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Preface

The explosive growth of distributed computing systems makes understanding them
imperative. Yet achieving such understanding is notoriously difficult, because of the
uncertainties introduced by asynchrony, limited local knowledge, and partial failures.
The field of distributed computing provides the theoretical underpinning for the design
and analysis of many distributed systems: from wide-area communication networks,
through local-area clusters of workstations to shared-memory multiprocessors.

This book aims to provide a coherent view of the theory of distributed computing,
highlighting common themes and basic techniques. It introduces the reader to the
fundamental issues underlying the design of distributed systems—communication,
coordination, synchronization, and uncertainty—and to the fundamental algorithmic
ideas and lower bound techniques. Mastering these techniques will help the reader
design correct distributed applications.

This book covers the main elements of the theory of distributed computing, in
a unifying approach that emphasizes the similarities between different models and
explains inherent discrepancies between them. The book presents up-to-date results
in a precise, and detailed, yet accessible manner. The emphasis is on fundamental
ideas, not optimizations. More difficult results are typically presented as a series
of increasingly complex solutions. The exposition highlights techniques and results
that are applicable in several places throughout the text. This approach exposes the
inherent similarities in solutions to seemingly diverse problems.

The text contains many accompanying figures and examples. A set of exercises,
ranging in difficulty, accompany each chapter. The notes at the end of each chapter
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provide a bibliographic history of the ideas and discuss their practical applications in
existing systems.

Distributed Computing is intended as a textbook for graduate students and ad-
vanced undergraduates and as a reference for researchers and professionals. It should
be useful to anyone interested in learning fundamental principles concerning how to
make distributed systems work, and why they sometimes fail to work. The expected
prerequisite knowledge is equivalent to an undergraduate course in analysis of (se-
quential) algorithms. Knowledge of distributed systems is helpful for appreciating
the applications of the results, but it is not necessary.

This book presents the major models of distributed computing, varying by the
mode of communication (message passing and shared memory), by the synchrony
assumptions (synchronous, asynchronous, and clocked), and by the failure type (crash
and Byzantine). The relationships between the various models are demonstrated by
simulations showing that algorithms designed for one model can be run in another
model. The book covers a variety of problem domains within the models, including
leader election, mutual exclusion, consensus, and clock synchronization. It presents
several recent developments, including fast mutual exclusion algorithms, queue locks,
distributed shared memory, the wait-free hierarchy, and failure detectors.

Part | of the book introduces the major issues—message passing and shared
memory communication, synchronous and asynchronous timing models, failures,
proofs of correctness, and lower bounds—in the context of three canonical problems:
leader election, mutual exclusion, and consensus. It also presents the key notions of
causality of events and clock synchronization.

Part II addresses the central theme of simulation between models of distributed
computing. It consists of a series of such simulations and their applications, in-
cluding more powerful interprocess communication from less powerful interprocess
communication, shared memory from message passing, more synchrony from less
synchrony, and more benign kinds of faults from less benign kinds of faults.

Part I samples advanced topics that have been the focus of recent research, in-
cluding randomization, the wait-free hierarchy, asynchronous solvability, and failure
detectors.

An introductory course based in this book could cover Chapters 2 through 10,
omitting Section 10.3. A more theoretical course could cover Chapters 2, 3, 4, 5,
Section 14.3, and Chapters 10, 15, 11 and 17. Other courses based on this book are
possible; consider the chapter dependencies on the next page. The book could also
be used as a supplemental text in a more practically oriented course, to flesh out the
treatment of logical and vector clocks (Chapter 6), clock synchronization (Chapters 6
and 13), fault tolerance (Chapters 5 and 8), distributed shared memory (Chapter 9),
and failure detectors (Chapter 17).

Changes in the second edition: We have made the following changes:

e We added a new chapter (Chapter 17) on failure detectors and their application
to solving consensus in asynchronous systems and deleted two chapters, those
on bounded timestamps (formerly Chapter 16) and sparse network covers
(formerly Chapter 18).
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o We added new material to the existing chapters on fast mutual exclusion and
queue locks (Chapter 4), practical clock synchronization (Chapters 6 and 13),
and the processor lower bound for simulating shared memory with message

passing

{Chapter 10).

¢ We corrected errors and improved the presentation throughout. Improvements
include a simpler proof of the round lower bound for consensus (Chapter 5)
and a simpler randomized consensus algorithm in Chapter 14.

Acknowledgments for the first edition: Many people contributed to our view of
distributed computing in general, and to this book in particular. Danny Dolev and
Nancy Lynch introduced us to this subject area. Fred Schneider provided moral
support in continuing the book and ideas for organization. Oded Goldreich and Marc
Snir inspired a general scientific attitude.

Our graduate students helped in the development of the book. At the Technion,
Ophir Rachman contributed to the lecture notes written in 1993-94, which were the
origin of this book. Jennifer Walter read many versions of the book very carefully
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at TAMU, as did Leonid Fouren, who was the teaching assistant for the class at the
Technion.

The students in our classes suffered through confusing versions of the material and
provided a lot of feedback; in particular, we thank Eyal Dagan, Eli Stein (Technion,
Spring 1993), Saad Biaz, Utkarsh Dhond, Ravishankar Iyer, Peter Nuernberg, Jingyu
Zhang (TAMU, Fall 1996), Alla Gorbach, Noam Rinetskey, Asaf Shatil, and Ronit
Teplixke (Technion, Fall 1997).

Technical discussions with Yehuda Afek, Brian Coan, Eli Gafni, and Maurice
Herlihy helped us a lot. Several people contributed to specific chapters (in alphabetic
order): Jim Anderson (Chapter 4), Rida Bazzi (Chapter 12), Ran Cannetti (Chap-
ter 14), Soma Chaudhuri (Chapter 3), Shlomi Dolev (Chapters 2 and 3),Roy Friedman
(Chapters 8 and 9), Sibsankar Haldar (Chapters 10), Martha Kosa (Chapter 9), Eyal
Kushilevitz (Chapter 14), Dahlia Malkhi (Chapter 8), Mark Moir (Chapter 4), Gil
Neiger {(Chapter 5), Boaz Patt-Shamir (Chapters 6, 7 and 11), Sergio Rajsbaum
(Chapter 6), and Krishnamurthy Vidyasankar (Chapters 10).

Acknowledgments for the second edition: We appreciate the time that many people
spent using the first edition and giving us feedback. We benefited from many of Eli
Gafni’s ideas. Panagiota Fatourou provided us with a thoughtful review. Evelyn
Pierce carefully read Chapter 10. We received error reports and suggestions from Uri
Abraham, James Aspnes, Soma Chaudhuri, Jian Chen, Lucia Dale, Faith Fich, Roy
Friedman, Mark Handy, Maurice Herlihy, Ted Herman, Lisa Higham, Iyad Kanj,
Idit Keidar, Neeraj Koul, Ajay Kshemkalyani, Marios Mavronicolas, Erich Mikk,
Krzysztof Parzyszej, Antonio Romano, Eric Ruppert, Cheng Shao, T.N. Srikanta,
Jennifer Walter, and Jian Xu.

Several people affiliated with John Wiley & Sons deserve our thanks. We are
grateful to Albert Zomaya, the editor-in-chief of the Wiley Series on Parallel and
Distributed Computing for his support. Our editor Val Moliere and program coordi-
nator Kirsten Rohstedt answered our questions and helped keep us on track.

Writing this book was a long project, and we could not have lasted withoutthe love
and support of our families. Hagit thanks Osnat, Rotem and Eyal, and her parents.
Jennifer thanks George, Glenn, Sam, and her parents.

The following web site contains supplementary material relating to this book,
including pointers to courses using the book and information on exercise solutions
and lecture notes for a sample course:

http://iwww.cs.technion.ac.i/~hagit/DC/

Dedicated to our parents:
Malka and David Attiya
Judith and Ernest Lundelius
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Introduction

This chapter describes the subject area of the book, explains the approach taken, and
provides an overview of the contents.

1.1 DISTRIBUTED SYSTEMS

A distributed system is a collection of individual computing devices that can com-
municate with each other. This very general definition encompasses a wide range
of modern-day computer systems, ranging from a VLSI chip, to a tightly-coupled
shared memory multiprocessor, to a local-area cluster of workstations, to the Internet.
This book focuses on systems at the more loosely coupled end of this spectrum. In
broad terms, the goal of parallel processing is to employ all processors to perform
one large task. In contrast, each processor in a distributed system generally has its
own semiindependent agenda, but for various reasons, including sharing of resources,
availability, and fault tolerance, processors need to coordinate their actions.

Distributed systems are ubiquitous today throughout business, academia, govern-
ment, and the home. Typically they provide means to share resources, for instance,
special purpose equipment such as color printers or scanners, and to share data, cru-
cial for our information-based economy. Peer-to-peer computing is a paradigm for
distributed systems that is becoming increasingly popular for providing computing
resources and services. More ambitious distributed systems attempt to provide im-
proved performance by attacking subproblems in parallel, and to provide improved
availability in case of failures of some components.
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Although distributed computer systems are highly desirable, putting together a
properly functioning system is notoriously difficult. Some of the difficulties are
pragmatic, for instance, the presence of heterogeneous hardware and software and
the lack of adherence to standards. More fundamental difficulties are introduced
by three factors: asynchrony, limited local knowledge, and failures. The term
asynchrony means that the absolute and even relative times at which events take
place cannot always be known precisely. Because each computing entity can only be
aware of information that it acquires, it has only a local view of the global situation.
Computing entities can fail independently, leaving some components operational
while others are not.

The explosive growth of distributed systems makes it imperative to understand
how to overcome these difficulties. As we discuss next, the field of distributed
computing provides the theoretical underpinning for the design and analysis of many
distributed systems.

1.2 THEORY OF DISTRIBUTED COMPUTING

The study of algorithms for sequential computers has been a highly successful en-
deavor. It has generated a common framework for specifying algorithms and com-
paring their performance, better algorithms for problems of practical importance, and
an understanding of inherent limitations (for instance, lower bounds on the running
time of any algorithm for a problem, and the notion of NP-completeness).

The goal of distributed computing is to accomplish the same for distributed sys-
tems. In more detail, we would like to identify fundamental problems that are
abstractions of those that arise in a variety of distributed situations, state them pre-
cisely, design and analyze efficient algorithms to solve them, and prove optimality of
the algorithms.

But there are some important differences from the sequential case. First, there is
not a single, universally accepted model of computation, and there probably never will
be, because distributed systems tend to vary much more than sequential computers
do. There are major differences between systems, depending on how computing
entities communicate, whether through messages or shared variables; what kind of
timing information and behavior are available; and what kind of failures, if any, are
to be tolerated.

In distributed systems, different complexity measures are of interest. We are still
interested in time and (local) space, but now we must consider communication costs
{number of messages, size and number of shared variables) and the number of faulty
vs. nonfaulty components.

Because of the complications faced by distributed systems, there is increased
scope for “negative” results, lower bounds, and impossibility results. It is {all too)
often possible to prove that a particular problem cannot be solved in a particular kind
of distributed system, or cannot be solved without a certain amount of some resource.
These results play a useful role for a system designer, analogous to learning that some
problem is NP-complete: they indicate where one should not put effort in trying to
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solve the problem. But there is often more room to maneuver in a distributed system:
If it turns out that your favorite problem cannot be solved under a particular set of
assumptions, then you can change the rules! Perhaps a slightly weaker problem
statement can suffice for your needs. An alternative is to build stronger guarantees
into your system.

Since the late 1970s, there has been intensive research in applying this theoretical
paradigm to distributed systems. In this book, we have attempted to distill what
we believe is the essence of this research. To focus on the underlying concepts, we
generally care more about computability issues (i.e., whether or not some problem
can be solved) than about complexity issues (i.e., how expensive it is to solve a
problem). Section 1.3 gives a more detailed overview of the material of the book and
the rationale for the choices we made.

1.3 OVERVIEW

The book is divided into three parts, reflecting three goals. First, we introduce the
core theory, then we show relationships between the models, and finally we describe
some current issues.

Part I, Fundamentals, presents the basic communication models, shared mem-
ory and message passing; the basic timing models, synchronous, asynchronous, and
clocked; and the major themes, role of uncertainty, limitations of local knowledge,
and fault tolerance, in the context of several canonical problems. The presenta-
tion highlights our emphasis on rigorous proofs of algorithm correctness and the
importance of lower bounds and impossibility results,

Chapter 2 defines our basic message-passing model and builds the reader’s famil-
iarity with the model and proofs of correctness using some simple distributed graph
algorithms for broadcasting and collecting information and building spanning trees.
In Chapter 3, we consider the problem of electing a leader in a ring network. The
algorithms and lower bounds here demonstrate a separation of models in terms of
complexity. Chapter 4 introduces our basic shared memory model and uses it in a
study of the mutual exclusion problem. The technical tools developed here, both
for algorithm design and for the lower bound proofs, are used throughout the rest
of the book. Fault tolerance is first addressed in Chapter 5, where the consensus
problem (the fundamental problem of agreeing on an input value in the presence of
failures) is studied. The results presented indicate a separation of models in terms
of computability. Chapter & concludes Part I by introducing the notion of causality
between events in a distributed system and describing the mechanism of clocks.

PartI1, Simulations, shows how simulation is a powerful tool for making distributed
systems easier to design and reason about. The chapters in this part show how to
provide powerful abstractions that aid in the development of correct distributed algo-
rithms, by providing the illusion of a better-behaved system. These abstractions are
message broadcasts, shared objects with strong semantics, synchrony, less destructive
faults, and fault-tolerant clocks.
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To place the simulation results on a rigorous basis, we need a more sophisticated
formal model than we had in Part I; Chapter 7 presents the essential features of this
model. In Chapter 8, we study how to provide a variety of broadcast mechanisms
using a point-to-point message-passing system. The simulation of shared objects
by message-passing systems and using weaker kinds of shared objects is covered
in Chapters 9 and 10. In Chapter 11, we describe several ways to simulate a more
synchronous system with a less synchronous system. Chapter 12 shows how to
simulate less destructive failures in the presence of more destructive failures. Finally,
in Chapter 13 we discuss the problem of synchronizing clocks in the presence of
failures.

Part 111, Advanced Topics, consists of a collection of topics of recent research
interest. In these chapters, we explore some issues raised earlier in more detail,
present some results that use more difficult mathematical analyses, and give a flavor
of other areas in the field.

Chapter 14 indicates the benefits that can be gained from using randomization (and
weakening the problem specification appropriately) in terms of “beating” a lower
bound or impossibility result. In Chapter 15, we explore the relationship between
the ability of a shared object type to solve consensus and its ability to provide fault-
tolerant implementations of other object types. In Chapter 16 three problems that
can be solved in asynchronous systems subject to failures are investigated; these
problems stand in contrast to the consensus problem, which cannot be solved in this
situation. The notion of a failure detector as a way to abstract desired system behavior
is presented in Chapter 17, along with ways to use this abstraction to solve consensus
in environments where it is otherwise unsolvable.

1.4 RELATIONSHIP OF THEORY TO PRACTICE

Distributed computing comes in many flavors. In this section, we discuss the main
kinds and their relationships to the formal models employed in distributed computing
theory.

Perhaps the simplest, and certainly the oldest, example of a distributed system is an
operating system for a conventional sequential computer. In this case processes on the
same hardware communicate with the same software, either by exchanging messages
or through a common address space. To time-share a single CPU among multiple
processes, as is done in most contemporary operating systems, issues relating to the
(virtual) concurrency of the processes must be addressed. Many of the problems
faced by an operating system also arise in other distributed systems, such as mutual
exclusion and deadlock detection and prevention.

Multiple-instruction multiple-data (MIMD) machines with shared memory are
tightly coupled and are sometimes called multiprocessors. These consist of separate
hardware running common software. Multiprocessors may be connected with a bus
or, less frequently, by a switching network. Alternatively, MIMD machines can be
loosely coupled and not have shared memory. They can be either a collection of
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workstations on a local area network or a collection of processors on a switching
network.

Even more loosely coupled distributed systems are exemplified by autonomous
hosts connected by a network, either wide area such as the Internet or local area
such as Ethernet. In this case, we have separate hardware running separate software,
although the entities interact through well-defined interfaces, such as the TCP/IP
stack, CORBA, or some other groupware or middleware.

Distributed computing is notorious for its surplus of models; moreover, the models
do not translate exactly to real-life architectures. For this reason, we chose not to
organize the book around models, but rather around fundamental problems (in Part
1), indicating where the choice of model is crucial to the solvability or complexity of
a problem, and around simulations (in Part II), showing commonalities between the
models.

In this book, we consider three main models based on communication medium
and degree of synchrony. Here we describe which models match with which architec-
tures. The asynchronous shared memory model applies to tightly-coupled machines,
in the common situation where processors do not get their clock signal from a sin-
gle source. The asynchronous message-passing model applies to loosely-coupled
machines and to wide-area networks. The synchronous message-passing model is
an idealization of message-passing systems in which some timing information is
known, such as upper bounds on message delay. More realistic systems can simulate
the synchronous message-passing model, for instance, by synchronizing the clocks.
Thus the synchronous message-passing model is a convenient model in which to de-
sign algorithms; the algorithms can then be automatically translated to more realistic
models.

In addition to communication medium and degree of synchrony, the other main
feature of a mode! is the kind of faults that are assumed to occur. Much of this
book is concerned with crash failures. A processor experiences a crash failure if it
ceases to operate at some point without any warning. In practice, this is often the
way components fail. We also study the Byzantine failure model. The behavior
of Byzantine processors is completely unconstrained. This assumption is a very
conservative, worst-case assumption for the behavior of defective hardware and
software. It also covers the possibility of intelligent, that is, human, intrusion.

Chapter Notes

Representative books on distributed systems from a systems perspective include those
by Coulouris, Dollimore, and Kindberg [85], Nutt [202], and Tanenbaum {249, 250].
The book edited by Mullender [195] contains a mixture of practical and theoretical
material, as does the book by Chow and Johnson [82]. Other textbooks that cover
distributed computing theory are those by Barbosa [45], Lynch [175], Peleg [208],
Raynal [226], and Tel [252].



Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

Part 1

Fundamentals



Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

Basic Algorithms in
Message-Passing Systems

In this chapter we present our first model of distributed computation, for message-
passing systems with no failures. We consider the two main timing models, syn-
chronous and asynchronous. In addition to describing formalism for the systems,
we also define the main complexity measures—number of messages and time—and
present the conventions we will use for describing algorithms in pseudocode.

We then present a few simple algorithms for message-passing systems with ar-
bitrary topology, both synchronous and asynchronous. These algorithms broadcast
information, collect information, and construct spanning trees of the network. The
primary purpose is to build facility with the formalisms and complexity measures and
to introduce proofs of algorithm correctness. Some of the algorithms will be used
later in the book as building blocks for other, more complex, algorithms.

2.1 FORMAL MODELS FOR MESSAGE PASSING SYSTEMS

This section first presents our formal models for synchronous and asynchronous
message-passing systems with no failures. It then defines the basic complexity
measures, and finally it describes our pseudocode conventions for describing message
passing algorithms.

2.1.1 Systems

In a message-passing system, processors communicate by sending messages over
communication channels, where each channel provides a bidirectional connection

9
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Fig. 2.1 A simple topology graph.

between two specific processors. The pattern of connections provided by the channels
describes the topology of the system. The topology is represented by an undirected
graph in which each node represents a processor and an edge is present between two
nodes if and only if there is a channel between the corresponding processors. We
will deal exclusively with connected topologies. The collection of channels is often
referred to as the nerwork. An algorithm for a message-passing system with a specific
topology consists of a local program for each processor in the system. A processor’s
local program provides the ability for the processor to perform local computation and
to send messages to and receive messages from each of its neighbors in the given
topology.

More formally, a system or algorithm consists of n processors py, ..., Pn_1; 1
is the index of processor p;. Each processor p; is modeled as a (possibly infinite)
state machine with state set ();. The processor is identified with a particular node
in the topology graph. The edges incident on p; in the topology graph are labeled
arbitrarily with the integers 1 through r, where r is the degree of p; (see Fig. 2.1 for
an example). Each state of processor p; contains 2r special components, outbuf;[{]
and inbuf; [{], forevery £, 1 < £ < r. These special components are sets of messages:
outbuf;[f] holds messages that p; has sent to its neighbor over its £th incident channel
but that have not yet been delivered to the neighbor, and inbuf; [£] holds messages that
have been delivered to p; on its £th incident channel but that p; has not yet processed
with an internal computation step. The state set (; contains a distinguished subset of
initial states; in an initial state every inbuf; €] must be empty, although the outbuf;[f]
components need not be.

The processor’s state, excluding the outbuf; [{] components, comprises the acces-
sible state of p;. Processor p;’s transition function takes as input a value for the
accessible state of p;, It produces as output a value for the accessible state of p; in
which each inbuf;[f] is empty. It also produces as output at most one message for
each £ between 1 and r: This is the message to be sent to the neighbor at the other end
of p;’s £th incident channel. Thus messages previously sent by p; that are waiting to
be delivered cannot influence p;’s current step; each step processes all the messages
waiting to be delivered to p; and results in a state change and at most one message to
be sent to each neighbor.

A configurationis a vector C = {go, - . ., ¢n—1) where ¢; is a state of p;. The states
of the outbuf variables in a configuration represent the messages that are in transit
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on the communication channels. An initial configuration is a vector (qo, ..., qn-1)
such that each g; is an initial state of p;; in words, each processor is in an initial state.

Occurrences that can take place in a system are modeled as events. For message-
passing systems, we consider two kinds of events. One kind is a computation event,
denoted comp(i), representing a computation step of processor p; in which p;’s
transition function is applied to its current accessible state. The other kind is a
delivery event, denoted del(, j, m), representing the delivery of message m from
Processor p; to processor p;.

The behavior of a system over time is modeled as an execution, which is a
sequence of configurations alternating with events, This sequence must satisfy a
variety of conditions, depending on the specific type of system being modeled. We
classify these conditions as either safety or liveness conditions. A safety condition is
a condition that must hold in every finite prefix of the sequence; for instance, “every
step by processor p; immediately follows a step by processor py.”” Informally, a safety
condition states that nothing bad has happened yet; for instance, the example just
given can be restated to require that a step by p; never immediately follows a step
by any processor other than pg. A liveness condition is a condition that must hold
a certain number of times, possibly an infinite number of times. For instance, the
condition “eventually p; terminates” requires that p;’s termination happen once; the
condition “p; takes an infinite number of steps” requires that the condition “p; just
took a step” must happen infinitely often. Informally, a liveness condition states that
eventually something good happens. Any sequence that satisfies all required safety
conditions for a particular system type will be called an execution. If an execution
also satisfies all required liveness conditions, it will be called admissible.

We now define the conditions required of executions and admissible executions
for two types of message-passing systems, asynchronous and synchronous.

2.1.1.1 Asynchronous Systems A system is said to be asynchronous if there
is no fixed upper bound on how long it takes for a message to be delivered or how
much time elapses between consecutive steps of a processor. An example of an
asynchronous system is the Internet, where messages (for instance, E-mail) can take
days to arrive, although often they only take seconds. There are usually upper bounds
on message delays and processor step times, but sometimes these upper bounds are
very large, are only infrequently reached, and can change over time. Instead of
designing an algorithm that depends on these bounds, it is often desirable to design
an algorithm that is independent of any particular timing parameters, namely, an
asynchronous algorithm.

An execution segment « of a asynchronous message-passing system is a (finite or
infinite) sequence of the following form:

CO>¢1’Cl7¢2502, ¢3, AN

where each C}; is a configuration and each ¢, is an event. If « is finite then it must
end in a configuration. Furthermore, the following conditions must be satisfied:

e If 95 = del(i, j, m), then m must be an element of outbuf; [€] in C—+, where £
is p;’s label for channel {p;, p;}. The only changes in going from Cy_; to C,
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are that m is removed from outbuf;[£] in C), and m is added to inbuf;[h] in Cy,
where h is p;’s label for channel {p;, p;}. In words, a message is delivered
only if it is in transit and the only change is to move the message from the
sender’s outgoing buffer to the recipient’s incoming buffer. (In the example
of Fig. 2.1, a message from p3 to pg would be placed in outbufs[1] and then
delivered to inbufy[2].)

e If ¢ = comp(i), then the only changes in going from Cj_; to Cj, are that p;
changes state according to its transition function operating on p;’s accessible
state in C_1 and the set of messages specified by p;’s transition function are
added to the outbuf; variables in C);. These messages are said to be sent at
this event. In words, p; changes state and sends out messages according to its
transition function (local program) based on its current state, which includes
all pending delivered messages (but not pending outgoing messages). Recall
that the processor’s transition function guarantees that the inbuf variables are
emptied.

An execution is an execution segment Cy, ¢1, C1, ¢2, C2, ¢4, . . ., where Cj is an
initial configuration.

With each execution (or execution segment) we associate a schedule (or schedule
segment) that is the sequence of events in the execution, that is, ¢1, ¢2, ¢3,.... Not
every sequence of events is a schedule for every initial configuration; for instance,
del(1, 2, m) is not a schedule for an initial configuration with empty ourbufs, because
there is no prior step by p; that could cause m to be sent. Note that if the local
programs are deterministic, then the execution (or execution segment) is uniquely
determined by the initial {or starting) configuration Cy and the schedule (or schedule
segment) ¢ and is denoted exec(Cy, o).

In the asynchronous model, an execution is admissible if each processor has an
infinite number of computation events and every message sent is eventually delivered.
The requirement for an infinite number of computation events models the fact that
processors do not fail. It does not imply that the processor’s local program must
contain an infinite loop; the informal notion of termination of an algorithm can be
accommodated by having the transition function not change the processor’s state
after a certain point, once the processor has completed its task. In other words, the
processor takes “dummy steps” after that point. A schedule is admissible if it is the
schedule of an admissible execution.

2.1.1.2 Synchronous Systems Inthe synchronous model processors execute
in lockstep: The execution is partitioned into rounds, and in each round, every pro-
cessor can send a message to each neighbor, the messages are delivered, and every
processor computes based on the messages just received. This model, although gen-
erally not achievable in practical distributed systems, is very convenient for designing
algorithms, because an algorithm need not contend with much uncertainty. Once an
algorithm has been designed for this ideal timing model, it can be automatically
simulated to work in other, more realistic, timing models, as we shall see later.
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Formally, the definition of an execution for the synchronous case is further con-
strained over the definition from the asynchronous case as follows. The sequence of
alternating configurations and events can be partitioned into disjointrounds. A round
consists of a deliver event for every message in an outbuf variable, until all outbuf
variables are empty, followed by one computation event for every processor. Thus a
round consists of delivering all pending messages and then having every processor
take an internal computation step to process all the delivered messages.

An execution is admissible for the synchronous model if it is infinite. Because
of the round structure, this implies that every processor takes an infinite number
of computation steps and every message sent is eventually delivered. As in the
asynchronous case, assuming that admissible executions are infinite is a technical
convenience; termination of an algorithm can be handled as in the asynchronous
case.

Note that in a synchronous system with no failures, once the algorithm is fixed,
the only relevant aspect of executions that can differ is the initial configuration. In an
asynchronous system, there can be many different executions of the same algorithm,
even with the same initial configuration and no failures, because the interleaving of
processor steps and the message delays are not fixed.

2.1.2 Complexity Measures

We will be interested in two complexity measures, the number of messages and the
amount of time, required by distributed algorithms. For now, we will concentrate
on worst-case performance; later in the book we will sometimes be concerned with
expected-case performance.

To define these measures, we need a notion of the algorithm terminating. We
assume that each processor’s state set includes a subset of terminated states and each
processor’s transition function maps terminated states only to terminated states. We
say that the system (algorithm) has terminated when all processors are in terminated
states and no messages are in transit. Note that an admissible execution must still
be infinite, but once a processor has entered a terminated state, it stays in that state,
taking “dummy”’ steps.

The message complexity of an algorithm for either a synchronous or an asyn-
chronous message-passing system is the maximum, over all admissible executions of
the algorithm, of the total number of messages sent.

The natural way to measure time in synchronous systems is simply to count the
number of rounds until termination. Thus the time complexity of an algorithm for
a synchronous message-passing system is the maximum number of rounds, in any
admissible execution of the algorithm, until the algorithm has terminated.

Measuring time in an asynchronous system is less straightforward. A common
approach, and the one we will adopt, is to assume that the maximum message delay in
any execution is one unit of time and then calculate the running time until termination.
To make this approach precise, we must introduce the notion of time into executions.

A timed execution is an execution that has a nonnegative real number associated
with each event, the time at which that event occurs. The times must start at O, must
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be nondecreasing, must be strictly increasing for each individual processor', and
must increase without bound if the execution is infinite. Thus events in the execution
are ordered according to the times at which they occur, several events can happen at
the same time as long as they do not occur at the same processor, and only a finite
number of events can occur before any finite time.

We define the delay of a message to be the time that elapses between the com-
putation event that sends the message and the computation event that processes the
message. In other words, it consists of the amount of time that the message waits in
the sender’s outbuf together with the amount of time that the message waits in the
recipient’s inbuf.

The time complexity of an asynchronous algorithm is the maximum time until
termination among all timed admissible executions in which every message delay is
at most one. This measure still allows arbitrary interleavings of events, because no
lower bound is imposed on how closely events occur. It can be viewed as taking
any execution of the algorithm and normalizing it so that the longest message delay
becomes one unit of time.

2.1.3 Pseudocode Conventions

In the formal model just presented, an algorithm would be described in terms of state
transitions. However, we will seldom do this, because state transitions tend to be
more difficult for people to understand; in particular, flow of control must be coded
in a rather contrived way in many cases.

Instead, we will describe algorithms at two different levels of detail. Simple
algorithms will be described in prose. Algorithms that are more involved will also
be presented in pseudocode. We now describe the pseudocode conventions we will
use for synchronous and asynchronous message-passing algorithms.

Asynchronous algorithms will be described in an interrupt-driven fashion for each
processor. In the formal model, each computation event processes all the messages
waiting in the processor’s inbuf variables at once. For clarity, however, we will
generally describe the effect of each message individually. This is equivalent to the
processor handling the pending messages one by one in some arbitrary order; if more
than one message is generated for the same recipient during this process, they can be
bundled together into one big message. It is also possible for the processor to take
some action even if no message is received. Events that cause no message to be sent
and no state change will not be listed.

The local computationdone withina computation event will be described in a style
consistent with typical pseudocode for sequential algorithms. We use the reserved
word “terminate” to indicate that the processor enters a terminated state.

An asynchronous algorithm will also work in a synchronous system, because a
synchronous system is a special case of an asynchronous system. However, we
will often be considering algorithms that are specifically designed for synchronous

Lcomp(i) is considered to occur at p; and del(i, j, m) at both p; and p;.
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systems. These synchronous algorithms will be described on a round-by-round basis
for each processor. For each round we will specify what messages are to be sent
by the processor and what actions it is to take based on the messages just received.
(Note that the messages to be sent in the first round are those that are initially in the
outbuf variables.) The local computation done within a round will be described in a
style consistent with typical pseudocode for sequential algorithms. Termination will
be implicitly indicated when no more rounds are specified.

In the pseudocode, the local state variables of processor p; will not be subscripted
with ¢; in discussion and proof, subscripts will be added when necessary to avoid
ambiguity.

Comments will begin with //.

In the next sections we will give several examples of describing algorithms in
prose, in pseudocode, and as state transitions.

2.2 BROADCAST AND CONVERGECAST ON A SPANNING TREE

We now present several examples to help the reader gain a better understanding of the
model, pseudocode, correctness arguments, and complexity measures for distributed
algorithms. These algorithms solve basic tasks of collecting and dispersing informa-
tion and computing spanning trees for the underlying communication network. They
serve as important building blocks in many other algorithms.

Broadcast

We start with a simple algorithm for the (single message) broadcast problem, as-
suming a spanning tree of the network is given. A distinguished processor, p,, has
some information, namely, a message (M), it wishes to send to all other processors.
Copies of the message are to be sent along a tree that is rooted at p, and spans
all the processors in the network. The spanning tree rooted at p, is maintained in
a distributed fashion: Each processor has a distinguished channel that leads to its
parent in the tree as well as a set of channels that lead to its children in the tree.

Here is the prose description of the algorithm. Figure 2.2 shows a sample asyn-
chronous execution of the algorithm; solid lines depict channels in the spanning tree,
dashed lines depict channels not in the spanning tree, and shaded nodes indicate
processors that have received (M) already. The root, p,, sends the message (M} on all
the channels leading to its children (see Fig. 2.2(a)). When a processor receives the
message (M) on the channel from its parent, it sends (M) on all the channels leading
to its children (see Fig. 2.2(b)).

The pseudocode for this algorithm is in Algorithm 1; there is no pseudocode for
a computation step in which no messages are received and no state change is made.

Finally, we describe the algorithm at the level of state transitions: The state of
each processor p; contains:

s A variable parent;, which holds either a processor index or nil
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Fig. 2.2 Two steps in an execution of the broadcast algorithm,

e A variable children;, which holds a set of processor indices
e A Boolean terminated;, which indicates whether p; is in a terminated state

Initially, the values of the parent and children variables are such that they form a
spanning tree rooted at p, of the topology graph. Initially, all terminated variables
are false. Initially, outbuf,[j) holds (M) for each j in children,; all other outbuf
variables are empty. The result of comp(i) is that, if (M) is in an inbuf;[k] for some
k, then (M) is placed in outbuf;[j), for each j in children;, and p; enters a terminated
state by setting terminated; to true. If i = r and terminated,. is false, then terminated,
is set to true. Otherwise, nothing is done.

Note that this algorithm is correct whether the system is synchronous or asyn-
chronous. Furthermore, as we discuss now, the message and time complexities of the
algorithm are the same in both models.

What is the message complexity of the algorithm? Clearly, the message (M) is
sent exactly once on each channel that belongs to the spanning tree (from the parent to
the child) in both the synchronous and asynchronous cases. That is, the total number
of messages sent during the algorithm is exactly the number of edges in the spanning
tree tooted at p,. Recall that a spanning tree of n nodes has exactly n — 1 edges;
therefore, exactly n — 1 messages are sent during the algorithm.

Let us now analyze the time complexity of the algorithm. It is easier to perform
this analysis when communication is synchronous and time is measured in rounds.

The following lemma shows that by the end of round ¢, the message (M) reaches
all processors at distance ¢ (or less) from p, in the spanning tree. This is a simple
claim, with a simple proof, but we present it in detail to help the reader gain facility
with the model and proofs about distributed algorithms. Later in the book we will
leave such simple proofs to the reader.

2Here we are using the convention that inbuf and outbuf variables are indexed by the neighbors’ indices
instead of by channel labels.
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Algorithm 1 Spanning tree broadcast algorithm.

Initially (M) is in transit from p,. to all its children in the spanning tree.

Code for p,:
1: upon receiving no message: /1 first computation event by p,
2: terminate

Codeforp;, 0 <i<n~1,i#n
3:  upon receiving (M) from parent:
4 send (M) to all children

5: terminate

Lemma 2.1 In every admissible execution of the broadcast algorithm in the syn-
chronous model, every processor at distance t from p, in the spanning tree receives
the message (M) in round t.

Proof. The proof proceeds by induction on the distance ¢ of a processor from p,..

The basis is ¢ = 1. From the description of the algorithm, each child of p, receives
{M) from p, in the first round.

We now assume that every processor at distance t — 1 > 1 from p,. in the spanning
tree receives the message (M) in round ¢ — 1.

We must show that every processor p; at distance ¢ from p,. in the spanning tree
receives (M) in round ¢. Let p; be the parent of p; in the spanning tree. Since p; is at
distance ¢ — 1 from p,., by the inductive hypothesis, p; receives (M) in round ¢ — 1.
By the description of the algorithm, p; then sends (M) to p; in the nextround. O

By Lemma 2.1, the time complexity of the algorithm is d, where d is the depth of
the spanning tree. Recall that d is at most n — 1, when the spanning tree is a chain.
Thus we have:

Theorem 2.2 There is a synchronous broadcast algorithm with message complexity
n — 1 and time complexity d, when a rooted spanning tree with depth d is known in
advance.

A similar analysis applies when communication is asynchronous. Once again,
the key is to prove that by time ¢, the message (M) reaches all processors at distance
t (or less) from p, in the spanning tree. This implies that the time complexity of
the algorithm is also d when communication is asynchronous. We now analyze this
situation more carefully.

Lemma 2.3 In every admissible execution of the broadcast algorithm in an asyn-
chronous system, every processor at distance t from p, in the spanning tree receives
message (M) by time t.

Proof. The proofis by induction on the distance ¢ of a processor from p,..
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The basis is ¢ = 1. From the description of the algorithm, {M) is initially in transit
to each processor p; at distance ! from p.. By the definition of time complexity for
the asynchronous model, p; receives (M) by time 1.

We must show that every processor p; at distance ¢ from p, in the spanning tree
receives (M) in round ¢. Let p; be the parent of p; in the spanning tree. Since p; is
at distance ¢ — 1 from p,., by the inductive hypothesis, p; receives (M) by time ¢ — 1.
By the description of the algorithm, p; sends (M} to p; when it receives (M), that is,
by time ¢ — 1. By the definition of time complexity for the asynchronous model, p;
receives (M) by time . O

Thus we have:

Theorem 2.4 There is an asynchronous broadcast algorithm with message complex-
ity n — 1 and time complexity d, when a rooted spanning tree with depth d is known
in advance.

Convergecast

The broadcast problem requires one-way communication, from the root, p,., to all the
nodes of the tree. Consider now the complementary problem, called convergecast,
of collecting information from the nodes of the tree to the root. For simplicity, we
consider a specific variant of the problem in which each processor p; starts with
a value z; and we wish to forward the maximum value among these values to the
root p,. (Exercise 2.3 concerns a general convergecast algorithm that collects all the
information in the network.)

Once again, we assume that a spanning tree is maintained in a distributed fashion,
as in the broadcast problem. Whereas the broadcast algorithm is initiated by the root,
the convergecast algorithm is initiated by the leaves. Note that a leaf of the spanning
tree can be easily distinguished, because it has no children.

Conceptually, the algorithm is recursive and requires each processor to compute
the maximum value in the subtree rooted at it. Starting at the leaves, each processor
p; computes the maximum value in the subtree rooted at it, which we denote by v;,
and sends v; to its parent. The parent collects these values from all its children,
computes the maximum value in its subtree, and sends the maximum value to its
parent.

In more detail, the algorithm proceeds as follows. If a node p; is a leaf, then it
starts the algorithm by sending its value ; to its parent (see Fig. 2.3(a)). A non-leaf
node, p;, with k children, waits to receive messages containing v;,, . .., v;, from its
children pi,, ..., pi,. Then it computes v; = max{x;, vi,, ..., v;, } and sends v; to
its parent. (See Figure 2.3(b).)

The analyses of the message and time complexities of the convergecast algorithm
are very much like those of the broadcast algorithm. (Exercise 2.2 indicates how to
analyze the time complexity of the convergecast algorithm.)
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Fig. 2.3 Two steps in an execution of the convergecast algorithm.

Theorem 2.5 There is an asynchronous convergecast algorithm with message com-
plexity n — 1 and time complexity d, when a rooted spanning tree with depth d is
known in advance.

It is sometimes useful to combine the broadcast and convergecast algorithms.
For instance, the root initiates a request for some information, which is distributed
with the broadcast, and then the responses are funneled back to the root with the
convergecast.

2.3 FLOODING AND BUILDING A SPANNING TREE

The broadcast and convergecast algorithms presented in Section 2.2 assumed the
existence of a spanning tree for the communication network, rooted at a particular
processor. Let us now consider the slightly more complicated problem of broadcast
without a preexisting spanning tree, starting from a distinguished processor p,.. First
we consider an asynchronous system.

The algorithm, called flooding, starts from p,., which sends the message (M) to all
its neighbors, that is, on all its communication channels. When processor p; receives
(M) for the first time, from some neighboring processor p;, it sends (M) to all its
neighbors except p; (see Figure 2.4).

Clearly, a processor will not send (M) more than once on any communication
channel. Thus (M) is sent at most twice on each communication channel (once
by each processor using this channel); note that there are executions in which the
message (M) is sent twice on all communication channels, except those on which (M)
is received for the first time (see Exercise 2.6). Thus it is possible that 2 — (n — 1)
messages are sent, where m is the number of communication channels in the system,
which can be as high as M"T"ﬂ

We will discuss the time complexity of the flooding algorithm shortly.
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Fig. 2.4 Two steps in an execution of the flooding algorithm; solid lines indicate channels
that are in the spanning tree at this point in the execution.

Effectively, the flooding algorithm induces a spanning tree, with the root at p,,
and the parent of a processor p; being the processor from which p; received (M) for
the first time. Itis possible that p; received (M) concurrently from several processors,
because a comp event processes all messages that have been delivered since the last
comp event by that processor; in this case, p;’s parent is chosen arbitrarily among
them.

The flooding algorithm can be modified to explicitly construct this spanning tree,
as follows: First, p, sends (M) to all its neighbors. As mentioned above, it is possible
that a processor p; receives (M) for the first time from several processors. When
this happens, p; picks one of the neighboring processors that sent (M} to it, say, p;,
denotes it as its parent and sends a (parent) message to it. To all other processors,
and to any other processor from which (M) is received later on, p; sends an (already)
message, indicating that p; is already in the tree. After sending (M) to all its other
neighbors (from which (M) was not previously received), p; waits for a response
from each of them, either a (parent) message or an (already) message. Those who
respond with (parent) messages are denoted as p;’s children. Once all recipients of
pi’s (M) message have responded, either with {(parent) or (already), p; terminates
(see Figure 2.5).

The pseudocode for the modified flooding algorithm is in Algorithm 2.

Lemma 2.6 In every admissible execution in the asynchronous model, Algorithm 2
constructs a spanning tree of the network rooted at p,.

Proof. Inspecting the code reveals two important facts about the algorithm. First,
once a processor sets its parent variable, it is never changed (and it has only one
parent). Second, the set of children of a processor never decreases. Thus, eventually,
the graph structure induced by parent and children variables is static, and the parent
and children variables at different nodes are consistent, that is, if p; 1s a child of
pi, then p; is p;’s parent. We show that the resulting graph, call it (G, is a directed
spanning tree rooted at p,..
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Fig. 2.5 Two steps in the construction of the spanning tree.

Why is every node reachable from the root? Suppose in contradiction some node
is not reachable from p, in (G. Since the network is connected, there exist two
processors, p; and p;, with a channel between them such that p; is reachable from
pr in G but p; is not. Exercise 2.4 asks you to verify that a processor is reachable
from p, in GG if and only if it ever sets its parent variable. Thus p;’s parent variable
remains nil throughout the execution, and p; sets its parent variable at some point.
Thus p; sends (M) to p; in Line 9. Since the execution is admissible, the message is
eventually received by p;, causing p; to set its parent variable. This is a contradiction.

Why is there no cycle? Suppose in contradiction there is a cycle, say, p;,, Dis, - - -
Pi., Pi,» Note that if p; is a child of p;, then p; receives (M) for the first time after p;
does. Since each processor is the parent of the next processor in the cycle, that would
mean that p;, receives (M) for the first time before p;, (itself) does, a contradiction.

O

Clearly, the modification to construct a spanning tree increases the message com-
plexity of the flooding algorithm only by a constant multiplicative factor.

In the asynchronous model of communication, it is simple to see that by time £, the
message (M) reaches all processors that are at distance ¢ (or less) from p,. Therefore:

Theorem 2.7 There is an asynchronous algorithmto find a spanning tree of a network
with m edges and diameter D), given a distinguished node, with message complexity
O(m) and time complexity O(D).

The modified flooding algorithm works, unchanged, in the synchronous case. Its
analysis is similar to that for the asynchronous case. However, in the synchronous
case, unlike the asynchronous, the spanning tree constructed is guaranteed to be a
breadth-first search (BFS) tree:

Lemma 2.8 In every admissible execution in the synchronous model, Algorithm 2
constructs a BFS tree of the network rooted at p,..
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Algorithm 2 Modified flooding algorithm to construct a spanning tree:
code for processor p;, 0 < i <n— 1.

Initially parent = L, children = @, and other = 0.

I:  upon receiving no message:

2: if p; = p, and parent = L then /I root has not yet sent (M)
3: send (M) to all neighbors

4: parent = p;

5: uponreceiving (M) from neighbor p;:

6 if parent = L then /I p; has not received (M) before
7: parent ;= p;

8 send (parent) to p;

9 send (M) to all neighbors except p;

10: else send (already) to p;

11: upon receiving (parent) from neighbor p;:

12: add p; to children

13: if children U other contains all neighbors except parent then
14: terminate

15: upon receiving (already) from neighbor p;:

16: add p; to other

17: if children U other contains all neighbors except parent then
18: terminate

Proof. We show by induction on £ that at the beginning of round ¢, (1) the graph
constructed so far according to the parent variables is a BFs tree consisting of all
nodes at distance at most ¢ — 1 from p,, and (2) (M) messages are in transit only from
nodes at distance exactly ¢ — 1 from p,.

The basis is ¢t = 1. Initially, all parent variables are nil, and (M) messages are
outgoing from p, and no other node.

Suppose the claim is true for round ¢ — 1 > 1. During round ¢ — 1, the (M)
messages in transit from nodes at distance ¢ — 2 are received. Any node that receives
(M) is at distance ¢ — 1 or less from p,. A recipient node with a non-nil parent
variable, namely, a node at distance ¢t — 2 or less from p,., does not change its parent
variable or send out an {M) message. Every node at distance ¢ — | from p, receives
an (M) message in round ¢ — 1 and, because its parent variable is nil, it sets it to an
appropriate parent and sends out an (M) message. Nodes not at distance ¢ — 1 do not
receive an (M) message and thus do not send any. |

Therefore:
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Fig. 2.6 A non-BFS tree.

Theorem 2.9 There is a synchronous algorithm to find a BFS tree of a network with
m edges and diameter D, given a distinguished node, with message complexity O (m)
and time complexity O( D).

In an asynchronous system, it is possible that the modified flooding algorithm
does not construct a BFS tree. Consider a fully connected network with five nodes, pg
through py, in which py is the root (see Fig. 2.6). Suppose the (M) messages quickly
propagate in the order py to p1, p1 to p2. p2 to pa, and ps to py, while the other (M)
messages are very slow. The resulting spanning tree is the chain pg through p,4, which
is not a BFs tree. Furthermore, the spanning tree has depth 4, although the diameter
is only 1. Note that the running time of the algorithm is proportional to the diameter,
not the number of nodes. Exercise 2.5 asks you to generalize these observations for
graphs with n nodes.

The modified flooding algorithm can be combined with the convergecast algorithm
described above, to request and collect information. The combined algorithm works
in either synchronous or asynchronous systems. However, the time complexity of
the combined algorithm is different in the two models; because we do not necessarily
get a BFS tree in the asynchronous model, it is possible that the convergecast will
be applied on a tree with depth n — 1. However, in the synchronous case, the
convergecast will always be applied on a tree whose depth is at most the diameter of
the network.

2.4 CONSTRUCTING A DEPTH-FIRST SEARCH SPANNING TREE FOR
A SPECIFIED ROOT

Another basic algorithm constructs a depth-first search (DFS) tree of the communi-
cation network, rooted at a particular node. A DFs tree is constructed by adding one
node at a time, more gradually than the spanning tree constructed by Algorithm 2,
which attempts to add all the nodes at the same level of the tree concurrently.

The pseudocode for depth-first search is in Algorithm 3.



24

BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

Algorithm 3 Depth-first search spanning tree algorithm for a specified root:
code for processor p;, 0 <7< n—1.

Initially parent = L, children = (), unexplored = all neighbors of p;

b

ANl

9:

10:
11:
12:
13:
14:
15:

16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:

upon receiving no message:
if pi = pr and parent = L then
parent .= p;
explore()

upon receiving (M) from p;:
if parent = 1 then
parent := p;
remove p; from unexplored
explore()
else
send (already) to p;
remove p; from unexplored
upon receiving (already) from p;:
explore()

upon receiving (parent) from p;:
add p; to children
explore()

procedure explore():
if unexplored # @ then

let px be a processor in unexplored
remove py from unexplored

send (M) to px
else

/ root wakes up

/I p; has not received (M) before

// already in tree

if parent # p; then send (parent) to parent

terminate

/I DFs subtree rooted at p; has been built

The correctness of Algorithm 3 essentially follows from the correctness of the
sequential DFs algorithm, because there is no concurrency in the execution of this
algorithm. A careful proof of the next lemma is left as an exercise.

Lemma 2.10 In every admissible execution in the asynchronous model, Algorithm 3

constructs a DFS tree of the network rooted at p,.

To calculate the message complexity of the algorithm, note that each processor
sends (M) at most once on each of its adjacent edges; also, each processor generates
at most one message (either (already) or (parent)) in response to receiving (M} on
each of its adjacent edges. Therefore, at most 4m messages are sent by Algorithm 3.
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Showing that the time complexity of the algorithm is O(m) is left as an exercise for
the reader. We summarize:

Theorem 2.11 There is an asynchronous algorithm to find a depth-first search span-
ning tree of a network with m edges and n nodes, given a distinguished node, with
message complexity O(m) and time complexity O(m).

2.5 CONSTRUCTING A DEPTH-FIRST SEARCH SPANNING TREE
WITHOUT A SPECIFIED ROOT

Algorithm 2 and Algorithm 3 build a spanning tree for the communication network,
with reasonable message and time complexities. However, both of them require the
existence of a distinguished node, from which the construction starts. In this section,
we discuss how to build a spanning tree when there is no distinguished node. We
assume, however, that the nodes have unique identifiers, which are natural numbers;
as we shall see in Section 3.2, this assumption is necessary.

To build a spanning tree, each processor that wakes up spontaneously attempts to
build a DFs tree with itself as the root, using a separate copy of Algorithm 3. If two
DFS$ trees try to connect to the same node (not necessarily at the same time), the node
will join the DFs tree whose root has the higher identifier.

The pseudocode appears in Algorithm 4. To implement the above idea, each node
keeps the maximal identifier it has seen so far in a variable leader, which is initialized
to a value smaller than any identifier.

When a node wakes up spontaneously, it sets its leader to its own identifier and
sends a DFS message carrying its identifier. When a node receives a DFs message
with identifier y, it compares y and leader. If y > leader, then this might be the DFs
of the processor with maximal identifier; in this case, the node changes leader to be
¥, sets its parent variable to be the node from which this message was received, and
continues the DFs with identifier y. If y = leader, then the node already belongs to
this spanning tree. If y < leader, then this DFs belongs to a node whose identifier is
smaller than the maximal identifier seen so far; in this case, no message is sent, which
stalls the DFs tree construction with identifier y. Eventually, a DFs message carrying
the identifier leader (or a larger identifier) will arrive at the node with identifier y,
and connect it to its tree.

Only the root of the spanning tree constructed explicitly terminates, other nodes
do not terminate and keep waiting for messages. It is possible to modify the algorithm
so that the root sends a termination message using Algorithm 1.

Proving correctness of the algorithm is more involved than previous algorithmsin
this chapter; we only outline the arguments here. Consider the nodes that wake up
spontaneously, and let p,, be the node with the maximal identifier among them; let
m be p,,’s identifier.

First observe that (leader) messages with leader id m are never dropped because
of discovering a larger leader id, by definition of m.
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Algorithm 4 Spanning tree construction: code for processor p;, 0 <7 < n — 1.

Initially parent = L, leader = —1, children = |, unexplored = all neighbors of p;

I: upon receiving no message:

2 if parent = 1 then // wake up spontaneously
3: leader .= id

4. parent := p;

5 explore()

6: upon receiving (leader,new-id) from p;:

7: if leader < new-id then // switch to new tree
8: leader := new-id

9: parent ;= p;

10: children := ()

11: unexplored := all neighbors of p; except p;

12: explore()

13: else if leader = new-id then

14: send (already.leader) to p; // already in same tree

/! otherwise, leader > new-id and the DFS for new-id is stalled

15: upon receiving (already,new-id) from p;:
16: if new-id = leader then explore()

17: upon receiving (parent,new-id) from p;:

18: if new-id = leader then // otherwise ignore message
19: add p; to children
20: explore()

21: procedure explore():
22: if unexplored # {0 then

23: let py, be a processor in unexplored

24: remove py from unexplored

25: send (leader,leader) to px

26: else

27: if parent # p; then send {parent,leader) to parent
28: else terminate as root of spanning tree

Second, (already) messages with leader id m are never dropped because they have
the wrong leader id. Why? Suppose p; receives an (already) message from p; with
leader id m. The reason p; sent this message to p; is that it received a (leader)
message from p; with leader id m. Once p; sets its leader id to m, it never resets it,
because m is the largest leader id in the system. Thus when p; receives p;’s (already)
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message with leader id mn, p; still has its leader id as m, the message is accepted, and
the exploration proceeds.

Third, {parent) messages with leader id m are never dropped because they have
the wrong leader id. The argument is the same as for {already) messages.

Finally, messages with leader id m are never dropped because the recipient has
terminated. Suppose in contradiction that some p; has terminated before receiving
a message with leader id m. Then p; thinks it is the leader, but its id, say i, is less
than . The copy of Algorithm 3 with leader id ¢ must have reached every node in
the graph, including p,,,. But p,, would not have responded to the leader message,
so this copy of Algorithm 3 could not have completed, a contradiction.

Thus the copy of Algorithm 3 for leader id m completes, and correctness of
Algorithm 3 implies correctness of Algorithm 4.

A simple analysis of the algorithmuses the fact that, in the worst case, each proces-
sor tries to construct a DF§ tree. Therefore, the message complexity of Algorithm 4
is at most n times the message complexity of Algorithm 3, that is, O(nm). The time
complexity is similar to the time complexity of Algorithm 3, that is, O(m).

Theorem 2.12 Algorithm 4 finds a spanning tree of a network with m edges and n
nodes, with message complexity O(n - m) and time complexity O(m).

Exercises

2.1 Code one of the simple algorithms in state transitions.

2.2 Analyze the time complexity of the convergecast algorithm of Section 2.2
when communication is synchronous and when communication is asyn-
chronous.

Hint: For the synchronous case, prove that during round ¢ + 1, a processor at
height ¢ sends a message to its parent. For the asynchronous case, prove that
by time ¢, a processor at height £ has sent a message to its parent.

2.3 Generalize the convergecast algorithm of Section 2.2 to collect all the infor-
mation. That is, when the algorithm terminates, the root should have the input
values of all the processors. Analyze the bit complexity, that is, the total
number of bits that are sent over the communication channels.

2.4 Prove the claim used in the proof of Lemma 2.6 that a processor is reachable
from p, in G if and only if it ever sets its parent variable.

2.5 Describe an execution of the modified flooding algorithm (Algorithm 2} in an
asynchronous system with n nodes that does not construct a BFS tree.

2.6 Describe an execution of Algorithm 2 in some asynchronous system, where
the message is sent twice on communication channels that do not connect a
parent and its children in the spanning tree.
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2.7 Perform a precise analysis of the time complexity of the modified flooding
algorithm (Algorithm 2), for the synchronous and the asynchronous models.

2.8 Explain how to eliminate the {already) messages from the modified flooding
algorithm (Algorithm 2) in the synchronous case and still have a correct
algorithm. What is the message complexity of the resulting algorithm?

2.9 Do the broadcast and convergecast algorithms rely on knowledge of the num-
ber of nodes in the system?

2.10 Modify Algorithm 3 so that it handles correctly the case where the distin-
guished node has no neighbors.

2.11 Modify Algorithm 3 so that all nodes terminate.
2.12 Prove that Algorithm 3 constructs a DFS tree of the network rooted at p,.
2.13 Prove that the time complexity of Algorithm 3 is O(m).

2.14 Modify Algorithm 3 so it constructs a DFS numbering of the nodes, indicating
the order in which the message (M} arrives at the nodes.

2.15 Modify Algorithm 3 to obtain an algorithm that constructs a DFs tree with
O(n) time complexity.

Hint: When a node receives the message (M) for the first time, it notifies all
its neighbors but passes the message only to one of them.

2.16 Prove Theorem 2.12.

2.17 Show that in Algorithm 4 if the leader variable is not included in the (parent)
message and the test in Line 18 is not performed, then the algorithm is
incorrect.

Chapter Notes

The first part of this chapter introduced our formal model of a distributed message-
passing system; this model is closely based on that used by Attiya, Dwork, Lynch,
and Stockmeyer [27], although many papers in the literature on distributed algorithms
have used similar models.

Modeling each processor in a distributed algorithm as a state machine is an idea
that goes back at least to Lynch and Fischer [176]. Two early papers that explicitly
represent an execution of a distributed system as a sequence of state transitions are
by Owicki and Lamport [204] and by Lynch and Fischer [176]. The same idea is,
more implicitly, present in the paper by Owicki and Gries [203].

A number of researchers (e.g., Fischer, Lynch, and Paterson [110]) have used the
term “admissible” to distinguish those executions that satisfy additional constraints
from all executions: That is, the term “execution” refers to sequences that satisfy
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some relatively basic syntactic constraints, and “admissible” indicates that additional
properties are satisfied. But the details vary from paper to paper. Emerson’s chap-
ter [103] contains an informative discussion of safety and liveness properties and
many references.

The asynchronous time complexity measure was first proposed by Peterson and
Fischer {214] for the shared memory case and is naturally extended to the message
passing case, as in Awerbuch’s paper [36].

The formal model introduced in this chapter, and used throughout Part I of this
book does not address composition or interactions with users; Part II takes up these
issues.

The second part of the chapter presented a few algorithms for message-passing
systems, to demonstrate how to use the formalisms and complexity measures pre-
sented earlier. The algorithms solve the problems of broadcast, convergecast, DFs,
BFS, and leader election; Gafni [115] includes these problems in a set of useful
“building blocks” for constructing algorithms for message-passing systems.

The algorithms presented in the chapter appear to be folklore. The broadcast
and convergecast algorithms of Section 2.2 are described by Segall [240], who also
describes an asynchronous algorithm for finding a BFS tree rooted at a distinguished
node. A BFS tree is useful for broadcasting information in a network within minimum
time, as it allows information to be routed between processors along shortest paths.
The algorithm for constructing a DFs tree from a specified root (Algorithm 3) first
appeared in Cheung [78]. An algorithm to construct a DFS tree with linear time
complexity (Exercise 2.15) was presented by Awerbuch [37].

Algorithm 4 for constructing a spanning tree works by extinction of the DFS trees
of processors with low identifiers. This algorithm is folklore, and our presentation
of it is inspired by the algorithm of Gallager [117]. The message complexity of
Gallager’s algorithm is O(m + nlogn); it carefully balances the expansion of the
trees constructed by different processors by guaranteeing that only small trees are
extinguished and not much work is being lost.

Exercise 2.17 was suggested by Uri Abraham.

Algorithm 4 and Gallager’s algorithm produce spanning trees of the networks
without taking into account the cost of sending messages on different communication
links. If weights are assigned to edges representing communication links according
to their costs, then a minimum-weight spanning tree of the network minimizes the
communication cost of broadcast and convergecast.

An algorithm for constructing a minimum-weight spanning tree was given by
Gallager, Humblet, and Spira [118]; the message complexity of this algorithm is
O(m + nlogn). The next chapter includes lower bounds indicating that 2(n log n)
messages are needed to elect a leader. The time complexity of the algorithm for
finding a minimum-weight spanning tree is O(n logn); Awerbuch [39] presented an
algorithm for finding a minimum-weight spanning tree with O(n) time complexity
and O(n log n) message complexity.

Because only one node terminates as the root in any spanning tree algorithm, it
can be called a leader; leaders are very useful, and Chapter 3 is dedicated to the
problem of electing them with as few messages as possible in a ring topology.
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Leader Election in Rings

In this chapter, we consider systems in which the topology of the message passing
system is a ring. Rings are a convenient structure for message-passing systems
and correspond to physical communication systems, for example, token rings. We
investigate the leader election problem, in which a group of processors must choose
one among them to be the leader. The existence of a leader can simplify coordination
among processors and is helpful in achieving fault tolerance and saving resources—
recall how the existence of the special processor p, made possible a simple solution
to the broadcast problem in Chapter 2. Furthermore, the leader election problem
represents a general class of symmetry-breaking problems. For example, when a
deadlock is created, because of processors waiting in a cycle for each other, the
deadlock can be broken by electing one of the processors as a leader and removing it
from the cycle.

3.1 THE LEADER ELECTION PROBLEM

The leader election problem has several variants, and we define the most general
one below. Informally, the problem is for each processor eventually to decide that
either it is the leader or it is not the leader, subject to the constraint that exactly one
processor decides that it is the leader. In terms of our formal model, an algorithm is
said to solve the leader election problem if it satisfies the following conditions:

s The terminated states are partitioned into elected and not-elected states. Once
a processor enters an elected (respectively, not-elected) state, its transition

31
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Fig. 3.1 A simple oriented ring.

function will only move it to another (or the same) elected (respectively, not-
elected) state.

» In every admissible execution, exactly one processor (the leader) enters an
elected state and all the remaining processors enter a not-elected state.

We restrict our attention to the situation in which the topology of the system is a
ring. In particular, we assume that the edges in the topology graph go between p;
and p; 41, for all 2, 0 < i < n, where addition is mod n. Furthermore, we assume
that processors have a consistent notion of left and right, resulting in an oriented
ring. Formally, this assumption is modeled by requiring that, forevery 7,0 < i < n,
pi’s channel to p; 41 is labeled 1, also known as left or clockwise, and p;’s channel
to p;—1 is labeled 2, also known as right or counterclockwise (as usual, addition and
subtraction are mod n). Figure 3.1 contains a simple example of a three-node ring.
(See the chapter notes for more on orientation.)

3.2 ANONYMOUS RINGS

A leader election algorithm for a ring system is anonymous if processors do not have
unique identifiers that can be used by the algorithm. More formally, every processor
in the system has the same state machine. In describing anonymous algorithms,
recipients of messages can be specified only in terms of channel labels, for example,
left and right neighbors.

A potentially useful piece of information for an algorithm is n, the number of
processors. If n is not known to the algorithm, that is, » is not hardcoded in advance,
the algorithm is said to be “uniform,” because the algorithm looks the same for every
value of n. Formally, in an anonymous uniferm algorithm, there is only one state
machine for all processors, no matter what the ring size. In an anonymous ronuniform
algorithm, for each value of n, the ring size, there is a single state machine, but there
can be different state machines for different ring sizes, that is, n can be explicitly
present in the code.

We show that there is no anonymous leader election algorithm for ring systems.
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For generality and simplicity, we prove the result for nonuniform algorithms and
synchronous rings. Impossibility for synchronous rings immediately implies the
same result for asynchronous rings (see Exercise 3.1). Similarly, impossibility for
nonuniform algorithms, that is, algorithms in which n, the number of processors, is
known, implies impossibility for algorithms when n is unknown (see Exercise 3.2).

Recall that in a synchronous system, an algorithm proceeds in rounds, where in
each round all pending messages are delivered, following which every processor takes
one computation step. The initial state of a processor includes in the outbuf variables
any messages that are to be delivered to the processor’s right and left neighbors in
the first round.

The idea behind the impossibilityresult is that in an anonymous ring, the symmetry
between the processors can always be maintained; that is, without some initial
asymmetry, such as provided by unique identifiers, symmetry cannot be broken.
Specifically, all processors in the anonymous ring algorithm start in the same state.
Because they are identical and execute the same program (i.e., they have the same state
machine), in every round each of them sends exactly the same messages; thus they all
receive the same messages in each round and change state identically. Consequently,
if one of the processors is elected, then so are all the processors. Hence, it is
impossible to have an algorithm that elects a single leader in the ring.

To formalize this intuition, consider a ring R of size n > 1 and assume, by way of
contradiction, that there exists an anonymous algorithm, A, for electing a leader in
this ring. Because the ring is synchronous and there is only one initial configuration,
there is a unique admissible execution of A on R.

Lemma 3.1 For every round k of the admissible execution of A in R, the states of
all the processors at the end of round k are the same.

Proof. The proofisby inductionon k. The base case, & = 0 (before the first round),
is straightforward because the processors begin in the same initial state.

For the inductive step, assume the lemma holds for round & — 1. Because the
processors are in the same state in round £ — 1, they all send the same message m,. to
the right and the same message i, to the left. In round k, every processor receives
the message ¢ on its right edge and the message m, on its left edge. Thus all
processors receive exactly the same messages in round k; because they execute the
same program, they are in the same state at the end of round &. 0

The above lemma implies that if at the end of some round some processor an-
nounces itself as a leader, by entering an elected state, so do all other processors.
This contradicts the assumption that A is a leader election algorithm and proves:

Theorem 3.2 There is no nonuniform anonymous algorithm for leader election in
synchronous rings.
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3.3 ASYNCHRONOUS RINGS

This section presents upper and lower bounds on the message complexity for the
leader election problem in asynchronous rings. Because Theorem 3.2 just showed
that there is no anonymous leader election algorithm for rings, we assume in the
remainder of this chapter that processors have unique identifiers.

We assume that each processor in a ring has a unique identifier. Every natural
number is a possible identifier. When a state machine (local program) is associated
with each processor p;, there is a distinguished state component id; that is initialized
to the value of that identifier.

We will specify a ring by listing the processors’ identifiers in clockwise order,
beginning with the smallest identifier. Thus each processor p;, 0 < i < n, is
assigned an identifier id;. Note that two identifier assignments, one of which is a
cyclic shift of the other, result in the same ring by this definition, because the indices
of the underlying processors (e.g., the 97 of processor par) are not available.

The notions of uniform and nonuniform algorithms are slightly different when
unique identifiers are available.

A {(non-anonymous) algorithm is said to be uniform if, for every identifier, there is
a state machine and, regardless of the size of the ring, the algorithm is correct when
processors are assigned the unique state machine for their identifier. That is, there is
only one local program for a processor with a given identifier, no matter what size
ring the processor is a part of.

A (non-anonymous) algorithm is said to be nonuniform if, for every n and every
identifier, there is a state machine. For every n, given any ring of size n, the algorithm
in which every processor has the state machine for its identifier and for ring size n
must be correct.

We start with a very simple leader election algorithm for asynchronous rings that
requires O(n?) messages. This algorithm motivates a more efficient algorithm that
requires O(nlogn) messages. We show that this algorithm has optimal message
complexity by proving a lower bound of Q2(nlogn) on the number of messages
required for electing a leader.

3.3.1 An O(n?) Algorithm

In this algorithm, each processor sends a message with its identifier to its left neighbor
and then waits for messages from its right neighbor. When it receives such a message,
itchecks theidentifier in this message. Iftheidentifier is greater than its own identifier,
it forwards the message to the left; otherwise, it “swallows” the message and does
not forward it. If a processor receives a message with its own identifier, it declares
itself a leader by sending a termination message to its left neighbor and terminating
as a leader. A processor that receives a termination message forwards it to the left
and terminates as a non-leader. Note that the algorithm does not depend on the size
of the ring, that is, it is uniform.
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Fig. 3.2 Ring with ©(n?) messages.

Note that, in any admissible execution, only the message of the processor with
the maximal identifier is never swallowed. Therefore, only the processor with the
maximal identifier receives a message with its own identifier and will declare itself
as a leader. All the other processors receive termination messages and are not chosen
as leaders. This implies the correctness of the algorithm.

Clearly, the algorithm never sends more than O(n?) messages in any admissi-
ble execution. Moreover, there is an admissible execution in which the algorithm
sends ©(n?) messages: Consider the ring where the identifiers of the processors are
0,...,n—1and they are ordered as in Figure 3.2. In this configuration, the message
of processor with identifier 7 is sent exactly ¢ + 1 times. Thus the total number of
messages, including the n termination messages, is n + ?___"Ol(i + 1) = O(n?).

3.3.2 An O(nlogn) Algorithm

A more efficient algorithm is based on the same idea as the algorithm we have
just seen. Again, a processor sends its identifier around the ring and the algorithm
guarantees that only the message of the processor with the maximal identifier traverses
the whole ring and returns. However, the algorithm employs a more clever method
for forwarding identifiers, thus reducing the worst-case number of messages from
0(n?) to O(nlogn).

To describe the algorithm, we first define the k-neighborhood of a processor p;
in the ring to be the set of processors that are at distance at most & from p; in the
ring (either to the left or to the right). Note that the k-neighborhood of a processor
includes exactly 2k + 1 processors.

The algorithm operates in phases; it is convenient to start numbering the phases
with 0. In the kth phase a processor tries to become a winner for that phase; to be a
winner, it must have the largest id in its 2%-neighborhood. Only processors that are
winners in the kth phase continue to compete in the (k + 1)-st phase. Thus fewer
processors proceed to higher phases, until at the end, only one processor is a winner
and it is elected as the leader of the whole ring.
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In more detail, in phase 0, each processor attempts to become a phase 0 winner
and sends a (probe) message containing its identifier to its 1-neighborhood, that is,
to each of its two neighbors. If the identifier of the neighbor receiving the probe is
greater than the identifier in the probe, it swallows the probe; otherwise, it sends back
a (replyy message. If a processor receives a reply from both its neighbors, then the
processor becomes a phase O winner and continues to phase 1.

In general, in phase k, a processor p; that is a phase k& — 1 winner sends {probe)
messages with its identifier to its 2% -neighborhood (one in each direction). Each such
message traverses 2F processors one by one. A probe is swallowed by a processor if it
contains an identifier that is smaller than its own identifier. If the probe arrives at the
last processor in the neighborhood without being swallowed, then that last processor
sends back a (reply) message to p;. If p; receives replies from both directions,
it becomes a phase & winner, and it continues to phase & + 1. A processor that
receives its own (probe) message terminates the algorithm as the leader and sends a
termination message around the ring.

Note that in order to implement the algorithm, the last processor in a 2% -neighborhood
must return a reply rather than forward a {probe) message. Thus we have three fields
in each {probe) message: the identifier, the phase number, and a hop counter. The
hop counter is initialized to 0, and is incremented by 1 whenever a processor forwards
the message. If a processor receives a phase & message with a hop counter 2%, then
it is the last processor in the 2¥-neighborhood.

The pseudocode appears in Algorithm 5. Phase & for a processor corresponds
to the period between its sending of a (probe) message in line 4 or 15 with third
parameter k and its sending of a (probe} message in line 4 or 15 with third parameter
k + 1. The details of sending the termination message around the ring have been left
out in the code, and only the leader terminates.

The correctness of the algorithm follows in the same manner as in the simple
algorithm, because they have the same swallowing rules. It is clear that the probes
of the processor with the maximal identifier are never swallowed; therefore, this
processor will terminate the algorithm as a leader. On the other hand, it is also
clear that no other (probe) can traverse the whole ring without being swallowed.
Therefore, the processor with the maximal identifier is the only leader elected by the
algorithm.

To analyze the worst-case number of messages that is sent during any admissible
execution of the algorithm, we first note that the probe distance in phase k is 2%, and
thus the number of messages sent on behalf of a particular competing processor in
phase k is 4 - 2¥. How many processors compete in phase k, in the worst case? For
k = 0, the number is n, because all processors could begin the algorithm. For &£ > 1,
every processor that is a phase £ — 1 winner competes in phase k. The next lemma
gives an upper bound on the number of winners in each phase.

Lemma 3.3 For every k > 1, the number of processors that are phase k winners is
at most zE .

Proof. If a processor p; is a phase k winner, then every processor in p;’s 2%-
neighborhood must have an id smaller than p;’s id. The closest together that two
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Algorithm 5 Asynchronous leader election: code for processor p;, 0 < i < n.

Initially, asleep = true

1: upon receiving no message:

2 if asleep then

3 asleep 1= false

4 send {probe,id,0,1) to left and right

5: upon receiving (probe,j,k,d) from left (resp., right):

6 if j = id then terminate as the leader

7: if j > idand d < 2 then // forward the message
8: send (probe,j,k,d + 1) to right (resp., left)  // increment hop counter
9 if j > idand d > 2* then /1 reply to the message
10: send {reply,7,k) to left (resp., right)

/1if j < id, message is swallowed

11: upon receiving (reply, j, k) from left (resp., right):
12: if j # id then send {reply, j, k) to right (resp., left) /I forward the reply

13: else /{ reply is for own probe
14: if already received (reply,j,k) from right (resp., left) then
15: send {probe,id,k + 1,1) // phase k winner

phase k winners, p; and p;, can be is if the left side of p;’s 2*-neighborhood is exactly
the right side of p;’s 2%_neighborhood. That is, there are 2% processors in between
p; and p;. The maximum number of phase & winners is achieved when this dense
packing continues around the ring. The number of winners in this case is EkQT |

By the previous lemma, there is only one winner once the phase number is at least
log(n — 1). In the next phase, the winner elects itself as leader. The total number of
messages then, including the 4n phase 0 messages and n termination messages, is at
most:

flog(n—1)1+1 i n
5n + 1; 42" gy < 8n(logn +2) + 5n

To conclude, we have the following theorem:

Theorem 3.4 There is an asynchronous leader election algorithm whose message
complexity is O(n log n).

Note that, in contrast to the simple algorithm of Section 3.3.1, this algorithm uses
bidirectional communication on the ring. The message complexity of this algorithm
is not optimal with regard to the constant factor, 8; the chapter notes discuss papers
that achieve smaller constant factors.
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3.3.3 An(nlogn) Lower Bound

In this section, we show that the leader election algorithm of Section 3.3.2 is asymp-
totically optimal. That is, we show that any algorithm for electing a leader in an
asynchronous ring sends at least {n log n) messages. The lower bound we prove is
for uniform algorithms, namely, algorithms that do not know the size of the ring.

We prove the lower bound for a special variant of the leader election problem,
where the elected leader must be the processor with the maximum identifier in the
ring; in addition, all the processors must know the identifier of the elected leader.
That is, before terminating each processor writes to a special variable the identity of
the elected leader. The proof of the lower bound for the more general definition of
the leader election problem follows by reduction and is left as Exercise 3.5.

Assume we are given a uniform algorithm A that solves the above variant of the
leader election problem. We will show that there exists an admissible execution of
A in which Q(nlogn) messages are sent. Intuitively, this is done by building a
“wasteful” execution of the algorithm for rings of size n/2, in which many messages
are sent. Then we “paste together” two different rings of size n/2 to form a ring of
size n, in such a way that we can combine the wasteful executions of the smaller
rings and force ©(n) additional messages to be received.

Although the preceding discussion referred to pasting together executions, we will
actually work with schedules. The reason is that executions include configurations,
which pin down the number of processors in the ring. We will want to apply the same
sequence of events to different rings, with different numbers of processors. Before
presenting the details of the lower bound proof, we first define schedules that can be
“pasted together.”

Definition 3.1 A schedule o of A for a particular ring is open if there exists an edge
e of the ring such that in o no message is delivered over the edge e in either direction;
e is an open edge of .

Note that an open schedule need not be admissible; in particular, it can be finite,
and processors may not have terminated yet.

Intuitively, because the processors do not know the size of the ring, we can paste
together two open schedules of two small rings to form an open schedule of a larger
ring. Note that this argument relies on the fact that the algorithm is uniform and
works in the same manner for every ring size.

We now give the details. For clarity of presentation, we assume thatn is an integral
power of 2 for the rest of the proof. (Exercise 3.6 asks you to prove the lower bound
for other values of n.)

Theorem 3.5 For every n and every set of n identifiers, there is a ring using those
identifiers that has an open schedule of A in which at least M (n) messages are
received, where M(2) = Land M(n) = 2M(3) + $(% — 1) forn > 2.

Since M (n) = ©(nlogn), this theorem implies the desired lower bound. The
proof of the theorem is by induction. Lemma 3.6 is the base case (n = 2') and
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..Po Py,
with z U with y

Fig. 3.3 Mlustration for Lemma 3.6.

Lemma 3.7 is the inductive step (n = 2¢,¢ > 1). For the base case ring consisting of
two processors, we assume that there are actually two distinct links connecting the
processors.

Lemma 3.6 For every set consisting of two identifiers, there is a ring R using those
two identifiers that has an open schedule of A in which at least one message is
received.

Proof. Assume R contains processors py and p; and the identifier of pg (say, ) is
larger than the identifier of p; (say, y) (see Fig. 3.3).

Let o be an admissible execution of A on the ring. Since A is correct, eventually
p1 must write pp’s identifier  in «. Note that at least one message must be received
in «; otherwise, if p; does not get a message from pg it cannot discover that the
identifier of py is z. Let o be the shortest prefix of the schedule of « that includes the
first event in which a message is received. Note that the edge other than the one over
which the first message is received is open. Since exactly one message is received in
o and one edge is open, ¢ is clearly an open schedule that satisfies the requirements
of the lemma. 1

The next lemma provides the inductive step of the pasting procedure. As men-
tioned above, the general approach is to take two open schedules on smaller rings
in which many messages are received and to paste them together at the open edges
into an open schedule on the bigger ring in which the same messages plus extra
messages are received. Intuitively, one can see that two open schedules can be pasted
together and still behave the same (this will be proved formally below). The key step,
however, is forcing the additional messages to be received. After the two smaller
rings are pasted together, the processors in the half that does not contain the eventual
leader must somehow learn the id of the eventual leader, and this can only occur
through message exchanges. We unblock the messages delayed on the connecting
open edges and continue the schedule, arguing that many messages must be received.
Our main problem is how to do this in a way that will yield an open schedule on
the bigger ring so that the lemma can be applied inductively. The difficulty is that
if we pick in advance which of the two edges connecting the two parts to unblock,
then the algorithm can choose to wait for information on the other edge. To avoid
this problem, we first create a ‘test’ schedule, learning which of the two edges, when
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Fig. 3.4 R, and Rs.

Rl R2

Fig. 3.5 Pasting together R; and R; into R.

unblocked, causes the larger number of messages to be received. We then go back to
our original pasted schedule and only unblock that edge.

Lemma 3.7 Choose n > 2. Assume that for every set of 5 identifiers, there is a
ring using those identifiers that has an open schedule of A in which at least M (%)
messages are received. Then for every set of n identifiers, there is a ring using those
. . i . 1

identifiers that has an open schedule of A in which at least 2M (%) + 5(% — 1)
messages are received.

Proof. Let S be a set of n identifiers. Partition S into two sets S, and S, each
of size 7. By assumption, there exists a ring ) using the identifiers in 51 that has
an open schedule o) of A in which at least M (%) messages are received. Similarly,
there exists ring Ry using the identifiers in S, that has an open schedule ¢ of A
in which at least M (%) messages are received. Let e; and ey be the open edges of
oy and o3, respectively. Denote the processors adjacent to €; by p; and ¢; and the
processors adjacent to ez by ps and g2. Paste Ry and Ry together by deleting edges
e) and e, and connecting p) to p; with edge ¢, and g, to ¢, with edge e,; denote the
resulting ring by R. (This is illustrated in Figs. 3.4 and 3.5.)

We now show how to construct an open schedule o of A on R in which 2M (%) +
%(% — 1) messages are received. The idea is to first let each of the smaller rings
execute its wasteful open schedule separately.

We now explain why ¢y followed by o> constitutes a schedule for A in the ring R.
Consider the occurrence of the event sequence ¢ starting in the initial configuration
for ring R. Since the processors in R; cannot distinguish during these events whether
R is an independent ring or a sub-ring of R, they execute ¢ exactly as though R,
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was independent. Consider the subsequent occurrence of the event sequence o5 in
the ring R. Again, since no messages are delivered on the edges that connect R;
and Ry, processors in Ry cannot distinguish during these events whether Ry is an
independent ring or a sub-ring of R. Note the crucial dependence on the uniformity
assumption.

Thus o103 is a schedule for R in which at least 2M (%) messages are received.

We now show how to force the algorithm into receiving %('2—‘- ~ 1) additional
messages by unblocking either e, or e4, but not both.

Consider every finite schedule of the form ¢; 0303 in which e, and e, both remain
open. If there is a schedule in which at least 1 (% — 1) messages are received in o,
then the lemma is proved.

Suppose there is no such schedule. Then there exists some schedule 010503 that
results in a “quiescent” configuration in the corresponding execution. A processor
state is said to be guiescent if there is no sequence of computation events from that
state in which a message is sent. That is, the processor will not send another message
until it receives a message. A configuration is said to be quiescent (with respect to
e, and eg) if no messages are in transit except on the open edges e, and e, and every
processor is in a quiescent state.

Assume now, without loss of generality, that the processor with the maximal
identifier in R is in the sub-ring R;. Since no message is delivered from R; to R,
processors in H2 do not know the identifier of the leader, and therefore no processor
in R can terminate at the end of o 0303 (as in the proof of Lemma 3.6).

We claim that in.every admissible schedule extending o1 0203, every processor in
the sub-ring 2o must receive at least one additional message before terminating. This
holds because a processor in Ry can learn the identifier of the leader only through
messages that arrive from R;. Since in 010203 no message is delivered between R,
and Ry, such a processor will have to receive another message before it can terminate.
This argument depends on the assumption that all processors must learn the id of the
leader.

The above argument clearly implies that an additional (%) messages must be
received on R. However, we cannot conclude our proof here because the above
claim assumes that both e, and e, are unblocked (becasue the schedule must be
admissible}, and thus the resulting schedule is not open. We cannot a priori claim
that many messages will be received if e, alone is unblocked, because the algorithm
might decide to wait for messages on e,. However, we can prove that it suffices to
unblock only one of ¢, or e, and still force the algorithm to receive (%) messages.
This is done in the next claim.

Claim 3.8 There exists a finite schedule segment o4 in which %(% — 1) messages are

received, such that 010620304 is an open schedule in which either e, or e, is open.

Proof. Let o)/ be such that 01030307 is an admissible schedule. Thus ali messages
are delivered on e, and e, and all processors terminate. As we argued above, since
each of the processors in 2, must receive a message before termination, at least %
messages are received in o) before A terminates. Let oy be the shortest prefix of o)
in which 3 — 1 messages are received. Consider all the processors in R that received
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Fig. 3.6 lustration for Claim 3.8.

messages in ¢j. Since )y starts in a quiescent configuration in which messages are
in transit only on e, and e, these processors form two consecutive sets of processors
P and (). P contains the processors that are awakened because of the unblocking of
ep and thus contains at least one of p;, and ps. Similarly, ¢ contains the processors
that are awakened because of the unblocking of e, and thus contains at least one of
¢1 and g3 (see Fig. 3.6).

Since at most & — 1 processors are included in these sets and the sets are consec-
utive, it follows that the two sets are disjoint. Furthermore, the number of messages
received by processors in one of the sets is at least (% — 1). Without loss of
generality, assume this set is P, that is, the one containing p; or ps. Let o4 be the
subsequence of ¢, that contains only the events on processors in P. Since in ¢’ there
is no communication between processors in P and processors in @}, 61020304 is a
schedule. By assumption, at least (% — 1) messages are received in o4. Further-
more, by construction, no message is delivered on e,. Thus 01620304 is the desired
open schedule. O

To summarize, we started with two separate schedules on R, and Ra, in which

2M(3) messages were received. We then forced the ring into a quiescent con-

figuration. Finally, we forced %(% — 1) additional messages to be received from

the quiescent configuration, while keeping either e, or e, open. Thus we have con-
structed an open schedule in which at least 20 (2)+ (% — 1) messages are received.

2\2
|

3.4 SYNCHRONOUS RINGS

We now turn to the problem of electing a leader in a synchronous ring. Again, we
present both upper and lower bounds. For the upper bound, two leader election algo-
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rithms that require O(n) messages are presented. Obviously, the message complexity
of these algorithms is optimal. However, the running time is not bounded by any
function (solely) of the ring size, and the algorithms use processor identifiers in an
unusual way. For the lower bound, we show that any algorithm that is restricted to
use only comparisons of identifiers, or is restricted to be time bounded (that is, to
terminate in a number of rounds that depends only on the ring size), requires at least
Q(nlogn) messages.

3.4.1 An O(n) Upper Bound

The proof of the Q(nlogn) lower bound for leader election in an asynchronous
ring presented in Section 3.3.3, heavily relied on delaying messages for arbitrarily
long periods. It is natural to wonder whether better results can be achieved in
the synchronous model, where message delay is fixed. As we shall see, in the
synchronous model information can be obtained not only by receiving a message but
also by not receiving a message in a certain round.

In this section, two algorithms for electing a leader in a synchronous ring are
presented. Both algorithms require O(n) messages. The algorithms are presented
for a unidirectional ring, where communication is in the clockwise direction. Of
course, the same algorithms can be used for bidirectional rings. The first algorithm
is nonuniform, and requires all processors in the ring to start at the same round, as
is provided for in the synchronous model. The second algorithm is uniform, and
processors may start in different rounds, that is, the algorithm works in a model that
is slightly weaker than the standard synchronous model.

3.4.1.1 The Nonuniform Algorithm The nonuniform algorithm elects the
processor with the minimal identifier to be the leader. It works in phases, each
consisting of » rounds. In phase i (i > 0), if there is a processor with identifier ¢, it
is elected as the leader, and the algorithm terminates. Therefore, the processor with
the minimal identifier is elected.

In more detail, phase 7 includesrounds n - i + 1,7 i+ 2,...,n i+ n. Atthe
beginning of phase 4, if a processor’s identifier is ¢, and it has not terminated yet,
the processor sends a message around the ring and terminates as a leader. If the
processor’s identifier is not ¢ and it receives a message in phase i, it forwards the
message and terminates the algorithm as a non-leader.

Because identifiers are distinct, it is clear that the unique processor with the
minimal identifier terminates as a leader. Moreover, exactly n messages are sent in
the algorithm; these messages are sent in the phase in which the winner is found.
The number of rounds, however, depends on the minimal identifier in the ring. More
precisely, if m is the minimal identifier, then the algorithm takes n - (m + 1) rounds.

Note that the algorithm depends on the requirements mentioned—knowledge of
n and synchronized start. The next algorithm overcomes these restrictions.

3.4.1.2 The Uniform Algorithm The next leader election algorithm does not
require knowledge of the ring size. In addition, the algorithm works in a slightly
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weakened version of the standard synchronous model, in which the processors do
not necessarily start the algorithm simultaneously. More precisely, a processor either
wakes up spontaneously in an arbitrary round or wakes up upon receiving a message
from another processor (see Exercise 3.7).

The uniform algorithm uses two new ideas. First, messages that originate at
different processors are forwarded at different rates. More precisely, a message that
originates at a processor with identifier ¢ is delayed 2¢ — 1 rounds at each processor
that receives it, before it is forwarded clockwise to the next processor. Second,
to overcome the unsynchronized starts, a preliminary wake-up phase is added. In
this phase, each processor that wakes up spontaneously sends a “wake-up” message
around the ring; this message is forwarded withoutdelay. A processor that receives a
wake-up message before starting the algorithm does not participate in the algorithm
and will only act as a relay, forwarding or swallowing messages. After the preliminary
phase the leader is elected among the set of participating processors.

The wake-up message sent by a processor contains the processor’s identifier.
This message travels at a regular rate of one edge per round and eliminates all the
processors that are not awake when they receive the message. When a message from
a processor with identifier ¢ reaches a participating processor, the message starts to
travel at a rate of 2¢; to accomplish this slowdown, each processor that receives such
a message delays it for 2¢ — 1 rounds before forwarding it. Note that after a message
reaches an awake processor, all processors it will reach are awake. A message is
in the first phase until it is received by a participating processor; after reaching a
participating processor, a message is in the second phase, and it is forwarded at a rate
of 2¢.

Throughout the algorithm, processors forward messages. However, as in previous
leader election algorithms we have seen, processors sometimes swallow messages
without forwarding them. In this algorithm, messages are swallowed according to
the following rules:

1. A participating processor swallows a message if the identifier in the message is
larger than the minimal identifier it has seen so far, including its own identifier.

2. A relay processor swallows a message if the identifier in the message is larger
than the minimal identifier it has seen so far, not including its own id.

The pseudocode appears in Algorithm 6.

As we prove below, n rounds after the first processor wakes up, only second-phase
messages are left, and the leader is elected among the participating processors. The
swallowing rules guarantee that only the participating processor with the smallest
identifier receives its message back and terminates as a leader. This is proved in
Lemma 3.9.

For each i, 0 < i < n, let id; be the identifier of processor p; and {id;} be the
message originated by p;.

Lemma 3.9 Only the processor with the smallest identifier among the participating
processors receives its own message back.
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Algorithm 6 Synchronous leader election: code for processor p;, 0 < 7 < n.

Initially waiting is empty and status is asleep

o

let R be the set of messages received in this computation event
S:=0 // the messages to be sent

oy

if status = asleep then
if R is empty then /I woke up spontaneously
status = participating
min = id
add (id 1to S // first phase message
else
status := relay
0: min 1= 0o

SYedaansWw

9: foreach {m,h) in R do
10: if m < min then

11: become not elected

12: min:=m

13: if (starus = relay) and (A = 1) then // m stays first phase
14: add (m,h) to S

15: else /I m isfbecomes second phase
16: add (m,2) to waiting tagged with current round number

17: elseif m = id then become elected

/1 if m > min then message is swallowed
18: for each (m,2) in waiting do
19:  if {m,2) was received 2™ — 1 rounds ago then

20: remove (m) from waiting and add to S

21: send S to left

Proof. Let p; be the participating processor with the smallest identifier. (Note that
at least one processor must participate in the algorithm.) Clearly, no processor,
participating or not, can swallow {id;).

Furthermore, since (id;) is delayed at most 29 rounds at each processor, p;
eventually receives its message back.

Assume, by way of contradiction, that some other processor p;, j # i, also
receives back its message (id;). Thus, (id;) must pass through all the processors in
the ring, including p;. But id; < id;, and since p; is a participating processor, it does
not forward (id;}, a contradiction. (i

The above lemma implies that exactly one processor receives its message back.
Thus this processor will be the only one to declare itself a leader, implying the
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correctness of the algorithm. We now analyze the number of messages sent during
an admissible execution of the algorithm.

To calculate the number of messages sent during an admissible execution of the
algorithm we divide them into three categories:

1. First-phase messages

2. Second-phase messages sent before the message of the eventual leader enters
its second phase

3. Second-phase messages sent after the message of the eventual leader enters its
second phase

Lemma 3.10 The total number of messages in the first category is at most n.

Proof. We show that at most one first-phase message is forwarded by each processor,
which implies the lemma.

Assume, by way of contradiction, that some processor p; forwards two messages in
their first phase, (id;) from p; and (id}) from p;. Assume, without loss of generality,
that p; is closer to p; than py is to p;, in terms of clockwise distance. Thus, (id))
must pass through p; before it arrives at p;. If (idy) arrives at p; after p; woke up and
sent (id;), (idy) continues as a second-phase message, at a rate of 2% ; otherwise, p;
does not participate and (id;) is not sent. Thus either (id)) arrives at p; as a second
phase message or (id;) is not sent, a contradiction. O

Let r be the first round in which some processor starts executing the algorithm,
and let p; be one of these processors. To bound the number of messages in the second
category, we first show that n rounds after the first processor starts executing the
algorithm, all messages are in their second phase.

Lemma 3.11 Ifp; is at (clockwise) distance k from p;, then a first-phase message is
received by p; no later than round v + k.

Proof. The proof is by induction on &. The base case, k = 1, is obvious because
p;’s neighbor receives p;’s message in round r + 1. For the inductive step, assume
that the processor at (clockwise) distance k — 1 from p; receives a first-phase message
no later than round = + & — 1. If this processor is already awake when it receives
the first-phase message, it has already sent a first-phase message to its neighbor p;;
otherwise, it forwards the first-phase message to p; in round r + k. 1

Lemma 3.12 The total number of messages in the second category is at most n.

Proof.  As shown in the proof of Lemma 3.10, at most one first-phase message is sent
on each edge. Since by round r -+ n one first-phase message was sent on every edge,
it follows that after round = 4 n no first-phase messages are sent. By Lemma 3.11,
the message of the eventual leader enters its second phase at most n rounds after the
first message of the algorithm is sent. Thus messages from the second category are
sent only in the n rounds following the round in which the first processor woke up.
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Message (i) in its second phase is delayed 2¢ — 1 rounds before being forwarded.
Thus (i) is sent at most £+ times in this category. Since messages containing smaller
identifiers are forwarded more often, the maximum number of messages is obtained
when all the processors participate, and when the identifiers are as small as possible,
that is, 0,1,...,n — 1. Note that second-phase messages of the eventual leader (in
our case, 0) are not counted in this category. Thus the number of messages in the

n—1 n
second category is at most Zz =1 5z S O

Let p; be the processor with the minimal identifier; no processor forwards a
message after it forwards (id;). Once {id;) returns to p;, all the processors in the ring
have already forwarded it, and therefore we have the following lemma:

Lemma 3.13 No message is forwarded after {id;) returns to p;.
Lemma 3.14 The total number of messages in the third category is at most 2n.

Proof, Let p; be the eventual leader, and let p; be some other participating processor.
By Lemma 3.9, id; < id;. By Lemma 3.13, there are no messages in the ring after
pi receives its message back. Since {id;) is delayed at most 2% rounds at each
processor, at most n - 24 rounds are needed for (id;) to return to p;. Therefore,
messages in the third category are sent only during n - 2 rounds. During these
rounds, {id;} is forwarded at most

1 n- 2ld1 =n. 2!d,~td,

Qid;
times. Hence, the total number of messages transmitted in this category is at most

n-1

n
Z Qid_,'-—id,‘

Jj=0
By the same argument as in the proof of Lemma 3.12, this is less than or equal to

-1
n
ok
=0

3

<2

=

Lemmas 3.10, 3.12, and 3.14 imply:

Theorem 3.15 There is a synchronous leader election algorithm whose message
complexity is at most 4n.

Now consider the time complexity of the algorithm. By Lemma 3.13, the compu-
tation ends when the elected leader receives its message back. This happens within
O(n2') rounds since the first processor starts executing the algorithm, where 7 is the
identifier of the elected leader.
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3.42 AnQ(nlogn) Lower Bound for Restricted Algorithms

In Section 3.4.1, we presented two algorithms for electing a leader in synchronous
rings whose worst-case message complexity is O(n). Both algorithms have two
undesirable properties. First, they use the identifiers in a nonstandard manner (to
decide how long a message should be delayed). Second, and more importantly,
the number of rounds in each admissible execution depends on the identifiers of
processors. The reason this is undesirable is that the identifiers of the processors can
be huge relative to n.

In this section, we show that both of these properties are inherent for any message
efficient algorithm. Specifically, we show that if an algorithm uses the identifiers
only for comparisons it requires 2(n log n) messages. Then we show, by reduction,
that if an algorithm is restricted to use a bounded number of rounds, independent of
the identifiers, then it also requires §(n log n) messages.

The synchronous lower bounds cannot be derived from the asynchronous lower
bound (of Theorem 3.5), because the algorithms presented in Section 3.4.1 indicate
that additional assumptions are necessary for the synchronous lower bound to hold.
The synchronous lower bound holds even for nonuniform algorithms, whereas the
asynchronous lower bound holds only for uniform algorithms. Interestingly, the
converse derivation, of the asynchronous result from the synchronous, is correct
and provides an asynchronous lower bound for nonuniform algorithms, as explored
in Exercise 3.11.

3.4.2.1 Comparison-Based Algorithms In this section, we formally define
the concept of comparison-based algorithms.

For the purpose of the lower bound, we assume that all processors begin executing
at the same round.

Recall that a ring is specified by listing the processors’ identifiers in clockwise
order, beginning with the smallest identifier. Note that in the synchronous model an
admissible execution of the algorithm is completely defined by the initial configura-
tion, because there is no choice of message delay or relative order of processor steps.
The initial configuration of the system, in turn, is completely defined by the ring,
that is, by the listing of processors’ identifiers according to the above rule. When the
choice of algorithm is clear from context, we will denote the admissible execution
determined by ring R as exec(R).

Two processors, p; inting R1 and p; inring Ry, are matching if they both have the
same position in the respective ring specification. Note that matching processors are
at the same distance from the processor with the smallest identifier in the respective
rings.

Intuitively, an algorithm is comparison based if it behaves the same on rings that
have the same order pattern of the identifiers. Formally, two rings, g, ..., z,-1 and
Ya, - - -, Yn—1, are order equivalent if forevery i and j, #; < x; ifand only if g < y;.
Recall that the k-neighborhood of a processor p; in a ring is the sequence of 2k + 1
identifiers of processors p;_x, .. ., pi—1, Pi, Pi+1, - - - » Pi+k (all indices are calculated
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modulo n). We extend the notion of order equivalence to k-neighborhoods in the
obvious manner.

We now define what it means to “behave the same.” Intuitively, we would like to
claim that in the admissible executions on order equivalentrings R; and Ry, the same
messages are sent and the same decisions are made. In general, however, messages
sent by the algorithm contain identifiers of processors; thus messages sent on R will
be different from messages sent on R3. For our purpose, however, we concentrate
on the message pattern, that is, when and where messages are sent, rather than their
content, and on the decisions. Specifically, consider two executions «; and o and
two processors p; and p;. We say that the behavior of p; in «v; is similar in round %
to the behavior of p; in « if the following conditions are satisfied:

1. p; sends a message to its left (right) neighbor in round % in «; if and only if p;
sends a message to its left (right) neighbor in round % in oy

2. p; terminates as a leader in round & of « if and only if p; terminates as a
leader in round & of «p

We say that that the behaviors of p; in o and p; in vy are similar if they are similar
in all rounds & > 0. We can now formally define comparison-based algorithms.

Definition 3.2 An algorithmis comparison based if for every pair of order-equivalent
rings Ry and Ry, every pair of matching processors have similar behaviors in
exec(R,) and exec(Rz).

3.4.2.2 Lower Bound for Comparison-Based Algorithms Let A be a
comparison-based leader election algorithm. The proof considers a ring that is highly
symmetric in its order patterns, that s, a ring in which there are many order-equivalent
neighborhoods. Intuitively, as long as two processors have order-equivalent neigh-
borhoods they behave the same under A. We derive the lower bound by executing
A on a highly symmetric ring and arguing that if a processor sends a message in a
certain round, then all processors with order-equivalent neighborhoods also send a
message in that round.

A crucial point in the proof is to distinguish rounds in which information is
obtained by processors from rounds in which no information is obtained. Recall that
in a synchronous ring it is possible for a processor to obtain information even without
receiving a message. For example, in the nonuniform algorithm of Section 3.4.1, the
fact that no message is received in rounds 1 through n implies that no processor in
the ring has the identifier 0. The key to the proof that follows is the observation that
the nonexistence of a message in a certain round r is useful to processor p; only if a
message could have been received in this round in a different, but order-equivalent,
ring. For example, in the nonuniform algorithm, if some processor in the ring had the
identifier 0, a message would have been received in rounds 1, ..., n. Thus a round
in which no message is sent in any order-equivalent ring is not useful. Such useful
rounds are called active, as defined below:
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Definition 3.3 A round r is active in an execution on a ring R if some processor
sends a message in round r of the execution. When R is understood from context, we
denote by v, the index of the kth active round.!

Recall that, by definition, a comparison-based algorithm generates similar behav-
iors on order-equivalent rings. This implies that, for order equivalent rings R; and
Ry, around is active in exec( R, ) if and only if it is active in exec(R3).

Because information in messages can travel only % processors around the ring in
k rounds, the state of a processor after round k depends only on its k-neighborhood.
We have, however, a stronger property that the state of a processor after the kth acrive
round depends only on its k-neighborhood. This captures the above intuition that
information is obtained only in active rounds and is formally proved in Lemma 3.16.
Note that the lemma does not require that the processors be matching (otherwise the
claim follows immediately from the definition) but does require that their neighbor-
hoods be identical. This lemma requires the hypothesis that the two rings be order
equivalent. The reason is to ensure that the two executions under consideration have
the same set of active rounds; thus r; is well-defined.

Lemma 3.16 Let Ry and Ry be order-equivalent rings, and let p; in Ry and p; in Ry
be two processors with identical k-neighborhoods. Then the sequence of transitions
that p; experiences in rounds 1 through vy, of exec(Ry) is the same as the sequence
of transitions that p; experiences in rounds 1 through ry, of exec(R5).

Proof. Informally, the proof shows that after £ active rounds, a processor may learn
only about processors that are at most k away from itself.

The formal proof follows by induction on k. For the base case £ = 0, note that
two processors with identical 0-neighborhoods have the same identifiers, and thus
they are in the same state.

For the inductive step, assume that every two processors with identical (k ~ 1)~
neighborhoods are in the same state after the (k — 1)-st active round. Since p; and
p; have identical k-neighborhoods, they also have identical (¥ — 1)-neighborhoods;
therefore, by the inductive hypothesis, p; and p; are in the same state after the
(k — 1)-st active round. Furthermore, their respective neighbors have identical
(k — 1)-neighborhoods. Therefore, by the inductive hypothesis, their respective
neighbors are in the same state after the (k — 1)-st active round.

In the rounds between the (k — 1)-st active round and the kth active round (if there
are any), no processor receives any message and thus p; and p; remain in the same
state as each other, and so do their respective neighbors. (Note that p; might change
its state during the nonactive rounds, but since p; has the same transition function,
it makes the same state transition.) In the kth active round, if both p; and p; do not
receive messages they are in the same states at the end of the round. If p; receives
a message from its right neighbor, p; also receives an identical message from its

IRecall that once the ring is fixed, the whole admissible execution is determined because the system is
synchronous.
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Fig. 3.7 Example for the proof of Lemma 3.17,k = 1l and n = 8.

right neighbor, because the neighbors are in the same state, and similarly for the left
neighbor. Hence, p; and p; are in the same state at the end of the kth active round, as
needed. W

Lemma 3.17 extends the above claim from processors with identical k£-neighborhoods
to processors with order-equivalent k-neighborhoods. It relies on the fact that A is
comparison based. Furthermore, it requires the ring R to be spaced, which intuitively
means that for every two identifiers in R, there are n unused identifiers between
them, where » is the size of the ring. Formally, a ring of size n is spaced if for every
identifier  in the ring, the identifiers £ — 1 through & — n are not in the ring.

Lemma 3.17 Let R be a spaced ring and let p; and p; be two processors with order-
equivalent k-neighborhoods in R. Then p; and p; have similar behaviors in rounds
1 through vy, of exec(R).

Proof. We construct another ring R’ that satisfies the following:
¢ p;’s k-neighborhood is the same as p;’s k-neighborhood from R
o the identifiers in R’ are unique
e R'isorder equivalent to R with p; in R’ matching p; in R

R’ can be constructed because R is spaced (see an example in Fig. 3.7).

By Lemma 3.16, the sequence of transitions that p; experiences in rounds 1 through
71, of exec( R} is the same as the sequence of transitions that p; experiences in rounds
1 through % of exec(R'). Thus p;’s behavior in rounds 1 through rj of exec(R) is
similar to p;’s behavior in rounds I through 7 of exec(R’). Since the algorithm is
comparison based and p; in R’ is matching to p; in R, p;’s behavior in rounds 1
through . of exec(R') is similar to p;’s behavior in rounds 1 through ry, of exec(R).
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Fig. 3.8 Thering RY".

Thus p;’s behavior and p;’s behavior in rounds I through r of exec(R) are similar.

O

We can now prove the main theorem:

Theorem 3.18 For every n > 8 that is a power of 2, there exists a ring S, of size
n such that for every synchronous comparison-based leader election algorithm A,
Q(nlogn) messages are sent in the admissible execution of A on S,,.

Proof. Fix any such algorithm A. The key to this proof is the construction of
Sp. a highly symmetric ring, in which many processors have many order equivalent
neighborhoods. .S, is constructed in two steps.

First, define the n-processor ring R;2¥ as follows. For each 4, 0 < i < n, let p;’s
identifier be rev(i), where rev(¢) is the integer whose binary representation using
log n bits is the reverse of the binary representation of ¢. (See the special case n = 8
in Fig. 3.8.) Consider any partitioning of R*" into consecutive segments of length 7,
where j is a power of 2. It can be shown that all these segments are order equivalent
(see Exercise 3.9).

Sy, is a spaced version of R[¥", obtained by multiplying each identifier in BRI by
n + 1 and then adding n to it. These changes do not alter the order equivalence of
segments.

Lemma 3.19 quantifies how many order-equivalent neighborhoods of a given size
there are in .S,,. This result is then used to show, in Lemma 3.20, a lower bound on
the number of active rounds of the algorithms and to show, in Lemma 3.21, a lower
bound on the number of messages sent in each active round. The desired bound of
Q(nlogn) is obtained by combining the latter two bounds.

Lemma 3 19 Forallk < n/8, andfor all k-neighborhoods N of S,,, there are more
than 557 k-neighborhoods of S, that are order equivalent to N {including N

2(2k+1)
itself).
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Proof. N consists of asequence of 2k + 1 identifiers. Let j be the smallest power of
2 that is bigger than 2% + 1. Partition S, into —'Ji consecutive segments such that one
segment totally encompasses N. By the construction of S, , all of these segments are
order equivalent. Thus there are at least % neighborhoods that are order equivalent
to N. Since j < 2(2k + 1), the number of neighborhoods order equivalent to N is
more than 5@%’;7) O
Lemma 3.20 The number of active rounds in exec(Sy) is at least n /8.

Proof. Let 7' be the number of active rounds. Suppose in contradiction T < n/8.
Let p; be the processor that is elected the leader in exec(S,). By Lemma 3.19,
there are more than 2—(25“1T1) T-neighborhoods that are order equivalent to p;’s 7T-
neighborhood. By assumption on 7',

n S n _2n
22T +1) 7 2(2n/841)  n+4

and, since n > 8, =l + > 1. Thus there exists some processor p; other than p; whose
T-neighborhood is order equivalent to p;’s T-neighborhood. By Lemma 3.17, p; is
also elected, contradicting the assumed correctness of A. ]
Lemma 3.21 Atleast 551y messages are sent in the kth active round of exec(S,,),
Joreach k, 1 <k < n/8.

Proof. Consider the kth active round. Since it is active, at least one processor sends
a message, say p;. By Lemma 3.19, there are more than 2(—2g+—1) processors whose
k-neighborhoods are order equivalent to p;’s k-neighborhood. By Lemma 3.17, each
of them also sends a message in the kth active round. |

We now finish the proof of the main theorem. By Lemma 3.20 and Lemma 3.21,
the total number of messages sent in exec(S,, ) is at least

<L n i1 LA
T 2t 6" s
which is Q(n logn). 0

Note that in order for this theorem to hold, the algorithm need not be comparison
based for every set of identifiers drawn from the natural numbers, but only for
identifiers drawn from the set {0, 1, ..., n? + 2n — 1}. The reason is that the largest
identifier in S, isn? +n — 1 = (n + 1) - rev(n — 1) + n (recall that n is a power
of 2 and thus the binary representation of n — 1 is a sequence of 1s). We require the
algorithm to be comparison based on all identifiers between 0 and n?+2n—1, and
not just on identifiers that occur in Sy, because the proof of Lemma 3.17 uses the
fact that the algorithm is comparison based on all identifiers that range from n less
than the smallest in S,, to n greater than the largest in S,,.
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3.4.2.3 Lower Bound for Time-Bounded Algorithms The next definition
disallows the running time of an algorithm from depending on the identifiers: It
requires the running time for each ring size to be bounded, even though the possible
identifiers are not bounded, because they come from the set of natural numbers.

Definition 3.4 A synchronous algorithm A is time-bounded if, for each n, the worst-
case running time of A over all rings of size n, with identifiers drawn from the natural
numbers, is bounded.

We now prove the lower bound for time-bounded algorithms, by reduction to
comparison-based algorithms. We first show how to map from time-bounded algo-
rithms to comparison-based algorithms. Then we use the lower bound of (n log 1)
messages for comparison-based algorithms to obtain a lower bound on the number
of messages sent by time-bounded algorithms. Because the comparison-based lower
bound as stated is only for values of n that are powers of 2, the same is true here,
although the lower bound holds for all values of n (see chapter notes).

To map from time-bounded to comparison-based algorithms, we require defini-
tions describing the behavior of an algorithm during a bounded amount of time.

Definition 3.5 A synchronous algorithm A is t-comparison based over identifier set
S forring size n if, for every two order equivalent rings, Ry and R», of size n, every
pair of matching processors have similar behaviors in rounds 1 throught of exec(Ry)
and exec(R»).

Intuitively, an r-comparison based algorithm over S is an algorithm that behaves
as a comparison-based algorithm in the first 7 rounds, as long as identifiers are chosen
from S. If the algorithm terminates within r rounds, then this is the same as being
comparison based over S for all rounds.

The first step is to show that every time-bounded algorithm behaves as acomparison-
based algorithm over a subset of its inputs, provided that the input set is sufficiently
large. To do this we use the finite version of Ramsey’s theorem. Informally, the
theorem states that if we take a large set of elements and we color each subset of
size k with one of ¢t colors, then we can find some subset of size £ such that all its
subsets of size k& have the same color. If we think of the coloring as partitioning into
equivalence classes (two subsets of size k belong to the same equivalence class if
they have the same color), the theorem says that there is a set of size £ such that all its
subsets of size & are in the same equivalence class. Later, we shall color rings with
the same color if the behavior of matching processors is similar in them.

For completeness, we repeat Ramsey’s theorem:

Ramsey’s Theorem (finite version) For all integers k, ¢, and 1, there exists an
integer f(k,L,t) such that for every set S of size at least f(k, £, 1), and every t-
coloring of the k-subsets of S, some £-subset of S has all its k-subsets with the same
color.

In Lemma 3.22, we use Ramsey’s theorem to map any time-bounded algorithm to
a comparison-based algorithm.
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Lemma 3.22 Let A be a synchronous time-bounded algorithm with running time
r(n). Then, for every n, there exists a set Cp, of n? + 2n identifiers such that A is
r(n)-comparison based over C,, for ring size n.

Proof. Fix n. Let Y and Z be any two n-subsets of NV (the natural numbers). We
say that Y and Z are equivalent subsets if, for every pair of order equivalent rings,
R, withidentifiers from ¥ and R» with identifiers from Z, matching processors have
similar behaviors inrounds 1 through ¢(n) of exec(R;) and exec(Ry). This definition
partitions the n-subsets of &V into finitely many equivalence classes, since the term
‘similar behavior® only refers to the presence or absence of messages and terminated
states. We color the n-subsets of / such that two n-subsets have the same color if
and only if they are in the same equivalence class.

By Ramsey’s theorem, if we take ¢ to be the number of equivalence classes (colors),
£ tobe n% + 2n, and k to be n, then, since N is infinite, there exists a subset C,, of N
of cardinality n? + 2n such that all n-subsets of C}, belong to the same equivalence
class.

We claim that A is an 7(n)-comparison based algorithm over C), for ring size n.
Consider two order-equivalent rings, R; and Rg, of size n with identifiers from C,.
Let Y be the set of identifiers in R, and Z be the set of identifiers in B;. Y and
7 are n-subsets of C,; therefore, they belong to the same equivalence class. Thus
matching processors have similar behaviors in rounds 1 through r(n) of exec(R;)
and exec(Rj3). Therefore, A is an (n)-comparison based algorithm over C,, for ring
size n. I

Theorem 3.18 implies that every comparison-based algorithm has worst-case mes-
sage complexity $2{n log n). We cannot immediately apply this theorem now, because
we have only shown that a time-bounded algorithm A is comparison based on a spe-
cific set of ids, not on all ids. However, we will use A to design another algorithm
A’, with the same message complexity as A, that is comparison based on rings of
size n with ids from the set {0, 1, ...,n% 4 2n — 1}. As was discussed just after the
proof of Theorem 3.18, this will be sufficient to show that the message complexity
of A’ is 2(n log n). Thus the message complexity of A is Q(n logn).

Theorem 3.23 For every synchronous time-bounded leader election algorithm A
and every n > 8 that is a power of 2, there exists a ring R of size n such that
Q(nlogn) messages are sent in the admissible execution of A on R.

Proof. Fix an algorithm A satisfying the hypotheses of the theorem with running
time r(n). Fix n; let Cy, be the set of identifiers guaranteed by Lemma 3.22, and let
€0,€1, -« -, Cn2+an-1 be the elements of C,, in increasing order.

We define an algorithm A’ that is comparison based on rings of size n with
identifiers fromtheset {0, 1, ..., n?+2n~1} and thathas the same time and message
complexity as A. In algorithm A’, a processor with identifier ¢ executes algorithm A
as if though had the identifier ¢;. Since A is r(n)-comparison based over C,, for ring
size n and since A terminates within r{n} rounds, it follows that A’ is comparison
based on rings of size n with identifiers from the set {0,1,...,n% + 2n — 1}.
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By Theorem 3.18, there is a ring of size n with identifiers from {0,1,...,n% +
2n — 1} in which A’ sends Q(n log n) messages. By the way A’ was constructed,
there is an execution of A in a ring of size n with identifiers from C,, in which the

same messages are sent, which proves the theorem. O
Exercises
3.1 Prove that there is no anonymous leader election algorithm for asynchronous

3.2

3.3

3.4

3.5

3.6

3.7

38

3.9

ring systems.

Prove that there is no anonymous leader election algorithm for synchronous
ring systems that is uniform.

Is leader election possible in a synchronous ring in which all but one processor
have the same identifier? Either give an algorithm or prove an impossibility
result.

Consider the following algorithm for leader election in an asynchronous ring:
Each processor sends its identifier to its right neighbor; every processor for-
wards a message (to its right neighbor) only if it includes an identifier larger
than its own.

Prove that the average number of messages sent by this algorithm is O(n log n),
assuming that identifiers are uniformly distributed integers.

In Section 3.3.3, we have seen a lower bound of 2(n log n) on the number of
messages required for electing a leader in an asynchronous ring. The proof of
the lower bound relies on two additional properties: (&) the processor with the
maximal identifier is elected, and (b) all processors must know the identifier
of the elected leader.

Prove that the lower bound holds also when these two requirements are omit-
ted.

Extend Theorem 3.5 to the case in which » is not an integral power of 2.

Hint: Consider the largest n’ < n that is an integral power of 2, and prove the
theorem for n'.

Modify the formal model of synchronous message passing systems to describe
the non-synchronized start model of Section 3.4.1. That is, state the conditions
that executions and admissible executions must satisfy.

Prove that the order-equivalent ring R’ in proof of Lemma 3.17 can always be
constructed.

Recall the ring R?¥ from the proof of Theorem 3.18. For every partition of
R into 2 consecutive segments, where j is a power of 2, prove that all of
these segments are order equivalent.
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3.10 Consider an anonymous ring where processors start with binary inputs.

1. Prove there is no uniform synchronous algorithm for computing the
AND of the input bits.

Hint: Assume by way of contradiction that such an algorithm exists, and
consider the execution of the algorithm on the all-ones ring; then embed
this ring in a much larger ring with a single 0.

2. Present an asynchronous (nonuniform) algorithm for computing the
AND; the algorithm should send O(n?) messages in the worst case.

3. Prove that Q(n?) is a lower bound on the message complexity of any
asynchronous algorithm that computes the AND.

4. Present a synchronous algorithm for computing the AND; the algorithm
should send O(n) messages in the worst case.

3.11 Derive an 2(nlogn) lower bound on the number of messages required for
leader election in the asynchronous model of communication from the lower
bound for the synchronous model. In the asynchronous model, the proof
should not rely on the algorithm being comparison based or time-bounded.

Chapter Notes

This chapter consists of an in-depth study of the leader election problem in message-
passing systems with a ring topology. Ring networks have attracted so much study
because their behavior is easy to describe and because lower bounds derived for them
apply to algorithms designed for networks with arbitrary topology. Moreover, rings
correspond to token ring networks [18].

We first showed that it is impossible to choose a leader in an anonymous ring
(Theorem 3.2); this result was proved by Angluin [17]. In Chapter 14, we describe
how to use randomization to overcome this impossibility result.

We then presented algorithms for leader election in asynchronous rings. The
O(n?) algorithm for leader election in asynchronous rings (presented in Section 3.3.1)
is based on an algorithm of LeLann [ 165], who was the first to study the leader election
problem, with optimizations of Chang and Roberts [70]. It can be viewed as a special
case of Algorithm 4. Chang and Roberts also prove that, averaged over all possible
inputs, the message complexity of this algorithm is O(n log n) (Exercise 3.4).

An O(nlogn) algorithm for leader election in asynchronous rings was first sug-
gested by Hirschberg and Sinclair [139]; this is the algorithm presented in Section
3.3.2. Subsequently, leader election in rings was studied in numerous papers, and we
shall not list all of them here. The best algorithm currently known is due to Higham
and Przytycka [137] and has message complexity 1.271nlogn + O(n).

The Hirschberg and Sinclair algorithm assumes that the ring is bidirectional;
O(n logn) algorithms for the unidirectional case were presented by Dolev, Klawe,
and Rodeh [95] and by Peterson [212].
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The issue of orientation is discussed at length by Attiya, Snir, and Warmuth [33];
their paper contains the answer to Exercise 3.10.

A major part of this chapter was dedicated to lower bounds on the number of
messages needed for electing a leader in a ring. The lower bound for the asynchronous
case is due to Burns [61]. This lower bound applies only to uniform algorithms. A
lower bound of Q(nlogn) on the average message complexity of leader election in
asynchronous rings was presented by Pachl, Korach, and Rotem [205]. In this lower
bound, the average is taken over all possible rings of a particular size, and, therefore,
the lower bound applies to nonuniform algorithms.

The linear algorithms as well as the lower bound for the synchronous case, pre-
sented in Section 3.4, are taken from the paper by Frederickson and Lynch [111}; our
formal treatment of comparison-based algorithms is somewhat different from theirs.
Constructions of symmetric rings of size n, where n is not an integral power of 2,
appear in [33, 111]. Exercise 3.11 follows an observation of Eli Gafni.
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Mutual Exclusion in Shared
Memory

Having introduced the message-passing paradigm already, we now turn to the other
major communication model for distributed systems, shared memory. In a shared
memory system, processors communicate via a common memory area that contains
a set of shared variables. We only consider asynchronous shared memory systems.!

Several types of variables can be employed. The #ype of a shared variable specifies
the operations that can be performed on it and the values returned by the operations.
The most common type is a read/write register, in which the operations are the familiar
reads and writes such that each read returns the value of the latest preceding write.
Other types of shared variables support more powerful operations, such as read-
modify-write, test&set, or compare&swap. Registers can be further characterized
according to their access patterns, that is, how many processors can access a specific
variable with a specific operation. Not surprisingly, the type of shared variables used
for communication determines the possibility and the complexity of solving a given
problem.

In this chapter, we concentrate on the mutual exclusion problem. We present
several algorithms and lower bounds. Our presentation highlights the connection
between the type of shared memory accesses used and the cost of achieving mutual
exclusion in terms of the amount of shared memory required.

We first give the formal definitions for shared memory systems. We then study
the memory requirement for solving mutual exclusion when powerful variables are
used. The main result here is that ©(log n) bits are necessary and sufficient for
providing strong fairness properties for n processors. Finally, we consider systems

! Synchronous shared memory systems are studied in the PRAM miodel of parallel computation.
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in which processors can only share read/write variables. We present two algorithms
that provide mutual exclusion for n processors using O(n) registers, one that relies
on unbounded values and another that avoids them. We then show that any algorithm
that provides mutual exclusion using only read/write registers must employ Q(n)
registers.

4.1 FORMAL MODEL FOR SHARED MEMORY SYSTEMS

Here we describe our formal model of shared memory systems. As in the case
of message-passing systems, we model processors as state machines and model
executions as alternating sequences of configurations and events. The difference is
the nature of the configurations and events. In this section, we discuss in detail the new
features of the model and only briefly mention those that are similar to the message-
passing model. We also discuss the relevant complexity measures and pseudocode
conventions for presenting shared memory algorithms. Later, in Chapters 9 and 10,
we study alternative ways to model shared memory systems.

4.1.1 Systems

We assume the system contains n processors, po, . - ., Pn_1, and 1 registers, Ry, . . .,
Ryt

As in the message-passing case, each processor is modeled as a state machine, but
there are no special inbuf or outbuf state components.

Each register has a type, which specifies:

1. The values that can be taken on by the register

2. The operations that can be performed on the register

3. The value to be returned by each operation (if any)

4. The new value of the register resulting from each operation

An initial value can be specified for each register.

For instance, an integer-valued read/write register R can take on all integer values
and has operations read(R, v) and write(R,v). The read(R,v) operation returns
the value v, leaving R unchanged. The write( R, v) operation takes an integer input
parameter v, returns no value, and changes R’s value to v.

A configuration in the shared memory model is a vector

C= (qU:-'-;Qﬂ—bTO:"'3rm—])

where g; is a state of p; and r; is a value of register R;. Denote by mem(C) the
state of the memory in C, namely (rg,...,”m—1). In an initial configuration, all
processors are in their initial states and all registers contain initial values.
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The events in a shared memory system are computation steps by the processors
and are denoted by the index of the processor. At each computation step by processor
pi, the following happen atomically:

1. p; chooses a shared variable to access with a specific operation, based on p;’s
current state

2. The specified operation is performed on the shared variable

3. p;’s state changes according to p;’s transition function, based on p;’s current
state and the value returned by the shared memory operation performed

We define an execution segment of the algorithm to be a (finite or infinite) sequence
with the following form:

Co,$1,C1,02,Ca, 03 . ..

where each C}, is a configuration and each ¢y is an event. Furthermore, the application
of ¢ to Cyx—1 results in Ck, as follows. Suppose ¢ = ¢ and p;’s state in Cr_1
indicates that shared variable R; is to be accessed. Then Cy is the result of changing
C 1 in accordance with p;’s computation step acting on p;’s state in Ci 1 and the
value of the register R; in C 1; thus the only changes are to p;’s state and the value
of the register ;.

As in the message-passing model, an execution is an execution segment that
begins in an initial configuration. As for message-passing systems, we need to
define the admissible executions. In asynchronous shared memory systems the only
requirement is that in an infinite execution, each processor has an infinite number of
computation steps.

A schedule in the shared memory model is simply a sequence of processor indices,
indicating the sequence of events in an execution (segment).

A schedule is P-only, where P is a set of processors, if the schedule consists
solely of indices for processors in P. If P contains only a single processor, say p;,
then we write p;-only.

As in the message-passing case, we assume that each processor’s state set has a set
of terminated states and each processor’s transition function maps terminated states
only to terminated states. Furthermore, when a processor is in a terminated state, it
makes no further changes to any shared variables. We say that the system (algorithm)
has terminated when all processors are in terminated states.

A configuration C' and a schedule ¢ = #;i5 . .. uniquely determine an execution
segment resulting from applying the events in o one after the other, starting from C';
the execution is denoted exec(C, ¢}. This execution segment is well-defined because
processors are deterministic. If & is finite, then ¢(C') is the final configuration
in the execution segment exec(C, ). We say that configuration C’ is reachable
from configuration C if there exists a finite schedule & such that ' = ¢(C). A
configuration is simply reachable if it is reachable from the initial configuration.

The following notion plays a crucial role in lower bounds in this chapter and in
several other chapters.
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Definition 4.1 Configuration C is similar to configuration C' with respect to a set

of processors P, denoted C Lc , if each processor in P has the same state in C as
in C" and mem(C') = mem(C").

If C and C' are similar with respect to P, then the processors in P do not observe
any difference between C and C”.

4.1.2 Complexity Measures

Obviously in shared memory systems there are no messages to measure. Instead, we
focus on the space complexity, the amount of shared memory needed to solve prob-
lems. The amount is measured in two ways, the number of distinct shared variables
required, and the amount of shared space (e.g., number of bits or, equivalently, how
many distinct values) required.

Although one could extend the definition of time complexity for message-passing
systems (cf. Exercise 4.4) it is not clear whether this definition correctly captures
the total time for executing an algorithm in a shared memory system. For example,
the delay of an access to a shared register may depend on the contention—the
number of processors concurrently competing for this register. Meaningful and
precise definitions of time complexity for shared memory algorithms are the subject
of current research; the chapter notes indicate some pointers. Instead, we sometimes
count the number of steps taken by processors to solve a problem in the worst case;
generally, we are only interested in whether the number is infinite, finite, or bounded.

4.1.3 Pseudocode Conventions

Shared memory algorithms will be described, for each processor, in a pseudocode
similar to that used generally for sequential algorithms. The pseudocode will involve
accesses both to local variables, which are part of the processor’s state, and to shared
variables. The names of shared variables are capitalized (e.g., Want), whereas the
names of local variables are in lower case (e.g., lasf). The operations on shared
variables will be in sans-serif (e.g., read). In terms of the formal model, a transition
of a processor starts with an operation on a shared variable and continues according
to the flow of control until just before the next operation on a shared variable.

In the special case of read/write variables, we employ an even more familiar style
of code. Instead of explicitly saying read and write in the pseudocode, we use the
familiar imperative style: a reference to a shared variable on the left-hand side of
an assignment statement means write, whereas a reference on the right-hand side
means read. A single statement of pseudocode may represent several steps in the
formal model. In this case, the reads of the shared variables on the right-hand side
of the assignment statement are performed in left-to-right order, the return values
are saved in local variables, the specified computation is performed on the local
variables, and finally the result is written to the variable on the left-hand side of
the assignment statement. For instance, if X, Y, and Z are shared variables, the
pseudocode statement X := Y -+ Z means first, read ¥ and save result in a local
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variable, second, read Z and save result in a local variable, and third, write the sum
of those local variables to X.

We also use the construct “wait until P”, where P is some predicate involving
shared variables. In terms of the formal model, this is equivalent to a loop in which
the relevant shared variable is repeatedly read until P is true.

4.2 THE MUTUAL EXCLUSION PROBLEM

The mutual exclusion problem concerns a group of processors that occasionally need
access to some resource that cannot be used simultaneously by more than a single
processor, for example, some output device. Each processor may need to execute a
code segment called a critical section, such that, informally speaking, at any time, at
most one processor is in the critical section (mutual exclusion), and if one or more
processors try to enter the critical section, then one of them eventually succeeds as
long as no processor stays in the critical section forever (no deadlock).

The above properties do not provide any guarantee on an individual basis because
a processor may try to enter the critical section and yet fail because it is always
bypassed by other processors. A stronger property, which implies no deadlock, is
no lockout: If a processor wishes to enter the critical section, then it will eventually
succeed as long as no processor stays in the critical section forever. (This property
is sometimes called no starvation.) Later we will see an even stronger property that
limits the number of times a processor might be bypassed while trying to enter the
critical section.

Original solutions to the mutual exclusion problem relied on special synchro-
nization support such as semaphores and monitors. Here, we focus on distributed
software solutions, using ordinary shared variables.

Each processor executes some additional code before and after the critical section
to ensure the above properties; we assume the program of a processor is partitioned
into the following sections:

Entry (trying): the code executed in preparation for entering the critical section
Critical: the code to be protected from concurrent execution

Exit: the code executed on leaving the critical section

Remainder: the rest of the code

Each processor cycles through these sections in the order: remainder, entry,
critical, and exit (see Fig. 4.1). If a processor wants to enter the critical section it first
executes the entry section; after that, the processor enters the critical section; then,
the processor releases the critical section by executing the exit section and returning
to the remainder section.

A mutual exclusion algorithm consists of code for the entry and exit sections and
should work no matter what goes in the critical and remainder sections. In particular,
a processor may transition from the remainder section to the entry section any number
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Remainder

Fig. 4.1 Parts of the mutual exclusion code.

of times, either finite or infinite. We assume that the variables, both shared and local,
accessed in the entry and exit sections are rot accessed in the critical and remainder
sections. We also assume that no processor stays in the critical section forever.

To capture these requirements, we make the following assumptions in the formal
model. If a processor takes a step while in the remainder (resp., critical) section,
it immediately enters the entry (resp., exit) section. The definition of admissible
execution is changed to allow a processor to stop in the remainder section. Thus an
execution is admissible if for every processor p;, either p; takes an infinite number of
steps or p; ends in the remainder section.

More formally, an algorithm for a shared memory system solves the mutual
exclusion problem with no deadlock (or no lockout) if the following hold:

Mutual exclusion: In every configuration of every execution, at most one processor
is in the critical section.

No deadlock: In every admissible execution, if some processor is in the entry section
in a configuration, then there is a later configuration in which some processor
is in the critical section.

No lockout: In every admissible execution, if some processor is in the entry sectionin
a configuration, then there is a later configuration in which that same processor
is in the critical section.

We also require that in an admissible execution, no processor is ever stuck in
the exit section; this is called the unobstructed exit condition. In all the algorithms
presented in this chapter, the exit sections are straight-line code (i.e., no loops), and
thus the condition obviously holds.

Note that the mutual exclusion condition is required to hold in every execution,
not just admissible ones. Exercise 4.1 explores the consequences of assuming that
the condition need only hold for admissible executions.
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Algorithm 7 Mutual exclusion using a test&set register: code for every processor.

Initially V' equals 0

(Entry):

I:  wait until test&set(V) =0
{Critical Section)

(Exit):

2: reset(V)

(Remainder)

4.3 MUTUAL EXCLUSION USING POWERFUL PRIMITIVES

In this section, we study the memory requirements for solving mutual exclusion
when powerful shared memory primitives are used. We show that one bit suffices
for guaranteeing mutual exclusion with no deadlock. However, ©(logn) bits are
necessary (and sufficient) for providing stronger fairness properties.

4.3.1 Binary Test&Set Registers

We start with a simple type of variable, called rest&set. A test&set variable V' is a
binary variable that supports two atomic operations, test&set and reset, defined as
follows:

test&set(V : memory address) returns binary value :
temp =V
V=1
return (temp)
reset(V : memory address):
V=0

The test&set operation atomically reads and updates the variable. (The variable
is “tested” to see whether it equals 0, and if so it is “set” to 1.) The reset operation
is merely a write.

There is a simple mutual exclusion algorithm with no deadlock that uses one
testé&set register. The pseudocode appears in Algorithm 7.

Assume the initial value of a test&set variable V' is 0. In the entry section,
processor p; repeatedly tests V' until it returns 0; the last test by p; assigns 1 to
V, causing any following test to return 1 and prohibiting any other processor from
entering the critical section. In the exit section, p; resets V' to 0, so one of the
processors waiting at the entry section can enter the critical section.

To see that the algorithm provides mutual exclusion, assume, by way of contra-
diction, that two processors, p; and p;, are in the critical section together at some
point in an execution. Consider the earliest such point in the execution. Without
loss of generality, assume that this point occurs when p; enters the critical section,
that is, p; is already in the critical section. According to the code, when p; enters
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the critical section most recently prior to this point, it tests V', sees that V = 0, and
sets V to 1. Also according to the code, V remains equal to 1 until some processor
leaves the critical section. By assumption that the point under consideration is the
first violation of mutual exclusion, no processor other than p; is in the critical section
until p; enters the critical section. Thus no processor leaves the critical section in
the interval since p; sets V to 1 just before entering the critical section and until p;
enters the critical section, implying that V remains 1. Finally, we see that when p;
enters the critical section, its test of V' must return 1, and not 0, and thus p; cannot
enter the critical section after all, a contradiction.

To show that the algorithm provides no deadlock, assume in contradiction there
is an admissible execution in which, after some point, at least one processor is in the
entry section but no processor ever enters the critical section. Since no processor
stays in the critical section forever in an admissible execution, there is a point after
which at least one processor is in the entry section but no processor is in the critical
section. The key is to note that ¥V = 0 if and only if no processor is in the critical
section. This fact can be shown by induction, because mutual exclusion holds. Thus
any processor that executes Line 1 after the specified point discovers V' = 0 and
enters the critical section, a contradiction. Therefore, we have:

Theorem 4.1 Algorithm 7 provides mutual exclusion and no deadlock with one
test&set register.

4.3.2 Read-Modify-Write Registers

In this section, we consider an even stronger type of register, one that supports
read-modify-write operations.

A read-modify-write register V' is a variable that allows the processor to read
the current value of the variable, compute a new value as a function of the current
value, and write the new value to the variable, all in one atomic operation. The
operation returns the previous value of the variable. Formally, a read-modify-write
(rmw) operation on register V is defined as follows:

rmw(V : memory address, f : function) returns value:
temp =V
V= (V)

return (temp)

The rmw operation takes as a parameter a function f that specifies how the new
value is related to the old value. In this definition, the size and type of V' are not
constrained; in practice, of course, they typically are.

Clearly, the test&set operation is a special case of rmw, where (V') = 1 for any
value of V.

‘We now present a mutual exclusion algorithm that guarantees no lockout (and thus
no deadlock), using only one. read-modify-write register. The algorithm organizes
processors into a FIFO queue, allowing the processor at the head of the queue to enter
the critical section.
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Algorithm 8 Mutual exclusion using a read-modify-write register:
code for every processor.

Initially V = (0, 0)

(Entry):

1: position := rmw(V, {V first,V.last + 1) ) // enqueueing at the tail
2: repeat

3: queue = rmw(V,V) // read head of queue
4: until (queue first = position.last) /f until becomes first
(Critical Section)

(Exit):

5 mmw(V (V. first + 1,V.last)) // dequeueing
(Remainder)

The pseudocode appears in Algorithm 8. Each processor has two local variables,
position and queue. The algorithm uses a read-modify-write register V' consisting of
two fields, first and last, containing “tickets” of the first and the last processors in the
queue, respectively. When a new processor arrives at the entry section, it enqueues
by reading V to a local variable and incrementing V' Jast, in one atomic operation.
The current value of V last serves as the processor’s ticket. A processor waits until
it becomes first, that is, until V first is equal to its ticket. At this point, the processor
enters the critical section. After leaving the critical section, the processor dequeues
by incrementing V' first, thereby allowing the next processor on the queue to enter
the critical section (see Fig. 4.2).

Only the processor at the head of the queue can enter the critical section, and
it remains at the head until it eaves the critical section, thereby preventing other
processors from entering the critical section. Therefore, the algorithm provides
mutual exclusion. In addition, the FIFO order of enqueueing, together with the
assumption that no processor stays in the critical section forever, provides the no
lockout property of the algorithm, which implies no deadlock.

Note that no more than n processors can be on the queue at the same time. Thus
all calculations can be done modulo 7, and the maximum value of V first and V .[ast
is n —~ 1. Thus V requires at most 2[log, n] bits (see Fig. 4.3).

We get:

1

V first V .last

Fig. 4.2 Data structures for Algorithm 8.
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Fig. 4.3 Bounding the memory requirements of Algorithm 8.

Theorem 4.2 There exists a mutual exclusion algorithm that provides no lockout,
and thus no deadlock, using one read-modify-write register consisting of 2[log, n]
bits.

One drawback of Algorithm § is that processors waiting for the critical section
repeatedly read the same variable V/, waiting for it to take on a specific value. This
behavior is called spinning. In certain shared memory architectures, spinning can
increase the time to access the shared memory (see chapter notes). Algorithm 9
implements the queue of waiting processors so that every waiting processor checks a
different variable. The algorithm must use n shared variables, to allow n processors
to wait simultaneously.

The algorithm uses an array Flags of binary variables, each of which can take on
one of two values: has-lock or must-wait. A processor gets the index of the array
element on which it should wait by using a read-modify-write operation on a variable
Last (see Fig. 4.4). The processor waits until its array element contains the value
has-lock; before going into the critical section, the processor sets its array element to
must-wait; after leaving the critical section, the processor sets the next element in the
array Flags to has-lock.

The next lemma states the invariant properties of Algorithm 9; its proof is left as
an exercise (see Exercise 4.3(a)):

Lemma 4.3 Algorithm 9 mainrains the following invariants concerning the array
Flags:

1. At most one element is set to has-lock.
2. Ifnoelement is set to has-lock then some processor is inside the critical section.

Flags k K

has | must | must | must | must
lock | wait | wait | wait | wait

Last T

Fig. 4.4 Processor p; threads itself on the queue and spins on Flags{k'].
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Algorithm 9 Mutual exclusion using local spinning: code for every processor.
Initially Last = 0; Flags[0] = has-lock; Flags[i] = must-wait, 0 < ¢ < n.

(Entry):

I:  my-place := rmw(Last,Last + 1 mod n) // thread yourself on queue
2:  waituntil ( Flags{my-place] = has-lock ) / spin
3:  Flags[my-place] := must-wait {// clean
{Critical Section)

(Exit):

4:  Flags[my-place+1 mod n] := has-lock /I tap next in line
(Remainder)

3. IfFlags[k] is set to has-lock then exactly (k — Last — 1) mod n processors are
in the entry section, each of them spinning on a different entry of Flags.

These invariants imply that the algorithm provides mutual exclusion and no lock-
out (in fact, FIFO entry); the proof is similar to the proof of Algorithm & (see
Exercise 4.3(b)).

4.3.3 Lower Bound on the Number of Memory States

Previously, we have seen that one binary test&set register suffices to provide deadlock-
free solutions to the mutual exclusion problem. However, in this algorithm, a pro-
cessor can be indefinitely starved in the entry section. Then we have seen a mutual
exclusion algorithm that provides no lockout by using one read-modify-write register
of 2[log, n] bits. In fact, to avoid lockout at least \/n distinct memory states are
required. In the rest of this section we show a weaker result, that if the algorithm
does not allow a processor to be overtaken an unbounded number of times then it
requires at least n distinct memory states.

Definition 4.2 A mutual exclusion algorithm provides k-bounded waiting if, in every
execution, no processor enters the critical section more than k times while another
processor is waiting in the entry section.

Note that the k-bounded waiting property, together with the no deadlock property,
implies the no lockout property. The main result of this section is:

Theorem 4.4 If an algorithm solves mutual exclusion with no deadlock and k-
bounded waiting (for some k), then the algorithm uses at least n distinct shared
memory states.

Proof. The proof uses the following definition:

Definition 4.3 A configuration of a mutual exclusion algorithm is quiescent if all
processors are in the remainder section.
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§

Y4 . P 1
in entry in entry in entry

Fig. 4.5 Proof of Theorem 4.4.

Let C be the initial configuration of the algorithm. Note that it is quiescent. Let 7
be an infinite pg-only schedule. Since exec(C, 7)) is admissible (py takes an infinite
number of steps and the rest of the processors stay in the remainder section), the no
deadlock property implies that there exists a finite prefix 7o of 7 such that py is in
the critical section in Cy = 74(C). Inductively, construct forevery i, 1 < ¢ < n -1,
a p;-only schedule 7; such that p; is in the entry section in C; = 7;(C;~1) (p; takes a
step to go from the remainder section to the entry section). Thus, pyg is in the critical
section and p1, . .., p,_1 are in the entry section at Cp,_1 = 17y ... Tn1(C).

Assume, by way of contradiction, that there are strictly less than n distinct shared
memory states. This implies that there are two configurations, C; and C}, 0 < i <
j < n — 1, with identical shared memory states, that is, mem(C;) = mem(Cj;).
Note that py, . . ., p; do not take any steps in 7j41 ... 7; and therefore, C; Porobi ;.
Furthermore, in C; and thus in Cj}, py is in the critical section, and py, ..., p; arein
the entry section (see Fig. 4.5).

Apply an infinite schedule p’ to C; in which processors pg through p; take an
infinite number of steps and the rest take no steps. Since exec(C, m71 ... 7ip’)
is admissible (pp through p; take an infinite number of steps, and the remaining
processors stay in their remainder section), the no deadlock property implies that
some processor pg, 0 < £ < ¢, enters the critical section an infinite number of times
in exec(Cj, p').

Let p be some finite prefix of p’ in which pg enters the critical section & -+ 1 times.
Since C; o= Cj and pis {po, ..., pi }-only, it follows that p, enters the critical
section k + 1 times in exec(Cj, p). Note that p; is in the entry section at C;. Thus
while p; is in the entry section, p, enters the critical section £+ 1 times in exec(C}, p).
Let o be an infinite schedule in which py through p; take an infinite number of steps
and the rest take no steps. The execution exec(C, 7o . .. 7jpc) is admissible, since
po through p; take an infinite number of steps and the remaining processors stay in
their remainder section. However, in the segment of this execution corresponding to

p» p; is bypassed more than k times by p;, violating the £-bounded waiting property.
O

It is worth understanding why this proof does not work if the algorithm only needs
to satisfy no lockout instead of bounded waiting. We cannot prove that the admissible
execution constructed at the end of the last paragraph fails to satisfy no-lockout; for
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instance, after p; is bypassed k& + 1 times by pe, p; might enter the critical section.
This problem cannot be fixed by replacing po with p', because the resulting execution
is not admissible: p; 11 through p; are stuck in their trying section because they take
no steps in p’, and non-admissible executions are not required to satisfy no lockout.

4.4 MUTUAL EXCLUSION USING READ/WRITE REGISTERS

In this section, we concentrate on systems in which processors access the shared
registers only by read and write operations. We present two algorithms that provide
mutual exclusion and no lockout for n processors, one that uses unbounded values
and another that avoids them. Both algorithms use O{n) separate registers. We then
show that any algorithm that provides mutual exclusion, even with the weak property
of no deadlock, must use n separate read/write registers, regardless of the size of
each register. These results contrast with the situation where stronger primitives are
used, in which a single register is sufficient.

4.4.1 The Bakery Algorithm

In this section, we describe the bakery algorithm for mutual exclusion among n
processors; the algorithm provides mutual exclusion and no lockout.

The main idea is to consider processors wishing to enter the critical section as
customers in a bakery.? Each customer arriving at the bakery gets a number, and the
one with the smallest number is the next to be served. The number of a customer
who is not standing in line is O (which does not count as the smallest ticket).

To make the bakery metaphor more concrete, we employ the following shared
data structures: Number is an array of n integers, which holds in its ith entry the
number of p;; Choosing is an array of n Boolean values such that Choosing[i] is true
while p; is in the process of obtaining its number.

Each processor p; wishing to enter the critical section tries to choose a number that
is greater than all the numbers of the other processors and writes it to Number[i]. This
is done by reading Number(0], . . ., Number[n — 1] and taking the maximum among
them plus one. However, because several processors can read Number concurrently it
is possible for several processors to obtain the same number. To break symmetry, we
define p; 's ticket to be the pair (Number[i], ©). Clearly, the tickets held by processors
wishing to enter the critical section are unique. We use the lexicographic order on
pairs to define an ordering between tickets.

After choosing its number, p; waits until its ticket is minimal: For each other
processor p;, p; waits until p; is not in the middle of choosing its number and then
compares their tickets. If p;’s ticket is smaller, p; waits until p; executes the critical
section and leaves it. The pseudocode appears in Algorithm 10.

2Actually, in Israel, there are no numbers in the bakeries and the metaphor of a health care clinic is more
appropriate.
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Algorithm 10 The bakery algorithm: code for processor p;, 0 < ¢ < n — 1.

Initially Number[i] = 0 and
Choosingli] = false, fori, 0 <i<n-—1

(Entry):

11 Choosing[i] := true

2:  Number(i] := max(Number{0], ..., Number[n — 1}) + 1
3:  Choosingli] := false

4: forj:=0ton—1(# 1) do

5: wait until Choosing[j] = false

6: wait until Number(j] = 0 or (Number(j], j) > (Number[s], )
(Critical Section)

(Exit):

7. Number[i] := 0

(Remainder)

We now prove the correctness of the bakery algorithm. That is, we prove that
the algorithm provides the three properties discussed above, mutual exclusion, no
deadlock and no lockout.

Fix an execution « of the algorithm. To show mutual exclusion, we first prove a
property concerning the relation between tickets of processors.

Lemma 4.5 In every configuration C of o, if processor p; is in the critical section,
and for some k # i, Number(k] # 0, then (Number(k], k) > (Numberl[i, 7).

Proof. Since p; is in the critical section in configuration C, it finished the for loop,
in particular, the second wait statement (Line 6), for j = k. There are two cases,
according to the two conditions in Line 6:

Case 1: p; read that Number[k] = 0. In this case, when p; finished Line 6 (the
second wait statement) with j = k, p; either was in the remainder or was not finished
choosing its number (since Number{k] = 0). But p; already finished Line 5 (the first
wait statement) with j = & and observed Choosing[k] = false. Thus p; was not in
the middle of choosing its number. Therefore, pj started reading the Number array
after p; wrote to Number{i]. Thus, in configuration C, Number[i] < Number[k],
which implies (Number[i}, i) < (Number[k], k).

Case 2: p; read that (Number(k], k) > (Number|i], ). In this case, the condition will
clearly remain valid until p; exits the critical section or as long as px does not choose
another number. If p; chooses a new number, the condition will still be satisfied
since the new number will be greater than Number(i] (as in Case 1). O

The above lemma implies that a processor that is in the critical section has the
smallest ticket among the processors trying to enter the critical section. To apply
this lemma, we need to prove that whenever a processor is in the critical section its
number is nonzero.
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Lemma 4.6 If p; is in the critical section, then Number[i] > 0.

Proof. First, note that for any processor p;, Number][i] is always nonnegative. This
can be easily proved by induction on the number of assignments to Number in the
execution. The base case is obvious by the initialization. For the inductive step, each
number is assigned either 0 (when exiting the critical section) or a number greater
than the maximum current value, which is nonnegative by assumption.

Each processor chooses a number before entering the critical section. This number
is strictly greater than the maximum current number, which is nonnegative. Therefore,
the value chosen is positive. 0

To prove mutual exclusion, note that if two processors, p; and pj, are simul-
taneously in the critical section, then Number{i] # 0 and Number{j] # 0, by
Lemma 4.6. Lemma 4.5 can then be applied (twice), to derive that (Number[i], i) <
(Number{j], j) and (Numberli), i) > (Number[j], j), which is a contradiction. This
implies:

Theorem 4.7 Algorithm 10 provides mutual exclusion.

Finally, we show that each processor wishing to enter the critical section eventually
succeeds (no lockout). This also implies the no deadlock property.

Theorem 4.8 Algorithm 10 provides no lockout.

Proof. Consider any admissible execution. Thus no processor stays in the critical
section forever. Assume, by way of contradiction, that there is a starved processor
that wishes to enter the critical section but does not succeed. Clearly, all processors
wishing to enter the critical section eventually finish choosing a number, because
there is no way to be blocked while choosing a number. Let p; be the processor with
the smallest (Number[i], 7) that is starved.

All processors entering the entry section after p; has chosen its number will
choose greater numbers and therefore will not enter the critical section before p;. All
processors with smaller numbers will eventually enter the critical section (since by
assumption they are not starved) and exit it (since no processor stays in the critical
section forever). At this point, p; will pass all the tests in the for loop and enter the
critical section, a contradiction. O

The numbers can grow without bound, unless there is a situation in which all
processors are in the remainder section. Therefore, thereis aprobleminimplementing
the algorithm on real systems, where variables have finite size. We next discuss how
to avoid this behavior.

4.4.2 A Bounded Mutual Exclusion Algorithm for Two Processors

In this section, we develop a two-processor mutual exclusion algorithm that uses
bounded variables, as a preliminary step toward an algorithm for n processors.
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Algorithm 11 A bounded mutual exclusion algorithm for two processors:
allows lockout.
Initially Want[0] and Wani1] are 0

code for pg code for py
(Entry): (Entry}):
I: Wantl]:=0
2:  waituntil (Want[0] = 0)
3: Want[0]:=1 3: Want[l]:=1
5: if (Wanr[0] = 1) then
goto Line 1
6:  wait until (Wanf[1] = 0)
(Critical Section}) (Critical Section)
(Exit): (Exit):
8 Want[0]:=0 8 Want[l]:=0
{Remainder) (Remainder)

We start with a very simple algorithm that provides mutual exclusion and no
deadlock for two processors pg and p; ; however, the algorithm gives priority to one
of the processors and the other processor can starve. We then convert this algorithm
to one that provides no lockout as well.

In the first algorithm, each processor p; has a Boolean shared variable Want[i]
whose value is 1 if p; is interested in entering the critical section and O otherwise.
The algorithm is asymmetric: pg enters the critical section whenever it is empty,
without considering p,’s attempts to do so; p; enters the critical section only if pg
is not interested in it at all. The code appears in Algorithm 11; line numbers are
nonconsecutive for compatibility with the next algorithm.

Lemma 4.9 follows immediately from the code.

Lemma 4.9 In any configuration of any execution, if p; is after Line 3 and before
Line 8 (including the critical section) then Want[i] = 1.

This algorithm uses a flag mechanism to coordinate between processors competing
for the critical section: p; raises a flag (by setting Wanz[i]) and then inspects the other
processor’s flag (by reading Want[1 — i]). As proved Theorem 4.10, at least one of
the processors observes the other processor’s flag as raised and avoids entering the
critical section.

Theorem 4.10 Algorithm 11 provides mutual exclusion.

Proof. Consider any execution. Assume, by way of contradiction, that both pro-
cessors are in the critical section at some point. By Lemma 4.9, it follows that
Want[0] = Want[1] = 1 at this point. Assume, without loss of generality, that py’s
last write to Want[0] before entering the critical section follows p;’s last write to
Want[1] before entering the critical section. Note that pg reads Want[1] = 0 before
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Fig. 4.6 llustration for the proofs of Theorem 4.10 and Theorem 4.11.

entering the critical section (in Line 6}, after its write to Want[0], which by assump-
tion, follows py’s write to Wanf[1]. (see Fig. 4.6). But in this case, py’s read of
Want[1] should return 1. A contradiction. O

We leave it to the reader to verify that this algorithm provides no deadlock (Exer-
cise 4.7).

Note that if pp is continuously interested in entering the critical section, it is
possible that p; will never enter the critical section because it gives up whenever pg
is interested.

To achieve no lockout, we modify the algorithm so that instead of always giving
priority to pg, each processor gives priority to the other processor on leaving the
critical section. A shared variable Priority contains the id of the processor that has
priority at the moment, and is initialized to 0. This variable is read and written by
both processors. The processor with the priority plays the role of p, in the previous
algorithm, so it will enter the critical section. When exiting, it will give the priority
to the other processor and will play the role of p; from the previous algorithm, and
so on. We will show that this ensures no lockout.

The modified algorithm provides mutual exclusion in the same manner as Algo-
rithm 11: A processor raises a flag and then inspects the other processor’s flag; at
least one of the processors observes the other processor’s flag as raised and avoids
entering the critical section.

The pseudocode for the algorithm appears in Algorithm 12; note that the algorithm
is symmetric.

Lemma 4.9 is still valid for Algorithm 12, and can be used to prove:

Theorem 4.11 Algorithm 12 provides mutual exclusion.

Proof. Consider any execution. Assume, by way of contradiction, that both pro-
cessors are in the critical section at some point. By Lemma 4.9, it follows that
Want[0] = Wani[1] = 1 at this point. Assume, without loss of generality, that py’s
last write to Want[0] before entering the critical section follows p;’s last write to
Want[1] before entering the critical section. Note that py can enter the critical sec-
tion either through Line 5 or through Line 6; in both cases, py reads Wans[1] = 0.
However, py’s read of Want[1] follows pq’s write to Want[0], which by assumption,
follows p;’s write to Wani[1] (see Fig. 4.6). But in this case, py’s read of Wani[1]
should return 1, a contradiction. O
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Algorithm 12 A bounded mutual exclusion algorithm for two processors:
with no lockout.
Initially Want[0] and Wani1] and Priority are all O

code for pg code for pq

(Entry): (Entry):

I: Want[0] := 0 I Wantfl] =0

2:  wait until (Wan[1] = 0 2:  waituntil Wanf0] =0
or Priority = 0) or Priority = 1

31 Want0]:=1 30 Wanil] =1

4. if (Priority = 1) then 4: if (Priority = 0) then

5: if (Want[1] = 1) then 5: if (Want[0] = 1) then

goto Line 1 goto Line 1

6: else wait until (Want[1] = 0) 6: else wait until (Want[0] = 0)

(Critical Section) (Critical Section)

(Exit): (Exit):

7:  Priority :=1 7: Priority .= 0

8: Wanf0] :=0 8 Wanfl]:=0

(Remainder) (Remainder)

We now show the no deadlock condition.
Theorem 4.12 Algorithm 12 provides no deadlock.

Proof. Consider any admissible execution. Suppose in contradiction there is a point
after which at least one processor is forever in the entry section and no processor
enters the critical section.

First consider the case when both processors are forever in the entry section.
Since both processors are in the entry section, the value of Priority does not change.
Assume, without loss of generality, that Priprity = 0. Thus p, passes the test in Line
2 and loops forever in Line 6 with Wanf[0] = 1. Since Priority = 0, p; does not
reach Line 6. Thus p; waits in Line 2, with Wanz[1] = 0. In this case, py passes the
test in Line 6 and enters the critical section, a contradiction.

Thus, it must be that only one processor is forever in the entry section, say py.
Since p; does not stay in the critical section or exit section forever, after some point
1 is forever in the remainder section. So after some point Want[1] equals O forever.
Then po does not loop forever in the entry section (see Lines 2, 5, and 6) and enters
the critical section, a contradiction. A

Theorem 4.13 Algorithm 12 provides no lockout.

Proof. Consider any admissible execution. Assume, by way of contradiction, that
some processor, say py, is starved. Thus from some point on, pg is forever in the
entry section.
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Case 1: Suppose p1 executes Line 7 (setting Priority to 0) at some later point.
Then Priority equals O forever after. Thus pp passes the test in Line 2 and skips Line
5. So pp must be stuck in Line 6, waiting for Want[1] to be 0, which never occurs.
Thus p; is always executing between Lines 3 and 8. But since p; does not stay in the
critical section forever, this would mean that p; is stuck in the entry section forever,
violating no deadlock (Theorem 4.12).

Case 2: Suppose p; never executes Line 7 at some later point. Since there is no
deadlock, it must be that p; is forever in the remainder section. Thus Want{1] equals
0 henceforth. Then pg can never be stuck at Line 2, 5, or 6 and it enters the critical
section, a contradiction. 0

4.4.3 A Bounded Mutual Exclusion Algorithm for 2 Processors

To construct a solution for the general case of n processors we employ the algorithm
for two processors. Processors compete pairwise, using the two-processor algorithm
described in Section 4.4.2, in a tournament tree arrangement. The pairwise competi-
tions are arranged in a complete binary tree. Each processor begins at a specific leaf
of the tree. At each level, the winner gets to proceed to the next higher level, where
it competes with the winner of the competition on the other side of the tree. The
processor on the left side plays the role of pg, and the processor on the right plays the
role of p1. The processor that wins at the root enters the critical section.

Let k = [logn] — 1. Consider a complete binary tree with 2% leaves (and a total
of 28*1 — 1 nodes). The nodes of the tree are numbered inductively as follows.
The root is numbered 1; the left child of a node numbered v is numbered 2v and
the right child is numbered 2v 4+ 1. Note that the leaves of the tree are numbered
2k 2% 11, .., 2kt 1 (see Fig. 4.7).

With each node we associate three binary shared variables whose roles are anal-
ogous to the variables used by the two-processor algorithm (Algorithm 12). Specif-
ically, with node number v we associate shared variables Want* [0], Wanz*[1], and
Priority’, whose initial values are all 0.

The algorithm is recursive and instructs a processor what to do when reaching some
node in the tree. The code for the algorithm consists of a procedure Node(v,side)
that is executed when a processor accesses node number v while playing the role
of processor side; the procedure appears in Algorithm 13. We associate a critical
section with each node. A node’s critical section (Lines 7 through 9) includes the
entry code (Lines 1 through 6) executed at all the nodes on the path from that node’s
parent to the root, the original critical section, and the exit code (Lines 10 through
11) executed at all the nodes on the path from the root to that node’s parent. To begin
the competition for the (real) critical section, processor p; executes Node(2¥ + /2],
17 mod 2); that is, this starts the recursion.

We now present the correctness proof of the algorithm.

We want to consider the “projection” of an execution of the tree algorithm onto
node v, that is, we only consider steps that are taken while executing the code in
Node(v, 0) and Node(v, 1). We will show that this is an execution of the 2-processor
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Fig. 4.7 The tournament tree for n = 8.

algorithm, if we view every processor that executes Node(w,0) as py and every
processor that executes Node(v, 1) as p;. Thus different processors play the roles of
po (for node v) throughout the execution, and the same for p;. We now proceed more
formally.
Fix any execution
a = Cop1C1p2C5 ...

of the tournament tree algorithm. Let «, be the sequence of alternating configurations
and events
DQ7T'1D1 7T'2Dg e

defined inductively as follows. g is the initial configuration of the 2-processor
algorithm. Suppose o, has been defined up to D;_;. Let @; be the ith event of o
that is a step in Node(v, 0) or Node(v, 1). Let ¢; = k, meaning p; takes this step.
Suppose without loss of generality that ¢; is a step in Node(v,0). Then let m; = 0
(i.e., let py take this step), and let D; be the configuration in which the variables’
states are those of the node v variables in C}, the state of p; is the same as in D;_,,
and the state of pg is the same as the state of p in C;; except for the id being replaced
with 0. (Note that all processors have the same code in the tournament tree algorithm
except for their ids, and the id is only used in the start of the recursion to determine
which leaf is the starting place.)

Lemma 4.14 For every v, v, is an execution of the 2-processor algorithm.

Proof. Comparing the code of Node(v, ¢) with the 2-processor algorithm for p;,
i = 0,1, shows that they are the same. The only thing we have to check is that
only one processor performs instructions of Node{v, ¢) at a time. We show this by
induction on the level of v, starting at the leaves.

Basis: v is a leaf. By construction only one processor ever performs the instruc-
tions of Node(v,4),7 = 0, 1.

Induction: v is not a leaf. By the code, if a processor executes instructions
of Node(wv, 0), then it is in the critical section for v’s left child. By the inductive
hypothesis and the fact that the 2-processor algorithm guarantees mutual exclusion
{Theorem 4.11), only one processor at a time is in the critical section for v’s left child.
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Algorithm 13 The tournament tree algorithm:
A bounded mutual exclusion algorithm for n processors.

procedure Node(v: integer; side: 0..1)

l: Want'[side] := 0

wait until (Want®[1 — side] = 0 or Priority’ = side)

Want'[side] = 1

if (Priority’ = 1 — side) then
if (Wan#'[1 — side] = 1) then goto Line 1

else wait until (Want*[1 — side] = 0)

if (v = 1) then /1 at the root
(Critical Section)

else Node(|v/2], v mod 2)

10 Priority’ := 1 — side

11: Want'[side] .= 0

end procedure

VoMo UE WD

Thus only one processor at a time executes instructions of Node(v, 0). Similarly,
only one processor at a time executes instructions of Node(v, 1). ]

Lemma 4.15 For all v, if « is admissible, then o, is admissible.

Proof. Pick a node v. The proof is by induction on the level of v, starting at the
root.

Basis: Suppose v is the root. Since exit sections have no loops, it is sufficient
to show that in «,, no processor stays in the critical section forever. Since « is
admissible, no processor stays in the real critical section forever. Since the critical
section for «,, is the real critical section, the same is true of «,,.

Induction: Suppose v is not the root. Again, it is sufficient to show that in
oy, NO processor stays in the critical section forever. Let u be v’s parent. By the
inductive hypothesis, v, is admissible, and therefore, since there is no lockout in
oy, (Theorem 4.13), the processor eventually enters the critical section for u. By
the inductive hypothesis, the processor eventually exits the critical section for u,
completes the exit section for u, and exits the critical section for v. O

Theorem 4.16 Algorithm 13 provides mutual exclusion and no lockout.

Proof. To show mutual exclusion, assume in contradiction there is an admissible
execution in which two processors are in the critical section simultaneously. Lemma
4.14 implies that the restrictionto the root of the tree is an admissible execution of the
2-processor algorithm. Since the 2-processor algorithm guarantees mutual exclusion
by Theorem 4.11, two processors cannot be in the critical section simultaneously, a
contradiction.

To show no lockout, assume in contradiction there is an admissible execution in
which no processor stays in the critical section forever, and some processor, say p;, is
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stuck in the entry section forever after some point. Let v be the leaf node associated
with p; in the tournament tree. Lemmas 4.14 and 4.15 imply that the restriction to »
is an admissible execution of the 2-processor algorithm in which no processor stays
in the critical section forever. Since the 2-processor algorithm has no lockout by
Theorem 4.13, p; cannot be locked out, a contradiction. ]

4.4.4 Lower Bound on the Number of Read/Write Registers

In this section, we show that any deadlock-free mutual exclusion algorithm using
only shared read/write registers must use at least n shared variables, regardless of
their size.

The proof allows the shared variables to be multi-writer, that is, every processor
can write to every variable. Note that if variables are single-writer, then the lower
bound is obvious, because every processor must write something (to a separate
variable) before entering the critical section. Otherwise, a processor could enter the
critical section without other processors knowing, and some other processor may
enter concurrently, thereby violating mutual exclusion.

Fix a no deadlock mutual exclusion algorithm A. We will show that A uses at
least n shared variables by showing that there is some reachable configuration of A
in which each of the n processors is about to write to a distinct shared variable. The
notion of being about to write to a variable is captured in the definition of a processor
“covering” a variable:

Definition 4.4 A processor covers a variable in a configuration if it is about to write
it (according to its state in the configuration).

We will use induction on the number of covered variables to show the existence
of the desired configuration. For the induction to go through, we will need the
configuration to satisfy an additional property, that of appearing to be quiescent to a
certain set of processors. This notion is captured in the definition of P-quiescent:

Definition 4.5 Configuration C is P-quiescent, where P is a set of processors, if
. s . P
there exists a reachable quiescent configuration D such that C ~ D.

A useful fact about covered variables is that, under certain circumstances, a
processor must write to at least one variable that is not covered before it can enter
the critical section. The intuition is that the processor must inform the others that it
is in the critical section, in order to avoid a violation of mutual exclusion, and this
information must not be overwritten before it is observed by some other processor.
The following lemma formalizes this fact.

Lemma 4.17 Let C be a reachable configuration that is p;-quiescent for some pro-
cessor p;. Then there exists a p;-only schedule o such that p; is in the critical section
in o(C), and during exec(C, o), p; writes to some variable that is not covered by any
other processor in C.
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Fig. 4.8 Proof of Lemma 4.17.

Proof. First we show that ¢ exists. Since C is p;-quiescent, there is a quiescent
configuration D such that C % D. By the no deadlock condition, if p; alone takes
steps from D, it eventually enters the critical section. Thus if p; alone takes steps
from C', the same will happen.

Now we show that during exec(C, o), p; writes to some variable that is not covered
by any other processor in C'. Suppose in contradiction during exec(C, ), p; never
writes to a variable that is not covered by any other processor in C. Let W be the set
of variables that are covered in C' by at least one processor other than p; and let P
be a set of processors, not including p;, such that each variable in W is covered by
exactly one processor in P (see Fig. 4.8).

Starting at C, let each processor in P take one step (in any order). The result is
that all the variables that were covered in W have now been overwritten. Then invoke
the no deadlock condition and the unobstructed exit condition successively to cause
every processor that is not in the remainder section in C to go into the critical section
(if necessary), complete the exit section, and enter the remainder section, where it
stays, Let 7 be this schedule and call the resulting configuration ¢). Note that Q) is
quiescent.

Pick any processor p; other than p;. By the no deadlock condition, there is a p;-
only schedule from () that causes p; to enter the critical section. Call this schedule
7. So at the end of exec(C, ), p; is in the critical section.

Finally, observe that during 7 and =, the other processors cannot tell whether p;
has performed the steps in ¢ or not, because the first part of 7 overwrites anything
that p; may have written (since we are assuming p; only writes to covered variables).
Thus, at the end of exec(C, o7), p; is in the critical section, just as it was at the end
of exec(C, 7). But p; is also in the critical section at the end of exec(C, o7 ) since
it took no steps during 7, violating mutual exclusion.

The next lemma is the heart of the proof, showing inductively the existence of a
number of covered variables.

Lemma 4.18 Forallk, 1 < k < n, and forall reachable quiescent configurations C,
there exists a configuration D reachable from C by a {py, . .., px—1}-only schedule
such that py, . ..,pe—1 cover k distinct variables in D and D is {pk,...,pn-1}-
quiescent.
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Fig. 4.9 Simple case in proof of Lemma 4.18.

Proof. By inductionon £.

Basis: k = 1. For the basis, note that before entering the critical section, a
processor must write to some shared variable. The desired configuration is obtained
by considering the execution in which only p; takes steps and truncating it just before
the first write by po.

In more detail: Fix a reachable quiescent configuration C. By Lemma 4.17, there
exists a pp-only schedule o such that py performs at least one write during exec(C, o).

Let ¢’ be the prefix of ¢ ending just before pg performs its first write, say to
variable z. Let D = ¢'(C). Clearly, po covers z in D. Since mem(D) = mem(C)
and only py takes steps in ¢/, D is {p1, . . ., pn—1}-quiescent.

Induction: Assume the lemma is true for £ > 1 and show it for & + 1.

For purposes of explanation, assume for now that every applicationof the inductive
hypothesis causes the same set W of k variables to be covered by py through py ;.
Refer to Figure 4.9 for this simpler situation.

By the inductive hypothesis, we can get to a configuration € that appears quiescent
to px through p,, _1 in which p; through py ¢ cover . We must show how to cover
one more variable, for a total of & + 1 covered variables.

Lemma 4.17 implies that we can get px to cover an additional variable, say X,
by starting at C'y and just having py take steps. Call this schedule 7’. However, the
resulting configuration does not necessarily appear quiescent to pg41 through p,_1,
because p; may have written to some (covered) variables.

From #'(C), we can get to a {pg+1,. - ., Pn—1}-quiescent configuration while
still keeping X covered by pi as follows. First, we overwrite all traces of pi by
having py through py_1 each take a step. Second, we successively invoke the no
deadlock condition and the unobstructed exit condition to cause pg through p_1 (in
some order) to cycle through the critical section and into the remainder section. Call
this schedule 7 and let D} = r(z'(C})).

Finally, we would like to invoke the inductive hypothesis on D/ to get to another
configuration in which W is covered again and which appears quiescent to px4
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Fig. 4.10 General structure of the execution constructed in Lemma 4.18.

through p,, 1. This would be the desired configuration, because X is still covered,
giving a total of k + 1 covered variables.

But the inductive hypothesis requires that we start with a (totally) quiescent
configuration, and D] is not quiescent because pj is in the entry section. However,
this problem can be solved by noting that applying 7 to C; produces a configuration
Di that is quiescent. Thus by the inductive hypothesis, thereis a {py, . . ., px—1 }-only
schedule o such that Cy = o(D1} is {px, . . ., Pn—1}-quiescent and W is covered by
po through pr 1.

Since D looks like Dj to pg through pg_1, po through pi_; do the same thing
in exec(D1, o) as inexec(D1, ). Thus in C} = o(D}), k + 1 variables are covered
(W plus X) and CY, appears quiescent to pi+1 through p, _.

However, it may not be the case that every application of the inductive hy-
pothesis causes the same set of & variables to be covered. But because only a
finite number of shared variables is used by the algorithm, there is only a finite
number of different possibilities for which k variables are covered. Thus we re-
peatedly apply the inductive hypothesis, cycling between quiescent configurations
(D1, Dy, ...)and {px, ..., pn—1}-quiescent configurations in which % variables are
covered (C1,Cy,...). Eventually we will find two configurations C; and C; in
which the same set of k variables are covered. We can then use essentially the same
argument as we did above with C'; and Cs.

We now proceed with the details. Let C be a reachable quiescent configuration.
We now inductively define an infinite execution fragment starting with C' = Dy and
passing through configurations Cy, Dy, ..., C;, D;, ... (see Fig. 4.10).

Given quiescent configuration D;_q, ¢ > 0, define configuration C; as follows.
By the inductive hypothesis, there exists a schedule o; such that C; = o;(D;—1) is
{Pk, - - ., Pn—1}-quiescent and in Cy, py through pg_., cover a set W; of k distinct
variables.

Given configuration C;, ¢ > 0, define D; as follows. First, apply the schedule
0,...,%k—1to C;. This schedule causes every variable in }¥; to be written. Now
successively invoke the no deadlock condition and the unobstructed exit condition &
times in order to cause each of py through pi_ 1, in some order, to enter the critical
section, exit the critical section, go to the remainder section, and stay there. Call this
schedule 7;. Let D; be the resulting configuration, 7; (C;). Clearly D; is quiescent.
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Fig. 4.11 Perturbation of the execution constructed in Lemma 4.18.

Since the set of variables is finite, there exist ¢ and 7, 1 < ¢ < j, such that
W = W;.

Recall that C; is {px, - . ., pn~1 -quiescent. By Lemma 4.17, there is a pg-only
schedule 7 such that py is in the critical section in 7(C};), and during exec(Ci, 7), pk
writes to some variable not in W;.

Let «’ be the schedule of the prefix of exec(C;, 7) just before py’s first write to
some variable, say X, not in W;. Apply to C; the schedule ='f; ... 3;_1, where
Be = 10141, <€ < j— 1. Let C;- be the resulting configuration (see Figure 4.11).

We finish by showing that C} is the desired configuration D. Since 7’ is py-only,
the beginning of 7; writes to all variables in W;, and 3; ... 3;_, involves only py

through py 1, it follows that C} k4 C;, where P is the set of all processors except
pk. Thus C% is {px+1, . .., pn—1}-quiescent and, in C}, py through py_, cover W;
and pg covers X. Since X isnotin W; and W; = W;, it follows that X is notin W},
and thus k -+ 1 distinct variables are covered in C;-. |

This lemma, instantiated with & = n and C equal to the initial configuration,
implies the existence of at least n distinct variables, namely the covered variables.
Thus we have proved:

Theorem 4.19 Any no deadlock mutual exclusion algorithm using only read/write
registers must use at least n shared variables.

4.4.5 Fast Mutual Exclusion

Previously, we have seen two general mutual exclusion algorithms, the bakery al-
gorithm (Algorithm 10) and the tournament tree algorithm (Algorithm 13). In both
algorithms, the number of steps a processor executes when trying to enter the critical
section depends on n, even in the absence of contention, that is, when it is the only
processor in the entry section. In most systems, it is expected that the typical con-
tention is significantly smaller than =, that is, only a small number of processors are
concurrently trying to enter the critical section.
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Algorithm 14 Contention detector.

Initially, door := open, race := —1

1: race :=id /! write identifier
2: if door = closed then return lose /! doorway closed
3: else /1 doorway open
4: door := closed /I close doorway
5 if race = id then return win

6 else return lose

A mutual exclusion algorithm is fast if a processor enters the critical section within
a constant number of steps when it is the only processor trying to enter the critical
section.

A fast algorithm clearly requires the use of multi-writer shared variables; if each
variable is written only by a single processor, then a processor wishing to enter the
critical section has to check at least n variables for possible competition.

The key for the algorithm is the correct combination of two mechanisms, one for
providing fast entry when only a single processor wants the critical section, and the
other for providing deadlock freedom when there is contention. We first describe a
contention detector that allows a processor to detect whether there is contention for
the critical section or not, by using only read and write operations.

The contention detector combines two mechanisms. First, a doorway mechanism
catches a nonempty set of concurrent processors accessing the detector. A two-
valued door flag is used: When it is open, the contention detector is free (and not yet
accessed); door is set to closed after the first processor enters the contention detector.

Because door is not accessed atomically, two or more processors might be able
to pass through the doorway concurrently. A simple race is used to pick one winner
among this set of processors. This is done by having each processor write its identifier
to a shared variable race, and then reading it to see whether some processor has written
to race after it. A processor returns “win”, and is said to win the contention detector,
if it passes through the doorway and does not observe another processor in race;,
otherwise, it returns “lose”. The pseudocode is presented in Algorithm 14.

Theorem 4.20 In every admissible execution of Algorithm 14

(1) At most one processor wins the contention detector.

(2) If processor p; executes the contention detector alone, that is, no other processor
starts the procedure before p; completes it, then p; wins the contention detector.

Proof. Let C be the set of processors that read open from door; note that this set is
not empty, because the value of door is initially open. Processors in C are candidates
for winning the contention detector, while other processors lose in Line 2.

Let p; be the processor whose write to race is the last before door is set to closed
for the first time. All processors that write to race after the write of processor p; to
race are not in C because they read closed from door. Every processor in C' checks
race after door is set to closed; thus it reads id; or an identifier written afterwards.
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Fig. 4.12 Design of fast mutual exclusion algorithm.

Thus only if p; € C' and there is no later write to race does p; win the contention
detector. This implies (1).
Property (2) is simple to verify. Ol

A processor may win the contention detector even if there is contention, but it is
guaranteed that in this case, all other processors lose.

With the contention detector, it is simple to devise a fast mutual exclusion al-
gorithm. Processors enter the contention detector and processors that lose in the
contention detector use an ordinary mutual exclusion algorithm, for example, the
bakery algorithm (Algorithm 10), so that a single processor is selected to enter the
critical section. The winner of the n-processor mutual exclusion and the (possible)
winner of the contention detector are arbitrated with a 2-processor mutual exclusion
algorithm (Algorithm 12) to select the next processor to enter the critical section (see
Fig. 4.12).

Figure 4.12 does not show the exit section of the fast mutual exclusion algorithm.
In principle, the processor performs the exit sections of the modules it accessed on
the entry to the critical section: first for the 2-processor mutual exclusion algorithm
and then either for the contention detector or for the n-processor mutual exclusion
algorithm.

However, the contention detector should be reset even if a processor reached the
critical section along the so-called slow parh (after losing the contention detector),
so it can detect later intervals without contention. To do that in a correct manner, the
contention detector is reset immediately after the processor leaves the critical section,
while it is still in exclusion. The details of how this is done are rather sophisticated;
see the chapter notes.
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Note that when there is contention, however small, a processor may have to enter
the critical section along the slow path, after reading n variables. The chapter notes
discuss other algorithms that guarantee fast access to the critical section even when
there is small contention.

Exercises

4.1

4.2

43

4.4

4.5

4.6

4.7
4.8

4.9

Suppose an algorithm satisfies the condition that inevery admissible execution,
at most one processor is in the critical section in any configuration. Show that
this algorithm also satisfies the mutual exclusion condition.

An atgorithm solves the 2-mutual exclusion problem if at any time at most
two processors are in the critical section. Present an algorithm for solving the
2-mutual exclusion problem by using read-modify-write registers.

(a) Prove, by induction on the length of the execution, the invariant properties
of Algorithm 9, as stated in Lemma 4.3.

(b) Based on the invariants, prove that Algorithm 9 provides mutual exclusion
and FIFO entry to the critical section.

Propose a method for measuring worst-case time complexity in the asyn-
chronous shared memory model analogous to that in the asynchronous message-
passing model.

Calculate the waiting time for the algorithm presented in Section 4.4.3 using
the method from Exercise 4.4. That is, calculate how long a processor waits,
in the worst case, since entering the entry section until entering the critical
section. Assume that each execution of the critical section takes at most one
time unit.

Hint: Use recursion inequalities.

Present an algorithm that solves the 2-mutual exclusion problem (defined in
Exercise 4.2) and efficiently exploits the resources, that is, a processor does
not wait when only one processor is in the critical section. The algorithm
should use only read/write registers, but they can be unbounded.

Prove that Algorithm 11 provides no deadlock.

Modify the tournament tree mutual exclusion algorithm for n processors
so that it can use an arbitrary two-processor mutual exclusion algorithm as
“subroutines” at the nodes of the tree. Prove that your algorithm is correct.
Try to minimize any assumptions you need to make about the two-processor
algorithm.

Show why the variable Choosing[i] is needed in the bakery algorithm (Al-
gorithm 10). Specifically, consider a version of Algorithm 10 in which this
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variable is omitted, and construct an execution in which mutual exclusion is
violated.

4.10 Formalize the discussion at the beginning of Section 4.4.4 showing that n
variables are required for no deadlock mutual exclusion if they are single-
writer.

4.11 Show a simplified version of the lower bound presented in Section 4.4.4 for
the case n = 2. That is, prove that any mutual exclusion algorithm for two
processors requires at least two shared variables.

4.12 Write the pseudocode for the algorithm described in Figure 4.12, and prove
that it satisfies the mutual exclusion and the no deadlock properties.

Which properties should the embedded components satisfy in order to provide
the no lockout property?

4.13 Construct an execution of the algorithm from Exercise 4.12 in which there
are two processors in the entry section and both read at least {2{n) variables
before entering the critical section.

4.14 Design a fast mutual exclusion algorithm using test&set operations.

Chapter Notes

We started this chapter by adapting the model of Chapter 2 to shared memory sys-
tems. This book considers only asynchronous shared memory systems; several
books address the PRAM model of synchronous shared memory systems, for exam-
ple, [142, 164].

Guaranteeing mutual exclusion is a fundamental problem in distributed computing,
and many algorithms have been designed to solve it. We have only touched on a
few of them in this chapter. Good coverage of this topic appears in the book by
Raynal [225].

We first showed simple algorithms for achieving mutual exclusion using strong
hardware primitives; these algorithms, presented in Section 4.3, are folklore. The
lower bound of 7 on shared space for bounded waiting (Section 4.3.3) was proved by
Burns, Jackson, Lynch, Fischer, and Peterson [62]. In the same paper they showed
a lower bound of Q(+/(n)) on the number of states of the shared memory for no
lockout and a lower bound of n/2 if processors cannot remember anything about
previous invocations of the mutual exclusion protocol. Chapter 14 discusses how to
use randomization to guarantee no lockout with small shared variables, despite the
lower bound.

In shared memory multiprocessors, copies of shared locations are cached locally
at the processors; this means that if a processor is spinning on a particular location,
then waiting will be done on the cached copy. Algorithm9 is based on the gqueue lock
algorithm of Anderson [16], who also discusses its architectural justification. The
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algorithm actually uses fetch&inc, a special instance of rmw that allows a processor
to read a shared location and increment it by 1, in a single atomic operation. Graunke
and Thakkar [125] present a variant using fetch&store (swapping a value between a
local register and a shared memory location).

In Algorithm 9, different processors spin on the same location (an entry in the
Flags array) at different times. This is quite harmful in distributed shared memory
systems (described in Chapter 9), where it causes migration of shared memory
between processors. An algorithm by Mellor-Crummey and Scott [184] avoids this
problem by not assigning memory locations to different processors at different points
during the execution.

The first mutual exclusion algorithm using only read/write operations was given
by Dijkstra [90], who extended a two-processor algorithm of Dekker to an arbitrary
number of processors.

This chapter presents three other algorithms for mutual exclusion using only
read/write operations: The bakery algorithm (Algorithm 10) is due to Lamport [ 153];
the bounded algorithm for two processors (Algorithm 12) is due to Peterson [211].
The use of a tournament tree for generalizing to n processors (Algorithm 13) is
adapted from a paper by Peterson and Fischer [214]. This paper, however, uses a
different algorithm as the embedded two-processor algorithm. Their algorithms are
more sophisticated and use only single-writer registers, whereas our algorithms use
multi-writer registers. This presentation was chosen for simplicity and clarity.

Section 4.4.4 presents a lower bound on the number of read/write registers needed
for achieving mutual exclusion without deadlock. This lower bound was proved by
Burns and Lynch [63]; our proof organizes their ideas in a slightly different form.

Finally, we discussed the notion of fast mutual exclusion algorithms, guaranteeing
that a processor enters the critical section within a constant number of steps when
there is no contention. This notion was suggested by Lamport [160]. Our presen-
tation follows Moir and Anderson [188] in abstracting the contention detector; the
implementation of the contention detector is extracted from Lamport’s original fast
mutual exclusion algorithm. Rather than using the bakery algorithm when there is
contention, Lamport uses a simpler n-processor algorithm that guarantees only no
deadlock. Furthermore, “smashing” the 2-processor mutual exclusion procedure onto
the other modules leads to a very compact algorithm, in which a processor performs
only seven steps in order to enter the critical section in the absence of contention.

As Exercise 4.13 demonstrates, being fast provides no guarantee about the behavior
of the algorithm in the presence of any contention, even a very low level. In an
adaptive mutual exclusion algorithm, the number of steps a processor executes when
trying to enter the critical section depends on &, a bound on the number of processors
concurrently competing for the critical section, that is, the maximum contention. A
recent survey of this topic is given by Anderson, Kim and Herman [15].
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Fault-Tolerant Consensus

Coordination problems require processors to agree on a common course of action.
Such problems are typically very easy to solve in reliable systems of the kind we have
considered so far. In real systems, however, the various components do not operate
correctly all the time. In this chapter, we start our investigation of the problems
arising when a distributed system is unreliable. Specifically, we consider systems in
which processors’ functionality is incorrect.

In Section 5.1, we consider benign types of failures in synchronous message
passing systems. In this case, a faulty processor crashes, that is, stops operating,
but does not perform wrong operations (e.g., deliver messages that were not sent).
We study the consensus problem, a fundamental coordination problem that requires
processors to agree on a common output, based on their (possibly conflicting) inputs.
Matching upper and lower bounds on the number of rounds required for solving
consensus are shown.

In Section 5.2, we consider more severe types of (mis)behavior of the faulty
processors, still in synchronous message-passing systems. We assume failures are
Byzantine, that is, a failed processor may behave arbitrarily. We show that if we
want to solve consensus, less than a third of the processors can be faulty. Under
this assumption, we present two algorithms for reaching consensus in the presence
of Byzantine failures. One algorithm uses the optimal number of rounds but has
exponential message complexity; the second algorithm has polynomial message
complexity, but it doubles the number of rounds.

Finally, we turn to asynchronous systems. We show that consensus cannot be
achieved by a deterministic algorithm in asynchronous systems, even if only one
processor fails in a benign manner by simply crashing. This result holds whether

91
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communication is via messages or through shared read/write variables. Chapter 15
considers the ability of other types of shared variables to solve consensus. Chap-
ter 16 studies weaker coordination problems that can be solved in such asynchronous
systems.

In this chapter, we study both synchronous and asynchronous message-passing
systems and asynchronous shared memory systems. In each section, we discuss how
to modify the model of the respective reliable system to include the specific type of
faulty behavior.

5.1 SYNCHRONOUS SYSTEMS WITH CRASH FAILURES

In this section, we discuss a simple scenario for fault-tolerant distributed computing:
a synchronous system in which processors fail by simply ceasing to operate. For all
message-passing systems in this section, we assume that the communication graph
is complete, that is, processors are located at the nodes of a clique. We further
assume that the communication links are completely reliable and all messages sent
are delivered.

5.1.1 Formal Model

We need to modify the formal definitions from Chapter 2 for a synchronous message-
passing system to handle processor crashes.

A vital parameter of the system definitionis f, the maximum number of processors
that can fail. We call the system f-resilient.

Recall that in the reliable case, an execution of the synchronous system consists
of a series of rounds. Each round consists of the delivery of all messages pending in
outbuf variables, followed by one computation event for every processor.

For an f-resilient system, the definition of an execution is modified as follows.
There exists a subset F of at most f processors, the faulty processors; the set of faulty
processors can be different in different executions, so that it is not known in advance
which processors are faulty. Each round contains exactly one computation event for
every processor not in F and af most one computation event for every processor in
F. Furthermore, if a processor in F' does not have a computation event in some
round, then it has no computation event in any subsequent round. Finally, in the last
round in which a faulty processor has a computation event, an arbitrary subset of its
outgoing messages are delivered.

This last property is quite important and causes the difficulties associated with
this failure model. If every crash is a clean crash, in which either all or none of the
crashed processor’s outgoing messages from its last step are delivered, consensus can
be solved very efficiently (see Exercise 5.2). But the uncertainty in the effect of the
crash means that processors must do more work (e.g., exchange more messages) in
order to solve consensus.



SYNCHRONOQUS SYSTEMS WITH CRASH FAILURES 93

Algorithm 15 Consensus algorithm in the presence of crash failures:
code for processor p;, 0 <i < n— 1.

Initially V' = {z} /1 V contains p;’s input
It round &, 1 <k< f+1:
2 send {v € V : p; has not already sent v} to all processors
3: receive S; fromp;, 0 < j<n—1,j#¢
-1
4 Vi=Vu U?:o S;
5 ifk= f+ 1theny := min(V) /f decide

5.1.2 The Consensus Problem

Consider a system in which each processor p; has special state components z;, the
input, and y;, the output, also called the decision. Initially, z; holds a value from
some well-ordered set of possible inputs and y; is undefined. Any assignment to y;
is irreversible. A solution to the consensus problem must guarantee the following:

Termination: In every admissible execution, y; is eventually assigned a value, for
every nonfaulty processor p;.

Agreement: In every execution, if y; and y; are assigned, then y; = y;, for all
nonfaulty processors p; and p;. That is, nonfaulty processors do not decide on
conflicting values.

Validity: In every execution, if, for some value v, z; = v for all processors p;, and
if y; is assigned for some nonfaulty processor p;, then 3; = v. That is, if all
the processors have the same input, then any value decided upon must be that
common input.

For two-element input sets, this validity condition is equivalent to requiring that
every nonfaulty decision value be the input of some processor, as Exercise 5.1 asks
you to show. Once a processor crashes, it is of no interest to the algorithm, and no
requirements are placed on its decision.

Below we show matching upper and lower bounds of f + 1 on the number of
rounds required for reaching consensus in an f-resilient system.

5.1.3 A Simple Algorithm

The pseudocode appears in Algorithm 15. In the algorithm, each processor maintains
a set of the values it knows to exist in the system; initially, this set contains only
its own input. In later rounds, a processor updates its set by joining it with the sets
received from other processors and broadcasts any new additions to the set to all
processors. This continues for f + 1 rounds. At this point, the processor decides on
the smallest value in its set.
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round

Fig. 5.1 Tlustration for the proof of Lemma 5.1, f = 3.

Clearly, the algorithm requires exactly f + 1 rounds, which implies termination.
Furthermore, it is obvious that the validity condition is maintained, because the
decision value is an input of some processor. The next lemma is the key to proving
that the agreement condition is satisfied.

Lemma 5.1 In every execution, at the end of round f + 1, Vi =V}, for every two
nonfaulty processors p; and p;.

Proof. It suffices to show that if € V; at the end of round f 4 1, then z € V; at
the end of round f + 1, for all nonfaulty processors p; and p;.

Let r be the first round in which z is added to V; (in Line 4), for any nonfaulty
processor p;. If z isinitially in V;, let » be 0. If » < f then,intoundr +1 < f+ 1,
p: sends zx to each p;, which causes p; to add z to Vj, if it is not already present.

Otherwise, suppose » = f 4 1 and let p; be a nonfaulty processor that receives
x for the first time in round f + 1. Then there must be a chain of f + 1 processors
Piy, - - » Piyy, thattransfers the value z to p;. That is, p;, sends z to p;, inround 1,
pi, sends x to p;, in round 2, etc., and finally p;, sends z to p;,,, inround f, and
Pi;4, sends  to p; inround f + 1. (Fig. 5.1 illustrates this situation for f = 3.)
Since each processor sends a particular value only once, the processors p;, , . . ., pi,,
form a set of f -+ 1 distinct processors. Thus there must be at least one nonfaulty
processor among pi,, . . -» Pi,, - However, this processor adds z to its set at a round
< f < r, contradicting the assumption that r is minimal. O

Therefore, nonfaulty processors have the same set in Line 5 and decide on the
same value. This implies that the agreement condition is satisfied. Thus we have:

Theorem 5.2 Algorithm 15 solves the consensus problem in the presence of f crash
fatlures within f + 1 rounds.



SYNCHRONQUS SYSTEMS WITH CRASH FAILURES 95

5.1.4 Lower Bound on the Number of Rounds

We now present a lower bound of f + 1 on the number of rounds required for reaching
consensus in the presence of crash failures. This implies that the algorithm presented
in Section 5.1.3 is optimal. We assume that f < n — 2.!

The intuition behind the lower bound is that if processors decide too early, they
cannot distinguish between admissible executions in which they should make different
decisions. The notion of indistinguishability is crucial to this proof and is central
in our understanding of distributed systems. To capture this notion formally, we
introduce the following definition of a processor’s view of the execution.

Definition 5.1 Let a be an execution and let p; be a processor. The view of p; in o,
denoted by e|p;, is the subsequence of computation and message delivery events that
occur in « at p; together with the state of p; in the initial configuration of «.

Chapter 4 included a definition of two (shared memory) configurations being
similar for a processor (Definition4.1). Using the notionof view that was just defined,
we can extend the definition of similarity to entire (message passing) executions.
However, here we are only concerned if a nonfaulty processor cannot distinguish
between the executions.

Definition 5.2 Let ay and og be two executions and let p; be a processor that is
nonfaulty in «y and 5. Execution oy is similar to execution ay with respect to p;,
denoted oy R vy, if oy |pi = api.

Some technical details in the lower bound proof are made easier if we restrict
attention to consensus algorithms in which every processor is supposed to send a
message to every other processor at each round. This does not impair the generality
of the result, because any consensus algorithm can be modified trivially to conform
to this rule by adding dummy messages where necessary. We also assume that every
processor keeps a history of all the messages it has received in all the previous rounds,
so that a configuration contains the information concerning which processors have
failed and how many rounds {or parts of rounds) have elapsed.

An execution is said to be failure sparse if there is at most one crash per round.
Such executions are very useful in proving the lower bound — even a single failure
can caus¢ some information to be lost, and stretching out the failures over more
rounds increases the amount of time in which there is uncertainty about the decision.
In the remainder of this section, we only consider executions that are prefixes of
admissible failure-sparse executions and configurations appearing in such executions.
In particular, all definitions in this section are with respect to failure-sparse executions,
and we will only explicitly mention “failure sparse” when the argument crucially
depends on this property.

'f f = n — 1 then consensus can be achieved within f rounds, by a small modification to Algorithm 13;
see Exercise 5.3.
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Fig. 5.2 Schematic of the set S of all admissible failure-sparse executions that include
configuration C. Solid lines (e, 8, ) represent single executions. Shaded triangle with
endpoint C', D or E represents all executions in $ that include that configuration. If all
decisions in the white triangle are 1, then 1D is 1-valent; if all decisions in the black triangle
are 0, then F is 0-valent; in this case C is bivalent.

A key notion in this proof (and in others) is the set of decisions that can be reached
from a particular configuration. The next few definitions formalize this notion.

The valence of configuration C is the set of all values that are decided upon by a
nonfaulty processor in some configuration that is reachable from C in an (admissible
failure sparse) execution that includes C'. By the termination condition, the set cannot
be empty. C' is univalent if this set contains one value; it is O-valent if this value is
0, and 1-valent if this value is 1. If the set contains two values then C is hivalent.
Figure 5.2 shows an example of O-valent, 1-valent, and bivalent configurations.

If some processor has decided in a configuration, the agreement condition implies
that the configuration is univalent.

Theorem 5.3 Any consensus algorithm for n processors that is resilient to f crash
failures requires at least f + 1 rounds in some admissible execution, foralln > f+2.

Proof. Consider any consensus algorithm A for n processors and f crash failures,
withn > f 4 2.

The proof strategy is, first, to show that there exists an (f — 1)-round execution
of A in which the configuration at the end is undecided. The next step is to show
that with just one more round 1t is not possible for the processors to decide explicitly.
Thus at least f 4+ 1 rounds are required for decision.

The (f — 1)-round execution in the first stage is constructed by induction. Lemma
5.4 shows that there is an “undecided” initial configuration. Lemma 5.5 shows how
to construct an undecided k-round execution out of an undecided (k& — 1)-round
execution, up to the limit of f — 1. The executions manipulated by the proof are
failure-sparse ones, and thus “undecided” here means bivalent with respect to failure-
sparse executions.

Lemma 5.4 Algorithm A has a bivalent initial configuration.
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Proof. Suppose in contradiction that all initial configurations are univalent. Since
the initial configuration in which all inputs are 0 is O-valent and the initial configu-
ration in which all inputs are 1 is 1-valent, there must exist two configurations that
differ in the input of only one processor yet have different valences.

In particular, let /g be a O-valent initial configuration and J; be a 1-valent initial
configuration such that Iy and I, differ only in the input of processor p;.

Consider the schedule ¢ in which p; fails initially and no other processors fail.
Assume that o is long enough to ensure that all the nonfaulty processors decide when
starting from [y. Note that the resulting execution is failure sparse. Since [ is
0-valent, applying o to I results in a decision of 0.

‘What happens if & is applied to /1 ? The processors other than p; are nonfaulty and
cannot tell the difference between these two executions (formally, the executions are
similar with respect to every processor other than p;). Thus the nonfaulty processors
decide 0 in I;, contradicting the 1-valence of /).

Thus there is at least one bivalent initial configuration. O

Lemma 5.5 Foreach k, 0 < k < f — 1, there is a k-round execution of A that ends
in a bivalent configuration.

Proof. The proof is by induction on k. The base case, £ = 0, follows from
Lemma 5.4.

Assume that the lemma is true for £ — 1 > 0 and show itis true for k < f — 1.
Let g1 be the (£ — 1)-round execution ending in a bivalent configuration whose
existence is guaranteed by the inductive hypothesis.

Assume in contradiction that all one-round extensions of a_1 with at most one
additional crash end in a univalent configuration.

Without loss of generality, assume that the one-round failure-free extension of
ak—1, denoted Bk, leads to a 1-valent configuration. Since ag—; ends in a bivalent
configuration, there is another one-round extension of «x_.; that ends in a O-valent
configuration. Call this execution ;. Since we are working exclusively with failure-
sparse execution, exactly one failure occurs in round & of ;. In the execution 74, let
p; be the processor that crashes and q, . . ., g, be the processors to whom p; fails to
send (see Fig. 5.3); m is some value between 1 and n inclusive.

For each j, 0 < j < m, define execution aj, to be the one-round extension of
ax—1 in which p; fails to send to ¢y,...,¢;. Note that al = B and is 1-valent,
whereas o' = ¥ and is O-valent.

What are the valences of the intermediate o executions? Somewhere in the
sequence o, o}, ..., a*~ !, o there is a switch from l-valent to O-valent. Let j be
such that o, is 1-valent and a*" is O-valent. Note that the only difference between
a{; and ai“ is that p; sends to gj41 in ai' but not in ai“.‘

The number of faulty processors in «j, (and also in ai;"'l) is less than f, since
at most £ — 1 < f — 1 processors crash in a;_y and p; crashes in round k. Thus
there is still one more processor that can crash without violating the bound f on the
number of failures. Consider the admissible extensions d] and 67+ of o] and o],
respectively, in which ¢;4, crashes at the beginning of round & + 1, without ever
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Fig. 5.3 Tlustration for the proof that there is a k-round execution ending in a bivalent
configuration (Lemma 5.5). Valences of configurations are indicated by values in boxes. Edge
labels indicate to whom p; fails to send.

getting a chance to reveal whether or not it received a message from p; inround & +1,
and no further processors crash. The two executions 67, and 5,{,+1 are similar with
respect to every nonfaulty processor, since the only difference between them is that p;
sends to g;.41 ind] butnotin J,Jc"‘l, yet g;41 crashes before revealing thisinformation.
Thus a‘}; and ai*’l must have the same valence, which is a contradiction.

Thus there must exist a one-round extension of «_; with at most one additional

crash that ends in a bivalent configuration. O

From the previous lemma, we have an (f — 1)-round execution that ends in a
bivalent configuration. The next lemma concerns round f — this round may not
preserve bivalence, but we show that nonfaulty processors cannot determine yet what
decision to make, and thus an additional round is necessary.

Lemma 5.6 Ifay_y isan (f — 1)-round execution of A that ends in a bivalent con-
figuration, then there exists a one-round extension of ay_y in which some nonfaulty
processor has not decided.

Proof. Let 3; be the one-round extension of «;_; in which no failure occurs in
round f. If §; ends in a bivalent configuration, we are done. Suppose 3 ends in a
univalent configuration, say 1-valent. Since the configuration at the end of ay_1 is
bivalent, some other one-round extension of « results in a configuration that is either
bivalent (in which case we are done) or O-valent; call this execution ;. It must be
that exactly one processor fails in round f of -, that is, some processor p; is faulty
and fails to send a message to some nonfaulty processor p;. The reason why p; exists
is that p; cannot fail in round f, since p; is the processor that fails in this round, and
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Fig. 5.4 [Illustration for the proof that some processor is still undecided in round f
(Lemma 5.6). Valences of configurations are indicated by values in boxes. Edge labels
indicate to whom p; fails or does not fail to send.

p; cannot already have failed since otherwise there would be no observable difference
between the executions. Consider a third one-round extension d; of a;_; that is the
same as +; except that p; succeeds in sending to some nonfaulty processor py other
than p;; px must exist since n > f + 2. (Itis possible for d; to be the same as ~;.)
See Fig. 5.4.

The executions ; and d; are similar with respect to px. Thus at the end of round
[ indy, py is either undecided or has decided 1, since 3; is 1-valent. Similarly, the
executions v; and é; are similar with respect to p;. Thus at the end of round f in
dy, pj is either undecided or has decided 0, since 4y is O-valent. Since the algorithm
satisfies the agreement property, it cannot be the case in é; that both p; and px have
decided. O

We now conclude the proof of Theorem 5.3. Lemmas 5.5 and 5.6 together imply
the existence of an f-round execution in which some nonfaulty processor has not
decided. Inevery admissible extension of this execution (for instance, the extension in
which there are no further crashes), at least f + 1 rounds are required for termination.

O

5.2 SYNCHRONOUS SYSTEMS WITH BYZANTINE FAILURES

We now turn to study more severe, malicious failures, still in the context of syn-
chronous systems. This model is often called the Byzantine model, because of the
following metaphoric description of the consensus problem:
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Several divisions of the Byzantine army are camped outside an enemy city. Each
division is commanded by a general. The generals can communicate with each other
only by reliable messengers. The generals should decide on a common plan of action,
that is, they should decide whether to attack the city or not (cf. agreement), and if
the generals are unanimous in their initial opinion, then that opinion should be the
decision (cf. validity). The new wrinkle is that some of the generals may be traitors
(that is why they are in the Byzantine army) and may try to prevent the loyal generals
from agreeing. To do so, the traitors send conflicting messages to different generals,
falsely report on what they heard from other generals, and even conspire and form a
coalition.

5.2.1 Formal Model

We need to modify the definition of execution from Chapter 2 (for reliable syn-
chronous message passing) to handle Byzantine processor failures. In an execution
of an f-resilient Byzantine system, there exists a subset of at most f processors, the
faulty processors.? In a computation step of a faulty processor, the new state of the
processor and the contents of the messages sent are completely unconstrained. As in
the reliable case, every processor takes a computation step in every round and every
message sent is delivered in that round.

Thus a faulty processor can behave arbitrarily and even maliciously, for example,
it can send different messages to different processors {or not send messages at all)
when it is supposed to send the same message. The faulty processors can appear to
coordinate with each other. In some situations, the recipient of a message from a
faulty processor can detect that the sender is faulty, for instance, if the message is
improperly formatted. Difficulties arise when the message received is plausible to
the recipient, yet not correct. A faulty processor can also mimic the behavior of a
crashed processor by failing to send any messages from some point onward.

5.2.2 The Consensus Problem Revisited

The definition of the consensus problem in the presence of Byzantine failures is the
same as for crash failures and is repeated here. Each processor p; has input and output
state components, z; and y;; initially, z; holds a value from some well-ordered set
and y; is undefined. Any assignment to y; is irreversible. A solution to the consensus
problem must guarantee the following:

Termination: In every admissible execution, y; is eventually assigned a value, for
every nonfaulty processor p;.

Agreement: In every execution, if y; and y; are assigned, then y; = y;, for all
nonfaulty processors p; and p;. That is, nonfaulty processors do not decide on
conflicting values.

2In some of the literature, the upper bound on the number of Byzantine processors is denoted #, for traitors.
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Validiry: In every execution, if, for some value v, ; = v for all processors p;, and if
y; 1s assigned for some nonfaulty processor p;, then y; = v. That is, if all the
processors have the same input, then any value decided upon by a nonfaulty
processor must be that common input.

For input sets whose size is larger than two, this validity condition is not equivalent
to requiring that every nonfaulty decision value be the input of some processor, as
Exercise 5.7 asks you to show. As in the crash case, no requirements are placed on
the decisions of faulty processors.

We first show a lower bound on the ratio between faulty and nonfaulty processors.
We then present two algorithms for reaching consensus in the presence of Byzantine
failures. The first is relatively simple but uses exponential-size messages. The
round complexity of this algorithm is f + 1 and matches the lower bound proved in
Section 5.1.4. Recall that the f 4+ 1 round lower bound was shown assuming crash
failures. The same lower bound also holds in any system that is worse-behaved,
including one with Byzantine failures; a Byzantine-faulty processor can act like a
crash-faulty processor. The second algorithm is more complicated and doubles the
number of rounds; however, it uses constant-size messages.

5.2.3 Lower Bound on the Ratio of Faulty Processors

In this section, we prove that if a third or more of the processors can be Byzantine,
then consensus cannot be reached. We first show this result for the special case of a
system with three processors, one of which might be Byzantine; the general result is
derived by reduction to this special case.

Theorem 5.7 In a system with three processors and one Byzantine processor, there
is no algorithm that solves the consensus problem.

Proof. Assume, by way of contradiction, that there is an algorithm for reaching
consensus in a system with three processors, pg, p1, and pg, connected by a complete
communication graph. Let A be the local algorithm (state machine) for pg, B the
local algorithm for py, and C the local algorithm for p,.

Consider a synchronous ring system with six processors in which pg and pg have
A for their local algorithm, p; and p4 have B for their local algorithm, and p; and
ps have C for their local algorithm, as depicted in Figure 5.5(a). We cannot assume
that such a system solves consensus, since the combination of A, B, and C only
has to work correctly in a triangle. However, this system does have some particular,
well-defined behavior, when each processor begins with an input value and there are
no faulty processors.

The particular execution of the ring of interest is when the input values are 1 for
po» p1, and pg and O for ps, pa, and ps (see Fig. 5.5(a)). Call this execution 5. This
execution will be used to specify the behavior of faulty processors in some triangles.

Consider an execution «; of the algorithm in a triangle in which all processors
start with input 1 and processor ps is faulty (see Fig. 5.5(b)). Furthermore, assume
that processor py is sending to py the messages sent in 3 by ps (bottom left) to py
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Fig. 5.5 Proof of Theorem 5.7.

and to p; the messages sent in 3 by p, (upper right) to p;. By the validity condition,
both pg and p; must decide 1 in .

Now consider an execution a5 of the algorithm in a triangle in which all processors
start with input 0, and processor py is faulty (Fig. 5.5(c)). Furthermore, assume that
processor py is sending to p; the messages sent in 3 by ps (top left) to p4 and to pg
the messages sent in 3 by pg (bottom right) to p5. By the validity condition, both p;
and ps must decide 0 in as.

Finally, consider an execution «g of the algorithm in a triangle where processor
po starts with input 1, processor pq starts with input 0, and processor p; is faulty
(Fig. 5.5(d)). Furthermore, assume that processor p; is sending to p; the messages
sent in 3 by p4 (middle left) to ps and to py the messages sent in 5 by p; (middle
right) to pg.

We now argue that o ¢ 3. Since the messages sent by faulty processor p, are
defined with reference to 3, a simple induction on the round number verifies that pg
has the same view in 7 as itdoes in 3 and that p, has the same view in «; as it does
in 3. Similarly, induction on the round number verifies that py has the same view in
3 as it does in a3 and py has the same view in § as p; does in a3. Thus a; 2 as,
and consequently, py decides 1 in as.

But since oy b2 a3 (cf. Exercise 5.10), p; decides 0 in a3, violating the agreement
condition, a contradiction. O
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We prove the general case by reduction to the previous theorem.

Theorem 5.8 In a system with n processors and f Byzantine processors, there is no
algorithm that solves the consensus problem if n < 3f.

Proof. Assume, by way of contradiction, that there exists an algorithm that reaches
consensus in a system with n processors, f of which might be Byzantine. Partition
the processors into three sets, Py, P1, and Ps, each containing at most n2 /3 processors.
Consider now a system with three processors, pg, p1, and ps. We now describe a
consensus algorithm for this system, which can tolerate one Byzantine failure.

In the algorithm, pg simulates all the processors in Py, p; simulates all the pro-
cessors in P;, and po simulates all the processors in P;. We leave the details of the
simulation to the reader. If one processor is faulty in the three-processor system,
then since n/3 < f, at most f processors are faulty in the simulated system with
n processors. Therefore, the simulated algorithm must preserve the validity and
agreement conditions in the simulated system, and hence also in the three-processor

system.
Thus we have a consensus algorithm for a system with three processors that
tolerates the failure of one processor. This contradicts Theorem 5.7, |

5.2.4 An Exponential Algorithm

In this section, we describe an algorithm for reaching consensus in the presence of
Byzantine failures. The algorithm takes exactly f + 1 rounds, where f is the upper
bound on the number of failures, and requires that n > 37 + 1. Thus the algorithm
meets two of the lower bounds for consensus in the presence of Byzantine failure, on
the number of rounds and resilience. However, it uses messages of exponential size.

The algorithm contains two stages. In the first stage, information is gathered by
communication among the processors. In the second stage, each processor locally
computes its decision value using the information collected in the previous stage.

It is convenient to describe the information maintained by each processor during
the algorithm as a tree in which each path from the root to a leaf contains f + 2 nodes;
thus the height of the tree is f + 1. We label nodes with sequences of processors’
names in the following manner. The root is labeled with the empty sequence. Let
v be an internal node in the tree labeled with the sequence iy, i, .. ., i,; for every ¢
between 0 and n— 1 that is not in this sequence, v has one child labeled i1, 45, ..., 4., ¢.
(Fig. 5.6 contains an example for a system with » = 4 and f = 1; the shadings in
the nodes at level 2 will be used in Fig. 5.7.) Note that no processor appears twice in
the label of a node. A node labeled with the sequence m corresponds to processor p;
if m ends with 1.

In the first stage of the algorithm, information is gathered and stored in the nodes
of the tree. In the first round of the information gathering stage, each processor sends
its initial value to all processors, including itself.> When a nonfaulty processor p;

3 Although processors do not actually have channels to themselves, they can “pretend” that they do.
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Fig. 5.6 The exponential information gathering tree; n = 4, f = 1.

receives a value z from processor p;, it stores the received value at the node labeled
j in its tree; a default value, v, , is stored if z is not a legitimate value or if no value
was received. In general, each processor broadcasts the rth level of its tree at the
beginning of round . When a processor receives a message from p; with the value
of the node labeled i1, ...,1,, it stores the value in the node labeled %;,...,%,,J
in its tree. Figure 5.7 shows how the information received from ps2 in round 2,
corresponding to the shaded nodes at level 2 in Figure 5.6, is stored at the nodes in
level 3.

Intuitively, p; stores in node 41, .. ., 4, j the value that “p; says that p; _says that
... that p;, said.” Given aspecific execution, wereferto this valueas tree; (44, . . ., ir, J),
omitting the subscript 7 when no confusion will arise.

Information gathering as described above continues for f + 1 rounds, until the
entire tree has been filled in. At this point, the second stage of computing the decision
value locally starts. Processor p; computes the decision value by applying to each
subtree a recursive data reduction function resolve. The value of the reduction
function on p;’s subtree rooted at a node labeled with 7 is denoted resolve;(r),
omitting the subscript ¢ when no confusion will arise. The decision value is resolve; (},
that is, the result of applying the function to the root of the tree.

The function resolve is essentially a recursive majority vote and is defined for a
node 7 as follows. If 7 is a leaf, then resolve(w) = tree(); otherwise, resolve(r) is
the majority value of resolve(r”’), where 7’ ranges over all children of 7 (v, if no
majority exists).

Fig. 5.7 How level 2 of p is stored at level 3 of another processor.
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resolve; treey tree;

Fig. 5.8 Illustration for the proof of Lemma 5.9.

In summary, processor p; gathers information for f + 1 rounds, computes the
reduced value using resolve; and decides on resotve; ().

We now prove that the algorithm is correct. Fix an admissible execution of the
algorithm. We first prove Lemma 5.9, which is useful in establishing the validity
condition. It states that nonfaulty processor p;’s resolved value for what another
nonfaulty process p; reports for node 7’ equals the value that p; has stored in its tree
in node 7'

A key aspect of the proof is that, if a node 7 in p;’s tree corresponds to p;, then
the value stored in tree; (w) was received by p; in a message from p;.

Lemma 5.9 For every tree node label © of the form n'j, where p; is nonfaulty,
resolve; () = tree; ('), for every nonfaulty processor p;.

Proof. The proof is by induction on the height of the node = in the tree, starting
from the leaves.

The basis of the induction is when 7 is a leaf. By definition, resolve;(7) equals
tree; (7). Note that tree; () stores the value for #/ that p; sent to p; in the last round.
Since p; is nonfaulty, this value is tree;(n’).

For the inductive step, let 7 be an internal node. Note that 7 has depth at most
f- Since the tree has f + 2 levels, the root has degree n, and in every level of the
tree the degree of nodes decreases by one, it follows that the degree of = is at least
n— f. Since n > 3f + 1, the degree of « is at least 2 f + 1. Thus the majority of the
children of 7 correspond to nonfaulty processors.

Let 7k be some child of = that corresponds to a nonfaulty processor p; (see
Fig. 5.8). By the inductive hypothesis, resolve; (rk) equals freex (). Since p; is
nonfaulty, treey, () equals tree;(n’), that is, p; correctly reports to px the value that
p; has stored for 7’

Thus p; resolves each child of 7 corresponding to a nonfaulty processor to
tree;(n’), and thus resolve; () equals the majority value, tree; (7). (]

We can now show the validity condition. Suppose all nonfaulty processors start
with the same input value, v. The decision of each nonfaulty processor p; is resolve; (),
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which is the majority of the resolved values for all children of the root. For each
child j of the root where p; is nonfaulty, Lemma 5.9 implies that resolve;(j) equals
tree; (), which is p;’s input v. Since a majority of the children of the root correspond
to nonfaulty processors, p; decides v.

The next lemma is used to show the agreement condition. A node 7 is common in
an execution if all nonfaulty processors compute the same reduced value for 7, that
is, resolve; (1) = resolve; (), for every pair of nonfaulty processors p; and p;. A
subtree has a common frontier if there is a common node on every path from the root
of the subtree to its leaves.

Lemma 5.10 Let m be a node. If there is a common frontier in the subtree rooted at
7, then T is common.

Proof. The lemma is proved by induction on the height of . The base case is when
w is a leaf and it follows immediately.

For the inductive step, assume that 7 is the root of a subtree with height & + 1
and that the lemma holds for every node with height k. Assume in contradiction
that 7 is not common. Since by hypothesis the subtree rooted at 7 has a common
frontier, every subtree rooted at a child of = must have a common frontier. Since
the children of = have height &, the inductive hypothesis implies that they are all
common. Therefore, all processors resolve the same value for all the children of =
and the lemma follows since the resolved value for 7 is the majority of the resolved
values of its children. U

Note that the nodes on each path from a child of the root of the tree to a leaf
correspond to different processors. Because the nodes on each such path correspond
to f + 1 different processors, at least one of them corresponds to a nonfaulty processor
and hence is common, by Lemma 5.9. Therefore, the whole tree has a common
frontier, which implies, by Lemma 5.10, that the root is common. The agreement
condition now follows. Thus we have:

Theorem 5.11 There exists an algorithm for n processors that solves the consensus
problem in the presence of f Byzantine failures within f + 1 rounds using exponential
size messages, if n > 3f.

In each round, every processor sends a message to every processor. Therefore, the
total message complexity of the algorithmis n?(f +1). Unfortunately, in each round,
every processor broadcasts a whole level of its tree (the one that was filled in most
recently) and thus the longest message contains n{n — 1)(n —2) - -(n— (f+ 1)) =
O(n/*?) values.

5.2.5 A Polynomial Algorithm

The following simple algorithm uses messages of constant size, takes 2( f+ 1) rounds,
and assumes that » > 4 f. It shows that it is possible to solve the consensus problem
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Algorithm 16 A polynomial consensus algorithm in the presence of
Byzantine failures: code for p;, 0 <i<n—1.

Initially prefli] = /1 initial preference for self is for own input
and pref(j] = vy, forany j # i /1 default for others
1 round2k—-1,1<k<f+1: /1 first round of phase k
2: send {pref[i]) to all processors

3 receive (v;) from p; and assign to pref{j], forall 0 < j <n— 1,7 #1

4: let maj be the majority value of pref{0], . . ., prefin — 1] (v, if none)

5 let muit be the multiplicity of maj

6: round 2k, 1 < k< f4+ 1: /1 second round of phase &
7 if i = k then send (maj) to all processors // king of this phase
8: receive {king-maj) from py (v, if none)

0: itmult > 3+ f

10: then pref{i] := maj

1 else pref(i] := king-maj

12: ifk = f+1theny := prefli] /I decide

with constant-size messages, although with an increase in the number of rounds and
a decrease in the resilience.

The algorithm contains f + 1 phases, each taking two rounds. Each processor has
a preferred decision (in short, preference) for each phase, initially its input value. At
the first round of each phase, all processors send their preferences to each other. Let
v¥ be the majority value in the set of values received by processor p; at the end of
the first round of phase k. If there is no majority, then a default value, v, , is used.
In the second round of the phase, processor py, called the kirng of the phase, sends
its majority value v,’j to all processors. If p; receives more than n/2 + f copies of
v¥ (in the first round of the phase) then it sets its preference for the next phase to be
vF; otherwise, it sets its preference to be the phase king’s preference, v’,z, received
in the second round of the phase. After f + 1 phases, the processor decides on its
preference.

Each processor maintains a local array pref with n entries. The pseudocode
appears in Algorithm 16.

The following lemmas are with respect to an arbitrary admissible execution of the
algorithm. The first property to note is persistence of agreement:

Lemma 5.12 If all nonfaulty processors prefer v at the beginning of phase k, then
they all prefer v at the end of phase k, forallk, 1 <k < f+ 1.

Proof. Since all nonfaulty processors prefer v at the beginning of phase %, each
processor receives at least n — f copies of v (including its own) in the first round of
phase k. Sincen > 4f, n— f > n/2+ f, which implies that all nonfaulty processors
will prefer v at the end of phase k. U
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This immediately implies the validity property: If all nonfaulty processors start
with the same input », they continue to prefer v throughout the phases (because the
preference at the end of one phase is the preference at the beginning of the next);
finally, they decide on v at the end of phase f + 1.

Agreement is achieved by the king breaking ties. Because each phase has a
different king and there are f + 1 phases, then at least one phase has a nonfaulty king.

Lemma 5.13 Let g be a phase whose king py is nonfaulty. Then all nonfaulty
processors finish phase g with the same preference.

Proof. Suppose that all nonfaulty processors use the majority value received from
the king for their preference (Line 11). Since the king is nonfaulty, it sends the same
message and thus all the nonfaulty preferences are the same.

Suppose that some nonfaulty processor, say p;, uses its own majority value, say
v, for its preference (Line 10). Thus p; receives more than n/2 + f messages for
v in the first round of phase g. Consequently every processor, including the king
Pg- receives more than n/2 messages for v in the first round of phase gy and sets its
majority value to be v. Thus, no matter whether it executes Line 10 or Line 11 to set
its preference, every nonfaulty processor has v for its preference. ]

Therefore, at phase g + 1 all processors have the same preference, and the persis-
tence of agreement (Lemma 5.12) implies that they will decide on the same value at
the end of the algorithm. This implies that the algorithm has the agreement property
and solves the consensus problem.

Clearly, the algorithm requires 2(f -+ 1) rounds and messages contain one bit.
Thus we have:

Theorem 5.14 There exists an algorithm for n processors that solves the consensus
problem inthe presence of f Byzantine failures within2( f -+ 1) rounds using constant
size messages, if n > 4f.

5.3 IMPOSSIBILITY IN ASYNCHRONOUS SYSTEMS

We have seen that the consensus problem can be solved in synchronous systems in
the presence of failures, both benign (crash) and severe (Byzantine). We now turn
to asynchronous systems. We assume that the communication system is completely
reliable and the only possible failures are caused by unreliable processors. We show
that if the system is completely asynchronous, then there is no consensus algorithm
even in the presence of a single processor failure. The result holds even if processors
fail only by crashing. The asynchronous nature of the system is crucial for this
impossibility proof.

This impossibility result holds both for shared memory systems, if only read/write
registers are used, and for message-passing systems. We first present the proof for
shared memory systems in the simpler case of an (n — 1)-resilient algorithm (also
called a wait-free algorithm}), where all but one of the n processors might fail. Then



IMPOSSIBILITY IN ASYNCHRONOUS SYSTEMS 109

we use a simulation to deduce the same impossibility result for the harder case of
shared memory systems with n processors only one of which might crash. Another
simulation, of shared memory in message-passing systems, allows us to obtain the
impossibility result for message-passing systems as well.

The only change to the formal model needed is to allow the possibility of processors
crashing, in both shared memory and message-passing asynchronous systems. Thisis
done for shared memory simply by changing the definition of admissible executions
to require that all but f of the processors must take an infinite number of steps, where
f is the resiliency of the system (number of failures to be tolerated). In addition, for
message passing, the definition of admissible execution requires that all messages
sent must be eventually delivered, except for messages sent by a faulty processor in
its last step, which may or may not be delivered.

The precise problem statement is the same as for the synchronous model in
Section 5.1.2; we emphasize that ; and y; are private state components of processor
p;, not shared variables. We concentrate on the case of trying to decide when the
input set is simply {0, 1}.

5.3.1 Shared Memory—The Wait-Free Case

We first consider the relatively simple situation of n > 1 processors all but one of
which might crash. That is, we show that there is no wait-free algorithm for consensus
in the asynchronous case. We assume that the shared registers are single-writer but
multi-reader. (Chapter 10 shows that multi-writer registers can be simulated with
single-writer registers, and thus this impossibility result also holds for multi-writer
registers.)

The proof proceeds by contradiction. We assume there is a wait-free algorithm
and then create an admissible execution in which no processor decides. This proof
relies on the notion of bivalence, which was first introduced in Section 5.1.4 for
a specific class of executions (failure-sparse ones) in the synchronous model. We
adapt the definition to the asynchronous model and generalize it for all admissible
executions, as follows.

Throughout this section, we consider only configurations that are reachable from
an initial configuration by a prefix of an admissible execution. The valence of
configuration C is the set of all values that are decided upon, by any processor, in
some configuration reachable from C'. Here, the term “reachable” is with respect to
any execution, and not just failure-sparse executions as it was in Section 5.1.4. In an
asynchronous system, a faulty processor cannot be distinguished from a nonfaulty
processor in a finite execution, and therefore, the definition of valence refers to the
decision of any processor, not just the nonfaulty processors. Bivalence, univalence,
1-valence, and O-valence are defined analogously to the definitions in Section 5.1.4,
but again with regard to any execution, not just failure-sparse ones, and any processor,
not just nonfaulty ones.

The proof constructs an infinite execution in which every configuration is bivalent
and thus no processor can decide.
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In this section, we are concerned with the similarity of configurations in a shared
memory model, as opposed to the message-passing synchronous lower bound in Sec-
tion 5.1.4, where we worked with similar executions. Here we review Definition 4.1,
originally used to study mutual exclusion algorithms: Two configurations C; and
C, are similar to processor p;, denoted C'y B Cs, if the values of all the shared
variables and the state of p; are the same in C and C5. Lemma 5.15 shows that if
two univalent configurations are similar for a single processor, then they cannot have
different valences.

Lemma 5.15 Let C, and Cy be two univalent configurations. If Cy % Cs, for some
processor p;, then Cy is v-valent if and only if Cy is v-valent, forv =0, 1.

Proof. Suppose C is v-valent. Consider an infinite execution from C in which
only p; takes steps. Since the algorithm is supposed to be wait-free, this execution is
admissible and eventually p; must decide. Since C is v-valent, p; must eventually
decide v. Apply the same schedule to Cs. Since C; % Cs and only p; takes steps, it
follows that p; decides v also in the execution from C5. Thus Cj is also v-valent. []

Lemma 5.16 states that some initial configuration is bivalent. Exercise 5.15 asks
you to prove this fact, which is just a simpler version of Lemma 5.4.

Lemma 5.16 There exists a bivalent initial configuration.

Note that given a configuration C, there are n possible configurations that can
immediately follow C": one for every possible processor to take the next step. If C'is
bivalent and the configuration resulting by letting p; take a step from C' is univalent,
then p; is said to be critical in C'. We next prove that not all the processors can be
critical in a bivalent configuration:

Lemma 5.17 If C is a bivalent configuration, then at least one processor is not
critical in C.

Proof. Assume, by way of contradiction, that all processors are critical in C. Since
C is bivalent, it follows that there exist two processors, p; and p;, such that i(C) is
(O-valent and j(C) is 1-valent. The rest of the proof depends on the type of accesses
performed by the processors in these steps.

If p; and p; access different registers or if both read the same register, then
i(j(C)) is the same as j(i(C)), which implies that {(C') and j(C) cannot have
different valences.

Since registers are single-writer, the only remaining case is when one processor
writes to a shared register and the other processor reads from the same register.
Without loss of generality, assume that p; writes to & and p; reads from 2. Consider
the configurations ¢(C) and #(j(C)), that is, the configurations resulting when p;
takes a step from C and when p; and then p; take a step from C' (see Fig. 5.9).
Note that i(j(C)) is 1-valent and #(C) is O-valent. However, i(j(C)) % i(C), which
contradicts Lemma 5.15. M|
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Fig. 5.9 lustration for the proof of Lemma 5.17.

We now inductively create an admissible execution CyiyChis ... in which the
configurations remain bivalent forever. Let Cyy be the initial bivalent configuration
provided by Lemma 5.16. Suppose the execution has been created up to bivalent
configuration Cx. By Lemma 5.17, some processor is not critical in C; denote
this processor by p;,. Then p;, can take a step without resulting in a univalent
configuration. We apply the event i to Cj to obtain Cy41, which is bivalent, and
repeat the process again.

The execution constructed in this manner is admissible for the wait-free case,
because at least one processor takes an infinite number of steps. It is possible that
after some point, all the p;,’s are the same, meaning that n — 1 processors have
failed. The strong assumption of wait freedom made our life easier in constructing
this counterexample execution (cf. the complications in modifying this proof for the
1-resilient case in Exercise 5.18).

To summarize, we have constructed an admissible execution in which all the
configurations are bivalent. Therefore, no processor ever decides, contradicting the
termination property of the algorithm and implying:

Theorem 5.18 There is no wait-free algorithm for solving the consensus problem in
an asynchronous shared memory system with n processors.

5.3.2 Shared Memory—The General Case

The impossibility proof of Section 5.3.1 assumed that the consensus algorithm is wait-
free, that is, each processor must be able to decide even when all other processors fail.
However, a stronger claim holds: There is no consensus algorithm even if only one
processor may fail. This section proves this impossibility result. There exists a direct
proof of this claim (see the chapter notes and Exercise 5.18); here we prove the more
general result by reduction to the impossibility result of Section 5.3.1. Specifically,
we assume, by way of contradiction, that there is a consensus algorithm for a system
of n > 2 processors that tolerates the failure of one processor and show that there is
a wait-free consensus algorithm for a system of two processors, that is, an algorithm
that tolerates the failure of one processor. (Note that in the case of two processors, an
algorithm that tolerates the failure of one processor is wait-free, and vice versa.) As
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we just proved that there can be no wait-free algorithm for any value of #, including
n = 2, the assumed -resilient algorithm cannot exist.

5.3.2.1 Overview of Simulation The reduction works by having two proces-
sors simulate the code of the local algorithms (state machines) of the n processors.
To explain the idea in more detail, let us denote the n simulated processors by
90, . . -, ¢n—1 and, as usual, denote the two sirmulating processors by pp and p;.

A simple approach to the simulation would be to let py simulate half of the
processors and let p; simulate the other half of the processors. Under this approach,
howeyver, a failure of a single simulating processor may lead to the failure of a majority
of the simulated processors. Thus we would only be able to derive the impossibility
of solving consensus when a majority of the processors may fail, and not when just
a single processor may fail.

Instead, each of py and p; goes through the codes of ¢, . . ., gn—1, inround-robin
order, and tries to simulate their computation, one step at a time. Each simulating
processor uses its input as the input for each simulated code. Once a decision is
made by some simulated code, this decision is taken as the output by the simulating
processor, which then stops the simulation.

It is possible that both py and p; may try to simulate the same step, say, the kth,
of the same simulated processor, q;. To guarantee the consistency of the simulation,
we require that py and p; agree on each step of each simulated processor. Roughly
and glossing over some details, this is done as follows: When a simulating processor
simulates the kth step of g;, it writes its suggestion for this step, then it checks to
see whether the other processor has written a suggestion for the kth step of g;. If
the other processor has not yet written a suggestion, the first processor declares itself
as the winner (by setting a flag to be 1), and its suggestion is used henceforth as the
kth step for the simulated processor ¢;. Otherwise, if the other processor has already
written a suggestion, the first processor sets its flag to be 0. If both processors set their
flags to 0, processors subsequently break the tie by using the suggestion of py as the
kth simulated step. (This is very similar to the asymmetric code for two-processor
mutual exclusion, Algorithm 11.)

There are situations when it is not clear which processor wins, for example, if the
flag of pg is O and the flag of p; is not yet set for the last simulated step of some
processor g;. In this case, we cannot know the result of this step until p; sets its flag.
Thus the simulation of the code of ¢; might be blocked if p; fails before writing its
flag. Superficially, this seems to imply that the simulation algorithm is not wait-free.
Yet, note that the reason we are blocked is that some simulating processor (in the
above example, p;) is in the middle of simulating a step of ¢;. Clearly, this means
it is not in the middle of simulating any step of any other simulated processor ;.
As we shall show below, this means that the other processor (in the above example,
po) can continue to simulate the other processors’ codes on its own until it is able to
decide. Thus the simulation of at most one processor can be stuck.

We now discuss the main details that were glossed over in the above description,
namely, what a step is and what the suggestions made by simulating processors are.
We make the following assumptions about the algorithm being simulated:
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1. Each processor g; can write to a single shared register, whose initial value is
arbitrary

2. The code of each processor ¢; consists of strictly alternating read steps and
write steps, beginning with a read step

3. Each write step of each processor ¢; writes ¢;’s current state into g;’s shared
register

There is no loss of generality in making these assumptions, because any algorithm
in which processors communicate by reading and writing single-writer multi-reader
registers can be expressed in this form. (See Exercise 5.23.)

Thus ¢;’s computation is a sequence of pairs of read steps and write steps. Each
pair can be viewed as a kind of “super-step” in which g; reads the state of some other
processor g, changes its local state, based on its previous state and the value read,
and writes its new state. Of course, the read and write are not done atomically—
other steps of other processors can be interposed between them. The suggestions
made by the simulating processors can be different and must be reconciled in the
simulation. The state of the simulated processor can be read only after the suggestions
are reconciled. Thus the suggestions are for the states of simulated processors (which
equal the values of shared registers) at the end of the pairs, that is, after the write
steps.

5.3.2.2 The Simulation The algorithm employs the following shared data
structures. For each simulating processor p;, ¢ = 0,1, for each simulated pro-
cessor ¢;, § = 0,...,n — 1, and for each integer k > 0, there are two registers, both
written by p; and read by py_;:

Suggest[j, k,i]: The state of simulated processor ¢; at the end of the kth pair, as
suggested by simulating processor p;. The initial value is 1.

Flag[j, k,i]: The competition flag of simulating processor p;, for the kth pair of
simulated processor g;. The initial value is L.

In addition, each simulating processor maintains some local variables for book-
keeping during the simulation. The main local variable is an array lastpair, where
lastpair(j) is the number of pairs of steps by ¢; that it has simulated. The meanings
of the other local variables should be obvious from their usage in the code.

The pseudocode for the simulation appears in Algorithm 17. The function
transition, given a simulated processor, the current state, and the value read, pro-
duces the next state of the simulated processor, according to its code.

5.3.2.3 Correctness Proof All the lemmas are with respect to an arbitrary
admissible execution of the simulation algorithm. We start with some basic properties
of the synchronization structure of the algorithm. The following simple lemma holds
because, for each pair, a simulating processor first sets its own suggestion and then
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Algorithm 17 Simulating n processors and one failure:
code for p;, i =0, 1.

Initially lastpair{j] = 0,0 < j<n-1

1. j:=0 /1 start with gq
2:  while true do
3: if computed(j,lastpair{]) then /1 previous pair for ¢; is computed
4: k, lastpairlj] .= lastpair[j] + 1
5: if Flag[j, k,1—i] # 1 then /I other processor has not won
6: s := get-state(j, k — 1)
7: if 5 is a decision state of ¢; then
8: decide same and terminate
9: r ;= simulated processor whose variable is

to be read next according to s
10: v := get-read(r)
11: Suggest[j, k, i] := transition(j, s, v) /I new state for ¢;
12: if Suggest[j, k, 1 —i] = L then !l p; has won
13: Flaglj, k,i] =1
14: else Flag[j, k,1]:= 0
15: j=(+1)modn /I go to next simulated processor
16: function computed(j, k) // has kth pair of ¢; been computed?
17: if £ = 0 then return true

18: if Flag[j, k,0] = 1 or Flag[j, k, 1] = | then return true
19: if Flag[j, k,0] = 0 and Flag[j, k, 1] = 0 then return true // need not reread
20: return false

21: function get-state(7, ) {/ return state of ¢; after £th pair
22: if £ = 0 then return initial state of g; with input equal to p;’s input
23: w = winner(j, £) // who won competition on £th pair of ¢;?

24: return Suggest{}, £, w]

25: function get-read(r) // return current value of ¢,.’s variable
26: m =1
27: while computed(r, m) dom :=m + 1

/l'm — 1 is largest numbered pair that is computed for ¢,

28: if m — 1 = 0 then return initial value of ¢,’s variable
29: return get-state(r, m — 1)
30: function winner(j, k) /1 who won competition on £th pair of ¢;7

31: if Flag[j, k,1] = 1 then return | else return O
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checks the other processor’s suggestion. Therefore, at least one of them sees the
other processor’s suggestion and sets its flag to be 0.

Lemma 5.19 For every simulated processor q; and every k > 1, at most one of
Flag[j, k,0) and Flag[j, k, 1] equals 1 in every configuration.

This implies that if one processor’s flag is set to 1, then the other processor’s flag
will be set to 0, if it is set at all. Note, however, that it is possible that both processors
will set their flags to O, if they write their suggestions “together” and then read each
other’s. We say that k is a computed pair of q; either if Flag[j, k, 0] and Flag[j, k, 1]
are both set or one of them is not set and the other one equals 1. We define the winner
of the kth computed pair of ¢; to be the simulating processor p;, i = 0, 1, that sets
Flaglj.k.]} to 1, if there is such a processor, and to be py otherwise. By Lemma 5.19,
the winner is well-defined. Note that the function winner is only called for computed
pairs and it returns the id of the winner, according to this definition. Furthermore,
the procedures get-state and get-read return the winner’s suggestion.

There is a slight asymmetry between get-state and get-read for pair O: get-state
returns the initial state of the processor, which includes the input value, whereas
get-read returns the initial value of the register, which does not include the input
value.

Each processor p; executes Lines 4 through 14 of the main code with particular
values of j and & at most once; we will refer to the execution of these lines as p;’s
simulation of g;’s kth pair.

Lemma 5.20 states that if one processor simulates a pair on its own (in the sense
made precise by the lemma), then its flag will be set to 1. As a result, its suggestion
for this pair will be taken subsequently.

Lemma 5.20 For every simulated processor q;, and every k > 1, if simulating
processor p; executes Line 12 of its simulation of q;'s kth pair before p, _; executes
Line 11 of its simulation of q;'s kth pair, then p; sets Flag[j, k,] to 1.

Thus, if one processor simulates on its own, it is able to decide on the simulated pair
without waiting for the other simulating processor. We can already argue progress:

Lemma 5.21 Suppose simulating processor p; never fails or decides. Then the
values of its lastpair[j] variable grow without bound, forall j, 0 < j < n— 1, except
possibly one.

Proof. Suppose there exists a simulated processor ¢, such that simulating processor
pi’s lastpair(jo] variable does not grow without bound. Since the variable never
decreases, it reaches some value &y and never changes. Since p; is stuck on pair
kq for q;,, pi writes O to Flag[jo, ko, ] and never finds Flag[jo, ko, 1 — ] set. This
behavior is caused by the other simulating processor, p;.;, crashing after writing
Suggesi[jo, ko, 1 — 1] in Line 11 and before writing Flag[jo, ko, 1 — 4] in Line 13
or 14.

Suppose, in contradiction, that p; also fails to make progress on ¢;, for some
J1 # jo- Let k1 be the highest value reached by p;’s lastpair[j;] variable. It is not
hard to see that &, is at least 1.
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By the assumption that p; is stuck on the k;-th pair for ¢;,, computed(jy, k1) is
never true. Thus neither Flag[ji, k1, 7] nor Flag[ji, k1,1 — ¢] is ever set to 1. As
a result, p; executes Lines 6 through 14 of its simulation of ¢;,’s k;-th pair. By
Lemma 5.20, it must be that p; executes Line 12 of its simulation of g;, ’s k;-th pair
after p; —; executes Line 11 of its simulation of ¢;,’s k;-th pair, or else p; would set
its flag to 1. Thus p; finds the other processor’s suggestion already set and sets its
flag to 0. Since computed(ji, k1) is never true, it must be that py _; never sets its flag,
that is, it fails after Line 11 but before Line 13 or 14 of its simulation of ¢;,’s k;-th
pair. But this contradicts the fact that p; ..; fails during the simulation of g¢;,, not g;, .

The above lemma guarantees that if one simulating processor does not halt, then
it makes progress through the simulated codes of at least n» — 1 processors. Yet
this does not necessarily mean that the processor will eventually decide correctly, or
even decide at all. This will follow only if we show that the codes are simulated
correctly. To prove this, we explicitly construct, for each admissible execution o of
the simulation, a corresponding admissible execution S of qg, . . ., ¢n—1, in which the
same state transitions are made and at most one (simulated) processor fails. Because
the algorithm of ¢q, ..., qn-1 is assumed to solve the consensus problem in the
presence of one fault, it follows that the nonfaulty simulated processors eventually
decide correctly in 3 and, therefore, the nonfaulty simulating processors eventually
decide correctly in .

For every simulated processor ¢;, and every k& < 1, we first identify two points in
«: one for the read done in the kth pair from the register of some other processor and
another for the write to ¢;’s register in the kth pair. Note that because the simulated
algorithm is for the read/write model, these points can be separate. The read point is
when the winner of the kth pair of g; returns from the last call to computed in Line 27
of getread. This is the call that returns false, based on the values of the two flags
that are read. The write point is when the winner of the kth pair of g; sets its flag to
1, or, if neither flag is ever set to 1, when the second simulating processor writes () to
its flag.

Strictly speaking, the read point specified above is not well-defined, because the
execution of computed does two reads and thus does not correspond to a single event
in ov. Note, however, that one of these flags is the winner’s own flag and, therefore,
this read need not be from the shared memory, but can instead be done from a copy
in the local memory. Therefore, the execution of computed translates into a single
shared memory operation, and the read point is well-defined.*

The next lemma shows that the values returned by get-read in « are consistent
with the read and write points defined.

Lemma 5.22 Let v be the value suggested by the winner of q;’s kth pair, that is, v
is the value written to Suggest[j, k, i), where i = winner(j, k). Then, in o, any read

4 Another solution is to use atomic snapshots, which will be defined in Chapter 10.
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£th write kth write (k + 1)th write
pomt of ¢; pomt of g; pomt of ¢;

k’th read
pointof ¢,/

Fig. 5.10 llustration for the proof of Lemma 5.22, £ < k.

kth write (k + 1)th write (£ — 1)th write
pomt of g; pomt of ¢; pomt of g;

k'th read
point of g,

Fig. 5.11 llustration for the proof of Lemima 5.22, £ > k + 1.

Jrom the register of q; whose read point is between the kth write point of q; and the
(k + 1)st write point of q; (if it exists) returns v.

Proof. Consider some pair, say the k'-th, of g;: that reads from the register of ¢;,
such that its read point is between the kth write point of ¢; and the next write point
of ¢;. Without loss of generality, assume pyg is the winner for this pair of g;: and let
£ be the value of m when p, finishes Line 27 of procedure get-read. We argue that
£ = k + 1, which proves the lemma.

If £ < k then, since the write point of the kth pair of ¢; is before the read point of
the k’th pair of g;/, the write point of the £th pair of g; is also before the read point
of the k’th pair of ¢;: (see Fig. 5.10). Therefore, either the winner of the £th pair of
g, has set its flag to 1 or both simulating processors wrote () to their flags, before the
read point of the &th pair of ¢;,. Thus when py checks computed(j, £) in the while
loop of get-read, it continues the loop beyond £, a contradiction.

On the other hand, if £ > k 4 1, then the write point for the (£ — 1)th pair of ¢; is
after the read point of the &’th pair of ¢;: (see Fig. 5.11). Therefore, at the read point
of the k’th pair of ¢;/, the winner of the ¢th pair of ¢; has not written 1 to its flag,
and one of the processors has not written at all to its flag. Therefore, in Line 27 of
get-read, po finds computed(j, k + 1) false and exits the while loop at k + 1, which
is less than £, a contradiction. U

We now construct an execution 3 of gq, .. ., g,_1 based on execution a;, we will
show a precise correspondence between the two executions that will allow us to
deduce the desired impossibility.

Consider the sequence of read and write points, for all simulated processors, in
a. (The occurrence of the points forms a sequence because each point is an atomic
occurrence incr.) Let o be the sequence of simulated processor indices corresponding
to the read and write points. Define an initial configuration Cy, in which the input
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value of each ¢; is the input value of the simulating processor that is the winner for
the first pair of ¢;. If there is no winner for the first pair of ¢;, then use py’s input
as the input value of ¢; in Cy. Let g be the execution of ¢q, . . ., g, -1 oObtained by
starting with Cyy and applying computation events in the order specified by ¢. In
other words, we let the simulated processors take steps in the order of their read and
write points in a.

Lemma 5.23 shows that the values suggested by the winners for the pairs in o are
consistent with the states and register values in 3.

Lemma 5.23 Let q; be any processor and k be such that q; executes at least k > 0
pairsin (3. Then in o,

(a) eventually computed(j, k) is true, and, after that point,

(b) the value of Suggest(j, k, w), where w is winner(j, k), is equal to the value of q;'s
state (and shared register) after its kth pair in (.

Proof. (a) By the construction of 7 from ¢, if ¢; executes at least & pairs in 3, it
must be that computed(j, k) is set to true.

(b) We will prove this by induction on the prefixes of ¢.

For the basis, we consider the initial configuration of «. Since every processor
has completed O pairs at this point, the lemma is vacuously true.

Suppose the lemma is true for prefix o’ of . Let 7 be the next event in « following
o’. If m does not cause any additional pair to be computed, then the lemma remains
frue.

Suppose 7 causes computed(J, k) to become true. Let ¢ be winner(j, k).

First, we show that p;’s execution of get-state(j, & — 1) returns the correct value.
If k = 1 (this is the first pair by g;), then get-state(j, k¢ — 1) returns the initial state
of ¢;, with input equal to p;’s input. If £ > 1, then get-state(j, k — 1) returns
Suggest[j, k — 1,w], where w is winner(j, k — 1). By the inductive hypothesis,
Suggest[j, k — 1,w] equals the value of ¢;’s state (and shared register) after its
(k — 1)-st pair in 3. Let s be the value returned by get-state(j, & — 1).

Suppose the read step of ¢;’s kth pair involves reading the register of ¢, and at the
time of this read, g, has performed A pairs (and thus h writes).

We now show that p;’s execution of get-read(r) returns the correct value. If b = 0,
then get-read(r) returns the initial value of ¢,’s variable. If & > 0, then get-read(r)
returns Suggest[r, h,w’], where v’ is winner(r, h). By the inductive hypothesis,
Suggest[r, h,w'], equals the value of ¢,.’s state (and shared register) after its hth pair
in 8. By construction of 5, the read point of this execution of get-read is between
the hth and (A + 1)st write points of ¢,. By Lemma 5.22, the value read is correct.
Let v be the value returned by get-read(r).

Thus the winning suggestion for ¢;’s kth pair is transition(j, s, v), which is the
value of g;’s state after its kth pair in §. 0

Exercise 5.24 asks you to put together the pieces shown by Lemma 5.21 and
Lemma 5.23 in order to prove that Algorithm 17 correctly simulates an n-processor
consensus algorithm with two processors. Consequently, if there is a l-resilient
consensus algorithm for n processors, then there is a 1-resilient consensus algorithm
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for two processors. But a 1-resilient consensus algorithm for two processors is
wait-free, and Theorem 5.18 states that no such algorithm can exist. Thus we have
proved:

Theorem 5.24 There is no consensus algorithm for a read/write asynchronous
shared memory system that can tolerate even a single crash failure.

5.3.3 Message Passing

Finally, we extend the result of Section 5.3.2 to message-passing systems. Again, this
is done by simulation; that is, we show how to simulate a message-passing algorithm
by a shared memory algorithm. Therefore, if there is a message-passing algorithm
for consensus there would be a shared memory algorithm for consensus, which is
impossible (Theorem 5.24).

The simulation is simple: For each ordered pair of processors we have a separate
single-writer single-reader register. The “sender” writes every new message it wishes
to send in this register by appending the new message to the prior contents, and the
“receiver” polls this register at every step to see whether the sender has sent anything
new. This can be very easily done, if we assume that registers can hold an infinite
number of values.

Because the receiver needs to check whether a message was sent by a number
of senders, it has to poll a number of registers (one for each sender). However,
in each computation step, the receiver can read only one register. Therefore, the
reader should read the registers in a round-robin manner, checking each register only
once every number of steps. This scheme introduces some delay, because a message
is not necessarily read by the reader immediately after it is written by the sender.
However, this delay causes no problems, because the message-passing algorithm is
asynchronous and can withstand arbitrary message delays. As a result:

Theorem 5.25 There is no algorithm for solving the consensus problem in an asyn-
chronous message-passing system with n processors, one of which may fail by crash-

ing.

Exercises

5.1 Show that for two-element input sets, the validity condition given in Sec-
tion 5.1.2 is equivalent to requiring that every nonfaulty decision be the input
of some processor.

5.2 Consider a synchronous system in which processors fail by clean crashes, that
is, in a round, a processor either sends all its messages or none. Design an
algorithm that solves the consensus problem in one round.

5.3 (a) Modify Algorithm 15 to achieve consensus within f rounds, in the case
f=n~1.
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Algorithm 18 k-set consensus algorithm in the presence of crash failures:
code for processor p;, 0 <i<n— 1.

Initially V = {z}

1
2
3:
4
5

roundr, 1 < r < é +1: /l assume that & divides f
send V to all processors
receive S; fromp;, 0<j<n—1,7#14
-1
Vi=VU U_?:U Sj
if r = f/k + 1 then y := min(V) /1 decide

5.4

55

5.6

5.7

(b) Show that f is a lower bound on the number of rounds required in this
case.

Design a consensus algorithm for crash failures with the following early
stopping property: If f' processors fail in an execution, then the algorithm
terminates within O(f') rounds.

Hint: Processors need not decide in the same round.

Define the k-set consensus problem as follows. Each processor starts with
some arbitrary integer value z; and should output an integer value y; such
that:

Validity: y; € {:L‘o, e azn_l}, and
k-Agreement: the number of different output values is at most 4.

Show that Algorithm 18 solves the k-set consensus problem in the presence
of f crash failures, for any f < n. The algorithm is similar to Algorithm 15
(for consensus in the presence of crash failures) and is based on collecting
information.

What is the message complexity of the algorithm?

Present a synchronous algorithm for solving the &-set consensus problem in
the presence of f = n — 1 crash failures using an algorithm for consensus
as a black box. Using Algorithm 15 as the black box, the round complexity
of the algorithm should be (% + 1), and its message complexity should be

O("{-lV[), where |V| is the number of possible input values. For simplicity
assume that k£ divides n.

Show that, if the input set has more than two elements, the validity condition
given in Section 5.2.2 is not equivalent to requiring that every nonfaulty
decision be the input of some processor. In particular, design an algorithm
that satisfies the validity condition of Section 5.2.2 but does not guarantee that
every nonfaulty decision is the input of some processor.

Hint: Consider the exponential message and phase king algorithms when the
size of the input set is larger than 2.
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Consider the exponential message consensus algorithm described in Sec-
tion 5.2.4. By the result of Section 5.2.3, the algorithm does not work cor-
rectly if n = 6 and f = 2. Construct an execution for this system in which
the algorithm violates the conditions of the consensus problem.

Repeat Exercise 5.8 for the polynomial message algorithm of Section 5.2.5.

Prove that oy < a3 in the proof of Theorem 5.7.

Modity the exponential information gathering algorithm in Section 5.2.4 to
reduce the number of messages to be O(f2 + fn).

Show that to satisfy the stronger validity condition (every nonfaulty deci-
sion is some nonfaulty input) for Byzantine failures, n must be greater than
max(3,m) - f, where m is the size of the input set.

Assuming n is sufficiently large, modify the exponential message algorithm
of Section 5.2.4 to satisfy the stronger validity condition of Exercise 5.12.

Assuming n is sufficiently large, modify the polynomial message algorithm
of Section 5.2.5 to satisfy the stronger validity condition of Exercise 5.12.

Prove Lemma 5.16. That is, assume there is a wait-free consensus algorithm
for the asynchronous shared memory system and prove that it has a bivalent
initial configuration.

Consider a variation of the consensus problem in which the validity condition
is the following: There must be at least one admissible execution with decision
value 0, and there must be at least one admissible execution with decision
value 1. Prove that there is no wait-free algorithm for this problem in an
asynchronous system.

Hint: Modify the the proof of the existence of a bivalent initial configuration
(Lemma 5.16).

In the transaction commit problem for distributed databases, each of n proces-
sors forms an independent opinion whether to commit or abort a distributed
transaction. The processors must come to a consistent decision such that if
even one processor’s opinion is to abort, then the transaction is aborted, and
if all processors’ opinions are to commit, then the transaction is committed.
Is this problem solvable in an asynchronous system subject to crash failures?
Why or why not?

This exercise guides you through a direct proof of the impossibility of 1-
resilient consensus for shared memory. Assume A is a l-resilient consensus
algorithm for n processors in shared memory.

(a) Prove that there is a bivalent initial configuration of A.
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(b) Let D be a bivalent configuration of A and p; be any processor. Using the
outline given below, prove that there exists a schedule ¢ ending with the event
i such that o(D) is bivalent.

Outline: Suppose, in contradiction, that there is no such schedule. Then every
schedule that ends in ¢, when started at D, leads to a univalent configuration,
Without loss of generality, assume that ¢(D) is 0-valent.

(b.1) Show that there exists a finite schedule «, in which p; does not take
a step, and a processor p; other than p;, such that i(a(D)) is O-valent and
i{j(a(D)})) is 1-valent.

(b2) Let Dy = «(D) and D; = j(a(D)). Consider the possible actions
being performed by p; and p; in taking a step from Dg (e.g., reading or
writing) and show that a contradiction is obtained in each case.

(c) Combine (a) and (b) above to show there exists an admissible execution
of A that does not satisfy the termination condition.

Consider an asynchronous shared memory system in which there are only
test&set registers (as defined in Chapter 4) and two processors. Show that it
is possible to solve consensus in this system even if one processor can crash.

Show that the consensus problem cannot be solved in an asynchronous system
with only test&set registers and three processors, if two processors may fail
by crashing. The proof may follow Section 5.3.1:

1. Define C ~irgel '’ to mean that C is similar to C” for all processors
but p; and p;.

2. Argue why Lemma 5.16 holds in this case as well.
3. Prove Lemma 5.17 for this model. (This is where most of the work is.)
Show that consensus cannot be solved in an asynchronous shared memory

system with only test&set registers, with n > 2 processors, two of which may
fail by crashing,.

Can consensus be solved in an asynchronous shared memory system with
n > 2 processors, two of which may fail by crashing, if we allow read/write
operations, in addition to test&set operations?

Argue why the restricted form of the algorithms assumed in Section 5.3.2 does
not lose any generality.

Prove that Algorithm 17 correctly simulates an n-processor consensus algo-
rithm with two processors.

Modify Algorithm 17 (and its correctness proof) so that get-read skips steps
that are known to be computed (based on lastpair).
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5.26 An alternative version of the consensus problem requires that the input value of
one distinguished processor {called the general) be distributed to all the other
processors (called the lieutenants); this problem is known as single-source
consensus. In more detail, the conditions to be satisfied are:

Termination: Every nonfaulty lieutenant must eventually decide
Agreement: All the nonfaulty lieutenants must have the same decision

Validity: If the general is nonfaulty, then the common decision value is the
general’s input,

The difference is in the validity condition: note that if the general is faulty,
then the nonfaulty processors need not decide on the general’s input but they
must still agree with each other. Consider the synchronous message-passing
model subject to Byzantine faults. Show how to transform a solution to the
consensus problem into a solution to the general’s problem and vice versa.
What are the message and round overheads of your transformations?

Chapter Notes

The consensus problem was introduced by Lamport, Pease, and Shostak in two
papers [163, 207]. The problem was originally defined for Byzantine failures. The
simple algorithm for solving consensus in the presence of crash failures presented in
Section 5.1.3 is based on an algorithm of Dolev and Strong that uses authentication
to handle more severe failures [99]. The lower bound on the number of rounds
needed for solving consensus was originally proved by Fischer and Lynch [107] for
Byzantine failures and was later extended to crash failures by Dolev and Strong [99].
Subsequent work simplified and strengthened the lower bound [101, 185, 193]. Our
presentation is based on that by Aguilera and Toueg [7].

After considering crash failures, we turned to the Byzantine failure model; this
is a good model for human malfeasance. It is a worst-case assumption and is also
applicable to machine errors—it covers the situation when a seemingly less malicious
fault happens at just the wrong time for the software, causing the most damage. If
a system designer is not sure exactly how errors will be manifested, a conservative
assumption is that they will be Byzantine.

The 3f + 1 lower bound on the number of faulty processors as well as the simple
exponential algorithm were first proved in [207]. Our presentation follows later
formulations of these results by Fischer, Lynch, and Merritt [109] for the 3f + 1
lower bound, and by Bar-Noy, Dolev, Dwork, and Strong [44] for the exponential
algorithm of Section 5.2.4. We also presented a consensus algorithm with constant
message size (Algorithm 16); this algorithm is due to Berman and Garay [50]. Garay
and Moses present a consensus algorithm tolerating Byzantine failures; the algorithm
sends messages with polynomial size, works in f + 1 rounds, and requires only that
n > 3f [119].
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There is an efficient reduction from the consensus problem with a general to
ordinary consensus by Turpin and Coan [255].

The consensus algorithms we have presented assume that all processors can di-
rectly exchange messages with each other; this means that the topology of the com-
munication graph is a clique. For other topologies, Dolev [91] has shown that a
necessary and sufficient condition for the existence of a consensus algorithm tol-
erating Byzantine failures is that the connectivity of the graph is at least 2f + 1.
Fischer, Lynch, and Merritt present an alternative proof for the necessity of this con-
dition, using an argument similar to the 3 f + 1 lower bound on the number of faulty
processors [109].

Exercises 5.12 through 5.14 were suggested by Neiger [196].

The impossibility of achieving consensus in an asynchronous system was first
proved in a breakthrough paper by Fischer, Lynch, and Paterson [110]. Their proof
dealt only with message-passing systems. Exercise 5.18 walks through their proof,
adapted for shared memory. Later, the impossibility result was extended to the shared
memory model by Loui and Abu-Amara [173] and (implicitly) by Dolev, Dwork, and
Stockmeyer [92]. Loui and Abu-Amara [173] provide a complete direct proof of the
general impossibility result for shared memory systems. Special cases of this result
were also proved by Chor, Israeli, and Li [81]. Loui and Abu-Amara also studied
the possibility of solving consensus by using test&set operations (see Exercises 5.19
through 5.22).

We have chosen to prove the impossibility result by first concentrating on the
shared memory wait-free case and then extending it to the other cases, a single failure
and message-passing systems, by reduction. Not only is the shared memory wait-free
case simpler, but this also fits better with our aim of unifying models of distributed
computation by showing simulations (explored in more depth in Part II of the book).

The impossibility proof for the shared memory wait-free case follows Her-
lihy [134], who uses the consensus problem to study the “power” of various object
types, as shall be seen in Chapter 15. The simulation result for 1-resiliency is based
on the algorithm of Borowsky and Gafni [58].

The simulation depends on the ability to map the inputs of the simulating proces-
sors into inputs of the simulated algorithm and then to map back the outputs of the
simulated algorithm to outputs of the simulating processors. This mapping is trivial
for the consensus problem but is not necessarily so for other problems; for more
discussion of this issue and another description of the simulation, see the work of
Borowsky, Gafni, Lynch, and Rajsbaum [59].
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Causality and Time

Notions of causality and time play an important role in the design of distributed
algorithms. It is often helpful to know the relative order in which events take place
in the system. This knowledge can be achieved even in totally asynchronous systems
that have no way of measuring the passage of real time, by observing the causality
relations between events. In the first part of this chapter, we precisely define the
causality relationships in a distributed system and study mechanisms for observing
them.

In many systems, processors have access to real-time measuring devices, either in
the form of hardware clocks, by tuning in to a satellite clock, or by reading the time
across a communication network. Solutions to many problems in distributed systems
are much simpler or more efficient if clocks are available and provide good readings
of real time. Therefore, this chapter also considers the problem of getting clocks to
provide good approximations of real time.

The message-passing systems considered in this chapter can have arbitrary topolo-
gies.

This is the first of three chapters that address issues of causality and time in
distributed systems. Chapter 11 presents methods for running algorithms designed
for one set of timing assumptions in systems that provide another set of assumptions.
Chapter 13 considers the problem of maintaining synchronized clocks in the presence
of drift and faults.
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6.1 CAPTURING CAUSALITY

Let us now take a more careful look at the structure of executions and the relationships
between events in a distributed system. We mostly address asynchronous message-
passing systems, but at the end of this section, we describe how to extend the same
notions to shared memory systems.

Because executions are sequences of events, they induce a total order on all the
events. Because a sequence orders all events with respect to each other, this way
of describing executions loses information. For example, it is possible that two
computation events by different processors do not influence each other, yet they are
(arbitrarily) ordered by the execution. The structure of causality between events is
lost.

We start by carefully defining the notion of one computation event influencing
another computation event. Then we define logical clocks, which are a way for
assigning timestamps to computation events in a manner that captures the causality
structure on them. We also present a variant of logical clocks, called vector clocks,
which indicate whether one event does not influence another as well as indicating
whether one event does influence another.

6.1.1 The Happens-Before Relation

We now take a more careful look at the information about the causality relations
between computation events that is contained in an execution. Let us fix some
execution o.

First, consider two events! ¢, and ¢ by the same processor p;. One event ¢;
of p; can causally influence another event ¢- of p; only if ¢; occurs before ¢, at
pi, because we assume that each processor is a sequential process. The execution
respects this ordering.

Next, consider two events by different processors. The only way for one processor
to influence another processor is by sending a message to the other processor. That
is, an event ¢ of processor p; causally influences an event ¢4 of processor p; if ¢, is
the event that sends message m from p; to p; and ¢ is the event in which the message
m is received by p;. Recall that in our formal model, a processor can receive several
messages and send several messages at the same (computation) event.

Finally, note that events can causally influence each other indirectly through other
events. See Figure 6.1. (The figures in this chapter represent an execution as a set of
sequences, one per processor, with arrows between sequences representing messages,
inorder to highlightthe causality, or lack of causality, between events. For simplicity,
we depict only one message being sent or received at each event.) In this figure, ¢;
influences ¢ because it is an earlier event of the same processor pg; ¢ influences
@13 because the message sent by pg at ¢4 is received by p, in ¢13; by transitivity, ¢,
influences ¢ 3.

!For the rest of this section only, “event” means “computation event,” when this should not cause confusion.
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Fig. 6.1 Causal influence in an example execution.

To summarize the above discussion, the happens-before relation for execution «
is formally defined as follows. Given two events ¢; and ¢5 in «, ¢ happens before
¢, denoted ¢ = ¢4, if one of the following conditions holds:

1. ¢y and ¢ are events by the same processor p;, and ¢, occurs before ¢ in .

2. ¢ is the send event of the message m from p; to p;, and ¢, is the receive event
of the message m by p;.

3. There exists an event ¢ such that ¢ = ¢ and ¢ = ¢,.

The first condition captures the causality relation between events of the same
processor, the second condition captures the causality relation between events of
different processors, and the third condition induces transitivity. Obviously, = is an
irreflexive partial order.

The important property of the happens-before relation is that it completely charac-
terizes the causality relations in an execution. In particular, if the events of an execu-
tion are reordered with respect to each other but without altering the happens-before
relation, the result is still an execution and it is indistinguishable to the processors.

The reorderings that can occur without affecting the happens-before relation do
not change the order in which events occur at individual processors and do not cause
a message to be delivered before it is sent. Other than these constraints, events at
different processors can be reshuffled.

We make the following more precise definition.

Definition 6.1 Given an execution segment o = exec(C, o), a permutation © of a
schedule o is a causal shuffle of o if

L foralli, 0 < i< n-—1,0li= 7l and

2. ifa message m is sent during processor p;’s (computation) event ¢ in «, then
in 7, ¢ precedes the delivery of m.

See an example in Figure 6.2.
The next two lemmas follow directly from the definitions of the happens-before
relation, causal shuffle, and similarity.
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Fig. 6.2 = is a causal shuffle of 7.

Lemma 6.1 Let o = ezec(C, o) be an execution fragment. Then any total ordering
of the events in o that is consistent with the happens-before relation of v is a causal

shuffle of o.

Lemma 6.2 Let @ = exec(C, o) be an execution fragment. Let w be a causal shuffle
of 0. Then o = exec(C, ) is an execution fragment and is similar to o.

Informally, this means that if two executions have the ‘same’ happens-before
relation, then they are similar.

6.1.2 Logical Clocks

How can processors observe the happens-before relation in an execution o? One
possible way is to attach a tag, commonly called a logical timestamp, to each (com-
putation) event. That is, with each event ¢, we associate a timestamp, LT'(¢); to
capture the happens-before relation, we require an irreflexive partial order < on the
timestamps, such that for every pair of events, ¢ and ¢-,

if ¢1 => o, then LT (¢1) < LT(h2)

The following simple algorithm can be used to maintain logical timestamps cor-
rectly. Each processor p; keeps a local variable LT;, called its logical clock, which is
a nonnegative integer, initially 0. As part of each (computation) event, p; increases
LT; to be one greater than the maximum of L7;’s current value and the largest time-
stamp on any message received in this event. Every message sent by the event is
timestamped with the new value of LT;.

The timestamp associated with an event ¢, LT(¢), of processor p;, is the new
value LT; computed during the event. The partial order on timestamps is the ordinary
< relation among integers. In Figure 6.3, we see the logical timestamps assigned by
the above algorithm to the execution of Figure 6.1.

For each processor p;, the value of LT; is strictly increasing. Therefore, if ¢;
and ¢» are events by the same processor p;, and ¢; occurs before ¢ in p;, then
LT(¢1) < LT(¢2). Furthermore, the logical timestamp of the (computation) event
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Fig. 6.3 Logical timestamps for the execution of Figure 6.1,

in which a message is received is at least one larger than the logical timestamp of
the corresponding message send event. Therefore, if ¢, is the send event of the
message m from p; to p; and ¢ is the receive event of the message m by p;, then
LT(¢1) < LT(¢2). These facts, together with the transitivity of less than, clearly

imply:

Theorem 6.3 Ler o be an execution, and let ¢ and ¢4 be two events in «. If

b1 2 ¢o, then LT(¢1) < LT(d3).

6.1.3 Vector Clocks

By comparing the logical timestamps of two events in an execution a, we can tell
if one of them does not causally influence the other. Specifically, if the logical
timestamp of ¢ is larger than or equal to the logical timestamp of ¢, then ¢; does
not happen before ¢5. That is,

if LT(¢1) > LT(¢2) then ¢1 & ¢2

However, the converse is not true, that is, it is possible that LT(¢1) < LT(¢2) but
¢1 7 ¢o. Consider, for example, the events ¢ and @1, in Figure 6.3; LT(¢s) <
LT (¢12) but ¢z ? d1a.

The problem is that the happens-before relation is (in general) a partial order,
whereas the logical timestamps are integers with the totally ordered < relation.
Therefore, information about non-causality is lost. We now turn our attention to
logical timestamps that capture non-causality. We must choose logical timestamps
from a domain that is not totally ordered; we will use vectors of integers.

First, let us define non-causality more precisely. Two events ¢; and ¢, are
concurrent in execution «, denoted @1||op2, if ¢; 7 ¢2 and ¢ A ¢;. (To
avoid clutter, the subscript « is omitted when it should be clear from the context.)
Lemmas 6.1 and 6.2 imply that if ¢||,¢, then there are two executions o1 and a5,
both indistinguishable from «, such that ¢; occurs before ¢4 in oy and ¢ occurs
before ¢; in a9. Intuitively, processors cannot tell whether ¢; occurs before ¢ or
vice versa, and in fact, it makes no difference which order they occur in. For example,
in Figure 6.3, ¢g||¢13.
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Fig. 6.4 Vector timestamps for the execution of Figure 6.1.

Vector timestamps provide a way to capture causality and non-causality, as follows.
Each processor p; keeps a local n-element array VC;, called its vector clock, each
element of which is a nonnegative integer, initially 0. As part of each (computation)
event, p; updates VC; as follows. VC;[] is incremented by one. For each 7 # 1,
VC;[4] is set equal to the maximum of its current value and the largest value for entry
J among the timestamps of messages received in this event. Every message sent by
the event is timestamped with the new value of VC;.

The vector timestamp of an event 1s the value of VC at the end of the event. Fig-
ure 6.4 shows the vector timestamps assigned by the above algorithm to the execution
of Figure 6.1; the reader is encouraged to compare this figure with Figure 6.3.

In a sense, for any pair of processors p; and p;, the value of VC;[4] is an “estimate,”
maintained by p;, of VC;[i] (the number of steps taken by p; so far). Only p; can
increase the value of the ¢th coordinate, and therefore:

Propesition 6.4 For every processor p;, in every reachable configuration, VC;[i] <
VC;i[i), foralli, 0 <i<n-—1

For logical timestamps, which are integers, we had the natural total ordering of
the integers. For vector timestamps, which are vectors of integers, we now define a
partial ordering. Let @; and 73 be two vectors of n integers. Then #; < ¥ if and
only if forevery 7,0 < i <n —1, #1[1] < v3[i]; and 7; < ¥z if and only if ¥} < 7
and ¥; # v3. Vectors 9] and ¥y are incomparable if neither ¥, < ¥ nor 7y < 3.

Vector timestamps are said to capture concurrency if for any pair of events ¢; and
¢2 inany execution, ¢1|[¢2 if and only if VC(¢,) and VC(¢3) are incomparable.

Suppose event ¢; occurs at processor p; in an execution and subsequently event
¢y occurs at p;. Each entry in VC; is nondecreasing and furthermore, because ¢,
occurs before ¢o at p;, VGi[7](¢1) < VCi[i](¢2), for every i. This implies that
VC(¢1) < VC(qﬁz).

Now consider two events in an execution, ¢, the sending of a message with vector
timestamp 7’ by p;, and ¢, the receipt of the message by p;. During ¢3, p; updates
each entry of its vector to be at least as large as the corresponding entry in T and
then p; increments its own entry by one. Therefore, Proposition 6.4 implies that

VC(¢1) < VC(¢2).
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These two facts, together with the transitivity of the less than relation for vectors,
imply:

Theorem 6.5 Let o be an execution, and let ¢1 and ¢o be two events in o. If
$1 = ¢, then VC($1) < VC(¢2).

Now consider two concurrent events in an execution, ¢; at p; and ¢, at p;.
Obviously p; and p; are distinct. Suppose VC;[i](¢1) is £. Then VC;[4](¢2) must
be less than £, implying that VC;(¢;) is not less than VC;(¢2), since the only way
processor p; can obtain a value for the ith entry of its vector that is at least ¢ is through
a chain of messages originating at p; at event ¢, or later. But such a chain would
imply that ¢, and ¢ are not concurrent. Similarly, the jth entry in VC;{¢1) must be
less than the jth entry in VC;{¢2). Thus the converse of Theorem 6.5 is also true:

Theorem 6.6 Let o be an execution, and let ¢1 and ¢ be two events in o. If
VC(#1) < VC(¢2), then ¢1 =5 ¢a.

These two theorems imply that ¢;||¢2 if and only if VC(¢1) and VC{¢2) are
incomparable. Hence, vector timestamps capture concurrency.

6.1.3.1 A Lower Bound on the Size of Vector Clocks We have seen that
vector timestamps provide a way for processors to maintain causality and concurrency
information about events. However, this mechanism requires a vector of n entries to
be sent with each message; this can be a very high overhead. There are certain ways
to save on the size of vector timestamps (see Exercise 6.2), but as we show next, in
some sense, a vector with 7 entries is required in order to capture concurrency.

Consider a complete network, with the execution « depicted in Figure 6.5. In
this execution, gach processor p; sequentially sends a message to all the processors
except p;—1, in increasing order of index, starting with p;; and wrapping around
if necessary; namely, p; sends to piy1, Pivs, - .- Pn—1,P0,-- ., Pi—a. After all the
messages have been sent, each p; sequentially receives all the messages sent to it,
in decreasing order of the sender’s index, starting with p;_1 and wrapping around;
namely, p; receives from p;—1,pi—2, ..., D0, Pn~1;-. - -, Pi+2. Note that p; does not
receive a message from p; ;1.

For each processor p;, denote the first send event by a; and the last receive event by
b;. In o a processor sends all its messages before it receives any message; therefore,
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the causality relation is simple and does not include any transitively derived relations.
Because no message is sent from p;;; to p;, the lack of transitivity in the message
pattern of «v implies:

Lemma 6.7 Foreveryi, 0 <i<n-1, aiy1||b;

On the other hand, for every processor p; other than p;, the first send event of p; 1
causally influences some receive event of p;. That is:

Lemma 6.8 Foreveryiandj, 0 <i#j<n—1,ai41 = b;.

Proof. If j = ¢4 1, then a;41 and b; = b; 41 occur at the same processor p; 41, and
therefore a;41 =Y b;.

Otherwise, suppose j # i+ 1. By the assumption that j # ¢, p; 1 sends a message
to p; in the execution. Since g,y is the first send by p;y1, a;41 is either equal to,
or happens before, p; 1 sends to p;. By definition, p; 41 ’s send to p; happens before
p;’s receipt from p; 4. Since b; is the last receive by p;, p;’s receipt from p;41 is
either equal to, or happens before, b; (see Fig. 6.6). 0

The main theorem here claims that if we map events in & to vectors in a manner
that captures concurrency, then the vectors must have » entries.

Theorem 6.9 If VC is a function that maps each event in o to a vector in ¥ ina
manner that captures concurrency, then k > n.

Proof. Fix some ¢, 0 < i < n— 1. By Lemma 6.7, a;41||b;. Since VC captures
concurrency, this implies that VC(a;4+1) and VC(b;) are incomparable. If for all
coordinates r, VC[r](b;) > VC[r](ai+1). then VC(b;) > VC(ai41). Therefore, there
exists some coordinate r such that VC[r](b;) < VC[r](a;+1); denote one of these
indices by £(3).

In this manner, we have defined a function

¢:{0,...,n—1} > {0,...,k—1}

We prove that & > n by showing that this function is one-to-one.
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Assume, by way of contradiction, that £ is not one-to-one, that is, there exist two
indices i and j, ¢ # j, such that £(i) = £(j) = r. By the definition of the function £,
VC[r]{b;) < VC[r]{ai+1) and VC[r](b;) < VC[r](a;+1)-

By Lemma 6.8, a;4; = b;. Since VC captures concurrency, it follows that
VC(a,-_H) < VC(bj). Thus

VC[r](bi) < VC[r](ait1) < VCIr](b;) < VCIr](aj+1)
which contradicts Lemma 6.8. O

This theorem implies that if timestamps are represented as vectors of real numbers
that capture concurrency, then they must have n coordinates. The proof does not rely
on the fact that vector entries are reals, just that they are all comparable. Thus, the
same proof holds for vectors in S¥, where S is any (infinite) totally ordered set, and
vectors are ordered lexicographically according to the ordering relation on S. This
shows the optimality of the vector timestamps algorithm we described. However,
at least theoretically, timestamps may be represented as other mathematical objects,
potentially requiring less space and yet still capturing causality.

6.1.4 Shared Memory Systems

The happens-before relation was defined for message-passing systems in which pro-
cessors influence each other by sending messages. Here we describe how to extend
it to shared memory systems in which shared variables are accessed only with read
and write operations.

In a shared memory system, one processor p; influences another processor p;
by writing a value to a shared variable, which is later read by p;. Earlier events
of a processor still influence later events, just as in message-passing systems. This
discussion motivates the following definition.

Given two events ¢; and ¢ in an execution «, ¢ happens before ¢+, denoted
o1 = @9, if one of the following conditions holds:

1. ¢1 and ¢ are events by the same processor p;, and ¢; occurs before ¢y in a.

2. ¢ and ¢3 are conflicting events, that is, both access the same shared variable
and one of them is a write, and ¢ occurs before ¢5 in o.

3. There exists an event ¢ such that ¢; = ¢ and ¢ = ¢,.

The notion of a causal shuffle can be adapted to the shared memory model, so that
lemmas similar to Lemmas 6.1 and 6.2 can be proved (see Exercise 6.3).

6.2 EXAMPLES OF USING CAUSALITY

In this section, we present examples of using the happens-before relation to under-
stand the behavior of a distributed system. The first example is to find consistent
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cuts, that is, states that can be held concurrently by processors. The second uses the
happens-before relation to show a separation between synchronous and asynchronous
systems.

6.2.1 Consistent Cuts

In a distributed system, there is generally no omniscient observer who can record
an instantaneous snapshot of the system state. Such a capability would be desirable
for solving problems such as restoring the system after a crash, determining whether
there is a deadlock in the system, and determining whether the computation has
terminated. Instead, the components of the system themselves must cooperate to
achieve an approximate snapshot. The causality relation among system events is
useful for defining a meaningful static approximation to a dynamically changing
system.

We make the simplifying assumption that at each computation event a processor
receives at most one message. This situation can be simulated by instituting a local
queue of incoming messages and handling only a single message at each step (see
Exercise 6.4).

Given an execution ¢, we number the computation steps at each processor 1, 2,
3, etc.. A cut through the execution is an n-vector k= (ko, ..., kn—1) of positive
integers. Given a cut of an execution, one can construct a set of processor states: The
state of processor p; is its state in o immediately after its k;th computation event.

A cut k of an execution « is consistent if, for all i and 7, the (k; 4+ 1)st computation
event of p; in & does not happen before the k;th computation event of p; in a. That
is, the k;th computation event of p; does not depend on any action taken by another
processor after the cut.> Consider, for example, Figure 6.7, in which cuts (1,3) and
(1,4) are consistent, whereas (2,6) is not, because py’s third event happens before
p1’s sixth event.

For simplicity of presentation, we assume that the links deliver messages in FIFO
order. (FIFO order can be implemented, if necessary, by using sequence numbers;
see Chapter 8.)

2This does not irply that the &;th event of p; and the k;th event of p; are concurrent.
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6.2.1.1 Finding the Maximal Consistent Cut Given a cut k of an execution,
we would like to find a consistent cut that precedes (or at least, does not follow) &.
In fact, we usually would like to find the most recent such consistent cut kl, where

“most recent’”” means that there is no other consistent cut k‘g where kl < k'z (using the
relation on vectors defined in Section 6.1.3). It can be shown that there is a unique
such maximal consistent cut preceding k (see Exercise 6.9).

We now define in more detail the problem of finding the maximal consistent cut
preceding a given cut.

We assume that there is an algorithm A running in a reliable asynchronous
message-passing system. At some instant, every processor is given a cut & (that
is not in the future) and each processor is to compute its own entry in the maximal
consistent cut preceding k. The means by which the input is given to the processors
is intentionally not pinned down (see the chapter notes). To achieve this task, pro-
cessors are allowed to store extra information, tag algorithm A messages with extra
information, and send additional messages.

We describe a method for solving this problem that requires O(n) overhead on
each algorithm A message but no additional messages. Algorithm A messages are
tagged with vector timestamps. The vector timestamp of each computation event of
a processor is stored at that processor; that is, each p; has an (unbounded length)?
array store; such that store;[m] holds the vector timestamp at the end of p;’s mth
computation event. When p; gets the input k. it begins with store;[m], where m
is p;’s entry in k and scans down store;, until finding the largest m’ that does not
exceed n such that store;[m’] < k. The answer computed by p; is m’.

It should be straightforward to see that the algorithm is correct (see Exercise 6.6).

6.2.1.2 Taking a Distributed Snapshot A different approach to the problem
of finding a recent consistent cut is, instead of being given the upper bounding
cut, processors are told when to start finding a consistent cut. While processors
are executing algorithm A, each processor in some set .S of processors receives an
indication that the processors are to start computing a consistent cut that includes the
state of at least one processor in S at the time it received the start indication. Such a
cut is a distributed snapshot.

There is an algorithm for this problem that sends additional messages (called
markers) instead of adding overhead to algorithm A messages. Processing of a
marker message should not affect the computation of algorithm A. Because the
problem is to obtain a snapshot of the execution of algorithm A, the receipt of marker
messages must not disrupt the computation of the cut. To avoid this problem, each
processor keeps track of the number of algorithm A messages that it has received so
far (thus excluding marker messages).

The marker messages are disseminated by using flooding, interspersed with the
algorithm A messages. In more detail, each processor p; has a local variable ans; that
is initially undefined and that at the end holds the answer (p;’s entry in the desired

3The space needed for the array can be garbage collected by using checkpoints; see the chapter notes.
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Algorithm 19 Distributed snapshot algorithm:
code for processor p;, 0 <t < n— 1.

Initially ans= L and num= 0

1:  upon receiving an algorithm A message:

2: num:= num+1

3 perform algorithm A action

4: upon receiving a marker message or indication to take snapshot:
S if ans= 1 then

6: ans:= num

7 send marker to all neighbors

consistent cut). On receiving a marker message from a neighbor or an indication
to begin the algorithm, p; does the following. If ans; has already been set, then
p; does nothing. Otherwise, p; sets ans; to the number of algorithm A messages
received so far and sends a marker message to all its neighbors. The code appears in
Algorithm 19.

Theorem 6.10 Algorithm 19 computes a distributed snapshot using O(m) additional
messages.

Proof. Let k be the answer computed by the algorithm. Let p; be the first processor -
to receive a start indication. Since no marker messages have yet been sent, its state
when the indication was received is included in k. Suppose in contradiction there
exist processors p; and p; such that the k;th (algorithm A) computation event of p;
depends on the (k; + 1)st (algorithm A) computation event of p;. Then there is a
chain of (algorithm A) messages from p; to p;, m1, ma, .. ., my, such that m; is sent
by p; to some p;, after the cut at p;, m; is sent by p;, to some p;, after the receipt
of my, etc., and my is sent by p;, to p; after the receipt of my;_; and received by Pj
before the cut.

Thus there exists some message my, that is sent by p;, after the cut and received
by pi,,, before the cut. But since my, is sent after the cut, p;, has already sent the
marker message to p;, ., before sending my. Since the links are FIFO, the marker
message is received at p;, ,, before my, is, and thus m, is not received before the cut.

0

6.2.1.3 What About the Channel States? The algorithms just discussed for
finding the maximal consistent cut and a distributed snapshot ignored the contents of
the message channels. One solution to this problem is to assume that the processors’
local states encode which messages have been sent and received. Then the information
can be inferred from the collection of processor states.
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However, this is often not a practical or efficient solution. For one thing, this
approach means that the size of the processor states must grow without bound. More
generally, it does not allow convenient optimizations.

Luckily, the channel states can be captured in both cases without making such a
strong assumption on the nature of the processor states.

The maximal consistent cut algorithm is modified as follows. Each entry in a
store array contains the number of messages received (directly) from each neighbor
so far, in addition to the vector timestamp. When the maximal consistent cut is to
be computed, each processor p; scans its store; array upward starting at the earliest
entry, instead of downward starting at the most recent entry. As it scans upward, it
“replays” the earlier computation and keeps track of the sequence of messages it is
supposed to send. The procedure stops with the latest entry in store;, say the m’th,
such that the vector timestamp stored in store;[mn'] is less than or equal to k, the given
cut. Consider any neighbor p; of p;. The information recorded in store;[m’] includes
the number of messages received by p; from p; through p;’s m’th computation event.
Let z be this number. When p; has finished its replay, it sends & to p;. When p;
receives the message from p;, it waits until it has finished its own replay. Then p;
computes the state of the channel from p; to p; for the consistent cut to be the suffix,
beginning at the (x + 1)st, of the sequence of messages that it generated during the
replay destined for p;.

The distributed snapshot algorithm can be modified so that each processor p;
records the sequence of messages it receives from each neighbor p; between the time
that p; recorded its own answer and the time that p; received the marker message
from p;. Exercise 6.7 asks you to work out the details of this modification and verify
that the sequence of messages recorded by p; for neighbor p; is the sequence of
messages in transit in the configuration corresponding to the computed snapshot.

6.2.2 A Limitation of the Happens-Before Relation: The Session
Problem

In this subsection, we explore an aspect of executions that cannot be captured by the
happens-before relation, yet one that is important for some applications. Informally,
the happens-before relation only captures dependencies inside the system, but does
not take into account relationships observed from outside the system, in its interaction
with the environment. We consider a problem, called the session problem, that can
be solved quickly in the synchronous model, but requires significant time overhead
in the asynchronous model, because of the necessity of explicit communication.

Intuitively, a session is a minimal length of time during which each processor
performs a special action at least once. The problem has a numeric parameter, s,
representing the number of sessions to be achieved.

More precisely, each processor p; has an integer variable SA;. During the course
of execution, p; increments SA; every now and then. The incrementing of this
variable represents the “special action” mentioned above. An execution is divided
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into disjoint sessions, where a session is a minimal length fragment of the execution
in which every processor increments its SA variable at least once.

An algorithm for the s-session problem must guarantee the following conditions,
in every admissible execution:

e There are at least s sessions

e No processor increments its SA variable infinitely many times (i.e., the proces-
sors eventually stop performing special actions).

The running time of an execution is the time of the last increment of an SA variable,
using the standard asynchronous time measure from Chapter 2.

In the synchronous model, there is a simple algorithm for generating s sessions:
Just let each processor perform s special actions and then cease. At each round there
is a session, because each processor performs a special action. Clearly, the time is at
most s.

In contrast, in the asynchronous model it can be shown that the time to solve the
problem depends on D, the diameter of the communication network, as well as s. In
particular, a lower bound on the time is (s — 1) - D.

Theorem 6.11 Let A be any s-session algorithm for an asynchronous message-
passing system whose diameter is D. Then the (asynchronous) time complexity of A
is greater than (s — 1) - D.

Proof. Suppose in contradiction there is an s-session algorithm A for the system
with time complexity at most (s — 1) - D.

Let « be an admissible execution of A that happens to be synchronous. That is,
« consists of a series of rounds, where each round contains a deliver event for every
message in transit, followed by a computation step by each processor. (Of course A
must also work correctly in asynchronous executions as well as in such well-behaved
ones as c.)

Let 34 be the schedule of o, where [ ends at the end of the round containing the
final special action. Thus & contains no special actions. By the assumption on the
time complexity of A and the construction of «, 3 consists of at most (s — 1) - D
rounds.

We will show how to shuffle the events in J so that fewer than s sessions are
achieved, yet processors cannot distinguish this situation from the original, and thus
they will stop performing special actions prematurely. The intuition is that there
is not enough time for information concerning the achievement of sessions to flow
through the communication network. Yet explicit communication is the only way in
an asynchronous system that processors can know whether a session has occurred.
Lemma 6.12 proves a general fact about shufflings of events. Lemma 6.13 uses the
general lemma to show that a specific shuffling has the desired effect.

Lemma 6.12 Let v be any contiguous subsequence of 3 consisting of at most z
complete rounds, for any positive integer z. Let C be the configuration immediately
preceding the first event of y in execution . Choose any two processors p; and p;.
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If dist(ps, p;) > «, then there exists a sequence of events %' = 42, also denoted
split(, 7, ), such that

o v is pi-free,
o v% is pj-free, and
o exec(C,~') is an execution fragment that is similar to exec(C, 7).

Proof. Let ¢; be the first event by p; iny and let ¢; be the last event by p; iny. (If
pi takes no steps in -y, then let ¥ equal vy and v* be empty. Similarly, if p; takes no
steps in v, let 42 equal v and ' be empty.)

We first prove that ¢; 7 ¢;. That is, no event of p; during -y depends on any
event of p; during . If there were such a dependency, then there would be a chain
of messages from ¢; to ¢; in y. The number of rounds required for this chain is at
least dist(p;, p;) + 1, by the construction of . (Remember that a computation event
cannot causally influence another computation event within the same round.) But
this number of rounds is at least x + 1, contradicting the assumption on the number
of rounds in .

Let R be the relation consisting of the happens-before relation of « restricted to
events in v, plus the additional ordering constraint (¢;, ¢;), namely, ¢; should appear
before ¢;. By the previous lemma, ¢; 7 ¢;, and thus R is a partial order on the
events of ~.

Let ' be any total order of the events in « that is consistent with R. Since 4’ is
consistent with the constraint that ¢; (the first event of p;) appear after ¢; (the last
event of p;), it follows that 4/ = v! 42, where 7! is p;-free and 42 is p;-free.

Since ' is a causal shuffle of v (see Exercise 6.8), Lemma 6.2 implies that
exec(C, ') is an execution fragment and is similar to exec(C, ¥). O

Partition 3 into 3; . .. 3;.-1, where each 3; consists of at most L) complete rounds.
(If this were not possible, then the number of rounds in £ would be more than
(s — 1) - D, violating the assumption on the running time of A.)

Pick pg and p; such that dist(pg, p1) = D.

Define 3! to be split(B;,1,0) if i is odd and to be split(8;,0,1) if i is even,
1<i<s—1.

Lemma 6.13 Let Cy be the initial configuration of o. Then exec(Cq, By ... Bu_) is
an execution of A that is similar to exec(Cy, ),

Proof. The lemma is proved by showing that exec(Cq, 3] . .. B;) is an execution of
A that is similar to exec{Cy, 81 ... 5), 1 < i < s — 1. This is proved by induction
onz1.

Basis: i = 0. True since Cy = Cj.

Induction: ¢ > 0. By the inductive hypothesis, exec(Co, 8] ...5i_,) is an
execution of A that is similar to exec(Cy, 1 ...0i~1). Thus the two executions
end in the same configuration, call it C;_;. By Lemma 6.12, exec(C;-1, 3;) is an
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Fig. 6.8 The sessions in the shuffled execution o', assuming s — 1 is even.

execution fragment that is similar to exec(C;_1, i), implying that the inductive step
is true. ]

As a corollary to Lemma 6.13, o = exec(Cy, 8 ...5;_,8) is an admissible
execution of A.

We finish the proof by showing that there are too few sessions in ¢/, contradicting
the assumed correctness of A. Session 1 cannot end before the second part of 3],
since po takes no steps in the first part of 3;. Session 2 cannot end before the second
part of 3}, since p; takes no steps after the end of session 1 until the second part of
B4. Continuing this argument, we see that session s — 1 cannot end until the second
part of 7, _,. But the remaining part of 3, _, does not comprise a complete session,
since either py or p; takes no steps (depending on whether s — 1 is even or odd). See

Figure 6.8.
Since no special actions are performed in 4§, all sessions must be included in
exec(Cy, 31 ... _,), and therefore, o’ contains at most s — 1 sessions. O

6.3 CLOCK SYNCHRONIZATION

The next part of this chapter is concerned with issues that arise when processors have
access to physical clocks that provide (approximations to) the real time. First, we
explain how to model such clocks. Then we define the problem of getting these clocks
close together and give tight bounds on how closely such clocks can be synchronized
in one simple situation, when clocks do not drift. Chapter 13 will consider in more
detail the problem of maintaining synchronized clocks in the presence of drift, in
addition to handling faults.

6.3.1 Modeling Physical Clocks

Recall the definition of a timed execution for asynchronous systems from Chapter 2.
In the asynchronous model, the times at which events occur (called real time) are
not available to the processors. We now consider stronger models in which the real
times, or at least some approximation of them, are available to the processors. The
mechanism by which such time information is made available to a processor is a
hardware clock.

We now define the formal model for a system with hardware clocks. In each
timed execution, associated with each processor p;, there is an increasing function
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HC; from nonnegative real numbers to nonnegative real numbers. When p; performs
a computation step at real time ¢, the value of HC;(t) is available as part of the input
to p;’s transition function. However, p;’s transition function cannot change HC;.

At the least informative extreme, HC; simply counts how many steps p; has taken
so far in the execution; that is, for each { such that p; has a computation event with
occurrence time ¢, HC;(t) equals the number of computation events by p; so far.
{Such a mechanism can be achieved with a simple counter and does not require any
additional model assumptions.) At the most informative extreme, HC; tells p; the
current real time, that is, HC;(t) = t.

In this section, we will consider an intermediate situation, when HC; reliably
measures how much real time has elapsed, although its actual value is not equal to
real time; that is, HC; () = ¢ + ¢;, where ¢; is some constant offset. In Chapter 13,
we will consider the possibility that the rate at which HC; increases drifts away from
real time, either gaining or losing time.

Although events may happen simultaneously in a distributed system, for math-
ematical convenience, we have considered executions as sequences of events by
imposing an arbitrary ordering on concurrent events. However, it is sometimes use-
ful to break apart an execution into n sequences, where each sequence represents the
“view” of a processor. Because processors have access to hardware clocks, we must
modify the definition of view from Chapter 5:

Definition 6.2 A view with clock values of a processor p; (in a model with hardware
clocks) consists of an initial state of p;, a sequence of events (computation and
deliver) that occur at p;, and a hardware clock value assigned to each event. The
hardware clock values must be increasing, and if the sequence of events is infinite
they must increase without bound.

Definition 6.3 A timed view with clock values of a processor p; (in a model with
hardware clocks) is a view with clock values together with a real time assigned to
each event. The assignment must be consistent with the hardware clock having the
form HC;(t) = t + ¢; for some constant c;.

Obviously, given a timed execution ¢, timed views with clock values can be
extracted, denoted «i for p;’s timed view with clock values. For the rest of this
chapter, we refer to (timed and untimed) views with clock values simply as views.

A set of n timed views 7;, one for each p;, 0 < i < n — 1, can be merged as
follows. Begin with the initial configuration obtained by combining the initial states
of all the timed views. Then obtain a sequence of events by interleaving the events in
the timed views consistently with the real times, breaking ties by ordering all deliver
events at time ¢ before any computation events at time £, and breaking any remaining
ties with processor indices. Finally, apply this sequence of events in order, beginning
with the initial configuration constructed, to obtain a timed execution. Denote the
result merge(7jo, . . ., Jn—1). Let the hardware clock function for p; be any increasing
function that is consistent with the real and clock times associated with each event in
p;i’s timed view.
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Fig. 6.9 Shifting a processor later and earlier.

Whether the resulting sequence is an execution depends on whether the timed
views are “consistent.”” For instance, if a message is delivered to p; from p; at time
t in 7;, but p; does not send m to p; before time ¢ in ;, then the merge of the timed
views is not a timed execution. For the merge of a set of n timed views to make a
timed execution, each message received must have been previously sent.

The notion of timed views is useful in proving lower bounds, when we want to
start with one timed execution, modify the processors’ timed views in certain ways,
and then recombine the timed views to obtain another timed execution. We next give
an example of such modifications. We define a notion of shifting a processor’s timed
view by some additive amount in an execution; the real times at which the events of
the processor occur are made later (or earlier) by some fixed amount. The net result is
that the processors cannot tell any difference because events still happen at the same
hardware clock times, although the hardware clocks have changed. This observation
is formalized in the lemma following the definition.

Definition 6.4 Let o be a timed execution with hardware clocks and let T be a vector
of n real numbers. Define shift(a, &) to be merge(no, . .., Nu-1), where 1; is the
timed view obtained by adding z; to the real time associated with each event in «i.

See Figure 6.9 for an example of shifting a processor later and earlier. Real time
is indicated at the top, increasing to the right. The first horizontal line represents p;’s
timed view in which its hardware clock reads T at real time ¢. The second horizontal
line is the result of shifting p;’s timed view by a positive amount x;, after which
p;’s hardware clock reads T at a later real time, ¢ + @;. The third horizontal line
is the result of shifting p;’s timed view by a negative amount —z;, after which p;’s
hardware clock reads T at an earlier real time, { — z;.

The result of shifting an execution is not necessarily an execution. The potential
violation of the definition of execution is that a message may not be in the appro-
priate processor’s outbuf variable when a deliver event occurs. This would occur if
processors have been shifted relative to each other in such a way that a message is
now delivered before it is sent. However, we can still make some claims about the
message delays and hardware clocks concerning the result of shifting an execution.



CLOCK SYNCHRONIZATION 143

Lemma 6.14 Let o be a timed execution with hardware clocks HC;, 0 < i<n—1,
and ¥ be a vector of n real numbers. In shift(«, ¥):

(a) the hardware clock of p;, HC;, is equal to HC; — 2;, 0 < i < n— 1, and

(b) every message from p; to p; has delay § — z; + r;, where § is the delay of the
messageine, 0 <, j<n— 1

Proof. Let o' = shift(a, 7).

(a) Suppose p;’s hardware clock reads T at real time ¢ in o, that is, HC;(t) =
T. By definition, in &/, p;’s hardware clock reads T at real time { + z;, that is,
HCi(t+z;) = T. Thus HC}(t +a;) = HC;(t). Since hardware clocks have no drift,
HC}(t + z;) equals HC;(t) + z;, and part (a) of the lemma follows.

(b) Consider message m sent by p; at real time ¢, and received by p; at real time
tr in . The delay of m in o is § = ¢, — 5. In o, the computation event of p; that
sends m occurs at ¢, + x; and the computation event of p; that receives m occurs at
t, + x;. Thus the delay of min o' is &, + 2; — (¢, + 2;) = § — @; + x;, and part
(b) of the lemma follows.

6.3.2 The Clock Synchronization Problem

The clock synchronization problem requires processors to bring their clocks close
together, by using communication among them. Because the hardware clocks are
not under the control of the processors, we assume that each processor has a special
state component adj; that it can manipulate. The adjusted clock of p; is a function
of p;’s hardware clock and state variable adj;. During the process of synchronizing
the clocks, p; can change the value stored in adj, and thus change the value of the
adjusted clock.

Here we assume that hardware clocks do not drift, and hence the only compensation
needed for each hardware clock is an (additive) offset. Thus the adjusted clock is
defined to be the sum of the hardware clock and the current value of adj;.

Given a timed execution, the adjusted clock of p; can be represented as a function
AC;(t) = HC;(t) + adj;(t), where adj;(t) is the value of adj; in the configuration
immediately before the earliest event whose occurrence time is greater than £.

In the case hardware clocks have no drift, once synchronization is achieved,
no further action is required. Thus the clock synchronization problem under the
assumption of no drift is defined as follows:

Definition 6.5 Achieving ¢-Synchronized Clocks: In every admissible® timed exe-
cution, there exists real time t; such that the algorithm has terminated by real time
ty. and, for all processors p; and p;, and allt > t;, |AC;(t) — AC;(t)] < e

This condition states that at any given real time ¢, the adjusted clock values are
within some ¢, called the skew. Another way of looking at this is to measure how
far apart in real time the clocks reach the same clock time 7', called the precision.

4 A timed exccution is admissible if clocks do not drift.
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Fig. 6.10 Relationship between skew and precision for clocks with no drift.

‘When clocks have no drift, these are equal. (See Fig. 6.10; the skew and precision
are equal because both clock functions have slope 1.) Sometimes one viewpoint is
more convenient than another.

The requirement that the algorithm terminates at some point, implying that no
further changes are made to the adj variables, is important (see Exercise 6.9).

Throughout this section, we will assume that there exist nonnegative constants
d and u, d > u, such that in every admissible timed execution, every message has
delay within the interval [d — u,d]. The value u is the uncertainty in the message
delay. Since the delay of a message is the time between the computation event
that sends the message and the computation event when the recipient processes the
message, this condition has implications for the frequency of deliver and computation
events—namely, if p; sends a message m to p; at real time ¢, then a deliver event for
m followed by a computation step for p; must occur no later than time ¢ + d and no
sooner than time ¢ + d — u.

It is possible to achieve clock synchronization when upper bounds on message
delay are not known or do not exist, given an appropriately modified definition of
clock synchronization. However, such algorithms are more complicated to analyze
and cannot guarantee an upper bound on skew that holds for all executions (see
Exercise 6.10).

6.3.3 The Two Processors Case

To obtain some intuition about the clock synchronization problem, let us consider the
simple case of two processors, pg and p;. The first idea is the following algorithm:
Processor pg sets adj, to O and sends its current hardware clock value to processor
p1. On receiving the message with value 7", processor p; sets its adjusted clock to
be T'+ (d — u) by setting adj, equal to T+ (d — u} — HCy. (In this formula, HC,
indicates the current value of p;’s hardware clock.)

The best-case performance of the algorithm is when pg’s message actually has
delay d — u, in which case the skew between the two processors’ adjusted clocks is
0 (see Fig. 6.11(a)). On the other hand, the worst case of the algorithm is when the
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Fig. 6.11 Clock synchronization for two processors.

message has delay d, because the adjustment is calculated assuming that the message
was delayed only d — u time units. In this case, the skew is u (see Fig. 6.11(b)).

One might be tempted to calculate the adjustment assuming that the message was
delayed d time units. However, in this case, the worst case of the algorithm happens
when the message is delayed d — w time units, again giving a skew of «.

As indicated by these two examples, the difficulty of clock synchronization is the
difference between the estimated delay used for calculating the adjustment and the
actual delay. As we show below, it is best to estimate the delay as d — u/2. That is,
on receiving the message with value T, p; sets adj; tobe T'+ {d —u/2) — HC;. The
skew achieved by this algorithm is at most u/2, because if we consider an arbitrary
execution of the algorithm, and let § be the delay of the message from pg to py, then
d—u < 6 < d. Therefore, |§ — (d — u/2)| < u/2, which implies the bound (see
Fig. 6.11(c)).

The last algorithm assumes that d and u are known to the algorithm. The same
skew (u/2) can be achieved even if d and u are unknown; see Exercise 6.12.

We now argue that u/2 is the best skew that can be achieved in the worst case by
a clock synchronization algorithm A for two processors py and p,.



146 CAUSALITY AND TIME

real time T
Po _
AC
d—u d
»n
AC;

(a) Execution «

Po

ACy +u
d—u
1

ACy

{b) Execution o’

Fig. 6.12 Executions used in the proof of the lower bound for two processors.

Let o be an admissible timed execution of A in which the delay of messages from
pa to p1 is d — u and the delay of messages from p; to pg is d (see Fig. 6.12(a)).
Because we assume that hardware clocks do not drift, neither do adjusted clocks
after termination, and thus the skew between adjusted clocks does not change. Let
AC; and AC, be the adjusted clocks at some time T after termination. Because the
algorithm has skew e,
AC() Z AC]_ — €

Now consider o’ = shift(c, (—u, 0)), the result of shifting py earlier by u and not
shifting p; (see Fig. 6.12(b)). Note that o' is an admissible timed execution, because
all message delays are between d — « and d, by Lemma 6.14. By the same lemma,
at time 7" in o, the adjusted clock of pg is ACy + u whereas the adjusted clock of p;
remains AC. Because the algorithm has skew e,

AC1 2 (ACQ -+ u) - €
Putting these inequalities together, we get:
ACy > ACy + u — 2¢

which after simple algebraic manipulation implies that ¢ > /2.

In Sections 6.3.4 and 6.3.5, we extend the above algorithm and lower bound to the
general case of n processors, to show that the smallest skew that can be achieved is
exactly u(1 — 1)

6.3.4 An Upper Bound

Recall that we assume that processors are located at the nodes of a complete com-
munication network. A very simple algorithm is to choose one of the processors as
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Algorithm 20 A clock synchronization algorithm for n processors:
code for processor p;, 0 < i< n— 1.

initially diff[i] = 0

1. at first computation step:

2: send HC (current hardware clock value) to all other processors
3. upon receiving message 7' from some p;:

4: difflj] =T+d—-u/2~HC

5 if a message has been received from every other processor then
6: adj := L Y700 diffk]

a center, and to apply the two-processor algorithm between any processor and the
center. Because each processor is at most u/2 away from the clock of the center, it
follows that the skew of this algorithm is u.

We next see that we can do slightly better: There is a clock synchronization
algorithm with skew u(1— 1). The pseudocode appears in Algorithm 20. Essentially,
each processor computes an estimate of the average hardware clock value and adjusts
its clock to that value.

Theorem 6.15 Algorithm 20 achieves u(1 - %)—synchmnizati(m Jfor n processors.

Proof. Consider any admissible timed execution of the algorithm. After p; receives
the message from p;, diff; [ 7] holds p;’s approximation of the difference between HC;
and HC;. Because of the way diff;[;] is calculated, the error in the approximation is
plus or minus u/2. More formally:

Lemma 6.16 For every time t after p; sets diff;[j], j # i diff;[j](t) = HC;(t) —
HC;(t) + errj;, where errj; is a constant with —u /2 < errj; < u/2.

We now bound the difference between p;’s and p;’s adjusted clocks at any time ¢
after the algorithm terminates. By the definition of the adjusted clocks,

‘ 1 n—1 ' 1 n—1 .
IACi(t) - AC; (1) = |HCi(t) + — > diff;[k] - HC;(t) — - > diff;[k]
k=0 k=0
After some algebraic manipulation, we obtain:

-le |HC;(t) — HC;(1) + diff;[i] — diff;[i] + HCi(t) — HC;(t) + diff;[j] — diff;[4]

n—-1
+ > (HCi(t) — HC;(t) + diff; k] — diff;[K]) |

k=0,k#1,j

By laws of absolute value and the fact that diff;[i] = diff;[j] = 0, this expression is
at most

L (HCy (1) — HCy(t) + i 1] + HCs(t) ~ HC3(1) + dif )



148 CAUSALITY AND TIME

b |HGE) - HCi(0) + diff K] — diff k]

k=0,k#i,j

The first term corresponds to the difference between p;’s knowledge of its own
clock and p;’s estimate of p;’s clock. The second term corresponds to the difference
between p;’s knowledge of its own clock and p;’s estimate of p;’s clock. Each of the
remaining n — 2 terms corresponds to the difference between p;’s estimate of py’s
clock and p;’s estimate of p;’s clock.

By Lemma 6.16, the first term is equal to |err;;|, which is at most u/2, and the
second term is equal to |err;j;|, which is also at most u/2. Each of the remaining
n — 2 terms, |HC;(t) — HC;(t) + diff;[k] — diff;[k]|, is equal to

[HC;;(t) - HCj(t) + HC,(t) — HCi(t) + errg; — HC (t) + HC; (t) — errkj|

All the terms other than erry; and erry; cancel, leaving a quantity that is at most
u/24+ u/2=wu.
Thus the overall expressionisatmost 1 (%4 + % + (n — u) =wu(l - %). O

6.3.5 A Lower Bound

We now show that u(l — 1) is the best skew that can be achieved by a clock
synchronization algorithm for n processors connected by a complete communication
network, where u is the uncertainty in the message delay.

Theorem 6.17 For every algorithm that achieves e-synchronized clocks, ¢ is at least
u(l— 1)

Proof. Consider any clock synchronization algorithm A. Let o be an admissible
timed execution of A with hardware clocks HC;, 0 < 7 < n — 1, and the following
(fixed) message delays. For two processors p; and p;, ¢ < j:

¢ The delay of every message from p; to p; is exactly d — u.
o The delay of every message from p; to p; is exactly d.

(See Fig. 6.13.)
Let AC;, 0 < i < n — 1, be the adjusted clocks in « after termination. Pick any
time ¢ after termination.

Lemma 6.18 Foreachk, 1 <k <n—1,AC,_1(t) <AC(t) —u+e

Proof. Pickany k, 1 < k¥ < n — 1. Define o’ = shift(a, #), where z; = —u if
0<i<k-—landz; =0if k£ <i<n—1(seeFigure6.13).

ByLemma 6.14, the message delays in o’ are as follows. Consider two processors
pi and p; with i < j. If j < k — 1 or k < 4, then the delays from p; to p; are d — u
and the delays from p; to p; are d. Otherwise, when ¢ < k£ — 1 < j, the delays from
p; to p; are d and the delays from p; to p; are d — u.
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Fig. 6.13 lllustration for Theorem 6.17: executions « (left) and o’ (right).

P

Thus o’ is admissible and the algorithm must work correctly in it; in particular, it
must achieve e-synchronized clocks. Since processors are shifted earlier in real time,
¢ is also after termination in o’. Thus AC,,_, () < AC,(t) + .

By Lemma 6.14, AC,_ (t) = ACk—(t) + v and AC;,(t) = ACk(t).

Putting all the pieces together gives AC,_1(t) < AC,(t) — u + €. O

Since A is presumed to achieve e-synchronized clocks, AC,_1(t) < ACy(t) + €.
We apply the lemma repeatedly to finish the proof, as follows.

ACn._l(t) ACO(t) + ¢
ACi(t) — u+ 2¢

ACy(t) — 2u+ 3¢

INIA N IA A

ACr_1(t) — (n — L)u + ne

Thus € > u(l — 1). 0

6.3.6 Practical Clock Synchronization: Estimating Clock Differences

Measurements of actual message delays in networks indicate that they are not uni-
formly distributed between a minimum and a maximum value. Instead, the distri-
bution typically has a spike close to the minimum and then a long tail going toward
infinity. One consequence is that there is not a well-defined maximum delay — delays
can be arbitrarily large if we are sufficiently unlucky. However, as the probability of
very large delays is very small, often this problem is dealt with by assuming some
upper bound on delay that captures a large enough fraction of the messages, and any
message that arrives later than that is treated as a lost message.

When mapping this reality to the abstract model presented earlier in this section,
d — u represents the minimum delay and d the assumed upper bound. Thus d is used
as a “timeout parameter” and can trigger some action to be taken when a message is
viewed as lost.

However, when d is chosen to be very large, most messages take significantly less
time than d to reach their destination. Algorithms such as Algorithm 20 that assume
that message delays are d — u/2 are thus massively overestimating the delay, which
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causes the resulting skew to be quite large. In other words, it is inappropriate to use
the timeout interval to approximate delays of messages in the clock synchronization
algorithm.

A more clever approach is to take advantage of the smaller delays that occur
most of the time in practice to get improved performance for clock synchronization.
To expand on this idea, let’s consider a primitive that is popular in many clock
synchronization algorithms: having one processor estimate the difference between
its clock and that of another processor.

In Algorithm 20, processor p; sends its current clock value to processor p; and
then p; calculates the difference assuming that this message was in transit for d — u/2
time. Note that p; just sends the message on its own initiative, not in response to
something that p; does. The resulting error in the estimate is at most /2, and when
d, the maximum delay, is much larger than the minimum delay d — wu, this error is
approximately d/2, which is still large.

An alternative is to have p; send a query message to p;, which p; answers imme-
diately with its current clock value. When p; receives the response, it calculates the
round-trip time of this pair of messages and assumes that each message took half the
time. If the round-trip time is significantly less than 2d, we have a much better clock
estimate, as we now explain. Suppose the round-trip time is 2d’, where d' <« d. The
error is at most half of &’ — (d — u), oru/2 — (d — d'}/2, which is less than d’ /2 and
much less than d/2.

Note, though, that double the number of messages are required for the latter
method.

What if you want to guarantee, at least with high probability, that you get a good
estimate? A processor can repeatedly initiate the query-response until one occurs with
a sufficiently small round-trip delay. The expected number of times that a processor
will need to do so depends on the desired probability of success, the desired bound
on the error, and the distribution on the message delay.

Now consider what processors can do with the improved clock difference es-
timates. Assume that the response to a query requires no local processing time
(Exercise 6.12 addresses how to relax this assumption). The two-processor algo-
rithm from Section 6.3.3 can be modified so that p; sends a query to py when its
hardware clock reads 7;. In response, py sets adjp to 0 and sends the current value
T of its hardware clock back to p;. When p; gets the response 7, at hardware
clock time 75, it sets its adjustment variable to T + -é-(Tr — T;) — HCy. When the
round-trip delay of the query-response pair is d’, the resulting worst-case skew is
u/2 — (d — d’)/2, which contrasts with the worst-case skew of u/2 for the original
algorithm. The difference is significant if d’ < d.

Exercises
6.1 Consider the execution in Figure 6.14.

(a) Assign logical timestamps to the events.
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Fig. 8.14 Execution for Exercise 6.1.

(b) Assign vector timestamps to the events.
Suggest improvements in the message complexity of vector clocks.

Extend the notion of a causal shuffie and prove Lemmas 6.1 and 6.2 for the
shared memory model.

Prove that there is no loss of generality in assuming that at each computation
event a processor receives exactly one message.

Prove that there is a unique maximal consistent cut preceding any given cut.
Prove that the algorithm for finding a maximal consistent cut is correct.

Modify the snapshot algorithm to record the channel states as well as the
processor states. Prove that your algorithm is correct.

In the proof of Theorem 6.11, verify that 4’ is a causal shuffle of ~.

Show that if the requirement of termination is dropped from the definition of
achieving clock synchronization, a skew of 0 is obtainable.

Hint: The adjusted clocks in this scheme are not very useful.

Devise an algorithm to synchronize clocks when there is no upper bound on
message delays.

Suppose we have a distributed system whose topology is a tree instead of a
clique. Assume the message delay on every link is in the range [d — u, d].
What is the tight bound on the skew obtainable in this case?

Explainhow a processor can calculate the round-tripdelay of a query-response
message pair when an arbitrary amount of time can elapse between the receipt
of the query and the sending of the response.

Modify Algorithm 20 for synchronizing the clocks of n processors to use the
improved clock difference estimation technique in Section 6.3.6.

Analyze the worst-case skew achieved by your algorithm when the maximum
message delay is some d' < d.
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6.14 Suppose that pg has access to some external source of time, so that its adjusted
clock can be considered correct and should not be altered. How can the two-
processor algorithm from Section 6.3.3 be modified so that p; can synchronize
its clock as closely as possible to that of pg?

Chapter Notes

The first part of this chapter concentrated on the notion of causal influence between
events. The happens-before relation was defined by Lamport [155], as was the
algorithm for logical timestamps. Vector timestamps were defined independently
by Mattern [181] and by Fidge [106]. The first applications of vectors to capture
causality were for distributed database management, for example, by Strom and
Yemini [247]. The lower bound on the size of vector timestamps is due to Charron-
Bost {72]. Schwarz and Mattern describe several implementations and uses of logical
and vector clocks in their exposition of causality and non-causality [239].

The happens-before relation is used widely in the theory and practice of distributed
systems; we presented only two of its applications. Johnson and Zwaenepoel [145]
proved that there is a unique maximal consistent cut below another cut (Exercise 6.5).
The algorithm for finding a maximal consistent cut is from Sistla and Welch [244],
who used it for crash recovery with independent logging; here, the input F contains
log information provided by the processors.

The algorithm for taking a consistent snapshot (Algorithm 19) is due to Chandy
and Lamport [69]. Distributed snapshots can be used to solve several problems
including termination detection, scheduling, and detection of stable properties. For
more information about distributed snapshots, see the papers of Chandy [68] and Lai
and Yang [152], as well as the chapter by Babaoglu and Marzullo [42]. Distributed
snapshots are related to the problem of taking an atomic snapshot of shared memory,
which will be studied in Chapter 10.

Another important application of logical time is for debugging (using nonstable
predicates), see, for example, the work of Garg and Waldecker [121]; additional
applications are discussed by Mattern {181] and Morgan [191].

The results for the session problem (Section 6.2.2) are based on results of Arjo-
mandi, Fischer, and Lynch [19] and Attiya and Mavronicolas [30].

The second part of the chapter was dedicated to clock synchronization in the
no drift case (Section 6.3); our exposition is based on the results of Lundelius and
Lynch[174]. Their results concern only acomplete network with the same uncertainty
bounds for all communication links; arbitrary topologies and arbitrary uncertainties
(as well as the situation in Exercise 6.11) were investigated by Halpern, Megiddo, and
Munshi [130]. The case when uncertainties are unknown or unbounded was consid-
ered by Attiya, Herzberg, and Rajsbaum [29] and Patt-Shamir and Rajsbaum [206].
Lamport [155] describes and analyzes an algorithm that tolerates drift.

Chapter 13 discusses the problem of synchronizing clocks in the presence of
failures and drift.
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Qur definition of the clock synchronization problem only requires the adjusted
clocks to be close to each other; this is known as internal clock synchronization.
External clock synchronization requires that the adjusted clocks to be close to real
time; external clock synchronization can be achieved only if there are sources for
measuring the real time.

Practical network protocols for clock synchronization, especially Mills’ Network
Time Protocol (NTP) [186] rely on having access to a reliable and accurate time
source, such as a Global Positioning System satellite; these protocols achieve external
clock synchronization. Mills’ paper [186] contains the solution to Exercise 6.14. The
time sampling algorithm described in Section 6.3.6 was suggested by Cristian [87].
His paper expands on this idea, handling the case when clocks drift, and describes a
time service that tolerates failures of processes, clocks, and communication.

Yang and Marsland edited a collection of papers on global states and time in
distributed systems [263]; some of the papers mentioned above appear in this collec-
tion.
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A Formal Model for
Simulations

In the remainder of the book, we will be studying tools and abstractions for simplifying
the design of distributed algorithms. To put this work on a formal footing, we need
to modify our model to handle specifications and implementations in a more general
manner.

7.1 PROBLEM SPECIFICATIONS

There are various approaches to specifying a problem to be solved. So far in this
book, we have taken a relatively ad hoc approach, which has served us adequately,
because we have been discussing particular problems, for example, leader election,
mutual exclusion, and consensus. In this ad hoc approach, we have put conditions
on the states of the processors as they relate to each other and to the initial states.

Now we wish to specify problems more generally, so that we can talk about
system simulations and algorithms for arbitrary problems. Instead of looking inside
an algorithm, we will focus on the interface between an algorithm (equivalently, the
processors) and the external world.

Formally, a problem specification P is a set of inputs in(P), a set of outputs
out(P), and a set of allowable sequences seq(’P) of inputs and outputs; in(P) and
out(P) form the interface for P. Each inputor output has a name and may have some
data associated with it as a parameter. These are how the processors communicate
with the external world, that is, with the users of the algorithm. Inputs come in
to the processor from the external world, and outputs go out from the processor to
the external world. The sequences specify the allowed interleavings of inputs and

157
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outputs. Thus a problem is specified at the interface between the algorithm and the
external world. A problem specification might impose certain constraints on the
inputs, meaning that the users must use the system “properly.”

For example, the mutual exclusion problem for n processors can be specified as
follows. The inputs are 7; and F;, 0 < i < n — 1, where T; indicates that the ith
user wishes to try to enter the critical section and £; indicates that the ith user wishes
to exit the critical section. The outputs are C; and R;, 0 < i < n — 1, where C;
indicates that the ith user may now enter the critical section and R; indicates that
the 7th user may now enter the remainder section. A sequence « of these inputs and
outputs is in the set of allowable sequences if and only if, for each 1,

1. «li cycles through T3, C;, E;, R; in that order, and

2. Whenever C; occurs, the most recent preceding input or output for any other j
is not Cj

Condition 1 states that the user and the algorithm interact properly with each other.
Note that condition I imposes some constraints on the user to behave “properly.”
Condition 2 states that no two users are simultaneously in the critical section. Spec-
ifying the no-lockout and no-deadlock versions of the mutual exclusion problem is
left as an exercise (Exercise 7.1).

7.2 COMMUNICATION SYSTEMS

The formal model used in Part I of this book explicitly modeled the communication
systems—with inbuf and outbuf state components and deliver events for message
passing and with explicit shared variables as part of the configurations for shared
memory.

In this part of the book, our focus is on how to provide such communication
mechanisms in software, via simulations. Thus we no longer explicitly model mes-
sage channels or shared variables. Instead we have a communication system that
is interposed between the processors. Processors communicate with each other via
the communication system. The communication system will be different in different
situations; for instance, it has a different interface for message passing (sends and re-
ceives) than it does for shared memory (invocations and responses on shared objects),
and it provides different ordering guarantees under different synchrony assumptions.
It even provides different guarantees on the contents of messages, depending on the
failure assumptions being made.

We will be studying how to simulate certain kinds of communication systems
out of weaker ones; in particular, how to implement broadcasts in message passing
(Chapter 8), how to implement shared objects either out of message passing (Chap-
ters 9 and 10) or out of other shared objects (Chapters 10 and 15), how to implement
stronger synchrony guarantees (Chapter 11), and how to implement more benign
failures (Chapter 12).
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Next we describe two kinds of (failure-free) asynchronous message-passing sys-
tems, one with point-to-pointcommunication and the other with broadcast communi-
cation, by giving a problem specification for each one. Atrelevant points later in the
book, as needed, we will provide problem specifications for shared memory, other
synchrony requirements, and various failure modes.

7.2.1 Asynchronous Point-to-Point Message Passing

The interface to an asynchronous point-to-point message-passing system is with two
types of events;

send;(M): an input event of the message-passing system, on behalf of processor p;,
that sends a (possibly empty) set M of messages. Each message includes an
indication of the sender and recipient, there is at most one message for each
recipient, and the sender-recipient pairs must be compatible with the assumed
topology of the underlying system.

recv;{M): an output event of the message-passing system, on behalf of processor p;,
in which the (possibly empty) set M/ of messages is received. Each message
in M must have p; as its recipient.

The set of allowable sequences of inputs and outputs consists of every sequence
satisfying the following. There exists a mapping & from the set of messages appearing
in all the recv; (M) events, for all i, to the set of messages appearing in send; (M)
events, for all 7, such that each message m in a recv event is mapped to a message
with the same content appearing in an earlier send event, and

Integrity: « is well-defined. That is, every message received was previously sent—
no message is received “out of thin air.” This implies there is no corruption of
messages.

No Duplicates: k is one-to-one. That is, no message is received more than once.

Liveness: & isonto. That is, every message that is sent is received. This means there
is no omission of messages.

These properties will be modified later when failures are considered.

7.2.2 Asynchronous Broadcast

Here we describe a system supporting generic broadcast communication. In Chapter 8
we define broadcasts with different service qualities.
The interface to a basic asynchronous broadcast service is with two types of events:

be-send; (:m): An input event of the broadcast service, on behalf of processor p;, that
sends a message m to all processors.
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be-recv;(m, 7): An output event of the broadcast service, on behalf of processor p;,
that receives the message m previously broadcast by p;.

The set of allowable sequences of inputs and outputs consists of every sequence
satisfying the following. There exists a mapping x from each bc-recv;(m,j) event to
an earlier bc-send; () event, with the following properties:

Integrity: « is well-defined. That is, every message received was previously sent-—no
message is received “out of thin air.”

No Duplicates: For each processor p;, 0 < ¢ < n— 1, the restriction of « to be-recv;
events is one-to-one. That is, no message is received more than once at any
single processor.

Liveness: For each processor p;, 0 < 7 < n—1, therestriction of « to bc-recv; events
is onto. That is, every message that is sent is received at every processor.

As in the point-to-point case, these properties will be modified later when failures
are considered.

7.3 PROCESSES

To simulate one kind of system out of another, there will be a piece of code running
on each processor that implements the desired communication system. Thus it is no
longer accurate to identify “the algorithm” with the processor, because there will be
multiple processes running on each processor. For instance, there could be a process
corresponding to an algorithm that uses the asynchronous broadcast system and a
process corresponding to an algorithm that simulates the asynchronous broadcast
system on top of the asynchronous point-to-point message-passing system,

We present a relatively restricted form of algorithm composition, which is suf-
ficient for our needs in this book. We assume an ordering of processes, forming a
“stack of protocols”, as shown in Figure 7.1 (a). The environment, or external world,
is the user {either human or software) of the system we are explicitly modeling. The
communication system is the black-box entity through which the nodes ultimately
communicate; its implementation is currently not of interest. Each layer in the stack
communicates with the layer above through what it views as inputs and outputs to
the external world. Likewise, each process uses communication primitives to interact
with the layer beneath it, as if it were communicating directly with some underlying
communication system. Only the top process actually communicates with the ex-
ternal world, and only the bottom process actually interacts with the communication
system.

An input coming in either from the external world or from the communication
system triggers the processes on a node to take a series of steps. For example,
suppose we have a stack of processes, all of which use a message-passing paradigm
for communication, and an input occurs at the top layer process. That process takes
in the input and in response does a send. The next process down in the stack takes
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Fig. 7.1 The layered model (a) and sample propagation of events (b).

in the send as its input and does a send to the process below it. Eventually we get
to whatever we are considering as the “real” communication system in this view (see
Fig. 7.1 (b)).

Allthe events on a node that are triggered, either directly or indirectly, by one input
event happen atomically with respect to events on other nodes. Thus local processing
time is not taken into account. The rationale for this restriction is that studies
of distributed systems are primarily concerned with the time for communication
between physically dispersed nodes, not the time for local computation and intra-
node communication, which is generally negligible in comparison.

We now proceed in more detail.

A system consists of a collection of n processors (or nodes), py through p,, .1, a
communication system C linking the nodes, and the environment £.

The environment £ and the communication system C are not explicitly modeled as
processes. Instead, they are given as problem specifications, which impose conditions
on their behavior. The reason is that we want to be as general as possible and allow all
possible implementations of the environment and communication system that satisfy
the specification.

A node is a hardware notion. Running on each node are one or more (software)
processes. We restrict our attention to the situation in which the processes are
organized into a single stack of layers and there are the same number of layers on
each node. Each layer communicates with the layer above it and the layer below it.
The bottom layer communicates with the communication system, and the top layer
communicates with the environment.
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Fig. 7.2 Events at a process.

Each process is modeled as an automaton. It has a (possibly infinite) set of states,
including a subset of initial states. Transitions between the states are triggered by
the occurrence of events of the process. The process has four kinds of events (see
Fig. 7.2):

1. Inputs coming in from the layer above (or the environment, if this is the top
layer)

2. Outputs going out to the layer above

3. Inputs coming in from the layer below (or the communication system, if this
is the bottom layer)

4. Outputs going out to the layer below

Events of type 1 and 2 form the top interface of the process, and events of type 3
and 4 form the botrom interface of the process.

An event is said to be enabled in a state of a process if there is a transition from that
state labeled with that event. An event that is an input for a process is one over which
the process has no control; formally, an input must be enabled in every state of the
process. A process has control over the occurrence of an output event; the transition
function encodes when the output can occur. Events are shared by processes; an
output from one layer is an input to an adjacent layer.

Inputs from the environment and from the communication system are called node
inputs. In asynchronous systems, we require that the processes on a single node
interact in such a way that only a finite number of events (other than node inputs) are
directly or indirectly enabled in response to any single node input. Each node input
can cause some (finite number of) events to be enabled on that node; when each of
those occurs it can cause some other events to be enabled; etc. Eventually, though,
all this activity must die down. No constraints are put on the order in which enabled
events must occur in the node.

A configuration of the system specifies a state for every process on every node.
Note that, unlike the definition of configuration in the model of Part I, now a configura-
tion does not include the state of the communication system. An initial configuration
contains all initial states.
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An execution of the system is a sequence Cog1C1¢2C5 . . . of alternating config-
urations C; and events ¢;, beginning with a configuration and, if it is finite, ending
with a configuration, that satisfies the following conditions.

1. Configuration Cj is an initial configuration.

2. Foreach i > 1, event ¢; is enabled in configuration C;_; and configuration C;
is the result of ¢; acting on C;_;. In more detail, every state component is the
same in Cy as it is in C;_1, except for the (at most two) processes for which ¢;
is an event. The state components for those processes change according to the
transition functions of those processes.

3. Foreach ¢ > 1, if event ¢; is not a node input, then ¢ > 1 and it is on the same
node as event ¢;_;. Thus the first event must be a node input, and every event
that is not a node input must immediately follow some other event on the same
node.

4. For each 7 > 1, if event ¢; is a node input, then no event (other than a node
input) is enabled in C;_;. Thus a node input does not occur until all the other
events have “played out” and no more are enabled.

The last two conditions specify atomicity with respect to the events on different
nodes. A node is triggered into action by the occurrence of an input, either from the
environment or from the communication system. The trigger causes a chain reaction
of events at the same node, and this chain reaction occurs atomically until no more
events are enabled, other than node inputs.

The schedule of an execution is the sequence of events in the execution, without
the configurations.

Given execution ¢, we denote by fop(«) (respectively, bot(«)) the restriction of
the schedule of « to the events of the top (respectively, bottom) interface of the top
(respectively, bottom) layer.

7.4 ADMISSIBILITY

We will only require proper behavior of the system when the communication system
and the environment behave “properly.” These situations are captured as “admissi-
bility” conditions on executions. Only admissible executions will be required to be
correct.

An execution is fair if every event, other than a node input, that is continuously
enabled eventually occurs. Fairness makes sure that the execution does not halt
prematurely, while there is still a step to be taken.

An execution « is user compliant for problem specification P if, informally
speaking, the environment satisfies the input constraints of P (if any). More formally,
for every prefix a’¢ of «, where ¢ is an input from the environment, if o’ is a prefix
of some element of seq(P), then so is o’¢p. The details of the input constraints
will naturally vary depending on the particular problem. For instance, in the mutual
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Fig. 7.3 Simulating C3 from C;.

exclusion problem specification the environment at a node should only indicate that
it is ready to leave the critical section if it is currently in the critical section.

An execution o is correct for communication system C if bot(«) is an element of
seq(C). This condition states that the communication system is correct, according to
the problem specification of C.

Finally, we define an execution to be (P, C)-admissible if it is fair, user compliant
for problem specification P, and correct for communication system C. When P and
C are clear from context, we simply say “admissible.” Although the details of this
definition of “admissible” are different than our usage of the word in Part I, the spirit
is the same; admissibility captures the extra conditions over and above the basic
conditions required of executions.

7.5 SIMULATIONS

We can now state our formal definitions of one system simulating another system.

Communication system C; globally simulates (or simply simulates) communica-
tion system Cy if there exists a collection of processes, one for each node, called Sim
(the simulation program) that satisfies the following.

1. The top interface of Sim is the interface of Cs.
2. The bottom interface of Sim is the interface of C;.

3. For every (Cy, C1)-admissible execution ¢ of Sim, there exists a sequence ¢ in
seq(Cy) such that & = rop(a).

In other words, running the simulation on top of communication system C; pro-
duces the same appearance to the environment as does communication system Cs
(see Fig. 7.3).

We sometimes need a weaker definition of simulation, in which the users at
individual nodes cannot tell the difference between running directly on system Cs
and running on top of a simulation that itself is running on top of system C;, but an
external observer, who can tell in what order events occur at different nodes, can tell
the difference. This is called local simulation. To define it precisely, we first define
weaker notions of user compliance and admissibility.



PSEUDOCODE CONVENTIONS 165

An execution « is locally user compliant for problem specification P if, informally
speaking, the environment satisfies the input constraints of P on a per node basis,
but not necessarily globally. More formally, for every prefix o’¢ of v, where ¢ is an
input from the environment, if there exists ¢’ in seq(P) such that if o’ is a prefix of
o’|1, for all 7, then there exists o in seq(P) such that o/ ¢ is a prefix of «|¢, for all 5.

An execution is (P, C)-locally-admissible if it is fair, locally user compliant for
P, and correct for the communication system C.

The definition of local simulation is the same as global simulation except that
condition 3 becomes:

3. For every {Ca, Cy)-locally-admissible execution o of Sim, there exists a se-
quence o in seg(Cy) such that o|i = top(«a)|iforalli,0 < i< n—1.

7.6 PSEUDOCODE CONVENTIONS

The pseudocode description of an asynchronous message-passing algorithm will
consist of a list of input and output events. Each list element will begin with the name
of the event and include the changes to the local state that result from the occurrence
of the event; the changes will be described in typical sequential pseudocode.

Besides local state changes, the occurrence of an event causes zero or more outputs
to become enabled. Most of the time, this will be indicated by simply stating “‘enable
output X.” Occasionally it is more convenient to list the conditions under which an
output is enabled together with the local state changes caused by its occurrence; this
is usually the case when the enabling conditions are somewhat involved.

If the result of an occurrence of an output event is simply to disable it, that is,
no (additional) local state changes are made, then we will not include a separate list
element for that output.

Recall that in the asynchronous systems, the order in which the enabled outputs
occur in an execution is immaterial, as long as the proper atomicity for events on the
same node is maintained.

Exercises

7.1 Using the model presented in this chapter, specify the no deadlock and no
lockout versions of the mutual exclusion problem.

7.2 Prove that global simulation implies local simulation.

7.3 Prove that global simulation is transitive, that is, if A globally simulates B,
and B globally simulates C, then A globally simulates C'.

Is the same true of local simulation?
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Chapter Notes

The formal model presented in this chapter is a special case of the input-output
automaton (IOA) model of Lynch and Tuttle [177]. The IOA model is a very
general model for describing entities that interact asynchronously through inputs and
outputs. We have used IOA as an “assembly language” to describe layered systems.
The first two conditions on the definition of execution are the conditions for being an
execution in the IOA model. However, we have restricted our attention to a subset of
executions that also satisfy the node atomicity property, with the last two conditions.
Our motivation for doing so was to have a (relatively) unified treatment of both
asynchronous and synchronous models; our definitions for the synchronous model
appear in Chapters 11 and 12. The IOA model treats composition and fairness more
generally and provides support for a number of verification methods, in particular,
hierarchical proofs of correctness. Chapter 8 of the book by Lynch [175] contains
additional references concerning the IOA model.

Layering is the technique that allows system designers to control the complexity
of building large-scale systems. In particular, layering in communication systems is
exemplified by the International Standards Organization’s Open Systems Intercon-
nection Reference Model for computer networks (cf. [251]).

Although the specification of broadcast presented here results in a message being
received by all the processors, the actual topology of the system need not be a clique.
Typically the broadcast will be running on top of a network layer protocol, which
takes care of routing messages over paths of point-to-point channels for any topology
(again, cf. [251]).
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Broadcast and Multicast

In this chapter, we discuss one of the most important abstractions for designing
distributed programs: communication primitives that provide broadcast and multicast
with powerful semantics.

Previously, when addressing the message passing model, we assumed that pro-
cessors communicate over point-to-point links, which provides one-to-one commu-
nication, that is, one processor sends a message on an incident link to a single other
processor. However, in many cases, it is useful to send a message to several processors
at the same time. Such a facility provides one-to-all or one-to-many communication,
by having a broadcast or a multicast step, in which a processor sends a message
either to all or to a number of processors.

Broadcast and multicast can easily be simulated by sending a number of point-
to-point messages; furthermore, in certain systems, based on local area networks,
the low-level communication layer provides broadcast or multicast primitives of this
kind. Yet, in both cases, there is no guarantee regarding ordering, because messages
are not necessarily received in the same order. Similarly, there is no guarantee
regarding reliability, because failures might cause processors to receive different sets
of messages.

This chapter formalizes several ordering and reliability requirements, and shows
how to provide them. The first part of the chapter addresses broadcast services,
which support one-to-all communication with guarantees about ordering and relia-
bility of messages. Then we address multicast services, which provide one-to-many
communication.

167
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8.1 SPECIFICATION OF BROADCAST SERVICES

In this section, we define various broadcast services. We begin with the basic
definitions. We then describe three different ordering properties that can be provided,
and we finish with a definition of fault tolerance.

8.1.1 The Basic Service Specification

A broadcast service can support various properties specified, for example, by the
type of ordering and by the degree of fault tolerance they provide. These properties
together form the quality of service provided by the broadcast; several such properties
are specified in Section 8.1.2. To specify the quality of service, the interface to the
basic broadcast service from Chapter 7 is modified:

be-send; (1, gos): An input event of processor p;, which sends a message m to all
processors, containing an indication of the sender; gos is a parameter describing
the quality of service required.

be-recv;(m, j, gos): An output event in which processor p; receives the message
m previously broadcast by p;; gos, as above, describes the quality of service
provided.

A broadcast message is also received at the sender itself. Note that the be-send and
be-recv operations do not block, that is, the be-send operation does not wait for the
message to be received at all processors, and the be-recv operation works in interrupt
mode.

These procedures for a particular quality of service (say, X) are transparently
implemented on top of some low-level communication system that provides another,
usually weaker, quality of service (say, Y'). The type of the low-level communication
system is unimportant in the specification of the broadcast, although it can influence
the design of the implementation. For each processor,' there is a piece of code
that, by communicating with its counterparts on other nodes using the low-level
communication system, provides the desired quality of service.

As defined in Section 7.2.2, the basic broadcast service specification for n proces-
sors consists of sequences of be-send; and be-recv; events, 0 < 7 < n — 1. Inthese
sequences, each be-recv;(imn,j,basic) event is mapped to an earlier be-send ;(n,basic)
event, every message received was previously sent (Integrity), and every message that
is sent is received once (Liveness) and only once (No Duplicates) at every processor.

The Liveness property is a strong one. When we consider the possibility of failures
later, we will weaken the Liveness property.

'There can be several user processes on the same processot requiring broadcast communication; typically,
a single daemon process interacts on behalf of all user processes with the low-level communication system.
Keeping with the terminology used earlier in this book, we refer to this daemon as a processor.
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8.1.2 Broadcast Service Qualities

Broadcast properties can be organized along two axes:

Ordering: Do processors see all messages in the same order or just see the
messages from a single processor in the order they were sent? Does the order in
which messages are received by the broadcast service preserve the happens-before
relation?

Reliability: Do all processors see the same set of messages even if failures occur
in the underlying system? Do all processors see all the messages broadcast by a
nonfaulty processor?

We next explore these two axes separately.

8.1.2.1 Ordering We consider three popular ordering requirements. The first
one requires the ordering of all messages sent by the same processor. The second one
requires the ordering of all messages, irrespective of sender. The final one requires
the ordering of messages that are causally related.

A single-source FIFO (ssf) broadcast service is specified by further constraining
the set of sequences defining the basic broadcast service. Using the mapping & to
disambiguate messages with the same content, we require that sequences of bc-send
and bc-recv events also satisfy:?

Single-Source FIFO: For all messages my and my and all processors p; and pj;, if
p; sends m; before it sends m4, then my is not received at p; before m; is.

A totally ordered (to) broadcast service is specified by further constraining the
set of sequences defining the basic broadcast service. Each sequence of be-send and
be-recv events must also satisfy:

Totally Ordered: For all messages m; and mgy and all processors p; and p;, if mq is
received at p; before my is, then my is nof received at p; before m; is.

Before defining the next ordering property, we extend the notion of one event
happening before another to define what is meant by one message happening before
another. We assume that all communication of the high-level application is performed
by using only be-send and be-recv. That is, there are no “behind the scenes™ messages.
Given a sequence of bc-send and be-recv events, message my is said to happen before
message my if either:

s The be-recv event for my happens before (in the sense from Chapter 6) the
be-send event for mg, or

e 1y and my are sent by the same processor and m; is sent before mg

2«Send” and “recv” here refer to “bc-send” and “bc-recv” with quality of service $8f.  Analogous
shortenings are used subsequently.



170 BROADCAST AND MULTICAST
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Fig. 8.1 Scenarios demonstrating relationships among the ordering requirements.

A causally ordered (co) broadcast service is specified by further constraining the
set of sequences defining the basic broadcast service. Each sequence of be-send and
be-recv events must also satisfy:

Causally Ordered: For all messages m; and m, and every processor p;, if my
happens before mx, then ms is not received at p; before my is.

What are the relationships between these three ordering requirements? First note
that causally ordered implies single-source FIFO, because the happens-before relation
on messages respects the order in which individual processors send the messages.
Other than that situation, none of these ordering requirements implies any other. To
see this, consider the three scenarios in Figure 8.1: (a) shows that causally ordered
does not imply totally ordered, (b) shows that totally ordered does not imply causally
ordered or single-source FIFO, and (c¢) shows that single-source FIFO does not imply
causally ordered or totally ordered.

8.1.2.2 Reliability Recall that the basic broadcast service must satisfy three
properties: Integrity, No Duplicates, and Liveness. In the presence of faulty proces-
sors, the Liveness property must be weakened. The specification of a basic broadcast
service that is reliable (in the presence of f faults) consists of all sequences of be-send
and bc-recv events that satisfy the following. There must be a partitioning of the
processor indices into “faulty” and “nonfaulty” such that there are at most f faulty
processors, and the mapping x from bc-recv(m) events to be-send(m) events (as
defined in Section 7.2.2) must satisfy the following properties:
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Integrity: For each processor p;, 0 < i < n ~ 1, the restriction of & to be-recv;
events is well-defined. That is, every message received was previously sent—
no message is received “out of thin air.”

No Duplicates: For each processor p;, 0 < i < n ~ 1, the restriction of & to be-recv;
events is one-to-one. That is, no message is received more than once at any
single processor.

Nonfaulty Liveness: When restricted to be-send and be-recv events at nonfaulty pro-
cessors, k is onto. That is, all messages broadcast by a nonfaulty processor are
eventually received by all nonfaulty processors.

Faulty Liveness: If one nonfaulty processor has a be-recv event that maps to a par-
ticular be-send event of a faulty processor, then every nonfaulty processor has
a be-recv event that maps to the same be-send event. That is, every message
sent by a faulty processor is either received by all nonfaulty processors or by
none of them.

This specification is independent of the particular type of failures to be toler-
ated. However, we will restrict our attention in this chapter to crash failures of the
Processors.

These conditions give no guarantee on the messages received by faulty processors.
The notes at the end of the chapter discuss why we may want to make such provisions,
and how to extend the definitions accordingly.

8.1.2.3 Discussion of Broadcast Properties Recall that a bc-send;(m)
event does not force an immediate be-recv;(im) at p;. That is, it is possible that
the message m 1s received at p; with some delay (similar to the delay it incurs before
being received at other processors).

If a broadcast service provides total ordering as well as single-source FIFO order-
ing, then it is causally ordered. (See Exercise 8.1.)

Several combinations of broadcast service properties have proven to be useful and
have been assigned their own names. Aromic broadcast is a reliable broadcast with
total ordering; atomic broadcast is also called fotal broadcast. FIFO atomic broadcast
is an atomic broadcast with single-source FIFO ordering. Causal atomic broadcast
is an atomic broadcast that preserves causality (and is therefore also FIFO atomic
broadcast). This implies that FIFO atomic broadcast and causal atomic broadcast are
equivalent.

8.2 IMPLEMENTING A BROADCAST SERVICE

In this section, we present several implementations of broadcast services, with various
qualities of service. By “implementation” we mean global simulation, as defined in
Chapter 7.
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We first present algorithms for providing basic broadcast and the ordering prop-
erties when there are no failures. In Section 8.2.5, we discuss implementations of
reliable broadcast.

Throughout this chapter we assume that the underlying message system is asyn-
chronous and point-to-point.

8.2.1 Basic Broadcast Service

The basic broadcast service is simple to implement on top of an asynchronous point-
to-point message system with no failures. When a bc-send occurs for message m at
processor p;, p; uses the underlying point-to-point message system to send a copy
of m to all the processors. Once a processor receives the message from p; over the
underlying message system, it performs the be-recv event for m and ¢. The proof
that this implementation is correct is left to the reader.

8.2.2 Single-Source FIFO Ordering

Single-source FIFO ordering is probably the simplest property to implement on top of
basic broadcast. Each processor assigns a sequence number to each of the messages
it broadcasts; the sequence number is incremented by one whenever a new message
is broadcast. The recipient of a message from p; with sequence number 7" waits to
perform the single-source FIFO receipt of that message until it has done so for all
messages from p; with sequence numbers less than 7". More detailed pseudocode
and the proof that this algorithm indeed provides single-source FIFO ordering are
left to the reader (Exercise 8.3).

8.2.3 Totally Ordered Broadcast

A more difficult property to provide is total ordering. Here we describe two possible
ways to do so, on top of basic broadcast. First, we outline an asymmetric algorithm
that relies on a central coordinator that orders all messages; second, we describe in
detail a symmetric algorithm in which processors decide together on an order for all
broadcast messages. The second algorithm works on top of a single-source FIFO
broadcast service.

8.2.3.1 An Asymmetric Algorithm Inresponse toarequest tosend a message
m in the totally ordered broadcast service, processor p; sends m using the basic
broadcast service to a unique central site at processor p.. Processor p, assigns
a sequence number to each message and then sends it to all processors using the
basic broadcast service. Processors perform the receives for the totally ordered
broadcast service in the order specified by the sequence numbers on the messages,
waiting if necessary to receive all messages with sequence number less than 7" before
performing the receive for the message with sequence number 7". Clearly, because
all messages are assigned a number in a central site, the receives of the totally ordered
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broadcast service happen in the same order at all processors. A more detailed proof
that this algorithm indeed provides a total ordering is left to the reader.

To spread the communication overhead, the role of the central site can rotate
among processors; the central site is identified with a token, and this token circulates
among the processors. Here, we do not discuss the details of this idea any further
{see the notes at the end of this chapter).

8.2.3.2 A Symmetric Algorithm The broadcast algorithm we present is based
on assigning timestamps to messages. It also assumes that the underlying commu-
nication system provides single-source FIFO broadcast, for example, by using the
algorithm of Section 8.2.2.

In the algorithm, each processor maintains an increasing counter, or timestamp.
When the processor is supposed to broadcast a message, it tags the message with
the current value of its counter before sending it out. Each processor also maintains
a vector with estimates of the timestamps of all other processes. The meaning of
processor p;’s entry for processor p; in the vector is that p; will never again receive
a message from p; with timestamp smaller than or equal to that value. Processor p;
updates its entry for p; by using the tags on messages received from p; and using
special “timestamp update” messages sent by p;.

Each processor maintains its own timestamp to be greater than or equal to its
estimates of the timestamps of all the other processors, based on the tags of messages
it receives. When a processor jumps its own timestamp up in order to ensure this
condition, it sends out a timestamp update message.

Each processor maintains a set of messages that are waiting to be received (for
the totally ordered broadcast). A message with timestamp 7" is (total order) received
only when the processor is certain that all other messages with timestamp < T have
arrived at it. This is done by waiting until every entry in its vector is at least T". Then
the processor handles all pending messages with timestamps less than or equal to 7',
in order, breaking ties using processor ids.

The pseudocode appears in Algorithm 21,

To show that this algorithm implements totally ordered broadcast, we must show
that messages are received in the same order at all processors. The ordering of
messages is done by timestamps, breaking ties with processor ids. The resulting
sequence respects the order at each processor by construction and because of the way
timestamps are assigned.

More formally, fix some fair execution « of the algorithm that is correct for the
single-source FIFO communication system. (Because there are no input constraints
that must be satisfied by the environment, the requirement to be user compliant can
be dropped from the definition of admissible.)

The next lemma follows immediately from the code.

Lemma 8.1 Let p; be any processor. Then every message contained in a bc-
send;(m,10) event in o is given a unique timestamp, and timestamps are assigned by
pi inincreasing order.

This immediately implies:
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Algorithm 21 Totally ordered broadcast algorithm: code forp;, 0 <i<n —1.

Initially zs[j] = 0,0 < j < n — 1, and pending is empty

l:  when be-send; (m,to) occurs: /I quality of service to means totally ordered
2: ts[f] =5[] + 1
3: add (m,ts[i],7) to pending
4: enable be-send; ((rn,zsi]),ssf)

/1 quality of service ssf means single-source FIFO
5:  when be-recv; ((m,T'),j,ssf), j # i, occurs:

/ 7 indicates sender; ignore messages from self

6: ts[j] =T
7: add {(m,T,3) to pending
8: if T' > 1s[i] then
9: is[i] =T
10: enable be-send; ({ts-up,T') ,ssf) /] beast timestamp update message

11: when be-recv; ({ts-up,T),j,ssf), j # 4, occurs:  // ignore messages from self
12: ts{j] =T

13: enable be-recv;(m,j,to) when

14: {m,T,j) is the entry in pending with the smallest (T, §)
15: T < ts[k] for all k

16: result: remove (m,7j) from pending

Lemma 8.2 The timestamps assigned to messages in «, together with processor ids,
Sform a total order.

This total order is called timestamp order.
Theorem 8.3 Algorithm 21 is a totally ordered broadcast algorithm.

Proof. In order to show that the algorithm is correct, we must show the Integrity,
No Duplicates, Liveness, and Total Ordering properties.

Integrity and No Duplicates hold because they hold for the underlying single-
source FIFO broadcast service.

Liveness: Suppose in contradiction that some processor p; has some entry stuck
in its pending set forever. Let (m,T,7) be the entry with the smallest (7, j) among
all those stuck at p;.

Since processors assign timestamps in increasing order, eventually (m, T’ ;) is the
smallest entry overall in p;’s pending set. Since (m,T,j) is stuck, there exists some
k such that T' > #s[k] at p; forever. So at some point p; stops increasing ts[k]. Let 7"
be the largest value attained by zs[k] at p;.

Note that k cannot equal ¢, since p;’s timestamp never decreases. Then p; receives
no more messages from p; {over the single-source FIFO broadcast service) after
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some point. Since messages from py are received at p; in the order sent and since
they have increasing timestamps, py never sends a message with timestamp larger
than 7”. But that means p; never gets the message (m,T,j) from p;, contradicting
the correctness of the single-source FIFO broadcast service.

Total Ordering: Suppose p; performs be-recv;(my,j1.t0) and later performs be-
recv;(ma,j2,t0). We must show that (T3, 71) < (T3, j2), where (11, 71) is mqy’s
timestamp and (7%, j») is my’s timestamp.

Case 1: Suppose {mg, Ty, j2) is in p;’s pending set when bc-recv; (mq, ji,10)
occurs. Then (T4, 1) < (T3, j2). since otherwise my would be accepted before m;.

Case 2: Suppose (mg,T3,72) is not yet in p;’s pending set when be-recv;(ms, ji,
to) occurs. However, 71 < ts{jo]. Therefore p; received some message m from p;,
(over the single-source FIFO broadcast service) before this point whose timestamp
T is greater than or equal to 7). By the single-source FIFO property, p;, sends m»
after it sends mn, and thus m5’s timestamp 73 is greater than 7. Thus T > 73. [

8.2.4 Causality

Both totally ordered broadcast algorithms presented in Section 8.2.3 already preserve
causality. The proof that the asymmetric algorithm of Section 8.2.3 provides causal
receipt of messages is left to the reader; see Exercise 8.6. Here we show that the
timestamp order, defined for the symmetric algorithm, Algorithm 21, extends the
happens-before relation on the high-level broadcast messages.

Lemma 8.4 The timestamp order extends the happens-before relation.

Proof. Let p; be any processor. Clearly, the timestamps assigned to messages
broadcast by p; are increasing. So, we only need to prove that the timestamp
assigned to a message broadcast by p; is strictly larger than the timestamp of any
message previously received at p;.

Let (T3, j) be the timestamp of a message m, received at p; and let (73, ¢} be the
timestamp of a message my broadcast by p; after the receipt of m;. Clearly, by the
code of the algorithm, 77 < 75, which proves the lemma. O

Therefore, we have:
Theorem 8.5 Algorithm 21 is a causally ordered broadcast algorithm.

However, causality can be implemented without total ordering. Logical time
can be used to add causality to a broadcast algorithm, with any quality of service.
We now describe an algorithm that provides causality but not total ordering. The
pseudocode appears as Algorithm 22. The algorithm uses vector timestamps, as
defined in Chapter 6. Each processor maintains a vector clock and each message is
tagged with a vector timestamp that is the current value of the vector clock. Before a
message can be (causally) received, it has to pass through a “logical ordering” filter,
which guarantees that messages are received according to the causal ordering.
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Algorithm 22 Causally ordered broadcast algorithm: code forp;, 0 < i< n—1.

Initially v#{j] = 0,0 < j < n — 1, and pending is empty

1. when bec-send; (m,co) occurs:
/1 quality of service co means causally ordered

2: vt[i] = i) + 1
3: enable be-recv; ({(m),co) // receive the message locally
4: enable be-send; ({m,vt) basic)

/I quality of service basic means ordinary broadcast

5:  when be-recv;({m,v),j.basic), j # 1, occurs:
/1 j indicates sender; ignore messages from self
6: add {m, v, j) to pending

7: enable be-recv;(m, j, co) when:

8: {m, v, j) is in pending

0 ofj] = ulj]+1

10: v[k] < ve[k] for all k # 1

11: result: remove {m, v, j) from pending
12: ve[j] == ve[j] + 1

Recall that the value of the kth coordinate of the vector clock at processor p;
indicates how many messages from p; were (causally) received by p;. Assume that
a message m tagged with vector timestamp v arrives at p; from p; (using the basic
broadcast service); when can p; (causally) receive m? Clearly, p; must first (causally)
receive all previous messages from p;; their number is indicated by v[¢] — 1. For all
other processors py, p; must first (causally) receive all messages (causally) received
by p; before sending m; their number is indicated by v[k]. As we argue below, when
these conditions are satisfied, p; has already (causally) received all messages that
happen before m. Therefore, p; can (causally) receive m.

Figure 8.2 presents an example execution of Algorithm 22. In this execution,
two messages are delayed: First, the message (0, 2, 0) is delayed until the previous
message from p;, (0, 1,0), arrives; later, the message {1, 3,0) from pq is delayed
until the message {0, 3, 0} from p; (which happens before it) arrives.

The precondition in Line 9 for performing the causal receive guarantees that, in
Line 12, p; assigns the maximum of v#; (k] and v to v#;[k], for every k. This implies
the following lemma, whose proof is left to the reader (Exercise 8.6):

Lemma 8.6 vt; is a vector clock.

Intuitively, this lemma implies that messages are received in causal order and
justifies the immediate (causal) receipt of messages to self, as shown in the proof of
Theorem 8.7.

Theorem 8.7 Algorithm 22 is a causally ordered broadcast algorithm.
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Fig. 8.2 Illustration for the behavior of Algorithm 22.

Proof. Integrity and No Duplicates hold because they hold for the underlying basic
broadcast service.

Liveness: Suppose, in contradiction that some processor p; has some entry stuck in
its pending set forever. Let {m, v, j) be the entry with the smallest vector timestamp
(in the lexicographic ordering on vector timestamps) among all those stuck at p;.

Since (m, v, j} is stuck, either v[j] is never equal to v#;[j] + 1 or v[k] is always
greater than v#;[k], for some k. First, consider the former case. Since vt;[j] is always
incremented by one, it gets stuck at some value less than v[j] — 1. This means that
some message ' sent by p; before m has not been (causally) received by p;, and
in the latter case, some message m' (causally) received at p; before sending m, has
not been (causally) received by p;. In both cases, by the Liveness properties of the
underlying broadcast service, m’ must be stuck in p;’s pending set. Clearly, the
vector timestamp of m’ is smaller than v, but this contradicts the minimality of m.

Causally Ordered: Assume a message m from p; is (causally) received at p;, and
let v be its vector timestamp. Let n’ be a message that happens before m, with
vector timestamp v'. By Lemma 8.6, v' < v, and by the condition in Lines 9-10, p;
receives m’ before m. O

This algorithm is more efficient than the totally ordered broadcast algorithm
(Algorithm 21). For example, messages are locally received immediately; however,
the tags are n times as big. Another important advantage of this algorithm is that
causal ordering can be provided even in the presence of failures, whereas total
ordering cannot, as we shall see in Section 8.2.5.2.

8.2.5 Reliability

We now turn to the problem of implementing reliable broadcast on top of an asyn-
chronous point-to-pointmessage passing system subject to f processor crashes. Here
we need to define more precisely the interface to the underlying point-to-pointsystem
on which reliable broadcast is implemented; in this system, messages sent by faulty
processors may not be received.

The inputs are send; (M) and the outputs are recv;(M ), where i indicates the
sending processor, j indicates the receiving processor, and A is a set of messages
{each message includes an indication of the sender and recipient). A sequence of
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Algorithm 23 Reliable broadcast algorithm: code forp;, 0 < i < n—1.

1:  when be-send; (m,reliable) occurs:
2 enable bc-send; ((m,),basic)  // message includes id of original sender
/] quality of service basic means ordinary broadcast

3:  when be-recv;({m,k).j,basic) occurs:

4. if m was not already received then
5: enable be-send; ({m, k) basic)

// quality of service basic means ordinary broadcast
6: enable bc-recv; (m,k reliable)

inputs and outputs is in the allowable set if it satisfies the following: There exists
a partitioning of processor indices into faulty and nonfaulty, with at most f being
faulty, satisfying the following properties.

Integrity: Every message received by any processor p; was previously sent to p; by
SOME Processor.

No Duplicates: No message sent is received more than once.

Nonfaulty Liveness: Every message sent by a nonfaulty processor to any nonfaulty
processor is eventually received.

In the above definition, no restrictions are placed on the messages received by
faulty processors; see the chapter notes for further discussion of the problems this
might cause.

8.2.5.1 Reliable Basic Broadcast The followingsimple “message diffusion”
algorithm provides reliable broadcast in the presence of crash failures. The algorithm
is simple: When a processor is supposed to perform the reliable broadcast send for
a message, it sends the message to all the processors. When a processor receives
a message for the first time (from the underlying message system), it sends this
message to all its neighbors and then performs the reliable broadcast receive for it.
The pseudocode appears in Algorithm 23.

Theorem 8.8 Algorithm 23 is a reliable broadcast algorithm.

Proof. We need to prove that the algorithm satisfies the four properties for reliable
broadcast.

Integrity and No Duplicates: They follow immediately from the analogous prop-
erties of the underlying point-to-point communication system.

Nonfaulty Liveness: Clearly, if a nonfaulty processor broadcasts a message then
it sends it to all processors (including itself). By the Nonfaulty Liveness property of
the underlying communication system, all nonfaulty processors receive this message
and, by the code, perform the reliable be-recv for it.
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Faulty Liveness: Assume that some nonfaulty processor performs the reliable
be-recv for a message m. Before doing so, the processor forwards the message to all
processors. By the Nonfaulty Liveness property of the underlying communication
system, all processors receive this message and perform the reliable be-recv for it, if
they have not done so already. O

8.2.5.2 Reliable Broadcast with Ordering Properties Addingsingle-source
FIFO toreliable broadcast can be achieved exactly as in the failure-free case discussed
above.

Totally ordered reliable broadcast cannot be achieved in the presence of crash
failures when the underlying communication system is asynchronous. This is true
because totally ordered reliable broadcast can be used to solve consensus (Exer-
cise 8.10), and as we saw in Chapter 5, consensus cannot be solved in an asyn-
chronous system subject to crash failures. In Section 8.4, we discuss strengthenings
of the model that permit totally ordered reliable broadcast to be implemented.

In contrast, causally ordered broadcast can be achieved in the presence of crash
failures. In particular, using Algorithm 22 with a reliable broadcast service instead of
a basic broadcast service provides a reliable causally ordered broadcast service. The
proof of correctness is similar to the proof of Theorem 8.7 and is left to the reader.
Messages sent by nonfaulty processors are delivered rather quickly, because of the
underlying message diffusion algorithm used to achieve reliability.

8.3 MULTICAST IN GROUPS

So far in this chapter, we have assumed that messages are broadcast to all the
processors. However, in many realistic situations, a message need only get to a
subset of the processors. For example, in the replicated database application we
present in Section 8.4, it is expected that only a (small) number of processors will
be servers. It is not desirable to replicate the data in all processors, for reasons
of efficiency, security, maintenance, and so on. In this case, we need only send a
message to a subset of the processors, that is, we desire one-to-many communication.

A group is a collection of processors that act together, as specified by the system
or by an application. A processor can belong to several groups, depending on its
functionality. We would like to enable processors to view groups of processors as
a single entity and to provide the illusion that information can be sent to the whole
group as one. We formalize this by extending the notions developed for broadcast
services.

At this point, we sidestep the issues of managing the groups by assuming that
groups are static and well-defined. That is, the groups are specified in advance, and
no new groups are formed during the execution of the system. Furthermore, groups
are identified by a group id, and it is known which processors belong to which group.
The chapter notes discuss how groups are managed.
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8.3.1 Specification

A multicast service, like the broadcast services discussed in Section 8.1.2, will satisfy
various reliability and ordering properties, modified to be with respect to the relevant
group. An additional property we require is that messages should be ordered across
groups.

In more detail, the interface to a basic multicast system is with two events:

mc-send; (m,(, gos): An input event of processor p;, which sends a message m to
all processors in group (G, where gos is a parameter describing the quality of
service required.

mc-recv;(m,j, qos): An output event in which processor p; receives a message m
previously multicast by p;, where gos, as above, describes the quality of service
provided.

A sequence of inputs and outputs is in the set of allowable sequences for a basic
multicast systems if there exists a mapping, «, from each mc-recv; (sn, j) event in the
sequence to an earlier mc-send; (m, G) event such that p; € G. That is, no message
is received by a processor that is not in the group to which the message was multicast.
The mapping x must also satisfy the same Integrity and No Duplicates properties
as for broadcast (Section 7.2.2), and a slightly modified Liveness condition; the
modification is that every message sent is received at every processor in the group to
which it was directed.

The definition of a reliable multicast extends the notion of reliable broadcast in
the obvious manner. A multicast service is reliable if the mapping & satisfies the
following properties:

Integrity: Every message received by a processor was previously sent to the group
containing that processor.

No Duplicates: No message is received more than once at the same processor.

Nonfaulty Liveness: If a mc-recv(m) event at a nonfaulty processor is mapped by
# to some mc-send(im,) event, then every nonfaulty processor in G has an
mc-recv(rn) event that is mapped by x to the same mc-send event. That is,
every message sent by a nonfaulty processor is received by every nonfaulty
processor in the target group.

Faulty Liveness: Every message sent by a faulty processor is either received by all
nonfaulty processors in the target group or by none of them.

The definition of an ordered multicast also extends the definition for ordered
broadcast. Once again, we distinguish between total ordering and single-source
FIFO ordering; here, in addition, we require the same order of receipt only for two
messages that were multicast to the same group by arbitrary senders (in the totally
ordered case) or by the same sender (in the single-source FIFO case).

We also have a stronger condition, defined as follows:
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Multiple-Group Ordering: Let m; and mg be messages. For any pair of processors
p; and p;, if the events me-recv;(m,) and mc-recv;(ms) occur at p; and pj,
then they occur in the same order.

This condition implies that 7, and m3 were either sent to the same group or to
groups whose intersection contains p; and p;.

Finally, we modify the causality property along the same lines. A multicast
service is causally ordered if for any pair of messages m; and ms, if m; happens
before my, then for any processor p;, if the event mc-recv(mms) occurs at p;, the event
mc-recv(imy ) occurs at p; earlier.

8.3.2 Implementation

A simple technique to implement multicast is to impose it on top of a broadcast
service. To each message, we attach the id of the group to which it is addressed. The
multicast algorithm filters the messages received by the broadcast service and delivers
only the messages addressed to groups to which the processor belongs. Different
service qualities are achieved by employing an underlying broadcast service with
the corresponding qualities. This correspondence is obvious for all qualities, except
for Multiple-Group Ordering. Yet, if the underlying broadcast algorithm supports
Total Ordering, then we also have Multiple-Group Ordering (see Exercise 8.11).
This method is not very efficient—it employs a heavy broadcast mechanism, even if
groups are small, and enforces global ordering, even if groups are disjoint.

An alternative approach extends the asymmetric algorithm for total ordering (of
Section 8.2.3.1). Instead of a single central site, we have a number of coordinator
sites; in particular, a single processor in each multicast group is designated as the
primary destination. We assume that each processor can communicate with each
other processor and that messages between them are received in FIFO order.

We pick a primary destination for each multicast group and organize all processors
into a message propagation forest, so that the following properties are guaranteed:

e The primary destination of a group (+ is an ancestor of all processors in 7.

o If two multicast groups intersect, then the primary destination of one group is
an ancestor of the primary destination of the other group.

The second property implies that the primary destinations of intersecting multicast
groups are in the same tree in the message propagation forest.

For example, Figure 8.3 presents a possible message propagation forest (in this
case, a tree) for a system with eight processors and seven multicast groups. In this
example, ps is the primary destination for {ps, ps}, {p1, p2, P3, pa}> {ps, pa, ps}, and
{ps, p7}.

To send a message to group G, a processor sends it to the primary destination of
(; the message is then propagated down the tree until it reaches all the processors in
group (7. In the example of Figure 8.3, a message to the group {pg, p1, p2} is sent to
po and is propagated to pg and p; ; a message to the group {p2, p3} is sent to ps and is
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{pz, ps}, {fl: P2, 3, P4}, {p3, pr}
D3, P4, Ps5

{p4, ps} @ {po, p1, p2}
/
@ {po, ps} @

Fig. 8.3 A message propagation forest with a single tree; the primary destinations are marked
with boxes, and the groups are indicated next to them.

propagated to p2; and a message to the group {p4, ps } is sent to p4 and is propagated
to Ds5-

Messages to intersecting groups get ordered as they are funneled through the
common ancestor in the the message propagation forest. For example, the messages
to the intersecting groups {pg, p1,p2} and {p2, pa} are both funneled through p,,
where they are ordered. This order is preserved because messages sent over the
lower layer are received in FIFO order.

Note that because p4 and p» are primary destinations for non-intersecting multicast
groups, neither of them is an ancestor of the other. In fact, processors in a disjoint
set of multicast groups can be placed in a separate tree in the message propagation
forest.

The details of this algorithm, as well as heuristics for constructing a message
propagation forest with minimal depth, are not discussed any further; the chapter
notes indicate the source of this algorithm.

Another important issue is what happens when groups are dynamic, either because
processors leave and join groups or because processors fail and recover. The question
is, How are messages ordered with respect to the new groups? For example, is it
guaranteed that a processor joining a group will receive all messages previously
received by the group, or will it start receiving messages from a particular point
onward?

Special group membership change events occur when the membership of a multi-
cast group changes, for any of the above reasons. Virtual synchrony is the property
that group membership change events are ordered together with ordinary messages.
This ensures that multicast messages are received completely and if needed, in order,
to the group according to its new membership. If two processors stay in the same
group after a change in membership, they will receive the same messages (and in the



AN APPLICATION: REPLICATION 183

same order, according to the ordering constraint required). Virtual synchrony places
no restriction on the behavior of faulty processors or on processors that become
detached from the majority of processors because of communication failures.

8.4 AN APPLICATION: REPLICATION

8.4.1 Replicated Database

Here we describe a highly simplified example of the utility of a broadcast facility,
with different qualities of service. The example is the implementation of a replicated
database.

In this application, a database is replicated in a number of sites. Replication
increases availability of the data because the data is available even when some of
the replicas fail and improves performance by allowing data to be retrieved from the
least loaded or “nearest” replica.

For simplicity, we assume the database is replicated in all processors. To guarantee
the consistency of the database, it is required that the same set of updates is applied
to all copies of the database that are situated at nonfaulty processors and that the
updates are applied in the same order.

Assume that updates are sent with an atomic broadcast, which is reliable and
supports total ordering. Then applying the updates in the order in which the corre-
sponding messages are received immediately ensures the consistency of the database.

FIFQ atomic broadcast (or multicast) is useful when updates may depend on each
other. Consider, for example, a database that contains data on bank accounts, and a
customer that first deposits money to an account and then withdraws money from the
same account (counting on the money just deposited). Assume that the order of these
transactions is reversed. Then it is possible that the account will show a negative
balance, or even that the withdrawal will not be approved.

8.4.2 The State Machine Approach

The database example is generalized by the state machine approach, a general
methodology for handling replicated data as part of an implementation of a fault-
tolerant service, which is used by a number of client processors. The service is
conceptually provided by a state machine.

A state machine consists of some internal variables and responds to various re-
quests from clients. A request may cause changes to the internal variables and may
cause some outputs. An output may be directed to the client that invoked the request
or may be directed to other entities in the system. Two important assumptions made
in the state machine approach are (1) requests are processed by a state machine in
causal order and (2) outputs are completely determined by the sequence of requests
processed and by nothing else.

To make the service that is being provided fault tolerant, the state machine is
replicated at a number of processors. Client interactions with the state machine
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replicas must be carefully coordinated. In particular, we must ensure that every
replica receives the same sequence of requests.> This condition can be achieved by a
totally ordered broadcast mechanism. As wediscussed above, such a broadcast cannot
be achieved in an asynchronous system subject to (unannounced) crash failures.

We now discuss three ways to achieve a totally ordered broadcast in two stronger
models.

We first consider a type of processor failure that is even more benign than crash
failures, called failstop. In the failstop model, processors have some method for
correctly detecting whether another processor has failed. (See the chapter notes for
a discussion of some such methods.)

Second, we consider a stronger model in which there are known upper bounds on
message delay and processor step time. In this model, we can tolerate unannounced
crash failures.

Each of the three methods is based on the idea of assigning timestamps to requests
and processing the requests in timestamp order. The trick is to figure out when a
request can be processed; we have to be sure that no request with higher priority
(lower timestamp) will be received later, that is, we have to be sure that the first
request is stable.

Method 1: In the asynchronous system with failstop processors, FIFO channels
are implemented. Logical clocks are used as the timestamps by the clients, and every
client is required to invoke a request infinitely often (a request can be null). The client
sends the request (and its timestamp) using reliable broadcast. A request is stable at
a state machine replica if the replica has received a request with a larger timestamp
from every nonfaulty client. The failstop assumption is crucial for determining which
clients are faulty.

Method 2: In the system with bounded message delay d and crash failures, we
implement synchronized clocks. (Chapter 13 discusses fault-tolerant clock synchro-
nization algorithms for such systems.) Each client assigns its request a timestamp
consisting of the current value of its synchronized clocks and its id (to break ties).
The synchronized clocks must ensure that every request from the same client has a
different clock time, and that the clock skew, ¢, is less than the minimum message
delay, d — u. These conditions are needed to make sure that the timestamps are
consistent with causality. A client sends a request (and its timestamp) using reliable
broadcast. The request is stable at a state machine replica once the replica’s clock
time is at least 2d + ¢ larger than the timestamp on the request. At this time, every
request with a smaller timestamp will have been received already. The reason is that
any other request reaches a nonfaulty processor within d time, and that processor
relays the request, as part of the reliable broadcast, so that all nonfaulty processors
receive the request within another d time. The ¢ term takes care of the clock skew.

Method 3: We assume the same kind of system as for Method 2; however, the
clocks need not be synchronized. In this method, the timestamps are assigned by the

3This requirement can be weakened in special cases. For instance, a read-only request need not go to all
replicas, and two requests that commute can be processed in either order.
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replicas, not the clients. Clients send requests (without timestamps) using reliable
broadcast. The replicas determine the timestamps as follows. There are two kinds of
timestamps, candidate and final. When the replica at processor p; receives a request,
it assigns a candidate timestamp to it whose value is 7 + 1 more than the maximum
of the largest timestamp, either candidate or final, assigned by p; so far. After p;
has waited 2d time, it has received the candidate timestamp for that request from
all nonfaulty replicas. Then p; assigns the maximum candidate timestamp received
as the final timestamp. A request r is stable at replica p; if it has been assigned a
final timestamp by p; and there is no other request »’ for which p; has proposed a
candidate timestamp smaller than r’s final timestamp. Thus there is no possibility
that the final timestamp for »’ will be earlier than that of r.

Exercises

8.1 Prove that if a broadcast service provides both single-source FIFO ordering
and total ordering, then it is also causal.

8.2 Write pseudocode for the basic broadcast algorithmdescribed in Section 8.2.1;
prove its correctness.

8.3 Write pseudocode for the single-source FIFO broadcast algorithm described
in Section 8.2.2; prove its correctness.

8.4 Extend the asymmetric algorithm of Section 8.2.3 to provide FIFO ordering.
Hint: Force a FIFO order on the messages from each processor to the central
site.

8.5 Show that the symmetric algorithm of Section 8.2.3.2 (Algorithm 21) provides
FIFO ordering.

8.6 Show that Algorithm 21 provides the causal ordering property, if each point-
to-point link delivers messages in FIFO order.

8.7 Prove Lemma 8.6.

8.8 Can the vector timestamps used in Algorithm 22 be replaced with ordinary
(scalar) timestamps?

8.9 Show that Algorithm 22 does not provide total ordering, by explicitly con-
structing an execution in which (concurrent) messages are not received in the
same order by all processors.

8.10 Prove that totally ordered reliable broadcast cannot be implemented on top of
an asynchronous point-to-point message system.

Hint: Use reduction to the consensus problem.

8.11 Show that broadcast with total ordering implies multiple-group ordering.
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Chapter Notes

Broadcast and multicast are the cornerstones of many distributed systems. A few
of them provide only reliability, for example, SIFT [261], whereas others provide
ordering and/or causality, in addition to reliability, for example, Amoeba [146],
Delta-4 [218], Isis [55], Psync [215], Transis [11], Totem [183], and Horus [256].
Besides supporting different service qualities, different systems rely on different
implementations. There has been work comparing the performance of different
implementations of atomic broadcast (cf. [86]).

Atomic broadcast implementations were first suggested by Chang and Maxem-
chuk [71], by Schneider, Gries, and Schlichting [236], and by Cristian, Aghili, Dolev,
and Strong [88]. Cheriton and Zwaenepoel suggested process groups as an abstraction
in the V system [77]. Birman and Joseph were the first to connect the ordering and
reliability concepts suggested for broadcast with the notion of process groups [53].

This chapter started with definitions of several qualities of service that could be
provided by a broadcast simulation; our definitions build on the work of Garcia-
Molina and Spauster [120] as well as Hadzilacos and Toueg [129].

Next, several simulations of broadcast with various qualities of service were de-
scribed. The algorithm for FIFO ordering is folklore. The asymmetric algorithm of
Section 8.2.3.1 is due to Chang and Maxemchuk [71], who also describe mechanisms
for rotating the coordinator’s job. In this algorithm, a message is sent to the coordi-
nator via point-to-point transmission, and then it is broadcast to all processors. An
alternative algorithm is to broadcast the message to all processors and then have the
coordinator send ordering information; this alternative is beneficial when the mes-
sage body is large. The symmetric algorithm (Algorithm 21) is based on the ideas of
Lamport [154] and Schneider [238]. Our treatment follows Attiya and Welch [34],
as corrected by Higham and Warpechowska-Gruca [138]. Other algorithms can be
found in [9, 10, 53, 54, 120, 129, 146, 183].

The causal broadcast algorithm (Algorithm 22) is based on algorithms of Schiper,
Eggli, and Sandoz [235] and of Raynal, Schiper, and Toueg [227]; Schwarz and
Mattern describe this algorithm in the general context of causality [239].

Algorithm 23, the implementation of reliable broadcast by message diffusion, is
from Cristian, Aghili, Dolev, and Strong [88]; this paper also contains implementa-
tions that can withstand Byzantine failures.

The propagation forest algorithm for providing multi-group ordering (described
in Section 8.3) is by Garcia-Molina and Spauster [120].

There is a wide body of algorithms that build broadcast or multicast over hard-
ware that provides unreliable broadcast, for example, Amoeba [146], Psync [215],
Transis [11], and Totem [183].

Handling dynamic groups is typically studied in the context of group communica-
tion systems. The April 1996 issue of the Communications of the ACM is dedicated
to this topic, and among others, it includes papers describing the Totem, the Transis,
and the Horus systems. Virtual synchrony was originally defined for Isis (see Birman
and van Renesse [55)). Extended virtual synchrony specifies how group membership
events are reported to processors that recover and to processors that are detached
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from the majority of processors. It was defined for Totem by Moser, Amir, Melliar-
Smith, and Agrawal [192]. An alternative specification extending virtual synchrony
to apply when the network partitions was implemented in Transis (see Dolev, Malki,
and Strong [97]).

The Rampart toolkit built by Reiter [228] supports secure group membership
changes and reliable atomic group multicasts, in the presence of Byzantine failure.

The state machine approach (described in Section 8.4.2) was suggested by Lam-
port [155] for failure-free systems; it was extended to failstop processors by Schnei-
der [237] and to Byzantine failures by Lamport [157]. Schneider [238] gives a survey
of the state machine approach. A different way to realize the state-machine approach
is described in Chapter 17.

The failstop algorithm for totally ordered broadcast (Method 1 in Section 8.4.2) is
from Schneider [237]. The totally ordered broadcast algorithm using synchronized
clocks (Method 2 in Section 8.4.2) is due to Cristian, Aghili, Strong and Dolev [88];
they also discuss algorithms for more severe fault models. The other totally ordered
broadcast algorithm (Method 3 in Section 8.4.2) is essentially the ABCAsT algorithm
in ISIS [53].

The ordering and reliability properties we have specified for broadcasts put no
restrictions on messages received by faulty processors. For example, it is possible
that a faulty processor receives a certain message and nonfaulty processors do not
receive this message. Alternatively, it is possible that messages are received by a
faulty processor in an order that does not obey the requirements placed on nonfaulty
processors. Even worse, nonfaulty processors may receive the first message broadcast
by a faulty processor, then fail to receive the second one, then receive the third one,
etc.

We may require the properties to hold uniformly, for both nonfaulty and faulty
processors. For example, uniform integrity requires that every processor (nonfaulty
or faulty) receives a message only if it was previously sent. The notion of uniformity
was introduced by Neiger and Toueg [199]; it is discussed at length in Hadzilacos
and Toueg [129].

Even when broadcast properties are uniform, it is not trivial to avoid contamination
of theinformation in the system. For example, assume that atomic broadcast is used to
keep consistent multiple copies of some data. It is possible that a faulty processor will
skip the receipt of one atomic broadcast message, including some update to the data;
this processor later operates correctly and replies to queries based on the incorrect
data it has. To avoid contamination, a processor can refuse to receive any message
that reflects the receipt of a series of messages not compatible with the messages
received so far by the processor. Gopal and Toueg |124] discuss contamination and
how to avoid it.

Group communication systems have been a lively research topic in recent years,
with numerous implementations and almost as many specifications. One reason
for this proliferation is that fault-tolerant group communication systems inherently
require agreement among failure-prone processors: on a sequence of message deliv-
eries, on the membership of a multicast group, or on the order of processor crashes
and recoveries. The natural specification of these mechanisms cannot be satisfied
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when the system is asynchronous, because agreement is not possible in such systems
(as was shown in Chapter 5).

An abundance of specifications have tried to cope with this impossibility either
by weakening the problem specification or by making stronger environment assump-
tions. Chockler, Keidar and Vitenberg [79] present a comprehensive description of
these specifications and discuss related implementations.
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Distributed Shared Memory

Distributed shared memory (DsM) is a model for interprocess communication that
provides the illusion of a shared memory on top of a message passing system. In
this model, processes running on separate nodes can access a shared memory address
space, provided by the underlying DsM system, through familiar read and write
operations. Thus, by avoiding the programming complexities of message passing, it
has become a convenient model for programmers. Such systems are becoming quite
common in practical distributed systems (see the notes at the end of this chapter).

In terms of our model in Chapter 7, a DsM is a (global) simulation of an asyn-
chronous shared memory model by the asynchronous message passing model. We
call the simulation program, which runs on top of the message system providing the
illusion of shared memory, the memory consistency system (Mcs). The MCS consists
of local Mmcs processes at each processor p;, which use local memory (e.g., caches)
and communicate with each other using a message-passing communication system
(see Fig. 9.1). We are not considering faults (see the notes for Chapter 10 for pointers
to papers concerning fault-tolerant DSMs).

This chapter focuses on shared memory systems in which all the shared objects
are read/write registers. The exercises and chapter notes mention implementations
of other data types.

We start this chapter with specifications of the two asynchronous shared memory
communication systems to be simulated, introducing the notions of linearizability
and sequential consistency. Next, we present implementations of distributed shared
memory, both for linearizability and for sequential consistency. It turns out that
sequential consistency has implementations with local operations. In contrast, we
show that no such implementations exist for linearizability. By “local” we mean that
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response response response
invocation invocation invocation
mcs mcs mcs
at po at py at pp—1
receive receive receive
send send send
network
distributed shared memory

Fig. 9.1 A memory consistency system.

the McCs can decide on the response to an invocation using local computation and
need not wait for the result of any communication.

9.1 LINEARIZABLE SHARED MEMORY

Every shared object is assumed to have a sequential specification, which indicates
the desired behavior of the object in the absence of concurrency. The object supports
operations, which are pairs of invocations and matching responses. A sequential
specification consists of a set of operations and a set of sequences of operations. The
latter set comprises the legal operation sequences.

For example, a read/write object X supports read and write operations. The
invocation for aread is read; (X ) and responses are return; (X, v}, where ¢ indicates the
node and v the return value. The invocations for a write have the form writei-(X , v),
where v is the value to be written, and the response is ack;(X). A sequence of
operations is legal if each read returns the value of the most recent preceding write,
if there is one, and otherwise returns the initial value.

We can now specify a linearizable shared memory communication system. Its
inputs are invocations on the shared objects, and its outputs are responses from the
shared objects.

For a sequence ¢ to be in the allowable set, the following properties must be
satisfied:
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writeg(z,1)  acko(z) readg(y)  returng(y, 1)
po } i 1 —
write; (y, 1) ack; (y) read; (z)  returng(z, 1)

P E { I }

Fig. 9.2 A linearizable execution oy.

Correct interaction: For each p;, o|i consists of alternating invocations and matching
responses, beginning with an invocation.! This condition imposes constraints
on the inputs.

The correct interaction property applies to all objects simultaneously, implying
that a processor has to wait for a response from one object before submitting an
invocation on another object; this prohibits processors from pipelining operations on
shared objects.

Liveness: Every invocation has a matching response.
Linearizabiliry: There exists a permutation 7 of all the operations in ¢ such that

1. For each object O, 7|0 is legal?® (i.e., is in the sequential specification of
0); and

2. If the response of operation o; occurs in ¢ before the invocation of
operation o, then o, appears before oy in 7.

In other words, a sequence is linearizable if there is a way to reorder the operations
in the sequence that (1) respects the semantics of the objects, as expressed in their
sequential specifications, and (2) respects the real-time ordering of events among all
the nodes.

For instance, suppose we have two shared registers z and y, both initially 0. The
sequence

oy = writeg(e, 1) write (y, 1) acko(z) ack; (y)
ready (y) read, () returny(y, 1) return (z, 1)

(see Fig. 9.2) is linearizable, because m) = wpwrgr; is the desired permutation,
where w; indicates the (complete) write operation by p; and r; the (complete) read
operation by p;.

Suppose that r returns 0 instead of 1. The resulting sequence

'The notation ¢|i indicates the subsequence of ¢ consisting of all invocations and responses that are
performed by p;.

2The notation 7|0 indicates the subsequence of = consisting of all invocations and responses that are
performed on object O.
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oy = writeg(z, 1) write; (y, 1) acko(z) ack; (y)
ready (y) read, (z) returny(y, 0) return; (z,1)

is not linearizable. To respect the semantics of y, 7o (which returns O from y) must
precede w; (which writes 1 to y). But this would violate the real-time ordering,
because w; precedes rq in o.

9.2 SEQUENTIALLY CONSISTENT SHARED MEMORY

However, as we have seen before in this book, in many situations the relative order
of events at different nodes is irrelevant. The consistency condition called sequential
consistency exploits this idea. Formally, a sequence ¢ of invocations and responses
(satisfying the same correct interaction and liveness properties as for linearizable
shared memory) is sequentially consistent if there exists a permutation 7 of the
operations in ¢ such that

1. For every object O, «|O is legal, according to the sequential specification of
0; and

2. If the response for operation o, at node p; occurs in ¢ before the invocation
for operation o5 at node p;, then o; appears before oy in .

The first condition, requiring the permutation to be legal, is the same as for lineariz-
ability. The second condition has been weakened; instead of having to preserve the
order of all non overlapping operations at all nodes, it is only required for operations
at the same node. The second condition is equivalently written o|i = |z, for all 4.

The sequence o9 is sequentially consistent; worgw; ry is the desired permutation.
The read by pp has been moved before the write by p;.

Linearizability is a strictly stronger condition than sequential consistency, that is,
every sequence that is linearizable is also sequentially consistent, but the reverse is
not true (for example, o2). As we shall see below, this difference between sequential
consistency and linearizability imposes a difference in the cost of implementing them.

There exist sequences that are not sequentially consistent. For example, suppose
ry also returns O instead of 1, resulting in the sequence

o3 = writeo(x, 1) writey (y, 1) acko(z) ack; (y)
readg (y) read; (z) returng(y, 0) return; (z, 0)

This sequence is not sequentially consistent. To respect the semantics of  and y, 7o
must precede w; and r; must precede wg. To respect the order of events at py, w
must precede r1. Yet, by transitivity, these constraints would require 7y to precede
wy, which violates the order of events at pg.

Both linearizability and sequential consistency are considered strong consistency
conditions. In a strong consistency condition, it is required that all processes agree
on the same view of the order in which operations occur.
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9.3 ALGORITHMS

In this section we present one algorithm for a DsM that provides linearizability and
two algorithms that provide sequential consistency.

The design and correctness proofs of the algorithms are greatly simplified by as-
suming that the underlying message-passing communication system supports totally
ordered broadcast, as discussed in Chapter 8. In fact, some form of reliable broadcast
is probably embedded in most implementations of distributed shared memory. There-
fore, it is helpful to decouple the broadcast component when designing and verifying
the implementation; later, it is possible to optimize the broadcast implementation for
this specific usage. This also provides an interesting application, demonstrating the
usefulness of ordered broadcast.

In this chapter, we use the shorthand notation tbe-send; (1) to mean be-send; (m,to)
and tbe-recy; (m) to mean be-recv; (m,to); that is, a broadcast send and receive with
the quality of service required to be totally ordered.

All of our algorithms use complete replication; there is a local copy of every
shared object in the state of the MCs process at every node. See the chapter notes for
references to algorithms that are more space efficient.

9.3.1 Linearizability

When a request to read or write a shared object is received by the MCs process at a
node, it sends a broadcast message containing the request and waits to receive its own
message back. When the message arrives, it performs the response for the pending
operation, returning the value of its copy of the object for a read and performing an
ack for a write. Furthermore, whenever an MCS process receives a broadcast message
for a write, it updates its copy of the object accordingly.

Theorem 9.1 The linearizable shared memory system is simulated by the totally
ordered broadcast system.

Proof. Let o be an admissible execution of the algorithm (i.e., it is fair, user
compliant for the shared memory system, and correct for the totally ordered broadcast
communication system). We must show that fop{¢) is linearizable.

Let o = top(a). Order the operations in ¢ according to the total order provided
in « for their broadcasts, to create the desired permutation .

We now check that 7 respects the semantics of the objects. Let z be a read/write
object. 7|z is the sequence of operations that access z. Since the broadcasts are
totally ordered, every MCS process receives the messages for the operations on z in
the same order, which is the order of 7, and manages its copy of x correctly.

We now check that 7 respects the real time ordering of operations in «.. Suppose
operation oy finishes in « before operation 04 begins., Then v, ’s broadcast has been
received at its initiator before 03’s broadcast is sent by its initiator. Obviously, 03’s
broadcast is ordered after o1’s. Thus ¢; appears in 7 before o4. O
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Fig. 9.3 A nonlinearizable execution.

Since the totally ordered broadcast system is simulated by the (point-to-point)
message passing system (cf. Chapter 8), we have as a corollary:

Theorem 9.2 The linearizable shared memory system is simulated by the (point-to-
point) message passing system,

The linearizability algorithm requires every operation, whether a read or a write,
to wait until the initiator receives its own broadcast message back. Measured in
terms of broadcast operations, the linearizability algorithm is quite efficient——each
operation completes within a constant number of broadcast operations. However,
a more accurate way to measure the algorithm is in terms of basic point-to-point
communication; such analysis depends on the complexities of the underlying totally
ordered broadcast algorithm, which are quite high.

Let’s try to optimize this algorithm. Note that no copies are changed as a result of
receiving the broadcast message for a read. One might think, Why bother to send it?
Why not just return the value of your own copy right away?

The problem is that the resulting algorithm does not guarantee linearizability.
Consider an execution in which the initial value of z is 0. Processor p; experiences
an invocation to write 1 to & and performs the tbc-send for the write. The broadcast
message arrives at processor p; , which updates its local copy of « to be 1, subsequently
does a read on z, and returns the new value 1. Consider a third processor py, which
has not yet received p;’s broadcast message and still has its local copy of z equal to
0. Suppose that after p;’s read but before receiving p;’s broadcast message, p; does
a read on &, returning the old value 0 (see Fig. 9.3).

No permutation of these three operations can both conform to the read/write
specification and preserve the relative real-time orderings of all non overlapping
operations.

However, as we show next, this algorithm does provide sequential consistency.

9.3.2 Sequential Consistency

9.3.2.1 Local Read Algorithm 1In the algorithm, each processor keeps a local
copy of every object. A read returns the value of the local copy immediately. When a
write comes in to p;, p; sends a totally ordered broadcast containing the name of the
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Algorithm 24 Sequentially consistent local read algorithm:
code for processor p;, 0 <1< n—1.

Initially copy[z] holds the initial value of shared object =, for all z

I:  when read; (z) occurs:

2: enable return; (x, copy[z])

3:  when write;(z, ) occurs:

4: enable tbc-send; (z, v)

5:  when tbc-recv; (2, v) from p; occurs:
6: copylz] := v

7: if j = i then enable ack;(x)

object to be updated and the value to be written; but it does not yet generate an ack
for the write operation. When p; receives an update message, it writes the new value
to its local copy of the object. If the update message was originated by p;, then p;
generates an ack and the (unique pending) write operation returns. The pseudocode
appears as Algorithm 24.

To prove the correctness of the algorithm, we first show two lemmas that hold for
every admissible execution a.

Lemma 9.3 For every processor p;, p;’s local copies take on all the values contained
in write operations, all updates occur in the same order at each processor, and this
order preserves the order of write operations on a per-processor basis.

Proof. By the code, a tbc-send is done exactly once for each write operation. By
the guarantees of the totally ordered broadcast, each processor receives exactly one
message for each write operation, these messages are received in the same order at
each processor, and this order respects the order of sending on a per-processor basis.

O

Call the total order of Lemma 9.3 the thcast order. Lemma 9.4 is true because a
write does not end until its update is performed at its initiator and no other operation
has begun at the initiator in the meantime.

Lemma 9.4 For every processor p; and all shared objects x and y, if read r of object
y follows write w to object x in top(«)|i, then v’s read of p;’s local copy of y follows
w’s write of p; ’s local copy of z.

Theorem 9.5 Algorithm 24 implements a sequentially consistent shared memory
with local reads.

Proof. Clearly the reads are local. The rest of the proof shows that fop{«) satisfies
sequential consistency for any admissible execution a.
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Define the permutation 7 of operations in top(«) as follows. Order the writes in
7 in tbcast order. Now we explain where to insert the reads. We consider each read
in order starting at the beginning of «. Read r by p; on « is placed immediately after
the later (in ) of (1) the previous (in «) operation for p; (either read or write, on any
object) and (2) the write that caused the latest update of p;’s local copy of « preceding
the point when r’s return was enabled. Break ties using processor ids (e.g., if every
processor reads some object before any processor writes any object, then 7 begins
with pg’s read, followed by p;’s read, etc.).

We must show top(a)|¢ = =i for all processors p;. Fix some processor p;. The
relative ordering of two reads in fop(«}|? is the same as in 7|7, by the definition of
m. The relative ordering of two writes in fop(a}|¢ is the same in 7|7, by Lemma 9.3.
Suppose in fop(«}|i that read r follows write w. By the definition of 7, r comes after
win .

Suppose in top(«)|7 that read r precedes write w. Suppose in contradiction that
r comes after w in 7. Then in 7 there is some read r' by p; that reads v from z and
some write w’ by some p; that writes v to z such that (1) r’ equals r or occurs before
7 in o, (2) w’ equals w or follows w in the tbcast order, and (3) ' causes the latest
update to p;’s copy of z that precedes the enabling of the return event for r’.

But in «, #/ finishes before w starts. Since updates are performed in « in tbcast
order (Lemma 9.3), ' cannot see the update of w’, a contradiction.

- We must show 7 is legal. Consider read r by p; that reads v from z in 7. Let w
be the write in « that causes the latest update to p;’s copy of z preceding r’s read of
p;i’s copy of . Suppose w is performed by p;. (If there is no such w, then consider
an imaginary “initializing” write at the beginning of «.) By the definition of =, »
follows w in w. We must show that no other write to z falls in between w and r in
m. Suppose in contradiction that w’ does, where w’ is a write of v’ to z by some py.
Then by Lemma 9.3, the update for w’ follows the update for w at every processor in
a.

Case 1: k = 1. Since 7 preserves the order of operations at p;, w’ precedes r in
. Since the update for «' follows the update for w in «, r sees the update belonging
to w’, not w, contradicting the choice of w.

Case 2: k # . By Condition 1 of the definition of 7, there is some operation in
top(a)|i that, in , precedes r and follows w’ (otherwise 7 would not follow w’). Let
o be the first such operation.

Suppose o is a write to some object y. By Lemma 9.4, o’s update to p;’s copy of y
precedes r’s read of p;’s copy of z. Since updates are done in tbcast order, the update
for w’ occurs at p; before the update for o, and thus before r’s read, contradicting the
choice of 1.

Suppose o is a read. By the definition of 7, o is a read of z, and the update of p;’s
copy of & due to v/’ is the latest one preceding o’s read (otherwise o would not follow
w’). Since updates are done in tbcast order, the value from w’ supersedes the value
from w, contradicting the choice of w. a
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Algorithm 25 Sequentially consistent local write algorithm:
code for processor p;, 0 <1< n— 1.

Initially copy|z] holds the initial value of shared object z, for all z, and aum = (

1: when read;(z) occurs:

2: if num = 0 then enable return;(z, copy|[z])
3:  when write;(z, v) occurs:

4. num ;= aum +1

5: enable tbc-send; (z, v)

6: enable ack;(z)

7:  when tbe-recv; (, v) from p; occurs:

8: copy[z] == v

9. if j = ¢ then

10: num = num — 1

11: if num = 0 and a read on z is pending then
12: enable return;{z, copy[z])

9.3.2.2 Local Write Algorithm 1t is possible to reverse which operation is
local and which is slow in the previous algorithm. The next algorithm we present has
local writes and slow reads.

When a write(z) comes in to p;, a broadcast message is sent as in the previous
algorithm; however, it is acked immediately. When a read(z) comes in to p;, if p;
has no pending updates (to any object, not just to x), then it returns the current value
of its copy of x. Otherwise, it waits to receive the broadcast message for all writes
that it initiated itself and then returns. This is done by maintaining a count of its self-
initiated pending write broadcasts and waiting until this count is zero. Effectively, the
algorithm pipelines write updates generated at the same processor. The pseudocode
appears as Algorithm 25.

Theorem 9.6 Algorithm 25 implements a sequentially consistent shared memory
with local writes.

Proof. Clearly every write is local. The structure of the proof of sequential consis-
tency is identical to that in the proof of Theorem 9.5. We just need a new proof for
Lemma 9.4. Lemma 9.4 is still true for this algorithm because when a read occurs
at p;, if any update initiated by p; is still waiting, then the return is delayed until the
latest such update is performed. O

An explicit scenario can be constructed to show that this algorithm does not
provide linearizability (see Exercise 9.5).

Thus neither of these two algorithms for sequential consistency can guarantee
linearizability. This is true even if the algorithms run on top of a message system
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that provides more stringent timing guarantees than in the asynchronous case. As we
will show below, reads and writes for linearizability cannot be local as long as there
is any uncertainty in the message delay.

9.4 LOWER BOUNDS

In this section we show some lower bounds on the time to perform operations in DsM
implementations. The lower bounds assume that the underlying communication
system is the (asynchronous) point-to-point message passing system, and not the
totally ordered broadcast system.

First, we show that the trade-off hinted at by the existence of the local read and
local write algorithms for sequential consistency is inherent. We show that the sum
of the worst-case times for read and write must be at least the maximum message
delay, in any sequentially consistent implementation.

Then we show that the worst-case times of both reads and writes for linearizability
are at least a constant fraction of the uncertainty in the message delay.

To make these claims precise, we must add provisions for time and clocks to our
new layered model of computation.

9.4.1 Adding Time and Clocks to the Layered Model

We adapt the definitions from Part 1, in particular, the notion of a timed execution
from Chapter 2 and the notions of hardware clocks and shifting from Chapter 6.

The only change needed to the definition of a timed execution is that only node
input events are assigned times. The time of an event that is not a node input is
“inherited” from the node input event that (directly or indirectly) triggered it.

Hardware clocks are modeled as in Chapter 6. The lower bounds shown in this
chapter assume that the hardware clocks run at the same rate as real time but are not
initially synchronized.

The notions of a processor’s view and timed view (with clock values) and the
merge operation on timed views are the same.

The definition of shifting executions is the same, and Lemma 6.14 is still valid.

In this section, the definition of an admissible timed execution will include the
following additional constraint:

o Every message delay is in the range [d — «, d], for some nonnegative constants
d and u, withu < d.

Given a particular Mcs, we will let £, be the worst-case time, over all admissible
executions, for an operation of type “op.”® (The time for an operation is the difference

3Technically, an operation consists of a specific invocation and its matching specific response. However,
it is often convenient to group together a number of “similar” operations into a single operation type; for
instance, operation type “write” includes [write(z, v), ack], for all  and v.
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between the real time when the response occurs and the real time when the invocation
occurs.)

9.4.2 Sequential Consistency

Theorem 9.7 For any sequentially consistent memory consistency system that pro-
vides two readfwrite objects, teaq + twrie > d.

Proof. Fix a sequentially consistent Mcs that provides two shared objects z and y,
both initially Q.

Assume by way of contradiction that #.,q + turite < d.

There exists an admissible execution «g of the Mcs such that

top(ag) = writeg(z, 1) acko () ready (y) returng(y, 0)

and the write begins at time O and the read returns before time d. Assume further that
every message sent in «p has delay d. Thus no messages have been received by any
node at the time when the read returns.

Similarly, there exists an admissible execution «; of the MCs such that

top{a) = write; (y, 1) ack; (y) read; () return; (z, 0)

and the write begins at time O and the read returns before time d. Assume further that
every message sent in vy has delay d. Thus no messages have been received by any
node at the time when the read returns.

Informally, the final step of the proof is to create a new execution « that combines
the behavior of pg in ag, in which pg writes & and reads y, with the behavior of p;
in a1, in which p; writes y and reads «. Because both operations of each processor
complete before time d, py does not know about p; ’s operations and vice versa. Thus
the processors return the same values in «v as they do in o (or «1). After time d in
o, we allow any pending messages to be delivered, but it is too late for them to affect
the values returned earlier. And the values that were returned are inconsistent with
sequential consistency.

We proceed more formally. Recall from Chapter 6 that, for ¢ = 0, 1, o; |7 denotes
the timed history of p; in «;. (Recall that the timed history consists of the initial state
and the sequence of events that occur at p; together with the real times and the clock
times.) Let 7; be the prefix of «;|i ending just before time d. Let o’ be merge(ng, n1).
The result is a prefix of an admissible execution «. Because « is admissible, it is
supposed to satisfy sequential consistency. But top(«) is the sequence o3, which we
showed in Section 9.2 is not sequentially consistent. O

9.4.3 Linearizability

The lower bound of d just shown for sequential consistency on the sum of the worst-
case times for a read and a write also holds for linearizability, because linearizability
is a stronger condition.
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For linearizability, we can show additional lower bounds on the worst-case times
for reads and writes. In particular, under reasonable assumptions about the pattern
of sharing, in any linearizable implementation of an object, the worst-case time for
a write is /2 and the worst-case time for a read is u/4. Thus it is not possible to
have local read or local write algorithms for linearizability, as it was for sequential
consistency.

Note that if u = 0, then the lower bounds for linearizability become 0. In fact,
this bound is tight in that case; if ¥ = 0, then local read and local write algorithms
are possible for linearizability (see Exercise 9.7).

Theorem 9.8 Forany linearizable memory consistency system that provides a read/write
object written by two processors and read by a third, 1y > 5.

Proof. Fix alinearizable MCS that provides a shared object «, initially 0, that is read
by po and written by p; and p,.

Assume by way of contradiction that yye < %.

We construct an execution of the McCs that, because of the shortness of the writes,
can be shifted without violating the message delay constraints so as to violate lin-
earizability. In the original execution p; writes 1 to «, then py writes 2 to z, and then
po reads x, returning 2. After shifting p; and p; so that their writes have exchanged
places, the result is no longer linearizable, since pg should return 1 instead of 2. The
details follow.

There exists an admissible execution o of the McS such that (see Fig. 9.4(a)):

e top(w) is write, (z, 1) ack; (z) writes(z, 2) acks(z) readg(z) returng(z, 2);

e The write; (z, 1) occurs at time 0, the writes (2, 2) occurs at time %, and the
readg (z) occurs at time u; and

¢ The message delays in « are d from p; to py, d — u from py to p;, and d —
for all other ordered pairs of processors.

[RI[~

Let § = shift(a, {0, §, —%)); that is, we shift p; later by & and p; earlier by %
(see Fig. 9.4(b)). The result is still admissible, since by Lemma 6.14 the delay of a
message either from p; or to p; becomes d — u, the delay of a message from ps or to
p1 becomes d, and all other delays are unchanged.

But top(f) is

writes(z, 2) acky(z) write; (z, 1) acky (x) ready () returng(z, 2)

which violates linearizability, because py’s read should return 1, not 2. |

Now we show the lower bound for reads.

Theorem 9.9 Forany linearizable memory consistency system that provides a read/write
object z read by two processors and written by a third, 1c.q > 4.

Proof. Fix a linearizable Mcs that provides a shared object @, initially 0, that is
written by pp and read by py and ps.
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Fig. 9.4 Tlustration for the proof of Theorem 9.8; important time points are marked at the
top.

Assume by way of contradiction that ¢e,q < %.

As in the previous proof, we construct an execution of the Mcs that, because of the
shortness of the reads, can be shifted without violating the message delay constraints
s0 as to violate linearizability. In the original execution, p; reads O from x, then p;
and ps alternate reading x while py concurrently writes 1 to x, and then py reads 1
from x. Thus there exists a read 7y, say by p;, that returns O and is immediately
followed by a read 3 by py that returns 1. After shifting ps so that adjacent reads
by p; and p» have exchanged places, and in particular r, precedes r;, the result is no
longer linearizable, since r; returns the new value 1 and » returns the old value O.
The details follow.

Let & = [twrie/u]. There exists an admissible execution « of the Mcs in which
all message delays are d — %, containing the following events (see Fig. 9.5(a)).

o Attime ¥, py does a writeg(z, 1).

¢ Atsome time between % and (4k + 1) - %, po does an ackg (x). (By definition
of k, (4k + 1) - ¥ > % + turite> and thus pg’s write operation is guaranteed to

finish in this interval.)
e Attime 2i- %, p; does aread;(z), 0 <4 < 2k.

o At some time between 2i - § and (2i + 1) - 4, p; does a return; (z, vy;)s

4
0<i< 2k

o Attime (2i 4+ 1) - &, ps does aready(x), 0 <7 < 2k.
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Fig. 9.5 Illustration for the proof of Theorem 9.9; important time points are marked at the
top.

o Atsome time between (2i+1)- % and (2¢ +2) - 4, p2 does areturny(z, vaiq1),
0<i<2k.

Thus in top(a), p1’s read of vy precedes pgp’s write, pz’s read of vy 1 follows
po’s write, no two read operations overlap, and the order of the values read from z is
vg, U1, V3, ..., Vak+1. By linearizability, vy = 0 and vgg41 = 1. Thus there exists
some j, 0 < j < 4k, such that v; = 0 and v;,; == 1. Without loss of generality,
assume that j is even, so that v; is the result of a read by p;.

Define § = shift(a, (0,0, —%)); that is, we shift p, earlier by % (see Fig. 9.5(b)).
The result is admissible, since by Lemma 6.14 the message delays to p; become
d — u, the message delays from p, become d, and the remaining message delays are
unchanged.

As a result of the shifting, we have reordered read operations with respect to each
other at p, and pg. Specifically, in top(3), the order of the values read from z is vy,

Vs U3, V2, « o Vj41, Uj, . . .. Thusinzop(F) wenow have v;;1 = 1 being read before
v; = 0, which violates linearizability. |
Exercises

9.1 Prove that an algorithm that locally simulates a linearizable shared memory
provides sequential consistency.
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Prove that linearizability is local, that is, if we compose separate implemen-
tations of linearizable shared variables # and y, the result is also linearizable.

Prove that sequential consistency is not composable. That is, present a sched-
ule that is not sequentially consistent but whose projection on each object is
sequentially consistent.

Prove that the response time of the totally ordered broadcast algorithm of
Section 8.2.3.2 (Algorithm 21) is 24.

Present a schedule of the local writes algorithm (Algorithm 25) that is sequen-
tially consistent but is not linearizable.

For each ¢ between 0 and u, describe an algorithm for sequential consistency
in which reads take time d — ¢ and writes take time ¢.

Show that if u = 0, then local read and local write algorithms are possible for
linearizability.

‘What happens to Theorem 9.8 if the assumption about the number of distinct
readers and writers is removed?

Develop a linearizable algorithm for implementing shared objects of other
data types besides read/write registers, for instance, stacks and queues. Try
to get the best time complexity for operations that you can,

This exercise asks you to generalize the proof of Theorem 9.8 that Zyrie > 5.

(a) Consider a shared object (data type) specification with the following prop-
erty. There exists a sequence p of operations and two operations op* and op®
that are both of type op such that (1) p op* op? and p op? op! are both legal and
(2) there exists a sequence -y of operations such that p op! op? v is legal but p
op? op' v is not. Suppose at least two processors can perform operations of
type op and there is a third processor that can perform the operations in p and
7. Prove that in any linearizable implementation of this data type, {op > %.

(b) What does this result imply about the worst-case time for linearizable
implementations of stacks and queues?

(a) An operation of a data type is called an accessor if, informally speaking, it
does not change the “state” of the object. Make a formal definition of accessor
using the notion of legal sequences of operations.

{(b) Consider a shared object (data type) specification that satisfies the follow-
ing property. There exists a sequence p of operations, two operations aop’
and aop® that are both of type aop, an accessor, and there exists an operation
op such that (1) p aop® and p op aop® are legal, but (2) p aop® and p op aop!
are not legal. Suppose at least two processors can perform operations of type
aop and a third can perform op. Prove that in any linearizable implementation
of this data type, t,op > 3.
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(¢) What does this result imply about the worst-case time for linearizable
implementations of read/write registers and of augmented stacks and queues?
(An augmented stack or queue provides an additional peek operation that
returns the value at the top of the stack or head of the queue but does not
change the data structure.)

Chapter Notes

In the shared memory model presented in this chapter, there is no obvious way to
determine the state of a shared object in a configuration, if an operation on that object
is pending. An alternative characterization of linearizability is that each operation,
which actually takes some amount of time to complete (between the invocation and
response) can be condensed to occur at a single point, so that no other events appear
to occur in between. This point is called the linearization point of the operation.
Because these two definitions are equivalent, the type of model used in Part I, in
which the current values of the shared objects are explicitly part of configurations,
is valid. For proving properties of shared memory algorithms, it is usually more
convenient to use the approach from Part I. The new style of definition is more useful
for showing how to implement shared objects, either out of other kinds of shared
objects or on top of message passing.

The defining characteristic of a DsM is providing the illusion of physically shared
memory in a system in which each node has its own local memory. Both hardware and
software systems have been built that implement various consistency conditions. The
types of systems have ranged from tightly coupled multiprocessors to collections of
homogeneous machines on an Ethernet, and even include heterogeneous distributed
systems. Although many of the specification questions are the same in these different
types of systems, implementation issues are different. Survey papers on DSM systems
include those by Nitzberg and Lo [201] and by Protic et al. [221].

Representative software systems include, in rough chronological order, Ivy by Li
and Hudak [166, 167], Munin by Bennett et al. [49], Orca by Bal et al. [43], and
TreadMarks by Amza et al. [12]. On the hardware side, several multiprocessors
supporting DSM have been described, including Dash by Gharachorloo et al. [122]
and Plus by Bisiani and Ravishankar [56].

As mentioned in the survey paper by Nitzberg and Lo [201], many of the issues
involved in building a DsM have arisen in other contexts, such as multiprocessor
caches, networked file systems, and distributed database management systems. These
issues include the consistency condition to be provided, the structure of the shared data
(i.e., whether associative addressing is used, whether the data is object oriented), the
size of the unit of sharing, the handling of heterogeneous hardware, and interactions
with the system’s synchronization primitives and memory management schemes. In
this chapter we have focused on the consistency condition to be provided.

Sequential consistency and linearizability are “strong” consistency conditions,
both requiring the existence of a single view held by all the processors of the order
in which operations occur. The term sequential consistency was first proposed by
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Lamport in [156]. Lamport also formalized the notion of linearizability [159] for
read/write registers, although he called it “atomicity”; the term “linearizability” was
coined by Herlihy and Wing [135], who extended atomicity to arbitrary data types
and explored the issue of composition (cf. Exercise 9.3).

The style of specification for consistency conditions in this chaper is taken from
Attiya and Welch [34] and follows that of Herlihy and Wing [135]. Afek, Brown and
Merritt [4] specify sequential consistency differently, by describing an explicit state
machine and requiring a particular relationship between the executions of the state
machine and those of any algorithm that is to provide sequential consistency.

We described some simple algorithms for linearizability and sequential consis-
tency that rely on full replication and a broadcast primitive. The local-read and
local-write algorithms for sequential consistency are taken from [34]; the Orca dis-
tributed programming language [43] is implemented with a similar style algorithm
for sequential consistency. A similar algorithm for linearizability, but with improved
response time, is described by Mavronicolas and Roth {182] and by Chaudhuri et
al. [74].

In many situations, full replication of each shared data item is not desirable. So-
lutions more along the lines of caching algorithms, where the locations of copies
can change dynamically, have been proposed. Afek et al. [4] have described an
algorithm for sequential consistency that does not rely on full replication. A lineariz-
able algorithm that incorporates replica management is described by Poulakidas and
Singh [217].

The lower bounds presented in this chapter were taken from [34]. The lower bound
for sequential consistency was originally proved by Lipton and Sandberg {170]. An
improved lower bound on the time for linearizable reads appears in the paper by
Mavronicolas and Roth [182] (as does the solution to Exercise 9.6 for read/write
objects).

Separation results between sequential consistency and linearizability for other data
types besides read/write registers have been shown for stacks and queues by Attiya
and Welch [34] and for several classes of arbitrary data types by Kosa [149]. The
latter paper contains the solutions to Exercises 9.10 and 9.11.

We have seen in this chapter that implementing sequential consistency or lineariz-
ability requires significant time overhead. “Weak™ consistency conditions overcome
this drawback. In weak conditions, there is no common (global) view of the order in
which all the operations occur; rather, each processor has its own view of the order
of operations. Different weak conditions are distinguished from each other by the
subset of operations on which views should agree. The research on weak conditions
was spearheaded in the computer architecture community. Early papers include those
by Dubois and Scheurich [100], Adve and Hill [2], and Gharachorloo et al. [122].
A formal treatment of weak conditions within a framework similar to the one in this
chapter can be found in [28, 112, 113]. These papers include a good description of
related definitions, as well as examples and comparisons with other frameworks for
specifying consistency conditions.

Protic, Tomasevic, and Milutinovic edited a collection of papers on distributed
shared memory [222]; some of the papers mentioned above appear in this collection.





