Introduction to Data Compression

Guy E. Blelloch
Computer Science Department
Carnegie Mellon University
bl el I ochcs. cnu. edu

January 31, 2013

Contents
1 Introduction 3
2 Information Theory 5
2.1 ENtropy e e 5
2.2 The Entropy of the EnglishLanguage 6
2.3 Conditional Entropy and MarkovChains 7
3 Probability Coding 10
3.1 PrefixCodes. e 01
3.1.1 Relationshipto Entropy 11
3.2 HuffmanCodes e 31
3.21 CombiningMessages e 5 1
3.2.2 Minimum Variance HuffmanCodes 15
3.3 ArithmeticCoding 16
3.3.1 Integerlimplementation 19
4 Applications of Probability Coding 22
4.1 Run-lengthCoding 25
4.2 Move-To-FrontCoding e 26
4.3 Residual Coding: JPEG-LS 27
44 ContextCoding:JBIG 8 2
4.5 ContextCoding: PPM. 29

*This is an early draft of a chapter of a book I'm starting totevon “algorithms in the real world”. There are surely
many mistakes, andlease feel free to point them out In general the Lossless compression part is more polished
than the lossy compression part. Some of the text and fignthe iLossy Compression sections are from scribe notes
taken by Ben Liblit at UC Berkeley. Thanks for many commentsf students that helped improve the presentation.
(© 2000, 2001 Guy Blelloch

The Lempel-Ziv Algorithms

32

5.1 Lempel-Ziv 77 (SlidingWindows) 32
5.2 Lempel-Ziv-Welch 34
Other Lossless Compression 37
6.1 BurrowsWheeler 7 3
Lossy Compression Techniques 40
7.1 ScalarQuantization e 41
7.2 \Vector Quantization e e 41
7.3 TransformCoding 43

A Case Study: JPEG and MPEG 44
8.1 JPEG e 44
8.2 MPEG e a7
Other Lossy Transform Codes 50
9.1 Wavelet Compression e e e 50
9.2 Fractal Compression e e 52
9.3 Model-Based Compression e 55

1 Introduction

Compression is used just about everywhere. All the imagegygbon the web are compressed,
typically in the JPEG or GIF formats, most modems use conspesHDTV will be compressed
using MPEG-2, and several file systems automatically cosspfiees when stored, and the rest
of us do it by hand. The neat thing about compression, as Wwélother topics we will cover in
this course, is that the algorithms used in the real worlderfadavy use of a wide set of algo-
rithmic tools, including sorting, hash tables, tries, akd@'5. Furthermore, algorithms with strong
theoretical foundations play a critical role in real-woadplications.

In this chapter we will use the generic temmessagdor the objects we want to compress,
which could be either files or messages. The task of compressinsists of two components, an
encodingalgorithm that takes a message and generates a “comprespeesentation (hopefully
with fewer bits), and aecodingalgorithm that reconstructs the original message or sormpeap
imation of it from the compressed representation. Thesectwmoponents are typically intricately
tied together since they both have to understand the sharegdressed representation.

We distinguish betweednssless algorithmavhich can reconstruct the original message exactly
from the compressed message, issy algorithmswhich can only reconstruct an approximation
of the original message. Lossless algorithms are typicegd for text, and lossy for images and
sound where a little bit of loss in resolution is often und&ble, or at least acceptable. Lossy is
used in an abstract sense, however, and does not mean rapstquixéls, but instead means loss
of a quantity such as a frequency component, or perhaps fossise. For example, one might
think that lossy text compression would be unacceptablaussthey are imagining missing or
switched characters. Consider instead a system that redv@@®@ences into a more standard
form, or replaced words with synonyms so that the file can lieebeompressed. Technically
the compression would be lossy since the text has changethétmeaning” and clarity of the
message might be fully maintained, or even improved. In&aink and White might argue that
good writing is the art of lossy text compression.

Is there a lossless algorithm that can compress all mesdagbsre has been at least one
patent application that claimed to be able to compress ed (lhessages)—Patent 5,533,051 titled
“Methods for Data Compression”. The patent applicatiomaéad that if it was applied recursively,
a file could be reduced to almost nothing. With a little thaugdu should convince yourself that
this is not possible, at least if the source messages caninany bit-sequence. We can see this
by a simple counting argument. Lets consider all 1000 bitsagss, as an example. There are
21000 different messages we can send, each which needs to bectljstitentified by the decoder.

It should be clear we can’t represent that many differentsagass by sending 999 or fewer bits for
all the messages — 999 bits would only allow us to s2tidl distinct messages. The truth is that
if any one message is shortened by an algorithm, then soreer#ssage needs to be lengthened.
You can verify this in practice by running GZIP on a GIF fileidtin fact, possible to go further
and show that for a set of input messages of fixed length, ifnoegsage is compressed, then the
average length of the compressed messages over all posgibts is always going to be longer
than the original input messages. Consider, for example3 fhessible 3 bit messages. If one is
compressed to two bits, it is not hard to convince yourself tvo messages will have to expand
to 4 bits, giving an average of 3 1/8 bits. Unfortunately, plagent was granted.

3

Because one can’'t hope to compress everything, all compreakjorithms must assume that
there is some bias on the input messages so that some inputsoae likely than others.e. that
there is some unbalanced probability distribution overpgbssible messages. Most compression
algorithms base this “bias” on the structure of the messages, an assumption that repeated
characters are more likely than random characters, or dinge white patches occur in “typical”
images. Compression is therefore all about probability.

When discussing compression algorithms it is important t&eve distinction between two
components: the model and the coder. Tin@delcomponent somehow captures the probability
distribution of the messages by knowing or discovering gbing about the structure of the input.
The codercomponent then takes advantage of the probability biasesrgted in the model to
generate codes. It does this by effectively lengtheningposbability messages and shortening
high-probability messages. A model, for example, mighehegeneric “understanding” of human
faces knowing that some “faces” are more likely than otherg,(a teapot would not be a very
likely face). The coder would then be able to send shortersaggss for objects that look like
faces. This could work well for compressing teleconferecats. The models in most current
real-world compression algorithms, however, are not sdistipated, and use more mundane
measures such as repeated patterns in text. Although treereamy different ways to design the
model component of compression algorithms and a huge rdepets of sophistication, the coder
components tend to be quite generic—in current algorithmsbnost exclusively based on either
Huffman or arithmetic codes. Lest we try to make to fine of éiicsion here, it should be pointed
out that the line between model and coder components ofitligms is not always well defined.

It turns out that information theory is the glue that ties thedel and coder components to-
gether. In particular it gives a very nice theory about hoababilities are related to information
content and code length. As we will see, this theory matchedtipe almost perfectly, and we can
achieve code lengths almost identical to what the theorgigi®

Another question about compression algorithms is how doegualge the quality of one ver-
sus another. In the case of lossless compression therevaralsgriteria | can think of, the time to
compress, the time to reconstruct, the size of the comptersssages, and the generalityes
does it only work on Shakespeare or does it do Byron too. In éise of lossy compression the
judgment is further complicated since we also have to wobguéa how good the lossy approxi-
mation is. There are typically tradeoffs between the amo@iobmpression, the runtime, and the
quality of the reconstruction. Depending on your applmatbne might be more important than
another and one would want to pick your algorithm approplyat Perhaps the best attempt to
systematically compare lossless compression algoritsntisel Archive Comparison Test (ACT)
by Jeff Gilchrist. It reports times and compression ratmslf00s of compression algorithms over
many databases. It also gives a score based on a weightedj@awgmruntime and the compression
ratio.

This chapter will be organized by first covering some basfdaformation theory. Section 3
then discusses the coding component of compressing dgmiand shows how coding is related
to the information theory. Section 4 discusses various Itgofie generating the probabilities
needed by the coding component. Section 5 describes thedletipalgorithms, and Section 6
covers other lossless algorithms (currently just Burrowse@lér).

2 Information Theory

2.1 Entropy

Shannon borrowed the definition eftropyfrom statistical physics, where entropy represents the
randomness or disorder of a system. In particular a systexasismed to have a set of possible
states it can be in, and at a given time there is a probabibtyilution over those states. Entropy
is then defined as:

ZP 1Og2

seS

where S is the set of possible states, apd) is the probability of state € S. This definition
indicates that the more even the probabilities the higheetiiropy (disorder) and the more biased
the probabilities the lower the entropy—e.g. if we know dlkawhat state the system is in then
H(S) = 0. One might remember that the second law of thermodynamisisdlly says that the
entropy of a closed system can only increase.

In the context of information theory Shannon simply repthtstate” with “message”, s¢'is
a set of possible messages, a) is the probability of messagec S. Shannon also defined the
notion of theself informationof a message as

() — 1o 1
i(s) =1 g2p(5>.

This self information represents the number of bits of infation contained in it and, roughly
speaking, the number of bits we should use to encode thatigesshe definition of self informa-
tion indicates that messages with higher probability welhtain less informationg(g, a message
saying that it will be sunny out in LA tomorrow is less infortive than one saying that it is going
to snow).

The entropy is then simply a probability weighted averagenefself information of each mes-
sage. It is therefore the average number of bits of inforomationtained in a message picked at
random from the probability distribution. Larger entropiepresent larger average information,
and perhaps counter-intuitively, the more random a set alSages (the more even the probabili-
ties) the more information they contain on average.

Here are some examples of entropies for different prolgldiistributions over five messages.

p(S) = {0.25,0.25,0.25,0.125,0.125}

H = 3x0.25xlogy,4+42x0.125 x log, 8
= 1.540.75
2.25

p(s) = {0.5,0.125,0.125,0.125,0.125}

H = 0.5 xlogy2+4x0.125 x log, 8
= 05+15
= 2

p(s) = {0.75,0.0625,0.0625,0.0625,0.0625}

4
H =0.75 x logQ(g) + 4 x 0.0625 x log, 16

= 03+1
= 13

Note that the more uneven the distribution, the lower thedgyt

Why is the logarithm of the inverse probability the right me&sfor self information of a mes-
sage? Although we will relate the self information and epyrto message length more formally in
Section 3 lets try to get some intuition here. First, for ao$et = 2 equal probability messages, the
probability of each id /n. We also know that if all are the same length, theg » bits are required
to encode each message. Well this is exactly the self infdiomaincei(.S;) = log, pl = log, n.
Another property of information we would like, is that théarmation given by two independent
messages should be the sum of the information given by eagbarticular if messaged and B
are independent, the probability of sending one after therasp(A)p(B) and the information
contained is them is

1 1
D(ApB) B T

The logarithm is the “simplest” function that has this prdpe

i(AB) =g = i(A) +i(B) .

2.2 The Entropy of the English Language

We might be interested in how much information the Englishdigage contains. This could be
used as a bound on how much we can compress English, and dsalldllaw us to compare the
density (information content) of different languages.

One way to measure the information content is in terms of tlezage number of bits per
character. Table 1 shows a few ways to measure the informafi&nglish in terms of bits-per-
character. If we assume equal probabilities for all characta separate code for each character,
and that there are 96 printable characters (the number @mdastd keyboard) then each character

6

| | bits/char |

bits [log(96)] 7
entropy 4.5
Huffman Code (avg.) 4.7

Entropy (Groups of 8) 2.4
Asymptotically approaches:1.3

Compress 3.7
Gzip 2.7
BOA 2.0

Table 1: Information Content of the English Language

would take[log 96] = 7 bits. The entropy assuming even probabilitie®js96 = 6.6 bits/char.

If we give the characters a probability distribution (baseda corpus of English text) the entropy
is reduced to about 4.5 bits/char. If we assume a separagfoodach character (for which the
Huffman code is optimal) the number is slightly larger 4.%&kihar.

Note that so far we have not taken any advantage of relatipgistmong adjacent or nearby
characters. If you break text into blocks of 8 charactergsuee the entropy of those blocks (based
on measuring their frequency in an English corpus) you getrawropy of about 19 bits. When we
divide this by the fact we are coding 8 characters at a tineeetitropy (bits) per character is 2.4.
If we group larger and larger blocks people have estimataitiie entropy would approach 1.3 (or
lower). It is impossible to actually measure this becauseetiare too many possible strings to run
statistics on, and no corpus large enough.

This value 1.3 bits/char is an estimate of the informationteot of the English language. As-
suming it is approximately correct, this bounds how much ame expect to compress English text
if we want lossless compression. Table 1 also shows the @ssjon rate of various compressors.
All these, however, are general purpose and not designetifisply for the English language.
The last one, BOA, is the current state-of-the-art for gdraugpose compressors. To reach the
1.3 bits/char the compressor would surely have to “know”uliEnglish grammar, standard id-
ioms, etc..

A more complete set of compression ratios for the Calgaryusofpr a variety of compressors
is shown in Table 2. The Calgary corpus is a standard benchimrameasuring compression ratios
and mostly consists of English text. In particular it cotsa 2 books, 5 papers, 1 bibliography, 1
collection of news articles, 3 programs, 1 terminal sess2ambject files, 1 geophysical data, and
1 bit-map b/w image. The table shows how the state of the arirhproved over the years.

2.3 Conditional Entropy and Markov Chains

Often probabilities of events (messages) are dependeriteonantext in which they occur, and
by using the context it is often possible to improve our pholitzes, and as we will see, reduce
the entropy. The context might be the previous characteiexinsee PPM in Section 4.5), or the
neighboring pixels in an image (see JBIG in Section 4.3).

Date | bpc | scheme | authors |
May 1977| 3.94 | LZ77 Ziv, Lempel

1984 3.32| LZMW | Miller and Wegman
1987 3.30| LZH Brent

1987 3.24| MTF Moffat

1987 3.18| LZB Bell

: 2.71| GZIP :

1988 2.48 | PPMC | Moffat

: 2.47| SAKDC | Williams
Oct 1994 | 2.34| PP Cleary, Teahan, Witten

1995 2.29| BW Burrows, Wheeler
1997 1.99| BOA Sutton
1999 1.89| RK Taylor

Table 2: Lossless compression ratios for text compressiddailgary Corpus

The conditional probabilityof an event based on a contextis written asp(e|c). The overall
(unconditional) probability of an eveatis related byp(e) = > . p(c)p(e|c), whereC is the set
of all possible contexts. Based on conditional probabditie can define the notion of conditional
self-information asg(e|c) = log, PR |) of an event in the context. This need not be the same as
the unconditional self- |nformat|on For example, a messstgting that it is going to rain in LA
with no other information tells us more than a message gtétiat it is going to rain in the context
that it is currently January.

As with the unconditional case, we can define the averageitbmmal self-information, and
we call this the conditional-entropy of a source of messayés have to derive this average by
averaging both over the contexts and over the messages. riessage sei and context set’,
the conditional entropys

H(S|C) = p(c) > pls|e)log, (1,0)-

ceC seS

It is not hard to show that if the probability distribution 6fis independent of the conte«t then
H(S|C) = H(S), and otherwise? (S|C) < H(S). In other words, knowing the context can only
reduce the entropy.

Shannon actually originally defined Entropy in terms of mfiation sources. Amformation
sourcegenerates an infinite sequence of messages € {—oo,..., o0} from a fixed message
setS. If the probability of each message is independent of theipue messages then the system
is called anndependent and identically distributénd) source. The entropy of such a source is
called theunconditionalor first orderentropy and is as defined in Section 2.1. In this chapter by
default we will use the term entropy to mean first-order gntro

Another kind of source of messages is a Markov process, oe ipracisely aliscrete time
Markov chain A sequence follows an ordérMarkov model if the probability of each message

P(blw)

P(w|b)

Figure 1: A two state first-order Markov Model

(or event) only depends on tleprevious messages, in particular

p(l’n|l'n_1, s 7In—k’) = p(xn|xn—17 sy Tn—ky - -)
wherez; is thei'® message generated by the source. The values that can betakefr,, 1,..., 7, }
are called the states of the system. The entropy of a Markasess is defined by the conditional
entropy, which is based on the conditional probabilities, |, 1, ..., T, k).

Figure 1 shows an example of an first-order Markov Model. TW&kov model represents
the probabilities that the source generates a blaglor(white @) pixel. Each arc represents
a conditional probability of generating a particular pix&or examplep(w|b) is the conditional
probability of generating a white pixel given that the poeis one was black. Each node represents
one of the states, which in a first-order Markov model is just previously generated message.
Lets consider the particular probabilitig&®|w) = .01, p(w|w) = .99, p(b|b) = .7, p(w|b) = .3. It
is not hard to solve fop(b) = 1/31 andp(w) = 30/31 (do this as an exercise). These probabilities
give the conditional entropy

30/31(.011og(1/.01) +.9910og(1/.99)) + 1/31(.7log(1/.7) + .3log(1/.3)) ~ .107

This gives the expected number of bits of information cordiin each pixel generated by the
source. Note that the first-order entropy of the source is

30,/311log(31/30) + 1/311og(1/30) ~ .206

which is almost twice as large.

Shannon also defined a general notion of source entropy fartdimary source. Lefi™ denote
the set of all strings of length from an alphabet4, then then'* order normalized entropis
defined as

Z—Zp)log) (1)

XeAn

This is normalized since we divide it by—it represents the per-character information. $berce
entropyis then defined as

H = lim H, .

n—oo

In general it is extremely hard to determine the source pgtod an arbitrary source process just
by looking at the output of the process. This is because tulzke accurate probabilities even for
a relatively simple process could require looking at exegntong sequences.

9

3 Probability Coding

As mentioned in the introduction, coding is the job of takprgbabilities for messages and gen-
erating bit strings based on these probabilities. How tlobglilities are generated is part of the
model component of the algorithm, which is discussed iniSeet.

In practice we typically use probabilities for parts of ager message rather than for the com-
plete message,.g, each character or word in a text. To be consistent with theit®logy in the
previous section, we will consider each of these comporem®ssage on its own, and we will
use the termmessage sequenta the larger message made up of these components. In §enera
each little message can be of a different type and come f@owh probability distribution. For
example, when sending an image we might send a messageyspgeifcolor followed by mes-
sages specifying a frequency component of that color. ERenrtessages specifying the color
might come from different probability distributions sinttee probability of particular colors might
depend on the context.

We distinguish between algorithms that assign a unique @mtistring) for each message, and
ones that “blend” the codes together from more than one rgedssaa row. In the first class we
will consider Huffman codes, which are a type of prefix codethe later category we consider
arithmetic codes. The arithmetic codes can achieve bettepression, but can require the encoder
to delay sending messages since the messages need to baedivdiore they can be sent.

3.1 Prefix Codes

A code(C for a message sét is a mapping from each message to a bit string. Each bit sging
called acodeword and we will denote codes using the synfax= { (s, w1), (s2, w2), -+, (Sm, Wm) }-
Typically in computer science we deal with fixed-length caderich as the ASCII code which maps
every printable character and some control charactersriits. For compression, however, we
would like codewords that can vary in length based on theadsitity of the message. Sudcfari-
able lengthcodes have the potential problem that if we are sending odeveard after the other
it can be hard or impossible to tell where one codeword firssdr@ the next starts. For exam-
ple, given the codd(a, 1), (b,01),(¢,101),(d,011)}, the bit-sequenc&011 could either be
decoded aaba, ca, orad. To avoid this ambiguity we could add a special stop symbahéo
end of each codeworce(@, a2 in a 3-valued alphabet), or send a length before each symbol.
These solutions, however, require sending extra data. A mificient solution is to design codes
in which we can always uniquely decipher a bit sequence tstoade words. We will call such
codesuniquely decodableodes.

A prefix code is a special kind of uniquely decodable code inctvimo bit-string is a prefix
of another one, for examplf(a,1), (b,01),(¢,000), (d,001)}. All prefix codes are uniquely
decodable since once we get a match, there is no longer catledth also match.

Exercise 3.1.1.Come up with an example of a uniquely decodable code that is mi@ffix code.

Prefix codes actually have an advantage over other uniqeslgdable codes in that we can
decipher each message without having to see the start oéttenessage. This is important when
sending messages of different typeg(from different probability distributions). In fact in dain

10

applications one message can specify the type of the nesagesso it might be necessary to fully
decode the current message before the next one can be atiéetpr
A prefix code can be viewed as a binary tree as follows

e Each message is a leaf in the tree

e The code for each message is given by following a path fronrdbeto the leaf, and ap-
pending a 0 each time a left branch is taken, and a 1 each tilghtébranch is taken.

We will call this tree gorefix-code treeSuch a tree can also be useful in decoding prefix codes. As
the bits come in, the decoder can follow a path down to theundieit reaches a leaf, at which point

it outputs the message and returns to the root for the nefatyossibly the root of a different tree
for a different message type).

In general prefix codes do not have to be restricted to binphahets. We could have a prefix
code in which the bits have 3 possible values, in which casectitresponding tree would be
ternary. In this chapter we only consider binary codes.

Given a probability distribution on a set of messages andcasted variable length code, we
define theaverage lengtlof the code as

(s,w)eC

wherel(w) is the length of the codeword. We say that a prefix codg is anoptimalprefix code
if 1,(C) is minimized (.e. there is no other prefix code for the given probability disttion that
has a lower average length).

3.1.1 Relationship to Entropy

It turns out that we can relate the average length of prefiesaadlthe entropy of a set of messages,
as we will now show. We will make use of the Kraft-McMillan ipeality

Lemma 3.1.1. Kraft-McMillan Inequality . For any uniquely decodable codé
Z 2 lw) < 1
(s,w)eC

wherel(w) is the length of the codeword. Also, for any set of lengths such that

> i<,

leL
there is a prefix cod€’ of the same size such thatv;) = 1; (i =1,...,|L]).

The proof of this is left as a homework assignment. Usingwlashow the following

Lemma 3.1.2. For any message set with a probability distribution and associated uniquely
decodable codé€’,
H(S) < 1a(C)

11

Proof. In the following equations for a messages S, [(s) refers to the length of the associated
code inC.

H(S) = L(O) = Y op(s)logy o = S plo)

seS SES

Y (%ﬁ—w)

seS

1
- Boedy- e

seS
—l(s)

= ZP 10g2 o(5)

seSs

log, Z 27)

seS
0

IN

IN

The second to last line is based on Jensen’s inequality vetétas that if a functioyi(x) is concave
then . p; f(x;) < f(>_, piz;), where thep; are positive probabilities. The logarithm function is
concave. The last line uses the Kraft-McMillan inequality. O

This theorem says that entropy is a lower bound on the ave@dglength. We now also show
an upper bound based on entropy for optimal prefix codes.

Lemma 3.1.3.For any message sétwith a probability distribution and associated optimal prefi
code(C,
l(C)<H(S)+1.

Proof. Take each messagez S and assign it a lengtt{s) = [log Iﬁ}. We have

2271(5) — szﬂogﬁ1

ses ses

seS

=) pls)

sES
=1

Therefore by the Kraft-McMillan inequality there is a pretimde C’ with codewords of length

12

I(s). Now

LC) =) ps)l(w)

(s,w)eC”
1
=) p(s)log —]
(s,w)eC” p(8>
1
< s)(1 +log —
(S;C/m)(1+log)
1
(s,w)eC”’ p
= 1+ H(5)
By the definition of optimal prefix codeg,(C') < [,(C"). O

Another property of optimal prefix codes is that larger pluliges can never lead to longer
codes, as shown by the following theorem. This theorem wilibeful later.

Theorem 3.1.1.1f C'is an optimal prefix code for the probabiliti€s;, ps, . .., p,} thenp;, > p;
implies that/(c;) < i(c;).

Proof. Assumel(c;) > I(c;). Now consider the code gotten by switchiagandc;. If [, is the
average length of our original code, this new code will haregth

lo = la+pil(c:) = U(e;)) + pille;) = U(ci)))
= Lo+ (py — i) U(cr) = Uy)) 3)

Given our assumptions the; — p;)(I(¢;) — l(c;)) is negative which contradicts the assumption
thatl, is an optimal prefix code. O

3.2 Huffman Codes

Huffman codes are optimal prefix codes generated from a ggbbhbilities by a particular algo-
rithm, the Huffman Coding Algorithm. David Huffman develaphe algorithm as a student in a
class on information theory at MIT in 1950. The algorithm @wprobably the most prevalently
used component of compression algorithms, used as the bdadf &ZIP, JPEG and many other
utilities.

The Huffman algorithm is very simple and is most easily diégsct in terms of how it generates
the prefix-code tree.

e Start with a forest of trees, one for each message. Eachdraains a single vertex with
weightw; = p;

e Repeat until only a single tree remains

13

— Select two trees with the lowest weight roots @ndws).

— Combine them into a single tree by adding a new root with weight w,, and making
the two trees its children. It does not matter which is thé defright child, but our
convention will be to put the lower weight root on the lefuif # ws,.

For a code of size this algorithm will require: — 1 steps since every complete binary tree with
n leaves has — 1 internal nodes, and each step creates one internal node.useva priority queue
with O(log n) time insertions and find-ming(g, a heap) the algorithm will run i@ (n log n) time.

The key property of Huffman codes is that they generate @torefix codes. We show this in
the following theorem, originally given by Huffman.

Lemma 3.2.1. The Huffman algorithm generates an optimal prefix code.

Proof. The proof will be on induction of the number of messages ircthge. In particular we will
show that if the Huffman code generates an optimal prefix dodall probability distributions
of n messages, then it generates an optimal prefix code for élidisons ofn + 1 messages.
The base case is trivial since the prefix code for 1 messagadgse! {.e., the null message) and
therefore optimal.

We first argue that for any set of messagethere is an optimal code for which the two mini-
mum probability messages are siblings (have the same paréhwir prefix tree). By lemma 3.1.1
we know that the two minimum probabilities are on the lowesel of the tree (any complete bi-
nary tree has at least two leaves on its lowest level). Alscan switch any leaves on the lowest
level without affecting the average length of the code seitéhese codes have the same length.
We therefore can just switch the two lowest probabilitieshs&y are siblings.

Now for induction we consider a set of message probabiltied sizen + 1 and the corre-
sponding tred” built by the Huffman algorithm. Call the two lowest probatyilnodes in the tree
x andy, which must be siblings ifl" because of the design of the algorithm. Consider the tree
T" gotten by replacing: andy with their parent, call iz, with probabilityp, = p, + p, (this is
effectively what the Huffman algorithm does). Lets say teptt ofz is d, then

L(T) = 1.(T) +p(d+1)+p,(d+1) —p.d (4)
— LT +pe+py ()

To see thafl" is optimal, note that there is an optimal tree in whicandy are siblings, and that
wherever we place these siblings they are going to add aaminst+ p, to the average length of
any prefix tree ory’ with the pairz andy replaced with their parent By the induction hypothesis
l.(T") is minimized, sincd” is of sizen and built by the Huffman algorithm, and therefdgéTl")
is minimized andl” is optimal.]

Since Huffman coding is optimal we know that for any probigpdistribution S and associated
Huffman code”
H(S)<Il,(C)<H(S)+1.

14

3.2.1 Combining Messages

Even though Huffman codes are optimal relative to other yddes, prefix codes can be quite
inefficient relative to the entropy. In particulaf(S) could be much less than 1 and so the extra
in H(S) + 1 could be very significant.

One way to reduce the per-message overhead is to group reessHys is particularly easy
if a sequence of messages are all from the same probab#itgldition. Consider a distribution
of six possible messages. We could generate probabilieslf 36 pairs by multiplying the
probabilities of each message (there will be at most 21 enmwobabilities). A Huffman code
can now be generated for this new probability distributiowl ased to code two messages at a
time. Note that this technique is not taking advantage otltamal probabilities since it directly
multiplies the probabilities. In general by groupihgnessages the overhead of Huffman coding
can be reduced from 1 bit per messagé tb bits per message. The problem with this technique
is that in practice messages are often not from the samebdistn and merging messages from
different distributions can be expensive because of alpttesible probability combinations that
might have to be generated.

3.2.2 Minimum Variance Huffman Codes

The Huffman coding algorithm has some flexibility when twaialgfrequencies are found. The

choice made in such situations will change the final codeuting possibly the code length of

each message. Since all Huffman codes are optimal, howewannot change the average length.
For example, consider the following message probabilides codes.

| symbol| probability | code 1| code 2]

a 0.2 01 10
b 0.4 1 00
c 0.2 000 11
d 0.1 0010 | 010
e 0.1 0011 | 011

Both codings produce an average of 2.2 bits per symbol, ewemgththe lengths are quite different
in the two codes. Given this choice, is there any reason togie code over the other?
For some applications it can be helpful to reduce the vae@am¢he code length. The variance

is defined as
> p(e)(l(c) = 1.(C))*

With lower variance it can be easier to maintain a constaatatier transmission rate, or reduce
the size of buffers. In the above example, code 1 clearly Imascn higher variance than code 2. It
turns out that a simple modification to the Huffman algorittam be used to generate a code that
has minimum variance. In particular when choosing the twabelsdo merge and there is a choice
based on weight, always pick the node that was created garli¢he algorithm. Leaf nodes are
assumed to be created before all internal nodes. In the dgabpve, afted ande are joined, the
pair will have the same probability @sanda (.2), but it was created afterwards, so we joiand

15

Figure 2: Binary tree for Huffman code 2

a. Similarly we selecb instead ofac to join with de since it was created earlier. This will give
code 2 above, and the corresponding Huffman tree in Figure 2.

3.3 Arithmetic Coding

Arithmetic coding is a technique for coding that allows thérmation from the messages in a
message sequence to be combined to share the same bits.chihigte allows the total number
of bits sent to asymptotically approach the sum of the sédfrmation of the individual messages
(recall that the self information of a message is deflnekd@gs—)

To see the significance of this, consider sending a thousmﬂages each having probability
.999. Using a Huffman code, each message has to take at leastédchiiring 1000 bits to be sent.
On the other hand the self information of each messa@gis— = .00144 bits, so the sum of this
self-information over 1000 messages is only 1.4 bits. hlstmut that arithmetic coding will send
all the messages using only 3 bits, a factor of hundreds féwaer a Huffman coder. Of course
this is an extreme case, and when all the probabilities agdl stihe gain will be less significant.
Arithmetic coders are therefore most useful when thereagelprobabilities in the probability
distribution.

The main idea of arithmetic coding is to represent each plessequence af messages by a
separate interval on the number line between 0 ardglthe interval from .2 to .5. For a sequence
of messages with probabilities, . . ., p,,, the algorithm will assign the sequence to an interval of
size[[_, pi, by starting with an interval of size 1 (from 0 to 1) and narimgvthe interval by a
factor of p; on each message We can bound the number of bits required to uniquely idgatif
interval of sizes, and use this to relate the length of the representationeteelf information of
the messages.

In the following discussion we assume the decoder knows veah@essage sequence is com-
plete either by knowing the length of the message sequenbyg imicluding a special end-of-file
message. This was also implicitly assumed when sendingueseq of messages with Huffman
codes since the decoder still needs to know when a messageneeqs over.

We will denote the probability distributions of a messagea®{p(1),...,p(m)}, and we
define theaccumulated probabilitjor the probability distribution as

fG) = _Zp(z’) (=1,....m). (6)

10 0,
C
0.7 0.55

0.2k 03
005 0. o3~ 02

Figure 3: An example of generating an arithmetic code assyi@i messages are from the same
probability distributiona = .2, b = .5 andc = .3. The interval given by the message sequence
babc is [.255, .27).

So, for example, the probabiliti€s, .5, .3} correspond to the accumulated probabilifies.2, .7}.
Since we will often be talking about sequences of messageh,@ssibly from a different proba-
bility distribution, we will denote the probability disbittion of thei’* message ap; (1), . .., p;(m;)},

and the accumulated probabilities g5(1), ..., fi(m;)}. For a particular sequence of message
values, we denote the index of tiHe message value as. We will use the shorthang for p;(v;)
andf; for f;(v;).

Arithmetic coding assigns an interval to a sequence of ngessasing the following recur-
rences

b li_l‘f—fi*si_l l<i1<n
o bi =1
S = { Si—1 * P 1< S n (7)

wherel,, is the lower bound of the interval arg is the size of the intervai,e. the interval is given
by [l,., L, + s,). We assume the interval is inclusive of the lower bound, kalusive of the upper
bound. The recurrence narrows the interval on each steprte part of the previous interval. Since
the interval starts in the range [0,1), it always stays withis range. An example of generating
an interval for a short message sequences is illustratedyurd-3. An important property of the
intervals generated by Equation 7 is that all unigue messageences of length will have non
overlapping intervals. Specifying an interval therefonequely determines the message sequence.
In fact, any number within an interval uniquely determinks tnessage sequence. The job of
decoding is basically the same as encoding but instead 0§ tise message value to narrow the
interval, we use the interval to select the message valwktren narrow it. We can therefore
“send” a message sequence by specifying a number withinotiiesponding interval.

The question remains of how to efficiently send a sequencéofHat represents the interval,
or a number within the interval. Real numbers between 0 andnlbearepresented in binary
fractional notation ash;bybs For example75 = .11,9/16 = .1001 and1/3 = .0101, where
w means that the sequenceis repeated infinitely. We might therefore think that it iegdate
to represent each interval by selecting the number withenrkerval which has the fewest bits in
binary fractional notation, and use that as the code. Famplg if we had the interval®, .33),

17

[.33,67), and[.67, 1) we would represent these withl (1/4), .1(1/2), and.11(3/4). Itis not hard

to show that for an interval of sizewe need at most [log, s| bits to represent such a number.
The problem is that these codes are not a set of prefix codgsu Bent me 1 in the above example,
| would not know whether to wait for another 1 or interprenitmediately as the intervaB3, 67).

To avoid this problem we interpret every binary fractionatleword as an interval itself. In
particular as the interval of all possible completions. &mmple, the codeword10 would rep-
resent the intervdll /4, 3/8) since the smallest possible completionlis00 = 1/4 and the largest
possible completion i0101 = 3/8 — ¢. Since we now have several kinds of intervals running
around, we will use the following terms to distinguish theie will call the current interval of the
message sequence (ilgl; + s;)) the sequence intervathe interval corresponding to the proba-
bility of the i** messagei. [f;, f; + p:)) themessage intervahnd the interval of a codeword the
code interval

An important property of code intervals is that there is adicorrespondence between whether
intervals overlap and whether they form prefix codes, asdhefing Lemma shows.

Lemma 3.3.1. For a codeC, if no two intervals represented by its binary codewords= C
overlap then the code is a prefix code.

Proof. Assume codeword is a prefix of codeword, thenb is a possible completion af and
therefore its interval must be fully included in the intdreha. This is a contradiction. n

To find a prefix code, therefore, instead of using any numbéneninterval to be coded, we
select a codeword who's interval is fully included withiretmterval. Returning to the previous
example of the interval®), .33), [.33,67), and[.67, 1), the codewords00|0, .25), .100].5, .625),
and.11[.75, 1) are adequate. In general for an interval of sizee can always find a codeword of
length—[log, s| + 1, as shown by the following lemma.

Lemma 3.3.2.For any! and ans such that/,s > 0 and! + s < 1, the interval represented by
taking the binary fractional representation bft- s/2 and truncating it to] — log, s| + 1 bits is
contained in the interval, [+ s).

Proof. A binary fractional representation withdigits represents an interval of size less tBah
since the difference between the minimum and maximum cdiopke are all 1s starting at the
[+ 1% location. This has a valug' — ¢. The interval size of a-[log, s] + 1 bit representation
is therefore less thag/2. Since we truncaté+ s/2 downwards the upper bound of the interval
represented by the bits is less thians. Truncating the representation of a number{dog, s]+1
bits can have the effect of reducing it by at meg2. Therefore the lower bound of truncating
[+ s/2is at least. The interval is therefore contained([inl + s). O

We will call the algorithm made up of generating an intervaBgjuation 7 and then using the
truncation method of Lemma 3.3.2, tRealArithCodealgorithm.

Theorem 3.3.1.For a sequence of messages, with self informatioss . . ., s,, the length of the
arithmetic code generated by RealArithCode is bounde2i-by) """ | s;, and the code will not be
a prefix of any other sequencerofnessages.

18

Proof. Equation 7 will generate a sequence interval of size[", p;. Now by Lemma 3.3.2 we
know an interval of size can be represented i+ [— log s] bits, so we have

1+ [-logs] = 1+[— logz(Hpiﬂ

n

= 1+[) —log,pi]
=1

= 14> s

i=1
< 2 + i S;
i=1

The claim that the code is not a prefix of other messages is @ikectly from Lemma 3.3.1. [

The decoder for RealArithCode needs to read the input bits nradd so that it can determine
when the input string is complete. In particular it loops#aterations, where is the number of
messages in the sequence. On each iteration it reads emguglbits to narrow the code interval to
within one of the possible message intervals, narrows tyeesece interval based on that message,
and outputs that message. When complete, the decoder wélread exactly all the characters
generated by the coder. We give a more detailed descripfideading along with the integer
implementation described below.

From a practical point of view there are a few problems with énithmetic coding algorithm
we described so far. First, the algorithm needs arbitraggipion arithmetic to manipulateands.
Manipulating these numbers can become expensive as thealstget very small and the number
of significant bits get large. Another problem is that as dbed the encoder cannot output any
bits until it has coded the full message. It is actually palssto interleave the generation of
the interval with the generation of its bit representatignopportunistically outputting a 0 or 1
whenever the interval falls within the lower or upper halhigtechnique, however, still does not
guarantee that bits are output regularly. In particulanéf interval keeps reducing in size but still
straddles .5, then the algorithm cannot output anythinghénworst case the algorithm might still
have to wait until the whole sequence is received beforeuttitig any bits. To avoid this problem
many implementations of arithmetic coding break messagaes&es into fixed size blocks and
use arithmetic coding on each block separately. This agpratso has the advantage that since
the group size is fixed, the encoder need not send the numbessgages, except perhaps for the
last group which could be smaller than the block size.

3.3.1 Integer Implementation

It turns out that if we are willing to give up a little bit in thefficiency of the coding, we can
used fixed precision integers for arithmetic coding. Thiplamentation does not give precise
arithmetic codes, because of roundoff errors, but if we nsake that both the coder and decoder

19

are always rounding in the same way the decoder will alwayalibe to precisely interpret the
message.
For this algorithm we assume the probabilities are giveroasts

c(1),¢(2),...,c(m),

and the cumulative count are defined as befg@feé)(= Z;;ll c(7)). The total count will be denoted
as .
T=> cj).

j=1
Using counts avoids the need for fractional or real repriadems of the probabilities. Instead of
using intervals between 0 and 1, we will use intervals betwee(R — 1)] where R = 2* (i.e,
is a power of 2). There is the additional restriction that> 47. This will guarantee that no
region will become too small to represent. The larges, the closer the algorithm will come to
real arithmetic coding. As in the non-integer arithmetidiog, each message can come from its
own probability distribution (have its own counts and acolative counts), and we denote the
message using subscripts as before.

The coding algorithm is given in Figure 4. The current segeenterval is specified by the
integerd (lower) andu (upper), and the corresponding intervaliis:+ 1). The size of the interval
s is thereforeu — [+ 1. The main idea of this algorithm is to always keep the sizatgrethan
R/4 by expanding the interval whenever it gets too small. Thighat the innemhile loop does.

In this loop whenever the sequence interval falls completéthin the top half of the region (from
R/2 to R) we know that the next bit is going to be a 1 since intervals @aly shrink. We can
therefore output a 1 and expand the top half to fill the regi®milarly if the sequence interval
falls completely within the bottom half we can output a 0 arplaad the bottom half of the region
to fill the full region.

The third case is when the interval falls within the midd|# béthe region(fromR /4 to 3R /4).

In this case the algorithm cannot output a bit since it do¢g&mow whether the bit will be a 0 or 1.
It, however, can expand the middle region and keep trackish#s expanded by incrementing a
countm. Now when the algorithm does expand around the top (bottvia)iputs a 1 (0) followed
by m Os (1s). To see why this is the right thing to do, consider egp®y around the middle:
times and then around the top. The first expansion around ithéieriocates the interval between
1/4 and3/4 of the initial region, and the second betwe®i® and5/8. After m expansions the
interval is narrowed to the regian /2 — 1/2™* 1/2 4+ 1/2™+1). Now when we expand around
the top we narrow the interval td/2,1/2 + 1/2™*1). All intervals contained in this range will
start with al followed bym 0s.

Another interesting aspect of the algorithm is how it finshd&s in the case of real-number
arithmetic coding, to make it possible to decode, we wanta&arsure that the code (bit pattern)
for any one message sequence is not a prefix of the code fdreamoessage sequence. As before,
the way we do this is to make sure the code interval is fullytaioed in the sequence interval.
When the integer arithmetic coding algorithm (Figure 4)tief or loop, we know the sequence
interval [/, u| completely covers either the second quarter (ffByd to R/2) or the third quarter
(from R/2 to 3R/4) since otherwise one of the expansion rules would have bppied. The

20

function IntArithCode(file,k, n)
R=2*
=0
u=R—1
m =0
fori=1ton
s=u—1+1
u=1+s- filvi+1)/T] -1
L=1+[s- fi(vi)/T]
while true
if (1> R/2) /l'interval in top half
WriteBit(1)
u=2u—R+1 [=2—R
for j = 1 to m WriteBit(0)
m =0
elseif(u < R/2) Il interval in bottom half
WriteBit(0)
u=2u+1 [=2]
for j = 1 to m WriteBit(1)
m =0
else if(l > R/4 andu < 3R/4) Il interval in middle half
u=2u—R/2+1 [=2l—R/2
m=m+1
else continue // exit while loop
end while
end for
if ({ > R/4) [/l output final bits
WriteBit(1)
for j = 1 to m WriteBit(0)
WriteBit(0)
else
WriteBit(0)
for 7 = 1to m WriteBit(1)
WriteBit(1)

Figure 4: Integer Arithmetic Coding.

21

algorithm therefore simply determines which of these twgiales the sequence interval covers
and outputs code bits that narrow the code interval to ondede two quarters—al for the
second quarter, since all completion®afare in the second quarter, and(afor the third quarter.
After outputting the first of these two bits the algorithm malso outputr bits corresponding to
previous expansions around the middle.

The reason thak needs to be at leadf is that the sequence interval can become as small as
R/4+ 1 without falling completely within any of the three halves Ge able to resolve the counts
C(i), T has to be at least as large as this interval.

An example: Here we consider an example of encoding a sequence of messagje from the
same probability distribution, given by the following cdsn

c(1)=1, ¢(2) =10, ¢(3)=20

The cumulative counts are

f()=0, f(2)=1, f(3)=11
and7T = 31. We will chosek = 8, so thatR = 256. This satisfies the requirement that> 47
Now consider coding the message sequende2, 3. Figure 5 illustrates the steps taken in coding

this message sequence. The full code that is outft@®11111101 which is of length 11. The
sum of the self-information of the messages is

—(log,(20/31) + log,(10/31) + log,(1/31) + log,(10/31)) = 8.85 .

Note that this is not within the bound given by Theorem 3.3This is because we are not
generating an exact arithmetic code and we are loosing sodiegefficiency.

We now consider how to decode a message sent using the iat@tpenetic coding algorithm.
The code is given in Figure 6. The idea is to keep separater lamet upper bounds for the code
interval (, andu,;) and the sequence intervalgndw«). The algorithm reads one bit at a time and
reduces the code interval by half for each bit that is reaglliftsttom half when the bit is a 0 and the
top half when itis a 1). Whenever the code interval falls witan interval for the next message,
the message is output and the sequence interval is redudbd byessage interval. This reduction
is followed by the same set of expansions around the tomioadind middle halves as followed by
the encoder. The sequence intervals therefore follow thetesame set of lower and upper bounds
as when they were coded. This property guarantees thataitineg happens in the same way for
both the coder and decoder, and is critical for the correstio¢ the algorithm. It should be noted
that reduction and expansion of the code interval is alwagstesince these are always changed
by powers of 2.

4 Applications of Probability Coding
To use a coding algorithm we need a model from which to geagratbabilities. Some simple

models are to count characters for text or pixel values fages and use these counts as probabil-
ities. Such counts, however, would only give a compressatio bf aboutt.7/8 = .59 for English

22

i v f(v) flui+1)] 1 u s | m | expand rule| output
start 0 255 256

1 (3 11 31 90 255 166 0

2 |2 1 11 95 147 53| 0

+ 62 167 106/ 1 | (middle half)

3 |1 0 1 62 64 3|1

+ 124 129 6 | O | (bottom half)| 01

+ 120 131 12| 1 | (middle half)

+ 112 135 24| 2 | (middle half)

+ 96 143 48| 4 | (middle half)

+ 64 159 96| 5 | (middle half)

+ 0 191 192| 6 | (middle half)

4 |2 1 11 6 67 62| 6

+ 12 135 124 0 | (bottom half)| 0111111
end 0 (final out) | 01

Figure 5: Example of integer arithmetic coding. The rowsespnt the steps of the algorithm.
Each row starting with a number represents the applicatfoam @ontraction based on the next
message, and each row with a + represents the applicatioreafdhe expansion rules.

text as compared to the best compression algorithms thatrgiios of close to2. In this sec-
tion we give some examples of more sophisticated modelstieaised in real-world applications.
All these techniques take advantage of the “context” in saag. This can either be done by
transforming the data before codingd, run-length coding, move-to-front coding, and residual
coding), or directly using conditional probabilities bds® a context (JBIG and PPM).

An issue to consider about a model is whether it is static oadyic. A model can be static
over all message sequences. For example one could predeteha frequency of characters and
text and “hardcode” those probabilities into the encoder@coder. Alternatively, the model can
be static over a single message sequence. The encoderesxeoegt pass over the sequence to
determine the probabilities, and then a second pass to ase grobabilities in the code. In this
case the encoder needs to send the probabilities to theeleddds is the approach taken by most
vector quantizers. Finally, the model can be dynamic ovemntlessage sequence. In this case the
encoder updates its probabilities as it encodes messageasiake it possible for the decoder to
determine the probability based on previous messagesinitpsrtant that for each message, the
encoder codes it using the old probability and then updagtobability based on the message.
The advantages of this approach are that the coder needmibadditional probabilities, and that
it can adapt to the sequence as it changes. This approaderstig PPM.

Figure 7 illustrates several aspects of our general framewbshows, for example, the inter-
action of the model and the coder. In particular, the modeegates the probabilities for each pos-
sible message, and the coder uses these probabilitieswitimthe particular message to generate
the codeword. It is important to note that the model has talbetical on both sides. Furthermore
the model can only use previous messages to determine thalplities. It cannot use the current

23

function IntArithDecode(filek, n)

R=2*
=0 u=R-1 // sequence interval
lb=0 wu,=R-—1 [/l codeinterval
j=1 / message number
while j < n do
s=u—1014+1
1=0
do I find if the code interval is within one of the message ing¢sv
1=1+1

=1+ s fi(i+1)/T;] -1
=1+ s f;00)/T;)

while i < m; and not(l, > I') and(u, < u'))

if i > m,; then /Il halve the size of the code interval by reading a bit
b = ReadBit(file)
Sp =— Up — lb + 1
lb = lb -+ b(Sb/Q)
ub:lb+sb/2—1

else
Output() I/ output the message in which the code interval fits
u=u" [=1 [ladjustthe sequence interval
j=Jj+1
while true

if (1> R/2) /I sequence interval in top half
u=2u—R+1 [=2I-R
ub:2ub—R+l lb:2lb—R

else if(u < R/2) /I sequence interval in bottom half
u=2u+1 [=2l
ub:2ub+1 leQZb

elseif(l > R/4 andu < 3R/4) Il sequence interval in middle half
u=2u—R/2+1 [=2l—R/2
ub:2ub—R/2+1 lb:2lb—R/2

else continue // exit innerwhile loop

end if
end while

Figure 6: Integer Arithmetic Decoding

24

Compress Uncompress

Model Model
Static Static
Part)) Part

{p(s) : s € S} codeword {p(s) : s € S}
- Coder Decode -
Dynamic |w| = i(s) Dynamic
Part = log ﬁ Part
Message
sesS ses
Inverse
Transform Transform
In Out

Figure 7: The general framework of a model and coder.

message since the decoder does not have this message afdrtheould not generate the same
probability distribution. The transform has to be inveib

4.1 Run-length Coding

Probably the simplest coding scheme that takes advantage afontext is run-length coding.
Although there are many variants, the basic idea is to iflestrings of adjacent messages of
equal value and replace them with a single occurrence alatigavcount. For example, the
message sequenaeccbbaaabb could be transformed ta(1), (c,3), 0,2), @,3), (©,2). Once
transformed, a probability codez.g, Huffman coder) can be used to code both the message values
and the counts. Itis typically important to probability edthe run-lengths since short lengtesy,

1 and 2) are likely to be much more common than long lengtlgs (L356).

An example of a real-world use of run-length coding is for lREg-T T4 (Group 3) standard
for Facsimile (fax) machinés At the time of writing (1999), this was the standard for adihe
and business fax machines used over regular phone linesn&etxines transmit black-and-white
images. Each pixel is called@el and the horizontal resolution is fixed at 8.05 pels/mm. The
vertical resolution varies depending on the mode. The Tddstial uses run-length encoding to
code each sequence of black and white pixels. Since themnbréwo message values black and
white, only the run-lengths need to be transmitted. The &Adard specifies the start color by
placing a dummy white pixel at the front of each row so thatftret run is always assumed to
be a white run. For example, the sequebhbdbwwbbbbb would be transmitted as 1,4,2,5. The

HTU-T is part of the International Telecommunications Un{TU, ht t p: / / www. i t u. ch/ .

25

run-length white codeword black codeword
0 00110101 0000110111

1 000111 010
2 0111 11
3 1000 10
4 1011 011
20 0001000 00001101000
64+ 11011 0000001111
128+ 10010 000011001000

Table 3: ITU-T T4 Group 3 Run-length Huffman codes.

T4 standard uses static Huffman codes to encode the ruthkgengnd uses a separate codes for
the black and white pixels. To account for runs of more thanitddas separate codes to specify
multiples of 64. For example, a length of 150, would consighe code for 128 followed by the
code for 22. A small subset of the codes are given in Table Ph&se Huffman codes are based
on the probability of each run-length measured over a latgeber of documents. The full T4
standard also allows for coding based on the previous line.

4.2 Move-To-Front Coding

Another simple coding scheme that takes advantage of titexdas move-to-front coding. This is
used as a sub-step in several other algorithms includinBtinews-Wheeler algorithm discussed
later. The idea of move-to-front coding is to preprocessiissage sequence by converting it into
a sequence of integers, which hopefully is biased towarers with low values. The algorithm
then uses some form of probability coding to code these salle practice the conversion and
coding are interleaved, but we will describe them as sepgrasses. The algorithm assumes
that each message comes from the same alphabet, and sthrts total order on the alphabet
(e.g, [a,b,c,d,...]). For each message, the first pass of the algorithm outpeitsdsition of the
character in the current order of the alphabet, and thentepdae order so that the character is at
the head. For example, coding the charaetetith an order|a, b, ¢, d, . ..] would output a 3 and
change the order e, a, b, d, . . .|. This is repeated for the full message sequence. The seessd p
converts the sequence of integers into a bit sequence usifignéh or Arithmetic coding.

The hope is that equal characters often appear close to dashiio the message sequence so
that the integers will be biased to have low values. Thisgile a skewed probability distribution
and good compression.

26

4.3 Residual Coding: JPEG-LS

Residual compression is another general compression teehnsed as a sub-step in several algo-
rithms. As with move-to-front coding, it preprocesses thgadso that the message values have a
better skew in their probability distribution, and then eedhis distribution using a standard proba-
bility coder. The approach can be applied to message vdlaeb@ave some meaningful total order
(i.e., in which being close in the order implies similarity), asdmnost commonly used for integers
values. The idea of residual coding is that the encodertivigsiess the next message value based
on the previous context and then outputs the differencedmivihe actual and guessed value. This
is called theresidual The hope is that this residual is biased toward low valuethabit can be
effectively compressed. Assuming the decoder has alreadydid the previous context, it can
make the same guess as the coder and then use the residoaiMésao correct the guess. By not
specifying the residual to its full accuracy, residual egdcan also be used for lossy compression

Residual coding is used in JPEG lossless (JPEG LS), whiched tescompress both grey-
scale and color imagésHere we discuss how it is used on gray scale images. Color snzaye
simply be compressed by compressing each of the three clalbep separately. The algorithm
compresses images in raster order—the pixels are procesmgithg at the top-most row of an
image from left to right and then the next row, continuing daw the bottom. When guessing a
pixel the encoder and decoder therefore have as their @disfiaspixels to the left in the current
row and all the pixels above it in the previous rows. The JPEG&lgorithm just uses 4 other pixels
as a context for the guess—the pixel to the left (W), above aritid left (NW), above (N), and
above and to the right (NE). The guess works in two stages.fifldtestage makes the following
guess for each pixel value.

min(W, N) max(N, W) < NW
G = max (W, N) min(N, W) < NW 8)
N+W —NW otherwise

This might look like a magical equation, but it is based onitiea of taking an average of nearby
pixels while taking account of edges. The first and seconasels capture horizontal and vertical
edges. For example iW > W and N < NW this indicates a horizontal edge ald is used as
the guess. The last clause captures diagonal edges.

Given an initial guesss a second pass adjusts that guess based on local gradienisesit
the three gradients between the pairs of pix@l$V, W), (NW, N), and(N, NE). Based on the
value of the gradients (the difference between the two adjguixels) each is classified into one of
9 groups. This gives a total of 729 contexts, of which only 865 needed because of symmetry.
Each context stores its own adjustment value which is usedjtest the guess. Each context also
stores information about the quality of previous guessésahcontext. This can be used to predict
variance and can help the probability coder. Once the dlguorhas the final guess for the pixel, it
determines the residual and codes it.

2This algorithm is based on the LOCO-I (LOw COmplexity LOssI€Ompression for Images) algorithm and the
official standard number is ISO-14495-1/ITU-T.87.

27

olo]o
olo|o]o]A] o|o|o|o]o]A]
olo]~ lo]o|o]o]~

@ (b)

Figure 8: JBIG contexts: (a) three-line template, and (b}-liwe template. ? is the current pixel
andA is the “roaming pixel”.

4.4 Context Coding: JBIG

The next two techniques we discuss both use conditionagibties directly for compression. In
this section we discuss using context-based conditiomdighilities for Bilevel (black-and-white)
images, and in particular the JBIG1 standard. In the neximsette discuss using a context in
text compression. JBIG stands for the Joint Bilevel Image &ssiag Group. It is part of the same
standardization effort that is responsible for the JPE@dsted. The algorithm we describe here
is JBIG1, which is a lossless compressor for bilevel imagB#51 typically compresses 20-80%
better than ITU Groups Ill and 1V fax encoding outlined in 8ec 4.1.

JBIG is similar to JPEG LS in that it uses a local context of |[sixe code the current pixel.
Unlike JPEG LS, however, JBIG uses conditional probabditdeectly. JBIG also allows for pro-
gressive compression—an image can be sent as a set of ldyeecsa@asing resolution. Each layer
can use the previous layer to aid compression. We first @utlow the initial layer is compressed,
and then how each following layer is compressed.

The first layer is transmitted in raster order, and the cosgio® uses a context of 10 pixels
above and to the right of the current pixel. The standardaalltor two different templates for
the context as shown in Figure 8. Furthermore, the pixel sarkis a roaming pixel and can
be chosen to be any fixed distance to the right of where it ikkeshin the figure. This roaming
pixel is useful for getting good compression on images wébeated vertical lines. The encoder
decides on which of the two templates to use and on where te plebased on how well they
compress. This information is specified at the head of theptessed message sequence. Since
each pixel can only have two values, there 2lfepossible contexts. The algorithm dynamically
generates the conditional probabilities for a black or wpiiel for each of the contexts, and uses
these probabilities in a modified arithmetic coder—the cagleptimized to avoid multiplications
and divisions. The decoder can decode the pixels since iba#a the probability table in the
same way as the encoder.

The higher-resolution layers are also transmitted in rastger, but now in addition to using
a context of previous pixels in the current layer, the corsgian algorithm can use pixels from
the previous layer. Figure 9 shows the context templateg cbmtext consists of 6 pixels from
the current layer, and 4 pixels from the lower resolutioretayFurthermore 2 additional bits are
needed to specify which of the four configurations the codgdl s in relative to the previous
layer. This gives a total of 12 bits and 4096 contexts. Therélyn generates probabilities in the
same way as for the first layer, but now with some more conté@kts JBIG standard also specifies
how to generate lower resolution layers from higher resmtuayers, but this won't be discussed
here.

28

o] Alolo

o]
o
%°. % [0log?] o

[] []]]
0 o
Alo alolo
NE [o]o]>
[] []]]

Figure 9: JBIG contexts for progressive transmission. T dacles are the low resolution
pixels, the Os are the high-resolution pixels, the A is a riognpixel, and the ? is the pixel we
want to code/decode. The four context configurations ar¢hifour possible configurations of
the high-resolution pixel relative to the low resolutioxgdi

The approach used by JBIG is not well suited for coding greyjesitnages directly since the
number of possible contexts go upras, wherem is the number of grey-scale pixel values, and
p is the number of pixels. For 8-bit grey-scale images and desbof size 10, the number of
possible contexts i83°, which is far too many. The algorithm can, however, be appieegrey-
scale images indirectly by compressing each bit-positiothe grey scale separately. This still
does not work well for grey-scale levels with more than 2 oit8.b

4.5 Context Coding: PPM

Over the past decade, variants of this algorithm have ctemgig given either the best or close to
the best compression ratios (PPMC, PRHEOA and RK from Table 2 all use ideas from PPM).
They are, however, are not very fast.

The main idea of PPM (Prediction by Partial Matching) is tetadvantage of the previous K
characters to generate a conditional probability of theesurcharacter. The simplest way to do
this would be to keep a dictionary for every possible striraf & characters, and for each string
have counts for every charactetthat followss. The conditional probability of in the context
s is thenC'(z|s)/C(s), whereC(zx|s) is the number of times follows s andC'(s) is the number
of times s appears. The probability distributions can then be used Byféman or Arithmetic
coder to generate a bit sequence. For example, we might hdieéanary withqu appearing 100
times ande appearing 45 times aftepju. The conditional probability of the is then .45 and the
coder should use about 1 bit to encode it. Note that the pilityadistribution will change from
character to character since each context has its ownkdistm. In terms of decoding, as long as
the context precedes the character being coded, the dewtdtknow the context and therefore
know which probability distribution to use. Because the pitlities tend to be high, arithmetic
codes work much better than Huffman codes for this approach.

There are two problems with the basic dictionary method rilesd in the previous paragraph.

29

Order 0 Order 1 Order 2
Context Counts Context Counts Context Counts
empty a=4 a c=3 ac b=1
b=2 c=2

c=5 b a=2
ba c=1
C a=1
b=2 ca a=1
c=2
cb a=2
cc a=1
b=1

Figure 10: An example of the PPM table foe= 2 on the stringaccbaccacba.

First, the dictionaries can become very large. There is hatiea to this problem other than to
keepk small, typically 3 or 4. A second problem is what happenseft¢bunt is zero. We cannot
use zero probabilities in any of the coding methods (theyldvauply infinitely long strings).
One way to get around this is to assume a probability of noingaseen a sequence before and
evenly distribute this probability among the possibledaling characters that have not been seen.
Unfortunately this gives a completely even distributiomen in reality we might know that is
more likely thanb, even without knowing its context.

The PPM algorithm has a clever way to deal with the case whemtext has not been seen
before, and is based on the idea of partial matching. Theittigo builds the dictionary on the
fly starting with an empty dictionary, and every time the aidpon comes across a string it has not
seen before it tries to match a string of one shorter lengtiis i& repeated for shorter and shorter
lengths until a match is found. For each len@th, . . . , £ the algorithm keeps statistics of patterns
it has seen before and counts of the following charactengstdctice this can all be implemented in
a single trie. In the case of the lenditcontexts the counts are just counts of each character seen
assuming no context.

An example table is given in Figure 10 for a striagcbaccacba. Now consider following
this string with ac. Since the algorithm has the contdsd followed byc in its dictionary, it can
output thec based on its probability in this context. Although we midhibk the probability should
be 1, since is the only character that has ever followeal we need to give some probability of no
match, which we will call the “escape” probability. We wilkgback to how this probability is set
shortly. If instead ot the next character to code is anthen the algorithm does not find a match
for a length 2 context so it looks for a match of length 1, istteise the context is the previacals
Sincea has never followed by another, the algorithm still does not find a match, and looks for
a match with a zero length context. In this case it findsalaand uses the appropriate probability
for a (4/11). What if the algorithm needs to codel@ In this case the algorithm does not even
find the character in the zero-length context, so it assigasharacter a probability assuming all

30

Order 0 Order 1 Order 2
Context Counts Context Counts Context Counts
empty a=4 a c=3 ac b=1
b=2 $=1 c=2
c=5 $=2

$=3 b a=2
$=1 ba c=1
$=1
c a=1
b=2 ca c=1
c=2 $=1
$=3
cb a=2
$=1
cc a=1
b=1
$=2

Figure 11: An example of the PPMC table fbr= 2 on the stringaccbaccacba. This as-
sumes the “virtual” count of each escape symbol ($) is thebmirof different characters that have
appeared in the context.

unseen characters have even likelihood.

Although it is easy for the encoder to know when to go to a gmadntext, how is the decoder
supposed to know in which sized context to interpret theibissreceiving. To make this possible,
the encoder must notify the decoder of the size of the confeixé PPM algorithm does this by
assuming the context is of sizeand then sending an “escape” character whenever moving down
a size. In the example of coding angiven above, the encoder would send two escapes followed
by thea since the context was reduced from 2 to 0. The decoder themnsktmuse the probability
distribution for zero length contexts to decode the follogvbits.

The escape can just be viewed as a special character andhgivebability within each context
as if it was any other kind of character. The question is hoassign this probability. Different
variants of PPM have different rules. PPMC uses the follpnsocheme. It sets the count for
the escape character to be the number of different chasaséen following the given context.
Figure 11 shows an example of the counts using this schenthisliexample, the probability of
no match for a context adc is 2/(1 + 2 + 2) = .4 while the probability for & in that context is
.2. There seems to be no theoretical justification for this @adbut empirically it works well.

There is one more trick that PPM uses. This is that when simgotiown a context, the algo-
rithm can use the fact that it switched down to exclude thesipdgy of certain characters from
the shorter context. This effectively increases the priitabf the other characters and decreases
the code length. For example, if the algorithm were to code,abwould first send an escape

31

with probability1/(1+1). It would then skip the second escape since the only charfatitaving
the context is ¢ and the the character cannot be &f it were it would have been sent from the
contextba). Finally it would send tha with probability4/(4 + 2+ 2) = 1/2. The denominator is
4 from thea, 2 from theb, and 2 for the possibility of an escape for a character thambabeen
seen, e.g., d. Note that the count for the escape is 2, since we are todsag The total number
of bits of information in the messages is therefore 2, onélferfirst escape, and one for then
an empty context.

5 The Lempel-Ziv Algorithms

The Lempel-Ziv algorithms compress by building a dictignaf previously seen strings. Un-
like PPM which uses the dictionary to predict the probapitif each character, and codes each
character separately based on the context, the Lempeligbvidhms code groups of characters of
varying lengths. The original algorithms also did not usebabilities—strings were either in the
dictionary or not and all strings in the dictionary were gagual probability. Some of the newer
variants, such agzi p, do take some advantage of probabilities.

At the highest level the algorithms can be described asvislloGiven a position in a file,
look through the preceeding part of the file to find the longeatch to the string starting at the
current position, and output some code that refers to thathmaNow move the finger past the
match. The two main variants of the algorithm were descripediv and Lempel in two separate
papers in 1977 and 1978, and are often refered to as LZ77 an8. [Ihe algorithms differ in how
far back they search and how they find matches. The LZ77 #hgoris based on the idea of a
sliding window. The algorithm only looks for matches in a daw a fixed distance back from the
current position. Gzip, ZIP, and V.42bis (a standard modestogal) are all based on LZ77. The
LZ78 algorithm is based on a more conservative approachdimgdtrings to the dictionary. Unix
compress, and the Gif format are both based on LZ78.

In the following discussion of the algorithms we will use teemcursorto mean the position
an algorithm is currently trying to encode from.

5.1 Lempel-Ziv 77 (Sliding Windows)

The LZ77 algorithm and its variants use a sliding window that/es along with the cursor. The
window can be divided into two parts, the part before theaizalled the dictionary, and the part
starting at the cursor, called the lookahead buffer. The gizhese two parts are parameters of the
program and are fixed during execution of the algorithm. Té&dalgorithm is very simple, and
loops executing the following steps

1. Find the longest match of a string starting at the cursor @mpletely contained in the
lookahead buffer to a string starting in the dictionary.

2. Output a triple(p, n, ¢) containing the positiop of the occurence in the window, the length
n of the match and the next charactgyast the match.

32

Step Input String Output Code

1 aga ¢ a a ¢ a b c¢c a b a a a c (0,0, a)
2 a [agc a a ¢c a b c¢c a b a a a c (1,1,¢0
3 a a ¢ [aga ¢c a b c¢c a b a a a c (3,4,b)
4 a a c¢c a a ¢ a b a b a a a ¢ 3,3,
5 a a ¢ a a ca b c¢c a b a [a a c (1, 2,c)

Figure 12: An example of LZ77 with a dictionary of size 6 andakahead buffer of size 4. The
cursor position is boxed, the dictionary is bold faced, dralbokahed buffer is underlined. The
last step does not find the longer match (10,3,1) since ittsiadel of the window.

3. Move the cursorn + 1 characters forward.

The positionp can be given relative to the cursor with 0 meaning no matcheammg a match
starting at the previous character, etc.. Figure 12 shovexample of the algorithm on the string
aacaacabcababac.

To decode the message we consider a single step. Inductreessume that the decoder has
correctly constructed the string up to the current cursad,\@e want to show that given the triple
(p,m, c) it can reconstruct the string up to the next cursor positiando this the decoder can look
the string up by going back positions and taking the nextcharacters, and then following this
with the charactet. The one tricky case is when> p, as in step 3 of the example in Figure 12.
The problem is that the string to copy overlaps the lookatmsfkr, which the decoder has not
filled yet. In this case the decoder can reconstruct the rgedsatakingp characters before the
cursor and repeating them enough times after the cursot to fil positions. If, for example, the
code waqg 2, 7, d) and the two characters before the cursor vdyethe algorithm would place
abababa and then thel after the cursor.

There have been many improvements on the basic algorithme We will describe several
improvements that are used gyi p.

Two formats: This improvement, often called theZSS Variantdoes not include the next char-

acter in the triple. Instead it uses two formats, either a wéh a position and length, or just a

character. An extra bit is typically used to distinguish themats. The algorithm tries to find a

match and if it finds a match that is at least of length 3, it ukeffset, length format, otherwise

it uses the single character format. It turns out that thigrovement makes a huge difference for
files that do not compress well since we no longer have to whastposition and length fields.

Huffman coding the components: Gzip uses separate huffman codes for the offset, the length
and the character. Each uses addaptive Huffman codes.

Non greedy: The LZ77 algorithm is greedy in the sense that it always todshd a match start-
ing at the first character in the lookahead buffer withoutngahow this will affect later matches.
For some strings it can save space to send out a single clasathe current cursor position and

33

then match on the next position, even if there is a match attneent position. For example,
consider coding the string

d b ¢c a b c¢c d [a b c¢c a b

In this case LZCC would code it as (1,3,3), (0,a), (0,b). Tisetlao letters are coded as singletons
since the match is not at least three characters long. Thie saffer could instead be coded as
(0,a), (1,6,4) if the coder was not greedy. In theory onedouhgine trying to optimize coding by
trying all possible combinations of matches in the lookahatfer, but this could be costly. As a
tradeoff that seems to work well in practice, Gzip only loakead 1 character, and only chooses
to code starting at the next character if the match is lortggan the match at the current character.

Hash Table: To quickly access the dictionary Gzip uses a hash table wehyestring of length

3 used as the hash keys. These keys index into the positiowggjch they occur in the file. When
trying to find a match the algorithm goes through all of thehhasstries which match on the first
three characters and looks for the longest total match. dmwldong searches when the dictionary
window has many strings with the same three characters,|gfoeitam only searches a bucket
to a fixed length. Within each bucket, the positions are stamean order based on the position.
This makes it easy to select the more recent match when thiohgest matches are equal length.
Using the more recent match better skews the probabilityilligion for the offsets and therefore
decreases the average length of the Huffman codes.

5.2 Lempel-Ziv-Welch

In this section we will describe the LZW (Lempel-Ziv-Welchgriant of LZ78 since it is the one
that is most commonly used in practice. In the following d&ssion we will assume the algorithm
is used to encode byte streams.(each message is a byte). The algorithm maintains a dictiona
of strings (sequences of bytes). The dictionary is inidi with one entry for each of the 256
possible byte values—these are strings of length one. Aslfumeithm progresses it will add new
strings to the dictionary such that each string is only adbiagrefix one byte shorter is already in
the dictionary. For exampld,ohn is only added ifJoh had previously appeared in the message
sequence.

We will use the following interface to the dictionary. We as® that each entry of the dictio-
nary is given an index, where these indices are typicallgmigut incrementally starting at 256
(the first 256 are reserved for the byte values).

C’" = AddDict (C, x) Creates a new dictionary entry by extending an existing dic-
tionary entry given by index’ with the bytex. Returns the
new index.

C’ = GetIndex(C, z) Return the index of the string gotten by extending the string
corresponding to inde&’ with the bytex. If the entry does
not exist, return -1.

W = GetString(C) Returns the stringl” corresponding to index'.
Flag= IndexInDict? (C') Returns true if the indeK’ is in the dictionary and false oth-
erwise.

34

function LZW _DecodekFile)

function LZW _EncodekFile) C = ReadIndexFile)
C = ReadBytgFile) W = GetString(C)
while C' # EOFdo Output (W)
x = ReadBytgFile) while C' # EOFdo
C'" = Getlndex(C, x) C'" = ReadIndexFile)
while C" # —1 do if IndexInDict? (C”) then
c=c W = GetString(C")
x = ReadBytdFile) AddDict(C, W10])
C'" = Getlndex(C, z) else
Output (C) C’ = AddDict(C, W10])
AddDict(C,) W = GetString(C")
C=x Output (V)
c=C

Figure 13: Code for LZW encoding and decoding.

The encoder is described in Figure 13, and Tables 4 and 5 giveexamples of encoding
and decoding. Each iteration of the outer loop works by firslifig the longest match in the
dictionary for a string starting at the current position-e-thner loop finds this match. The iteration
then outputs the index fd#” and adds the string/ x to the dictionary, where is the next character
after the match. The use of a “dictionary” is similar to LZ7#tept that the dictionary is stored
explicitly rather than as indices into a window. Since thetidnary is explicit,i.e., each index
corresponds to a precise string, LZW need not specify thgtthen

The decoder works since it builds the dictionary in the sarag &s the encoder and in general
can just look up the indices it receives in its copy of theidicary. One problem, however, is that
the dictionary at the decoder is always one step behind tbeden. This is because the encoder
can addi¥ x to its dictionary at a given iteration, but the decoder wadk Rnow z until the next
message it receives. The only case in which this might be blgmois if the encoder sends an
index of an entry added to the dictionary in the previous.stépis happens when the encoder
sends an index for a strifd” and the string is followed b}/ W [0], wherel¥[0] refers to the first
character ofil (i.e, the input is of the forniV W1V [0]). On the iteration the encoder sends the
index forW it addsW W 0] to its dictionary. On the next iteration it sends the indexi#olV [0]. If
this happens, the decoder will receive the indextf6i/[0], which it does not have in its dictionary
yet. Since the it is able to decode the previdishowever, it can easily reconstrdétiv’[0]. This
case is handled by thedseclause in LZWdecode, and shown by the second example.

A problem with the algorithm is that the dictionary can get large. There are several choices
of what to do. Here are some of them.

1. Throw dictionary away when reaching a certain size (GIF)

2. Throw dictionary away when not effective (Unix Compress)

35

Table 4: LZW Encoding and Decodirapcabca. The rows with a + for encoding are iterations

@

| Getindex(C,x) | AddDict(C,x) | Output(C) |

init | a
a b -1 256 (a,b) a
b c -1 257 (b,c) b
C a -1 258 (c,a) c
+ a b 256
256| c -1 259 (256,c) 256
+ C a 258
258 | EOF -1 - 258
(a) Encoding
| C | C | W] IndexInDict?(C’) | AddDict(C,W[0]) | Output(W) |
Init | a a a
a b | b true 256 (a,b) b
b cC | C true 257 (b,c) c
c | 256 ab true 258 (c,a) ab
256 | 258 | ca true 259 (256,¢) ca

of the innerwhile loop.

(b) Decoding

| | C | x | Getindex(C,x) | AddDict(C,x) | Output(C) |
init | a
a a -1 256 (a,a) a

+ a a 256

256 a 1 257 (256,a) 256
+ a a 256
+ | 256| a 257

257 | EOF -1 - 257

(a) Encoding

|

| C | C | W | IndexInDict?(C’) | AddDict(C,W[0]) | Output(W) |

Init | a a a
a | 256| aa false 256 (a,a) aa
256 | 257 | aaa false 257 (256,a) aaa

Table 5: LZW Encoding and Decodirgpaaaa. This is an example in which the decoder does

(b) Decoding

not have the index in its dictionary.

3. Throw Least Recently Used entry away when reaches a ceizai(BTLZ - British Telecom
Standard)

Implementing the Dictionary: One of the biggest advantages of the LZ78 algorithms andneas
for its success is that the dictionary operations can ruy geickly. Our goal is to implement the
3 dictionary operations. The basic idea is to store theahetiy as a partially filled k-ary tree such
that the root is the empty string, and any path down the trgertode from the root specifies the
match. The path need not go to a leaf since because of the prefigrty of the LZ78 dictionary, all
paths to internal nodes must belong to strings in the diatipriVe can use the indices as pointers to
nodes of the tree (possibly indirectly through an array)irmiplement theGetString(C') function
we start at the node pointed to byand follow a path from that node to the root. This requires tha
every child has a pointer to its parent. To implement@atindex(C, x) operation we go from the
node pointed to by’ and search to see if there is a child byte-vatiend return the corresponding
index. For theAddDict (C, =) operation we add a child with byte-valueo the node pointed to by
C'. If we assumé is constant, th&etindex andAddDict operations will take constant time since
they only require going down one level of the tree. ThetString operation requireg§¥’| time to
follow the tree up to the root, but this operation is only usgdhe decoder, and always outplts
after decoding it. The whole algorithm for both coding andaténg therefore require time that is
linear in the message size.

To discuss one more level of detail, lets consider how tedtwe pointers. The parent pointers
are trivial to keep since each node only needs a single poiftte children pointers are a bit more
difficult to do efficiently. One choice is to store an array @fdgthk for each node. Each entry is
initialized to empty and then searches can be done with desargary reference, but we neéd
pointers per nodek(is often 256 in practice) and the memory is prohibitive. Artchoice is to
use a linked list (or possibly balanced tree) to store thiel@m. This has much better space but
requires more time to find a child (although technicallyl stiinstant time sincé is “constant”).

A compromise that can be made in practice is to use a linkedrisl the number of children in
a node rises above some threshold k’ and then switch to ay arings would require copying the
linked list into the array when switching.

Yet another technique is to use a hash table instead of cbiitdgrs. The string being searched
for can be hashed directly to the appropriate index.

6 Other Lossless Compression

6.1 Burrows Wheeler

The Burrows Wheeler algorithm is a relatively recent algonithAn implementation of the algo-
rithm calledbzi p, is currently one of the best overall compression algorghar text. It gets
compression ratios that are within 10% of the best algostsoch as PPM, but runs significantly
faster.

Rather than describing the algorithm immediately, letsdrgd through a thought process that
leads to the algorithm. Recall that the basic idea of PPM wasytto find as long a context as

37

a ccbaccacha ccbhaccacbha, a; cbaccacbaa; c;

a c¢ cbaccacha cbaccacbhaa; c; cchaccacba, a;

ac ¢ baccacba baccacbaac,; c» cacbaaccha, c3

acc b accacha accacbaacc, b, baaccbacca; c;

accb a ccacbha ccacbaacch; a, accbaccach, ay

accha c¢ cacbha cacbaaccbha, c3 ccacbaacch; as

acchac c¢ acbha acbaaccbacs cy4 baccachaac; c,

accbacc a cbha cbaaccbacc, as acbaaccbac; cy4

accbacca c¢ ba baaccbaccas; cj; aaccbaccacs b

accbaccac b a aaccbaccacs b, accacbaacc, b,

accbaccach a accbaccach, ay cbaaccbacc, as
(a) (b) (©)

Figure 14: Sorting the charactaasc,c,b;a,c3c a3Cc5b.a, based on context: (a) each character
in its context, (b) end context moved to front, and (c) chimacsorted by their context using
reverse lexicographic ordering. We use subscripts torgjstsh different occurences of the same
character.

possible that matched the current context and use thateaot®#ly predict the next character. A
problem with PPM is in selecting. If we setk too large we will usually not find matches and
end up sending too many escape characters. On the otherfhaadeét it too low, we would not
be taking advantage of enough context. We could have themyastitomatically seleét based on
which does the best encoding, but this is expensive. Alslinvd single text there might be some
very long contexts that could help predict, while most hallgbntexts are short. Using a fixéd
we would probably end up ignoring the long contexts.

Lets see if we can come up with a way to take advantage of thexiathat somehow automati-
cally adapts. Ideally we would like the method also to be dasiter. Consider taking the string we
want to compress and looking at the full context for each atter—t.e., all previous characters
from the start of the string up to the character. In fact, tðe contexts the same length, which
will be convenient later, we add to the head of each contexiptirt of the string following the
character making each context— 1 characters. Examples of the context for each character of
the stringaccbaccachba are given in Figure 6.1. Now lets sort these contexts basad\warse
lexical order, such that the last character of the contettesmost significant (see Figure 6.1c).
Note that now characters with the similar contexts (precgpcharacters) are near each other. In
fact, the longer the match (the more preceeding charadtatsrtatch identically) the closer they
will be to each other. This is similar to PPM in that it preféwager matches when “grouping”,
but will group things with shorter matches when the longetamaoes not exist. The difference
is that there is no fixed limit on the length of a match—a match of length 100 has priority ave
match of 99.

In practice the sorting based on the context is executedoickb| rather than for the full mes-
sage sequence. This is because the full message sequermdditimhal data structures required
for sorting it, might not fit in memory. The process of sortitig characters by their context

38

is often refered to as block-sorting transform In the dicussion below we will refer to the se-
guence of characters generated by a block-sorting transfsrthecontext-sorted sequen¢e.g,
Ci1a;C3C5a4a,CoC4bobas in Figure 6.1). Given the correlation between nearyby attara in a
context-sorted sequence, we should be able to code theeeffidiently by using, for example, a
move-to-front coder (Section 4.2). For long strings witimgwhat larger character sets this tech-
nigue should compress the string significantly since theesamaracter is likely to appear in similar
contexts. Experimentally, in fact, the technique compmreshout as well as PPM even though it
has no magic numbéror magic way to select the escape probabilities.

The problem remains, however, of how to reconstruct theirmalgsequence from context-
sorted sequence. The way to do this is the ingenious cohibtbmade by Burrows and Wheeler.
You might try to recreate it before reading on. The order @f thost-significant characters in
the sorted contexts plays an important role in decoding héneixample of Figure 6.1, these are
a;,ajasazbsb;,cc3c5cecy. The characters are sorted, but equal valued characterstdwoes-
sarily appear in the same order as in the input sequence. dllbevihg lemma is critical in the
algorithm for efficiently reconstruct the sequence.

Lemma 6.1.1.For the Block-Sorting transform, as long as there are ati¢as distinct characters
in the input, equal valued characters appear in the samerardéhe most-significant characters
of the sorted contexts as in the output (the context sortgdesee).

Proof. Since the contexts are sorted in reverse lexicographia,osdes of contexts whose most-
significant character are equal will be ordered by the remgicontext—.e., the string of all
previous characters. Now consider the contexts of the gbatwted sequence. If we drop the
least-significant character of these contexts, then thegxactly the same as the remaining context
above, and therefore will be sorted into the same orderitg. dnly time that dropping the least-
significant character can make a difference is when all atharacters are equal. This can only
happen when all characters in the input are equal. m

Based on Lemma 6.1.1, it is not hard to reconstruct the sequemm the context-sorted se-
guence as long as we are also given the index of the first deatacoutput (the first character in
the original input sequence). The algorithm is given by thiko#ing code.

function BW_Decode(In,Firstindex,)
S = MoveToFrontDecode(In,n)
R = Rank(5)
j = Firstindex
fori=1ton—1
Outli] = S[j]
j = Rl[j]
For an ordered sequenSethe Rankg) function returns a sequence of integers specifying foneac
character € S how many characters are either less tham equal toc and appear beforein S.

Another way of saying this is that it specifies the positiorthaf character if it where sorted using
a stable sort.

39

S Sort§) S Rank() Out
S a sy 9 ay / a; <
S Ao s, 10 a / St
n a3 n1 8 Sl / S4
a < ay a; 1 <« s4/a3
S i 1 S3 11 as / ny
m I 2 m 7 nl / I 1
a m a, 2 I 4 / S3
i n; i; 5 S3 / Se
S Sy Sy 12 S¢ / i 2
S S, s; 13 I o / m
S S3 sg 14 m % s
a Sy ds 3 o / So
a Sy a, 4 Sy / Sy
i S¢ i 5 6 S5 ay
(a) (b) (c)

Figure 15: Burrows-Wheeler Decoding Example. The decodedsages sequence is
assani ssi massa.

To show how this algorithms works, we consider an examplehicivthe MoveToFront de-
coder returnsS = ssnasnai sssaai , and in which Firstindex= 4 (the firsta). The example
is shown in Figure 15(a). We can generate the most signifdaaracters of the contexts simply
by sortingS. The result of the sort is shown in Figure 15(b) along withriduek R. Because of
Lemma 6.1.1, we know that equal valued characters will hheesame order in this sorted se-
guence and ir¥. This is indicated by the subscripts in the figure. Now eaeh @bFigure 15(b)
tells us for each character what the next character is. Wéhegiefore simply rebuild the initial se-
guence by starting at the first character and adding chasamte by one, as done by BWecode
and as illustrated in Figure 15(c).

7 Lossy Compression Techniques

Lossy compression is compression in which some of the irdgion from the original message
sequence is lost. This means the original sequences caanegbnerated from the compressed
sequence. Just because information is lost doesn’'t meajutiity of the output is reduced. For
example, random noise has very high information contentyvhen present in an image or a sound
file, we would typically be perfectly happy to drop it. Alsortan losses in images or sound might
be completely imperceptible to a human viewer (e.g. the dds®ry high frequencies). For this
reason, lossy compression algorithms on images can oftea fgetor of 2 better compression
than lossless algorithms with an imperceptible loss iniguaHowever, when quality does start
degrading in a noticeable way, it is important to make sudegrades in a way that is least objec-

40

tionable to the viewerd.g, dropping random pixels is probably more objectionabl@ tth@pping
some color information). For these reasons, the way mosy losmpression techniques are used
are highly dependent on the media that is being compressessylcompression for sound, for
example, is very different than lossy compression for insage

In this section we go over some general techniques that capgded in various contexts, and
in the next two sections we go over more specific exampleseuithiques.

7.1 Scalar Quantization

A simple way to implement lossy compression is to take thefsebssible messagésand reduce

it to a smaller set’ by mapping each element §fto an element irt’. For example we could take
8-bit integers and divide by 4.¢., drop the lower two bits), or take a character set in whicheupp
and lowercase characters are distinguished and replate alppercase ones with lowercase ones.
This general technique is callegiantization Since the mapping used in quantization is many-to-
one, itis irreversible and therefore lossy.

In the case that the sét comes from a total order and the total order is broken up ieto r
gions that map onto the elements$if the mapping is calledcalar quantization The example
of dropping the lower two bits given in the previous paragyregpan example of scalar quantiza-
tion. Applications of scalar quantization include redgcthe number of color bits or gray-scale
levels in images (used to save memory on many computer nisjitind classifying the intensity
of frequency components in images or sound into groups (ms&dEG compression). In fact we
mentioned an example of quantization when talking abouGIRE. There quantization is used to
reduce the number of contexts instead of the number of messdges. In particular we catego-
rized each of 3 gradients into one of 9 levels so that the gbtable needs only? entries (actually
only (9% + 1)/2 due to symmetry).

The termuniform scalar quantizatioms typically used when the mapping is linear. Again,
the example of dividing 8-bit integers by 4 is a linear magpirin practice it is often better to
use anonuniform scalar quantizationFor example, it turns out that the eye is more sensitive to
low values of red than to high values. Therefore we can géebguality compressed images by
making the regions in the low values smaller than the regiotise high values. Another choice
is to base the nonlinear mapping on the probability of deffeerinput values. In fact, this idea can
be formalized—for a given error metric and a given probabdistribution over the input values,
we want a mapping that will minimize the expected error. Fentain error-metrics, finding this
mapping might be hard. For the root-mean-squared errorigrtbiere is an iterative algorithm
known as the Lloyd-Max algorithm that will find the optimal ppang. An interesting point is that
finding this optimal mapping will have the effect of decreasihe effectiveness of any probability
coder that is used on the output. This is because the mapplingnd to more evenly spread the
probabilities inS".

7.2 \ector Quantization

Scalar quantization allows one to separately map each obkcolor image into a smaller set of
output values. In practice, however, it can be much more®feto map regions of 3-d color space

41

Out Out

4 4
3 3
2 2
1 1
-40 -30 -20 -1 10 20 30 40 40-30 20 -10]| 10 20 30 40"
-2
-3
-4 -4
(a) (b)

200
°® []
180 e o
[I]
160 oo ®
140 oge ®
oo ®
Weight 2 Se
el
™ 100 °.)
80 °.
60 o
[X)
40
[)
20
[)

1" 2 3 45 6 7 8
Height

Figure 17: Example of vector-quantization for a heightgteichart.

into output values. By more effective we mean that a betterpression ratio can be achieved
based on an equivalent loss of quality.

The general idea of mapping a multidimensional space intmaller set of messages is
called vector quantization Vector quantization is typically implemented by selegtim set of
representatives from the input space, and then mappinghat points in the space to the closest
representative. The representatives could be fixed fana &nd part of the compression protocol,
or they could be determined for each file (message sequemdaeat as part of the sequence. The
most interesting aspect of vector quantization is how otextethe representatives. Typically it is
implemented using a clustering algorithm that finds somebmirrof clusters of points in the data.
A representative is then chosen for each cluster by eithectsgy one of the points in the cluster
or using some form of centroid for the cluster. Finding gobgiers is a whole interesting topic
on its own.

42

Vector quantization is most effective when the variablesglthe dimensions of the space are
correlated. Figure 17 gives an example of possible reptatess for a height-weight chart. There
is clearly a strong correlation between people’s heightvagight and therefore the representatives
can be concentrated in areas of the space that make physisa,vith higher densities in more
common regions. Using such representatives is very mucle mitective than separately using
scalar quantization on the height and weight.

We should note that vector quantization, as well as scalantigation, can be used as part of
a lossless compression technique. In particular if in @mtdio sending the closest representative,
the coder sends the distance from the point to the reprdsenthen the original point can be
reconstructed. The distance is often referred to as theuaisiln general this would not lead to any
compression, but if the points are tightly clustered arotedrepresentatives, then the technique
can be very effective for lossless compression since thduas will be small and probability
coding will work well in reducing the number of bits.

7.3 Transform Coding

The idea of transform coding is to transform the input intafi@cent form which can then either be
compressed better, or for which we can more easily dropiogdems without as much qualitative
loss in the output. One form of transform is to select a lirsedof basis functionsy) that span the
space to be transformed. Some common sets include sin, @gapmials, spherical harmonics,
Bessel functions, and wavelets. Figure 18 shows some exarapthe first three basis functions
for discrete cosine, polynomial, and wavelet transfororegi For a set of values, transforms can
be expressed as anx n matrix 7. Multiplying the input by this matriXl” gives, the transformed
coefficients. Multiplying the coefficients B! will convert the data back to the original form.
For example, the coefficients for the discrete cosine tans{DCT) are

(25+1)im L < g
T, - {\/1/71005—2” 1=0,0<j7<n

\/Q/ncos% 0<i<n,0<j<n

The DCT is one of the most commonly used transforms in praéticénage compression,
more so than the discrete Fourier transform (DFT). This abse the DFT assumes periodicity,
which is not necessarily true in images. In particular taespnt a linear function over a region
requires many large amplitude high-frequency componengsDFT. This is because the period-
icity assumption will view the function as a sawtooth, whisthighly discontinuous at the teeth
requiring the high-frequency components. The DCT does rsoiras periodicity and will only re-
quire much lower amplitude high-frequency components. D8& also does not require a phase,
which is typically represented using complex numbers irDR&.

For the purpose of compression, the properties we wouldoliketransform are (1) to decor-
relate the data, (2) have many of the transformed coeffeiemsmall, and (3) have it so that from
the point of view of perception, some of the terms are moreomamt than others.

43

Cosine 0

)
¢ ¢ AVAYA @F

Polynomial

F el el

SN

Wavelet

ﬂEF"iFD’@FD*

Figure 18: Transforms

SS

8 A Case Study: JPEG and MPEG

The JPEG and the related MPEG format make good real-worlchpbess of compression because
(a) they are used very widely in practice, and (b) they useynmdirthe compression techniques
we have been talking about, including Huffman codes, amtencodes, residual coding, run-
length coding, scalar quantization, and transform codi=G is used for still images and is the
standard used on the web for photographic images (the Gikafids often used for textual images).
MPEG is used for video and after many years of debated MPE@sZkcome the standard for
the transmission of high-definition television (HDTV). hneans in a few years we will all be
receiving MPEG at home. As we will see, MPEG is based on antoRIPEG (i.e. each frame is
coded using a JPEG variant). Both JPEG and MPEG are lossyt®rma

8.1 JPEG

JPEG is a lossy compression scheme for color and gray-soalges. It works on full 24-bit color,
and was designed to be used with photographic material andafiatic artwork. It is not the ideal
format for line-drawings, textual images, or other imagéh varge areas of solid color or a very
limited number of distinct colors. The lossless technigueesh as JBIG, work better for such
images.

JPEG is designed so that the loss factor can be tuned by theéousadeoff image size and
image quality, and is designed so that the loss has the li#ast @n human perception. It however
does have some anomalies when the compression ratio gétsshich as odd effects across the
boundaries of 8x8 blocks. For high compression ratios,radehniques such as wavelet compres-
sion appear to give more satisfactory results.

An overview of the JPEG compression process is given in Ei@Qr We will cover each of the
steps in this process.

The input to JPEG are three color planes of 8-bits per-piaehaepresenting Red, Blue and
Green (RGB). These are the colors used by hardware to generages. The first step of JIPEG
compression, which is optional, is to convert these into ¥t@r planes. The YIQ color planes are

44

R (optional)

For each plane

Quantization DCT
-]

far each

[T 11
- [T 1]
‘ L
8x8 block [[11

zig-zag order
DC difference from prev. block

m Huffman or Arithmetic _
> > Bits
RLE

Figure 19: Steps in JPEG compression.

designed to better represent human perception and are vehased on analog TVs in the US (the
NTSC standard). The Y plane is designed to represent thiathegs (luminance) of the image. It
is a weighted average of red, blue and green (0.59 Green +R&d80+ 0.11 Blue). The weights
are not balanced since the human eye is more responsivecio thr@n to red, and more to red than
to blue. The I (interphase) and Q (quadrature) componeptssent the color hue (chrominance).
If you have an old black-and-white television, it uses orig ty signal and drops the | and Q
components, which are carried on a sub-carrier signal. &ason for converting to YIQ is that it
is more important in terms of perception to get the intensgit than the hue. Therefore JPEG
keeps all pixels for the intensity, but typically down saegpthe two color planes by a factor of 2
in each dimension (a total factor of 4). This is the first lossgnponent of JPEG and gives a factor
of 2 compression(l + 2 % .25)/3 = .5.

The next step of the JPEG algorithm is to partition each ofctiler planes into 8x8 blocks.
Each of these blocks is then coded separately. The firstisteqding a block is to apply a cosine
transform across both dimensions. This returns an 8x8 lwb8kbit frequency terms. So far this
does not introduce any loss, or compression. The blockisamtivated by wanting it to be large
enough to capture some frequency components but not sothegie causes “frequency spilling”.
In particular if we cosine-transformed the whole image,aglboundary anywhere in a line would
cause high values across all frequency components in tteat li

After the cosine transform, the next step applied to theksos to use uniform scalar quanti-
zation on each of the frequency terms. This quantizatioomrollable based on user parameters
and is the main source of information loss in JPEG comprassgnce the human eye is more
perceptive to certain frequency components than to otd@isG allows the quantization scaling
factor to be different for each frequency component. Thdirsgdactors are specified using an
8x8 table that simply is used to element-wise divide the &kt of frequency components. JPEG

45

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 6: JPEG default quantization table, luminance plane.

Figure 20: Zig-zag scanning of JPEG blocks.

defines standard quantization tables for both the Y and l+@poments. The table for Y is shown
in Table 6. In this table the largest components are in thetevght corner. This is because these
are the highest frequency components which humans aredistige to than the lower-frequency
components in the upper-left corner. The selection of théquéar numbers in the table seems
magic, for example the table is not even symmetric, but iaisdal on studies of human perception.
If desired, the coder can use a different quantization tahtk send the table in the head of the
message. To further compress the image, the whole restgtiodg can be divided by a constant,
which is a scalar “quality control” given to the user. Theulesf the quantization will often drop
most of the terms in the lower left to zero.

JPEG compression then compresses the DC component (@hpeost) separately from the
other components. In particular it uses a difference cotliingubtracting the value given by the
DC component of the previous block from the DC component if ock. It then Huffman or
arithmetic codes this difference. The motivation for thisthod is that the DC component is often
similar from block-to-block so that difference coding itikgive better compression.

The other components (the AC components) are now compretled are first converted into

a linear order by traversing the frequency table in a zig-@atgr (see Figure 20). The motiva-
tion for this order is that it keeps frequencies of approxathaequal length close to each other

46

Playbackorder: 0 1 2 3 4 5 6 7 8 9
Frametype: | B B P B B P B B |
Datastreamorder. 0 2 3 1 5 6 4 8 9 7

Figure 21: MPEG B-frames postponed in data stream.

in the linear-order. In particular most of the zeros will appas one large contiguous block at
the end of the order. A form of run-length coding is used to poss the linear-order. It is
coded as a sequence of (skip,value) pairs, where skip isuitmber of zeros before a value, and
value is the value. The special pair (0,0) specifies the erdoak. For example, the sequence
[4,3,0,0,1,0,0,0,1,0,0,0,...] is represented as [(@®8),(2,1),(3,1),(0,0)]. This sequence is then
compressed using either arithmetic or Huffman coding. Whbicthe two coding schemes used is
specified on a per-image basis in the header.

8.2 MPEG

Correlation improves compression. This is a recurring thienad of the approaches we have seen;
the more effectively a technique is able to exploit coriela in the data, the more effectively it
will be able to compress that data.

This principle is most evident in MPEG encoding. MPEG corspes video streams. In the-
ory, a video stream is a sequence of discrete images. Iniggasuccessive images are highly
interrelated. Barring cut shots or scene changes, any gid&o \frame is likely to bear a close
resemblance to neighboring frames. MPEG exploits thisgtiaorrelation to achieve far better
compression rates than would be possible with isolated énag

Each frame in an MPEG image stream is encoded using one efsbhemes:

I-frame , or intra-frame, are coded as isolated images.
P-frame , or predictive coded frame, are based on the previous I-foauiRe.

B-frame , or bidirectionally predictive coded frame, are based dmegior both the previous and
next I- or P-frame.

Figure 21 shows an MPEG stream containing all three typesaofids. |-frames and P-frames
appear in an MPEG stream in simple, chronological order. él@ry B-frames are moved so that
they appeaafter their neighboring I- and P-frames. This guarantees thdt fame appears after
any frame upon which it may depend. An MPEG encoder can demaglérame by buffering the
two most recent I- or P-frames encountered in the data strEagure 21 shows how B-frames are
postponed in the data stream so as to simplify decoder ndgteMPEG encoders are free to mix
the frame types in any order. When the scene is relativelicstt and B-frames could be used,
while major scene changes could be encoded using I-framgsattice, most encoders use some
fixed pattern.

47

e

}

ab‘.ﬂ‘[}i

T ,,,,,,,,,, A I:'CI
e

48 L l

" besl malch

=5 —|DCT + Quan + RLE--
64 e -molion veclor

Hullman
coder

'

0100110

Figure 22: P-frame encoding.

Since I-frames are independent images, they can be encedkthay were still images. The
particular technique used by MPEG is a variant of the JPE@Gnigoe (the color transformation
and quantization steps are slightly different). I-frames\aery important for use as anchor points
so that the frames in the video can be accessed randomly witequiring one to decode all
previous frames. To decode any frame we need only find itestqeevious I-frame and go from
there. This is important for allowing reverse playbackpsikhead, or error-recovery.

The intuition behind encoding P-frames is to find matches, groups of pixels with similar
patterns, in the previous reference frame and then codeditference between the P-frame and
its match. To find these “matches” the MPEG algorithm patiithe P-frame into 16x16 blocks.
The process by which each of these blocks is encoded isrdbast in Figure 22. For eadhrget
block in the P-frame the encoder findsederenceblock in the previous P- or I-frame that most
closely matches it. The reference block need not be aligmed @6-pixel boundary and can
potentially be anywhere in the image. In practice, howeter x-y offset is typically small. The
offset is called thenotion vector Once the match is found, the pixels of the reference bloek ar
subtracted from the corresponding pixels in the targetibl®bis gives a residual which ideally is
close to zero everywhere. This residual is coded using arselanilar to JPEG encoding, but will
ideally get a much better compression ratio because of thenlensities. In addition to sending
the coded residual, the coder also needs to send the motitorv&his vector is Huffman coded.
The motivation for searching other locations in the refeesimage for a match is to allow for the
efficient encoding of motion. In particular if there is a mayiobject in the sequence of images
(e.g, a car or a ball), or if the whole video is panning, then the bestch will not be in the same
location in the image. It should be noted that if no good m&dhund, then the block is coded as
if it were from an I-frame.

48

In practice, the search for good matches for each targekbtothe most computationally
expensive part of MPEG encoding. With current technologgl-time MPEG encoding is only
possible with the help of custom hardware. Note, howevet, while thesearchfor a match is
expensive, regenerating the image as part of the decodbe&pcsince the decoder is given the
motion vector and only needs to look up the block from the jotevimage.

B-frames were not present in MPEG’s predecessor, H.261. Weeg added in an effort to
address the following situation: portions of an intermesglig-frame may be completely absent
from all previous frames, but may be present in future frarkes example, consider a car entering
a shot from the side. Suppose an I-frame encodes the shatlibéocar has started to appear, and
another I-frame appears when the car is completely visildle. would like to use P-frames for
the intermediate scenes. However, since no portion of thésoasible in the first I-frame, the
P-frames will not be able to “reuse” that information. Thetfthat the car is visible in a later
I-frame does not help us, as P-frames can only loaékin time, not forward.

B-frames look for reusable data in both directions. The dierehnique is very similar to that
used in P-frames, but instead of just searching in the pusvioor P-frame for a match, it also
searches in the next I- or P-frame. Assuming a good matchuisdfen each, the two reference
frames are averaged and subtracted from the target fraroelylbne good match is found, then it
is used as the reference. The coder needs to send some itiorma which reference(s) is (are)
used, and potentially needs to send two motion vectors.

How effective is MPEG compression? We can examine typicaigression ratios for each
frame type, and form an average weighted by the ratios inlwtiie frames are typically inter-
leaved.

Starting with a356 x 260 pixel, 24-bit color image, typical compression ratios foPEIG-I| are:

Type Size Ratio
I 18 Kb 7:1
P 6 Kb 20:1
B 25Kb 50:1

Avg 48Kb 271

If one 356 x 260 frame requires 4.8 Kb, how much bandwidth does MPEG reqniceder to
provide a reasonable video feed at thirty frames per second?

30frames/sec - 4.8Kb/ frame - 8b/bit = 1.2Mbits/sec

Thus far, we have been concentrating on the visual compah&PEG. Adding a stereo audio
stream will require roughly another 0.25 Mbits/sec, for argl total bandwidth of 1.45 Mbits/sec.

This fits nicely within the 1.5 Mbit/sec capacity of a T1 linka. fact, this specific limit was a
design goal in the formation of MPEG. Real-life MPEG encodiersk bit rate as they encode, and
will dynamically adjust compression qualities to keep thedie within some user-selected bound.
This bit-rate control can also be important in other corgefor example, video on a multimedia
CD-ROM must fit within the relatively poor bandwidth of a typl€CD-ROM drive.

49

MPEG in the Real World

MPEG has found a number of applications in the real worlduitiog:

1. Direct Broadcast Satellite. MPEG video streams are reddwy a dish/decoder, which un-
packs the data and synthesizes a standard NTSC televigioal Si

2. Cable Television. Trial systems are sending MPEG-II paogning over cable television
lines.

3. Media Vaults. Silicon Graphics, Storage Tech, and otkeders are producing on-demand
video systems, with twenty file thousand MPEG-encoded filma single installation.

4. Real-Time Encoding. This is still the exclusive provindepoofessionals. Incorporating
special-purpose parallel hardware, real-time encodergast twenty to fifty thousand dol-
lars.

9 Other Lossy Transform Codes

9.1 Wavelet Compression

JPEG and MPEG decompose images into sets of cosine wavefd/nfsrtunately, cosine is a

periodic function; this can create problems when an imageatas strong aperiodic features.
Such local high-frequency spikes would require an infinienber of cosine waves to encode
properly. JPEG and MPEG solve this problem by breaking umgésanto fixed-size blocks and
transforming each block in isolation. This effectivelypdithe infinitely-repeating cosine function,
making it possible to encode local features.

An alternative approach would be to choose a set of basidifunscthat exhibit good locality
without artificial clipping. Such basis functions, calleddvelets”, could be applied to the entire
image, without requiring blocking and without degenemtivhen presented with high-frequency
local features.

How do we derive a suitable set of basis functions? We stdlt avsingle function, called a
“mother function”. Whereas cosine repeats indefinitely, vemitthe wavelet mother function,
to be contained within some local region, and approach zeveesstray further away:

lim ¢(z) =0

r—+o0

The family of basis functions are scaled and translatedomsf this mother function. For
some scaling factor and translation factar,

Pa(x) = ¢(2°x — 1)
A well know family of wavelets are the Haar wavelets, whick derived from the following
mother function:

50

poo=¢(x)

p10=0(2z) b11=0(22—1)

Pp20=0(4z) p21=0p(4x—1) p22=0p(4x—2) P23=p(4z—3)

i |71/2 (% (1

J 1 1 1

Figure 23: A small Haar wavelet family of size seven.

1 0<z<1/2
plry=<9 -1 : 1/2<z<1
0 : x<0orx>1

Figure 23 shows a family of seven Haar basis functions. Ofntia@y potential wavelets,
Haar wavelets are probably the most described but the Isast urheir regular form makes the
underlying mathematics simple and easy to illustrate, éndi$ to create bad blocking artifacts if
actually used for compression.

Many other wavelet mother functions have also been propddselMorret wavelet convolves
a Gaussian with a cosine, resulting in a periodic but smgatetaying function. This function is
equivalent to a wave packet from quantum physics, and thkenatics of Morret functions have
been studied extensively. Figure 24 shows a sampling of pibygular wavelets. Figure 25 shows
that the Daubechies wavelet is actually a self-similartiiac

51

0.06 0.06 0.07

; "3 x1073
0.05 Daubechies_6 0.05 Coiflet_3 25
0.04 0.04 0.06 [.
0.03 003 2
0.02) 0.051 15
0.01 0.02 1
0 0.01 0.041 05
-0.01 0 L 0
-0.02 -0.01 0.03 05
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 4
0.027 1200 1250 1300 1350 1400 1450 1500 |
0.05 0.06 0.01
0.05 Symmlet_6
Haar 4 0.04 0t N
0.03
0 002 001
0.01
0 0.02 ‘ ‘ ‘ ‘
-0.01 0 500 1000 1500 2000 2500
0.05 -0.02
0 100 200 300 400 500 600 0 500 1000 1500 2000 2500

Figure 25: Self-similarity in the Daubechies
Figure 24: A sampling of popular wavelets. wavelet.

Wavelets in the Real World

Summus Ltd. is the premier vendor of wavelet compressidmi@ogy. Summus claims to achieve
better quality than JPEG for the same compression ratiehidsubeen loathe to divulge details of
how their wavelet compression actually works. Summus vesivethnology has been incorporated
into such items as:

e Wavelets-on-a-chip for missile guidance and communioatgystems.
e Image viewing plugins for Netscape Navigator and Microsatéernet Explorer.
e Desktop image and movie compression in Corel Draw and Coreld/id

e Digital cameras under development by Fuiji.

In a sense, wavelet compression works by characterizingralsin terms of some underlying
generator. Thus, wavelet transformation is also of intevesside of the realm of compression.
Wavelet transformation can be used to clean up noisy dat@detect self-similarity over widely
varying time scales. It has found uses in medical imagingymder vision, and analysis of cosmic
X-ray sources.

9.2 Fractal Compression

A function f(x) is said to have a fixed point; if z; = f(x;). For example:

f(x) = azx+b
b
l1—-a

52

This was a simple case. Many functions may be too complexlte sbrectly. Or a function
may be a black box, whose formal definition is not known. Irt tese, we might try an iterative
approach. Keep feeding numbers back through the functitrojpes that we will converge on a
solution:

r9 = guess

v, = f(zi1)

For example, suppose that we hg\(e’) as a black box. We might guess zerarggnd iterate
from there:

ro = 0

r1 = f(zo) =1

ry = f(z1)=15

rs = f(zy) =175

ry = f(zs)=1.875

ry = f(xq) =1.9375

r¢ = f(zs)=1.96875

r7 = f(xg) = 1.984375
(

rs = f(x7) = 1.9921875

In this example(x) was actually defined as:+ 1. The exact fixed point is 2, and the iterative
solution was converging upon this value.

Iteration is by no means guaranteed to find a fixed point. Nduattions have a single fixed
point. Functions may have no fixed point, many fixed pointgroinfinite number of fixed points.
Even if a function has a fixed point, iteration may not necelyseonverge upon it.

In the above example, we were able to associate a fixed pdue wath a function. If we were
given only the function, we would be able to recompute thedfigeint value. Put differently, if
we wish to transmit a value, we could instead transmit a fandhat iteratively converges on that
value.

This is the idea behind fractal compression. However, wenatanterested in transmitting
simple numbers, like “2”. Rather, we wish to transmit entimeages. Our fixed points will be
images. Our functions, then, will be mappings from imagasiages.

Our encoder will operate roughly as follows:

1. Given an imagei, from the set of all possible imageBnage.
2. Compute a functiorf : Image — I'mage such thatf (i) ~ i.

3. Transmit the coefficients that uniquely identjfy

53

Figure 26: ldentifying self-similarity. Range blocks appea the left; one domain block appears
on the left. The arrow identifies one of several collage fiomcthat would be composited into a
complete image.

Our decoder will use the coefficients to reassenfldad reconstruct its fixed point, the image:
1. Receive coefficients that uniquely identify some functfon/mage — I'mage.

2. lteratef repeatedly until its value converges on a fixed image,

3. Present the decompressed image,

Clearly we will not be using entirely arbitrary functions BerWWe want to choose functions
from some family that the encoder and decoder have agreetdinpalvance. The members of this
family should be identifiable simply by specifying the vaduer a small number of coefficients.
The functions should have fixed points that may be found eiaiton, and must not take unduly
long to converge.

The function family we choose is a set of “collage functigighich map regions of an image to
similar regions elsewhere in the image, modified by scatioition, translation, and other simple
transforms. This is vaguely similar to the search for simi@croblocks in MPEG P- and B-frame
encoding, but with a much more flexible definition of simitgriAlso, whereas MPEG searches
for temporal self-similarity across multiple images, tedccompression searches for spatial self
similarity within a single image.

Figure 26 shows a simplified example of decomposing an im@fgecollages of itself. Note
that the encoder starts with the subdivided image on thé. rigir each “range” block, the encoder
searchers for a similar “domain” block elsewhere in the imade generally want domain blocks
to be larger than range blocks to ensure good convergeneeadtlithg time.

Fractal Compression in the Real World

Fractal compression using iterated function systems wstsdigscribed by Dr. Michael Barnsley
and Dr. Alan Sloan in 1987. Although they claimed extracagdyncompression rates, the compu-
tational cost of encoding was prohibitive. The major venofdiractal compression technology is
Iterated Systems, cofounded by Barnsley and Sloan.

54

Today, fractal compression appears to achieve compresaims that are competitive with
JPEG at reasonable encoding speeds.

Fractal compression describes an image in terms of itsgtier than in terms of a pixel grid.
This means that fractal images can be somewhat resolutdependent. Indeed, one can easily
render a fractal image into a finer or coarser grid than thahefsource image. This resolution
independence may have use in presenting quality imagesss&nariety of screen and print media.

9.3 Model-Based Compression

We briefly present one last transform coding scheme, maastdhcompression. The idea here is
to characterize the source data in terms of some strong lyimdemodel. The popular example
here is faces. We might devise a general model of human faessyribing them in terms of
anatomical parameters like nose shape, eye separationcalkir, cheekbone angle, and so on.
Instead of transmitting the image of a face, we could trah#mi parameters that define that face
within our general model. Assuming that we have a suitabldehfor the data at hand, we may
be able to describe the entire system using only a few bytparaimeter data.

Both sender and receiver share a large bodyfiori knowledge contained in the model itself
(e.g., the fact that faces have two eyes and one nose). Tteeinformation is shared in the model,
the less need be transmitted with any given data set. Likeel@tieompression, model-based
compression works by characterizing data in terms of a deemierlying generator. Model-based
encoding has found applicability in such areas as commaerecognition of four-legged animals
or facial expressions.

55

