Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

Fault-Tolerant Simulations
of Read/Write Objects

In preceding chapters, we have seen several types of shared objects, differing both in
their sharing patterns (i.e., how many processors can access an object) and in their
semantics (i.e., what type of operations can be applied to the object). A natural
question concerns the relative power of these objects, that is, do different types of
shared objects admit solutions to different problems?

One way to compare the power of shared object types is to simulate a shared
object of one type, the high-level type, using shared objects of another type, the
low-level type. Such a simulation implies that any algorithm that uses objects of the
high-level type will also work using objects of the low-level type, allowing one to
design algorithms assuming the more convenient high-level objects, but to run it in
a system that provides only the low-level objects, which might be a more realistic
assumption. The existence of such a simulation indicates that, at least theoretically,
the low-level type allows solutionsto the same problems that the high-level type does.

A traditional method of simulating shared objects using low-level objects is to use
critical sections (cf. Chapter 4). In this method, access to the low-level objects in
the simulation of the high-level object is guarded by a critical section and the objects
are updated in mutual exclusion. Although simple, this solution is very sensitive
to processor failures and slowdowns. A failed or slow processor that is inside the
critical section can block or delay the progress of all processors and prohibit them from
accessing the simulated shared object. Therefore, we are interested in simulations
that are wait-free, that is, such that each processor can complete an access to the
high-level object using a finite number of accesses to the low-level objects, without
depending on other processors. (A more precise definition appears below.)

207

208 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

This chapter is the first of two chapters that discuss the relationships between
various types of shared objects. In this chapter, we restrict our attention to a few
kinds of objects that can be wait-free simulated from read/write registers. Chapter 15
addresses arbitrary data types.

Throughout this chapter we are concerned solely with linearizable objects.

10.1 FAULT-TOLERANT SHARED MEMORY SIMULATIONS

In this chapter, we study how to simulate shared memory systems both on top of other
kinds of shared memory and on top of an asynchronous message-passing system, in
the presence of crash failures. We consider two ways to formalize such simulations.
In the first, we define a failure-prone version of linearizable shared memory and
require the existence of a global simulation as defined in Chapter 7. In the second,
we place an additional constraint on the definition of the simulation but keep the
original (failure free) definition of linearizable shared memory.

The definition of an (asynchronous) shared memory system that is subject to crash
failures differs from the failure-free definition in Chapter 9 (Section 9.1) in two ways.
First, the liveness condition is weakened to require responses only for invocations
by nonfaulty processors. Second, the linearizability condition must be modified.
Consider the situation in which a processor has done all the work to implement a
high-level operation but fails just before it completes the operation. Subsequent
reads will observe the result of the operation, even though it is not complete. Thus
the definition of linearizability must require that there is a permutation of all the
completed operations and some subset of the pending operations satisfying the same
properties.

Here is the definition of an f-resilient shared memory system. Inputs are invoca-
tions on the shared object, and outputs are responses from the shared object. For a
sequence of events ¢ to be in the allowable set, there must be a partitioning of the
processor indices into “faulty” and “nonfaulty” such that there are at most f faulty
processors and the following properties are satisfied:

Correct Interaction: For each processor p;, oli consists of alternating invocations
and matching responses, beginning with an invocation. This conditionimposes
constraints on the inputs.

Nonfaulty Liveness: Every invocation by a nonfaulty processor has a matching re-
sponse.

Extended Linearizability: There exists a permutation 7 of all the completed opera-
tions in & and some subset of the pending operations such that

1. For each object O, n|Q is legal, that s, it is in the sequential specification
of O; and

2. If the response of operation o occurs in ¢ before the invocation of
operation og, then o1 appears before o4 in 7

SIMPLE READ/WRITE REGISTER SIMULATIONS 209

We will be studying whether communication system Cy can simulate communi-
cation system Cs, where Cs is a shared memory system consisting of certain types of
objects and subject to f processor crashes and C; is a communication system (either
shared memory or message passing) that is also subject to f processor crashes.

Throughout most of this chapter, we will be studying the wait-free case, that is,
when f = n — 1. For this case, there is an alternative definition of a simulation of
an f-resilient shared memory system. (Exercise 10.2 asks you to show that the two
definitions are equivalent.)

Intuitively, we want the simulation not to delay faster processors on account of
slower ones. Thus we define a wait-free simulation to be a (global) simulation of one
(failure free) shared memory system by another (failure free) shared memory system
with the following additional property:

e Let o be any admissible execution of the simulation program. Let o’ be any
finite prefix of « in which some processor p; has a pending high-level operation,
that is, there is an invocation from the environment at p; without a matching
response. Then there must exist an extension of o’ consisting solely of events
by p; in which the pending operation is completed.

Another way of stating the wait-free property is that every operation is able to
complete on its own, from any point, without assistance from other processors.

Usually we will use the wait-free simulation definition when f = n — 1.

By the definition of linearizability, there exists a single point, called the lineariza-
tion point, somewhere between the invocation and response of the operation at which
the operation appears to take effect. One strategy for showing that an execution is
linearizable is to explicitly assign a candidate for the linearization point of every
simulated operation, somewhere between its invocation and response. Clearly, the
order implied by the sequence of linearization points preserves the order of non-
overlapping operations. If we show, in addition, that every read operation returns
the value of the write operation with the latest linearization point that precedes the
linearization point of the read operation, then we have shown the desired linearization
of the execution. Linearization points correspond to our intuition that each operation
“appears” to execute atomically at some point during its execution interval.

10.2 SIMPLE READ/WRITE REGISTER SIMULATIONS

In Chapter 4, we mentioned different types of read/write registers, depending on the
manner in which processors access them: single-reader or multi-reader, single-writer
or multi-writer. Registers can be further classified depending on the number of values
that can be written to them; they may be binary, with only two possible values, or
multi-valued, with any finite number of possible values.

In this section, we show that registers that may seem more complicated, namely,
multi-writer multi-reader multi-valued registers, have a wait-free simulation using
simpler registers, that is, single-writer single-reader binary registers. This simulation
is incremental, going through several stages in which the versatility of accesses

210 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

single-writer single-writer single-writer multi-writer
single—reader:> single-reader:> multi-reader :j multi-reader
binary multi-valued multi-valued multi-valued

Fig. 10.1 Chain of constructions presented in this chapter.

increases. Figure 10.1 depicts the stages of this simulation. In this figure, an arrow
stands for a simulation of a register type from a simpler (more restricted) register
type. Actually, the binary to multi-valued construction requires that the multi-valued
register being simulated take on only a bounded number of different values. In
contrast, the other constructions depend on using building block registers that can
take on unbounded values. However, it is possible to transform these unbounded
value simulation algorithms into algorithms that only use bounded values (see the
chapter notes).

10.2.1 Multi-Valued from Binary

The basic object we consider is a single-writer, single-reader binary register, For
each register, there is a single processor (the writer) that can write to it and a single
processor (the reader) that can read from it. Only binary values can be written to a
register of this type, that is, its value is either (or 1.

We describe how to simulate a K -valued single-writer single-reader register from
a binary single-writer single-reader register for K > 2. For simplicity, we talk
about a single register R, and two well-defined processors, a (single) reader and a
(single) writer. Such simulations can be combined to simulate multiple registers; see
Exercise 9.2.

We consider a simple approach in which values are represented in unary; that is,
to simulate the K -valued single-writer single-reader register R, we use an array of K
binary single-writer single-reader registers, B[0 . . . K — 1]. The value i is represented
by a 1 in the ith entry and 0 in all other entries. Thus the possible values of R are
{0,1,...,K - 1}.

When read and write operations do not overlap, it is simple to perform operations:
A read operation scans the array beginning with index O until it finds a 1 in some
entry and returns the index of this entry. A write operation writes the value v, by
writing the value 1 in the entry whose index is v and clearing (setting to 0) the entry
corresponding to the previous value, if different from v.

This simple algorithm is correct if we are guaranteed that read and write operations
do not overlap, but it returns incorrect responses when read and write operations may
overlap. Consider, for example, the scenario depicted in Figure 10.2 in which R
initially holds the value 3, and thus B[3] = 1 while B[2] = B[1] = B[0] = 0. In
response to a request to read the multi-valued register, the reader reads B[0] and
observes 0, then reads B[1] and observes 0, and then reads B[2]. While the reader

SIMPLE READ/WRITE REGISTER SIMULATIONS 211

READ(2) READ(])
Lz I v |
"read 0 read 0 read T read 0 read 1 |
from B[0] from B[1] from B[2] from B[0] from B[1]
B[0]=0
B[1]=0 WRITE() WRITE(2)
B[2]=0 | | 2 ~
B[3)=1 wrxte 1 wrxte 0" write 1 write 0
- to B[1] to B[3] to B[2] to B[1]

Fig. 10.2 A counterexample to simple multi-valued algorithm; the triangular markers indi-
cate the linearization points of the low-level operations.

is waiting to get the response from B[2], the writer performs a high-level write of 1,
during which it sets B[1] to 1 and clears B[3]. Then the writer begins a high-level
write of 2 and begins writing 1 to B[2]. Finally the reader gets the response from
B[2], with value 1. Now the reader returns 2 as the value of the multi-valued register.
Subsequently, the reader begins a second read on the multi-valued register; it reads
B[0] and observes 0, then reads B[1] and observes 1. Thus the reader returns 1 as
the value of the multi-valued register. Finally the writer receives the ack for its write
to B[2], and clears B[1].!
That is, the operations by the reader are

read(R, 2), read(R, 1)
in this order, whereas the operations by the writer are
write(R, 1), write(R, 2)

Any linearization of these operations must preserve the order between the read
operations as well as the order between the write operations. However, to preserve
the semantics of the register R, write(R, 2) must appear before read(R, 2), while
write(R, 1) must appear before read(R, 1) and after read(R, 2). Thus, either the
order between the read operations or the order between write operations should be
reversed.

To avoid this problem of “new-old” inversion of values, two changes are made:
(1) a write operation clears only the entries whose indices are smaller than the value
it is writing, and (2) a read operation does not stop when it finds the first 1 but makes
sure there are still zeroes in all lower indices. Specifically, the reader scans from the
low values toward the high values until it finds the first 1; then it reverses direction
and scans back down to the beginning, keeping track of the smallest index observed

! This scenario suggests another problem: if no write follows the first write, then the reader will run off the
end of the array in the first read, as it will observe zeroes in all the binary registers, causing the high-level
read to be undefined.

212 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

Algorithm 26 Simulating a multi-valued register R from binary registers:
code for reader and writer.
Initially the shared registers B[0] through B[K — 1] are all 0,
except B[i] = 1, where ¢ is the initial value of R

1: when read(R) occurs: // the reader reads from register
2: i:=0

3: while Bli] = 0doi:=i+1 // upward scan
4: up, v =1

5: for ¢ = up — 1 downto 0 do // downward scan
6: if Bl{] = 1thenv :=1

7: return{ 12, v)

8: when write(R, v) occurs: // the writer writes the value v to register R
9 Blv] =1

10: fori:= v — 1 downto0 do B[i] := 0

11: ack(R)

to contain a 1 during the downward scan. This is the value returned. The pseudocode
appears as Algorithm 26.

Clearly, the algorithm is wait-free: Each write executes at most K low-level write
operations, whereas each read executes at most 2K — 1 low-level read operations.
To show that the algorithm is correct, we need to show that each of its admissible
executions is linearizable, that is, there is permutation of the high-level operations that
preserves the order of non-overlapping operations, and in which every read returns
the value of the latest preceding write. The proof technique is to explicitly describe
an ordering of the operations that satisfies the semantics and then show that it respects
the order of operations; a similar approach was used in the proof of Theorem 9.5 in
Chapter 9.

Consider any admissible execution o of the algorithm and fix a linearization of
the operations on the low-level binary registers. Such a linearization exists because
« is admissible,

In the rest of this section, high-level operations are capitalized (e.g., Read), whereas
low-level operations are not (e.g., read). We say that a (low-level) read r of any B[v]
in o reads from a (low-level) write w to B[v] if w is the latest write to B[v] that
precedes r in the linearization of the operations on Bfv]. We say that a (high-level)
Read R in o reads from a (high-level) Write W if R returns v and W contains the
write to B[v] that R’s last read of B[v] reads from. Note that W writes the value v,
by writing a 1 in B[v], and thus a Read that returns v reads from a Write that writes
.

Construct a permutation 7 of the high-level operations in e as follows. First, place
all the Writes in the order in which they occur in «; because there is only one writer,
this order is well-defined.

SIMPLE READ/WRITE REGISTER SIMULATIONS 213

read 0 read 0 read 1
from B[u] from B[v;] from B[v]
z v ~

|
1

|

1(v1) Wa(v2)

e~ I e 7~ = pa
write 1 write 1 write 0 write 1 write 0
to B[v] to Blv1] to Blu] to Blvz] to Blv]

Fig. 10.3 Scenario for proof of Lemma 10.1; dotted lines indicate low-level reads-from
relationships, and solid line indicates high-level reads-from relationship.

Consider the Reads in the order in which they occur in @; because there is only
one reader, this order is well-defined. For each Read R, let W be the Write that R
reads from. Place R in = immediately before the Write in 7 just following W. The
purpose is to place R after W and after all previous Reads that also read from W
{which have already been placed after W).

We must show that 7 is a linearization of «. First note that 7 satisfies the sequential
specification of a read write register by construction. Now we show that the real-time
ordering of operations in « is preserved in 7. For any pair of Writes, this is preserved
by construction. If a Read R finishes in o before Write W begins, then clearly R
precedes W in «, because R cannot read from a Write that starts after R ends.

To argue the two other cases, we use Lemma 10.1, which constrains the Writes
that a Read can read from in certain situations.

Lemma 10.1 Consider two values u and v withu < v. If Read R returns v and R’s
read of B(u] during its upward scan reads from a write contained in Write W, then
R does not read from any Write that precedes W .

Proof. Suppose in contradiction that R reads from a Write I/ that precedes W (see
Fig. 10.3). Let v1 be the value written by W;. Since W, writes a 1 to B[v;] and then
does a downward scan, v; > u. Also, v; < v, since otherwise W, would overwrite
W’s write to v, contradicting the fact that R reads from W.

Thus in R’s upward scan, it reads B[v;] after B[] and before B[v]. R mustread a
0in Bluv1] since otherwise it would not return v. Consequently there must be another
write Wo, after Wy, that writes O in B[v,] before R’s read of B[v;]. Let vy be the
value written by 5. Note that v must be less than v; for the same reason that v; is
less than v.

Similarly, Wa must be followed by a Write W3 that writes vs, with ve < v3 < v,
and so on.

Thus there exists an infinite increasing sequence of integers v, vg, va, . . ., all of
which are less than ». This is a contradiction. O

214 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

read 0 read 1
from B[v] from B[v']
| v o
W) Wi(o) ,
< [~—| pax %
write 1 write 1 write O
to B[v'] to B[v] to B[v]

Fig. 10.4 Scenario for the Write-before-Read case.

We now return to verifying that s, the permutation defined above, respects the
ordering of non-overlapping high-level operations in the execution o.

Case 1: Write before Read: Suppose in contradiction that Write W finishes in
o before Read R begins but in 7, R is placed before W. Then R reads from some
Write W/ that precedes W. Let W write v and W’ write v'. Thus the value of R is
v’

First, assume v’ < v. Then W overwrites the write to B[v’] by W' before R
begins, and R cannot read from W',

Now consider the case v’ > v (see Fig. 10.4). W writes a 1 in B[v]. Since R does
not see this 1 and stop at B[v] during its upward scan, there must be a Write after W
containing a write of O to B[v] that R’s read of B[v] reads from. Then, by Lemma
10.1, R cannot read from W',

Case 2: Read before Read: Suppose in contradiction that Read R, precedes Read
Ry in « but follows Ry in 7. This inversion implies that R, reads from a Write
W) (v1) that follows the Write Wa(vy) that Ro reads from.

First, consider the case where v; = vs. Then when W) writes | to B[u], it
overwrites the 1 that W, wrote to B[vs] earlier. To be consistent with real time, the
operations on B[v;] must be linearized in the order: Wa’s write, W;’s write, Ry’s
last read, Ry’s last read. This contradicts the assumption that Rs reads from W5.

Since v1 and v, must therefore be distinct, we next consider the case where
v1 > vy (see Fig. 10.5). Since Ry reads from Wy, no write to B[v,] is linearized
between W’s write of 1 to B{vz] and Ry’s last read of B[vg]. Since R, reads from
Wy, Wi's write of 1 to B[vy] precedes R,’s last read of B[v;]. So B[va] has the
value 1 starting before R, does its last read of B[v1] and ending after R» does its last
read of B[vy]. But then R’s read of B[vy] during its downward scan would return
1, not O, a contradiction since R, returns vy, which is larger than vs.

Finally, we consider the case where v; < v» (see Figure 10.6). Since R, reads
from W1, W, s write of 1 to B[v,] precedes R ’s last read of B[v:]. Since Ry returns
va > v1, Ry’s first read of B[v;] must return 0. So there must be another Write after
W, containing a write of 0 to B[v1] that Ry’s read of B[v1] reads from. Then, by
Lemma 10.1, R cannot read from W',

SIMPLE READ/WRITE REGISTER SIMULATIONS 215

read 0 read 1 read ? read 1
from B[vs] from Blvi] from Bluvs] from Bluvs]
| | >z |

v ~z Xz |

W1 (’U]),

|]
{ FAN RPN N 1

write 1 write 1 write O
to Blvs] to Blv] to Blua]

Fig. 10.5 Scenario for the Read-before-Read case when vy > vs.

read 1 read 0 read 1
from Bv] from B[v/] from B[v;]

Fig. 10.6 Scenario for the Read-before-Read case when vy < ws.

Thus = is a linearization of o and we have:

Theorem 10.2 There exists a wait-free simulation of a K-valued register using
K binary registers in which each high-level operation performs O(K) low-level
operations.

10.2.2 Multi-Reader from Single-Reader

The next step we take in the simulation of general read/write registers is to allow
several processors to read from the same register; we still allow only one processor
to write the register. That is, we use single-writer single-reader registers to build a
wait-free simulation of a single-writer multi-reader register,

Let n be the number of reading processors to be supported by the multi-reader
register. A simple idea for this simulation is to use a collection of » shared single-
writer single-reader registers, Val[i], ¢ = 1,...,n, one for each reader. In a write
operation, the writer stores the new value in the registers, one after the other. In a
read operation, the read returns the value in its register. The simulation is clearly
wait-free. However, it is incorrect, that is, it has executions that are not linearizable.

216 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

WRITE(1)
Pu ! AN {
write 1 write 1
to Val[1] to Val|2]
READ(1)
P "
read 1
from Val[1]
READ(0)
Pz]
read O
from Val[2]

Fig. 10.7 A counterexample to the multi-reader algorithm.

Consider for example the following execution in which a new-old inversion of values
happens, that is, a later read operation returns the value of an earlier write.

Assume that the initial value of the register is 0 and that the writer, p,,, wishes to
write 1 to the register. Consider the following sequence of operations (see Fig. 10.7):

e p,, starts the write operation and begins writing 1 to Val[1].
e p; reads the value 1 from Val[1] and returns 1.
e p, reads the value 0 from Val[2] and returns 0.

¢ p, finally receives the ack for its write to Val[1], writes 1 to Val[2], and returns.

This execution cannot be linearized because the read of p; should be ordered after
the write of p,, and the read of p, should be ordered before the write of p,, ; therefore,
the read of p; should be ordered after the read of ps; however, the read of p; occurs
strictly before the read of pj.

One might be tempted to require the readers to read again and again, to use more
registers, or to require the writer to write more values. None of these fixes is correct
(see Exercise 10.3 for an example), as shown by Theorem 10.3.

Theorem 10.3 In any wait-free simulation of a single-writer multi-reader register
Jrom any number of single-writer single-reader registers, at least one reader must
write.

Proof. Suppose in contradiction there exists such a simulation for a register R in
which the readers do not write. Let p,, be the writer and p; and p; the readers of R.
Suppose the initial value of R is 0.

Since the readers do not write, the execution of the writer is unaffected by con-
current reading.

Since the registers used by the simulation are single-reader, they can be partitioned
into two sets, Sy and S, such that only the reader p; reads the registers in S; and
only the reader p; reads the registers in Ss.

SIMPLE READ/WRITE REGISTER SIMULATIONS 217

| WRITE(1) .
! > o e ~ ‘
write write write write
to wi to w; to wjt1 to wy,
READ(v})
e

Fig. 10.8 lustration of o, in the proof of Theorem 10.3.

Consider the execution « of a high-level write of 1 to R, starting in the initial

configuration. The writer p,, performs a series of low-level writes, wy, ..., wg, on
the single-reader registers. Each w; involves a register in either S or .Ss.
For each ¢ = 1,2, and each j = 0,...,k, define an alternative execution o}

obtained from « by interposing a high-level read operation by p; after the linearization
point of w; (if this write exists) and before the linearization point of w; 4 (if this
write exists). Let v;- be the value returned by this high-level read (see Fig. 10.8). That
is, we check to see what value would be returned by each reader after each low-level
write.

Since the simulation guarantees linearizability, for each i = 1, 2, there exists j;
between 1 and & such that v}.- = 0 forall j < 7 and v; = 1forall j > j;. That
is, there is a single low-level write operation that causes p; to observe the simulated
register as having changed its value from 0 to 1.

It is crucial to realize that j; cannot equal j3. The reason is that w;, writes some
register in Sy, the set of registers that p; can read. (See Exercise 10.4.) Similarly,
w;, writes some register in Sy, the set of registers that p, can read. Since S; and S7
are disjoint, j; cannot equal 7.

Without loss of generality, assume j; < j3. Let &' be an execution obtained from
« by inserting a read by p; followed by a read by p, after w;, and before w;, 4.

By definition of j; and j» and the assumption that j; < ja, p;’s read returns 1
and py’s read returns O in o’. But this contradicts the assumption that the simulation
guarantees linearizability, since p;’s read precedes py’s, yet sees the newer value. [J

To avoid the ordering problem described above, the readers write to each other
(through additional registers), creating an ordering among them. Before a reader
returns from a read operation, it announces the value it has decided to return. A
reader reads not only the value written for it by the writer, but also the values
announced by the other readers. It then chooses the most recent value among the
values it has read.

Crucial to this algorithm is the ability to compare different values and choose the
most recent one among them. We assume that registers can take on an unbounded
number of values. Therefore, the writer chooses a nonnegative integer to associate as
a sequence number, or timestamp, with each value it writes. The writer increments
the sequence number each time it wishes to write a new value. Clearly, the value
associated with the largest sequence number among a set of values is the one written
by the most recent write.

218 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

Algorithm 27 Simulating a multi-reader register R from single-reader registers:
code for readers and writer.
Initially Report[i, j] = Val[i] = (v0,0),1 < 4,7 < n,
where vy is the initial value of R

I: when read,(R) occurs: /I reader p, reads from register R
2: (v[0], s[0]) := Val[r] // most recent value reported to p, by writer
3 fori:=ltondo

(v[z], s[z]) := Report[i,r] // most recent value reported to p, by reader p;

4: let j be such that s[j] = max{s[0], s[1], ..., s[n]}

5: for i := 1 to n do Report[r,i] := (v[j], s[j]) // pr reports to each reader p;
6: return, (R, v[j])

7. when write(R, v) occurs: /1 the writer writes v to register £
8: seq = seq + 1 // local variable seq = 0 initially
9 for i := 1 to n do Valli] := (v, seq)

10: ack(R)

In the rest of this section, we refer to a value as a pair containing a value of the
high-level register and a sequence number.

The pseudocode for a register supporting one writer p,, and n readers p1,...,pn
appears in Algorithm 27; it uses the following shared arrays of single-writer single-
reader read/write registers:

Valli]: The value written by p,, for each reader pi, 1 <i<n.

Report]i, j]: The value returned by the most recent read operation performed by p;;
written by p; and read by p;, 1 < 4,7 < n.

Each processor has two local arrays, v and s, each of which is an (n + 1)-element
array, that hold the values and corresponding sequence numbers respectively reported
most recently by the writer and n readers.

The algorithm is clearly wait-free: Each simulated operation performs a fixed
number of low-level operations—n for a write operation and 2n + 1 for a read
operation. To prove that the simulation is correct it remains to show that every
admissible execution is linearizable.

Consider any admissible execution «. To show that « is linearizable, we have to
show that there is a permutation 7 of the high-level operations in « that preserves the
order of non-overlapping operations, and in which every read operation returns the
value of the latest preceding write.

For this algorithm, we prove linearizability by explicitly constructing =, as was
done in Section 10.2.1. We construct 7 in two steps.

First, we put in 7 all the write operations according to the order in which they
occur in «; because write operations are executed sequentially by the unique writer,

SIMPLE READ/WRITE REGISTER SIMULATIONS 219

this sequence is well-defined. Note that this order is consistent with that of the
timestamps associated with the values written.

Next, we add the read operations to 7. We consider the reads one by one, in the
order of their responses in «. A read operation that returns a value with timestamp
T is placed immediately before the write that follows (in) the write operation that
generated timestamp 7. (If there is no such write, then it goes at the end.)

By the defined placement of each read, every read returns the value of the latest
preceding write and therefore 7 is legal.

Lemma 10.4 shows that preserves the real-time order of non-overlapping oper-
ations.

Lemma 10.4 Let op; and op, be two high-level operations in « such that op, ends
before ops begins. Then op, precedes opy in .

Proof. By construction, the real-time order of write operations is preserved.

Consider some read operation r by p; that returns a value associated with time-
stamp 7.

Consider a write w that follows r in «. Suppose in contradiction that read r is
placed after write w in 7. Then the write w' that generates timestamp 7' must be
either w or alater write, implying that w’ occurs after r in -, which is a contradiction.

Consider a write w that precedes r in a. Since r occurs after w, r reads from
Val[i] the value written by w or a later write, by the linearizability of Val[i]. By the
semantics of max on integers and because timestamps are increasing, r returns a
value whose associated timestamp is generated by w or a later write. Thus 7 is not
placed before w in 7.

Consider a read ' by p; that follows r in a. By linearizability, p; obtains
a timestamp from Report[i] during ' that is written during = or later. Since the
timestamps are increasing integers, no timestamp written to Report[i] after r was
generated before T" was generated. Thus the max in 7 returns a timestamp that was
generated at least as recently as 7', and thus »* will not be placed before ». [

Note that the simulation of a single register requires n low-level (single-reader)
registers for communication from the writer to the readers and n{n — 1) low-level
registers for communication among the n readers.

Thus we have:

Theorem 10.5 There exists a wait-free simulation of an n-reader register using
O(n?) single-reader registers in which each high-level operation performs O(n)
low-level operations.

10.2.3 Multi-Writer from Single-Writer

The final step we make in this section is to construct a multi-writer multi-reader
read/write register from single-writer multi-reader registers. As for the previous
simulation, we assume here that the registers can hold an unbounded number of
values.

220 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

The idea of the algorithm is to have each writer announce each value it desires to
write to all the readers, by writing it in its own (single-writer multi-reader) register;
each reader reads all the values written by the writers and picks the most recent one
among them.

Once again, the crucial issue is to find a way to compare the values written by
the writes and find the most recent one among them. To achieve this, we assign
a timestamp to each value written. Unlike the previous algorithm, in this one the
timestamps are not generated by a single processor (the single writer), but by several
processors (all possible writers). The most important requirement of the timestamps
is that they be totally ordered. Furthermore, the timestamps should reflect the order of
non-overlapping operations; that is, if a write operation completely precedes another
write operation then the first operation should get a lower timestamp.

Interestingly, we have already seen a method for creating such timestamps, in the
context of vector clocks (Chapter 6). Recall that these timestamps are vectors of
length m, where m is the number of writers, and that the algorithm for picking a
timestamp is as follows: The new timestamp of a processor is the vector consisting of
the local timestamps read from all other processors, with its local timestamp increased
by 1.

We apply lexicographic order to the vectors of timestamps; that is, two vectors are
ordered according to the relative order of the values in the first coordinate in which
the vectors differ. This is a total order extending the partial order defined for vector
timestamps in Chapter 6 (Section 6.1.3).

The m writers are py, ..., pm—~1, and all of the processors, py, ..., Pn—1, are the
readers. The pseudocode appears in Algorithm 28. It uses the following shared
arrays of single-writer multi-reader read/write registers:

TS[il: The vector timestamp of writer p;, 0 < ¢ < m — 1. It is written by p; and
read by all writers.

Valli]: The latest value written by writer p;, 0 < ¢ < m — I, together with the vector
timestamp associated with that value. Itis written by p; and read by all readers.

Clearly, the algorithm is wait-free because any simulated operation requires a
linear number of low-level operations.

To prove that the simulation is correct we have to show that every admissible
execution is linearizable. The proof is very similar to the linearizability proof of the
previous simulation.

Consider any admissible execution «. To show « is linearizable, we have to show
that there is a permutation 7 of the high-level operations in « that preserves the order
of non-overlapping operations, and in which every read operation returns the value
of the latest preceding write.

The key to the proof is the lexicographic order on timestamps. The proof of
Lemma 10.6 is left as an exercise to the reader (Exercise 10.6).

Lemma 10.6 The lexicographic order of the timestamps is a total order consistent
with the partial erder in which they are generated.

SIMPLE READ/WRITE REGISTER SIMULATIONS 221

Algorithm 28 Simulating a multi-writer register R from single-writer registers:
code for readers and writers.
Initially 78] = (0, ...,0) and
Val[i] equals the desired initial valueof R, 0 < i <m -1

1: when read, (R) occurs: // reader p, reads from register R, 0 < r < n
2 fori :=0tom — 1do (v[d],t[i]) := Val[s] // v and t are local
3 let j be such that t[j] = max{t[0],...,¢[m ~ 1]} // lexicographic max
4 return, (R, v[;])

S: when write,, { R, v) occurs: // writer p,, writes v toregister B, 0 < w <m — 1
6. ts := NewCTS() // ts is local
7 Vallw] := (v, ts) /I write to shared register
8: ack, (R)

9: procedure NewCTS,,{): /I writer p,, obtains a new vector timestamp
10: fori:=0tom —1do

11: Itsi] := TS[7].[4] /1 extract the ith entry from 7§ of ith writer
12: lesfw] = les[w] + 1 // increment own entry
13: TS[w] := lts /f write to shared register
14: return Its

Inspection of the pseudocode reveals that the values written to each 7' variable are
written in nondecreasing lexicographic order, and therefore we have the following
lemma:

Lemma 10.7 For each i, if vector timestamp VT, is written to Val[i] and later vector
timestamp VT, is written to Val[i), then VT < VT,

The candidate linearization order 7 is defined in two steps, in a manner similar to
that in Section 10.2.2.

First, we put into 7 all the write operations according to the lexicographic ordering
on the timestamps associated with the values they write. Second, we consider each
read operation in turn, in the order in which its response occurs in «v. A read operation
that returns a value associated with timestamp VT is placed immediately before the
write operation that follows (in 7) the write operation that generated V7.

By the defined placement of each read, = is legal, since each read returns the value
of the latest preceding write.

Lemma 10.8 shows that 7 preserves the real-time order of non-overlapping oper-
ations.

Lemma 10.8 Let op; and opy be two high-level operations in o such that op, ends
before opy begins. Then op; precedes op; in .

Proof. By construction and Lemma 10.6, the real-time order of write operations is
preserved.

222 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

Consider a read operation, », by p; that returns a value associated with timestamp
VT.

Consider a write w that follows » in a. Suppose in contradiction that read r is
placed after write w in w. Then the write w’ that generates timestamp V1" must be
either w or a later write, implying that w’ occurs in « after 7, a contradiction.

Consider a write w by p; that precedes r in . Since r occurs after w, r reads
from Val[j] the value written by w or a later write, by the linearizability of Val[j].
By the semantics of max on vectors of integers and Lemma 10.6, r returns a value
whose associated timestamp is generated by w or a later write. Thus = is not placed
before w in .

Considera read 7 by p; that follows 7 in . During r, p; reads all Val variables and
returns the value whose associated timestamp is the lexicographic maximum. Later,
during +/, p; does the same thing. By Lemma 10.7, the timestamps appearing in
each Val variable are in non-decreasing lexicographic order, and thus by Lemma 10.6
the timestamps are in non-decreasing order of when they were generated. Thus +/
obtains timestamps from the Val variables that are at least as recent as those obtained
by . By the semantics of max on vectors of integers, the timestamp associated with
the value returned by ’ is at least as recent as the timestamp associated with the value
returned by r. Thus »’ is not placed before 7 in . |

Note that the construction of a single register requires O(m) low-level (single-
writer) registers, where /m is the number of writers.
Thus we have:

Theorem 10.9 There exists a wait-free simulation of an m-writer register using
O(m) single-writer registers in which each high-level operation performs O(m)
low-level operations.

10.3 ATOMIC SNAPSHOT OBJECTS

The shared objects we have seen so far in this chapter allow only a single data item to
be accessed in a memory operation, although they allow several processors to access
it (for reading, writing, or both). We now turn to atomic snapshot objects—shared
objects partitioned into segments. Each segment belongs to a different processor
and is written separately, but all segments can be read at once by any processor. In
this section, we present a wait-free simulation of an atomic snapshot object from
bounded-size read/write registers.

As we shall see (e.g., in Chapter 16), the ability to read all segments atomically
can simplify the design and verification of shared memory algorithms. Because they
can be simulated from read/write registers, there is no loss of generality in assuming
the existence of atomic snapshot objects.

The sequential specification of an atomic snapshot object provides two kinds of
operations foreach user¢, 0 < i< n-—L:

ATOMIC SNAPSHOT OBJECTS 223

s A scan; invocation whose response is return;(V), where V' is an n-element
vector called a view (with a value for each segment), and

¢ An update;{d) invocation whose response is ack;, where d is the data to be
written to p;’s segment

A sequence of scan and update operations is in the allowable set if and only if, for
each V returned by a scan operation, V[7] equals the parameter of the latest preceding
update; operation, for all i. If there is no preceding update; operation, then V{¢] equals
the initial value of p;’s segment of the object.

We describe a simulation of an atomic snapshot object from single-reader, single-
writer read/write registers of bounded size.

The main idea of the scan is to collect (i.e., read) all the segments twice; this is
called a double collect. If no segment is updated during the double collect, then the
result of each collect is clearly a snapshot, as no updates occur in between the two
collects. When a successful double collect occurs, the scan can return; this is the crux
of the algorithm. There are two difficulties in implementing this idea: how to tell if
the segments have been updated and what to do if the segments have been updated.

Assimple way to solve the first problem is to include an (unbounded) sequence num-
ber with the data item in each segment (see the chapter notes). A more space-efficient
solution is to employ a handshaking mechanism. The handshaking mechanism is not
powerful enough to indicate precisely how many changes have been made; instead,
it can indicate whether at least one change has been made to a segment or whether at
most one change has been made.

To solve the problem of what to do if a change to a segment is observed, we show
that if a scanner observes several changes in the segment of a specific updater then
the updater has performed a complete update during the scan. We embed a scan
operation at the beginning of the update; the view obtained in this scan is written
with the data. The scanner returns the view obtained in the last collect. As we prove
below, this view is an allowed response for this scan.

10.3.1 Handshaking Procedures

We now describe the general method of handshaking that provides two properties
that are crucial to the correct operation of the atomic snapshot algorithm.

Consider a fixed ordered pair of distinct processors (p;, p;). Four procedures are
defined for this ordered pair?: tryHS;, tryHS;, checkHS;, and checkHS;. The proce-
dures interact via two shared single-reader, single-writer binary read/write registers,
called the handshaking bits: h;, which is written by p; and read by p;, and 4;, which
1s written by p; and read by p;. Processor p; tries to handshake by modifying its
own bit to make the two bits equal, whereas p; tries to make the bits unequal. Then
pi checks whether a handshake occurred (informally, whether p; tries to handshake

2The atomic snapshot algorithm only uses three of the procedures; for generality we include the fourth
one.

224 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

Algorithm 29 Handshaking procedures for the ordered pair of processors (p;, p;).

1: procedure tryHS;(): /l p; tries to handshake
2 hy = hj // by trying to make the bits equal
3 return

4. procedure tryHS;(): /! p; tries to handshake
5 h; == —h; // by trying to make the bits unequal
6: return

7. procedure checkHS;(): /1 p; checks whether a handshake occurred

&: return (h; # h;)

9: procedure checkHS;(): /1 p; checks whether a handshake occurred
10: return (h; = h;)

between the time of p;’s last handshake try and the check) by testing whether the
bits are unequal. To check whether a handshake occurs, p; tests whether the bits are
equal.

The pseudocode for the handshaking procedures appears in Algorithm 29. To
make the code more readable, it appears as if both processors read each bit, but
because each bit is single-writer, the writer can simply remember in a local variable
what it last wrote to the bit.

Consider an admissible execution containing multiple calls to the handshaking
procedures and a fixed linearization of the read and write operations embedded in the
procedures. In the sequel we refer to these operations as occurring before, after, or
between other operations with respect to this linearization. The properties we wish
to have are {(cf, Fig. 10.9):

Handshaking Property 1: If acheckHS; returns true, then there exists a tryHS; whose
write occurs between the read of the previous tryHS; and the read of the
checkHS;. The same is also true with 7 and j reversed.

Handshaking Property 2: If a checkHS; returns false, then there is no tryHS; whose
read and write occur between the write of the previous tryHS; and the read of
the checkHS;. The same is also true with 7 and j reversed.

Note that Handshaking Property 2 is not quite the negation of Handshaking Property 1;
this uncertainty is the weakness mentioned earlier in our discussion of the mechanism.

The following theorem proves that the handshaking properties above are ensured
by the procedures of Algorithm 29.

Theorem 10.10 Consider any execution of the handshaking procedures that is cor-
rect for the read/write registers communication system, in which only the handshaking
procedures alter the handshaking bits. Then the procedures satisfy the handshaking
properties.

ATOMIC SNAPSHOT OBJECTS 225

write read write read
read same opposite read same same
S | -
' tryHS; b T checkHS; ' tryHS; checkHS;

no tryHS; reads

[v_4 || 7 |
i
i
Il
i
i
i and writes here
{

i
1
|
1
1
1
1

a tryHS; writes here

(b)

Fig. 10.9 Demonstrations for Handshaking Properties 1 (a) and 2 (b): Triangles indicate
linearization points of low-level operations.

Proof. We prove the handshaking properties as stated; the proofs when 7 and j are
reversed are left as an exercise (cf. Exercise 10.7).

Handshaking Property 1: Suppose a call to checkHS; returns true. Then p;
observes the bits to be unequal, that is, its read of h; returns the opposite of what was
written to h; in the preceding tryHS;. Without loss of generality, suppose p; reads h;
to be 1 in the checkHS;, while A; is 0. Then in the preceding tryHS;, p; wrote a O to
h; because it observed h; to be 0. Thus there must be a call to tryHS; whose write to
h; (changing it from O to 1) is linearized between the specified points.

Handshaking Property 2: Suppose a call to checkHS; returns false. Then p;
observes the bits to be equal, that is, its read of h; returns the same value that was
written to A; in the preceding tryHS;. Without loss of generality, suppose this value
is 0. Suppose in contradiction there is a call to tryHS; whose read and write occur
between the specified points. In particular, the read of 4; in tryHS; follows the prior
tryHS;, and will return O; hence, 1 will be written to 4; in tryHS;. Any subsequent
calls to tryHS; in that interval will do the same. But then the read of A; in checkHS;
returns 1, not 0, a contradiction. I

10.3.2 A Bounded Memory Simulation

For each processor p; acting as a scanner and each (distinct) processor p; acting
as an updater, we have a separate handshaking mechanism in the atomic snapshot
simulation, denoted by the ordered pair (p;, p;). The first entry in the pair indicates
the scanner, and the second indicates the updater. Thus we need a way to distinguish
the procedure names and the variable names so that, for instance, the variables for the
pair (p;, p;) will be distinct from those for (p;, p;) and so that the procedure names
will not be confused. We will use the superscript (1, 3) on the procedure and variable

names for the ordered pair (p;, p;), for example, h(4) and checkHS(),

A scanner tries to handshake with all the other processors, then does the double
collect, and then checks the handshakes with all the other processors. Because
handshaking and collecting, on the scanner’s side, and writing and handshaking, on
the updater’s side, are done in separate operations, an update to some segment may
not be observed (see Fig. 10.10). To differentiate two consecutive updates to the

226 FAULT TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

Puw oo N e v v
write
to segment tryHS,
Pi N7 VA A o
tryHS; read read checkHS;
i)

Pw'Ssegment p,’s segment

Fig. 10.10 Why toggle bits are needed.

same segment, we include a bit with the data of each segment, which the updater
toggles in each update.

The scanner, p;, repeatedly tries to handshake, double collects, and checks for
handshakes until it observes three changes in the segment of some processor p;. The
implication of observing three changes in p;’s segment is that p; has performed a
complete update during p;’s scan. We alter the update code to first perform a scan
and then include the view returned by the scan with the data and toggle bit. The
scanner p; returns the view obtained from p; in the last collect.

The pseudocode appears as Algorithm 30. Each processor p; has a local array
shook[0 . . .n — 1], which counts, for each updater p;, the number of times p; was
observed by p; to have tried to handshake with p;.

The following lemmas are with respect to an admissible execution « of Algo-
rithm 30. When we refer to a scan execution, we mean the execution of the procedure
scan inside either a scan or an update operation.

Lemma 10.11 explains how the condition in Line 15 “catches” an intervening
update operation.

Lemma 10.11 If, during some execution by p; of Line 15 in the scan procedure, the
condition returns true for some j, then p; executes either Line 6 or the write of the
handshake with p; in Line 7 between the previous execution in Line 12 of the read of

tryHS?’j) and this execution of Line 15.

Proof. The condition in Line 15 is true for j either because a[j).toggle # b[j].toggle
or because checkHSg(“’J) returns true. In the first case, p; writes to Segment[j] (Line 6)
during p;’s doublecollect (Lines 13-14). In the second case, Handshaking Property 1

implies that there has been a write of tryHSE-"j) (Line 7) since the read of the previous
tryHs() (Line 12). O

Note that a scan execution can either return a view in Line 18, in which case it
is called a direct scan, or borrow a view, in Line 16, in which case it is called an
indirect scan. Lemma 10.12 indicates why it is reasonable for an indirect scan to
borrow the view returned by another scan.

Lemma 10.12 Anr indirect scan returns the view of a direct scan whose execution is
enclosed within the execution of the indirect scan.

ATOMIC SNAPSHOT OBJECTS 227

Algorithm 30 Wait-free atomic snapshot object simulation from read/write
registers: code for processor p;, 0 < i< n—1.

Initially Segment[i].data = v;, Segment{i].view equals {(vg, . .., ¥n—1),
where v; is the initial value of p;’s segment,
and (local) shook[j] = 0, forall j

1: when scan; () occurs: // scan; is an input event
2 view := scan() // scan is a procedure; view is local
3 return; (view) // return; is an output event
4: when update; (d) occurs: /l processor p; updates its segment to hold &
5 view := scan()
6: Segment[i] := (d, view, —~Segmeni[i].toggle) // flip the toggle bit
7: forall j # i do tryHsP)() // handshake with all scanners
8: ack;
9: procedure scan() :
10: for all j # i do shook[j] := 0 /1 shook is local
11: while true do
12: forall j # ido tryHSf;i’j)] /{ handshake with all updaters
13: for all j # i do a[j] := Segment[j] // first collect
14: for all j # i do b[j] := Segment[]] // second collect
15: if, for some j # 1, checkHSEi’j)()

or (a[j].toggle # b[j].toggle) then /l update progress observed
16: if shook[j] = 2 then return(b[j].view) // indirect scan
17: else shook[j] := shook{j] + 1
18: else return((b[0].data, . . ., b[n — 1].data)) // direct scan

Proof. Let p; be the processor that executes the indirect scan. Assume that the
indirect scan borrows a view to return from processor p;. Thus p;’s indirect scan
evaluates the condition in Line 15 to be true for j three times. By Lemma 10.11, p;
performs Line 6 or Line 7 in three distinct intervals; hence, p; performs Line 6 or
Line 7 three different times. It follows that the third execution by p; of Line 6 or 7
is part of an update; operation that starts after p;’s scan starts. The reason is that a
single update operation can cause the condition in Line 15 to be true twice, first in
Line 6 and then in Line 7. Thus the scan embedded in that update; operation, which
provides the borrowed view, is enclosed within the execution of the indirect scan of
pi

If that embedded scan is direct, we are done. If not, then this argument can be
applied inductively, noting that there can be at most n concurrent operations in the
system. Hence, eventually the embedded scan is direct, and the result follows by the
transitivity of containment of the embedded scan intervals. |

228 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

Because the execution o is correct for the read/write registers communication
system, the reads and writes on the Segment[:] shared registers are linearizable. For
each configuration C}, in @, define the actual value of the snapshot object to be the
vector {dy, . . ., d..1), where d; is the first parameter of the latest write by processor
p; to Segment[i} (in Line 6) that is linearized before Cj. If there is no such write,
then d; is the initial value of Segment[i].data.

A direct scan has a successful double collect when the test in Line 15 is false for
all j. That is, no processor is observed to make progress in between the two collects
in Lines 13 and 14. Lemma 10.13 proves that the values returned by a direct scan
constitute a “snapshot” after the first collect of the successful double collect.

Lemma 10.13 A direct scan in o returns the actual value of the atomic snapshot
object in the configuration immediately following the last read in the first collect of
the successful double collect.

Proof. Suppose p; performs a direct scan. Let p; be any other processor.

Consider the behavior of p; during the final execution of the while loop (Lines 11—
18). Let s; be the tryHSf»w) execution in Line 12. Let r;, be the linearization point of
the last read in the first collect (Line 13). Let r, be the linearization point of the read
of Segment(j] in the second collect (Line 14). Let ¢; be the checkHS{"?) execution
in Line 15.

Since the direct scan returns the value read at ro, we must show that no write to
Segment[j] is linearized in between ry and 7.

Since ¢; returns false, Handshaking Property 2 implies that there is no complete
tryHS; execution between the point of s; and the point of ¢;. Thus at most one write
to Segment[j] can take place in that interval. If there were one such write, and it took
place between r; and rg, then it would cause the toggle bit to change between the
reads of Segment[j] in the two collects. This contradicts the fact that the if condition
in Line 15 was false. O

To prove linearizability, we identify a linearization point for each operation, inside
itsinterval, in a way that preserves the semantics of the snapshot object. The proposed
linearization for the scan and update operations in « is the result of ordering the
operations according to these linearization points.

A scan operation whose embedded call to procedure scan is direct is linearized
immediately after the last read of the first collect in the successful double collect.
A scan operation whose embedded call to procedure scan is indirect is linearized at
the same point as the direct scan whose view is borrowed. Lemma 10.12 guarantees
that such a direct scan exists and is entirely contained in the interval of the scan
operation. Thus all scan operations are linearized inside their intervals. Furthermore,
Lemma 10.13 implies:

Lemma 10.14 Every scan operation returns a view that is the actual value of the
atomic snapshot object at the linearization point of the scan.

An update operation by p; is linearized at the same point in the execution as its
embedded write to Segment[:]. By Lemma 10.14, data values returned by a scan

SIMULATING SHARED REGISTERS IN MESSAGE-PASSING SYSTEMS 229

operation are simultaneously held in all the registers at the linearization point of
the operation. Therefore, each scan operation returns the value for the ith segment
written by the latest update operation by p; that precedes it in the linearization.

This completes the proof of linearizability, and leaves only the wait-free require-
ment. Each unsuccessful double collect by p; can be attributed to some j, for which
the condition in Line 15 holds. By the pigeonhole principle, in 2n + 1 unsuccessful
double collects three are attributed to the same j. Two of these double collects will
increment shook;[j] to 1 and then 2 (in Line 17), and the third will borrow an indirect
view from p; (in Line 16).

Hence scan operations are wait-free, because the tryHS and checkHS procedures
are wait-free. This, in turn, implies that update operations are wait-free. The same
argument shows that each high-level operation performs O(n?) low-level operations.

Theorem 10.15 There exists a wait-free simulation of an atomic snapshot object
using readfwrite registers.

10.4 SIMULATING SHARED REGISTERS IN MESSAGE-PASSING
SYSTEMS

The last simulation we present in this chapter shows how to take algorithms designed
for shared memory systems and run them in asynchronous message-passing systems.
If we are not concerned with failures or slowdowns of processors, then the methods
of Chapter 9 can be used to simulate read/write registers {e.g., the algorithm of
Section 9.3.1). However, these methods are based on waiting for acknowledgments
(in the underlying total broadcast algorithm) and hence are not resilient to failures.

We describe a simulation of a single-reader single-writer read/write register by n
processors, in the presence of f failures, where f < n/2. The simulated register
satisfies the definition of f-resilient shared memory. The simulation can be replicated
to provide multiple shared registers.

When there are failures in a message-passing system, a processor cannot be sure
that another processor will receive a message sent to it. Moreover, it cannot wait
for an acknowledgment from the receiver, because the receiver may fail. To provide
tolerance to f < n/2 failures, we use all the processors, not just the designated reader
and writer of the register, as extra storage to help with the simulation of each shared
register. In order to be able to pick the latest value among those stored at various
processors, the values are accompanied by a sequence number.

Consider a particular simulated register. When the writer wants to write a value to
this register, it increments a local counter to produce a sequence number and sends
a (newval) message containing the new value and the sequence number to all the
processors. Each recipient updates its local copy of the register with the information,
if the sequence number is larger than what it currently has; in any event, the recipient
sends back an (ack) message. Once the writer receives an (ack) from at least | 5 | +1
processors, it finishes the write. Because n > 2f, it followsthat [% |+1 < n— f, and
thus, the writer is guaranteed to receive responses from at least that many processors.

230 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

When the reader wants to read the register, it sends a (request) message to all the
processors. Each recipient sends back a {value) message containing the information
it currently has. Once the reader receives a (value) message from at least | 3] +
1 processors, it returns the value with the largest sequence number among those
received.

Each read and write operation communicates with a set of at least %] + 1
processors, which is a majority of the processors. Thus there is at least one processor
in the intersection of the subsets for each read and write operation. This intersection
property guarantees that the latest value written will be obtained by each read.

To overcome potential problems caused by the asynchrony of the underlying
message system, both the reader and writer maintain a local array status[0..n — 1], to
manage the communication; status(j] contains one of the following values:

not sent: The message for the most recent operation has not yet been sent to p;
(because p; has not acknowledged a previous message).

not_acked: The message for the most recent operation has been sent to p; but not
yet acknowledged by p;.

acked: The message for the most recent operation has been acknowledged by p;.

In addition, an integer counter, num_acks, counts the number of responses received
so far during the current operation.

The pseudocode for the writer and reader appear as Algorithms 31 and 32, re-
spectively; the code common to all processors appears as Algorithm 33. To avoid
cluttering the code, the register name is not explicitly included; however, we do need
a separate copy of all the local variables for each simulated register, and the register
name should be a parameter to the high-level event names.

To prove the correctness of the algorithm, consider an arbitrary admissible exe-
cution of the algorithm. The next two lemmas show that the status variables ensure
that the responses received were indeed sent in reply to the message sent during the
current read or write operation.

Lemma 10.16 When a write operation completes, at least | 3 | 4 1 processors store
a value in their copy of the variable last whose sequence number equals the sequence
number of the write.

Proof. Choose any processor p;. The following facts about the writer py, ’s status[]
variable can be verified by induction.

o If status(j] equals acked, then no message is in transit from p,, to p; or vice
versa.

o If status[j] equals not_acked, then exactly one message is in transit from p,, to
pj or vice versa, either (newval) or {ack). Furthermore, if it is (newval), then
the data in the message is for p,,’s most recent write.

SIMULATING SHARED REGISTERS IN MESSAGE-PASSING SYSTEMS 231

Algorithm 31 Read/write register simulation by message passing:
code for processor p,,, the (unique) writer of the simulated register.

Initially status{j] equals acked for all j, seq equals 0, and pending equals false

1: when write,, (v) occurs: // processor p,, writes v to the register
2: pending = true

3: seq 1= seq + 1

4: num_acks := 0

5: for all j do

6: if status(j] = acked then // got response for previous operation
7: enable send,, (newval, (v, seq)) to p;

8: status(j] = not_acked

9: else status(j] := not.sent

10: when (ack) is received from p;:

11 if not pending then status[j] := acked // no operation in progress
12: else if status|j] = not_sent then // response to a previous message
13: enable send,, (newval, (v, seq)) to p;

14 status[j] = not.acked
15: else // response for the current operation
16: status[j] := acked
17: num_acks 1= num_acks + 1
18: if num_acks > | 5] + 1 then // acks received from majority
19: pending .= false
20: enable ack,,

o If starus[j] equals not_sent, then exactly one message is in transit from p,, to
p; or vice versa, either (newval) or (ack). Furthermore, if it is {(newval), then
the data in the message is for a write prior to the most recent one.

Then num_acks correctly counts the number of acks received for the current write,
and each one indicates that the sending processor has set its variable /ast to the data
for the current write. O

Lemma 10.17 can be proved in a very similar way (see Exercise 10.8).

Lemma 10.17 When a read operation completes, the reader has received a (value)
message from atleast | 5 |+ 1 processors containing the value of the sender’s variable
last at some point since the read began.

Lemma 10.18 deals with the ordering of the value returned by a read operation
and the value written by a write operation that completely precedes it.

Lemma 10.18 If write operation w completes before read operation r starts, then
the sequence number assigned to w (in Line 3) is less than or equal to the sequence
number associated with the value returned by r (cf. Line 15).

232 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

Algorithm 32 Read/write register simulation by message passing:
code for processor p,, the (unique) reader of the simulated register.

Initially status]j] equals acked for all j, seq equals 0, and pending equals false

1: when read, () occurs: /! processor p,. reads from the register
2: pending = true

3: num_acks := 0

4: for all 5 do

5: if status(j] = acked then // got response for previous operation
6 enable send, (request) to p;

7: statusj] := not_acked

8: else status[j] := not_sent

9: when (value,(v, s)) is received from p;:

10: if not pending then status[j] := acked // no operation in progress
1L else if status[j] = not_sent then // response to a previous message
12: enable send, (request) to p;

13: status|j] := not_acked

14: else // response for the current operation
15: if s > seq then { val := v; seq:= 5 } // more recent value
16: status[j] := acked

17: num_acks := num_acks + 1

18: if num_acks > | % | + 1 then /I acks received from majority
19 pending = false

20: enable return,. (val)

Proof. Let z be the sequence number of w. By Lemma 10.16, when w ends, at
least | 3| 4 1 processors store data in their copies of the variable last with sequence
number z. Call this set of processors S,,. By Lemma 10.17, when r ends, it has
received at least | % | + 1 messages from processors containing the values of their
copies of the variable last at some point since r began. Call this set of processors S,.
Since n is the total number of processors, Sy, and S, have a nonempty intersection.
See Figure 10.11.

Let p; be some processor in their intersection. Since the sequence number in p;’s
variable last; never decreases, the sequence number reported by p; to the read = is at
least z, and the lemma follows. O

Obviously, each read returns a value written by some write that began before the
read ended. Since the sequence numbers of writes are strictly increasing, we have:

Lemma 10.19 If write operation w starts after the completion of read operation
7, then the sequence number assigned to w is greater than the sequence number
associated with the value returned by r.

Finally, we can prove (see Exercise 10.9):

SIMULATING SHARED REGISTERS IN MESSAGE-PASSING SYSTEMS 233

Algorithm 33 Read/write register simulation by message passing:
code for every processor p;, 0 < 1 < n — 1, including p,, and p,.

Initially last equals (vg, 0), where vy is the initial value of the simulated register

1: when (newval,(v, s)) is received from p,,:

// v is more recent than current value
2: last := (v, s)
3 enable send; {ack) to p,,

4: when {request) is received from p,:
5 enable send; (value,last) to p,

Lemma 10.20 If read operation r1 occurs before read operation rs, then the se-
quence number associated with the value returned by v, is less than or equal to the
sequence number associated with the value returned by r5.

These three lemmas prove that the algorithm is correct (see Exercise 10.10). Each
invocation of a read or write operation requires sending one message to a majority of
the processors and receiving their responses. Clearly, at most 272 messages are sent
as the result of each invocation of an operation. Moreover, if each message takes at
most one time unit, then the existence of a nonfaulty majority implies that the time
complexity is O(1).

Theorem 10.21 If f < n/2, then there exists a simulation of a single-reader single-
writer read/write register for n processors using asynchronous message passing, in
the presence of f crash failures. Each register operation requires O(n) messages
and O(1) time.

What happens if we have multiple readers? It can be shown that new-old in-
versions, similar to those described in Section 10.2.2, can occur when there are
concurrent read operations (Exercise 10.11). One solution is to employ Algorithm 27
(see Exercise 10.12). However, this requires another layer of sequence numbers and
increases the time and message complexity.

Fig. 10.11 lustration for the proof of Lemma 10.18.

234 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

An alternative, more optimized, approach is to piggyback on the sequence numbers
already used in our algorithm. The only modification we need to make is to have
a reader communicate the value it is about to return to a majority of the processors
(in a manner similar to the algorithm performed by the writer). This way, any read
operation that starts later will observe a larger timestamp and return a later value.

Once we have multi-reader registers, we can then use Algorithm 28 to build muliti-
writer registers in the message passing model. We can also simulate atomic snapshot
objects in message passing.

We conclude this section by proving that the requirement that f < n/2 is neces-
sary, that is, if more than half the processors may fail then read/write registers cannot
be simulated in message passing.

Theorem 10.22 In any simulation of a single-reader single-writer read/write register
Sfor n processors using asynchronous message passing, the number of failures f must
be less thann/2.

Proof. Suppose in contradiction there is such a simulation A withn < 2f. Partition
the set of processors into two sets Sy and Sy, with |Sp| = {n/2] and |5,| = |n/2].
Note that both sets have size at most f.

Consider an admissible execution cg of A in which the initial value of the simulated
register is 0, all processors in Sy are nonfaulty, and all processors in S; crash initially.
Suppose processor pg in Sy invokes a write operation with value 1 at time 0 and no
other operations are invoked. Since the algorithm must tolerate up to f failures, py’s
write operation will eventually finish at some time ;.

Consider a second admissible execution «r; of A in which the initial value of the
simulated register is 0, all processors in Sy crash initially, and all processors in Sy
are nonfaulty. Suppose processor p; in S; invokes a read operation at time {5 + 1 and
no other operations are invoked. Since the algorithm must tolerate up to f failures,
p1’s read operation will eventually finish at some time ¢; and, by linearizability, will
return the value 0.

Finally, consider an admissible execution @ of A that is a “merger” of g and ;.
In more detail, processors in S experience the same sequence of events up through
time #; as they do in «g, while processors in S; experience the same sequence of
events up through time ¢; as they do in «;. There are no failures in 3, but messages
that are sent between the two groups have their delivery delayed until after time ;.
Since p; cannot distinguish between «y and f, it still returns 0 for its read. However,
this violates linearizability, since the latest preceding write (the write by pg) has the
value 1. 0

Exercises

10.1 Expand on the critical section idea for simulating shared memory {in a non-
fault-tolerant way).

10.2

10.3

104

10.5

10.6
10.7
10.8
10.9
10.10
10.11

10.12

10.13

CHAPTER NOTES 235

Show that the two definitions of wait-free simulation discussed in Section 10.1
are equivalent.

Suppose we attempt to fix the straw man multi-reader algorithm of Sec-
tion 10.2.2 without having the readers write, by having each reader read the
array B twice. Show a counterexample to this algorithm.

In the proof of Theorem 10.3, show that w;, must be a write to a register in
S;,fori=1,2.

Does there exist a wait-free simulation of an n-reader register from single-
reader registers in which only one reader writes, when n > 27

Does there exist such a simulation for n > 2 readers in which only n — 1
readers write?

Prove Lemma 10.6.

Prove the properties in Theorem 10.10 when ¢ and j are reversed.

Prove Lemma 10.17.

Prove Lemma 10.20.

Prove Theorem 10.21.

Construct an execution in which multiple readers run the simulation of a single-
writer single-reader register in the message-passing model (Section 10.4) and
experience a new-old inversion.

Show how to combine Algorithm 27 and the simulation of a single-writer
single-reader register from message passing (Section 10.4) to obtain a simu-
lation of a single-writer multi-reader read/write register in a message-passing
system with f failures, f < 2n. What are the message and time complexities
of the resulting algorithm?

Show a direct simulation of a single-writer multi-reader register from message
passing extending the algorithm of Section 10.4, without using an extra layer
of sequence numbers. Prove the correctness of this algorithm.

Chapter Notes

This chapter concentrated on the simulation of read/write objects from other, lower-
level, read/write objects and from asynchronous message passing.

The original definitions of different types of registers based on their sharing
patterns were proposed by Lamport [158, 159]. Lamport also defined weaker types
of registers, called safe and regular. Loosely speaking, safe registers are guaranteed
to return correct values only for read operations that do not overlap write operations;

236 FAULT-TOLERANT SIMULATIONS OF READ/WRITE OBJECTS

regular registers guarantee that a read operation returns a *“current” value but do not
prohibit new-ald inversions between reads.

The general notion of linearizability was extended to wait-free algorithms by
Herlihy [134]. Algorithm 26, the simulation of the multi-valued register from binary
registers, is due to Vidyasankar [257]. Algorithm 27, the unbounded multi-reader
algorithm, is due to Israeli and Li [140]. Algorithm 28, the unbounded multi-writer
algorithm, is due to Vitanyi and Awerbuch [258].

The unbounded timestamps used in the algorithms for simulating multi-reader
registers and multi-writer registers can be replaced with bounded timestamps using
ideas of Dolev and Shavit [98] and Dwork and Waarts [102]; see Chapter 16 of [35]
for details.

Other simulations of multi-valued registers from binary ones appear in Chaudhuri,
Kosa, and Welch [76]. Bounded simulations of multi-reader registers were given by
Singh, Anderson, and Gouda [243]. Li, Tromp, and Vitdnyi |168] presented a
bounded simulation of multi-writer multi-reader registers from single-writer single-
reader registers.

The atomic snapshot problem was defined using three different specification meth-
ods by Afek et al. [3], by Anderson [13], and by Aspnes and Herlihy [22]; these papers
also presented simulations of atomic snapshots from registers.

The simulation we presented is based on the algorithm of Afek et al. [3]. This algo-
rithm uses O(n?) read and write operations for each snapshot operations; the best al-
gorithm to date, using O(n log n) operations, was given by Attiya and Rachman [31].
The handshaking bits were first used by Peterson {213] and by Lamport [159].

We have specified single-writer atomic snapshot objects, which allow only one
processor to write to each segment; multi-writer snapshot objects were defined by
Anderson [14], who also showed how they can be simulated using single-writer
snapshot objects and multi-writer read/write registers.

Atomic snapshots resemble distributed snapshots, studied in Chapter 6, in requir-
ing an instantaneous view of many system components. An atomic snapshot gives
the effect of reading several memory segments at once; a distributed snapshot records
the local states of several processors. One difference is in the specification: atomic
snapshots order the views obtained by scanners, whereas distributed snapshots do
not provide any guarantee about the consistent cuts obtained in different invocations.
Another difference is in the simulations: the atomic snapshot algorithm is wait-free
and can tolerate processor failures, whereas the distributed snapshot algorithm does
not tolerate failures.

The simulation of read/write registers from message passing is due to Attiya,
Bar-Noy, and Dolev [25]. It requires integer sequence numbers, and thus the size
of messages is unbounded. To bound the message size, Attiya, Bar-Noy, and Dolev
used bounded timestamps. An alternative simulation with bounded messages was
given by Attiya [24]. The shared memory simulation uses a particular kind of quorum
system, the majority quorum system, to ensure that each read obtains the value of the
most recent write. This idea has been generalized to other quorum systems, including
those that can tolerate Byzantine failures [179].

CHAPTER NOTES 237

The simulation in Section 10.4 provides a distributed shared memory that is fault
tolerant, in contrast to the distributed shared memory algorithms of Chapter 9, which
were not fault tolerant. The fault tolerance provided here ensures that the data in the
shared objects remains available to correct processors, despite the failures of some
processors. Processors that fail are no longer of interest, and no guarantees are made
about them. One-resilient algorithms for the same notion of fault-tolerant distributed
shared memory were presented by Stumm and Zhou [248].

DsSMs that can tolerate processor failures and recoveries have been a subject
of recent interest. Many sequentially consistent DsM systems that are tolerant of
processors that crash and recover have been described in the literature (e.g., [248,
262,229, 147]). There has also been work on recoverable DSMs that support weaker
consistency conditions (e.g., [143, 148, 200]). In these papers, techniques including
checkpoints of consistent cuts and logging information to stable storage are employed
to reintegrate recovered processors.

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

11

Simulating Synchrony

As we have seen in previous chapters, the possible behaviors of a synchronous system
are more restricted than the possible behaviors of an asynchronous system. Thus it is
easier to design and understand algorithms for synchronous systems. However, most
real systems are at least somewhat asynchronous. In Chapter 6, we have seen ways
to observe the causality structure of events in executions. In this chapter, we show
how they can be employed to run algorithms designed under strict synchronization
assumptions, in systems that provide weaker synchronization guarantees.

Throughout this chapter, we only consider message-passing systems in which
there are no failures. The topology of the communication system can be arbitrary
and, as always, the only (direct) communication is between nodes that are neighbors
in the topology.

We begin the chapter by specifying synchronous message-passing systems in our
layered model of computation.

Then we show how a small modification to the logical clocks from Chapter 6,
called logical buffering, can be used to provide the illusion that the processors take
steps in lockstep, when in reality they are totally asynchronous. Thus logical buffering
is a way to simulate a system in which processors are synchronous and messages
are asynchronous with a (totally) asynchronous system. Another way to view this
simulation is that asynchronous processors can simulate processors with the most
powerful kind of hardware clocks, those that always equal real time, as long as
message delay remains asynchronous.

The second synchrony simulation we study in this chapter is one to simulate the
synchronous system with the asynchronous system. Logical buffering can be used
to simulate synchronous processors, but it does not ensure any bounds on message

239

240 SIMULATING SYNCHRONY

delay. To create the illusion of synchronous message delay, more effort is required.
A simulation from the synchronous system to the asynchronous system is called a
synchronizer. We present a simple synchronizer in this chapter.

Both simulations are local, not global. We conclude the chapter by discussing
some implications of this fact.

11.1 SYNCHRONOUS MESSAGE-PASSING SPECIFICATION

In this section, we give a problem specification of the communication system we
wish to simulate, a synchronous message-passing system. The key difference from
the asynchronous case is that send and recv events at different processors must be
interleaved in a regular way to achieve the lockstep rounds that characterize the
synchronous model.

Formally, the inputs and outputs are the same as for asynchronous message passing,
defined in Chapter 7, that is, the inputs are of the form send; (/) and the outputs
are of the form recv; (M), where indicates a processor and M is a set of messages
(including possibly the empty set).

Asinthe model used in Part I, around for a processor consists of sending messages,
receiving messages sent in that round, and performing local computation, which will
determine what messages to send in the next round. Conceptually, each round occurs
concurrently at all the processors. Because our notion of execution is a sequence of
events, we must choose some (arbitrary) total order of events that is consistent with
the partial order. There are a number of total orders that will work. We choose a
particular total order here that is consistent with our requirement, from Chapter 7,
that all enabled events take place on a node before any event on another node can take
place. This total order is embodied in the Round-Robin property below that is placed
on allowable sequences of the synchronous message passing model. According to
the Round-Robin property, all the round 1 send events take place. Then the receipts
of the round 1 messages occur. Because of the node atomicity requirement, when a
processor receives a message, the very next event must be the send that is triggered by
that receipt, which in this case is the send for round 2. Because the receive for round
1 cannot be separated from the send for round 2, we have a series of recv-send pairs,
one for each processor, in which messages for round 1 are received and messages for
round 2 are sent. Then we have another series of recv-send pairs, in which messages
for round 2 are received and messages for round 3 are sent.

Formally, every sequence in the allowable set must conform to the following
“round” structure:

Round-Robin: The sequence is infinite and consists of a series of subsequences,
where the first subsequence has the form sendy, . . ., send,,_;, and each later
subsequence has the form recvg, sendg, recvy, sendq, .. ., recv,_1, send,_1.
The kth send; and the kth recv; events form round k for processor p;.

SIMULATING SYNCHRONOUS PROCESSORS 241

round 1 for py round 2 for pg round 3 for pg
éendg (a1) recvo(blj éendo (z2) recvo(bg)' éendo(as) recvy (bgj
po] | 1 [! |
Po ..
send; (b) recvy (ay) send;(bs) recvy (aq) send; (b3)
......... - 6&1.(.1..1._10_&_.5;......._ round2forp1

Fig. 11.1 How rounds overlap.

The Round-Robin property imposes constraints on the inputs (the send events)
from the environment; they must occur in Round-Robin order and be properly inter-
leaved with the outputs (the recv events).

As an example, consider three rounds of a system consisting of two processors pg
and p;, which are directly connected:

sendp (a1), send, (b1), recvg (1), sendg(as), recvy (a1), send; (by),
recvo(bz), sendg(az), recvy (az), send; (bs), recvg(bs), - - .

(See Fig. 11.1)
The sets of messages sent and received must satisfy the following conditions:

Integrity: Every message received by processor p; from processor p; inround k was
sent in round % by p;.

No Duplicates: No message is received more than once. Thus each recv event
contains at most one message from each neighbor.

Liveness: Every message sent in round & is received in round &.

The environment (that is, the algorithm using the synchronous message-passing
system) decides unilaterally what should be sent in the first round for each processor.
In later rounds, the environment can decide based on what it has previously received.

11.2 SIMULATING SYNCHRONOUS PROCESSORS

In this section, we consider two systems with asynchronous communication (i.e.,
unbounded message delays), one with synchronous (lockstep) processors, called
SynchP, and one with asynchronous processors, called Asynch. We will show that
Asynch can locally simulate SynchP.

Asynch is the standard asynchronous message-passing communication system.
SynchP is a weakening of the standard synchronous message-passing communication

242 SIMULATING SYNCHRONY

Algorithm 34 Logical buffering to simulate synchronous processors:
codeforp;, 0 <i<n-—1.

Initially round = 0 and buffer = §

1: when SynchP-send;(S) occurs:
2. round .= round + 1
enable Asynch-send;({(m, round) : m € S})

w

4: when Asynch-recv; (M) occurs:

5: add M to buffer

6: ready := {m : {m,tag) € buffer and tag < round}

7: remove from buffer every element that contributed to ready
8: enable SynchP-recv;(ready)

system; an allowable sequence is still an infinite series of rounds, but there is no longer
the requirement that every message sent in round % be received in round k. Instead,
every message sent in round k must be received in round £ or later. Messages need
not be delivered in FIFO order, but no message is delivered more than once.

The only situation observable to the processors that can happen in Asynch but not
in SynchP is for a message that was sent at the sender’s kth send step to be received
at the recipient’s jth recv step, where j < k. If this situation were to occur when
processors take steps in lockstep, it would mean that the message is received before
it is sent. To avoid this situation, the simulation employs logical buffering; each
processor keeps a round counter that counts how many send steps it has taken, each
message is tagged with the sender’s round count, and the recipient delays processing
of a message until its round count equals or exceeds that on the message.

Logical buffering provides properties similar to those of logical clocks; however,
with logical clocks some logical times may be skipped, but not with logical buffering.
Skipping some logical times may have drawbacks, for instance, if certain actions are
scheduled to occur at certain logical times. With logical buffering, the round counts
themselves are consistent with the happens-before relation.

The pseudocode is presented in Algorithm 34. SynchP-send indicates the send
for system SynchP and is an input to the logical buffering algorithm. SynchP-recv
indicates the receive for system SynchP and is an output of the logical buffering
algorithm. Asynch-send and Asynch-recv are the communication primitives used by
the logical buffering processes to communicate with each other over the asynchronous
communication system. The result of the occurrence of Asynch-send; and SynchP-
recv; is simply to disable that event, as explained in Section 7.6. There must be
an infinite number of SynchP-send; events, for each i; however, the empty set of
messages is an allowable parameter for SynchP-send;.

Theorem 11.1 System Asynch locally simulates system SynchP.

Proof. Consider the logical buffering algorithm, Algorithm 34. Obviously, it has
the correct top and bottom interfaces.

SIMULATING SYNCHRONOUS PROCESSORS AND SYNCHRONOUS COMMUNICATION 243

Let « be an execution of the logical buffering algorithm that is locally admissible
for (SynchP,Asynch). Locally user compliant for SynchP means that each node
alternates sends and receives, but the sends and receives at different nodes are not
necessarily interleaved regularly as they would be in the actual SynchP system. We
must show that there exists a sequence o in seg(SynchP) such that o = top(a)li,
forall;,0<i<n—1

Define o to be the result of taking the n sequences fop(e)|i,0 < 7 < n—1, and
interleaving them so as to conform to the Round-Robin property of the synchronous
system.

To verify that ¢ is in seq(SynchP), we only need to check that every message sent
in some round is eventually received in the same or a later round and is not received
twice. No message is delivered too early, since messages are tagged and held in
buffer variables in execution «. Every message is eventually delivered, since the
round counter increments without bound because of the infinite number of SynchP-
send; events, and the tags do not change in «. No message is received twice since
messages are removed from buffer once they become ready. O

Thus logical buffering can provide the illusion that processors possess more syn-
chrony than they already do, going from totally asynchronous to lockstep. However,
the level of synchrony of the communication is not improved.

11.3 SIMULATING SYNCHRONOUS PROCESSORS AND
SYNCHRONOUS COMMUNICATION

Previously in this chapter, we have seen how to (locally) simulate synchronous proces-
sors with asynchronous processors. In this section we show how to (locally) simulate
the fully synchronous message-passing communication system, denoted Synch, with
Asynch, the fully asynchronous message-passing communication system. Such a
simulation is called a synchronizer.

In addition to having synchronous processors, the synchronous system guarantees
that in the kth round of each processor it receives all the messages that were sent
to it by its neighbors in their kth round. In this section, we show how to achieve
this property, by using a synchronizer and thus locally simulating the synchronous
system by the asynchronous system.

The main difficulty in ensuring the above property is that a node does not usually
know which of its neighbors have sent a message to it in the current round. Because
there is no bound on the delay a message can incur in the asynchronous system,
simply waiting long enough before generating the (synchronous) receive event does
not suffice; additional messages have to be sent in order to achieve synchronization.

11.3.1 A Simple Synchronizer

In this section, we present a simple synchronizer called ALPHA. Synchronizer ALPHA
is efficient in terms of time but inefficient in terms of messages; the chapter notes

244 SIMULATING SYNCHRONY

Po

k) /N\F)

p1 P2

Fig. 11.2 Processor po sends round k messages to its neighbors (left) and then receives
{ack) messages (right).

discuss another synchronizer that provides a trade-off between time complexity and
message complexity.

Before generating the receive for round %, the synchronizer at a node p; must know
that it has received all the round & messages that were sent to this node. The idea
is to have the neighbors of p; check whether all their messages were received and
have them notify p;. It is simple for a node to know whether all its messages were
received, if we require each node to send an acknowledgment for every message (of
the original synchronous algorithm) received. If all round & messages sent by a node
have been acknowledged, then the node is said to be safe for round k. Observe thatthe
acknowledgments only double the number of messages sent by the original algorithm.
Also observe that each node detects that it is safe for round & a constant time after
it generates the synchronous send for round % (using the method of measuring time
complexity for asynchronous algorithms from Chapter 2).

Figure 11.2 presents a simple execution in which pg sends messages to its neighbors
and receives acknowledgments; at this point, py is safe. Inthis figure and Figure 11.3,
a black node represents a processor just starting a round and a gray node represents
a safe processor; otherwise, the node is white.

A node can generate its next synchronous receive once all its neighbors are safe.
Most synchronizers use the same mechanism of acknowledgments to detect that nodes
are safe; they differ in the mechanism by which nodes notify their neighbors that they
are safe. In synchronizer ALPHA, a safe node directly informs all its neighbors by
sending them messages. When node p; has been informed that all its neighbors are
safe for round &, p; knows that all round k& messages sent to it have arrived, and it
generates the synchronous receive for round &.

Figure 11.3 presents the extension of the execution in Figure 11.2: py and p,
indicate they are safe, allowing py to do its round k receive and the move on to send
its round & + 1 messages.

The pseudocode appears in Algorithm 35. Synch-send and Synch-recv indicate
the events of the synchronous system, whereas Asynch-send and Asynch-recv indi-
cate those of the asynchronous system. This version of the code uses unbounded
space for simplicity. An exercise is to reduce the space usage (Exercise 11.3). As
we did in Chapter 2, we describe the algorithm as if each message of the under-
lying asynchronous system is received separately. Similar arguments justify this
simplification.

SIMULATING SYNCHRONOUS PROCESSORS AND SYNCHRONOUS COMMUNICATION

Po Po
(safe,k

(k+1)

p (safe,k) p2 p1 (k+ 1) p2

Fig. 11.3 Processors po and po send (safe) messages for round k (left) and then p; sends
round k& + 1 message (right),

Theorem 11.2 Asynch locally simulates Synch.

Proof. Consider synchronizer ALPHA of Algorithm 35. Obviously, it has the correct
top and bottom interfaces.

Let « be any execution of synchronizer ALPHA that is (Synch,Asynch)-locally-
admissible. We must show that there exists a sequence ¢ in seq(Synch) such that
oli = top(a)fi, forall,0<i<n-—1.

Define o to be the result of taking the n sequences top(a)|i,0 < i < n -1, and
interleaving them so as to conform to the Round-Robin property of the synchronous
system.

To verify that o is in seq(Synch), we prove three lemmas. Lemma 11.3 states that
the Synch-recv events at p; are done in the correct order, that is, that if p; performs
Synch-recv for round r, then the previous Synch-recv performed by p; was for round
r — 1. Lemma 11.4 states that if processor p; performs Synch-recv for round r, then
buffer[r] consists exactly of all round r messages sent to p;. Lemma 11.5 states that
p; performs an infinite number of Synch-recv events.

The proof of Lemma 11.3 is left as an exercise (Exercise 11.4).

Lemma 11.3 If p; performs Synch-recv for round r in o, then the previous Synch-
recv performed by p; is for round r — 1.

Lemma 11.4 If p; performs Synch-recv for round r, then buffer[r] consists of all
round ¥ messages sent to p; in .

Proof. The use of the round tag and the separate variables for each round ensure
that no extraneous messages are in buffer{r].

Let m be a message Synch-sent by p; to p; in round r. After the Synch-send, p;
Asynch-sends mm to p;. On its arrival, p; puts it in buffer[r]. Suppose in contradiction
p; has already done Synch-recv for round r. Then safe;[r] must have included 7 at
the time when p; performed the Synch-recv. So p; received a (safe,r) message from
pi. But then p; would have already received an (ack,r) message from p; for this
message, which it has not sent yet, a contradiction.

Lemma 11.5 Each processor performs a Synch-recv event for round r, for every
r> 1

245

246 SIMULATING SYNCHRONY

Algorithm 35 Simple synchronizer ALPHA with unbounded space:
code forp;, 0 <i<n-—1
Initially round = 0 and
buffer[r], safe[r], and ack-missing[r] are empty, for all » > 1

1: when Synch-send;(S) occurs:

2: round := round + 1

3: ack-missing[round) .= {j : p; is a recipient of a message in S}

4: enable Asynch-send;({(m,round)) to p;, for each m € S with recipient p;

5: when Asynch-recv;({mn,r})) from p; occurs:
6: add (m, j) to buffer[r]
7: enable Asynch-send;({ack,r}) to p; /f acknowledge

8: when Asynch-recv;({ack,r)) from p; occurs:

9: remove j from ack-missing[r]

10: if ack-missing[r] = 0 then /1 all neighbors have acknowledged
11 enable Asynch-send;({safe,r)) to all neighbors / p; is safe

12: when Asynch-recv;({safe,r)) from p; occurs:

13: add j to safe[r]

14: if safe[r] includes all neighbors then /1 all neighbors are safe
15: enable Synch-recv; (buffer{r]) // for round r

Proof. Suppose in contradiction that the lemma is false. Let r be the smallest round
number such that some processor p; never performs Synch-recv for round ».

First we argue that Synch-send for round r occurs at every node. If » = 1, then
the Synch-sends occur because « is locally user compliant for Synch. If r > 1,
then every processor performs Synch-recv for round » — 1 by choice of r, and so
Synch-send for round r occurs at every node because « is locally user compliant for
Synch.

Thus every neighbor p; of p; experiences Synch-send for round r. Then p; does
Asynch-send to the appropriate neighbors, gets back the {ack) messages, becomes
safe, and sends (safe} messages to all neighbors, including p;.

Thus p; receives (safe) messages from all neighbors and performs Synch-recv for
round r, a contradiction.]

These three lemmas show that Asynch locally simulates Synch using ALPHA. a

The total complexity of the resulting algorithm depends on the overhead introduced
by the synchronizer and, of course, on the time and message complexity of the
synchronous algorithm.

Clearly, the time overhead of ALPHA is O(1) per round. Because two additional
messages per edge are sent (one in each direction), the message overhead of ALPHA

LOCAL VS. GLOBAL SIMULATIONS 247

! :
round 1 round 2

21 E
round 1 iround 2

D2 ;
round 1 round 2

Fig. 11.4 Example execution of a synchronizer.

is O(}E) per round. Note that O(|E{) messages are sent per round, regardless of
the number of original messages sent during this round. The chapter notes discuss
another synchronizer that exhibits a tradeoff between time and message overhead.

11.3.2 Application: Constructing a Breadth-First Search Tree

To see the usefulness of a synchronizer, we consider a problem that is much easier
to solve in a synchronous system than an asynchronous one—construction of a
breadth-first search (BFs) tree of a network (with arbitrary topology). Recall that the
modified flooding algorithm of Chapter 2 (Algorithm 2) solves the BFs tree problem
in synchronous systems, given a particular node to serve as the root of the tree. On
the other hand, in an asynchronous system, the spanning tree constructed by the
algorithm is not necessarily a BFs tree.

This problem is one of the prime examples for the utility of the synchronizer
concept; in fact, the most efficient known asynchronous solutions for this problem
were achieved by applying a synchronizer to a synchronous algorithm.

Consider now an execution of the synchronous BFs tree algorithm (Algorithm 2},
on top of synchronizer ALPHA. The composition forms a BFs tree algorithm for
the asynchronous case. Because its time complexity in the synchronous system is
O(D), where D is the diameter of the communication graph, it follows that in the
asynchronous system, its time complexity is O(D) and its message complexity is
oD -|E].

11.4 LOCAL VS. GLOBAL SIMULATIONS

Consider an asynchronous message-passing system in which three nodes are arranged
inachain: There is a link from py to p; and from p; to py. There is an execution of the
synchronizer in this system in which the following events take place (see Fig. 11.4):

» pp simulates round 1;

e p; simulates round 1;

248 SIMULATING SYNCHRONY

po simulates round 2, receiving p;’s round 1 message;

p2 simulates round 1;

p1 simulates round 2, receiving py’s and po’s round 1 messages;

*

p2 simulates round 2, receiving p;’s round 1 message.

Suppose the synchronous algorithm running on top of the synchronizer solves
the session problem from Chapter 6 in the synchronous system, for two sessions,
by having each processor perform special actions at rounds 1 and 2. Unfortunately,
the transformed algorithm is not correct, because there is only one session in the
execution described above, not two.

This scenario indicates the limitations of local simulations as opposed to global
simulations. In the synchronous system, the rounds of the processors are guaranteed
to be correctly interleaved so as to achieve two sessions. But the synchronizer,
although it mimics the same execution on a per-node basis, cannot achieve the same
interleaving of events at different nodes.

Informally speaking, local simulations preserve correctness for internal problems,
those whose specifications do not depend on the real time at which events occur. The
existence of a synchronizer implies that there is no difference in what can be computed
in the synchronous and asynchronous systems, as long as we restrict our attention to
internal problems in the absence of failures.

The lower bound on the running time for the session problem presented in Chap-
ter 6 implies that any simulation of the synchronous system by the asynchronous
system that preserves the relative order of events across nodes will require time over-
head of a factor of the diameter of the communication network, roughly. The reason
is that such a general simulation would transform the synchronous algorithm for the
session problem into an algorithm for the asynchronous system, which by this lower
bound must incur the stated overhead.

Exercises

11.1 Does logical buffering work for simulating system SynchP by system AsynchP
in the presence of crash failures? If so, why? If not, then modify it to do so.
What about Byzantine failures?

11.2 Is wait-free consensus possible in the system SynchP? What if there is at most
one failure?

Hint; Think about Exercise 11.1.
11.3 Show how to bound the space complexity of synchronizer ALPHA.

11.4 Prove Lemma 11.3.

CHAPTER NOTES 249

11.5 What are the worst-case time and message complexities of the asynchronous
BFs tree algorithm that results from applying synchronizer ALPHA? What
network topology exhibits this worst-case behavior?

11.6 Apply synchronizer ALPHA to both of the synchronous leader election algo-
rithms in Chapter 3. What are the resulting time and message complexities?
How do they compare to the lower bounds for asynchronous leader election?

11.7 Is mutual exclusion an internal problem?

11.8 If a specification is not internal, does that mean it cannot be implemented in
an asynchronous system?

Chapter Notes

This chapter described two methods for simulating synchrony: logical buffering and
synchronizers.

Logical buffering was independently developed by Neiger and Toueg [199] and
by Welch [259]. Neiger and Toueg’s paper defined the class of internal problems
for which the translation is valid and applied it to systems with synchronized clocks,
as well as other situations. Welch’s paper gave fault-tolerant implementations of
logical buffering in the asynchronous case. The latter paper contains the answer to
Exercise 11.1, as well as to Exercise 11.2. An alternative answer to Exercise 11.2
can be found in Dolev, Dwork, and Stockmeyer [92].

Synchronizers were introduced by Awerbuch [36], who also suggested ALPHA
(Algorithm 35) and the application to BFS tree construction; additional applications
appear in [38]. Awerbuch [36] also describes two other synchronizers, BETA, with
low message overhead, and GAMMA, which provides a trade-off between message
and time overhead. Chapter 18 of [35] describes synchronizer ZETA, having the same
trade-off as GAMMA.

Awerbuch [36] proved that the trade-off given by GAMMA is essentially opti-
mal, if the synchronizer must simulate one round after the other. Some improved
synchronizers have been suggested under various restrictions, for example on the
network topology (Peleg and Ullman [209]). Awerbuch and Peleg [40] showed that
if a synchronizer is not required to work in a round-by-round manner then the above
trade-off is not inherent. Peleg’s book [208] includes a thorough discussion of these
topics.

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
‘ Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

/

A

- Improving the Fault
Tolerance of Algorithms

In Chapter 11, we saw examples of simulating a more well-behaved situation (namely,
a synchronous system) with a less well-behaved situation (namely, an asynchronous
system). The advantage of such simulations is that often algorithms can be developed
for the more well-behaved case with less effort and complexity and then automatically
translated to work in the less well-behaved case.

The same idea can be applied in the realm of fault tolerance. As we have seen in
Chapter S, more benign types of faults, such as crash failures, are easier to handle
than more severe types of faults, such as Byzantine failures. In particular, more
benign types of faults can often be tolerated with simpler algorithms. In this chapter,
we explore methods that automatically translate algorithms designed to tolerate more
benign faults into algorithms that can tolerate more severe faults. This chapter
deals only with message-passing systems, because usually only crash failures are
considered in the context of shared memory systems. We also extend the layered
model of computation to handle synchronous processors.

121 OVERVIEW

The bulk of this chapter presents a simulation that makes Byzantine failures appear
to be crash failures in the synchronous case. Although it is possible to achieve this
in one step (see the notes at the end of the chapter), it is conceptually easier to break
this task down into subtasks, each one focusing on masking a particular aspect of
Byzantine failures.

251

252 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

There are three problematic aspects of Byzantine behavior. The first is that a faulty
processor can send messages with different contents to different processors in the
same round. The second is that a faulty processor can send messages with arbitrary
content (even if it sends the same message to all processors). The third is that this
type of bad behavior can persist over many rounds.

Qur approach to designing the overall simulation is to tackle each problem in
isolation, designing three fault model simulations. The first simulation is from
Byzantine to “identical Byzantine” (like Byzantine, but where faulty processors are
restricted so that each one sends either nothing or the same message to all processors
at each round). The second simulation is from identical Byzantine to “omission”
(faulty processors send messages with correct contents but may fail to receive or
send some messages). The third simulation is from omission to crash. More precise
definitions of the communication system in the presence of these types of faults are
given below.

In going from Byzantine to identical Byzantine, we must prevent faulty processors
from sending conflicting messages. This can be done by having processors echo to
each other the messages received over the lower level and then receiving at the higher
level only those messages for which sufficiently many echoes were received. By
setting this threshold high enough and assuming enough processors are nonfaulty,
this scheme will ensure that no conflicting messages are received.

In going from identical Byzantine to omission, the contents of the messages
received must be validated as being consistent with the high level algorithm A being
run on top of the omission system. This is achieved by sending along with each
message of the algorithm A the set of messages received by the algorithm at the
previous simulated round, as justification for the sending of this message.

In going from omission to crash, once a processor exhibits a failure, we must
ensure that it takes no more steps. This is accomplished by having processors echo
to each other the messages received over the lower level. If a processor does not
receive enough echoes of its own message, then it halts {crashes itself).

However, there is a problem with this approach. In order to validate messages in
going from identical Byzantine to omission, a processor must have more information
about messages sent by faulty processors than that described above. It is possible
that a faulty processor pi’s message at some round will be received at one processor,
i, but not at another, p;. However, for p; to correctly validate later messages from
Pi. it needs to know that p; received pi’s message.

As aresult, the interface of the identical Byzantine model is slightly different than
the other interfaces. Each message includes a round tag, meaning that the message
was originally sent in the round indicated by the tag. The identical Byzantine
model guarantees that if one nonfaulty processor receives a message from a faulty
processor, then eventually every nonfaulty processor receives that message, although
not necessarily in the same round.

After describing the modifications to the formal mode! in Section 12.2, we start
in Section 12.3 with a simulation of the identical Byzantine model on top of Byzan-
tine failures (Fig. 12.1(a)). This simulation masks inconsistent messages of faulty
processors, but doubles the number of rounds.

MODELING SYNCHRONOUS PROCESSORS AND BYZANTINE FAILURES 253

®_ [Tdentical | ©

Byzantine j Byzantine é omission :> crash

Fig. 12.1 Summary of simulations for the synchronous case.

Next, in Section 12.4 we show a simulation of omission failures on top of the
identical Byzantine model (Fig. 12.1(b)). This simulation is based on validating the
messages of faulty processors to make sure they are consistent with the application
program,; it has no overhead in rounds.

Finally, in Section 12.5 we show a simulation of crash failures on top of omission
failures (Fig. 12.1(c)). This simulation is based on having processors crash themselves
if they perform an omission failure; it doubles the number of rounds.

Throughout this chapter, f is the upper bound on the number of faulty processors.

The faulty behavior in all cases is pushed into the communication system. Thus
in the formal model, the processes always change state correctly (according to what
information they receive from the communication system). The communication sys-
tem decides to stop delivering some processor’s message, or to corrupt the contents,
etc. (Exercise 12.2 asks you to prove that this model is equivalent to the previous
definition.)

We assume that the topology of the message-passing system is fully connected,
and that each processor sends the same message to all the processors at each round,
that is, the processor is actually doing a broadcast.

When we consider a particular simulation from one model to another, we some-
times call the high level send event broadcast and the high-level receive event accept,
to distinguish them from the low-level send and receive events.

12.2 MODELING SYNCHRONOUS PROCESSORS AND BYZANTINE
FAILURES

In Chapter 11, we gave a specification of a synchronous message-passing communi-
cation system and showed how to locally simulate it with asynchronous systems. We
now consider the other side of the coin: how to use a synchronous message-passing
communication system to solve some other problem. In this section, we describe
restrictions on the behavior of synchronous processors in our layered model.

In the synchronous message-passing system, we impose a more structured require-
ment on the interaction of processes at a node. The transition function of each process
must satisfy the following: When an input from the layer below occurs at a process,
at most one output is enabled, either to the layer above or the layer below. When an
input from the layer above occurs at a process, at most one output is enabled and it
must be to the layer below. The resulting behavior of all the processes on a node is
that activity propagates down the process stack, or propagates up the process stack,
or propagates up the stack and turns around and propagates down. The reason for the

254 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

send recv
crash simulation

send recv | send recv
omission simulation

send recv | send recv
identicg}_?y_zantine% SImulatlon

send | recv | send | recv | send | recv | send | recv
Byzantine communication system

Fig. 12.2 Sample execution of all layers at one node; a single round of the environment
with Byzantine failures is two rounds of the crash failure simulation and the omission failure
simulation and is four rounds of the identical Byzantine failures simulation.

asymmetry is that we want to model the response to receiving a set of messages as
happening atomically with the receipt, but the response to an environment input will
have to wait (generally, for some communication).

In the synchronous message-passing model, in addition to the four conditions
specified at the end of Section 7.3, an execution must satisfy the following:

5. The first event at each node is an input from the environment. Each output to
the environment at a node, except for the last one for that node, is immediately
followed by an input from the environment at the same node.

This condition places restrictions on the behavior of the environment and ensures that
environment events and communication system events are interleaved properly.

Figure 12.2 shows node steps and rounds in the fault tolerance simulations; in the
figure, dotted lines link together events that happen atomically at the node.

In pseudocode descriptions of algorithms for synchronous message-passing sys-
tems, the order in which all the events triggered by a node input occur must be
specified carefully. In this case, the triggered events must conform to a specific
pattern (e.g., going up from the bottom layer, then turning around and coming back
down). Instead of stating that output X has become enabled (and being rather loose
about when it should occur), we will have a line of code with the name of the output,
meaning that the output must actually occur before proceeding.

Next, we define the synchronous message-passing model subject to Byzantine
processor failures.

The inputs are of the form Byz-send;(m) and the outputs are of the form Byz-
recv; (M), where ¢ indicates a processor, m is a message (to be sent to all the
processors), and M is a set of messages, at most one coming from each processor.

SIMULATING IDENTICAL BYZANTINE FAILURES ON TOP OF BYZANTINE FAILURES 255

A sequence is in the allowable set if it conforms to the standard synchronous round
structure described in Chapter 7.

Furthermore, there must be a partitioning of the processor ids into faulty and
nonfaulty, with at most f faulty, satisfying the following conditions (here and in the
rest of the chapter, we assume that variables range over the appropriate values):

Nonfaulty Integrity: If nonfaulty processor p; receives message m from nonfaulty
processor p; in round &, then p; sends m in round .

Nonfaulty Liveness: If nonfaulty processor p; sends m in round &, then nonfaulty
processor p; receives m from p; inround &.

Note that there are no requirements on the messages received from or by faulty
Processors.

When there is the potential for confusion, “send” is replaced with “Byz-send” and
“recv” with “Byz-recv.”

12.3 SIMULATING IDENTICAL BYZANTINE FAILURES ON TOP OF
BYZANTINE FAILURES

In this section we specify a communication system model called identical Byzantine
that restricts the power of Byzantine processors. The basic idea is that faulty proces-
sors can still send arbitrary messages, but all processors that receive a message from
a faulty processor receive the same message. We start with a precise definition of the
identical Byzantine fault model and then describe how to simulate it in the presence
of (unrestricted) Byzantine failures.

12.3.1 Definition of Identical Byzantine

The formal definition of a synchronous message-passing communication system
subject to identical Byzantine failures is the same as for (unrestricted) Byzantine
failures with these changes. Each message received has the format (m, k), where
m is the content of the message and % is a positive integer (the round tag); and the
conditions to be satisfied are the following:

Nonfaulty Integrity: If nonfaulty processor p; receives (m, k) from nonfaulty pro-
cessor p;, then p; sends m in round &.

Faulty Integrity (Identical Contents): If nonfaulty processor p; receives (m, k) from
pr and nonfaulty processor p; receives (m/, k) from py, thenm = m’.

No Duplicates: Nonfaulty processor p; receives only one message with tag & from
Py

Nonfaulty Liveness: If nonfaulty processor p; sends m in round k, then nonfaulty
processor p; receives (m, k) in round k.

256 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

Faulty Liveness (Relay): If nonfaulty processor p; receives (m, k) from (faulty) pro-
cessor py, inround r, then nonfaulty processor p; receives {m, k) from p;, by
round r + 1.

When there is the potential for confusion, “send” is replaced with “id-send” and
“recv” with “id-recv.”

12.3.2 Simulating Identical Byzantine

We now present a simulation of the identical Byzantine failure model in the Byzantine
failure model. Intuitively, to successfully broadcast a message, a processor has to
obtain a set of “witnesses” for this message. A nonfaulty processor accepts a message
only when it knows that there are enough witnesses for this broadcast. The simulation
uses two rounds of the underlying Byzantine system to simulate each round of the
identical Byzantine system and requires that n > 4 f.

Round % of the identical Byzantine system is simulated by rounds 2k — 1 and 2k
of the underlying Byzantine system, which are also denoted (k, 1) and (&, 2).

To broadcast m in simulated round k, the sender, p;, sends a message (init,mm, k) to
all' processors in round (k, 1). When a processor receives the first init message of p;
for round £k, it acts as witness for this broadcast and sends a message (echo,m, k,7) to
all processors in round (k, 2). When a processor receives n - 2 f echo messages in a
single round, it becomes a witness to the broadcast and sends its own echo message to
all processors; at this point, it knows that at least one nonfaulty processor is already a
witness to this message. When a processor receives n — f echo messages in a single
round, it accepts that message, if it has not already accepted a message from p; for
simulated round &.

The pseudocode appears in Algorithm 36. The function first-accept(%’, §) returns
true if and only if the processor has not already accepted a message from p; for round
k.

We now prove that this algorithm simulates identical Byzantine failures on top of
Byzantine failures, according to the definition of (global) simulation in Chapter 7.

Theorem 12.1 In any execution of Algorithm 36 that is admissible (i.e., fair, user
compliant for the identical Byzantine specification, and correct for the Byzantine
communication system), the five conditions defining identical Byzantine are satisfied.

Proof. Since « is correct for the Byzantine communication system, bot(«) is in the
allowable set of sequences for that specification. In particular, there is a partitioning
of the processor ids into faulty and nonfaulty, with at most f faulty. Throughout this
proof, this partitioning is what defines which processors are faulty and which are
nonfaulty.

Nonfaulty Integrity: Suppose nonfaulty processor p; accepts (m, k) from non-
faulty processor p;. Then (m, k) with sender p; is in p;’s accepted set in round

! Throughout this chapter, this means including itself.

SIMULATING IDENTICAL BYZANTINE FAILURES ON TOF OF BYZANTINE FAILURES 257

Algorithm 36 Simulating round k& > 1 of the identical Byzantine fault model:
code for processor p;, 0 < i< n—1.

Initially S = () and accepted =)

1: round (k,1): inresponse to id-send;(1m):
2: Byz-send; (S U {(initm,k}})
3: Byz-recv;(R)
4: S := { (echo,m',k,j) : there is a single (init,m’,k) in R with sender p; }
5 S:=SU{({echom’ k' j) : k' < k and
m’ is the only message for which at least n — 2f
{(echo,m’, k', j} messages have been received in this round }
6: accepted := {(m/, k") with sender p; : at least n — f {echo,m’,k’,)
messages have been received in this round and first-accept(k’, j)}

7: round (k,2):

8: Byz-send; (5)

9. Byz-recv;{R)

10: S :={(echom’,k',j} : k' < k and

m' is the only message for which at least n — 2 f
(echo,m’,k’,j) messages have been received in this round }
11: accepted := accepted U{(m’, k') with sender p; : at least n — f
{echo,m’, k', j) messages have been received in this round
and first-accept(k’, j)}
12: id-recv;(accepted)

(r,2), for some . Thus p; receives at least n — f (echo,m,k,j) messages in round
(r,2). Consequently, at least n — 2 f nonfaulty processors sent {echo,m,k, j) in round
(r,2). Let p, be among the first nonfaulty processors to send {echo,m,k,s) (in any
round). Since the threshold for sending an echo due to the receipt of many echoes
isn — 2f > f, and since only faulty processors have sent {(echo,m,k, j) in earlier
rounds, py, sends (echo,m,k, j} due to the receipt of (init,m, k) from p; in round (%, 1)
(see Line 4 of the code). Since p; is nonfaulty, p; broadcasts m in simulated round .

Note that this proof only requires that n > 3f; however, a later property, Faulty
Liveness, requires that n > 4f.

No Duplicates: This condition holds because of the first-accept check performed
inLines 6 and 11.

Nonfaulty Liveness: This condition follows in a straightforward way from the
code.

Faulty Liveness (Relay): Suppose nonfaulty processor p; accepts (m, k) from
processor py, insimulated round ». Then there are at least n — 2 f nonfaulty processors
that send (echo,mn,k,h) for some h, say, in round (7, 2).

Thus every nonfaulty processor p; receives at least n — 2 f {(echo,m, k,h) messages
in round (r, 2). The number of additional {echo,#,k,h) messages received by p; in

258 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

round (7, 2} is at most 2f; since n > 4f, this number is smaller than n — 2f, and
thus p; cannot send a different (echo,,k,h) message. So p; sends {echo,m,k,h) in
round (7 -+ 1,1). Consequently, every nonfaulty processor receives at least n — f
{echo,m, k,h) messages inround (r + 1, 1) and accepts (m, k) from pj by simulated
round r + 1.

Faulty Integrity: Suppose nonfaulty processor p; accepts (m, k) from processor
ps in round 7 and and nonfaulty processor p; accepts (m/, k) from pj in round '
Toward a contradiction, assume m # m'. If r < ¢/, then by Faulty Liveness, p;
accepts (m, k) from pj, and by No Duplicates, it cannot accept (m', k) later; the
same argument holds if ' < . Thus it suffices to consider the case in which p;
accepts (m, k) from p, and p; accepts {m’, k) from pj, in the same round.

As argued above for Nonfaulty Integrity, there are at least n — 2f nonfaulty
processors that send (echo,m,k,h) in this round, and at least n — 2f nonfaulty
processors that send (echo,m’,k,h) in this round. Since each nonfaulty processor
only sends one {echo, *,k,h) message in each round, these sets of nonfaulty processors
are disjoint. Thus the total number of nonfaulty processors,n— f, is at least 2(n—2 f).
This implies that n < 3f, a contradiction.

What are the costs of this simulation? Clearly, the simulation doubles the number
of rounds.

As specified, the algorithm requires processors to echo messages in all rounds
after they are originally sent. Yet, once a processor accepts a message, Faulty and
Nonfaulty Integrity guarantee that all processors accept this message within at most
a single round. Thus we can modify the simulation so that a processor stops echoing
a message one round after it accepts it.

We now calculate the maximum number of bits sent in messages by nonfaulty
processors. Consider message m broadcast in round & by a nonfaulty processor p;.
As a result, p; sends (init,m, k) to all processors, and then all nonfaulty processors
exchange (echo,m, k,i) messages. The total number of bits sent due tom is O(n?(s+
log n + log k)), where s is the size of m in bits.

Theorem 12.2 Using Algorithm 30, the Byzantine model simulates the identical
Byzantine model, if n > Af. Every simulated round requires two rounds, and the
number of message bits sent by all nonfaulty processors for each simulated round k
message m from a nonfaulty processor is O(n?(s + logn + log k)), where s is the
size of m in bits.

12.4 SIMULATING OMISSION FAILURES ON TOP OF IDENTICAL
BYZANTINE FAILURES

The omission model of failure is intermediate between the more benign model of
crash failures and the more malicious model of Byzantine failures. In this model, a
faulty processor does not fabricate messages that are not according to the algorithm;

SIMULATING OMISSION FAILURES ON TOP OF IDENTICAL BYZANTINE FAILURES 259

however, it may omit to send or receive some messages, send a message to some
processors and not to others, etc.

After defining the model more precisely, we describe a simulation of omission
failures on top of identical Byzantine failures.

12.4.1 Definition of Omission

The formal definition of a synchronous message-passing communication system
subject to omission failures is the same as for the Byzantine case, except that the
conditions to be satisfied are the following:

Integrity: Every message received by processor p; from processor p; in round k was
sent in round & by p;.

Nonfaulty Liveness: The message sent in round &k by nonfaulty processor p; is re-
ceived by nonfaulty processor p; in round k.

Note that a faulty processor may fail to receive messages sent by some nonfaulty
processors, and messages sent by a faulty processor may fail to be received at some
Pprocessors.

When there is the potential for confusion, “send” is replaced with “om-send” and
“recv” with “om-recv.”

The omission failure model is a special case of the Byzantine failure model.
However, the omission failure model does not allow the full range of faulty behavior
that Byzantine failures can exhibit; for instance, the contents of messages cannot be
arbitrary. Thus omission failures are strictly weaker than Byzantine failures.

12.4.2 Simulating Omission

The identical Byzantine fault model gives us some of the properties of omission
failures. That is, if two nonfaulty processors receive a message in some round
from another processor, faulty or nonfaulty, then it must be the same message. Yet,
the identical Byzantine model still allows a nonfaulty processor to send incorrect
messages, not according to the protocol, for example, claiming it received a message
that was never sent to it.

To circumvent this problem, we apply a validation procedure, exploiting the fact
that the same messages should be received by all processors in the identical Byzantine
model, although possibly with a one round lag. Thus, whenever a processor p; sends
a message m, it also sends its support set, i.e., the messages that cause p; to generate
m. If p; generated this message correctly, then the receiver of m has also received
the support messages, and the receiver can check the validity of generating m.

Unlike the other simulations we have seen, this one requires knowledge of the
application program A4, i.e., the environment that is using the communication system
being simulated.

The pseudocode for the simulation appears in Algorithm 37. We assume, without
loss of generality, that the message to be sent in round & of A by a processor is the

260 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

Algorithm 37 Round % of the simulation of omission failures:
code for processor p;, 0 < i< n-1.

TInitially valid = 0, accepted =), and pending = {)

I: Inresponse to om-send; (m):

2 id-send;({m,accepted))

3: id-recv;(R)

4; add R to pending

5: validate(pending)

6 accepted := {m' withsender p; : (m’, j, k) € valid}
7 om-recv; (accepted)

8: procedure validate(pending):
9: for each (m/,support, k') € pending with sender p;,
in increasing order of %', do
10: if ¥ = 1 then
11: if m’ is an initial state of the A process on p; then
12: add (m’, 7, 1) to valid and remove it from pending
13: else "k >1
14: if (m”, h, k' — 1) € valid for each m" € support with sender py,
and (v, j, ¥ — 1) € valid for some v
and m’ = transition 4 (7, v, support)
15: then add (m/, 7, &') to valid and remove it from pending

current state of that processor. The function transition (¢, s, R) returns the state of p;
resulting from applying algorithm A’s transition function when p; is in state s (which
encodes the round number) and accepts the set R of messages.

We would like to show that Algorithm 37 allows the identical Byzantine failure
model to simulate the omission failure model. Recall that the definition of simulation
from Chapter 7 is the following: For every execution « of the algorithm that is admis-
sible (i.e., fair, user compliant for the omission failures specification, and correct for
the identical Byzantine communication system), the restriction of o to the omission
failure interface satisfies the conditions of the omission failure model. However, the
omission failure model places an integrity condition on messages received by faulty
processes, as well as nonfaulty: Any message received must have been sent. Yet
the identical Byzantine model has no such condition: Messages received by faulty
processors can have arbitrary content. Thus there is no way to guarantee for all
the processes the illusion of the omission failure model in the presence of identical
Byzantine failures. Instead we weaken the definition of simulation so that it only
places restrictions on the views of the nonfaulty processes.

Communication system Cy simulates communication system Co with respect to the
nonfaulty processors when the environment algorithmis known if, for every algorithm
A whose bottom interface is the interface of Cs, there exists a collection of processes,

SIMULATING OMISSION FAILURES ON TOP OF IDENTICAL BYZANTINE FAILURES 261

A A
_ bot(B) bot 4 (er)
.Cz. Simy
omission
[
G
identical Byzantine

Fig. 12.3 llustration for the definition of simulating with respect to the nonfaulty processors;
identical Byzantine simulates omission failures with respect to the nonfaulty processors.

one for each node, called Sim4 (the simulation program) that satisfies the following
(see Fig. 12.3):

1. The top interface of Sim is the interface of Cs.
2. The bottom interface of Sim is the interface of C;.

3. Let a be any execution of the system in which A is layered on top of Sim4 that
is correct for communication system C;. There must exist an execution 3 of
A that is correct for communication system Cy such that, informally speaking,
the nonfaulty algorithm A processes have the same views in J as they do in cv.
More formally, bot{3)| Pxr = bot 4 ()| Pxr, where Py is the set of processors
that are nonfaulty in o and bot 4 () is the restriction of « to the events of the
bottom interface of A.

We define execution J of A as follows. We have the same nonfaulty processors
in 3 as in . The execution /3 has the standard synchronous rounds structure.

The initial state of processor p; in £ is the content of any round 1 message from
p; that is validated by a nonfaulty processor in a. If no nonfaulty processor ever does
so, then p;’s initial state is arbitrary. By the definition of identical Byzantine, the
initial state of p; is well-defined—no two nonfaulty processors will validate different
round 1 messages from p;.

In round k of 3, processor p; broadcasts its current state and changes state
according to A depending on its current state and the messages accepted.

In round k of G, processor p; accepts message m from processor p; if and only if,
in &, some nonfaulty processor validates p;’s round & + 1 message claiming that p;
accepted m from p; in round k. Although it may seem counter-intuitive, a message
from p; is defined to be received in 3 only if some nonfaulty processor validates it in
the next round of «; later, we prove that messages sent by nonfaulty processors are
always received.

262 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

First, we show that if a nonfaulty processor validates another processor’s round r
message in «, then by the next round every nonfaulty processor has done so, and the
contents of the message are consistent with the algorithm A state in S.

Lemma 12.3 If nonfaulty processor p; validates processor p;’s round r message m
in round k of o, then

1. Every nonfaulty processor validates p;’s round r message m by round k + 1
of a, and

2. m is the state of the algorithm A process at p; at the beginning of round 7 in

8.

Proof. First we prove Part 1.

Suppose nonfaulty processor p; validates processor p;’s round » message m in
round k of o. Then p; validates all messages in the support set of p;’s round r
message by round k. Furthermore, p; validates p;’s round r — 1 message v by round
k. Finally, m = transition 4 (j, v, support).

Processor p; is able to validate all these messages because it has received some set
S of messages. By theidentical Byzantine Nonfaulty and Faulty Liveness conditions,
every nonfaulty processor receives all the messages in S by round & + 1, and validates
p;’s round r message.

We prove Part 2 by induction on &.

Basis: k = 1. Suppose nonfaulty processor p; validates processor p;’s round =
message m in round 1 of &. Then r = 1, m is an initial state of p; in A, and p;
receives m as p;’s round 1 message in round 1. By definition, m is the state of p; at
the beginning of round 1 in 8.

Induction: k > 1. Suppose nonfaulty processor p; validates processor p;’s round
r message mm in round k of «v. Then p; validates all messages in the support set of
p; s round r message by round k. Furthermore, p; validates p;’s round r — 1 message
v by round k. Finally, m = transition 4 (j, v, support).

By the inductive hypothesis for Part 2, v is the state of p; at the beginning of round
r — 1 in 8. By the construction of 3, support is the set of messages received by p; in
round » — 1 of 3. Therefore, m is the state of p; at the beginning of round r of 5. [

Lemma 12.4 states that if a nonfaulty processor broadcasts a message in «, then
all the nonfaulty processors validate that message in the same round and the message
content is consistent with the algorithm A state in @. The proof relies on Lemma
12.3.

Lemma 12.4 If nonfaulty processor p; sends m as its round k message in «, then
1. Every nonfaulty processor validates p;’s round k message in round k of o, and

2. m is the state of the algorithm A process at p; at the beginning of round k in
.

Proof. We prove this lemma by induction on 4.

SIMULATING OMISSION FAILURES ON TOP OF IDENTICAL BYZANTINE FAILURES 263

Basis: k = 1. Suppose nonfaulty processor p; sends m as its round 1 message in
. Part 2: Since A is running on top of the simulation, the round 1 message for p;
is an initial state of p; in A. Part 1: By the identical Byzantine Nonfaulty Liveness
condition, p; receives p;’s round 1 message in round 1 and validates it.

Induction: k > 1. Suppose the lemma is true for & — 1. Suppose nonfaulty
processor p; sends m as its round k message in ¢.

Part 1: By the inductive hypothesis for Part 1, nonfaulty processor p; validates
pj’s round k£ — 1 message v in round k¥ — 1. By Lemma 12.3, Part 1, p; validates all
the messages in the support set for p;’s round & message by round k (since they are
validated by p; by round k — 1).

Finally, m = transition4 (j, v, support) and p; validates p;’s round & message.
The reason is that v is the state of the algorithm A process at p; at the beginning of
round k£ — 1 in «, by the inductive hypothesis for Part 2, and support is the set of
messages accepted by p; in round £ — 1.

Part 2 follows from the previous paragraph. 0

Lemma 12.5 uses the last two lemmas to show that 3 satisfies the omission
conditions.

Lemma 12.5 The execution (3 satisfies the definition of the omission model.

Proof. Integrity: Suppose p; accepts m from p; in round & of . Then in o, some
nonfaulty processor py, validates p;’s round k£ + 1 message claiming p; accepted m
from p; in round k. We must show that p; broadcast m in round & of 5.

Since pj validates p;’s round &k + 1 message, it validates all the messages in the
support set for p;’s round & + 1 message, including p;’s round & message containing
m. Since pj, validates p;’s round k message, by Lemma 12.3, Part 2, m is the state
of p; at the beginning of round % in 3. Thus p; broadcasts m in round & of 3.

Nonfaulty Liveness: Suppose nonfaulty processor p; broadcasts message m in
round & of 8. Let p; be any nonfaulty processor. We must show that, in «, some
nonfaulty processor py, validates p;’s round & + 1 message claiming that p; accepted
m from p; in round k.

By Lemma 12.4, Part 2, the algorithm A process at p; in « is in state n at the
beginning of round k. Thus p; broadcasts m in round % of . Thus p; sends m and
its support set to all processors in round & of «.

By Lemma 12.4, Part 1, p; validates p;’s round k£ message in round k of o. Thus
p;'s round k + 1 message m’ includes p;’s round k message m in its support set.

By Lemma 12.3, Part 1, pj, validates all the supporting messages for p;’s round
k + 1 message by round k& + 1 of o. By Lemma 12.4, Part 1, pj, validates p;’s round
k message v in round k. Finally, py validates p;’s round k + 1 message m’, since
m’ = transition 4 (j, v, support). The reason is that the following three facts are true:
v is the state of the algorithm A process at p; at the beginning of round % in « (by
Lemma 12.4, Part 2); support is the set of messages accepted by p; in round %; and
m' is the message broadcast by p; in round k of a. 1

We finish by showing that the application A processes on nonfaulty nodes have
the same views in o and J3.

264 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

Lemma 12.6 bot(f3)| Pxr = bot 4 ()| Pyr.

Proof. Let p; be a nonfaulty processor. We must show that in each round, the
messages it receives from the underlying omission communication system in 3 are
the same as the messages it accepts in . Suppose p; receives message m from
processor p; in round k of 3. By the definition of 3, some nonfaulty processor py
validates p;’s round k 4 1 message in «, claiming that p; accepted m from p; in
round k. By the identical Byzantine Nonfaulty Integrity condition, p; really did send
this message to py,, and thus p; did accept 7 from p; in round k. t

The simulation has no overhead in rounds over the identical Byzantine—it just
requires some additional tests at the end of each round. However, the messages
sent by the simulation are significantly longer than messages sent by the identical
Byzantine simulation, because each message is accompanied by its support set. In
the worst case, the support set includes n messages, one from each processor, and
thus each message requires O(n - s) bits, where s is the maximum size of an algorithm
A message in bits.

‘We summarize this section with the following theorem:

Theorem 12.7 Using Algorithm 37, the identical Byzantine failure model simulates
the omission failure model with respect to the nonfaulty processors, when the environ-
ment algorithm of the omission system is known. The simulation adds no additional
rounds and multiplies the number of message bits (sent by a nonfaulty processor) by
n.

12.5 SIMULATING CRASH FAILURES ON TOP OF OMISSION
FAILURES

In this section, we make an additional step and show how to simulate crash failures in a
system with omission failures with respect to nonfaulty processors. The environment
algorithm need not be known. By combining this simulation with the simulations
described in the Sections 12.3 and 12.4, we can simulate crash failures with respect to
the nonfaulty processors in a system with Byzantine failures, when the environment
algorithm is known. (See Exercise 12.13.)

12.5.1 Definition of Crash

The formal definition of a synchronous message-passing communication system
subject to crash failures is the same as for the omission case, except that the conditions
to be satisfied are the following:

Integrity: Every message received by processor p; from processor p; inround k& was
sent in round & by p;.

SIMULATING CRASH FAILURES ON TOFP OF OMISSION FAILURES 265

Nonfaulty Liveness: The message sent in round k by nonfaulty processor p; is re-
ceived by (faulty or nonfaulty) processor p; in round &.

Faulty Liveness: 1If processor p; fails to receive (faulty) processor p;’s round k mes-
sage, then no processor receives any message from p; inround % 4 1.

The Faulty Liveness condition implies that a faulty processor works correctly, sending
and receiving the correct messages, up to some round. The faulty processor might
succeed in delivering only some of its messages for that round. Subsequently, no
processor ever hears from it again.

When there is the potential for confusion, “send” is replaced with “crash-send”
and “recv”’ with “crash-recv.”

12.5.2 Simulating Crash

In both crash and omission failure models, processors fail by not sending (or receiv-
ing) some of the messages. However, in the crash failure model, once a processor
omits to send a message it does not send any further messages, whereas in the omis-
sion failure model, a processor may omit to send a message in one round, and then
resume sending messages in later rounds.

Our approach for simulating crash failures is by having a processor p; “‘crash”
itself if it omits a message. A processor crashes itself by sending a special {crashed)
message, with empty content, in every subsequent round, which is ignored by the
recipients.

How can processor p; detect that it has omitted to send a message? We require
processors to echo messages they receive; then, if some processor, say, p;, does not
echo p;’s message, then either p; omitted to send this message, or p; omitted to
receive this message. If p; receives less than n — f echoes of its message, then it
blames itself for not sending the message and crashes itself; otherwise, it blames p;
(and the other processors who did not echo the message) and continues.

Unfortunately, it is possible that p; is faulty and omits to send a message only to a
single nonfaulty processor, p;; it is also possible that p; will not even know this has
happened. (See Exercise 12.5.) To get around this problem, we require that n > 2.
In this case, if p; decides not to crash itself, that is, if it sees at least n — f echoes of
its own message, then, because n — f > f, at least one nonfaulty processor echoes
pi’s message. Processors accept any echoed message they receive, even if they did
not receive it directly. (See Exercise 12.6.)

Thus each round % of the crash failure model translates into two rounds of the
omission failure model, 2k — 1 and 2k, also denoted (k, 1) and (&, 2).

In the first round, a processor sends to all processors the message it is supposed
to broadcast. In the second round, processors echo the messages they have received.
If a processor receives an echo of its own message from less than n — f processors,
then it crashes itself (i.e., sends special crash messages in subsequent rounds). If a
processor receives an echo of a message it did not receive directly, it accepts it. The
pseudocode for the simulation appears in Algorithm 38,

266 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

Algorithm 38 Simulating round & > 1 for crash failures on top of omission failures:
code for processor p;, 0 < i< n— 1.

I round (k, 1): in response to crash-send; (m):

2 om-send; ({init,m))

3: om-recv;(R)

4: S := { (echo,m’, 7} : (init,m') with sender p; is in R}

5: round (&, 2):

6: om-send; (.5)

7: om-recv;(R)

8: if < n — f messages in R contain (echo,m,) then crash self
9 crash-recv; ({m’ with sender p; : {(echo,m’,j) is contained in

amessage in R})

We will prove that this algorithm enables the omission failure model to simulate
the crash failure model with respect to the nonfaulty processors. We cannot show that
the omission failure model simulates the crash model for all processors. The reason
is that the crash Nonfaulty Liveness condition states that even faulty processors must
receive every message sent be a nonfaulty processor; yet in the omission model, the
faulty processors can experience receive omissions. However, unlike Section 12.4, the
environment algorithm need not be known. The definition of simulating with respect
to the nonfaulty processors is the same as the definition of (globally) simulating, from
Section 7.5, except that condition 3 becomes:

3'. Forevery execution o of Simthat is (C3, C;)-admissible, there exists a sequence
o € seq(Cy) such that 0| Par = top(a)| Pxp, where Py is the set of processors
identified as nonfaulty by the partition that exists since o is in seq(Cs).

Fix an admissible execution « of Algorithm 38 (i.e., it is fair, user compliant for
the crash specification, and correct for the omission communication system).

We will define a sequence o of crash events and then show that o satisfies the
specification of the crash system and that nonfaulty processors have the same views
in o and o,

The sequence o conforms to the basic round structure required by the definition
of the crash system. The message in the round & crash-send; event in ¢ is the same
as the message in the round & crash-send; event in ¢, for all £ and j. The set of
messages in the round & crash-recv; event in ¢ contains message m from p; if and
only if p; broadcasts m inround (k, 1) of & and either p; has not crashed by the end
of round (%, 2) of o or p; accepts a message from p; in round (%, 2) of a.

We first show, in Lemma 12.8, that nonfaulty processors never crash themselves
in «. Then we show, in Lemma 12.9, that the same messages are accepted at each
round in « and o by processors that have not yet crashed themselves in a. These
two lemmas are used to show, in Lemma 12.10, that o satisfies the crash properties.
Finally, Lemma 12.11 states that the application processes on nonfaulty nodes have
the same views in « and o.

SIMULATING CRASH FAILURES ON TOP OF OMISSION FAILURES 267

Lemma 12.8 If processor p; is nonfaulty, then p; never crashes itself in o.

Proof. 'We prove by induction on k that p; has not crashed by the beginning of round
(k, 1).

The basis, & = 1, follows because processes are initialized to be not yet crashed.

Suppose & > 1. By the inductive hypothesis, p; has not crashed by the beginning
of round (k — 1,1). Thus it sends an (init) message to all processors in round
(k — 1,1). All nonfaulty processors receive p;’s ({init) message, because of the
omission Nonfaulty Liveness condition, and echo it. Thus p; receives at least n — f
echoes for its own round & — 1 message and does not crash itself by the beginning of
round (%, 1). g

Lemma 12.9 For all k > 1, and every processor p; that has not crashed by the
beginning of round (k, 1) in o, the messages that p; accepts in round (k — 1,2) of a
are the same as the messages received by p; in round k — 1 of 0.

Proof. Suppose p; has not crashed itself by the beginning of round (k, 1). We will
show that the messages accepted by p; in round {(k — 1, 2) of « are the same as those
accepted in round & — 1 of o. Consider processor p;. It broadcasts m’ in round
(k — 1,2), and thus, by construction of &, it broadcasts m' in round k — 1 of o. By
the definition of &, p; receives m’ from p; inround & — 1 of ¢ if and only if p; has
not crashed by the end of round (k, 2) or p; accepted a message from p; in round
(k,2) of .

The only potential discrepancy between a and o is if p; does not accept the
message from p; in round (k — 1, 2) of , yet p; does not crash by the end of round
(k—1,2). Since p; does not crash, it receives at least n — f echoes for its own round
k — 1 message. Since, by assumption, p; does not yet crash either, it gets at least
n — f echoes for its own round £ — 1 message. Since p; does not accept p;’s round
k — 1 message, these echoes are from processors distinct from the processors that
echoed p;’s round k£ — 1 message.

Thus n, the total number of processors, must be at least 2(n — f), implying that
n < 2f, a contradiction.

Lemma 12.10 The sequence o satisfies the definition of the crash model.

Proof. [Integrity. Suppose p; accepts m from p; in round k of . By the definition
of o, p; broadcasts m in round (£, 1) of &. By construction, p; broadcasts mn in round
kofe.

Nonfaulty Liveness. Suppose nonfaulty processor p; broadcasts m in round % of
o. By construction of ¢, p; broadcasts m in round (k, 1) of «. Since p; is nonfaulty,
by Lemma 12.8 p; has not yet crashed itself, and thus it sends (init,m} inround (k, 1)
of . By the definition of o, p; accepts m from p; inround & of o.

Faulty Liveness. Suppose p; fails to accept p;’s round & message in o. Then by
the definition of o, p; has crashed itself by the end of round (&, 2) of @. Thus p; sends
only special crashed messages in round {k + 1,1) of «, and no processor accepts a
message from p; inround k& + 1 of o. O

268 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

Finally, we must show that the nonfaulty processors have the same views in « as
in . We must show that the messages a nonfaulty processor receives in each round
of o are the same as the messages it accepts in the corresponding simulated round of
«. This is true because of Lemmas 12.8 and 12.9.

Lemma 12.11 o|Pyr = top(a)|{Pap

Similarly to Algorithm 36, the number of message bits sent by a nonfaulty pro-
cessor is O(n?(s +log n)), where s is the maximum size of an environment message
in bits. This implies the following simulation result.

Theorem 12.12 Using Algorithm 38, the omission failure model simulates the crash
failure model with respect to the nonfaulty processors, if n > 2f. Every simulated
round requires two rounds, and the number of message bits sent by a nonfaulty
processor is O(n?(s + logn)), where s is the maximum size of an environment
message in bits,

By combining Theorem 12.12 with Theorems 12.2 and 12.7, we obtain the fol-
lowing important simulation result,

Theorem 12.13 If n > 4f, the Byzantine failure model simulates the crash model
with respect to the nonfaulty processors when the environment algorithm is known.
Every simulated round requires four rounds, and the number of message bits sent by
a nonfaulty processor for simulated round k is O(n®(s + logn + log k) (s + logn)),
where s is the maximum size of an environment message in bits.

12.6 APPLICATION: CONSENSUS IN THE PRESENCE OF BYZANTINE
FAILURES

As a simple example, we apply the simulations developed in this chapter to derive
an algorithm for solving consensus in the presence of Byzantine failures. Recall
the very simple consensus algorithm that tolerates crash failures from Chapter 3
(Algorithm 15). This algorithm requires f + 1 rounds and messages of size n log |V|
bits, where | V| is the number of input values. We can run this algorithm together with
the simulation of crash failures in a system with Byzantine failures. By appealing to
Theorem 12.13, we have:

Theorem 12.14 Ifn > 4f, then there exists an algorithm that solves the consensus
problem in the presence of f Byzantine failures. The algorithm requires 4(f + 1)
rounds and messages of size O(n®(n|V| + logn + log f)(nlog |V | + log n)).

Note that this algorithm s inferior to Algorithm 16, which requires 2(f +1) rounds
and one-bit messages. (This algorithm also requires that n > 4f.) A simple way
to reduce the number of rounds required is to note that Algorithm 15 also tolerates
omission failures (see Exercise 12.7). Therefore, we can employ the simulation of
omission failures, which has smaller overhead (Theorems 12.2 and 12.7), to get:

ASYNCHRONOUS IDENTICAL BYZANTINE ON TOP OF BYZANTINE FAILURES 269

Theorem 12.15 Ifn > 4f, then there exists an algorithm thar solves the consensus
problem in the presence of f Byzantine failures. The algorithm requires 2(f + 1)
rounds and messages of size O(n®(nlog |V | + logn + log f)).

There is a simulation of identical Byzantine failures that requires only that n > 3 f
(Exercise 12.11); this implies a simulation of crash failures in a system with Byzantine
failures that only requires that » > 3f. This, in turn, implies:

Theorem 12.16 If n > 3f, then there exists an algorithm that solves the consensus
problem in the presence of [Byzantine failures. The algorithm requires 3(f + 1)
rounds and messages of size O(n>(nlog|V| + logn + log f)).

12,7 ASYNCHRONOUS IDENTICAL BYZANTINE ON TOP OF
BYZANTINE FAILURES

We have seen simulations of crash failures in a system with more severe failures—
omissions or even Byzantine failures. These simulations applied to the synchronous
model; similar simulations exist also for the asynchronous model, but they are fairly
restricted and can only be applied to deterministic algorithms. Because many inter-
esting problems, for example, consensus, have only non-deterministic fault-tolerant
solutions in asynchronous systems, even in the presence of the most benign failures,
the benefit of such simulations is rather limited. More useful is the asynchronous
version of Algorithm 36, which simulates identical Byzantine failures in the presence
of Byzantine failures. This simulation works for any algorithm and is not restricted
to deterministic algorithms; as we shall see later (in Chapters 13 and 14), this makes
it particularly helpful in designing clock synchronization algorithms for Byzantine
failures and randomized asynchronous algorithms for consensus in the presence of
Byzantine failures.

12.7.1 Definition of Asynchronous ldentical Byzantine

The definition of the identical Byzantine fault model for the synchronous case in
Section 12.3.1 refers explicitly to round numbers, and therefore, it has to be altered
in order to fit the asynchronous model. We replace the reference to specific rounds
with the requirement for eventual delivery.

In the synchronous model, processors could broadcast different messages at dif-
ferentrounds. It was guaranteed that, for each round, at most one message is accepted
from each processor. In the asynchronous model, there is no similar notion of round.
Instead, we assume that each processor assigns distinguishing tags to the messages
it broadcasts.

The definition of asynchronous identical Byzantine is the same as for the asyn-
chronous crash point-to-point system in Chapter 8, except that the event names are
id-send and id-recv; each message sent and received has the format (m, &), where

270 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

m is the message content and k is the tag, and the conditions to be satisfied are the
following:

Uniqueness: There is at most one id-send;(*, &) event, for each ¢ and k. This is a
restriction on the inputs from the environment.

Nonfaulty Integrity: If nonfaulty processor p; receives (m, k) from nonfaulty pro-
cessor p;, then p; sent (m, k).

Faulty Integrity (Identical Contents): If nonfaulty processor p; receives (m, k) from
processor p, and nonfaulty processor p; receives (m’, k) from py, then m =

m’.

No Duplicates: Nonfaulty processor p; receives only one message with tag & from
Pj-

Nonfaulty Liveness: If nonfaulty processor p; sends (m, k), then nonfaulty processor
p; receives (m, k) from p;.

Faulty Liveness (Relay): 1f nonfaulty processor p; receives (m, k) from (faulty) pro-
cessor py, then nonfaulty processor p; receives (m, k) from py,.

These latter five conditions are analogous to those in the synchronous case (cf.
Section 12.3), but with no reference to rounds.

12.7.2 Definition of Asynchronous Byzantine

We want to simulate the asynchronous identical Byzantine fault model specified in
Section 12.7.1 in an asynchronous point-to-point system subject to (unrestricted)
Byzantine failures. In this subsection we define the implementation system.

The definition of the asynchronous Byzantine model is the same as for the
asynchronous crash point-to-point system in Chapter 8, except that the conditions to
be satisfied are the following;:

Nonfaultry Integrity: 1f nonfaulty processor p; receives m from nonfaulty processor
p;, then p; sent m to p;.

No Duplicates: No message sent is received more than once.

Nonfaulty Liveness: If nonfaulty processor p; sends m to nonfaulty processor p;,
then p; receives m from p;.

When there is the potential for confusion, “send” is replaced with “Byz-send” and
“recv” with “Byz-recv.”
12.7.3 Simulating Asynchronous ldentical Byzantine

The synchronous algorithm for simulating identical Byzantine failures (Algorithm 36)
can be modified to work in the asynchronous case; this simulation also assumes that

ASYNCHRONOUS IDENTICAL BYZANTINE ON TOP OF BYZANTINE FAILURES 271

Algorithm 39 The asynchronous identical Byzantine simulation:
code for processor p;, 0 < i< n— 1.

1: when id-send;(m, k) occurs:

2: enable Byz-send;({init,m,k)) to all processors
3. when Byz-recv;((init,m,k)) from p; occurs:
4: if first-echo(k, 7) then enable Byz-send;({echo,m,k, 7)) to all processors
5: when Byz-recv;({echo,m,k,j)) occurs:
6. num := number of copies of {echo,m,k,j) received so far
from distinct processors
7: if num > n — f and first-ready(k, j) then
8: enable Byz-send;(({ready,m,k, j}) to all processors

9: when Byz-recv;({ready,m,k, j)) occurs:

10: num = number of copies of {ready,m,k,j} received so far
from distinct processors

11: if num > n — 2 f and first-ready(k, j) then

12: enable Byz-send;({ready,m,k,j}) to all processors
13: if num > n — f and first-accept(k, j) then
14: enable id-recv;(m, k) from p;

n > 4f. We do not present this simulation here, and leave it as an exercise to the
reader (Exercise 12.10). Instead, we present another simulation that only requires
thatn > 3 f, but uses three types of messages. Interestingly, this implementation can
be modified to work in the synchronous model (Exercise 12.11).

To broadcast a high-level message (m, k). the sender, p;, sends a message
{init,m,k} to all processors (including itself). Processors receiving this init mes-
sage act as witnesses for this broadcast and send a message (echo,m,k,) to all
processors. Once a processor receives n — f echo messages, it notifies the other
processors it is about to accept (1, k) from p;, by sending a (ready,m,k,7) message.
Once a processor receives n — f (ready,m, k,i) messages, it accepts (m, k) from p;.
In addition, if a processor receives n — 2f ready messages, it also sends a ready
message.

The pseudocode appears in Algorithm 39. The function first-echo(k, j) returns
true if and only if the processor has not already sent an echo message with tag k
for p;; first-ready(k, j) returns true if and only if the processor has not already sent
a ready message with tag k for p;; first-accept(k,) returns true if and only if the
processor has not yet accepted a message from p; with tag &.

We now show that the latter five properties of asynchronous identical Byzantine
faults are satisfied by this algorithm. The following lemma and theorem are with
respect to an arbitrary admissible execution « (i.e., it is fair, user compliant for the

272 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

asynchronous identical Byzantine specification, and correct for the asynchronous
Byzantine communication system).

Lemma 12.17 If one nonfaulty processor sends (ready,m,k,h) and another non-
Saulty processor sends (ready,m’,k,h'), then m must equal m’.

Proof. Suppose in contradiction m # m’. Let p; be the first nonfaulty processor
to send {ready,m,k,h). Since p; can only receive ready messages from the f faulty
processors up till this point and f is less than n — 2f, p; received at least n — f
(echo,m,k,h) messages. At least n — 2f of these are from nonfaulty processors.

Similarly, p;, the first nonfaulty processor to send (ready,m’,k,h), received at
least n — 2f (echo,m’,k,h) messages from nonfaulty processors.

Since each nonfaulty processor sends only one echo message for & and £, the total
number of nonfaulty processors, n — f, must be at least 2(n —2f), implying n < 3f,
a contradiction.

Theorem 12.18 The latter five conditions for asynchronous identical Byzantine are
satisfied.

Proof. Nonfaulty Integrity: Suppose nonfaulty processor p; accepts (m, k) from
nonfaulty processor p;. Thus p; receives at least n — f (ready,m,k,j) messages, at
least n — 2f of which are from nonfaulty processors. Let pp be the first nonfaulty
processor to send (ready,rn,k,7). Then pj cannot have received n — 2f ready
messages already, since n — 2f > f (recall thatn > 3f) and up till now only faulty
processors have sent (ready,m.k,j). Thus pj receives at least n — f {(echo,m,k,j)
messages, at least n — 2f of which are from nonfaulty processors. A nonfaulty
processor only sends (echo,m,k,j) if it receives (init,m,k) from p;. Since p; is
nonfaulty, p; did broadcast (m, k).

Faulty Integrity (Identical Contents): Suppose nonfaulty processor p; accepts
(m, k) from processor p, and nonfaulty processor p; accepts (m’, k) from p,. As-
sume for contradiction that m # m/. Thus p; receives at least n — f (ready,m,k,h)
messages, at least n — 2f of which are from nonfaulty processors. Similarly, p;
receives at least n — f (ready,m’,k,h) messages, at least n — 2f of which are from
nonfaulty processors. But this violates Lemma 12.17.

No Duplicates: This condition is ensured by the first-accept check in the code.

Nonfaulty Liveness: Suppose nonfaulty processor p; broadcasts (m, k). Then p;
sends (init,m, k) to all processors and every nonfaulty processor p; receives {init,m, k).
This is the first init,+,k) message that p; has received from p; by the uniqueness
condition. Thus p; sends (echo,m,k,i) to all processors.

Every nonfaulty processor p; receives at least n — f (echo,m,,{) messages. So
pj receives at most f (echo,m’,k,i) messages for any m’ # m. Since f < n — f
(recall n > 3f), p; sends (ready,m, k,1).

Every nonfaulty processor p; receives at least n — f (ready,m,k,i) messages, so
p; receives at most f (ready,m’,k,i) messages for any m’ # m. Since f < n — f,
p; accepts (m, k) from p;.

ASYNCHRONOUS IDENTICAL BYZANTINE ON TOP OF BYZANTINE FAILURES 273

Faulty Liveness (Relay): Suppose nonfaulty processor p; accepts (m, k) from
pi. Then p; receives at least n — f (ready,m,k,h) messages, meaning that at least
n — 2f nonfaulty processors send (ready,n,k,h). Thus every nonfaulty processor
pj receives at least n — 2 f (ready,m,k,h) messages, By Lemma 12.17, p; does not
send (ready,m’,k,h), with m’ # m, and therefore, p; sends (ready,m,k,h). Thus
every nonfaulty processor receives at least n— f (ready,m, k,h) messages and accepts
(m, k) from p. O

It is easy to calculate the number of messages sent by nonfaulty processors. When
a nonfaulty processor p; broadcasts m, each nonfaulty processor sends one echo
message to every processor, and then each nonfaulty processor sends one ready
message to every processor. Hence, the simulation requires nonfaulty processors to
send a total of O(n?) point-to-point messages per original broadcast message. The
total number of bits is calculated as for Algorithm 36. We leave the time complexity
analysis as an exercise to the reader (Exercise 12.12). To summarize:

Theorem 12.19 The asynchronous Byzantine failures model simulates the asyn-
chronous identical Byzantine failures model, if n > 3f. The number of messages
sent by nonfaulty processors for each broadcast is O(n?) and the total number of bits
is O(n%(s + log n + logk)), where s is the size of m in bits. A message broadcast
by a nonfaulty processor is accepted within O(1) time.

Exercises

12.1 Show that there is no loss of generality in assuming that at each round a
processor sends the same message to all processors.

12.2 Show that assuming processors are nonfaulty and the network corrupts mes-
sages is equivalent to assuming processors are faulty and the network does
not corrupt messages.

12.3 Explain why the following synchronous algorithm does not solve the con-
sensus problem: Each processor broadcasts its input using Algorithm 36.
Each processor waits for two rounds and then decides on the minimum value
received.

12.4 Show how to reduce the size of messages in the synchronous simulation of
identical Byzantine failures (Algorithm 36).

12.5 What happens in the simulation of crash failures on omission failures (Sec-
tion 12.5) if n < 277

12.6 In the simulation of crash failures on omission failures (Section 12.5), why
do we need processors to accept messages echoed by other processors?

12.7 Prove that the algorithm for consensus in the presence of crash failures (Al-
gorithm 15) is correct even in the presence of omission failures.

274 IMPROVING THE FAULT TOLERANCE OF ALGORITHMS

12.8 Show a simulation of crash failures on top of send omission failures that
assumes only that n > f. (Informally speaking, in the send omission failure
model, a faulty processor can either crash permanently at some round or at
intermittent rounds, the message it sends can fail to be delivered to some of
the other processors.)

12.9 Show how to avoid validation of messages and use the simulation of identical
Byzantine on top of Byzantine to get a simulation of Algorithm 15 with smaller
messages.

Hint: Note that in this algorithm, messages include a sequence of processor
identifiers and the support are messages with prefixes of this sequence.

12.10 Modify the algorithm of Section 12.3.2 to simulate asynchronous identical
Byzantine faults using only two types of messages. Assume n > 4f. What
is the asynchronous time complexity of this algorithm?

12.11 Modify the algorithm of Section 12.7.3 to simulate synchronous identical
Byzantine faults assuming n > 3 f and using three rounds for each simulated
round.

12.12 Show that the time complexity of Algorithm 39 is OO(1). That is, a message
broadcast by a nonfaulty processor is received by all nonfaulty processors
within O(1) time.

12.13 (a) Show that if A can simulate B, then A can simulate B with respect to the
nonfaulty processors.

(b) Show that if A can simulate B with respect to the nonfaulty processors,
then A can simulate B with respect to the nonfaulty processors when the
environment algorithm is known.

(c) Show that if A can simulate B according to one definition and B can
simulate C' according to another definition, then A can simulate C' according
to the weaker of the two definitions.

Chapter Notes

The identical Byzantine model is a variant on authenticated broadcast of Srikanth
and Toueg [246]. Our simulation of the identical Byzantine model, which assumes
n > 4f, as well as the validated broadcast and the simulation of omission failures
on top of crash failures, are all based on the work of Neiger and Toueg [198]. The
asynchronous simulation of identical Byzantine was first introduced by Bracha [60],
which is also the source of the simulation presented here.

For the synchronous model, the first simulation of the type considered in this
chapter, of crash failures on top of send omission failures, was given by Hadzilacos
[128]. However, this simulation is not completely general and relies on certain
assumptions on the behavior of faulty processors. The best (in terms of message and

CHAPTER NOTES 275

time complexity) simulations of crash failures on top of Byzantine failures are due to
Bazzi and Neiger [47, 46]. Their work contains a thorough study of the cost of such
simulations, including lower bounds and trade-offs, in terms of the rounds overhead
and the ratio of faulty processors tolerated.

Omission failures of the type considered here are sometimes called general omis-
sion failures, defined by Perry and Toueg [210]. Two specific types of omission
failures—send omission, in which faulty processors only fail to send messages, and
receive omission, in which faulty processors only fail to receive messages—have
been suggested by Hadzilacos [128].

For the asynchronous model, a general simulation of crash failures on top of
Byzantine failures was given by Coan [84]. It applies only to deterministic algorithms
in a restricted form. One of Coan’s contributions is an asynchronous simulation of
identical Byzantine failures, assuming n > 4f; this is the origin of Neiger and
Toueg’s synchronous simulation we presented here (Algorithm 36); the paper [84]
contains the solution to Exercise 12.10.

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

13

Fault-Tolerant Clock
Synchronization

We now consider the problem of keeping real-time clocks synchronized in a dis-
tributed system when processors may fail. This problem is tantalizingly similar to
the consensus problem, but no straightforward reductions are known between the
problems.

In this chapter, we assume that hardware clocks are subject to drift. Therefore, the
software clocks may drift apart as time elapses and subsequent periodic resynchro-
nization is necessary. Now the clock synchronization problem has two parts: getting
the clocks close together initially and keeping them close together.

In this chapter we focus on the problem of keeping the clocks close together,
assuming that they are initially close. First, we show that, as for consensus, to solve
the problem, the total number of processors, n, must be more than 3 f, where f is the
maximum number of faulty processors. Then we present an algorithm for solving the
problem in the presence of Byzantine failures. The algorithm is first described for a
simpler fault model, and then fault-tolerant simulations from Chapter 12 are applied.

13.1 PROBLEM DEFINITION

As in Chapter 5, we have n processors in a fully connected network, in which the
message delays are always in the range [d - u, d], for some constants d and u. Each
processor p; has hardware clock HC; (%), adjustment variable adj;, and adjusted clock
AC; (t) = HC,'(t) -+ adj; (t)

However, we now allow the possibility that up to f of the processors may exhibit
Byzantine failures.

277

278 FAULT-TOLERANT CLOCK SYNCHRONIZATION

1+ p),’) HC; (2
hardware (,f) ®
clock | max slope ﬁw/a
S(1+p)/, ---- ’/,,”
e ()T
min slope
HC;(0) | >(1+p)7!

t (real time)

Fig. 13.1 Dirift of a hardware clock.

We also consider the complications introduced when the hardware clocks can drift
from real time. We assume that hardware clocks stay within a linear envelope of the
real time; that is, there exists a positive constant p (the drift) such that each hardware
clock HC; satisfies the following property (see Fig. 13.1):

Bounded Drift: For all times ¢; and 15, {3 > 11,
(1+4p)7 (t2 — t1) < HCi(t2) — HCi(t1) < (L4 p)(tz — 11).

The difference between hardware clocks of nonfaulty processors grows at a rate
which is bounded by p(2 + p)(1 + p)~* (see Exercise 13.1).

Because hardware clocks can drift away from real time, either by gaining or
losing time (or both), processors must continually resynchronize their clocks in order
to keep them close. In this chapter we focus on the problem of keeping the clocks
close together, assuming they begin close together. (Contrast this with the problem
studied in Chapter 6, which was to get the clocks close together in the first place.)

We wish to guarantee that processors’ clocks stay close to each other, assuming
that they begin close to each other. To formalize the initialization assumption, we put
an additional restriction on the definition of admissible execution, stating that at real
time O, the adjusted clocks of nonfaulty processors are within some bound B of each
other. The amount B can be considered a parameter to the definition of admissible;
the closeness of synchronization achievable may depend on B, the initial closeness.
We require the following:

Clock Agreement: There exists a constant ¢ such that in every admissible timed
execution, for all times ¢ and all nonfaulty processors p; and p;,

IACH(t) — AC;(1)] < ¢
A trivial solution would be to set all adjusted clocks to 0; to rule this out, we require

that clocks stay within a linear envelope of their hardware clocks; formally this is
stated as:

THE RATIO OF FAULTY PROCESSORS 279

Clock Validity: There exists a positive constant v such that in every admissible timed
execution, for all times ¢ and every nonfaulty processor p;,

(1477 (HC(t) — HCi(0)) < AC(t) — ACi(0) < (1+7)(HC:(t) — HC:(0))

The clock validity condition states that the change in the adjusted clock since the
beginning of the execution must be within a linear envelope of the change in the
hardware clock since the beginning of the execution. Notice the difference from the
hardware clock drift condition, which was a constraint on the instantaneous rate: The
adjusted clock can change discontinuously, and therefore we can bound the change
only over a long period. The clock validity condition is stated with respect to the
hardware clocks, not real time. However, as Exercise 13.2 asks you to show, if the
adjusted clock is within a linear envelope of the hardware clock and the hardware
clock is within a linear envelope of real time, then the adjusted clock is within a linear
envelope of real time, albeit a larger envelope.

The goal is to achieve clock agreement and validity with ¢ and + that are as small
as possible. Intuitively, the validity parameter, «, cannot be smaller than the validity
of the hardware clocks captured by p.

An algorithm for maintaining synchronized clocks will instruct processors to take
actions periodically. A mechanism is needed for a processor to program itself to take
a step when its hardware clock reaches a certain value. This ability is modeled by
assuming that each processor p; has a special state component timer; that it can set.
For an execution to be admissible, each processor must take a step once its hardware
clock reaches the current value of its timer.

13.2 THE RATIO OF FAULTY PROCESSORS

In this section, we show that there can be no algorithm to satisfy clock agreement
and clock validity if n < 3 f; this result holds for any constants ¢ and ~, regardless
of their specific values.

We will prove this result using ideas similar to two we have already seen, namely,
shifting of executions (used to prove the lower bound on closeness of synchronization
in Chapter 6) and specifying faulty behavior with a big ring (used to prove the n > 3 f
lower bound for consensus in Chapter 5).

Before proving the lower bound, we need a result similar to one we used to show
the lower bound on the closeness of synchronization; if both hardware clocks and
message delays are altered appropriately, processors cannot tell the difference. In
Chapter 6, the alteration was to add certain quantities to the real times of occurrences,
resulting in a shifted execution. Here we will multiply the real times by a certain
quantity, resulting in a scaled execution.

Definition 13.1 Ler o be a timed execution with hardware clocks and let s be a real
number. Define scale(q, s) to be the execution obtained by multiplying by s the real
time associated with each event in .

280 FAULT-TOLERANT CLOCK SYNCHRONIZATION

Lemma 13.1 states the relationships between the clocks and between the message
delays in a timed execution and its scaled version.

Lemma 13.1 If « is a timed execution then in o’ = scale(a, s),

(a) HC/(t) = HC;i(t/s) for all times t, where HC; is p;’s hardware clock in o and
HC} is p;’s hardware clock in o, and

(b) AC{(t) = AC;(t/s) for all times t, where AC; is p;’s adjusted clock in o and
AC/ is p;’s adjusted clock in o, and

(c) If a message has delay § in o, then it has delay s - § in o

Proof. The first two properties follow directly from the definition of scaling. For
the last property, consider message m sent at real time ¢, and received at real time ¢,
in o. Then in o it is sent at real time s - ¢, and received at real time s - t,.. Thus its
delayina’iss- (¢, — ;). O

If HC; is a linear function, then the factor of 1/s can be brought out of the argument
to the function, and we have HC/(t) = HC;(t)/s.

If s is larger than 1, then the hardware clocks slow down and message delays
increase. If s is smaller than 1, then the hardware clocks speed up and message
delays decrease. The scaled execution may or may not be admissible, because
message delays and drifts may be too large or too small; however, we still have the
following result:

Lemma 13.2 If a timed execution « satisfies the clock agreement condition with
parameter € or the clock validity condition with parameter + for a set of processors,
then the same is true in o' = scale(a, s), forany s > 0.

Proof. Suppose o satisfies the clock agreement condition for processors p; and p;.
Denote p;’s adjusted clock in o by AC; and p;’s adjusted clock in a’ by AC/. By
Lemma 13.1 (b), for any time ¢:

|AC; (t) — AC}(t)] = |ACi(t/s) — AC;(t/s)]

Since the adjusted clocks of p; and p; satisty the clock agreement condition in a,
AC; and AC; are within € for every argument, including t/s, and the result follows.

Next, suppose « satisfies the clock validity condition for processor p;. By
Lemma 13.1 (b), for all times ¢:

AC;(t) — AC/(0) = ACi(t/s) — ACi(0/s)
Since the adjusted clock of p; satisfies the clock validity condition in «,
ACi(t/s) —ACi(0/s) < (14 7)(HCi(t/s) — HCi(0/s))
which by Lemma 13.1 (a) is equal to
(1+~)(HC{(t) - HC/(0))

THE RATIO OF FAULTY PROCESSORS 281

A A1 Ay A(i-1) mod 3 Ai mod 3 Ag AL Az

Fig. 13.2 Assignment of local algorithms in the big ring in the proof of Theorem 13.3.

The lower bound on AC{ () — AC;(0) is proved analogously. t

The main result of this section is that no algorithm can guarantee clock agreement
and clock validity, if n < 3 f. We only prove the special case when f = 1, and leave
the general case as an exercise.

The proof requires that u, the uncertainty in the message delay, not be too small;
specifically, © must be at least d(1 — (1 + p)~*). Itis probably not clear at this point
why this assumption is necessary, but it enables certain calculations to work out in
the proof. Because typically p is on the order of 1075, this assumption is reasonable.

Theorem 13.3 No algorithm can guarantee clock agreement and clock validity for
f=landn =3, ifu>d(l1—(1+p)~?).

Proof. Suppose in contradiction there is such an algorithm forn = 3 and f = 1,
guaranteeing clock agreement and validity with constants ¢ and ~. Let A; be the
(local) algorithm run by p;, for i = 0, 1, 2. Choose a constant k£ such that

1. %k is a multiple of 3 and
2 (149)7 1+ p)2¢D > 144

The reasons for these conditions on & will be pointed out as they arise.

Consider a ring network of & processors, py through px_,, in which for each 4,
0 <1< k—1, p; runs local algorithm A; ;.4 3 (see Figure 13.2). Here is where we
use the fact that & is a multiple of 3.

We now specify a timed execution F of thisring. In 8, foreach 7, 0 <7< k-1
(see Fig. 13.3):

e The hardware clock of p; is HC;(t) = t(1 4 p)*~%
¢ The adjusted clock of p; equals 0 at time 0, i.e., AC;(0) = 0 and

e The delay of every message between p; and p(i—1) mod & (in both directions)
isd(1+p)¥ 4 for0<i<k-1

We cannot claim that /3 satisfies the clock synchronization properties because the
network has more than three processors and is not fully connected; moreover, the
hardware clock drifts and message delays are not all admissible. However, we will
be able to make some deductions about the behavior of 4, by showing that pieces

282 FAULT-TOLERANT CLOCK SYNCHRONIZATION

Di—1 d(1+p)2i—4 Di d(1+p)2(i+1)—-4 Pi+1 d(1+p)2(*+2)“4 Di+2
_____ O I O ot

L
hardware clock hardware clock hardware clock hardware clock
t(l—}—p)l"g("‘l) t(l—}—p)l"g‘ t(1+p)1-2(z+1) t(l +p)1—-2(z+2)

Fig. 13.3 Timed execution 3 of the big ring in the proof of Theorem 13.3.

of the ring “look like” certain systems in which the algorithm is supposed to behave
properly.

Lemma 13.4 states that the adjusted clocks of two adjacent processors in the timed
execution 3 of the ring satisfy the clock agreement condition and each adjusted clock
in satisfies the clock validity condition. The statement of the clock validity condition
is simplified because the hardware clocks and adjusted clocks are all initially 0.

Lemma 13.4 For all times t:
(a) AG;(t) — AC; 1 ()| < ¢ foralli, 0 < i<k — 2 and
(b) (1+7)"'HC;(t) < AC;(t) < (1 4+ y)HC;(t), foralli,0 < i<k —1

Proof. Fix i, 0 < i < k — 2. Take processors p; and p; 1 from the big ring and put
them in a three-processor ring (which is also fully connected) with a third processor
that is faulty in such a way that it acts like p;—; from the big ring toward p; and acts
like p; 4o from the big ring toward p;4; (see Fig. 13.4). The hardware clock times
of p; and p;11 and the message delays for messages to and from p; and p;4; are the
same as in the big ring’s timed execution 3. Call the resulting timed execution a.

As was done in the proof of Theorem 5.7, a simple induction can be used to show
that p; and p;4; have the same views in « as they do in the timed execution of the
big ring and thus they have the same adjusted clocks.

Let o = scale(a, (1 + p)~?%) (see Fig. 13.5).

We will now verify that o/ is admissible. By Lemma 13.1 (a), p;’s hardware clock
incois

HC}(t) = HGi(t(1+ p)*) = (1 + p)

By Lemma 13.1 (a), p;4-1’s hardware clock in o’ is
HC4y(8) = HCiys(4(1 + o)) = t(1 +)

By Lemma 13.1 (c), the message delays between the faulty processor and p;4;
are d(1 4 p)~%(1 + p)?0+2)=4 which equals d. Similarly, the message delays
between p;y1 and p; are d(1 + p)~2, and the message delays between p; and the
faulty processor are d(1 + p)~*. The assumption that v > d(1 — (1 4 p)~*) ensures
that all message delays are between d — u and d.

Since o is admissible, the clock agreement and clock validity conditions hold for
the adjusted clocks of p; and p;1; in o’. Lemma 13.2 implies that these conditions

THE RATIO OF FAULTY PROCESSORS 283
behaving like p; 1 behaving like p; 49

with hardware clock
t(]. + p)l—Z(i+2)

with hardware clock
t(l 4 p)1—2(z—1)

d(1+ p)** d(1 + p)2i+a) -

d(l +p)2(i+1)—4 Pi+1

hardware clock hardware clock
t(l-}-p)l_gz t(l +p)1~2(z+1)

Fig. 13.4 A triangle based on the ring, for the proof of Lemma 13 4; gray node is faulty.

behaving like p; 4
with hardware clock
(1 +p)°

behaving like p;4 2

with hardware clock
t(1+p)72

d(1 + p)™*

i d(1+ p)?

hardware clock hardware clock
t(1+p) t(1+p) "

Fig. 13.5 Scaling the triangle by (1 + p) ™.

also hold in «. Since p; and p;,1 have the same adjusted clocks in « as in f, the
lemma follows. [}

We can now complete the main proof. Repeated application of Lemma 13.4 (a),
implies the following inequalities:

ACy(t) ACL(t) + ¢

ACg(t) + 26

IN AN N A

ACk_1(t) + (k — 1)e
Rearranging the terms produces:
ACp_1(t) > ACy(t) — (k — e

Lemma 13.4 (b) implies that ACy(t) > (1 + v)~'HCy(t), and the definition of 3
implies that HC(t) = (1 + p)**~VHC,_1(t). Thus

AC_1(t) > (1 +4)7 (1 + p)**"VHC, 1 (8) = (k = 1)e

284 FAULT-TOLERANT CLOCK SYNCHRONIZATION

Lemma 13.4 (b) implies that
ACk-1(t) < (14 7)HCr_1(t)
The last two inequalities are combined to show:
(147)7 (14 p)*=DHC (1) — (k= 1)e < (14 7)HCh_1 (1)
Rearranging produces:
(14 7)1+ 925D — (14 7)) HCk1 (1) < (k— 1)e

HCj;_ increases without bound as ¢ grows, and by choice of &, (1 + 7)"1 {1+
p)E=1) (14 =) is positive. (This is where we need the second condition in the
definition of k.) Thus the left-hand side of the inequality increases without bound.
Yet the right-hand side, (k — 1)e, is a constant, which is a contradiction. O

The case when f > 1 is proved by reduction to this theorem, as was done in
Theorem 5.8; the details are left to an exercise.

13.3 A CLOCK SYNCHRONIZATION ALGORITHM

We start with an algorithm tolerating f timing failures, in which nonfaulty processors
fail either by crashing or by having hardware clocks whose drift exceeds the bounds
given in the Bounded Drift condition and thus run faster or slower; the algorithm
requires n > 2f. Later, we discuss how to modify the algorithm to handle identical
Byzantine failures. Finally, the simulation of identical Byzantine failures in a totally
asynchronous system, from Chapter 12, is used. The latter simulation requires
n > 3 f, matching the bound proved in Section 13.2.

13.3.1 Timing Failures

The algorithm proceeds in synchronization epochs. A processor starts the kth syn-
chronization epoch by broadcasting a message of the form (k), when the value of
its adjusted clock is k - P, for some constant P that will be specified below. P will
be chosen to ensure that the start of the (k + 1)st synchronization epoch is still in
the future, according to the newly adjusted clock. When a processor receives f + 1
messages of the form (k), it sets its adjusted clock to be k - P + z. The value of =
will be specified and explained shortly; its value will ensure that the adjusted clocks
are never set backwards.

We assume that the adjusted clocks are initialized so that at time O, the adjusted
clock of every nonfaulty processor is between z and © + d(1 + p). Thus the initial
closeness of synchronization must be at most d(1 + p) in every admissible execution.

Assume we have picked P > z + d(1 + p).

The pseudocode appears in Algorithm 40; it uses the basic reliable broadcast
algorithm of Chapter 8 (Algorithm 23).

A CLOCK SYNCHRONIZATION ALGORITHM 285

Algorithm 40 A clock synchronization algorithm for drift and timing failures:
code for processor p;, 0 < i< n—1.

Initially £ = 1 and count]r] = 0, for all r

whenAC =% - P /I time for kth synchronization epoch
1. be-send({k),reliable)

when be-recv((r),j,reliable) occurs

2 count[r] .= count[r] + 1

3: if count[k] > f + 1 then

4 AC:=k -P+=z // modify adj to accomplish this
5: k:=k+1

Because P > x + d(1 + p) and £k is initialized to 1, the nonfaulty processors’
adjusted clocks at the beginning of an admissible execution have not yet reached the
time to perform Line 1.

To prove that the algorithm satisfies agreement and validity with some constants
¢ and v, which will be determined below, we look at the times processors broadcast
their (k) messages.

The following real times are defined for all k > 1:

s ready, denotes the first time a nonfaulty processor broadcasts a (k) message,
starting the kth synchronization epoch

e begin;, denotes the first time a nonfaulty processor evaluates the condition in
Line 3 to be true and sets its adjusted clock to k - P + z in Line 4

s endy denotes the last time a nonfaulty processor evaluates the condition in
Line 3 to be true and sets its adjusted clock to k - P + z in Line 4.

Let endy = 0 (see Fig. 13.6).

Pe

P

bi

readyk begink endy read‘y,c +1

Fig. 13.6 Synchronization epochs.

286 FAULT-TOLERANT CLOCK SYNCHRONIZATION

The Faulty and Nonfaulty Liveness properties of reliable broadcast ensure that if
one nonfaulty processor receives f+ 1 messages of the form (k), then eventually every
nonfaulty processor will receive those f + 1 messages of the form (k). Because the
liveness properties are ensured in the simulation of reliable broadcast (Algorithm 23)
by relaying messages immediately, those f + 1 messages of the form (k) will be
received within d time of when the first nonfaulty processor receives them. Thus we
have the following lemma:

Lemma 13.5 Forallk > 1, end, < begin, + d.

Let p; be the first nonfaulty processor to start its kth synchronization epoch, and
set its adjusted clock to k - P 4+ z. By Lemma 13.5, all nonfaulty processors set their
adjusted clock to the same value at most d time later. During this time p;’s adjusted
clock gains at most d(1 + p), implying the following lemma:

Lemma 13.6 For all k > 1 and for any pair of nonfaulty processors, p; and p;,
|AC;(end) — AC;(endy)| < d(1+ p).

Note that the above lemma is true by the initialization assumption for & = Q.

A nonfaulty processor broadcasts (k) at time & - P on its adjusted clock, that is,
P — z time on its clock after it has started the (£ — 1)st epoch. Thus all nonfaulty
processors broadcast (k) messages at most (P — x)(1 + p) real time after endy_;.
Because n > 2f, all nonfaulty processors will get f 4+ 1 messages of the form (k) at
most d real time later, and will start their next synchronization epoch. Therefore, we
have the following lemma:

Lemma 13.7 Forallk > 1, end;, < endi—1 + (P~ z)(1 + p) + d.

Because of the lower bound on P, we can prove that the start of the next synchro-
nization epoch is still in the future:

Lemma13.8 Forallk > 1, endy_y < ready, < begin,,.

Proof. ByLemma 13.6, the maximum value of a nonfaulty adjusted clock at endj, .1
is (k—1)P+x+d(1+p), which, by the constrainton P, is less than (k—~ 1) P+ P =
kP. Since readyy, is the earliest real time when a nonfaulty adjusted clock reaches
kP, endy .1 < ready,,.

To prove the second inequality, note that a nonfaulty processor starts the kth epoch
only after receiving (k) messages from at least f + 1 processors, at least one of which
is nonfaulty. O

Choose ¢ = pP(2+ p) + 2d.
Together with the lower bound on P stated above, this implies that

P> (3d+pd)(1 —2p—p?)7!

Lemma 13.9 shows that the adjusted clock of a nonfaulty processor is never set
backwards, because z is chosen large enough.

A CLOCK SYNCHRONIZATION ALGORITHM 287
adjusted X :
clock ; “k+1)P+=

ACi(?) kP o+ +d(1+ p)+
(P —z)(1+p) +d)(1+p)

kP + x+§
d(1+ p)
1 |
endy _endi 1 real time
t
(P—z)(1+p)+d

Fig. 13.7 p;’s adjusted clock is not set backwards.

Lemma 13.9 For each nonfaulty processor p;, AC;i(t) is a nondecreasing function

of t.

Proof. The only situation in which this lemma might be violated is in the execution
of Line 5. Let ¢ be the real time at which p; executes Line 5 to begin epoch k& + 1.
The value of processor p;’s epoch k adjusted clock at time ¢ is maximized if it has the
maximum value k P+ +d(1+ p) at time endi, p; runs at the maximum rate 1 + p until
time endy, 1, and end), 1 1 occurs as late as possible (see Fig. 13.7). Thus the maximum
value of p;’s epoch k adjusted clock attime t is k P+ + ((P —z) (1 +p) +2d) (1 +p)-
At time £, p;’s epoch £ + 1 clock is set to (k + 1) P + z.
To check that

EP+ae+((P-2)l+p)+2d)(1+p)<(k+1)P+a
it is sufficient to show that
(P=z)(1+p) +2d)(1+p) <P
By the choice of 2, (P — z)(1 + p) 4 2d)(1 + p) is equal to
(P = (pP(2+ p) + 2d))(1 + p) + 2d)(1 + p)
which is less than
((P = (pP(2+ p)(1 + p)"% + 2d))(1 + p) + 2d)(1 + p)

which is less than P. O

We now prove clock agreement, for ¢ = d(1 + p) + (1 + p) — d. Given the
definition of &, € is equal to 2d + 3pd + 2pP plus terms of order p2. (When p has

288 FAULT-TOLERANT CLOCK SYNCHRONIZATION

adjusted

ot E /(k +)P +e+d(l+p)
k)P E

kP + z+

/;«P)14 p) + L4)
kP 5 i

i ! i
endy begin, . ; end 1 real time
i

— d
(P—z)1+4+p)+d

Fig. 13.8 Proof of Lemma 13.10: Epoch & clock and epoch & + 1 clock.

a typical value of 10~, terms of order p? are negligible.) To minimize ¢, P must
be chosen to be as small as possible; in this case, ¢ is slightly more than 2d + 9pd
plus terms of order p?, when p is small. However, there are some disadvantages
associated with making P very small—in particular, more resources are taken up by
the clock synchronization procedure, because resynchronization messages are sent
more often.

Lemma 13.10 (clock agreement) For any time t > 0 and any two nonfaulty pro-
cessors p; and p;, |AC;(t) — AC;(t)| < e.

Proof. We partition time into intervals between end points and prove the lemma for
any time ¢, 0 < ¢ < endy, by inductionon k. ’

Since clocks are initially synchronized, the lemma holds for the base case, & = 0,
that is, for time §. So, assume the lemma holds for k, that is, for any time ¢,
0 <t < endy.

First, we consider the case when both processors, p; and p;, have already done
the (k£ + 1)st synchronization; that is, AC; and AC; are both epoch % + 1 clocks. By
Lemma 13.6, their difference is at most d(1 + p), which is less than ¢.

Next we consider the case when one processor, say, p;, has already done the
(k + 1)st synchronization, but the other, p;, has not; that is, AC; is an epoch £
clock and AC; is an epoch k + 1 clock. Since clocks are never set backward by
Lemma 13.9, the difference between them is maximized at real time endy . if AC;
issetto (k 4+ 1) P + at beging 1 and has the maximum rate, AC; is set to kP + at
end), and has the minimum rate, and endj, .1 occurs as late as possible (see Fig. 13.8).
Exercise 13.6 asks you to verify that the difference between the clocks is at most €.

Last we consider the case when both processors, p; and p;, have yet not done the
(k + 1)st synchronization; that is, AC; and AC; are both epoch & clocks. They are

A CLOCK SYNCHRONIZATION ALGORITHM 289

' : kP +z+d(1+p)+
adjusted
dlocks - (P=2)(1+p) +d)(1+p)
kP +z+ :
d(1+ p)’ kP 4+ z+ »
,/3((1’*’3)(1“)”)(1“)
kP + :
1 !
en% endg real time

T it
(P=2)(I+p)+d

Fig. 13.9 Proof of Lemma 13.10: Epoch & clocks.

maximally far apart at real time endi 1 if AC; has the minimum value kP + « at
real time end;, and has the minimum rate (1 + p)~!, AC; has the maximum value
kP +xz + d(1+ p) at endy and has the maximum rate (1 + p), and endj 1 occurs as
late as possible (see Figure 13.9). Exercise 13.7 asks you to verify that the difference
between the clocks is at most €. O

We now show the clock validity condition, namely, that the adjusted clocks do
not deviate too much from the hardware clocks. Let vy = P(1 + p)*(P —z)~! - 1.
Simple algebraic manipulations show that

1
y==-1+2+/

where ¢ = 1 — p(2 + p) — 2d/ P. In the common case when p is small and P is large
relative to d, ¢ is slightly less than 1, and thus -}; — lis close to 0. Because p? is also
extremely small, « is approximately 2p. The rate of the adjusted clocks with respect
to real time is approximately (1 4+ 2p)(1 + p), which is roughly 1 + 3p, ignoring
terms of order p?. Thus the drift of the adjusted clocks is roughly three times that of
the hardware clocks.

Lemma 13.11 (clock validity) For all times t and every nonfaulty processor p;,
(14+7)~1(HCi(t) - HCi(0)) < ACi(t) — ACi(0) < (14) (HCi(t) — HCi(0))

Proof. AC,; runs at the same rate as HC; except for when Line 5 is executed.

By Lemma 13.9, AC; is never set backwards. Thus the change in AC; during the
real time interval [0, ¢] is always at least equal to the change in the corresponding
hardware clock HC;, and clearly

(1 + 7)Y (HCi(t) — HC;(0)) < AG;(t) — ACi(0)

290 FAULT-TOLERANT CLOCK SYNCHRONIZATION

(This condition holds for any v > —1.)

We now have to consider how much faster AC; can go than HC;. Consider the
real time ¢ when AC; is set to kP + z, for any k. The change in AC; during the real
time interval [0, ¢] is at most kP + ¢ — ¢ = kP. That s,

AC;(t) — AC;(0) < kP

The change in HC; during the same real time interval is minimized if we assume
that each of the k resynchronization epochs takes the minimum amount of real time,
(P —z)(1+4 p)~', and HC; has the slowest rate, (1 + p)~1. Thus the change in HC;
is at least k(P — 2)(1 + p)~2%. That is,

B(P — 2)(1+ p) 2 < HCi(t) — HCi(0)
Therefore, to show that
AC;i(t) — ACi(0) < (1 4+ 7)(HCi(t) — HC:(0))
it suffices to show that,
kP < (14+7)k(P —z)(1+p)~2

which follows by simple algebraic manipulations (see Exercise 13.8). !

To summarize, we have:

Theorem 13.12 Algorithm 40 satisfies the clock agreement and clock validity con-
ditions with
e=d(l+p)+(pP2+p)+2d)(1+p)—d

and
7= P(L+p)*(P = (pP(2+p) +2d)) " — 1

aslongas P > (3d+pd)(1—2p—p*)7!, inthe presence of f < n/2 timing failures.

13.3.2 Byzantine Failures

In the algorithm just presented, all communication between processors is via the reli-
able broadcast primitive. The particular simulation that we assumed in Section 13.3.1,
Algorithm 23, works for asynchronous crash failures, and thus it works for timing
failures. However, it does not work for Byzantine failures.

To get a clock synchronization algorithm that tolerates Byzantine failures, we can
develop a simulation of reliable broadcast that tolerates Byzantine failures and use it
in Algorithm40. We will develop this simulation in two steps (a similar development
appears in Chapter 14, for the randomized consensus algorithm in the presence of
Byzantine failures).

First, to go from identical Byzantine failures to the timing failure model, we can
employ a validation procedure as in Chapter 12. The validation makes the messages

PRACTICAL CLOCK SYNCHRONIZATION: IDENTIFYING FAULTY CLOCKS 291

longer and causes some additional local computation, but these changes do not affect
the performance analysis of the clock synchronization algorithm.

Second, to go from Byzantine failures to identical Byzantine failures we use the
asynchronous simulation (Algorithm 39) from Chapter 12. This simulation affects
the performance of the clock synchronization algorithm in two ways. One impact
is that the number of processors, n, must now be greater than 3f, instead of only
greater than 2f. The other impact is that in the definitions of € and « for the clock
agreement and validity conditions, every occurrence of d must be replaced by 3d.
The reason is that three “rounds” of communication are required in Algorithm 39 for
each simulated “round.”

13.4 PRACTICAL CLOCK SYNCHRONIZATION: IDENTIFYING FAULTY
CLOCKS

The Internet standard Network Time Protocol (NTP) provides synchronized clocks.
Certain nodes in the system are identified as time servers. Time servers are classified
as primary or secondary — primaries get their time from a reference source, such as
a satellite, whereas secondaries get their clock times from either a primary or other
secondaries. Time servers are organized conceptually into a hierarchy based on how
many hops they are away from a primary server; this distance is called the stratum of
the server. When a path goes down between two time servers, the strata, or shortest
path distances from a primary, are recalculated.

Time servers exchange timestamped messages periodically in order to estimate
round trip delays, clock offsets, and error (cf. Section 6.3.6); filtering is applied to
reduce timing noise. When a node wants to update its local clock, it selects an
appropriate subset of its neighboring time servers; the choice of subset is made by
an algorithm that has been carefully optimized on the basis of experimental data
and depends on the strata of the neighbors, among other things. Finally, the offsets
estimated for this subset are combined to calculate a new value for the local clock.
The algorithms in NTP have been carefully tailored to work well with the statistical
behavior of links in the Internet.

One of the interesting algorithms in NTP is that for choosing which set of clock
values will be combined to compute a clock update. Like the algorithm presented
in this chapter, the possibility of Byzantine failures (i.e., processors with arbitrarily
faulty clocks) is considered. When a processor p; obtains an estimate of the difference
between its clock and that of another processor p;, itactually gets an interval in which
the difference lies. Given a set of m such time intervals, up to f of which might
represent values of faulty clocks, the processor must choose a subset of time intervals
to use in the combining step. The time intervals that are discarded when the subset
is chosen should be those that have (relatively) bad data, that is, that came from
processors with faulty clocks. The assumption is that nonfaulty clocks are close to
real time, and thus their time intervals will be relatively close to each other. As a
result, one way to identify bad time intervals is to see which ones are not sufficiently

292

FAULT-TOLERANT CLOCK SYNCHRONIZATION

close to enough other time intervals. In particular, the NTP algorithm finds the
smallest interval I that contains the midpoint of at least m — f time intervals. The
time intervals that intersect the interval I are then used in the combining stage.

Exercises

13.1

13.2

13.3

134
13.5

13.6

13.7

13.8

13.9

Prove that the rate at which two hardware clocks of nonfaulty processors drift
from each other is p(2 + p)(1 + p)~1; that is, prove:
max |HC;(At) — HC;(At)]

<p2+p)(1+p)7"

Show that if the hardware clock is within a linear envelope of real time and
the adjusted clock is within a linear envelope of the hardware clock, then the
adjusted clock is within a linear envelope of real time.

Calculate the validity parameter of the adjusted clocks with respect to real
time, as a function of p and ~.

What happens to Theorem 13.3 if there is no drift?
What happens to the result? That is, if there is no drift but there are Byzantine
failures, do we need n > 3 f to keep the adjusted clocks synchronized?

Prove that if o’ = scale(a, s), then o = scale(o/,).

In the text it was shown that clock synchronization is impossible for three
processors, one of which can be Byzantine. Extend this result to show that n
must be larger than 3 f, for any value of f (not just f = 1).

Hint: Do not try to modify the previous proof. Instead use a reduction, as in
the proof of Theorem 5.8.

Complete the second case in the proof of Lemma 13.10 by showing that the
difference between a nonfaulty epoch % clock and a nonfaulty epoch k + 1
clock is never more than .

Complete the third case in the proof of Lemma 13.10 by showing that the
difference between two nonfaulty epoch & + 1 clocks is never more than ¢.

Complete the algebra in the proof of Lemma 13.11 by showing that
kP < (14 7)k(P —2)(14p)7?

Show that the reliable broadcast simulation of Algorithm 23 does not work in
the presence of Byzantine failures.

13.10 Work out the details sketched at the end of Section 13.3.2 for handling Byzan-

tine failures in the clock synchronization algorithm and the effect on the
performance.

Try to find ways to reduce the cost of validating the messages of this algorithm.

CHAPTER NOTES 293

Chapter Notes

The problem of synchronizing clocks in the presence of Byzantine faults was first
posed by Lamport and Melliar-Smith [162]. The lower bound on the number of
processors, shown in Section 13.2, was first proved by Dolev, Halpernand Strong [94].
The proof presented here was developed by Fischer, Lynch and Merritt [109], who
also proved that the connectivity of the topology graph must be at least 2f + 1.

The clock synchronization algorithm presented in Section 13.3 is based on an
algorithm of Srikanth and Toueg [245], which uses authenticated broadcast. It is
similar in flavor to the algorithm of Dolev et al. [93]. Srikanth and Toueg also prove
that that the clock validity parameter, v, must be larger than or equal to hardware
clocks’ drift bound, p; they show how to modify the algorithm to get v+ = p. The
clock agreement parameter, ¢, obtained in the algorithm of Dolev et al. is smaller
than the parameter obtained in the algorithm of Srikanth and Toueg, presented here.

Welch and Lynch [260] and Mahaney and Schneider [178] designed algorithms
based on approximate agreement, a problem defined in Chapter 16. In their sem-
inal paper, Lamport and Melliar-Smith [162] presented algorithms based on using
algorithms for consensus.

For some applications, discontinuities in the adjusted clock are undesirable; for
instance, jobs that are supposed to begin automatically at certain times might be
skipped when the clock is set forward. If adjusted clocks can be set backwards, as
is the case in some algorithms, then some activities might be done twice, or a later
event might be timestamped before an earlier one. These problems can be eliminated
by amortizing the necessary adjustment over an interval of time, as suggested by
Lamport and Melliar-Smith [162].

Solutions to the problem of achieving synchronization initially in the presence of
faults are presented in [93, 245, 260]. Some of the literature on clock synchronization
is described in the survey of Simons, Welch, and Lynch [242]. Other papers appear
in the collection edited by Yang and Marsland [263].

The Network Time Protocol, described in Section 13.4, was developed by Mills [186,
187]. Marzullo and Owicki [180] proposed the idea of intersecting time intervals to
discard faulty clock values.

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

Part 111

Advanced Topics

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

14

Randomization

Previous chapters concentrated on specific problems (Part I) or on simulations be-
tween specific models of computation (Part II); this chapter concentrates on a specific
type of distributed algorithms, which employ randomization. Randomization has
proved to be a very powertful tool for designing distributed algorithms {as for many
other areas). Randomization often simplifies algorithms and, more importantly, al-
lows us to solve problems in situations where they cannot be solved by deterministic
algorithms, or with fewer resources than the best deterministic algorithm.,

This chapter extends the formal model to include randomization and describes
randomized algorithms for three basic problems: leader election, mutual exclusion,
and consensus.

For all three problems, randomization allows us to overcome impossibility results
and lower bounds, by relaxing the termination conditions or the individual liveness
properties (in the case of mutual exclusion).

14.1 LEADER ELECTION: A CASE STUDY

This section has the dual purpose of demonstrating a simple but powerful application
of randomization and developing the formal definitions relating to randomization.

14.1.1 Weakening the Problem Definition

A randomized algorithm is an algorithm that has access to some source of random
information, such as that provided by flipping a coin or rolling dice. More formally,

297

298 RANDOMIZATION

we extend the transition function of a processor to take as an additional input a
random number, drawn from a bounded range under some fixed distribution. The
assumption of a fixed distribution suffices for all algorithms we present in this chapter.
Many other probability distributions can be implemented using this type of coin (by
appropriate mappings).

The addition of random information alone typically will not affect the existence
of impossibility results or worst-case bounds. For instance, even if processors have
access to random numbers, they will not be able to elect a leader in an anonymous
ring or solve consensus in fewer than f + 1 rounds in all (admissible) executions.

However, randomization in conjunction with a judicious weakening of the problem
statement is a powerful tool for overcoming limitations. Usually the weakening
involves the termination condition (for instance, a leader must be elected with a
certain probability) while the other conditions are not changed (for instance, it should
never be the case that two leaders are elected).

Randomization differs from average case analysis of a deterministic algorithm. In
average case analysis, there are several choices as to what is being averaged over.
One natural choice is the inputs. (Other possibilities in systems that have some degree
of uncertainty are the interleavings of processor steps, the message delays, and the
occurrences of failures.) There are two difficulties with this approach. One is that
determining an accurate probability distribution on the inputs (not to mention the
processor scheduling, the message delays, or the failure events) is often not practical.
Another drawback is that, even if such distributions can be chosen with some degree
of confidence, very little is guaranteed about the behavior of the algorithm on a
particular input. For instance, even if the average running time over all inputs is
determined to be small, there still could be some inputs for which the running time
is enormous.

In the randomized approach, more stringent guarantees can be made. Because the
random numbers introduce another dimension of variability even for the same inputs,
there are many different executions for the same input. A good randomized algorithm
will guarantee good performance with some probability for each individual input.
Typically the performance of a randomized algorithm is defined to be the worst-case
probability over all inputs.

The simplest use of randomization is to create initial asymmetry in situations
that are inherently symmetric. One such situation is anonymous rings (studied in
Chapter 3). Recall that in anonymous rings, where processors do not have distinct
identifiers, it is impossible to elect a unique leader {Theorem 3.2). This impossibility
result holds even for randomized algorithms. However, a randomized algorithm can
ensure that a leader is elected with some probability. Thus we can solve a variant of
the leader election problem that relaxes the condition that eventually a leader must
be elected in every admissible execution.

The relaxed version of the leader election problem requires:

Safety: In every configuration of every admissible execution, at most one processor
is in an elected state.

Liveness: At least one processor is elected with some nonzero probability.

LEADER ELECTION: A CASE STUDY 299

The safety property has to hold with certainty; that is, the algorithm should never elect
two leaders. The liveness condition is relaxed, and the algorithm need not always
terminate with a leader, rather, it is required to do so with nonzero probability. (We
will spend some time exploring exactly how to define this probabilistic condition.)

Analgorithm that satisfies this weakened liveness condition can fail to elect a leader
either by not terminating at all or by terminating without a leader. As demonstrated
below, these two ways to express liveness are typically related, and one can be traded
off against the other.

14.1.2 Synchronous One-Shot Algorithm

First, let us consider synchronous rings. There is only one admissible execution
on an anonymous synchronous ring for a deterministic algorithm. For a randomized
algorithm, however, there can be many different executions, depending on the random
choices.

The approach we will use to devising a randomized leader election algorithm
is to use randomization to create asymmetry by having processors choose random
pseudo-identifiers, drawn from some range, and then execute a deterministic leader
election algorithm.

Not every deterministic leader election algorithm can be employed. Regardless
of the method used for generating the pseudo-identifiers, there is always a chance
that they are not distinct. The deterministic leader election algorithm must guarantee
that at most a single processor terminates as a leader even in this case. Also, it is
important that the algorithm does not freeze when all processors choose the same
pseudo-identifier. Finally, it is helpful if the deterministic leader election algorithm
detects that no leader was elected.

A simple deterministic leader election algorithm with these properties is the follow-
ing. Each processor sends a message around the ring to collect all pseudo-identifiers.
When the message returns (after collecting n pseudo-identifiers), a processor knows
whether it is a unique maximum or not.

The pseudocode appears in Algorithm 41.

In this algorithm, the pseudo-identifier is chosen to be 2 with probability 1 /n and
1 with probability (1 — 1/n), where n is the number of processors on the ring. Thus
each processor makes use of its source of randomness exactly once, and the random
numbers are drawn from the range [1..2].

The set of all possible admissible executions of this algorithm for fixed ring size
n contains exactly one execution for each element of the set R = {1,2}™. That is,
by specifying which random number, 1 or 2, is obtained by each of the n processors
in its first step, we have completely determined the execution. Given an element R
of R, we will denote the corresponding execution by exec(R).

We would like to make some claims about the probabilistic behavior of this
algorithm. These claims reduce to claims about the random choices.

300 RANDOMIZATION

Algorithm 41 Randomized leader election in an anonymous ring:
code for processor p;, 0 < i< n— 1.

1: initially // spontaneously or upon receiving the first message
) .. [1 withprobabilityl — £ .

2: id; = { 2 with probability % n /I choose pseudo-identifier

3: send (id;) to left

4: uponreceiving (S) from right

5: if [S| = n then /I your message is back

6: if id; is the unique maximum of & then become elected // the leader

7: else become non-elected // a nonleader

8: else // concatenate your id to the message and forward

9: send (S - id;) to left

Let P be some predicate on executions, for example, at least one leader is elected.
Then Pr[P] is the probability of the event

{R € R : exec(R) satisfies P}

When does the randomized leader election algorithm terminate with a leader?
This happens when a single processor has the maximum identifier, 2. The probability
that a single processor draws 2 is the probability that n — 1 processors draw 1, and one
processor draws 2, times the number of possible choices for the processor drawing

2, that s,
n 1 1 n—1 1 n—1

The probability ¢ is greater than (1 — %)”, which converges from above to e~
increases, where e is the constant = 2.71....

It 1s simple to show that every processor terminates after sending exactly » mes-
sages (Exercise 14.1); moreover, at most one processor terminates in an elected state
(Exercise 14.2). In some executions, for example, when two processors choose the
pseudo-identifier 2, no processor terminates as a leader. However, the above analysis
shows that this happens with probability less than 1 — 1/e. We have shown the
following theorem:

Lasn

Theorem 14.1 There is a randomized algorithm that, with probability ¢ > 1/e,
elects a leader in a synchronous ring; the algorithm sends O(n?) messages.

14.1.3 Synchronous lterated Algorithm and Expectation

It is pleasing that the probability of termination in Algorithm 41 does not decrease
with the ring size n. However, we may wish to increase the probability of termination,
at the expense of more time and messages.

LEADER ELECTION: A CASE STUDY 301

The algorithm can be modified so that each processor receiving a message with n
pseudo-identifiers checks whether a unique leader exists (in Lines 5-7). If not, the
processor chooses a new pseudo-identifier and iterates the algorithm. We will show
that this approach amplifies the probability of success.

We can either have the algorithm terminate after some number of iterations and
experience a nonzero probability of not electing a leader or iterate until a leader is
found and risk that the algorithm does not terminate.

Let us consider the second option in more detail. In order to repeat Algorithm41,
each processor will need to access the random number source multiple times, in fact,
potentially infinitely often. To completely specify an execution of the algorithm,
we will need to specify, for each processor, the sequence of random numbers that it
obtains. Thus R now becomes the set of all n-tuples, each element of which is a
possibly infinite sequence over {1, 2}.

For the iterated algorithm, the probability that the algorithm terminates at the end
of the kth iteration is equal to the probability that the algorithm fails to terminate in
the first & — 1 iterations and succeeds in terminating in the kth iteration. The analysis
in Section 14.1.2 shows that the probability of success in a single iterationis ¢ > 1/e.
Because the probability of success or failure in each iteration is independent, the
desired probability is

(1—c)lc

This probability tends to O as k tends to oo; thus the probability that the algorithm
terminates with an elected leader is 1.

We would now like to measure the time complexity of the iterated algorithm.
Clearly, a worst-case analysis is not informative, since in the worst case the required
number of iterations is infinite. Instead, we will measure the expected number of
iterations. The number of iterations until termination is a geometric random variable
whose expected valueis ¢~ < e. Thus the expected number of iterations is less than
three.

In general, the expected value of any complexity measure is defined as follows.
Let T be a random variable that, for a given execution, is the value of the com-
plexity measure of interest for that run (for instance, the number of iterations until
termination). Let E[7'] be the expected value of T', taken over all B € R. That is,

E[T]=) z-Pr[T=¢z]

x is avalue of T’

Note that by the definition of Pr[P] above, this is ultimately taking probabilities
over .
With this definition, we have the following theorem:

Theorem 14.2 There is a randomized algorithmthat elects a leader in a synchronous
ring with probability I in (1/¢) - n < e - n expected rounds; the algorithm sends
O(n?) expected messages.

302 RANDOMIZATION

14.1.4 Asynchronous Systems and Adversaries

Now suppose we would like to find a randomized leader election algorithm for
asynchronous anonymous rings. Even without the random choices, there are many
executions of the algorithm, depending on when processors take steps and when
messages arrive. To be able to calculate probabilities, we need a way to factor out
the variations due to causes other than the random choices. That is, we need a way to
group the executions of interest so that each group differs only in the random choices;
then we can perform probabilistic calculations separately for each group and then
combine those results in some fashion.

The concept used to account for all the variability other than the random choices is
an adversary. An adversary is a function that takes an execution segment and returns
the next event that is to occur, namely, which processor receives which pending
messages in the next step. The adversary must satisfy the admissibility conditions for
the asynchronous message-passing communication system: Every processor must
take an infinite number of steps and every message must eventually be received. The
adversary can also control the occurrence of failures in the execution, subject to the
relevant admissibility conditions.

An execution of a specific anonymous leader election algorithm is uniquely deter-
mined by an adversary A and an element R € R; it is denoted exec(A, R).

We need to generalize the definitions of Pr[P] and E[7] from the previous
subsections. Given a particular adversary .4, Prq [P] is the probability of the event
{R € R : exec(A, R) satisfies P}. Similarly,

Ea[T] = Z :::-PI‘A[T::L']

wisavalueof T

The performance of the algorithm overall is taken to be the worst over all possible
adversaries. Thus the liveness condition for leader election is that there is a nonzero
probability of termination, for every adversary:

Liveness: There exists ¢ > 0 such that Pry [aleader is elected] > ¢, for every
(admissible) adversary A.

Similarly, the expected number of iterations until termination taken by the algorithm
over all possible adversaries is defined to be

E[T] = maxEa[T]

where T is the number of iterations. E [T'] is a “worst-case average.”

Exercise 14.4 asks youto verify that both the one-shot and the iterated synchronous
leader election algorithms have the same performance in the asynchronous case as
they do in the synchronous case. The reason is that the adversaries actually cannot
affect the termination of these algorithms. Once the pseudo-identifiers are chosen,
the ability of the algorithm to terminate in that iteration is completely unaffected by
the message delays or processor step times.

LEADER ELECTION: A CASE STUDY 303

However, in most situations the adversary can have a great deal of impact on the
workings of a randomized algorithm. As we shall see below, the interaction among
the adversary, the algorithm, and the random choices can be extremely delicate.

Sometimes it is necessary to restrict the power of the adversary in order to be able
to solve the problem. Formally, this is done by defining the input to the function
modeling the adversary to be something less than the entire execution so far.

For example, in message-passing systems, a weak adversary cannot look at the
contents of messages; it is defined as a function that takes as input the message pattern
(indicating who sent messages to whom so far and when they were received, but not
including the contents of the messages).

In shared memory systems, where the output of the adversary is just which proces-
sor takes the next step, a weak adversary cannot observe the local states of processors
or the contents of the shared memory. (Such an adversary is sometimes called
oblivious.)

14.1.5 Impossibility of Uniform Algorithms

The randomized leader election algorithms considered so far have all been nonuni-
form, that is, they depend on n, the number of processors in the ring. Theorem 14.3
states that knowing n is necessary for electing a leader in an anonymous ring, even for
a randomized algorithm. In fact, this impossibility result holds even if the algorithm
only needs to guarantee termination in a single situation.

Theorem 14.3 There is no uniform randomized algorithm for leader election in a
synchronous anonymous ring that terminates in even a single execution for a single
ring size.

We only sketch the proof of this theorem. Assume there exists such a uniform
randomized leader election algorithm A. Consider some execution, «, of A on an
anonymous ring with n processors, qq, . . ., g, 1, In which processor ¢; is elected as
leader. Such an execution exists by assumption. Note that (the description of) the
execution includes the outcomes of the random choices of the processors.

Now consider another execution, g, of A on an anonymous ring with 2n processors,
Po, - -+, Pan—1, Which is a “doubling” of &. Thatis, forany ¢ = 0,...,n — 1, the
events of p; and p,4; in § are the events of g; in «, including the random choices,
with the same interleaving (see Fig. 14.1, for n = 4). The execution g is possible
because processors are anonymous, so we can have p; and py, 44 take the same steps.
However, in 3, both p; and p,, 4 are elected as leaders. This violates the requirement
that only a single leader is elected.

14.1.6 Summary of Probabilistic Definitions

In this subsection, we finish generalizing our definitions and summarize them all.
Our running example so far has been leader election in anonymous rings. Because
any anonymous ring algorithm has a single initial configuration, we have seen no

304 RANDOMIZATION

qo Po
pr 1

43 q1
Ps 2
elected eﬁ:cted

q2
elected
Ps P3

P4

Fig. 14.1 llustration for the proof of Theorem 14.3; n = 4.

impact of the initial configuration on the behavior of randomized algorithm. In the
general case, though, an algorithm can have multiple initial configurations. The
initial configuration is a third source of variability in the behavior of a randomized
algorithm, in addition to the random choices and the adversary.

An execution of a specific algorithm is uniquely determined by an adversary A4,
an initial configuration Cy, and an element R € R; it is denoted exec(A, Cy, R). (R
is determined by the domain from which the random choices of the algorithm are
drawn.)

Let P be some predicate on executions. For fixed adversary A and initial configura-
tion Cy, Pra, ¢, [P] isthe probability of theevent { R € R : exec(A, Cy, R) satisfies P}.
A and Cy may be omitted when they are clear from the context.

The expected value of any complexity measure is defined as follows. Let 7" be a
random variable that, for a given execution, is the value of the complexity measure
of interest for that run. For a fixed admissible adversary .A and initial configuration
Coy, let E 4,¢c,[T] be the expected value of T, taken over all R € R. That is,

Eac,[Tl=) @ Prac[T=c¢]

z is a value of T

Sometimes, we are interested in the probability that a complexity measure (especially
the time complexity) is smaller than some quantity, that is, in Prg ¢, [T < ¢]. In
many cases (depending on the distribution of 77}, this quantity and the expected value
of T" are related.

Define the expected value of a complexity measure for an algorithm, E{T], to
be the maximum, over all admissible adversaries .4 and initial configurations Cj, of
Ea,c, [T]. Because the maximum is taken over all initial configurations, we get to
pick the worst inputs for the algorithm for each adversary.

MUTUAL EXCLUSION WITH SMALL SHARED VARIABLES 305

14.2 MUTUAL EXCLUSION WITH SMALL SHARED VARIABLES

In Chapter 4, we have seen that any deterministic mutual exclusion algorithm for n
processors with k-bounded waiting requires a shared variable with at least Q(log n)
bits (Theorem 4.4). A randomized algorithm can reduce the number of shared bits
required for mutual exclusion while still being fair to all processors, by guaranteeing
that a processor has probability ©(1/n) of succeeding in each attempt to enter the
critical section; the algorithm uses only a constant-size shared variable. The number
of attempts is measured in terms of the number of steps a processor takes after moving
into the entry section and until entering the critical section. This section outlines this
algorithm and points out its intricacies, demonstrating the delicate interplay between
the adversary and the algorithm’s random choices.

The adversary does not have access to the contents of the shared variable or to the
local states of the processors, but it can observe the interaction of the algorithm with
the environment. That is, the adversary can tell which of the four sections, entry,
critical, exit, or remainder, each processor is currently in.

The algorithm consists of phases, each happening between successive entries to
the critical section. Each phase is partitioned into two stages, which determine which
processor will enter the critical section next. While the critical section is not free,
there is a drawing stage, during which each processor wishing to enter the critical
section draws a ticket. The winner of the lottery in the drawing stage is the processor
that draws the highest ticket; if more than one processor draws the highest lottery
ticket, then the first one to draw this ticket (by the actual time of the drawing) is
the winner. When the critical section becomes free, the winner of the lottery is
discovered in a notification stage. The winning processor enters the critical section,
and the drawing stage of the next phase begins.

Assume that each contending processor draws a ticket according to the lottery
used in the previous section (for leader election): 1 with probability 1 — % and 2 with
probability % A calculation similar to the one in the previous section shows that the
probability that a specific processor p; is the only one that draws the maximal ticket
is at least 2, for the same constant ¢ > 0. This fact can be used to bound the number
of attempts a processor needs to execute until entering the critical section. Clearly,
the range of lottery tickets is constant (independent of n), and the maximal ticket
drawn so far can be kept in a shared variable of constant size.

It is possible that several processors see themselves as candidates; in particular, if
1 is drawn before 2 is drawn, then the first processor to draw 1 and the first processor
to draw 2 are both candidates. The notification stage is used to pick the winner among
candidates.

The argument bounding the chances of a specific processor to enter the critical
section depends on having each processor draw a ticket at most once in each phase.
One way to guarantee this property is to keep the phase number in the shared
variable and have the winner of the phase (the processor entering the critical section)
increment it. Then, a processor can limit itself to draw at most one ticket in each
phase by drawing a ticket only if the current phase is larger than the previous phase

306 FRANDOMIZATION

in which it participated. A processor can remember this phase number in a local
variable.

The problem with this solution is that phase numbers are unbounded and cannot
be kept in a constant-size shared variable. Instead, we employ a single random phase
Bit. This bit is set by the processor entering the critical section to be either 0 or 1
with equal probability. We modify the lottery scheme described above, so that only
processors whose previous phase bit is not equal to the shared phase bit may draw a
ticket. In the new lottery:

Pr[p; wins] = Pr|[p; wins | p; draws a ticket] - Pr[p; draws a ticket]

and by the above argument,

1

n 2
for the same constant ¢ > (). Therefore, the probability that a processor p; is the only
processor that draws the maximal ticket is at least <, for some constant ¢’ > 0.

We can now suggest an algorithm that uses a shared read-modify-write variable
with the following components:

io

Pr[p; wins] >

Free: A flag indicating whether there is a processor in the critical section
Phase: The shared phase bit

Max: A two-bitvariable containing the maximum ticket drawn (so far) in the current
lottery: 0, 1 or 2.

In addition, each processor p; has the following local variables:
last;: The bit of the last phase the processor participated in
ticket;: The last ticket the processor has drawn

The pseudocode appears in Algorithm 42. Processors use read-modify-write oper-
ations, which are executed atomically and without interference from other processors.
Lines 1-10 are executed as a single atomic read-modify-write, in which a processor
first decides whether to execute the drawing or the notification stage and then per-
forms all the necessary assignments. When entering the critical section, a processor
marks the critical section as not free, sets the phase bit and resets the maximal ticket
for the next lottery, and initializes its own ticket (Lines 11-14).

Mutual exclusion is guaranteed by the Free component of the shared variable,
which serves as a lock on the critical section (similarly to the shared variable V' in
Algorithm 7).

It may seem that there are at most two candidates in each phase (the first processor
that draws 1 and the first processor that draws 2). However, because the algorithm uses
only a single bit for the phase number and because losers are not always notified, there
may be more than two candidates in a phase. Consider, for example, the following
execution:

MUTUAL EXCLUSION WITH SMALL SHARED VARIABLES 307

Algorithm 42 Mutual exclusion algorithm with small shared variables:
code for processor p;, 0 < i< n—1.

(Entry): // drawing stage
1: iflast # Phase then // didn’t participate in this phase
» g 1

2 ticket = { ; 31:2 g;gzzztg _171;— n // draw a ticket
3: last := Phase // remember this phase number
4: if (ticket > Max) then /I p; is a candidate in this phase
5: Max := ticket

6: else ticket := 0 /1 p; lost

// notification stage

7: wait until Free = true

8: if ticket # Max then /1 p; lost the lottery
9: ticket := ()

10: goto Line 1 // try again

// have the critical section, but clean up first
11: Free := false

. _ [0 with probability £
12: Phase “{ 1 with probability 1
13: Max =10
14: ticket =0
{Critical Section)

(Exit):

15: Free :=true

In some phase with bit 0, p; is the first to draw a 1 ticket and p; is the first to
draw a 2 ticket. In the notification stage, p; is scheduled first, initializes a new phase,
and enters the critical section. When p; is scheduled next, the phase bit is again 0,
and the critical section is free. If no processor drew a 2 ticket so far in this phase,
then p; will execute its notification stage and observes that its ticket is equal to max;
therefore, p; enters the critical section.

Although this kind of behavior is unpredictable, it does not violate the expected
bounded waiting property. Scenarios of the type described before affect only phases
in which the highest ticket drawn is 1; however, the analysis of the lottery considered
only the case where the winner draws 2. Thus the behavior of a winner with a 1 ticket
does not influence the above analysis.

There is, however, a possibility that the adversary can make the algorithm violate
the bounded waiting property. If the adversary wishes to bias against some processor
Pk, it can let p; take steps only in phases in which there are processors with high
lottery values. This decreases pi’s probability of winning the lottery and violates
the bounded waiting property. The adversary could easily have done this if it had
full knowledge of the execution so far, including the local states of processors and
the contents of the shared register. Surprisingly, even without this knowledge, the

308 RANDOMIZATION

adversary can make deductions about information “hidden™ from it; the adversary
can “learn” whether a processor p; has a high lottery value by observing the external
behavior of other processors that participate with this processor in the lottery. The
adversary can learn about the lottery value of a processor by a small “experiment”:

The adversary waits for the critical section to be free. Then it schedules one step
of processor p;, then two steps of some other processor p;, j # ¢, and then observes
whether p; enters the critical section or not. If p; does not enter the critical section
after these two steps, then p;’s lottery value must be 1 and p;’s lottery value is 2.
Note that if p; enters the critical section, the adversary waits for it to exit the critical
section.

If the phase bit of p; happens to be equal to the phase bit of p, then when pj, is
scheduled to take its steps together with p;, it has no chance of entering the critical
section. Similar tricks can be used by the adversary to learn the exact phase bits,
but this is slightly more complicated. Instead, note that the adversary can repeat
the experiment, with other processors, and accumulate a set of processors, P, with
lottery value 2, namely, the processors that play the role of p; when p; does not enter
the critical section after two steps, in the scenario just described.

Note that the phase bits are random, so, with high probability, these processors
have the same phase bit as px. Once we have this set of processors at our disposal,
we can let py take steps always with processors with lottery value 2. Thus, pg’s
probability of entering the critical section can be made very small.

This counterexample shows that arguing about the ability of an adversary is a
delicate task. In this case, the adversary can deduce the values of the local variables
and the shared variable, by scheduling processors and observing their interface with
the environment.

This problem can be avoided by hiding the results of the lottery: The winner of the
current lottery does not enter the critical section immediately, but waits for the next
phase. The winner of the lottery in the previous phase enters the critical section in the
current phase. In each phase, the algorithm executes the drawing stage of the current
lottery, together with the notification stage of the previous lottery. Thus the behavior
of the processors (as observed in the interface) does not indicate the results of the
drawing stage in the current phase. The details of the implementation of this idea,
as well as its correctness proof, are left out; the chapter notes discuss the relevant
literature.

14.3 CONSENSUS

Our last, and perhaps most important, example of the utility of randomization in
distributed computing is the consensus problem. For this problem, randomization
allows us to circumvent inherent limitations—it allows us to solve consensus in
asynchronous systems, and it allows us to achieve consensus in synchronous systems
in fewer than f + 1 rounds, in the presence of f failures.

The randomized consensus problem is to achieve the following conditions:

CONSENSUS 309

Agreement; Nonfaulty processors do not decide on conflicting values.

Validity: If all the processors have the same input, then any value decided upon must
be that common input.

Termination: All nonfaulty processors decide with some nonzero probability.

Agreement and Validity are the usual safety conditions (cf. the definition of the
consensus problem for crash failures in Chapter 5). The Termination condition has
been weakened; ideally, we would like to have termination with probability 1.

We present a randomized asynchronous algorithm for reaching randomized con-
sensus that tolerates f crash failures, under the assumption n > 2f + 1. The
algorithm has constant expected time complexity. This result does not contradict the
impossibility result proved in Chapter 5 (Theorem 5.25), because the randomized
algorithm has executions in which processors do not terminate; however, these exe-
cutions occur with zero probability. In addition, if it is used in a synchronous system,
the randomized algorithm is faster, on average, than the lower bound on the number
of rounds proved in Chapter 5 (Theorem 5.3), for every set of inputs and pattern of
failures.

The proof for Theorem 10.22 can be modified to show that n > 2f + 1 isa
necessary condition for solving randomized consensus in an asynchronous systems,
in the presence of f crash failures (Exercise 14.9). Thus the algorithm we present is
optimal in the number of processors.

The algorithm has two parts: the first is a general phase-based voting scheme
using individual processors’ preferences to reach agreement (when possible), and the
second is a common coin procedure used to break ties among these preferences. As
described later, the general scheme can be adapted to tolerate Byzantine failures by
using the asynchronous simulation of identical Byzantine failures (Algorithm 39). We
also describe a simple common coin procedure that can tolerate Byzantine failures,
which gives exponential expected time complexity.

Randomized consensus algorithms have been the subject of extensive research;
some of the wide literature in this area is mentioned in the chapter notes.

14.3.1 The General Algorithm Scheme

The core of the algorithm is a phase-based voting scheme: Ineach phase, a processor
votes on its (binary) preference for this phase by sending a message containing its
preference. It calculates the outcome of the vote as the majority of all the preferences
received; different processors may see different outcomes. If a processor sees a
unanimous vote for some preference, it decides on this preference. In case some
processors were not able to reach a decision by this point in the phase, processors
exchange their outcomes from the vote. If all outcomes reported to a particular
processor are the same, the processor sets its preference for the next phase to be this
value; otherwise, it obtains its preference for the next phase by “flipping” a common
coin.

310 RANDOMIZATION

Intuitively, a common coin procedure imitates the public tossing of a biased coin
such that all processors see the coin landing on side v with probability at least p,
for every wv; there is a possibility that processors will not see the coin landing on
the same value. Formally, an f-resilient common coin with bias p is a procedure
(with no input) that returns a binary output. For every admissible adversary and
initial configuration, all nonfaulty processors executing the procedure output v with
probability at least p, for any value v € {0, 1}.

A simple f-resilient common coin procedure for any f < n is to have each
processor output a random bit with uniform distribution; the bias of this common
coin is small, 2. Later, we present a common coin procedure with constant bias.
As we shall see below, a larger bias decreases the expected number of rounds until
processors decide.

The voting mechanism and the common coin procedure employ a simple infor-
mation exchange procedure called get-core. This procedure guarantees the existence
of a core set of n — f processors whose values are observed by all (nonfaulty) pro-
cessors; the procedure relies on the assumption that n > 2 f and that all processors
execute it.

Algorithm 43 presents procedure get-core, which has three asynchronous phases;
in every phase, a processor broadcasts to all processors and then collects information
from n — f processors. The algorithm relies on basic broadcast, which involves only
sending a message to all processors and can be implemented in O(1) time.

We first prove the properties of procedure get-core. The next lemma, whose proof
is left to Exercise 14.10, shows that each nonfaulty processor eventually terminates
its invocation of get-core. Recall that we assume that all n > 2 f processes execute
get-core.

Lemma 14.4 If processor p; is nonfaulty, then p; eventually returns from get-core.

Next, we prove the existence of a large core group of processors whose values are
seen by all nonfaulty processors.

Lemma 14.5 There exists a set of processors, C, such that |C| > % and, for every
processor p; € C and every processor p; that returns V; from get-core, V; contains
pi’s argument to get-core.

Proof. Define a table 7" with n rows and n columns. For each ¢ and j between 0 and
n — 1, entry T, 7] contains a one if processor p; receives a (second) message from
p; before sending its (third) message and a zero otherwise. If p; never sends a (third)
message, then 7'[, 5] contains a one if and only if p; sends its (second) message.
Each row contains at least n — f ones, since a processor that sends a (third)
message waits for n — f (second) messages before doing so, and a processor that
does not send a {third) message is the recipient of a (second) message from each of
the n — f (or more) nonfaulty processors. Thus the total number of ones in the table
is at least n(n — f). Since there are n columns it follows that some column £ contains
at least n — f ones. This means that the set P’ of processors not receiving a {(second)
message from p; before sending their {third) message, contains at most f processors.

CONSENSUS 311

Algorithm 43 Procedure get-core: code for processor p;, 0 <: < n — 1.

Initially first-set, second-set, third-set = B;values[j] = L,0< j<n—1

1: when get-core(val) is invoked:

2: values[i) := val

3: be-send({first,val} basic)

4: when (firstv} is received from p;:

5: values[j] := v

6: add j to first-set // track the senders of (first) messages
7: if |first-set] = n — f then

be-send({second,values),basic)

8: when (second, V) is received from p;:
9: if values[k] = L then values[k] := V[k],0<k <n-—1

// merge with p;’s values
10: add j to second-set // track the senders of (second) messages
11: if |second-set| = n — f then

be-send({third, values) basic)

12: when (third, V") is received from p;:
13: if values[k] = L then values(k] := V'[k]),0< k <n-1

// merge with p;’s values
14: add j to third-set // track the senders of (third) messages
15: if |third-set| = n — f then return values

Let W be the set of values sent by p; in its (second) message. By the algorithm,
|W| > n— f > n/2, thatis, W contains the values of at least n — § processors (the
“core” processors).

Since n — f > f, every processor receives at least one (third) message from
a processor not in P’ before completing procedure get-core. This (third) message
clearly includes W, the values of the core processors. This implies the lemma. [

The voting mechanism appears in Algorithm 44. It is deterministic—all the
randomization is embedded in the common coin procedure.

Fix some admissible execution « of the algorithm. We say that processor p;
prefers v in phase r if prefer; equals v in Lines 1-5 of phase . For phase 1 the
preference is the input. For any phase » > 1, the preference for phase r is assigned
either in Line 6 or in Line 7 of the previous phase; if the assignment is in Line 6 then
p; deterministically prefers v in phase r.

If all processors prefer v in some phase r, then they all vote for v in phase r.
Therefore, all processors that reach Line 4 of phase r obtain n — f votes for v and
decide on v. This implies:

312 RANDOMIZATION

Algorithm 44 The consensus algorithm: code for processor p;, 0 < i < n — 1.

Initially » = 1 and prefer = p;’s input z;

1: while true do // phase
2 votes := get-core((vote, prefer, 7))

3: let v be the majority of phase r votes // default if no majority
4 if all phase r votes are v then y := v /! decide v

/I do not terminate, continue with the algorithm
outcomes = get-core({outcome, v, r))
if all phase r outcome values received are w then prefer := w
else prefer ;= common-coin{)
r=r+1

Lemma 14.6 For any r > 1, if all processors reaching phase r prefer v in phase r,
then all nonfaulty processors decide on v no later than phase r.

This lemma already shows that the algorithm has the validity property; if all
processors start with the same input v, then they all prefer » in the first phase and,
therefore, decide on v in the first phase. To prove agreement, we show that if a
processor decides on some value in some phase, then all other processors prefer this
value in later phases. In particular, this implies that once a processor decides on v, it
continues to prefer v in later phases.

For any binary value v, let © denote 1 — v.

Lemma 14.7 For any r > 1, if some processor decides on v in phase r, then all
nonfaulty processors either decide on v in phase r or deterministically prefer v in
phase r -+ 1.

Proof. Assume that some processor p; decides on v in phase r. This implies that p;
obtains only votes for v in phase r. By Lemma 14.5, every other processor obtains
at least n — f votes for v and at most f votes for @, in phase r. Since n > 2f + 1,
n — f has majority over f, and thus all processors see a majority vote for v in phase r.
Thus a processor either decides v or has outcome v in phase r. Since all (outcome)
messages in round r have value v, every processor sets its prefer variable to v at the
end of round r. O

The next lemma shows that if processors’ preferences were picked deterministi-
cally then they agree.

Lemma 14.8 For any r > 1, if some processor deterministically prefers v in phase
r + 1, then no processor decides on v in phase r or deterministically prefers v in
phaser + 1.

Proof. Assume that some processor p; deterministically prefers v in phase r + 1.
By Lemma 14.7, no processor decides on ¥ in phase r.

CONSENSUS 313

Assume, by way of contradiction, that some processor p; deterministically prefers
v in phase » + 1. But then p; sees n — f processors with outcome value v, and
pj sees n — f processors with outcome value v. However, 2(n — f) > n, since
n > 2f + 1; thus, some processor sent {outcome) messages for both v and %, which
is a contradiction. a

Assume that rq is the earliest phase in which some processor, say p;, decides on
some value, say v. By Lemma 14.8, no nonfaulty processor decides on ¥ in phase
7rg; by the minimality of rg, no nonfaulty processor decides on @ in any earlier phase.
Lemma 14.7 implies that all nonfaulty processors prefer v in round ry + 1, and finally,
Lemma 14.6 implies that all nonfaulty processors decide on v no later than round
rg + 1. Thus the algorithm satisfies the agreement condition:

Lemma 14.9 If some processor decides on v then all nonfaulty processors eventually
decide on v.

In fact, all nonfaulty processors decide on v no later than one phase later. The
algorithm, as presented so far, requires processors to continue even after they decide;
however, the last observation implies that a processor need only participate in the
algorithm for one more phase after deciding. (See Exercise 14.12.)

To bound the expected time complexity of the algorithm, we prove that the prob-
ability of deciding in a certain phase is at least p, the bias of the common coin.

Lemma 14.10 For any r > 1, the probability that all nonfaulty processors decide
by phase r is at least p.

Proof. We consider two cases.

Case 1: All nonfaulty processors set their preference for phase r to the return
value of the common coin. The probability that all nonfaulty processors obtain the
same value from the common coin is at least 2p—with probability p they all obtain
0 and with probability p they all obtain 1, and these two events are disjoint. In this
case, all processors prefer v in phase r, so they decide at the end of phase r, by
Lemma 14.6.

Case 2: Some processor deterministically prefers v in phase r. Then no processor
deterministically prefers ¥ in phase r, by Lemma 14.8. Thus each processor that
reaches phase 7 either decides on v in phase r — 1, or deterministically prefers v in
phase 7, or uses the common coin to set its preference for phase r. In the latter case,
with probability at least p, the return value of the common coin of phase r is v for all
processors. Thus, with probability at least p, all processors that reach phase r prefer
v in phase 7, and, by Lemma 14.6, all nonfaulty processors decide on v in phase r.

O

Theorem 14.11 If Algorithm 44 uses a common coin procedure with bias p, whose
expected time complexity is T, then the expected time complexity of Algorithm 44 is
O(p~*7).

314 RANDOMIZATION

Algorithm 45 Procedure common-coin: code for processor p;, 0 < i < n — 1.

1: when common-coin() is invoked:
_ | 0 with probability 1
€= { 1 with probability 1 — L
coins := get-core((flip,c))
if there exists j such that coins[j] = 0 then return 0
else return 1

Proof. First note that whenn > 2f + 1, procedure get-core takes O(1) time.

By Lemma 14.10, the probability of terminating after one phase is at least p.
Therefore, the probability of terminating after i phases is at least (1 — p)*~!p. There-
fore, the number of phases until termination is a geometric random variable whose
expected value is p~!.

Clearly, the time complexity of the common coin procedure dominates the time
complexity of a phase. Thus each phase requires O(7") expected time and therefore,
the expected time complexity of the algorithm is O(p~17"). O

14.3.2 A Common Coin with Constant Bias

As mentioned before, there is a simple f-resilient common coin algorithm with bias
27" and constant running time, for every f < n; each processor outputs a random
bit with uniform distribution. Clearly, with probability 2" the value of the common
coin for all processors is v, for any v = 0,1. The expected time complexity of
Algorithm 44 when using this coin is O(2"), by Theorem 14.11.

To get constant expected time complexity, we present an implementation for the
procedure common-coin with constant bias. The different invocations of common-coin
in the different phases of Algorithm 44 need to be distinguished from each other; this
can be achieved by adding the phase number to the messages.

‘We present a common coin algorithm with bias %; the algorithm tolerates [2] — 1
crash failures. The key idea of the common coin algorithm is to base the value of the
common coin on the local (independent) coin flips of a set of processors. Procedure
get-core (from the previous section) is used to ensure that there is a large core set of
processors whose local coin flips are used by all nonfaulty processors; this increases
the probability that nonfaulty processors obtain the same return value for the common
coin.

Processors begin the algorithm by randomly choosing O or 1 (with carefully se-
lected asymmetric probabilities) and exchange their flips by using get-core. Processor
p; returns O for the common coin procedure if it received at least one 0 flip; otherwise,
itreturns 1. The pseudocode appears in Algorithm 45,

The correctness of the algorithm depends on all processors executing it; we can
modify Algorithm 44 so that the procedure is executed in every phase, regardless of
whether the processor needs the coin in that phase.

CONSENSUS 315

The common coin procedure assumes that the channels are secure and cannot
be read by the adversary—only the recipient of a message can learn its contents.
This assumption corresponds to a weak adversary, that is, one that takes as input the
pattern of messages, but not their contents; because the message pattern is the same
regardless of the random choices, the adversary can obtain no information at runtime
about the random choices.

Lemma 14.12 Algorithm 45 implements a ([2] — 1)-resilient coin with bias .

Proof. Fix any admissible adversary and initial configuration. All probabilities are
calculated with respect to them.

First we show that the probability that all nonfaulty processors see the coin as 1 is
at least i—. This probability is at least the probability that every processor that executes
Line 1 obtains 1. (Of course, there are other cases in which all nonfaulty processors
terminate with 1, but it is sufficient to consider only this case.) The probability that
an arbitrary processor obtains 1 inLine 1 is 1 - %, and thus the probability that every
processor that executes Line 1 obtains 1 is at least (1 — %)n, because the different
processors’ random choices are independent. For n > 2, the function (1 — fl—z)” is
increasing up to its limit of e 1. When n = 2, this function is % and we are done.

To show the probability that all nonfaulty processors see the coin as 0 is at least %,
consider the set C of core processors, whose existence is guaranteed by Lemma 14.5.
Since every processor that returns from Algorithm 45 observes the random choices
of all processors in C, all nonfaulty processors see the coin as 0 if some processor in
C obtains 0 in Line 1.

The probability that some processor in C' gets a 0 in Line 1 is 1 — (1 — %)IC‘I,
which is more than 1 — (1 — %)”/ 2. To verify that this last expression is at least 1,
it suffices to verify that (1 — 1)" < (2)2. Since (1 — 1) is increasing up to its
limit, we must verify that the limiting value e~ ! is at most (2). This holds since
e”! ~ 0.46 and (2)? ~ 0.56.]

Note that the time complexity of the common coin algorithm is O(1). Because
Algorithm45 provides a ([%] — 1)-resilient common coin with bias %, Theorem 14.11
implies:

Theorem 14.13 Ifn > 2f + 1, then there is a randomized consensus algorithm with
O(1) expected time complexity that can tolerate { crash failures in an asynchronous
system.

14.3.3 Tolerating Byzantine Failures

In this section, we describe modifications to the previous algorithm to tolerate Byzan-
tine failures.

The first modification is to the broadcast primitive employed. Instead of using the
basic broadcast from Chapter 8, we will use failure model simulations from Chap-
ter 12. The first step is to mask the potential two-faced behavior of the Byzantine

316 RANDOMIZATION

processors with the asynchronous identical Byzantine failures simulation (Algo-
rithm 39). On top of that, we will need a validation procedure to eliminate inap-
propriate messages and simulate asynchronous omission failures; the synchronous
validate procedure (from Algorithm 37) can be modified to work in the asynchronous
case.

The second modification is to use a common coin procedure that tolerates f
Byzantine failures with bias p. The simple common coin algorithm, in which each
processor flips a local coin, tolerates any number of Byzantine failures with an ex-
ponential bias. However, the exponentially small bias leads to exponentially large
expected time complexity for the resulting algorithm. The running time is dramati-
cally improved if a common coin with constant bias is used. Implementing a common
coin with constant bias that tolerates Byzantine failures requires sophisticated tech-
niques; for more details, see the chapter notes.

We leave it to the reader as an exercise to prove that the modified Algorithm 44
solves randomized consensus in the presence of f Byzantine failures. Moreover, if the
expected time complexity of the common coin algorithmis 7', then the expected time
complexity of the randomized consensus algorithmis p~17". (See Exercise 14.13.)

The proof of the lower bound of Chapter 5 (Theorem 5.8) can be extended to
prove that randomized consensus is possible only if n > 3 f + 1. Thus the algorithm
sketched in this section is optimal in the number of processors.

14.3.4 Shared Memory Systems

We now discuss how randomized consensus can be achieved in shared memory
systems.

One possible way is to run the algorithms for message-passing systems by using
some simple simulation, for example, the one described in Section 5.3.3, in a shared
memory system. This approach suffers from two major shortcomings: First, the
resulting algorithms are not wait-free, that is, they tolerate only n/2 failures at best;
in message-passing systems we cannot hope to tolerate more failures, but this is not the
case in shared memory systems. Second, because we only care about tolerating crash
failures in shared memory systems, the algorithm can cope with stronger adversaries,
such as those that have access to the local states and the contents of shared memory.

Interestingly, randomized consensus algorithms for shared memory systems have
a general structure very similar to that of the message-passing algorithms.

Again, we have a deterministic algorithm that operates in (asynchronous) phases:
A processor has a preference for decision at each phase; the processor announces its
preference and it checks to see whether there is support for some decision value; if
there is strong support for some value, the processor decides on it; if there is weak
support for some value, the processor takes this value as preference to the next phase;
if no single value has support, then the processor flips a coin (typically using some
common coin procedure) to get a preference for the next phase.

Unlike the message-passing algorithms, because the algorithm has to be wait-free,
we cannot count on the existence of a certain number of nonfaulty processors in each
phase. Therefore, support level is not determined by the number of votes for a value,

CONSENSUS 317

but rather according to the largest phase in which some processor prefers this value.
We do not discuss further details of this scheme here, and refer the reader to the
chapter notes.

A simple common coin with exponential bias can be implemented by independent
coin flips, as described for message-passing systems. More sophisticated techniques
are required to obtain constant bias; they are also discussed in the chapter notes.

Exercises

14.1
14.2
14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10
14.11

Prove that every processor terminates Algorithm 41 after sending n messages.
Prove that at most one processor terminates Algorithm 41 as a leader.

Modify Algorithm 41 so that each message contains a single pseudo-identifier:
The termination condition for the algorithm (Lines 6 and 7) needs to be
modified.

Prove that both the one-shot and the iterated synchronous leader election
algorithms (Algorithm 41 and its extension) have the same performance in the
asynchronous case as they do in the synchronous.

Show that for synchronous anonymous ring algorithms, there is only a single
adversary.

Complete the details of the proof of Theorem 14.3.

Try to prove a stronger result showing that there is no randomized leader
election algorithm that knows n within a factor larger than 2. Formally, prove
that there is no randomized leader election algorithm that works both for rings
of size n and for rings of size 2n.

Calculate the average message complexity of the randomized consensus al-
gorithm (Algorithm 44), given a common coin with bias p > 0.

Calculate the average message complexity of the common coin procedure of
Algorithm 45.

Prove that n > 2f + 1 is a necessary condition for solving randomized
consensus in an asynchronous systems, in the presence of f crash failures.

Hint: Modify the proof for Theorem 10.22.
Prove Lemma 14.4.

Suppose we have a more restricted model, in which processors can choose
random values only with uniform probability distributions (on a bounded
range). Show how to pick 0 with probability 1/n and 1 with probability
1 — 1/n, as needed for Algorithm 45.

318 RANDOMIZATION

14.12 Modify the pseudocode of Algorithm 44 so that processors terminate one
phase after deciding. Prove that the modified algorithm solves randomized
consensus.

14.13 Extend Algorithm 44 to tolerate f > n/3 Byzantine failures, using asyn-
chronous identical Byzantine failures and a modified version of validate from
Chapter 12. Assume the existence of a common coin procedure that tolerates
f Byzantine failures, with bias p.

14.14 Prove that randomized consensus with probability 1 is possible only if n >
3f + 1, when there are Byzantine failures.

Hint: Extend the proof of Theorem 5.8, noting that every finite execution has
at least one extension that terminates.

Chapter Notes

The book on randomized algorithms by Motwani and Raghavan [194] includes a
chapter on distributed algorithms. The survey by Gupta, Smolka, and Bhaskar [127]
covers randomized algorithms for dining philosophers, leader election, message
routing, and consensus.

Itai and Rodeh [141] were the first to study randomized algorithms for leader
election; the proof showing nonexistence of a uniform leader election algorithm in
an anonymous ring is taken from their paper. In fact, they show that a necessary and
sufficient condition for the existence of a randomized leader election algorithm for
anonymous rings is knowing the number of processors on the ring within a factor of
two (Exercise 14.6). Higham’s thesis [136] describes improved algorithms and lower
bounds for leader election and computation of other functions on rings.

Randomized leader election algorithms for systems with general topology were
presented by Schieber and Snir [234] and by Afek and Matias [6].

An algorithm for mutual exclusion with small shared variables was suggested by
Rabin [223]; this algorithm has average waiting time depending on 1, the number of
processors actually contending for the critical section, and requires a O(log log n)-bit
shared variable. The algorithm we presented has average waiting time depending
on n, the number of processors, and uses a constant-size shared variable; this algo-
rithm appears in [223] and is credited to Ben-Or. Saias [232] has shown that the
adversary can increase the expected waiting time of a processor, showing that the
original algorithm of Rabin did not have the claimed properties. Kushilevitz and Ra-
bin [151] have shown how to overcome this problem; Kushilevitz, Mansour, Rabin,
and Zuckerman [150] proved lower bounds on the size of shared variables required
for providing low expected bounded waiting.

The first randomized algorithm for consensus in an asynchronous message-passing
system was suggested by Ben-Or [48]; this algorithm tolerated Byzantine failures
and required n > 5f; its expected running time was exponential. A long sequence of
randomized algorithms for consensus followed, solving the problem under different

CHAPTER NOTES 319

assumptions about the adversary, the failure type, the ratio of faulty processors, and
more. A survey by Chor and Dwork [80] describes this research prior to 1988.
Aspnes [21] surveys later advances in this area.

In 1988, Feldman and Micali [104] presented the first algorithm that tolerates a
linear fraction of Byzantine failures with constant expected time; they presented a
synchronous algorithm requiring n > 3f and an asynchronous algorithm requiring
n > 4f. The best asynchronous algorithm known to date, due to Canetti and
Rabin [65], tolerates Byzantine failures with constant expected time and only requires
n > 3f.

Our presentation follows Canetti and Rabin’s algorithm, simplified to handle only
crash failures; the procedure for obtaining a core set of values was suggested by Eli
Gafni. The deterministic voting scheme of Canetti and Rabin’s algorithm is inspired
by Bracha [60]. Bracha’s algorithm uses a simulation of identical Byzantine failures
together with a validation (as in Chapter 12); Bracha’s paper includes the answer to
Exercise 14.13. Canetti and Rabin, on the other hand, embed explicit validation in
their algorithm.

There is no upper bound on the running time of the consensus algorithm presented
here that holds for all executions. Goldreich and Petrank [123] showed how to
obtain a synchronous consensus algorithm (for Byzantine failures) that has constant
expected time complexity and is guaranteed to terminate within f + 2 rounds.

There are also many randomized consensus algorithms for shared memory sys-
tems. Although there are many similarities in the overall structure, the common coin
is typically implemented using different techniques than those in message-passing
systems. These algorithms are wait-free but do not have to tolerate Byzantine fail-
ures. Therefore, they can withstand a strong adversary, which can observe the local
states and the shared memory. Against such an adversary, cryptographic techniques
are not helpful.

The first randomized consensus algorithm for shared memory systems was given
by Chor, Israeli, and Li [81]; this algorithm assumed an adversary that cannot read
the local states of processors. Later, Abrahamson [1] presented the first algorithm
that can withstand a strong adversary. This was followed by a number of algorithms;
to date, the best algorithm that tolerates a strong adversary is due to Aspnes and
Waarts [23]. Aspnes [20] proved a lower bound on the number of coin flips needed
for solving consensus.

The algorithms presented here demonstrate a general methodology for using ran-
domization safely. A deterministic mechanism guarantees the safety properties re-
gardless of the adversary (mostly as a separate module), for example, having only a
single leader or having agreement and validity; randomization enters the algorithm
only to guarantee liveness properties, for example, termination or bounded waiting.

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

15

Wait-Free Simulations of
Arbitrary Objects

The results of Chapter 5 indicate that read/write registers memory do not suffice for
wait-free coordination among processors; for example, consensus cannot be solved
by using only reads and writes. Indeed, most modern and proposed multiproces-
sors provide some set of “‘stronger” hardware primitives for coordination. But are
these primitives sufficient? Can they be used to provide a wait-free (fault tolerant)
simulation of any desired high-level object in software?

In Chapter 10, we saw how stronger shared objects can be simulated with simpler
shared objects, in a manner that is wait-free. A closer look at the objects studied
in that chapter reveals that the operations they support involve either reading or
writing portions of the shared memory. They differ in their size (whether the values
read are binary or can take arbitrary values), in their access pattern (whether a
single processor or several processors can read or write a location), and in their read
granularity (whether a single location or several locations are read in a single step).
However, none of them allows a processor to read and write in an atomic step, as
happens in a read-modify-write or test&set operation.

In this chapter, we show that this is inherent, that is, that some shared objects
cannot be simulated with other shared objects, in a wait-free manner. We investigate
the following question: Given two types of (linearizable) shared objects, X and Y,
is there a wait-free simulation of object type Y using only objects of type X and
read/write objects? It turns out that the answer depends on whether X and Y can be
used to solve the consensus problem.

Slightly weaker than wait-free simulations are nonblocking simulations. The idea
of anonblocking simulation is that, starting at any pointin an admissible execution in
which some high-level operations are pending, there is a finite sequence of steps by a

321

322 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

single processor that will complete one of the pending operations. It is not necessarily
the processor taking the steps whose operation is completed—it is possible that this
processor will make progress on behalf of another processor while being unable
to finish its own operation. However, this definition is not quite correct. For an
operation to complete, technically speaking, the invoking processor has to do at
least one step, the response. That is, another processor cannot totally complete an
operation for another. To avoid this problem, we specify that an operation is pending
if its response is not enabled.

The nonblocking condition is a global progress property that applies to the whole
system, not to individual processors. The distinction between wait-free and non-
blocking algorithms is similar to the distinction between no-lockout and no-deadlock
algorithms for mutual exclusion.

We start this chapter by considering a specific object, the FIFO queue, and then
extend the results to arbitrary objects. For convenience, we often identify an object
type with the operations that can be applied to its instances.

15.1 EXAMPLE: A FIFO QUEUE

The approach we take is to compare the objects by their ability to support a wait-free
consensus algorithm among a certain number of processors. To gain intuition, let
us consider, first, a specific object, namely a FIFO queue, and see which objects
cannot simulate it and which objects cannot be simulated with it. This example
illustrates many of the general ideas we discuss later; furthermore, the FIFO queue
is an important data structure widely used in operating systems software.

By the methodology of Chapter 7, the specification of a FIFO queue () is as
follows. The operations are [enq(@, z),ack(Q)] and [deq(Q).return(Q, x)], where
z can be any value that can be stored in the queue (a can be 1. for the return). The
set of allowable operation sequences consists of all sequences of operations that are
consistent with the usual semantics of a sequential FIFO queue, namely, values are
dequeued in the order in which they were enqueued. The events on FIFO queues are
enq, deq, ack, and return.

Recall, from Chapter 5, that there is no wait-free consensus algorithm for any
number of processors greater than one if we only have read/write objects. We now
show that there is a wait-free consensus algorithm for two processors pg and p1, using
a FIFO queue and read/write objects.

The algorithm uses two read/write objects and one shared FIFO queue (@ that
initially holds 0. Processor p; writes its input to a shared read/write object Prefer|s]
and then dequeues the queue. If the dequeued value is 0, then p; accessed the queue
before the other processor did and is the “winner,” and it decides on its own input.
Otherwise p; “lost” to the other processor and it reads Prefer[1 — i] and decides on
that value (see pseudocode in Algorithm46). The correctness of the algorithm is left
as an exercise.

Lemma 15,1 Algorithm 46 solves consensus for two processors.

EXAMPLE: A FIFO QUEUE 323

Algorithm 46 Consensus algorithm for two processors, using a FIFO queue:
code for processor p;, 1 = 0, 1.

Initially @ = {0} and Prefer[i] = L,i=0,1

1: Preferli] =z /1 write your input
2: val :=deq(Q)

3 ifval=0theny =« /! dequeued the first element, decide on your input
4: elsey := Prefer[l — i] // decide on other’s input

If there was a wait-free simulation of FIFO queues with read/write objects, then
there would be a wait-free consensus algorithm, for two processors, using only
read/write objects. Because there is no such algorithm, an immediate implication is:

Theorem 15.2 There is no wait-free simulation of a FIFO queue with read/write
objects for any number of processors.

This is a special case of a general theorem we present below (Theorem 15.5).

There are objects that admit wait-free consensus algorithms for any number of
processors, for example, comparedswap. 1t is simplest to present the sequential
specification of a compare&swap object by the following procedure:

compare&swap(X : memory address; old , new : value) returns value
previous: = X
if previous = old then X := new
return previous

Algorithm 47 solves consensus for any number of processors, using a single
compare&swap object. The object, called First, is initially |. Processor p; performs
compare&swap on First, trying to store its own input, ; init, if Firstis still initialized.
If the operation is successful, that is, if it returns L, the processor decides on its own
input; otherwise, the compare&swap operation returns the input value, », of some
processor, and processor p; decides on v.

On the other hand, FIFO queue objects (and read/write objects) cannot support a
wait-free consensus algorithm for three processors or more.

Theorem 15.3 There is no n-processor wait-free consensus algorithm using only
FIFO queues and read/write objects, ifn > 3.

Proof. We must show that there is no three-processor consensus algorithm using
queues and read/write objects in an asynchronous system in which up to two pro-
cessors can fail. The proof of this theorem has the same structure as the proof of
Theorem 5.18.

Assume, in contradiction, that there is such an algorithm for three processors,
Pu, P1, and ps. Because shared objects are linearizable, we shall simplify our notation
by combining invocations and matching responses on a shared object into a single
step by the processor.

324 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

Algorithm 47 Consensus algorithm for any number of processors, using
compare&swap: code for processor p;, 0 < i< n — 1.

Initially First = L

1. v :=compare&swap(First,1,z)

2: ifv = L then // this is the first compare&swap
3: y =z /I decide on your own input
4: elsey:=v // decide on someone else’s input

By Lemma 5.16, the algorithm has an initial bivalent configuration, B.

As in the proof of Theorem 5.18, we let po, p1, and p, take steps until we reach a
critical configuration, C, such that pg(C), p1(C), and p3(C) are all univalent. Note
that they cannot all have the same value, or C' would not be bivalent. Without loss of
generality, assume that pg(C) is O-valent and p; (C) is 1-valent (see Fig. 15.1).

What are pp and p; doing in their steps from C'? If py and p; access different
variables or access the same read/write object, then we can employ arguments similar
to those used in the proof of Theorem 5.18 to derive a contradiction. So, the interesting
case is when pg and p; access the same FIFO queue object, (). We consider three
cases.

Case 1: pg and p; both dequeue from Q. In this case, po(C) % p1(C). Since
po(C) is O-valent, Lemma 5.15 implies that p,(C) is also O-valent, which is a
contradiction.

Case 2: pg enqueues on (), and p; dequeues from @) (or vice versa). If Q) is not
empty in C, then in p; (pg(C')) and po(p1(C')) all objects and all processors are in the
same state, which is a contradiction since p1 (py(C')) is O-valent whereas pq(p1(C))
is 1-valent.

If Q is empty, then p;’s dequeue in C' returns an empty indication, whereas p;’s
dequeue in py (C) does not return an empty indication; so the previous argument does
not apply. However, po(C) = py(p:(C)). Since p1(C) is 1-valent, py(p1(C)) is
also 1-valent, and by Lemma 5.15, py(C)) is 1-valent, which is a contradiction.

Case 3: py and py both enqueue on Q. Suppose py enqueues a and p; engqueues b
(see Fig. 15.2). Let k& — 1 be the number of values in @ in C. Thus in py(C) the kth
value is @, and in p; (C) the kth value is b.

¢ bivalent
p P1 2
(-valent 1-valent univalent

Fig. 15.1 The critical configuration, C.

EXAMPLE: A FIFO QUEUE 325

p1 enqueues

bon@ g

1-valent

Po enqueues
aon(@

0-valent

Fig. 15.2 Case 3 in the proof of Theorem 15.3.

We will show that we can run py alone until it dequeues the ¢ and then run p;
alone until it dequeues the 4. This means that even if a and b are enqueued in the
opposite order, we can run pg alone until it dequeues the b and then run p; alone until
it dequeues the a. Now p2 cannot tell the difference between the two possible orders
in which a and b are enqueued, which is a contradiction. The details follow.

Starting from p; (pg(C')), there is a finite py-only schedule, o, that ends with py
deciding 0, since po(C) is 0-valent and the algorithm is wait-free. We first argue that
in ¢, po must dequeue the kth element. Suppose otherwise, that in o, py does fewer
than & dequeues on (), so that it never dequeues the a. Then, when we apply the
schedule poo to p1(C), po also decides 0, which contradicts the fact that p;(C) is
1-valent.

Thus py must perform at least k dequeues on) in o. Let ¢’ be the longest prefix
of o that does not include py’s kth dequeue on Q.

Starting from o’ (p1(po(C))), there is a finite p1-only schedule 7 that ends with p;
deciding 0. We now argue that p; must dequeue from () at some pointin 7. Assume
otherwise that p; never dequeues from () in 7; namely, p; never dequeues b from the
head of (). Then when we apply the schedule 7 to o/ (po(p1(C))), p1 also decides 0,
which contradicts the fact that p; (C) is 1-valent.

Thus it must be that p; dequeues from @ in 7. Let 7° be the longest prefix of 7
that does not include p;’s dequeue on Q.

Consider two extensions from C' (see Fig. 15.3):

First, consider the execution in which py enqueues a on (); p; enqueues b on Q;
pp only takes steps in o5 pg dequeues the a; p; only takes steps in 7/; p; dequeues
the b. Let Dy be the resulting configuration.

Second, consider the execution in which p; enqueues b on (); pg enqueues a on
Q; po only takes steps in o”; pg dequeues the b; p; only takes steps in 7’; p1 dequeues
the a. Let Dy be the resulting configuration.

However, Dy k2 Dy, and therefore, by Lemma 5.15, they must have the same
valence. This is a contradiction since Dy is reachable from p: (pe(C)), which is
0-valent, whereas 1), is reachable from pg(p;(C)), which is 1-valent.

This implies:

326 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

C 1 enqueues pg enqueues

bonQ) aon()

Po enqueues o
aon@
po dequeues
bpl enqueues b from ()
0
nQ »
0./
p1 dequeues Do

pofdequéues a from)

a from

/

p1 dequeues
b from Q D:

Fig. 15.3 Final stage in Case 3.

Theorem 15.4 There is no wait-free simulation of a compare&swap object with
FIFO queue objects and read/write objects, for three processors or more.

15.2 THE WAIT-FREE HIERARCHY

The methods used for FIFO queues can be generalized into a criterion for the existence
of wait-free simulations. The criterionis based on the ability of the objects to support
a consensus algorithm for a certain number of processors.

Object type X solves wait-free n-processor consensus if there exists an asyn-
chronous consensus algorithm for n processors, up to n — 1 of which might fail (by
crashing), using only shared objects of type X and read/write objects.

The consensus number of object type X is n, denoted CN(X) = n, if n is the
largest value for which X solves wait-free n-processor consensus. The consensus
number is infinity if X solves wait-free n-processor consensus for every n. Note that
the consensus number of an object type X is at least 1, because any object trivially
solves wait-free one-processor consensus.

For example, the consensus number of read/write objects is 1. There is a trivial
algorithm for one-processor consensus using read/write objects, and back in Chapter 5
we showed that there is no wait-free algorithm for two-processor consensus, using
only read/write objects.

As shown in Section 15.1, the consensus number of FIFO queues is 2. Other
examples of objects with consensus number 2 are test&set, swap, fetch&add, and
stacks.

As implied by Algorithm 15.2, the consensus number of compare&swap is in-
finity. Other objects with infinite consensus number are memory-to-memory move,

UNIVERSALITY 327

memory-to-memory swap, augmented queues, and fetch&cons (see Exercise 15.7).
In fact, there is a hierarchy of object types, according to their consensus numbers; in
particular, there are objects with consensus number m, for any m (see Exercise 15.8).

The consensus number of objects is interesting because of Theorem 15.5, which
is the key result of this section.

Theorem 15.5 If CN(X) = m and CN(Y) = n > m, then there is no wait-free
simulation of Y with X and read/write registers in a system with more than m
processors.

Proof. Suppose, in contradiction, that there is a wait-free simulation of ¥ with X
and read/write registers in a system with k > m processors. Denote [= min{k, n},
and note that [> m. We argue that there exists a wait-free [-processor consensus
algorithm using objects of type X and read/write objects.

Note that even if [< k, then there is also a wait-free simulation of ¥ with X in
a system with { processors. Such a simulation can be achieved by employing k — [
“fictitious” processors, that never access the object Y.

Since | < n, there exists a wait-free [-processor consensus algorithm, A, which
uses only objects of type Y and read/write objects. We can obtain another algorithm
A’ by replacing each type Y object with a wait-free simulation of it using objects of
type X and read/write objects. Such a wait-free simulation of type Y objects exists,
by assumption.

Then A’ is a wait-free [-processor consensus algorithm using objects of type X
and read/write objects. Therefore, X has consensus number at least [> m, which is
a contradiction. O

Corollary 15.6 There is no wait-free simulation of any object with consensus number
greater than | using read/write objects.

Corollary 15.7 There is no wait-free simulation of any object with consensus number
greater than 2 using FIFO queues and read/write objects.

15.3 UNIVERSALITY

In Section 15.2, we have used the consensus number of objects to prove that certain
objects cannot be wait-free simulated by other objects, that is, to show impossibility
results. It turns out the consensus number can also be used to derive positive results,
that is, wait-free simulations of objects, as shown in this section.

An object is universal if it, together with read/write registers, wait-free simulates
any other object. In this section we show that any object X whose consensus number
is 7 is universal in a system of at most n processors. Somewhat counter-intuitively,
this does not imply, say, that X is universal in any system with m > n processors;
this and other anomalies of the notion of universality are discussed in the chapter
notes.

328 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

anchor
inv inv inv=1
new-state new-state new-state=initial
response f response f) f response=_1{
before before before=_L.

Fig. 15.4 Data structures for nonblocking simulation using compare&swap.

We prove this result by presenting a universal algorithm for wait-free simulating
any object using only objects of type X and read/write registers. First, we present a
universal algorithm for any object in a system of n processors using only n-processor
consensus objects and read/write registers. Informally speaking, n-processor con-
sensus objects are data structures that allow n processors to solve consensus; a
more precise specification appears below. We then use X to simulate n-processor
consensus objects.

15.3.1 A Nonblocking Simulation Using Compare&Swap

We start with a simple universal algorithm that is nonblocking but not wait-free.
Furthermore, this algorithm uses a specific universal object, that is, compare&swap.
This will introduce the basic ideas of the universal algorithm; later, we show how to
use a generic consensus object and how to make the algorithm wait-free.

The idea is to represent an object as a shared linked list, which contains the ordered
sequence of operations applied to the object. To apply an operation to the object, a
processor has to thread it at the head of the linked list. A compare&swap object is
used to manage the head of the list. Specifically, an operation is represented by a
shared record of type opr with the following components:

inv: The operation invocation, including its parameters

new-state: The new state of the object, after applying the operation
response: The response of the operation, including its return value
before: A pointer to the record of the previous operation on the object

In addition, a compare&swap variable, called Head, points to the opr record of
the last operation applied to the object. The initial value of the object is represented
by a special anchor record, of type opr, with new-state set to the initial state of the
object. Initially, Head points to the anchor record.

The Head pointer, the opr records, and their before pointers comprise the object’s
representation (see Fig. 15.4).

To perform an operation, a processor allocates an opr record, initializing it to the
appropriate values, using the state information in the record at the Head of the list.

UNIVERSALITY 329

Algorithm 48 A nonblocking universal algorithm using compare&swap:
code for processor p;, 0 < i <n— 1.

Initially Head points to the anchor record

1: when inv occurs: // operation invocation, including parameters
2 allocate a new opr record pointed to by point with point.inv := inv

3 repeat

4 h := Head

5: point.new-state, point.response = apply(inv,h.new-state)

6 point.before := h

7 until compare&swap(Head, h, poinf) = h

8 enable the output indicated by point.response // operation response

Then it tries to thread this record onto the linked list by applying compare&swap to
Head.

In more detail, the compare&swap compares the current Head with the value of
Head obtained by the processor when it updated the new opr record. If the compare
finds that they are the same, implying that no new operation record has been threaded
in the meantime, then the swap causes Head to point to the processor’s opr record.
Otherwise, the processor again reads Head, updates its new record, and tries the
compare&swap.

The pseudocode appears in Algorithm 48. It uses the function apply, which
calculates the result of applying an operation to the current state of the object. The
notation X.v, where X is a pointer to a record, refers to the v field of the record
pointed to by X.

Proving that Algorithm 48 simulates the object is straightforward. The desired
linearization is derived from the ordering of operations in the linked list.

The algorithm is nonblocking—if a processor does not succeed in threading its
operation on the linked list, it must be that some other processor’s compare&swap
operation succeeded, that is, another processor has threaded its operation on the list.
Note that the algorithm is not wait-free because the same processor might succeed in
applying its operation again and again, locking all other processors out of access to
the shared object.

15.3.2 A Nonblocking Algorithm Using Consensus Objects

Algorithm 48 has three shortcomings: first, it uses compare&swap objects, rather
than arbitrary consensus objects; second, it is nonblocking, rather than wait-free;
and third, it uses an unbounded amount of memory. We now address each of these
problems, incrementally presenting the algorithm.

First, we show how to replace the compare&swap operations with an arbitrary con-
sensus object. A consensus object Obj provides a single operation [decide(0bj, in),
return{0bj, out)], where in and out are taken from some domain of values. The set

330 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

of operation sequences consists of all sequences of operations in which all out values
are equal to some in value. Consensus objects provide a data structure version of the
consensus problem.

A first attempt might be to replace the Head pointer (which is a compare&swap
object) with a consensus object. The consensus object will be used to decide which
processor will thread its new operation on the list, that is, which operation will be
applied next to the shared object being simulated. Note, however, that a consensus
object can be used only once; after the first processor wins the consensus and threads
its operation, the consensus object will always return the same value. Therefore, the
consensus object cannot be used to thread additional records on the list.

The solution is to perform the competition (to decide which processor gets to
thread its next operation) on a consensus object associated with the record at the head
of the list. That is, we replace the before component of the record with a component
called after, which is a consensus object pointing to the next operation applied to the
object. To perform an operation, as in the previous algorithm, a processor creates
an opr record and tries to thread it to the list. The attempt to thread is done by
accessing the consensus object at the head of the list with the pointer to its opr record
as preference. If it wins the consensus, then its operation has been threaded as the
next operation on the simulated object, after the current head of the list. Note that the
linked list is directed from the first to the latest entry now, instead of from the latest
to the first.

There is one problem with the above idea, namely, how to locate the record at the
head of the list. Note that we cannot hold a pointer in a simple read/write object
(otherwise, we could wait-free simulate a queue), and a consensus object cannot
change with time. This was not a problem in the previous algorithm, because we
kept a pointer to the head of the list in a compare&swap object.

The way around this problem is to have each processor maintain a pointer to the
last record it has seen at the head of the list. These pointers are kept in a shared array
called Head. This information might be stale, that is, a processor might thread an
operation to the list, save a pointer to the threaded operation in its entry in the Head
array, and then be suspended for a long time. A processor following this pointer later
might end up in the middle of the list because other processors may thread many
operations in the meanwhile. So how can a processor know which of these records
is the latest? It is not possible to check whether the consensus object after is already
set, because the consensus object cannot be read without altering its value. Instead,
we add sequence numbers to the records on the list. Sequence numbers are assigned
so that later operations get higher sequence numbers. The record with the highest
sequence number, to which an entry in the Head array is pointing, is the latest on the
list.

The above ideas lead to the following algorithm, which is a nonblocking simulation
of an arbitrary object (for n processors) using n-processor consensus objects. The
algorithm augments the record type opr so it contains the following components (see
Fig. 15.5):

seq: Sequence number (read/write)

UNIVERSALITY 331

Head \/ /
F—W\—/ anchor
seq seq seq=1
inv inv inv=_L
new-state new-state new-state=initial
response 1 response 1 T 7 response=_L
after T after — after

Fig. 15.5 Data structures for nonblocking simulation using consensus objects.

inv: Operation type and parameters (read/write)
new-state: The new state of the object (read/write)

response: The value to be returned by the operation (read/write)
after: Pointer to next record (consensus object)

In addition to the linked list of the operations applied to the object, the algorithm
uses a shared array Head[0..n — 1]; the ith entry, Head[], is a pointer to the last
cell in the list that p; has observed. Initially, all entries in Head point to the anchor
record, which has sequence number 1.

The pseudocode appears in Algorithm 49.

Showing that Algorithm 49 simulates the object is rather straightforward. Given an
admissible execution ¢ of the algorithm, the desired linearization is derived from the
sequence numbers of the records representing operations in the linked list. Clearly,
this linearization preserves the semantics of the simulated object, and the relative
order of non-overlapping operations.

We now study the progress properties of the algorithm.

For each configuration, C, in «, denote:

max-head(C) = max{Head[i].seq | 0 <i<n -1}

This is the maximal sequence number of an entry in the Head array in the configuration
C. We abuse terminology and refer to Head|i].seq as the sequence number of the ith
entry of the Head array.

Inspecting the pseudocode reveals that the sequence number of each entry of
the Head array is monotonically nondecreasing during the execution. Furthermore,
we have the following lemma, whose proof is left as an exercise to the reader
(Exercise 15.12):

Lemma 15.8 [fa processor performs £ iterations of its repeat loop, then max-head
increases at least by £.

332 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

Algorithm 49 A nonblocking universal algorithm using consensus objects:
code for processor p;, 0 < i< n - 1.

Initially Head([4] points to anchor, forall j, 0 < j <n—1

I: when inv occurs: // operation invocation, including parameters
2 allocate a new opr record pointed to by peoint with point.inv := inv

3 forj:=0ton—1do /I find record with highest sequence number
4 if Head|j].seq > Head[i].seq then Head[i] := Head[j]

5 repeat

6: win := decide(Head|[t).after,point) /I try to thread your record
7 win.seq := Head[i].seq + 1

8 win.new-state, win.response = apply(win.inv,Head[i] .new-state)

9: Head[i] := win // point to the record at the head of the list
10: until win = point

11: enable the output indicated by point.response /1 operation response

Therefore, if processor p; performs an unbounded number of steps, then max-head
is not bounded. This implies that max-head is nondecreasing during the execution;
furthermore, if « is infinite, then max-head is not bounded.

The above observation can be used to show that the algorithm is nonblocking.
Assume that some processor, p;, performs an unbounded number of steps, without
threading its operation to the list. Then max-head increases without bound, and
therefore, the sequence numbers are increasing. It follows that other processors
succeed in threading their operations to the list.

The algorithm is still not wait-free because the same processor might succeed in
applying its operation again and again, locking all other processors out of access to
the shared object.

15.3.3 A Wait-Free Algorithm Using Consensus Objects

As mentioned, the algorithm of the previous section is nonblocking, and itis possible
that a processor will never get to thread its opr record to the linked list. To make the
algorithm wait-free, we use the method of helping. This method means performing
the operations of other processors, not letting them be locked out of access to the
shared object.

The key to this idea is to know which processors are trying to apply an operationto
the object. This is done by keeping an additional shared array Announce|0..n — 1]; the
ith entry of this array, Announce][i], is a pointer to the opr record that p; is currently
trying to thread onto the list (see Fig. 15.6). Initially, all entries in Announce point to
the anchor record, because no processor is trying to thread an operation.

Given that it is known which processors are trying to apply an operation, the first
question is how to choose the processor to help, in a way that guarantees that this
processor will succeed in applying its operation.

UNIVERSALITY 333

Announce

AN

seq
inv

new-state
response

after

Fig. 15.6 Additional data structures for wait-free simulation using consensus objects.

The idea is to give priority, for each new sequence number, to some processor
that has a pending operation. Priority is given in a round-robin manner, using the
processors’ ids; that is, if processor p; has a pending operation, then it has priority in
applying the kth operation, where k = ¢ mod n. Thus if the sequence number at the
head of the list is & — 1, where k£ = ¢ mod n, then any competing processor checks
whether p; has a pending operation, and if so, it tries to thread p;’s operation to the
list. Clearly, if all competing processors try to thread the same operation, they will
succeed in doing so.

A final problem that arises is the issue of coordination between processors that
concurrently try to thread the same record to the list. In the simple case in which
operations are deterministic, the details of this coordination are relatively simple. In
this case, it is safe for different processors to write the new state or the response,
because they all write the same value (even if at different times). A processor detects
that its operation has been applied to the object, that is, threaded onto the linked
list, by seeing an assignment of a nonzero value to the sequence number of the
record associated with its operation. Nondeterministic operations are considered in
Section 15.3.5.

The pseudocode appears in Algorithm 50.

Fix some execution, c, of the algorithm. Proving that Algorithm 50 simulates the
object is done as in the nonblocking algorithm.

Let us argue why the algorithm is wait-free. Assume that p; tries to apply an
operation to the object. Let Cy be the first configuration after p; announces its
operation, in Line 2. As in the previous algorithm, for any configuration C of «,
we denote by max-head(C) the maximal sequence number of an entry in the Head
array, in C'. As in the previous algorithm, max-head grows without bound, if some
processor performs an unbounded number of steps in «.

Because max-head grows without bound, let C5 be the first configuration after
C in which max-head(C») = k = (i + 2) mod n. We argue that p;’s operation is
threaded by C5. Assume not. Then when any processor p; checks the if condition
in Line 7 after configuration C}, it finds that Announce[i].seq = 0. Therefore, all

334 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

Algorithm 50 A wait-free universal algorithm using consensus objects:
code for processor p;, 0 < i< n — 1.

Initially Head[j] and Announce[j] point to the anchor record,
forall j,0< j<n~—1

1: when inv occurs: // operation invocation, with parameters
allocate a new opr record pointed to by Announce[i]
with Announce(i].inv = inv and Announce[i].seq := 0

™

3 forj:=0ton— 1do // find highest sequence number
4: if Head[j).seq > Heud][i].seq then Head[i] := Head|j]

5: while Announce[i].seq = 0 do

6: priority := Head[i].seq+1 mod n /1 id of processor with priority
7: if Announcelpriority].seq =0 // check whether help is needed
8: then point := Announce[priority) // choose other record
9: else point := Announce(i] // choose your own record
10: win := decide(Head[:].after,point) /I try to thread chosen record
L1: win.new-state, win.response := apply(win.inv,Head[i].new-state)

12 win.seq = Head([1].seq + 1

13: Head[i] := win // point to the record at the head of the list
14: enable the output indicated by win. response // operation response

processors choose Announcel[i] for the (k + 1)st decision; by the agreement and
validity properties of the consensus object, they all decide on Announcel¢] and thread
p;’s operation.

The above argument can be made more precise to bound the step complexity of the
simulation. As in the algorithm of the previous section, after p; performs n iterations
of its while loop the value of max-head increases at least by n. Because each iteration
of the while loop requires O(1) steps by p;, a configuration C, as above is reached
after p; performs O(n) steps. This implies:

Theorem 15.9 There exists a wait-free simulation of any object for n processors,
using only n-processor consensus objects and read/write objects. Each processor
completes any operation within O(n) of its own steps, regardless of the behavior of
other processors.

The calculations in the above analysis charged one step for each invocation of the
decide operation on the consensus object. A more detailed analysis of the cost should
be based on the step complexity of the decide operation, in terms of operations on
more basic objects.

This shows that Algorithm 50 is a wait-free simulation of an arbitrary object for
7 Processors, using n-processor consensus objects. We can now state the general
universality result.

UNIVERSALITY 335

Theorem 15.10 Any object X with consensus number n is universal in a system with
at most 1. Processors.

Proof. Algorithm 50 uses an arbitrary n-processor consensus object to wait-free
simulate any object ¥ in a wait-free manner. We use objects of type X to wait-free
simulate the n-processor consensus object. (]

15.3.4 Bounding the Memory Requirements

We have presented a wait-free simulation of an arbitrary n-processor object using n-
processor consensus objects and read/write objects. In this section, we show how to
bound the memory requirements of the construction. Note that there are two types of
memory unboundedness in this algorithm: The number of records used to represent
an object as well as the values of the sequence numbers grow linearly, without bound,
with the number of operations applied to the simulated object. Here, we describe
how to control the first type of unboundedness—the number of records; handling the
other type of unboundedness—the values of sequence numbers, is not treated here.

The basic idea is to recycle the records used for the representation of the object.
That is, each processor maintains a pool of records belonging to it; for each operation,
the processor takes some free record from its pool and uses it in the previous algorithm;
eventually, a record can be reclaimed and reused for another operation. A record can
be reclaimed if no processor is going to access it. The main difficulty is knowing
which of the records already threaded on the list will not be accessed anymore and
can be recycled.

To understand how this is done, we first inspect how records are accessed in
Algorithm 50. Note that each of the records already threaded on the list belongs
to some processor whose operation it represents. Such a record has an assigned
sequence number, which remains fixed for the rest of the execution. Consider some
record threaded on the list, belonging to processor p;, with sequence number &; we
refer to it as record number &.

Let p; be a processor that may access record number k. It follows that Head|j]
after Line 4 is less than or equal to k, and therefore, p;’s record is threaded with
sequence number & + n or less. Note that p;’s record could be threaded by other
processors helping it, yet p; will not detect it (being inside the while loop) and will
try to access record & on the list although its record is already threaded. However,
once p; detects that its record has been threaded, it will never access record k on the
list anymore.

The above argument implies that the processors that may access record number &
on the list are the processors whose records are threaded as numbers k+1, ..., k+n
on the list. These records do not necessarily belong to n different processors but
may represent several operations by the same processor. Considered backwards, this
means that if p;’s record is threaded as number &/, p; should release records number
P-1,...,k—-n

We add to the opr record type an array, released[l, .., n], of binary variables.
Before a record is used, all entries of the released array are set to false. If a record

336 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

Algorithm 51 A wait-free universal algorithm using consensus objects
with bounded memory: code for processor p;, 0 < i< n—1.

Initially Head[j] and Announce[j] point to the anchor record, forall j, 0 < j < n

1: when inv occurs: // operation invocation, with parameters
2: let point pointto a record in Pool such that
point.released[1] = ... =point.released[n] = true

and set point.inv to inv
3 for r := 1 to n do point.released[r] := false
4: Announceli] := point
5: forj:=0ton—1do /f find highest sequence number
6: if Head(j).seq > Head][i).seq then Head[i] := Head|j)

7: while Announce{i].seq = 0 do

8: priority .= Head[i].seq + 1 mod n /1 id of processor with priority
9: if Announcelpriority].seq = 0 /f check whether help is needed
10: then point := Announce[priority] I/ choose other processor’s record
11: else point := Announceli] / choose your own record
12: win := decide(Head[i].after,point) /I try to thread chosen record
13: win.before := Head

14; win.new-state, win.response = apply(win.inv, Head[i].new-state)

15: win.seq := Head([i].seq + 1

16: Head[i] := win /1 point to the record at the head of the list
17: temp := Announce{i].before

18: forr:=1tondo / go to n records before
19: if temp # anchor then

20: before-temp := temp .before

21: temp.released[r) = true /l release record
22: temp = before-temp

23: enable output indicated by Announceli].response

has been threaded as number & on the list, then released[r] = true means that the
processor whose record was threaded as number & + = on the list has completed its
operation. When a processor’s record is threaded as number %/, it sets released(r] =
trueinrecord k' —r,forr = 1,...,n. When released[r| = trueforallr = 1,...,n,
then the record can be recycled.

To allow a processor to move backwards on the list of records, we restore the
component before to the opr record type; when a record is threaded on the list, its
before component points to the previous record threaded on the list. Now the list is
doubly linked. The modified pseudocode appears as Algorithm 51.

UNIVERSALITY 337

We leave the correctness proof (linearizability and wait-freedom) to the reader as
an exercise.

To calculate how many records a processor’s pool should contain, we need to
know how many unreleased records there may be, that is, records with false in some
entry of their released array. Note that if released[r] = false for record number & on
the list, then the record number & + r on the list belongs to an incomplete operation.
Because each processor has at most one operation pending at a time, there are at most
n records belonging to incomplete operations. Each of these records is responsible
for at most n unreleased records. Thus, there are at most n? unreleased records. It is
possible that all n? records belong to the same processor; therefore, each processor
needs a pool of n? + 1 records, yielding a total of O(n?) records.

15.3.5 Handling Nondeterminism

The universal algorithms described so far assumed that operations on the simulated
object are dererministic. That is, given the current state of the object and the invo-
cation (the operation to be applied and its parameters), the next state of the object,
as well as the return value of the operation, are unique. Many objects have this
property, for example, queues, stacks, and read/write objects; however, there are
object types with nondeterministic operations, for example, an object representing
an unordered set with a choose operation returning an arbitrary element of the set.
In this section, we outline how to modify the universal algorithm to simulate objects
with nondeterministic operations.

For simplicity, we refer to the version of the algorithm that uses unbounded
memory (Algorithm 50). Line 11 of this algorithm is where the new state and the
response are calculated, based on the current state and the invocation. Because we
assumed operations were deterministic, it is guaranteed that any processor applying
the invocation to the current state will obtain the same new state and response. Thus
it suffices to use read/write objects for the new-state and response fields of the opr
record; even if processors write these fields at different times, they will write the
same value.

When operations are nondeterministic, it is possible that different processors
applying the invocation to the current state will obtain a different new state or response
value. If we leave the new-state and response fields of the opr record as read/write
objects, it is possible to get inconsistencies as different processors overwrite new
(and different) values for the new-state or the response fields.

The solution is to reach consensus on the new state and the response. We modify
the opr record type so that the new state and response value are stored jointly in a
single consensus object. We replace the simple writing of the new-state and response
fields (in Line 1) with a decide operation of the consensus object, using as input
the local computation of a new state and response (using apply). The rest of the
algorithm remains the same.

We leave the details of this algorithm, as well as its proof, to the reader as an
exercise.

338

WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

15.3.6 Employing Randomized Consensus

We can relax the Liveness condition in the definition of a linearizable shared memory
(Section 9.1} to be probabilistic, that is, require operations to terminate only with
high probability; this way we can define randomized wait-free simulations of a shared
objects. Because randomized wait-free consensus algorithms can be implemented
from read/write objects (see Chapter 14), they can replace the consensus objects
in Algorithm 50. Thus there are randomized wait-free simulations of any object
from read/write objects, and there is no hierarchy of objects if termination has to be
guaranteed only with high probability.

Exercises

151

15.2

15.3
154
15.5
15.6

157

15.8

15.9

15.10
15.11

Prove that Algorithm 46 is a wait-free consensus algorithm for two processors.
What happens if three processors (or more) use this algorithm?

Prove that Algorithm 47 is a wait-free consensus algorithm for any number of
processors.

Prove that CN(test&set)= 2.
Prove that CN(stack)= 2.
Prove that CN(fetch&inc)= 2.

The wait-free consensus algorithm for two processors using a FIFO queue
relies on the fact that the queue was nonempty initially. Present a two-
processor wait-free consensus algorithm that uses two queues that are initially
empty and read/write objects.

Show that the consensus number of an augmented queue, which allows peek
operations, that is, reading the head of the queue without removing it, is
infinite.

Show that for every integer m > 1, there exists an object with consensus
number m.

Hint: Consider a variation of an augmented queue that can hold up to m
values; once a processor attempts to enqueue the (m + 1)st value, the queue
“breaks” and returns a special L response to every subsequent operation.

Show that consensus numbers also determine the existence of nonblocking
simulations. That is, prove that if CN(X} = m and CN(Y') = n > m, then
there is no nonblocking simulation of Y by X in a system with more than m
Processors.

Prove the linearizability property of Algorithm 48.

Prove the linearizability property of Algorithm 49,

CHAPTER NOTES 339

15.12 Prove Lemma 15.8.

15.13 Consider the following modification to Algorithm 50: First try to thread your
own operation and only then try to help other processors. Show that the
modified algorithm is not wait-free.

15.14 Consider the following modification to Algorithm 50: Add an iteration of
the for loop (of Lines 3—4) inside the while loop (of Lines 5-13). What is
the step complexity of the new algorithm? Are there situations in which this
modification has improved step complexity?

15.15 Present a universal wait-free algorithm for simulating an n-processor object
type with nondeterministic operations, using n-processor consensus objects;
follow the outline in Section 15.3.5. Present the correctness proof for this
algorithm.

15.16 Consider the same modification as in Exercise 15.14 to Algorithm 51: Add an
iteration of the for loop (of Lines 5-6) inside the while loop (of Lines 7-16).
What is the step complexity of the new algorithm? Are there situations in
which this modification has improved step complexity?

15.17 Complete the correctness proof for Algorithm 51.

15.18 Show an execution of Algorithm 51, where n? records belonging to the same
processor are not released.

15.19 A way to slightly reduce the memory requirements of Algorithm 51 is to
have all processors use the same pool of records. Develop the details of this
algorithm, which requires O(n?) records.

Chapter Notes

The results in this chapter indicate that there is a rich hierarchy of object types, and
that some objects can be used to solve more problems than others. As mentioned
in the introduction to this chapter, modern and proposed multiprocessors typically
provide hardware primitives more powerful than just reading and writing. One would
like to program at a higher level of abstraction than register operations, using shared
objects of arbitrary types. As we have shown, if an object has a low consensus
number, then it cannot be used, either alone or with additional read/write registers, to
wait-free simulate an object with a high consensus number. Many common objects
are universal and can be used to solve consensus among any number of processors,
for example, compare&swap, or load-linked and store-conditional. Universal objects
are desirable in hardware as they promise solutions for many other problems.

It is tempting to classify object types according to their consensus number. One
way to do that, mentioned in passing before, is to organize object types into a hierar-
chy, where level n of the hierarchy contains exactly those objects whose consensus

340 WAIT-FREE SIMULATIONS OF ARBITRARY OBJECTS

number is n. This classification into levels of a hierarchy is meaningful only if object
types at a higher level are somehow “stronger” than object types at lower levels.

The term “robust” has been applied to the notion of a meaningful hierarchy. A
reasonable definition of robustness is that objects at a lower level cannot be used to
simulate objects at a higher level. In more detail, a hierarchy is defined to be robust
if any collection of object types 7, all at level k (or lower) of the hierarchy, cannot
wait-free simulate an object type 7" that is at level & + 1 (or higher) of the hierarchy.
Jayanti [144] asked whether the wait-free hierarchy is robust and showed that if the
consensus number is defined without allowing the use of read/write registers, or by
allowing only a single object of the lower type, then the hierarchy is not robust. Our
definition of the consensus number is consistent with this result, because it allows
read/write registers and multiple objects of the lower type.

It turns out that the answer to the robustness questiondepends on additional aspects
of the model. One aspect is whether operations of the object are deterministic or
not; that is, whether the result of applying an operation to the object is unique, given
the sequence of operations applied so far. Lo and Hadzilacos [172] showed that
if objects are not deterministic, then the hierarchy is not robust. If the objects are
deterministic, then the issue of robustness depends on some delicate assumptions
concerning the relationships between the processors and the “ports™ of the objects.
Think of a port as a conduit through which operations can be applied to an object. An
object may or may not be able to return different values, depending on which port is
in use, and various rules concerning the binding of processors to ports are possible.
The complete story has not yet been discovered; see a recent survey [105] for more
information and references.

Another reasonable definition of robustness is that objects at a higher level can
solve more problems than objects at a lower level. Specifically, consider two object
types T and T", such that CN(T) = m < CN(T"} = n. Under this interpretation,
a robust hierarchy would mean that by using 7" we can solve a strictly larger set of
problems than by using 7. However, such a hierarchy does not exist: It was shown by
Rachman [224] that for any N, there exists an object type T', which can be accessed
by 2N + 1 processors, whose consensus number is 1; furthermore, 7" can be used to
solve 2-set consensus (defined in Section 16.1) among 2N -+ 1 processors. However,
any number of N -consensus objects and read/write registers cannot be used to solve
2-set consensus among 2N -+ 1 processors. Thus 7, an object type at level 1, can be
used to solve the 2-set consensus problem, but an object at level N (/NV-consensus)
cannot be used to solve the same problem. This anomalous behavior is possible
because the number of processors is larger than the number for which N-consensus
is universal.

Most of this chapter is based on Herlihy’s work on impossibility and universality
of shared objects [134]. Universality results for a specific consensus object (sticky
bits) were presented by Plotkin [216]. Universality results using load-linked and
store-conditional were presented by Herlihy [131]. Other general simulations were
given by Prakash, Lee, and Johnson [219], by Shavit and Touitou[241], and by Turek,
Shasha, and Prakash [254].

CHAPTER NOTES 341

There have also been suggestions to modify the operating system in order to
support more efficient nonblocking simulations of objects; interesting research in
this direction was presented by Alemany and Felten [8] and by Bershad [51].

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

16

Problems Solvable in
Asynchronous Systems

The impossibility result proved in Chapter 5 shows that consensus cannot be solved
deterministically in failure-prone asynchronous systems. As shown in Chapter 15,
the impossibility of solving consensus implies that many other important problems
cannot be solved deterministically in failure-prone asynchronous systems. However,
there are some interesting problems that can be solved in such systems.

In this chapter we survey several such problems. The first problem is set consensus,
a weakening of the original consensus problem in which a fixed number of different
decisions are allowed. We present a lower bound that relates the number of different
decisions to the number of processor failures. The second problem is an alternative
weakening of consensus, called approximate agreement, in which the decisions must
lie in a sufficiently small range of each other. The third problem is renaming, in which
processors must choose new identifiers for themselves. We also discuss k-exclusion,
a fault-tolerant variant of mutual exclusion in which multiple processes can be in the
critical section at a time. Solutions to the renaming problem can be used to solve a
variant of k-exclusion, in which processes must each occupy a specific “place” in the
critical section.

Throughout this chapter we assume the asynchronous shared memory model with
crash failures. The maximum number of crash failures allowed in an admissible
execution is denoted f. The simulation presented in Chapter 10 (Section 10.4)
allows us to translate these results to the message-passing model, with f < n/2
crash failures.

343

344 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

16.1 K -SET CONSENSUS

The consensus problem for crash failures (studied in Chapter 5) required that all
nonfaulty processors eventually decide on a single value, where that value is one of
the original input values. We can loosen this problem statement to require only that
the number of different values decided upon by nonfaulty processors be at most some
quantity, say k, while still requiring that every decision value be some processor’s
original input. Obviously, this problem is only challenging to solve if the number of
values, k, is less than the number of processors, n; otherwise, the trivial algorithm,
in which every processor decides on its input value, is a solution to this problem that
tolerates any number of failures. The original consensus problem can be viewed as
a special case of this problem, where k = 1.

We now give a more formal definition of the k-set consensus problem. Each
processor p; has special state components z;, the input, and y;, the ourput, also called
the decision. Initially z; holds a value from some set of possible inputs and y; is
undefined. Any assignment to y; is irreversible. A solution to the consensus problem
must guarantee the following, in every admissible execution:

Termination: For every nonfaulty processor p;, y; is eventually assigned a value.

k-Agreement: |{y; : p; is nonfaulty,0 < i < n — 1}| < k. That is, the set of deci-
sions made by nonfaulty processors contains at most k values.

Validity: If y; is assigned, then y; € {zo,...,2,-1}, for every nonfaulty processor
pi- That is, the output of a nonfaulty processor is one of the inputs.

In this section, we show that the k-set consensus problem is solvable in an asyn-
chronous system subject to crash failures as long as f, the number of failures to be
tolerated, is at most k — 1. Afterwards, we show that this bound is tight. In the
wait-free case, where the number of failures to be tolerated is n — 1, it follows that
k-set consensus is possible only if £ = n; in this case, the trivial algorithm, in which
each processor decides on its own input, solves the problem.

We now describe a simple algorithm for k-set consensus. This algorithm, like most
algorithms in this chapter, is presented for the shared memory model, and employs
an atomic snapshot object, as defined in Chapter 10.

The snapshot object initially holds an empty indication in each segment. Each
processor p; writes its input z; to its segment in the snapshot object; then, it repeatedly
scans the snapshot object until it sees at least n — f nonempty segments. Processor
p;i decides on the minimum value contained in its last scan of the snapshot object.
The pseudocode appears as Algorithm 52. The name of the atomic snapshot object
is not explicitly included in the calls to the update and scan procedures.

Theorem 16.1 Algorithm 52 solves k-set consensus in the presence of f crash fail-
ures, where f < k — 1.

Proof. We show that the above algorithm solves k-set consensus. Fix an admissible
execution of the algorithm.

K -SET CONSENSUS 345

Algorithm 52 k-set consensus algorithm for f < k failures:
code for processor p;, 0 < ¢ <n— 1.

1: update;(z) // write input value to snapshot segment
2: repeat

3 values := scan;()

4: until values contains at least n — f nonempty segments

5: y:= min(values) {/ decide on smallest element of values

Consider any nonfaulty processor p;. Termination follows since there are at most
f crash failures. Because processors fail only by crashing, every value that is ever
put into a processor’s local variable values is the input value of some processor.
Therefore, p; decides on the input value of some processor, and the validity condition
is satisfied.

Let S be the set of all values v such that v is the minimum value contained in
the final scan of the snapshot object by some nonfaulty processor. We now prove
that the set S contains at most f + 1 distinct values. Suppose, in contradiction, that
S contains at least f + 2 distinct values, and let v be the largest among them. It
follows that there are f + 1 distinct input values that are strictly smaller than v, say
Ly, ..., &;, (the input values of p;,, ..., pi,). Let p; be a nonfaulty processor such
that v is the minimum value contained in its final scan. Thus p;’s final scan does not
include the input values of py,, ..., pi,, but then p;’s last scan missed at least f + 1
input values, which contradicts the code.

Since the set S is exactly the set of decision values of nonfaulty processors, we
have just shown that the number of nonfaulty decisions is at most f + 1, which is at
most &, which implies the k-agreement condition. (|

The obvious next question is, what happens when the number of failures exceeds
k? Is k-set consensus still solvable? As we shall see next, the answer is negative.

Lower Bound

We now show that there is no algorithm for solving &-set consensus in the presence of
f > k failures. For k = 1, this amounts to the impossibility of solving the consensus
problem, proved in Chapter 5. We first prove the lower bound for k = 2and n = 3
and later discuss how to extend the result for other values of k£ and n.

For the purpose of the lower bound, we assume that all communication is via
an atomic snapshot object! with a single segment for each processor and that an
algorithm consists of an alternating sequence of updates to the processor’s segment

! Almost the same proof works if processors communicate by ordinary read and write operations; we assume
a snapshot object because it slightly simplifies matters, and to be consistent with the other algorithms in
this chapter.

346 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

Poi U s |lu s | Pol u s |us | |

P | |us pu | | lu s
P2 u s | wu 5 | pa: u 5 | |us |

a1 = {po, p2}, {po, P2}, {P1} az = {po, p2}, {po}, {p2}. {P:}

Fig. 16.1 Two block executions a1 and az; u denotes an update operation and s denotes a
scan operation; perpendicular lines separate blocks.

and scans of the snapshot object. Moreover, a processor maintains a local step counter
that is written in each update.

A block B is an arbitrary nonempty set of processor ids, that is, B is a subset
of {0,...,n — 1}. A block B induces a schedule fragment in which, first, each
processor in B updates its segment of the snapshot object, and then each processor in
B scans the snapshot object. For concreteness, we will assume that the updates are
done in increasing order of processor id, as are the scans; however, the internal order
of the update operations and the internal order of the scan operations are immaterial,
as long as all update operations precede all scan operations.

Fix some k-set consensus algorithm A. A block execution of A is an execution
whose schedule is a sequence of schedule fragments, each of which is induced by a
block, and whose initial configuration has each processor starting with its own id as
input, that is, p; starts with 7, 0 < i < n— 1. Thus a block execution, «, is completely
characterized by the sequence of blocks By, Bs, . .., B that induces its schedule. We
abuse notation and write @ = Bi, B,,..., B;. For notational convenience, we do
not include steps of processors once they have decided.

The lower bound proof considers only admissible block executions of A in which
there are no failures. Of course, A has to work correctly for all (admissible) execu-
tions, including those with failures, and all inputs; in fact, it is the requirement that A
can tolerate failures that allows us to make crucial deductions about block executions
with no failures.

Although they are very well-structured, block executions still contain uncertainty,
because a processor does not know exactly which processors are in the last block.
Specifically, if p; is in By and observes an update by another processor p;, p; does
not know whether p;’s update is in By, _; or in By. Consider, for example, the block
executions in Figure 16.1. First note that p; and p; do not distinguish between o
and a3. However, because each processor increments a counter in each of its steps
and includes it in its segment, pg distinguishes between oy and ag — in a1, py reads
the second update of p,, whereas in a4, it reads the first update of ps.

In Chapter 4 we defined the notion of similarity between configurations (Defini-
tion 4.1); here, we define an extended notion of similarity between block executions.

Let o = By, ..., B;; the view of processor p; after block By, is p;’s state and the
state of all shared variables in the configuration after prefix of o that corresponds to
Bi, ..., By. The view of processor p; in o, denoted a|p;, is the sequence containing

K -SET CONSENSUS 347

p;’s view after each block in which p; appears; a|p; is empty if p; does not appear in
any block.

Two block executions, « and o', are similar to some set of processors P, denoted
a X o, if for any processor p; € P, a|p; = o'|p;. When P = {pg,...,pn-1} —
{p;}, we use « "L o as a shorthand; for the nontrivial case « # o, this means that
p; is the only processor distinguishing between « and o',

We say that p; is unseen in a block execution « if there exists £ > 1, such that
p; & B, forevery r < k and B, = {p;} for every r > k. Intuitively, this means
that p;’s steps are taken after all other processors decide and none of them ever sees
a step by p;. Note that at most one processor is unseen in a block execution. For
example, p; is unseen in executions oy and «g of Figure 16.1.

Itis crucial to this proof to understand that it is possible to have an unseen processor
pi in an admissible execution of the algorithm A. The reason is that A is supposed to
be able to tolerate the failure of (at least) one processor: If p; takes no steps initially,
the other processors must be prepared for the possibility that p; has failed and thus
they must decide without communicating with p;. After the remaining processors
have decided, it is possible for p; to start taking steps.

Lemma 16.2 Ifa processor p; is unseen in a block execution o then there is no block

. p;
execution o' # o such that o« ~' o',

Proof. Let o = By, By,.... If p; is unseen in «, then there exists some & such
that p; ¢ B, forevery r < k and B, = {p;} for every r > k. Assume, by way
of contradiction, that there is a block execution o’ = B{, Bj,... # «, such that

-y

< o, Let [be the minimum index such that B, # B, that is, the first block in
which o and o differ.

If{ > k then B; = {p;} in a, whereas in o', B/ must include some other
processor, p;; however, p; distinguishes between « and o/, a contradiction. If [< k
then p; ¢ B;. Since no processor in B; distinguishes between « and ¢, then the
same processors must be in B;, again contradicting the assumption that B; # B;. [J

If p; is not unseen in «, then it is seen. Formally, a processor p; is seen in k, if
pj € Bk, and some processor p; # p; is in B,, for some r > k. If p; is seen, then
p; is last seen in k, if k is the largest index in which p; is seen. For example, py and
ps are seen in both @y and ag (Fig. 16.1); in a3, pg is last seen in Bs.

Lemma 16.3 If p; is seen in a block execution «, then there is a unique block

. —p;
execution o' # « such that o’ ~' a.

Proof. Assume that in @« = By, Bs,..., p; is last seen in k. It is possible
that p; appears in blocks later than By, but in this case o can be written as
a = By,...,B:,{p;}, .., {p;} Define a block execution o' as follows:

L. If By # {p;}. then take p; into an earlier block by itself, that is,

o = Bl:- "1Bk-—1y{pj}}Bk — {pj})Bk-{-la c. -)Bts{pj};-' 1{p]}

348 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

pjt ... ju s pji - us |
pii .| w s ... pit . |us

a = Bl:' ")Bk—-I)Bk:Bk-{-l- o = Bl:"';‘Bk-—la{pj}er - {pj})Bk+l'

Fig. 16.2 Tilustration for first case in proof of Lemma 16.3, B = {p:,p;}.

where the number of final blocks consisting only of p; is sufficient for p; to
decide (see Fig. 16.2).

2. If By = {p;}, then merge p; with the next block, that is,

a = BI,...,Bk_l,{pj} UBk+1,Bk+2,...,Bt,{pj},..‘,{pj}

where the number of final blocks consisting only of p; is sufficient for p; to
decide.

Clearly, o/ X . Since p; distinguishes between « and o’ (Exercise 16.2), we have
that o # o’. We now show that o is unique.

If B # {p;} (Case (1)), then clearly, there is another processor p; € By. If
By, = {p;} (Case (2)), then there is another processor p; € Biyi: By is not
empty and does not include p;. Moreover, if p; € B,, for some r > k, then
B, = {p;} forevery v’ > r (otherwise, p; would be last seen in k — 1 of).

In both cases, for any block execution o’/ that is neither « nor o, p; distinguishes
between a and o/, which proves the uniqueness of o' O

Now construct a graph B,. The nodes of B, correspond to block executions
with n processors; since the algorithm is wait-free, there is a finite number of block
executions and, therefore, the graph has a finite number of nodes (Exercise 16.5).
There is an edge between two nodes corresponding to block executions o and o if
and only if & o, for some processor p;; the edge is labeled with p;. For example,
the part of Bs for the two executions of Figure 16.1 has two nodes, one for o; and
one for oy, and an edge between them labeled with pg (Fig. 16.3).

By Lemma 16.2, a node with degree n — 1 corresponds to a block execution in
which some processor p; is unseen.

By Lemma 16.3, the degree of a node in B,, that corresponds to a block execution
without an unseen processor must be 7.

23] (23]

Fig. 16.3 Part of B; for the executions of Figure 16.1.

K -SET CONSENSUS 349

unseen unseen

Fig. 16.4 The graph for block executions of two processors, B, with the imaginary node,
A

We now color the edges of B,,. If there is an edge between executions « and o’
labeled with p; then, by definition, o AT herefore, all processors other than
pj. namely, po, ..., Pj—1,Pj+1,- - -, Pn—1, decide on the same values in « and in o',
The edge is colored with this set of decisions. Consider, for example, the executions
of Figure 16.1; if p; decides on 1 and p decides on 2 then the edge in Figure 16.3 is
colored {1, 2}.

The discussion so far has applied to any number of processors; consider now the
very simple case of a system with two processors. In this case, we can list all block
executions; for example, if each processor (always) takes exactly two steps before
deciding, then some of the block executions are:

B = {po}, {po}, {p1}, {p1}
2 B = {po}, {po, 1}, {;1}
& B = {po}, {;1}, {po}, {p1}
X Ba={po}, {m}, {po, p1}
kg Bs = {po}, {p1}, {p1}, {Po}

BB = {p1}, {p1, o}, {Po}
B ={m) {p), {po}, {po}

Note that there are two nodes with degree 1—one for the single execution in
which py is unseen and one for the single execution in which p; is unseen. We add
an imaginary node, A, with edges to these nodes, labeled with the unseen processor.
Let B, be B, with the imaginary node. Figure 16.4 shows By.

In Bs, the color of an edge is a single value—the decision of a processor not
distinguishing between the two incident executions. The coloring of edges extends
naturally to the edges adjacent to A; an edge labeled with p; is colored with the
decision of p;_;, the other processor. We concentrate on edges in By colored with
{0} and define the restricted degree of a node v to be the number of edges colored
with {0} that are incident to v.

350 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

Consider a non-imaginary node v with one incident edge colored with O and
another incident edge colored with [(that is, the restricted degree of v is exactly 1).
Node v corresponds to an execution in which one processor decides 0 and the other
processor decides 1. That is:

Lemma 16.4 If the restricted degree of a (non-imaginary) node is 1, then the node
corresponds to an execution in which {0, 1} are decided.

Clearly, the edge incident to the imaginary node, A, labeled with p4, is colored
with {0}; the other incident edge, labeled with py, is colored with {1}. Thus the
restricted degree of A is exactly 1. The sum of the restricted degrees of all nodes
must be even, because each edge is counted twice in the summation. Thus there is
an odd number of non-imaginary nodes with odd restricted degree, that is, there is an
odd number of non-imaginary nodes with restricted degree 1. That is:

Lemma 16.5 There is an odd number of executions in which {0, 1} are decided.

Therefore, there is at least one execution in which {0, 1} are decided. This
provides an alternative proof for the impossibility of consensus; moreover, this can
be used to prove the impossibility of wait-free three-processor algorithms for 2-set
consensus, as shown next.

Let us now consider the case of three processors, pg, p; and ps. Recall that
in block executions p; starts with input ¢, namely, 0, 1, or 2, and by the problem
definition, processors must decide on at most two different values and the decisions
must be a subset of the inputs.

We consider the graph Bs, defined as above, and add an imaginary node A, with
an edge to each node with degree 2, corresponding to a block execution with an
unseen processor; the edge is labeled with the unseen processor. The extended graph
is denoted Bs. After A is added, the degree of each non-imaginary node is exactly 3;
each of its adjacent edges is labeled with a different processor. In the same manner,
the additional edges are colored with the set containing the decisions of all processors
but the unseen processor.

For three processors, we concentrate on edges colored with the pair {0, 1}; this
means that the pair of processors that do not distinguish between the two adjacent
executions decide on 0 and on 1 (in both executions). Similarly to the two-processor
case, the restricted degree of a node v is the number of edges colored with {0, 1}
that are incident to v. Exercise 16.6 asks you to show that a {non-imaginary) node
cannot have restricted degree 3, that is, it cannot have three incident edges colored
with {0, 1}.

Therefore, the restricted degree of a node is at most 2. As in the case of two
processors, the restricted degree is interesting because we can prove:

Lemma 16.6 If the restricted degree of a (non-imaginary) node is 1, then the node
corresponds to an execution in which {0, 1,2} are decided.

Proof. Let o be the block execution corresponding to a node v. Without loss of
generality, assume that the single incident edge colored with {0, 1} is labeled by

K -8ET CONSENSUS 351

processor pp and that p; decides 0 and ps decides 1 in . We argue that py decides 2
ina.

If pg decides 0 in «, then consider the edge incident to » labeled with p;. This
edge must exist since each node has n an adjacent edges, each labeled with a different
processor. It must be colored with {0, 1} (the decisions of pg and p2). Similarly, if
po decides 1 in o, then consider the edge incident to v and labeled with pa; it must be
colored with {0, 1} (the decisions of pg and p;). In both cases, the restricted degree
of v must be 2. O

What is the restricted degree of the imaginary node? This is the number of
block executions with an unseen processor in which {0, 1} are decided by the seen
processors. By the validity condition, these can only be executions in which p; is
unseen. Thus these are block executions in which pg and p; run on their own, not
seeing p- at all, and po runs after they decide. It can be shown (Exercise 16.8)
that these executions have a one-to-one correspondence with all two-processor block
executions, as captured by B;. By Lemma 16.5, there is an odd number of two-
processor block executions in which {0, 1} are decided. Therefore, the restricted
degree of A is odd.

Because the sum of restricted degrees of nodes in the extended graph B (including
A) is even, there must be an odd number of non-imaginary nodes with odd restricted
degree. Because the restricted degree of a node is at most two, it follows that an odd
number of nodes have restricted degree 1. Therefore, at least one node has restricted
degree 1. By Lemma 16.6, this node corresponds to an execution in which {0, 1,2}
are decided, which proves:

Theorem 16.7 There is no wait-free algorithm for solving the 2-set consensus prob-
lem in an asynchronous shared memory system with three processors.

For wait-free algorithms, the lower bound for any value of k& is proved by consid-
ering By, colored as before. Define the restricted degree of a node to be the number
of edges colored with {0, ..., & — 2} that are incident on the node. The above com-
binatorial argument can be extended, by induction, to show that an odd number of
nodes has restricted degree 1 (Exercise 16.10). The lower bound then follows from
the natural extension of Lemma 16.6 for 5, (Exercise 16.11).

The lower bound can be extended to any number of failures f > %, in the same
manner that the impossibility of consensus is extended from wait-free algorithms
to any number of failures (Chapter 5). The simulation of Section 5.3.2 needs to
be extended to work for any number of simulating processors (not just two); more
details appear in Exercise 16.12 and the chapter notes.

Finally, the simulation of atomic snapshot objects from read/write registers (Al-
gorithm 30), together with the simulation of read/write registers in message-passing
systems (described in Section 5.3.3), imply that the same lower bounds hold for asyn-
chronous message-passing systems, as long as f > n/2. If f < n/2, this problem,
as well as all the other problems in this chapter, cannot be solved in asynchronous
message-passing systems; the proof is similar to proof of Theorem 10.22.

352 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

16.2 APPROXIMATE AGREEMENT

The approximate agreement problem is another weakening of the standard consensus
problem, which, like &k-set consensus, admits fault-tolerant solutions in asynchronous
systems. Instead of allowing limited disagreement in terms of the number of different
values decided, a range is specified in which decision values must fall.

Processor p;’s input value is denoted z; and its output value is denoted y;, 0 < ¢ <
n — 1. Input and output values are real numbers. The following conditions should be
satisfied in every admissible execution by a solution to the e-approximate agreement
problem, for some positive real number ¢:

Termination: For every nonfaulty processor p;, y; is eventually assigned a value.

e-Agreement: For all nonfaulty processors p; and p;, |y — y;| < €. That is, all
nonfaulty decisions are within € of each other.

Validity: For every nonfaulty processor p;, there exist processors p; and py such that
z; < y; < xg. That is, every nonfaulty decision is within the range of the
input values.

Below, we present two wait-free algorithms for approximate agreement: a simple
algorithm that depends on knowing the range of possible input values and an adaptive
algorithm that does not require this knowledge.

16.2.1 Known Input Range

We now present an algorithm that solves the approximate agreement problem for up
to nn — 1 failures. The algorithm proceeds in a series of asynchronous rounds. In each
round, processors exchange values and apply an averaging function (specifically,
computing the midpoint) to the values exchanged in order to compute new values,
which are used in the next round. Values are exchanged by having each processor first
update its segment of an atomic snapshot object and then scan the snapshot object.
The exchange of values is asymmetric in that a fast process might see many fewer
values in the snapshot object than a slow one; however, it is guaranteed to see at least
one (its own).

As will be shown, each round reduces the spread of the values held by processors
by a factor of 2. The number of rounds required until the spread is within the
specified e is the log of the range of the inputs divided by €. The intuition behind this
calculation is that the number of factor-of-2 reductions required to shrink the spread
from its original range to ¢ is the log (base 2) of the ratio of the old and new ranges.
Later, we discuss how to modify the algorithm to work with an unknown input range.

For simplicity of presentation, the algorithm uses a separate snapshot object for
each round r, ASO,. Initially each segment in ASO, holds an empty indication.
The pseudocode appears as Algorithm 53. Given a nonempty set X, the function
range(X) returns the interval [min{X), max(X)], and the function spread(.X) returns
the length of this interval, that is, max(X) — min(X); the function midpoint{.X)
returns the middle of range(X), that is, (min(X) + max(X)).

APPROXIMATE AGREEMENT 353

Algorithm 53 Asynchronous round » > 1 of wait-free ¢-approximate agreement
algorithm for known input range: code for processor p;, 0 < i < n— 1.

Initially v = z and maxRound = [log, %] +1,
where D) is the maximal spread of inputs

update; (ASO,.,»)

values|r] := scan;(ASO,)

v := midpoint(values[r])

if 7 = maxRound then y := v and terminate // decide

W

The algorithm uses a separate snapshot object for each round, but they can be re-
placed with a single snapshot object, in which each processor writes the concatenation
of its values for all rounds so far (see Exercise 16.13).

The following lemmas are with respect to an arbitrary admissible execution of the
algorithm.

For each » > 1 and each processor p;, denote by V;” the value of p; ’s local variable
values|r] after Line 2 of asynchronous round r. For each » > 1, denote by I/” the set
of all values ever written to ASO,; this can be by either faulty or nonfaulty processors.
Denote by {/° the set of input values of all processes.

Let M be the value of maxRound. Note that U” is not empty, for every r,
0 < r < M. The key for the correctness of the algorithm is the next lemma.

Lemma 16.8 For every asynchronous round r, 0 < r < M, there exists a value
u € range(U"), such that min(U™+1) > (min(U") + u)/2 and max(U"t1) <
(max(U") + u)/2 (see Fig. 16.5).

Proof. Let u be the first value written (in Line 1) with round number r, by some
processor p;. We argue that u satisfies the claim of the lemma.

By the properties of the atomic snapshot object, each processor that participates
inround 7 + 1 reads » when calculating its value for round r + 1. This holds since if
p; overwrites u, it is with a round number larger than r, so scans that are linearized
after p; overwrites u will be used for a round strictly bigger thanr+ 1. Thusu € V7,
for any processor p; calculating a value v; *+1 for round r + 1. The lemma follows by
proving that (min(U") + u)/2 < v[*' < (max(UT) 4 u)}/2, which we leave as an
exercise to the reader (see Exercise 16.16). O

As Figure 16.5 makes obvious, the above lemma implies:

min(U") m_g_m u MZ_&E max(U")
| i i] }
T I
min(Ur+1) max([/7t1)

Fig. 16.5 Tlustration for Lemma 16.8.

354 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

Lemma 16.9 Forevery r, 0 < r < M, range(U™t1) C range(U").

Moreover, the spread of values is reduced by a factor of 2 at each asynchronous
round.

Lemma 16.10 Forevery r, 0 < r < M, spread(U"*+) < Lspread(U").

Theorem 16.11 Algorithm 53 solves wait-free c-approximate agreement when the
input range is known.

Proof. Fix an admissible execution of the algorithm.

Termination follows since each processor performs at most maxRound asyn-
chronous rounds and each asynchronous round completes within a finite number
of steps.

To prove validity, consider some nonfaulty processor p;. By repeated application
of Lemma 16.9, its decision g; is in the range of all the input values.

We now consider ¢-agreement. Consider any two nonfaulty processors p; and p;.
By definition, maxRound = [log,(D/¢)]; clearly, maxRound > log,(spread(U?)/¢).

By repeated application of Lemma 16.10,

Spread(UmaxRonnd) < spread (UO) . 2—maxRound
Substituting the above lower bound on maxRound shows that
Spread(UmaxRound) <e

By the code, p;’s decision, y;, and p;’s decision, y;, are in U"®Ren? Hence,
lvi —yil < e O

We can state an explicit bound on the number of steps taken by a nonfaulty
Pprocessor.

Theorem 16.12 A nonfaulty processor performs O([log,(D/¢)]) scan and update
operations on a snapshot object before deciding, in any admissible execution of
Algorithm 53.

16.2.2 Unknown Input Range

Algorithm 53 depends on knowing D, an upper bound on the spread of input values.
Such a bound is not always available, and even when it is available, the bound can be
very large compared with the actual spread of input values in the execution. We now
describe an algorithm that does not rely on knowing D.

A close look at the algorithm reveals that what we really need is a bound on
the spread of inputs in the execution. A first idea would be to modify the current
algorithm so it calculates the number of rounds dynamically at each round, based on
the spread of the inputs of processors that have started the execution so far. However,
constider the case where some processor, say py, takes a solo execution in which it

APPROXIMATE AGREEMENT 355

Algorithm 54 Wait-free e-approximate agreement algorithm for unknown input
range: code for processor p;, 0 <1< n—1.

1: update;({z,1,z))

2: repeat

3 {0, 70,%0)s .-+, {(Tn-1,Tn-1, ¥n_1) = sCAN()

4: maxRound :=log, (spread(zq, ..., zn—1)/€) // assume that log, 0 = —c0
5: Tmax = max{rg, ..., -1}

6: values == {v; | 7j = Tnax, 0 < j < n =1}

7: update; ({2, rmax + 1, midpoint{values)))

8: until ry,y > maxRound

9: y = midpoint(values); /1 decide

writes its input, executes some number of rounds, K, and then decides, without p,
taking any steps. It can be shown that, in this case, pg must decide on its input, zg
(see Exercise 16.15). Suppose after py decides, processor p; starts a solo execution
with an input 1, such that |zo — 2| > € - 2K+2; p; writes its input, reads 2, 2; and
calculates a number of rounds to execute, K’ > K + 2. Note that by asynchronous
round K +1, py’s preference is still more than e away from z,. Later, when executing
asynchronous round K + 2, p; reads only its own preference for round K + 1, so
p1’s preference remains the same until it decides. Thus py decides on a value that is
more than € away from zg, contradicting the e-agreement property.

To avoid this problem, a processor does not go from one round to the next round,
but rather skips to one more than the maximal round r that it observes in a scan, taking
the midpoint of the values already written for this round » (and possibly ignoring its
own input value).

The pseudocode appears as Algorithm 54.

The correctness proof assumes an arbitrary admissible execution of the algorithm.

We use the same notation of " and V" as in the proof of the previous approximate
agreement algorithm, but with slightly modified definitions because space is reused.
For » > 1, U™ is the set of all values ever written (in Line 1 or Line 7) to the atomic
snapshot object with round number r (middle element of the triple). U? is defined to
be the set of input values of all processors. For » > 1, V" is the value of p;’s variable
values after executing Line 6 with rmax = ». (If p; never has its ry,x variable equal
to 7, then V" is undefined.)

Let M be the largest r such that U” is not empty. Convince yourself that I/™ is not
empty, forevery r, 1 < r < M. The proof of Lemma 16.8 remains almost exactly
the same (except that u can be written either in Line 1 or in Line 7 of the algorithm).
Therefore, we can derive Lemma 16.9 and Lemma 16.10.

Theorem 16.13 Algorithm 54 solves wait-free e-approximate agreement when the
input range is unknown.

Proof. Fix an admissible execution of the algorithm.
To show that termination holds, we must show that no processor can keep in-
creasing maxRound forever. maxRound only can increase if another processor starts

356 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

executing the algorithm, thus increasing the spread of observable inputs. Since there
is a finite number of processes, maxRound can only be increased finitely many times.

Validity follows in a manner similar to the proof for Theorem 16.11.

We consider e-agreement. Let R be the smallest round in which some nonfaulty
processor p; decides. We claim that spread(U/®) < e. By Lemma 16.9, for any
round R/ suchthat R < R’ < M, range(UR’) C range(U #), which, together with
the claim, implies ¢-agreement.

We now verify the claim that spread(U®) < ¢. Consider some value v € Uk
written for round R by p;. If p; writes its input value (i.e., performs its first update)
before p; computes maxRound for the last time, then the claim follows as in the proof
of Theorem 16.11. If, on the other hand, p; writes its input value after p; computes
maxRound for the last time, then the maximal round number seen by p; in its first
scan is at least R. (In this case, p; ignores its input.) Thus, the value written by p;
for any round greater than or equal to R is in the range of the values written so far
for round R, which proves the claim. O

16.3 RENAMING

The coordination problems considered so far in this chapter—#&-set consensus and
approximate agreement—require processors to decide on values that are close to-
gether. We now present a problem in which processors should decide on distinct
values, but in a small range.

The renaming problem considers a situation in which processors start with unique
names from a large domain {the original names) and, for some reason, they need to
shrink it. Thus each processor should pick a new name from some small name space
[1..M]. Denote by y; the new name chosen by processor p;; the main requirements
of the renaming problem are:

Termination: For every nonfaulty processor p;, y; is eventually assigned a value.

Uniqueness: For all distinct nonfaulty processors p; and p;, yi # y;.

The goal is to minimize M, the size of the new name space. A superficial solution
is to let processors choose their index, that is, processor p; takes 7 as its new name;
the new name space is of size n. Yet this solution is not good if the indices are
larger than the actual number of processors. To rule out this solution, we make the
following additional requirement:

Anonymity: The code executed by processor p; with original name z is exactly the
same as the code executed by processor p; with original name z.

The uniqueness condition implies that M must be at least n. Here we show
renaming algorithms with M = n + f, where f is the number of crash failures to be
tolerated.

RENAMING 357

Algorithm 55 Wait-free renaming algorithm: code for processor p;, 0 < i < n~1.
I: s:==1

2: while true do

3 update; ({x, s))

4: ({0, 50), - -, (Tn—1, 8n-1)) := scam()

5: if s = s, for some j # ¢, then

6: let 7 be therankof zin{x; # L |0 < j<n—1}

7 let s be the rthinteger notin {s; # L [0 < j#i<n—1}

8 else

9 y:=s // decide on s as new name
10: terminate

16.3.1 The Wait-Free Case

We start with the wait-free case, namely, f = n — 1. For this case, there is a
renaming algorithm whose output domain contains n + f = 2n — 1 names, namely,
M = 2n — 1. This algorithm is simpler than the algorithm for arbitrary f, because
it uses a larger name space.

The idea of the algorithm is quite simple; processors communicate using some
atomic snapshot object containing for each processor its original name and a new
name it suggests for itself. Each processor, p;, starts the algorithm by writing its
original name to its segment in the snapshot object. Then p; scans the snapshot object
and picks some new name that has not been suggested yet by another processor (the
exact rule will be defined later). Processor p; suggests this name by writing it to
its segment in the snapshot object and scans the snapshot object again. If no other
processor suggests this name, p; decides on it; otherwise, it picks another new name
and suggests it again.

The pseudocode appears in Algorithm 55. In this algorithm, the rule for picking a
new name is to choose the rth ranked integer from the free (not suggested) numbers
in the range [1..2n — 1], where r is the rank of the processor’s original name among
all the original names of participating processors. The algorithm uses a single atomic
snapshot object, whose name is left implicit in the calls to the update and scan
procedures. The ith segment of the snapshot object contains a pair of values: p;’s
original name z; and p;’s current suggestion s; for its new name.

The following lemmas are with respect to an arbitrary admissible execution o of
the algorithm. Obviously, anonymity is obeyed.

Lemma 16.14 (Uniqueness) No two processors decide on the same name.

Proof. Assume by way of contradiction that two processors, p; and p;, decide on
the same name, say y. Let ({xy, S0), ..., (®n—1, 8n—1)) be the view returned the last
time p; executes Line 4 before deciding. By the code, s; = y, since p; writes its
suggested name before its last scan. Similarly, let ({(zg, s5), ..., {(z},_1,s,_1)) be
the view returned the last time p; executes Line 4 before deciding, and again, sz. =y

358 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

Without loss of generality, we may assume that p;’s scan precedes p;’s scan, by
the linearizability property of the atomic snapshot object. Also, p; does not change its
suggestion after it decides, and thus s; = y. This violates the condition for deciding,
and yields a contradiction. 1

Note that the lemma does not depend on the specific rule used for picking the
suggested name, as it does not consider Lines 6—7, where the new name is picked. This
rule is important only for bounding the size of the new names and for guaranteeing
termination of nonfaulty processors, as done in the next two lemmas.

The rank of a processor is at most 7, and at most n — 1 integers are already
suggested by other processors, so the highest integer a processor may suggest is
2n — 1. Because a processor decides only on a name it has previously suggested:

Lemma 16.15 The new names are in the range [1..2n — 1].

The delicate part of the correctness proof is arguing termination; that is, proving
that a processor cannot take an infinite number of steps without deciding, regardless
of the behavior of other processors.

Lemma 16.16 (Termination) Any processor either takes a finite number of steps or
decides.

Proof. Assume, by way of contradiction, that some processor takes an infinite
number of steps in the execution « without deciding; we say that such a processor
is trying. Consider a finite prefix of « such that all trying processors have already
executed Line 3 at least once and all other processors have either decided or taken all
their steps. Denote by o’ the remaining suffix of a; note that only trying processors
take steps in o/. Let p; be the trying processor with smallest original name; we argue
that p; decides in o', which is a contradiction.

Let NF (for “not free”) be the set of suggested names appearing in the atomic
snapshot object at the beginning of @’ in the segments of processors that are not
trying; note that this set remains fixed in o’. Let F' (for “free”) be all the remaining
names, that is, ' = [1..2n — 1] — NF; assume that F' = {z1,2,...}, where
21 <2< ..

Consider a point in o where all trying processors have written a suggestion (for a
new name) based on a view returned by a scan that started in «’. Since no processor
performs Line 3 for the first time in ¢/, it follows that all views contain the same set
of original names; therefore, each processor gets a distinct rank.

Let 7 be the rank of p;’s original name z; in this view. By choice of p;, r is the
smallest rank among all the trying processors.

We first argue that no trying processor other than p; ever suggests a name in
{#1,..., 2} once every trying processor has done an update based on a scan that
started in o’. Consider another trying processor p;. When p; performs a scan in o/,
it sees every name in NF in use and possibly some other names as well. Thus the free
names from p;’s perspective form a set ' C F'. Since p;’s original name has rank
greater than r, p; suggests a name greater than z,.

RENAMING 359

Algorithm 56 A renaming algorithm resilient to f failures:
code for processor p;, 0 < i< n—1.

I s=1

2: repeat

3 update; ({z, s, false}))

4: ({xo, 80,do), ..., {®n-1, Sn—-1, dn_1)) :=scan;()

5: if (s = L) or (s = s; for some j # i) then

6: let be therank of z in {z; # L [d; =false, 0 < j <n -1}
7: ifr < f+ 1then

let s be the rthintegernotin {s; # L |0 < j#i<n—1}

8: else

9: update;({z, s, true)) // indicate decided
10: Yy =5 /l decide on s as new name
11: terminate

12: until false

We now argue that p; will eventually suggest z, in o'. If not, then p; always sees
z, as someone else’s suggestion. By definition, z, is not a member of NF. Thus
it is continually suggested by other trying processors. But by the previous claim,
every other trying processor will eventually reach a point in time after which it only
suggests higher names. Thus eventually p; will stop seeing 2, as someone else’s
suggestion.

Thus eventually p; will suggest z,, see no conflicting suggestion of z,., and decide

Zp O

16.3.2 The General Case

Let us now consider the general case of an arbitrary f < n; for this case, we present
a renaming algorithm with n + f new names. Although the wait-free algorithm will
obviously work in this case as well, we pay a price in terms of an unnecessarily large
name space when f is smaller than n — 1. Thus we are interested in more efficient
algorithms for smaller numbers of failures.

The algorithm extends the idea of the previous algorithm by restricting the number
of processors that are proposing names at the same time. A processor suggests a
name only if its original name is among the f -+ 1 lowest names of processors that
have not decided yet.

The only addition to the data in the snapshot object is a bit, where the processor
announces that it has decided. The pseudocode is very similar and appears as
Algorithm 56.

The uniqueness property follows by the same arguments as in Lemma 16.14.

Clearly, at most n — 1 integers are suggested or chosen by processors other than p;
itself, in any view returned in Line 4. A processor suggests a name only if its rank is at
most f+1; thus the name suggested by a processor is at most (n—1)+(f+1) = n+f.

360 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

Since a processor decides only on a name it has previously suggested, its new name
must be in the range [1..n -+ f].

The next lemma claims termination and is proved along the same lines as Lemma 16.16;
the proof is left as an exercise for the reader (Exercise 16.21).

Lemma 16.17 A processor either takes a finite number of steps or decides.

16.3.3 Long-Lived Renaming

An interesting aspect of the renaming problem is in a long-lived setting, where
processors request and release new names dynamically. For example, assume that we
have a large potential set of processors py, . . ., pn-1, With original names 0, . .., n—1;
however, at each pointin the execution at most k of them are interested in participating
in the algorithm. There are reasons to reassign names to the participating processors,
for example, to use small data structures, whose size depends on the number of
participating processors, k, rather than on the total number of processors, 7.

To specify the long-lived renaming problem with k participants, we need to use
the tools from the layered model of Chapter 7; there are inputs and outputs to deal
with and later in this chapter we describe an algorithm that layers two algorithms, one
of which is an algorithm for long-lived renaming. The inputs for the specification
are request-name; and release-name;, 0 < i < n — 1; the outputs are new-name; (y),
0 <7< n -1, where y is a potential name. The allowable sequences of inputs and
outputs are those satisfying the following properties:

Correct Interaction: The subsequence of inputs and outputs for each i is a prefix of
request-name;, new-name;, release-name; , repeated forever.

To define the next properties, we need a notion of a participating process: p; is
participating after a prefix of a sequence of inputs and outputsif the most recent input
for ¢ that has occurred is request-name. We also define a participating processor p;
to be named y if new-name; (y) has occurred since the most recent request-name; .

k-Participants: After every prefix of the sequence, the number of processors that are
participating is at most k.

The uniqueness and termination properties need to be slightly reworded:

Uniqueness: If participating processor p; is named y; and participating processor p;
(4 # 9) is named y; after any prefix of the sequence, then y; # y;.

Termination: The subsequence of inputs and outputs for each i does not end with
request-name.

The anonymity requirement from before is modified to require that the range of the
new names will only depend on &, the maximum number of concurrent participants,
rather than on n, the total number of potential participants.

I{-EXCLUSION AND K -ASSIGNMENT 361

Algorithm 57 A long-lived renaming algorithm for & participating processors:
code for processor p;.

11 upon request-name event:

2 si=1

3 repeat

4 update;({z, s, false})

5 ({xo,s0,do), ..., {Tn-1,8n-1,dn-1)) := scam()

6: if (s = L) or (s = s; for some j # 7) then

7 let be the rank of x in {z; # L | d; = false, 0 < j <n—1}
8 if r < k then

let s be the rth integernotin {s; # L [0 < j#i<n—1}
9: else

10: update;({z, s, true}) // indicate decided
11: new-name(s) and exit
12: until false

13: upon release-name event:
14: update; ({1, L, 13)

Bounded Name Space: For each new-name;(y) output, y isin {1,..., M (k)}, for
some function M.

Simple modifications to Algorithm 56 give an algorithm that solves long-lived
renaming for k participants with new name space 2k — 1. See Algorithm 57.

The properties of the algorithm, uniqueness, {2k — 1) name space, and termination
are proved along the lines of the general renaming algorithm. Only the last property,
termination, depends on assuming that at most £ processors participate concurrently:
If more than & processors participate, we are still guaranteed that new names taken
concurrently by participating processors are unique and in the range [1..2k — 1],
but it is possible that some processor(s) will not terminate (see Exercise 16.24 to
Exercise 16.26).

After translating the scan and update procedures into their constituent reads and
writes, the number of steps performed by a processor between a request-name event
and new-name event depends on n, the total number of processors; the chapter notes
discuss algorithms whose step complexity depends on &, the number of participating
processors.

16.4 K-EXCLUSION AND K-ASSIGNMENT

The section presents two problems that extend the mutual exclusion problem (studied
in Chapter 4). In the first problem, k-exclusion, some number of processors (specified
by the parameter k) are allowed to be inside the critical section concurrently. The

362 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

k-exclusion problem is a natural way to incorporate fault tolerance into the mutual
exclusion problem, as will be discussed shortly.

The second problem, k-assignment with m slots, extends k-exclusion even further
and requires each processor inside the critical section to have a unique number
between 1 and m (a slot). The k-assignment problem is an abstraction of the situation
when there is a pool of identical resources, each of which must be used by only one
processor at a time; for instance, suppose a user needs to print a file but does not care
which of the several available printers is used, as long as it gets exclusive access to
the printer. The parameter k& indicates the number of processors that can be using
resources in the pool simultaneously, whereas m is the number of resources in the
pool. In the absence of failures, £ and m would be the same, but, as we shall see, the
potential for failures indicates that m should be larger than k.

After defining the problems more precisely, we present an algorithm that solves
k-exclusion in the presence of less than k failures. Then we show that &-assignment
with m slots can be solved by combining a k-exclusion algorithm with a long-lived
renaming algorithm for % participants whose new name space has size m.

The properties we require for k-exclusion are extensions of the properties required
in the mutual exclusion problem.

k-Exclusion: No more than k processors are concurrently in the critical section.

k-Lockout avoidance: If at most f < k processors are faulty, then any nonfaulty
processor wishing to enter the critical section eventually does so.

Note that k-lockout avoidance (or even the weaker property of k-deadlock avoidance)
cannot be attained if processors may get stuck inside the critical section. Thus, we
assume that nonfaulty processors take only a finite number of steps in the critical
section and eventually transfer to the exit and the remainder section. Faulty processors
may fail inside the critical section, but because fewer than k processors can fail, this
allows an additional nonfaulty processor to make progress and enter the critical
section.

For the k-assignment problem with m slots we also require that processors in the
critical section have a slot, denoted s; for p;, where s; is an integer between 1 and m.

Uniqueness: If p; and p; are concurrently in the critical section then s; # s;.

As in the renaming problem, we would like to reduce the range of values held in
s; variables, that is, make m as small as possible.

16.4.1 An Algorithm for k-Exclusion

The algorithm is similar to the bakery algorithm for mutual exclusion (Algorithm 10)
from Chapter 4 in that it uses tickets to order the requests by processes. (The chapter
notes discuss how the tickets can be bounded.) When starting the entry section, a
processor obtains a ticket, ordering itself among the processors competing for the
critical section. Then it checks the tickets of the competing processors; if fewer than

K -EXCLUSION AND K -ASSIGNMENT 363

Algorithm 58 A k-exclusion algorithm: code for processor p;, 0 < ¢ < n — 1.

(Entry):

1: rickety, ..., ticket, 1 := scan;()

2: update; (max(ticket; # 00 |7 =0,...,n—1)+1)
3: repeat

4: tickety, . . ., ticket,, .1 = scan;{)

5: until |{(ticket;, j) : (ticket;, j) < (ticket;,i)}| < k /1 lexicographic order
(Critical Section)

(Exit):

6: update, (0o)

(Remainder)

k of them have “older” tickets, it enters the critical section. In the exit section, a
processor sets its ticket to co.

The algorithm uses a single atomic snapshot object, whose name is left implicitin
the calls to the update and scan procedures. The ith segment of the snapshot object
contains the current ticket of processor p;. If p; is not interested in the critical section,
then its ticket is set to oo, which is also the initial value. The pseudocode appears as
Algorithm 58.

We now discuss why the algorithm provides k-exclusion and k-lockout avoidance.
Fix an execution of the algorithm.

Lemma 16.18 Algorithm 58 provides k-exclusion.

Proof. Assume in contradiction there is a configuration in which more than %
processors are in the critical section. Before entering the critical section, each of
these processors executed a scan, stored a new ticket, and scanned again (at least
once).

Let p; be the processor who stored its ticket latest in the execution. The lineariz-
ability property of snapshots implies that the scan of p; contains the tickets of all
other processors. That is, p; must see at least & smaller tickets, which contradicts the
condition on Line 5. 0

The proof of k-lockout avoidance considers some processor p; that gets stuck in
the entry section. Eventually, all nonfaulty processors that enter the critical section
before p; exit; in addition, all nonfaulty processors that scanned before the update of
pi (in the linearizability order of the snapshot) enter the critical section as well and
exit. In both cases, if these processors ever move to the entry section, they will get a
ticket larger than p;’s ticket. Thus eventually the only processors with tickets smaller
than p;’s are the faulty ones; because fewer than k processors are faulty, the condition
in Line 5 will be satisfied and p; will enter the critical section. This proves:

Lemma 16.19 Algorithm 58 provides k-lockout avaidance.

Together, the last two lemmas prove:

364 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

k-assignment entry section
[k-exclusion entry section]

!

long-lived renaming
request-name

k-assignment exit section

long-lived renaming
release-name

[k-exclusion exit section j

Fig. 16.6 A schematic view of the k-assignment algorithm.

Theorem 16.20 Algorithm 58 solves the k-exclusion problem, if fewer than k pro-
cessors are faulty.

16.4.2 An Algorithm for k-Assignment

The reader might be tempted to suggest solving k-assignment with 2k — 1 slots using
the algorithm for long-lived renaming for k participants. The slot assighments are
obvious because the renaming algorithm uses 2k — 1 names, and indeed, as discussed
at the end of Section 16.3.3, if too many processors wish to enter the critical section,
some of them will be stuck. Thus the protocol provides k-exclusion as well. It is the
lockout avoidance property that is not provided by long-lived renaming; when more
than k processors are trying to obtain a new name, a processor in the entry section
may be overtaken infinitely many times (see Exercise 16.27).

The solution, however, is simple; we encompass a long-lived renaming algorithm
for k participants (using 2k — 1 names) with a k-exclusion algorithm (see Fig. 16.6).
Formally proving the properties of the algorithm is left to the reader.

Exercises

16.1 Prove that in a solo execution of any k-set consensus algorithm, the processor
must decide on its input value.

16.2 For both cases considered in the proof of Lemma 16.3, prove that p; distin-
guishes between « and «'.

K -EXCLUSION AND K -ASSIGNMENT 365

Fig. 16.7 Nlustration for Exercise 16.6.

16.3 Consider the following block execution for four processors:

o = {po, p2, pa}, {pa, pa}, {po}, {1}, {p1}

1. Which processor is unseen in a?

2. Is pp seen in block 1 of a?

3. Is pg last seen in block 3 of a?

4. Construct the unique execution o’ ~' a, forevery i = 0,1,2, 3.

16.4 Find a formula for the number of block executions with two processors,
assuming that each processor always takes exactly s steps before deciding.

16.5 Prove that for a system with n processors there is a finite number of block
executions.

16.6 Prove that the restricted degree of a non-imaginary node in B cannot be 3.

Hint: Consider a non-imaginary node and its adjacent nodes, as described in
Figure 16.7, and try to determine the decisions of all three processors in the
four block executions corresponding to these nodes.

16.7 Extend the proof of Exercise 16.6 to show that in By there is no non-imaginary
node whose restricted degree is 3.

16.8 Let A be a k-set consensus algorithm for three processors. Show a one-to-one
correspondence between the block executions of A in which ps is unseen and
the block executions of a k-set consensus algorithm A’ for two processors.

Hint: A’ behaves like A behaves in block executions that do not contain any
steps of ps.

16.9 Explain how the definition of block executions should be modified so that the
proof of Theorem 16.7 holds also when processors communicate by ordinary
read and write operations, rather than update and scan operations.

16.10 Prove, by induction on k£ > 2, that an odd number of nodes in 3; have
restricted degree 1.

366 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

Hint: Add an imaginary node connected to all nodes corresponding to block
executions with an unseen processor; use the inductive hypothesis on & to
prove that the restricted degree of the imaginary node is odd; complete the
proof as was done for & = 3.

16.11 Extend Lemma 16.6 to any & > 2. That is, prove that if the restricted degree
of a non-imaginary node in B; is 1, then it corresponds to an execution in
which {0, ..., & — 1} are decided.

16.12 Extend the simulation of Section 5.3.2 to prove: If there is a k-set consensus
algorithm for a system of n > k processors that tolerates the failure of %
processors, then there is a wait-free k-set consensus algorithm for a system of
k processors.

16.13 Modify the code of the approximate agreement algorithm to use only a single
snapshot object, with possibly unbounded number of values in each segment.

16.14 Prove Theorem 16.12.

16.15 Prove that in a solo execution of any approximate agreement algorithm, the
processor must decide on its input value.

16.16 Complete the proof of Lemma 16.8.
16.17 Use Lemma 16.8 to prove Lemma 16.9 and Lemma 16.10.

16.18 Prove that Algorithm 33 is correct even if processors use only an array of
atomic single-writer multi-reader registers.

16.19 Modify the approximate agreement algorithm (Algorithm 54) and its cor-
rectness proof so that maxRound is calculated only in the first asynchronous
round.

16.20 Present an execution of the renaming algorithm (Algorithm 55) in which some
process takes an exponential number of steps before deciding.

16.21 Prove Lemma 16.17.
16.22 Describe an execution of Algorithm 56 that uses name n - f.

16.23 Prove that there is no wait-free renaming algorithm with new name space of
size n.

Hint: Follow the ideas used to prove that there is no wait-free algorithm for
solving consensus (Theorem 5.18).

16.24 Prove the uniqueness property of Algorithm 57, even when more than &
processors participate concutrently.

16.25 Prove that[1..2k + 1] is the new name space used by Algorithm 57, even when
more than k processors participate concurrently.

CHAPTER NOTES 367

16.26 Prove the termination property of Algorithm 57, when % processors or less
participate concurrently.

16.27 Show an execution of Algorithm 57 with more than & participating processors
(concurrently), in which some processor does not terminate.

16.28 Show an execution of Algorithm 57 with 2k participating processors (concur-
rently), in which all processors terminate.

16.29 Explain why Algorithm 58 needs a flag.

Hint: Assume that many processors (more than &) exit the critical section and
are now in the remainder; now consider what happens when some processor
wishes to enter the critical section.

16.30 Specify the k-exclusion and k-assignment problems using the model of Chap-
ter 7. Then describe and prove correct the k-assignment algorithm mentioned
in Section 16.4.2 using the layered model.

Chapter Notes

The study of solvable problems has been a prolific research area in the last five years,
and our presentation has only touched it; here, we try to describe some of the key
developments.

The k-set consensus problem was first presented by Chaudhuri [73], who also
presented an f-resilient algorithm for k-set consensus, for any f < k. The lower
bound showing that k-set consensus cannot be solved in the presence of f > £ failures
was proved concurrently by Borowsky and Gafni [58], by Herlihy and Shavit [132],
and by Saks and Zaharoglou [233].

Our proof of the lower bound for k-set consensus combines an operational argu-
ment about block executions and their similarity (and non-similarity) structure with
a combinatorial argument about a coloring of a graph representing this structure.
Block executions were defined by Saks and Zaharoglou [233] and by Borowsky and
Gafni [58], who called them immediate snapshot executions because they correspond
to executions in which restricted snapshot objects are employed. Lemma 16.2 and
Lemma 16.3 were stated and proved by Attiya and Rajsbaum [32]. The graph repre-
sentation of the similarity structure of block executions (/3,,) is new; it is inspired, in
part, by the lower bound on the number of rounds for solving k-set consensus in the
synchronous model, presented by Chaudhuri, Herlihy, Lynch, and Tuttle [75]. The
combinatorial argument follows a graph-theoretic proof of Sperner’s lemma given by
Tompkins [253]; see also Bondy and Murty’s standard text [57, pp. 21-23].

Approximate agreement was first presented by Dolev, Lynch, Pinter, Stark, and
Weihl [96]; they considered message-passing models with crash and Byzantine fail-
ures. The algorithms we presented are based on an algorithm of Moran [190].

The renaming problem was first presented by Attiya, Bar-Noy, Dolev, Peleg,
and Reischuk [26] for message-passing systems. The algorithms we presented here

368 PROBLEMS SOLVABLE IN ASYNCHRONOUS SYSTEMS

(Algorithm 55 for the wait-free case and Algorithm 56 for the general case) are
adaptations of the algorithm of Attiya et al. to shared memory systems.

Moir and Anderson [188] presented algorithms for long-lived renaming that are
fast in the sense discussed for mutual exclusion, that is, in the absence of contention,
a processor will pick a new name in a constant number of steps. Better algorithms
for long-lived renaming were presented by Moir and Garay [189].

The k-exclusion problem was introduced by Fischer, Lynch, Burns, and Borodin [108];
we have presented an algorithm of Afek, Dolev, Gafni, Merritt, and Shavit [5], who
also showed that the number of times a processor is overtaken is bounded in this
algorithm. As for the algorithms of Chapter 10, a bounded timestamp system can be
used instead of explicit tickets, to bound the memory requirements of this algorithm.

The k-assignment problem was introduced in message-passing systems under the
name slotted k-exclusion by Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [26]; the
term k-assignment was coined by Burns and Peterson [64], who were the first to
study this problem in shared memory systems. Burns and Peterson also showed that
at least 2k + 1 “slots” are required to solve this problem, by a proof that extends the
methods of Fischer, Lynch, and Paterson [110].

All algorithms for variants of the renaming problem require the number of new
names to be at least n + f, where f is the number of failures to be tolerated. An
obvious question is whether the number of new names can be reduced. Attiya, Bar-
Noy, Dolev, Peleg, and Reischuk [26] showed that at least n + 1 new names are
needed (Exercise 16.23). Much later, Herlihy and Shavit proved that the number of
new names must be at least n + f [132].

Herlihy and Shavit derive the lower bounds for k-set consensus and renaming
from a more general theorem characterizing the problems that can be solved by an
f-resilient algorithm with only read and write operations [133]. This theorem uses
techniques of algebraic topology. A simpler characterization theorem, relying only
on graph-theoretic concepts, was proved by Biran, Moran, and Zaks [52] when only
a single processor may fail. Their theorem is stated for message-passing systems,
but simulations such as those presented in Chapter 5 and Chapter 10 can be used to
translate it to shared memory systems.

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

17

Solving Consensus in
Eventually Stable Systems

We have seen that fault-tolerant consensus is impossible to solve in an asynchronous
system in which processors communicate via message passing or shared read-write
registers. The key difficulty in trying to tolerate failures in an asynchronous system
is distinguishing between a crashed processor and a slow processor. However, the
assumption of complete asynchrony is often an overly pessimistic view of practical
systems. If there are upper bounds on processor step time and message delays, syn-
chrony can be used to detect failed processors, for instance, by having the processors
exchange ‘I’m alive’ messages periodically.

A more abstract approach to detecting failures is to assume a service that does
so but whose inner workings are not known to the users. This failure detector
service could then be used in any kind of system, including an asynchronous one.
The motivation for this approach is that there could be some other, and better, way
to detect failures rather than imposing more stringent timing assumptions on the
systems. This approach ignores the operational features of a failure detector and
concentrates on the properties needed to solve consensus.

Strengthening the system assumptions, for instance, with failure detectors or
stronger synchrony, is one strategy for circumventing the impossibility of consensus
presented in Chapter 5. Recall from Chapter 5 that guaranteeing both safety (agree-
ment and validity) and termination is impossible when the system is asynchronous.

A system may be poorly behaved for arbitrarily long periods, yet safety should
nonetheless be preserved during these periods; that is, processors should never decide
on conflicting or invalid values. We describe a simple mechanism to guarantee safety
requirements, whereas termination is achieved only when the environment is well-
behaved. Later, we describe how failure detectors encapsulate the treatment of the

369

370 SOLVING CONSENSUS IN EVENTUALLY STABLE SYSTEMS

environment’s behavior. A similar approach is taken in Chapter 14, where termination
relied on lucky rolling of a dice.

The chapter starts with the mechanism for guaranteeing safety, which may termi-
nate under fortunate circumstances. We present a formal model for failure detectors
and define three types of failure detectors and show how they can be combined
with the safety preserving algorithm to solve consensus, in both shared memory
and message-passing systems. Possible implementations of failure detectors are
discussed, as well as an application of these algorithms to state-machine replication.

17.1 PRESERVING SAFETY IN SHARED MEMORY SYSTEMS

This section presents a basic algorithm for guaranteeing safety; the algorithm is
presented for asynchronous shared memory systems.

The algorithm consists of many invocations of a procedure called safe-phase.
Each invocation has an associated phase number as a parameter. A processor may
have several (non-overlapping) invocations of safe-phase; the numbers passed as
parameters to the invocations of a particular processor are strictly increasing over
the duration of the execution. Different processors may execute phases concurrently,
but it is assumed that a separate set of phase numbers is used by each processor, for
example, by appending the processor id as the “lower” bits of the phase number.

Calls to safe-phase also take a value parameter and return a value subject to the
following conditions:

Validity: If an invocation of safe-phase returns v # L, then v is the value parameter
in some invocation of safe-phase that begins before the return of v

Agreement: If an invocation returns v # L, then no invocation returns a value other
than v or L.

Conditional termination: If there is an invocation of safe-phase with phase number
7 such that every other invocation that begins before this one ends has a smaller
phase number, then the invocation returns a value v # L.

Each processor maintains its current suggestionregarding a return value in a shared
register. Each phase consists of two stages: In the first stage, the processor chooses a
value #, and in the second stage it tries to decide on v as its return value. Specifically,
in the first stage, a processor writes its new phase number, and reads all the registers.
If some other processor is observed to have reached a larger phase, the processor ends
the phase without choosing. Otherwise, the processor chooses the observed value
with the largest phase number and writes this value, tagged with its own current phase
number, as its suggestion to its register. If no value has yet been suggested, then
the processor suggests the value that was its input parameter. In the second stage,
the processor reads all the registers; if all processors are still in a smaller phase, the
processor decides on its chosen value.

In more detail, processor p; has a single-writer multi-reader register R; with the
following fields:

PRESERVING SAFETY IN SHARED MEMORY SYSTEMS 371

Algorithm 59 safe-phase procedure for processor p;.

procedure safe-phase(value z, integer r)
// Stage 1: choose that value with largest phase tag
R; phase :=r // other fields of R; are written with their current values
maxPhase =0
chosenVal ==z
forj:=0ton—1do
if R;.phase-tag > r then return L
if Rj.val # 1 then
if Rj.phase-tag > maxPhase then
maxPhase '= R; phase-tag
chosenVal := R;.val
0: Ry :=(rchosenVal,r)
// Stage 2: check that no other processor started a larger phase
11: forj:==0ton — 1 do
12: if R;.phase > r then return L
13: return chosenVal

SO AL

phase The current phase number, initially 0.
val The value that p tried to commit in its last phase, initially L.
phase-tag The phase in which val was written.

Algorithm 59 presents the pseudocode.

Note that chosenVal, initially set to the argument z, is overwritten unless every
other processor has a smaller phase and a L value in its shared variable.

We first prove that the algorithm satisfies the validity property. The decision value
is either processor p;’s input or a value read from some other processor’s register.
Simple induction shows this register contains only input values, which implies the
validity of the algorithm.

Next, we prove the agreement property. Let p; be the processor that decides
with the smallest phase number, r;, on some value v. This processor is well-defined
because processors use distinct phase numbers.

We first argue that all processors that write a suggestion for a later phase (greater
than r;) suggest v. Otherwise, let p; be the processor that first writes (in Line 10)
a conflicting suggestion v’ # v for a phase r; > r;. (Again, this processor is well-
defined because processors use distinct phase numbers and writes are atomic.} Note
that p;’s second read from R;.phase (in Line 12) during phase r; does not see ;
or a larger phase number, otherwise p; would return .L, and not v, from safe-phase.
The invocations of safe-phase by p; have increasing phase numbers and thus, p;’s
first write to R;.phase (in Line 1) for phase r; follows p;’s write of v to R;.val (in
Line 10) for phase r;. Hence p; reads v from R;.val with phase number »; during
phase r;. Because p; is the earliest processor to write a conflicting value with phase
number larger than r;, p; only sees the value v associated with phase numbers that

372 SOLVING CONSENSUS IN EVENTUALLY STABLE SYSTEMS

are at least r; during the for loop in Lines 11-12. Thus p; suggests v, not v', for
phase r;.

Because processors decide only on values they suggest, no processor decides on
a value different than v.

Finally, we verify conditional termination. Inspecting the code reveals that if a
nonfaulty processor p; executes an entire phase with the largest phase number, then
p; decides.

17.2 FAILURE DETECTORS

A way to capture stability properties of an asynchronous system is with the concept
of a failure detector. When combined with the safety-preserving mechanism in
Algorithm 59, failure detectors allow termination to be achieved. This section
augments the formal model of computation given in Chapters 2 and 5 to model
failure detectors.

Every processor p; has a failure detector component called suspect; that contains
a set of processor ids. The state transition function of a processor uses the current
value of suspect; as one of its arguments (in addition to the current accessible state
of p;).

The state transition function does not change suspect;. Instead, suspect; is updated
by a failure detector algorithm, which we are not explicitly modeling. In each
configuration of the system, the value of each suspect; component contains a set
of processor ids. If p; is in suspect;, then we say that p; suspects p; (of being
faulty). Below we put constraints on the values of the suspect variables in admissible
executions to reflect the workings of a specific kind of failure detector.

What do we want a failure detector to do? First, it should tell us that a failed
processor has failed. Such a condition is called “completeness.” In particular, we
shall insist that eventually every processor that crashes is permanently suspected by
every nonfaulty processor. To rule out unhelpful failure detectors that would simply
suspect everyone, we also would like a failure detector not to tell us that an operational
processor has failed. Such a condition is called “accuracy.” We first consider a
fairly weak form of accuracy, in which eventually some nonfaulty processor is never
suspected by any nonfaulty processor. Note that the failure detector is allowed to
make some mistakes for a while before settling down to good behavior. Incorporating
the above discussion into the formal model, we get the following definition.

Definition 17.1 A failure detector is eventually strong, denoted 8, if every admis-
sible execution satisfies the following two properties:

s For every nonfaulty processor p; and faulty processor pj, there is a suffix of
the execution in which j is in suspect; in every configuration of the suffix.

o There exists a nonfaulty processor p; and a suffix of the execution such that for
every nonfaulty processor p;, 1 is not in suspect; in any configuration of the

suffix.

SOLVING CONSENSUS USING FAILURE DETECTORS 373

The accuracy property can be strengthened so that there is some nonfaulty pro-
cessor that is never suspected.

Definition 17.2 A failure detector is strong, denoted S, if every admissible execution
satisfies the following two properties:

o For every nonfaulty processor p; and faulty processor pj, there is a suffix of
the execution in which j is in suspect; in every configuration of the suffix.

o There exists a nonfaulty processor p; such that for every nonfaulty processor
pj» t is not in suspect; in any configuration of the execution.

A complementary approach equips every processor p; with a component called
trust; that contains a single processor id, instead of suspect;. The indicated processor
can be considered a leader. In a similar manner, the state transition function of a
processor uses the current value of trust; as one of its arguments; trust; is updated by
a failure detection algorithm, which we are not explicitly modeling; this algorithm
can also be viewed as a leader election algorithm. If trust; is p;, then we say that p;
trusts p; (as being nonfaulty).

Analogously to the o8 failure detector, we allow this failure detector, called §2, to
be initially unreliable; it can fail either by electing a faulty processor or by causing
different processors to trust different leaders. More formally:

Definition 17.3 A failure detector is a leader elector, denoted §2, if every admissible
execution satisfies the following property:

o Eventually trust; at every nonfaulty processor p; holds the id of the same
nonfaulty processor.

17.3 SOLVING CONSENSUS USING FAILURE DETECTORS

17.3.1 Solving Consensus with ¢S

A “rotating coordinator” paradigm is employed to solve consensus with ¢&. The
coordinatorof phase ris the processor p., where ¢ = r» mod n, and it calls safe-phase
with phase number 7. A processor that is not the coordinator of phase r simply waits
until either the coordinator completes phase #, or it suspects the coordinator. Then
the processor increases its phase number and repeats.

The pseudocode appears in Algorithm 60.

We now show that, in any admissible execution of Algorithm 60, the hypothesis
for conditional termination of safe-phase holds, that is, eventually there will be a
processor that executes an entire invocation of safe-phase with the largest phase
number. Consider a point in the execution when all the faulty processors have
crashed and henceforth some nonfaulty processor p, is never suspected. Let ryqx be
the maximum phase (according to R;.phase) of any nonfaulty processor at that point.
Let » be the smallest multiple of ¢ that is larger than .. Clearly, no nonfaulty

374 SOLVING CONSENSUS IN EVENTUALLY STABLE SYSTEMS

Algorithm 60 Consensus with ¢&: code for processor p;.

1. r=0

2: while true

3 c:=rmodn

4 if i = ¢ then

5: ans = safe-phase(r,x) /! z is p;’s input
6 ifans # 1 then y == ans /f and halt, y is p;’s output
7 else wait until ¢ € suspect or R..phase > r // not a coordinator
8 ri=r+1 /f and repeat

processor gets stuck at any phase number unless it decides. Thus eventually p,
executes safe-phase with phase number » and is the coordinator of that phase.

Suppose, in contradiction, that there is another processor p; that executes safe-phase
with a phase number »’ > r concurrently with p.’s execution of safe-phase with phase
number . Because different processors use different phase numbers, 7 # r, and
thus »* > r. Because processors do not skip phases, p; executed phase r at some
earlier time. How did p; finish phase »? Obviously p. had not finished phase r yet,
s0 p; must have suspected p.. But p; executes phase r after the time when p, is no
longer suspected, because r > ryax, which is a contradiction.

As stated, the conditional termination property ensures only that processor p,
terminates. It is possible to make all processors terminate in this case, by having
a processor write its decision to a shared register once it has decided. A processor
begins each iteration of the while loop by checking the decision registers of the
other processors; if anyone else has decided, the processor decides the same value.
This modification ensures that after p. decides, eventually every nonfaulty processor
decides as well.

Theorem 17.1 Consensus can be solved in shared memory systems using o8, for
any number of crash failures.

In contrast to the wait-freedom possible in shared memory, n > 2f is necessary
for solving consensus with & when processors communicate by message passing.
This result is shown using a familiar partitioning argument (cf. Theorem 10.22 in
Chapter 10).

Theorem 17.2 Consensus cannot be solved using the oS failure detector in an
asynchronous system if n < n/2.

Proof. Suppose in contradiction that there is an algorithm A that solves consensus
using the ¢& failure detector in an asynchronous system with n < 2f. Partition the
set of processors into two sets Sg and S) with |Sp| = [n/2] and [S)| = |n/2].
Consider an admissible execution og of A in which all inputs are 0, all processors
in Sy are nonfaulty, and all processors in S; crash initially. Furthermore, suppose
the failure detector behavior is such that every processor in 5y permanently suspects

SOLVING CONSENSUS USING FAILURE DETECTORS 375

every processor in S; and never suspects any processor in Sy. By the termination
and validity conditions of A, some processor p; in Sy decides O at some time ;.

Consider an analogous admissible execution a4 of A in which all inputs are 1, all
processors in .Sy are nonfaulty, and all processors in S5y crash initially. Suppose the
failure detector behavior is such that every processor in .Sy permanently suspects every
processor in Sy and never suspects any processor in S;. Again, by the termination
and validity conditions of A, some processor p; in S; decides 1 at some time ;.

Finally, consider an admissible execution a5 of A that is a “merger” of ag and «;.
In more detail, all processors in Sy have input 0, all processors in .S; have input 1,
and there are no faulty processors, but messages between Sy and S; are delayed until
time ¢; = max{¢o,?1}. Suppose the ¢S failure detector behaves as follows: Every
processor in Sy suspects every processor in Sp until time 5, and then it suspects no
one. Every processor in S suspects every processor in Sy until time ¢5, and then it
suspects no one.

Executions aq and a5 are indistinguishable to p; until time t5, so p; decides 0
at time {p in a3. But executions o and a3 are indistinguishable to p; until time
12, 50 p; decides 1 at time ?; in 3. Thus a» violates the agreement condition for
consensus. a

The simulation of shared memory in a message-passing system (Section 10.4) can
be applied to the algorithm of Theorem 17.1 to obtain Theorem 17.3.

Theorem 17.3 Consensus can be solved in message-passing systems using ¢S, as-
suming that n > 2 f.

17.3.2 Solving Consensus with &

In shared memory systems, the same algorithm used with ¢§ (Algorithm 60) can be
used to solve consensus with S. Because S guarantees that some nonfaulty processor
p; is never suspected by nonfaulty processors, the algorithm terminates when p; takes
on the role of coordinator. That is, the algorithm terminates within n phases.

When message-passing systems are considered, Theorem 17.2 cannot be extended
to show that n > 2 f is required for solving consensus with S. In fact, consensus can
be solved for any value of 7 and f when § can be employed.

One way to derive this algorithm (Exercise 17.3 explores another way) is to use
S in order to simulate shared memory on top of message passing, without requiring
thatn > 2f,

Specifically, we modify the simulation of shared memory in a message-passing
system (Section 10.4) so that processor p; waits for responses from all processors not
in suspect;.

In more detail, when the writer wants to write a value to a register, it sends a
message containing the new value and an incremented sequence number to all the
processors. Each recipient updates a local variable with the value, if the sequence
number is larger than what it currently has; in any event, the recipient sends back an
acknowledgment. Once the writer receives acknowledgments from all processors it

376 SOLVING CONSENSUS IN EVENTUALLY STABLE SYSTEMS

Algorithm 61 Consensus with {2: code for processor p;.
I. r=0
2. while true do

3: if i = trust then

4: ans := safe-phase(r + 4, z) /l z is p;’s input
5: if ans # 1 theny := ans // and halt, y is p;’s output
6: ri=r+4n // and repeat

does not suspect, it finishes the write. The properties of § guarantee that the writer
eventually receives responses from all processors it does not suspect.

In a similar manner, in order to read the register, a reader sends a message to all
the processors. Each recipient sends back a message with the value it currently has.
Once the reader receives a responses from all processors it does not suspect, itreturns
the value with the largest sequence number among those received.

Failure detector S guarantees that there is some nonfaulty processor, say p;, that
is never suspected by any processor. Clearly, p; is in the intersection of the set of
processors sending an acknowledgment to the writer and the set of processors sending
a response value to the reader. Exercise 17.4 asks you to show that the algorithm
correctly simulates a shared register, following the proof of Theorem 10.21.

17.3.3 Solving Consensus with {2

An alternative approach to solving consensus relies on the failure detector {2. Algo-
rithm 59 is executed together with failure detector {2, which provides termination.
Different processors use different phase numbers, in particular, processor p; uses
phase numbers i, n + 7,2n + ¢,3n + ¢, As long as processor p; is a leader and
has not yet decided, p; calls safe-phase with increasing phase numbers.

The pseudocode appears in Algorithm 61.

To see why Algorithm 61 is correct, consider any admissible execution. Even-
tually, at some point in the execution, {2 ensures that every processor continuously
trusts the same nonfaulty processor, call it p.. All invocations of safe-phase that are
in progress at that time are completed by some later time, after which no processor
other than p. invokes safe-phase any more. Processor p., however, continues to
invoke safe-phase and thus eventually does so with a phase number that is larger than
the phase number of any other invocation. This invocation satisfies the hypotheses
for the conditional termination condition of safe-phase and thus it returns a non-..
value, causing p, to decide. Termination of other processors can be handled in the
same manner as for Algorithm 60.

For message-passing systems, it can be shown (Exercise 17.5) that n > 2f is
required for solving consensus, even when the system is augmented with the £2
failure detector. Under the assumption that n > 2f, Algorithm 61 can be executed
in a message-passing system, using the simulation of Section 10.4.

IMPLEMENTING FAILURE DETECTORS 377

17.4 IMPLEMENTING FAILURE DETECTORS

Because ¢S can be used to solve consensus, it is not possible to implement ¢§ in an
asynchronous system subject to crash failures. If it were, then consensus could be
solved, contradicting the impossibility of doing so shown in Chapter 5. Obviously, the
same observation holds for any failure detector that can be used to solve consensus,
for example, S and £2.

However, this observation is a theoretical one, which shows that for any proposed
algorithm, there is a particularly adversarial execution in which it will fail. More
practically speaking, there is a simple implementation of oS based on timeouts. Each
processor periodically sends an ‘I’m alive’ message to all the other processors. If a
processor p; does not hear from another processor p; for some length of time (called
the timeout interval for p;), then p; puts p; in its suspect list. If p; hears from p;
while p; suspects p;, then p; removes p; from its suspect listand increases the timeout
interval for p;.

Clearly this scheme satisfies the completeness property of oS: Because a proces-
sor that has failed never sends any more ‘I'm alive’ messages, this processor will
eventually be put inevery nonfaulty processor’s suspect list and never removed. What
about the accuracy property of ¢S? It is possible that a nonfaulty processor p; will
continually be added to and removed from the suspect list of another nonfaulty pro-
cessor. This behavior, which violates the accuracy property, occurs if the messages
from p; to p; always have delay longer than the current timeout interval for p; being
maintained by p;. However, such a pattern of message delays is highly unlikely to
occur.

A similar scheme implements § if some nonfaulty process never violates the
timing assumptions.

{2 can be built on top of another failure detector, in particular, &, or implemented
directly using timing assumptions.

17.5 STATE MACHINE REPLICATION WITH FAILURE DETECTORS

Recall the state machine approach for implementing distributed systems, described
in Section 8.4.2. In this approach, a system is described as a state machine, whose
transitions are initiated by client requests and return responses. If the state machine
is deterministic, then the key issue is ordering (or sequencing) the clients’ requests.

A simple way to order the requests uses a single coordinator (server), who receives
requests from clients, applies them to the state machine, computes responses, and
sends them back to the clients. Obviously, in this scheme, the server is a single point
of failure. Fault tolerance can be improved by replacing the single server with a
collection of servers.

One approach to state machine replication has one of the servers act as the coor-
dinator in normal execution mode; when the coordinator fails, one of the remaining
servers is elected to replace it as the new coordinator. When the system is asyn-
chronous, leader election must rely on timing assumptions or other mechanisms for

378 SOLVING CONSENSUS IN EVENTUALLY STABLE SYSTEMS

detecting failures; the leader election mechanism may fail to converge, when the
system does not obey the timing assumptions. This behavior can be encapsulated
within failure detector 2.

£2 may produce erroneous results for a while, causing several servers to consider
themselves coordinators until §2 stabilizes and elects a single leader. If each (self-
proclaimed) coordinator orders clients’ request on its own, different processors’
views of the state machine transitions will diverge and become inconsistent. Instead,
agreement among coordinators must be used to order clients’ requests. Servers
that consider themselves coordinators invoke a copy of Algorithm 61 for each state
machine transition; their input is the next client request they wish to commit. The
coordinators invoke the algorithm for transition £ 4 1 only after transitions 1,...,£
are decided, and the state of the machine after the first £ transitions is fixed.

Note that even when the system is stable, with a unique nonfaulty coordinating
server, the coordinator still calls Algorithm 61 forevery transition of the state machine.
The reason is that other processors may erroneously suspect the coordinator is faulty
and try to replace it.

Exercises

17.1 Modify the proof of Theorem 17.2 to show that nonfaulty processors must
continue to send messages in order to solve consensus with oS.

17.2 Show optimizations to the message and time complexity of the simulation of
shared memory by message passing in the context of Theorem 17.3.

17.3 Directly derive a consensus algorithm for message-passing systems, with any
number of faulty processors, using S.

Hint: Follow Algorithm 15.

17.4 Expand the ideas presented in Section 17.3.2 to show a simulation of a shared
register in a message-passing system, with any number of failures, assuming
failure detector S.

Hint: Follow Theorem 10.21.

17.5 Modify the proof of Theorem 17.2, to show that consensus cannot be solved
using the {2 failure detector in an asynchronous system if n < 2f.

17.6 Suppose that the completeness property of the 8§ failure detector is weak-
ened to require that eventually every crashed processor is suspected by some
nonfaulty processor (instead of every one). Either show how to convert this
weaker failure detector into o8 in an asynchronous system with n > 2f, or
prove that it is impossible.

Can this weaker failure detector be used to solve consensus in an asynchronous
system?

CHAPTER NOTES 379

17.7 Suppose that the accuracy property of the ¢S failure detector is strength-
ened to require that eventually no nonfaulty processor is suspected by any
nonfaulty processor. Either show that consensus cannot be solved in an asyn-
chronous system with this stronger failure detector when n < 2f or describe
an algorithm using this failure detector that works when n < 2 f.

17.8 <P is a failure detector that guarantees that eventually each processor’s sus-
pected list contains exactly the faulty processors. Can you use P to simulate
27
Can you use §2 to simulate P?
Either give algorithms or give impossibility proofs. Assume a message pass-
ing system with crash failures.

Chapter Notes

The original paper introducing failure detectors was by Chandra and Toueg [67], who
proposed a variety of completeness and accuracy conditions. They also presented
consensus algorithms for message-passing systems, using various failure detectors.
Lo and Hadzilacos [171] studied failure detectors in shared-memory systems, and
presented consensus algorithms using ¢S and S.

Our presentation is inspired by the work of Delporte-Gallet, Fauconnier, and
Guerraoui [89], who studied shared memory simulations using failure detectors.
(The solutionto Exercise 17.4 can be found in this paper.) Algorithm 59 is based on
algorithms presented by Lo, and Hadzilacos [171] and by Gafni and Lamport [116].

The failure detector in Exercise 17.6 is oWW; Chandra, Hadzilacos, and Toueg [66]
showed that no weaker failure detector can solve consensus.

In the crash failure model, a failed processor is indistinguishable from a slow
processor. In contrast, in the failstop model, described in Chapter 8, it is possible
to tell whether a processor has failed. Sabel and Marzullo [230] use failure detector
oW to simulate failstop processors in the presence of crash failures.

Failure detectors have been applied to several other problems, including various
kinds of broadcasts [67], atomic commitment [126], leader election [231], and group
membership [41, 79, 114, 169]. Additional work has addressed the relationships
between different failure detector specifications [67, 83], and failure detectors in
shared memory [171, 197].

Algorithm 61 is the shared memory version of the Paxos algorithm for message-
passing systems, presented by Lamport [161], originally in 1989. Our description
is inspired by the so-called Disk Paxos algorithm of Gafni and Lamport [116]. De
Prisco, Lampson, and Lynch [220] describe an alternative way to derive Algorithm 61,
by embedding the leader election into the algorithm. Their algorithm uses processor
ids to break ties when there are several conflicting proposals for the same phase and
terminates when certain timing assumptions hold.

In the state machine replication scheme described in Section 17.5, Algorithm 61
is invoked for each transition of the state machine, because it is not clear whether

380 SOLVING CONSENSUS IN EVENTUALLY STABLE SYSTEMS

the system is stable or a new coordinator is being elected. Lamport [161] optimizes
the normal case, where the system is stable and there is a single coordinator. The
coordinator performs the first stage of safe-phase for several transitions at once. Thus,
ideally, a leader will be able to commit several waiting transitions fairly quickly.

It is worth comparing the Paxos approach to state machine replication, discussed
in this chapter, with state machine replication using totally order broadcast, described
in Chapter 8. The latter approach is more flexible because applications can trade off
weaker semantics of the broadcast service for better performance; this allows the
development of applications in an incremental manner, first prototyping using strong
semantics, then gradually weakening the semantics provided by the broadcast service
in order to improve performance, while preserving correctness. On the other hand,
the safety mechanism embedded in the Paxos approach, when translated to message
passing, requires a processor to communicate only with a majority of the processors,
whereas broadcast-based replication requires all group members to acknowledge each
operation.

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

References

. Karl Abrahamson. On achieving consensus using a shared memory. In Proceed-
ings of the 7th Annual ACM Symposium on Principles of Distributed Computing,
pages 291-302. ACM, 1988.

. Sarita Adve and Mark Hill. Weak ordering—A new definition. In Proceedings
of the 17th Annual International Symposium on Computer Architecture, pages
2-14, 1990.

. Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir
Shavit. Atomic snapshots of shared memory. Journal of the ACM, 40(4):873~
890, September 1993.

. Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM
Transactions on Programming Languages and Systems, 15(1):182-205, Jan-
uary 1993,

. Yehuda Afek, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. A
bounded first-in, first-enabled solution to the I-exclusion problem. ACM Trans-
actions on Programming Languages and Systems, 16(3):939-953, May 1994.

. Yehuda Afek and Yossi Matias. Elections in anonymous networks. Information
and Computation, 113(2):312-330, September 1994.

. Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that
t-resilient consensus requires ¢ + 1 rounds. Information Processing Letters,
71(3-4):155-158, 1999.

381

382

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

REFERENCES

. J. Alemany and E. W. Felten. Performance issues in non-blocking synchroniza-
tion on shared-memory multiprocessors. In Proceedings of the 11th Annual
ACM Symposium on Principles of Distributed Computing, pages 125-134,
1992.

. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Total Ordering of Messages in
Broadcast Domains. Technical Report CS92-9, Dept. of Computer Science,
The Hebrew University of Jerusalem, 1992.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D.A. Agarwal, and P. Ciarfella. The
totem single-ring ordering and membership protocol. ACM Transactions on
Computer Systems, 13(4).311-342,1995.

Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A com-
munication sub-system for high availability. In Proceedings of the 22nd Annual
International Symposium on Fault-Tolerant Computing, pages 76-84, 1992.

Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks:
Shared memory computing on networks of workstations. [/EEE Computer,
29(2):18-28, February 1996.

James Anderson. Composite registers. Distributed Computing, 6(3):141-154,
April 1993,

James Anderson. Multi-writer composite registers. Distributed Computing,
7(4):175-196, May 1994.

James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual
exclusion: major research trends since 1986. Distributed Computing, 16(2—
3):75-110, 2003.

Thomas E. Anderson. The performance of spin lock alternatives for shared-

memory multiprocessors. IEEE Transactions on Parallel and Distributed Sys-
tems, 1(1):6—16, January 1990.

Dana Angluin. Local and global properties in networks of processors. In
Proceedings of the 12th ACM Symposium on Theory of Computing, pages 82—
93, 1980.

ANSVIEEE. Local Area Networks: Token Ring Access Method and physical
Layer Specifications, Std 802.5. Technical report, 1989,

Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. Efficiency of
synchronous versus asynchronous distributed systems. Journal of the ACM,
30(3):449-456, July 1983.

James Aspnes. Lower bounds for distributed coin-flipping and randomized
consensus. Journal of the ACM, 45(3):415-450, 1998.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34.

3s.

REFERENCES 383

James Aspnes. Randomized protocols for asynchronous consensus. Distributed
Computing, 16(2-3):165-175, 2003.

James Aspnes and Maurice Herlihy. Wait-free data structures in the asyn-
chronous PRAM model. In Proceedings of the 2nd Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 340-349, 1990.

James Aspnes and Orli Waarts, Randomized consensus in expected
O(N log? N) operations per processor. SIAM Journal on Computing,
25(5):1024-1044, October 1996.

Hagit Attiya. Efficient and robust sharing of memory in message-passing
systems. Journal of Algorithms, 34(1):109-127,2000.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message-passing systems. Journal of the ACM, 42(1):121-132, January 1995.

Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger Reis-
chuk. Renaming in an asynchronous environment. Journal of the ACM,
37(3):524~548, July 1990.

Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds
on the time to reach agreement in the presence of timing uncertainty. Journal
of the ACM, 41(1):122-152, January 1994.

Hagit Attiya and Roy Friedman. A correctness condition for high-performance
multiprocessors. SIAM Journal on Computing,27(6):1637-1670, 1998.

Hagit Attiya, Amir Herzberg, and Sergio Rajsbaum. Clock synchronization
under different delay assumptions. SIAM Journal on Computing, 25(2):369-
389, April 1996.

Hagit Attiya and Marios Mavronicolas. Efficiency of semisynchronous ver-
sus asynchronous networks. Mathematical Systems Theory, 27(6):547-571,
Nov./Dec. 1994.

Hagit Attiya and Ophir Rachman. Atomic snapshots in O(n log n) operations.
SIAM Journal on Computing,27(2):319-340, March 1998.

Hagit Attiya and Sergio Rajsbaum. The combinatorial structure of wait-free
solvable tasks. SIAM Journal on Computing,31(4):1286-1313, 2002.

Hagit Attiya, Marc Snir, and Manfred Warmuth. Computing on an anonymous
ring. Journal of the ACM, 35(4):845-876, October 1988.

Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizabil-
ity. ACM Transactions on Computer Systems, 12(2):91-122, May 1994,

Hagit Attiya and Jennifer L. Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. McGraw-Hill Publishing Company, May
1998.

384

36.

37.

38.

39.

40.

41.

42,

43,

44.

45.
46.

47.

48.

49.

REFERENCES

Baruch Awerbuch. Complexity of network synchronization. Journal of the
ACM, 32(4):804-823, October 1985.

Baruch Awerbuch. New distributed depth-first-search algorithm. Information
Processing Letters, 20(3):147-150, April 1985.

Baruch Awerbuch. Reducing complexities of distributed maximum flow and
breadth-first-search algorithms by means of network synchronization. Net-
works, 15(4):425-437, Winter 1985.

Baruch Awerbuch. Optimal distributed algorithms for minmum weight span-
ning tree, counting, leader election and related problems. In Proceedings of the
19th ACM Symposium on Theory of Computing, pages 230-240. ACM, 1987.

Baruch Awerbuch and David Peleg. Network synchronization with polyloga-
rithmic overhead. In Proceedings of the 31th IEEE Symposium on Foundations
of Computer Science, volume II, pages 514-522, 1990.

Ozalp Babaoglu, Renzo Davoli, and Alberto Montresor. Group communication
in partitionable systems: Specification and algorithms. IEEE Transactions on
Software Engineering, 27(4):308-336,2001.

Ozalp Babaoglu and Keith Marzullo. Consistent global states of distributed
systems: Fundamental concepts and mechanisms. In Sape Mullender, editor,
Distributed Systems, chapter 4. Addison-Wesley Publishing Company, Wok-
ingham, 2nd edition, 1993.

Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A
language for parallel programming of distributed systems. IEEE Transactions
on Software Engineering, 18(3):180-2053, March 1992.

Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shift-
ing gears: Changing algorithms on the fly to expedite Byzantine agreement.
Information and Computation,97(2):205-233, April 1992.

Valmir Barbosa. An Introduction to Distributed Algorithms. MIT Press, 1996.

Rida A. Bazzi and Gil Neiger. The complexity of almost-optimal coordination.
Algorithmica, 17(3):308-321, March 1997.

Rida Adnan Bazzi. Automatically Improving the Fault-Tolerance in Distributed
Systems. PhD thesis, College of Computing, Georgia Institute of Technology,
1994. Technical Report GIT-CC-94-62.

Michael Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols. In Proceedings of the 2nd Annual ACM Symposium on
Principles of Distributed Computing, pages 27-30, 1983.

J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared
memory based on type-specific memory coherence. In Proceedings of the 2nd

50.

5L

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

REFERENCES 385

Annual ACM Symposium on Principles and Practice of Parallel Processing,
pages 168—176, 1990.

Pioter Berman and Juan Garay. Cloture votes: n/4-resilient distributed con-
sensus in ¢ + 1 rounds. Mathematical Systems Theory, 26(1):3-19, 1993.

B. N. Bershad. Practical considerations for non-blocking concurrent objects.
In Proceedings of the 13th International Conference on Distributed Computing
Systems, pages 264-274, 1993.

Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characterization
of the distributed 1-solvable tasks. Journal of Algorithms, 11(3):420-440,
September 1990.

Ken Birman and Tommy Joseph. Reliable communication in the presence of
failures. ACM Transactions on Computer Systems, 5(1):47-76, February 1987.

Ken Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems, 9(3):272—
314, August 1991.

Ken Birman and Robert van Renesse (eds.). Reliable Distributed Programming
with the Isis Toolkit. IEEE Computer Society Press, 1993.

R. Bisiani and M. Ravishankar. PLUS: A distributed shared-memory system.
In Proceedings of the 17th Annual International Symposium on Computer Ar-
chitecture, pages 115-124, 1990.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. MacMillan,
London and Basingstoke, 1976.

Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for
t-resilient asynchronous computations. In Proceedings of the 25th ACM Sym-
posium on Theory of Computing, pages 91-100, New-York, 1993.

Elizabeth Borowsky, Eli Gafni, Nancy Lynch, and Sergio Rajsbaum. The BG
distributed simulation algorithm. Distributed Computing,14(3):127-146,2001.

Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information
and Computation, 75(2):130-143, November 1987.

James E. Burns. A Formal Model for Message Passing Systems. Technical
Report 91, Indiana University, September 1980.

James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer, and Gary L.
Peterson. Data requirements for implementation of n-process mutual exclusion
using a single shared variable. Journal of the ACM, 29(1):183-205, January
1982.

386

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

REFEF;‘ENCES

James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171-184,December 1993.

James E. Burns and Gary L. Peterson. The ambiguity of choosing. In Proceed-
ings of the 8th Annual ACM Symposium on Principles of Distributed Computing,
pages 145-158, 1989.

R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with optimal
resilience. In Proceedings ofthe 25th ACM Symposium on Theory of Computing,
pages 42-51, 1993.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest
failure detector for solving consensus. Journal of the ACM, 43(4):685-722,
1996.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225-267, March 1996.

K. Mani Chandy. Essence of Distributed Snapshots. Technical Report CS-TR-
89-05, California Institute of Technology, 1989.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Systems,
3(1):63-75, February 1985.

Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Communications of the
ACM, 22(5):281-283, May 1979.

Jo-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols. ACM
Transactions on Computer Systems, 2(3):251-273, August 1984.

Bernadette Charron-Bost. Concerning the size of logical clocks in distributed
systems. Information Processing Letters, 39:11-16, July 1991.

Soma Chaudhuri. More choices allow more faults: Set consensus problems in
totally asynchronous systems. Information and Computation, 103(1):132-158,
July 1993.

Soma Chaudhuri, Rainer Gawlick, and Nancy Lynch. Designing algorithms for
distributed systems with partially synchronized clocks. In Proceedings of the
12th Annual ACM Symposium on Principles of Distributed Computing, pages
121-132, 1993,

Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle. Tight
bounds for k-set agreement. Journal of the ACM, 47(5):912-943, 2000.

Soma Chaudhuri, Martha J. Kosa, and Jennifer L. Welch. One-write algorithms
for multivalued regular and atomic registers. Acta Informatica,37(3):161-192,
2000.

77

78.

79.

80.

81.

82.

83.

84,

85.

86.

87.

g8.

89.

90.

REFERENCES 387

. D. R. Cheriton and W. Zwaenepoel. Distributed process groups in the V kernel.
ACM Transactions on Computer Systems, 2(3):77-107, May 1985.

To-Yat Cheung. Graph traversal techniques and the maximum flow prob-
lem in distributed computation. I[EEE Transactions on Software Engineering,
9(4):504-512, July 1983.

Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication
specifications: A comprehensive study. ACM Computing Surveys, 33(4):427—
469, December 2001.

B. Chor and C. Dwork. Randomization in Byzantine agreement. In Advances
in Computing Research 5: Randomness and Computation, pages 443-497. JAI
Press, 1989.

Benny Chor, Amos Israeli, and Ming Li. Wait-free consensus using asyn-
chronous hardware. SIAM Journal on Computing, 23(4):701-712, August
1994.

Randy Chow and Theodore Johnson. Distributed Operating Systems and Algo-
rithms. Addison-Wesley Publishing Company, 1997.

Francis Chu. Reducing {2 to oW. Information Processing Letters, 67:289-293,
1998.

Brian A. Coan. A compiler that increases the fault-tolerance of asynchronous
protocols. IEEE Transactions on Computers, 37(12):1541-1553, December
1988.

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems, Concepts
and Designs. Addison-Wesley Publishing Company, 2nd edition, 1994.

F. Cristian, R. Beijer, and S. Mishra. A performance comparison of asyn-
chronous atomic broadcast protocols. Distributed Systems Engineering Journal,
1(4):177-201, 1994.

Flaviu Cristian. Probabilistic clock synchronization. Distributed Computing,
3(3):146-158, July 1989.

Flaviu Cristian, H. Aghili, Ray Strong, and Danny Dolev. Atomic broadcast:
From simple message diffusion to Byzantine agreement. Information and
Computation, 118(1):158-179, April 1995.

Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Failure
detection lower bounds on registers and consensus. In Proceedings of the 16th
International Conference on Distributed Computing, pages 237-251, 2002.

E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965.

388

91.

92.

93.

94,

95.

96.

97.

98.

99.

100.

101.

102.

103.

REFERENCES

Danny Dolev. The Byzantine generals strike again. Journal of Algorithms,
3(1):14-30, March 1982.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal syn-
chronism needed for distributed consensus. Journal of the ACM, 34(1):77-97,
January 1987.

Danny Dolev, Joseph Y. Halpern, Barbara Simons, and H. Raymond Strong.
Dynamic fault-tolerantclock synchronization. Journal of the ACM, 42(1):143—
185, January 1995.

Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the possibility
and impossibility of achieving clock synchronization. Journal of Computer and
System Sciences, 32(2):230-250, April 1986.

Danny Dolev, Maria Klawe, and Michael Rodeh. An O(n log n) unidirectional
distributed algorithm for extrema finding in a circle. Journal of Algorithms,
3(3):245-260, September 1982.

Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of faults.
Journal of the ACM, 33(3):499-516, July 1986.

Danny Dolev, Dalia Malki, and H. Raymond Strong. An asynchronous mem-
bership protocol that tolerates partitions. Technical Report CS§94-6, Institute
of Computer Science, The Hebrew University, 1994.

Danny Dolev and Nir Shavit. Bounded concurrent time-stamping. SIAM Journal
on Computing, 26(2):418-455, April 1997.

Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine
agreement. SIAM Journal on Computing, 12(4):656~666, November 1983.

M. Dubois and C. Scheurich. Memory access dependencies in shared-memory
multiprocessors. IEEE Transactions on Software Engineering, 16(6):660-673,
June 1990.

Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in
a Byzantine environment: Crash failures. Information and Computation,
88(2):156-186, October 1990,

Cynthia Dwork and Orli Waarts. Simple and efficient bounded concurrent
timestamping and the traceable use abstraction. Journal of the ACM, 46(5):633—
666, September 1999.

E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 16, pages 996~
1072. Elsevier Science Publisher B. V., Amsterdam, 1990.

104

105.

106.

107.

108.

109.

110.

I11.

112

113.

114.

115.

116.

117.

REFERENCES 389

. P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In
Proceedings of the 20th ACM Sympasium on Theory of Computing, pages 162~
172, 1988.

Faith E. Fich and Eric Ruppert. Hundreds of impossibility results for distributed
computing. Distributed Computing, 16(2-3):121-163, 2003.

C. Fidge. Logical time in distributed computing systems. [EEE Computer,
24(8):28, August 1991.

Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure
interactive consistency. Information Processing Letters, 14(4):183-186, June
1982.

Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin.
Distributed FIFO allocation of identical resources using small shared space.
ACM Transactions on Programming Languages and Systems, 11(1):90-114,
January 1989.

Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility
proofs for distributed consensus problems. Distributed Computing, 1(1):26-39,
January 1986.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty processor. Journal of the ACM, 32(2):374—
382, April 1985.

Greg N. Frederickson and Nancy Lynch. Electing a leader in a synchronous
ring. Journal of the ACM, 34(1):98-115, January 1987.

Roy Friedman. Consistency Conditions for Distributed Shared Memories. PhD
thesis, Department of Computer Science, The Technion, 1994.

Roy Friedman. Implementing hybrid consistency with high-level synchroniza-
tion operations. Distributed Computing, 9(3):119-129, December 1995.

Roy Friedman and Robbert van Renesse. Strong and weak synchrony in horus.
In Proceedings of the 16th IEEE Symposium On Reliable Distributed Systems,
1996.

Eli Gafni. Perspectives on distributed network protocols: A case for building
blocks. In Proceedings IEEE MILCOM ’86, 1986.

Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing, 16(1):1-20,
2003.

Robert Gallager. Finding a leader in a network with o(e) +o(n log n) messages.
MIT Internal Memorandum, 1977.

390

118.

119.

120.

121.

122.

123.

124,

125.

126.

127.

128.

129.

130.

REFERENCES

Robert Gallager, Pierre Humblet, and Philip Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming Lan-
guages and Systems, 5(1):66-77, January 1983.

Juan Garay and Yoram Moses. Fully polynomial Byzantine agreement for
n > 3t processors in t + 1 rounds. SIAM Journal on Computing, 27(1):247-
290, February 1998.

Hector Garcia-Molina and Annemarie Spauster. Ordered and reliable multicast
communication. ACM Transactions on Programming Languages and Systems,
9:242-271, August 1991.

Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates in
distributed programs. IEEE Transactions on Parallel and Distributed Systems,
5(3):299-307, March 1994.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory consistency and event ordering in scalable shared-memory
multiprocessors. In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15-26, 1990.

Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing
termination in fast randomized Byzantine agreement protocols. Information
Processing Letters, 36(1):45-49, October 1990.

Ajei Gopal and Sam Toueg. Inconsistency and contamination. In Proceedings
of the 10th Annual ACM Symposium on Principles of Distributed Computing,
pages 257-272, 1991.

Gary Graunke and Shreekant Thakkar. Synchronization algorithms for shared-
memory multiprocessors. I[EEE Computer, 23(6):60-69, June 1990.

Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed
systems with failure detectors. Distributed Computing, 15(1):17-25, 2002.

Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomization in sequen-
tial and distributed algorithms. ACM Computing Surveys, 26(1):7-86, March
1994,

Vassos Hadzilacos. Issues of Fault Tolerance in Concurrent Computations.
PhD thesis, Aiken Computation Laboratory, Harvard University, June 1984.

Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broad-
casts and related problems. Technical Report TR 94-1425, Cornell University,
Dept. of Computer Science, Cornell University, Ithaca, NY 14853, May 1994.

Joseph Y. Halpern, Nimrod Megiddo, and A. A. Munshi. Optimal precision in
the presence of uncertainty. Journal of Complexity, 1(2):170-196, December
1985.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142,

143.

144.

REFERENCES 391

Maurice Herlihy. A methodology for implementing highly concurrent data ob-
jects. ACM Transactions on Programming Languages and Systems, 15(5):745—
770, November 1993.

Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for
t-resilient tasks. In Proceedings of the 25th ACM Symposium on Theory of
Computing, pages 111-120, 1993.

Maurice Herlihy and Nir Shavit. The topological structure of asynchronous
computability. Journal of the ACM, 46(6):858-923, 1999.

Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13(1):124-149, January 1991.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463-492, July 1990.

Lisa Higham. Randomized Distributed Computing on Rings. PhD thesis, De-
partment of Computer Science, University of British Columbia, 1989. Technical
Report 89-05.

Lisa Higham and Teresa Przytycka. A simple, efficient algorithm for maximum
finding on rings. Information Processing Letters, 58(6):319-324, 1996.

Lisa Higham and Jolanta Warpechowska-Gruca. Notes on Atomic Broadcast.
Technical Report 95/562/14, University of Calgary, Department of Computer
Science, 1995,

D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular
configurations of processors. Communications of the ACM, 23(11):627-628,
November 1980.

Amos Israeli and Ming Li. Bounded time-stamps. Distributed Computing,
6(4):205-209, July 1993.

Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks.
Information and Computation, 88(1):60-87, September 1990.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley Publish-
ing Company, Reading, Massachusetts, 1992.

B. Janssens and W. K. Fuchs. Relaxing consistency in recoverable distributed
shared memory. In Proceedings of the 23rd Annual International Symposium
on Fault-Tolerant Compuring, pages 155-165, 1993.

Prasad Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592
614, July 1997.

392

145.

146.

147.

148.

149,

150.

151.

152.

153.

154.

155.

156.

157.

REFERENCES

David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems
using optimistic message logging and checkpointing. Journal of Algorithms,
11(3):462-491, September 1990.

Frans Kaashoek, Andy Tanenbaum, S. Hummel, and Henri Bal. An efficient
reliable broadcast protocol. Operating Systems Review, 23(4):5-19, October
1989.

Sundar Kanthadai and Jennifer L, Welch. Implementation of recoverable dis-
tributed shared memory by logging writes. In Proceedings of the 16th Interna-
tional Conference on Distributed Computing Systems, pages 116—124,1996.

J-H. Kim and N. H. Vaidya. Recoverable distributed shared memory using the
competitive update protocol. In Proceedings of the 1995 Pacific Rim Interna-
tional Conference on Fault-Tolerant Systems, pages 152157, 1995.

Martha J. Kosa. Making operations of concurrent data types fast. In Proceedings
of the 13th Annual ACM Symposium on Principles of Distributed Computing,
pages 32-41, 1994.

Eyal Kushilevitz, Yishay Mansour, Michael O. Rabin, and David Zuckerman.
Lower bounds for randomized mutual exclusion. SIAM Journal on Computing,
27(6):1550-1563, 1998.

Eyal Kushilevitz and Michael O. Rabin. Randomized mutual exclusion al-
gorithms revisited. In Proceedings of the 11th Annual ACM Symposium on
Principles of Distributed Computing, pages 275-284, 1992.

T. H. Lai and T. H. Yang. On distributed snapshots. In Zhonghua Yang and
T. Anthony Marsland, editors, Global States and Time in Distributed Systems.
IEEE Computer Society Press, 1994.

Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 18(8):453-455, August 1974,

Leslie Lamport. The implementation of reliable distributed multiprocess sys-
tems. Computer Networks, 2:95-114, 1978.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-564, July 1978.

Leslie Lamport. How to make a multiprocessor that correctly executes multipro-
cess programs. I[EEE Transactions on Computers,C-28(9):690-691, September
1979.

Leslie Lamport. Using time instead of timeout for fault-tolerant distributed sys-
tems. ACM Transactions on Programming Languages and Systems, 6(2):254—
280, April 1984.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

REFERENCES 393

Leslie Lamport. On interprocess communication, Part I: Basic formalism.
Distributed Computing, 1(2):77-85, 1986.

Leslie Lamport. On interprocess communication, Part II: Algorithms. Dis-
tributed Computing, 1(2):86-101, 1986.

Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems, 5(1):1-11, February 1987.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133-169, 1998.

Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence
of faults. Journal of the ACM, 32(1):52-78, January 1983.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems,
4(3):382-401, July 1982,

F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

Gérard LeLann. Distributed systems, towards a formal approach. In IFIP
Congress Proceedings, pages 155-160, 1977.

Kai Li. Shared Virtual Memory on Loosely-Coupled Processors. PhD the-
sis, Yale University, New Haven, Connecticut, September 1986. Number:
YALEU/DCS/RR-492.

Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Programming Languages and Systems, 7(4):321-359,
November 1989.

Ming Li, John Tromp, and Paul M. B. Vitinyi. How to share concurrent
wait-free variables. Journal of the ACM, 43(4):723-746, July 1996.

Kal Lin and Vassos Hadzilacos. Asynchronous group membership with oracles.
In Proceedings of the 13th International Conference on Distributed Computing,
pages 79-93, 1999,

Richard Lipton and John Sandberg. PRAM: A Scalable Shared Memory. Tech-
nical Report CS-TR-180-88, Computer Science Department, Princeton Univer-
sity, September 1988.

Wai-Kau Lo and Vassos Hadzilacos. Using failure detectors to solve consensus
in asynchronous sharde-memory systems. In Proceedings of the 8th Interna-
tional Workshop on Distributed Algorithms, pages 280-295, 1994,

Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Non-
deterministic wait-free hierarchies are not robust. SIAM Journal on Computing,
30(3):689-728, 2000.

394

173.

174.

175.
176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

REFERENCES

Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agree-
ment among unreliable asynchronous processes. In Advances in Computing
Research, Vol. 4, pages 163—183. JAI Press, Inc., 1987.

Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock
synchronization. Information and Control, 62(2/3):190-204, Aug./Sept. 1984,

Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Nancy Lynch and Michael Fischer. On describing the behavior and imple-
mentation of distributed systems. Theoretical Computer Science, 13(1):17-43,
January 1981.

Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing, pages 137-151. ACM, 1987. A full
version is available as MIT Technical Report MIT/LCS/TR-387.

Stephen R. Mahaney and Fred B. Schneider. Inexact agreement: Accuracy,
precision, and graceful degradation. In Proceedings of the 4th Annual ACM
Symposium on Principles of Distributed Computing, pages 237-249, 1985.

Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed
Computing, 11(4):203-213, 1998.

Keith Marzullo and Susan S. Owicki. Maintaining the time in a distributed
system. Operating Systems Review, 19(3):44-54, 1985.

Friedemann Mattern. Virtual time and global states of distributed systems. In
M. Cosnard et. al, editor, Parallel and Distributed Algorithms: Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pages
215-226. Elsevier Science Publishers B. V., 1989.

Marios Mavronicolas and Dan Roth. Linearizable read/write objects. Theoret-
ical Computer Science, 220(1):267-319, 1999.

P. M. Melliar-Smith, Louise E. Moser, and Vivek Agrawala. Broadcast protocols
for distributed systems. IEEE Transactions on Parallel and Distributed Systems,
1(1):17-25, January 1990.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Transactions on
Computer Systems, 9(1):21-65, 1991.

Michael Merritt. Notes on the Dolev-Strong lower bound for Byzantine agree-
ment. Unpublished manuscript, 1985.

David L. Mills. Internet time synchronization: The Network Time Protocol.
IEEE Transactions on Communications, 39(10):1482-1493, October 1991.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

REFERENCES 395

David L. Mills. Improved algorithms for synchronizing computer network
clocks. IEEFE/ACM Transactions on Networking, 3(3):245-254, June 1995.

Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived
renaming. Science of Computer Programming, 25(1):1-39, October 1995.

Mark Moir and Juan A. Garay. Fast long-lived renaming improved and sim-
plified. In Proceedings of the 10th International Workshop on Distributed Al-
gorithms, volume 1151 of Lecture Notes in Computer Science, pages 287-303.
Springer-Verlag, 1996.

Shlomo Moran. Using approximate agreement to obtain complete disagree-
ment: The output structure of input free asynchronous computations. In Pro-
ceedings of the 3rd Israel Symposium on Theory of Computing and Systems,
pages 251-257, 1995.

Carol Morgan. Global and logical time in distributed systems. Information
Processing Letters, 20(4):189-194, May 1985.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual
synchrony. In Proceedings of the 14th International Conference on Distributed
Computing Systems, pages 5665, 1994.

Yoram Moses and Mark R. Tuttle. Programming simultaneous actions using
common knowledge. Algorithmica,3(1):121-169, 1988.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

Sape Mullender, editor. Distributed Systems. Addison-Wesley Publishing Com-
pany, 2nd edition, 1993.

Gil Neiger. Distributed consensus revisited. Information Processing Letters,
49(4):195-201, February 1994.

Gil Neiger. Failure detectors and the wait-free hierarchy. In Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, pages
100-109, 1995.

Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of
distributed algorithms. Journal of Algorithms, 11(3):374-419, September 1990.

Gil Neiger and Sam Toueg. Simulating synchronized clocks and common
knowledge in distributed systems. Journal of the ACM, 40(2):334-367, April
1993.

Nuno Neves, Miguel Castro, and Paulo Guedes. A checkpoint protocol for an
entry consistent shared memory system. In Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Computing, pages 121-129, 1994,

396

201.

202,

203.

204,

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

REFERENCES

Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of issues
and algorithms. IEEE Computer, 24(8):52-60, August 1991.

Gary Nutt. Centralized and Distributed Operating Systems. Prentice-Hall, Inc.,
1992.

Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs 1. Acta Informatica, 6(4):319-340, 1976.

Susan Owicki and Leslie Lamport. Proving liveness properties of concur-
rent programs. ACM Transactions on Programming Languages and Systems,
4(3):455-495, July 1982.

J. Pachl, E. Korach, and D. Rotem. Lower bounds for distributed maximum-
finding algorithms. Journal of the ACM, 31(4):905-918, October 1984.

Boaz Patt-Shamir and Sergio Rajsbaum. A theory of clock synchronization.
In Proceedings of the 26th ACM Symposium on Theory of Computing, pages
810-819, 1994.

Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in
the presence of faults. Journal of the ACM, 27(2):228-234, April 1980.

David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Mongraphs on Discrete Mathematics and Applications. Philadelphia, PA, 2000.

David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed
Computing, pages 77-85, 1987.

Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of pro-
cessor and communication faults. IEEE Transactions on Software Engineering,
12(3):477-482, March 1986.

Gary L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12:115~116, June 1981.

Gary L. Peterson. An O{nlogn) unidirectional algorithm for the circular
extrema problem. ACM Transactions on Programming Languages and Systems,
4(4):758-762, October 1982.

Gary L. Peterson. Concurrent reading while writing. ACM Transactions on
Programming Languages and Systems, 5(1):46-55, January 1983.

Gary L. Peterson and Michael J. Fischer. Economical solutions for the criti-
cal section problem in a distributed system. In Proceedings of the 9th ACM
Symposium on Theory of Computing, pages 91-97, 1977,

Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserving
and using context information in interprocess communication. ACM Transac-
tions on Computer Systems, 7(3):217-246, August 1989.

216.

217.

218,

219.

220.

221.

222.

223.

224,

225,

226.

227.

228.

REFERENCES 397

S. A. Plotkin. Sticky bits and universality of consensus. In Proceedings of the
8th Annual ACM Symposium on Principles of Distributed Computing, pages
159-175, 1989.

Athanassios S. Poulakidas and Ambuj K. Singh. Online replication of shared
variables. In Proceedings of the 1 7th International Conference on on Distributed
Computing Systems, pages 500-507, 1997,

David Powell, Peter Barrett, Gottfried Bonn, Marc Chéreque, Douglas Seaton,
and Paulo Verissimo. The Delta-4 distributed fault-tolerant architecture. In
Thomas L. Casavant and Mukesh Singhal, editors, Readings in Distributed
Systems. IEEE Computer Society Press, 1994,

S. Prakash, Y. Lee, and T. Johnson. A nonblocking algorithm for shared queues
using compare-and-swap. IEEE Transactions on Computers,43:548-559, May
1994.

Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch. Revisiting the
PAXOS algorithm. Theoretical Computer Science, 243(1-2):35-91,2002.

J. Protic, M. Tomasevic, and V. Milutinovic. A survey of distributed shared
memory systems. In Proceedings of the 28th Hawaii Conference on System
Sciences, volume I, pages 74—84, 1995.

Jelica Protic, Milo Tomasevic, and Veljko Milutinovic, editors. Distributed
Shared Memory: Concepts and Systems. IEEE Computer Society Press, August
1997.

Michael O, Rabin. N-process mutual exclusion with bounded waiting by
4 - log n-valued shared variable. Journal of Computer and System Sciences,
25(1):66-75, August 1982.

Ophir Rachman. Anomalies in the wait-free hierarchy. In Proceedings of the
8th International Workshop on Distributed Algorithms, volume 857 of Lecture
Notes in Computer Science, pages 156—-163. Springer-Verlag, 1994.

M. Raynal. Algorithms for Mutual Exclusion. MIT Press, 1986.

Michel Raynal. Networks and Distributed Computation: Concepts, Tools, and
Algorithms. MIT Press, 1988.

Michel Raynal, Andre Schiper, and Sam Toueg. The causal ordering abstraction
and a simple way to implement it. Information Processing Letters, 39(6):343—
350, September 1991.

Michael K. Reiter. Distributing trust with the Rampart toolkit. Communications
of the ACM, 39(4):71-74, April 1996.

398 REFERENCES

229. G. G.Richard III and M. Singhal. Using logging and asynchronous checkpoint-

230.

231.

232.

233.

234.

235.

236.

237.

238,

239.

240.

241.

242.

ing to implement recoverable distributed shared memory. In Proceedings of the
12th IEEE Symposium on Reliable Distributed Systems, pages 58-67, 1993,

Laura Sabel and Keith Marzullo. Simulating fail-stop in asynchronous dis-
tributed systems (brief announcement). In Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Computing, pages 399-399, 1994.

Laura Sabel and Keith Marzullo. Election vs. Consensus in Asynchronous
Systems. Technical Report TR95-411, UC San-Diego, 1995.

Isaac Saias. Proving probabilistic correctness statements: The case of Rabin’s
algorithm for mutual exclusion. In Proceedings of the 11th Annual ACM
Symposium on Principles of Distributed Computing, pages 263-274, 1992.

Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible:
The topology of public knowledge. In Proceedings of the 25th ACM Symposium
on Theory of Computing, pages 101-110, 1993.

Baruch Schieber and Marc Snir. Calling names on nameless networks. Infor-
mation and Computation, 113(1):80-101, August 1994.

Andre Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement
causal ordering. In Proceedings of the 3rd International Workshop on Dis-
tributed Algorithms, number 392 in Lecture Notes in Computer Science, pages
219-232, Springer-Verlag, 1989.

F. B. Schneider, D. Gries, and R. D. Schlichting. Fault-tolerant broadcasts.
Science of Computer Programming, 4(1):1-15, April 1984.

Fred B. Schneider. Synchronizationin distributed programs. ACM Transactions
on Programming Languages and Systems, 4(2):125-148, April 1982.

Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299-319, December
1990.

Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in
distributed computations: In search of the holy grail. Distributed Computing,
7(3):149-174, 1994,

Adrian Segall. Distributed network protocols. IEEE Transactions on Informa-
tion Theory, IT-29(1):23--35, January 1983.

Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99-116,February 1997.

Barbara Simons, Jennifer Welch, and Nancy Lynch. An overview of clock
synchronization. In Fault-Tolerant Distributed Computing, number 448 in

243.

244,

24s.

246.

247.

248.

249.
250,
251.

252

253.

254.

255.

256.

REFERENCES 399

Lecture Notes in Computer Science, pages 84-96. Springer-Verlag, 1984. Also
IBM Technical Report RJ 6505, October 1988.

Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The elusive
atomic register. Journal of the ACM, 41(2):311-339, March 1994,

A, Prasad Sistlaand Jennifer L. Welch. Efficient distributed recovery using mes-
sage logging. In Proceedings of the 8th Annual ACM Symposium on Principles
of Distributed Computing, pages 223-238, 1989.

T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the
ACM, 34(3):626-645, July 1987.

T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Distributed Computing, 2(2):80-94, August
1987.

Robert E. Strom and Shaula A. Yemini. Optimistic recovery in distributed
systems. ACM Transactions on Computer Systems, 3(3):204-226, August 1985.

Michael Stumm and Songnian Zhou. Fault-tolerant distributed shared mem-
ory algorithms. In Proceedings of the 2nd IEEE Symposium on Parallel and
Distributed Processing, pages 719724, 1990.

Andrew Tanenbaum. Modern Operating Systems. Prentice-Hall, Inc., 1992.
Andrew Tanenbaum. Distributed Operating Systems. Prentice-Hall, Inc., 1995.

Andrew Tanenbaum. Computer Networks. Prentice-Hall, Inc., Sth edition,
1996.

Gerard Tel. Introduction to Distributed Algorithms. Cambridge University
Press, 1994.

C. B. Tompkins. Sperner’s lemma and some extensions. In E. F. Beckenbach,
editor, Applied Combinatorial Mathematics, chapter 15, pages 416—455. John
Wiley and Sons, Inc., New York, 1964.

John Turek, Dennis Shasha, and Sundeep Prakash. Locking without block-
ing: Making lock based concurrent data structure algorithms nonblocking. In
Proceedings of the 11th Annual ACM Symposium on Principles of Database
Systems, pages 212-222, 1992.

Russel Turpin and Brian Coan. Extending binary Byzantine agreement to
multivalued Byzantine agreement. Information Processing Letters, 18(2).73—
76, February 1984.

Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus: A
flexible group communication system. Communications of the ACM, 39(4): 76—
83, April 1996.

400

257.

258.

259.

260.

261.

262.

263.

REFERENCES

K. Vidyasankar. Converting Lamport’s regular register to atomic register. In-
formation Processing Letters, 28:287-290, August 1988.

Paul M. B. Vitidnyi and Baruch Awerbuch. Atomic shared register access
by asynchronous hardware. In Proceedings of the 27th IEEE Symposium on
Foundations of Computer Science, pages 233-243. IEEE, 1986.

Jennifer Lundelius Welch. Simulating synchronous processors. Information
and Computation, 74(2):159-171, August 1987.

Jennifer Lundelius Welch and Nancy A. Lynch. A new fault-tolerant algorithm
for clock synchronization. Information and Computation, 77(1):1-36, April
1988.

J. H. Wensley et al. SIFT: The design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEE, 66(10):1240-1255, October 1978.

K.-L. Wu and W. K. Fuchs. Recoverable distributed shared virtual memory.
IEEE Transactions on Computers, 39(4):460-469, April 1990.

Zhonghua Yang and T. Anthony Marsland, editors. Global States and Time in
Distributed Systems. IEEE Computer Society Press, 1994,

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition

Hagit Attiya and Jennifer Welch

Copyright O 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

0-valent configuration, 96, 109
1-valent configuration, 96, 109

Abrahamson, K., 319
Abu-Amara, H., 124
active round, 50
actual value
of snapshot object, 228
adaptive mutual exclusion, 89
adjusted clock, 277
adjustment variable, 277
admissible execution, 164
for mutual exclusion, 64
in asynchronous message pass-
ing, 12
in shared memory, 61
in synchronous message passing,
13
in unreliable asynchronous, 109
locally, 165
admissible schedule, 12
admissible timed execution, 143, 198
with clock drift, 278
Adve, S., 205
adversary, 302, 307,318

401

Index

oblivious, 303
strong, 319
weak, 303, 315
Afek, Y., 205, 236, 318, 368
Agarwal, D. A,, 187
Aghili, H., 186, 187
agreement property
clock, 278, 287
for approximate agreement, 352
for consensus, 93
for k-set consensus, 344
for randomized consensus, 308
Aguilera, M. K., 123
Alemany, J., 341
algorithm, 10
comparison based, 49
nonuniform, 303
nonuniform and anonymous, 32
nonuniform and non-anonymous,
34
uniform and anonymous, 32
uniform and non-anonymous, 34
allowable sequence, 157
Amir, Y., 187

402 INDEX

Amoeba, 186

Amaza, C., 204

Anderson, J., 89, 236, 368

Anderson, T., 88

Angluin, D., 57

anonymity property, for renaming, 356

apply, 329

approximate agreement, 343, 352

Arjomandi, E., 152

Aspnes, J., 236, 319

Asynch, 241

asynchronous Byzantine failure, 316

asynchronous identical Byzantine fail-
ure, 316

asynchronous message passing, 11

failure-prone, 177

asynchronous shared memory, 60, 343

asynchrony, 2

atomic broadcast, 183

atomic snapshot, 116, 152, 222, 234,
344,345,352, 357

multi-writer, 236

Attiya, H., 28, 58, 152, 186, 205, 236,
367, 368

augmented queue, 204, 327, 338

augmented stack, 204

authenticated broadcast, 274, 293

average case analysis, 298

average message complexity, 57, 58

averaging function, 352

Awerbuch, B., 29, 236, 249

Babaoglu, O., 152

bakery algorithm, 71

Bal, H., 204

Barbosa, V., 5

Bar-Noy, A., 123, 236, 367, 368

Bazzi, R., 275

Bennett, J., 204

Ben-Or, M., 318

Berman, P, 123

Bershad, B., 341

Bhaskar, S., 318

bias of common coin, 310, 314, 316,
317

binary register, 209
Biran, O., 368
Birman, K., 186
Bisiani, R., 204
bit complexity, 27
bivalent configuration, 96, 109
block, 346
block execution, 346
blocking, of broadcast operations, 168
Bondy, J. A., 367
Borodin, A., 368
Borowsky, E., 124, 367
bot, 163
bounded drift property, 278, 284
bounded name space property
for long-lived renaming, 360
bounded timestamp system, 236, 368
bounded timestamps, 236
bounded values, 210
bounded waiting, 69, 318
Bracha, G., 274,319
breadth-first search, 21, 247
broadcast, 167, 253
asynchronous basic, 159, 168, 172
atomic, 171, 183
authenticated, 274, 293
causal atomic, 171
causally ordered, 170, 175, 179
FIFO atomic, 171
reliable, 170, 177, 178, 284, 292
single message, 15
single-source FIFO, 169, 172
total, 171
totally ordered, 169, 193, 380
asymmetric algorithm, 172
symmetric algorithm, 173
uniform, 187
Brown, G., 205
building blocks, 29
Burns, J., 58, 88, 89, 368
Byzantine failure, 91, 99, 187, 248,
254,277,291
asynchronous, 270

caching, 88

Canetti, R., 319
capturing concurrency, 130
causal shuffle, 127
causality, 126
non-, 129
causally ordered property
for broadcast, 170, 175
for multicast, 181
for reliable broadcast, 179
center, 147
Chandra, T., 379
Chandy, K., 152
Chang, E., 57
Chang, J.-M., 186
Charron-Bost, B., 152
Chaudhuri, S., 205, 236, 367
Cheriton, D., 186
Cheung, T.-Y., 29
child, in spanning tree, 15
Chockler, G., 188
Chor, B., 124, 319
Chow,R., 5
clean crash, 92, 119
clock
adjusted, 143,277
drift of, 277,278
hardware, 140, 198, 277
logical, 128, 239, 242
vector, 130, 176
clock adjustment
amortized, 293
discontinuous, 293
clock agreement property, 278, 287
clock synchronization, 143, 184, 249,
269
external, 153
internal, 153
clock validity property, 279, 289
Coan, B, 124,275
common
frontier, 106
node, 106
common coin, 309
bias of, 310, 314, 316, 317
f-resilient, 310

INDEX 403

communication system, 158, 161
and faulty behavior, 253
compare&swap, 59, 323, 328, 339
comparison based, 49, 54
t-, 54
complexity measures
for message passing, 13
for shared memory, 62
composition of algorithms, 160
computed pair, 115
winner of, 115
concurrent events, 129
configuration
for layered model, 162
initial, 304
for layered model, 162
message passing, 11
shared memory, 60
message passing, 10
quiescent
for leader election, 41
for mutual exclusion, 69
reachable, 61
shared memory, 60
similar, 62, 110
conflicting events, 133
connectivity

for clock synchronization with Byzan-

tine failures, 293
for consensus with Byzantine fail-
ures, 124
consensus, 91,93, 100, 179, 185,248,
268,277,279,321,343,369
randomized, 308, 318
single-source, 123
wait-free, 323
consensus number, 326
consensus object, 328, 329
consistent cut, 134,237
maximal, 135
contamination, 187
contention, 84, 368
convergecast, 18
correct for communication system, 164
correct interaction property

404 INDEX

for f-resilient shared memory, 208
for long-lived renaming, 360
for shared memory, 190, 192
Coulouris, G., 5
covering a variable, 80
crash failure, 91, 171, 177, 208, 248,
264, 309, 343
clean, 92, 119
crash recovery, 152
Cristian, F,, 153, 186, 187
critical section, 63, 207, 343, 362
cut, 134
consistent, 134, 237
maximal, 135

Dash, 204
database
distributed, 121
replicated, 183
De Prisco, R., 379
deadlock, 31
debugging, 152
decision, 93
Dekker, T., 89
delay, of a message, 14,277
Delporte-Gallet, C., 379
Delta-4, 186
depth-first search, 23
detection of stable properties, 152
diameter, 21, 23, 138, 248
Dijkstra, E., 89
direct scan, 226
Disk Paxos, 379
distributed shared memory, 189
fault tolerant, 237
recoverable, 237
distributed snapshot, 135, 152, 236
distributed system, 1
Dolev,D., 57,123, 124, 186,187,236,
249, 293, 367, 368
Dollimore, 1., 5
double collect, 223, 225, 226, 228,
229
drift
adjusted clock, 289

hardware clock, 278
DSM, 189
fault-tolerant, 237
recoverable, 237
Dubois, M., 205
Dwork, C., 28, 123, 124, 236, 249,
319

early stopping, 120
Eggli, I., 186
Emerson, E., 29
enabled, 162
entry section, 63
environment, 161
epoch
synchronization, 284
equivalent, 55
event
computation, for message pass-
ing, 11
computation, for shared memory,
61
delivery, 11
enabled, 162
input, 162
output, 162
events
concurrent, 129
conflicting, 133
exec, 12,48, 61, 299, 302, 304
execution, 11
admissible, 11, 164
asynchronous, for layered model,
163
block, 346
correct for communication sys-
tem, 164
fair, 163
in asynchronous message pass-
ing, 12
in shared memory, 61
in synchronous message passing,
13
scaled, 279
similar, 128, 139

synchronous, for layered model,
254
timed, 13, 198
user compliant, 163
execution segment
in asynchronous message pass-
ing, 11
in shared memory, 61
exit section, 63
expected value, 301
given an adversary, 302
given an adversary and initial con-
figuration, 304
extended linearizability property
for f-resilient shared memory, 208
extended virtual synchrony, 186
external clock synchronization, 153
extinction, 29

f-resilient
common coin, 310
message passing, 92
renaming, 359
shared memory, 208
failstop failure, 184, 187, 379
failure detector, 369
accuracy, 372
completeness, 372
definition, 372
eventually strong, 372
omega, 373
strong, 373
weakest for consensus, 379
failure type
asynchronous Byzantine, 270,316
asynchronous identical Byzantine,

269, 316

Byzantine, 91,99, 187, 248, 254,
277,291

crash, 91, 171, 177, 208, 248,
264,309, 343

failstop, 184, 187, 379

general omission, 275

identical Byzantine, 252,255,290
omission, 252, 258

INDEX 405

receive omission, 275
send omission, 274, 275
timing, 284, 290
fair execution, 163
fast mutual exclusion, 85
fast renaming, 368
Fauconnier, H., 379
faulty integrity property
for asynchronous identical Byzan-
tine, 270
for synchronous identical Byzan-
tine, 255
faulty liveness property
for asynchronous identical Byzan-
tine, 270
for crash, 265
for reliable broadcast, 171
for reliable multicast, 180
for synchronous identical Byzan-
tine, 256
faulty processor, 92, 100
Feldman, P,, 319
Felten, E. W, 341
fetch&add, 326
fetch&cons, 327
fetch&inc, 338
Fidge, C., 152
FIFO message delivery, 134
Fischer, M., 28, 29, 88, 89, 123, 124,
152,293, 368
flooding, 19, 135
Frederickson, G., 58

Gafni, E., 29, 58, 124, 319, 367, 368,
379

Gallager, R., 29

Garay, I., 123, 368

Garcia-Molina, H., 186

Garg, V. K, 152

general omission failures, 275

Gharachorloo, K., 204, 205

global simulation, 164, 171, 189, 208,
256

Goldreich, O., 319

Gopal, A, 187

406 INDEX

Gouda, M., 236
Graunke, G., 89
Gries, D., 28, 186
group, 179

group identifier, 179
Guerraoui, R., 379
Gupta, R., 318

Hadzilacos, V., 186, 187, 274, 275,
340, 379
Halpern, J., 152,293
handshake, 223, 225, 226
handshaking
bits, 223, 236
procedures, 223
properties, 224
happens before, 127
for broadcast messages, 169, 175
for message passing, 127, 169,
170, 242
for shared memory, 133
hardware clock, 140, 198, 277
helping, 332
Herlihy, M., 124, 205, 340, 367, 368
Herman, T., 89
Herzberg, A., 152
hierarchy
robust, 340
wait-free, 327, 338, 339
Higham, L., 57, 186, 318
Hill, M., 205
Hirschberg, D., 57
Horus, 186
Hudak, P, 204
Humblet, P, 29

identical Byzantine failure, 252, 255,
290
asynchronous, 269
identical contents property
for asynchronous identical Byzan-
tine, 270
for synchronous identical Byzan-
tine, 255
identifier

pseudo-, 299
unique, 25, 34
immediate snapshot, 367
implementation, 171
inbuf, 10
incomparable vectors, 130
index, 10
indirect scan, 226
indistinguishable, 95
initial configuration, 304
message passing, 11
shared memory, 60
input, 93, 157
event, 162
integrity property
for asynchronous basic broadcast,
160
for asynchronous point-to-point
message passing, 159
for crash, 264
for failure-prone asynchronous mes-
sage passing, 178
for omission, 259
for reliable broadcast, 171
for reliable multicast, 180
for synchronous message pass-
ing, 241
integrity, uniform, 187
interface, 157
bottom, 162
top, 162
internal clock synchronization, 153
internal problem, 248, 249
Isis, 186, 187
Israeli, A., 124, 236, 319
Itai, A., 318
Ivy, 204

Jackson, P, 88
Jayanti, P, 340
Johnson, D., 152
Johnson, T., 5, 340
Joseph, T., 186

k-assignment, 362, 364

k-exclusion, 343, 361, 362
slotted, 368

k-lockout avoidance property, 362

k-participants property
for long-lived renaming, 360

k-set consensus, 120, 344

Keidar, 1., 188

Kim, J.-Y., 89

Kindberg, T., 5

king, of phase, 107

Klawe, M., 57

Korach, E., 58

Kosa, M., 205, 236

Kushilevitz, E., 318

Lai, T. H., 152
Lamport, L., 28, 89, 123, 152, 186,
187,205,235,236, 293,379,
380
Lampson, B., 379
layer, 160, 161
leader election, 25, 29, 31, 249, 298,
373
randomized, 298, 318
leader elector, 373
leaf, in spanning tree, 18
Lee, Y, 340
legal operation sequence, 190
legal permutation, 192
LeLann, G., 57
lexicographic order, 71, 133, 177,220
Li, K., 204
Li, M, 124,236, 319
linear envelope, 278
linearizability, 190, 208, 236
linearizability property
for shared memory, 191, 200, 208
linearization point, 204, 209, 228
Lipton, R., 205
liveness, 11,319
liveness property
for asynchronous basic broadcast,
160
for asynchronous point-to-point
message passing, 159

INDEX 407

for randomized leader election,
298
for shared memory, 191, 192,208
for synchronous message pass-
ing, 241
Lo, V., 204
Lo, W.-K.,, 340, 379
load-linked, 339, 340
local knowledge, 2
local operation, 189
local simulation, 165, 202, 240, 241,
248
locally admissible, 165
locally user compliant, 165, 243
logical buffering, 239, 242
logical clock, 128, 184, 239, 242
logical timestamp, 128
long-lived renaming, 360
Loui, M, 124
Lundelius (Welch), J., 152
Lynch, L., 379
Lynch,N., 5,28, 58, 88, 89, 123, 124,
152, 166, 293, 367, 368

Mabhaney, S., 293

Malki, D., 187

Mansour, Y., 318

marker, 135

Marsland, T. A, 153, 293
Marzullo, K., 152,293, 379
matching processors, 48
Matias, Y., 318

Mattern, E,, 152, 186
Mavronicolas, M., 152, 205
Maxemchuk, N. F., 186
maximal consistent cut, 135
Megiddo, N., 152
Melliar-Smith, P. M., 187
Mellor-Crummey, J., 89

mem, 60

memory consistency system, 189
memory-to-memory move, 327
memory-to-memory swap, 327
merge, 141, 198

Merritt, M., 123, 124, 205, 293, 368

408 INDEX

message
first phase, 44
second phase, 44
message complexity, 13
message delay, 277
message diffusion, 178, 179, 186
message passing
asynchronous, 11, 159
synchronous, 12, 240
message pattern, 49
message propagation forest, 181
Micali, S., 319
midpoint, 352
Mills, D., 153, 293
Milutinovic, V., 205
Moir, M., 89, 368
monitor, 63
Moran, §., 367, 368
Morgan, C., 152
Moser, L., 187
Moses, Y., 123
Motwani,R., 318
Mullender, S., 5
multicast, 167
basic, 180
causally ordered, 181
reliable, 180
multiple-group ordering property, 180
multi-reader register
unbounded simulation of, 215
multi-valued register, 209
multi-writer register
unbounded simulation of, 219
Munin, 204
Munshi, A., 152
Murty, U. S.R., 367
mutual exclusion, 112
adaptive, 89
fast, 85
mutual exclusion problem, 63, 158,
164, 249, 343, 362
randomized, 305, 318
mutual exclusion property, 64

Neiger, G., 124, 187, 249, 274, 275

neighborhood, 35
network, 10
network partition, 187
Network Time Protocol, 153,291,293
new-old inversion,211,216,233,235,
236
Nitzberg, B., 204
no deadlock, 64, 322
no duplicates property
for asynchronous basic broadcast,
160
for asynchronous Byzantine, 270
for asynchronous identical Byzan-
tine, 270
for asynchronous point-to-point
message passing, 159
for failure-prone asynchronous mes-
sage passing, 178
for reliable broadcast, 171
for reliable multicast, 180
for synchronous identical Byzan-
tine, 255
for synchronous message pass-
ing, 241
no lockout, 64, 322
no starvation, 63
node, 161
node input, 162
non-causality, 129
nonblocking simulation, 321,328, 338,
341
nondeterministic operations, 337,339,
340
nonfaulty integrity property
for asynchronous Byzantine, 270
for asynchronous identical Byzan-
tine, 270
for synchronous Byzantine, 255
for synchronous identical Byzan-
tine, 255
nonfaulty liveness property
for f-resilient shared memory, 208
for asynchronous Byzantine, 270
for asynchronous identical Byzan-
tine, 270

for crash, 264

for failure-prone asynchronous mes-

sage passing, 178
for omission, 259
for reliable broadcast, 171
for reliable multicast, 180
for synchronous Byzantine, 255
for synchronous identical Byzan-
tine, 255
nonuniform, 303
NTP, 153,291,293
Nutt, G, 5

object, universal, 327, 335
oblivious adversary, 303
omission failure, 252, 258
one-to-all communication, 167
one-to-many communication, 167, 179
one-to-one communication, 167
open

edge, 38

schedule, 38
operating system, 4, 322, 341
operation

local, 189

pending, 322

time of, 198
Orca, 204, 205
order-equivalent neighborhoods, 49
order-equivalent ring, 48
ordering

of broadcast, 167, 169

of multicast, 167
orientation, 32, 58
outbuf, 10, 15
output, 93, 157

event, 162
Owicki, S., 28, 293

P-quiescent, 80
Pachl, J., 58
pair, 113

computed, 115
parent, in spanning tree, 15
participating process, 360

INDEX 409

participating processor, 44
partition, of a network, 187
Paterson, M., 28, 124, 368
Patt-Shamir, B., 152
Paxos, 379
Disk, 379
Pease, M., 123
peek, 204
Peleg, D., 5,249, 367, 368
pending operation, 322
permutation, legal, 192
Perry, K., 275
Peterson, G., 29, 57, 88, 89, 236, 368
Petrank, E., 319
phase bit, 306
phase king, 107
Pinter, S., 367
Plotkin, S., 340
Plus, 204
point
linearization, 209, 228
read, 116
write, 116
port, 340
Poulakidas, A., 205
Prakash, S., 340
precision of clock, 144
preference, 107
primary destination, 181
probability, 300
given an adversary, 302
given an adversary and initial con-
figuration, 304
problem specification, 157
process, 161, 162
processor, 10, 161
critical, 110
faulty, 92
projection, 77
Protic, 1., 204, 205
Przytycka, T., 57
pseudo-identifier, 299
pseudocode conventions, 14
for asynchronous message-passing
algorithms, 14

410 INDEX

for layered model, 165, 254
for shared memory algorithms,
62
for synchronous message-passing
algorithms, 15
Psync, 186

quality of service, 168
queue, 203, 322, 338
augmented, 204, 338
FIFO, 66
queue lock, 88
quiescent
configuration
for leader election, 41
for mutual exclusion, 69
P-, 80
state, 41
quorum system, 236

Rabin, M., 318
Rabin, T., 319
Rachman, O., 236, 340
Raghavan, P, 318
Rajsbaum, S., 124, 152, 367
Rampart, 187
Ramsey’s theorem, 54, 55
randomization, 57, 88, 269, 290
randomized
algorithm, 297, 318
consensus, 308, 318
leader election, 298, 318
mutual exclusion problem, 305,
318
wait-free simulation, 338
range, 352
Ravishankar, M., 204
Raynal, M., 5, 88, 186
reachable, 61
read point, 116
read-modify-write, 59, 66, 306, 321
read/write, 59, 321
read/write register, 60
real time, 140
receive omission failure, 275

register
binary, 209
compare&swap, 59
multi-valued, 209
read-modify-write, 59, 66, 306
read/write, 59, 60, 321
regular, 235
safe, 235
test&set, 59, 65
type of, 60
Reischuk, R., 367, 368
Reiter, M., 187
relay, 44
relay property
for asynchronous identical Byzan-
tine, 270
for synchronous identical Byzan-
tine, 256
reliability
of broadcast, 167, 169
of multicast, 167
remainder section, 63
renaming, 343, 356
[-resilient, 359
long-lived, 360
wait-free, 357
reset operation, 65
resolve, 104
restricted degree, 349-351
ring, 31
anonymous, 32, 298
oriented, 32
spaced, 51
Roberts, R., 57
robust, 340
Rodeh, M., 57, 318
rotating coordinator, 373
Rotem, D, 58
Roth, D., 205
round, 13
active, 50
in layered model, 240
round tag, 255
round-robin property, 240

Sabel, L., 379
safe, 244
safety, 11,319
safety property
for randomized leader election,
298
Saias, L., 318
Saks, M., 367
Sandberg, I., 205
Sandoz, A., 186
scaled execution, 279
scan operation, 223
direct, 226
indirect, 226
schedule
P-only, 61
for layered model, 163
in message passing, 12
in shared memory, 61
open, 38
scheduling, 152
Scheurich, C., 205
Schieber, B., 318
Schiper, A., 186
Schlichting, R., 186
Schneider, F., 186, 187,293
Schwarz, R., 152, 186
Scott, M., 89
seen in a block execution, 347
Segall, A., 29
semaphore, 63
send omission failure, 274, 275
sequence number, 217, 223
sequential consistency, 192
sequential consistency property
for shared memory, 192, 199
sequential specification, 208
session, 138
session problem, 138
set consensus, 120, 343
shared
variables, 59
shared memory, 59, 208
distributed, 189
linearizable, 190

INDEX 411

operations, 190
shared variable, type of, 59
Shasha, D., 340
Shavit, N., 236, 340, 367, 368
shifting of clock, 142, 146, 148, 198,
200, 201,279
Shostak, R., 123
SIFT, 186
similar
behaviors, 49
block executions, 346, 347
configurations, 62, §0, 110, 324
executions, 95, 128, 139
Simons, B., 293
simulation, 112, 119, 207
global, 164,171, 189, 208, 256
local, 165, 202, 240, 241,248
nonblocking, 321, 328, 338, 341
wait-free, 209, 222
randomized, 338
when environment algorithm is
known, 260, 264
with respect to nonfaulty, 260,
264, 266
simulation of shared memory using
message passing, 189, 229,
343
Sinclair, J., 57
Singh, A., 205, 236
single-source consensus, 123
single-source FIFO property
for broadcast, 169, 172, 173
for reliable broadcast, 179
Sistla, A., 152
skew of clock, 143
slot, 362
Smolka, S., 318
snapshot
atomic, 116, 152, 222, 234, 344,
345, 352, 357
distributed, 133, 152,236
Snir, M., 58, 318
solves wait-free n-processor consen-
sus, 326
space complexity, 62

412 INDEX

spanning tree, 15
minimum-weight, 29
Spauster, A., 186
Sperner’s lemma, 367
spinning, 68
Spira, P, 29
spread, 352
Srikanth, T., 274, 293
stable properties
detection of, 152
stable request, 184, 185
stack, 203, 326, 338
augmented, 204
Stark, E., 367
state
accessible, 10
initial, 10
quiescent, 41
terminated, in message passing,
13
terminated, in shared memory, 61
state machine approach, 183
sticky bits, 340
Stockmeyer, L., 28, 124, 249
store-conditional, 339, 340
Strom, R., 152
strong adversary, 319
strong consistency, 192, 204
Strong, H. R., 123, 186, 187,293
Stumm, M., 237
super-step, 113
support, 259
swallowing, 34, 36, 44
swap, 326
symmetry, 33, 298
SynchP, 241
synchronization epoch, 284
synchronizer, 240, 243
synchronous message passing, 12, 240
in layered model, 240, 254
synchronous processor
in layered model, 253
system, 10
in layered model, 161
topology of, 10

Tanenbaum, A., 5, 166
tbcast order, 195
Tel, G., 5
terminated algorithm, 13, 61
termination detection, 152
termination property
for approximate agreement, 352
for consensus, 93
for k-set consensus, 344
for long-lived renaming, 360
for randomized consensus, 309
for renaming, 356
test&set, 59, 65, 122, 124, 321, 326,
338
Thakkar, S., 89
ticket
for bakery mutual exclusion al-
gorithm, 71
for read-modify-write mutual ex-
clusion algorithm, 67
time, 13
for an operation, 198
time complexity, 13, 14
in shared memory, 62, 87
time-bounded, 54
timed execution, 13, 140, 198
timed view
with clock values, 141, 198
timestamp, 173,217, 220
bounded, 236
candidate, 185
final, 185
logical, 128
vector, 130, 135
timestamp order
for broadcast messages, 174, 175
timestamp system
bounded, 236, 368
timing failure, 284, 290
toggle bit, 226, 228
token, 173
token ring, 57
Tomasevic, M., 205
Tompkins, C. B., 367
top, 163

topology, of a system, 10, 159, 166,
239,253,318
totally ordered property
for broadcast, 169, 193
for reliable broadcast, 179
Totem, 186, 187
Toueg, S., 123, 186, 187, 249, 274,
275,293,379
Touitou, D., 340
tournament tree, 77
transaction commit, 121
Transis, 186, 187
transition function, 10-13, 32, 50, 61—
63, 113, 141, 260, 298
TreadMarks, 204
tree, for information gathering, 103
Tromp, I., 236
trying section, 63
Turek, J., 340
Turpin, R., 124
Tuttle, M., 166, 367

Ullman, I, 249
unbounded values, 71, 73
uncertainty of message delay, 144,281
uniform broadcast, 187
unique identifier, 25, 34
uniqueness property

for asynchronous identical Byzan-

tine, 270

for k-assignment, 362

for long-lived renaming, 360

for renaming, 356
univalent configuration, 96, 109
universal object, 327, 335
unobstructed exit, 64, 81-83
unseen in a block execution, 347
update operation, 223
user compliant, 163, 173

locally, 165, 243

valence, 96, 109
validation, 252, 259, 290, 316, 319
validity property

clock, 279, 289

INDEX 413

for approximate agreement, 352
for consensus, 93
for k-set consensus, 344
for randomized consensus, 309
van Renesse, R., 186
vector clock, 130, 176, 220
vector timestamp, 130, 135, 175
vectors
incomparable, 130
Vidyasankar, K., 236
view, 95, 223, 266, 282
after a block, 346
in a block execution, 346
timed, with clock values, 141,
198
with clock values, 141, 198
virtual synchrony, 182, 186
Vitdnyi, P, 236
Vitenberg, R., 188
Vitdnyi, P., 236
voting, 309, 319

Waarts, O., 236, 319

wait-free, 108, 209, 248, 316, 319
consensus, 323
renaming, 357

wait-free hierarchy, 326,327,338,339

wait-free simulation, 207, 209, 222
randomized, 338

wait until, 63

Waldecker, B., 152

Warmuth, M., 58

Warpechowska-Gruca, J., 186

weak adversary, 303, 315

weakening a problem statement, 298

Weihl, W., 367

Welch, J., 152, 186, 236, 249, 293

Wing, I., 205

winner of computed pair, 115

winner of lottery, 305

winner, phase, 35

write point, 116

Yang, Z., 152, 153, 293
Yemini, S., 152

414 INDEX

Zaharoglou, F.,, 367

Zaks, S., 368

Zhou, S., 237

Zuckerman, D., 318
Zwaenepoel, W., 152, 186

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING
Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto

Surviving the Design of Microprocessor and Multimicroprocessor Systems:
Lessons Learned / Veljko Milutinovié

Mobile Processing in Distributed and Open Environments / Peter Sapaty
Introduction to Parallel Algorithms / C. Xavier and S. S. lyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from
Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

New Parallel Algorithms for Direct Solution of Linear Equations / C. Siva Ram
Murthy, K. N. Balasubramanya Murthy, and Srinivas Aluru

Practical PRAM Programming / Joerg Kelier, Christoph Kessler, and
Jesper Larsson Traeff

Computational Collective Intelligence / Tadeusz M. Szuba

Parallel and Distributed Computing: A Survey of Models, Paradigms, and
Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective /
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel
Systems / Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing /
lvan Stojmenovii¢ (Editor)

Internet-Based Workflow Management: Toward a Semantic Web /
Dan C. Marinescu

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky

Tools and Environments for Parallel and Distributed Computing /
S. Hariri and M. Parashar (Editors)

Distributed Computing: Fundamentals, Simulations and Advanced Topics,
Second Edition / Hagit Attiya and Jennifer Welch

Distributed Computing: Fundamentals, Smulations and Advanced Topics, Second Edition
Hagit Attiya and Jennifer Welch
Copyright 0 2004 John Wiley & Sons, Inc. ISBN: 0-471-45324-2

