
applications. These include the ability of two parties to communicate secretly without
prior sharing of keys (public key encryption, currently widely used to enable online
commerce) and even more sophisticated cryptographic applications such secure online
auction and voting schemes and more.

Strictly speaking, Impagliazzo has left out some intermidiate scenarios, which we lump
into “Weirdland.” Say, where the complexity of SAT is a not linear or quadratic but a very
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large polynomial like n'% or a very slow growing superpolynomial function like n'°¢™. Or

where the complexity of problems like SAT shifts wildly for different input sizes, so that it is
feasible for some input sizes and infeasible for others. But, qualitatively speaking, the above
five scenarios are the main possibilities for the average-case hardness of NP. Narrowing this
list down is in some sense the central task of computational complexity.

WHAT HAVE WE LEARNED?

e Average case complexity is defined with respect to a particular distribution on the
inputs. The same problem might be easy with one distribution and hard with another.

e The class distP is the average case analog of the class P, and models distributional
problems with efficient algorithms.

e The average-case analog of NP is either distNP or sampNP, depending on whether
we pick P-computable or P-samplable distributions as our model of “real-life” dis-
tributions. The distributional problem (U,U) of Theorem 18.8 is complete for both
classes.

e Like the P vs. NP question, the average-case hardness of NP is still open. At the
moment we do not even know any non-trivial relation between the two questions. For

example, we do not know if NP ¢ P implies that distNP ¢ distP.

Chapter notes and history

One of the most natural distributions over inputs to algorithms is the distribution of random graphs.
Study of such graphs started with a 1959 paper of Erdos and Renyi [ER59]; a good survey of this vast
area is the text by Bollobas [Bol01]. Analysis of average case behavior of algorithms is also known
as probabilistic analysis of algorithms; see the survey by Reed [FR98]. Spielman and Teng [STO1]
introduced smoothed analysis of algorithms— a notion that lies between worst-case analysis and
probabilistic analysis, for which it would be fascinating to have an analog of the theory of NP-
completeness.

Levin outlined his theory and Theorem 18.8 in [Lev86]. His formalization is more general than
the one in this chapter. For instance, almost all the algorithms occurring in his version of the
theory —e.g., the algorithm that computes a P-computable distribution, or the one that computes
a reduction— are allowed to be randomized.

The extension of Levin’s theorem to P-samplable distributions is from Impagliazzo and Levin [IL90].
Many basic facts about Levin’s theory, such as the effect of changing the assumptions, or the in-
terrelationship among assumptions such as P-samplability and P-computability, are discussed in
Ben-David et al. [BDCGL89]; see the survey by Goldreich [Gol97]. Johnson’s survey [Joh84] of aver-
age case complexity is old (it appeared around the time of Levin’s original paper) but still highly
readable. One of the goals in this area has been to prove the average-case completeness of “natural”
NP problems. A recent paper of Livne [Liv06] gives the strongest such result (where the problems
are “natural”, though the distributions are not).

Exercises

18.1 Describe an algorithm that decides 3-colorability on the uniform distribution of graphs (each edge
is chosen with probability 1/2) in expected polynomial-time. maes

18.2 Describe an algorithm that solves the CLIQUE problem on the distribution (G, k) where G is a
uniformly chosen n-vertex graph and k is chosen at random from [n] in n?'°¢™ expected time.

H463

18.3 Show that if P # NP then there is a family D = {D,,} of distributions on n-bit strings such that
for every x € {0,1}", there is an algorithm to compute Pr[D,, = z] but D is not P-computable.
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Show that if a distribution is P-computable, then it is P-samplable.

Show that if P#P # P then there is a polynomial time samplable distribution that is not polynomial
time computable. m4es

Show that if an algorithm satisfies (2) then it satisfies (1), with possibly different constants e, C'.

H463

Show that the notion of reducibility defined in this chapter is transitive. In other words, if
(L1,D1) <p (L2,D2) and (L2, D2) <p (L3, Ds) then (L1, D1) <, (L3, D3).

Show that the distribution U of Theorem 18.8 is P-computable.

Show that the function g defined in Lemma 18.9 (Peak Elimination) is efficiently invertible in the
following sense: if y = g(z), then given y we can reconstruct z in |m|o(1) time.

Show that if one-way functions exist, then distNP ¢ distP.



Chapter 19

Hardness Amplification and Error
Correcting Codes

Complexity theory studies the computational hardness of functions. In this chapter we
are interested in functions that are hard to compute on the “average” instance, continuing
a topic that played an important role in Chapters 9 and 18, and will do so again in
Chapter 20. The special focus in this chapter is on techniques for amplifying hardness,
which is useful in a host of contexts. In cryptography (see Chapter 9), hard functions are
necessary to achieve secure encryption schemes of non-trivial key size. Many conjectured
hard functions like factoring are only hard on a few instances, not all. Thus these functions
do not suffice for some cryptographic applications, but via hardness amplification we can
turn them into functions that do suffice. Another powerful application will be shown in
Chapter 20— derandomization of the class BPP under worst-case complexity theoretic
assumptions. Figure 19.1 contains a schematic view of this chapter’s sections and the way
their results are related to that result. In addition to their applications in complexity
theory, the ideas covered in this chapter have had other uses, including new constructions
of error-correcting codes and new algorithms in machine learning.

For simplicity we study hardness amplification in context of Boolean functions though
this notion can apply to functions that are not Boolean-valued. Section 19.1 introduces the
first technique for hardness amplification, namely, Yao’s XOR Lemma. It allows us to turn
weakly hard functions into strongly hard functions. Roughly speaking, a Boolean function
f is said to be weakly hard if every moderate-sized circuit fails to compute it on some
nonnegligible fraction of inputs, say 0.01 fraction. The function is strongly hard if every
moderate-sized circuit fails to compute it on almost half the inputs, say 1/2 — ¢ fraction
of inputs. (Note that every Boolean function can be computed correctly on at least half
the inputs by a trivial circuit, namely one that always outputs 1 or always outputs 0.) The
Section describes a way to transform every function using a simple “XOR” construction that
does not greatly increase the complexity of computing it but has the property that if the
function we started with was weakly hard then it becomes strongly hard. This construction
is very useful in cryptographic applications, as mentioned in Chapter 9.

We then turn our attention to a different technique for hardness amplification that
produces strongly hard functions starting with functions that are merely guaranteed to be
hard in the worst case. This is highly non-trivial as there is often quite a difference between
the worst-case and average-case complexity of computational problems. (For example, while
finding the smallest factor of a given integer seems difficult in general, it’s trivial to do for
half the integers— namely, the even ones.) The main tool we use is error correcting codes.
We review the basic definition and constructions in sections 19.2 and 19.3, while Section 19.4
covers local decoding which is the main notion needed to apply error-correcting codes in our
setting. As a result we obtain a way to transform every function f that is hard in the worst
case into a function f that is mildly hard in the average case.

Combining the transformation of Section 19.4 with Yao’s XOR Lemma of Section 19.1, we
are able to get functions that are extremely hard on the average case from functions that are
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Section 19.1
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Chapter 20

Derandomization of BPP

Figure 19.1 Organization of Chapter 19

only hard on the worst case. Alas, quantitatively speaking the above transformation is not
optimal, in the sense that even if the original function was worst-case hard for exponential
sized (i.e. size 2(") circuits, we are only able to guarantee that the transformed function
will only be hard in the average case for sub-exponential sized (i.e., size 2"0(1)) circuits.
In Sections 19.5 and 19.6 we show a stronger result, that transforms in one fell swoop a
function f that is hard on the worst case to a function f that is extremely hard on the
average case. This transformation uses error correcting codes in a more sophisticated way,
via an independently interesting notion called list decoding. List decoding is covered in
Section 19.5 while Section 19.6 describes local list decoding which is the extension of list
decoding needed for our purposes.

Readers who are familiar with the theory of error-correcting codes can skim through Sec-
tions 19.2 and 19.3 in a first reading (pausing to remind themselves of the Reed-Solomon and
Reed-Muller codes in Definitions 19.10 and 19.12 and their associated decoding algorithms)
and go on to Section 19.4.

Mild to strong hardness: Yao’s XOR Lemma.

Yao’s XOR Lemma transforms a function that has “mild” average-case hardness to a func-
tion that has strong average-case hardness. The transformation is actually quite simple and
natural, but its analysis is somewhat involved (yet, in our opinion, beautiful). To state the
Lemma we need to define precisely the meaning of worst-case hardness and average-case
hardness of a function:
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Definition 19.1 (Average-case and worst-case hardness)

For f:{0,1}" — {0,1} and p € [0, 1] we define the p-average case hardness of f, denoted
HZ(f), to be the largest S such that for every circuit C' of size at most S, Pr,¢ {0,137[C(z) =
f(@)] < p. For an infinite f : {0,1}" — {0,1}, we let H2(f)(n) denote HA(f,) where f, is
the restriction of f to {0,1}".

We define the worst-case hardness of f, denoted H,{f), to equal H!(f) and define the
average-case hardness of f, denoted H,(f), to equal max {S : H/**1/5(f) > S}. That is,
H.{(f) is the largest number S such that Pr,e (013»[C(z) = f(z)] < /2 +1/S for every

Boolean circuit C' on n inputs with size at most S.

Note that for every function f : {0,1}" — {0,1}, H.(f) < H.{f) < O(2"/n) (see
Exercise 6.1). This definition of average-case hardness is tailored to the application of
derandomization, and in particular only deals with the uniform distribution over the inputs.
See Chapter 18 for a more general treatment of average-case complexity. We can now state
Yao’s lemma:

Theorem 19.2 (Yao’s XOR Lemma [Yao82a])
For every f:{0,1}" — {0,1}, § > 0 and k € N, if € > 2(1 — §)* then

E2

Ha%/g/2+€(f®k) 2 400n Ha%/;é(f) I

where f®F : {0,1}™ — {0,1} is defined by f&*(xy,...,2) = S.F_, f(2:) (mod 2).

Yao’s Lemma says that if small circuits cannot compute f with probability better than
1 — 6 then somewhat smaller circuits cannot compute f®* with probability better than
1/242(1—§)*. Intuitively, it makes sense that if you can only compute f on a 1 — 4 fraction
of the inputs, then given a random k tuple x1, ..., xs, unless all of these k£ inputs fall into
this “good set” of inputs (which happens with probability (1 — §)*), you will have to guess
the answer to Zle f(z;) (mod 2) at random and be successful with probability at most
1/2; see also Exercise 19.1. But making this intuition into a proof takes some effort. The
main step is the following beautiful result of Impagliazzo.

Lemma 19.3 (Impagliazzo’s Hardcore Lemma [Imp95b]) Say that a distribution H over {0,1}"
has density ¢ if for every z € {0,1}", Pr[H = x] < 1/(62"). For every § > 0, f : {0,1}" —
{0,1}, and € > 0, if H,%(f) > S then there exists a density-6 distribution H such that for

25

every circuit C' of size at most {55,

P [C@) = f(@)] < ot N

A priori, one can think that a function f that is hard to compute by small circuits with
probability 1 — ¢ could have two possible forms: (a) the hardness is sort of “spread” all
over the inputs (different circuits make mistakes on different inputs), and the function is
roughly 1 — §-hard on every significant set of inputs or (b) there is a subset H of roughly a
d fraction of the inputs such that on H the function is extremely hard (cannot be computed
better than % + € for some tiny €) and on the rest of the inputs the function may be even
very easy. Such a set may be thought of as lying at the core of the hardness of f and is
sometimes called the hardcore set. Impagliazzo’s Lemma shows that actually every hard
function has the form (b). (While the Lemma talks about distributions and not sets, it is
possible to transform it into a result on sets, see Exercise 19.2.)
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Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma.

We now show how to use Impagliazzo’s Hardcore Lemma (Lemma 19.3) to prove Yao’s XOR
Lemma (Theorem 19.2). Let f: {0,1}" — {0,1} be a function such that H!%(f) > S, let

E2

k € N and suppose, towards a contradiction, that there is a circuit C' of size S = ;{55
such that i
Pr C(xl,...,xk):Zf(:Ci) (mod 2)| > 1/2+¢, (1)

(z1,0mk)EQUE P
where € > 2(1 — §)*. We will first prove the lemma for the case k = 2 and then indicate
how the proof can be generalized for every k.

Let H be the hardcore density-§ distribution obtained from Lemma 19.3, on which every
S’-sized circuit fails to compute f with probability better than 1/2 4+ ¢/2. We can think
of the process of picking a uniform element in {0,1}" as follows: first toss a biased coin
that comes up “Heads” with probability 6. Then, if the coin came up “Heads” then pick
a random element according to H, and if it came up “Tails” pick an element according
to the distribution G which is the “complement” of H. Namely, G is defined by setting
Pr[G =z = (2" =0 Pr[H = z])/(1 —6). (Exercise 19.3 asks you to verify that G is indeed
a distribution and that this process does indeed yield a uniform element.) We shorthand
this and write

U,=(1-6)G+0H. (2)

If we consider the distribution (U,,)? of picking two independent random strings and
concatenating them, then by (2) we can write

(U,)? = (1—6)2G?+ (1 —86)5GH + 6(1 — §)HG + 6°H? (3)

where we use G2 to denote the concatenation of two independent copies of G, GH to denote
the concatenation of a string chosen from G and a string chosen independently from H, and
SO on.

Now for every distribution D over {0, 1}2", let Pp be the probability of the event of the
left-hand side of (1). That is, Pp is the probability that C(x1,z2) = f(z1)+ f(22) (mod 2)
where x1, x5 are chosen from D. Combining (1) and (3) we get

ate< P(Un)Q = (1 — 5)2pgz + (1 —0)0Pam +6(1 — 6)PHG + 62PH2 (4)
But since € > 2(1 — §)? and Pg2 < 1, (4) implies
12 +4¢€/2 < (1 —68)dPgu +6(1 — 8)Pug + 6° Py . (5)

Since the coefficients on the right hand side of (5) sum up to less than 1, the averaging
principle implies that at least one of these probabilities must be larger than the left hand
side. For example, assume that Pyg > 1/2 4 €/2 (the other cases are symmetrical). This
means that

[Cla1,22) = f(z1) + f(z2) (mod 2)] >1/2+€/2.

r
r16; Hyx26 G
Thus by the averaging principle, there exists a fixed string xo such that

Pr[C@nm) = f@n) + (o) (mod 2)] > 12 +¢/2,

or, equivalently,

Pr [C(x1,z2) + f(z2) (mod 2) = f(x1)] > Y2+€/2.

1€

But this means that we have an S’-sized circuit D (the circuit computing the mapping
x1 — C(z1,22)+ f(x2) (mod 2)) that computes f on inputs chosen from H with probability
better than 1/2 + €/2, contradicting the fact that H is hard-core!
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This completes the proof for the case & = 2. The proof for general k follows along the
same lines, using the equation

(Un)k = (1 _ 6)ka + (1 _ 6)k—15Gk—1H 4ot 5ka

in place of (3); we leave verifying the details to the reader as Exercise 19.4. B

Proof of Impagliazzo’s Lemma

We now turn to proving Impagliazzo’s Hardcore Lemma (Lemma 19.3). Let f be a function
with H.7(f) > S and let € > 0. To prove the lemma we need to show a density 4 distribution
H on which every circuit C' of size S’ = 150251 cannot compute f with probability better
than 1/2 + e.

Let’s think of this task as a game between two players named Russell and Noam. Noam
wants to compute the function f and Russell wants Noam to fail. The game proceeds as
follows: Russell first chooses a d-density distribution H, and then Noam chooses a circuit
C of size at most S’. At the game’s conclusion, Russell pays Noam v dollars, where v =
Prye m[C(x) = f(r)]. Assume towards a contradiction that the lemma is false, and hence
for every d-density distribution H chosen by Russell, Noam can find an S’-sized circuit C
on which Prye g[C(z) = f(x)] > /2 +e.

Now this game is a zero-sum game, and so we can use von-Neumann’s min-max theorem
(see Note 19.4) that says that if we allow randomized (also known as mixed) strategies then
Noam can achieve the same value even if he plays first. By randomized strategies we mean
that Noam and Russell can also select arbitrary distributions over their choices. In Russell’s
case this makes no difference as a distribution over density-0 distributions is still a density-9d
distribution.® However in Noam’s case we need to allow him to choose a distribution C over
S’-sized circuits. Our assumption, combined with the min-max theorem, means that there
exists such a distribution C satisfying

oo P IO = @) 2 12+ ¢ (©)
for every 6-density H.

Call a string « € {0,1}" “bad” if Proe ¢[C(x) = f(x)] < 1/2+ € and call = “good”
otherwise. There are less than 62" bad x’s. Indeed, otherwise we could let H be the uniform
distribution over the bad x’s and it would violate (6). Now let us choose a circuit C' as follows:
set t = 50n /€2, pick Cy, ..., C; independently from C, and define C(x) to equal the majority
of Ci(z),...,C(z) for every x € {0,1}". Note that the size of C'is S’ < S. We claim that if
we choose the circuit C' in this way then for every good z € {0,1}", Pr[C(z) # f(x)] < 27"
Indeed, this follows by applying the Chernoff bound (see Corollary A.15). Since there are at
most 2" good x’s, we can apply the union bound to deduce that there exists a size S circuit
C such that C(z) = f(x) for every good x. But since there are less than 62" bad z’s this
implies that Prye_ v, [C(z) = f(x)] > 1— 6, contradicting the assumption that H!"%(f) > S.
|

Taken in the contrapositive, Lemma 19.3 implies that if for every significant chunk of
the inputs there is some circuit that computes f with on this chunk with some advantage
over 1/2, then there is a single circuit that computes f with good probability over all inputs.
In machine learning such a result (transforming a way to weakly predict some function into
a way to strongly predict it) is called Boosting of learning methods. Although the proof
we presented here is non-constructive, Impagliazzo’s original proof was constructive, and
was used to obtain a boosting algorithm yielding some new results in machine learning, see
[KS99].

n fact, the set of density & distributions can be viewed as the set of distributions over §27-flat distri-
butions, where a distribution is K-flat if it is uniform over a set of size K (see Exercise 19.7). This fact
means that we can think of the game as finite and so use the min-max theorem in the form it is stated in
Note 19.4.
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Note 19.4 (The Min-Max Theorem)

A zero sum game is, as the name implies, a game between two parties in which whatever

one party loses is won by the other party. It is modeled by an m x n matrix A = (a; ;) of
real numbers. The game consists of only two moves. One party, called the minimizer or
column player, chooses an index j € [n] while the other party, called the mazimizer or row
player, chooses an index ¢ € [m]. The outcome is that the column player has to pay a;
units of money to the row player (if a; ; is negative then the row player pays the column
player |a; ;| units). Clearly, the order in which players make their moves is important. The
min-max theorem says that, surprisingly, if we allow the players randomized strategies, then
the order of play is immaterial.

By randomized (also known as mized) strategies we mean that the column player chooses a
distribution over the columns; that is, a vector p € [0,1]" with "' | p; = 1. Similarly, the
row player chooses a distribution q over the rows. The amount paid is the expectation of
a; j for j chosen from p and 7 chosen from q. If we think of p as a column vector and q as
a row vector then this is equal to gAp. The min-max theorem says that

min  max qAp = max min qAp (7)
pPE[0,1]" q€[0,1]™ q€[0,1]™ p€efo,1]™ ’
3Nipi=1 X;q;=1 Yigi=1 Xip;i=1

As discussed in Exercise 19.6, the Min-Max Theorem can be proven using the following re-
sult, known as the Separating Hyperplane Theorem: if C and D are disjoint convex subsets of
R™, then there is a hyperplane that separates them. (A subset C' C R™ is convez if whenever
it contains a pair of points x,y, it contains the line segment {ax+ (1 —a)y : 0 < a <1}
with x and y as its endpoints.) We ask you to prove (a relaxed variant of) the separating
hyperplane theorem in Exercise 19.5 but here is a “proof by picture” for the two dimensional

case:
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Tool: Error correcting codes

Our next goal will be to construct average-case hard functions using functions that are only
worst-case hard. Our main tool will be error correcting codes. An error correcting code
maps strings into slightly larger strings in a way that “amplifies differences” in the sense
that every two distinct strings (even if they differ by just one bit) get mapped into two
strings that are “very far” from one another. The formal definition follows:

Definition 19.5 (Error Correcting Codes)
For =,y € {0,1}", the fractional Hamming distance of x and y, denoted A(z,y), is equal
to L |{i:xz; # yi}l.

For every 6 € [0,1], a function F : {0,1}" — {0,1}"" is an error correcting code (ECC)
with distance 6, if for every z # y € {0,1}", A(E(z), E(y)) > 6. We call the set Im(E) =
{E(z) : x € {0,1}"} the set of codewords of E.

Figure 19.2 In a §-distance error correcting code, A(E(z), E(z")) > § for every = # /. We
can recover z from every string y in which less than 6/2 coordinates were corrupted (i.e.,
A(y, E(x)) < 6/2) since the §/2-radius balls around every codeword are disjoint. In the
figure above the dotted areas represent corrupted coordinates.

Note that some texts define an error correcting code not as a function E : {0,1}" —
{0,1}"™ but rather as a 2™-sized subset of {0,1}"" (corresponding to Im(F) in our notation).
Error correcting codes have had a vast number of practical and theoretical applications in
Computer Science and engineering, but their motivation stems from the following simple
application: suppose that Alice wants to transmit a string z € {0,1}" to Bob, but her
channel of communication to Bob is noisy and every string y she sends might be corrupted
in as many as 10% of its coordinates. That is, her only guarantee is that Bob would receive
a string y’ satisfying A(y,y’) < 0.1. Alice can perform this task using an error correcting
code E:{0,1}" — {0,1}™ of distance § > 0.2. The idea is that she sends to Bob y = E(z)
and Bob receives a string ¢y satisfying A(y,y’) < 0.1. Since A(y, F(w)) > 0.2 for every
w # x, it follows that y is the unique codeword of E that is of distance at most 0.1 from
y’ and so Bob can find y and from it find = such that F(z) = y (see Figure 19.2). One can
see from this example that we’d want codes with as large a distance § as possible, as small
output length m as possible, and of course we’d like both Alice and Bob to be able to carry
the encoding and decoding efficiently. The following lemma shows that, ignoring issues of
computational efficiency, pretty good error correcting codes exist:

Lemma 19.6 (Gilbert-Varshamov Bound) For every 6 < /2 and sufficiently large n, there

exists a function E : {0,1}" — {0, 1}"/(1_H(5)) that is an error correcting code with distance
8, where H(8) = dlog(1/8) + (1 — &) log(1/(1 — §)).2 &

PROOF: We prove a slightly weaker statement: the existence of a d-distance ECC FE :
{0,1}" — {0,1}"" where m = 2n/(1 — H(J)) instead of m = n/(1 — H(4)). To do so, we

2H(6) is called the Shannon entropy function. Tt is not hard to see that H(1/2) = 1, H(0) = 0, and
H(6) € (0,1) for every 6 € (0,1/2).
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Note 19.7 (High dimensional geometry)

While we are normally used to geometry in two or three dimensions, we can get some
intuition on error correcting codes by considering the geometry of high dimensional spaces.
Perhaps the strongest effect of high dimension is the following: compare the volume of the
cube with all sides 1 and the ball of radius 1/4. In one dimension, the ratio between these
volumes is 1/(1/2) = 2, in two dimensions it is 1/(7/4?) = 16/, while in three dimensions
it is 1/(4/37/4%) = 48 /7. As the number of dimension grows, this ratio grows exponentially
in the number of dimensions. (The volume of a ball of radius 7 in m dimensions is roughly
%r”.) Similarly for any two radii r1 > 79, the volume of the m-dimension ball of radius
r1 is exponentially larger than the volume of the ry-radius ball.

0 1/4 3/4 1 0 1/4 3/4 1 0 1/4 3/4 1
Ball volume=1/2

B.V. = T(1/4)2~3.14/16  B.V. =4/31(1/4)3 ~ 3.14/48

This intuition lies behind the existence of an error correcting code with, say, distance 1/4
mapping n bit strings into m = 5n bit strings. We can have 27*/5 codewords that are all of
distance at least 1/4 from one another because, also in the discrete setting the volume (i.e.,
number of points contained) of the radius-1/4 ball is exponentially smaller than the volume
of the cube {0, 1}". Therefore, we can “pack” 2”/5 such balls within the cube.

simply choose F at random. That is, we choose 2" random strings y1,ya, ...,y € {0, 1}
and F maps the input x € {0,1}" (which we can identify with a number in [2"]) to the
string y,.

It suffices to show that the probability that for some i < j with ¢, j € [2"], A(y;,y;) <9
is less than 1. But for every string y;, the number of strings that are of distance at most §
to it is (M%) which is less than 0.99 - 27()™ for m sufficiently large (see Appendix A) and
so for every j > ¢, the probability that y; falls in this ball is bounded by 0.99 - 2H (0)m jom.

Since there are at most 22" such pairs 4, j, we only need to show that 0.99 - 22”% <1,
which is indeed the case for our choice of m. By a slightly more clever argument, we can
prove the lemma as stated: see Exercise 19.9. It turns out that as ¢ tends to zero, there do
exist codes with smaller values of m than n/(1 — H(d)), but it is not known whether or not
Lemma 19.6 is optimal for § tending to 1/2. W

Why half? Lemma 19.6 only provides codes of distance § for § < 1/2 and you might
wonder whether this is inherent or perhaps codes of even greater distance exist. It turns
out we can have codes of distance 1/2 but only if we allow m to be exponentially larger
than n (i.e., m > 2"~1). For every § > 1/2, if n is sufficiently large then there is no ECC
E :{0,1}" — {0,1}™ that has distance §, no matter how large m is. Both these bounds
are explored in Exercise 19.10.

Explicit codes

The mere existence of an error correcting code is not sufficient for most applications: we
need to be able to actually compute them. For this we need to show an explicit function
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E :{0,1}" — {0,1}"™ that is an error correcting satisfying the following properties:
Efficient encoding There is a poly(m) time algorithm to compute E(z) from x.

Efficient decoding There is a polynomial time algorithm to compute x from every y such
that Ay, E(z)) < p for some p. For this to be possible, the number p must be less
than 6/2, where 0 is the distance of E: see Exercise 19.11.

We now describe some explicit functions that are error correcting codes.

Walsh-Hadamard Code.

For two strings z,y € {0,1}", we define x ®y = >_"" | #;y; (mod 2). The Walsh-Hadamard
code is the function WH : {0,1}" — {0, 1}2n that maps every string = € {0,1}" into the
string z € {0, 1}2n satisfying z, = z ® y for every y € {0,1}" (where z, denotes the y*"
coordinate of z, identifying {0,1}" with [2"] in some canonical way).

Claim 19.8 The function WH is an error correcting code of distance 1/2. &

PROOF: First, note that WH is a linear function. That is, WH(z + y) = WH(z) + WH(y),
where x + y denotes the componentwise addition of x and y modulo 2 (i.e., bitwise XOR).
Thus, for every x # y € {0,1}" the number of 1’s in the string WH(x) + WH(y) = WH(z+v)
is equal to the number of coordinates on which WH(x) and WH(y) differ. Thus, it suffices
to show that for every w # 0", at least half of the coordinates in WH(w) are 1. Yet this
follows from the random subsum principle (Claim A.31) that says that the probability that
woy=1forye {0,1}" is exactly 1/2. B

Reed-Solomon Code

The Walsh-Hadamard code has a serious drawback: its output size is exponential in the
input size. By Lemma 19.6 we know that we can do much better (at least if we’re willing
to tolerate a distance slightly smaller than 1/2). To get towards explicit codes with better
output, we’ll make a detour via codes with non-binary alphabet.

Definition 19.9 For every finite set ¥ and z,y € ™, we define A(z,y) = = |[{i : 2; # y;}|.
We say that F : X" — Y™ is an error correcting code with distance § over alphabet X if for
every x #y € X", A(E(x), E(y)) > 6. &

Allowing a larger alphabet makes the problem of constructing codes easier. For example,
every ECC with distance ¢ over the binary ({0,1}) alphabet automatically implies an ECC
with the same distance over the alphabet {0, 1,2, 3}: just encode strings over {0, 1,2,3} as
strings over {0, 1} in the obvious way. However, the other direction does not work: if we
take an ECC over {0,1,2,3} and transform it into a code over {0,1} in the natural way,
the distance might grow from 6 to 20 (see Exercise 19.12). The Reed-Solomon code is a
construction of an error correcting code that can use as its alphabet any sufficiently large
field TF:

Definition 19.10 (Reed-Solomon code) Let F be a field and n,m numbers satisfying n <
m < |F|. The Reed-Solomon code from F™ to F™ is the function RS : F* — F™ that on

input ag,...,a,—1 € F" outputs the string zo,...,2,—1 where z; = ZZ:Ol aif;, and f;
denotes the j* element of F under some ordering. &

Note that an equivalent way of defining the Reed Solomon code is that it takes as input

a description of the n — 1 degree polynomial A(z) = 327" a;2% and outputs the evaluation

of A on the points fo,..., fr—_1.
Lemma 19.11 The Reed-Solomon code RS : F* — F™ has distance 1 — . O
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PROOF: As in the case of Walsh-Hadamard code, the function RS is also linear in the sense
that RS(a + b) = RS(a) + RS(b) (where addition is taken to be componentwise addition
in F). Thus, as before we only need to show that for every a # 0", RS(a) has at most n
coordinates that are zero. But this immediate from the fact that a nonzero n — 1 degree
polynomial has at most n roots (see Appendix A). B

Reed-Muller Codes.

Both the Walsh-Hadamard and and the Reed-Solomon code are special cases of the following
family of codes known as Reed-Muller codes:

Definition 19.12 (Reed-Muller codes) Let F be a finite field, and let ¢, d be numbers with

d < |F|. The Reed Muller code with parameters F, ¢, d is the function RM : F(*2") - piF’
that maps every f¢-variable polynomial P over F of total degree d to the values of P on all
the inputs in F*.

That is, the input is a polynomial of the form

_ i i ie
P(xy,...,x¢) = g Cir,yoonyig X1 TS - Ty
i1tio+.. +ip <l

L+d

specified by the vector of ( " ) coefficients {¢;, ... 4, } and the output is the sequence { P(z1, . ..

for every zy,...,xp € F. &

Setting ¢ = 1 one obtains the Reed-Solomon code (for m = |F|), while setting d = 1 and
F = GF(2) one obtains a slight variant of the Walsh-Hadamard code (i.e., the code that
maps every z € {0,1}" into a 2 - 2" long string 2 satisfying z,, =  ®y + a (mod 2) for
every y € {0,1}",a € {0,1}). The Schwartz-Zippel Lemma (Lemma A.36 in Appendix A)
shows that the Reed-Muller code is an ECC with distance 1 — d/|F|. Note that this implies
the previously stated bounds for the Walsh-Hadamard and Reed-Solomon codes.

Concatenated codes

The Walsh-Hadamard code has the drawback of exponential-sized output and the Reed-
Solomon code has the drawback of a non-binary alphabet. We now show we can combine
them both to obtain a code without neither of these drawbacks:

Definition 19.13 If RS is the Reed-Solomon code mapping F" to F™ (for some n, m,F) and
WH is the Walsh-Hadamard code mapping {0,1}°¢*! to {0, 1}210gm = {0,1}"! then the
code WH o RS maps {0,1}"°¢F to {0, 1} in the following way:

1. View RS as a code from {0, 1}/ to F™ and WH as a code from F to {0, 1}*! using

the canonical representation of elements in F as strings in {0, 1}'°8 IF

2. For every input 2 € {0, 1}" 21l WHoRS(x) is equal to WH(RS ()1 ), . . ., WH(RS(z),,)
where RS(z); denotes the i*" symbol of RS(x).

Note that the code WH o RS can be computed in time polynomial in n,m and |F|. We
now analyze its distance:

Claim 19.14 Let §; = 1 — n/m be the distance of RS and 3 = /2 be the distance of WH.
Then WH o RS is an ECC of distance 6105. O

PROOF: Let z, y be two distinct strings in {0, 1}'°# 1" 1f we set 2/ = RS(2') and ¢/ = RS(y/')
then A(2',y") > 61. If we let 2’ (resp. y”) to be the binary string obtained by applying WH

,Te)}
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Figure 19.3 If E1,Es are ECC’s such that Ep : {0,1}" — £™ and Es : 0 — {0,1}F,
then the concatenated code E : {0,1}" — {0,1}"™* maps z into the sequence of blocks
Ea(Ey(2)1), ., Ba(B1 (2)m).

to each of these blocks, then whenever two blocks are distinct, the corresponding encoding
will have distance 62, and so §(z”,y") > 6162. B

Because for every k € N, there exists a finite field |F| of size in [k,2k] (e.g., take a
prime in [k, 2k] or a power of two) we can use this construction to obtain, for every n, a

polynomial-time computable ECC E : {0,1}" — {0, 1}20"2 of distance 0.4.

Both Definition 19.13 and Lemma 19.14 easily generalize for codes other than Reed-
Solomon and Hadamard. Thus, for every two ECC’s E; : {0,1}" — ¥™ and Ey : ¥ —
{0, 1} their concatenation Ey o Ey is a code from {0,1}" to {0,1}™" that has distance at
least 6102 where 01 (resp. d2) is the distance of E; (resp. Es), see Figure 19.3. In particular,
using a different binary code than WH, it is known how to use concatenation to obtain a
polynomial-time computable ECC E : {0,1}" — {0,1}" of constant distance § > 0 such
that m = O(n), see Exercise 19.18.

Efficient decoding.

To actually use an error correcting code to store and retrieve information, we need a way
to efficiently decode a message x from its encoding F(z) even if this encoding has been
corrupted in some fraction p of its coordinates. We now show how to do this for the Reed-
Solomon code and for concatenated codes.

Decoding Reed-Solomon

Recall that the Reed-Solomon treats its input as describing a polynomial and outputs the
values of this polynomial on m inputs. We know (see Theorem A.35 in Appendix A) that a
univariate degree d polynomial can be interpolated from any d + 1 values. Here we consider
a robust version of this procedure, whereby we wish to recover the polynomial from m values
of which pm are “faulty” or “noisy”.

Theorem 19.15 (Unique decoding for Reed-Solomon [BWg6])
There is a polynomial-time algorithm that given a list (a1,b1),...,(Gm,bm) of pairs of

elements of a finite field F such that there is a d-degree polynomial G : F — T satisfying

G(a;) = b; for t of the numbers i € [m], with t > 2 + 2, recovers G.

Since Reed-Solomon is an ECC with distance 1 — %, Theorem 19.15 means that we can
efficiently recover the correct polynomial from a version corrupted in p places as long as
p is smaller than half the distance. This is optimal in the sense that once the fraction of
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errors is larger than half the distance we are no longer guaranteed the existence of a unique
solution.

PrROOF OF THEOREM 19.15.: As a warmup, we start by considering the case that the
number of errors is very small. (This setting is still sufficiently strong for many applications.)

RANDOMIZED INTERPOLATION: THE CASE OF t > (1 — m)m

Assume that ¢ is quite large: ¢ > (1 — ﬁ)m. In this case, we can just select d + 1
pairs (£1,¥1),- - ., (d+1, Yd+1) at random from the set {(a;, b;)} and use standard polynomial
interpolation to compute the unique a d-degree polynomial P such that P(x;) = y; for all
j € [d+ 1]. We then check whether P agrees with at least ¢ pairs of the entire sequence
and if so we output P (otherwise we try again). By the union bound, the probability that
x; # G(y;) for one of the d + 1 chosen pairs is at most (d + 1)™~% < 1/2, and hence with
probability at least /2 it will be the case that P = G.

BERLEKAMP-WELCH PROCEDURE: THE CASE OF t > % + g +1

We now prove Theorem 19.15 using a procedure known as the Berlekamp-Welch decoding.
For simplicity of notations, we assume that m = 4d and t = 3d. However, the proof
generalizes to any parameters m,d,t satisfying ¢ > & + %, see Exercise 19.13. Thus, we
assume that there exists a d-degree polynomial G such that

G(a;) = b; for at least 3d of i’s in [m] = [4d]. ()
We will use the following decoding procedure:
1. Find a degree 2d polynomial C(z) and a degree-d nonzero polynomial E(x) such that:

C(a;) = b;E(a;) for every i € [m)] (9)

This can be done by considering (9) as a set of 4d linear equations with the unknowns
being the 2d + 1 coefficients of C'(z) and the d 4 1 coefficients of E. These equations
have a solution with nonzero E(z) since one can define E(x) to a nonzero polynomial
that is equal to zero on every a; such that G(a;) # b; (under our assumption (8) there
are at most d such places).3

2. Divide C by E: get a polynomial P such that C'(z) = E(z)P(z) (we will show that
E divides C without remainder). Output P.

We know by (8) and (9) that C(x) = G(z)E(x) for at least 3d values, meaning that
C(z) — G(x)E(z) is a degree 2d polynomial with at least 3d roots. This means that
this polynomial is identically zero (i.e., C(z) = G(x)E(x) for every & € F). Thus it
does indeed hold that G = C/E.

Decoding concatenated codes.

Decoding concatenated codes can be achieved through the natural algorithm. Recall that
if By :{0,1}" = %™ and E, : & — {0,1}" are two ECC’s then F» o Fy maps every string
z € {0,1}" to the string F2(F1(z)1) - E2(E1(x),). Suppose that we have a decoder for
E; (resp. E») that can handle p; (resp. p2) errors. Then, we have a decoder for Fy o Ey
that can handle pap; errors. The decoder, given a string y € {0, 1}mk composed of m blocks
Y1y Ym € {0, 1}k, first decodes each block y; to a symbol z; in ¥, and then uses the
decoder of E; to decode z1,...,2,. The decoder can indeed handle p;p, errors since if
A(y, B2 0 E1(x)) < p1p2 then at most p; of the blocks of y are of distance at least po from
the corresponding block of Es o By (x).

30ne can efficiently find such a solution by trying to solve the equations after adding to them an equation
of the form E; = e; where E; is the j** coefficient of E(z) and e; is a nonzero element of F. The number
of such possible equations is polynomial and at least one of them will result in a satisfiable set of equations.
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length n string function on {0,1}" =
string of length 2"
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Figure 19.4 An ECC allows us to map a string x to E(x) such as z can be reconstructed
from a corrupted version of E(z). The idea is to treat a function f : {0,1}" — {0,1}
as a string in {0, 1}2n, encode it using an ECC to a function f Intuitively, f should be
hard on the average case if f was hard on the worst case, since an algorithm to solve f
with probability 1 — p could be transformed (using the ECC’s decoding algorithm) to an
algorithm computing f on every input.

Local decoding and hardness amplification

We now show the connection between error correcting codes and hardness amplification.
The idea is actually quite simple (see also Figure 19.4). A function f : {0,1}" — {0,1} can
be viewed as a binary string of length N = 2™. Suppose we encode f to a string f € {0, 1}M
using an ECC mapping {0, 1}N to {0, 1}M with distance larger than, say, 0.2. Then we can
view f as a function from {0, 1}1"g M to {0,1} and at least in principle it should be possible
to recover f from a corrupted version of f where, say, at most 10% of the locations have
been modified. In other words, if it is possible to compute f with probability at least 0.9
then it should be possible to compute f exactly. Taking the contrapositive this means that
if f is hard to compute in the worst-case then f is hard to compute in the average case!

To make this idea work we need to show we can transform every circuit that correctly
computes many bits of f into a circuit that correctly computes all the bits of f. This is
formalized using a local decoder (see Figure 19.5), which is a decoding algorithm that given
random access to a (possibly corrupted) codeword y’ close to F(x) can compute any any
desired bit of the original input x. Since we are interested in the circuits that could be of
size as small as poly(n)— in other words, polylogarithmic in N = 2™ —this must also be the
running time of the local decoder.

Definition 19.16 (Local decoder)
Let E:{0,1}" — {0,1}"™ be an ECC and let p and ¢ be some numbers. A local decoder for
E handling p errors is an algorithm D that, given random access to a string y such that
Ay, E(z)) < p for some (unknown) z € [n], and an index j € N, runs for polylog(m) time
and outputs z; with probability at least 2/3.

The constant 2/3 is arbitrary and can be replaced with any constant larger than 1/2, since
the probability of getting a correct answer can be amplified by repetition. We also note that
Definition 19.16 can be easily generalized for codes with larger (i.e., non binary) alphabet.
Local decoding may also be useful in applications of ECC’s that have nothing to do with
hardness amplification (e.g., if we use ECC’s to encode a huge file, we may want to be able
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& corrupted E(x
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Figure 19.5 A local decoder gets access to a corrupted version of E(x) and an index i and
computes from it x; (with high probability).

to efficiently recover part of the file without decoding it in its entirety). The connection
between local decoders and hardness amplification is encapsulated in the following theorem:

Theorem 19.17 (Hardness amplification from local decoding)

Suppose that there exists an ECC with polynomial-time encoding algorithm and a local
decoding algorithm handling p errors. Suppose also that there is f € E with H,{f)(n) >
S(n) for some function S : N — N satisfying S(n) > n. Then, there exists ¢ >0 and f € E

with H. 2~ (f)(n) > S(en)®

We leave the proof of Theorem 19.17, which follows the ideas described above, as Exer-
cise 19.14. We now show local decoder algorithms for several explicit codes.

Local decoder for Walsh-Hadamard.

The following is a two-query local decoder for the Walsh-Hadamard code that handles p
errors for every p < 1/4. This fraction of errors we handle is best possible, as it can be easily
shown that there cannot exist a local (or non-local) decoder for a binary code handling p
errors for every p > 1/4.

Theorem 19.18 For every p < 1/4, the walsh-Hadamard code has a local decoder handling
p errors. &

PRrROOF: Theorem 19.18 is proven by the following algorithm:
WALSH-HADAMARD LOCAL DECODER for p < 1/4:

Input: j € [n], random access to a function f : {0,1}" — {0,1} such that Pr,[g(y) #
z ®y] < p for some p < 1/4 and x € {0,1}".

Output: A bit b € {0,1}. (Our goal: z; =0.)

Operation: Let ¢/ be the vector in {0,1}" that is equal to 0 in all the coordinates except
for the j'* and equal to 1 on the j* coordinate. The algorithm chooses y €, {0,1}"
and outputs f(y) + f(y+¢e’) (mod 2) (where y + ¢’ denotes componentwise addition
modulo 2, or equivalently, flipping the j** coordinate of ¥).

Analysis: Since both y and y + ¢/ are uniformly distributed (even though they are de-
pendent), the union bound implies that with probability 1 — 2p, f(y) = ¢ ® y and
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Figure 19.6 Given access to a corrupted version of a polynomial P : F¢ — F, to compute
P(x) we pass a random line L, through z, and use Reed-Solomon decoding to recover the
restriction of P to the line L.

fly+e?) =20 (y+e’). But by the bilinearity of the operation ®, this implies that
f+fly+e)=z0y+r0(y+e)=220y)+z0e =z (mod 2). Yet,
r ® el = z; and so with probability 1 — 2p, the algorithm outputs the right value.
(The success probability can be amplified by repetition.) H

This algorithm can be modified to locally compute not just z; = x ® ¢’ but in fact the
value x ® z for every z € {0,1}". Thus, we can use it to compute not just every bit of the
original message x but also every bit of the uncorrupted codeword WH(z). This property
is sometimes called the self correction property of the Walsh-Hadamard code. B

Local decoder for Reed-Muller

We now show a local decoder for the Reed-Muller code. It runs in time polynomial in ¢
and d, which, for an appropriate setting of the parameters, is polylogarithmic in the output
length of the code:

Theorem 19.19 For every field |F|, numbers d,{ and there is a poly(|F|, ¥, d)-time local
decoder for the Reed-Muller code with parameters F, d, ¢ handling (1 — I%‘Fil) /6 errors.

That is, there is a poly(|F|, £, d)-time algorithm D that given random access to a function
f :F* — T that agrees with some degree d polynomial P on a1 — (1 — ‘%‘)/6 fraction of the

inputs and x € F* outputs P(z) with probability at least 2/3. &

PROOF: Recall that the input to a Reed-Muller code is an {-variable d-degree polynomial
P over some field F. When we discussed the code before, we assumed that this polynomial
is represented as the list of its coefficients. However, below it will be more convenient for
us to assume that the polynomial is represented by a list of its values on its first (d‘y)
inputs according to some canonical ordering. Using standard interpolation, we still have
a polynomial-time encoding algorithm even given this representation. Thus, it suffices to
show an algorithm that, given access to a corrupted version of P, computes P(x) for every
x € F*. We now show such an algorithm:

REED-MULLER LOCAL DECODER for p < (1 — I%I)/G.

Input: A string z € F, random access to a function f such that Pr,cp[P(z) # f(2)] < p,
where P : F* — F is an /-variable degree-d polynomial.

Output: y € F (Goal: y = P(x).)

Operation: 1. Let L, be a random line passing through . That is L, = {z+tz:t € F}
for a random z € F*.
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Figure 19.7 To locally decode a concatenated code E2 o0 Ej we run the decoder for Ey using
the decoder for Eo. The crucial observation is that if y is within pqp2 distance to E2 o0 E1(x)
then at most a p; fraction of the blocks in y are of distance more than p2 the corresponding
block in E2 o Eq(z).

2. Query f on all the |F| points of L, to obtain a set of points {(¢, f(z + tz))} for
every t € F.

3. Run the Reed-Solomon decoding algorithm to obtain the univariate polynomial
Q@ : F — F such that Q(t) = f(x + tz) for the largest number of ¢’s (see Fig-
ure 19.6).4

4. Output Q(0).

Analysis: For every d-degree ¢-variable polynomial P, the univariate polynomial Q(t) =
P(z + tz) has degree at most d. Thus, to show that the Reed-Solomon decoding
works, it suffices to show that with probability at least 2/3, the number of points on
w € L, for which f(w) # P(w) is less than (1 — d/|F|)/2. Yet, for every ¢ # 0, the
point z +tz where z is chosen at random in F is uniformly distributed (independently
of z), and so the expected number of points on L, for which f and P differ is at
most p|F|. By the Markov inequality, the probability that there will be more than
3p|F| < (1 — d/|F|)|F|/2 such points is at most 2/3 and hence Reed-Solomon decoding
will be successful with probability 2/3. In this case, we obtain the correct polynomial
g that is the restriction of @ to the line L, and hence ¢(0) = P(z).

19.4.3 Local decoding of concatenated codes.

As the following lemma shows, given two locally decodable ECC’s F; and Es, we can locally
decode their concatenation Eq o Fa:

Lemma 19.20 Let By : {0,1}" — %™ and By : £ — {0,1}" be two ECC’s with local
decoders of q1 (resp. qa2) queries with respect to py (resp. ps) errors. Then there is an
O(q19210g ¢1 log |X])-query local decoder handling pyps errors for the concatenated code

E=FEyo0FE;:{0,1}" — {0,1}™. &

PRrROOF: We prove the lemma using the natural algorithm. Namely, we run the decoder for
E1, but answer its queries using the decoder for FEy (see Figure 19.7).

LOCAL DECODER FOR CONCATENATED CODE: p < p1p2

4If p is sufficiently small, (e.g., p < 1/(10d)), then we can use the simpler randomized Reed-Solomon
decoding procedure described in Section 19.3.
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Input: Anindex i € [n], random access to a string y € {0, 1}"™ such that A(y, EyoEy(z)) <
p1p2 for some z € {0,1}".

Output: b € {0,1}" (Goal: b= x;)

Operation: Simulate the actions of the decoder for E;, whenever the decoder needs access
to the j* symbol of Fj(z), use the decoder of E; with O(gslogq log|¥|) queries
applied to the j** block of y to recover all the bits of this symbol with probability at
least 1 —1/(10q1).

Analysis: The crucial observation is that at most a p; fraction of the length k blocks
in y can be of distance more than ps from the corresponding blocks in Fs o Ey(z).
Therefore, with probability at least 0.9, all our ¢; answers to the decoder of E; are
consistent with the answer it would receive when accessing a string that is of distance
at most p; from a codeword of Ej.

Putting it all together.

We now have the ingredients to prove our second main theorem of this chapter: transfor-
mation of a hard-on-the-worst-case function into a function that is “mildly” hard on the
average case.

Theorem 19.21 (Worst-case hardness to mild hardness)

Let S: N — N and f € E such that H,{(f)(n) > S(n) for every n. Then there exists a
function g € E and a constant ¢ > 0 such that H%:**(g)(n) > S(n/c)/n* for every sufficiently
large n.

PROOF: For every n, we treat the restriction of f to {0,1}" as a string f’ € {0,1}" where
N = 2". We then encode this string f’ using a suitable error correcting code E : {0,1}" —

C
{0,1}" for some constant C' > 1. We will define the function g on every input z € {0,1}"
to output the x'" coordinate of E(f’).> For the function g to satisfy the conclusion of the
theorem, all we need is for the code E to satisfy the following properties:

1. For every z € {0,1}", E(z) can be computed in poly(N) time.

2. There is a local decoding algorithm for E that uses polylog(/N) running time and
queries and can handle a 0.01 fraction of errors.

But this can be achieved using a concatenation of a Walsh-Hadamard code with a Reed-
Muller code of appropriate parameters:

1. Let RM denote the Reed-Muller code with the following parameters:

e The field F is of size log® N.
e The number of variables ¢ is equal to log N/loglog N.
e The degree is equal to log® N.
RM takes an input of length at least (%)E > N (and so using padding we can assume

its input is {0,1}"). Its output is of size |F|* < poly(n). Its distance is at least
1—1/logN.

5By padding with zeros as necessary, we can assume that all the inputs to g are of length that is a
multiple of C.
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2. Let WH denote the Walsh-Hadamard code from {0, 1}/ = {0, 1}°161°6 ¥ ¢4 {0, 1}/F! =
{O ]N}log5 N'

Our code will be WH o RM. Combining the local decoders for Walsh-Hadamard and
Reed-Muller we get the desired result. B

Combining Theorem 19.21 with Yao’s XOR Lemma (Theorem 19.2), we get the following
corollary:

Corollary 19.22 Let S : N — N be a monotone and time-constructible function. Then there
is some € > 0 such that if there exists f € E with H,.{f)(n) > S(n) for every n then there
exists f € E with ACH(f)(n) > S(yv/n)¢. &

PrOOF: By Theorem 19.21, under this assumption there exists a function ¢ € E with
HO9(g)(n) > S'(n) = S(n)/ poly(n), where we can assume S’(n) > /S(n) for sufficiently
large n (otherwise S is polynomial and the theorem is trivial). Consider the function g®*
where k = clog S’ (n) for a sufficiently small constant c. By Yao’s XOR Lemma, on inputs of
length kn, it cannot be computed with probability better than 1/2 + 9—cS'(n)/1000 by circuits
of size S'(n). Since S(n) < 2", kn < y/n, and hence we get that H,(g®*) > §¢/2000. m

List decoding

While Corollary 19.22 is extremely surprising in the qualitative sense (transforming worst-
case hardness to average-case hardness) it is still not fully satisfying quantitatively because
it loses quite a bit in the circuit size when moving from a worst-case hard to an average-case
hard function. In particular, even if we start with a function f that is hard in the worst-case
for 2°2(")_sized circuits, we only end up with a function f that is hard on the average case
for 22V _gized circuits. This can make a difference in some applications, and in particular
it falls short of what we will need to fully derandomize BPP under worst-case assumptions
in Chapter 20.

Our approach to obtain stronger worst-case to average-case reduction will be to bypass
the XOR Lemma, and use error correcting codes to get directly from worst-case hardness to
a function that is hard to compute with probability slightly better than 1/2. However, this
idea seems to run into a fundamental difficulty: if f is worst-case hard, then it seems hard
to argue that the encoding of f, under any error correcting code is hard to compute with
probability 0.6. The reason is that any binary error-correcting code has to have distance at
most 1/2 but the decoding algorithms work for at most half the distance and hence cannot
recover a string f from FE(f) if the latter was corrupted in more than a 1/4 of its locations
(i.e., from a string with less than 0.75 agreement with E(f)).

This seems like a real obstacle, and indeed was considered as such in many contexts
where ECC’s were used, until the realization of the importance of the following insight:
“If y is obtained by corrupting F(z) in, say, a 0.4 fraction of the coordinates (where F is
some ECC with good enough distance) then, while there may be more than one codeword
within distance 0.4 to y, there can not be too many such codewords.” Formally, we have the
following theorem:

Theorem 19.23 (Johnson Bound [Joh62]) If E : {0,1}" — {0,1}" is an ECC with distance
at least 1/2 — ¢, then for every x € {0,1}", and § > /e, there exist at most 1/(26%) vectors
Y1, .., ye such that A(z,y;) < /2 —§ for every i € [{]. O

PROOF: Suppose that z,y1,...,ye satisfy this condition, and define ¢ vectors z1, ...,z in
R™ as follows: for every i € [(] and k € [m], set z; to equal +1 if y, = x and set it to
equal —1 otherwise. Under our assumptions, for every i € [¢],

> zik > 20m, (10)
k=1
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since z; agrees with z on an 1/2 4+ § fraction of its coordinates. Also, for every i # j € [/],

(zi,25) = Zzi7kzj,k < 2em < 26%m (11)
k=1
since E is a code of distance at least 1/2 — e.
We will show that (10) and (11) together imply that ¢ < 1/(26%). Indeed, set w =
Zle z;. On one hand, by (11)

‘
(w, wy = Z<Zi’ zi) + Z<Zi’ z;) < fm+ 0226%m.
i=1 i#j
On the other hand, by (10), >, wx = >, ; 2i,; > 20ml and hence (w,w) > |3, wi|?/m >
46*ml?, since for every c, the vector w € R™ with minimal two-norm satisfying Y, wy = ¢
is the uniform vector (c¢/m,c/m,...,c¢/m). Thus 45°mf? < ¢m + 225?m, implying that
0<1/(26%). |

List decoding the Reed-Solomon code

In many contexts, obtaining a list of candidate messages from a corrupted codeword can be
just as good as unique decoding. For example, we may have some outside information on
which messages are likely to appear, allowing us to know which of the messages in the list
is the correct one. However, to take advantage of this we need an efficient algorithm that
computes this list. Such an algorithm was discovered in 1996 by Sudan for the popular and
important Reed-Solomon code. It can recover a polynomial size list of candidate codewords

given a length m Reed-Solomon codeword that is corrupted in up to a 1 — 24/ % fraction

of the coordinates. Note that this tends to 1 as m/d grows, whereas the Berlekamp-Welch
algorithm of Section 19.3 (as is the case with any other unique decoding algorithm) cannot
handle a fraction of errors that is more than half the distance.

Theorem 19.24 (List decoding for the Reed-Solomon code [Sud96])

There is a polynomial-time algorithm that given a set {(a;,b;)}™, of pairs in F?, returns
the list of all degree d polynomials G such that the number of i’s for which g(a;) = b; is
more than 2v/dm.

PROOF: We prove Theorem 19.24 via the following algorithm:
REED-SOLOMON LI1ST DECODING: t > 2v/dm.

1. Find a nonzero bivariate polynomial Q(z,y) of degree at most Vdm in z and at most
vm/d in y such that Q(b;, a;) = 0 for every i € [m].
We can express this condition as m linear equations in the (vVdm+1)(y/m/d+1) > m
coefficients of Q). Since these equations are homogeneous (right side equalling zero)
and there are more unknowns than equations, this system has a nonzero solution that
can be found using gaussian elimination.

2. Factor Q(z,y) using an efficient polynomial factorization algorithm (see [VG99]). For

every factor of the form (P(x) — y) check whether P(z) has degree at most d and
agrees with {(a;,b;)};~, in at least ¢ places. If so, output P.
Indeed, if G(x) agrees with {(a;,b;)};~, in more than ¢ places then (G(z) —y) is a
factor of Q(z,y). To see this note that Q(G(z), z) is a univariate polynomial of degree
at most vVdm + dy/m/d = 2v/dm < t which has at least ¢ zeroes and hence it is
identically zero. It follows that G(z) — y divides Q(z,y) (see Exercise 19.16).
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19.6 Local list decoding: getting to BPP = P.

Analogously to Section 19.4, to actually use list decoding for hardness amplification, we need
to provide local list decoding algorithms for the codes we use. Fortunately, such algorithms
are known for the Walsh-Hadamard code, the Reed-Muller code, and their concatenation.
The definition of local list decoding below is somewhat subtle, and deserves a careful reading.

Definition 19.25 (Local list decoder) Let E : {0,1}" — {0,1}" be an ECC and let p = 1—¢
for € > 0. An algorithm D is called a local list decoder for E handling p errors, if for every
x €{0,1}" and y € {0,1}" satisfying A(E(z),y) < p, there exists a number ig € [poly(n/e)]
such that for every j € [m], on inputs ip,j and with random access to y, D runs for
poly(log(m)/e€) time and outputs z; with probability at least 2/s. &

One can think of the number iy as the index of x in the list of poly(n/e) candidate
messages output by L. As is the case for Definition 19.16, Definition 19.25 can be easily
generalized to codes with non-binary alphabet.

19.6.1 Local list decoding of the Walsh-Hadamard code.

It turns out we already encountered a local list decoder for the Walsh-Hadamard code: the
proof of the Goldreich-Levin Theorem (Theorem 9.12) provided an an algorithm that given
access to a “black box” that computes the function y — z ® y (for z,y € {0,1}") with
probability 1/2 + ¢, computes a list of values 1, ..., Zpoly(n/e) such that z;, = x for some ig.
In Chapter 9 we used this algorithm to find the correct value of = from that list by checking
it against the value f(x) (where f is a one-way permutation). This is a good example
showing how we can use outside information to narrow the list of candidates codewords
obtained from a list-decoding algorithm.

19.6.2 Local list decoding of the Reed-Muller code

We now present an algorithm for local list decoding of the Reed-Muller code. Recall that the
codeword of this code is the list of evaluations of a d-degree ¢(-variable polynomial P : F¢ — F
and the task of the local decoder is to compute P(z) on a given point x € F*,

Theorem 19.26 (Reed-Muller local list decoder [BF90, Lip91, BENW93, STV99]) The Reed-Muller
code has a local list decoder handling 1 — 10/d/|F| errors.

That is, for every F, ¢, d there is a poly(|F|, d, {)-time algorithm D that given random access
to a function f : F* — F, an index i € F*! and an input x € F’ satisfies: if f agrees with
a degree-d polynomial P : F¢* — F on 10,/d/|F| fraction of the inputs then there exists
igp € F*1 such that Pr[D/ (ig,x) = P(x)] > 2/3 for every z. &

PROOF: To be a valid local list decoder, given the index 7, the algorithm should output
P(x) with high probability for every = € F*. Below we describe a relaxed decoder that is
only guaranteed to output the right value for most (i.e., a 0.9 fraction) of the z’s in F*.
One can transform this algorithm to a valid local list decoder by combining it with the
Reed-Muller local decoder described in Section 19.4.2. Thus, Theorem 19.26 is proven via
the following algorithm:

REED-MULLER LOCAL LI1ST DECODER for p <1 — 104/d/|F]

Inputs: e Random access to a function f such that Pr,cpe[P(z) = f(x)] > 104/d/|F|
where P : F¢ — T is an f-variable d-degree polynomial. We assume that |F| > d*
and d is sufficiently large (e.g., d > 1000 will do). This can always be ensured in
our applications.

e An index ig € [|F|**!] which we interpret as a pair (zo,yo) with 2o € F’, yo € F,
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e A string x € F*.

Output: y € F (For some pair (xo,y0), it should hold that P(x) = y with probability at

least 0.9 over the algorithm’s coins and x chosen at random from F*.)

Operation: 1. Let L, ;, be a random degree 3 curve passing through z, zo. That is,

we find a random degree 3 univariate polynomial ¢ : F — F* such that ¢(0) =
and ¢(r) = zo for some random r € F, and set L, ,, = {q(t):t € F}. (See
Figure 19.8.)

2. Query f on all the |F| points of L, ,, to obtain the set S of the |F| pairs
{(t, f(q(t)) : t € F)}.

3. Run Sudan’s Reed-Solomon list decoding algorithm to obtain a list g1, ..., gi of

all degree 3d polynomials that have at least 8y/d|F| agreement with the pairs in
S.

4. Tf there is a unique i such that g;(r) = yo then output ¢;(0). Otherwise, halt
without outputting anything.

Figure 19.8 Given access to a corrupted version of a polynomial P : F{ — F and some
index (x0,y0), to compute P(z) we pass a random degree-3 curve Ly 5, through x and zg,
and use Reed-Solomon list decoding to recover a list of candidates for the restriction of P
to the curve Ly 4. If only one candidate satisfies that its value on xg is yo, then we use
this candidate to compute P(x).

We will show that for every f : F* — I that agrees with an /-variable degree d polynomial
on a 10+/d/|F| fraction of its input, and every = € F*, if z¢ is chosen at random from F* and
Yo = P(z0), then with probability at least 0.9 (over the choice of zg and the algorithm’s
coins) the above decoder will output P(z). By a standard averaging argument, this implies
that there exist a pair (xg,yo) such that given this pair, the algorithm outputs P(z) for a
0.9 fraction of the z’s in F*.

For every x € F, the following fictitious algorithm can be easily seen to have an identical
output to the output of our decoder on the inputs z, a random xg €, F* and yo = P(x0):

1.

Choose a random degree 3 curve L that passes through x. That is, L = {¢q(¢t) : t € F}
where ¢ : F — F’ is a random degree 3 polynomial satisfying ¢(0) = .

Obtain the list g1, ..., g, of all univariate polynomials over F such that for every <,
there are at least 64/d|F| values of ¢ such that g;(t) = f(q(t)).

Choose a random r € F. Assume that you are given the value yo = P(q(r)).

If there exists a unique ¢ such that g;(r) = yo then output g;(0). Otherwise, halt
without an input.

Yet, this fictitious algorithm will output P(x) with probability at least 0.9. Indeed,
since all the points other than x on a random degree 3 curve passing through x are pairwise
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independent, Chebyshev’s inequality implies that with probability at least 0.99, the function
f will agree with the polynomial P on at least 8,/d|F| points on this curve. Thus the list
g1 - - -, gm We obtain in Step 2 contains the polynomial g : F — F defined as g(t) = P(q(t)).
We leave it as Exercise 19.15 to show that there can not be more than \/m /4d polynomials
in this list. Since two 3d-degree polynomials can agree on at most 3d + 1 points, with

probability at least 1 — % ”||F‘/4d > 0.99, if we choose a random r € F, then g(r) # g;(r)
for every g; # ¢ in this list. Thus, with this probability, we will identify the polynomial g
and output the value g(0) = P(z). B

Local list decoding of concatenated codes.

If By : {0,1}" — ¥™ and E» : ¥ — {0,1}* are two codes that are locally list decodable
then so is the concatenated code Ey o Ey : {0,1}" — {0,1}™. As in Section 19.4.3, the
idea is to simply run the local decoder for F; while answering its queries using the decoder
of F5. More concretely, assume that the decoder for E; takes an index in the set I; and can
handle 1 — ¢; errors, and that Es takes an index in I» and can handle 1/2 — €3 errors. Our
decoder for Fs o F1 will take a pair of indices i; € I; and i5 € I and run the decoder for F;
with the index 71, and whenever this decoder makes a query answer it using the decoder Ey
with the index 5. (See Section 19.4.3.) We claim that this decoder can handle 1/2 — e €3]I5
number of errors. Indeed, if y agrees with some codeword Fs o F1(z) on an €je2|l5| fraction
of the coordinates then there are €;]|l5] blocks on which it has at least 1/2 + €3 agreement
with the blocks this codeword. Thus, by an averaging argument, there exists an index s
such that given iq, the output of the Ey decoder agrees with Fj(z) on €; symbols, implying
that there exists an index ¢; such that given (i1,i2) and every coordinate j, the combined
decoder will output z; with high probability.

Putting it all together.

As promised, we can use local list decoding to transform a function that is merely worst-case
hard into a function that cannot be computed with probability significantly better than 1/2:

Theorem 19.27 (Worst-case hardness to strong hardness)
Let f € E be such that H,.{f)(n) > S(n) for some time-constructible non-decreasing S : N —

N. Then there exists a function g € E and a constant ¢ > 0 such that H,(g)(n) > S(n/c)/¢
for every sufficiently large n.

PROOF SKETCH: As in Section 19.4.4, for every n, we treat the restriction of f to {0,1}"

as a string f/ € {0,1}" where N = 2" and encode it using the concatenation of a Reed-
Muller code with the Walsh-Hadamard code. For the Reed-Muller code we use the following
parameters:

e The field F is of size S(n)'/1%°. (We may assume without loss of generality that
S(n) > n'%% as otherwise the theorem is trivial.)

e The degree d is of size log® N.
e The number of variables ¢ is 2log N/log S(n).

The function g is obtained by applying this encoding to f. Given a circuit of size
S(n)1/1% that computes g with probability better than 1/2 4 1/5(n)/5%, we will be able to
transform it, in S(n)°®) time, to a circuit computing f perfectly. We hardwire the index
ip to this circuit as part of its description. B
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WHAT HAVE WE LEARNED?

e Yao’s XOR Lemma allows us to amplify hardness by transforming a Boolean function
with only mild hardness (cannot be computed with say 0.99 success) into a Boolean
function with strong hardness (cannot be computed with 0.51 success).

e An error correcting code is a function that maps every two strings into a pair of strings
that differ on many of their coordinates. An error correcting code with a local decoding
algorithm can be used to transform a function hard in the worst-case into a function
that is mildly hard on the average case.

e A code over the binary alphabet can have distance at most 1/2. A code with distance §
can be uniquely decoded up to 6/2 errors. List decoding allows to a decoder to handle
almost a § fraction of errors, at the expense of returning not a single message but a
short list of candidate messages.

e We can transform a function that is merely hard in the worst case to a function that
is strongly hard in the average case using the notion of local list decoding of error
correcting codes.

Chapter notes and history

Yao’s XOR Lemma was first stated and proven by Yao in oral presentations of his paper [Yao82a].
Since then several proofs have been published with the first one by Levin in [Lev87] (see the survey
[GNW95]). Russell Impagliazzo’s hardcore lemma was proven in [Imp95b]; the proof of Section 19.1.2
is due to Noam Nisan.

The study of error correcting codes is an extremely beautiful and useful field, and we have
barely scratched its surface here. This field was initiated by two roughly concurrent seminal papers
of Shannon [Sha48] and Hamming [Ham50]. The lecture notes of Madhu Sudan (available from his
home page) provide a good starting point for theoretical computer scientists; see also the survey
[Sudo1].

Reed-Solomon codes were invented in 1960 by Irving Reed and Gustave Solomon [RS60]. The
first efficient decoding algorithm for Reed-Solomon codes was by Peterson [Pet60]. (Interestingly,
this algorithm is one of the first non-trivial polynomial-time algorithms invented, preceding even
the formal definition of the class P.) The algorithm presented in Section 19.3 is a simplification
due to Gemmell and Sudan [GS92] of the Berlekamp-Welch decoder [BWS6].

Reed-Muller codes were invented by Muller [Mul54] with the first decoder given by Reed
[Ree54]. The first Reed-Muller local decoders were given by Beaver and Feigenbaum [BF90] and
Lipton [Lip91], who observed this implies a worst-case to average-case connection for the Permanent
(see also Section 8.6.2). Babai, Fortnow, and Lund [BFL90] observed that by taking multilinear
extensions, such connections also hold for PSPACE and EXP, and Babai et al [BFNW93] showed
that this allows for derandomization from worst-case assumptions. The Reed-Muller local decoding
algorithm of Section 19.4.2 is due to Gemmell et al [GLRT91].

The first list-decoding algorithm for Reed-Solomon codes was given by Sudan [Sud96] and was
subsequently improved by Guruswami and Sudan [GS98]. Recently, Parvaresh and Vardy [PV05]
showed a list-decoding algorithm handling even more errors for a variant of the Reed-Solomon code,
a result that was further improved by Guruswami and Rudra [GRO06], achieving an optimal tradeoff
between rate and list decoding radius for large alphabets.

The quantitatively strong hardness amplification (Theorem 19.27) was first shown by Impagli-
azzo and Wigderson [IW97] that gave a derandomized version of Yao’s XOR Lemma. Our presen-
tation follows the alternative proof by Sudan, Trevisan and Vadhan [STV99] who were the first to
make an explicit connection between error correcting codes and hardness amplification, and also
the first to explicitly define local list decoding and use it for hardness amplification. The first local
list decoding algorithm for the Walsh-Hadamard code was given by Goldreich and Levin [GL89]
(although the result is not explicitly described in these terms there). The Reed-Muller local list
decoding algorithm of Section 19.6 is a variant of the algorithm of [STV99].
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The question raised in Problem 19.8 is treated in O’Donnell [0’D04], where a hardness amplifi-
cation lemma is given for NP. For a sharper result, see Healy, Vadhan, and Viola [HVV04].

Exercises

Let X1, ..., X, beindependent random variables such that X; is equal to 1 with probability 1—¢§ and
equal to 0 with probability §. Let X = Zf:l X; (mod 2). Prove that Pr[X = 1] = 1/2+ (1 —26)".
H463

Prove that if there exists a d-density distribution H such that Pr.e #[C(z) = f(z)] < /24 e for
every circuit C of size at most S with S < /€2627/100, then there exists a subset I C {0,1}" of

size at least 32" such that
Pr [C(x) = f(a)] < 1/2+ 2¢

zeg I
for every circuit C' of size at most S. Haea
Let H be an §-density distribution over {0,1}" (i.e., Pr[H = z] < 1/(62") for every x € {0,1}").

(a) Let G be the distribution defined by Pr[G = z] = (27" — 6 Pr[H = z])/(1 — 6) for every
x € {0,1}". Prove that G is indeed a distribution (i.e., all probabilities are non-negative and
sum up to 1).

(b) Let U be the following distribution: with probability § pick an element from H and with
probability 1 — § pick an element from G. Prove that U is the uniform distribution.

H464
Complete the proof of Impagliazzo’s Hardcore Lemma (Lemma 19.3) for general k.

Prove the hyperplane separation theorem in the following form: If C; D C R™ are two disjoint

convex set with C' closed and D compact (i.e., closed and bounded) then there exists a nonzero

vector z € R™ and a number a € R such that
xe(C=(x,z)>a
yeD=(y,z)<a

H464

Prove the Min-Max Theorem (see Note 19.4) using the hyperplane separation theorem as stated in
Exercise 19.5. na64

([cG85]) We say that a distribution D over {0,1}" is K-flat if D is the uniform distribution over
a subset of {0,1}" with size at least K. Prove that for every k, every 2~ *-density distribution
H is a convex combination of 2" *-flat distributions. That is, there are N 2" *-flat distributions
D1, ..., Dn and non-negative numbers a1, ..., ay such that ZZ a; =1 and H is equivalent to the
distribution obtained by picking ¢ with probability «; and then picking a random element from D,.
H464

Suppose we know that NP contains a function that is weakly hard for all polynomial-size circuits.
Can we use the XOR Lemma to infer the existence of a strongly hard function in NP? Why or
why not?

For every 6 < 1/2 and sufficiently large n, prove that there exists a function F : {0,1}" —
{0,1}"/=HC) that is an error correcting code with distance &, where H(8) = §log(1/68) + (1 —
0)log(1/(1 —4)). rmaea

Show that for every E : {0,1}" — {0, 1}™ that is an error correcting code of distance 1/2, 2" < 10m.
Show if E is an error correcting code of distance § > 1/2, then 2™ < 10/(d — 1/2). Haea

Let E: {0,1}" — {0,1} be an ECC such that there exist two distinct strings =', 2> € {0,1}™
with A(E(z'), E(z®)) < §. Prove that there’s no decoder for £ handling §/2 or more errors. That

is, show that there is no function D : {0,1}™ — {0, 1}" such that for every = € {0,1}" and y with
A(y,E(x)) <6/2, D(y) = .

Let E : {0,1}" — {0,1}™ be a d-distance ECC. Transform E to a code E' : {0,1,2,3}"/? —
{0,1,2,3}™/% in the obvious way. Show that E’ has distance 8. Show that the opposite direction is
not true: show an example of a d-distance ECC E’ : {0,1,2,3}"/% — {0,1,2,3}™/? such that the
corresponding binary code has distance 2J.

Prove Theorem 19.15 as stated. That is show how to recover a d-degree polynomial G from a
sequence of pairs (a1,b1),..., (am,bn) agreeing with G in ¢ places whenever t > % 4 g + 1.
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Prove Theorem 19.17. Haea

Let f:F — F be any function. Suppose integer d > 0 and number ¢ satisfy ¢ > 2 %. Prove

that there are at most 2/e degree d polynomials that agree with f on at least an e fraction of its
coordinates. Haea

Prove that if Q(x,y) is a bivariate polynomial over some field F and P(x) is a univariate polynomial
over F such that Q(P(x),z) is the zero polynomial then Q(z,y) = (y — P(z))A(x,y) for some
polynomial A(x,y). Haea

(Linear codes) We say that an ECC E : {0,1}" — {0,1}™ is linear if for every z,z’ € {0,1}",
E(z +2') = E(x) + E(z2') where 4+ denotes componentwise addition modulo 2. A linear ECC F
can be described by an m x n matrix A such that (thinking of = as a column vector) E(z) = Az
for every x € {0,1}".

(a) Prove that the distance of a linear ECC FE is equal to the minimum over all nonzero z € {0,1}"
of the fraction of 1’s in E(x).

(b) Prove that for every § > 0, there exists a linear ECC E : {0,1}" — {0, 1}/ =H@) itp
distance 0, where H(0) = dlog(1/d) + (1 — d)log(1/(1 —9)). raea

(c) Prove that for some § > 0 there is an ECC E : {0,1}" — {0,1}*°¥™ of distance § with
polynomial-time encoding and decoding mechanisms. (You need to know about the field
GF(2%) to solve this, see Appendix A.) maea

(d) We say that a linear code E : {0,1}" — {0,1}™ is e-biased if for every non-zero = € {0,1}",
the fraction of 1’s in E(x) is between 1/2 — ¢ and !/2 + e. Prove that for every ¢ > 0, there
exists an e-biased linear code E : {0,1}" — {0,1}*°¥"/9) with a polynomial-time encoding
algorithm.

Recall that for every m there is field F = GF(2™) of 2™ elements such that we can represent
each element of F as a vector in GF(2)™ with addition in F corresponding to bitwise XOR (see
Appendix A). Thus for every a € F, the operation z +— a x z (where x denotes multiplication in
F) is a linear operation in GF(2)™. Moreover, this operation is efficiently computable given the
description of a.

(a) Prove that for every nonzero x € F, if we choose a uniformly in F then a X z is distributed
uniformly over F.

(b) Prove that for every nonzero x € F', the probability over a random a €, F that a x x has at
most m/10 ones in its representation as an m-bit vector is less than 2-m/19 " Conclude that
there exists a € F such that the function that maps z € {0,1}™/'° to a x (z 0 0%°™) (where
o denotes concatenation) is an error correcting code with distance at least 0.1.

(c) Show that there exists constants ¢, > 0 such that for every n there is an explicit error
correcting code E : {0,1}" — {0,1}°" of distance at least §. maea
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Chapter 20

Derandomization

“God does not play dice with the universe”
Albert Einstein

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”
John von Neumann, quoted by Knuth 1981

Randomization is an exciting and powerful paradigm in computer science and, as we saw
in Chapter 7, often provides the simplest or most efficient algorithms for many computational
problems. In fact, in some areas of Computer Science, such as distributed algorithms and
cryptography, randomization is proven to be necessary to achieve certain tasks or achieve
them efficiently. Thus it’s natural to conjecture (as many scientists initially did) that at
least for some problems, randomization is inherently necessary: one cannot replace the
probabilistic algorithm with a deterministic one without a significant loss of efficiency. One
concrete version of this conjecture would be that BPP ¢ P (see Chapter 7 for definition of
BPP). Surprisingly, recent research has provided more and more evidence that this is likely
not to hold. As we will see in this chapter, under very reasonable complexity assumptions,
there is in fact a way to derandomize (i.e., transform into a deterministic algorithm) every
probabilistic algorithm of the BPP type with only a polynomial loss of efficiency. Thus
today most researchers believe that BPP = P. We note that this need not imply that
randomness is useless in every setting —we already saw in Chapter 8 its crucial role in the
definition of interactive proofs.

In Section 20.1 we define pseudorandom generators, which will serve as our main tool
for derandomizing probabilistic algorithms. Their definition is a relaxation of the definition
of secure pseudorandom generators in Chapter 9. This relaxation will allow us to construct
such generators with better parameters and under weaker assumptions than what is possible
for secure pseudorandom generators. In Section 20.2 we provide a construction of such
pseudorandom generators under the assumptions that there exist explicit functions with
high average-case circuit complexity. In Chapter 19 we show how to provide a construction
that merely requires high worst-case circuit complexity.

While the circuit lower bounds we assume are widely believed to be true, they also seem
to be very difficult to prove. This raises the question of whether assuming or proving such
lower bounds is mecessary to obtain derandomization. In Section 20.3 we show that it’s
possible to obtain at least a partial derandomization result based only on the assumption
that BPP # EXP. Alas, as we show in Section 20.4, full derandomization of BPP will
require proving circuit lower bounds.

Even though we still cannot prove sufficiently strong circuit lower bounds, just as in
cryptography, we can use conjectured hard problems for derandomization instead of prov-
able hard problems, and to a certain extent end up with a win-win situation: if the con-
jectured hard problem is truly hard then the derandomization will be successful; and if the
derandomization fails then it will lead us to an algorithm for the conjectured hard problem.
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Example 20.1 (Polynomial identity testing)

We explain the notion of derandomization with an example. One algorithm that
we would like to derandomize is the one described in Section 7.2.3 for testing
if a given polynomial (represented in the form of an arithmetic circuit) is the
identically zero polynomial. If P is an n-variable nonzero polynomial of total
degree d over a large enough finite field F (|F| > 10d will do) then most of
the vectors u € F™ will satisfy P(u) # 0 (see Lemma 7.5). Therefore, checking
whether P = 0 can be done by simply choosing a random u €, F" and applying p
on u. In fact, it is easy to show that there exists a set of m2-vectors u', . ,um
such that for every such nonzero polynomial P that can be computed by a size
m arithmetic circuit, there exists an i € [m?] for which P(u®) # 0.

This suggests a natural approach for a deterministic algorithm: show a deter-

ministic algorithm that for every m € N, runs in poly(m) time and outputs a
m

set ul,...,u * of vectors satisfying the above property. This shouldn’t be too
difficult— after all the vast majority of the sets of vectors have this property, so
how hard can it be to find a single one? Surprisingly this turns out to be quite
hard: without using complexity assumptions, we do not know how to obtain such
a set, and in Section 20.4 we will see that in fact obtaining such a set (or even
any other deterministic algorithm for this problem) will imply some nontrivial
circuit lower bounds.

Pseudorandom Generators and Derandomization

The main tool we will use for derandomization is a pseudorandom generator. This is a twist
on the definition of a cryptographically secure pseudorandom generator we saw in Chapter 9,
with the main difference that here we will allow the generator to run in ezponential time (and
in particular allow the generator more time than the distinguisher). Another difference is
that we consider non-uniform distinguishers— in other words, circuits— rather than Turing
machines, as was done in Chapter 9. (This second difference is not an essential one. As
mentioned in the notes at the end of Chapter 9, we could have used circuits there as well.)

Definition 20.2 (Pseudorandom generators)
A distribution R over {0,1}" is (S, €)-pseudorandom (for S € N, e > 0) if for every circuit
C of size at most S,

Pr[C(R) = 1] = Pr[C(Un) =1]| <€
where U,, denotes the uniform distribution over {0,1}"

Let S : N — N be some function. A 2"-time computable function G : {0,1}" — {0,1}" is
an S(¢)-pseudorandom generator if |G(z)| = S(|z|) for every z € {0,1}" and for every £ € N
the distribution G(Uy) is (S(¢)3,1/10)-pseudorandom.

m/ql T.\

m o
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The choices of the constants 3 and /10 in the definition of an S(¢)-pseudorandom gen-
erator are arbitrary and made for convenience. To avoid annoying cases, we will restrict
our attention to S(¢)-pseudorandom generators for functions S : N — N that are time-
constructible and non-decreasing (i.e., S(¢') > S(¢) for ¢/ > ¢).

20.1.1 Derandomization using pseudorandom generators

The relation between pseudorandom generators and simulating probabilistic algorithms is
rather straightforward:

Lemma 20.3 Suppose that there exists an S({)-pseudorandom generator for a time-constructible
non-decreasing S : N — N. Then for every polynomial-time computable function £ : N — N,
BPTIME(S(/(n))) € DTIME(2°/(")) for some constant c. O

Before proving Lemma 20.3 it is instructive to see what derandomization results it implies
for various values of S. This is observed in the following simple corollary, left as Exercise 20.1:

Corollary 20.4 1. If there exists a 2‘-pseudorandom generator for some constant € > 0
then BPP = P.

2. If there exists a 2% -pseudorandom generator for some constant e > 0 then BPP C
QuasiP = DTIME(2Polos(n)),

3. Iffor every c > 1 there exists an £°-pseudorandom generator then BPP C SUBEXP =
NesoDTIME(2"). o

PROOF OF LEMMA 20.3: A language L is in BPTIME(S({(n))) if there is an algorithm
A that on input = € {0,1}" runs in time ¢S(¢(n)) for some constant ¢, and satisfies

[A(va) = L(‘T)] 2 2/37 (1)

Pr
re, {0,1}™

where m < S(¢(n)) and we define L(x) =1 if x € L and L(z) = 0 otherwise.

The main idea is that if we replace the truly random string r with the string G(z)
produced by picking a random z € {0, 1}6("), then an algorithm such as A that runs in
only S(¢) time cannot detect this switch most of the time, and so the probability 2/3 in
the previous expression does not drop below 2/3 — 0.1 > 0.5. Thus to derandomize A, we
do not need to enumerate over all r € {0,1}": it suffices to enumerate over all the strings
G(z) for z € {0, 1}“") and check whether or not the majority of these make A accept. This
derandomized algorithm runs in 29(") time instead of the trivial 2" time.

Now we make this formal. On input z € {0,1}", our deterministic algorithm B will go
over all z € {0, 1}2(71)7 compute A(x,G(z)) and output the majority answer.! We claim that
for n sufficiently large, the fraction of z’s such that A(x, G(2)) = L(x) is at least 2/3 — 0.1.
This suffices to prove that L € DTIME(2¢(")) as we can “hardwire” into the algorithm
the correct answer for finitely many inputs.

Suppose this is false and there exists an infinite sequence of x’s for which Pr[A(z, G(z)) =
L(z)] < 2/3—0.1. Then there exists a distinguisher for the pseudorandom generator: just
use the Cook-Levin transformation (e.g., as in the proof of Theorem 6.6) to construct a
circuit computing the function r — A(z,r), where z is hardwired into the circuit. (This
“hardwiring” is the place in the proof where we use non-uniformity.) This circuit has size
O(S(¢(n)))? which is smaller than S(¢(n))? for sufficiently large n. B

The proof of Lemma 20.3 shows why it is OK to allow the pseudorandom generator
in Definition 20.2 to run in time exponential in its seed length. The reason is that the
derandomized algorithm enumerates over all possible seeds of length ¢, and thus would
take exponential (in £) time even if the generator itself were to run in less than exp(¢) time.

If m < S(£(n)) then A(x,G(z)) denotes the output of A on input x using the first m bits of G(2) for its
random choices.
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Notice also that allowing the generator exp(¢) time means that it has to “fool” distinguishers
that run for less time than it does. By contrast, the definition of cryptographically secure
pseudorandom generators (Definition 9.8 in Chapter 9) required the generator to run in some
fixed polynomial time, and yet fool arbitrary polynomial-time distinguishers. This difference
in these definitions stems from the intended usage. In the cryptographic setting the generator
is used by honest users and the distinguisher is the adversary attacking the system — and
it is reasonable to assume the attacker can invest more computational resources than those
needed for normal/honest use of the system. In derandomization, the generator is used by
the derandomized algorithm and the ”distinguisher” is the probabilistic algorithm that is
being derandomized. In this case it is reasonable to allow the derandomized algorithm more
running time than the original probabilistic algorithm. Of course, allowing the generator to
run in exponential time potentially makes it easier to prove their existence compared with
secure pseudorandom generators, and this indeed appears to be the case. If we relaxed the
definition even further and made no efficiency requirements then showing the existence of
such generators becomes almost trivial (see Exercise 20.2) but they no longer seem useful
for derandomization.

We will construct pseudorandom generators based on complexity assumptions, using
quantitatively stronger assumptions to obtain quantitatively stronger pseudorandom gen-
erators (i.e., S(¢)-pseudorandom generators for larger functions S). The strongest (though
still reasonable) assumption will yield a 290 _pseudorandom generator, thus implying that
BPP =P.

Hardness and Derandomization

We construct pseudorandom generators under the assumptions that certain explicit func-
tions are hard. In this chapter we use assumptions about average-case hardness, but using
the results of Chapter 19 we will be able to also construct pseudorandom generators assum-
ing only worst-case hardness. Both worst-case and average-case hardness refer to the size
of the minimum Boolean circuit computing the function. Recall that we define the average-
case hardness of a function f : {0,1}" — {0, 1}, denoted by H,,(f), to be the largest number
S such that Pr,e (0,1)"[C(z) = f(x)] < 1/2+ 1/ for every Boolean circuit C' on n inputs
with size at most S (see Definition 19.1). For f: {0,1}" — {0,1}, we let H,(f)(n) denote
the average-case hardness of the restriction of f to {0,1}".

Example 20.5
Here are some examples of functions and their conjectured or proven hardness:

1. If f:{0,1}" — {0,1} is a random function (i.e., for every z € {0,1}" we
choose f(z) using an independent unbiased coin) then with high probability,
both the worst-case and average-case hardness of f are exponential (see

Exercise 20.3). In particular, with probability tending to 1 as n grows,
both H,(f)(n) and H,(f)(n) exceed 2°-99",

2. If f € BPP then, since BPP C P/, , both H,{(f) and H,(f) are bounded
by some polynomial.

3. It seems reasonable to believe that 3SAT has exponential worst-case hard-
ness; that is, H,{(3SAT) > 29" A weaker assumption is that NP CP/pory
in which case H,{3SAT) is not bounded by any polynomial. The average
case complexity of 3SAT for uniformly chosen inputs is unclear, and in any
case is dependent upon the way we choose to represent formulae as strings.

4. Under widely believed cryptographic assumptions, NP contains functions
that are hard on the average. If g is a one-way permutation (as defined
in Chapter 9) that cannot be inverted with polynomial probability by
polynomial-sized circuits, then by Theorem 9.12, the function f that maps
the pair z,r € {0,1}" to g~ *(z) ® r (where x ©®r = Y. | z;7; (mod 2))
has super-polynomial average-case hardness: H,(f) > n*().
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The main theorem of this section uses hard-on-the average functions to construct pseu-
dorandom generators:

Theorem 20.6 (PRGs from average-case hardness)

Let S : N — N be time-constructible and non-decreasing. If there exists f € DTIME(2°(™)
such that H,(f)(n) > S(n) for every n then exists an S(0¢)°-pseudorandom generator for
some constant 6 > 0.

Combining this result with Theorem 19.27 of Chapter 19 we obtain the following theorem
that gives even stronger evidence (given the plethora of plausible hard functions mentioned
above) for the conjecture that derandomizing probabilistic algorithms is possible:

Theorem 20.7 (Derandomization under worst-case assumptions)
Let S : N — N be time-constructible and non-decreasing. If there exists f € DTIME(2°(™)
such that H,{f)(n) > S(n) for every n then exists an S(6¢)’-pseudorandom generator for
some constant § > 0. In particular, the following corollaries hold:

1. If there exists f € E = DTIME(2°) and ¢ > 0 such that H,(f) > 2" then
BPP =P.

2. If there exists f € E = DTIME(2°™) and € > 0 such that H,(f) > 2" then
BPP C QuasiP.

3. If there exists f € E = DTIME(2°")) such that H,(f) > n*(") then BPP C
SUBEXP.

We can replace E with EXP = DTIME(2P°Y(™)) in Corollaries 2 and 3 above. Indeed,
for every f € DTIME(2™"), let g be the function that on input 2 € {0,1}" outputs f applied
to the first |z|'/¢ bits of z. Then, g is in DTIME(2") and satisfies H,(g)(n) > H,(f)(n'/¢).
Therefore, if there exists f € EXP with H,(f) > 27" then there there exists a constant
§’ > 0 and a function g € E with H,(g) > 2"6/7 and so we can replace E with EXP in
Corollary 2. A similar observation holds for Corollary 3. Note that EXP contains many
classes we believe to have hard problems, such as NP, PSPACE, ®P and more.

Remark 20.8

Nisan and Wigderson [NWs8] were the first to show a pseudorandom generator from average-
case hardness, but they did not prove Theorem 20.6 as it is stated above. Rather, The-
orem 20.6 was proven by Umans [Uma03] following a long sequence of works including
[BFNW93, IW97, ISW99, STV99, SU01]. Nisan and Wigderson only proved that under the same
assumptions there exists an S’(¢)-pseudorandom generator, where S’(¢) = S(n)° for some
constant 6 > 0 and n satisfying n > §1/¢log S(n). Note that this bound is still sufficient to
derive all three corollaries above. It is this weaker version we prove in this book.

Proof of Theorem 20.6: Nisan-Wigderson Construction

How can we use a hard function to construct a pseudorandom generator? As a warmup
we start with two “toy examples”. We first show how to use a hard function to construct
a pseudorandom generator whose output is only a single bit longer than its input. Then
we show how to obtain such a generator whose output is two bits longer than the input.
Of course, neither of these suffices to prove Theorem 20.6 but they do give insight into the
connection between hardness and randomness.
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Two toy examples

Extending the input by one bit using Yao’s Theorem.

The following Lemma uses a hard function to construct a “toy” generator that extends its
input by a single bit:

Lemma 20.9 (One-bit generator) Suppose that there exist f € E with H,(f) > n*. Then,
there exists an S(¢)-pseudorandom generator G for S(¢) = ¢ + 1. &

PROOF: The generator G is very simple: for every z € {0, l}g, we set

G(z)=z0 f(2)

(where o denotes concatenation). G clearly satisfies the output length and efficiency re-
quirements of an (/+1)-pseudorandom generator. To prove that its output is ((£+1)3,1/10)-
pseudorandom we use Yao’s Theorem from Chapter 9 showing that pseudorandomness is
implied by unpredictability:?

Theorem 20.10 (Theorem 9.11, restated) Let Y be a distribution over {0,1}". Suppose

that there exist S > 10n and € > 0 such that for every circuit C' of size at most 2S and
i € [m],

1

rle)RIi/[C(Th N 77'1’—1) = T‘i] S 5

Then Y is (S, €)-pseudorandom. &

By Theorem 20.10, to prove Lemma 20.9 it suffices to show that there does not exist a
circuit C of size 2(¢ + 1)® < £* and a number i € [¢ + 1] such that
11 1
T:g(I‘UE)[C(Tla---;Tifl)—Tz] >3+ - (2)
However, for every i < £, the i bit of G(z) is completely uniform and independent from the

first 4 — 1 bits, and hence cannot be predicted with probability larger than 1/2 by a circuit
of any size. For i = £ + 1, Equation (2) becomes,

1 1

1
200+1) 2 7@

Pr [C()=f(2)] > 5 + -y

26,{0,1}*

which cannot hold under the assumption that H,(f) > n*. B

Extending the input by two bits using the averaging principle.

We continue to progress in “baby steps” and consider the next natural toy problem: con-
structing a pseudorandom generator that extends its input by two bits. This is obtained in
the following Lemma:

Lemma 20.11 (Two-bit generator) Suppose that there exists f € E with H,(f) > n*.
Then, there exists an ({+2)-pseudorandom generator G. &

PROOF: The construction is again very natural: for every z € {0, l}e, we set

G(z) =21---220 f(2z1,. .., 2002) © Zgja41 -~ 200 f(2e)2415- -5 20) -

Again, the efficiency and output length requirements are clearly satisfied. To show G(Uy)
is ((¢ + 2)3,1/10)-pseudorandom, we again use Theorem 20.10, and so need to prove that
there does not exists a circuit C' of size 2(¢ 4+ 1) and i € [¢ + 2] such that

1 1
Pr [C(ri,....rim1) = 1] >

r=G{Uy) 2t 2000 +2) 3)

2 Although this theorem was stated and proved in Chapter 9 for the case of uniform Turing machines,
the proof extends to the case of circuits; see Exercise 20.5.
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Once again, (3) cannot occur for those indices i in which the i'" output of G(z) is truly
random, and so the only two cases we need to consider are i = ¢/2+ 1 and i = £ + 2.
Equation (3) cannot hold for ¢ = ¢/2 + 1 for the same reason as in Lemma 20.9. For
i = ¢+ 2, Equation (3) becomes:

A | 1
b OGS o) = 10 > 5 4 g

(4)

This may seem somewhat problematic to analyze since the input to C contains the bit
f(r), which C could not compute on its own (as f is a hard function). Couldn’t it be that
the input f(r) helps C' in predicting the bit f(r')? The answer is NO, and the reason is
that r" and r are independent. Formally, we use the following principle (see Section A.2.2
in the appendix):

THE AVERAGING PRINCIPLE: If A is some event depending on two independent
random variables X, Y, then there exists some z in the range of X such that

Pry[A(z,Y)] > Pryy]A(X,Y)).

/2

Applying this principle here, if (4) holds then there exists a string r € {0,1}"/ such that
Pr  [C(r f(r).r) = ()] > 5+ gor—
v fongrat T 2 T 20(0+2)

(Note that this probability is now only over the choice of 7’.) If this is the case, we can
“hardwire” the £/2 + 1 bits 7 o f(r) (as fixing r to some constant also fixes f(r)) to the
circuit C' and obtain a circuit D of size at most 2(¢ + 2)3 < (£/2)* such that

1 1
P D) = f(r')] > =4+ ———,
LB D0 =160 > 5+

contradicting the hardness of f. B

Beyond two bits:

A generator that extends the output by two bits is still useless for our goals. We can
generalize the proof of Lemma 20.11 to obtain a generator GG that extends its input by k
bits setting

G(z1,...,20) = 2 o f(z}) 0 2% 0 f(2%)--- 2% o f(2F), (5)

where 2% is the i" block of £/k bits in z. However, no matter how big we set k and no
matter how hard the function f is, we cannot get in this way a generator that expands its
input by a multiplicative factor larger than two. Note that to prove Theorem 20.6 we need
a generator whose output might even be exponentially larger than the input! Clearly, we
need a new idea.

The NW Construction

The new idea is still inspired by the construction (5), but instead of taking z', ..., z* to be
independently chosen strings (or equivalently, disjoint pieces of the input z), we take them
to be partly dependent (non-disjoint pieces) by using combinatorial designs. Doing this will
allow us to take k so large that we can drop the actual inputs from the generator’s output
and use only f(z!)o f(22)---o f(z¥). The proof of correctness is similar to the above toy
examples and uses Yao’s technique, except the fixing of the input bits has to be done more
carefully because of dependence among the strings.
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Definition 20.12 (NW Generator)
Let Z = {I1,...,I,} be a family of subsets of [¢] with |I;| = n for every j, and let f :

{0,1}" — {0,1}. The (Z, f)-NW generator is the function NWJ : {0,1}" — {0,1}™ that
maps every z € {0,1} to

NW%(Z):f(zll)of(zrz)"'Of(zlm)v (6)

where for z € {0,1}" and I C [£], 2, denotes the restriction of z to the coordinates in I.

Conditions on the set systems and function.

We will see that in order for the generator to produce pseudorandom outputs, the function
f must display some hardness, and the family of subsets should come from a combinatorial
design, defined as follows:

Definition 20.13 (Combinatorial designs) Let d,n, ¢ satisfy ¢ > n > d. A family 7 =
{Ii,...,In} of subsets of [{] is an (¢, n,d)-design if |I;| = n for every j and |I; N I| < d for
every j # k. &

The next lemma (whose proof we defer to the end of this section) yields sufficiently
efficient constructions of such designs:

Lemma 20.14 (Construction of designs) There is an algorithm A that on input (¢,d,n)
wheren > d and ¢ > 10n?/d, runs for 2°Y) steps and outputs an (¢, n, d)-design T containing
24/10 subsets of [(]. O

The next lemma shows that if f is a hard function and Z is a design with sufficiently
good parameters, then NW%(U@) is indeed a pseudorandom distribution:

Lemma 20.15 (Pseudorandomness using the NW generator) If T is an (¢, n, d)-design with
1Z| = 2410 and f : {0,1}" — {0,1} satisfies H,(f) > 2>? then the distribution NWJ(Uy) is
(H.(f)/10, t/10)-pseudorandom. O

PROOF: Let S = H,(f). By Yao’s Theorem, to show that NW%(UZ) is (5/10, t/10)-pseudorandom
it suffices to prove that for every i € [24/10] there does not exist an S/2-sized circuit C' such

that 1 1
Ay, (O Ri) = Rl 2 5+ 55070
R=NWZL(Z2)

+ (7)

For contradiction’s sake, assume that (7) holds for some circuit C' and some i. Plugging in
the definition of NW%, (7) becomes:

1
10 - 24/10°

Letting Z; and Z3 denote the two independent variables corresponding to the coordinates
of Z in I; and [] \ I; respectively, (8) becomes:

Pr [C(f(ZII)7 7f(Z173,1)) :f(ZIT)] =5+ (8)

1
2

1

1
lezlbn (C(f1(Z1,22), ..., [i-1(Z1, Z2)) = f(Z1)] = SRR TR

Za~Upn

+ (9)
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where for every j € [2%/1], f; applies f to the coordinates of Z; corresponding to I; N I;
and the coordinates of Z5 corresponding to I; \ ;. By the averaging principle, if (9) holds

then there exists a string 2o € {0,1}*"" such that

Pr [C(fi(Z1,22)s- o fir(Z1,22)) = [(Z0)] > .

1
Z1~Uy, 5 + 10 . 2d/10 ' (10)

We may now appear to be in some trouble, since all of f;(Z1,22) for j < i —1 do depend
upon Zp, one might worry that they together contain enough information about Z; and so
a circuit could potentially predict f;(Z1) after seeing all of them. To prove that this fear is
baseless we use the fact that 7 is a design and f is a sufficiently hard function.

Since |I;NI;| < d for j # 4, the function Zy — f;(Z1, z2) (for the fixed string z2) depends
at most d coordinates of Z; and hence can be trivially computed by a d2%-sized circuit (or
even O(2¢/d) sized circuit, see Exercise 6.1). Thus if (9) holds then there exists a circuit B
of size 24/10 . 424 4 §/2 < S such that

1
10 - 2d/10

1

Pr [B(Z2) = f(Z0) = 5 + >3+ (11)

Zi~U,
But this contradicts the fact that S = H,(f). B

The proof of Lemma 20.15 shows that if NW%(U@) is distinguishable from the uniform
distribution Usa/10 by some circuit D, then there exists a circuit B (of size polynomial in the
size of D and in 29) that computes the function f with probability noticeably larger than
1/2. The construction of this circuit B actually uses the circuit D as a black-box, invoking
it on some chosen inputs. This property of the NW generator (and other constructions
of pseudorandom generators) turned out to be useful in several settings. In particular,
Exercise 20.7 uses it to show that under plausible complexity assumptions, the complexity
class AM (containing all languages with a constant round interactive proof, see Chapter 8)
is equal to NP. We will also use this property in Chapter 21 to construct randomness
extractors based on pseudorandom generators.

Putting it all together: Proof of Theorem 20.6 from Lemmas 20.14 and 20.15

As noted in Remark 20.8, we do not prove here Theorem 20.6 as stated but only the weaker
statement, that given f € DTIME(2°(™) and S : N — N with H(f) > S, we can
construct an S’(¢)-pseudorandom generator, where S’(¢) = S(n)¢ for some ¢ > 0 and n
satisfying n > e1/Zlog S(n). On input z € {0,1}", our generator will operate as follows:

e Set n to be the largest number such that ¢ > l(}g%’éi). Thus, ¢ < lz(;oé?:i)lz) < lfgg’é),
and hence n > /¢log S(n)/200.

e Set d =log S(n)/10.
e Run the algorithm of Lemma 20.14 to obtain an (¢,n,d)-design Z = {I1,. .., Iyass}.

e Output the first S(n)/4° bits of NW£(Z).

This generator makes 24/5 invocations of f, taking a total of 20(")+4 steps. By possibly
reducing n by a constant factor, we can ensure the running time is bounded by 2¢. Moreover,
since 2¢ < §(n)'/1°, Lemma 20.15 implies that the distribution NW/ (U) is (S(n)/10, 1/10)-
pseudorandom. W

Construction of combinatorial designs.

All that is left to complete the proof is to show the construction of combinatorial designs
with the required parameters:

PrROOF OF LEMMA 20.14 (CONSTRUCTION OF COMBINATORIAL DESIGNS): On inputs
¢,d,n with £ > 10n?/d, our Algorithm A will construct an (¢, n, d)-design Z with 2%/10 sets
using the simple greedy strategy:
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Start with Z = () and after constructing Z = {Iy,..., I,,} for m < 2%/10 search
all subsets of [(] and add to Z the first n-sized set I satisfying the following
condition (*): |[I NI;| < d for every j € [m].

Clearly, A runs in poly(m)2¢ = 2°) time and so we only need to prove it never gets
stuck. In other words, it suffices to show that if £ = 10n2?/d and {I1,...,I,,} is a collection
of n-sized subsets of [¢] for m < 24/10 then there exists an n-sized subset I C [(] satisfying
(*). We do so by showing that if we pick I at random by choosing independently every
element z € [¢] to be in I with probability 2n/¢ then:

Pr[|I] > n] > 0.9 (12)
For every j € [m],Pr[|[INI;| > d] <0.5-27%/10 (13)

Because the expected size of I is 2n, while the expected size of the intersection I N I}
is 2n%/¢ < d/5, both (13) and (12) follow from the Chernoff bound. Yet, because m <
24/10 together these two conditions imply that with probability at least 0.4, the set I will
simultaneously satisfy (*) and have size at least n. Since we can always remove elements
from I without damaging (*), this completes the proof. W

Derandomization under uniform assumptions

Circuit lower bounds are notoriously hard to prove. Despite decades of effort, at the moment
we do not know of a single function in NP requiring more than 5n-sized circuits to compute,
not to mention super-linear or super-polynomial circuits. A natural question is whether
such lower bounds are necessary to achieve derandomization.® Note that pseudorandom
generators as in Definition 20.2 can be easily shown to imply circuit lower bounds: see
Exercise 20.4. However, there could potentially be a different way to show BPP = P
without constructing pseudorandom generators.

The following result shows that to some extent this is possible: one can get a non-trivial
derandomization of BPP under a wniform hardness assumption. Namely, that BPP #
EXP.

Theorem 20.16 (Uniform derandomization [TW98])
Suppose that BPP # EXP. Then for every L € BPP there exists a subexponential (i.e.,

2"0(1)) time deterministic algorithm A such that for infinitely many n’s

=L(z)>1-1/n.

Pr
r€,{0,1}"

This means that unless randomness is a panacea, and every problem with an exponential
time algorithm (including 3SAT, TQBF, the permanent, etc..) can be solved in probabilistic
polynomial time, we can at least partially derandomize BPP: obtain a subexponential
deterministic simulation that succeeds well in the average-case. In fact, the conclusion of
Theorem 20.16 can be considerably strengthened: we can find an algorithm A that will solve
L with probability 1 —1/n not only for inputs chosen according to the uniform distribution,
but on inputs chosen according to every distribution that can be sampled in polynomial
time. Thus, while this deterministic simulation may sometimes fail, it is hard to find inputs
on which it does!

PROOF SKETCH OF THEOREM 20.16: We only sketch the proof of Theorem 20.16 here. We
start by noting that we may assume in the proof that EXP C P, , since otherwise there

3Note that we do not know much better lower bounds for Turing machines either. However, a-priori it
seems that a result such as BPP # exp may be easier to prove than circuit lower bounds, and that a natural
first step to proving such a result is to get derandomization results without assuming such lower bounds.
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is some problem in EXP with superpolynomial circuit complexity, and such a problem can
be used to build a pseudorandom generator that is strong enough to imply the conclusion
of the Theorem. (This follows from Theorem 20.7 and Exercise 20.8.) Next, note that if
EXP C P/, then EXP is contained in the polynomial hierarchy (see Theorem 6.20 and
also Lemma 20.18 below). But that implies EXP = PH and hence we can conclude from
Toda’s and Valiant’s theorems (Theorems 17.14 and 17.11) that the permanent function
perm is EXP-complete under polynomial-time reductions. In addition, the Lemma hypoth-
esis implies that perm is not in BPP. This is a crucial point in the proof since perm is a
very special function that is downward self-reducible (see Chapter 8).

The next idea is to build a pseudorandom generator G with super-polynomial output size
using the permanent as a hard function. We omit the details, but this can be done following
the proofs of Theorems 19.27 and 20.6 (one needs to handle the fact that the permanent’s
output is not a single bit, but this can be handled for example using the Goldreich-Levin
Theorem of Chapter 9). Looking at the proof of correctness for this pseudorandom generator
G, it can be shown to yield an algorithm 7' to transform for every n a distinguisher D
between G’s output ) and the uniform distribution into a polynomial-sized circuit C,, that
computes perm,, (which this denotes the restriction of the permanent to length n inputs).
This algorithm 7" is similar to the transformation shown in the proof of the standard NW
generator (proof of Theorem 20.6): the only reason it is not efficient is that it requires
computing the hard function (in this case the permanent) on several randomly chosen inputs,
which are then “hardwired” into the distinguisher.*

Suppose for the sake of contradiction that the conclusion of Theorem 20.16 is false. This
means that there is a probabilistic algorithm A whose derandomization using G fails with
noticeable probability (over the choice of a random input) for all but finitely many input
lengths. This implies that not only there is a sequence of polynomial-sized circuits {D,,}
distinguishing the output of G from the uniform distribution on all but finitely many input
lengths, but in fact there is a probabilistic polynomial-time algorithm that on input 1™ will
find such a circuit D,, with probability at least 1/n (Exercise 20.9). We now make the
simplifying assumption that this probabilistic algorithm in facts finds such a distinguisher
D,, with high probability, say at least 1 —1/n2.5 Plugging this into the proof of pseudoran-
domness for the generator G, this means that there exists a probabilistic polynomial-time
algorithm 7' that can “learn” the permanent function: given oracle access to perm,, (the
restriction of perm to length n inputs) the algorithm 7" runs in poly(n) time and produces
a poly(n)-sized circuit computing perm,,.

But using 7" we can come up with a probabilistic polynomial-time algorithm for the
permanent that doesn’t use any oracle! To compute the permanent on length n inputs, we
compute inductively the circuits C4,...,C,. Given the circuit C,_; we can compute the
permanent on length n inputs using the permanent’s downward self-reducibility property
(see Section 8.6.2 and the proof of Lemma 20.19 below), and so implement the oracle to
T that allows us to build the circuit C,,. Since we assumed BPP # EXP, and under
EXP C P/, the permanent is EXP-complete, we get a contradiction.ll

Derandomization requires circuit lower bounds

Section 20.3 shows that circuit lower bounds imply derandomization. However, circuit lower
bounds have proved tricky, so one can hope that derandomization could somehow be done
without circuit lower bounds. In this section we show this is not the case: proving that
BPP = P or even that a specific problem in BPP (namely the problem ZEROP of testing

4The proof of Theorem 20.6 only showed that there exists some inputs that when these inputs and their
answers are“hardwired” into the distinguisher then we get a circuit computing the hard function. However,
because the proof used the probabilistic method / averaging argument, it’s not hard to show that with good
probability random inputs will do.

5This gap can be handled using the fact that the permanent is a low-degree polynomial and hence has
certain self-correction / self-testing properties, see sections 8.6.2 and 19.4.2.
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whether a given polynomial is identically zero) will imply super-polynomial lower bounds
for either Boolean or arithmetic circuits. Depending upon whether you are an optimist or
a pessimist, you can view this either as evidence that derandomizing BPP is difficult, or,
as a reason to double our efforts to derandomize BPP since once we do so we’ll get “two
for the price of one”: both derandomization and circuit lower bounds.

Recall (Definition 16.7) that we say that a function f defined over the integers is in
AlgP/Zpoly (or just AlgP, ., for short) if f can be computed by a polynomial size algebraic
circuit whose gates are labeled by +, —, and x.6 We let perm denote the problem of
computing the permanent of matrices over the integers. Recall also the Polynomial Identity
Testing (ZEROP) problem in which the input consists of a polynomial represented by an
arithmetic circuit computing it and we have to decide if it is the identically zero polynomial
(see Example 20.1 and Section 7.2.3). The problem ZEROP is in coRP C BPP and we will
show that if it is in P then some super-polynomial circuit lower bounds hold:

Theorem 20.17 (Derandomization implies lower bounds [K103])
If ZEROP € P then either NEXP ¢ P, or perm ¢ AlgP) ... -

The Theorem is known to be true even if its hypothesis is relaxed to ZEROP € 05>ONTIME(2"6).
Thus, even a derandomization of BPP to subexponential non-deterministic time would still
imply super-polynomial circuit lower bounds. The proof of Theorem 20.17 relies on many
results described earlier in the book.(This is a good example of “third generation” complex-
ity results that use a clever combination of both “classical” results from the 60’s and 70’s
and newer results from the 1990’s.) Our first ingredient is the following lemma:

Lemma 20.18 ([BFL90],[BFNW93]) EXP C P/, = EXP = MA. &

Recall that MA is the class of languages that can be proven by a one round interactive
proof between two players Arthur and Merlin (see Definition 8.10).

ProoF oF LEMMA 20.18: Suppose EXP C P/, . By Meyer’s Theorem
(Theorem 6.20), in this case EXP collapses to the second level X% of the poly-
nomial hierarchy. Hence under our assumptions ¥} = PH = PSPACE = IP =
EXP C P/,,,- Thus every L € EXP has an interactive proof, and further-
more, since our assumption implies that EXP = PSPACE, we can just use the
interactive proof for TQBF, for which the prover is a PSPACE machine and
(given that we assume PSPACE C P, ) can be replaced by a polynomial
size circuit family {C),}. Now we see that the interactive proof can actually be
carried out in one round: given an input z of length n, Merlin will send Arthur
a polynomial size circuit C, which is supposed to be circuit C,, for the prover’s
strategy for L. Then Arthur simulates the interactive proof for L, using C' as the
prover and tossing coins to simulate the verifier. Note that if the input is not in
the language, then no prover has a decent chance of convincing the verifier, and
in particular this holds for the prover described by C. Thus we have described
an MA protocol for L implying that EXP C MA and hence that EXP = MA.
|

Our second lemma connects the complexity of identity testing and the permanent to the
power of the class PP*™:

Lemma 20.19 If ZEROP € P and perm € AlgP, , then P?*™ C NP. O

6The results below extend also to circuits that are allowed to work over the rational or real numbers and
use division.
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PrROOF OF LEMMA 20.19: Suppose perm has algebraic circuits of size n¢, and
that ZEROP has a polynomial-time algorithm. Let L be a language that is
decided by an n?-time TM M using queries to a perm-oracle. We construct an
NP machine N for L.

Suppose x is an input of size n. Clearly, M’s computation on x makes queries
to perm of size at most m = n?. So N will use nondeterminism as follows: it
guesses a sequence of m algebraic circuits C1,Co, ..., C,, where C; has size i°.
The hope is that C; solves perm on i x i matrices, and N will verify this in poly(m)
time. The verification starts by verifying C, which is trivial. Inductively, having
verified the correctness of C4,...,Cy_1, one can verify that C; is correct using
downward self-reducibility, namely, that for a ¢ x ¢ matrix A,

¢
perm(A) = Z ayiperm(Ay ;),

where A; ; is the (t—1) x (t—1) sub-matrix of A obtained by removing the 1st row
and ¢th column of A. Thus if circuit C;_; is known to be correct, then the cor-
rectness of C} can be checked by substituting C;(A) for perm(A) and C;_1 (A1)
for perm(A; ;): this yields an identity involving algebraic circuits with ¢? inputs
which can be verified deterministically in poly(¢) time using the algorithm for
ZEROP. Proceeding this way N verifies the correctness of C1, ..., (), and then
simulates MP*"™ on input x using these circuits. H

The heart of the proof of Theorem 20.17 is the following lemma, which is interesting in
its own right:

Lemma 20.20 (Kkwoi]) NEXP C P/, = NEXP = EXP. &

PrOOF: We prove the contrapositive. That is, we assume that NEXP # EXP and will
prove thsat NEXP ¢ P,y Let L € NEXP \ EXP (such a language exists under our
assumption). Since L € NEXP there exists a constant ¢ > 0 and a relation R such that

x € L& Jye{0, 1}2m s.t. R(x,y) holds,

where we can test whether R(z,y) holds in, say, time olel**

We now consider the following approach to try to solve L in exponential deterministic
time. For every constant D > 0, let Mp be the following machine: on input = € {0,1}"
enumerate over all possible Boolean circuits C' of size n'%°P that take n¢ inputs and have a
single output. For every such circuit let tt(C) be the 2" -long string that corresponds to the
truth table of the function computed by C. If R(z,tt(C)) holds then halt and output 1. If

this does not hold for any of the circuits then output 0. Since Mp runs in time gn'?tP4ne

under our assumption that L ¢ EXP, Mp does not solve L and hence for every D there
exists an infinite sequence of inputs XD = {x;}ieny on which Mp(z;) outputs 0 even though
x; € L (note that Mp can only make one-sided errors). This means that for every string z in
the sequence Xp and every y such that R(z,y) holds, the string y represents the truth table
of a function on n¢ bits that cannot be computed by circuits of size n'%°P where n = |x|.
Using the pseudorandom generator based on worst-case assumptions (Theorem 20.7), we can
use such a string y to obtain an £”-pseudorandom generator. This method is called the “easy
witness” method [Kab00], because it shows that unless the input = has a witness/certificate
y (i.e., string satisfying R(x,y) = 1) that is “easy” in the sense that it can be computed by
a small circuit, then any certificate for x can be used for derandomization.

Now, if NEXP C P/, then EXP C P, and then by Lemma 20.18 EXP C MA.
That is, every language in EXP has a proof system where Merlin proves that an n-bit
string is in the language by sending a proof which Arthur then verifies using a probabilistic
algorithm of at most n” steps for some constant D. Yet, if n is the input length of some
string in the sequence Xp and we are given x € Xp with || = n, then we can replace Arthur
by non-deterministic poly(n?” )2”100 time algorithm that does not toss any coins: Arthur will
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guess a string y such that R(x,y) holds and then use y as a function for a pseudorandom
generator to verify Merlin’s proof.

This means that there is an absolute constant ¢ > 0 such that every language in EXP
can be decided on infinitely many inputs by an NTIME(2"") time algorithm using n bits
of advice, and hence (since we assume NEXP C P, ., ) by a size n¢ circuit family for
an absolute constant ¢/. But using standard diagonalization we can easily come up with a

language in DTIME(2O("Cl)) C EXP that cannot be computed by such a circuit family on
almost every input. B

It might seem that Lemma 20.20 should have an easier proof that goes along the lines
of the proof of Lemma 20.18 (EXP C P/, = EXP = MA) but instead of using the
interactive proof for TQBF uses the multi-prover interactive proof system for NEXP. How-
ever, we do not know how to implement the provers’ strategies for this latter system in
NEXP. Intuitively, the problem arises from the fact that a NEXP statement may have
several certificates, and it is not clear how we can ensure all provers use the same one.

We now have all the ingredients for the proof of Theorem 20.17.

ProOOF OF THEOREM 20.17: For contradiction’s sake, assume that the following are all
true:

ZEROP € P (14)
NEXP C P/, (15)
perm € AlgP, . . (16)

Statement (15) together with Lemmas 20.18 and 20.20 imply that NEXP = EXP = MA.
Now recall that MA C PH, and that by Toda’s Theorem (Theorem 17.14) PH C P#F,
Recall also that by Valiant’s Theorem (Theorem 17.11) perm is #P-complete. Thus, under
our assumptions

NEXP C pPPe™, (17)

Since we assume that ZEROP € P, Lemma 20.19 together with statements (16) and (17)
implies that NEXP C NP, contradicting the Nondeterministic Time Hierarchy Theorem
(Theorem 3.2). Thus the three statements (14), (15) and (14) cannot be simultaneously
true. W

WHAT HAVE WE LEARNED?

e Under the assumption of certain circuit lower bounds, there exist pseudorandom gen-
erator that can derandomize every probabilistic algorithm.

e In particular, if we make the reasonable assumption that there exists a function in E
with exponentially large average-case circuit complexity, then BPP = P.

e Proving that BPP = P will require to prove at least some type of circuit lower bounds.

Chapter notes and history

As mentioned in the notes to Chapter 9, pseudorandom generators were first studied in the con-
text of cryptography, by Shamir [Sha81], Blum-Micali [BM82], and Yao [Yao82a]. In particular
Yao was the first to point out their potential uses for derandomizing BPP. He showed that
if secure pseudorandom generators exist then BPP can be partially derandomized, specifically,
BPP C ﬂ6>oDTIME(2”€). In their seminal paper [NW88], Nisan and Wigderson showed that
such derandomization is possible under significantly weaker complexity assumptions, and that un-
der some plausible assumptions it may even be possible to achieve full derandomization of BPP,
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namely, to show BPP = P. Since then a large body of work by was devoted to improving the
derandomization and weakening the assumptions (see also the notes to Chapter 19). In particular
it was shown that worst-case hardness assumptions suffice for derandomization (see Chapter 19 and
its notes). A central goal of this line of work was achieved by Impagliazzo and Wigderson [ITW97],
who showed that if E has a function with exponential circuit complexity then BPP = P.

A pseudorandom generator with optimal dependence on the hardness assumptions (Theo-
rem 20.6) was given by Umans [Uma03] (see Remark 20.8). Interestingly, this pseudorandom gen-
erator is based directly on worst-case (as opposed to average-case) hardness (and indeed uses the
local-decoding techniques originating from the works on hardness amplification). Umans’ construc-
tion, which uses the Reed-Muller code described in Chapter 19, is based on a previous paper of
Shaltiel and Umans [SU01] that constructed a hitting set generator (a relaxation of a pseudorandom
generator) with the same parameters. Andreev, Clementi, and Rolim [ACR96] showed that such
hitting set generators suffice for the application of derandomizing BPP (see [GVWO00] for a simpler
proof).

Impagliazzo and Wigderson [TW98] gave the first derandomization result based on the uniform
hardness of a function in EXP (i.e., Theorem 20.16), a result that gave hope that perhaps the
proof of BPP = P (or at least BPP # EXP) will not have to wait for progress on circuit lower
bounds. Alas, Impagliazzo, Kabanets and Wigderson [IKWO01] showed that derandomizing MA (or
equivalently, the promise-problem version of BPP) would imply lower bounds for NEXP, while
Kabanets and Impagliazzo [KI03] proved Theorem 20.17. That is, they showed that some circuit
lower bounds would follow even from derandomizing BPP.

Exercises

20.1 Verify Corollary 20.4.

20.2 Show that there exists a number € > 0 and a function G : {0,1}" — {0,1}" that satisfies all of
the conditions of a 2"-pseudorandom generator per Definition 20.2, save for the computational
efficiency condition. maea

20.3 Show by a counting argument (i.e., probabilistic method) that for every large enough n there is a
function f:{0,1}"™ — {0,1}, such that H.(f) > 2"/1°.

20.4 Prove that if there exists a an S(¢)-pseudorandom generator then there exists a function f €
DTIME(2°™) such that H.d{f)(n) > S(n). naea

20.5 Prove Theorem 20.10.

20.6 Prove that if there exists f € E and € > 0 such that H.(f)(n) > 2°" for every n € N, then
MA = NP. naea

20.7 We define an oracle Boolean circuit to be a Boolean circuit that have special gates with unbounded
fan-in that are marked ORACLE. For a Boolean circuit C' and language O C {0,1}", we define by

c° (z) the output of C' on z, where the operation of the oracle gates when fed input ¢ is to output
liff g € O.

(a) Prove that if every f € E can be computed by a polynomial-size circuits with oracle to SAT,
then the polynomial hierarchy collapses.

(b) For a function f : {0,1}* — {0,1} and O C {0,1}", define H.C (f) to be the function that
maps every n € N to the largest S such that Prye (0,13» [CO(z) = f(x)] <1/241/S. Prove
that if there exists f € E and € > 0 with I-ng3SAT(f) > 2" then AM = NP.

20.8 Prove that if EXP ¢ P, then the conclusions of Theorem 20.16 hold. raea

20.9 Let G : {0,1}" — {0,1}" be an S(¢)-length candidate pseudorandom generator that fails to de-
randomize a particular BPP algorithm A on the average case. That is, letting L € BPP be the
language such that Pr[A(z) = L(z)] > 2/3, it holds that for every sufficiently large n, with proba-
bility at least 1/n over the choice of z €, {0,1}", Pr[A(x; G(Uyn))) = L(x)] < /2 (we let £(n) be
such that S(¢(n)) = m(n) where m(n) denotes the length of random tape used by A on inputs of
length n). Prove that there exists a probabilistic polynomial-time algorithm D that on input 1"
outputs a circuit D, such that with probability at least 1/(2n) over the randomness of D,

| E[Dn(G(Us(ny)] = E[Dn(Unnny)]ll > 0.1.

H464

20.10 (van Melkebeek 2000, see [IKWO01]) Prove that if NEXP = MA then NEXP C P, ..
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Chapter 21

Pseudorandom constructions:
expanders and extractors

“How difficult could it be to find hay in a haystack?”
Howard Karloff

The probabilistic method is a powerful method to show the existence of objects (e.g.,
graphs, functions) with certain desirable properties. We have already seen it used in Chap-
ter 6 to show the existence of functions with high circuit complexity, in Chapter 19 to
show the existence of good error correcting codes, and in several other places in this book.
But sometimes the mere existence of an object is not enough: we need an explicit and
efficient construction. This chapter provides such constructions for two well-known (and
related) families of pseudorandom objects, expanders and extractors. They are important
in computer science because they can often be used to replace (or reduce) the amount of
randomness needed in certain settings. This is reminiscent of derandomization, the topic
of Chapter 20, and indeed we will see several connections to derandomization throughout
the chapter. However, a big difference between Chapter 20 and this one is that all re-
sults proven here are unconditional, in other words do not rely on unproven assumptions.
Another topic that is related to expanders is constructions of error correcting-codes and
related hardness-amplification results which we saw in Chapter 19. For a brief discussion
of the many deep and fascinating connections between codes, expanders, pseudorandom
generators, and extractors, see the Chapter notes.

Ezpanders are graphs whose connectivity properties (how many edges lie between every
two sets A, B of vertices) are similar to those of “random” graphs —in this sense they are
“pseudorandom” or “like random.” Expanders have found a vast number of applications
ranging from fast sorting networks, to counterexamples in metric space theory, to proving the
PCP Theorem. The study of expanders is closely tied to study of eigenvalues of adjacency
matrices. In Section 21.1 we lay the groundwork for this study, showing how random
walks on graphs can be analyzed in terms of the adjacency matrix’s eigenvalues. Then
in Section 21.2 we give two equivalent definitions for expander graphs. We also describe
their use in randomness-efficient error reduction of probabilistic algorithms. In Section 21.3
we show an explicit construction of expander graphs. Finally, in Section 21.4, we use this
construction to show a deterministic logspace algorithm for undirected graph connectivity.

Our second example of an explicit construction concerns the following issue: while ran-
domized algorithms are modeled using a sequence of unbiased and independent coin tosses,
real-life randomness sources are imperfect and have correlations and biases. Philosophically
speaking, it is unclear if there is even a single source of unbiased random bits in the universe.
Therefore researchers have tried to quantify ways in which a source of random bits could be
imperfect and still be used to run randomized algorithms.

In Section 21.5 we define weakly random sources. This definition encapsulates the mini-
mal notion of “randomness” that still allows an imperfect source to be used in randomized
algorithms. We also define randomness extractors (or extractors for short)— algorithms
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that extract unbiased random bits from such a source — and give explicit constructions
for them. One philosophical consequence of these results is that the model of randomized
polynomial-time Turing machines (and the associated classes like BPP) is realistic if and
only if weakly random sources exist in the real world.

In Section 21.6 we use extractors to derandomize probabilistic logspace computations,
albeit at the cost of some increase in the space requirement. We emphasize that in contrast
to the results of Chapters 19 and 20, this derandomization (as well as all the other results
of this chapter) is unconditional and uses no unproven assumptions.

Both the constructions and analysis of this chapter are somewhat involved. You might
wonder why should coming up with explicit construction be so difficult. After all, a proof
of existence via the probabilistic method shows not only that an object with the desired
property exists but in fact the vast majority of objects have the property. As Karloff said
(see quote above), how difficult can it be to find a single one? But perhaps it’s not so
surprising this task is so difficult: after all, we know that almost all Boolean functions have
exponential circuit complexity, but finding even a single one in NP with this property will
show that P # NP!

Random walks and eigenvalues

In this section we study random walks on graphs. Using elementary linear algebra we relate
eigenvalues of the graph’s adjacency matrix to the behavior of the random walk on that
graph. As a corollary we obtain the proof of correctness for the random-walk space-efficient
algorithm for undirected connectivity described in Section 7.7. We restrict ourselves here to
regular graphs, in which every vertex has the same degree. However, we do allow our graphs
to have self-loops and parallel edges. Most of the definitions and results can be suitably
generalized to undirected graphs that are not regular.

Some linear algebra. We will use some basic properties of the linear space R™. These are
covered in Section A.5 of the appendix, but here is a quick review. If u,v € R" are two
vectors, then their inner product is defined as (u,v) = >"1" |, u;v;. We say that u and v are
orthogonal, denoted by u L v, if (u,v) = 0. The Ly-norm of a vector v € R"™, denoted by
[v], is defined as \/(v,v) = /> i_, vZ. A vector whose Lo-norm equals 1 is called a unit
vector. A simple but useful fact is the Pythagorean Theorem, that says that if u and v are

orthogonal then ||u+ v||? = |[ul|? 4 ||v|2. The Li-norm of v, denoted by |v|, is defined as
> |vi|. Both these norms satisfy the basic properties (1) [[v| > 0 with |v| = 0 iff v
is the all zero vector, (2) ||av| = |al||v] for every @ € R, and (3) ||[u+ v|| < [Jul| + ||v]].

The relation between these norms is captured in the following claim, whose proof is left as
Exercise 21.1:

Claim 21.1 For every vector v € R",

VI /v < v, < vl - ¢

Distributions as vectors and the parameter \(G).

Let G be a d-regular n-vertex graph and let p be some probability distribution over the
vertices of G. We can think of p as a (column) vector in R"™ where p; is the probability that
vertex ¢ is obtained by the distribution. Note that the L;-norm of p is equal to 1. Now let q
represent the distribution of the following random variable: choose a vertex i in G according
to p, then take a random neighbor of 7 in G. We can easily compute q, since the probability
q; that j is chosen is equal to the sum over all of j’s neighbors ¢ of the probability p; that
i is chosen times 1/d (since vertex i touches d edges, for each edge 7 j the probability that
conditioned on 7 being chosen then the next move will take this edge is 1/d). Thus q = Ap,
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where A = A(G) is the matrix such that for every two vertices i, j of G, A; ; is equal to the
number of edges between ¢ and j divided by d. (In other words, A is equal to the adjacency
matrix of G multiplied by 1/d.) We call A the random-walk matriz of G. Note that A is a
symmetric matrix' with all its entries between 0 and 1, and the sum of entries in each row
and column is exactly one. Such a matrix is called a symmetric stochastic matrix.

The relation between the matrix A and random walks on the graph G is straightforward—
for every ¢ € N and i € [n], the vector A‘e’ (where €’ is the vector that has 1 in the i‘"
coordinate and zero everywhere else) represents the distribution X, of the last step in an
(-step random walk starting from the i*" vertex.

Definition 21.2 (The parameter X(G).)

Denote by 1 the vector (1/n,1/n,...,1/n) corresponding to the uniform distribution. De-
note by 1+ the set of vectors perpendicular to 1 (i.e., v € 1+ if (v,1) = (1/n) >, v; = 0).
The parameter A(A), denoted also as A\(G), is the maximum value of ||Av||, over all vectors
v € 1+ with [|v], = 1.

Relation to eigenvalues. The value \(G) is called the second largest eigenvalue of G. The
reason is that since A is a symmetric matrix, we can find an orthogonal basis of eigenvectors
vl ..., v" with corresponding eigenvalues Ai,..., A, (see Section A.5.3) which we can sort
to ensure [A;| > |A2]... > |A\y|. Note that A1 = 1. Indeed, for every i, (Al); is equal
to the inner product of the i** row of A and the vector 1 which (since the sum of entries
in the row is one) is equal to 1/n. Thus, 1 is an eigenvector of A with the corresponding
eigenvalue equal to 1. One can show that a symmetric stochastic matrix has all eigenvalues
with absolute value at most 1 (see Exercise 21.5) and hence we can assume A; = 1 and
vl = 1. Also, because 1+ = Span{v?,...,v"}, the value A above will be maximized by
(the normalized version of) v2, and hence A\(G) = |Aa|. The quantity 1 — \(G) is called
the spectral gap of the graph. We note that some texts define the parameter A\(G) using
the standard (un-normalized) adjacency matrix (rather than the random-walk matrix), in
which case A(G) is a number between 0 and d and the spectral gap is defined to be d— A(G).
Knowledge of basic facts on eigenvalues and eigenvectors (all covered in the appendix) can
serve as useful background for this chapter, but is not strictly necessary to follow the results
and proofs.

One reason that A(G) is an important parameter is the following lemma:

Lemma 21.3 Let G ba an n-vertex regular graph and p a probability distribution over G’s
vertices, then

[A'p — 1|, < X o

PROOF: By the definition of A\(G), ||Av]], < A||v]|, for every v L 1. Note that if v L 1
then Av L 1 since (1, Av) = (AT1,v) = (1,v) =0 (as A = AT and A1 = 1). Thus A maps
the subspace 1+ to itself. Note that the eigenvectors that are different from 1 span this
subspace, and A shrinks each of these eigenvectors by at least A factor in £5 norm. Hence
A must shrink every vector in 1+ by at least A. Thus A’ shrinks every vector in 1+ by a
factor at least A’ and we conclude A(A%) < A(A4)%. (In fact, using the eigenvalue definition
of )\, it can be shown that A(A?) = A\(A)".)

Let p be some vector. We can break p into its components in the spaces parallel and
orthogonal to 1 and express it as p = al + p’ where p’ L 1 and « is some number. If p is
a probability distribution then av = 1 since the sum of coordinates in p’ is zero. Therefore,

Alp=A'(1 +p) =1+ Ap

1A matrix A is symmetric if A;j = Aj; for every 4,j. That is, A = AT where AT denotes the transpose
of A (see Section A.5).
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Since 1 and p’ are orthogonal, ||p||? = ||1]|2 + ||p/||? and in particular [|p/[, < |Ip|l,.
Since p is a probability vector, ||p|, < |p|, =1 (see Claim 21.1). Hence ||p’||, <1 and

A% = 1], = |4, < X° (1)

It turns out that every connected graph has a noticeable spectral gap:

Lemma 21.4 If G is a regular connected graph with self-loops at each vertex, then \(G) <

1

1= 502 ¢
PROOF: Let € = #, let u L 1 be a unit vector and let v.= Au. We need to prove that
[v]l, <1—¢/2and for this it suffices to prove that 1 — [[v||2 > e. (Indeed, if ||v], > 1—¢/2
then ||v[|2 > 1—¢ and hence 1 — ||v||? < ¢.) Since u is a unit vector, 1 —|[v||2 = [lul|Z —||v]]2.

We claim that this is equal to >, ; A; ;(u; — v;)? where 4, j range from 1 to n. Indeed,

ZAiyj(ui — Vj)2 = ZAi’ju? —2 ZAi,juiVj + ZALJ‘V? =
0,7 0,7 ] ]
lull = 2(Aw, v) + [IvII3 = [fall = 2[vIZ+ [VIE = Tulf = VI,

where these equalities are due to the sum of each row and column in A equalling one, and
to [|[v]? = (v,v) = (Au,v) = > Aijaivj.

Thus it suffices to show 3, ; A; ;(u; — v;)? > €. Since u is a unit vector with coordinates
summing to zero, there must exist vertices 7,j such that u; > 0,u; < 0 and at least one
of these coordinates has absolute value > %, meaning that u; —u; > % Furthermore,
because G is connected there is a path between ¢ and j containing at most D + 1 vertices
(where D is the diameter of the graph? G). By renaming vertices, let’s assume that i = 1,
7 =D + 1 and the coordinates 2,3, ..., D correspond to the vertices on this path in order.
Now, we have

<u—upy = —vi)+(vi—u2)+...+(vp —upy) <

S

n
u; —upy = |u —vi|+|vi —u|+...+|vp —upyi| <

\/(111 —V1)2+(V1 —u2)2+...—|—(vD—uD+1)2\/2D—|—1, (2)

where the last inequality follows by relating the Lo and L; norms of the vector (ug — vy, vy —
Ug,...,vp —up41) using Claim 21.1. But this means that

D Aii(wi =) > by (3)
i

since the left hand side of (3) is a sum of non-negative terms and (2) implies that the terms of
the form A; ;(u; —v;)? and A; ;41 (v; —u;41)? (fori = 1,..., D) contribute at least m
to this sum (both A;; and A; ;11 are at least 1/d since they correspond to self-loops and
edges of the graph).

Plugging in the trivial bound D < n — 1 this already shows that A\(G) < 1 — ﬁ. To
prove the lemma as stated, we use the fact (left as Exercise 21.4) that for every d-regular

connected graph, D <3n/(d+1). B

The proof can be strengthened to show a similar result for every connected non-bipartite
graph (not just those with self-loops at every vertex). Note that this condition is essential:
if A is the random-walk matrix of a bipartite graph then one can find a vector v such that
Av = —v (Exercise 21.3).

2The diameter of a graph G is the maximum distance (i.e., length of shortest path) between any pair of
vertices in GG. Note that the diameter of a connected n-vertex graph is always at most n — 1.
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Analysis of the randomized algorithm for undirected connectivity.

Together, lemmas 21.3 and 21.4 imply that, at least for regular graphs, if s is connected
to t then a sufficiently long random walk from s will hit ¢ in polynomial time with high
probability:

Corollary 21.5 Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let
s be a vertex in G. Let £ > 24n?logn and let X, denote the distribution of the vertex of
the (*" step in a random walk from s. Then, for every t connected to s, Pr[X, = t] > %.Q

PRroOOF: By Lemmas 21.3 and 21.4 , if we consider the restriction of an n-vertex graph G to
the connected component of s, then for every probability vector p over this component and
¢ >13n% | Ap—-1]|, < (1—@)24”2 logn < L "where 1 here is the uniform distribution over
this component. But this means that in particular for every coordinate i, |[A‘p — 1|; < #
and hence every element in the connected component appears in A‘p with probability at

least 1/n—1/n?>1/(2n). A

Note that Corollary 21.5 implies that if we repeat the 24n2logn walk for O(nlogn)
times (or equivalently, if we take a walk of, say, length 100n3 log? n) then we will hit every
vertex t connected to s with high probability.

Expander graphs.

Expander graphs are extremely useful combinatorial objects, which we encounter several
times in the book. They can be defined in two equivalent ways. At a high level, these two
equivalent definitions can be described as follows:

e Combinatorial definition: A constant-degree regular graph G is an expander if for
every subset S of less than half of G’s vertices, a constant fraction of the edges touching
S are from S to its complement in G; see Figure 21.1.

o Algebraic expansion: A constant-degree regular graph G is an expander if its parameter
A(G) bounded away from 1 by some constant. That is, A(G) < 1— e for some constant
e>0.

Expander: no. of S's neighbors = Omega(|S|) Grid is not an expander:
no. of S’s neighbors = O(|S|

W
Nk“\@

Figure 21.1 In an edge ezpander, every subset S of the vertices that is not too big has at
least (|S]) edges to neighbors outside the set. The grid (and every other planar graph) is
not an edge expander as a k X k square in the grid has only O(k) neighbors outside it.

What do we mean by a constant? By constant we refer to a number that is independent
of the size of the graph. We will typically talk about graphs that are part of an infinite
family of graphs, and so by constant we mean a value that is the same for all graphs in the
family, regardless of their size. Below we make the definitions more precise, and show their
equivalence.
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The Algebraic Definition

The Algebraic definition of expanders is as follows:

Definition 21.6 ((n,d, X\)-expander graphs.)
If G is an n-vertex d-regular G with A(G) < A for some number A < 1 then we say that G
is an (n,d, A)-graph.

A family of graphs {G, }nen is an expander graph family if there are some constants d € N
and A < 1 such that for every n, Gy, is an (n,d, \)-graph.

Many texts use simply the name (n,d, A)-graphs for such graphs. Also, as mentioned
above, some texts use un-normalized adjacency matrices, and so have A range between 0 and

d. The smallest A can be for a d-regular n-vertex graph is (1 —0(1))2—V§_1 where o(1) denotes
a function tending to 0 as the number of vertices grows. This is called the Alon-Boppana
bound and graphs meeting this bound are called Ramanujan graphs (see also Exercises 21.9
and 21.10).

Explicit constructions. As we will see in Section 21.2.2, it is not hard to show that expander
families exist using the probabilistic method. But this does not yield explicit constructions
of such graphs which are often needed for applications. We say that an expander family
{Gr}nen is explicit if there is a polynomial-time algorithm that on input 1™ outputs the
adjacency matrix of G,, (or, equivalently, the random-walk matrix). We say that the family
is strongly explicit if there is a polynomial-time algorithm that on inputs (n,v,7) where
v € [n],i € [d] outputs the (index of the) i*" neighbor of v. Note that in the strongly
explicit case, the lengths of the algorithm’s inputs and outputs are O(logn) and so it runs
in time polylog(n).

Fortunately, several explicit and strongly explicit constructions of expander graphs are
known. Some of these constructions are very simple and efficient, but their analysis is
highly non-trivial and uses relatively deep mathematics.® In Section 21.3 we will see a
strongly explicit construction of expanders with elementary analysis. This construction also
introduces a tool that we’ll use to derandomize the random-walk algorithm for UPATH in
Section 21.4.

Combinatorial expansion and existence of expanders.

We now describe a combinatorial criterion that is roughly equivalent to Definition 21.6. One
advantage of this criterion is that it makes it easy to prove that a non-explicit expander
family exists using the probabilistic method. It is also quite useful in several applications.

Definition 21.7 (Combinatorial (edge) expansion)
An n-vertex d-regular graph G = (V, E) is called an (n, d, p)-combinatorial edge expander if
for every subset S of vertices satisfying |S| < n/2,

|E(S,9)| = pdlS],

where S denotes the complement of S and for subsets S, T of vertices, F(S,T) denotes the
set of edges 7 j with i € S and j € T.

3An example is the following 3-regular expander graph: the vertices are the numbers 0 to p — 1 for some
prime p, and each number z is connected to = + 1,2 — 1 and z—! modulo p (letting 0! = 0). The analysis
uses some deep results in mathematics (i.e., Selberg’s 3/16 Theorem), see Section 11.1.2 in [HLWO06].
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Note that in this case the bigger p is the better the expander. We will often use the
shorthand “edge expander” (dropping the prefix “combinatorial”). Also we’ll loosely use the
term “expander” for any (n,d, p)-combinatorial edge expander with p a positive constant
(independent of n). Using the probabilistic method, one can prove the following theorem:
(Exercise 21.11 asks you to prove a slightly weaker version)

Theorem 21.8 (Existence of expanders) Let ¢ > 0 be any constant. Then there exists d =
d(e) and N € N such that for every n > N there exists an (n,d,1/2 — €) edge expander. <

Theorem 21.8 is tight in the sense that there is no (n,d, p) edge expander for p > 1/2
(Exercise 21.13). The following theorem relates combinatorial expansion with our previous
Definition 21.6

Theorem 21.9 (Combinatorial vs. algebraic expansion)
1. If G is an (n,d, \)-expander graph then it is an (n,d, (1 — \)/2)-edge expander.

2. If G is an (n,d, p) edge expander then its second largest eigenvalue (without taking
2

absolute values) is at most 1 — &-. If furthermore G has all self loops then it is an

(n,d, 1 — €)-expander where ¢ = min {

The condition that G has all the self-loops of Theorem 21.9 is used again to rule out
bipartite graphs, which can be very good edge expanders but have one eigenvalue equal to
—1 and hence a spectral gap of zero.

Algebraic expansion implies combinatorial expansion.

The first part of Theorem 21.9 follows immediately from the following lemma:

Lemma 21.10 Let G be an (n,d, \) graph, S a subset of G'’s vertices and T its complement.

Then 4IS|IT]
EST))>01-N) 55—
B(S.T)] > (1Y) 16 N
PRrROOF: Let x € R" denote the following vector:
+T| i€ S
xi=<—|S| ieT
0 otherwise

Note that [|x[|2 = [S||T|* + |T||S|* = |S||T|(|S| + |T|) and x L 1.

Let Z = > Aij(zi — x;)?. On the one hand Z = 2|E(S,T)|(|S| + |T|)?, since every
edge 7j with i € S and j € T appears twice in this sum, each time contributing 2 (| S|+ |7T|)?
to the total. On the other hand,

Z =Y Al -2 Ajmr+ Y Aijad =2|x|? - 2(x, Ax)
1,7 1,7

(using the fact that A’s rows and columns sum up to one). Since x L 1 and [|Ax||, < Alx]],,
we get that
AES, DS +1T)? = (1= N)lll3 -
Plugging in ||z|2 = |S||T|(|S] + |T'|) completes the proof. W
Algebraic expansion also allows us to obtain an estimate on the number of edges between
not-too-small subsets S and 7', even if they are not disjoint:
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Lemma 21.11 (Ezpander Mizing Lemma) Let G = (V, E) be an (n,d, \)-expander graph.
Let S,T CV, then

d
[E(S,T) = —ISIIT| < Adv/[S]|T| o

The Mixing Lemma gives a good idea of why expanders are “pseudorandom.” In a random
d-regular graph, we would expect |E(S,T)| to be about 2|S||T|. The Lemma says that in
an expander, |E(S,T)| is close to this expectation for all S, T that are sufficiently large. We
leave the proof of Lemma 21.11 as Exercise 21.14.

Combinatorial Expansion Implies Algebraic Expansion

We now prove the second part of Theorem 21.9. Let G = (V, E) be an n-vertex d-regular
graph such that for every subset S C V with |S| < n/2, there are p|S| edges between S and
S =V\S, and let A be G’s random-walk matrix.

Let A be the second largest eigenvalue of A (not taking absolute values). We need to
prove that A < 1 — p?/2. By the definition of an eigenvalue there exists a vector u L 1
such that Au = Au. Write u = v + w where v is equal to u on the coordinates on which
u is positive and equal to 0 otherwise, and w is equal to u on the coordinates on which u
is negative, and equal to 0 otherwise. (Since u L 1, both v and w are nonzero.) We can
assume that v is nonzero on at most n/2 of its coordinates (otherwise take —u instead of
u). Let Z = 7, - A; j(vi —v3). Part 2 of the theorem (except for the “furthermore” clause)

J
follows immediately from the following two claims:

CramM 1: Z > 2p||v|2.

CLAIM 2: Z < /8(1 = \)||v|2.

PRrROOF OF CLAIM 1: Sort the coordinates of v so that vi > vy > -+ > v, (with v; =0

for i > n/2). Then, using vi — v} = S v - Vi),

j—1
2SI IIE) SV S I
i i<j k=i

Note that every term (vi —vi,,) appears in this sum once (with a weight of 2/d) per each
edge 7 j such that ¢ < k < j. Since vy = 0 for k& > n/2, this means that

n/2 n/2
Z=353 1BULKY Ak + L) [(Vi = Vi) = 3D pk(vE = Vi),
k=1 k=1

by G’s expansion. But, rearranging the terms (and using the fact that v = 0 for k > n/2),
the last sum is equal to

n/2

Bap Y kv — (k= 1)vE =2 vE = 2]V
k=1 k=1

|
PROOF OF CLAIM 2: Since Au = Au and (v,w) =0,

(Av,v) + {Aw,v) = (A(v + w),v) = (A, v) = A(v +w), v) = Allv]2.
Since (Aw, v) is not positive, (Av,v)/[[v||? > X, meaning that

(Av,v) V2= (Av,v) 3, Aii(vi—v)?

1-A>1-— = = ,
(v (v 2||v?
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where the last equality is due to Y-, s Aij(vi — vj)? = 35, A jvi — 237, Aijvivy +
D i A; jvi =2||v||2 —2(Av,v). (We use here the fact that each row and column of A sums
to one.)

Multiply both numerator and denominator of the last term in (4) by >, ; A; (Vi+v3).
The new numerator is

2

DA vi= V)P | | DD An(vivi)? | 2 | Y As(vi = vi)(vi+ vy)
i, ] ,J
using the Cauchy-Schwartz inequality.* Hence, using (a — b)(a + b) = a® — b,

2
(le Ay j (sz - V?)) 72
2UVIE 2 Asi (Vi a2 (5 Aisv? + 2855 Aigviv + 5 Aigv?)
z? z?
>
2[vl2 2lIv]z +2(Av,v)) ~ 8|Vl

where the last inequality is due to the fact that A is a symmetric stochastic matrix, and
hence ||Av||, < ||v||, for every v, implying that (Av,v) < [|v]|2.

The “furthermore” part is obtained by noticing that adding all the self-loops to a d — 1-
regular graph is equivalent to transforming its random-walk matrix A into the matrix %A—I—
é] where [ is the identity matrix. Since A’s smallest eigenvalue (not taking absolute values)
is at least —1, the new smallest eigenvalue is at least —% + é =—-1+ %.I

21.2.5 Error reduction using expanders.

Before constructing expanders, let us see one application for them in the area of probabilistic
algorithms. Recall that in Section 7.4.1 we saw that we can reduce the error of a probabilistic
algorithm from, say, 1/3 to 27 %) by executing it k times independently and taking the
majority value. If the algorithm utilized m random coins, this procedure will use m - k
random coins, and it seems hard to think of a way to save on randomness. Nonetheless,
using expanders we can obtain such error reduction using only m + O(k) random coins.

The idea is simple: take an expander graph G from a strongly explicit family that is
an (M = 2™ d,1/10)-expander graph for some constant d. (Note that we can use graph
powering to transform any explicit expander family into an expander family with parameter
A < 1/10; see also Section 21.3.) Choose a vertex v; at random, and take a length k£ —1 long
random walk on G to obtain vertices vs, ..., v (note that choosing a random neighbor of a
vertex requires O(log d) = O(1) random bits). Invoke the algorithm % times using vy, ..., v
for the random coins (we identify the set [M] of vertices with the set {0,1}" of possible
random coins for the algorithm) and output the majority answer.

To keep things simple, we analyze here only the case of algorithms with one-sided error.
For example, consider an RP algorithm that will never output “accept” if the input is not
in the language, and for inputs in the language will output “accept” with probability 1/2
(the case of a coRP algorithm is analogous). For such an algorithm the procedure will
output “accept” if the algorithm accepts even on a single set of coins v;. If the input is
not in the language, the procedure will never accept. If the input is in the language, then
let B C [M] denote the “bad” set of coins on which the algorithms rejects. We know that
|B| < A—g Plugging in § = 1/3 and A = 1/10 in the following theorem immediately implies
that the probability the above procedure will reject an input in the language is bounded by
2 Sk).

4The Cauchy-Schwartz inequality says that for every two vectors x,y, (x,y) < [|x||,|ly|l,. Here we index
over (i,j), and use x; ; = \/A4; ;(v? — vj2) and y; ; = /A j (v + VJQ)
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Theorem 21.12 (Ezpander walks)

Let G be an (n,d, \) graph, and let B C [n] satistying |B| <= fn for some € (0,1). Let
X1,..., Xk be random variables denoting a k — 1-step random walk in G from X, where
X1 is chosen uniformly in [n]. Then,

Pr[Vi<i<iX; € Bl < (1= MV/B+ A)F 1.

Note that if A and 3 are both constants smaller than 1 then so is the expression (1—\)y/B+\.

Proor: For 1 < ¢ < k, let B; be the event that X; € B. Note that the probability we're
trying to bound is

Pr[AY_, B;] = Pr[B,] Pr[Ba|By] - - - Pr[Bi|By, ..., By_1]. (5)

Denote by B the linear transformation from R™ to R™ that “zeroes out” the coordinates that
are not in B. That is, for every i € [n], (Bu); = u; ifi € B and (Bu); = 0 otherwise. It’s not
hard to verify that for every probability vector p over [n], Bp is a vector whose coordinates
sum up to the probability that a vertex i is chosen according to p is in B. Furthermore, if
we normalize the vector Bp to sum up to one, we get the probability vector corresponding
to the conditional distribution of p conditioned on the event that the vertex chosen this way
isin B.
Thus, if we let 1 = (1/n,...,1/n) denote the uniform distribution over [n] and p? € RV
be the distribution of X; conditioned on the events By, ..., B;, then
1
1
P PrB b
9 1 1

- BAB1
P PiB.| By Pr[Bi]

and more generally

‘= 1 i—1
P Pr[Bi|Bi71...Bl]...Pr[Bl](BA) B1.

Since every probability vector p satisfies |p|, = 1, it follows that the probability on the LHS
of (5) is equal to A R
(BA)*'B1], . (6)

Using the relation between the L; and Ls norms (Claim 21.1) we can bound (6) by showing
. -~ A )kt
I(BAY' B, < W=AVFED (7)

To prove (7), we will use the following definition and Lemma:

Definition 21.13 (Spectral norm) For every matrix A, the spectral norm of A, denoted by
|[A]l, is defined as the maximum of ||Av||, over all vectors v satisfying ||v]|, = 1. O

Exercises 21.5 and 21.6 ask you to prove that the spectral norm of every random-walk
matrix is 1, and that for every two n by n matrices A, B, ||A + B| < ||A] + ||B]| and
[AB]| < [|A[l|| B|-

Lemma 21.14 Let A be a random-walk matrix of an (n,d, \)-expander graph G. Let J be
the random-walk matrix of the n-clique with self loops (i.e., J; j = 1/n for every i, 7). Then

A=(1-XJ+AC (8)

where ||C|| < 1. &
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Note that for every probability vector p, Jp is the uniform distribution, and so this
lemma tells us that in some sense, we can think of a step on a (n,d, A)-expander graph as
going to the uniform distribution with probability 1 — A, and to a different distribution with
probability A. This is of course completely inaacurate, as a step on a d-regular graph will
only go the one of the d neighbors of the current vertex, but we’ll see that for the purposes
of our analysis, the condition (8) will be just as good.’

PROOF OF LEMMA 21.14: Indeed, simply define C' = (A — (1 — A).J). We need to prove
[ICv|l, < |vll, for very v. Decompose v as v = u + w where u = al for some o« € R
and w L 1. Since A1 =1 and J1 =1 we get that Cu = +(u— (1 — A)u) = u. Now, let
w’ = Aw. Then |w'|, < A|w]||, and, as we saw in the proof of Lemma 21.3, w’ L 1. In
other words, the sum of the coordinates of w is zero, meaning that Jw = 0. We get that
Cw = Lw'. Since w' L, [Cv]2 = [[u+ 2w'|2 = |[ul]2 + | 2w'|2 < Ju)2 + |wl? = |v|]%,
where we use twice the Pythagorean theorem that for u L w, [u+w|? = [[u[|? + [|w[/Z. B
Returning to the proof of Theorem 21.12, we can write BA = B((1—\)J+AC), and hence
|BA|| < (1=MN)||BJ||+A||BC||. Since J’s output is always a vector of the form a1, and it can
be easily verified that | B1|, = /2% = % = V|1, | BJ|| = v/B. Also, because B is an
operation that merely zeros out some parts of its input, || B|| < 1 implying that ||BC|| < 1.
Thus, ||BA|| < (1 — A)v/B + A. This means that ||(BA)*1B1|, < ((1 - \)VB+ /\)k’l\/ig,
establishing (7). W
The success of the error reduction procedure for two-sided error algorithms is obtained by
the following theorem, whose proof we omit (but see Exercise 21.12):

Theorem 21.15 (Ezpander Chernoff Bound)

Let G be an (n,d, \)-expander graph and B C [n| with |B| = BN. Let X1,...,X) be
random variables denoting a k — 1-step random walk in G (where X is chosen uniformly).
For every i € [k|, define B; to be 1 if X; € B and 0 otherwise. Then, for every § > 0,

Pr |—Z§:k1 B _ Bl >d| < 2e(1-N)8k/4

Explicit construction of expander graphs

We now show a construction of a very explicit expander graph family. The main tools in our
construction will be several types of graph products. A graph product is an operation that
takes two graphs G, G’ and outputs a graph H. Typically we're interested in the relation
between properties of the graphs G, G’ and the properties of the resulting graph H. In this
section we will mainly be interested in three parameters: the number of vertices (denoted n),
the degree (denoted d), and the 2"¢ largest eigenvalue of the random-walk matrix (denoted
A), and study how different products affect these parameters. We then use these products
to obtain a construction of a strongly explicit expander graph family. In the next section
we will use the same products to show a deterministic logspace algorithm for undirected
connectivity.

Rotation maps.

Thus far we usually represented a graph via its adjacency matrix, or as in this chapter, via
its random-walk matrix. If the graph is d-regular we can also represent it via its rotation

5 Algebraically, the reason (8) is not equivalent to going to the uniform distribution in each step with
probability 1 — X is that C is not necessarily a stochastic matrix, and may have negative entries.
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map. If G is an n-vertex degree-d graph this involves giving a number from 1 to d to each
neighbor of each vertex, and then letting a rotation map G be a function from [n] x [d] to
[n] x [d] that maps a pair (v,i) to (u,j) where u is the ith neighbor of v and v is the jth
neighbor of u. Clearly, this map is a permutation (i.e., is one-to-one and onto) of [n] x [d].
The reader may wonder why one should not renumber the neighbors at each node so that
G(u,i) = (v,1) (i.e., v is the i neighbor of w iff u is the i*" neighbor of v). This is indeed
possible but it requires some global computation that will turn out to be too complicated in
the scenarios we will be interested in, where the graph is constructed by some space-bounded
computation.

Below we will describe graph products, which is usually a way to map two graphs into
one. We use whichever graph representation happens to be most natural, but it would
be a good exercise for the reader to to work out the equivalent descriptions in the other
representations (e.g., in terms of random-walk matrices and rotation maps).

The matrix/path product

G: (n,d,A)-graph G’: (n,d’ N)-graph  G’G: (n,dd’,A\N\’)-graph

iy

For every two n-vertex graphs G, G’ with degrees d,d’ and random-walk matrices A, A’,
the graph G'G is the graph described by the random-walk matrix A’A. That is, G'G has
an edge (u,v) for every length 2-path from u to v where the first step in the path is taken
on an edge of G and the second is on an edge of G’. Note that G has n vertices and degree
dd’'. Typically, we are interested in the case G = G’, where it is called graph squaring. More
generally, we denote by G* the graph G - G ---G (k times). We have already encountered
this case before in Lemma 21.3, and similar analysis yields the following lemma (whose proof
we leave as Exercise 21.8):

Lemma 21.16 (Matriz product improves expansion) MNG'G) < AMG')NG") O

Note that one can easily compute the rotation map of G'G using the rotation maps of
G and G'.

21.3.3 The tensor product

G: (n,d,A)-graph G’ (n,d’,\')-graph

Let G and G’ be two graphs with n (resp n’) vertices and d (resp. d') degree, and let
G :[n] x[d] — [n] x [d] and G’ : [n/] x [d'] — [n/] x [d'] denote their respective rotation maps.
The tensor product of G and G’, denoted G ® G, is the graph over nn’ vertices and degree
dd' whose rotation map G® G is the permutation over ([n] x [n/]) x ([d] x [d']) defined as



21.3 Explicit construction of expander graphs 377

follows .
G® G/(<U7U>7 <Zvj>) = <ulvv/>7 <i/=jl> )

where (u/,i') = G(u,i) and (v/,5') = G'(v,j). That is, the vertex set of G ® G consists of
pairs of vertices, one from G and the other from G’, and taking a the step (i, j) on G ® G’
from the vertex (u,v) is akin to taking two independent steps: move to the pair (u’,v")
where v/ is the i'" neighbor of u in G and v’ is the i'" neighbor of v in G'.

In terms of random-walk matrices, the tensor product is also quite easy to describe. If
A = (a;,5) is the n x n random-walk matrix of G and A" = (aj, ;) is the n’ x n’ random-walk
matrix of G, then the random-walk matrix of G®G’, denoted as A® A, will be an nn’ x nn’
matrix that in the (i,’)*" row and the (j, j') column has the value a; ; -a;, ;. That is, A® A’
consists of n? copies of A’, with the (i, 7)*" copy scaled by a; ;:

al,lA' al)gAl . a17nA/

/ / 1

A A’ ag)lA ag)gA . agmA
QA = .

an1A an2A L ap A

The tensor product can also be described in the language of graphs as having a cluster
of n/ vertices in G ® G’ for every vertex of G. Now if, u and v are two neighboring vertices
in G, we will put a bipartite version of G’ between the cluster corresponding to u and the
cluster corresponding to v in G. That is, if (4,7) is an edge in G’ then there is an edge
between the i*" vertex in the cluster corresponding to u and the j* vertex in the cluster
corresponding to v.

Lemma 21.17 (Tensor product preserves expansion) Let A = A(G) and N = MG’) then
MG @ G') < max{\ N}, ¢

One intuition for this bound is the following: taking a T step random walk on the graph
G ® G’ is akin to taking two independent random walks on the graphs G and G’. Hence,
if both walks converge to the uniform distribution within 7" steps, then so will the walk on

GG

PrROOF OoF LEMMA 21.17: This is immediate from some basic facts about tensor products
and eigenvalues (see Exercise 21.22). If A\q,...,\, are the eigenvalues of A (where A is
the random-walk matrix of G) and N{,..., A, are the eigenvalues of A’ (where A’ is the

random-walk matrix of G), then the eigenvalues of A® A" are all numbers of the form A; -\,
and hence the largest ones apart from 1 are of the form 1-A(G’") or A(G) -1 W

We note that one can show that A(G ® G') < A(G) + A(G’) without relying on any
knowledge of eigenvalues (see Exercise 21.23). Even this weaker bound suffices for our
applications.

21.3.4 The replacement product

G: (n,D,1-¢)-graph  G: (D,d,1-€)-graph  G®G'’: (nD,2d,1-e€'/4)-graph

In both the matrix and tensor products, the degree of the resulting graph is larger than
the degree of the input graphs. The following product will enable us to reduce the degree
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of one of the graphs. Let G, G’ be two graphs such that G has n vertices and degree D, and
G’ has D vertices and degree d. The balanced replacement product (below we use simply
replacement product for short) of G and G’ is denoted by G® G’ is the nn/-vertex 2d-degree
graph obtained as follows:

1. For every vertex u of G, the graph G®G’ has a copy of G’ (including both edges and
vertices).

2. If u,v are two neighboring vertices in G then we place d parallel edges between the
it" vertex in the copy of G’ corresponding to u and the j** vertex in the copy of G’
corresponding to v, where 7 is the index of v as a neighbor of v and j is the index of
u as a neighbor of v in G. (That is, taking the i*" edge out of u leads to v and taking
the j* edge out of v leads to u.)

Some texts use the term “replacement product” for the variant of this product that uses
only a single edge (as opposed to d parallel edges) in Item 2 above. The addition of parallel
edges ensures that a random step from a vertex v in G ® G’ will move with probability 1/2
to a neighbor within the same cluster and with probability 1/2 to a neighbor outside the
cluster.

The replacement product also has a simple description in terms of rotation maps: since
G ® G’ has nD vertices and 2d degree, its rotation map G ® G’ can be thought of as a
permutation over ([n] x [D]) x ([d] x {0,1}) that takes four inputs u,v,%,b where u € [n],
ve[D],ieldandbe{0,1}. If b= 0 then it outputs u,G’(v,i),b and if b = 1 then it
outputs é(u,v),i, b. That is, depending on whether b is equal to 0 or 1, the rotation map
either treats v as a vertex of G’ or as an edge label of G.

In the language of random-walk matrices the replacement product is described as follows:

A®A =1/A+1/2(I, @ A'), (9)

where A, A" denote the random-walk matrices of G and G’ respectively, and A denotes the
permutation matrix corresponding to the rotation map of G. That is, A is an (nD) x (nD)
matrix whose (i,)" column is all zeroes except a single 1 in the (i',3')'" place where

(i",4') = G(i.j).

If D > d then the replacement product’s degree will be significantly smaller than G’s
degree. The following Lemma shows that this dramatic degree reduction does not cause too
much of a deterioration in the graph’s expansion:

Lemma 21.18 (Exzpansion of replacement product) If \(G) < 1 —e€ and \(H) <1 —§ then
NGOH)<1-2. &

The intuition behind Lemma 21.18 is the following: think of the input graph G as a good
expander whose only drawback is that it has a too high degree D. This means that a k step
random walk on G’ requires O(klog D) random bits. However, as we saw in Section 21.2.5,
sometimes we can use fewer random bits if we use an expander. So a natural idea is to
generate the edge labels for the walk by taking a walk using a smaller expander G’ that has
D vertices and degree d < D. The definition of G ® G’ is motivated by this intuition: a
random walk on G ® G’ is roughly equivalent to using an expander walk on G’ to generate
labels for a walk on G. In particular, each step a walk over G ® G’ can be thought of as
tossing a coin and then, based on its outcome, either taking a a random step on G, or using
the current vertex of G’ as an edge label to take a step on G. Another way to gain intuition
on the replacement product is to solve Exercise 21.24, that analyzes the combinatorial (edge)
expansion of the resulting graph as a function of the edge expansion of the input graphs.

PROOF OF LEMMA 21.18: It suffices to show that A(G® H)? < 1 — %. Since for every
ky — k ; : €s”

graph I, A(F*) = A(F)*, we will do so by showing MG®H)?) <1— <. Let A be the

n x n random-walk matrix of G (with A the (nD) x (nD) permutation matrix corresponding

to the rotation map C’), let B be the D x D random-walk matrix of H, and let C' be the
random-walk matrix of (G ® H)3. Then, (9) implies that

C = (1/2A + 1/2(I, ® B))?, (10)
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Now Lemma 21.14 implies that B = (1 —6) B’ + §.Jp for some matrix B’ with norm at most
1 (where Jp is the D x D all 1/D matrix). We plug this into (10), expand all terms and then
collect together all the terms except for the one corresponding to 1/26(I, ®.J)1/2A1/28(I,,®.J).
The reader can verify that all terms correspond to matrices of norm at most 1 and hence
(10) becomes

C=01-5)0"+ %I, ®Jp)Al, @ Jp), (11)

where C is some (nD) x (nD) matrix of norm at most 1. The lemma will follow from the
following claim:

CLamn: (I, ® Jp)A(L, ® Jp) =A® Jp

PRrROOF: Indeed, the left-hand side is the random-walk matrix of the graph on nD vertices
on which a step from a vertex (4, j) corresponds to: 1) choosing a random k € [D] 2) letting
i’ be the k*" neighbor of 4 in G 3) choosing j’ at random in [D] moving to the vertex (i, k).
We can equivalently describe this as going to a random neighbor ¢’ of 7 in G and choosing
4’ at random in [D], which is the graph corresponding to the matrix A ® Jp. B

The claim concludes the proof since A(A ® Jp) < max{A(A),A\(Jp)} = max{\(4),0}.
The lemma follows by plugging this into (11) and using the fact that A\(C') < 1 for every
matrix of norm at most 1.

The actual construction.

We now use the three graph products of described above to show a strongly explicit con-
struction of an expander graph family. That is, we prove the following theorem:

Theorem 21.19 (Ezplicit construction of expanders)
There exists a strongly explicit (), d)-expander family for some constants d € N and A < 1.

Note that using the matrix/graph product, Theorem 21.19 can be improved to yield a
strongly explicit (A, d)-expander family for every A > 0 (albeit at the expense of allowing d
to be an arbitrarily large constant depending on .

Proor: We will start by showing something slightly weaker: a very explicit family of graphs
{G}.} where G, is not a graph on k vertices but on roughly ¢* vertices for some constant c.
That is, rather than showing a family of graphs for every size n, we will only show a family
of graphs that contains a graph of size n for every n that is a power of c. We will then
sketch how the construction can be improved to yield a graph family containing a graph of
every size n.

The construction is recursive: we start by a finite size graph G; (which we can find using
brute force search), and construct the graph Gy, from the graph Gi_1. On a high level the
construction is as follows: each of the three products will serve a different purpose in the
construction. The Tensor product allows us to take Gi_1 and increase its number of vertices,
at the expense of increasing the degree and possibly some deterioration in the expansion. The
replacement product allows us to dramatically reduce the degree at the expense of additional
deterioration in the expansion. Finally, we use the Matriz/Path product to regain the loss
in the expansion at the expense of a mild increase in the degree. The actual definition is as
follows:

e Let H be a (D = (2d)'%, d,0.01)-expander graph, which we can find using brute force
search. (We choose d to be a large enough constant that such a graph exists) We
let G1 be a ((2d)'%,2d,1/2)-expander graph and Ga be a ((2d)?°°, 2d, 1/2)-expander
graphs (again, such graphs can be easily found via brute force).
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e For k > 2 define
%= )y

We prove the following claim:

CraiM: For every k, Gy, is a ((2d)'°°%,2d, 1 — 1/50)-expander graph. Furthermore, there is
a poly(k)-time algorithm that given a label of a vertex ¢ in G and an index j in [2d] finds
the j*" neighbor of i in Gj,.

PrOOF: We prove the first part by induction. Verify directly that it holds for k£ = 1, 2.
For k > 2, if we let n, be the number of vertices of G then n; = nf(kfl)/ﬂ (2d)19°. By
induction we assume n|(y_1)/2| = (2d)'°Lx=1)/2] wwhich implies that ny = (2d)'°% (using
the fact that 2 [(k—1)/2] + 1 = k). It’s also easy to verify that G} has degree 2d for
every j: if G has degree 2d then G ® G has degree (2d)?, (G ® G)%°) has degree (2d)**°
and (G ® )°°) ® H has degree (2d). The eigenvalue analysis also follows by induction: if
AG) €1-1/50 then A(G® G)*® < 1/e < 1/2. Hence, by Lemma 21.18, A((G® G)*°@H) <
1 — 1/2(0.99)2/24 < 1 — 1/50.

For the furthermore part, note that there is a natural algorithm to compute the neigh-
borhood function of G} that makes 100 recursive calls to the neighborhood function of
G| (k—1)/2), thus running in time roughly n'°1%0. W

The above construction and analysis yields an expander graph family containing an n
vertex graph for every n of the form ¢* for some constant c. The proof of Theorem 21.19 is
completed by observing that one can transform an (n, d, A)-expander graph to an (n’, cd, \')-
expander graph (where ' < 1 is a constant depending on A, d) for any n/c < n’ < n by
joining together into a “mega-vertex” sets of at most ¢ vertices (Exercise 21.16). B

Remark 21.20

The quantitative bounds obtained from the proof of Theorem 21.19 are pretty bad, both in
terms of the relation between degree and expansion and the running time (in particular the
initial brute force search alone will take more than 2'%° steps). This is partly because for
pedagogical reasons we chose to present this construction in its simplest form, without cover-
ing various known optimizations. However, even with these optimizations this construction
is not the most efficient known.

There are different known constructions of expanders that are highly practical and ef-
ficient (e.g., [LPS86, Marss]). However, their analysis typically uses deep facts in number
theory. Also, the replacement product (and its close cousin, the zig-zag product) have found
applications beyond the proof of Theorem 21.15. One such application is the determinis-
tic logspace algorithm for undirected connectivity described in the next section. Another
application is a construction of combinatorial vertex expanders with a greater expansion of
small sets that what is implied by the parameter A ([CRVW02], see also Exercise 21.15).

21.4 Deterministic logspace algorithm for undirected connectivity.
This section describes a recent result of Reingold, showing that at least the most famous

randomized logspace algorithm, the random walk algorithm for the problem UPATH of s-t-
connectivity in undirected graphs (see Chapter 7) can be completely “derandomized.”

Theorem 21.21 (Reingold’s Theorem,)
UPATH € L.

Reingold describes a set of poly(n) walks starting from s such that if s is connected to
t then one of the walks is guaranteed to hit {. The existence of such a small set of walks
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can be shown using the probabilistic method and Corollary 21.5. The point here is that
Reingold’s enumeration of walks can be carried out deterministically in logspace.

Proof outline. As before we are interested in undirected graphs that may have parallel
edges. We restrict our attention to checking connectivity for d-regular graphs for say d = 4.
This is without loss of generality: if a vertex has degree d’ < 3 we add a self-loop of
multiplicity to bring the degree up to d, and if the vertex has degree d’ > 3 we can replace
it by a cycle of d’ vertices, and each of the d’ edges that were incident to the old vertex then
attach to one of the cycle nodes. Of course, a logspace machine does not have space to store
the modified graph, but it can pretend that these modifications have taken place, since it
can perform them on the fly whenever it accesses the graph. (To put this more formally,
the transformation is implicitly computable in logspace as per Definition 4.16.) In fact, the
proof below will perform a series of other local modifications on the graph, each with the
property that the logspace algorithm can perform them on the fly.

We start by observing that checking connectivity in expander graphs is easy. Specifically,
if every connected component in G is an expander, then there is a number ¢ = O(logn)
such that if s and ¢ are connected then they are connected with a path of length at most
{. Indeed, Lemma 21.3 implies that in every n-vertex regular graph G, the distribution
of the (" vertex in a random walk is within \/n\’ statistical (or L;) distance from the
uniform distribution. In particular this means that if each connected component H of G
is an ezpander graph, having \(H) bounded away from 1, then a random walk of length
¢ =0(logn) from a vertex u in H will reach every vertex of H with positive probability.

The idea behind Reingold’s algorithm is to transform the graph G (in an implicitly
computable in logspace way) to a graph G’ such that every connected component in G
becomes an expander in G, but two vertices that were not connected will stay unconnected.

The logspace algorithm for connectivity (proof of Theorem 21.21)

By adding more self-loops we may assume that the input graph G is of degree d°° for some
constant d that is sufficiently large to ensure the existence of a (d°°,d/2,0.01)-expander
graph H. Since the size of H is constant, we can store all of it in memory using O(1) bits.®
Let Gy = G and for k > 1, define G}, = (Gx_1 ® H)*°, where ® denotes the balanced
replacement product defined in Section 21.3.4.

If Gip_1 is an N-vertex graph with degree d°°, then Gj_1 ® H is a d°° N-vertex graph
with degree d and thus Gy = (Gj—1 ® H)? is a d°° N-vertex graph with degree d. Note
also that if two vertices were connected (resp., disconnected) in Gi—_1, then they are still
connected (resp., disconnected) in Gj. The key observation that the graph Gigiogn is an
expander, and therefore an easy instance of UPATH. Specifically, we have:

CraiM: For every k, Gy, is an (d°%n, d*°, max{1—1/20,2%/(12n?)})-graph, where n denotes
the number of vertices in G = Gj.

PRrOOF: Indeed, by Lemmas 21.16 and 21.18, for every € < 1/20 and D-degree graph F, if
AMF) <1—ethen A(F®H) < 1—¢/25 and hence A ((F ® H)*°) < 1—2¢. By Lemma 21.4,
every connected component of G has expansion parameter at most 1 — # (note that n is
at least as large as the number of vertices in the connect component). It follows that for

k = 10logn, in the graph G} every connected component has expansion parameter at most
max{1 — 1/20,2%/(12n?)} =1 —1/20. &

Since G1plogn is an expander, to find whether a pair of vertices s,? are connected in
G101ogn We simply need to enumerate over all paths in Gigiogn that start at s and have
length £ = O(logn), and see whether any one of these hits t. The catch is of course that the
graph provided to our algorithm is G, not Giglogn. A simpler question is whether, given
G, our algorithm can perform even a single step of a random walk on Gy, for £ = 10logn.

6We can either use an explicit construction of such a graph or simply find it using an exhaustive search
among all graphs of this size.
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Specifically, given a description of a vertex s in Gy and an index i € [d?°], it has to compute
the " neighbor of s in G}, using only logarithmic space. It is easy to see that if we can
perform this single step in logarithmic space, then we can just as easily perform ¢ steps as
well by repeating the single step again and again while keeping a counter, and reusing the
same space to compute each step.

The graph G}, is equal to (Gr—1 ® H)®® and thus it suffices to show that we can take
a single step in the graph Gj_; ® H in logspace (we can then repeat the same process
for 50 times). Now by the definition of the replacement product, a vertex in Gx_1 ® H
is represented by a pair (u,v) where u is a vertex of Gy_1 and v is a vertex of H. The
index of a neighbor of (u,v) is represented by a pair (b,i) where b € {0,1} and i € [d/2].
If b = 0 then the (b,i)*" neighbor of (u,v) is (u,v’) where v is the i*" neighbor of v’ in
H. If b = 1 then the (b,4)!" neighbor of (u,v) is the pair (u/,v’) denoting the result of
applying G,_1’s rotation map to (u,v). (That is, u’ is the v'" neighbor of u in G,_1, and v’
is the index of u as a neighbor of v’ in G_1.) This description already implies an obvious
recursive algorithm to compute the rotation map of G. Letting s; denotes the space needed
to compute a rotation map of Gy by this algorithm, we see that sy satisfies the equation
sk = sp—1 + O(1), implying that s1010gn = O(log n)."m

Weak Random Sources and Extractors

Suppose, that despite any philosophical difficulties, we are happy with probabilistic algo-
rithms, and see no need to “derandomize” them, especially at the expense of some unproven
assumptions. We still need to tackle the fact that real world sources of randomness and
unpredictability rarely, if ever, behave as a sequence of perfectly uncorrelated and unbiased
coin tosses. Can we still execute probabilistic algorithms using real-world “weakly random”
sources?

Min Entropy

For starters, we try to define what we could mean by a weakly random source. Historically
speaking, several definitions were proposed, which are recalled in Example 21.23. The
following definition (due to D. Zuckerman) encompasses all previous definitions.

Definition 21.22 Let X be a random variable. The min entropy of X, denoted by H..(X),
is the largest real number k such that Pr[X = z] < 27F for every z in the range of X.
If X is a distribution over {0,1}" with Ho(X) > k then it is called an (n, k)-source. {

It is not hard to see that if X is a random variable over {0,1}" then Ho.(X) < n
with Hoo(X) = n if and only if X is distributed according to the uniform distribution U,.
Our goal in this section is to be able to execute probabilistic algorithms given access to a
distribution X with H.(X) as small as possible. It can be shown that min entropy is a
minimal requirement in the sense that a general simulation of a probabilistic algorithm that
uses k random bits requires access to a distribution X that is (close to) having min entropy
at least k (see Exercise 21.18).

Example 21.23

We will now see that min entropy is a pretty general notion, and can allow us
to model many other models of “imperfectly random” sources. Here are some
examples for distributions X over {0,1}".

"When implementing the algorithm one needs to take care not to make a copy of the input when invoking
the recursive procedure, but rather have all procedure operate on a globally accessible memory that contains
the index k and the vertex and edge labels; otherwise we’d get an O(logn loglogn)-space algorithm. For
more details see the original paper [Rei05] or [Gol08, Section 5.2.4].
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e (von Neumann’s model: biased coins) X is composed of n independent coin
tosses, each outputting 1 with probability 6 < /2 and 0 with probability
1 — 6. Tt is easily checked that® Hu.(X) = log(1/(1 — §))n.

e (Santha-Vazirani sources) X has the property that for every i € [n], and
every string x € {0, 1}171, conditioned on X1 = x1,...,X;_1 = x;_1 it
holds that both Pr[X; = 0] and Pr[X; = 1] are between ¢ and 1 — §. This
generalizes von Neumann’s model and can model sources such as stock
market fluctuations, where current measurements do have some limited
dependence on the previous history. It is easily checked that Hoo(X) >
log(1/(1 —9))n.

e (Bit fixing and generalized bit fixing sources) In a bit-fizing source, there is a
subset S C [n] with |S| = k such that X’s bits in the coordinates given by S
are uniformly distributed over {0, 1}k, and X'’s bits in the coordinates given
by [n]\ S is a fixed string (say the all-zeros string). Then Hoo(X) = k. The
same holds if X’s projection to [n]\ S is a fixed deterministic function of its
projection to S, in which case we say that X is a generalized bit-fizing source.
For example, if the bits in the odd positions of X are independent and
uniform and for every even position 2¢, Xo; = Xa;_1 then Ho(X) = [%W
This may model a scenario where we measure some real world data at too
high a rate (think of measuring every second a physical event that changes
only every minute).

e (Linear subspaces) If X is the uniform distribution over a linear subspace
of GF(2)" of dimension k, then Ho(X) = k. (In this case X is actually a
generalized bit-fixing source — can you see why?)

e (Uniform over subset) If X is the uniform distribution over a set S C {0,1}"
with |S| = 2% then H.(X) = k. As we will see, this is a very general case
that “essentially captures” all distributions X with H(X) = k.

Statistical distance

Next we formalize what it means to extract random —more precisely, almost random— bits
from an (n, k) source. We will use the notion of statistical distance (see Section A.2.6 in the
appendix) to qualify when two distributions are close to one another. Recall that if X and
Y are two distributions over some domain € then the statistical distance between X and Y,
denoted by A(X,Y) is equal to

E[f(X)] - E[f(Y)]] . 12
s [EL(0] — E/(V)] (12)
It is also known that A(X,Y) = 1/2|x — y|,, where x and y are the vectors in R that

represent the distributions X and Y respectively. For any € > 0, we say that two distribution
X and Y are e-closedenoted X =, Y, if A(X,Y) <e.

Definition of randomness extractors
We can now define randomness extractors - these are functions that transform an (n, k)

source into an almost uniform distribution. The extractor uses a small number of additional
truly random bits, called a seed and denoted by d in the definition below.

81n fact, as n grows X is close to a distribution with min-entropy H(§)n where H is the Shannon entropy
function defined as H(J) = 6log% + (1 —0)log ﬁ The same holds for Santha-Vazirani sources defined

below. See [DFRT07] for this and more general results of this form.
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Definition 21.24 (Randomness extractors)

A function Ext : {0,1}"x{0,1}* — {0,1}" is a (k, €) extractor if for any (n, k)-source X, the
distribution Ext(X,Uy,) is e-close to U,,. (For every ¢, U, denotes the uniform distribution
over {0,1}")

Why an additional input? Our stated motivation for extractors is to execute probabilistic
algorithms without access to perfect unbiased coins. Yet, it seems that an extractor is not
sufficient for this task, as we only guarantee that its output is close to uniform if it is given
an an additional seed that is uniformly distributed. We have two answers to this objection.
First, note that the requirement of an additional input is necessary: for every function
Ext : {0,1}" — {0,1}™ and every k < n — 1 there exists an (n, k)-source X such that the
first bit of Ext(X) is constant (i.e, is equal to some value b € {0,1} with probability 1),
and so is at least of statistical distance 1/2 from the uniform distribution (Exercise 21.17).
Second, if the length ¢ of the second input is sufficiently short (e.g., t = O(logn)) then, for
the purposes of simulating probabilistic algorithms, we can do without any access to true
random coins, by enumerating over all the 2! possible inputs. Clearly, d has to be somewhat
short for the extractor to be non-trivial. The completely trivial case is when d > m, in
which case the extractor can simply ignore its first input and output the seed!

Existence proof for extractors.

It turns out that at least if we ignore issues of computational efficiency, very good extractors
exist:

Theorem 21.25 For every k,n € N and € > 0, there exists a (k, €)-extractor Ext : {0,1}" x
{0,1}* — {0,1}* with d = logn + 2log(1/€) + O(1) &

PRrOOF: Call an (n, k) source X flat if X is the uniform distribution over a 2¥-sized subset
of {0,1}". In Exercise 19.7 it is shown that every (n, k) source can be expressed as a convex
combination of flat (n, k)-sources. Because the statistical distance of a convex combination
of distributions Y7,..., Yy from a distribution U is at most the maximum of A(Y;, X)
(Exercise 21.19), it suffices to show a function Ext such that Ext(X,Uy) is close to the
uniform distribution when X is an (n, k)-flat source.

We will prove the existence of such an extractor by the probabilistic method, choosing
Ext as a random function from {0,1}" x {0, 1}* — {0,1}*. Let X be an (n, k) flat source and
let f be a function from {0,1}* — {0,1}. If we choose Ext at random then the expectation
E[f(Ext(X,Uy))] is obtained by evaluating f on 2* x 2¢ random points, and hence by the
Chernoff bound the probability that this expectation deviates from E[f(U})] by more than e
is bounded by 2-2°"/4¢’  This means that if d > logn + 2 log(1/e) + 3 then this probability
is bounded by 2-2n(2") " But the number of flat distributions is at most (2")2k and the
number of functions from {0,1}* — {0,1} is 22" and hence the union bound implies that
there is a choice of Ext guaranteeing

|E[f (Ext(X, Ua))] — E[f(Ur)ll <€

for every (n, k)-flat source and function f : {0,1}* — {0,1}. In other words, Ext(X, Uy) is
e-close to Uy, for every (n, k)-flat source and hence for every (n, k)-source. B

This extractor is optimal in the sense that there is an absolute constant ¢ such that every
(k,€) extractor that is non-trivial (has output longer than seed length and e < 1/2) must
satisfy d > log(n — k) + 2log(1/€) — ¢ [NZ93, RTS97].
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Extractors based on hash functions

The non-explicit extractor of Theorem 21.25 is not very useful: for most applications we need
explicit extractors— namely extractors computable in polynomial time. One such explicit
extractor (though with a long seed length) can be obtained using pairwise independent hash
functions.

Recall (Section 8.2.2) that a collection H of functions from {0,1}" to {0,1}" is pairwise
independent if for every x # x’ in {0,1}" and y,y’ € {0,1}", the probability that h(z) =y
and h(z') = y’ for a random h €, ‘H is 272™. There are known construction of such
collections where each function h can be described by a string of length n + m (we abuse
notation and call this string also k). Choosing a random function from the collection is done
by choosing a random string in {0, 1}n+m. The next famous lemma shows that with an
appropriate setting of parameters, the map x, h — h(x)oh (where o denotes concatenation)
is an extractor. This is not a superb extractor in terms of parameter values but it is useful
in many settings.

Lemma 21.26 (Leftover hash lemma [BBRS8S, ILL89]) Let m = k — 2log(1/¢), then for every
(n, k) source X,
A(H(X)oH,U,oH) <,

where H denotes a randomly chosen (description of) function in a pairwise independent
hash function collection from {0,1}" to {0,1}™. %

PRrooF: We study the collision probability of H(X)o H, where we identify H with U, where
¢ = n + m is the length of description of the hash function. That is, the probability that
h(z)oh = h/(x")oh’ for random h,h’ €, 'H and z, 2’ €, X. This is bounded by the probability
that h = h' (which is equal to 27¢) times the probability that h(z) = h(z’). The latter is
bounded by 27% (a bound on the probability that 2 = 2’ implies by the fact that X is an
(n, k)-source) plus 2~ (the probability that h(z) = h(z') for a random h €, H and = # ).
Thus the collision probability of (H(X), H) is at most 27¢(27% 4 277) = 2= (¢+m) 4 9—t=k

Now, treat this distribution as a probability vector p & R2"™ . Then the collision
probability is precisely the Lo-norm of p squared. We can write p = 1 + w where 1 is the
probability vector corresponding to the distribution U,, o H = U, 1, and w is orthogonal to
1. (For a general vector p we’d only be able to write p = a1 + w for some « € R, but since
p is a probability vector it must hold that o = 1, as otherwise the entries of the righthand
side will not sum up to one.) Thus by the Pythagorean Theorem ||p||2 = [Jul|? + ||w]|2, and
since |[ul[? = 277" we get that

[wiZ =llp— 1[I <27,
Using the relation between the Ly and Lo norms (Claim 21.1), we see that

A(H(X) o H,Upym) = Y2|p — 1|, < 12202y — 1|, <
ok/2+¢/2-log(1/€)g—k/2—/2 _

Extractors based on random walks on expanders

We can also construct explicit extractors using expander graphs:

Lemma 21.27 Let € > 0. For every n and k < n there exists an explicit (k,€)-extractor
Ext: {0,1}" x {0,1}* — {0,1}", where t = O(n — k + log 1/¢). &

PROOF: Suppose X is an (n, k)-source and we are given a sample a from it. Let G be a
(2™, d, 1/2)-expander graph for some constant d (see Definition 21.6 and Theorem 21.19).
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Let z be a truly random seed of length ¢ = logd(n/2 — k/2+1logl/e+ 1) = O(n — k +
log1/€). We interpret z as a random walk in G of length ¢ = n/2 —k/2+1log1/e+ 1 starting
from the node whose label is a. (That is, we think of z as ¢ labels in [d] specifying the steps
taken in the walk.) The output Ext(a, z) of the extractor is the label of the final node on
the walk.

Following the proof of Lemma 21.3 (see Equation (1)) we see that, letting p denote the
probability vector corresponding to X and A the random-walk matrix of G,

1A% — 1|, <27p — 1|, -

But since X is an (n, k) source, ||p||? (which is equal to the collision probability of X) is
at most 27F, and hence in particular ||p — 1|, < ||p||, + [|1]|, < 27F/2 +277/2 < 27k/2+1,
Thus for our choice of /,

HAZP _ 1”2 < 2—n/2+k/2—10g(1/6)+12—k/2+1 < 62—11/27

which completes the proof using the relation between the L; and Ls norms. B

Extractors from pseudorandom generators

For many years explicit constructions of randomness extractors fell quite a bit behind the
parameters achieved by the optimal non-explicit construction of Theorem 21.25. For exam-
ple, we did not have explicit extractors that allowed us to run any randomized polynomial
time algorithm using ~ k bits using an (n, k) source where k = n€ for arbitrarily small
constant € > 0. (Generally, the smaller k is as a function of n, the harder the problem of
constructing extractors; intuitively if n > k then it’s harder to “distill” the % bits of ran-
domness that are hidden in the n-bit input.) To realize this goal, one should try to design
an extractor that uses a seed of O(logn) bits to extract from an (n,n¢)-source at least a
polynomial number of bits (i.e., at least n° bits for some ¢ > 0).? In 1999 Trevisan showed
how to do this using an improved extractor construction. But more interesting than the
result itself was Trevisan’s idea: he showed that pseudorandom generators such as the ones
we’ve seen in Chapters 20 and 19, when viewed in the right way, are in fact also randomness
extractors. This was very surprising, since these pseudorandom generators rely on hardness
assumptions (such as the existence of a function in E with high circuit complexity). Thus it
would seem that these generators will not be useful in the context of randomness extractors,
where we are looking for constructions with unconditional analysis and are not willing to
make any unproven assumptions.

But thinking further, we realize that the above-mentioned difference between the two
notions arises due to the type of “adversary” or “distinguisher” they have to work against.
For a generator, the set of possible adversaries is the class of computationally limited al-
gorithms (i.e., those that can be computed by circuits of some prescribed size). For an
extractor, on the other hand, the set of adversaries is the set of all Boolean functions. The
reason is that an extractor needs to produce a distribution D on {0,1}" whose statistical
difference from U, is at most €, meaning that |Pryep[D(x) = 1] — Pryep,,[D(z) =1]| < €
for every function D : {0,1}"" — {0,1}.

Trevisan noticed further that while we normally think of a pseudorandom generator G
as having only one input, we can think of it as a function that takes two inputs: a short
seed and the truth table of a candidate hard function f. While our theorems state that
the pseudorandom generator works if f is a hard function, the proofs of these theorems
are actually constructive: they transform a distinguisher D that distinguishes between the
generator’s output and a random string into a small circuit A that computes the function
f. This circuit A uses the distinguisher D as a black-box. Therefore we can apply this
transformation even when the distinguisher D is an arbitrary function that is not necessarily
computable by a small circuit. This is the heart of Trevisan’s argument.

9The work of Ta-Shma [TSQG] did come close to this goal, achieving such an extractor with slightly
super-logarithmic seed length.
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Concretely, to make this all work we will need the stronger constructions of pseudo-
random generators (e.g. of Theorem 20.7) that start with functions with high worst-case
complexity. If there is a distinguisher D that distinguishes the output of such a generator
from the uniform distribution, then the proof of correctness of the generator gives a way
to compute the candidate hard function f on every input. Formally, we have the following
theorem: (Below G/ refers to the algorithm G using f as a black box.)

Theorem 21.28 (Constructive version of Theorem 20.7)
For every time-constructible function S : N — N (the “security parameter”), there is a
constant ¢ and algorithms G and R satisfying the following:

e On input a function f : {0, 1}2 — {0, 1} and a string z € {0, 1}‘2[, algorithm G runs in
20 time and outputs a string G/ (z) of length m = S(¢)'/°.

e If D : {0,1}" — {0,1} is a function such that |E[D(G' (Ue))] — E[D(Un)]| > 110
then there is an advice string a of length at most S(¢)'/* such that on every input x,
RP(a,x) = f(x) and furthermore R runs in time at most S(£)*/*.

The algorithm R mentioned in the theorem is just the reduction that is implicit in the
proof of correctness of the pseudorandom generator in Chapter 20.

The following is Trevisan’s extractor construction. Let G be as in Theorem 21.28. Let
X be an (n, k)-source. Assume without loss of generality that n is a power of 2, and n = 2°.
Let S({), the “security parameter”, stand for k. Given any string f from the source and
the seed z € {0,1}°'°8"™ the extractor interprets f as a function from {0,1}" to {0,1} and
outputs

Ext(f,z) = G/ (z). (13)

Thus given a string of length n and a seed of size clogn, Ext produces S(£)Y/¢ = k'/¢ bits.
Let us show that Ext is an extractor.

Claim 21.29 For every k,n, the function Ext defined in (13) is a (k, 1/5)-extractor. &

PROOF: Suppose otherwise, that there is a (k,n)-source X and a Boolean function D that
distinguishes between Ext(X, U.,) and U,, with bias at least 1/5, where m = S(¢)'/¢. Then,
with probability at least 1/10 over f €, X, function D distinguishes between G/ (U.) and
U,, with bias at least 1/10. Let’s call an f for which this happens “bad”. Note that for every

bad f there exists an advice string a € {0, 1}kl/4 such that f is computed by the algorithm
x +— RP(a,r). Since R is a deterministic algorithm, this means that the number of bad
f’s is at most the number of choices for a, which is 2" But since X is a k-source, it
assigns probability not more than 27% to any particular string. Hence the probability of a
random f being bad is at most 2k ok « /10, and we’ve arrived at a contradiction to the

assumption that D is a good distinguisher. H

Remark 21.30

Readers mystified by this construction should try to look inside the generator G to get a
better understanding. The extractor Ext turns out to do be very simple. Given a string
f € {0,1}" from the weak random source, the extractor first applies an error-correcting
code (specifically, one that is list decodable) to f to get a string f € {0, 1}°°Y(™  Intuitively
speaking, this has the effect of “smearing out”the randomness over the entire string. The
extractor then selects a subset of the coordinates of f using the construction of the Nisan-
Wigderson generator (see Section 20.2.2). That is, treating f as a Boolean function on
s = O(logn) bits, we use a seed z of size t = O(s) and output f(z7,)0---o f(z1, ), where
I, ..., I, are s-sized subsets of [t] that form a combinatorial design (see Definition 20.13).



21.6

388 21 Pseudorandom constructions: expanders and extractors

Pseudorandom generators for space bounded computation

We now show how extractors can be used to obtain a pseudorandom generator for space-
bounded randomized computation, which allows randomized logspace computations to be
run with O(log2 n) random bits. We stress that this generator does not use any unproven
assumptions.

The goal here will be to derandomize randomized logspace computations, in other words,
classes such as BPL and RL. Recall from Chapter 4 the notion of a configuration graph for
a space-bounded TM. If we fix an input of size n for a logspace machine, then the configu-
ration graph has size poly(n). If the logspace machine is randomized, then it uses random
coin tosses to make transitions within the configuration graph (i.e., each configuration has
two outgoing edges, and each is taken with probability 1/2). To derandomize this compu-
tation we will replace the random string used by the logspace machine with the output of
a “pseudorandom generator” (albeit one tailormade for fooling logspace computations) and
show that the logspace machine cannot “tell the difference” (i.e., the probability it ends up
in an accepting state at the end is not very different).

Theorem 21.31 (Nisan’s pseudorandom generator [Nis90])
For every d there is a ¢ > 0 and a poly(n)-time computable function g : {0,1}

clog?n

d
{0,1}" (the “pseudorandom generator”) such that for every space-bounded machine M
that has a configuration graph of size < n on inputs of size n:

1
Pr [M(z,r)=1] - Pr [M(z,g9(2)) =1]| < —. (14)
T‘G{O,l}"d ZG{O,l}CIng n 10

By trying all possible choices for the O(log2 n)-bit input for the generator g in Nisan’s
theorem, we can simulate every algorithm in BPL in O(log2 n) space. Note that Savitch’s
theorem (Theorem 4.14) also implies that BPL C SPACE(log?n) but it doesn’t yield
such a pseudorandom generator. In fact Theorem 21.31 can be strengthened to show that
BPL can be decided using simultaneously polynomial time and space O(log2 n), though we
will not prove it here. Saks and Zhou [SZ95] improved Nisan’s ideas to show that BPL C
SPACE(logl'5 n), which leads many experts to conjecture that BPL = L (i.e., randomness
does not help logspace computations at all). Indeed, we’ve seen in Section 21.4 that the
famous random-walk algorithm for undirected connectivity can be derandomized in logspace.

The main intuition behind Nisan’s construction —and also the conjecture BPL = L—
is that the logspace machine has one-way access to the random string and only O(logn) bits
of memory. So it can only “remember” O(logn) of the random bits it has seen. To exploit
this we will use the following simple lemma, which shows how to recycle a random string
about which only a little information is known.

Lemma 21.32 (Recycling lemma) Let f : {0,1}" — {0,1}° be any function and Ext :
{0,1}" x {0,1}" — {0,1}"™ be a (k,¢/2)-extractor, where k = n — (s + 1) — log L. Then,

A(f(X)oUn , f(X)oExt(X,U)) <,
where X is a random variable distributed uniformly in {0,1}". &

To understand why we call it the Recycling Lemma, focus on the case s < n and n = m.
Suppose we use a random string X of length n to produce f(X). Since f(X) has length
s < n, typically each string in {0,1}° will have many preimages under f. Thus anybody
looking at f(X) has only very little information about X. More formally, for every fixed
choice of f(X), the set of X that map to this value can be viewed as a weak random source.
The Lemma says that applying an appropriate extractor (whose random seed z can have
length as small as t = O(s+1log(1/€)) if we use Lemma 21.27) on X we can get a new m-bit
string Ext(X, z) that looks essentially random, even to somebody who knows f(X).
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PROOF: For v € {0,1}* we denote by X,, the random variable that is uniformly distributed
over the set f~!(v). Then we can express A(f(X)o W, f(X)oExt(X,z2)) as

1
zgg

= " Pr[f(X) =v] - A(W,Ext(X,, 2)) (15)

Prf(X)=v AW =w] —Pr[f(X) =v A Ext(X,z) = w]

z

Let V = {v: Pr[f(X) =v] > ¢/2°T1}. If v € V, then we can view X, as a (n, k)-source,
where k > n— (s+ 1) — log % Thus by definition of an extractor, Ext(X,,r) =2 W and
hence the contributions from v € V' sum to at most €/2. The contributions from v ¢ V' are
upperbounded by 3, oy Pr[f(X) = v] < 2° x 55 = €¢/2. The lemma follows. B

Now we describe how the Recycling Lemma is useful in Nisan’s construction. Let M be a
logspace machine. Fix an input of size n. Then for some d > 1 the graph of all configurations
of M on this input has < n? configurations and runs in time L < n?. Assume without loss
of generality —since unneeded random bits can always be ignored— that M uses 1 random
bit at each step. Assume also (by giving M a separate worktape that maintains a time
counter), that the configuration graph is leveled: it has L levels, with level i containing
configurations obtainable at time 7. The first level contains only the start node and the last
level contains two nodes, “accept” and “reject;” every other level has W = n? nodes. Each
level 7 node has two outgoing edges to level ¢ + 1 nodes and the machine’s computation at
this node involves using the next bit in the random string to pick one of these two outgoing
edges. We sometimes call L the length of the configuration graph and W the width.

Configuration Graph for Machine Q
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Figure 21.2 Configuration graph for machine M

For simplicity we first describe how to reduce the number of random bits by a factor
2. Think of the L steps of the computation as divided in two halves, each consuming L/2
random bits. Suppose we use some random string X of length L/2 to run the first half,
and the machine is now at node v in the middle level. The only information known about
X at this point is the index of v, which is a string of length dlogn. We may thus view
the first half of the branching program as a (deterministic) function that maps {0, 1}L/ 2
bits to {0,1}*'°8™ bits. The Recycling Lemma allows us to use a random seed of length
O(logn) to recycle X to get an almost-random string Ext(X, z) of length L/2, which can be
used in the second half of the computation. Thus we can run L steps of computation using
L/2 + O(logn) bits, a saving of almost a factor 2. Using a similar idea recursively, Nisan’s
generator runs L steps using O(lognlog L) random bits.

Now we formally define Nisan’s generator.
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Definition 21.33 (Nisan’s generator) For some r > 0 let Exty,:{0,1}*" x {0,1}" — {0,1}*"
be an extractor function for each & > 0. For every integer & > 0 the associated Nisan
generator Gy, : {0, 1}*" — {0, 1}2k is defined recursively as (where |a| = (k — 1)r, |z| = r)

z1  (i.e., first bit of 2) k=1
Grlaoz) = O
Gr—1(a) o Gg—1(Extg—1(a,z)) k>1

Now we use this generator to prove Theorem 21.31. We only need to show that the
probability that the machine goes from the start node to the “accept” node is similar
for truly random strings and pseudorandom strings. However, we will prove a stronger
statement involving intermediate steps as well.

If nodes u is a node in the configuration graph, and s is a string of length 2%, then we
denote by f, ox(s) the node that the machine reaches when started in « and its random
string is s. Thus if s comes from some distribution D, we can define a distribution f, ox (D)
on nodes that are 2% levels further from w.

Lemma 21.34 Let r = O(logn) be such that for each k < dlogn, Exty:{0,1}"" x {0,1}" —
{0,1}* is a (kr — 2dlogn, €)-extractor. For every machine of the type described in the
previous paragraphs, and every node u in its configuration graph:

A(fuor (Usk), fu2r (Gr(Ukr))) < 3%, (16)

where U, denotes the uniform distribution on {0, 1}, O

To prove Theorem 21.31 from Lemma 21.34 let u = wg, the start configuration, and
2% = L, the length of the entire computation. Choose 3¥¢ < 1/10 (say), which means
logl/e = O(log L) = O(logn). Using the extractor of Section 21.5.6 as Extj, we can let

= O(logn) and so the seed length kr = O(rlog L) = O(log® n).

PROOF OF LEMMA 21.34: Let ¢ denote the maximum value of the left hand side of (16)
over all machines. The lemma is proved if we can show inductively that e < 2¢;_1+2¢. The
case k = 1 is trivial. At the inductive step, we need to upper bound the distance between
two distributions f,, ox (D1), fu 2t (DP4), for which we introduce two distributions Dy, D3 and
use triangle inequality (which holds since A(:,-) is a distance function on distributions):

3
A(fu,Qk(,Dl) fu 2k D4 Z fu 2k fu 2"( z+1))' (17)

The distributions will be:

Dy = Uy
Dy = Gi(Uyr)
Dz = Usgi-1 0 Gr—1(Ug—1)r)
= Gr-1(Ug-1)r) © Gr—1(U(}_1),) (U,U" are identical but independent).

We bound the summands in (17) one by one.

Claim 1: A(fy2+(D1) = fuor(D2)) < i1
Denote Pr(f, os-1(Ugs-1) = w] by pyw and Pr[f, ox-1(Gr—1(Ug—1)r)) = w] by Guw. Ac-
cording to the inductive assumption,

1
5 2 Puw = Guwl = Afue-1 (Ui-), Fur-1 (G (Uyr))) < ki

Since D; = Usx may be viewed as two independent copies of Usr—1 we have

A(fu,Zk (Dl) fu 2k (DQ Z Zpuwpwv Zpquvﬂv
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where w, v denote nodes 2°~1 and 2¥ levels respectively from u

- Zpuw% Z |pwu - qu|

v

< ex—1 (using inductive hypothesis and Z Puw = 1)

w

Claim 2: A(fu72k (DQ), fu72k (Dg)) S €k—1-
The proof is similar to the previous case and is omitted.

Claim 3: A(fy 2:(D3), fu2x(Ds)) < 2e.

We use the Recycling Lemma. Let g, : {0,1}(k71)r — [1,W] be defined as g,(a) =
Juoe-1(Gr—1(a)). (To put it in words, apply the Nisan generator to the seed a and use
the result as a random string for the machine, using u as the start node. Output the node
you reach after 28! steps.) Let X,Y € Uk—1)r and z € U,. According to the Recycling

Lemma,
gu(X) oY = gu(X) o Exty—1(X, 2),

and then Part 5 of Lemma A.21 implies that the equivalence continues to hold if we apply
a (deterministic) function to the second string on both sides. Thus
9u(X) 0 gu(Y) e gu(X) © guw (Extr—1(X, 2))

for all nodes w that are 2"~! levels after u. The left distribution corresponds to f, o« (Ds)
(by which we mean that Pr[f, ox(Ds) = v] = >, Prlg.(X) = wAgy(Y) = v]) and the right
one to f, or(Dy) and the proof is completed. W

WHAT HAVE WE LEARNED?

e Often we can easily show that a random object has certain attractive properties,
but it’s non-trivial to come up with an explicit construction of an object with these
properties. Yet, once found, such explicit constructions are often extremely useful.

e The behavior of random walks on a graph is tightly related to the eigenvalues of its
adjacency matrix (or, equivalently, its normalized version— the random-walk matrix).

e An expander graph family is a collection of constant-degree graphs whose second
largest eigenvalue is bounded away from 1. Such families can be shown to exist using
the probabilistic method, but we also know of ezplicit constructions.

e An /-step random walk on an expander graph is to a certain extend “pseudorandom”
and behaves similarly to ¢ randomly chosen vertices under certain measures. This
fact has been found useful in a variety of setting, from the randomness efficient error
reduction procedure for BPP to the logspace algorithm for undirected connectivity.

e Extractors are functions that transform a distribution with a large min-entropy into
(close to) the uniform distribution.

e Pseudorandom generators with a “black-box” analysis of their correctness can be used
to construct randomness extractors, even though the latter are based on no unproven
assumptions or lower bounds.

Chapter notes and history

Expanders were first defined by Bassalygo and Pinsker [BP73] and Pinsker [Pin73] proved their
existence using the probabilistic method. They were motivated by the question of finding explicit
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graphs to replace the random graphs in an error-correcting code construction by Gallager [Gal63].
Margulis [Mar73] gave the first explicit construction of an expander family although he did not give
any bound on the parameter A\(G) of graphs G in the family except to prove it is bounded away
from 1. Gabber and Galil [GG79] improved Margulis’s analysis and gave an explicit bound on A\(G),
a bound that was later improved by Jimbo and Marouka [JM85]. Lubotzky, Phillips and Sarnak
[LPS86] and Margulis [Mar88] constructed Ramanujan graphs, that are expander with an optimal
dependence between the parameter A and their degree. The Alon-Boppanna lower bound on the
second eigenvalue of a d-regular graph was first stated in [Alo86]; a tight bound on the o(1) error
term was given in [Nil04].

The relation between the algebraic (eigenvalue-based) and combinatorial definitions of ex-
panders was developed by Dodziuk, Alon and Milman, and Alon in the papers [Dod84, AMS4,
AMS85, Alo86]. Sinclair and Jerrum [SJ88] generalized this relation to the case of general reversible
Markov chains. All of these results can be viewed as a discrete version of a result by Cheeger [Che70]
on compact Riemannian manifolds.

Lemma 21.4 (every connected graph has some spectral gap) is from Alon and Sudakov [AS00a]
and is an improved version of a result appearing as Problem 11.29 in Lovdsz’s book [Lov07].
Lemma 21.11 (Expander Mixing Lemma) is from Alon and Chung [AC86] (though there it’s stated
with T'=V '\ 5).

Karp, Pippenger and Sipser [KPS85] were the first to use expanders for derandomization, specif-
ically showing how to use them to reduce the error of an RP-algorithm from 1/3 to 1/ Vk using
only O(k) additional random bits. Ajtai, Komlos, and Szemeredi [AKS87] were the first to use
random walks on expander graphs for derandomization in their result that every RL algorithm
using less log? n/loglogn random bits can be simulated in deterministic log space. Cohen and
Wigderson [CW89] and Impagliazzo-Zuckerman [1Z89] independently showed how to use the [AKS87]
analysis to reduce the error of both RP and BPP algorithms as described in Section 21.2.5 (er-
ror reduction from 1/3 to 27% using O(k) additional bits). An improved analysis of such walks
was given by Gillman [Gil93] who proved the Expander Chernoff Bound (Theorem 21.15). Some
additional improvements were given in [Kah97, WX05, Hea06].

The explicit construction of expanders presented in Section 21.3 is due to Reingold, Vadhan and
Wigderson [RVWO00], although our presentation follows [RV05, RTV06]. The expansion properties
of the replacement product were also analyzed in a particular case of products of two cubes by
Gromov [Gro83] and for general graphs (in a somewhat different context) by Martin and Randall
[MROO].

Hoory, Linial and Wigderson [HLWO06] give an excellent introduction to expander graphs and
their computer science applications. The Alon-Spencer book [AS00b] also contains several results
on expanders.

The problem of randomness extraction was first considered in the 1950s by von Neumann [vN51]
who wanted to extract randomness from biased (but independent) random coins. This was generl-
ized to Markov chains by Blum [Blu84]. Santha and Vazirani [SV84] studied extraction for the much
more general class now known as “Santha Vazirani sources” (see Exercise 21.23), that necessitates
adding a seed and allowing the output to have some small statistical distance from the uniform.
Vazirani and Vazirani [VV85] showed how to simulate RP using a Santha-Vazirani source. Chor
and Goldreich [CG85] improved the analysis of [SV84, VV85] and generalized further the class of
sources. In particular they introduced the notion of min-entropy, and studied block sources, where
each block has significant min-entropy even conditioned on the previous block. They also studied
extraction from several (two or more) independent sources of high min-entropy (i.e., (k,n) sources
for k > n/2). Zuckerman [Zuc90] put forward the goal of simulating probabilistic algorithms using a
single source of high min-entropy and observed this generalizes all models that had been studied to
date. (See [SZ94] for an account of various models considered by previous researchers.) Zuckerman
also gave the first simulation of probabilistic algorithms from (k,n) sources assuming k = Q(n). We
note that extractors were also used implicitly in an early work of Sipser [Sip86] who showed certain
conditional derandomization results under the assumption that certain (variants of) extractors exist
(though he described them in a different way).

Extractors (albeit with long seed length) were also implicitly constructed and used in cryptog-
raphy, using pairwise independent hash functions and the leftover hash lemma (Lemma 21.26) of
Impagliazzo, Levin, and Luby [ILL89] and a related precursor by Bennett, Brassard and Robert
[BBR8S8|. Nisan [Nis90] then showed that hashing (in particular the [VV85] generator) could be used
to obtain provably good pseudorandom generators for logspace. Nisan and Zuckerman [NZ93] first
defined extractors. They also gave a new extractor construction and used it to achieve their result
that in general the amount of randomness used by a probabilistic algorithm can be reduced from
polynomial to linear in the algorithm’s space complexity. Since then a long sequence of beautiful
works was dedicated to improving the parameters of extractors, on the way discovering many impor-
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tant tools that were used in other areas of theoretical computer science. In particular, Guruswami
et al [GUVO07] (slightly improving over Lu et al [LRVWO03]) constructed an extractor that has both
seed length and output length within a constant factor of the optimal non-explicit extractor of
Theorem 21.25. See [Sha02] for a good (though slightly outdated) survey on extractor constructions
and their applications.

Trevisan’s [Tre99] insight about using pseudorandom generators to construct extractors (see
Section 21.5.7) has now been greatly extended. It is now understood that three combinatorial
objects studied in three different fields are very similar: pseudorandom generators (cryptography
and derandomization), extractors (weak random sources) and list-decodable error-correcting codes
(coding theory and information theory). Constructions of any one of these objects often gives
constructions of the other two. See the survey by Vadhan [Vad07].

Theorem 21.31 is by Nisan [Nis90], who also showed that all of BPL can be simulated us-
ing polynomial-time and O(log2 n) space. The proof we presented is by Impagliazzo, Nisan, and
Wigderson [INW94], with the extractor-based viewpoint due to Raz and Reingold [RR99]. Saks and
Zhou [5795] extended Nisan’s techniques to show an O(log® n)-space algorithm for every problem
in BPL.

As perhaps the most important example of an RL problem, undirected connectivity has re-
ceived special attention in the literature. Nisan, Szemeredi and Wigderson [NSW92] gave the first
deterministic algorithm for undirected connectivity using o(log®n) space, specifically O(log"® n); as
mentioned above this result was later generalized to all of RL by [SZ95]. Armoni et al [ATSWZ97]
improved the bound for undirected connectivity to O(log4/3 n) space. The deterministic space com-
plexity of undirected connectivity was finally resolved by Reingold [Rei05] who showed that it lies
in L (Theorem 21.21). Trifonov [Tri05] proved concurrently and independently the slightly weaker
result of an O(logn loglog n)-space algorithm for this problem.

Exercises

Prove Claim 21.1 using the Cauchy-Schwartz Inquality— [(u, v)| < |lul|, ||v]|, for every two vectors
u,v eR"

(a) Prove Holder’s Inequality (see Section A.5.4): For every p,q with % + % =1, |lull,Ivl]l, >

Yo, luivi]. Note that the Cauchy-Schwartz Inequality is the special case of Holder’s Inequal-
ity with p = ¢ = 2. na4ea

b) For a vector v € R", define ||v = maX;c[n) |Vi|. Show that this is a norm and that for ever
oo €n] y

V7
n 1/p
[Vl = lim (ZIWI”) -
P \isL

(c) Prove that ||v]|, < /|v],||V]|. for every vector v € R". naea

Prove that if G is an n-vertex bipartite graph then there exists a vector v € R™ such that Av = —v
where A is the random-walk matrix of G.

Prove that for every n-vertex d-regular graph G, the diameter of G (maximum over all pairs of
distinct vertices i,7 in G of the length of the shortest path in G between i and j) is at most
3n/(d+1). naes

Recall that the spectral norm of a matrix A, denoted ||A||, is defined as the maximum of ||Av]|,
for every unit vector v. Let A be a symmetric stochastic matrix: i.e., A = A" and every row and
column of A has non-negative entries summing up to one. Prove that ||A]] < 1. ma4es

Let A, B be two n X n matrices.

(a) Prove that ||A+ B < ||A|| + || B]l-
(b) Prove that ||AB|| < [JA||||B]l-

Let A, B be two symmetric stochastic matrices. Prove that A(A + B) < A(A) + A(B).
Prove Lemma 21.16. raes

(a) Prove that if a probability distribution X has support of size at most d, its collision probability
is at least 1/d.

(b) Prove that if G is an (n,d, A)-graph and X is the distribution over a random neighbor of the
first vertex, then the collision probability of X is at most A\? + 1 /n.
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(c) Prove that A > /% — 1 = % + 0(1) (where o(1) is a term that tends to 0 with n).
Recall that the trace of a Matrix A, denoted tr(A), is the sum of the entries along its diagonal.

(a) Prove that if an n x n matrix A has eigenvalues A1,..., Ay, then tr(A) =>"7" | Ai.

(b) Prove that if A is a random-walk matrix of an n-vertex graph G, and k > 1, then tr(A¥) is

equal to n times the probability that a if we select a vertex ¢ uniformly at random and take
a k step random walk from i, then we end up back in i.

(c) Prove that for every d-regular graph G, k € N and vertex 7 of GG, the probability that a path
of length k from ¢ ends up back in i is at least as large as the corresponding probability in
T4, where Ty is the complete (d — 1)-ary tree of depth k rooted at 7. (That is, every internal
vertex has degree d— one parent and d — 1 children.)

(d) Prove that for even k the probability that a path of length k from the root of Ty ends up back
at v is at least 2F~Rlosd/2=o(k) gy qq

(e) Prove that for every n-vertex d-degree graph G, A\(G) > %(1 + o(1)), where o(1) denotes a

term, depending on n and d that tends to 0 as n grows. maes

Let an n,d random graph be an n-vertex graph chosen as follows: choose d random permutations
T1,...,7q from [n] to [n]. Let the the graph G contains an edge (u,v) for every pair u,v such that
v = m;(u) for some 1 <4 < d. Prove that a random n,d graph is an (n, 2d, 1—10) edge expander with
probability 1 — o(1) (i.e., tending to one with n). maes

In this exercise we show how to extend the error reduction procedure of Section 21.2.5 to two-sided
(BPP) algorithms.

(a) Prove that under the conditions of Theorem 21.12, for every subset I C [k],
PriVi<i<rXi € Bl < (1 - A\)/B+ 171

(b) Conclude that if |B| < n/10 and A < 1/100 then the probability that there exists a subset
I C [k] such that |I| > k/10 and Vi<i<; X; € B is at most 27%/100,

(c) Use this to show a procedure that transforms every BPP algorithm A that uses m coins and
decides a language L with probability 0.9 into an algorithm B that uses m + O(k) coins and
decides the language L with probability 1 — 27*.

Prove that for every m-vertex d-regular graph, there exists a subset S of n/2 vertices, such that
E(S,S) < dn/4. Conclude that there does not exist an (n,d, p) edge expander for p > 1/2. raes

Prove the Expander Mixing Lemma (Lemma 21.11). maes

[Tan84] A graph where |I'(S)| < ¢|S| for every not-too-big set S (say, |S| < n/(10d)) is said to have
vertex expansion c. This exercise shows that graphs with the minimum possible second eigenvalue
%(1 + o(1)) have vertex expansion roughly d/4. It is known that such graphs have in fact vertex

expansion roughly d/2 [Kah92], and there are counterexamples showing this is tight. In contrast,
random d-regular graphs have vertex expansion (1 — o(1))d.

(a) Prove that if p is a probability vector then ||p|\§ is equal to the probability that if i and j are
chosen from p, then i = j.

(b) Prove that if s is the probability vector denoting the uniform distribution over some subset
S of vertices of a graph G with random-walk matrix A4, then ||Ap||> > 1/|T'(S)|, where I'(S)
denotes the set of S’s neighbors.

(c) Prove that if G is an (n, d, \)-expander graph, and S is a subset of en vertices, then

|S]

IT(S) > 222 (1 — )2 — 2¢/X2)

H465

If G is a graph and S is a subset of G’s vertices then by contracting S we mean transforming G
into a graph H where all of S’s members are replaced by a single vertex s with an edge sv in
H for every edge wv in G where u € S. Let G be an (n,d, p) edge expander, and let H be the
n’ =n — (c— 1)k vertex cd degree graph obtained by taking k disjoint c-sized subsets Si,. .., Sy of
G’s vertices and contracting them, and then adding self loops to the other vertices to ensure that
the graph is regular. Prove that H is an (n',cd, p/(2c)) edge expander. Use this to complete the
proof of Theorem 21.19. maes

Prove that for every function Ext : {0,1}" — {0,1}"™ and there exists an (n,n — 1)-source X and a
bit b € {0, 1} such that Pr[Ext(X); = b] = 1 (where Ext(X)1 denotes the first bit of Ext(X)). Prove
that this implies that A(Ext(X), Un) > 1/2.
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(a) Show that there is a deterministic poly(n)-time algorithm A that given an input distributed
according to the distribution X with Hoo(X) > n'% and black box access to any function
f:{0,1}" — {0,1} outputs 1 with probability at least 0.99 if E[f(U,)] > 2/3 and outputs
0 with probability at least 0.99 if E[f(Un)] < /3. We call such an algorithm a function
approrimator.

(b) Show that there is no deterministic polynomial-time function approximator A without getting
an additional randomized input (i.e., there is no deterministic function approximator). maes

(c) Show that for every probability distribution X, if A(X,Y) > 1/10 for every Y with Ho (Y) >
n/2, then there is no polynomial-time function approximator that gets X as an input. Con-
clude that access to a high min entropy distribution is necessary for black-box simulation of
BPP algorithms. naes

. Say that a distribution Y is a convexr combination of distributions Yi,...,Yn if there exist some
non-negative numbers «i,...,any summing up to 1 such that Y is the distribution obtained by
picking ¢ with probability «; and sampling an element from Y;. Prove that if this is the case then
for every distribution X,

A(X,Y) <D aiA(X,Y;) < max A(X, Vi) .

H465

Suppose Boolean function f is (S, e€)-hard and let D be the distribution on m-bit strings defined
by picking inputs z1,x2, ..., Tn uniformly at random and outputting f(z1)f(x2)--- f(2m). Show
that the statistical distance between D and the uniform distribution is at most em.

Prove Lemma 21.26.

Let A be an n X n matrix with eigenvectors u',...,u" and corresponding values A1,...,A,. Let
B be an m X m matrix with eigenvectors v,...,v™ and corresponding values a, ..., . Prove

that the matrix A ® B has eigenvectors u’ ® v’/ and corresponding values \; - «;.

Prove that for every two graphs G, G’', A(G® G") < A(G) + A(G’) without using the fact that every
symmetric matrix is diagonalizable. maes

1

Let G be an n-vertex D-degree graph with p edge expansion for some p > 0. (That is, for every a
subset S of G’s vertices of size at most n/2, the number of edges between S and its complement is
at least pd|S|.) Let G’ be a D-vertex d-degree graph with p’ edge expansion for some p’ > 0. Prove
that G ® G’ has at least p?p’/1000 edge expansion. maes
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22.1

Chapter 22

Proofs of PCP Theorems and the
Fourier Transform Technique

We saw in Chapter 11 that the PCP Theorem implies that computing approximate solutions
to many optimization problems is NP-hard. This chapter gives a complete proof of the PCP
Theorem. In Chapter 11 we also mentioned that the PCP Theorem does not suffice for
proving several other similar results, for which we need stronger (or simply different) “PCP
Theorems”. In this chapter we survey some such results and their proofs. The two main
results are Raz’s parallel repetition theorem (see Section 22.3) and Hastad’s 3-bit PCP
theorem (Theorem 22.16). Raz’s theorem leads to strong hardness results for the 2CSP
problem over large alphabets. Hastad’s theorem shows that certificates for NP languages
can be probabilistically checked by examining only 3 bits in them. One of the consequences
of Hastad’s result is that computing a (7/8 4 ¢)-approximation for the MAX-3SAT problem
is NP-hard for every ¢ > 0. Since we know that 7/8-approximation is in fact possible in
polynomial time (see Example 11.2 and Exercise 11.3), this shows (assuming P # NP) that
the approximability of MAX-3SAT has an abrupt transition from easy to hard at 7/8. Such
a result is called a threshold result, and threshold results are now known for a few other
problems.

Hastad’s result builds on the other results we have studied, including the (standard)
PCP Theorem, and Raz’s theorem. It also uses Hastad’s method of analysing the verifier’s
acceptance probability using Fourier transforms. Such Fourier analysis has also proved
useful in other areas in theoretical computer science. We introduce this technique in Sec-
tion 22.5 by using it to show the correctness of the linearity testing algorithm of Section 11.5,
which completes the proof of the result NP C PCP(poly(n),1) in Section 11.5. We then
use Fourier analysis to prove Hastad’s 3-bit PCP Theorem.

In Section 22.8 we prove the hardness of approximating the SET-COVER problem. In
Section 22.2.3 we prove that computing n~¢-approximation to MAX-INDSET in NP-hard.
In Section 22.9 we briefly survey other PCP Theorems that have been proved, including
those that assume the so-called unique games conjecture.

Constraint satisfaction problems with non-binary alphabet

In this chapter we will often use the problem gCSPyy, which is defined by extending the
definition of gCSP in Definition 11.11 from binary alphabet to an alphabet of size W.

Definition 22.1 (qCSPw/ ) For integers ¢q,W > 1 the ¢CSPy problem is defined analo-
gously to the gCSP problem of Definition 11.11, except the underlying alphabet is [WW] =
{1,2,...,W} instead of {0,1}. Thus constraints are functions mapping [W1? to {0, 1}.

For p < 1 we define _GAPqCSPW p analogously to the definition of p-GAPgCSP for binary
alphabet (see Definition 11.13). O
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Example 22.2

3SAT is the subcase of ¢qCSPy where ¢ = 3, W = 2, and the constraints are
OR’s of the involved literals.

Similarly, the NP-complete problem 3COL can be viewed as a subcase of 2CSP3
instances where for each edge (i, j), there is a constraint on the variables u;, u;
that is satisfied iff u; # u;. The graph is 3-colorable iff there is a way to assign
a number in {0, 1,2} to each variable such that all constraints are satisfied.

Proof of the PCP Theorem

This section proves the PCP Theorem. We present Dinur’s proof [Din06], which simplifies
half of the original proof of [AS92, ALMT92]. Section 22.2.1 gives an outline of the main steps.
Section 22.2.2 describes one key step, Dinur’s gap amplification technique. Section 22.2.5
describes the other key step, which is from the original proof of the PCP Theorem [ALM*92]
and its key ideas were presented in the proof of NP C PCP(poly(n),1) in Section 11.5.

Proof outline for the PCP Theorem.

As we have seen, the PCP Theorem is equivalent to Theorem 11.14, stating that p-GAP¢CSP
is NP-hard for some constants ¢ and p < 1. Consider the case that p = 1 — € where € is
not necessarily a constant but can be a function of m (the number of constraints). Since
the number of satisfied constraints is always a whole number, if ¢ is unsatisfiable then
val(¢) <1 —1/m. Hence, the gap problem (1—1/m)-GAP3CSP is a generalization of 3SAT
and is NP hard. The idea behind the proof is to start with this observation, and iteratively
show that (1—¢)-GAP¢CSP is NP-hard for larger and larger values of ¢, until € is as large
as some absolute constant independent of m. This is formalized in the following definition
and lemma.

Definition 22.3 Let f be a function mapping CSP instances to CSP instances. We say that
f is a CL-reduction (short for complete linear-blowup reduction) if it is polynomial-time
computable and for every CSP instance ¢, satisfies:

Completeness: If ¢ is satisfiable then so is f(¢).

Linear blowup: If m is the number of constraints in ¢ then the new gCSP instance f(¢)
has at most C'm constraints and alphabet W, where C and W can depend on the arity
and the alphabet size of ¢ (but not on the number of constraints or variables). &

Lemma 22.4 (PCP Main Lemma)

There exist constants qo > 3, €9 > 0, and a CL-reduction f such that for every qoCSP-
instance ¢ with binary alphabet, and every e < e, the instance ¥ = f(p) is a qoCSP (over
binary alphabet) satisfying

val(p) <1—e=val(y) <1-—2¢

Lemma 22.4 can be succinctly described as follows:

Arity | Alphabet | Constraints | Value
Original q0 binary m 1—ce¢

4 4 4 4
Lemma 22.4 | qo binary Cm 1—2e¢
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This lemma allows us to easily prove the PCP Theorem.

Proving Theorem 11.5 from Lemma 22.4. Let ¢p > 3 be as stated in Lemma 22.4. As
already observed, the decision problem ¢¢CSP is NP-hard. To prove the PCP Theorem
we give a reduction from this problem to GAP ¢oCSP. Let ¢ be a ¢¢CSP instance. Let
m be the number of constraints in . If ¢ is satisfiable then val(p) = 1 and otherwise
val(¢) <1—1/m. We use Lemma 22.4 to amplify this gap. Specifically, apply the function
f obtained by Lemma 22.4 to ¢ a total of logm times. We get an instance ¢ such that
if ¢ is satisfiable then so is v, but if ¢ is not satisfiable (and so val(p) < 1 —1/m) then
val(1)) < 1 — min{2eg, 1 — 21°8™ /m} = 1 — 2¢,. Note that the size of 1 is at most C'°8™m,
which is polynomial in m. Thus we have obtained a gap-preserving reduction from L to the
(1—2€¢)-GAP q(CSP problem, and the PCP theorem is proved. l

The rest of this section proves Lemma 22.4 by combining two transformations: the first
transformation amplifies the gap (i.e., fraction of violated constraints) of a given CSP in-
stance, at the expense of increasing the alphabet size. The second transformation reduces
back the alphabet to binary, at the expense of a modest reduction in the gap. The trans-
formations are described in the next two lemmas.

Lemma 22.5 (Gap Amplification [Din06])

For every {,n € N, there exist numbers W € N, ey > 0 and a CL-reduction g¢ 4 such that
for every qCSP instance ¢ with binary alphabet, the instance 1 = g¢,4(¢) has arity only 2,
uses alphabet of size at most W and satisfies:

val(p) <1 —e=val(y) <1 —le

for every e < €.

Lemma 22.6 (Alphabet Reduction)

There exists a constant qo and a CL- reduction h such that for every CSP instance v, if ¢
had arity two over a (possibly non-binary) alphabet {0..W—1} then ¢ = h(y) has arity qq
over a binary alphabet and satisfies:

val(p) <1—e=val(h(p)) <1-—¢/3

Lemmas 22.5 and 22.6 together imply Lemma 22.4 by setting f(¢) = h(ge,q, (¢)). Indeed,
if ¢ was satisfiable then so will f(p). If val(p) < 1—¢, for € < ¢ (where €y the value obtained
in Lemma 22.5 for £ = 6, ¢ = qo) then val(ge 4, () < 1 — 6€ and hence val(h(ge,q,(¢))) <
1 — 2¢e. This composition is described in the following table:

Arity | Alphabet | Constraints | Value
Original qo binary m 1—e¢

3 3 3 3
Lemma 22.5 ({ =6 ,q=qo) | 2 W Cm 1 — Ge

U U U I
Lemma 22.6 q0 binary C'Cm 1—2¢

Dinur’'s Gap Amplification: Proof of Lemma 22.5

To prove Lemma 22.5, we need to exhibit a function g that maps a ¢CSP instance to
a 2CSPyy instance over a larger alphabet {0.W—1} in a way that increases the fraction
of violated constraints. In the proof verification viewpoint (Section 11.3), the fraction of
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violated constraints is merely the soundness parameter. So at first sight, our task merely
seems to be reducing the “soundness” parameter of a PCP verifier, which as already noted
(in the Remarks following Theorem 11.5) can be easily done by repeating the verifier’s
operation 2 (or more generally, k) times. The problem with this trivial idea is that the CSP
instance corresponding to k repeated runs of the verifier is not another 2CSP instance, but
an instance of arity 2k since the verifier’s decision depends upon 2k different entries in the
proof. In the next chapter, we will see another way of “repeating” the verifier’s operation
using parallel repetition, which does result in 2CSP instances, but greatly increases the size
of the CSP instance. By contrast, here we desire a CL-reduction, which means the size
must only increase by a constant factor. The key to designing such a CL-reduction is
walks in expander graphs, which we describe separately first in Section 22.2.3 since it is of
independent interest.

Expanders, walks, and hardness of approximating INDSET

Dinur’s proof uses expander graphs, which are described in Chapter 21. Here we recap
the facts about expanders used in this chapter, and as illustration we use them to prove a
hardness result for MAX-INDSET.

In Chapter 21 we define a parameter A\(G) € [0,1], for every regular graph G (see
Definition 21.2). For every ¢ € (0,1), we call a regular graph G satisfying A(G) < ¢ a c-
expander graph. If ¢ < 0.9, we drop the prefix ¢ and simply call G an expander graph. (The
choice of the constant 0.9 is arbitrary.) As shown in Chapter 21, for every constant ¢ € (0, 1)
there is a constant d and an algorithm that given input n € N, runs in poly(n) time and
outputs the adjacency matrix of an n-vertex d-regular c-expander (see Theorem 21.19).

The main property we need in this chapter is that for every regular graph G = (V, E)
and every S C V with |S| <|V]/2,

S| (1 AG)
< (2 A
(uﬁlj)reE[u €Sve s < v 2 + =5 (1)

(Exercise 22.1) Another property we use is that A\(G*) = \(G)* for every ¢ € N, where
G* is obtained by taking the adjacency matrix of G to the £** power (i.e., an edge in G*
corresponds to an (¢—1)-step path in G). Thus (1) also implies that

1| (1 MG)*
P S. SI<— 1= 2
(u,v)eg(Ge)[u €Sves]< V] \ 2 * 2 2)

Example 22.7

As an application of random walks in expanders, we describe how to prove a
stronger version of the hardness of approximation result for INDSET in Theo-
rem 11.15. This is done using the next Lemma, which immediately implies (since
m = poly(n)) that there is some € > 0 such that computing n~“-approximation
to MAX-INDSET is NP-hard in graphs of size n. (See Section 22.9.2 for a sur-
vey of stronger hardness results for MAX-INDSET.) Below, &(F) denotes the
fractional size of the largest independent set in F. It is interesting to note
how this Lemma gives a more efficient version of the “self-improvement” idea of
Theorem 11.15.

Lemma 22.8 For every A > 0 there is a polynomial-time computable reduction
f that maps every n-vertex graph F' into an m-vertex graph H such that

(&(F) — 208" < G(H) < (a(F) 4 2))'°en

PROOF: We use random walks to define a more efficient version of the “graph
product” used in the proof of Corollary 11.17. Let GG be an expander on n nodes
that is d-regular (where d is some constant independent of n) and let A = A(G).
For notational ease we assume G, F' have the same set of vertices. We will map
F into a graph H of nd'°¢™~! vertices in the following way:
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e The vertices of H correspond to all the (logn—1)-step paths in the A-

expander G.

e We put an edge between two vertices u, v of H corresponding to the paths
(Ui, ..., Uogn) and (v1,. .., Viegn) if there exists an edge in G between two
vertices in the set {u1, ..., Uogn, V1, ..., Viogn }-

It is easily checked that for any independent set in H if we take all vertices of F’
appearing in the corresponding walks, then that constitutes an independent set
in F'. From this observation the proof is concluded using Exercise 22.2. B

Dinur’s Gap-amplification
We say that a ¢CSPy instance ¢ is “nice” if it satisfies the following properties:

Property 1: The arity ¢ of o is 2 (though the alphabet may be non binary).

Property 2: Let the constraint graph of ¢ be the graph G with vertex set [n] where for
every constraint of ¢ depending on the variables w;, u;, the graph G has the edge (4, 7).
We allow G to have parallel edges and self-loops. Then G is d-regular for some constant
d (independent of the alphabet size) and at every node, half the edges incident to it
are self-loops.

Property 3: The constraint graph is an expander. That is, A(G) < 0.9.

It turns out that when proving Lemma 22.5 we may assume without loss of generality
that the CSP instance ¢ is nice, since there is a relatively simple CL reduction mapping
arbitrary ¢CSP instances to “nice” instances. (See Section 22.A; we note that these CL
reductions will actually lose a factor depending on ¢ in the soundness gap, but we can
regain this factor by choosing a large enough value for ¢ in Lemma 22.9 below.) The rest of
the proof consists of a “powering” operation for nice 2CSP instances. This is described in
the following lemma:

Lemma 22.9 (Powering) There is an algorithm that given any 2CSPy, instance ¢ satisfying
Properties 1 through 3 and an integer t > 1 produces an instance ' of 2CSP such that:

1. ¢t is a 2CSPy-instance with alphabet size W' < de, where d denote the degree
of 1’s constraint graph. The instance ¢! has d"*Vi*1n constraints, where n is the
number of variables in 1.

2. If %) is satisfiable then so is ¥".

3. For every e < d%/%, if val(¢) <1 — € then val(y') <1—¢€ for e = %e.

4. The formula 1" is produced from 1) in time polynomial in m and w, &

PROOF: Let ¢ be a 2CSPyy-instance with n variables and m = nd constraints, and as
before let G' denote the constraint graph of . To prove Lemma 22.9, we first show how
we construct the formula ¢ from 1. The main idea is a certain “powering” operation on
constraint graphs using random walks of a certain length.

Construction of ¥!. The formula ¢! will have the same number of variables as 1. The
new variables y = y1,...,y, take values over an alphabet of size W' = de, and thus a
value of a new variable y; is a d°-tuple of values in {0..W—1}. To avoid confusion in the rest
of the proof, we reserve the term “variable” for these new variables, and say “old variables”
if we mean the variables of .
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We will think of a value of variable y; as giving a value in {0..W—1} to every old variable
u; where j can be reached from i using a path of at most ¢+ /¢ steps in G (see Figure 22.1).
In other words it gives an assignment for every u; such that j is in the ball of radius ¢ 4 Vit
and center i in GG. Since graph G is d-regular, the number of such nodes is at most d”‘/ﬂl,
which is less than d°’, so this information can indeed be encoded using an alphabet of size
w'.

Below, we will often say that an assignment to y; “claims” a certain value for the old
variable u;. Of course, the assignment to a different variable y;; could claim a different
value for wu;; these potential inconsistences make the rest of the proof nontrivial. In fact,
the constraints in the 2CSPy - instance ¢! are designed to reveal such consistencies.

Figure 22.1 The CSP 1! consists of n variables taking values in an alphabet of size wd*,
An assignment to a new variable y; encodes an assignment to all old variables of 1) corre-
sponding to nodes that are in a ball of radius t 4+ v/ around i in ’s constraint graph. An
assignment y1, ..., yn to 1! may be inconsistent in the sense that if j falls in the intersection
of two such balls centered at ¢ and ¢/, then y; and y;; may claim different values for u;.

For every (2+1)-step path p = (i1,...,i2:12) in G, we have one corresponding constraint
Cp in Y (see Figure 22.2). The constraint C}, depends on the variables y;, and y,,,, (so
we do indeed produce an instance of 2CSPy /) and outputs FALSE if (and only if) there is
some j € [2t 4 1] such that:

1. 4; is in the t 4 Vi-radius ball around ;.
2. ij41 is in the ¢ + V/t-radius ball around 12442

3. If w denotes the value y;, claims for u;; and w’ denotes the value y;,, , claims for
i, , then the pair (w,w") violates the constraint in ¢ that depends on u;; and u;,, , .

A few observations are in order. First, the time to produce this 2CSPyy: instance is

polynomial in m and Wdt, so part 4 of Lemma 22.5 is trivial. Second, for every assignment
to the old variables w1, us, ..., u, we can “lift” it to a canonical assignment to y1,...,y, by
simply assigning to each y; the vector of values assumed by u;’s that lie in a ball of radius
t 4+ +/t and center i in G. If the assignment to the u;’s was a satisfying assignment for 1,
then this canonical assignment satisfies 9!, since it will satisfy all constraints encountered
in walks of length 2¢ + 1 in G. Thus part 2 of Lemma 22.5 is also trivial. This leaves part
3 of the Lemma, the most difficult part. We have to show that if val(¢) < 1 — e then every
assignment to the y;’s satisfies at most 1 — ¢ fraction of constraints in ¥?, where € < d%/f
and ¢ = %6.
The plurality assignment. To prove part 3 of the lemma, we show how to transform every
assignment y for 1! into an assignment u for ¢ and then argue that if u violates a “few”
(i.e., € fraction) of v’s constraints then y violates “many” (i.e., ¢ = Q(v/te) fraction) of
constraints of 1)¢.

From now on, let us fix some arbitrary assignment y = y1,...,y, to ¥!’s variables.
As already noted, the values y;’s may be mutually inconsistent and not correspond to any



22.2 Proof of the PCP Theorem 403

Figure 22.2 1! has one constraint for every path of length 2t + 1 in 1)’s constraint graph,
checking that the views of the balls centered on the path’s two endpoints are consistent with
one another and the constraints of .

obvious assignment for the old variable u;’s. The following notion is key because it tries to
extract a single assignment for the old variables.

For every variable u; of 4, we define the random variable Z; over {0,...,W — 1} to be
the result of the following process: starting from the vertex 7, take a t step random walk
in G to reach a vertex k, and output the value that y; claims for u;. We let z; denote the
most likely value of Z;. If more than one value is most likely, we break ties arbitrarily. We
call the assignment z1, ..., 2, the plurality assignment (see Figure 22.3). Note that Z; = z;
with probability at least 1/W.

Figure 22.3 An assignment y for 1* induces a plurality assignment u for v in the following
way: u; gets the most likely value that is claimed for it by vy, where k is obtained by taking
a t-step random walk from ¢ in the constraint graph of .

Since val(y)) < 1 — €, every assignment for 1) fails to satisfy e fraction of the constraints,
and this is therefore also true for the plurality assignment. Hence there exists a set F of
em = end/2 constraints in ¢ that are violated by the assignment z = z1,...,2,. We will
use this set F' to show that at least an € fraction of 1!’s constraints are violated by the
assignment y.
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Analysis. The rest of the proof defines events in the following probability space: we pick a
(2t+1)-step path, denoted (i1, ...,i2¢42), in G from among all such paths (in other words,
pick a random constraint of ¥?!). For j € {1,2,...,2t + 1}, say that the jth edge in the
path, namely (ij,4;41), is truthful if y;, claims the plurality value for i; and y,,,,, claims
the plurality value for ;1. Observe that if the path has an edge that is truthful and also
lies in F', then by definition of F' the constraint corresponding to that path is unsatisfied.
Our goal is to show that at least ¢ fraction of the paths have such edges.
The proof will follow the following sequence of claims:

Claim 22.10 For each edge e of G and each j € {1,2,...,2t + 1},

1 2
Pr[e is the j’th edge of the path] = TE] =
PROOF: It is easily checked that in a d-regular graph if we take a random starting point i,

and pick a random path of length 2t 4+ 1 going of it, then the j’th edge on a random path
is also a random edge of G. W

The next claim shows that edges that are roughly in the middle of the path (specifically,
in the interval of size §v/f in the middle) are quite likely to be truthful.

Claim 22.11 Let 6 < W. For each edge e of G and each j € {t,t, cet+ 6\/5},

Pr[jth edge of path is truthful |e is the jth edge] > 2—V1V2
PROOF: The main intuition is that since half the edges of G are self-loops, a random walk
of length in [t — §v/t, 1 + §+/1] is statistically very similar to a random walk of length ¢.
Formally, the lemma is proved by slightly inverting the viewpoint of how the path is
picked. By the previous claim the set of walks of length 2¢ + 1 that contain e = (4;,4;41) at
the jth step can be generated by concatenating a random walk of length j out of i; and a
random walk of length 2t — j out of ¢;41 (where the two walks are chosen independently).
Let i1 and i9¢42 denote the endpoints of these two walks. Then we need to show that

Prly;, claims plurality value for ¢; /\ Yiser, claims plurality value for ;4] > # (3)
Since the plurality assignment was defined using walks of length exactly ¢, it follows that

if j is precisely ¢, then the expression on the left hand side in (3) is at least 1/W x 1/W =

1/W?. (This crucially uses that the walks to y;, and y;,,,, are independently chosen.)

However, here j varies in {t,t—l— 1,...,t+ 5\/Z}, so these random walks have lengths
between ¢t — v/t and t + §v/t. We nevertheless show that the expression cannot be too
different from 1/W? for each j.

Since half the edges incident to each vertex are self-loops, we can think of an /-step
random walk from a vertex i as follows: (1) throw ¢ coins and let Sy denote the number of
the coins that came up “heads” (2) take Sy “real” (non self-loop) steps on the graph. Recall
that Sy, the number of heads in ¢ tosses, is distributed according to the familiar binomial
distribution.

It can be shown that the distributions S; and S, 157 are within statistical distance at
most 104 for every 0, (see Exercise 22.3). In other words,

1
5 Z |Pr[S; =m] — Pr[S, 55 = m]| < 104.

It follows that the distribution of the endpoint of a t-step random walk out of e will be
statistically close to the endpoint of a (t 4 §v/t)-step random walk, and the same is true for
the (t — §v/t)-step random walk. Thus the expression on the left hand side of (3) is at least

(7 — 108) (51> — 109) >
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which completes the proof. B

Now let V be the random variable denoting the number of edges among the middle §+/¢
edges that are truthful and in F'. Since it is enough for a path to contain one such edge for
the corresponding constraint to be violated, our goal is to to show that Pr[V > 0] > ¢'.

The previous two claims imply that the chance that any particular one of the edges in

||

1
the interval of size 5/t is truthful and in F is 1B X ek

Hence linearity of expectations

implies:
|F| 1 5v/te
E[V] > oVt x — = .
V1= avix B 2wz T ow?

This shows that E[V] is high, but we are not done since the expectation could be high
and yet V could still be 0 for most of the walks. To rule this out, we consider the second
moment. This calculation is the only place we use the fact that the contraint graph is an
expander.

Claim 22.12 E[V?] < 30e5/%d. &

PROOF: Let random variable V' denote the number of edges in the middle interval that are
in F. Since V counts the number of edges that are in ' and are truthful, V" < V’. Tt suffices
to show E[V'?] < 30e5v/td. To prove this we use the mixing property of expanders and the
fact that F' contains e fraction of the edges.

Specifically, for j € {t, t,...,t+ 6\/%} let I; be an indicator random variable that is 1 if
the jth edge is in F' and 0 otherwise. Then V' = Zje{t_’t vvvvv 146V} I;. Let S be the set of

vertices that have at least one end point in F', implying |S]| /n < de.

EV? =E[>_I;I;]

73"
=ED_DI+ED LI
J J#3’

= eVt + E[Z I;1;/]  (linearity of expectation and Claim 22.10)
J#5’

= eVt +2 Z Pr[(jth edge is in F) A (j'th edge is in F)]
J<y’

< edVt+2 Z Pr[(jth vertex of walk lies in S) A (j'th vertex of walk lies in S)]
J<j’

<ebVE+2Y  ed(ed+ (MG))Y 77)  (using (2))
J<y’

< €0V +2625VEd? + 260Vt Y (A(G))F

E>1
< €6Vt + 2625V/td* + 20e5v/td  (using A\(G) < 0.9)
< 30e6v/td (using € < d%/i’ an assumption of Lemma 22.9).

Finally, since Pr[V > 0] > E[V]?/ E[V?] for any nonnegative random variable (see Exer-
cise 22.4), we conclude that Pr[V > 0] > %e = ¢/, and Lemma 22.9 is proved. B

22.2.5 Alphabet Reduction: Proof of Lemma 22.6

Interestingly, the main component in the proof of Lemma 22.6 is the exponential-sized PCP
of Section 11.5 (An alternative proof is explored in Exercise 22.5.)

Let ¢ be a 2CSP instance as in the statement of Lemma 22.6, with n variables uy, uo, . . . , Uy,
alphabet {0..W=1} and m constraints Cy, Cs, ..., Cy,. Think of each variable as taking values
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that are bit strings in {0, l}log W Then if constraint C; involves variables say i, u; we may

think of it as a circuit applied to the bit strings representing w;, u; where the constraint is
said to be satisfied iff this circuit outputs 1. Say ¢ is an upper bound on the size of this
circuit over all constraints. Note that £ is at most 221" < W4, We will assume without
loss of generality that all circuits have the same size.

The idea in alphabet reduction will be to write a small CSP instance for each of these
circuits, and replace each old variable by a set of new variables. This technique from [AS92]
was called verifier composition, and more recently, a variant was called PCP’s of prozimity,
and both names stem from the “proof verification” view of PCP’s (see Section 11.2). We
state the result (a simple corollary of Theorem 11.19) first in the verification viewpoint and
then translate into the CSP viewpoint.

Corollary 22.13 (PCP of proximity) There exists a verifier V that given any circuit C' with
2k input wires and size { has the following property:

1. Ifuy,uq are strings of k bits each such that u;y ous is a satisfying assignment for circuit
C, then there is a string w3 of size 2P°Y(Y) such that V accepts WH(uy) o WH(uz) o 73
with probability 1.

2. For every three bit strings m,m,m3, where m and my have size 2¥, if V accepts
m omyoms with probability at least 1/2, then my, wo are 0.99-close to WH(uy ), WH(uz)
respectively for some k-bit strings uy,us where uy o ug is a satisfying assignment for
circuit C'.

3. V runs in poly(¢) time, uses poly(¢) random bits and examines only O(1) bits in the
provided strings. &

Before giving the proof, we describe how it allows us to do alphabet reduction, as
promised. First we note that in the CSP viewpoint of Corollary 22.13,(see Table 11.1)
the variables are the bits of 71,79, w3, and V' can be represented as a CSP instance of size
20°7(%) in these new variables. The arity of the constraints is the number of bits that the
verifier reads in the proof, which is some fized constant independent of W and €. The fraction
of satisfied constraints is the acceptance probability of the verifier.

Returning to the instance whose alphabet size we want to reduce, we replace each original
variable u; from the alphabet {0,...,W — 1} by a sequence U; = (U, 1,...,U; ow) of 2V
binary-valued variables, which in a valid assignment would be an encoding of w; using
the Walsh-Hadamard code. For each old constraint C,(u,;,u;) we apply the constraint
satisfaction view of Corollary 22.13, using Cy as the circuit whose assignment is being
verified. Thus for each original constraint Cy we have a vector of 2°P°V() new binary-valued
variables II,, which plays the role of w3 in Corollary 22.13, whereas U;, U; play the role
of m,mo respectively. The set of new constraints corresponding to Cy is denoted Cs. As
already noted the arity of the new constraints is some fixed constant independent of W, e.

The overall CSP instance is the union of these constraints U7:,Cs; see Figure 22.4.
Clearly, if the old instance was satisfiable then so is this union. Now we show that if
some assignment satisfies more than 1 — €¢/3 fraction of the new constraints, then we can
construct an assignment for the original instance that satisfies more than 1 — e fraction of its
constraints. This is done by “decoding” the assignment for each each set of new variables
U; by the following rule: if U; is 0.99-close to some linear function WH(a;) then use a; as the
assignment for the old variable u;, and otherwise use an arbitrary string. Now consider how
well we did on any old constraint C,(u;, u;). If the decodings a;, a; of U;,U; do not satisfy
Cs then Corollary 22.13 implies that at least 1/2 the constraints of Cs; were not satisfied
anyway. Thus if § is the fraction of old constraints that are not satisfied, then §/2 < €/3,
implying ¢ < 2¢/3, and the Lemma is proved.

To finish, we prove Corollary 22.13.

PROOF: (of Corollary 22.13) The proof uses the reduction from CKT-SAT to QUADEQ (see
Section 11.5.2 and Exercise 11.15). This reduction transforms a circuit C' with ¢ wires
(where “inputs” are considered as wires in the circuit) to an instance of QUADEQ of with
¢ variables and O(¢) equations where the variables in the QUADEQ instance correspond to
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Original instance:

Cy C, C
constraints: [ . ‘
variables: [Uy J[Up |[Ug | -

(over alphabet [W])
1

cluster 1 cluster 2 clus}gr_m

‘e .....‘] ‘0®.0 . ....Q:‘

IS T AN

variables: [ [ITTTITITT CTTILITIIT oo oo LR s LI
(over alphabet {0.1}) U1=WH(u1) U2=WH(u2) Un=WH(Un) |'|1 I'Im

Transformed instance:

constraints:

Figure 22.4 The alphabet reduction transformation maps a 2CSP instance ¢ over alphabet
{0..W—1} into a ¢gCSP instance v over the binary alphabet. Each variable of ¢ is mapped to
a block of binary variables that in the correct assignment will contain the Walsh-Hadamard
encoding of this variable. Each constraint Cy of ¢ depending on variables u;, u; is mapped
to a cluster of constraints corresponding to all the PCP of proximity constraints for Cj.
These constraint depend on the encoding of u; and u;, and on additional auxiliary variables
that in the correct assignment contain the PCP of proximity proof that these are indeed
encoding of values that make the constraint Cy true.

values of wires in the circuit. Thus every solution to the QUADEQ instance has /¢ bits, of
which the first k bits give a satisfying assignment to the circuit.

The verifier expects w3 to contain whatever our verifier of Theorem 11.19 expects in the
proof for this instance of QUADEQ), namely, a linear function f that is WH(w), and another
linear function g that is WH(w ® w) where w satisfies the QUADEQ instance. The verifier
checks these functions as described in the proof of Theorem 11.19.

However, in the current setting our verifer is also given strings 7y, w2, which we think of
as functions 7y, 72 : GF(2)¥ — GF(2). The verifier checks that both are 0.99-close to linear
functions, say 71, 2. Then to check that f encodes a string whose first 2k bits are the same
as the string encoded by 71, 72, the verifier does the following concatenation test, which uses
the properties of the Walsh-Hadamard code.

Concatenation test. We are given three linear functions 7, 7, f that encode strings of
lengths k, k, and ¢ respectively. Denoting by u and v the strings encoded by w1, w2 respec-
tively (that is, m; = WH(u) and m2 = WH(v)), and by w the string encoded by f, we have
to check by examining only O(1) bits in these functions that uov is the same as the first 2k
bits of w. By the random subsum principle, the following simple test rejects with probability
1/2 if this is not the case. Pick random x,y € {0,1}", and denote by XY € GF(2)’ the
string whose first k bits are x, the next k bits are y and the remaining bits are all 0. Accept
if /(XY =m1(x)+ m(y) and else reject. W

22.3 Hardness of 2CSPy: Tradeoff between gap and alphabet size

The problem 2CSPyy often plays a role in proofs of advanced PCP theorems. The (standard)
PCP theorem implies that there is some constant W and some v < 1 such that computing
v-approximation to 2CSPy, is NP-hard (see Definition 22.1).

Corollary 22.14 (of PCP Theorem) There is some v < 1 and some W such that GAP 2CSPy, (v)
is NP-hard. O

For advanced PCP theorems we would like to prove the same result for smaller v, without
making W too large. (Note: if W is allowed to be exp(n) then the problem is NP-hard
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even for v = 0!) At first glance the “gap amplification” of Lemma 22.5 seems relevant, but
that doesn’t suffice because first, it cannot lower v below some fixed constant, and second,
because it greatly increases the alphabet size. The next theorem gives the best tradeoff
possible (up to the value of ¢) between these two parameters. For further constructions of
PCP’s, it is useful to restrict attention to a special subclass of 2CSP instances, which have
the so-called projection property. This means that for each constraint ¢, (y1,y2) and each
value of y, there is a unique value of yo such that ¢, (y1,y2) = 1. Another way to state this
is that for each constraint ¢, there is a function h:[W] — [W] such that the constraint is
satisfied by (u,v) iff h(u) = v.

A 2CSP instance is said to be regular if every variable appears in the same number of
constraints.

Theorem 22.15 (Raz [Raz95b]) There is a ¢ > 1 such that for every t > 1, GAP 2CSPyy (e)
is NP-hard for e = 27, W = 2¢!, and this is true also for 2CSP instances that are regular
and have the projection property. &

A weaker version of this theorem, with a somewhat simpler proof, was obtained by Feige
and Kilian [FK93]. This weaker version is sufficient for many applications, including for
Hastad’s 3-bit PCP theorem (see Section 22.4 below).

Idea of Raz’s proof: Parallel Repetition

Let ¢ be the 2CSPyy instances produced by the reduction of Corollary 22.14. For some v < 1
it has the property that either val(p) = 1 or val(¢) = v < 1 but deciding which case holds
is hard. There is an obvious “powering” idea for trying to lower the gap while maintaining
the arity at 2. Let ¢*' denote the following instance. Its variables are t-tuples of variables
of . Its constraints correspond to t-tuples of constraints, in the sense that for every t-tuple
of constraints ¢1(y1,21), 92(Y2,2), ..., 0t(yt, 2¢) the new instance has a constraint of arity
2 involving the new variables (y1,y2,...,y:) and (z1,22,...,2;) and the Boolean function
describing this constraint is simply

t

N @i, z)-

i=1

(To put it in words, the new constraint is satisfied iff all the ¢ constituent constraints are.)

In the verification viewpoint, this new 2CSP instance corresponds to running the verifier
in parallel ¢ times, hence Raz’s theorem is also called the parallel repetition theorem.

It is easy to convert a satisfying assignment for ¢ into one for ¢** by taking ¢-tuples of the
values. Furthermore, given an assignment for ¢ that satisfies v fraction of the constraints,
it is easy to see that the assignment that forms ¢-tuples of these values satisfies at least v/*
fraction of the constraints of ¢**. It seemed “obvious” to researchers that no assignment
can do better. Then a simple counterexample was found, whereby more than v! fraction
of constraints in ¢*' could be satisfied (see Exercise 22.6). Raz shows, however, that no
assignment can satisfy more than v“* fraction of the constraints of ¢**, where ¢ depends upon
the alphabet size W. The proof is quite difficult, though there have been some simplifications
(see the chapter notes and the book’s web site).

Hastad’s 3-bit PCP Theorem and hardness of MAX-3SAT

In Chapter 11 we showed NP = PCP(logn, 1), in other words certificates for membership
in NP languages can be checked by examining O(1) bits in them. Now we are interested
in keeping the number of query bits as low as possible, while keeping the soundness around
1/2. The next Theorem shows that the number of query bits can be reduced to 3, and
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furthermore the verifier’s decision process consists of simply looking at the parity of these
three bits.

Theorem 22.16 (Hastad’s 3-bit PCP [Has97])

For every § > 0 and every language L € NP there is a PCP-verifier V for L making three
(binary) queries having completeness parameter 1 — § and soundness parameter at most
/a4 4.

Moreover, the tests used by V are linear. That is, given a proof m € {0,1}", V chooses
a triple (i1,i2,i3) € [m]® and b € {0,1} according to some distribution and accepts iff
i, + iy + ™y, = b (mod 2).

Hardness of approximating MAX-3SAT

We first note that Theorem 22.16 is intimately connected to the hardness of approximating a
problem called MAX-E3LIN, which is a subcase of 3CSP5 in which the constraints specify the
parity of triples of variables. Another way to think of such an instance is that it gives a set
of linear equations mod 2 where each equation has at most 3 variables. We are interested
in determining the largest subset of equations that are simultaneously satisfiable. We claim
that Theorem 22.16 implies that (1/2 4 v)-approximation to this problem is NP-hard for
every v > 0. This is a threshold result since the problem has a simple 1/2-approximation
algorithm. (It uses observations similar to those we made in context of MAX-3SAT in
Chapter 11; a random assignment satisfies, in the expectation, half of the constraints, and
this observation can be turned into a deterministic algorithm that satisfies at least 1/2 of
the equations.)

To prove our claim about the hardness of MAX-E3LIN, we convert the verifier of Theo-
rem 22.16 into an equivalent CSP by the recipe of Section 11.3. Since the verifier imposes
parity constraints on triples of bits in the proof, the equivalent CSP instance is an instance
of MAX-E3LIN where either 1 — § fraction of the constraints are satisfiable, or at most
1/2 + § are. Since distinguishing between the two cases is NP-hard, we conclude that it
is NP-hard to compute a p-approximation to MAX-E3LIN where p = 1{2_26. Since 6 > 0
is allowed to be arbitrarily small, p can be arbitrarily close to 1/2 and we conclude that
(1/2 4+ v)-approximation is NP-hard for every v > 0.

Also note that the fact that completeness is strictly less than 1 in Theorem 22.16 is
inherent if P # NP, since determining if there is a solution satisfying all of the equations
(in other words, the satisfiability problem for MAX-E3LIN) is possible in polynomial time
using Gaussian elimination

Now we prove a hardness result for MAX-3SAT, which as mentioned earlier, is also a
threshold result.

Corollary 22.17 For every € > 0, computing (7/8+¢)-approximation to MAX-3SAT is NP-
hard. &

PRrROOF: We reduce MAX-E3LIN to MAX-3SAT. Take the instance of MAX-E3LIN produced
by the above reduction, where we are interested in determining whether (1 — v) fraction of
the equations can be satisfied or at most 1/2+v are. Represent each linear constraint by four
3CNF clauses in the obvious way. For example, the linear constraint a+b+c¢ =0 (mod 2)
is equivalent to the clauses (@VbVe), (aVbVe),(aVbVe),(@VbVe). If a,b,c satisfy the
linear constraint, they satisfy all 4 clauses and otherwise they satisfy at most 3 clauses. We
conclude that in one case at least (1 — ¢€) fraction of clauses are simultaneously satisfiable,
and in the other case at most 1 — (3 —v) x 1 = I + £ fraction are. The ratio between
the two cases tends to 7/8 as v decreases. Since Theorem 22.16 implies that distinguishing
between the two cases is NP-hard for every constant v, the result follows. H
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Tool: the Fourier transform technique

Theorem 22.16 is proved using Fourier analysis. The continuous Fourier transform is ex-
tremely useful in mathematics and engineering. Likewise, the discrete Fourier transform has
found many uses in algorithms and complexity, in particular for constructing and analyzing
PCP’s. The Fourier transform technique for PCP’s involves calculating the maximum ac-
ceptance probability of the verifier using Fourier analysis of the functions presented in the
proof string. (See Note 22.21 for a broader perspective of uses of discrete Fourier trans-
forms in combinatorial and probabilistic arguments.) It is delicate enough to give “tight”
inapproximability results for MAX-INDSET, MAX-3SAT, and many other problems.

To introduce the technique we start with a simple example: analysis of the linearity
test over GF(2) (i.e., proof of Theorem 11.21). We then introduce the Long Code and show
how to test for membership in it. These ideas are then used to prove Hastad’s 3-bit PCP
Theorem.

Fourier transform over GF(2)"

The Fourier transform over GF(2)™ is a tool to study functions on the Boolean hypercube.
In this chapter, it will be useful to use the set {+1,—1} = {£1} instead of {0,1}. To
transform {0,1} to {#1}, we use the mapping b — (—1)® (i.e., 0 — +1, 1 — —1). Thus we
write the hypercube as {4-1}" instead of the more usual {0,1}". Note this maps the XOR
operation (i.e., addition in GF(2)) into the multiplication operation over R.

The set of functions from {+1}" to R defines a 2"-dimensional Hilbert space (i.e., a
vector space with an associated inner product) as follows. Addition and multiplication by
a scalar are defined in the natural way: (f + ¢g)(x) = f(x) + g(x) and (af)(x) = af(x) for
every f,g: {£1}" — R, a € R. We define the inner product of two functions f, g, denoted
(f,9), to be Excqa1y»[f(x)g(x)]. (This is the expectation inner product.)

The standard basis for this space is the set {ex}xef+1}7, where ex(y) is equal to 1 if y =
x, and equal to 0 otherwise. This is an orthogonal basis, and every function f: {#1}" — R
can be represented in this basis as f = > _axex. For every x € {£1}", the coefficient ay is
equal to f(x).

The Fourier basis is an alternative orthonormal basis that contains, for every subset
a C [n], a function x, where Xxq(x) = [[;c,zi- (We define xp to be the function that
is 1 everywhere). This basis is actually the Walsh-Hadamard code (see Section 11.5.1) in
disguise: the basis vectors correspond to the linear functions over GF(2). To see this, note
that every linear function of the form b — a ® b (with a,b € {0,1}") is mapped by our
transformation to the function taking x € {£1}" to [, . , —1 #i- To check that the Fourier
basis is indeed an orthonormal basis for R?", note that the random subsum principle implies
that for every a, 3 C [n], (Xa, X8) = 0a,3 Where 0,5 is equal to 1 iff @ = § and equal to 0
otherwise.

Remark 22.18

Note that in the {—1,1} view, the basis functions can be viewed as multilinear polynomials
(i.e., multivariate polynomials whose degree in each variable is 1). Thus the fact that every
real-valued function f:{—1,1}" has a Fourier expansion can also be phrased as “Every such
function can be represented by a multilinear polynomial.” This is very much in the same
spirit as the polynomial representations used in Chapters 8 and 11.

Since the Fourier basis is an orthonormal basis, every function f : {#1}" — R can be
represented as f = Zaqn] faXa. We call f, the o' Fourier coefficient of f. We will often
use the following simple lemma:

Lemma 22.19 Every two functions f,g:{+1}" — R satisfy
L (f.9) = X fada
2. (Parseval’s Identity) (f, f) = >, f2 .
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PROOF: The second property follows from the first. To prove the first we expand

(frg) = <ZfaXmZgﬁXﬁ> = Zfocgﬁ<Xa7Xﬁ> = Zfagﬁaaﬁ = Zfaga
] B a,B a, @

Example 22.20
Some examples for the Fourier transform of particular functions:

1. The majority function on 3 variables (i.e., the function M AJ(u1,uz,us3)
that outputs +1 if and only if at least two of its inputs are +1, and —1
otherwise) can be expressed as /2u1 + Y/2us + 1/2ug — 1/2uiusuz. Thus, it
has four Fourier coefficients equal to 1/2 and the rest are equal to zero.

2. If f(uy,ug,...,un) = u; (ie., fis a coordinate function, a concept we will
see again in context of long codes) then f = x(;3 and so f{;; = 1l and fo =0
for o # {i}.

3. If f is a random Boolean function on n bits, then each fa is a random
variable that is a sum of 2" binomial variables (equally likely to be 1, —1)
and hence looks like a normally distributed variable with standard deviation

27/2 and mean 0. Thus with high probability, all 2 Fourier coefficients have

_ poly(n) poly(n) ].

values in [— 550757, 55075

The connection to PCPs: High level view

In the PCP context we are interested in Boolean-valued functions, i.e., those from GF(2)"
to GF(2). Under our transformation they turn into functions from {41}" to {41}. Thus,
we say that f:{+1}" — R is Boolean if f(x) € {£1} for every x € {+1}". Note that if f
is Boolean then (f, f) = Ex[f(x)?] = 1.

On a high level, we use the Fourier transform in the soundness proofs for PCP’s to show
that if the verifier accepts a proof 7 with high probability then 7 is “close to” being “well-
formed” (where the precise meaning of “close-to” and “well-formed” is context dependent).
Usually we relate the acceptance probability of the verifier to an expectation of the form
(f,g9) = Ex[f(x)g(x)], where f and g are Boolean functions arising from the proof. We
then use techniques similar to those used to prove Lemma 22.19 to relate this acceptance
probability to the Fourier coefficients of f, g, allowing us to argue that if the verifier’s test
accepts with high probability, then f and g have few relatively large Fourier coeflicients.
This will provide us with some nontrivial useful information about f and g, since in a
“generic” or random function, all the Fourier coefficient are small and roughly equal.

Analysis of the linearity test over GF'(2)

We will now prove Theorem 11.21, thus completing the proof of the PCP Theorem. Recall
that the linearity test is provided a function f:GF(2)" — GF(2) and has to determine
whether f has significant agreement with a linear function. To do this it picks x,y € GF(2)"
randomly and accepts iff f(x+y) = f(x) + f(y).

Now we rephrase this test using {£1} instead of GF(2), so linear functions turn into
Fourier basis functions. For every two vectors x,y € {+1}", we denote by xy their compo-
nentwise multiplication. That is, xy = (z1y1,-..,Znyn). Note that for every basis function
Xa(Xy) = Xa(X)Xa(¥)-

For two Boolean functions f,g, their inner product (f,g) is equal to the fraction of
inputs on which they agree minus the fraction of inputs on which they disagree. It follows
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that for every e € [0,1] and functions f,g : {£1}" — {%1}, f has agreement 3 + § with
g iff {f,g) = e. Thus, if f has a large Fourier coefficient then it has significant agreement
with some Fourier basis function, or in the GF(2) worldview, f is close to some linear
function. This means that Theorem 11.21 concerning the correctness of the linearity test
can be rephrased as follows:

Theorem 22.22 Suppose that f : {£1}" — {£1} satisfies Prxy[f(xy) = f(x)f(y)] > 5+e€.
Then, there is some « C [n] such fa > 2e. &

=

PROOF: We can rephrase the hypothesis as Exy[f(xy)f(x)f(y)] > (3 +¢€) — (5 —€) = 2e.
We note that from now on we do not need f to be Boolean, but merely to satisfy (f, f) = 1.
Expressing f by its Fourier expansion,

2e < Ef(xy)f(x)f(y)] = xEy[(Z faxa ) Faxs () Fx ()]
B bl

[e3

Since Xao(Xy) = Xa(X)Xa(y) this becomes

E D fafafyxa(xay)xs(x: (¥):

a, B,y

Using linearity of expectation:

> fafafy E Xa()xa(¥)xs()x: ()]

a,B,y

> fafafy Elxa(0xs () E [Xa(¥)xy (¥)

a,B,y

(because x,y are independent).

By orthonormality Ex[xa(x)x3(x)] = da,3, SO we simplify to
=2k

< (m3Xfa) X (Z f2) = mgxfa,

since ), f2 =(f,f) = 1. Hence max, fa > 2¢ and the theorem is proved. W

Coordinate functions, Long code and its testing

Hastad’s 3-bit PCP Theorem uses a coding method called the long code. Let W € N. We
say that f : {1}V — {£1} is a coordinate function if there is some w € [W], such that
flx1,x9,...,2w) = Tyw; in other words, f = X{w}.l (Aside: Unlike the previous section,
here we use W instead of n for the number of variables; the reason is to be consistent with
our use of W for the alphabet size in 2CSPy in Section 22.7.)

Definition 22.23 (Long Code) The long code for [W] encodes each w € [W] by the table of
all values of the function x :{:I:l}[W] — {1} &

ISome texts call such a function a dictatorship function, since one variable (“the dictator”) completely
determines the outcome. The name comes from social choice theory, which studies different election setups.
That field has also been usefully approached using Fourier analysis ideas described in Note 22.21.
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Note 22.21 (Self-correlated functions, isoperimetry, phase transitions)

Although it is surprising to see Fourier transforms used in proofs of PCP Theorems, in
retrospect this is quite natural. We try to put this in perspective, and refer the reader to
the survey of Kalai and Safra [KS06] and the web-based lecture notes of O’Donnell, Mossell
and others for further background on this topic.

Classically, Fourier tranforms are very useful in proving results of the following form: “If a
function is correlated with itself in some structured way, then it belongs to some small family
of functions.” In the PCP setting, the “self-correlation” of a function f:{0,1}" — {0,1}
means that if we run some designated verifier on f that examines only a few bits in it,
then this verifier accepts with reasonable probability. For example, in the linearity test over
GF(2), the acceptance probability of the test is Ey (I, ,] where I, , is an indicator random
variable for the event f(x)+ f(y) = f(z + y).

Another classical use of Fourier transforms is study of Isoperimetry, which is the study of
subsets of “minimum surface area.” A simple example is the fact that of all connected regions
in R? with a specified area, the circle has the minimum perimeter. Again, isoperimetry can
be viewed as a study of “self-correlation”, by thinking of the characteristic function of the
set in question, and realizing that the “perimeter” of “surface” of the set consists of points
in space where taking a small step in some direction causes the value of this function to
switch from 1 to 0.

Hastad’s “noise” operator of Section 22.7 appears in works of mathematicians Nelson,
Bonamie, Beckner, and others on hypercontractive estimates, and the general theme is again
one of identifying properties of functions based upon their “self-correlation” behavior. One
considers the correlation of the function f with the function T,(f) obtained by (roughly
speaking) computing at each point the average value of f in a small ball around that point.
One can show that the norms of f and 7,(f) are related — not used in Hastad’s proof but
very useful in the PCP Theorems surveyed in Section 22.9; see also Exercise 22.10 for a
small taste.

Fourier transforms and especially hypercontractivity estimates have also proved useful in
study of phase transitions in random graphs (e.g., see Friedgut [Fri99]). The simplest case is
the graph model G(n, p) whereby each possible edge is included in the graph independently
with probability p. A phase transition is a value of p at which the graph goes from almost
never having a certain property to almost always having that property. For example, it is
known that there is some constant ¢ such that around p = clogn/n the probability of the
graph being connected suddenly jumps from close to 0 to close to 1. Fourier transforms are
useful to study phase transition because a phase transition is as an isoperimetry problem
on a “Graph” (with a capital G) where each “Vertex” is an n-vertex graph, and an “Edge”
between two “Vertices” means that one of the graphs is obtained by adding a few edges to
the graph. Note that adding a few edges corresponds to raising the value of p by a little.
Finally, we mention some interesting uses of Fourier transforms in the results mentioned in
Sections 22.9.4 and 22.9.5. These involve isoperimetry on the hypercube {0,1}". One can
study isoperimetry in a graph setting by defining “surface area” of a subset of vertices as the

“number of edges leaving the set,” or some other notion, and then try to study isoperimetry
in such settings. The Fourier transform can be used to prove isoperimetry theorems about
hypercube and hypercube-like graphs. The reason is that a subset S C {0,1}" is nothing
but a Boolean function that is 1 on S and —1 elsewhere. Assuming the graph is D-regular,
and |S| =21

1
T oD

which implies that the fraction of edges of S that leave the set is 1/2 — E[f(z) f(y)]/2. This
kind of expression can be analysed using the Fourier transform; see Exercise 22.11.b.

(IE(S,9) +|S,5] —2|E(S,9)|),
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Note that w, normally written using log W bits, is being represented using a table of
2" bits, a doubly exponential blowup! This inefficiency is the reason for calling the code
“long.”

The problem of testing for membership in the Long Code is defined by analogy to the
carlier test for the Walsh-Hadamard code. We are given a function f:{+1}"" — {+1}, and
wish to determine if f has good agreement with x,,) for some w, namely, whether f{w} is
significant. Such a test is described in Exercise 22.5, but it is not sufficient for the proof
of Hastad’s Theorem, which requires a test using only three queries. Below we show such
a three query test albeit at the expense of achieving the following weaker guarantee: if the
test passes with high probability then f has a good agreement with a function y, where
|| is small (but not necessarily equal to 1). This weaker conclusion will be sufficient in the
proof of Theorem 22.16.

Let p > 0 be some arbitrarily small constant. The test picks two uniformly random
vectors X,y €, {#1}" and then a vector z € {+1}" according to the following distribution:
for every coordinate i € [W], with probability 1 — p we choose z; = +1 and with probability
p we choose z; = —1. Thus with high probability, about p fraction of coordinates in z are
—1 and the other 1 — p fraction are +1. We think of z as a “noise” vector. The test accepts
iff f(x)f(y) = f(xyz). Note that the test is similar to the linearity test except for the use
of the noise vector z.

Suppose f = X{w}. Then since b-b =1 for b € {+1},

f(x)f(y)f(xyz) = Iwyw(xwywzw) =1- 2.

Hence the test accepts iff z,, = 1 which happens with probability 1 — p. We now prove a
certain converse:

Lemma 22.24 If the test accepts with probability 1/2 4§ then )", Ba—2p)lel>25. ¢

PROOF: If the test accepts with probability 1/2+ 6 then E[f(x)f(y)f(xyz)] = 20. Replacing
f by its Fourier expansion, we have

260< E (D faxa(x)- (Y faxs () - (D frxs (xyz))
L @ B v

= E | D fafafixa®)xs(y)xy X)Xy ()X (2)

LBy

= Z fafﬁfv X,EJ [Xa(x)XB(y)Xv(X)Xv(y)XV(z)] :

a, B,y

Orthonormality implies the expectation is 0 unless o = 3 = =, so this is
=" P EXa(2)
«

Now E,[xa(2)] = Ez [[T,cq 2w] which is equal to [T, ¢, E[zu] = (1— 2p)!el because each

coordinate of z is chosen independently. Hence we get that
<Y F -2 W

The conclusion of Lemma 22.24 is reminiscent of the calculation in the proof of Theo-
rem 22.22, except for the extra factor (1 — 2p)|0‘|. This factor depresses the contribution
of fa for large a, allowing us to conclude that the small a’s must contribute a lot. This is
formalized in the following corollary (which is a simple calculation and left as Exercise 22.8).

Corollary 22.25 If f passes the long code test with probability 1/2+ 0, then for k = % log %,
there exists o with || < k such that fo > 26 — €. O
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Proof of Theorem 22.16

We now prove Hastad’s’ Theorem. The starting point is the 2CSPyy instance ¢ given by
Theorem 22.15, so we know that ¢ is either satisfiable, or we can satisfy at most € fraction
of the constraints, where € is arbitrarily small. Let W be the alphabet size, n be the number
of variables and m the number of constraints. We think of an assignment as a function w
from [n] to [WW]. Since the 2CSP instance has the projection property, we can think of each
constraint ¢, as being equivalent to some function & : [W] — [W], where the constraint is
satisfied by assignment 7 iff w(j) = h(w()).

Hastad’s verifier uses the long code, but expects these encodings to be bifolded, a technical
property we now define and is motivated by the observation that coordinate functions satisfy
X{w}(—V) = —X{uw} (V) for every vector v.

Definition 22.26 A function f : {£1}" — {£1} is bifolded if for all v € {+1}", f(—v) =
—f(v). &

(Aside: In mathematics we would call such a function odd but the term “folding” is more
standard in the PCP literature where it has a more general meaning.)

Whenever the PCP proof is supposed to contain a codeword of the long code, we may
assume without loss of generality that the function is bifolded. The reason is that the verifier
can identify, for each pair of inputs v, —v, one designated representative —say the one whose
first coordinate is +1— and just define f(—v) to be —f(v). One benefit —though of no
consequence in the proof— of this convention is that bifolded functions require only half as
many bits to represent. We will use the following fact:

Lemma 22.27 If f : {1}V — {41} is bifolded and fo # O then |o| must be an odd

number (and in particular, nonzero). O

PROOF: By definition,
fo={F.xa) =E[f (V) [T vil.
iEx
If |of is even then [ [, vi = [[;c,(—Vi). Soif f is bifolded, the contributions corresponding
to v and —v cancel each other and the entire expectation is 0. H

Hastad’s verifier. Now we describe Hastad’s verifier V. Vi expects the proof 7 to consist
of a satisfying assignment to ¢ where the value of each of the n variables is encoded using
the (bifolded) long code. Thus the proof consists n2" bits (rather, n2"' =1 if we take the
bifolding into account), which Vj treats as n functions f1, fa,..., fn each mapping {:l:l}W
to {£1}. The verifier Viy randomly picks a constraint, say ¢, (7, ), in the 2CSPyy instance.
Then Vy tries to check (while reading only three bits!) that functions f;, f; encode two
values in [IW] that would satisty ¢,., in other words, they encode two values w, v satisfying
h(w) = u where h: [W] — [W] is the function describing constraint ¢,. Now we describe
this test, which is reminiscent of the long code test we saw earlier.

THE BAsic HASTAD TEST.

Given: Two functions f,g:{+1}"" — {£1}. A function h:[W] — [W].

Goal: Check if f, g are long codes of two values w, u such that h(w) = u.
Test: For u € [W] let h=1(u) denote the set {w : h(w) =u}. Note that the
sets {h~*(u) : u € [W]} form a partition of [W]. For a string y € {£1}" we
define H~1(y) as the string in {#1}"" such that for every w € [W], the wth
bit of H™!(y) iS Ypn(w). In other words, for each u € [W], the bit y, appears
in H~!(y) in all coordinates corresponding to h~'(u). Vg chooses uniformly
at random v,y € {£1}" and chooses z € {£1}"V by letting z; = +1 with
probability 1 — p and z; = —1 with probability p. It then accepts if

fV)gly) = f(H ' (y)va) (4)

and rejects otherwise.
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Translating back from {+1} to {0,1}, note that Vi’s test is indeed linear, as it accepts iff
7li1] + 7[ia] + 7[i3] = b for some i1,i2,i3 € [n2"] and b € {0,1}. (The bit b can indeed
equal 1 because of the way Vi ensures the bifolding property.)

Now since p, e can be arbitrarily small the next claim suffices to prove the Theorem.
(Specifically, making p = €!/3 makes the completeness parameter at least 1 — ¢'/% and the
soundness at most 1/2 4 €'/3.)

Claim 22.28 (Main) If ¢ is satisfiable, then there is a proof which Vy accepts with prob-
ability 1 — p. If val(p) < € then Vg accepts no proof with probability more than 1/2 + ¢
where 6 = /€/p. &

The rest of the section is devoted to proving Claim 22.28.

Completeness part; easy. If ¢ is satisfiable, then take any satisfying assignment 7: [n] —
[W] and form a proof for Vg containing the bifolded long code encodings of the n values.
(As already noted, coordinate functions are bifolded.) To show that Vj accepts this proof
with probability 1— p, it suffices to show that the Basic Hastad Test accepts with probability
1 — p for every constraint.

Suppose f,g are long codes of two integers w,u satisfying h(w) = u. Then, using the
fact that for z € {£1}, 2% =1,

F@)9)f (R (y)va) = vuyu(H (¥)wVeza)
= VwYu(y}L(w)Vwa) = Zy-
Hence Vi accepts iff z,, = 1, which happens with probability 1 — p
Soundness of Vy; more difficult. We first show that if the Basic Hastad Test accepts two

functions f, g with probability significantly more than /2, then the Fourier transforms of
f, g must be correlated. To formalize this we define for a C [W],

ho(a) ={ue [W]: | (u)Nal is odd} (5)

Notice in particular that for every t € hao(«) there is at least one w € « such that h(w) = ¢.
In the next Lemma ¢ is allowed to be negative. It is the only place where we use the
bifolding property.

Lemma 22.29 Let f,g: {+1}" — {1}, be bifolded functions and h : [W] — [W] be such
that they pass the Basic Hastad Test (4) with probability at least 1/2+ 6. Then

> finae (1 —2p) > 26 (6)
aC[W],a#0 %

PROOF: By hypothesis, f, g are such that E[f(v)f(vH !(y)z)g(y)] > 26. Replacing f, g by
their Fourier expansions we get:

26<=E Zfaxa ng O Fixy (VR (y)2)

= Z fagsfr B [Xa(v )Xﬁ(Y)xw(V)XW(H”(Y))XW(Z)} :

a,B,y

By orthonormality this simplifies to

—Zf 95 E [Xs(¥)xa (M7 (¥))xa ()]

= Z fags(1 = 20)* E [xa(H™! (v)x5(y)] (7)

a,p
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since Yo (z) = (1 — 2p)!®!, as noted in our analysis of the long code test. Now we have

Elxa(H™'(0))xs(y)] = E[H H (¥)w [[ vl

Y wew uep
= E[H Yaew) | ] vl
wea uef

which is 1 if ha(a) = 8 and 0 otherwise. Hence (7) simplifies to
> Jadna(@ (1 —20).

Finally we note that since the functions are assumed to be bifolded, the Fourier coefficients
fo and gy are zero. Thus those terms can be dropped from the summation and the Lemma
is proved. W

The following Lemma completes the proof of the Claim 22.28 and hence of Hastad’s 3-bit
PCP Theorem.

Lemma 22.30 Suppose ¢ is an instance of 2CSPy, such that val(p) < e. If p,d satisfy
pd? > ¢ then verifier Vi accepts any proof with probability at most 1/2 + §. O

PROOF: Suppose Vi accepts a proof 7 of length n2"' with probability at least 1/2 + 4.
We give a probabilistic construction of an assignment 7 to the variables of ¢ such that the
expected fraction of satisfied constraints is at least pd?, whence it follows by the probabilistic
method that a specific assignment 7 exists that lives up to this expectation. This contradicts
the hypothesis if pé? > e.

The distribution from which 7 is chosen. We can think of 7 as providing, for every i € [n],
a function f; : {#1}"V — {£1}. The probabilistic construction of assignment 7 comes in
two steps: we first use f; to define a distribution D; over [W] as follows: select o C [WW]
with probability fé where f = f; and then select w at random from «. This is well-defined
because ) f2 =1 and (due to bifolding) the fourier coefficient fy corresponding to the
empty set is 0. We then pick 7[i] by drawing a random sample from distribution D;. Thus
the assignment 7 is a random element of the product distribution []*, D;. We wish to
show

E[ E [r satisfies rth constraint]] > pd?. (8)

T re[m]

The analysis. For every constraint ¢, where r € [m| denote by 1/2 + ¢, the conditional
probability that the Basic Hastad Test accepts 7, conditioned on Vg having picked ;..
(Note: 6, could be negative.) Then the acceptance probability of Vi is E,[ + 6] and hence
E.[0,] = 6. We show that

Ijrr[w satisfies ,] > poZ, 9)
whence it follows that the left hand side of (8) is (by linearity of expectation) at least
PE,c(m[07]. Since E[X?] > E[X]? for any random variable, this in turn is at least p(E,.[6,])* >
pd2. Thus to finish the proof it only remains to prove (9).

Let ¢, (i, 7) be the rth constraint and let h be the function describing this constraint, so
that

m satisfies ¢, it h(x[i]) = 7[j).

Let I, be the indicator random variable for the event h(w[i] = 7[j]). From now on we use
the shorthand f = f; and g = f;. What is the chance that a pair of assignments n[i] €, D;
and 7[j] €, D; will satisty 7[j] = h(w[i])? Recall that we pick these values by choosing «
with probability f2, 8 with probability g% and choosing 7[i] €, a,7[j] €, [. Assume that «
is picked first. The conditional probability that 5 = ha(a) is g?w(a). If 5 = hao(«), we claim
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that the conditional probability of satisfying the constraint is at least 1/|«a|. The reason is
that by definition, ha(a) consists of u such that [h~'(u) Na] is odd, and an odd number
cannot be 0! Thus regardless of which value 7[j] € ha(« ) we pick, there ezrists w € o with
h(w) = 7[j], and the conditional probability of picking such a w as [i] is at least 1/ |a].
Thus, we have that

1 2.
> mfggiz(a) < E [I] (10)

This is similar to (but not quite the same as) the expression in Lemma 22.29, according
to which

26, <Y f2natay (1 —2p)1".

However, since one can easily see that (1 — 2p)lel < we have

plal
_— )
257" < Zfa |gh2(a)‘ m .
Rearranging,
57"\/5 < Zfi |gh2(o¢)| ﬁ .

Applying the Cauchy-Schwartz inequality, 3", a;b; < (3, a?)Y/2(32, b2)1/2, with fu |§ﬂ2(a)‘ \/%

playing the role of the a;’s and fa playing that of the b;’s, we obtain

1/2 1/2
0r/p < Zfa st 7 < (Z fa> <Zfa Ghaa) M) (11)

Since ), f2 =1, by squaring (11) and combining it with (10) we get that for every r,

2
<
00 < JE, [L]

which proves (9) and finishes the proof. W

Hardness of approximating SET-COVER

In the SET-COVER problem we are given a ground set U and a collection of its subsets
S1,852,...,5, whose union is U, and we desire the smallest subcollection I such that
UierS; = U. Such a subcollection is called a set cover and its size is |I|. An algorithm
is said to p-approximate this problem, where p < 1 if for every instance it finds a set cover
of size at most OPT'/p, where OPT is the size of the smallest set cover.

Theorem 22.31 ([Ly94]) If for any constant p > 0 there is an algorithm that p-approximates
SET-COVER then P = NP. Specifically for every ¢, W > 0 there is a polynomial-time
transformation f from 2CSPyy instances to instances of SET-COVER such that if the 2CSPyy
instance is regular and satisfies the projection property then

val(p) = 1= f(p) has a set cover of size N
N

val(y) < € = f(p) has no set cover of size—=,

4./¢

where N depends upon ¢. &
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Actually one can prove a somewhat stronger result; see the note at the end of the proof.
The proof needs the following gadget.

Definition 22.32 ((k, £)-set gadget) A (k,¥)-set gadget consists of a ground set B and some

of its subsets C1, Cy,...,Cy with the following property: every collection of at most k sets
out of C1,C1,C5,Cy,...,Cp,Cp that is a set cover for B must include both C; and C; for
some 1. O

The following Lemma is left as Exercise 22.13.

Lemma 22.33 There is an algorithm that given any k,f, runs in time poly(m,2°) and
outputs a (k, {)-set gadget. O

We can now prove Theorem 22.31. We give a reduction from 2CSPyy, specifically, the
instances obtained from Theorem 22.15.

Let ¢ be an instance of 2CSPyy such that either val(p) = 1 or val(y) < € where € is some
arbitrarily small constant. Suppose it has n variables and m constraints. Let I'; denote the
set of constraints in which the ith variable is the first variable, and A; the set of constraints
in which it is the second variable.

The construction. Construct a (k, W)-set gadget (B;C4,Cs,...,Cw) where k > 2/./c.
Since variables take values in [W], we can associate a set C,, with each variable value w.

The instance of SET-COVER is as follows. The ground set is [m] x B, which we will think
of as m copies of B, one for each constraint of ¢. The number of subsets is nW; for each
variable ¢ € [n] and value u € [W] there is a subset S; ,, which is the union of the following
sets: {r} x C, for each r € A; and {r} x B\ Cj(y for each r € T';. The use of complementary
sets like this is at the root of how the gadget allows 2CSP (with projection property) to be
encoded as SET-COVER.

The analysis. If the 2CSPy instance is satisfiable then we exhibit a set cover of size n.
Let 7:[n] — W be any satisfying assignment where 7(4) is the value of the ith variable. We
claim that the collection of n subsets given by {Si),rm 11 € [n]} is a set cover. It suffices to
show that their union contains {r} x B for each constraint . But this is trivial since if 7 is
the first variable of constraint  and j the second variable, then by definition S; ;) contains
{r} x Crp;) and S; ;) contains {r} x B\ Cx;), and thus S; [ U S; ;) contains {r} x B.

Conversely, suppose less than e fraction of the constraints in the 2CSPy, instance are
simultaneously satisfiable. We claim that every set cover must have at least nT sets, for
T = 4%/? For contradiction’s sake suppose a set cover of size less than nT exists. Let
us probabilistically construct an assignment for the 2CSPy instance as follows. For each
variable 7, say that a value u is associated with it if S;, is in the set cover. We pick a
value for ¢ by randomly picking one of the values associated with it. It suffices to prove the
following claim since our choice of k ensures that 87" < k.

CcLAIM: If 8T < k then the expected number of constraints satisfied by this assignment is
more than 15t

Proor: Call a variable good if it has less than 47 values associated with it. The average
number of values associated per variable is less than T', so less than 1/4 of the variables
have more than 47" values associated with them. Thus less than 1/4 of the variables are not
good.

Since the 2CSP instance is regular, each variable occurs in the same number of clauses.
Thus the fraction of constraints containing a variable that is not good is less than 2 x 1/4 =
1/2. Thus for more than 1/2 of the constraints both variables in them are good. Let r
be such a constraint and 4, j be the variables in it. Then {r} x B is covered by the union
of U,S;,. and U,S;, where the unions are over values associated with the variables i, j
respectively. Since 8T < k, the definition of a (k,W)-set gadget implies that any cover
of B by less than 87T sets must contain two sets that are complements of one another. We
conclude that there are values u, v associated with 7, j respectively such that h(u) = v. Thus
when we randomly construct an assignment by picking for each variable one of the values
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associated with it, these values are picked with probability at least 1/4T x 1/4T = 1/16T2,
and then the rth constraint gets satisfied. The claim (and hence Theorem 22.31) now follows
by linearity of expectation. l

Remark 22.34

The same proof actually can be used to prove a stronger result: there is a constant ¢ > 0
such that if there is an algorithm that a-approximates SET-COVER for a = ¢/logn then
NP C DTIME(n°(°8™). The idea is to use Raz’s parallel repetition theorem where the
number of repetitions ¢ is superconstant so that the soundness is 1/logn. However, the
running time of the reduction is n®®), which is slightly superpolynomial.

Other PCP Theorems: A Survey

As mentioned in the introduction, proving inapproximability results for various problems
often requires proving new PCP Theorems. We already saw one example, namely, Hastad’s
3-bit PCP Theorem. Now we survey some other variants of the PCP Theorem that have
been proved.

PCP’s with sub-constant soundness parameter

The way we phrased Theorem 22.15, the soundness is an arbitrary small constant 27¢. From
the proof of the theorem it was clear that the reduction used to prove this NP-hardness
runs in time n' (since it forms all ¢-tuples of constraints). Thus if ¢ is larger than a constant,
the running time of the reduction is superpolynomial. Nevertheless, several hardness results
use superconstant values of ¢. They end up not showing NP-hardness, but instead showing
the nonexistence of a good approximation algorithms assuming NP does not have say n'°g"
time deterministic algorithms (this is still a very believable assumption). We mentioned this
already in Remark 22.34 at the end of Section 22.8.

It is still an open problem to prove the NP-hardness of 2CSP for a factor p that is smaller
than any constant. If instead of 2CSP one looks at 3CSP or 4CSP then one can achieve low
soundness using larger alphabet size, while keeping the running time polynomial [RS97].
Often these suffice in applications.

Amortized query complexity

Some applications require binary-alphabet PCP systems enjoying a tight relation between
the number of queries (which can be an arbitrarily large constant) and the soundness pa-
rameter. The relevant parameter here turns out to be the free bit complexity [FK93, BS94].
This parameter is defined as follows. Suppose the number of queries is ¢q. After the verifier
has picked its random string, and picked a sequence of g addresses, there are 29 possible se-
quences of bits that could be contained in those addresses. If the verifier accepts for only ¢ of
those sequences, then we say that the free bit parameter is logt (note that this number need
not be an integer). In fact, for proving hardness result for MAX-INDSET and MAX-CLIQUE,
it suffices to consider the amortized free bit complexity [BGS95]. This parameter is defined
as lims_.g fs/log(1/s), where fs is the number of free bits needed by the verifier to ensure
the soundness parameter is at most s (with completeness at least say 1/2). Hastad con-
structed systems with amortized free bit complexity tending to zero [Has96]. That is, for
every € > 0, he gave a PCP-verifier for NP that uses O(logn) random bits and e amortized
free bits. The completeness is 1. He then used this PCP system to show (borrowing the
basic framework from [FGLT91, FK93, BS94, BGS95]) that MAX-INDSET (and so, equivalently,
MAX-CLIQUE) is NP-hard to n~!*¢-approximate for arbitrarily small ¢ > 0.
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2-bit tests and powerful fourier analysis

Recent advances on Hastad’s line of work consist of using more powerful ideas from Fourier
analysis. The Fourier analysis in Hastad’s proof hardly uses the fact that the functions
being tested are Boolean. However, papers of Kahn, Kalai, Linial [KKL88], Friedgut [Fri99],
and Bourgain [Bou02] have led to important new insights into the Fourier coefficients of
Boolean functions, which in turn have proved useful in analysing PCP verifiers. (See also
Note 22.21.) The main advantage is for designing verifiers that read only 2 bits in the
proof, which arise while proving hardness results for a variety of graph problems such as
VERTEX-COVER, MAX-CUT and SPARSEST-CUT.

These new results follow Hastad’s overall idea, namely, to show that if the verifier accepts
some provided functions with good probability, then the function has a few large fourier
coefficients (see Corollary 22.25 for example). However, Hastad’s analysis (even for the long
code test in Section 22.6) inherently requires the verifier to query 3 bits in the proof, and we
briefly try to explain why. For simplicity we focus on the long code test. We did a simple
analysis of the long code test to arrive at the conclusion of Lemma 22.24:

> fa =2l > 24,

where 1/2 + ¢ is the probability that the verifier accepts the function. From this fact,
Corollary 22.25 concludes that at least one fourier coefficient has value at least ¢ = ¢(d, p) >
0. This is a crucial step because it lets us conclude that f has some (admittedly very weak)
connection with some small number of codewords in the long code.

One could design an analogous 2-bit test. The first part of the above analysis still goes
through but in the conclusion the cubes get replaced by squares:

> f2—2p) > 26, (12)

For a non-Boolean function this condition is not enough to let us conclude that some fourier
coefficient of f has value at least ¢ = ¢(6, p) > 0. However, the following lemma of Bourgain
allows such a conclusion if f is Boolean. We say that a function f:{0,1}" — {0,1} is a
k-junta if it depends only on k of the n variables. Note that Parseval’s identity implies that
at least one fourier coefficient of a k-junta is 1/2%/2. The next Lemma implies that if a
boolean function f is such that the LHS of (12) is at least 1 — p* where ¢ > 1/2 , then f is
close to a k-junta for a small k.

Lemma 22.35 ([Bou02]) For every €,6 > 0 and integer r there is a constant k = k(r,¢,0)

such that if .
£2
Z fo‘ < T1/2+e’

ozl >r

then [ has agreement 1 — § with a k-junta. &

We suspect that there will be many other uses of fourier analysis in PCP constructions.

Unique games and threshold results

Hastad’s ideas led to determination of the approximation threshold for several problems.
But the status of other problems such as VERTEX-COVER and MAX-CUT remained open. In
2002 Khot [Kho02] proposed a new complexity theoretic conjecture called the unique games
conjecture (UGC) that is stronger than P # NP but still consistent with current knowledge.
This conjecture concerns a special case of 2CSPy, in which the constraint function is a
permutation on [W]. In other words, if the constraint ¢, involves variables ¢, j, the constraint
function h is a bijective mapping from [W] to [W]. Then assignment wuj,us,. .., u, to the
variables satisfies this constraint iff u; = h(u;). According to UGC, for every constants
€,0 > 0 there is a domain size W = W (e, d) such that there is no polynomial-time algorithm
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that given such an instance of 2CSPy with val(-) > 1 — € produces an assignment that
satisfies 0 fraction of constraints.?

Khot suggested that current algorithmic techniques seem unable to design such an al-
gorithm (an insight that seems to have been confirmed by lack of progress in the last few
years, despite much effort). He also showed that this conjecture implies several strong re-
sults about hardness of approximation. The reason in a nutshell is that the Fourier analysis
technique of Hastad (fortified with the above-mentioned discoveries regarding Fourier anal-
ysis of Boolean functions) can be sharpened if one starts with the instances of 2CSPy, with
the uniqueness constraint.

Subsequently, a slew of results have shown optimal or threshold results about hardness of
approximation (often using some of the advanced fourier analysis mentioned above) assum-
ing UGC is true.f For instance UGC implies that there is no polynomial-time algorithm that
computes a 1/2 + d-approximation to VERTEX-COVER for any ¢ > 0 [KR08], and similarly
no algorithm that computes a 0.878-approximation to MAX-CUT [KKMOO05, MOO05]. Both
of these lead to threshold results since these ratios are also the ones achieved by the current
approximation algorithms.

Thus it is of great interest to prove or disprove the unique games conjecture. Algo-
rithms designers have tried to disprove the conjecture using clever tools from semidefinite
programming, and currently the conjecture seems truly on the fine line between being true
and being false. It is known that it will suffice to restrict attention to the further subcase
where the constraint function h is linear —i.e., the constraints are linear equations mod W
in two variables.

Connection to Isoperimetry and Metric Space Embeddings

A metric space (X, d) consists of set of points X and a function d mapping pairs of points
to nonnegative real numbers satisfying (a) d(i,j) = 0 iff « = 5. (b) d(i,5) + d(j, k) >
d(i, k) (triangle inequality). An embedding of space (X,d) into space (Y,d’) is a function
f:X — Y. Its distortion is the maximum over all point pairs {i,j} of the quantities
d/(g(ii)f)(j ) T j'.i((ig’;?(j)). It is of great interest in algorithm design (and in mathematics) to
understand the minimum distortion required to embed one family of metric spaces into
another. One interesting subcase is where the host space (Y, d’) is a subset of the ¢; metric
space on R" for some n (in other words, distance d’ is defined using the ¢; norm). Bourgain
showed that every n-point metric space embeds in ¢; with distortion O(logn). This fact is
important in design of algorithms for graph partitioning problems such as SPARSEST-CUT.
In that context, a metric called £3 had been identified. Goemans and Linial conjectured that
this metric would be embeddable in ¢; with distortion O(1). If the conjecture were true we
would have an O(1)-approximation algorithm for SPARSEST-CUT. Khot and Vishnoi [KV05]
disproved the conjecture, using a construction of an interesting ¢2 metric that is inspired by
the advanced PCP Theorems discussed in this chapter. The main idea is that since there
is an intimate relationship between £; metrics and cuts, one has to construct a graph whose
cut structure and isoperimetry properties are tightly controlled. So Khot and Vishnoi use
a hypercube-like graph, and use Fourier analysis to show its isoperimetry properties. (See
Note 22.21.)

Their work has inspired other results about lower bounds on the distortions of metric
embeddings.

Chapter notes and history

As mentioned in the notes to Chapter 11, the PCP Theorem was proved in 1992 in the early versions
of the papers [AS92, ALMT92]. The AS-ALMSS proof of the PCP Theorem resisted simplification

2In fact, Khot phrased the UGC as the even stronger conjecture that solving this problem is NP-hard.
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for over a decade. The overall idea of that proof (as indeed in MIP = NEXP) is similar to the
proof of Theorem 11.19. (Indeed, Theorem 11.19 is the only part of the original proof that still
survives in our writeup.) However, in addition to using encodings based upon the Walsh-Hadamard
code the proof also used encodings based upon low degree multivariate polynomials. These have
associated procedures analogous to the linearity test and local decoding, though the proofs of
correctness are a fair bit harder. The proof also drew intuition from the topic of self-testing and
self-correcting programs [BLR90, RS92], which was surveyed in Section 8.6. The alphabet reduction
in the AS-ALMSS proof was also somewhat more complicated. A draft writeup of the original proof
is available on this book’s website. (We dropped it from the published version in favor of Dinur’s
proof but feel it is interesting in its own right and may be useful in future research.)

Dinur’s main contribution in simplifying the proof is the gap amplification lemma (Lemma 22.5),
which allows one to iteratively improve the soundness parameter of the PCP from very close to
1 to being bounded away from 1 by some positive constant. This allows her to use a simpler
alphabet reduction. In fact, the alphabet reduction is the only part of the proof that now uses
the “proof verification” viewpoint, and one imagines that in a few years this too will be replaced
by a purely combinatorial construction. A related open problem is to find a Dinur-style proof of
MIP = NEXP.

We also note that Dinur’s general strategy is somewhat reminiscent of the zig-zag construction
of expander graphs and Reingold’s deterministic logspace algorithm for undirected connectivity
described in Chapter 20, which suggests that more connections are waiting to be made between
these different areas of research.

As mentioned in the notes at the end of Chapter 11, Papadimitriou and Yannakakis [PY88]
had shown around 1988 that if it is NP-hard to p-approximate MAX-3SAT for some p < 1 then it
is also NP-hard to p’-approximate a host of other problems where p’ depends upon the problem.
Thus after the discovery of the PCP Theorem, attention turned towards determining the exact
approximation threshold for problems; see for example [BS94, BGS95]. Hastad’s threshold results
for MAX-CLIQUE [H4&s96] and MAX-3SAT [Has97] came a few years later and represented a quantum
jump in our understanding.

The issue of parallel repetition comes from the paper of Fortnow, Rompel, and Sipser [FRS8S]
that erroneously claimed that val(¢*") = val(p)’ for every 2CSP ¢ and ¢t € N. However, Fort-
now [For89] soon found a counter example (see Exercise 22.6). Papers Lapidot and Shamir [LS91],
Feige-Lovasz [FL92], which predate Raz’s paper, imply hardness results for 2CSP but the running
time of the reduction is superpolynomial. Verbitsky [Ver94] and Feige and Kilian [FK93] proved
weaker versions of Raz’s Theorem (Theorem 22.15). Raz’s proof of the parallel repetition is based
on an extension of techniques developed by Razborov [Raz90] in the context of communication
complexity. The proof is beautiful but quite complex, though recently Holenstein [Hol07] gave
some simplifications for Raz’s proof; a writeup of this simplified proof is available from this book’s
website.

The hardness result for INDSET in Lemma 22.8 can be improved so that for all € > 0, n= T
approximation in NP-hard in graphs with n vertices. This result is due to [Hs96], which caps
a long line of other work [FGL191, AS92, ALM192, BS94, BGS95]. The use of expanders in the
reduction of Lemma 22.8 is from [AFWZ95]. Note that a 1/n-approximation is trivial: just output
a single vertex, which is always an independent set. Thus this result can be viewed as a threshold
result.

The hardness of SET-COVER is due to Lund and Yannakakis [LY94], which was also the first
paper to implicitly use 2CSPy, with projection property; the importance of this problem was
identified in [Aro94, ABSS93], where it was called label cover used to prove other results. This
problem is now ubiquitous in PCP literature.

A threshold result for SET-COVER was shown by Feige [Fei96]: computing (1+6)/Inn approx-
imation is hard for every § > 0, whereas we know a simple 1/In n-approximation algorithm.

See Arora and Lund [AL95] for a survey circa 1995 of how to prove the basic results about
hardness of approximation. See Khot [Kho05] for a more recent survey about the results that use
fourier analysis.

Exercises

Prove Equation (1). rmaes

Let G = (V, E) be a A-expander graph for some A € (0,1). Let S be a subset of V' with |S| = g|V|
for some 3 € (0,1). Let (X1,...,X¢) be a tuple of random variables denoting the vertices of a
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uniformly chosen (¢—1)-step path in G. Then, prove that
(8= 20" <PrlVicg X € S] < (B+2)\)*

H465

22.3 Let S; be the binomial distribution over ¢ balanced coins. That is, Pr[S; = k] = (£)2*t. Prove that
for every 0 < 1, the statistical distance (see Section A.2.6) of S; and S, 5 5 is at most 105. maes

22.4 Prove that for every non-negative random variable V, Pr[V > 0] > E[V]?/E[V?].

H465

22.5 In this problem we explore an alternative approach to the Alphabet Reduction Lemma (Lemma 22.6)
using Long Codes instead of Welsh-Hadamard codes. We already saw that the long-code for a set
{0,...,W — 1} is the function LC : {0,..., W — 1} — {0, 1}2W such that for every ¢ € {0.W—1}
and a function f : {0..W—1} — {0, 1}, (where we identify f with an index in [2*]) the f*" position
of LC(4), denoted by LC(7)s, is f(i). We say that a function L : {0, 1}2W — {0,1} is a long-code
codeword if L = LC(4) for some ¢ € {0..W—1}.

(a) Prove that LCis an error-correcting code with distance half. That is, for every i # j € {0..W/-},
the fractional Hamming distance of LC(¢) and LC(35) is half.

(b) Prove that LC is locally-decodable. That is, show an algorithm that given random access to a
function L : 200" {0,1} that is (1—€)-close to LC(i) and f : {0..W—-1} — {0,1} outputs
LC(2)s with probability at least 0.9 while making at most 2 queries to L.

(c) Let L = LC(¢) for some i € {0..W—1}. Prove the for every f : {0.W-1} — {0,1}, L(f) =

1— L(f), where f is the negation of f (i.e. , f(i) =1 — f(4) for every i € {0..W—1}).

(d) Let T be an algorithm that given random access to a function L : glo3™ {0,1}, does the
following:

(a) Choose f to be a random function from {0.W-1} — {0,1}.

(b) If L(f) =1 then output TRUE.

(c) Otherwise, choose g : {0.W—1} — {0,1} as follows: for every ¢ € {0.W—1}, if f(i) =0
then set g(i) = 0 and otherwise set g(¢) to be a random value in {0, 1}.

(d) If L(g) = 0 then output TRUE; otherwise output FALSE.

Prove that if L is a long-code codeword (i.e., L = LC(¢) for some i) then T outputs TRUE
with probability one.

Prove that if L is a linear function that is non-zero and not a long code codeword then T
outputs TRUE with probability at most 0.9.

(e) Prove that LC is locally testable. That is, show an algorithm that given random access to a

function L : {0,1}" — {0, 1} outputs TRUE with probability one if L is a long-code codeword
and outputs FALSE with probability at least 1/2 if L is not 0.9-close to a long-code codeword,
while making at most a constant number of queries to L. ma4es

(f) Using the test above, give an alternative proof for the Alphabet Reduction Lemma (Lemma 22.6).

H466

22.6 ([For89, Feig1]) Consider the following 2CSP instance ¢ on an alphabet of size 4 (which we identify
with {0, 1}2). The instance ¢ has 4 variables xo,0, 0,1, 1,0, 1,1 and four constraints Co 0, Co,1, C1,0, C1,1-
The constraint C, 5 looks at the variables xo,, and ;5 and outputs TRUE if and only if 0.« = =15
and zo,, € {0a, 1b}.

(a) Prove that val(¢*?) = val(ip), where ¢** denotes the 2CSP over alphabet W' that is the ¢-times
parallel repeated version of ¢ as in Section 22.3.1. na4es

(b) Prove that for every ¢, val(p™*) > val(p)"/2.

22.7 (Solvability of Unique Games) We encountered unique games in Section 22.9.4; it is a special case
of 2CSPw in which the constraint function h is a permutation on [W]. In other words, if constraint
(r involves variables i, j, then assignment w1, us, ..., u, to the variables satisfies this constraint iff
u; = h(u;). Prove that there is a polynomial-time algorithm that given such an instance, finds a
satisfying assignment if one exists.

22.8 Prove Corollary 22.25.

22.9 Prove that the PCP system resulting from the proof of Claim 22.36 (Chapter 11) satisfies the
projection property.
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This question explores the notion of noise-senstivity of Boolean functions, which ties in to the
discussion in Note 22.21. Let f : {£1}" — {£1} and let I C [n]. Let M; be the following
distribution: we choose z €, M; by for i € I, choose z; to be +1 with probability 1/2 and —1 with
probability 1/2 (independently of other choices), for ¢ € I choose z; = +1. We define the variation
of f on I to be Pryc (41)n ze, m; [f(X) # f(x2)].

Suppose that the variation of f on I is less than e. Prove that there exists a function g : {£1}" —
R such that (1) g does not depend on the coordinates in I and (2) g is 10e-close to f (i.e.,
Pryc, (2137 [f(x) # g(x)] < 10¢). Can you come up with such a g that outputs values in {1} only?

For f: {£1}" — {£1} and x € {£1}" we define N¢(x) to be the number of coordinates 4 such that
if we let y to be x flipped at the i*" coordinate (ie,y= ze® where e’ has —1 in the i*" coordinate
and +1 everywhere else) then f(x) # f(y). We define the average sensitivity of f, denoted by
as(f) to be the expectation of Ny(x) for x €, {£1}".

(a) Prove that for every balanced function f : {£1}" — {£1} (ie., Pr[f(x) = +1] = 1/2),

as(f) > 1.
(b) Let f be balanced function from {£1}" to {£1} with as(f) = 1. Prove that f is a coordinate
function or its negation (i.e., f(x) = z; or f(x) = —x; for some i € [n] and for every

x € {£1}"). (Restatement using the language of isoperimetry as in Note 22.21: If a subset
of half the vertices of the hypercube {0,1}" has exactly 2"~ 1 edges leaving it, then there is
some ¢ such that this subset is simply the set of vertices where z; = 0 (or ; = 1).)

([KM91]) This exercise asks you to give an alternative proof of the Goldreich-Levin Theorem 9.12
using Fourier analysis.

(a) For every function f : {£1}" — R, denote fo. = 2 se{o1)n—k f20ﬁ7 where o denotes con-
catenation and we identify strings in {0,1}" and subsets of [n] in the obvious way. Prove

that _
foi= B [flxoy)fdoy)
x,x,GR {0,1}
yeu {0,137k
H466

(b) Prove that for every a € {0,1}",

fax = E  [fxoy)f(x"oy)xa(x)xa(x')] (13)

x,x' €, {0,1}F
vy {0,137k

H466

(c) Show an algorithm Estimate that given a € {0,1}", ¢ > 0 and oracle access to f : {£1}" —
{#1}, runs in time poly(n, 1/¢) and outputs an estimate of f, within € accuracy with proba-
bility 1 — €. Haee

(d) Show an algorithm LearnFourier that given e > 0 and oracle access to f : {£1}" — {£1},
runs in poly(n, 1/¢) time and outputs a set L of poly(1/¢) strings such that with probability
at least 0.9, for every o € {0,1}", if |fo| > € then a € L. raes

(e) Show that the above algorithm implies Theorem 9.12.

Prove Lemma 22.33, albeit using a randomized algorithm. ma4ee
Derandomize the algorithm of the previous exercise. mase

([ABSS93]) In Problem 11.16 we explored the approximability of the problem of finding the largest
feasible subsystem in a system of linear equations over the rationals. Show that there is an ¢ > 0
such that computing an n~ “-approximation to this problem is NP-hard. nase

([PY88]) Suppose we restrict attention to MAX-3SAT in which each variable appears in at most 5
clauses. Show that there is still a constant p < 1 such that computing a p-aproximation to this
problem is NP-hard. w466

([PY88]) In the MAX-CUT problem we are given a graph G = (V, E) and seek to partition the

vertices into two sets S, S such that we maximize the number of edges ’E(S’7 g)‘ between them.
Show that there is still a constant p < 1 such that computing a p-aproximation to this problem is
NP-hard.
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Transforming ¢CSP instances into “nice” instances.
We can transform a ¢CSP-instance ¢ into a “nice” 2CSP-instance v through the following
three claims:

Claim 22.36 There is a CL- reduction mapping any qCSP instance o into a 2CSPyq instance
1 such that

val(p) <1—e=val(y) <1—¢/q o
ProOF: Given a ¢CSP-instance ¢ over n variables uq, ..., u, with m constraints, we con-
struct the following 2CSPoq formula v over the variables uy, ..., un, Y1, ..., Ym. Intuitively,

the y; variables will hold the restriction of the assignment to the ¢ variables used by the "
constraint, and we will add constraints to check consistency: that is to make sure that if the
i'" constraint depends on the variable u; then u; is indeed given a value consistent with y;.
Specifically, for every ¢; of ¢ that depends on the variables u1,...,uq, we add ¢ constraints
{%i,j}jelq) Where v (yi, uj) is true iff y; encodes an assignment to uy, ..., uq satisfying ¢;
and u; is in {0,1} and agrees with the assignment y;. Note that the number of constraints
in 1 is gm.

Clearly, if ¢ is satisfiable then so is ¥. Suppose that val(p) < 1—cand let uq, ..., ug, y1,. ..
be any assignment to the variables of ¢. There exists a set S C [m] of size at least em such
that the constraint ¢; is violated by the assignment ui,...,u,. For any ¢ € S there must
be at least one j € [¢] such that the constraint v; ; is violated. W

Claim 22.37 There is an absolute constant d and a CL- reduction mapping any 2CSPy,
instance ¢ into a 2CSPyy instance v such that

val(p) <1 —e=val(y) <1-—¢/(100Wd).

and the constraint graph of v is d-regular. That is, every variable in i) appears in exactly
d constraints. &

PROOF: Let ¢ be a 2CSPy, instance, and let {G), },en be an explicit family of d-regular
expanders. Our goal is to ensure that each variable appears in ¢ at most d + 1 times (if
a variable appears less than that, we can always add artificial constraints that touch only
this variable). Suppose that w; is a variable that appears in k constraints for some n > 1.
We will change u; into k variables y}, ..., y¥, and use a different variable of the form y! in
the place of u; in each constraint u; originally appeared in. We will also add a constraint
requiring that yf is equal to yfl for every edge (j,7’) in the graph Gy. We do this process
for every variable in the original instance, until each variable appears in at most d equality
constraints and one original constraint. We call the resulting 2CSP-instance 1. Note that
if o has m constraints then 1 will have at most m + dm constraints.

Clearly, if ¢ is satisfiable then so is 1. Suppose that val(¢) < 1 — € and let y be any
assignment to the variables of 1. We need to show that y violates at least 1557 of the
constraints of ¥. Recall that for each variable u; that appears k times in ¢, the assignment
y has k variables y}, ... ,yf. We compute an assignment u to ¢’s variables as follows: u; is
assigned the plurality value of y}, . .. ,yf. We define ¢; to be the number of yf ’s that disagree
with this plurality value. Note that 0 < t; < k(1 — 1/W) (where W is the alphabet size).
If Y27 t; > $m then we are done. Indeed, by (1) (see Section 22.2.3), in this case we will
have at least Z?:l IS—iW > 1o equality constraints that are violated.

Suppose now that > i | ¢; < £m. Since val(p) < 1 — ¢, there is a set S of at least em
constraints violated in ¢ by the plurality assignment u. All of these constraints are also
present in ¢ and since we assume > .| ¢; < 7m, at most half of them are given a different
value by the assignment y than the value given by u. Thus the assignment y violates at
least §m constraints in . B

Claim 22.38 There is an absolute constant d and a CL-reduction mapping any 2CSPyy
instance ¢ with d’'-regular constraint graph for d > d' into a 2CSPy instance 1) such that

val(p) <1 —e=val(y) <1-—¢/(10d)
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and the constraint graph of v is a 4d-regular expander, with half the edges coming out of
each vertex being self-loops. O

PROOF: There is a constant d and an explicit family {G,, },en of graphs such that for every
n, Gy, is a d-regular n-vertex 0.1-expander graph (See Section 22.2.3).

Let ¢ be a 2CSP-instance as in the claim’s statement. By adding self loops, we can
assume that the constraint graph has degree d (this can at worst decrease the gap by factor
of d). We now add “null” constraints (constraints that always accept) for every edge in
the graph G,,. In addition, we add 2d null constraints forming self-loops for each vertex.
We denote by v the resulting instance. Adding these null constraints reduces the fraction
of violated constraints by a factor at most four. Moreover, because any regular graph
H satisfies A(H) < 1 and because of \’s subadditivity (see Exercise 21.7, Chapter 21),
A1) < % + %)\(Gn) < 0.9 where by A(¢) we denote the parameter X of ¢)’s constraint graph.
|
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Chapter 23

Why are circuit lower bounds so
difficult?

Why have we not been able to prove strong lower bounds for general circuits? Despite
the dramatic success in proving lower bounds on restricted circuit classes as described in
Chapter 14, we seem utterly at a loss comes to showing limitations of general Boolean
circuits.

In 1994 Razborov and Rudich [RR94] described what they view as the main technical
limitation of current approaches for proving circuit lower bounds. They defined a notion
of “natural mathematical proofs” for a circuit lower bound. They pointed out that current
lower bound arguments involve such mathematical proofs, and showed that obtaining strong
lower bound with such proof techniques would violate a stronger form of the P # NP
conjecture —specifically, the conjecture that strong one-way functions exist which cannot be
inverted by algorithms running in subexponential time. Since current evidence suggests that
such strong one-way functions do exist (factoring integers, discrete log, etc., as described in
Chapter 9), we conclude that current techniques are inherently incapable of proving strong
lower bounds on general circuits.

The Razborov-Rudich result may be viewed as a modern analogue of the 1970’s results
on the limits of diagonalization (see Chapter 3). What is particularly striking is that com-
putational complexity (namely, the existence of strong one-way functions) is used here to
shed light on a metamathematical question about computational complexity: “Why have
we been unable to prove P = NP?” This is a good example of our claim at the start of the
book that computational tractability has an intimate connection with issues of mathematical
tractability amd proveability.

This chapter is organized as follows. We define natural proofs in Section 23.1, and then in
Section 23.2 we discuss why they are indeed “natural” . We then prove in Section 23.3 that
under widely-believed assumptions, such techniques will not be able to prove NP ¢ P/ooy-

Can we design lower bound techniques that circumvent the ‘“natural proof barrier?”
We describe an interesting such example in Section 23.4. We end in Section 23.5 with
some philosophical musings on the meaning of the natural proof barrier, and our personal
viewpoint.

Definition of natural proofs

Let f:{0,1}" — {0,1} be some Boolean function and ¢ > 1 be some number. Any proof
that f does not have n°-sized circuits can be viewed as exhibiting some property that f has,
and that every function with an n®-sized circuit does not possess. That is, such a proof can
be viewed as providing a predicate P on Boolean functions such that P(f) = 1 but

P(g) = 0 for every g € SIZE(n®) . (1)
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We call the condition (1) nc-usefulness. We say such a predicate P is natural if it satisfies
in addition the following two conditions:

Constructiveness: There is an 2°(™ time algorithm that on input (the truth table of) a
function g : {0,1}" — {0,1} outputs P(g). Note that the truth table has size 27, so
this algorithm runs in time that is polynomial in its input size.

Largeness: The probability that a random function g : {0,1}" — {0, 1} satisfies P(g) = 1
is at least 1/n.

We will discuss in Section 23.2 the motivation behind these conditions, but for now note
that the largeness condition does not contradict the n°-usefulness condition since only a very
small fraction of functions have polynomial-sized circuits (see the proof of Theorem 6.21).
The following theorem says that, under reasonable assumptions, natural proofs cannot be
used to prove that a function is not in P/,

Theorem 23.1 (Natural proofs [RR94])
Suppose that sub-exponentially strong one-way functions exist. Then there exists a constant
¢ € N such that there is no n®-useful natural predicate P.

One-way functions were defined in Chapter 9 (Section 9.2) and by a sub-exponentially
strong one-way function we mean one that resists inverting even by a 2" -time adversary
for some fixed € > 0. It is widely believed that such one-way functions exist. We defer the
proof of Theorem 23.1 to Section 23.3, but first discuss why such predicates do deserve the
name “natural”.

Example 23.2

To develop some understanding of the definition of natural proofs, let us consider
two predicates.

The first is P(g) = 1 iff ¢ is a Boolean function on n bits that has circuit com-
plexity more than n'°8™. This predicate is n°-useful for every constant ¢ since
n¢ = o(n'°e™). The predicate also satisfies largeness since a random Boolean
function satisfies it with probability almost 1 (see the proof of Theorem 6.21).
However, we do not know if this predicate is constructive, since the trival al-
gorithm for computing it would involve enumerating all circuits of size n'°8",
which requires 27" time.

The second example is P’'(g) = 1 iff g correctly solves the decision problem
3SAT on inputs of size n. This function is constructive: to compute it, simply
enumerate all inputs of size n, and verify using a trivial 2"-time algorithm for
3SAT that g gives the correct answer on all inputs. If 3SAT ¢ SIZE(n¢) (an open
problem of course) then P’ satisfies n°-usefulness since it is 0 on all functions
in SIZE(n®). However, P’ does not satisfy largeness since it is 1 for only one
function.

23.2 What'’s so natural about natural proofs?

Now we recall some of the circuit lower bounds we proved earlier and check that they
implicitly involve natural proofs. (This of course is the justification for the name “natural.”)
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Example 23.3 (AC?)
The result that the parity function is not computable in AC° (Section 14.1)

involved the following steps: (a) Showing that every ACP circuit can be simpli-
fied by restricting at most n — n® input bits so that it then becomes a constant
function and (b) Showing that the parity function cannot be made constant by
restricting at most n — n° of its input bits.

Clearly, we can verify whether the property defined in (a) holds for a function
f:{0,1}" — {0,1} in 290" time — just enumerate all possible choices for the
subsets of variables and all ways of setting them to 0/1. Thus, this proof satisfies
the “constructiveness” condition. Moreover, it’s not hard to show that a random
function also cannot be made constant by fixing at most n —n¢ of its input bits
(see Exercise 23.2), and so this proof satisfies the “largeness’ condition as well.

Example 23.4 (Two-party communication complexity)

To prove that f has high 2-party communication complexity, it suffices to prove
that the n x n matrix M (f) introduced in Chapter 13 (namely, one whose (z,y)
entry is f(z,y)) has no large subrectangle that is monochromatic. Now imagine
the algorithmic complexity of checking this condition, where the input to the al-
gorithm is M (f) (i.e., a string of length 22"). The statement “M (f) has no k x [
monochromatic rectangle” is a coNP statement, and in fact is coNP-complete
for general f (it’s equivalent to the bipartite clique problem). However, the
lower bound methods considered in Chapter 13 such as computing the rank or
eigenvalues involve polynomial-time computation, which mean that they satisfy
the “constructiveness” condition. The lower bound method using discrepancy
is actually not a polynomial-time computation, but discrepancy can also be ap-
proximated within a factor O(1) in polynomial time (see the notes of Chapter 13)
and hence this proof satisfies the “constructiveness” condition as well.
Moreover, all of the conditions used in these lower bounds, namely having small
second-largest eigenvalue, high rank, or low discrepancy, are satisfied by a ran-
dom matrix with high probability, and hence all these proofs satisfy the “large-
ness” condition as well.

We see that many lower bounds do use natural proofs, and in fact it turns out that all
the known “combinatorial” circuit lower bounds are natural (e.g., lower bounds such as the
ones in chapters 12-16 that argue directly about the structure of circuits or protocols). But
is there a more general principle at work here? Is there some inherent reason why lower
bounds should satisfy the constructiveness and largeness conditions?

23.2.1 Why constructiveness?

Note that there is an old controversy within mathematics about “nonconstructive” proofs,
whereby the existence of an object is established (usually by some argument about infinite
sets) without giving an explicit algorithm for constructing the object. Most mathematicians
today are completely comfortable with nonconstructive proofs.

In the context of natural proofs, we are insisting upon a much stronger form of “constructiveness”—
the proof must not only yield a finite algorithm, but in fact a polynomial-time algorithm.
Many proofs that would be “constructive” for a mathematician would be nonconstructive
under our definition. Surprisingly, even with this stricter definition, proofs in combinatorial
mathematics are usually constructive, and the same is true of current circuit lower bounds
as well.

In fact, circuit lower bounds usually rely upon techniques from combinatorics and in
general, combinatorics techniques tend to be constructive in our sense of the word. In
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Figure 23.1 A Boolean formula.

a few cases, combinatorial results initially proved “nonconstructively” later turned out to
have constructive proofs: a famous example is the Lovasz Local Lemma (discovered in
1975 [EL75]; algorithmic version discovered in 1991 [Bec91]). The same is true for several
circuit lower bounds— Razborov and Rudich found a “naturalized” version of the lower
bound for ACC[q] of Section 14.2, and Raz [Raz00] gave a natural proof (presented in
Section 13.3) of the lower bound for multiparty communication complexity originally proved
non-constructively by Babai et al in 1992 [BNS89].

Though non-constructive techniques do exist is combinatorics— probabilistic method,
nullstellensatz, topological arguments, etc.— we have not been able to use them to find
better lower bounds for explicit functions. For speculative musings on these topics, please
see Section 23.5.

Why largeness?

Why should a lower bound for a specific function, whether it’s parity or 3SAT, use a property
that holds with good probability for a random function as well? Below, we try to formalize
this. The intuition in a nutshell is that every proof that a specific function fo : {0,1}" —
{0, 1} does not have a size S circuit, actually implies that at least half of the functions from
{0,1}" to {0,1} do not have a circuit of size S/2 — 10. The reason is that if we choose a
random g : {0,1}" — {0,1}, and write fo = (fo ® g) ® g (where g ® h denotes the function
that maps every input z to g(z) @ h(z)), then we see that if both (fo@®g) and g have circuits
of size < §/2 — 10 then fy has a circuit of size < S. Since both g and (fo @ g) are uniformly
distributed, it follows that a lower bound on the circuit complexity of fy implies a lower
bound on the complexity of half the functions.

Natural proofs from complexity measures

More generally, a large class of lower bound techniques turns out to yield properties that
simultaneously satisfy the constructiveness and largeness properties (i.e., are natural). For
concreteness, let us focus on Boolean formulae (see Figure 23.1), that are Boolean circuits
where gates have indegree 2 and outdegree 1. It is tempting to prove a lower bound using
some kind of induction. Suppose we have a function that we believe to be “complicated,” in
the sense that it requires a large Boolean formula to compute. Since the function computed
at the output is “complicated”, at least one of the functions on the incoming edges to
the output gate should also be “pretty complicated” (after all those two functions can
be combined with a single gate to produce a “complicated” function). Now we try to
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formalize this intuition, and point out why one ends up proving a lower bound on the
formula complexity of random functions.

The most obvious way to formalize a “complicatedness” is as a function p that maps
every Boolean function on {0,1}" to a nonnegative integer. We say that p is a formal
complexity measure if it satisfies the following properties: First, the measure is low for
trivial functions: p(z;) < 1 and pu(Z;) <1 for all 4. Second, we require that

o u(fAg) < u(f)+nulg) for all f, g; and
o u(fVg)<pu(f)+ug) forall f,g.

For instance, the following function p is trivially a formal complexity measure
p(f) = 1+ the smallest formula size for f. (2)

In fact, it is easy to prove the following by induction.

Theorem 23.5 If p is any formal complexity measure, then p(f) is a lower bound on the
formula complexity of f. &

Thus to formalize the inductive approach outlined earlier, it suffices to define a measure
such that, say, 11(3SAT) is super-polynomial. For example, one could try “fraction of inputs
for which the function agrees with the 3SAT function” or some suitably modified version of
this. In general, one imagines that defining a measure that lets us prove a good lower bound
for 3SAT would involve some deep observation about the 3SAT function. The next lemma
seems to show, however, that even though all we care about is the 3SAT function, our lower
bound necessarily must reason about random functions.

Lemma 23.6 Suppose p is a formal complexity measure and there exists a function f :
{0,1}™ — {0,1} such that u(f) > S for some large number S. Then for at least 1/4 of all
functions g : {0,1}™ — {0,1} we must have u(g) > S/4. O

PROOF: The proof follows by the same observation as above. For a random function g :
{0,1}" — {0,1}, we can write f = h @ g where h = f @ g. So f = (hAg)V (hAg) and
w(f) < pu(g) + (@) + w(h) + u(h). But if more than 3/4 of the functions have measure less
than S/4, then by the union bound with positive probability all four functions g, h,g, b will

have measure less than S/4, implying that u(f) < S and contradicting our assumption. H

In fact, the following stronger theorem holds:

Theorem 23.7 If u(f) > S then for all € > 0 and for at least 1 — € of all functions g we

have that,
S
wg) 2 & <<n T 1og<1/e>>2) ' ¢

The idea behind the proof of the theorem is to write f as the Boolean combination of a
small number of functions and then proceed similarly as in the proof of the lemma. These
results mean that every lower bound that is obtained through a 2°(")-time computable
formal complexity measure p will be natural.

Proof of Theorem 23.1

Now we prove Theorem 23.1. We will use the key fact from Section 9.5.1 that we can build
from every pseudorandom generator a pseudorandom function family. Recall that this is a
family of functions { fs}se(o,1}+, where for s € {0, 1}, f; is a function from {0, 1}" to {0, 1}.
This family has the following two properties: (a) there is a polynomial-time algorithm that
given s,z outputs fs(z) and (b) no polynomial-time algorithm can distinguish with non-
negligible probability between oracle access to the function fs(-) for a randomly chosen
s €, {0,1}" and oracle access to a random function from {0,1}" to {0,1}.
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Since pseudorandom generators can be based on any one-way function [HILL99], we can
obtain such a family from this assumption as well. In fact, one can verify by going over
these reductions that if we start from a one-way function that cannot be inverted by 2" -
time algorithms for some constant ¢ > 0 then we obtain a pseudorandom function family
{fs}seqo,1y such that f,(-) for s € {0,1}" cannot be distinguished from a random function

by 27" -time algorithms for some constant €.

What does all this have to do with natural proofs? Suppose P is a natural property
on n-bit functions that is n°-useful. It is an algorithm (albeit one running in 29 time)
that (a) outputs 0 on functions with circuit complexity lower than n°. (b) outputs 1 on
a nonnegligible fraction of functions. Thus one can hope that such an algorithm allows us
some nonnegligible chance of distinguishing a pseudorandom function from a truly random
function, and this is what we show now.

Let {fs} be a 2™ -secure pseudorandom function collection as described earlier. We use
the natural property P to design an algorithm that distinguishes between a random function
from {0,1}"™ to {0,1} and fs (to both of which it has oracle access) with nonnegligible
probability.

Given oracle access to an unknown function h (which could either be f, for some s or
a random function), the distinguisher lets n be m/? and constructs the truth table of the
function g from {0,1}" to {0,1} defined as: g(z) = h(x0™ ™). Constructing this truth
table only requires 29" time. Then the distinguisher runs algorithm P on this function,
and outputs whatever P does. Now consider the two cases under consideration. In one case,
the provided function h was a random function, and so this new function g is also a random
function on {0,1}". Hence the probability that P outputs 1 is at least 1/n. In the other
case, the provided function h was fs for some s. Then function g has circuit complexity at
most n° since the map s, — fs(z) can be computed in poly(m) time, and hence the map
x +— g(x) is computable by circuit of size poly(m) = n¢ that has s “hardwired” into it. (To
be sure, the distinguisher does not know s or this circuit; we are only asserting that the
circuit ezists.) Hence P given the truth table for g must output 0.

Thus the distinguisher distinguishes between f; and a random function with probability
at least 1/n and furthermore does so in 29" time, which is less than 2. Viewed con-
trapositively, this implies that if the pseudorandom function was subexponentially strong,
then the natural property cannot exist. l

An “unnatural” lower bound

Can we prove circuit lower bounds using proofs that are not natural? Here we show an inter-
esting example that uses (among other ideas) simple old diagonalization! After presenting
the result we comment more on why it is not natural.

To present this result we’ll need the notion of a promise problem, which is a partially
defined Boolean function from {0,1}" to {0,1}. That is, we can think of such a problem
as a function f : {0,1}" — {0,1, L} where L represents “undefined”. We say that an
algorithm A solves a promise problem f, if whenever f(z) € {0,1} then A(z) = f(x), but
we make no requirement on A’s output when f(z) = L. We can generalize the definition
of every complexity class to promise problems, and in particular denote by PromiseMA
the corresponding generalization of the class M A defined in Section 8.2. That is, a promise
problem f is in PromiseMA if there is a probabilistic polynomial-time algorithm A and
a polynomial p(-) such that for every z € {0,1}", (a) if f(x) = 1 then there exists y €
{0,139V such that Pr[A(z,y) = 1] > 2/3 and (b) if f(x) = 0 then for every y € {0, 1}7{*D,
Pr[A(z,y) = 1] < /3. We have the following lower bound:
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Theorem 23.8 ([San07])
For every c € N,
PromiseMA ¢ SIZE(n°) ,

where SIZE(n®) denotes the set of promise problems with n°-sized circuits.

PROOF: Recall that in the interactive proof for PSPACE shown in Section 8.3, the prover al-
gorithm can be implemented itself in polynomial space. This means that if L is a PSPACE-
complete problem, then there is an interactive proof for L where the prover can prove that
a string x is in L using polynomial time and oracle access to the language L itself. In fact,
it turns out that there is a such a language Ly where on inputs of length n the prover needs
only to make queries of length at most n [TV02]. This means that if this language Lo can
be decided by a circuit of size S(n), then the prover can simply send this circuit, which a
probabilistic verifier can then use to run the interactive protocol on its own. Therefore, we
see that if Ly € SIZE(S(n)) then there’s a poly(S(n))-time MA protocol for Ly. (We saw
similar reasoning in Theorem 8.22 and Lemma 20.18.)

Define S(n) to be one plus the size of the smallest circuit that solves Ly on length-n
inputs. Now if S(n) < poly(n), this means that PSPACE C MA but in this case MA
clearly has a language outside of SIZE(n°) for every ¢ (see Exercise 6.5 of Chapter 6). In fact,
the same reasoning holds even if there’s a constant ¢ such that S(n) < n infinitely often,
and so we may assume that S(n) = n*(!). Note that Lo has a poly(S(n))-time MA protocol
but has no S(n)-sized circuit. If only S(n) was time constructible, we could “scale down”
this separation by defining the language L; to be {96015(‘””‘)1/6_‘””‘_1 :x € Lo}, implying
that L is in MA but not in SIZE(n¢). Unfortunately, we cannot assume that S(n) is time
constructible and hence cannot ensure that L; is in M A. Nonetheless, we can define the
following promise problem f1: it is defined only on inputs of the form y = 20150z ~lel-1
and on such inputs fi(y) = Lo(x). It’s not hard to see that f; € PromiseMA \ SIZE(n°).
|

This proof is unnatural because underlying it is the proof that PSPACE ¢ SIZE(n)
which uses diagonalization - an inherently unnatural technique that focuses on one very spe-
cific function and hence violates the largeness condition. Alternatively, one can also view
a diagonalization proof as showing that a function has the property that it disagrees with
every small circuit on some input— a property that satisfies largeness but not construc-
tiveness. In fact, Theorem 23.1 shows that there are no natural proofs for Theorem 23.8,
unless subexponentially strong one-way functions do not exist. It is also known that this
lower bound does not relativize [Aar06]. Unfortunately, “pushing down” these diagonaliza-
tion/arithmetization based techniques to obtain a lower bound on a function in NP seems
very hard.

A philosophical view

We think that the natural proof idea and other negative results of this nature are very
valuable. When one is stuck on a difficult question, it is useful to try to prove that it can’t
be solved, or can’t be solved with particular methods. This can give additional insight on
the question that might otherwise be very hard to obtain. By understanding the obstacles,
we know what we’ll have to tackle or bypass to solve certain problems, and this has proven
to be extremely useful countless times in complexity theory and theoretical computer science
at large. In this case, the natural proofs paradigm shows that any complexity class that
has a plausible pseudorandom function generator is going to pose a problem to known lower
bound techniques. Since even low classes like NC' and TCy contain plausible pseudorandom
functions, one gets a fairly good understanding of why the project of proving lower bounds
ground to a halt at the class ACCP.
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However, perhaps natural proofs have been so successful at encompassing known lower
bound techniques, that this discouraged researchers from thinking too hard about circuit
lower bounds. This need not be the case. There are techniques in combinatorics that do
not satisfy either the constructiveness or the largeness properties. Personally, we feel that
the constructiveness property may be easier to get around, and one sees this already in the
nonnatural proof of the previous section. Looking more broadly at combinatorics, a relevant
example is Lovasz’s lower bound of the chromatic number of the Kneser graph [Lov7s8]. Lower
bounding the chromatic number is coNP-complete in general. Lovasz gives a topological
proof (using the famous Borsuk-Ulam fixed point theorem) that determines the chromatic
number of the Kneser graph exactly. From his proof one can indeed obtain an algorithm
for solving chromatic number on all graphs([MZ04]) —but it runs in PSPACE for general
graphs! So if this were a circuit lower bound we could call it “nonconstructive.” Nevertheless,
Lovasz’s reasoning for the particular case of the Kneser graph is not overly complicated
because the graph is highly symmetrical. This suggests we should not blindly trust the
intuition that “nonconstructive = difficult.” We should also remember the lesson learned
from the results on limitations of relativizing techniques (Section 3.4). We’ve seen that one
new non-relativizing technique— arithemtization— allowed us to prove a host of results in
Chapters 8, 11, etc. that cannot be proven using relativizing techniques. It may very well
be that a single new “unnatural” technique will open the floodgates for a great many lower
bounds.

Chapter notes and history

The observation that circuit lower bounds may unwittingly end up reasoning about random func-
tions first appears in Razborov [Raz89]’s result about the limitations of the method of approxima-
tion. We did not cover the full spectrum of ideas in the Razborov-Rudich paper [RR94], where it is
observed that candidate pseudorandom function generators exist even in the class TC?, which lies
between ACC? and NC!. Thus natural proofs will probably not allow us to separate even TC°
from P. Razborov’s observation about submodular measures in Exercise 23.4 below is important
because many existing approaches for formula complexity use submodular measures; thus they will
fail to even prove superlinear lower bounds. The lower bound of Section 23.4 is due to Santhanam
[San07]; similar techniques were first used to show hierarchy theorems for probabilistic algorithms
with small advice [Bar02, FS04, GST04].

In contrast with our limited optimism, Razborov himself expresses (in the introduction to [Raz03b])
a view that the obstacle posed by the natural proofs observation is very serious. He observes that
existing lower bound approaches use weak theories of arithmetic such as Bounded Arithmetic. He
conjectures that any circuit lower bound attempt in such a logical system must be natural (and
hence unlikely to work). But there are several theorems even in discrete mathematics use reasoning
(e.g., fixed point theorems like Borsuk-Ulam) that does not seem to be formalizable in Bounded
Arithmetic, which is our reason for optimism. Some researchers are far more pessimistic: they fear
that P versus NP may be independent of mathematics (say, of Zermelo-Fraenkel set theory). See
Aaronson’s survey [Aar03] for more on this issue.

Very recently, Aaronson and Wigderson [AWO08] showed a new obstacles for complexity results
called algebraization. A complexity class separation C g_ D cannot be solved using “algebrizing
techniques” if there is there is an oracle O such that C° C D°, where O denotes the low degree
extension of the Boolean function O to a larger field or ring such as the integers. Roughly speaking,
algebrizing techniques capture all results such as IP = PSPACE and the PCP theorems that
are proven by arithmetization. In particular, the lower bound of Section 23.4 uses algebrizing
techniques, but [AW08] show that one cannot prove even a superlinear lower bound on NP using
such techniques.

Exercises

23.1 Prove Theorem 23.7.
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Prove that a random function ¢ : {0,1}" — {0, 1} satisfies P(g) = 1 with high probability, where P
is the property, defined in Example 23.3, that for no fixing of n — n® of ¢g’s turns g into a constant
function.

Prove Wigderson’s observation: There is no natural proof that the DISCRETE LOG problem (i.e.,
given a prime p, and g,y € Z,, with g # 1, find « € Z;, such that y = ¢” (mod p)) requires circuits
of 2™ size for some constant € > 0. maeo

(Razborov [Raz92]) A submodular complexity measure is a complexity measure that satisfies pu(f Vv
g)+ p(f ANg) < u(f) + wu(g) for all functions f,g. Show that for every n-bit function fn, such a
measure satisfies pu(fn) = O(n). mHaee

Let L be the language containing all triples (g, P, ) such that the '™ bit of ¢ (mod P) is equal
to 1, where P is a number and ¢ is an expression involving constants, the arithmetic operations
+, —, - and sum and product quantifiers of the form Zzie{o,l} or Hxie{o,l}v satisfying the following
property: if we sort x1,...,x, according to their order of appearance in ¢, then for every variable
x; there is at most a single [| quantifier involving x; (for j > i) appearing before the last occurrence
of x; in ¢. Show that L is PSPACE complete and furthermore, there is an interactive proof for L
where the prover algorithm runs in polynomial time using an oracle for L, and when proving that
some = € {0,1}" is in L it uses queries of length at most n to its oracle. raes
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Appendix A

Mathematical Background.

This appendix reviews the mathematical notions used in this book. However, most of these
are only used in few places, and so the reader might want to only quickly review Sections A.1
and A.2, and come back to the other sections as needed. In particular, apart from proba-
bility, the first part of the book essentially requires only comfort with mathematical proofs
and some very basic notions of discrete math.

The topics described in this appendix are covered in greater depth in many texts and
online sources. Almost all of the mathematical background needed is covered in a good
undergraduate “discrete math for computer science” course as currently taught at many
computer science departments. Some good sources for this material are the lecture notes
by Papadimitriou and Vazirani [PV06], and the book of Rosen [Ros06].

The mathematical tool we use most often is discrete probability. Alon and Spencer
[AS00b] is a great resource in this area. Also, the books of Mitzenmacher and Upfal [MUO05]
and Motwani and Raghavan [MR95] cover probability from a more algorithmic perspective.

Although knowledge of algorithms is not strictly necessary for this book, it would be
quite useful. It would be helpful to review either one of the two recent books by Dasgupta
et al [DPV06] and Kleinberg and Tardos [KT06] or the earlier text by Cormen et al [CLRS01].
This book does not require prior knowledge of computability and automata theory, but some
basic familiarity with that theory could be useful: see Sipser’s book [Sip96] for an excellent
introduction. See Shoup’s book [Sho05] for a computer-science introduction to algebra and
number theory.

Perhaps the mathematical prerequisite needed for this book is a certain level of com-
fort with mathematical proofs. The fact that a mathematical proof has to be absolutely
convincing does not mean that it has to be overly formal and tedious. It just has to be
clearly written, and contain no logical gaps. When you write proofs try to be clear and
concise, rather than using too much formal notation. Of course, to be absolutely convinced
that some statement is true, we need to be certain of what that statement means. This
why there is a special emphasis in mathematics (and this book) on very precise definitions.
Whenever you read a definition, try to make sure you completely understand it, perhaps
by working through some simple examples. Oftentimes, understanding the meaning of a
mathematical statement is more than half the work to prove that it is true.

Sets, Functions, Pairs, Strings, Graphs, Logic.

Sets. A set contains a finite or infinite number of elements, without repetition or re-
spect to order, for example {2,17,5}, N = {1,2,3,...} (the set of natural numbers),
[n] ={1,2,...,n} (the set of natural numbers from 1 ro n), R (the set of real numbers). For
a finite set A, we denote by |A| the number of elements in A. Some operations on sets are:
(1) union: AUB ={x:x € A or x € B}, (2) intersection : ANB = {x: 2 € A and x € B},
and (3) set difference: A\ B={z:2z € A and = ¢ B}.
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Functions. We say that f is a function from a set A to B, denoted by f : A — B, if it
maps any element of A into an element of B. If B and A are finite, then the number of
possible functions from A to B is |B|l4l. We say that f is one to one if for every z,w € A
with @ # w, f(z) # f(w). If A,B are finite, the existence of such a function implies that
|A| < |B|. We say that f is onto if for every y € B there exists © € A such that f(z) = y.
If A, B are finite, the existence of such a function implies that |A| > |B|. We say that f is a
permutation if it is both one-to-one and onto. For finite A, B, the existence of a permutation
from A to B implies that |A| = |B].

Pairs and tuples. If A B are sets, then the A x B denotes the set of all ordered pairs
(a,b) with @ € A,b € B. Note that if A, B are finite then |A x B| = |A| - |B|. We can
define similarly A x B x C to be the set of ordered triples (a,b,¢) with a € A,b € B,c e C.
For n € N, we denote by A™ the set A x A x --- x A (n times). We will often use the
set {0,1}", consisting of all length-n sequences of bits (i.e., length n strings), and the set
0,1} = U0 {0,1}" ({0,1}" has a single element: a binary string of length zero, which
we call the empty word and denote by €). As mentioned in Section 0.1 we can represent
various objects (numbers, graphs, matrices, etc...) as binary strings, and use  z, (not to be
confused with the floor operator |x]) to denote the representation of z. Moreover, we often
drop the _, symbols and use = to denote both the object and its representation.

Graphs. A graph G consists of a set V' of vertices (which we often assume is equal to the
set [n] ={1,...,n} for some n € N) and a set E of edges, which consists of unordered pairs
(i.e., size two subsets) of elements in V. We denote the edge {u,v} of the graph by ww.
For v € V, the neighbors of v are all the vertices u € V such that wov € E. In a directed
graph, the edges consist of ordered pairs of vertices, and to stress this we sometimes denote
the edge (u,v) in a directed graph by w©. One can represent an n-vertex graph G by its
adjacency matriz which is an n X n matrix A such that A;; is equal to 1 if the edge z_j
is present in G i*" and is equal to 0 otherwise. One can think of an undirected graph as
a directed graph G that satisfies that for every u,v, G contains the edge w¢ if and only
if it contains the edge v . Hence, one can represent an undirected graph by an adjecancy
matrix that is symmetric (A; ; = A;; for every i,j € [n]).

Boolean operators. A Boolean variable is a variable that can be either TRUE or FALSE
(we sometimes identify TRUE with 1 and FALSE with 0). We can combine variables via the
logical operations AND (A), OR (V) and NOT (-, sometimes also denoted by an overline), to
obtain Boolean formulae. For example, the following is a Boolean formulae on the variables
Uy, ug, uz: (ug AT)V—(ugAu1). The definitions of the operations are the usual: aAb = TRUE
if @ = TRUE and b = TRUE and is equal to FALSE otherwise; @ = —a = TRUE if a = FALSE
and is equal to FALSE otherwise; a V b = —(@ V b). We sometimes use other Boolean
operators such as the XOR (&) operator, but they can be always replaced with the equivalent
expression using A,V, - (e.g., a®b = (a Ab) V (@Ab)). If ¢ is a formulae in n variables
UL, ..., Uy, then for any assignment of values u € {FALSE, TRUE}" (or equivalently, {0,1}"),
we denote by ¢(u) the value of ¢ when its variables are assigned the values in u. We say
that ¢ is satisfiable if there exists a u such that ¢(u) = TRUE.

Quantifiers. We will often use the quantifiers V (for all) and 3 (exists). That is, if ¢ is
a condition that can be TRUE or FALSE depending on the value of a variable x, then we
write V() to denote the statement that ¢ is TRUE for every possible value that can be
assigned to x. If A is a set then we write Ve a¢(x) to denote the statement that ¢ is TRUE
for every assignment for x from the set A. The quantifier 3 is defined similarly. Formally,
we say that 3,¢(z) holds if and only if —(V,—¢(z)) holds.

Big-Oh Notation. We will often use the big-Oh notation (i.e., 0,9, 0, 0,w) as defined in
Section 0.3.
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Probability theory

A finite probability space is a finite set Q@ = {w1,...,wn} along with a set of numbers
P1,--.,pn € [0,1] such that Z?Llpi = 1. A random element is selected from this space
by choosing w; with probability p;. If x is chosen from the sample space ) then we denote
this by €, Q. If no distribution is specified then we use the uniform distribution over the
elements of Q (i.e., p; = % for every ).

An event over the space € is a subset A C € and the probability that A occurs, denoted
by Pr[A], is equal to >, ., pi- To give an example, the probability space could be that
of all 2" possible outcomes of n tosses of a fair coin (i.e., Q = {0,1}" and p; = 27" for
every i € [2"]) and the event A can be that the number of coins that come up “heads” (or,
equivalently, 1) is even. In this case, Pr[A] = 1/2 (exercise). The following simple bound
—called the union bound—is often used in the book. For every set of events Ay, As, ..., Ay,

z lA Z (1)

Inclusion exclusion principle. The union bound is a special case of a more general principle.
Indeed, note that if the sets Ay, ..., A, are not disjoint then the probability of U; A; could be
smaller than ), Pr[A;] since we are overcounting elements that appear in more than one set.
We can correct this by substracting >, ; Pr[4; N A;] but then we might be undercounting,
since we subtracted elements that appear in at least 3 sets too many times. Continuing this
process we get

Claim A.1 (Inclusion-Exclusion principle) For every Ay, ..., A,
Prjur_ A ZPr — > PrAinA]+ -+ ()" Pr[A NN AL
1<i<j<n

Moreover, this is an alternating sum which means that if we take only the first k summands
of the right hand side, then this upper bounds the left-hand side if k is odd, and lower
bounds it if k is even. &

We sometimes use the following corollary of this claim, known as the Bonefforni Inequal-
ity:

Corollary A.2 For every events Ay, ..., Ay,

Pr[ur_ A Z Pr[A Z Pr[4; N A;]

Random variables and expectations.

A random wvariable is a mapping from a probability space to R. For example, if  is as
above (i.e., the set of all possible outcomes of n tosses of a fair coin), then we can denote
by X the number of coins that came up heads.

The ezpectation of a random variable X, denoted by E[X], is its weighted average. That
is, E[X] = Zi\il p; X (w;). The following simple claim follows from the definition:

Claim A.3 (Linearity of expectation) For X,Y random variables over a space ), denote by
X +Y the random variable that maps w to X (w) + Y (w). Then,

E[X + Y] = E[X] + E[Y] &
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This claims implies that the random variable X from the example above has expectation
n/2. Indeed X = Y7 | X; where X is equal to 1 if the i’ coins came up heads and is equal
to 0 otherwise. But clearly, E[X;] = 1/2 for every i.

For a real number o and a random variable X, we define X to be the random variable
mapping w to a - X (w). Note that E[aX] = a E[X].

Example A.4

Suppose that we choose k random numbers z1,...,z; independently in [n].
What is the expected number of collisions: unordered pairs {i,j} such that
x; = x;7 For every i # j, define the random variable Y; ; to equal 1 if z; = z;
and 0 otherwise. Since for every choice of x;, the probability that z; = x; is 1/n,
we have that E[Y; ;] = 1/n. The number of collisions is the sum of Y; ; over all
t # 7 in [k]. Thus, by linearity of expectation the expected number of collisions

) > e (4)L.

1<i<j<n

This means that we expect at least one collision once (g) > n, which happens
once k is larger than roughly /2n. This fact is often known as the birthday
paradozr because it explains the seemingly strange phenomenon that a class of
more than 27 or so students is quite likely to have a pair of students sharing the
same birthday, even though there are 365 days in the year.

Note that in contrast, if k& < /n then by the union bound, the probability there
will be even one collision is at most (5)/n < 1.

Notes: (1) We sometimes also consider random variables whose range is not R, but other

sets such as C or {0,1}". (2) Also, we often identify a random variable X over the sample

space  with the distribution X (w) for w €, Q. For example, we may use both Prye x[2? =

1] and Pr[X? = 1] to denote the probability that for w €, 2, X (w)? = 1.

The averaging argument

The following simple fact can be surprisingly useful:

The Averaging Argument: If a1, a9, ..., a, are some numbers whose average is ¢
then some a; > c.

Equivalently, we can state this in probabilistic terms as follows:

Lemma A.5 (“The Probabilistic Method”) If X is a random variable which takes values
from a finite set and E[X] = p then the event “X > p” has nonzero probability. O

The following two facts are also easy to verify

Lemma A.6 Ifay,as,...,a, > 0 are numbers whose average is ¢ then the fraction of a;’s
that are at least kc is at most 1/k. O

Lemma A.7 (“Markov’s inequality”) Any non-negative random variable X satisfies

Pr(X > kE[X]) < o

Can we give any meaningful upper bound on the probability that X is much smaller
than its expectation? Yes, if X is bounded.

il

Lemma A.8 If aj,as,...,a, are numbers in the interval [0,1] whose average is p then at
least p/2 of the a;’s are at least as large as p/2. O
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PROOF: Let v be the fraction of i’s such that a; > p/2. Then the average of the a;’s is
bounded by v -1+ (1 —~)p/2. Hence, p <~ + p/2, implying v > p/2. B

More generally, we have

Lemma A.9 If X € [0,1] and E[X] = p then for any ¢ < 1 we have

Example A.10
Suppose you took a lot of exams, each scored from 1 to 100. If your average
score was 90 then in at least half the exams you scored at least 80.

Conditional probability and independence

If we already know that an event B happened, this reduces the space from 2 to 2 N B,
where we need to scale the probabilities by 1/ Pr[B] so they will sum up to one. Thus,
the probability of an event A conditioned on an event B, denoted Pr[A|B], is equal to
Pr[A N B]/ Pr[B] (where we always assume that B has positive probability).

We say that two events A, B are independent if Pr[AN B] = Pr[A] Pr[B]. Note that this
implies that Pr[A|B] = Pr[A4] and Pr[B|A] = Pr[B]. We say that a set of events Ay, ..., A,
are mutually independent if for every subset S C [n],

PrniesAi] = [] PrlAd]. (2)

€S

We say that Ay, ..., A, are k-wise independent if (2) holds for every S C [n] with |S| < k.

We say that two random variables X, Y are independent if for every x,y € R, the events
{X ==z} and {Y =y} are independent. We generalize similarly the definition of mutual
independence and k-wise independence to sets of random variables X;,..., X,,. We have
the following claim:

Claim A.11 If X4,..., X,, are mutually independent then

PROOF:

Z 212, Pr[X; =27 and Xo = 29+ and X,, = x,] = (by independence)

Z z1--- 2y Pr[X) = a1] - Pr[X, = z,] =
(Z x1 Pr[X; = xl])(z 29 Pr[Xo = 23]) - - - (Z zn Pr[X, = 2,]) = H E[X]

where the sums above are over all the possible real numbers that can be obtained by applying
the random variables or their products to the finite set 2. B
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Deviation upper bounds

Under various conditions, one can give better upper bounds on the probability of a random
variable “straying too far” from its expectation. These upper bounds are usually derived
by clever use of Markov’s inequality.

The variance of a random variable X is defined to be Var[X] = E[(X — E(X))?]. Note
that since it is the expectation of a non-negative random variable, Var[X] is always non-
negative. Also, using linearity of expectation, we can derive that Var[X]| = E[X?] — (E[X])%.
The standard deviation of a variable X is defined to be \/Var[X].

The first bound is Chebyshev’s inequality, useful when only the variance is known.

Lemma A.12 (Chebyshev inequality) If X is a random variable with standard deviation o,
then for every k > 0,
Pr[|X — E[X]| > ko] < 1/k* &

PROOF: Apply Markov’s inequality to the random variable (X — E[X])?, noting that by
definition of variance, E[(X — E[X])?] =0%. B

Chebyshev’s inequality is often useful in the case that X is equal to > ; X; for pairwise
independent random variables X1, ..., X,,. This is because of the following claim, that is
left as an exercise:

Claim A.13 If Xy,..., X,, are pairwise independent then

Var(zn: Xi) = zn:Var(X )
i=1 i=1 ¢

The next inequality has many names, and is widely known in theoretical computer
science as the Chernoff bound (see also Note 7.11. It considers scenarios of the following
type. Suppose we toss a fair coin n times. The expected number of heads is n/2. How
tightly is this number concentrated? Should we be very surprised if after 1000 tosses we
have 625 heads? The bound we present is slightly more general, since it concerns n different
coin tosses of possibly different expectations (the expectation of a coin is the probability of
obtaining “heads”; for a fair coin this is 1/2). These are sometimes known as Poisson trials.

Theorem A.14 (“Chernoff” bounds) Let X1, Xa,..., X, be mutually independent random
variables over {0,1} (i.e., X; can be either 0 or 1) and let p = Y7 | E[X;]. Then for every
0> 0,

zn: (1+6)u) < [ﬁr (3)

Z < ] "

Often, we will only use the following corollary:

Corollary A.15 Under the above conditions, for every ¢ > 0

—pl > c,u‘| <2.e” min{c?/4,¢/2}pu

In particular this probability is bounded by 2~*(W) (where the constant in the Q notation
depends on c). &

PROOF: Surprisingly, the Chernoff bound is also proved using the Markov inequality. We
only prove the first inequality; the second inequality can be proved similarly. We introduce
a positive dummy variable ¢, and observe that

Elexp(tX)] = E[exp( Z X;)] = E| Hexp (tX;)] = H Elexp(tX;)], (5)
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where exp(z) denotes e* and the last equality holds because the X; r.v.s are independent.
Now,

Elexp(tX;)] = (1 — pi) + pic’,

therefore,

[T Efexpexi)) =TTt +pice’ = 1)) < [[exptpi(e’ — 1))

i ‘ ) , (6)
= eXp(Zpi(e — 1)) = exp(u(e’ — 1)),

K2

as 1+ 2 < e”. Finally, apply Markov’s inequality to the random variable exp(tX), viz.

Pr{X > (1+ 8)p] = Prlexp(tX) > exp(t(1 + b)) < —oPl] _ expl(e’ = L)

~oexp(t(l+0)n)  exp(t(l+d)u)’

using (5), (6) and the fact that ¢ is positive. Since ¢ is a dummy variable, we can choose any
positive value we like for it. Simple calculus shows that the right hand side is minimized for
t =1In(1 4 ¢) and this leads to the theorem statement. W

So, if all n coin tosses are fair (Heads has probability 1/2) then the the probability of
secing N heads where |N —n/2| > ay/n is at most 2¢=%/4. In particular, the chance of
seeing at least 625 heads in 1000 tosses of an unbiased coin is less than 5.3 x 1077.

Some other inequalities.

Jensen’s inequality.

The following inequality, generalizing the inequality E[X?] > E[X]?, is also often useful:

Lemma A.16 (Jensen’s Inequality) A function f : R — R is convex if for every p € [0,1]
and z,y € R, f(pr+ (1 —p)y) <p- f(x)+ (1 —p)- f(y). For every random variable X and
convex function f, f(E[X]) < E[f(X)]. O

Approximating the binomial coefficient

Of special interest is the Binomial random variable B,, denoting the number of coins that
come up “heads” when tossing n fair coins. For every k, Pr[B, = k] = 27"(}) where

() = ﬁlk), denotes the number of size-k subsets of [n]. Clearly, (}) < n*, but sometimes

we will need a better estimate for (Z) and use the following approximation:

Claim A.17 For every n, k < n, (%)k < (Z) < (%)]C &
The best approximation can be obtained via Stirling’s formula:
Lemma A.18 (Stirling’s formula) For every n,
2mn (ﬁ)new1Jr1 <n!<\/%(ﬁ)neﬁ o
e e
It can be proven by taking natural logarithms and approximating Inn! =1In(1-2---n) =

> Inid by the integral fln Inzdx =nlnn —n+ 1. It implies the following corollary:

Corollary A.19 For every n € N and a € [0, 1],

n
= (1+ —1 1 2H(a)n
(Oéﬂ) ( O(TL )) V2mna(l—o)

where H (o) = alog(1/a)+ (1 —a)log(1/(1—«)) and the constants hidden in the O notation
are independent of both n and «. &



A.2.6

446 A Mathematical Background.

More useful estimates.

The following inequalities can be obtained via elementary calculus:

x
e Foreveryz >1, (1-2)" <1< ( —ILH)
e Forevery k, Y1 | iF =0 (7;;:
k

For every k > 1, > n™% < O(1).

For every ¢,e >0, >, ﬁ < O(1).

For every n, >.i' | £ =Inn+ O(1)

Statistical distance

The following notion of when two distributions are close to one another is often very useful.

Definition A.20 (Statistical Distance) Let € be some finite set. For two random variables
X and Y with range Q, their statistical distance (also known as variation distance) is defined
as A(X,Y) = maxgco{|Pr[X € S] — Pr[Y € S]}. &

Some texts use the name total variation distance for the statistical distance. The next
lemma gives some useful properties of this distance:

Lemma A.21 Let X,Y,Z be any three distributions taking values in the finite set 2. Then,
1. A(X,Y) €0,1] where A(X) = A(Y) iff X is identical to Y.
2. (Triangle inequality) A(X,Z) < A(X,Y) + A(Y, Z).
3 AXY) =33 cqlPr[X =a] — Pr[Y =a]|.
4. A(X,Y) > eiff there is a Boolean function f:Q — {0, 1} such that |[E[f(X)] — E[f(Y)]]

€.

Y

5. For every finite set Q' and function f:Q — Q' A(f(X), f(Y)) < A(X,Y). (Here
f(X) is a distribution on ' obtained by taking a sample of X and applying f.)

Note that Ttem 3 means that A(X,Y") is equal to the L;-distance of X and Y divided by 2
(see Section A.5.4 below). That is, if we think of X as a vector in R® where X,, = Pr[X = w],
and define for every vector v e R?, [v|, =3 [va], then A(X,Y) = 1/2[X — Y.

ProoOF OoF LEMMA A.21: We start with Item 3. For every pairs of distributions X, Y over
{0,1}" let S be the set of strings = such that Pr[X = z] > Pr[X = y]. Then it is easy to
see that this choice of S maximizes the quantity b(S) = Pr[X € S] — Pr[Y € S] and in fact
b(S) = A(X,Y) since if we had a set T with b(T) < —b(S) then the complement T of T
would satisfy b(T") > b(.S). But,

> |PrX =a] - Pr[y =a]| =
ze{0,1}"
ZPr[X =z —Pr[Y =a] + ZPr[Y::z:] —Pr[X =2] =
zeS ¢S
PriXeS]-Pr[Y e S|+ (1—-Pr[Y € S))— (1 -Pr[X € 9] =
2Pr[X € S]—2Pr[Y € 9],

establishing Item 3.
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The triangle inequality (Item 2) follows immediately from Item 3 since A(X,Y) = 1/2| X —
Y|, and the L; norm satisfies the triangle inequality. Item 3 also implies Item 1 since
X —Y|,=0iff X =Y and |[X - V], < |X||+|Y], =1 +1.

Item 4 is just a rephrasing of the definition of statistical distance, identifying a set
S C {0,1}" with the function f : {0,1}" — {0,1} such that f(z) = 1 iff z € S. Item 5
follows from Item 4 noting that if A(X,Y") < e then |E[g(f(X))] — E[g(f(Y))]| < € for every
function ¢g. W

Number theory and groups

The integers are the set Z = {0,4+1,42,...} while the natural numbers are the subset
N ={0,1,2,...}.1 A basic fact is that we can divide any integer n by an nonzero integer
k to obtain £,r such that n = kf +r and r € {0,...,n —1}. If r = 0 then we say that
k divides n and denote this by k|n. The factors of n are the set of positive integers that
divide n.

The greatest common divisor of two integers n, m, denoted by ged(n,m) is the largest
integers d such that d|n and dm. We say that n and m are co-prime if their greatest
common divisor is equal to 1. The following basic facts are not hard to verify:

e If a nonzero integer ¢ divides both n and m then c|d.

e The greatest common divisor of n and m is the smallest positive integer d such that
there exist integers x, y satisfying nx + my = d.

e There is a polynomial-time (i.e., polylog(n,m)-time) algorithm that on input n,m
outputs the greatest common divisor d of n,m and the integers z,y satisfying nx +
my = d. (This algorithm is known as Euclid’s Algorithm.)

A number p > 1 is prime if its only factors are 1 and p. The following basic facts are
known about prime numbers:

e Every positive integer n can be written uniquely (up to ordering) as a product of prime
numbers. This is called the prime factorization of n.

e If gcd(p,a) = 1 and p|ab then p|b. In particular, if a prime p divides a - b then either
pla or p|b.

A fundamental question in number theory is how many primes exist. A celebrated result
is:

Theorem A.22 (The Prime Number Theorem (Hadamard, de la Vallée Poussin 1896)) For
n > 1, let w(n) denote the number of primes between 1 and n then

n
m(n) = m(l +o(1)) o
The original proofs of the prime number theorem used rather deep mathematical tools,
and in fact people have conjectured that this is inherently the case. But in 1949 both Erdos
and Selberg (independently) found elementary proofs for this theorem. For most computer
science applications, the following weaker statement proven by Chebychev suffices:
Theorem A.23 7(n) = O(—2-) &

logn

2n!
nln!"*
2n

n

By Stirling’s formula we know that log (27?) =
) < 2n. Also, all the prime factors of (2: ) are

ProoF: Consider the number (27;’) =
(1 —o(1))2n and in particular n < log (

ISome texts exclude 0 in N; in most cases this does not any difference.
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between 0 and 2n, and each factor p cannot appear more than k = {lfog;;J times. Indeed,
for every n, the number of times p appears in the factorization of n!is ), L%J, since we

get {%J times a factor p in the factorizations of {1,...,n}, L%J times a factor of the form

p?, etc... Thus the number of times p appears in the factorization of (21:1) = % is equal

to Y, BD—’}J -2 Lp—"lJ a sum of at most k elements (since p**! > 2n) each of which is either
0or 1.

log 2n

Thus, (27?) < ngpggnp{ logp J Taking logs we get that

p prime
2n 02 2n
n < log (n) < Z {%J logp < Z log 2n = 7(2n)log 2n,
1<p<2n 1<p<2n
p prime p prime
establishing 7(n) = Q(51;)-
To prove that m(n) = O(g;;), we define the function J(n) = }_ 1<p<n logp. It suffices

p prime
to prove that ¥(n) = O(n) (exercise!). But since all the primes between n+ 1 and 2n divide

(27?) at least once, (27?) > [[n+1<p<on p- Taking logs we get

p prime

2
2n > log ( n> > E logp = 9(2n) — 9 (n),
n n+1§_p§2n
p prime

thus getting a recursive equation ¥(2n) < 9(n) + 2n which solves to 9(n) = O(n). B

Groups.

A group is an abstraction that captures some properties of mathematical objects such as
the integers, matrices, functions and more. Formally, a group is a set that has a binary
operation, say *, defined on it that is associative and has an inverse. That is, (G, %) is a
group if

1. For every a,b,c€ G, (axb)xc=ax* (b*c)

2. There exists a special element id € G such that a xid = a for every a € G, and for
every a € GG there exists b € G such that a xb = b a = id. (This element b is called
the inverse of a, and is often denote as a=! or —a.)

Examples for groups are the integers, with addition being the group operation (and
zero the identity element), the non-zero real numbers with multiplication being the group
operation(and one the identity element), and the set of functions from a domain A to itself,
with function composition being the group operation.

Often, it is natural to use additive (+) or multiplicative (-) notation to denote the group
operation rather than . In these cases we will use fa (or respectively a‘) to denote the
result of applying the operation to a ¢ times.

Finite groups

A group is finite if it has a finite number of elements. We denote by |G| the number of
elements of G. Examples for finite groups are the following:

e The group Z,, of the integers from 0 to n—1 with the operation being addition modulo
n. In particular Zs is the set {0,1} with the XOR operation.
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e The group S,, of the permutations on [n], with the operation being function composi-
tion.

e The group (Z2)™ of n-bit strings with the operation being bitwise XOR. More gen-
erally for every two groups G and H, we can define the group G x H to be a group
whose elements are pairs (g, h) with g € G and h € H and with the group operation
corresponding to applying the group operations of G and H componentwise. Similarly,
we define G™ to be the group G x G x --- x G (n times).

e For every n, the group Z; consists of the set {k:1 <k <n-—1, ged(k,n) =1} and
the operation of multiplication modulo n. Note that if ged(k,n) = 1 then there exist
x,y such that kx + ny = 1 or in other words kx = 1 (mod n), meaning that x is the
inverse of k£ modulo n. This also means that we can find this inverse in polynomial
time using Euclid’s algorithm. The size of Z is denoted by ¢(n) and the function ¢
is known as Euler’s Quotient function. Note that if n is prime then p(n) =n — 1. It
is known that for every n > 6, ¢(n) > /n.

A subgroup of G is a subset of G that is itself a group (i.e., closed under the group
operation and taking inverses). The following result is often quite useful

Theorem A.24 If G is a finite group and H is a subgroup of G then |H| divides |G|.  $

PROOF: Consider the family of sets of the form aH = {ah:h € H} for all a € G (we're
using here multiplicative notation for the group). It is easy to see that the map = — ax
is one-to-one and hence |aH| = |H| for every a. Hence it will suffice to show that we can
partition G into disjoint sets from this family. Yet this family clearly covers G (as a € aH
for every a € G) and hence it suffices to show that for every a,b either aH = bH or aH and
bH are disjoint. Indeed, suppose that there exist x,y € H such that ax = by then for every
element az € aH, we have that az = (byx~!)z and since yz =1z € H we get that az € bH.
|

Corollary A.25 (Fermat’s Little Theorem) For every n and = € {1,...,n —1}, z#™ =1
(mod n). In particular, if n is prime then "~ =1 (mod n). &

ProoF: Consider the set H = {*: £ € Z}. This is clearly a subgroup of Z and hence |H|
divides op(n). But the size of H is simply the smallest number k such that 2% =1 (mod n).
Indeed, there must be such a number since, because Z}, if we consider the sequence of
numbers 1,z, 22, 23,... then eventually we get 7, such that ' = 27 for ¢ < j, meaning
that 2°=/ = 1 (mod n). Thus, the above sequence looks like 1,z, 2%, ..., 271 1,2, 22,..
meaning that [H| = k.

Since z!#l = 1 (mod n), obviously taking = to the power ¢(n) (which is a multiple of
|H|) yields also 1 modulo n. B

The order of an element z of a group G is the smallest integer k such that z* is equal to
the identity element. The proof above shows that in a finite group G, every element has a
finite order and furthermore this order divides the size of G. An element x of G with order
|G| is called a generator of G, since in this case the subgroup {x, xt 22, } isallof G.2 Ifa
group GG has a generator then we say that G is cyclic. An example for a simple cyclic group
is the group Z,, of the numbers {0,...,n — 1} with addition modulo n, that is generated by
the element 1 (and also by any other element that is co-prime to n— exercise).

The Chinese Remainder Theorem
Let n = pg where p, q are co-prime. The Chinese Remainder Theorem (CRT) says that

the group Z;, (multiplicative group modulo n) is isomorphic to the group Z; x Z; (pairs of
numbers with multiplication done componentwise modulo p and ¢ respectively).

2 A more general definition (that works also for infinite groups) is that z is a generator of G'if the subgroup
{we AS Z} is equal to G.
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Theorem A.26 If n = pq where p,q coprime then function f that maps x to (x (mod p),x
(mod ¢q)) is one-to-one on Z,. Furthermore f is an isomorphism in the sense that f(xy) =
f(z)f(y) (where multiplication on the left hand side is modulo n and on the right hand side
is componentwise modulo p and q respectively). &

PRrROOF: The furthermore part can be easily verified and so we focus on showing that f is
one-to-one. We need to show that if f(z) = f(2) then x = 2’. Since f(z—2') = f(x)— f(a),
it suffices to show that if x =0 (mod p) (i.e., p|z) and 2 =0 (mod q) (i.e., ¢|x) then 2 =0
(mod n) (i.e., pq|z). Yet, assume that p|z and write = pk. Then since ged(p,q) = 1 and
gz we know that ¢|k, meaning that pg|z. B

The Chinese Remainder Theorem can be easily generalized to show that for every n =
p1p2 - - - Pk, where all the p;’s are co-prime, there is an isomorphism between Z; to Z;, X
-+» X Zy, , meaning that for every n, the group Z;, is isomorphic to a product of groups of
the form Zj for ¢ a prime power (i.e., number of the form p* for prime p). In fact, it can
be generalized even further to show that every Abelian group G is isomorphic to a product
G1 x G2 X -+- X G, where all the G;’s are cyclic. (This can be viewed as a generalization
of the CRT because all the groups of the form Z; for ¢ a power of an odd prime are cyclic,

and all groups of the form Z3, are either cyclic or products of two cyclic groups.)

Finite fields

A field is a set F that has an addition (4) and multiplication (-) operations that behave in
the expected way: satisfy associative, commutative and distributive laws, have both additive
and multiplicative inverses, and neutral elements 0 and 1 for addition and multiplication
respectively. In other words, [ is a field if it is an Abelian group with the operation + and an
identity element 0, and has an additional operation - such that F\ {0} and - forms an Abelian
group, and furthermore the two operation satisfy the distributive rule a(b+ ¢) = ab + ac.

Familiar fields are the real numbers (R), the rational numbers (Q) and the complex
numbers (C), but there are also finite fields. Recall that for a prime p, the set {0,...,p— 1}
is an Abelian group with the addition modulo p operation and the set {1,...,p — 1} is an
Abelian group with the multiplication modulo p operation. Hence {0,...,p — 1} form a
field with these two operations, which we denote by GF(p). The simplest example for such
a field is the field GF(2) consisting of {0, 1} where multiplication is the AND (A) operation
and addition is the XOR operation.

Every finite field F has a number ¢ such that for every © € F, x + 2+ --- + x (£ times)
is equal to the zero element of F (exercise). This number £ is called the characteristic of F.
For every prime ¢, the characteristic of GF(q) is equal to q.

Non-prime fields.

One can see that if n is not prime, then the set {0,...,n — 1} with addition and multipli-
cation modulo n is not a field, as there exist two non-zero elements x,y in this set such
that z -y = n = 0 (mod n). Nevertheless, there are finite fields of size n for non-prime
n. Specifically, for every prime ¢, and k > 1, there exists a field of ¢* elements, which we
denote by GF(¢q*). We will very rarely need to use such fields in this book, but still provide
an outline of their construction below.

For every prime ¢ and k there exists an irreducible degree k polynomial P over the field
GF(q) (P is irreducible if it cannot be expressed as the product of two polynomials P’, P”
of lower degree). We then let GF(¢*) be the set of all k — 1-degree polynomials over GF(q).
Each such polynomial can be represented as a vector of its k coefficients. We perform both
addition and multiplication modulo the polynomial P. Note that addition corresponds
to standard vector addition of k-dimensional vectors over GF(g), and both addition and
multiplication can be easily done in poly(n,logq) time (we can reduce a polynomial S
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modulo a polynomial P using a similar algorithm to long division of numbers). It turns out
that no matter how we choose the irreducible polynomial P, we will get the same field, up
to renaming of the elements. There is a deterministic poly(g, k)-time algorithm to obtain
an irreducible polynomial of degree k over GF(g). There are also probabilistic algorithms
(and deterministic algorithms whose analysis relies on unproven assumptions) that obtain
such a polynomial in poly(log g, k) time (see the book [Sho05]).

For us, the most important example of a finite field is GF(2*), which consists of the
set {0, 1}k7 with addition being component-wise XOR, and multiplication being polynomial
multiplication via some irreducible polynomial which we can find in poly(k) time. In fact,
we will mostly not even be interested in the multiplicative structure of GF(2*) and only use
the addition operation (i.e., use it as the vector space GF(2)¥, see below).

Basic facts from linear algebra

For F a field and n € N, we denote by F” the set of n-length tuples (or vectors) of elements
of F. If u,v € F” and = € F then we denote by u-+ v the vector obtained by componentwise
addition of u and v and by xu the vector obtained by multiplying each entry of u by =x.

A set of vectors u!,...,u” in F” is linearly independent if the only solution to the
equation zju! + --- + xu’ = 0 (where 0 denotes the all-zero vector) is z; = 9 = --- =
x;, = 0. It can be shown that if u',...,u”* are linearly independent then k < n (exercise).

A set of n linearly independent vectors in F” is called a basis of F". It is not hard to

see that if u',...,u” is a basis of F” then every vector v € F" can be expressed as a
linear combination v = ), z;u’ of the vectors u',...,u” and furthermore this expression
is unique. The standard basis of F" is the set e!, ..., e", where e’ is equal to 1 if j =i and

to 0 otherwise.

A subset S C F™ is called a subspace if it is closed under addition and scalar multiplication
(i.e., u,v € S and z,y € F implies that zu + yv € S). The dimension of S, denoted by
dim(.5) is defined to be the maximum number & such that there are k linearly independent
vectors in S. Such a set of dim(S) linearly independent vectors in S is called a basis and
one can see that every vector in S can be expressed as a linear combination of the vectors
in the basis.

A function f : F" — F™ is linear if f(u+v) = f(u)+ f(v). It’s not hard to verify that
the following hold for every linear function f:

e If u',... ,u" is a basis for F" then for every v € F", f(v) = Y, z;f(u;) where
Z1,...,2, are the elements such that v .= Y z;u’. Thus, to know f’s value at every
point it suffices to know its value on the basis elements.

e The set Im(f) = {f(v): v € F"} is a subspace of F™.

e The set Ker(f) ={v: f(v) =0} is a subspace of F".

e dim(Im(f)) + dim(Ker(f)) =n

A linear function f : F* — F™ is often described by an m x n matrix A whose i*"

column is f(e’). The multiplication of an m x n matrix A and an n x k matrix B is the
n x k matrix C' = AB where Ci; = >/, AieBe,j. One can verify that if A describes a
function f : F* — F™ and B describes a function g : F¥ — F” then C describes the function
h : F*¥ — F™ mapping v to f(g(v)). It can also be verified that if we identify members of
F™ with n x 1 matrices (i.e., column vectors) then f(v) = Av.

The determinant of an nxn matrix A, denoted by det(A) isequalto ) (=1)*9™ O TT, As iy

where S,, denotes the group of permutations over [n] and sgn(c) is equal to 1 if the number
of pairs (i, ) such that ¢ < j but o(i) > o(j) is odd, and is equal to 0 otherwise. We have
the following two facts:

o det(AB) = det(A) det(B). This can be verified by direct computation.
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o If A is an upper triangular matrix (i.e., A;; = 0 whenever ¢ > j) then det(4) =
Ai11A29- -+ A, . Indeed, for a permutation o to give a non-zero contribution to the
determinant in this case it must satisfy o (i) > i for every ¢, which means that it is the
identity permutation.

Together these two rules give a polynomial-time algorithm to compute the determinant
of a matrix A by following the well known Gaussian elimination algorithm to express A as
E\Es - - E,;,D where the E;’s are elementary matrices (multiplication by which corresponds
to switching two columns, multiplying a column by a field element, or adding one column
to another) and the D is upper diagonal. Since the determinant is easy to compute for all
these matrices, we can compute the determinant of A as well.

The following lemma relates the determinant of a matrix to the function it represents:

Lemma A.27 For a function f : F™" — F" represented by an n x n matrix A, the following
conditions are equivalent:

e The columns of A are a basis for F™.

f is one-to-one.

dim(Im(f)) =n.

dim(Ker(f)) =0.

det(A) # 0.
e There exists v € F™ such that the equation Ax = v has exactly one solution.

e [or every v € F", the equation Ax = v has exactly one solution.

Furthermore, if f is one-to-one then the mapping f ' is linear and is represented by an

)t det(A_(i,j5))

nxn matrix A~ whose (i, j)!"* entry is —deiA] s Where A_(; j) denotes the (n—1)x(n—1)

matrix obtained by removing the i" row and j*" column from A. O

Inner product

The vector spaces R" and C" have an additional structure that is often quite useful.®> An
inner product over C™ to be a function mapping two vectors u, v to a complex number (u, v)
satisfying the following conditions:

o (zu+yw,v)=z(u,v) +y(w,v)

e (v,u) = (u,v) where Z denotes complex conjugation (i.e., if z = a+ib then z = a—1b).
e For every u, (u,u) is a non-negative real number with (u,u) =0 iff u=0.

The two examples for inner products we will use are the standard inner product mapping
x,y € C" to Y. | x;¥, and the expectation or normalized inner product mapping x,y € C"
to % Z?:l X;¥,;. We can also define inner products over the space R", in which case we drop
the conjugation.

If (u,v) = 0 we say that u and v are orthogonal and denote this by u L v. We have the
following result:

Lemma A.28 If non-zero vectors u',... u”* satisfy u’ L w’ for all i # j then they are
linearly independent. &

3The reason we restrict ourselves to these fields is that they have characteristic zero which means that
there does not exist a number k € N and nonzero a € F such that ka = 0 (where ka is the result of adding a
to itself k times). You can check that if there is such a number for a field F then there will not be an inner
product over F™.
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PROOF: Suppose that >, z;u’ = 0 and consider take an inner product of this vector with
itself. We get that

0= <Z zu’, ijuj> = ij<ui, ) = Z |z (u?, u) (7)

where the last equality follows from the fact that (u?,u’) = 0 for i # j. But unless all
the x;’s are zero, the righthand side of (7) is strictly positive. (Recall that for a complex
number x = a + ib, |z| = Va2 + b2 and |z|?> = 27.) B

A set ul,...,u" of nonzero vectors in C" satisfying (u’,u’) = 0 for i # j is called an
orthogonal basis of C™. If in addition (u’, u’) = 1 for all i then we say this is an orthonormal
basis. An orthonormal basis consists of n linearly independent vectors and hence as its name
implies is a basis of C", meaning that every vector v can be expressed as v =), z;ut. By
taking an inner product of this equality with u*, one can see that x; = (v, u*)

The following identity (that can be viewed as a generalization of the Pythagorean theo-
rem) is often useful:

Lemma A.29 (Parseval’s identity) If u',...,u" is an orthonormal basis for C", then for
every v,
n
<V7V> = Z |':CZ|2 )
i=1
where z1, ..., z, are the numbers such that v =3, z;u’. &

PROOF: As in the proof of Lemma A.28,
(v,v) = O w, Yy aud) = P ud) . o
i j i

Vector spaces with an inner product are known as Hilbert spaces.

Dot product

Even in a field F that doesn’t have an inner product, we can define the dot product of two
vectors u, v € F”, denoted by u® v, as Y ;" ; u;v;. For every subspace S C F", we define
St ={u:uev=0vve S} We leave the following simple claim as an exercise:

Claim A.30 dim(S) + dim(S*) =n o

In particular for every nonzero vector u € F", the subspace u® of vectors v satisfying
u® v = 0 has dimension n — 1 and hence cardinality [F|*~!. As a corollary we get the
following very useful fact:

Claim A.31 (The random subsum principle) For every nonzero u € GF(2) (the field {0,1}
with addition and multiplication modulo 2):

P GOv=0=1/-
VERGFl‘n(2)"[u v=0=% %

Eigenvectors and eigenvalues

If A is an n X n complex matrix and v € C” is a nonzero vector, we say that v is an
eigenvector of A if there exists A € C such that Av = Av. We say that A is diagonalizable
if there is a basis vy, ..., v, of eigenvectors for A. In other words, there is an invertible
matrix P such that PAP~! is a diagonal matrix.
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Note that A has an eigenvector with eigenvalue A if and only if the matrix A — AJ
is non-invertible, where I is the identity matrix. Thus in particular A is a root of the
polynomial p(z) = det(A — zI). Thus the fundamental Theorem of Algebra (that every
complex polynomial has as many roots as the degree) that every square matrix has at least
one eigenvector. (A non-invertible matrix has an eigenvector zero.)

For a matrix A, the conjugate transpose of A, denoted A*, is the matrix such that for
every i,j, A} j= Zj_,i where - denotes the complex conjugate operation. We say that an
n xn matrix A is Hermitian if A = A*. An Hermitian matrix with only real entries is called
symmetric. That is, a real matrix is symmetric if A = AT where 1 is the transpose operation
(i.e., A; ; = Aji). An equivalent condition (exercise) is that A is Hermitian if and only if

(Au,v) = (u, Av). ()
An important useful fact about Hermitian matrices is the following theorem:

Theorem A.32 If A is an n X n Hermitian matrix then there exists an orthogonal basis of
eigenvectors for A. &

PrOOF: We prove this by induction on n. We know that A has one eigenvector v with
eigenvalue \. Now let S = v be the n — 1 dimensional space of all vectors orthogonal to
v. We claim that for every u € S, Au € S. Indeed, if (u,v) = 0 then

(Au,v) = (u, Av) = Mu,v) = 0.

Thus the restriction of A to S is an n — 1 dimensional linear operator satisfying (8)

and hence by induction this restriction has an orthogonal basis of eigenvectors v2,...,v".

Adding v to this set we get an n-dimensional orthogonal basis of eigenvectors for A. B

Note that if A is real and symmetric then all its eigenvalues must be real also (with no
imaginary components). Indeed, if Av = A\v then

Mv,v) = (Av,v) = (v, Av) = \(v,V),

meaning that for a nonzero v, A = \. This implies that the eigenvectors, that are obtained
by solving a linear equation with real coefficients, are also real.

Norms

A norm of a vector in C™ is a function mapping a vector v to a real number ||v|| satisfying:
e For every v, ||v]| > 0 with ||[v] =0 iff v=10.
o If x € C then ||zv| = |z||v]-
e (Triangle inequality) For every u, v, [[u+ v|| < |u| + ||v]-
For every v € C" and number p > 1, the L, norm of v, denoted [|v|,, is equal to

>, |vi|p)1/ P One particularly interesting case is p = 2, the so-called Euclidean norm, in

which [|[v]|, = />, [vi]2 = /(v, V). Another interesting case is p = 1, where we use the
single bar notation and denote |v|, = > | |v;|. Another case is p = oo, where we denote
VIl = Timy oo [[V][, = maxiep [vil

Some relations between the different norms can be derived from the Holder inequality,
stating that for every p, ¢ with % + % =1, [lull,llvll, = 37 [uivs|]. To prove it, note that
by simple scaling, it suffices to consider norm one vectors, and so it enough to show that
i ull, = VI, = 1 then 37, fufjvi| < 1. But S0, [wlvil = 30, fug /9 v o00/) <
Dy %|ui|p + %|vi|q = % + % = 1, where the last inequality uses the fact that for every
a,b>0and a € [0,1], a®b' = < aa + (1 — a)b.

The Holder inequality implies the following relations between the Lo, L1 and L, norms
of every vector (see Exercise 21.2):

v/ Ve < vl < VIvLIvi. 9)

Vector spaces with a norm are sometimes known as Banach spaces.



A.5.5

A.6

A.6 Polynomials 455

Metric spaces

For any set  and d : Q% — R, we say that d is a metric on Q if it satisfies the following
conditions:

1. d(z,y) > 0 for every z,y € Q where d(z,y) = 0 if and only if x = y.
2. d(z,y) = d(y,z) for every z,y € Q.
3. (Triangle Inequality) For every z,y, z € Q, d(x,z) < d(z,y) + d(y, 2).

That is, d(z,y) denotes the distance between = and y according to some measure. If € is
a vector space with a norm then the function d(z,y) = ||« — y|| is a metric over 2, but there
are other examples for metrics that do not come from any norm. For example, for every
graph G we can define a metric over the vertex set of G by letting the distance of = and y
be the length of the shortest path between them. Various metric spaces and the relations
between them have found recently many applications in theoretical computer science, see
Chapter 15 of [Mat02] for a good survey.

Polynomials

We list some basic facts about univariate polynomials.

Theorem A.33 A nonzero polynomial of degree d has at most d distinct roots. &
PROOF: Suppose p(x) = Z;‘l:o c;z' has d + 1 distinct roots o, ..., g1 in some field F.
Then

d
Y ab-ci=play) =0,
=0

for j=1,...,d+ 1. This means that the system Ay = 0 with

1 o a? af
1 o a2 ad
A = 2 2 2
1 « a? «
d+1 d+1 d+1

has a solution y = ¢. The matrix A is a Vandermonde matrix, and it can be shown that
det A = H(ai — o),
i>j

which is nonzero for distinct «;. Hence rankA = d + 1. The system Ay = 0 has therefore
only a trivial solution — a contradiction to ¢ # 0. B

This theorem has an interesting corollary:

Corollary A.34 For every finite field IF, the multiplicative group F* is cyclic. &

PRrROOF: The fact that the polynomial ¥ — 1 has at most k roots implies that the group F*
has the property (*) that for every k& the number of elements z satisfying z* = 1 is always
at most k. We will prove by induction that every group G satisfying (*) is cyclic.

Let n = |G|. We consider three cases:

e 1 is prime. In this case every element of G has either order 1 or order n. Since the
only element with order 1 is the identity element, we see that G has an element of
order n— G is cyclic.
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e n = p© for some prime p and ¢ > 1. In this case if there is no element of order n,
c—1
then all the orders must divide p°~!. We get n = p° elements = such that 2?° =1,
violating (*).

e n = pq for co-prime p and ¢. In this case let H and F' be two subgroups of G' defined
as follows: H ={a:a? =1} and F = {b: 07 =1}. Then |H| <p<nand |[F|<g<n
and also as subgroups of G both H and F satisfy (*). Thus by the induction hypothesis
both H and F' are cyclic and have generators a and b respectively. We claim that ab
generates the entire group G. Indeed, let ¢ be any element in G. Since p,q are
coprime, there are x,y such that zq + yp = 1 and hence ¢ = ¥4, But (¢*9)P = 1
and (¢¥?)? =1 and hence ¢ is a product of an element of H and an element of F, and
hence ¢ = a'b’ for some i € {0,...,p—1} and j € {0,...,q — 1}. Thus, to show that
¢ = (ab)? for some z all we need to do is to find z such that z =i (mod p) and z = j
(mod ¢), but this can be done using the Chinese Remainder Theorem.

|
Theorem A.35 For any set of pairs (a1,b1),. .., (aq+1,bat1) there exists a unique polyno-
mial g(x) of degree at most d such that g(a;) =b; for alli =1,2,...,d+ 1. O

PROOF: The requirements are satisfied by Lagrange Interpolating Polynomial:

d+1

—aj)
7751 J
Zb o =

7751( — )

If two polynomials g1 (), g2 (2) satisfy the requirements then their difference p(z) = g1 (x) —
g2(x) is of degree at most d, and is zero for © = ai,...,aq41. Thus, from the previous
theorem, polynomial p(x) must be zero and polynomials g1 (z), g2(x) identical. B

The following elementary result is usually attributed to Schwartz and Zippel in the
computer science community, though it was certainly known earlier (see e.g. DeMillo and
Lipton [DLne]).

Lemma A.36 If a polynomial p(x1,xa,...,2,,) over F = GF(q) is nonzero and has total
degree at most d, then

d
Prlp(ai..am) #0] >1——,
q
where the probability is over all choices of ay..a,, € F. &

Proor: We use induction on m. If m = 1 the statement follows from Theorem A.33.
Suppose the statement is true when the number of variables is at most m — 1. Then p can
be written as

d
p(IhIQa .o ,Im) - Zxﬁpl(IQ; .o axm)v
i=0

where p; has total degree at most d — . Since p is nonzero, at least one of p; is nonzero.
Let k be the largest ¢ such that p; is nonzero. Then by the inductive hypothesis,

Pr [pi(az,as,...,a )7&0]>1_u
q

a2,a3,...,am

Whenever p;(asz,as, .. .,am) # 0, p(x1,a2,as, ..., a;,) is a nonzero univariate polynomial
of degree k, and hence becomes 0 only for at most k values of ;. Hence

k d—Fk d
Prip(ar.a) £0] > (1= D)1= =) > 1=,

and the induction is completed. W



Hints for selected exercises

Chapter 0
0.2 Answers are: (a) n (b) n? (c) 2" (d) logn (e) n (f) nlogn (g) n'°5* (h) n?.
Chapter 1

1.1 Follow the gradeschool algorithms.
1.5 Use the proof of Claim 1.6.

1.6 show that the universal TM U obtained by the proof of Theorem 1.9 can be tweaked to be
oblivious.

1.12.b By possibly changing from S to its complement, we may assume that the empty function ()
(that is not defined on any input) is in S there is some function f that is defined on some
input x that is not in S. Use this to show that an algorithm to compute fs can compute the
function HALT, which outputs 1 on input « iff M, halts on input . Then reduce computing
HALT to computing HALT, thereby deriving Rice’s Theorem from Theorem 1.11.

Chapter 2

2.2 CONNECTED and 2COL are shown to be in P in Exercise 1.14 (though 2COL is called BIPARTITE
there). 3COL is shown to be NP-complete in Exercise 2.21, and hence it is unlikely that it
is in P.

2.3 First show that for every rational matrix A, the determinant of A can always be represented
using a number of bits that is polynomial in the representation of A. Then use Cramer’s rule
for expressing the solution of linear equations in terms of determinants.

2.4 Use the previous question.

2.5 The certificate that n is prime is the list of prime factors qi,...,q of n — 1 along with the
corresponding numbers a1, ..., ar and (recursive) primality certificates for g, ..., qe.

2.6 A simulation in O(]a|tlogt) time can be obtained by a straightforward adaptation of the
proof of Theorem 1.9. To do a more efficient simulation, the main idea is to first run a
simulation of M without actually reading the contents of the work tapes, but rather simply
non-deterministically guessing these contents, and writing those guesses down. Then, go over
tape by tape and verify that all guesses were consistent.

2.11 Why is this language in NP? Is Boolean satisfiability a mathematical statement?

2.13.a Modify the machine M so that it clears up its work tape before outputting a 1 and moves
both heads to one end of the tape. Then the final snapshot and head locations are unique.

2.15 Reduce from INDSET.

2.17 For Exactly One 3SAT replace each occurrence of a literal v; in a clause C' by a new variable
zi,c and clauses and auxiliary variables ensuring that if v; is TRUE then z; ¢ is allowed to
be either TRUE or FALSE but if v; is false then z; ¢ must be FALSE. The approach for the
reduction of Exactly One 3SAT to SUBSET SUM is that given a formula ¢, we map it to a
SUBSET SUM instance by mapping each possible literal u; to the number Zjesi(Qn)j where
S; is the set of clauses that the literal u; satisfies, and setting the target T" to be Z;.n:l(Qn)j
. An additional trick is required to ensure that the solution to the subset sum instance will
not include two literals that correspond to a variable and its negation.
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2.19 Reduce from SAT

2.20 You can express the constraint z € {0, 1} using the equation z? =z

2.21 Reduce from 3SAT.
2.22 Reduce from SAT.

2.30 If there is a n° time reduction from 3SAT to a unary language L, then this reduction can only
map size n instances of 3SAT to some string of the form 1° where ¢ < n°. Use this observation
to obtain a polynomial-time algorithm for SAT using the downward self reducibility argument
of Theorem 2.18.

2.31 Start with an exponential-time recursive algorithm for SUBSET SUM, and show that in this
case you can make it into a polynomial-time algorithm by storing previously computed values
in a table.

Chapter 3

3.6.a To compute H(n) we need to (1) compute H(i) on every ¢ < logn, (2) simulate at most
log log n machines on inputs of lengths at most log n for less than log log n(log n)'°81°8™ = o(n)
steps, and (3) compute SAT on inputs of size at most logn. Thus, if T'(n) denotes the time
to compute H(n), then T'(n) < lognT (logn) + O(n?), and hence T'(n) = O(n?).

3.6.b If f is the reduction from SAT to SATy that runs in time O(n'), let N be the number such
that H(n) > i for n > N. The following recursive algorithm A solves SAT in polynomial

time: on input a formula ¢, if |¢| < N then compute the output using brute force; otherwise
compute = f(p). If = is not of the form 1/)01"H(W)

A(Y).

then output FALSE . Otherwise, output

Chapter 4

4.6 The proof of the Cook-Levin Theorem in Chapter 2 used oblivious TMs. You need to verify
that the construction of oblivious TMs implied in Remark 1.7 and Exercise 1.5 is such that
the position of the head at any step can be computed in logarithmic space.

4.7 Use the previous exercise

Chapter 5

5.1 Use the NP-completeness of SAT.

5.7 The nontrivial direction EXP C APSPACE uses ideas similar to those in the proof of Theo-
rem 5.11.

5.13.b Reduce from X3-3SAT. Also, the collection S produced by your reduction can use the same
set multiple times.

Chapter 6

6.1.a Use the equation f(z1,...,2n) = zn A f(21,...,Zn-1,1) VZn A f(x1,...,2n—1,0) to build
recursively a O(2") circuit for f.

6.1.b There only 92" functions on k bits, which means that we can trivially use 92" . (k22k) gates
to compute every possible such function on x1,...,xr. But after we have done this, we can
use the recursive circuit of the previous item only for n — k levels of the recursion, using up
O(2"7%) gates. Setting k to equal, say, logn — 2 gives the result.

6.5 Keep in mind the proof of the existence of functions with high circuit complexity, and try to
show that you can compute, say, the lexicographically smallest such function using a constant
number of quantifier alternations.

6.7 Keep the previous problem in mind.
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6.9 Show a recursive exponential-time algorithm S that on input a n-variable formula ¢ and a
string v € {0,1}" outputs 1 iff ¢ has a satisfying assignment v such that v > u when both
are interpreted as the binary representation of a number in [2"]. Use the reduction from SAT
to L to prune possibilities in the recursion tree of S.

6.12.a You can use a different processor to compute each entry of AB.
)2

6.12.c Let A be the adjacency matrix of a graph. What is the meaning of the (¢, 7)th entry of A™?

ok—1

6.12.b Use repeated squaring: A% = (A

6.13 A formula may be viewed —once we exclude the input nodes—as a directed binary tree, and
in a binary tree of size m there is always a node whose removal leaves subtrees of size at most
2m/3 each.

6.16 First design NC circuits for matrix multiplication and then, using fast exponentiation, for
computing A" in poly(logn + logr) depth. Then use the fact that the determinant is the
product of the eigenvalues, and that trace(A”) is the sum of the rth power of the eigenvalues.
Then use manipulations of the symmetric functions of eigenvalues.

6.19 In your reduction, express the CIRCUIT-EVAL problem as a linear program and use the fact
that xVy = 1iff x +y > 1. Be careful; the variables in a linear program are real-valued and
not Boolean!

Chapter 7

7.3 Use the binary representation of n and repeated squaring.

7.4 Use the fact that if Bi,..., Br are k independent events each occurring with probability at
most p, then the probability that A;e[,)B; occurs is at most p™.

7.5 Think of the real number p as an advice string. How can its bits be recovered?
7.8 Follow the ideas of the proof of the Karp-Lipton Theorem (Theorem 6.19).

7.9 Try to compute the probability that the machine ends up in the accept configuration using
either dynamic programming or matrix multiplication.

7.11.c Consider the infinite random walk starting from w. If E, > K then by standard bounds
(e.g., Chernoff), u appears in less than a 2/K fraction of the places in this walk.

7.11.d Start with the case k = 1 (i.e., u and v are connected by an edge), the case of k > 1 can be
reduced to this using linearity of expectation. Note that the expectation of a random variable
X over Nis equal to ) -\ Pr[X > m] and so it suffices to show that the probability that an
In?-step random walk from u does not hit v decays exponentially with £.

Chapter 8

8.1.c Use IP = PSPACE.

8.5 First note that in the current set lower bound protocol we can have the prover choose the hash
function. Consider the easier case of constructing a protocol to distinguish between the case
|S| > K and |S| < 1K where ¢ > 2 can be even a function of K. If ¢ is large enough the we
can allow the prover to use several hash functions hi, ..., h;, and it can be proven that if i is
large enough we’ll have U;h;(S) = {0, l}k. The gap can be increased by considering instead
of S the set S, that is the £ times Cartesian product of S.

8.7 Start by showing that MAM C AM, where MAM denotes the class of languages that can
be proven by a 3-message protocol in which the prover sends one message, the verifier sends
random coins, and then the prover sends another message (see Footnote 2). We can change
an MAM protocol to an AM protocol by having the verifier send its random coins as the
first message. This will not harm completeness. Show that if we first use parallel repetition to
reduce the soundness error to a low enough value (as a function of the length of the prover’s
messages) then the new protocol will still be sound.

8.8.a Show that in this case there is at most a blowup of 2 in the degree due to a product operation
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8.8.b If ¢ is not already of this form and has a fragment of the form Vx;...Va;/p(zi,...) where
j' > j > i and p is some formula involving z; and possibly other variables, then we can
introduce a new variable y; and change the formula to the equivalent formVx;3y;s.t.(y; =
i)AND...Nx;p(ys,...). Apply this procedure iteratively from right to left.

8.13 Show how to simulate poly(n) provers using two. In this simulation, one of the provers plays
the role of all m(n) provers, and the other prover is asked to simulate one of the provers,
chosen randomly from among the m(n) provers. Then repeat this a few times.

Chapter 9

9.2 Can all the distributions of the form Ey, () have the same support?

9.4 Define D to be the following distribution over {0,1}"*'%: choose y at random from Er;, (0"*°),
choose k at random in {0,1}", and let x = Di(y). Show a function A such that if we set
zo = 0" and (11) fails for every z1, then for every z € {0,1}""' Pr[D = 2] > 27",
Derive from this a contradiction.

9.6.a Use padding.

9.7 Show that if X? = Y? (mod M) and X # +Y (mod M) then one can find a factor of M by
computing the greatest common denominator (gcd) of M and X — Y. Then show that you
can find such a pair X, Y using an invertion algorithm.

9.8 For every prime p, generator g of Zy, and = € {0, ..,p — 1}, if we choose y €, {0,..,p — 1} then
g“g" (mod p) is uniformly distributed in Zj.

9.9.b For the algorithm B use A(Ey, (0™)).

9.9.c Use the same algorithm B as above.

9.10 Use the ideas of the proof of Theorem 9.13.

9.13 You need to show that a certain determinant is nonzero.

9.16 Prove this first for the case where the language 3COL is replaced by L = {(y,r,b) : 3z s.t. y =
f(z),b=r®z}, where f is a one-way permutation.

Chapter 10

10.2 First prove that Condition 3 holds iff Condition 1 holds iff Condition 4 holds. This follows
almost directly from the definition of the inner product and the fact that for every matrices
A, B it holds that (AB)* = B*A" and (A")* = A. Then prove that Condition 3 implies
Condition 2, which follows from the fact that the norm is invariant under a change of basis.
Finally, prove that Condition 2 implies Condition 3 by showing that if two orthogonal unit
vectors v, u are mapped to non-orthogonal unit vectors v’,u’, then the norm of the vector
u + v is not preserved.

10.5 Add another qubit to the register with the semantic that when this qubit is zero, all amplitudes
correspond to the real part of the amplitudes in the original algorithm and when it is one,
the amplitudes correspond to the imaginary part of the amplitudes of the original algorithm.

10.10 Start by solving the case that = 2* for some k. Then, show an algorithm for general z by
using x’s binary expansion.

10.12 Use the fact that if N and A are co-prime then there are whole numbers «, 3 such that
aN + A =1 and multiply this equation by B.

10.15 let d = ged(r,M), r' = r/d and M' = M/d. Now use the same argument as in the case

that M and r are coprime to argue that there exist Q(ﬁgr) values © € Zy satisfying this

condition, and that if x satisfies it then so does x + ¢M for every c.
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Chapter 11

11.3 Show that a random assignment is expected to satisfy at least a 7/8 fraction of the clauses, and
then use Markov’s inequality to show that the probability of satisfying at least a 7/8—1/(2m)
fraction (where m is the number of clauses) is at least 1/ poly(m).

11.4 Use the method of conditional expectation. Given any partial assignment to the variables
ui,..., Ui, one can compute in polynomial time the expectation of the fraction of clauses
satisfied if the variables w;+1,...,u, are chosen at random. There is a way to assign values
to the variables ui,ua, ... in order so that the invariant that this expectation is at least 7/8
is always maintained. (Another approach for obtaining a deterministic algorithm is to select
the assignment using a 3-wise independent sample space; see hint to Exercise 11.14.))

11.8 Use the hypothesis to infer a downward-self-reducibility property for SAT.

11.9 Design a verifier for 3SAT. The trivial idea would be that the proof contains a satisfying
assignment and the verifier randomly picks a clause and reads the corresponding three bits
in the proof to check if the clause is satisfied. This doesn’t work. Why? The better idea is to
require the “proof” to contain many copies of the satisfying assignment. The verifiers uses
pairwise independence to run the previous test on these copies —which may or may not be
the same string.

11.11 The Cook-Levin reduction actually transforms every x € {0,1}" into a formula almost all
of whose clauses are satisfiable since almost all of the clauses are various consistency checks
that are satisfied by the transcript of the execution of the corresponding TM M on x and
every string u, even if M (z,u) = 0.

11.12 First show that the problem can be solved exactly using dynamic programming in time
poly(n,m) if all the numbers involved are in the set [m]. Then, show one can obtain an
approximation algorithm by keeping only the O(log(1/¢) 4+ logn) most significant bits of
every number.

11.14 As in Exercise 11.4, the randomized algorithm can be derandomized using either the method
of conditional expectation or using ¢g-wise independent functions. These can be obtained by
generalizing the construction of pairwise independent hash functions from Section 8.2.2 to
use a polynomials of degree ¢ — 1 over GF(2") instead of linear functions.

11.15 Show you can express satisfiability for SAT formulas using quadratic equations.

11.16 Reduce from MAX-3SAT.

Chapter 12

12.1 Let z1,..., 2, be such that f(x;) # f(zf), prove that for every k, there is a set X of at least
n/2k of the x;’s such that the decision tree sees the same answers for its first & queries on
every member of X.

12.2 Use induction.

Chapter 13

13.3 Show that there is no one-tape TM M solving PAL such that for every input of the form
Tpya- - 10"@1 - Ty /0, and every index i € [n/2 +1,..,3n/2 — 1], M travels less than o(n)
times between the i*" and i + 1" cells of its tape. Otherwise by letting Alice simulate M’s
execution when its head is in the first ¢ cells, and Bob simulate M when the head is in the
rest of the tape, we can design a communication complexity protocol for equality that uses
o(n) communication for more than 2"/2/n inputs.

13.4 As in the previous question, make this into a communication complexity protocol, where Alice
and Bob transmit to one another the contents of the working tape. (This time the input tape
is read only.) Create a “buffer zone” of zeroes, forcing the machine to take n steps just to
transmit every message between Alice and Bob.
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13.5 Arbitrarily number the rectangles in the monochromatic tiling and let N = x(f). Define
graphs Gr,G¢c on {1,...,N} where {i,j} is an edge in Gr (resp., G¢) iff rectangles 1, j
share a row (resp., column). Let degr(-) and degc(-) denote degrees in these graphs. At each
step, the row player tries to look for a rectangle ¢ containing his input with degr (i) < 3|Gr|/4
and sends such an index i if it exists. Both players then remove from G, G¢ all vertices that
are not neighbors of i. Similarly, the column player tries to find a column j containing his
input such that dege(j) < 3|Ge|/4. We claim if either such an 4, j can be found, it represents
progress— can you see why? Furthermore, can you show they will always find such 4, j7 It
may be helpful to note that in a N-vertex graph with minimum degree at least N/2+ 1, each
two vertices have a common neighbor.

13.6 First, show that for every two matrices A, B, rank(A + B) < rank(A) + rank(B), implying
that if A = Zle a;B; for rank-1 matrices Bi, ..., B¢ then rank(A) < £. Then, use the fact
that if A has rank at most ¢ then it has £ rows such that all other rows are linear combination
of these rows to express A as a sum of ¢ rank-1 matrices Bi,..., B (the rows of the matrix
B; will be scalar multiples of some row of A).

13.9 Use the fact that M’ = J — 2M where J is the all 1’s matrix.

13.10 Transform the problem to +1 first and compute rank over the reals. Could you prove this
by taking rank in GF(2)?

13.11 Lower bound the rank.
13.12 Use the fact that —100% — 1¢'®b _ a0’ _ja'ob’ — _j(atahob+th),
13.15 Use the fingerprinting technique encountered in Section 7.2.3.

13.16 To turn the circuit into a communication protocol, imagine two players, OR and AND. The
OR player gets an input such that f(z) = 0 and the AND player gets one where f(y) = 1.
They know that their inputs differ on at least one bit, and use the circuit to figure out which
bit this is. They both evaluate the circuit on their inputs. If the top gate is an OR then the
OR player sees both incoming wires as 0, whereas the AND player sees at least one incoming
wire with a 1 on it. So the AND player communicates a bit about which wire this was. They
continue this way down the tree.

To turn a communication protocol into a circuit you have to do something similar and use
induction.

13.19 Reduce the task to a communication complexity protocol for disjointness, where Alice sees
the first, say, n/4 inputs and Bob sees the rest.

Chapter 14

14.1 Each gate in the old circuit gets a twin that computes its negation.

14.3 Start with the trivial representation of f as a CNF that has a clause per each assignment x
such that f(z) = 0. Then show that each clause C' can be replaced with a clause D which is
contains at most s of C’s literals while still ensuring that if f(z) = 0 then D(z) = 0 for one
of the reduced clauses D.

14.4 Use the equality (,},) = (}) ("2%)/(*1*) and the estimate (lkl)k <3< (%)k

14.10 Show that if I C [¢] and 21 < @2 < ... < T, is an increasing sequence of numbers in [2¢ — 1]
such that for every 7, the most significant bit in which z; and x;,—; differ is not in I, then the
sequence w1, ..., T, is still increasing, where x; is obtained from z; by “zeroing out” all the
bits in I. Conclude that m < 2¢- I

Chapter 15

15.1 Try to mimic the obvious exponential-time algorithm for finding a satisfying assignment for
®.
15.2.a For every j, let d;(c) be zero if the 7t clause C'j in the “stripped” refutation can be derived

using the y variables only. Show (1) that every d;(c) can be computed by an O(S?)-sized
monotone circuit in ¢ and (2) that we can set I(c) = ds(c) in the proof of Theorem 15.4.
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15.2.b Use the assignment z, = —z; and the function I’ = —I to reduce to the previous case.

15.4 The difficult part is completeness. A simpler subcase is when the set of axioms include
0 < X; < 1. In this case, try to prove that the derivation rule with D restricted to the value
2 suffices. As warmup in this case, first try to prove that all resolution proofs can be recast
as cutting planes proofs of essentially the same size that only involve D = 2.

15.6 For i <n+1,j < n, have a variable x;; that is 1 iff ¢ maps to j.
Chapter 16

16.4.a Start by proving this for n’s that are powers of k. If n = k% then you can decompose a
E® x k* matrix into k2 blocks of size k*~!— use recursion to multiply blocks and the program
11, to combine the results of the recursion.

16.4.b We don’t have a good intuition how to find this program, but since these are just 2 x 2
matrices, one can do so by trial and error.

16.6.c First use the fact that the determinant of A can be expressed in terms of the determinant
of its minors to show that p(z) = (41,1 — x)det(M — 2I)+rADJ(M — xI)c, where for every
matrix B, ADJ(B) is the matrix whose i, j" entry is equal to (—1)*7 times the determinant
of the minor of B with the i*" row and j*" column removed (i.e., for nonsingular B, ADJ(B) =
det(B)B™'). Then use the Caley-Hamilton Theorem (that says that gar(M) is equal to the
zero matrix) to express the coefficients of the matrix-valued polynomial ADJ(M — xI) using
the coefficients of g4 and powers of M.

16.8 See Example 16.9.

16.10 First show that it suffices to compute k! where k is the smallest nontrivial factor of n, and
in fact it suffices to compute s! where s is a power of 2 larger than k.

Then, noting that (2:) = 8&!7 it suffices to compute (2:) for arbitrary r. But this is just

one of the terms of (t* + 1)>". How large does t need to be before (*") can be “read out” of
(t* 4+ 1)*" using an appropriate mod operation?

Chapter 17

17.5 Use hashing and ideas similar to those in the proof of Toda’s theorem, where we also needed to
estimate the size of a set of strings. If you find this question difficult you might want to come
back to it after seeing the Goldwasser-Sipser set lower bound protocol of Chapter 8. To make
the algorithm deterministic use the ideas of the proof that BPP C PH (Theorem 7.15).

17.6 Use the proof of Lemma 17.17.

17.7 Real numbers can be approximated by rationals, so it suffices to prove this in the case where
the matrices representing the quantum operations only involve rational numbers.

Chapter 18

18.1 A 3-colorable graph better not contain a complete graph on 4 vertices.

18.2 The probability that a random graph has a independent set of size at least k£ is at most
k
(” 2*(2),
)

18.5 Construct a sampleable distribution D on CNF formulae such that it’s possible to compute
the number of satisfying assignments of a formula ¢ from the probability of ¢ in D.

18.6 Use the fact that for every non-negative random variable X and d > 1, E[X%] > E[X]%.

Chapter 19

19.1 Define V; = (=1)%i and Y = Hle Y;. Then, use the fact that the expectation of a product
of independent random variables is the product of their expectations.
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19.2 Choose z € {0,1}" to be in I with probability §2" Pr[H = z]. Prove that (1) Pr[|/| >
22" > 1/2 and (2) for every circuit C, if we define SUCESSc(I) to be the probability
that C(xz) = f(x) for a random = € I then the probability (over the choice of I) that
SUCCESSc(I) > 1/2 4 2¢ is smaller than 1/227%.

19.3 Tt might help to look at G, H,U as 2"-dimensional vectors of probabilities.

19.5 Take z to be the shortest vector of the form x —y for x € C' and y € D (z can be shown to
exist and be non-zero using the fact that C, D are closed and D is compact, which means
that we can restrict attention to the intersection of C' with a sufficiently large ball).

19.6 Note that maxq minp qAp > ¢ if and only if the convex set D = {Ap : p € [0,1]" >, pi = 1}
does not intersect with the convex set C' = {x €ER™ : Vigpmzi < c}. Use the Hyperplane
Separating Theorem to show that this implies the existence of a probability vector q such
that (q,y) > ¢ for every y € D.

19.7 Assume that there is a 27 "-density distribution that is outside of this convex set and use the
separating hyperplane theorem to derive a contradiction, by rearranging the terms of the
distribution according to their inner product with the normal of the hyperplane, and shifting
weight until we get a flat distribution.

19.9 Use a greedy strategy, to select the codewords of I one by one, never adding a codeword that
is within distance ¢ to previous ones. When will you get stuck?

19.10 Follow the proof of the Johnson bound and present the problem as asking how many unit
vectors in R you can have such that every pair of vectors is pretty far apart.

19.14 See the discussion before the theorem’s statement and the proof of Theorem 19.21.

19.15 The first polynomial describes f in an e fraction of points say Si, the second polynomial
describes f in € — d/|F| fraction of points S where S1 N S2 = 0, etc.

19.16 Think of Q(z,y) as a univariate polynomial in y with its coefficients being polynomials in
z (i.e., elements in the ring Flz]). Then, divide Q(z,y) by y — P(x) to obtain Q(z,y) =
(y— P(x))A(z,y) + R(z,y) where the remainder R(z) has y—degree smaller than (y — P(z)).

19.17.b Use the probabilistic method - show this holds for a random matrix.
19.17.c Use the concatenation of Reed-Solomon over GF(2¥) with the Walsh-Hadamard code.

19.18.c Use concatenation of Reed-Solomon code with the binary code obtained in the previous
item. Note that we only apply the binary code on inputs of length O(logn) and hence can
allow exponential-time encoding and decoding algorithms.

Chapter 20

20.2 show that if for every n, a random function mapping n bits to 2*/'° bits will have desired
properties with high probabilities.

20.4 Let G be a pseudorandom generator and consider the following function f: on input = €
{0,137 f(x) = 1 iff there exists z € {0,1}" such that G(z) = x.

20.6 Use Theorem 20.6.

20.8 Show that the proofs Theorems 20.6 and 19.27 imply that given a function f € EXP
with H.(f) that is not bounded from above by any polynomial, one can obtain an S(¢)-
pseudorandom generator for a function S that is also not bounded from above by any poly-
nomial (and hence for every polynomial p, S(¢) > p(¢) for infinitely many £’s).

20.9 Use the fact that the algorithm D can with high probability compute a circuit that decides
the language L.

Chapter 21

21.2.a Use the fact that the log function is concave (has negative second derivative) implying that
for a,b > 0, aloga+ (1 — a)logb < log(aa + (1 — a)b).

21.2.c The expression |v|? = >_i; [villv;| includes all terms occurring in [[v]|Z plus additional
non-negative terms.
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21.4 Show that for every shortest path between two vertices, if we pick any third vertex in the path
then the d + 1-sized neighborhoods of all the picked vertices are disjoint.

21.5 first show that ||A|| is at most say n?. Then, prove that for every k > 1, A¥ is also stochastic
and [|A%*v|, > ||[A"v|? using the equality (w, Bz) = (B'w,z) and the inequality (w,z) <
Wil [l

21.8 Use the fact that if A is a random-walk matrix of a graph and v L 1 then Av 1 1.

21.10.d Such a path is obtained by taking k/2 moves away from the root and k/2 moves back.
We have d — 1 choices for every move away from the root, and so this gives us a factor
oklogd/2  The choices of when to make the “back moves” give us an additional factor of
roughly (kljz) = 2F=°(®)_ In fact we have to be more careful since we can’t make a “back
move” when we're already in the root and so have to ensure that we place the moves in a
way so that at any point in time we never made more “back moves” than “away moves”.
This can be ensured by fixing the first ¢ moves to be “away” moves and the last ¢ moves to
be “back moves”— for t = 100 log kv/k (which is o(k)) this ensures the vast majority of the
(k’;;f;t) = 2F=(k) choices for placing the remaining k/2 — 2t “back moves” will not result
in an invalid path. Alternatively we can observe that the number of valid paths is exactly
the number of length k valid expressions involving only opening and closing parenthesis. If
can be shown that this number is equal to ﬁ(k%) (this is known as the k/2'" Catalan

number).

21.10.e Use the previous items to show that, 14 (n — 1)A\F > p2k=Fleed/2=o(k) " The bound follows
by taking logs of both sides.

21.11 For every set S C n with |S| < n/2, try to bound probability that the number of edges
between S and S deviates strongly from its expectation.

21.13 Use the probabilistic method - choose S to be a random n/2-sized subset of the vertices. For
every pair of distinct vertices u, v, the probability that © € S and v € S or vice versa is at
most /2 (it would be exactly half if we chose S with replacements). Hence, since there are
dn/2 edges in the graph, the expected value of in E(S, S) is at most dn/4.

21.14 You can use Lemma 21.14.
21.15.c Show that if s is the uniform distribution over S then ||As||2 < 1/n + A\*(en + 1/n).

21.16 A subset S of at most n’/2 vertices in H corresponds to a subset S’ of size at most (1—1/(2¢))n
vertices in GG. Use G’s expansion to argue about the number of edges between the complement
of " and S.

21.18.b Show that any deterministic function must query the function an exponential number of
times.

21.18.c Show that under this condition there is a set S of size at most 2"/ such that Pr[X € S] >
1/20.

21.19 Represent distributions over an M-element domain as vectors in R™, and use the triangle
inequality for the L; norm.

21.23 Use Lemma 21.14.

21.24 Every subset of the replacement product of G and G’ can be thought of as n subsets of the
individual clusters. Treat differently the subsets that take up more than 1 — p/10 portion of
their clusters and those that take up less than that. For the former use the expansion of G,
while for the latter use the expansion of G’.

Chapter 22

22.1 Use Lemma 21.10 with "=V '\ S.

22.2 The upper bound is implied by Theorem 21.12. The lower bound can be proven using similar
techniques.

22.3 approximate the binomial coefficient using Stirling’s formula for approximating factorials.

22.4 Consider the random variable V' defined as V conditioned on V' > 0, and use the inequality
E[V"?] > E[V']2



466 A Mathematical Background.

22.5.e use the test T" above combined with linearity testing, self correction, and a simple test to
rule out the constant zero function.

22.5.f To transform a 2CSPyw, formula ¢ over n variables into a ¢gCSP v over binary alphabet, use

2% variables ujl-7 . ,u?w for each variable u; of . In the correct proof these variables will
contain the long code encoding of w;. Then, add a set of 9W? variables Ui, ... ,yizwz for each
constraint ¢; of ¢. In the correct proof these variables will contain the long code encoding
of the assignment for the constraint ¢;. For every constraint of ¢, 1) will contain constraints
for testing the long code of both the x and y variables involved in the constraint, testing
consistency between the x variables and the y variables, and testing that the y variables
actually encode a satisfying assignment.

1 val(p) = val(¢*?) = /2.

22.12.a Express the function f in the Fourier basis, and use the basic properties of the characters
and the fact that x,x’ and y are independent.

22.12.b Reduce to the previous case by considering the function g(xoy) = f(x0y)xa(x).

22.12.c You can estimate the expectation in (13) by evaluating the corresponding functions on
randomly chosen inputs.

22.12.d Think of the full depth-n binary labeled by binary strings of length < n (with the root
being the empty word and the two children of « are @0 and «1), then by Parseval you can
show that at any level of this tree there can be at most 1/€? strings « such that fa* > e
Use the procedure Estimate to prune this tree from the root to the leaves, throwing away all
branches a for which fa* < 10e. At the end output the remaining leaves.

22.13 Show that a randomly chosen family of subsets suffices.

22.14 Requires constructions of e-biased random variables, which have not been covered in this
book, though cab be obtained from linear error correcting codes.

22.15 Think of ways to “amplify” the gap of a constant factor in Problem 11.16. You need to
combine equations to get new equations.

22.16 Introduce a bunch of new variables for each variable that occurs in more than 5 clauses.
Design a “gadget” consisting of new clauses that force this bunch of new variables to have
the same value in the optimum assignment. You might need to use an expander. This is
essentially the same problem as Claim 22.37.

Chapter 23

23.3 If DISCRETE LOG is hard on worst-case inputs with respect to a particular prime p then it
is hard on most inputs with respect to this prime p, and then it can be used to construct
pseudorandom functions (assuming p is used as non-uniform advice).

23.4 It suffices to prove this when f, is a raidom function. Use induction on the number of
variables, and the fact that both f;, and f,, are random functions.

23.5 See Exercise 8.8.
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